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Preface

The 11th International Symposium on Experimental Algorithms (SEA 2012)
took place during June 7–9, 2012, in Bordeaux, France.

SEA, previously known as WEA (Workshop on Experimental Algorithms), is
an international forum for researchers in the area of design, analysis, and exper-
imental evaluation and engineering of algorithms, as well as in various aspects of
computational optimization and its applications. The preceding symposia were
held in Riga, Monte Verita, Rio de Janeiro, Santorini, Menorca, Rome, Cape
Cod, Dortmund, Ischia, and Crete.

The Program Committee of SEA 2012 received 64 submissions. Each sub-
mission was reviewed by at least three Program Committee members and some
trusted external referees, and evaluated on its quality, originality, and relevance
to the symposium. The Committee selected 31 papers, leading to an acceptance
rate of 48%.

In addition to the accepted contributions, this volume also contains papers
of the invited talks given by Marco E. Lübbecke (RWTH Aachen University),
Friedhelm Meyer auf der Heide (University of Paderborn), and Peter Sanders
(Karlsruhe Institute of Technology).

I would like to thank the Steering Committee and its Chair, José Rolim, for
giving me the opportunity to serve as Program Chair of SEA 2012, and for the
responsibilities of selecting the Program Committee, the conference program,
and publications.

I would like to thank all the authors who responded to the call for papers, the
invited speakers, the members of the Program Committee, the external referees,
and — last but not least— the members of the Organizing Committee.

I gratefully acknowledge financial support from the following institutions: the
French National Research Agency (ANR), Enseirb-Matméca, Institut Universi-
taire de France (IUF), LaBRI, University of Bordeaux, CNRS, Inria, Région
Aquitaine, GDR IM, Communauté Urbaine de Bordeaux (CUB).

I would like to thank Springer for publishing the proceedings of SEA 2012 in
their LNCS series and for their support.

Finally, I acknowledge the use of the EasyChair system for handling the
submission of papers, managing the review process, and generating these pro-
ceedings.

June 2012 Ralf Klasing
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Automatic Decomposition

and Branch-and-Price—A Status Report

Marco E. Lübbecke

RWTH Aachen University, Operations Research, Kackertstraße 7,
D-52072 Aachen, Germany

marco.luebbecke@rwth-aachen.de

Abstract. We provide an overview of our recent efforts to automatize
Dantzig-Wolfe reformulation and column generation/branch-and-price
for structured, large-scale integer programs. We present the need for
and the benefits from a generic implementation which does not need any
user input or expert knowledge. A focus is on detecting structures in
integer programs which are amenable to a Dantzig-Wolfe reformulation.
We give computational results and discuss future research topics.

1 Modeling with Integer Programs

Integer programming offers undeniably a powerful and versatile, yet industrially
relevant approach to model and solve discrete optimization problems from vir-
tually all areas of scientific and practical applications. To get an impression on
modeling, consider a simple combinatorial optimization problem, the bin packing
problem. We are given n items of size ai, i = 1, . . . , n, which have to be packed
into a minimum number of bins of capacity b each. A standard integer program
for this problem is built on binary variables xij ∈ {0, 1} to decide whether item
i is packed in bin j or not. It is common that a single variable imposes relatively
little structure on the overall solution. The model is as follows.

min

n∑
j=1

yj (1a)

n∑
j=1

xij = 1 i = 1, . . . , n (1b)

n∑
i=1

aixij ≤ b j = 1, . . . , n (1c)

xij ≤ yj i, j = 1, . . . , n (1d)

xij , yj ∈ {0, 1} i, j = 1, . . . , n (1e)

We call this the original formulation. Every item has to be packed because of
the set partitioning constraint (1b); whenever a bin is used it has to be opened

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 1–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M.E. Lübbecke

via the logical implication (1d); and no bin is overpacked because of the knap-
sack constraint (1c). The objective function (1a) reflects the goal of minimizing
the number of opened bins. Note that n bins always suffice. A few remarks are
in order. We observe that there is a symmetry w.r.t. the bins, that is, for a
given solution (x̄, ȳ) and a permutation σ of the bin indices, we get essentially
“the same” solution with the same objective function value by replacing x̄ij by
x̄iσ(j) and ȳj by ȳσ(j). Also note that there are rather “local” constraints (1c),
namely those concerning the packing of a single bin; and there are “global”
constraints (1b), namely those which ensure that for every item we open some
bin. In particular, there is a knapsack problem to solve for each bin (which is
NP-hard, but a computationally very easy combinatorial optimization problem),
and the “individual” solutions to the knapsack problems are linked by a “coor-
dinating” constraint which enforces a global structure in the overall solution.
This is typical for many practical situations in which decisions are taken in a
distributed way, but which in fact need synchronization in order to achieve a
global goal (this is a feature which brings optimal solutions to such decision
problems way out of reach of human planners). Examples are vehicle routing,
crew and machine scheduling, location problems, and many more.

A standard solver does not “see” this concept of constructing a complex solu-
tion out of easier building blocks either, as a branch-and-bound algorithm works
“everywhere” on the overall solution simultaneously by construction. One way to
make these partial solutions “visible” to the solver is by formulating a different
model which is based on “more meaningful” variables. For bin packing, we could
base a model on binary variables λpj ∈ {0, 1} which represent whether or not
we pack an entire configuration or pattern p in bin j. A pattern is a collection
of items that respects the knapsack capacity and therefore “knows” about the
local constraints. All patterns for bin j are collected in a set Pj , and with the
shorthand notation i ∈ p to state that pattern p contains item i, the new model
reads as follows.

min

n∑
j=1

∑
p∈Pj

λpj (2a)

n∑
j=1

∑
p∈Pj :i∈p

λpj = 1 i = 1, . . . , n (2b)

∑
p∈Pj

λpj ≤ 1 j = 1, . . . , n (2c)

λpj ∈ {0, 1} j = 1, . . . , n, p ∈ Pj (2d)

Constraint (2b) has the same role as constraint (1b) before: we must be sure
that among all patterns for all bins, every item is contained in exactly one of
those selected. The convexity constraint (2c) is new and ensures that at most
one pattern is chosen per bin (a bin may also be “empty,” that is, closed). No
knapsack constraint is needed any more, at the expense of the fact that, for each
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bin, we essentially enumerated all feasible solutions to the knapsack constraint.
After all, this is what we wanted. From a solution to this model we can uniquely
reconstruct a solution to the original model (1) via xij =

∑
p∈Pj :i∈p λpj , that is,

summing over all patterns for bin j that contain an item i. The new model (2)
is still symmetric in the bins as all sets of patterns are identical for all bins. This
symmetry could be eliminated by noting that we only need to ensure that for
each item some pattern is selected; exactly which bin is used is not of importance.
This leads us to an aggregated version of model (2).

min
∑
p∈P

νp (3a)

∑
p∈P :i∈p

νp = 1 i = 1, . . . , n (3b)

νp ∈ {0, 1} p ∈ P (3c)

A binary variable νp represents whether we select a pattern p or not. Set P
contains all feasible patterns, but no longer any information on bin indices. This
is also true for the aggregated variables νp =

∑n
j=1 λpj . As a consequence of the

symmetry breaking, there is no unique reconstruction of an original solution to
model (1) from a solution to model (3). Of course, one could have formulated a
set partitioning model like (3) for the bin packing problem without going through
the above reformulations, and this is what often happens.

2 Dantzig-Wolfe Reformulation

There is a major reason for favoring models (2) or (3) over model (1): the former
is usually stronger in the sense that the linear relaxation, i.e., relaxing variable
domains from {0, 1} to [0, 1], gives a tighter bound on the integer optimum.
Intuitively, this is because the “more meaningful” variables in (3) impose more
structure on the overall solution because a part of all original constraints (the
“local” knapsack constraints) is already fulfilled with integrality. The theoretical
reason is that model (2) is derived from (1) via a Dantzig-Wolfe reformulation.

A sketch of this reformulation is as follows (see e.g., [3] for details). Consider
an original integer program of the form

min{ctx : Ax ≥ b, Dx ≥ d, x ∈ Zn
+} . (4)

The polyhedron X := conv{x ∈ Zn
+ : Dx ≥ d} gives an inspiration for the “more

meaningful” variables. We assume that X is bounded, but this is no restriction.
We express x ∈ X as a convex combination of the (finitely many) extreme points
P of X , which leads to an equivalent extended formulation

min{ctx : Ax ≥ b, x =
∑
p∈P

λpp,
∑
p∈P

λp = 1, λp ≥ 0, x ∈ Zn
+} . (5)
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The reformulation (5) contains the so-called master constraints Ax ≥ b, the
convexity constraint, and the constraint linking the original x variables to the
extended λ variables. In general, model (5) has an exponential number (in n) of
λ variables, so its LP relaxation needs to be solved by column generation [3].
That is, one starts with a small subset of λ variables and iteratively adds more
variables of negative reduced cost until no such variables can be identified. The
pricing subproblem to check whether there exist variables with negative reduced
cost is a minimization problem of a linear objective function over X , so it can
be solved again as an integer program. The column generation process needs to
be invoked in every node of the branch-and-bound tree, yielding a branch-and-
price algorithm. Special care must be taken when deciding on how to branch on
fractional variables [4,16,17].

In the classical setting, k disjoint sets of constraints are reformulated, namely
when the matrix D has a block-diagonal form

D =

⎛
⎜⎜⎜⎝

D1

D2

. . .

Dk

⎞
⎟⎟⎟⎠ , (6)

whereDi ∈ Qmi×ni , i = 1, . . . , k. In other words,Dx ≥ d partitions inDixi ≥ di,
i = 1, . . . , k, where x = (x1, x2, . . . , xk), with an ni-vector x

i, i = 1, . . . , k. Every
Dixi ≥ di is individually Dantzig-Wolfe reformulated. We call k the number of
blocks of the reformulation. A matrix of the form

⎛
⎜⎜⎜⎜⎜⎝

D1

D2

. . .

Dk

A1 A2 · · · Ak

⎞
⎟⎟⎟⎟⎟⎠ (7)

with Ai ∈ Qm�×ni , i = 1, . . . , k is called bordered block-diagonal, see Fig. 1(b). It
is this form we would like to see in the coefficient matrix of an integer program
in order to apply a Dantzig-Wolfe reformulation.

Depending on your background, the following may or may not apply to you:
you regularly formulate models like (1) (but cannot solve even moderately sized
instances); you have already noticed that going from model (1) to model (2) is
by application of a Dantzig-Wolfe reformulation (but you don’t know of what use
this knowledge may be to you, practically speaking); you would like to implement
your own column generation and branch-and-price code and use it to optimally
solve models like (2) or (3) (but you don’t know whether it is worth the time
and considerable effort); you already have your branch-and-price code running
(but don’t want to change and adapt it every time you consider a new problem).
You are any of this kind? Read on. . .
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3 In Need for an Automatic Decomposition

In 2004, when collecting material for “the primer” [3], we learned about François
Vanderbeck’s efforts to write a generic branch-and-price code BaPCod [12], and
we were fascinated by the idea ever since. Vanderbeck developed important con-
tributions [11,13,14,15], so that not only a Dantzig-Wolfe reformulation could
be performed according to a user specification but also branching was done in a
generic way. Further generic decomposition codes became available like DIP [10]
and within the G12 project [9]. However, none of these codes could be used by
someone not knowledgeable in decomposition techniques as the user needs to
propose how the input integer program is to be decomposed. It is still up to the
modeler which constraints Dx ≥ d she considers as “local,” that is, to be re-
formulated. Sometimes the choice may be rather obvious as in our introductory
example, but sometimes there is more freedom, and thus more freedom to make
mistakes, and one needs to know what one is doing.

It simply felt wrong that there are the well-understood and in many special
cases successfully applied concepts of Dantzig-Wolfe decomposition, column gen-
eration, and branch-and-price, but they are not “out-of-the-box” usable e.g., to
“everyday” OR practitioners, despite the availability of generic implementations.
And yet those who ran their own codes often needed to start all over with every
new application.

In order to close the last—but maybe most crucial—gap, we made first ex-
periments in [2] with detecting matrix structures suited for reformulation (see
Section 4). At that time, this detection and our generic branch-and-price code
GCG (see Section 5) were not merged into one project, but results were encour-
aging. Testing on general mixed integer programs was very nice and gave a
successful proof-of-concept, but diverted our attention from the true target in-
stances of this research: those which bear structure. In this talk, we report on
experiments with automatic detection of decomposable matrix structures, and
generic branch-and-price on a suitable test set of “structured” instances.

4 Recognizing Matrix Structures for Decomposition

The typical matrix structure for which Dantzig-Wolfe decomposition was pro-
posed is a bordered block-diagonal form (7). With a little experience with the
technique and an automatic recognition of types of constraints (like set parti-
tioning constraints, knapsack constraints, and the like) one can come up quite
easily with a suggestion for a decomposition. This works well for standard prob-
lems, but may fail for “unknown” problems. Then, a possibility is to exploit a
folklore connection between matrices and graphs [5].

Given amatrixA, construct a hypergraphH = (V,R∪C) as follows.With every
aij �= 0 associate a vertex vij ∈ V . For every row i introduce a hyperedge ri ∈ R
which contains exactly all vertices vrij ∈ V that correspond to non-zero entries
of the row; analogously introduce a hyperedge cj ∈ C for every column j. When
H partitions into several connected components, the matrix A is a block-diagonal
matrix, with a bijection between blocks in A and connected components in H .
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Hypergraph H can also be used to detect a bordered block-diagonal form.
Without the rows in the “border” the remaining matrix is block-diagonal. Thus,
a removal of (a minimum number of) hyperedges from R such that the remaining
graph partitions into connected components reveals a bordered block-diagonal
form in A (with a minimum number of rows in the border). The problem is NP-
hard and we experimented with heuristics to solve it. Figure 1 shows a matrix
as given in the original model, and a structure detected with this minimum
hypergraph partitioning approach.

(a) original 10teams (b) detected structure

Fig. 1. (a) Matrix structure directly from the LP file (10teams) and (b) with a bordered
block-diagonal structure detected by our algorithm

The algorithm needs as input the number k of connected components we look
for in H . Thus, in practice, we check for different small numbers of k. As the
results sometimes look artificial, we suggest that a more tailored hypergraph
partitioning algorithm should be sought, exploiting the fact that H is extremely
sparse and of degree 2. In a different line of research we replace hypergraph
partitioning by hypergraph clustering, which eliminates the need to specify the
number of blocks (connected components, clusters) beforehand. Experimentation
with these alternatives is still under way, but preliminary results look plausible.

5 Towards a Standalone Solver

Based on the discussion above, we developed GCG [6] (“generic column gener-
ation”) which is based on the SCIP framework [1] which is free for academic
purposes (scip.zib.de). Together with the LP file describing the integer pro-
gram, GCG takes as input a second file (“the decomposition”) describing which
constraints belong to the master problem and which to the blocks, respectively.
Alternatively, several of the matrix structure detection algorithms only sketched
above are applied to the instance. GCG then performs a Dantzig-Wolfe refor-
mulation according to a “best guess” (in addition one can specify whether the
so-called convexification or discretization approach should be applied); identi-
fies identical blocks, and aggregates them (the same as going from model (2)

scip.zib.de
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to model (3)); performs column generation on the given decomposition; main-
tains both formulations (the original in the x-variables, and the extended in the
λ-variables) which allows branching and cutting plane separation on the origi-
nal variables; it has specialized branching rules like Ryan/Foster branching and
generic primal heuristics [7,8]; and overall GCG uses SCIP’s rich functionality of
being a state-of-the-art MIP solver (like availability of pseudo-costs, pre-solving,
propagation techniques, etc.). This turns the branch-price-and-cut framework
SCIP into a branch-price-and-cut solver [6]. A first stable version is about to be
released as this abstract goes to press.

6 Discussion

What are the goals of our project? Certainly, expecting a decomposition code
to beat a state-of-the-art branch-and-cut code on the average instance is not
realistic. On the other hand, anything but outperforming the general-purpose
solver on instances that contain a decomposable problem structure would be
a failure. Thus, the art remains to tell the instances that are amenable to a
Dantzig-Wolfe reformulation from those which are not. And so we are back at
the most important and most interesting algorithmic challenge: to efficiently and
reliably detect “structure” in an instance or conclude that “none” is contained.

This is an area which may not only produce new and improved algorithms,
e.g., for partitioning/clustering the graph underlying a coefficient matrix. We
also need a much better theoretical understanding of what makes a good “struc-
ture” to look for, and we believe that this will give us insights into how to set
up a good integer programming model in the first place. It is this algorithm
engineering feature which makes this project so interesting to us: to improve
the design of a long-known algorithm, letting computational experiments guide
our way. We hope that our work contributes to closing the gap between the
algorithm on paper and its usefulness to a non-expert in practice.
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Abstract. We consider a scenario with a team of autonomous mobile
robots which are placed in the plane. Their goal is to move in such a way
that they eventually reach a prescribed formation. Such a formation may
be a straight line between two given endpoints (Robot Chain Problem),
a circle or any other geometric pattern, or just one point (Gathering
Problem). In this survey, we assume that there is no central control that
guides the robot’s decisions, thus the robots have to self-organize in order
to accomplish global tasks like the above-mentioned formation problems.
Moreover, we restrict them to simple local strategies: the robots are lim-
ited to “see” only robots within a bounded viewing range; their decisions
where to move next are solely based on the relative positions of robots
within this range. Most strategies for these type of problems assume a
discrete time model, i.e., time is divided into rounds, in a round, each
robot moves to some target point defined by the observations of its en-
vironment.

In this talk, we focus on a much less examined class of local strategies,
namely continuous strategies. Here, each robot continuously observes his
environment and continuously adapts its speed and direction to these
observations. focus on these type of strategies and survey recent results
on local strategies for short robot chains and gathering in the continuous
time model. We present such strategies for the Robot Chain and the
Gathering Problem and analyze them w.r.t. the distance traveled by the
robots. For both problems, we survey bounds for the “price of locality”,
namely the ratio between the cost of our local algorithms and the optimal
cost assuming global view, for each individual start configuration.

1 Introduction

We consider a scenario, in which a team of small and cheap mobile robots co-
operates in order to achieve a common global goal like the exploration of an
unknown environment, or evacuations from dangerous areas. An important kind
of tasks for such a team is to build geometric formations out of an arbitrary con-
figuration of initial positions. Especially, it is important to determine the sensor
and actor capabilities of the robots which are needed to achieve the formation.
Naturally, the goal is to require as few capabilities as possible in order to be able

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 9–17, 2012.
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to use robots which are as cheap as possible. Current research focuses on basic
tasks such as building lines [1–5] or circles [6, 7], or simply gathering in a point
[8–14].

All these results are based on simple models of robots and the environment
they live in, so that correctness and efficiency proofs are possible. The envi-
ronment is a plane without obstacles (for environments with obstacles see, e.g.
[4, 15, 16]); the robots are considered as points in the plane (for robots with an
extent see, e.g. [17, 18]). The main restriction we are focusing on is their bounded
viewing range: robots can only “see” other robots within a fixed viewing radius
around their current positions. In the sequel, this viewing radius is normalized to
one. They have no compass, but can compute the exact relative positions of their
neighbors within their viewing range, i.e. the distances and the angles between
the rays to these neighbors (for inaccurate measurements see [19, 20]). Thus a
robot has to base its decision where to move next solely on the relative positions
of its neighbors within its current viewing range. We refer to such strategies as
local strategies.

Most strategies developed until now, including all citations from above, as-
sume a discrete time model, in which all robots act in rounds. One round consists
of a Look-Operation, where the robots observes the positions of its neighbors,
a Compute-Operation, where the strategy uses the observed positions to deter-
mine a target point, and a Move-Operation, during which the robot moves to
the computed target point. In this model, efficiency of algorithms is typically
measured in the number of rounds needed until a formation is reached.

In this talk, we focus on continuous strategies. In a continuous strategy, the
robots continuously sense their neighborhood and directly adjust their direc-
tion and speed. We only demand a speed limit which we normalize to one,
the viewing radius. We abstract from several physical limitations of real robots;
the most severe one is our assumption that there is no delay between sensing the
neighborhood and reacting to the gathered information: The robots can adjust
their direction and speed at the same time as they observe their neighborhood.
We are interested in the maximum distance traveled by the robots.

The formation problems considered in this talk are the Gathering Problem
and the Robot Chain Problem.

The Robot Chain Problem is defined as follows: In addition to n mobile robots
r1, ..., rn, a base camp r0 and an explorer rn+1 are given, which are both station-
ary. We assume that, in the beginning, ri−1 and ri+1 are in the viewing range
of ri for i = 1, ..., n. Thus, the robots form a maybe winding chain connecting
the base camp with the explorer. Moreover, the decisions of ri are only based on
the relative positions of its direct neighbors ri−1 and ri+1. The goal is to let all
robots move towards the straight line between the base camp and the explorer,
the so-called target line, while each robot must stay in visibility range of its two
neighbors.

The Gathering Problem is to let the n mobile robots r1, . . . , rn gather in one
point, which is not prescribed, but must be determined by the robots. The point
in which the robots eventually meet is called the gathering point. We assume
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that the visibility graph, i.e., the unit disk graph defined by the viewing radius
of the robots, is connected in the beginning. The local strategies will maintain
this connectivity.

The next chapters survey the state of the art for the two above-mentioned
formation problems in the continuous time model.

2 The Robot Chain Problem

A local strategy for the Robot Chain Problem in the continuous setting gets as
input the current positions of the robot’s neighbors. It must determine a direc-
tion in which the robot should move and its speed based only on this information.
A very simple and intuitive strategy for this setting is the Move-On-Bisector
Strategy introduced in [1]. The idea is to let robot ri move in direction of the
angle bisector of the angle which is formed by ri−1, ri, ri+1 (see Fig. 1). It moves
with the maximum speed of 1 in this direction (Phase 1). As soon as a robot
reaches the line between its neighbors, it adapts its speed and movement direc-
tion in order to stay on and move with this line, keeping the ratio of distances
to its neighbors constant (Phase 2). Since the neighbors are also restricted to
the maximum speed of 1, this is always possible: a robot will not have to move
faster than with speed 1 to stay on this line and to keep the ratio. It is not too
hard to see that the distance between two neighbors never increases. Thus, the
connectivity of the chain is maintained.

Fig. 1. The Move-On-Bisector Strategy

One property of this strategy is that the robots reach the line and stop moving
as soon as the last robot reaches the line between its neighbors. Moreover, since
the robots stay in Phase 2 of the algorithm when they have reached it, this last
robot is always in Phase 1 and therefore it moves with speed 1 all the time. Its
movement path is thus the longest path among the robots, and the length of
this path is equal to the time it takes the robots to reach the target line. Two
examples can be seen in Figs. 2 and 3.

In order to analyze the time or, equivalently, the maximum traveled distance,
progress measures need to be defined. In [1], two progress measures are used.
The first is the length l of the chain, which is defined as the sum of the distances
between neighboring robots. It is shown that the length decreases with constant
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(a) Start configuration (b) End configuration and trajectory

Fig. 2. Example for Move-On-Bisector with one robot

(a) Start configuration (b) Intermediate configuration and
trajectories

(c) End configuration and trajectories

Fig. 3. Example for Move-On-Bisector with several robots

speed, if at least one angle of the chain is smaller than some constant. The second
progress measure is a chain’s height h which is the maximum distance of a robot
to the target line. It can be shown that the height decreases with constant speed,
if all angles are greater than some constant. From these two progress measures
an upper bound of O(h+ l) for the maximum traveled distance follows. Now one
can observe that h ≤ l ≤ n, which results in an upper bound of O(l) ⊆ O(n).

This upper bound is asymptotically optimal for worst case instances. To see
this, consider a configuration with each robot positioned in distance 1 from its
two neighbors, such that the middle robot is in distance n/2 from the target
line. No algorithm, even an optimal global one, can solve this configuration
faster than in time n/2. This observation is a special case of the more general
observation that no configuration with height h can be solved faster than in time
h: OPT ≥ h, if OPT indicates the time needed by a global algorithm , i.e., one
with global view on the configuration.
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Now we turn to a bound on the “price of locality”, i.e., we want to compare
the distance traveled by the Move-On-Bisector strategy to the one traveled by
an optimal global algorithm, for each individual start configuration. It is shown
in [1] that the robots reach the target line in time O((h + d) log l), d denoting
the distance between the two stations. Thus, for an arbitrary instance with not
too large d, the local strategy is by a factor of at most O(log l) ⊆ O(log n) slower
than an optimal global algorithm. This yields the following result about the price
of locality.

Theorem 1. When the Move-On-Bisector strategy is performed, the maximum
distance traveled by a robot is O(min{n, (OPT + d) log(n)}), where d is the dis-
tance between two stations, and OPT the optimal distance traveled by an algo-
rithm with global view on the configuration.

Instead of moving in direction of the bisector, another intuitive strategy for
the same setting is the Go-To-The-Middle strategy [21]. Here, each robot
moves continuously with speed 1 towards the midpoint towards its neighbors
(see Fig. 4). As soon as it reaches this point, it stays on it. Similar to the Move-
On-Bisector strategy, the robots reach the target line in time O(n). Runtime
bounds depending on h are not known for this strategy. A larger example can
be seen in Fig. 5.

(a) Start configuration (b) End configuration and trajec-
tory

Fig. 4. Example for Go-To-The-Middle with one robot

3 The Gathering Problem

The gathering problem has some similarities to the robot chain problem. Again,
the strategy gets as input the current positions of the neighboring robots and
must determine the movement direction and speed based only on this informa-
tion. A major difference is the larger and dynamic neighborhood of a robot: It
is no longer fixed, but can change over time. (Note: at the end all robots are
neighbors of each other.)

One algorithm has so far been described and analyzed for this setting. We
call it Gathering-Move-On-Bisector due to its similarities to the Move-On-
Bisectorstrategy. It was first introduced in [14], and here it was also shown that
the strategy gathers the robots in finite time. A runtime analysis was presented
in [22]. The idea of the algorithm is as follows. Each robot continuously observes
its neighborhood and computes the convex hull of all robot positions which it
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(a) Start configuration (b) Intermediate configuration and
trajectories

(c) End configuration and movement paths

Fig. 5. Example for Go-To-The-Middle with several robots

can observe. If it is a vertex of the convex hull, it moves (similarly to Move-On-
Bisector) with speed 1 on the angle bisector of the inner angle of the convex hull
at its own position. If the robot is positioned on a line which forms a border
of the convex hull, it moves with the line and stays on it, keeping the ratio of
distances to its neighbors on the convex hull constant. This case is also similar
to Move-On-Bisector. Otherwise, it does not move at all.

For the analysis of Gathering-Move-On-Bisector, again a height h, the maxi-
mum distance of a robot to the gathering point, is defined. Note that the gath-
ering point, although not known to the robots, is fixed, since the algorithm
is deterministic. A second progress measure is based on the unit disk graph
UDG = (V,E) of the robots, which has one vertex for each robot position and
an edge between each pair of robots, which are mutually visible. This graph has
a well-defined outer border. The length l is defined as the sum of the distances
between neighboring robots on the outer border.

Unlike Move-On-Bisector, it can be shown for Gathering-Move-On-Bisector
that the length decreases with constant speed, independent of the angles into
which the robots move. This yields an upper bound of O(l) ⊆ O(n), which
is again asymptotically optimal for worst case start configurations. Also here, a
bound for the price of locality can be achieved. First note that h ≤ OPT holds. A
refined version of the technique used for Move-On-Bisectoryields an upper bound
of O(h log l) Together with the insight that l ≤ h2 holds, we get an upper bound
of O(h log l) = O(h log h) = O(OPT logOPT ). Therefore, the local algorithm
is only by a factor of logOPT slower than an optimal global algorithm. These
considerations yield the following result on the price of locality.
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Theorem 2. When the Gathering-Move-On-Bisector strategy is performed, the
maximum distance traveled by a robot is O(min{OPT logOPT, n}), where OPT
denotes the optimal distance traveled by an algorithm with global view on the
configuration.

4 Discussion of Models and Strategies

Some questions about the described strategies remain open. For all strategies,
only upper runtime bounds have been shown. It is therefore not yet known
whether the described bounds are tight: the competitive factors might even be
better. Of interest are therefore better upper bounds as well as lower bounds for
the described strategies and for general local strategies.

A classical time model which is often used for this type of problems is a
discrete and synchronous model like described in the introduction, in which all
robots act in synchronous rounds according to the Look-Compute-Move model.
A bridge between this discrete model and the continuous model described in this
talk is given by so-called δ-bounded strategies, which allow the robots to move
only up to a distance of δ ≤ 1 in one round. For δ = 1, we get the classical
discrete model, and for δ → 0 and a speed limit of 1, we have the continuous
time model. The Go-To-The-Middle strategy for the robot chain problem has
been analyzed in this setting in [21].

Our continuous model is still far away from real robotic capabilities. Bridg-
ing the gap could start with introducing a delay between the observation of the
neighborhood and the reaction to the observation. This extension makes the
model more realistic, but also more difficult to analyze. In this setting, situa-
tions can occur which are similar to those for discrete and synchronous settings:
Robots move too far, before they observe this and move back again.

One of the physically unrealistic features is the ignorance of problems with
acceleration and turning. It would be interesting to find ways to incorporate
such restrictions in a model so that properties of strategies still can be formally
proven.
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Abstract. The paper gives an overview of our recent work on balanced graph
partitioning – partition the nodes of a graph into k blocks such that all blocks have
approximately equal size and such that the number of cut edges is small. This
problem has numerous applications for example in parallel processing. We report
on a scalable parallelization and a number of improvements on the classical multi-
level approach which leads to improved partitioning quality. This includes an
integration of flow methods, improved local search, several improved coarsening
schemes, repeated runs similar to the approaches used in multigrid solvers, and
an integration into a distributed evolutionary algorithm. Overall this leads to a
system that for many common benchmarks leads to both the best quality solution
known and favorable tradeoffs between running time and solution quality.

1 Introduction

Graph partitioning is a common technique in computer science, engineering, and re-
lated fields. For example, good partitionings of unstructured and irregular graphs are
very valuable in the area of high performance computing, e.g., when solving partial
differential equations. These equations are usually discretized and then solved numeri-
cally using a parallel computer, e.g. using a CG method. To effectively balance the load
we need a graph model of computation and communication. Roughly speaking, ver-
tices in the graph represent computation units and edges denote communication. Now
this graph needs to be partitioned such that there are few edges between the blocks
(pieces). In particular, when we want to solve the partial differential equation in parallel
on k PEs (processing elements) we want to partition the graph into k blocks of about
equal size. In this paper we focus on a version of the problem that constrains the max-
imum block size to (1 + ε) times the average block size and tries to minimize the total
cut size, i.e., the number of edges that run between blocks.

A successful heuristics for partitioning large graphs is the multilevel approach de-
picted in Figure 1 where the graph is recursively contracted to achieve a smaller graph
with the same basic structure. After applying an initial partitioning algorithm to this
small graph, the contraction is undone and, at each level, a local refinement method
is used to improve the partitioning induced by the coarser level. Refer to [1–4] for
overviews on existing methods. Although several successful multilevel partitioners have
been developed in the last 14 years, we had the impression that certain aspects of the
method are not well understood. We therefore have built our own graph partitioner
KaPPa [5] (Karlsruhe Parallel Partitioner) with focus on scalable parallelization. Some-
what astonishingly, we also obtained improved partitioning quality through rather sim-
ple methods. This motivated us to make a fresh start putting all aspects of MGP on trial.

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 18–26, 2012.
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Fig. 1. Multilevel graph partitioning

This paper gives an overview of our recent work on balanced graph partitioning. We
present four algorithms: KaPPa [5], KaSPar [6] (Karlsruhe Sequential Partitioner) which
contracts only a single edge per level, KaFFPa [7] (Karlsruhe Fast Flow Partitioner)
which uses advanced refinement techniques, and the distributed evolutionary algorithm,
KaFFPa(E)volutionary [8]. We only give a short outline of the main ideas and refer to
the respective papers for more details.

To give some minimalistic experimental data, we consider Walshaw’s benchmark
[9] which consists of 34 graphs with up to 3.3 million edges, k ∈ {2, 4, 8, 16, 32, 64}
blocks and imbalance ε ∈ {0, 1%, 3%, 5%}. Excluding the case ε = 0 which our codes
do not handle yet, we obtain 612 instances. For each algorithm we will report the num-
ber of instances where we are the record holder or at least as good as the record holder.
On the first glance it looks more fair to exclude ties but this would complicate the fig-
ure since we would also have to differentiate between ties with our own codes and
improvements that entered the archive recently. Moreover, for k = 2 and many of the
smaller graphs no improvements have been found for a long time which indicates that
the solutions might already be optimal.

2 Karlsruhe Parallel Partitioner [5]

We now present our parallel approach to graph partitioning. First of all the graph is
distributed among all k PEs. This is done by computing a preliminary partition of the
graph. Currently we have implemented a recursive bisection algorithm for nodes with
2D coordinates that alternately splits the data by the x-coordinate and the y-coordinate
[10, 11]. We can also use the initial numbering of the nodes.

Now we have to compute matchings to create coarser versions of the graph. Follow-
ing the basic approach from [12] we combine a sequential matching algorithm running
on each PE and a parallel matching algorithm running on the gap graph. The gap graph
consists of those edges {u, v} where u and v reside on different PEs and ω({u, v})
exceeds the weight of the edges that may have been matched by the local matching
algorithms to u and v.
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Fig. 2. A graph which is partitioned into four blocks and its corresponding quotient graph Q. The
quotient graph has an edge coloring indicated by the numbers and each edge set induced by edges
with the same color form a matching M(c). Pairs of blocks with the same color can be refined in
parallel.

In [5], expanding on an idea already present in [13], we proposed to make contraction
more systematic by separating two issues: A rating function indicates how much sense
it makes to contract an edge based on local information. A matching algorithm tries to
maximize the sum of the ratings of the contracted edges looking at the global structure
of the graph. While the rating functions allows us a flexible characterization of what
a “good” contracted graph is, the simple, standard definition of the matching problem
allows us to reuse previously developed algorithms for weighted matching. Matchings
are contracted until the graph is “small enough”. In most previous work, the edge weight
ω(e) itself is used as a rating function (see [5] for more details). We have shown in [5]

that the rating function expansion∗2({u, v}) := ω({u,v})2
c(u)c(v) works best among other

edge rating functions where c(·) is the node weight – usually the number of input nodes
contracted into a node in the current graph.

We employed the Global Path Algorithm (GPA) as sequential matching algorithm.
It was proposed in [14] as a synthesis of the Greedy algorithm and the Path Growing
Algorithm [15]. This algorithm achieves a half-approximation in the worst case, but
empirically, GPA gives considerably better results than Sorted Heavy Edge Matching
and Greedy (for more details look into [5]). Our implementation of the parallel match-
ing algorithm proposed in [12] iteratively matches edges in the gap graph {u, v} that
are locally heaviest both at u and v until no more edges can be matched.

The contraction is stopped when the number of remaining nodes is small enough.
We employ Scotch [16] as an initial partitioner since it empirically performs better than
Metis [3]. This algorithm is then run simultaneously on all PEs, each with a different
seed for the random number generator. The best solution is then broadcast to all PEs.

Recall that the refinement phase iteratively uncontracts the matchings contracted
during the contraction phase. After a matching is uncontracted, local search based re-
finement algorithms move nodes between block boundaries in order to reduce the cut
while maintaining the balancing constraint. As most other current systems, we adopt
the FM-algorithm [17] which runs in linear time. The main difference of our approach
to previous systems is that at any time, each PE may work on only one pair of neigh-
boring blocks performing a local search constrained to moving nodes between these
two blocks. Thus, we need parallel algorithms for deciding which processors work on
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which pairs of blocks. For this purpose, we use the quotient graph Q whose nodes are
blocks of the current partition and whose edges indicate that there are edges between
these blocks in the underlying graph G. Since we have the same number of PEs and
blocks, each PE will work on the block assigned to it and at one of its neighbors in Q.
Figure 2 gives an example. We schedule all possible pairwise refinement operations by
using a distributed parallel edge coloring algorithm on the quotient graph. The edges in
each color class define a matching in the quotient graph and can be handled in parallel.
The PEs at both endpoints of an edge work on the same pairwise refinement operation
redundantly but using different random number seeds in tie breaking operations. After
the local search is finished, the better partitioning of the two blocks is adopted.

In the past, parallelizing a graph partitioner meant giving up some quality for speed.
Somewhat surprisingly, this was not the case for KaPPa. In the Walshaw benchmark we
obtain 189 best values, in particular for the largest graphs. Besides the improvements
like edge ratings that are also easy to integrate into previous solvers, one source of
improvement was the more focused local search. Our interpretation is that this makes it
more likely that the local search is successful.

3 The n-Level Approach [6]

The success of focusing local search in KaPPa gave us the idea to drive this focusing
idea into the extreme. This fits well the the idea of an n-level multilevel algorithm that
we have previously used successfully for route planning [18] and the nearest neighbor
problem [19].

The central idea behind this (sequential) approach we called KaSPar (Karlsruhe
Sequential Partitioner) [20] is to make subsequent levels as similar as possible – we
(un)contract only a single edge between two levels. We call this n-GP since we have
(almost) n levels of hierarchy. Figure 1 gives a high-level recursive summary of n-GP.
We use similar edge rating functions and initial partitioning as in KaPPa. However, note
that no matching algorithm is needed. Rather, on each level, we choose a single edge to
be contracted using a priority queue.

In order to make contraction and uncontraction efficient, we use a “semidynamic”
graph data structure: When contracting an edge {u, v}, we mark both u and v as deleted,
introduce a new node w, and redirect the edges incident to u and v to w. The advantage
of this implementation is that edges adjacent to a node are still stored in adjacency
arrays which are more efficient than linked lists needed for a full fledged dynamic graph
data structure. A disadvantages of our approach is a certain space overhead. However,
it is relatively easy to show that this space overhead is bounded by a logarithmic factor
even if we contract edges in some random fashion (see [21]). Overall, with respect
to asymptotic memory overhead, n-GP is no worse than methods with a logarithmic
number of levels.

The local search strategy is similar to the FM-algorithm [17]. We now outline our
variant. Initially, all nodes are unmarked and inactive. The neighbors of the recently
expanded edge are activated. Active nodes reside in priority queues – one for each block
they could be moved to. The key for the priority queue is the gain, i.e., the decrease in
edge cut when the node is moved (which can also be negative). We call a queue PB



22 V. Osipov, P. Sanders, and C. Schulz

Algorithm 1. n-GP(G, k, ε).
if G is small then

return initialPartition(G,k, ε)
pick the edge e = {u, v} with highest rating
contract e; P := n−GP(G, k, ε); uncontract e
activate(u); activate(v); localSearch()
return P

eligible if the highest gain node in PB can be moved to block B without violating
the balance constraint for block B. Local search repeatedly looks for the highest gain
node v in any eligible priority queue PB and moves v to block B. When this happens,
node v becomes nonactive and marked, the unmarked neighbors of v get activated and
the gains of the active neighbors are updated. The local search is stopped if either no
eligible nonempty queues remain or some additional stopping criterion hold. After the
local search stopped, it is rolled back to the lowest cut state reached during the search.
Subsequently all previously marked nodes are unmarked. The local search is repeated
until no improvement is achieved.

The problem with this approach is that the local search would usually spread over
the whole graph which in conjunction with the linear number of levels could lead to
quadratic running time. We therefore introduced additional stopping criteria. First of
all, our local search does nothing if none of the uncontracted nodes is a border node,
i.e., has a neighbor in another block. Other FM-algorithms initialize the search with all
border nodes. Indeed, our experiments indicate that for large graphs and small number
of partitions k, the overall local search effort may grow sublinearly with the input size.
To achieve this we also need a way to abort unpromising local searches that are started.
We do this by modelling the local search as a random walk on the cut size axis. If within
this model it becomes unlikely to reach an overall improvement in a linear number of
steps, we abort the search.

KaSPar achieves 238 best values for the Walshaw benchmark although it is a much
simpler code than KaPPa.

4 Karlsruhe Fast Flow Partitioner [7]

In order to implement further ideas for improving the quality of sequential multilevel
graph partitioning we went back to the traditional variant with a logarithmic number of
levels – this allows us to use simple and fast static graph representations and enables a
more global view on refinement. We still exploit the advantages of highly focused local
search by performing many focused searches initialized with a single border node.

Max-Flow Min-Cut Local Improvement. A more global method is based on max-flow
min-cut computations between pairs of blocks, in other words, a method to improve
a given bipartition. Roughly speaking, this improvement method is applied between
all pairs of blocks that share a nonempty boundary. The algorithm basically constructs
a flow problem by growing an area around the given boundary vertices of a pair of
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blocks such that each s-t cut in this area yields a feasible bipartition of the original
graph/pair of blocks within the balance constraint. One can then apply a max-flow min-
cut algorithm to obtain a min-cut in this area and therefore an improved cut between
the original pair of blocks. This can be improved in multiple ways, for example, by
iteratively applying the method, searching in larger areas for feasible cuts, and applying
most balanced minimum cut heuristics.

Global Search. KaFFPa extends the concept of iterated multilevel algorithms which
was introduced by [22] and can be traced back to multigrid solvers for sparse systems
of linear equations. The main idea is to iterate the coarsening and uncoarsening phase.
Once the graph is partitioned, edges that are between two blocks are not contracted. An
F-cycle works as follows: on each level we perform at most two recursive calls using
different random seeds during contraction and local search. A second recursive call is
only made the second time that the algorithm reaches a particular level. Figure 3 illus-
trates a F-cycle. As soon as the graph is partitioned, edges that are between blocks are
not contracted. This ensures nondecreasing quality of the partition since our refinement
algorithms guarantee no worsening and break ties randomly. These so called global
search strategies are more effective than plain restarts of the algorithm.
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Fig. 3. An F-cycle

KaFFPa achieves 435 best values in the Walshaw benchmark.

5 KaFFPa Evolutionary [8]

In the Walshaw benchmark, KaFFPa was beaten mostly for small graphs that combine
multilevel partitioning with an evolutionary algorithm. We therefore developed an im-
proved evolutionary algorithm that also employs coarse grained parallelism. Roughly
speaking, KaFFPaE uses KaFFPa to create individuals and modifies the coarsening
phase to provide new effective combine operations. We restrict ourselves to the de-
scription of the combine operator framework and the parallelization.

An EA starts with a population of individuals (in our case partitions of the graph)
and evolves the population into different populations over several rounds. In each round,
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the EA uses a selection rule based on the fitness of the individuals (in our case the edge
cut) of the population to select good individuals and combine them to obtain improved
offspring.

Combine Operators. In KaFFPaE we have a general combine operator framework, i.e.
a partition P can be combined with another partition of the population or an arbitrary
clustering of the graph. This is achieved by running a modified version of KaFFPa
that during coarsening will not contract edges that are cut in one of the input parti-
tions/clusterings. As soon as the coarsening phase is stopped, we apply the partition P
to the coarsest graph and use this as initial partitioning. This way the resulting partition
is at least as good as the input partition and in addition, the refinement algorithms can
effectively exchange good parts of the solution on the coarse levels by moving only a
few vertices.

Parallelization. We parallelize the evolutionary algorithm on p processing elements
(PEs), by distributing the population over the PEs. Basically, every PE runs a sequential
evolutionary algorithm on its subpopulation. To achieve fast initialization for large p,
each PE will begin with a single individual. Subsequently, using random cyclic com-
munication patterns, each PE is equipped with a random selection of these initial in-
dividuals. After initialization, some interaction is achieved by periodically sending the
best local solution to a random PE. Communication volume is limited by sending the
same solution at most log p times. This has been implemented using MPI.

KaFFPaE achieves 470 best values in the Walshaw benchmark, investing two hours
of time on the small to medium sized graphs and eight hours of time on the eight largest
graphs of the archive, on two somewhat outdated 8-core nodes. It should also be noted
that very good values are already achieved in seconds to minutes of parallel execution
time so that the solutions can also be used for many applications rather than only for
record hunting. The parallelization scales well to hundreds of processors even for small
graphs.

6 10th DIMACS Implementation Challenge

We coorganized a DIMACS implementation challenge on graph partitioning and clus-
tering1. An important outcome is collection of benchmark graphs that not only has
more instances than the Walshaw collection but also more varied applications and larger
graphs with up to 3 billion edges. Our partitioners also work very well on these instances
achieving the best marks both with respect to quality and running time versus quality
among all participants. A surprising result was obtained for a part of the challenge
where the objective function was not cut size but a measure of communication volume.
This objective function can be expressed as a hypergraph partitioning problem. Interest-
ingly, KaFFPaE outperformed dedicated hypergraph partitioners by just changing the
fitness function to prefer solutions with low communication volume – the multilevel
algorithm still optimizes cuts. This is an indication that some of our techniques would
also be useful in a multilevel algorithm for optimizing communication volume or even
for a general hypergraph partitioner.

1 http://www.cc.gatech.edu/dimacs10/

http://www.cc.gatech.edu/dimacs10/
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7 Conclusions and Future Work

The perspective taken in this paper is that we developed our graph partitioners KaPPa,
KaSPar, KaFFPa, and KaFFPaE in a benchmark driven way achieving overall 550 out
of 612 optimal entries in the Walshaw benchmark with ε > 0. Another equally valid
perspective is that we applied the methodology of algorithm engineering to all aspects
of the multi-level graph partitioning approach, achieving improvements in coarsening,
refinement, parallelization, global search guidance, and embedding into metaheuristics.

Both perspectives also allow an outlook on open problems: Within the Walshaw
benchmark, the perfectly balanced case (ε = 0) is an interesting case requiring new
techniques to obtain good solutions fast. The DIMACS challenge indicates that for dif-
ficult instances like social networks, a lot of work remains to be done. Considerations
for massively parallel computing including petascale and exascale indicate that we have
to go back to scalable parallelization for big instances that do not fit into internal mem-
ory of a single node and that much larger values of k will become relevant. On the other
hand, its also not clear how to employ many processors for small values of k. This is
important for recursive partitioning schemes that are useful in many cases and can also
more easily adapt to hierarchical computer architectures.

A feature oriented view has initial partitioning as an obvious open point where we
still do not have our own solution – currently we are using Scotch [16] in all our systems.
Another interesting issue are new approaches to coarsening. In [23] we are cooperating
on an approach where nodes are fractionally assigned to nodes on the coarser levels.
This gives us more flexibility in shaping the coarse levels and seems promising for
social networks and other graphs that have problems with edge contraction approaches.

Yet another view could be the different activities in algorithm engineering. The
reported work is strong on design, implementation, experimental evaluation and bench-
marking but weak on other aspects. We plan to release an easy to use algorithm li-
brary with some of our codes soon. Theoretical analysis of complex metaheuristics
like KaFFPaE is very difficult. However note that an astonishingly large set of “easier”
graph algorithms are used “under the hood” that are theoretically better understood:
weighted matching, spanning trees, edge coloring, BFS, shortest paths, diffusion, max-
imum flows, and strongly connected components. Perhaps this is one justification why a
group coming from algorithm theory can be successful in real world graph partitioning.
Yet the most interesting activity from algorithm engineering for finding future work is
modeling. Applications indicate that we should also look at other objective functions
(e.g., communication volume, separator size, and bottleneck variants), hypergraph par-
titioning, and clustering (where balance is not directly relevant and k may not be known
or flexible). Some of our techniques like edge ratings, F-cycles, or n-level contraction
might also be relevant for other multilevel graph algorithms, e.g., for graph drawing.
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Abstract. This work deals with the program Structator — a fast index-
based search tool for RNA sequence-structure patterns. We present two
space efficient modifications which both outperform the existing meth-
ods when searching large databases. Thus, our new methods make the
program accessible for a wider range of real-world applications.

1 Introduction

Over the last years the importance of non-coding RNA has been grown [11, 12].
To store information about those RNA sequences, different databases, e. g. the
Rfam database of the Sanger institute [6], have been created. Nevertheless, by
increasing the size of such a database, the search for a particular sequence is
getting more and more complex. Thus, a fast search-tool became indispensable.
For developing such a tool the properties of non-coding RNA have to be taken
into account.

Non-coding RNAs are grouped into different families each fulfilling a certain
function. Examples of such families are rRNAs, tRNAs, and small RNAs like
miRNAs, siRNAs, or piRNAs. It is widely known that the function of a particular
non-coding RNA molecule strongly depends on its structure. Hence, usually the
structures within one family are even more conserved than its sequences. This
fact directly implies that a search for a particular non-coding RNA sequence
additionally has to take its secondary structure into account [5].

Up to now several sequence-structure alignment tools exist. A short sum-
mary is given by Meyer et al. [13]. The main problem of these tools is that the
more target sequences exist the more complex a database search for a particu-
lar sequence-structure pattern gets. To overcome the complexity of this search
tools, an index-based search method has been introduced [15]. This method is
based on an affix array which consists of two main tables — one for each reading
direction of the concatenated target-sequences of the database. Each main table
itself consists of three sub-tables containing the suffix array, the lcp array, and
the affix link array (cf. Tab. 1).

While the lcp array contains rather small values and, thus, can be stored close
to 1 byte per character, the suffix array and the affix link array each have a space

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 27–38, 2012.
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Table 1. An affix array for the sequence AUAGCUGCUGCUGCA

i sufF[i] lcpF[i] aflkF[i] SF
sufF[i] (SR

sufR[i])
−1 aflkR[i] lcpR[i] sufR[i] i

0 2 0 0 AGCUGC... ...GCUGCA 0 0 0 0
1 1 1 AUAGCU... AUA 1 12 1
2 14 1 A A 1 14 2
3 13 0 3 CA AUAGC 7 0 10 3
4 10 1 4 CUGCA AUAGCUGC 8 2 7 4
5 7 4 5 CUGCUGCA ...GCUGCUGC 9 5 4 5
6 4 7 CUGCUGCU... ...UGCUGCUGC 8 1 6
7 12 0 3 GCA AUAG 7 0 11 7
8 9 2 4 GCUGCA AUAGCUG 8 1 8 8
9 6 5 5 GCUGCUGCA AUAGCUGCUG 9 4 5 9

10 3 8 GCUGCUGCU... ...CUGCUGCUG 7 2 10
11 1 0 11 UAGCUG... AU 11 0 13 11
12 11 1 4 UGCA AUAGCU 8 1 9 11
13 8 3 5 UGCUGCA AUAGCUGCU 9 3 6 13
14 5 6 UGCUGCUGCA ...GCUGCUGCU 6 3 14
15 15 0 0 15 15

consumption of 4 bytes per character. Providing two tables of this kind, for the
affix array data structure in total 18 bytes per character (plus the size of the
target sequences) are needed. Note that for each space analysis we assume that
the database does not contain more than 232 characters such that each index
can be represented with at most 4 bytes. Of course, for small databases this
factor does not play an important role. Nevertheless, the more information the
database stores, the more important the space factor can get.

For example, let us consider the Rfam database [6] release 10.0. It contains
around 3.2 million sequences having a size of 630MiB. This means that the affix
array needs 18 ∗ 630MiB ≈ 10.13GiB memory. Of course, there are computer
systems, which are able to handle such a large amount of memory. Nowadays,
however, such systems are very expensive and not available for every scientist.
In this work, we present two methods that reduce the space consumption of
the precomputed index from 18 to 10 or 12 bytes per character. For the given
example this means, that applying one of these modifications only 10 ∗ 630MiB
≈ 6.3GiB or 12 ∗ 630MiB ≈ 7.6GiB memory instead of 10.13GiB is needed.

Applying an index based search tool to a large database, there can arise
two main problems. On the one hand, the memory allocation during the index
construction can fail and, thus, no index is constructed. In this case there is no
possibility for the user to perform any pattern searches on his system. On the
other hand, the index files may be too large to be stored in the main memory
and, thus, have to be swapped all the time. Since these swapping operations
can be very exhaustive, the run time of a pattern search suffers from that. To
overcome these memory problems, the user can either invest in more memory or
apply an algorithm with less space consumption. Since the second solution is at
no charge, it should be the most preferred one.
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2 Structator—A Fast Index-Based Search Tool for RNA
Sequence-Structure Patterns

This work is based on the index-based search tool Structator developed by Meyer
et al. [13]. Structator makes use of affix arrays — a data structure which sup-
ports efficient unidirectional as well as bidirectional search (cf. Fig. 1). Its source
code is available under the GNU General Public License Version 3 and can be
downloaded from www.zbh.uni-hamburg.de/Structator.

The program Structator provides two main features. Given a FASTA file con-
taining all target sequences, the user can construct different index files which
are necessary for the search step. Given a file containing several RNA sequence-
structure patterns (RSSPs) all corresponding to a certain RNA sequence, the
user can perform a search in a precomputed index after similar RNA sequences.
A RSSP always consists of three lines, providing the description, the sequence
itself and the secondary structure in dot-bracket notation. For example see Fig. 5.

Fig. 1. (left) Outline of an unidirectional search of a hairpin loop. At the beginning,
the first half of the stem region is visited, followed by the loop region and the other
half of the stem region. (right) Outline of a bidirectional search step. At the beginning,
the loop region is visited, followed by the base pairs consecutively from top to bottom.

The search for a particular RNA sequence in a precomputed index is per-
formed as follows:

1. In a first step, the sequence has to be broken down into several RSSPs each
corresponding to a non-branching structure, i.e. hairpin loops. Afterwards,
the computed RSSPs are searched within the index, as follows:

(a) Firstly, the non-pairing region is searched by an unidirectional search.
(b) Secondly, if the sequence of the non-pairing region could be located some-

where in the target sequences, the existence of the pairing region, given
by the structural sequence, is checked by a bidirectional search. This
means in detail, that the located pattern is extended step by step by
taking two new bases at each boundary into account. The two new bases
are checked instantly whether they are complementary, which guaran-
tees a fast detection of non-pairing bases in the stem region. Hence, in

www.zbh.uni-hamburg.de/Structator
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practice this method is far more efficient than first searching one half
of the pairing region at the beginning of the sequence and afterwards
checking whether the other half of the pairing region at the end of the
sequence is complementary.

2. In a second step, a chaining algorithm is looking for a valid sequence of the
located non-branching structures and reports each valid sequence as a hit.

For our work only the application of the bidirectional search is of interest. Read-
ers that are interested in a more detailed description of the whole search algo-
rithm are referred to the original literature [13]. When applying a bidirectional
search, a switch of the search direction is necessary which is done via affix links.
To illustrate the application of affix links, we first have to introduce some formal
definitions.

3 Formal Definitions

Note that we keep all definitions presented in this section close to the definitions
of the original literature [13]. Let A be the alphabet of the target sequences
and let $ /∈ A be a special character which is lexicographically greater than
each character of A. We denote the concatenated forward and backward target
sequences by SF and SR, respectively. In the following, the symbol X ∈ {F,R}
is used for definitions which exist for SF and SR. Furthermore, if X = F holds,
X denotes R and vice versa.

The affix array consists of the following three different tables: sufX, lcpX, and
aflkX. Let us first have a closer look to the space consumption of each table.
The first table sufX denotes the suffix array for SX storing the lexicographical
order of each suffix in SX$. The second one, lcpX, stores the longest common
prefix between two neighboring suffixes in the suffix array. In detail, lcpX[0] = 0
and lcpX[i] is the length of the longest common prefix of both suffixes starting
at position sufX[i] and sufX[i − 1]. Both tables, sufX and lcpX, can be stored
in O(n) time and space [7, 8, 9, 10]. Whereas sufX, however, stores all values
from 0 up to |SX|, lcpX contains a huge number of small (≤ 1 byte) values.
Large entries (> 1 byte), occurring rather seldom, are stored in an extra table.
Hence, in practice sufX needs 4 bytes per entry and lcpX only close to 1 byte
per entry [1]. Like the suffix array sufX, the affix links inside of the affix array
table aflkX are values from 0 up to |SX|. Thus, its space consumptions equals
the space consumption of the suffix array and adds up to 4 bytes per entry. Now
we can summarize the total space needed for the affix array by summing up the
space consumption of each table. This is 2 ∗ (4 + 4 + 1) = 18 bytes per entry.

An affix link is based on the following definitions [15]. An interval [i..j], 0 ≤
i ≤ j ≤ |SX|, in sufX is called a �-suffix-interval, iff the following conditions hold:

– lcpX[i] < �

– lcpX[j + 1] < �

– lcpX[k] ≥ � for all k ∈ {i+ 1, . . . , j}
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A suffix interval [i..j] is called lcp-interval, denoted by �-[i..j], iff i < j and
∃k ∈ {i + 1, . . . , j} with lcpX[k] = �. The common prefix of an lcp-interval is
defined as δX(�-[i..j]). An affix interval v = 〈k, q,X〉 consists of three elements:
an integer k designated as the context of the interval, a �-suffix-interval q and
the reading direction X. Each affix interval describes a set of words ωX(v) that
is {SX[sufX[i] + k..sufX[i] + � − 1], . . . ,SX[sufX[j] + k..sufX[j] + � − 1]}, where
SX[i..j] with i < j denotes the substring of SX starting at position i and ending
at position j.

With the definitions above, we can give a definition of an affix link, as follows:
Given an affix interval v = 〈k, �-[i..j],X〉 the corresponding affix link is the affix
interval v′ = 〈k′, �′-[i′..j′],X〉 in sufX, for which ωX(v)

−1 = ωX(v
′) holds. For

example have a look at Tab. 1. Here, the affix link for v = 〈0, 5-[8..10],F〉 is
v′ = 〈0, �′-[4..6],R〉 and ωF(v)

−1 = ωR(v
′) = CGUCG holds.

4 Modifications to Structator

We modified the bidirectional search step of the algorithm such that each affix
link is computed instantly. This means that for our methods both affix link
arrays, aflkF and aflkR, of size 4 bytes per entry can be omitted in the index
structure what improves its space consumption.

A switch of a search direction from X to X for an affix interval v〈k, �-[i..j],X〉
is necessary, if the interval has more than one entry, i. e. i �= j, and v has an
empty context, i. e. k = 0. For a switch of a search direction the affix interval
v′ = 〈k′, �′-[i′..j′],X〉 in sufX, for which ωX(v)

−1 = ωX(v
′) holds, has to be

located. In an affix array this interval v′ can simply be derived directly from the
affix link array. Omitting aflkX the affix interval v′ has to be computed through
an extra step. In the following Sect. 4.1 and 4.2, we present two such methods
performing this step.

4.1 Computation of Affix Links via Binary Search

Given the affix interval v = 〈k, �-[i..j],X〉, the affix interval v′ = 〈k′, �′-[i′..j′],X〉,
for which ωX(v)

−1 = ωX(v
′) holds, is computed as follows:

1. Firstly, the pattern p = ωX(v)
−1 is computed.

2. Secondly, the lcp-interval �-[i..j] with δX(�-[i..j]) = p is computed via a
simple binary search in sufX.

Since the run time for a binary search of a pattern of size m in a set of size n
is O(m log n), the theoretical run time of this method is O(|ωX(v)

−1| log |SX|).
The advantage of this method is that no precomputation has to be done. This
means both affix link arrays, each of size 4 bytes per entry, can be omitted. Thus,
the precomputed index structure only consists of the arrays sufX and lcpX what
improves the space factor from 18 bytes per entry to 10 bytes per entry!
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4.2 Computation of Affix Links via Improved Binary Search

To accelerate the pattern search for ωX(v)
−1, we implemented an improved ver-

sion of the binary search algorithm first published by Manber and Myers [14].
This improved version uses the lcp-values of the current interval-borders to de-
cide whether the search direction within the suffix array sufX turns left or right.
To ensure a constant time computation of all these lcp-values, an lcp-tree array,
denoted by lcptreeX , is added to the index structure. Since its values are less than
or equal to the values within the lcp array lcpX, its space consumption is close
to 1 byte per entry. Again, as for the lcp array lcpX, large values of size > 1 byte
are stored in an extra array. To receive an impression of the values which have
to be computed for lcptreeX , in the following an outline of the improved binary
search algorithm is given (cf. Algorithm 1).

Data:
target sequence t,
suffix array sufX on t,
pattern p;

Initialization:
L = 0, R = |t|,M = (L+R)/2,
l = 0, r = 0;

if l = r then /* Case 1 */

k := l + 1;

while tsufX[M]+k = pk do
k ++;

if pk > tsufX[M]+k then
L := M , l := k − 1;

else
R := M , r := k − 1;

if l > r then /* Case 2 */

if lcp(L,M) > l then
L := M ;

if lcp(L,M) = l then
k := l + 1;

while tsufX[M]+k = pk do
k ++;

if pk > tsufX[M]+k then
L := M , l := k − 1;

else
R := M , r := k − 1;

if lcp(L,M) < l then
R := M , r := lcp(L,M);

if l < r then /* Case 3 */

symmetric to Case 2 ;

Algorithm 1. The improved binary search algorithm: it is performed until
pattern p is found (l = |p| ∨ r = |p|) or not (L > R).

Computing lcp(L,M) (cf. Algorithm 1) each time by comparing both sequences,
sufX[L] and sufX[M ], would not improve the run time in respect of a normal bi-
nary search. However, by adding these lcp-values to the index structure, these
values can be identified by a simple look up and thus, its computation only needs
constant time. The idea of this precomputation step is based on the awareness
that each binary search step frequents a predictable set of intervals of size |SX|.
For example, each search for a certain pattern p always starts with the interval
[0, |SX|], followed by either [0, |SX|/2] (if p < sufX[|SX|/2]) or [|SX|/2, |SX|] (if
p > sufX[|SX|/2]) and so on. For each of those interval-borders (L,R) we can
precompute its lcp-value once and store it under a particular index k in lcptreeX ,
which is computed as follows:
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k = L+ �(L+R)/2� .

In Fig. 2 an outline of lcptreeF corresponding to the example given in Tab. 1 is
depicted.

Fig. 2. The array lcptree
F corresponding to the example given in Tab. 1

Now, with the help of the precomputed array lcptreeX , we can compute the lcp-
value of an interval-border (L,R) in constant time. Hence, considering the run
time of the first method, this second method improves the search for the pattern
ωX(v)

−1 fromO(|ωX(v)
−1| log |SX|) to O(|ωX(v)

−1|+log |SX|) [14]. However, due
to the additional array lcptreeX , this second method needs 2 bytes per entry more
than the first method — what is still only 2/3 of the space the corresponding
affix array would need!

5 Experiments

To show the practical advantage of our two modifications, we applied our mod-
ified Structator program (version 1.01) to the Rfam database release 10.0. The
Fasta format of this database has a size of 676.9MB and contains around
3.2 million sequences. As search patterns we used 397 RNA sequence-structure
patterns (RSSPs) for 42 highly structured Rfam 10 families available from
www.zbh.uni-hamburg.de/Structator. An example of a RSSP is given in Fig. 5.
All experiments presented in this section are performed on the same linux system
providing two 2.4GHz dual cores and 4GB RAM.

5.1 Four Different Modes

Our modified program can be run in four different modes. Each mode pre-
computes a different index. While the first two modes are already present in
version 1.01, the last two modes correspond to Sect. 4 and were implemented
by us.

www.zbh.uni-hamburg.de/Structator
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– Mode aflk+skp precomputes an index consisting of sufX, lcpX, and aflkX.
Due to a better run time, the affix link array aflkX is computed with the
help of the array skpX [2] which is similar to the concept of a child table [3]1.
In the final index skpX is useless and, thus, is deleted. Nevertheless, during
the index computation additional space with 4 per entry for skpX has to
be allocated which makes in total 26 bytes per entry for the whole index
computation.

– Mode aflk precomputes an index consisting of sufX, lcpX, and aflkX. This
mode omits the computation of skpX and the affix link array aflkX is com-
puted via a simple binary search. Hence, only 18 Bytes per entry are neces-
sary for the index computation.

– Mode bs precomputes an index consisting of sufX and lcpX. This mode
corresponds to the modification presented in Sect. 4.1. Its precomputed index
structure only needs 10 bytes per entry.

– Mode ibs precomputes an index consisting of sufX, lcpX, and lcptreeX . This
mode corresponds to the modification presented in Sect. 4.2. Its precomputed
index structure only needs 12 bytes per entry.

The first row of Tab. 2 shows the theoretical speedup factor of the index memory
for each mode. Note that, due to the extra lcp array storing values > 1 byte, the
space consumption of lcpX is in general more than 1 byte per entry. Furthermore,
Structator stores both sequences, SF and SR, plus some additional information
like the end positions and the length of the target sequences for SX. Hence, the
listed theoretical speedup factors are upper bounds. We are aware of the fact
that some of this additional information is not required in theory and, thus,
could either be omitted or be replaced by smaller data structures, which would
even more reduce the total space for all modes.

5.2 1st Experiment—Memory vs. Runtime

Our first experiment computes an index of an increasing part of a database and
performs a sequential search of the 397 RSSPs within this index. Therefore,
each part consists of the first k lines of the whole Rfam database release 10.0. To
minimize the influence of disk subsystem performance, we conduct each search
step ten times. Due to large caching effects, the results of the first search step are
omitted whereas for each result of the other nine search steps the corresponding
mean is taken. During this experiment the run time (cf. Fig. 3(a)) and maximal
user memory of the index computation (cf. Fig. 3(b)) as well as the run time
of the pattern search (cf. Fig. 4) is detected. Note that we limited the maximal
virtual memory available for each process performing the index construction and
the pattern search by 6,552,880kB.

In Tab. 2 the detected mean speedup factors corresponding to the different
database sizes for each mode are listed.

1 A more space efficient version has been developed [4], but has not yet been integrated
into Structator.
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Table 2. Theoretical and detected speedup factors for each mode

Speedup Factors aflk+skp aflk ibs bs

Theoretical Index Memory 2.6 1.8 1.2 1.0
Detected User Memory 2.2098 1.4630 1.0127 1.0000

User Runtime of Index Construction 5.6010 6.9930 1.0866 1.0000
User Runtime of RSSP Search 1.0000 1.0000 2.2485 2.6089
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Fig. 3. Our experimental results for the index construction

Figure 3(a) and Tab. 2 show that the index computation performed by our
methods, mode bs and ibs, are a lot faster than the other two modes, aflk+skp
and aflk, computing the whole affix array. Since our implemented methods omit
the complex computation of aflkX, this is not surprising.

Figure 3(b) shows the maximal user memory (detected via ps -o size PID)
that is needed for the index computation of each mode. While the computation
via mode aflk+skp and aflk fails at a database size greater than 321MB and
436MB, respectively, our modes can compute an index for a database size up to
528MB and 551MB, respectively.

In Fig. 4(a) the mean user run time of the last nine search steps within
databases of different sizes is depicted. Since the index computed by mode
aflk+skp and aflk provides an affix link array, each affix link can be computed in
constant time. As described in Sect. 4, our two modifications compute each affix
link via a binary search, which takes some extra time. Thus, a search performed
through an index constructed via mode bs or ibs is slower than the search per-
formed through an index constructed via mode aflk+skp or aflk. However, due
to the additional space of aflkX, the search performed by the two modes aflk+skp
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Fig. 4. Our experimental results for the search for the 397 RSSPs

and aflk both fail at a database size greater than 298MB, whereas our two modes
are able to perform the search in a database up to a size of 344MB and 390MB
respectively.

Figure 4(b) shows the real mean run time in log scale of the last nine search
steps for the 397 RSSPs. Whereas the user run time is the number of CPU-
seconds that the process used directly in user mode, the real run time is the
whole time elapsed by the process. This means that some extra time produced
by page faults is also taken into account. Due to such a high number of page
faults, the real run time of the two modes, aflk and aflk+skp, exceeds the real
run time of the other two modes, bs and ibs, at a particular database size. For
our experiment this is the case for a database size of 275MB. This means that
on our system for such databases having a size greater than or equal to 275MB
mode bs and mode ibs provide a better performance in terms of time and space!
Note that the index files, which are constructed by mode aflk or aflk-skp for a
database size of 275MB, have a size of ≈ 4GB, which is the maximal memory
space provided by our system. This means when performing a search for larger
databases the index files are not kept in memory in total and, thus, the system
has to handle a large number of page faults.

5.3 2nd Experiment—Mode IBS vs. Mode BS

Considering Fig. 4(a), there is no big difference between the run time con-
cerning the pattern search of mode ibs and bs. To figure out the reason, we
checked the total number of character comparisons of each search for an affix
link. Due to the precomputed array lcptreeX , our improved binary search algorithm
(cf. Algorithm 1) in general has to perform less character comparisons than the
common binary search algorithm.
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When searching for all 397 RSSPs, however, we assumed that the additional
number of character comparisons, which the common binary search has to per-
form, is too low to produce a significant difference between both run times. To
figure out, if a larger difference between the number of character comparisons
has an effect on both run times, we divided the whole set of RSSPs into sub-
sets each containing different numbers of copies of one particular RSSP. For
each of those copies we performed a search in a Rfam database of size 104MB.
The result confirmed our assumption — the more additional comparisons have
to be performed by mode bs the higher the run time compared to the one of
mode ibs. Most of the 397 RSSPs, however, produces only a few number of such
additional character comparisons. Nevertheless, there is one RSSP (depicted in
Fig. 5) producing an exceptional high number of such additional comparisons.

N C G N N G N U C N G N N N N N N N
( . ( ( . . . . . . . . . . ) ) . )

Fig. 5. RSSP producing a lot of additional character comparisons for mode bs

The number of additional comparisons obviously depends on the number of
affix links that have to be computed during all bidirectional search steps. The
number of computed affix links, again, depends on the number of patterns that
are found during the unidirectional search for the hairpin loop region. In gen-
eral you can say that the higher the number of hairpin loop regions within the
database the more affix link have to be computed and, thus, the better the run
time of mode ibs in respect to mode bs gets.

6 Conclusion

In Sect. 4 we present two space efficient modifications to Structator allowing
the user to perform searches on large databases. Our experiments, presented
in Sec. 5, show that these two modifications outperform the existing methods
in time and space, if the constructed index, which is necessary for the search
step, exceeds the size of the system’s memory. Our modifications benefit from a
smaller search index producing less page faults during each search step. Thus,
we think that our implemented modifications are a necessary extension to the
existing program and will make the program more valuable for scientists. Further
improvements concerning the space consumption could be applied by only storing
one of both sequences SF and SR as well as reducing the additional information,
mentioned in Sec. 5.1, for SX, at no extra costs.

Availability

The source code under the GNU General Public License Version 3 of our modified
Structator version as well as a short description is available.
See http://www.bio.ifi.lmu.de/mitarbeiter/benjamin-albrecht.

http://www.bio.ifi.lmu.de/mitarbeiter/benjamin-albrecht
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IBGBI, 23 boulevard de France, 91 037 Évry Cedex, France
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Abstract. We present in this paper an experimental study of six heuris-
tics for a well-studied NP-complete graph problem: the vertex cover.
These algorithms are adapted to process huge graphs. Indeed, executed
on a current laptop computer, they offer reasonable CPU running times
(between twenty seconds and eight hours) on graphs for which sizes are
between 200 · 106 and 100 · 109 vertices and edges.

We have run algorithms on specific graph families (we propose gen-
erators) and also on random power law graphs. Some of these heuristics
can produce good solutions. We give here a comparison and an analysis
of results obtained on several instances, in terms of quality of solutions
and complexity, including running times.

Keywords: implementation of algorithms, experimental analysis, huge
graphs, low memory, vertex cover.

1 Introduction

The vertex cover problem [14] is a well-known classical NP-complete op-
timization graph problem that has received a particular attention these last
decades. In particular, it occurs in many concrete situations [17], in fields such
as biology, meteorology, finance, etc. where amount of data is more and more
important. This leads to the problem of designing algorithms well suited to cope
with such large instances.

Notations. Graphs G = (V,E) considered throughout this paper are undirected,
simple, unweighted and represent the instance to be treated here. We denote by
n the number of vertices (n = |V |) and by m the number of edges (m = |E|).
For any vertex u ∈ V , we denote by N(u) = {v | uv ∈ E} the set of neighbors
of u and we call degree the number of neighbors of vertex u.
� Work partially supported by the French Agency for Research under the DEFIS
program TODO, ANR-09-EMER-010.

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 39–50, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



40 E. Angel, R. Campigotto, and C. Laforest

Definition of the Vertex Cover Problem. A cover C of G is a subset of vertices
such that every edge contains (or is covered by) at least one vertex of C, that
is C ⊆ V and ∀e = uv ∈ E, one has u ∈ C or v ∈ C (or both). The vertex

cover problem is to find a cover of minimum size. We denote by OPT the size
of an optimal cover for a given graph.

Related Work. Several studies focused on massive data sets these last decades [3].
In particular, for the max clique problem [9], experiments on graphs with
53 · 106 vertices and 170 · 106 edges have been performed [2]. But no such study
has been done for the vertex cover problem. However, it has been extensively
studied theoretically: many exact (exponential) algorithms, approximation algo-
rithms, online algorithms, etc. have been proposed (due to space limitations, we
do not give references about these works: some of them can be found in the intro-
ductions of [8] and [13]). Several experimental studies have already been made,
often to compare the quality of several algorithms [12,15] or validate specific
methods [5,7]. Nevertheless, no one achieved the huge graph sizes we consider in
this paper (in these studies, the largest graphs has 10,000 vertices).

Our General Model of Treatment. To the intrinsicNP-completeness is added the
difficulty to manipulate graphs and run algorithms with severe constraints. In-
deed, with respect to their huge sizes, the processing unit (we consider a standard
computer) cannot load them entirely in its memory. Moreover, the graph, which
is stored on an external disk, must not be modified, since it often comes from
experimentations and can be used by different users for different goals. Specifi-
cally, the important cost of graph creation forces us to preserve its integrity, in
order to be able to run several algorithms on it.

Organization of the Paper. We give in the next section a general description
of our experiments. We present, analyze and compare in Sect. 3 results obtained
by executing the six algorithms on several instances. Finally, in Sect. 4, we
conclude and give some perspectives.

2 General Description

In this section, we describe elements used for experiments. Programs (executa-
bles, with source code) are available at [1].

Technical Characteristics. The “Processing Unit” is a laptop computer with a
Dual Core processor running at 2.8 GHz, 6 Mb cache memory and 4 Gb RAM.
Graphs and Covers are stored on the same external hard drive, which is a USB
2.0 hard disk of 2 Tb, running at 7200 revolutions/minute and equipped with 8
Mb cache memory. Programs are written in language C, C99 standard, in order
to use specific data type unsigned long long and associated functions to read
and write binary files.
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Storage and Reading of Graphs. There exist many ways to store a graph:
with an adjacency matrix, an adjacency list, etc. We use the method described
in [4] (for more details, report to the Sect. 3.2 page 20). More precisely, our
graphs are stored with two files:

.list file which contains 2m + 1 values: the number of vertices in the graph
(which is needed by several algorithms to create an n bits array) and the list
of the neighbors of vertices in the graph;

.deg file which contains n+1 values, which are needed to access to the neighbors
of a vertex and compute its degree.

The n vertices are labeled from 0 to n−1. The .list file contains first the value
n, then vertices of set N(0), then vertices of set N(1), etc. (however, neighbors
of each vertex can be stored in any order, not necessarily following the order
of labels). The .deg file contains, for each vertex (and by increasing order of
labels), the place of its first neighbor (in the .list file). It contains n+1 values,
in order to compute the degree of the last vertex (the last value of the .deg file
points to the end of the .list file). Indeed, to compute degree of vertex i, we
subtract the ith value from the (i+ 1)th.

Figure 1 shows an example on a small graph.
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Fig. 1. Storage of a graph with 5 vertices and 7 edges

Algorithms scan graphs by reading the two files described previously. First,
the .list file is read to know the number of vertices. Then, the .deg file is read
to know the place of the first neighbor of the first vertex and the place of the first
neighbor of the second vertex. Thereby, there are two pointers (the first one is
followed by the second one) which delimit the set of neighbors of a vertex. Once
these places are known, the reading process continues in the .list file, where
neighbors of the first vertex are retrieved. If the treatment unit does not need to
get all of them, it can “step over” the remaining neighbors and go immediatly to
the neighbors of the second vertex. It proceeds in the same way for the following
vertices.

If algorithms need to know degrees of neighbors, they read independently the
.deg file with another playhead, which can be moved at a precise place to get
the two successive values needed to compute the degree.
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All the algorithms read the .list file in a sequential way, but they can “step
over” values that are not needed. Algorithms which do not need to compute
degrees of neighbors read the .deg file also in a sequential way.

Algorithms Implemented. We have implemented six algorithms adapted to
the treatment of huge graphs: LR, ED, S-Pitt, LL, SLL and ASLL.

LR has been proposed in [11]. ED is the 2-approximative algorithm which re-
turns vertices of a maximal matching. S-Pitt is a probabilistic algorithm inspired
by the algorithm presented in [18]: it has an expected approximation ratio equal
to 2. The authors have done a theoretical study of LL, SLL and ASLL in [6].

We present now a basic description of the six algorithms, by giving conditions
to put vertices of the input graph into the solution.

Let G = (V,E) be a graph. Let C be the cover under construction. For each
vertex u ∈ V , we have

LR: if u �∈ C, {v | uv ∈ E ∧ v �∈ C} is put in C;

ED: if u �∈ C and if u has a neighbor v �∈ C, u and v are put in C;

S-Pitt: if u �∈ C and if u has a neighbor v �∈ C, either u or v is put in C with
equiprobability assumption;

LL: u is put in C if it has at least one neighbor v such that v > u (their labels are
compared);

SLL: u is put in C if it has at least one neighbor v such that d(v) < d(u) or
d(v) = d(u) and v > u;

ASLL: u is put in C if it has at least one neighbor v such that d(v) > d(u) or
d(v) = d(u) and v < u.

Now, we can describe how we have implemented these algorithms, in relation
with the way that the graphs are stored on the external hard disk.

As described above, the algorithms scan graphs vertex by vertex and, for
each current vertex u, scan its neighbors one by one. If an algorithm decides
that u belongs to the solution (applying the conditions given in the descriptions
of the algorithms above), u is put immediately and definitively into the cover.
Then, the algorithm steps over its remaining neighbors and goes to the next
vertex. Otherwise, it gets the next neighbor of u (and, at the end, requires the
next vertex like in the previous case). Also, when an algorithm scans a vertex
u which is already in the cover, it goes immediately to the next vertex, without
scanning its neighbors.

It is worth noticing that LR, ED and S-Pitt need to allocate an n bits array
to mark vertices sent to the solution (reading on the external hard drive during
the execution would take too long); SLL and ASLL need to compute degrees of
neighbors.
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Writing the Covers on the Disk. A cover is written as a list of vertex labels into
a file, which is built piece by piece: once an algorithm decides to put a vertex
into the solution, it writes it into the cover file. A vertex cannot appear twice,
because algorithms have been designed to produce no duplicates.

Example of Execution of Algorithm LR. We consider the graph given in Fig. 2.
The execution of LR on it works as follows.
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Fig. 2. Graph with 6 vertices and 8 edges

At the beginning, the cover C (which is materialized by an 6 bits array in the
internal memory of the computer) is empty (i.e. all the binary flags are lowered).

1. C = ∅. We consider the vertex 0. We get its neighbor, 3: we put it in C (it
is written on the disk and the corresponding flag in the memory is raised).
Then, we get its neighbor, 1: we put it in C.

2. C = {1, 3}. The vertex 1 is not treated since it is already in C.
3. C = {1, 3}. We treat the vertex 2. We get its neighbor, 5: it is put in C.

Then, we get its neighbor, 1: nothing is done since it is already in C.
4. C = {1, 3, 5}. The vertex 3 is not treated since it is already in C.
5. C = {1, 3, 5}. We treat the vertex 4. Its neighbors (1, 3 and 5) are retrieved

but not considered, because they are already in C.
6. C = {1, 3, 5}. The vertex 5 is not treated since it is already in C.

Hence, we have just scanned seven vertices in the .list file (which contains
sixteen labels) and the cover produced by LR contains three vertices: 1, 3 and 5.

Graph Families Used. We have executed our algorithms on different graphs:

– on sparse graphs (where m ∈ O(n)): ButterFly graphs [21], de Bruijn
graphs [10] and grid graphs;

– on dense graphs (where m ∈ Θ(n2)): hypercubes, complete bipartite graphs
and complete split graphs1.

1 A complete split graph is a complete bipartite graph in which the vertices subset of
lowest size is changed to a clique.
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We have chosen these graphs because they can be easily generated (we can pro-
duce huge size graphs with a standard computer). In that sense, we have designed
generators to construct these specific graphs. For example, CPU running times
for the instances generation of size 100 · 109 are between 5 hours than 7 hours.
Also, the size of their optimal solutions is known (we can give exact sizes, ex-
cepted for de Bruijn graphs where we can only give lower bounds). Thus, it is
possible to present results on the quality of algorithms.

We have also chosen to execute algorithms on random power law graphs, where
degree sequences follow a power law. We have used generator described in [19],
which is based on the Molloy and Reed model [16].

This generator is able to produce random power law graphs, but it cannot
create them in an online way: a memory space linear to the graph size is needed.
However, on our computer, we can still create graphs with more than 10 · 106
vertices and edges, with CPU running times less than 3 hours.

Graph Sizes. The size of a graph is given by its number of vertices and edges.
Hence, we denote by graph size the value n+m.

The huge size notion is relative: it depends on context considered (e.g. the size
limits for algorithms with exponential complexity are lower than for algorithms
with linear complexity). So, we have defined several levels for graph sizes.

1st level. The graphs size is about 200 · 106 (several Gb on disk). This is the
largest random power law graphs size that can be generated on our computer.

2nd level. The graphs size is about 30 · 109 (more than 100 Gb on disk). The
algorithms SLL and ASLL begin to reach their limits in terms of running
times on our computer.

3rd level. The graphs size is about 100 · 109 (around 1.5 Tb on disk). With our
computer, we cannot allocate an n bits array if the number of vertices is
bigger than 30 · 109.

Experimentations. For the first level, we have executed algorithms S-Pitt, LL,
SLL and ASLL five times on each instance (algorithms LR and ED are determin-
istics). From second level, we simulated a user having limited resources (time
and disk space). So, for each graph, we have executed the six algorithms once.
Based on results obtained and resources already spent, we have executed again
several algorithms (often one time).

A total of thirty-four executions was made: thirteen in the first level, six in
the second level and two in the third level. We have also executed our algorithms
on thirteen instances for which sizes are between 106 and 4 · 106. But, due to
space limitations, we do not give details on results obtained for these instances.
We can however indicate that they are broadly similar to the results obtained
in the first level.
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3 Results and Observations

Evaluated Criteria. We have focused on quality of solutions produced by al-
gorithms and complexities, expressed by the number of requests made to the
instance, i.e. the number of neighbors read in the .list file. We have also consid-
ered running times. For that, we have used the UNIX command /usr/bin/time,
which gives the time used by the processor during a program execution.

Results Presentation. We give one table per criterion. For algorithms that
have been executed more than once, we give values corresponding to the best
solution (in terms of quality).

For each instance, the best value (among the set of values presented for the six
algorithms) is in bold font. Conversely, when values are bad (e.g. an algorithm
which returns almost all the vertices or performs more thanm requests), numbers
are in italics font.

Table 1 (resp. 2) gives quality of solutions (resp. complexity in number of
requests) obtained in the first level on graphs created by our generators and
on random graphs. For random power law graphs, the last digit given in the
instance name (starting by rg) denotes the minimum degree of the graph.

Table 1. Quality of solutions obtained in the first level, expressed in percentage of n
(sizes of optimal covers for random power law graphs cannot be estimated)

Instance n OPT LR ED S-Pitt LL SLL ASLL

butterfly-21 46,137,344 50 50 100 78.16 90.91 85.06 90.91

debruijn-25 33,554,432 > 50 66.67 88.89 77.56 66.78 72.71 82.39

grid-6000.9000 54,000,000 50 50 99.99 81.41 99.99 99.99 99.99

hypercube-23 8,388,608 50 50 99.97 99.26 99.99 99.99 99.99

compbip-7000.15000 22,000 31.82 68.18 63.64 62.98 31.82 31.82 68.18

split-7500.12000 19,500 38.46 99.99 61.67 61.39 38.46 38.46 99.99

rg-20m 1 20,000,000 – 9.94 19.65 13.41 49.30 10.42 99.99

rg-20m 2 20,000,000 – 34.12 62.89 45.60 49.30 36.89 99.88

rg-25m 1 25,000,000 – 14.19 28.09 18.91 41 14.89 99.95

rg-25m 2 25,000,000 – 38.76 69.99 51.29 48.13 42.12 99.65

rg-30m 1 30,000,000 – 43.48 76.61 57.17 59.02 47.44 97.57

rg-30m 2 30,000,000 – 15.68 31.05 21.10 30.98 16.46 99.93

rg-35m 2 35,000,000 – 43.12 76.16 56.79 53.70 46.98 99.12

For the first level, expected running times of each algorithm are between
twenty seconds and two minutes.

Tables 3 and 4 give respectively quality of solutions and number of requests
obtained for the second and third levels. Table 5 gives CPU running times. For
the third level, we only give values for algorithms that have been executed until
the end.
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Table 2. Number of requests performed in the first level (in percentage of m)

Instance m LR ED S-Pitt LL SLL ASLL

butterfly-21 88,080,384 100 60.51 91.94 103.30 104.76 80.16

debruijn-25 67,108,861 66.67 61.11 87.03 113.87 106.84 100.48

grid-6000.9000 107,985,000 100 49.93 86.24 91.66 91.66 75.03

hypercube-23 96,468,992 100 11.83 23.57 17.54 17.58 17.51

compbip-7000.15000 105,000,000 100 53.34 54.31 100.01 100.01 100.02

split-7500.12000 118,121,250 0.02 47.47 47.82 76.20 76.20 0.17

rg-20m 1 59,624,494 49.12 47.99 55.20 34.29 59.22 57.73

rg-20m 2 90,808,193 40.23 36.92 48.73 38.20 56.57 34.27

rg-25m 1 70,911,180 45.44 44.57 53.13 36.23 58.19 47.08

rg-25m 2 87,837,432 45 40.93 55.45 51.81 65.50 41.84

rg-30m 1 82,356,722 50.09 45.04 62.78 57.89 75.78 52.29

rg-30m 2 81,819,916 44.86 44.02 52.84 39.76 58.28 45.23

rg-35m 2 96,555,269 50.14 45.11 62.70 62.52 75.62 53.31

Table 3. Quality of solutions obtained in the second and third levels, expressed in
percentage of n

Instance n OPT LR ED S-Pitt LL SLL ASLL

butterfly-28 7,784,628,224 48.28 48.28 96.55 78.76 93.24 93.10 96.55

debruijn-33 8,589,934,592 > 50 66.67 88.89 77.56 96.55 99.99 99.99

grid-75000.90000 6,750,000,000 50 50 99.99 81.41 99.99 99.99 99.99

hypercube-30 1,073,741,824 50 50 99.99 99.78 99.99 99.99 99.99

compbip-35000.500000 535,000 6.54 93.46 13.08 13.11 6.54 6.54 93.46

split-70000.180000 250,000 28 99.99 48.19 48.01 28 28 99.99

butterfly-30 33,285,996,544 48.28 – – – 98.26 – –

compbip-250000.380000 630,000 39.68 60.32 79.37 79.46 84.39 – –

Table 4. Number of requests performed in the second and third levels, expressed in
percentage of m

Instance m LR ED S-Pitt LL SLL ASLL

butterfly-28 15,032,385,540 99.99 61.91 91.59 103.50 101.79 72.62

debruijn-33 17,179,869,183 66.67 61.11 87.03 108.91 108.33 91.67

grid-75000.90000 13,499,835,000 100 49.98 86.24 91.67 91.67 75

hypercube-30 16,106,127,360 100 9.10 18.22 13.42 13.33 13.33

compbip-35000.500000 17,500,000,000 100 93 92.97 100.01 100.01 100.02

split-70000.180000 15,049,965,000 0.002 60.24 60.45 83.72 83.72 0.02

butterfly-30 64,424,509,440 – – – 102.18 – –

compbip-250000.380000 95,000,000,000 100 34.21 34.05 25.88 – –
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Table 5. CPU running times obtained in the second and third levels (number of
executions are given in parenthesis: we give the average time here)

Instance LR ED S-Pitt LL SLL ASLL

butterfly-28 1:11:55 1:15:53 1:18:41 (2) 1:20:35 (2) 5:10:47 3:38:43

debruijn-33 1:20:37 1:24:10 1:26:14 (2) 1:29:35 (2) 7:43:53 5:08:37

grid-75000.90000 1:02:47 1:08:57 1:09:58 (2) 1:11:35 (2) 3:24:52 3:01:32

hypercube-30 0:41:06 0:33:21 0:36:02 (3) 0:33:19 (3) 1:07:46 (2) 1:07:38 (2)

compbip-35000.500000 0:23:15 0:22:23 0:22:28 (4) 0:22:13 (4) 6:11:51 6:12:03

split-70000.180000 0:00:17 0:15:21 0:15:36 (5) 0:16:11 (5) 4:27:39 0:00:29 (8)

butterfly-30 – – – 5:47:43 – –

compbip-250000.380000 2:02:16 1:01:19 1:01:21 0:32:17 – –

Observations on Quality of Solutions. As we can see on Tables. 1 and 3, the
algorithm LR is almost always the best. Moreover, it often returns the optimal
solution. However, it can be very bad on complete bipartite and split graphs.

In general, SLL offers good performance, especially on random power law
graphs (its performance is close to LR). Nevertheless, it is less efficient on regular
graphs2.

The global performance of algorithms S-Pitt and LL is intermediate but, for
LL, it fluctuates more than S-Pitt. Indeed, on one instance, LL can be the best
or the worst, that is not the case for S-Pitt.

Finally, ED and ASLL are overall the worst algorithms (and ED reaches often
its approximation ratio of 2). For ED, these results confirm observations made
by F. Delbot et al. [12].

Observations on the Number of Requests. As we can see on Tables. 2
and 4, the algorithm ED is almost always the best. Furthermore, it always per-
forms less than m requests.

The algorithm LR often reaches m requests (it cannot perform worse), except
on instances on which it returns a bad solution (it is better on them).

The performance of S-Pitt is close to LR: it is often better on specific graphs
(except on complete split graphs) but it is worse on random graphs.

Algorithms LL, SLL and ASLL can perform more than m requests. This ex-
plains the fact that LR is generally the second algorithm in terms of complexity
(even if its upper bound ofm requests is often reached). ASLL is better, especially
on random power law graphs and complete split graphs.

Analysis of Running Times. We focus on values presented for the second
level in Tab. 5 (CPU running times obtained in first level are too similar to
be exploited). To obtain an estimation of real running times (observed on our
computer), one can multiply by 3.2 (resp. 1.6) CPU running times given in Tab. 5
for algorithms LR, ED, S-Pitt and LL (resp. SLL and ASLL).

2 A regular graph is a graph where all the vertices have the same degree.
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Algorithms SLL and ASLL are different because they have to use another
playhead on .deg file to calculate degrees of neighbors. Therefore, their CPU
running times are bigger. For this reason, we focus primarily on values observed
for algorithms LR, ED, S-Pitt and LL.

On sparse graphs (where n and m are similar), CPU running times are close.
They depend on number of requests performed by algorithms and size of covers
constructed. Indeed, the size of solutions can be as huge as n, and writing on a
disk is longer than reading. Moreover, there is often a trade off between the num-
ber of requests performed and the quality of solutions constructed: algorithms
which produce the best solutions often perform the biggest number of requests
(in any case, on one instance, an algorithm is never both the best in terms of
quality of solution and complexity).

On dense graphs (where n is negligible compared to m), the analysis is less
intricate because the size of covers written is tiny compared to the number
of requets performed. Thus, CPU running times are mainly influenced by the
number of requests done.

But these two criteria are not sufficient to explain CPU running times ob-
served. Another technical aspects, linked to operating systems, are involved.
Indeed, the access to the hard drive is indirect: the processing unit uses buffers.
Also, the atomic unit of access depends on the size of disk sectors. If we read
only one vertex on .list file, the system loads more vertices into its buffers.
Hence, the number of physical access is lower than the number of requests per-
formed. One overtakes in this regard practical considerations highlighted in the
I/O-efficient model (see [20] for a survey).

Limits Encountered on our Machine. In the third level, we have generated
two instances: a complete bipartite graph with 630,000 vertices and a ButterFly
graph of dimension 30. On the complete bipartite graph, we were able to run
algorithms LR, ED, S-Pitt and LL: their real running times do not exceed (on our
computer) eight hours (executions of SLL and ASLL were stopped after twenty
hours). On the ButterFly graph, we can only use LL (its real running time is
about fifteen hours) because, on our computer, we cannot allocate an array of
33 · 109 bits (and executions of SLL and ASLL would take too long).

Therefore, LL is the only algorithm that can be run with our computer on all
instances.

4 General Synthesis

We have implemented six algorithms for the vertex cover problem on huge
graphs. We were able to run these algorithms with a standard laptop computer
on instances of sizes up to 30·109 vertices and edges (about 300 Gb on disk). The
CPU running times we obtained do not exceed eight hours (and corresponding
real running times are lower than ten hours).

We have observed that SLL and ASLL are almost always the slowest, since they
have to compute degrees of neighbors. In this direction, they are “less adapted”.
However, SLL is still interesting, because it can give good solutions.
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To test limits of algorithms, we have generated two instances of sizes about
100 · 109 vertices and edges (at least 1 Tb on disk): a complete bipartite graph
with 630,000 vertices and 95 · 109 edges (a dense graph), and a ButterFly graph
of dimension 30, with 33 · 109 vertices and 64 · 109 edges (a sparse graph).

– On the complete bipartite graph, we were able to run LR, ED, S-Pitt and LL
(executions of SLL and ASLL were stopped before the end). For the slowest
(LR), its CPU running time barely reaches two hours (and its corresponding
real running time is about seven hours).

– On the ButterFly graph, we were only able to execute the algorithm LL:
executions of LR, ED and S-Pitt failed because we could not allocate an
array of 33 · 109 bits (and, as for the complete bipartite graph above, SLL
and ASLL were stopped before the end).

General Observations. By summarizing the set of results presented for instances
we used, among the six algorithms, LR is the one which gives the best solutions.
It is closely followed by SLL, while ED and ASLL gives the worst solutions.
However, ED performs the smallest number of requests. Based on that, choosing
an algorithm which satisfies both quality of solutions and complexity in number
of requests is difficult. On sparse graphs, where running times are often similar,
we should promote the quality of solutions. Therefore, LR is a good candidate.
Unfortunately, it needs to allocate an n bits array to be run, that is not always
possible. On dense graphs, running times can change significantly, this makes
choice trickier, since the most efficient algorithms are often the slowest.

Perspectives. We could extend our work by designing efficient algorithms
on large instances for other problems. Then, we could compare our treatment
method with the existing ones, e.g. with the semi-external greedy randomized
adaptive search procedure presented in [2] for the max clique problem.
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Abstract. We study the following fundamental realization problem of
directed acyclic graphs (dags). Given a sequence S :=

(
a1
b1

)
, . . . ,

(
an
bn

)
with ai, bi ∈ Z+

0 , does there exist a dag (no parallel arcs allowed) with
labeled vertex set V := {v1, . . . , vn} such that for all vi ∈ V inde-
gree and outdegree of vi match exactly the given numbers ai and bi,
respectively? Recently this decision problem has been shown to be NP-
complete by Nichterlein [1]. However, we can show that several important
classes of sequences are efficiently solvable. In previous work [2], we have
proved that yes-instances always have a special kind of topological order
which allows us to reduce the number of possible topological orderings in
most cases drastically. This leads to an exact exponential-time algorithm
which significantly improves upon a straightforward approach. Moreover,
a combination of this exponential-time algorithm with a special strategy
gives a linear-time algorithm. Interestingly, in systematic experiments
we observed that we could solve a huge majority of all instances by the
linear-time heuristic. This motivates us to develop characteristics like
dag density and “distance to provably easy sequences” which can give us
an indicator how easy or difficult a given sequence can be realized.

Furthermore, we propose a randomized algorithm which exploits our
structural insight on topological sortings and uses a number of reduction
rules. We compare this algorithm with other straightforward randomized
algorithms and observe that it clearly outperforms all other variants. An-
other striking observation is that our simple linear-time algorithm solves
a set of real-world instances from different domains, namely ordered bi-
nary decision diagrams (OBDDs), train and flight schedules, as well as
instances derived from food-web networks without any exception.

1 The Dag Realization Problem

Dag Realization Problem: Given is a finite sequence S :=
(
a1
b1

)
, . . . ,

(
an

bn

)
with ai, bi ∈ Z+

0 . Does there exist an acyclic digraph (without parallel arcs)
G = (V, A) with the labeled vertex set V := {v1, . . . , vn} such that we have
indegree d−G(vi) = ai and outdegree d+

G(vi) = bi for all vi ∈ V ?
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If the answer is “yes”, we call sequence S dag sequence and the acyclic digraph G
(a so-called “dag”) a dag realization. A relaxation of this problem – not demanding
the acyclicity of digraph G – is called digraph realization problem. In this case, we
call G digraph realization and S digraph sequence. The digraph realization problem
can be solved in linear-time using an algorithm by Wang and Kleitman [3]. Unless
explicitly stated, we assume that a sequence does not contain any zero tuples

(
0
0

)
.

Moreover, we will tacitly assume that
∑n

i=1 ai =
∑n

i=1 bi, as this is obviously a
necessary condition for any realization to exist, since the number of ingoing arcs
must equal the number of outgoing arcs. Furthermore, we denote tuples

(
ai

bi

)
with

ai > 0 and bi = 0 as sink tuples, those with ai = 0 and bi > 0 as source tu-
ples, and the remaining ones with ai > 0 and bi > 0 as stream tuples. We call
a sequence only consisting of source and sink tuples, source-sink-sequence. A se-
quence S =

(
a1
b1

)
, . . . ,

(
an

bn

)
with q source tuples and s sink tuples is denoted as

canonically sorted, if and only if the first q tuples in this labeling are decreasingly
sorted source tuples (with respect to the bi) and the last s tuples are increasingly
sorted sink tuples (with respect to the ai).

Hardness and Efficiently Solvable Special Cases. Nichterlein very recently
showed that the dag realization problem is NP-complete [1]. On the other hand,
there are several classes of sequences for which the problem is not hard. One
of these sequences are source-sink-sequences, for which one only has to find
a digraph realization. The latter is already a dag realization, since no ver-
tex has incoming as well as outgoing arcs. Furthermore, sparse sequences with∑n

i=1 ai ≤ n− 1 are polynomial-time solvable as we will show below. We denote
such sequences by forest sequences. The main difficulty for the dag realization
problem is to find out a “topological ordering of the sequence”. In the case where
we have one, our problem is nothing else but a directed f -factor problem on
a complete dag. The labeled vertices of this complete dag are ordered in the
given topological order. This problem can be reduced to a bipartite undirected
f -factor problem which can be solved in polynomial time via a further famous
reduction by Tutte [4] to a bipartite perfect matching problem. In a previous pa-
per [2], we proved that a certain ordering of a special class of sequences –opposed
sequences– always leads to a topological ordering of the tuples for at least one
dag realization of a given dag sequence. On the other hand, it is not necessary
to apply the reduction via Tutte if we possess one possible topological ordering
of a dag sequence. The solution is much easier. Next, we describe our approach.

Realization with a Prescribed Topological Order. We denote a dag se-
quence S :=

(
a1
b1

)
, . . . ,

(
an

bn

)
which possesses a dag realization with a topological

numbering corresponding to the increasing numbering of its tuples by dag se-
quence for a given topological order and analogously the digraph G = (V, A)
by dag realization for a given topological order. Without loss of generality, we
may assume that the source tuples come first in the prescribed numbering and
are ordered decreasingly with respect to their bi values. A realization algorithm
works as follows. Consider the first tuple

(
aq+1
bq+1

)
from the prescribed topological
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order which is not a source tuple. Then there must exist aq+1 source tuples
with a smaller number in the given dag sequence. Reduce the aq+1 first (i.e.
with largest bi) source tuples by one and set the indegree of tuple

(
aq+1
bq+1

)
to

0. That means, we reduce sequence S :=
(
a1
b1

)
, . . . ,

(
aq+1
bq+1

)
, . . . ,

(
an

bn

)
to sequence

S′ :=
(

a1
b1−1

)
, . . . ,

( aaq+1
baq+1−1

)
, . . . ,

(
aq

bq

)
,
(

0
bq+1

)
, . . . ,

(
an

bn

)
. If we get zero tuples in S′,

then we delete them and denote the new sequence for simplicity also by S′.
Furthermore, we label this sequence with a new numbering starting from one
to its length and consider this sorting as the given topological ordering for S′.
We repeat this process until we get an empty sequence (corresponding to the
realizability of S) or get stuck (corresponding to the non-realizability of S). The
correctness of our algorithm is proven in Lemma 1.

Lemma 1. S is a dag sequence for a given topological order ⇔ S′ is a dag
sequence for its corresponding topological order.

Discussion of Our Main Theorem and its Corresponding Algorithm.
We do not know how to determine a feasible topological ordering (i.e., one cor-
responding to a realization) for an arbitrary dag sequence. However, we are able
to restrict the types of possible permutations of the tuples. For that, we need
the following order relation ≤opp⊂ Z2 × Z2, introduced in [2].

Definition 1 (opposed relation). Given are c1 :=
(

a1
b1

) ∈ Z2 and c2 :=
(
a2
b2

) ∈
Z2. We define: c1 ≤opp c2 ⇔ (a1 ≤ a2 ∧ b1 ≥ b2).

Note, that a pair c1 equals c2 with respect to the opposed relation if and only if
a1 = a2 and b1 = b2. The opposed relation is reflexive, transitive and antisym-
metric and therefore a partial, but not a total order. Our following theorem leads
to a recursive algorithm with exponential running time and results in Corollary 1
which proves the existence of a special type of possible topological sortings pro-
vided that sequence S is a dag sequence.

Theorem 1 (main theorem [2]). Let S be a canonically sorted sequence con-
taining k > 0 source tuples. Furthermore, we assume that S is not a source-sink-
sequence. We define the set

Vmin :=
{(

ai

bi

)
|
(

ai

bi

)
is stream tuple, ai ≤ k,
and there is no stream tuple

(
aj

bj

)
<opp

(
ai

bi

)}
.

S is a dag sequence if and only if Vmin �= ∅ and there exists an element
(
a�

b�

) ∈
Vmin such that S′ :=(

0
b1−1

)
, . . . ,

(
0

ba�
−1

)
,

(
0

ba�+1

)
, . . . ,

(
0
bk

)
, . . . ,

(
a�−1

b�−1

)
,

(
0
b�

)
,

(
a�+1

b�+1

)
, . . . ,

(
an

bn

)

is a dag sequence.
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Algorithm 1. DagRealization(sequence S)
Input : A canonically sorted sequence S.
Output: A Boolean flag indicating whether S is realizable.
if S is not a source-sink-sequence then1

count the number of sources in S and determine set V ′
min;2

for all
(aj

bj

) ∈ V ′
min do3

create a working copy S′ of S with tuples
(a′

i
b′i

)
=
(

ai
bi

)
;4

set b′i ← b′i − 1 for a′
j largest sources

(
0
b′i

)
;5

set a′
j ← 0;6

delete
(
0
0

)
-tuples;7

if DagRealization(S′) then return TRUE;8

return FALSE;9

else // Realization of a source-sink-sequence10
while the set of source tuples in S is not empty do11

choose a largest source tuple
(

0
bj

)
;12

if number of sinks in S is smaller than bj then return FALSE;13
set ai ← ai − 1 for bj largest sinks

(
ai
0

)
;14

delete
(
0
0

)
-tuples;15

return TRUE;16

Sequence S′ may contain zero tuples. If this is the case, we delete them and call
the new sequence for simplicity also S′. Theorem 1 ensures the possibility for
reducing a dag sequence into a source-sink-sequence. The latter can be realized
by using the algorithm for realizing digraph sequences [3]. The whole algorithm
is summarized in Algorithm 1, where we consider the maximum subset V ′

min

of Vmin only containing pairwise disjoint stream tuples. The bottleneck of this
approach is the size of set V ′

min. Our pseudocode does not specify the order in
which we process the elements of V ′

min in line 3. Several strategies are possible
which have a significant influence on the overall performance. The most promis-
ing deterministic strategy (as we will learn in the next sections) is to use the
lexicographic order, starting with the lexicographic maximum element within
V ′

min. In [2] we introduced a special class of dag sequences – opposed sequences
– where we have |V ′

min| = 1, if sequence S is not a source-sink-sequence. We
call a sequence S opposed sequence, if it is possible to sort its stream tuples
in such a way, that ai ≤ ai+1 and bi ≥ bi+1 is valid for stream tuples with
indices i and i + 1. In this case, we have the property

(
ai

bi

) ≤opp

(
ai+1
bi+1

)
for all

stream tuples. At the beginning of the sequence we insert all source tuples such
that the bi build a decreasing sequence and at the end of sequence S we put
all sink tuples in increasing ordering with respect to the corresponding ai. The
notion opposed sequence describes a sequence, where it is possible to compare
all stream tuples among each other and to put them in a “chain”. Indeed, this is
not always possible because the opposed order is not a total order. However, for
opposed sequences line (3) to line (9) in Algorithm 1 are executed at most once
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in each recursive call, because we have always |V ′
min| ≤ 1. Overall, we obtain a

linear-time algorithm for opposed sequences. However, there are many sequences
which are not opposed, but Theorem 1 still yields a polynomial decision time.
Consider for example dag sequence S :=

(
0
3

)
,
(
0
3

)
,
(
2
2

)
,
(
3
3

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
which is

not an opposed sequence, because stream tuples
(
2
2

)
and

(
3
3

)
are not comparable

with respect to the opposed ordering. However, we have |V ′
min| = |{(22)}| = 1

and so we reduce S to S′ =
(
0
2

)
,
(
0
2

)
,
(
0
2

)
,
(
3
3

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
, leading to the realizable

source-sink-sequence
(
0
1

)
,
(
0
1

)
,
(
0
1

)
,
(
0
3

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
. Theorem 1 leads to further in-

teresting insights. We can prove the existence of special topological sortings.

Corollary 1 ([2]). For every dag sequence S, there exists a dag realization G =
(V, A) with a topological ordering vl1 , . . . , vlns

of all ns vertices corresponding to
stream tuples, such that we cannot find

(alj

blj

)
<opp

(ali
bli

)
for li < lj.

We call a topological ordering of a dag sequence obeying the conditions in Corol-
lary 1 an opposed topological sorting. At the beginning of our work (when the
complexity of the dag realization problem was still open), we conjectured that
the choice of the lexicographical largest tuple from V ′

min in line (3) would solve
our problem in polynomial time. We call this approach lexmax strategy and a
dag sequence which is realizable with this strategy lexmax sequence, otherwise
we call it non-lexmax sequence. Hence, we conjectured the following.

Conjecture 1 (lexmax conjecture). Each dag sequence is a lexmax sequence.

We soon disproved our own conjecture by a counter-example (Example 1, de-
scribed in the following section). In systematic experiments we found out that
a large fraction of sequences can be solved by this strategy in polynomial time.
We tell this story in the next Section 2. Moreover, we use the structural insights
from our main theorem to develop a randomized algorithm which performs well
in practice (Section 3). Proofs and further supporting material can be found in
the extended version, see arXiv:1203.3636v1 and [5].

2 Lessons from Experiments with the Lexmax Strategy

Why We Became Curious. To see whether our lexmax Conjecture 1 might be
true, we generated a set of dag sequences, called randomly generated sequences
in the sequel, by the following principle: Starting with a complete acyclic di-
graph, delete k of its arcs uniformly at random. We take the degree sequence
from the resulting graph. Note that we only sample uniformly with respect to
random dags but not uniformly degree sequences since degree sequences have
different numbers of corresponding dag realizations. In a first experiment we
created with the described process one million dag sequences with 20 tuples
each, and m =

∑20
i=1 ai = 114. Likewise, we built up another million dag se-

quences with 25 tuples and
∑25

i=1 ai = 180. The fact that the lexmax strategy
realized all these test instances without a single failure was quite encouraging.
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The lexmax conjecture 1 seemed to be true, only a correctness proof was missing.
But quite soon, in an attempt to prove the conjecture, we artificially constructed
a first counter-example, a dag sequence which is definitely no lexmax sequence,
as can easily be verified:

Example 1. S :=
(
0
3

)
,
(
0
1

)
,
(
1
2

)
,
(
2
3

)
,
(
4
4

)
,
(
1
1

)
,
(
1
0

)
,
(
2
0

)
,
(
3
0

)
.

Even worse: we also found an example showing that no fixed strategy which
chooses an element from V ′

min in Algorithm 1 and does not consider the corre-
sponding set of sinks, will fail in general.

These observations give rise to several immediate questions: Why did we con-
struct by our sampling method (for n = 20 and n = 25) only dag sequences which
are lexmax sequences? How many dag sequences are not lexmax sequences?
Therefore, we started with systematic experiments. For small instances with
n ∈ {7, 8, 9} tuples we generated systematically the set of all dag sequences with
all possible

∑m
i=1 ai =: m, see for an example the case n = 9 in Figure 1. More

precisely, we considered only non-trivial sequences, i.e. we eliminated all source-
sink sequences and all sequences with only one stream tuple. We denote this set
by systematically generated sequences. Note that the number of sequences grows
so fast in n that a systematic construction of all sequences with a larger size is
impossible. We observed the following:

1. The fraction of lexmax sequences among the systematically generated se-
quences is quite high. For all m it is above 96.5%, see Figure 1 (blue squares).

2. The fraction of lexmax sequences strongly depends on m. It is largest for
sparse and dense dags.

3. Lexmax sequences are overrepresented among one million randomly gener-
ated sequences (for each m), we observe more than 99% for all densities of
dags, see Figure 1 (red triangles).

This leads to the following questions: Given a sequence for which we seek a dag
realization. How should we proceed in practice? As we have seen, the huge ma-
jority of dag sequences are lexmax sequences. Is it possible to find characteristic
properties for lexmax sequences or non-lexmax sequences, respectively?

Distance to Opposed Sequences. Let us exploit our characterization that
opposed sequences are efficiently solvable. We propose the distance to opposed
d(S) for each dag sequence S. Consider for that the topological order of a dag
realization G given by Algorithm 1, if in line (3) elements are chosen in decreas-
ing lexicographical order. This ordering corresponds to exactly one path of the
recursion tree. Thus, we obtain one unique dag realization G for S, if existing.
Now, we renumber dag sequence S such that it follows the topological order
induced by the execution by this algorithm, i.e. by the sequence of choices of
elements from V ′

min. Then the distance to opposed is defined as the number of
pairwise incomparable stream tuples with respect to this order, more precisely,

d(S) :=
∣∣∣∣
{((

ai

bi

)
,

(
aj

bj

))
|
(

ai

bi

)
,

(
aj

bj

)
incomparable stream tuples
w.r.t. ≤opp and i < j

}∣∣∣∣ .
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Fig. 1. Percentage of (non-trivial) lex-
max sequences for systematically gener-
ated (squares) and randomly generated
sequences (triangles) with 9 tuples and
m ∈ {5, . . . , 35} arcs
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Fig. 2. Fraction of systematic non-lexmax
sequences with 9 tuples, m ∈ {9, . . . , 35},
and varying difference to opposed d(S)

Question 1: Do randomly generated sequences possess a preference to a “small”
distance to opposed in comparison with systematically generated sequences? In
Figure 3 (left), we show the distribution of systematically generated sequences
(in %) with their distance to opposed, depending on m :=

∑n
i=1 ai. We compare

this scenario with the same setting for randomly generated sequences, shown in
Figure 3 (right).

Observations: Systematically generated sequences have a slightly larger range
of the “distance to opposed” than randomly generated sequences. Moreover, when
we generate dag sequences systematically, we obtain a significantly larger fraction
of instances with a larger distance to opposed than for randomly generated
sequences, and this phenomenon can be observed for all m.

Question 2: Do non-lexmax sequences possess a preference for large opposed
distances? Since opposed sequences are easily solvable [2], we conjecture that
sequences with a small distance to opposed might be easier solvable by the
lexmax strategy than those with a large distance to opposed. If this conjec-
ture were true, it would give us together with our findings from Question 1
one possible explanation for the observation that the randomly generated se-
quences have a larger fraction of efficiently solvable sequences by the lexmax
strategy.

Observations: A separate analysis of non-lexmax sequences (that is, the subset
of unsolved instances by the lexmax strategy), displayed in Figure 2, gives a clear
picture: yes! For systematically generated sequences with n = 9, we observe in
particular for instances with a middle density that the fraction of non-lexmax
sequences becomes maximal for a relatively large distance to opposed.

Question 3: Can we solve real-world instances by the lexmax strategy?
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Fig. 3. Percentage of systematically generated sequences S (left) and randomized gen-
erated sequences (right) with their difference d(S) to opposed for n = 9 tuples and
m ∈ {9, . . . , 35} arcs

We consider real-world instances from different domains.

a): Ordered binary decision diagrams (OBDDs): In such networks the outdegree
is two, that is constant. This immediately implies that the corresponding
sequences are opposed sequences, and hence can provably be solved by the
lexmax strategy.

b): Food Webs: Such networks are almost hierarchical and therefore have a
strong tendency to be acyclic (“larger animals eat smaller animals”). In our
experiments we analyzed food webs from the Pajek network library [6].

c): Train timetable network: We use timetable data of German Railways from
2011 and form a time-expanded network. Its vertices correspond to departure
and arrival events of trains, a departure vertex is connected by an arc with
the arrival event corresponding to the very next train stop. Moreover, arrival
and departure events at the same station are connected whenever a transfer
between trains is possible or if the two events correspond to the very same
train.

d): Flight timetable network: We use the European flight schedule of 2010 and
form a time-expanded network as in c).

The characteristics of our real-world networks b) - d) are summarized in Table 1.
The dag density ρ of a network is defined as ρ = m/

(
n
2

)
. To compare the dis-

tance to opposed for instances of different sizes, we normalize this value by the
theoretical maximum

(
b
2

)
, where b denotes the number of stream tuples, and so

obtain a normalized distance to opposed. Without any exception, all real-world
instances have been realized by the lexmax strategy.

Back to Theory. Inspired by our observations in the systematic experiments,
we reconsidered forest sequences. We can show that an arbitrary choice of a tuple
in V ′

min in line 3 of Algorithm 1 solves the problem for forest sequences.
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Table 1. Characteristics of our real-world test instances

name and dag norm. dist.
kind of network n m b density ρ to opposed

burgess shale (b) 142 770 101 0.08 0.40
chengjiang shale (b) 85 559 54 0.16 0.50
florida bay dry (b) 128 2137 125 0.26 0.32
cyprus dry (b) 71 640 68 0.26 0.43
maspalomas (b) 24 82 21 0.30 0.30
rhode river (b) 20 53 17 0.28 0.42
train schedule 2011 (c) 19359 77201 18907 0.0004 0.00
flight schedule 2010 (d) 37800 1324556 32905 0.0019 0.00

Corollary 2 (arbitrary tuple choice in Vmin for forest sequences). Let
S :=

(
a1
b1

)
, . . . ,

(
an

bn

)
with

∑n
i=1 ai ≤ n − 1 be a canonically sorted sequence con-

taining k > 0 source tuples. Furthermore, let S′ be defined as in Theorem 1
where

(ai�
bi�

)
is an arbitrary tuple in Vmin.

S is a dag sequence if and only if S′ is a dag sequence.

3 Randomized Algorithms

3.1 Four Versions of Randomized Algorithms

The main idea for developing a randomized algorithm is the following. In each
trial use a randomly chosen topological sorting (a random permutation of the
tuples) for a given sequence and then apply the linear-time realization algorithm
as described in Section 1 and justified by Lemma 1. Clearly, it is not necessary
to permute all tuples in a sequence. Instead we use a canonically sorted sequence
and permute only the stream tuples. We denote this first naive version of a ran-
domized algorithm by stream tuple permutation algorithm (Rand I). A random
permutation of a sequence of length n can be chosen in O(n) time, see for ex-
ample [7]. Hence, one trial of the stream tuple permutation algorithm requires
O(m + n) time. This algorithm performs poorly since there are sequences with
only a single realization among (n−2)! many permutations of n−2 stream tuples.
On the other hand, it is possible to restrict the number of possible topological
sortings by the following lemma.

Lemma 2 (necessary criterion for the realizability of dag sequences).
Let S be a dag sequence. Denote the number of source tuples in S by q and
the number of sink tuples by s. Then it follows ai ≤ min{n − s, i − 1} and
bi ≤ min{n − q, n − i} for all i ∈ Nn for each labeling of S corresponding to a
topological order.

Hence, a stream tuple
(
ai

bi

)
can only be at position j in a topological ordering if

aj ≤ min{n−s, i−1} and bj ≤ min{n−q, n−i} is fulfilled. We define a bipartite
bounding graph BS = (VS ∪ WS , ES) for a given canonically sorted sequence as
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follows. We define |S| − q − s vertices vi ∈ VS with i ∈ {q + 1, . . . , n − s} where
each vertex vi corresponds to an “upper bound tuple”

(min{n−s,i−1}
min{n−q,n−i}

)
for a stream

tuple in S. Furthermore, we define |S|−q−s vertices wi with i ∈ {q+1, . . . , n−s}
each corresponding to a stream tuple

(
ai

bi

)
. The edge set ES is built as follows.

Two vertices vi and wj are adjacent if and only if we find for
(
aj

bj

)
that aj ≤

min{n − s, i − 1} and bj ≤ min{n− q, n − i}.
A perfect matching in this bounding graph gives us a possible topological

sorting with respect to Lemma 2. This means, we assign to each stream tuple(aj

bj

)
in S the number i if and only if (vi, wj) is a matching edge in the chosen

perfect matching. Clearly, there does not exist a dag realization of sequence S if
BS does not contain a perfect matching. Unfortunately, the computation of the
number of perfect matchings in a bipartite graph is known to be �P -hard [8].
On the other hand, there exists a polynomial-time algorithm for the problem
of uniform sampling a perfect matching within a bipartite graph by Jerrum,
Sinclair and Vigoda [9]. They use a Markov chain based algorithm. The number
of necessary steps in this algorithm is measured by the so-called mixing time
τε, where ε denotes the variation distance to the uniform distribution. They
proved a worst case mixing time of O(n8(n log n + log 1

ε ) log 1
ε ). Up to know,

we do not know if we really need a uniform distribution, but we do not want
to eliminate certain topological orderings. Our second version of a randomized
algorithm – the bounding permutation algorithm (Rand II) – chooses in each trial
a topological sorting by uniform sampling a perfect matching in BS and then
applies the realization algorithm for a given topological order (Lemma 1). For our
experiments with very small instances, we sampled uniformly by enumerating
all permutations of stream tuples.

Our third randomized algorithm – the opposed permutation algorithm (Rand
III) – exploits the non-trivial result in Corollary 1 about opposed topological
sortings. It uses for one trial, Algorithm 1 with a change in line 3. We replace
line 3 by: “Sample a vj ∈ V ′

min uniformly at random.” If possible, we restrict
the set of V ′

min before line 3, i.e., we check for the largest vi ∈ V ′
min whether the

bounds of Lemma 2 are respected for later positions. Let k denote the number of
recursive calls up to the current one. Expressed in terms of the original sequence,
we have to choose the (q + k)–th tuple in the topological sorting in the current
iteration. If bi = n − (q + k) for the lexicographical largest tuple

(
ai

bi

) ∈ V ′
min,

then we set V ′
min := {(ai

bi

)}. The reason is that a larger position is not possible at
all for this tuple, because the upper bound for bi decreases strictly, as shown in
Lemma 2. At first glance it is not clear whether the restriction to a subset of per-
mutations within the randomized algorithm really increases the chance to draw
a realizable topological sorting. This version of the algorithm only constructs
dag realizations which possess an opposed topological sorting. Hence, we also
exclude possible topological sortings which are not opposed topological sortings.
However, empirically this idea pays off.

Our fourth randomized version combines the opposed permutation algorithm
with several reduction rules which exploit the symmetric roles of in- and outdegrees
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Fig. 4. Success probability p(m) for
all non-trivial sequences with 9 tuples
with four versions of randomized algo-
rithms and the fraction of lexmax se-
quences

Fig. 5. Success probability p(m) for all
non-reducible non-lexmax sequences of
9 tuples with four versions of random-
ized algorithms and the percentage of
non-reducible non-lexmax sequences in
the set of all non-trivial sequences

and degree dominance of tuples. We additionally apply these rules whenever
applicable and call the randomized algorithm opposed permutation algorithm
with reduction rules (Rand IV).

3.2 Experimental Comparison of Randomized Algorithms

Experiment 1: Which randomized algorithm possesses the best success probability
for one trial? We define the success probability p(m) as the probability that a given
sequence S :=

(
a1
b1

)
, . . . ,

(
an

bn

)
with m :=

∑n
i=1 ai can be realized by a specified ran-

domized algorithm in one single trial. In this experimentwe test the four versions of
our randomized algorithms with all non-trivial sequences (as defined in Section 2)
of 9 tuples, see Figure 4. Moreover, we display the fraction of lexmax sequences to
compare the deterministic lexmax strategy with our randomized strategy.

Observations: Randomized version 4 (opposed permutation algorithm with re-
duction rules) clearly outperforms all other strategies. We also observe that the
success probability p depends on the density m of the dag realizations. Sparse
and dense dags have the best success probability. The deterministic lexmax strat-
egy has almost the same success probability as our best randomized version. Of
course, we can repeat a randomized algorithm and thereby boost the success
rate which is not possible for the deterministic variant. Nevertheless the good
performance of the simple lexmax strategy is quite remarkable, it clearly outper-
forms an arbitrary strategy to choose in line 3 of Algorithm 1 an element from
V ′

min (realized in randomized version 3).

Experiment 2: We consider the success probability for all randomized algorithms
in the case of non-lexmax sequences which are not reducible by our reduction
rules. Noting that an impressively large fraction of sequences is efficiently solv-
able by the deterministic lexmax strategy combined with our reduction rules, we
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should ask: How well do our randomized algorithms perform for the remaining
difficult cases, that is for non-reducible non-lexmax sequences? Actually, this is
indeed the most interesting question, because the best approach for realizing a
given sequence S would be: first to test, whether S is a reducible lexmax se-
quence. Only if this is not the case, one would take a randomized algorithm.
Hence, we now determine the success probability p(m) for all non-reducible non-
lexmax sequences, see Figure 5.

Observations: As in the previous experiment, randomized version 4 has the over-
all best success probability p, but in sharp contrast we observe a completely
different dependence on m. One possible explanation could be that for high den-
sities our reduction rules have been applied more often. Note that the overall
percentage of non-reducible non-lexmax sequences in the set of all non-trivial
sequences with 9 tuples is so tiny (see the brown curve in Figure 5) — in partic-
ular for low densities — that we can realize after two or three trials almost all
sequences.

4 Conclusion

In this paper we have studied the performance of a simple linear-time heuristic to
solve the NP-complete dag realization problem and several randomized variants.
The surprisingly broad success of the lexmax strategy suggests that there might
be further subclasses of instances where it runs provably correct. In future work
we would like to characterize the class of instances for which the lexmax strategy
works provably correct.
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Abstract. “The Price of Robustness” by Bertsimas and Sim [4] repre-
sented a breakthrough in the development of a tractable robust counter-
part of Linear Programming Problems. However, the central modeling
assumption that the deviation band of each uncertain parameter is sin-
gle may be too limitative in practice: experience indeed suggests that the
deviations distribute also internally to the single band, so that getting a
higher resolution by partitioning the band into multiple sub-bands seems
advisable.

In this work, we study the robust counterpart of a Linear Program-
ming Problem with uncertain coefficient matrix, when a multi-band
uncertainty set is considered. We first show that the robust counter-
part corresponds to a compact LP formulation. Then we investigate the
problem of separating cuts imposing robustness and we show that the
separation can be efficiently operated by solving a min-cost flow problem.
Finally, we test the performance of our new approach to Robust Opti-
mization on realistic instances of a Wireless Network Design Problem
subject to uncertainty.
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1 Introduction

A fundamental assumption in classical optimization is that all data are exact.
However, many real-world problems involve data that are uncertain or not known
with precision, because of erroneous measurements or adoptions of approximated
numerical representations. If such uncertainty is neglected, optimal solutions
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computed for nominal data values may become costly or infeasible. As a conse-
quence, including uncertainty in an optimization model is a critical issue when
dealing with real-world problems.

During the last years, Robust Optimization (RO) has become a valid method-
ology to deal with optimization problems subject to uncertainty. A key concept
of RO is to model uncertainty as hard constraints, that are added to the orig-
inal formulation of the problem. This restricts the set of feasible solutions to
robust solutions, i.e. solutions that are protected from deviations of the data.
Such a robust approach is crucial when dealing with high risk events, such as
aircraft scheduling [12], or sensor placement in contaminant warning systems
for water distribution networks [15]. In such settings, standard approaches like
deterministic optimization or Stochastic Programming fail to protect against
severe deviations, leading to unpredictable consequences. For an exhaustive in-
troduction to theory and applications of RO, we refer the reader to the book by
Ben-Tal et al. [2] and to the recent survey by Bertsimas et al. [3].

An approach to model uncertain data that has attracted a lot of attention
is the so called Γ -scenario set, introduced by Betsimas and Sim (BS) [4] and
then adapted to several applications. The uncertainty model for a Linear Pro-
gram (LP) considered in BS assumes that, for each coefficient a we are given
a nominal value ā and a maximum deviation d and that the actual value lies
in the interval [ā − d, ā + d]. Moreover, a parameter Γ is introduced to repre-
sent the maximum number of coefficients that deviate from their nominal value.
Hence, Γ controls the conservativeness of the robust model and its introduction
comes from the natural observation that it is unlikely that all coefficients devi-
ate from their nominal value at the same time. A central result presented in BS
is that, under the previous characterization of the uncertainty set, the robust
counterpart of an LP corresponds to a linear formulation. This counterpart has
the desirable properties of being purely linear and, above all, compact, i.e. the
number of variables and constraints is polynomial in the size of the input of the
deterministic problem.

The use of a single deviation band may greatly limit the power of modeling
uncertainty. This is particularly evident when the probability of deviation sensi-
bly varies within the band: in this case, neglecting the inner-band behaviour and
just considering the extreme values like in BS may lead to a rough estimate of the
deviations and thus to unrealistic uncertainty set, which either overestimate or
underestimate the overall deviation. Having a higher modeling resolution would
therefore be very desirable. This can be accomplished by breaking the single
band into multiple and narrower bands, each with its own Γ . Such model is
particularly attractive when historical data about the deviations are available,
a very common case in real-world problems. Thus, a multi-band uncertainty set
can effectively approximate the shape of the distribution of deviations built on
past observations, guaranteeing a much higher modeling power than BS.

This observation was first captured by Bienstock and taken into account to
develop an RO framework for the special case of Portfolio Optimization [5]. Yet,
no definition and intensive theoretical study of a more general multi-band model
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applicable in other contexts have been done. The main goal of this paper is to
close such gap.

Contributions and Outline. In this work, we study the robust counterpart
of an LP with uncertain coefficient matrix, when a multi-band uncertainty set is
considered. The main original contributions are:

– a compact formulation for the robust counterpart of an LP;
– an efficient method for the separation of robustness cuts (i.e., cuts that

impose robustness), based on solving a min-cost flow instance;
– computational experiments comparing the performance of solving the com-

pact formulation versus a cutting plane approach on realistic wireless net-
work design instances.

In Section 2, we show that the robust counterpart of an LP under multi-band
uncertainty corresponds to a compact Linear Programming formulation. We then
proceed to study the separation problem of robustness cuts in Section 3. Finally,
in Section 4, we test the performance of our new model and solution methods
to Robust Optimization, to tackle the uncertainty affecting signal propagation
in a set of realistic DVB-T instances of a wireless network design problem.

1.1 Model and Notation

We study the robust counterpart of Linear Programming Problems whose coeffi-
cient matrix is subject to uncertainty and the uncertainty set is modeled through
multiple deviation bands. The deterministic Linear Program is of the form:

max
∑
j∈J

cj xj (LPP )

∑
j∈J

aij xj ≤ bi i ∈ I

xj ≥ 0 j ∈ J

where I = {1, . . . ,m} and J = {1, . . . , n} denote the set of constraint and
variable indices, respectively. We assume that the value of each coefficient aij
is uncertain and that such uncertainties are modeled through a set of scenarios
S. Each scenario S ∈ S defines a different coefficient matrix AS . The robust
counterpart of (LPP) thus corresponds to the following problem:

max
∑
j∈J

cj xj

∑
j∈J

aSij xj ≤ bi i ∈ I, S ∈ S

xj ≥ 0 j ∈ J.

We note that uncertainty on the cost c and on the r.h.s. b can be included in a
very straightforward way in the coefficient matrix, as explained in [3].
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One of the purpose of this paper is to characterize the robust counterpart of
(LPP) when the set of scenarios corresponds to what we call a multi-band uncer-
tainty set. This set is denoted by SM and generalizes the Bertsimas-Sim uncer-
tainty model. Specifically, we assume that, for each coefficient aij , we are given

a nominal value āij and maximum negative and positive deviations dK
−

ij , dK
+

ij

from āij , such that the actual value aSij lies in the interval [āij + dK
−

ij , āij + dK
+

ij ]
for each scenario S ∈ SM . Moreover, we define a system of deviation bands by
partitioning the single deviation band [dK

−

ij , dK
+

ij ] into K bands, defined on the
basis of K + 1 deviation values:

−∞ < dK
−

ij < · · · < d−2
ij < d−1

ij < d0ij = 0 < d1ij < d2ij < · · · < dK
+

ij < +∞.

Through these deviation values, we define: 1) the zero-deviation band corre-
sponding to the single value d0ij = 0; 2) a set of positive deviation bands, such

that each band k ∈ {1, . . . ,K+} corresponds to the range (dk−1
ij , dkij ]; 3) a set of

negative deviation bands, such that each band k ∈ {K−, . . . ,−1} corresponds
to the range [dkij , d

k−1
ij ) (the interval of each band is thus closed on the endpoint

with the higher absolute value). With a slight abuse of notation, in what follows
we indicate a generic deviation band by k ∈ K = {K−, . . . ,−1, 0, 1, . . . ,K+}.

Additionally, for each band k ∈ K, we define a lower bound lk and an upper
bound uk on the number of deviations that may fall in k, with lk, uk satisfying
0 ≤ lk ≤ uk ≤ n. In the case of band 0, we assume that u0 = n, i.e. we do not
limit the number of coefficients that take their nominal value. Furthermore, we
assume that

∑
k∈K lk ≤ n so that there always exists a feasible realization of

the coefficient matrix. On the basis of these parameters, we formalize the set of
scenarios SM : a scenario S ∈ SM is feasible if and only if aSij ∈ [āij + dK

−

ij , āij +

dK
+

ij ] and lk ≤ |{j ∈ J | aSij lies in band k}| ≤ uk for every k ∈ K, i ∈ I. In
other words, we require that the deviations satisfy the system of multi-band
uncertainty and thus the number of deviations falling in each band must satisfy
the corresponding bounds.

We remark that, in order to avoid an overload of the notation, we assume that
the number of bands K and the bounds lk, uk are the same for each constraint
i ∈ I. Anyway, it is straightforward to modify all presented results to take into
account different values of those parameters for each constraint. We now proceed
to study the robust counterpart of (LPP) under multi-band uncertainty.

2 A Compact Robust LP Counterpart

The robust counterpart of an (LPP) under a multi-band uncertainty set defined
by SM can be equivalently written as:

max
∑
j∈J

cj xj

∑
j∈J

āij xj +DEVi(x, d) ≤ bi i ∈ I

xj ≥ 0 j ∈ J
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where DEVi(x, d) is the maximum overall deviation allowed by a system of
deviation bands d for a feasible solution x when constraint i is considered. Note
that we replace the actual value of a coefficient aij with the summation of the
nominal value āij and a deviation dij falling in exactly one of the K bands. The
computation of DEVi(x, d) corresponds to the optimal value of the following
pure 0-1 Linear Program (note that in this case index i is fixed):

DEVi(x, d) = max
∑
j∈J

∑
k∈K

dkij xj y
k
ij (DEV 01)

lk ≤
∑
j∈J

ykij ≤ uk k ∈ K (1)

∑
k∈K

ykij ≤ 1 j ∈ J (2)

ykij ∈ {0, 1} j ∈ J, k ∈ K. (3)

The binary variables ykij indicate if the deviation of a coefficient aij lies in band
k. Constraints (2) ensure that each coefficient deviates in at most one band
(actually these should be equality constraints, but, for assumption u0 = n made
in Section 1.1, we can consider inequalities). Finally, constraints (1) impose the
upper and lower bounds on the number of deviations falling in each band k.
Thus, the optimal solution of (DEV01) defines a distribution of the coefficients
among the bands that maximizes the deviation w.r.t. the nominal values, while
respecting the bounds on the number of deviations of each band.

We now show that the polytope associated with the linear relaxation of
(DEV01) is integral. The linear relaxation of (DEV01) is:

max
∑
j∈J

∑
k∈K

dkij xj y
k
ij (DEV01-RELAX)

lk ≤
∑
j∈J

ykij ≤ uk k ∈ K (4)

∑
k∈K

ykij ≤ 1 j ∈ J (5)

ykij ≥ 0 j ∈ J, k ∈ K (6)

where we dropped constraints ykij ≤ 1 since they are dominated by constraints (5).

Theorem 1. The polytope described by the constraints of (DEV01-RELAX) is
integral.

Proof. We start by rewriting all the constraints of (DEV01-RELAX) into the
form αT y ≤ β obtaining the following matrix form:
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Di yi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I −I · · · −I

I I · · · I

1 · · · 1
1 · · · 1

. . .

1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yK
−

i1

...

yK
+

i1

...

ykij
...

yK
−

in

...

yK
+

in

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
−lk
...
...
uk

...

...
1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= gi.

Consider now the submatrix D̃i obtained from Di by eliminating the top layer
of blocks (−I| − I| · · · | − I). It is easy to verify that D̃i is the incidence matrix
of a bipartite graph: the elements of the two disjoint set of nodes of the graph
are in correspondence with the rows of the two distinct layers of blocks in D̃i.
Moreover, every column has exactly two elements that are not equal to zero, one
in the upper layer and one in the lower layer. Being the incidence matrix of a
bipartite graph, D̃i is a totally unimodular matrix [13].

In order to show that also the original matrix Di is totally unimodular, we
first need to recall the equivalence of the following three statements [13]: 1) A
is a totally unimodular matrix; 2) a matrix obtained by duplicating rows of A
is totally unimodular; 3) a matrix obtained by multiplying a row of A by -1 is
totally unimodular. Since Di can be obtained from D̃i by duplicating each row
of the upper block, and multiplying each row of the duplicated block by -1, Di

is totally unimodular.
As Di is totally unimodular and the vector gi is integral, it is well-known that

the polytope defined by Diyi ≤ gi and yi ≥ 0 is integral, thus completing the
proof. ��

Since the polytope associated with (DEV01-RELAX) is integral, by strong du-
ality we can use the dual problem of (DEV01-RELAX) to replace DEVi(x, d) in
the robust counterpart of (LPP). The dual problem of (DEV01-RELAX) is:

min
∑
k∈K

−lk vki +
∑
k∈K

uk wk
i +
∑
j∈J

zji (DEV01-RELAX-DUAL)

−vki + wk
i + zji ≥ dkij xj j ∈ J, k ∈ K

vki , wk
i ≥ 0 k ∈ K

zji ≥ 0 j ∈ J

where the dual variables vki , w
k
i , z

j
i are respectively associated with the primal

constraints (4, 5, 6) of (DEV01-RELAX) defined for constraint i. Replacing
DEVi(x, d) by its dual yields the following compact linear robust counterpart of
the original problem (LPP):
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max
∑
j∈J

cj xj (RLP)

∑
j∈J

āij xj −
∑
k∈K

lk vki +
∑
k∈K

uk wk
i +
∑
j∈J

zji ≤ bi i ∈ I

−vki + wk
i + zji ≥ dkij xj i ∈ I, j ∈ J, k ∈ K

vki , w
k
i ≥ 0 i ∈ I, k ∈ K

zji ≥ 0 i ∈ I, j ∈ J

xj ≥ 0 j ∈ J.

In comparison to (LPP), this compact formulation uses 2 ·K ·m+ n ·m addi-
tional variables and includes K · n ·m additional constraints.

3 Separation of Robustness Cuts

In this section, we consider the problem of testing whether a solution x∗ ∈ Rn

is robust feasible, i.e. aSi x
∗ ≤ bi for every scenario S ∈ SM and i ∈ I. This

problems becomes important for adopting a cutting plane approach instead of
directly solving the compact robust counterpart (RLP). This approach works as
follows: start by solving the nominal problem (LPP) and then check if the optimal
solution is robust. If not, generate a cut that imposes robustness (robustness cut)
and add it to the problem. This initial step is then iterated as in a typical cutting
plane method [13].

In the case of the Bertsimas-Simmodel, the problem of separating a robustness
cut is very simple [7]: given a solution x∗, for each constraint i ∈ I, the problem
consists of sorting the deviations dK+

ij x∗
j in non-increasing order and choose

the highest Γi deviations. If for some i the sum of these deviations exceeds
bi −

∑
j∈J āijxj then we found a robustness cut to be added. Otherwise, x∗ is

robust.
In the case of multi-band uncertainty, this simple approach does not guarantee

robustness of a computed solution. However, we prove that for a given solution
x∗ ∈ Rn and a constraint i ∈ I, checking the robust feasibility of x∗ corresponds
to solving a min-cost flow problem [1], whose instance is denoted by (G, c)ix and
defined as follows. G is a directed graph whose set of vertices V contains one
vertex vj for each variable index j ∈ J , one vertex wk for each band k ∈ K and
two vertices s, t that are the source and the sink of the flow, i.e. V =

⋃
j∈J{vj}∪⋃

k∈K{wk} ∪ {s, t}. The set of arcs A is the union of three sets A1, A2, A3. A1

contains one arc from s to every variable vertex vj , i.e. A1 = {(s, vj) | j ∈ J}.
A2 contains one arc from every variable vertex vj to every band vertex wk, i.e.
A2 = {(vj , wk) | j ∈ J, k ∈ K}. Finally, A3 contains one arc from every band
vertex wk to the sink t, i.e. A3 = {(wk, t) | k ∈ K}. By construction, G(V,A) is
bipartite and acyclic. Each arc a ∈ A is associated to a triple (la, ua, ca), where
la, ua are lower and upper bounds on the flow that can be sent on a and ca is the
cost of sending one unit of flow on a. The values of the triples (la, ua, ca) are set in
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the following way: (0, 1, 0) when a ∈ A1; (0, 1,−dkijx∗
j ) when a = (vj , wk) ∈ A2;

(lk, uk, 0) when a = (wk, t) ∈ A3. Finally, the amount of flow that must be sent
trough the network from s to t is equal to n. The value of an (s, t)-flow is defined
by C(f) =

∑
a∈A cafa. An integral min-cost flow can be computed in polynomial

time, using for example the successive shortest path algorithm [1].
We now prove that by solving the min-cost flow instance defined above, we

obtain the maximum deviation for constraint i and solution x∗.

Lemma 1. A solution x∗ ∈ Rn is robust w.r.t. a multi-band scenario set SM if
and only if

ā′ix
∗ − C(f) ≤ bi

for every i ∈ I and min-cost flow f of the instance (G, c)ix∗ .

Proof. We show that for any flow f there exists a scenario Sf ∈ SM with

(a
Sf

i )′x∗ = a′ix
∗ − C(f) and for every scenario S ∈ SM there exists a flow fS

with C(fS) = a′ix
∗ − (aSi )

′x∗. Let f : A → {0, 1} be a feasible flow in (G, c)ix∗ .
Then we obtain a feasible scenario S ∈ SM by setting aSij = āij +

∑
k∈K dkijfjk,

where fjk denotes the flow on arc (vj , wk), i.e. fjk = f((vj , wk)). Due to the
flow conservation in every vertex vj , there exists exactly one variable fjk = 1,
j ∈ J , k ∈ K. Furthermore, the amount of variables whose coefficients are in
band k ∈ K is at least lk and at most uk due to the upper and lower bounds on
the arc (wk, t). Hence, Sf is a feasible scenario and∑

j∈J

a
Sf

ij x
∗
j =

∑
j∈J

āijx
∗
j +
∑
j∈J

∑
k∈K

dkijfikx
∗
j

=
∑
j∈J

āijx
∗
j − C(f).

On the other hand, let S ∈ SM be a feasible scenario. We set fS
jk = 1 if and

only if aSij is in band k ∈ K. The flow on the other arcs is set in such a way

that we preserve flow conservation in every vertex besides s and t. Then fS is a
feasible flow, since the lower and upper capacity bounds are satisfied due to the
feasibility of S, and n units of flow are sent through the network. Furthermore,

C(fS) = −
∑
j∈J

∑
k∈K

dkijx
∗
jfjk

=
∑
j∈J

āijx
∗
j −
∑
j∈J

∑
k∈K

dkijx
∗
jfik −

∑
j∈J

āijx
∗
j

= (aSi )
′x∗ − ā′ix

∗
j .

This concludes the proof. ��

According to this lemma, we can test the robustness of a solution x∗ ∈ Rn by
computing a min-cost flow f i in (G, c)ix∗ for every i ∈ I. If ā′x∗−C(f i) ≤ bi for
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every i, then x∗ is a robust solution. If x∗ is not robust, there exists an index i
such that ā′x∗ − C(f i) > bi and thus∑

j∈J

aijxij +
∑
j∈J

∑
k∈K

dkijf
i
jkxij ≤ bi (7)

is valid for the polytope of the robust solutions and cuts off the solution x∗.

4 Computational Study

In this section, we test our new modeling and solution approaches to Robust
Optimization on a set of realistic instances of the Power Assignment Problem,
a problem arising in the design of wireless networks. In particular, we compare
the efficiency of solving directly the compact formulation (RLP) with that of a
cutting plane method based on the robustness cuts presented in Section 3. In the
case of the Bertsimas-Sim model, such comparison led to contrasting conclusions
(e.g., [7,8]).

The Power Assignment Problem. The Power Assignment Problem (PAP)
is the problem of dimensioning the power emission of each transmitter in a
wireless network, in order to provide service coverage to a number of user, while
minimizing the overall power emission. The PAP is particularly important in
the (re)optimization of networks that are updated to new generation digital
transmission technologies. For a detailed introduction to the PAP and the general
problem of designing wireless networks, we refer the reader to [11,6,10].

A classical LP formulation for the PAP can be defined by introducing the fol-
lowing elements: 1) a vector of non-negative continuous variables p that represent
the power emissions of the transmitters; 2) a vector Pmax of upper bounds on p
that represent technology constraints on the maximum power emissions; 3) a ma-
trix A of the coefficients that represent signal attenuation (fading coefficients) for
each transmitter-user couple; 4) a vector of r.h.s. δ (signal-to-interference thresh-
olds) that represent the minimum power values that guarantee service coverage.
Under the objective of minimizing the overall power emission, the PAP can be
written in the following matrix form:

min 1′p s.t. Ap ≥ δ, 0 ≤ p ≤ Pmax (PAP )

where exactly one constraint a′ip ≥ δi is introduced for each user i to represent
the corresponding service coverage condition.

Each entry of matrix A is classically computed by a propagation model and
takes into account many factors (e.g., distance between transmitter and receiver,
terrain features). However, the exact propagation behavior of a signal cannot be
evaluated and thus each fading coefficient is naturally subject to uncertainty.
Neglecting such uncertainty may provide unpleasant surprises in the final cover-
age plan, where devices may turn out to be uncovered for bad deviations affecting
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the fading coefficients (this is particularly true in hard propagation scenarios,
such as dense urban fabric). For a detailed presentation of the technical aspects
of propagation, we refer the reader to [14].

Following the ITU recommendations (e.g., [9]), we assume that the fading
coefficients are mutually independent random variables and that each variable
is log-normally distributed. The adoption of the Bertsimas-Sim model would
provide only a rough representation of the deviations associated with such dis-
tribution. We thus adopt the multi-band uncertainty model to obtain a more
refined representation of the fading coefficient deviations. In what follows, we
denote the Bertsimas-Sim and the multi-band uncertainty model by (BS) and
(MB), respectively.

Computational Results. In this computational study, we consider realistic
instances corresponding to region-wide networks that implement the Terrestrial
Digital Video Broadcasting technology (DVB-T) [9] and were taken as reference
for the design of the new Italian DVB-T national network. The uncertainty set is
built taking into account the ITU recommendations [9] and discussions with our
industrial partners in past projects about wireless network design. Specifically,
we assume that each fading coefficient follows a log-normal distribution with
mean provided by the propagation model and standard deviation equal to 5.5
dB [9]. In our test-bed, the (MB) uncertainty set of a generic fading coefficient
aij is constituted by 3 negative and 3 positive deviations bands (i.e., K = 6).
Each band has a width equal to the 5% of the nominal fading value āij . Thus
the maximum allowed deviation is +/- 0.15 · āij . For each constraint i, the
bounds lk, uk on the number of deviations are defined considering the cumulative
distribution function of a log-normal random variable with standard deviation
5.5 dB. The (BS) uncertainty set of each constraint considers the same maximum
deviation of (MB) and the maximum number of deviating coefficients is Γ =
�0.8 · umax�, where umax = max{uk : k ∈ K\{0}}. This technically reasonable
assumption on Γ ensures that (BS) does not dominate (MB) a priori.

The computational results are reported in Table 1. The tests were performed
on a Windows machine with 1.80 GHz Intel Core 2 Duo processor and 2 GB
RAM. All the formulations are implemented in C++ and solved by IBM ILOG
Cplex 12.1, invoked by ILOG Concert Technology 2.9. We considered 15 in-
stances of increasing size corresponding to realistic DVB-T networks. The first
column of Table 1 indicates the ID of the instances. Columns |I|, |J | indicate the
number of variables and constraints of the problem, corresponding to the number
of user devices and transmitters of the network, respectively. We remark that
the coefficient matrices tend to be sparse, as only a (small) fraction of the trans-
mitters is able to reach a user device with its signals. Columns |I+|, |J+| indicate
the number of additional variables and constraints needed in the compact robust
counterpart (RLP). Columns PoR% report the Price of Robustness (PoR), i.e.
the deterioration of the optimal value required to guarantee robustness. In par-
ticular, we consider the percentage increase of the robust optimal value w.r.t. the
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optimal value of the nominal problem, in the multi-band case (PoR% (MB)) and
in the Bertsimas-Sim case (PoR% (BS)). Column Δt% reports the percentage
increase of the time required to compute the robust optimal solution under (MB)
by using the cutting plane method presented in Section 3 w.r.t. the time needed
to solve the compact formulation (RLP). Finally, column Protect% is a measure
of the protection offered by the robust optimal solution and is computed in the
following way: for each instance, we generate 1000 realizations of the uncertain
coefficient matrix and we then compute the percentage of realizations in which
the robust optimal solution is feasible. This is done for both (MB) and (BS).

Looking at Table 1, the first evident thing is that the dimension of the compact
robust counterpart under (MB) is much larger than that of the nominal problem.
However, this is not an issue for Cplex, as all instances are solved within one
hour and in most of the cases the direct solution of (RLP) takes less time than
the cutting plane approach (Δt% < 0). Anyway, for the instances of greater
dimension the cutting plane approach becomes competitive and may even take
less time (Δt% > 0). Concerning the PoR, we note that under (MB) imposing
robustness leads to a sensible increase in the overall power emission, that is
anyway lower than that of (BS) in all but two cases. On the other hand, such
increase of (MB) is compensated by a very good 90% protection on average.
In the case of the PAP, (MB) thus seems convenient to model the log-normal
uncertainty of fading coefficients, guaranteeing good protection at a reasonable
price. Moreover, though (BS) offers higher protection for most instances, it is
interesting to note that the increase of Protect% of (BS) w.r.t (MB) is lower
than the corresponding increase of PoR% of (BS) w.r.t (MB).

Table 1. Overview of the computational results

PoR% PoR% Protect% Protect%
ID |I | |J | |I+| |J+| (MB) (BS) Δt% (MB) (BS)

D1 95 153 3519 10098 8.3 10.1 -18.7 88.20 92.53
D2 103 197 4728 14184 7.2 9.4 -19 91.35 92.47
D3 105 322 7406 21252 6.8 8.8 -16.9 93.12 96.40
D4 105 473 10406 28380 7.4 7.2 -15.1 92.08 91.42
D5 108 569 13087 37554 9.2 11.4 -13.6 89.23 90.29
D6 157 1088 27200 84864 6.6 9.1 -6.2 85.46 87.55
D7 165 1203 31278 101052 7.1 9.5 -4.9 87.91 89.16
D8 171 1262 32812 106008 8.7 10.8 -4.1 89.40 93.08
D9 178 1375 35750 115500 9.6 10.2 -2.8 90.11 91.90
D10 180 1448 39096 130320 7.9 9.6 -1.7 91.54 95.32
D11 180 1661 46058 159456 7.2 9.5 0.6 94.77 96.70
D12 181 1779 49812 170784 7.5 10.1 1.8 88.22 90.16
D13 183 1853 53737 189006 8.1 10.3 3.3 91.34 92.21
D14 183 1940 56260 197880 10.3 9.7 3.1 86.50 85.18
D15 185 2183 63307 222666 8.4 10.8 4.1 91.09 92.70
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5 Conclusions and Future Work

In this work, we presented new theoretical results about multi-band uncertainty
in Robust Optimization. Surprisingly, this natural extension of the classical sin-
gle band model by Bertsimas and Sim has attracted very little attention and
we have thus started to fill this theoretical gap. We showed that, under multi-
band uncertainty, the robust counterpart of an LP is linear and compact and
that the problem of separating a robustness cut can be formulated as a min-cost
flow problem and thus be solved efficiently. Tests on realistic network design
instances showed that our new approach performs very well, thus encouraging
further investigations. Future research will focus on refining the cutting plane
method and enlarging the computational experience to other relevant real-world
problems.
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1 Introduction

We targetMixed-Integer Nonlinear Programming (MINLP) problems of the form:

minx f(x)
g(x) ≤ 0
Ax = b

xL ≤ x ≤ xU

∀ i ∈ Z xi ∈ Z,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1)

where x, xL, xU ∈ Rn, Z ⊆ N = {1, . . . , n}, A is a full rank m × n matrix,
b ∈ Rm, f : Rn → R and g : Rn → Rm′

are polynomial functions of x.
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sions. Financial support by grants: Digiteo Chair 2009-14D “RMNCCO”, Digiteo
Emergence 2009-55D “ARM” is gratefully acknowledged.

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 75–86, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

sonia.cafieri@enac.fr
pierre.hansen@gerad.ca
lucas.letocart@lipn.univ-paris13.fr
liberti@lix.polytechnique.fr
frederic.messine@n7.fr


76 S. Cafieri et al.

We describe an extension to polynomial programming of an existing automatic
reformulation technique [1,2,3] called reduced Reformulation-Linearization Tech-
nique (rRLT). This technique was originally defined only for quadratic problems
subject to linear equality constraints. It replaces some of the quadratic terms
with suitable linear constraints, called rRLT constraints. These turn out to be a
subset of the RLT constraints for quadratic programming [4]. The original RLT
linearizes all quadratic terms in the problem and generates valid linear equation
and inequality cuts by considering multiplications of bound factors (terms like
xi−xL

i and xU
i −xi) by linear constraint factors (the left hand side of a constraint

such as
∑n

j=1 ajxj − b ≥ 0 or
∑n

j=1 ajxj − b = 0). Since bound and constraint
factors are always non-negative, so are their products: this way one can gener-
ate sets of valid problem constraints. An extension of the RLT to polynomial
programming is described in [5], and to more general factorable programming
problems in [6]. These results find their practical limitations in the extremely
large number of adjoined constraints. Some heuristic techniques [4,7] were pro-
posed to help filter out RLT constraints which are redundant. In the rRLT the
presence of linear equality constraints in the original problem allows the gener-
ation of only those linear RLT constraints that are guaranteed to replace a set
of quadratic terms.

We aim to improve performance of spatial Branch-and-Bound (sBB) algorithms
targeted at nonconvex NLPs and MINLPs; in particular, the rRLT tightens the
lower bound computed by solving a convex relaxation of (1) at each sBB node.
We make two original contributions. First, we extend rRLT theory from quadratic
to polynomial programs. Second, as rRLT constraint generation depends on an
arbitrary choice (the basis of a certain matrix) we show how to choose this basis in
such a way as to yield a more compact (i.e., fewer constraints) convex relaxation,
denoted by rRLT-C; the rRLT-C relaxationmay beweaker than the rRLTone, but
experiments show that the loss in tightness is greatly offset by the gain inCPU time
taken to solve it. We assume our polynomial programs to be dense up to Sect. 3.2
for simplicity, and deal with sparsity in Sect. 4.

Notationwise, we deal sometimes with indexed symbols which are scalars and
indexed symbols which are vectors; in order to avoid ambiguities, we denote with
boldface all indexed symbols indicating vectors. For example, wij is a scalar but
wij is the vector (wij1, . . . , wijn); in line with current optimization literature,
we do not use boldface to indicate the name of a whole array, so w might be
either a scalar or an array depending on the context.

The rest of this paper is organized as follows: Sect. 2 extends rRLT to polyno-
mial programming. In Sect. 3 we discuss how to construct the rRLT-C compact
relaxation. In Sect. 4 we address sparse polynomial programs. Sect. 5 discusses
some computational experiments on randomly generated instances.

2 rRLT for Polynomial Programming

The results presented herein extend [1] to the general polynomial case. Let Q =
{2, . . . , q}. For each monomial xj1 · · ·xjp appearing in the original problem (1)
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where p ∈ Q, we define a finite sequence J = (j1, . . . , jp) and, consistent with the
notation introduced by Sherali [5], consider defining constraints of the following
form:

wJ =
∏
�≤|J|

xj� (2)

(for |J | = 1, i.e. J = (j), we also define wJ = xj). For all p ∈ Q, J ∈ N p

and any permutation π in the symmetric group Sp we have that wJ = wπJ by
commutativity. We therefore define an equivalence relation ∼ on N p stating that
for J,K ∈ N p, J ∼ K only if ∃π ∈ Sp such that J = πK. We then consider
the set of equivalence classes N̄ p = N p/∼ to quantify over when indexing added
variables wJ . In practice, we choose an equivalence class representative for each
J ∈ N̄ p which we also denote by J . With a slight abuse of notation, if J ′ ∈ N̄ p′

and J ′′ ∈ N̄ p′′
such that p′ + p′′ = p and (J ′, J ′′) is in the equivalence class

represented by J ∈ N̄ p, we write (J ′, J ′′) = J . We also define, for all p ∈ Q,
Mp =

⋃
1<p′≤p

N̄ p′
andM1

p =
⋃

p′≤p−1

N̄ p′
.

We multiply the original linear constraints Ax = b by all monomials
∏

�≤p−1

xj�

and replace them by the corresponding added variablesw(J′,j), where J
′ ∈ N̄ p−1.

This yields the following rRLTS:

∀p ∈ Q, J ′ ∈ N̄ p−1 A wJ′ = bwJ′ , (3)

where wJ′ = (w(J′,1), . . . , w(J′,n)). We then consider the companion system:

∀p ∈ Q, J ′ ∈ N̄ p−1 A zJ′ = 0. (4)

Since (4) is a linear homogeneous system, there is a matrix M such that the
companion system is equivalent to Mz = 0, the columns of which are indexed
by sequences inMp. We let B ⊆Mp and N ⊆Mp be index sets for basic and
nonbasic columns of M . We define the following sets:

C = {(x,w) | Ax = b ∧ ∀p ∈ Q, J ∈ N̄ p(wJ =
∏
�≤|J|

xj�)} (5)

RN = {(x,w) | Ax = b ∧ ∀p ∈ Q, J ′ ∈ N̄ p−1(A wJ′ = bwJ′) ∧
∀J ∈ N(wJ =

∏
�≤|J|

xj�)}. (6)

Theorem 2.1. For each partition B,N into basic and nonbasic column indices
for the companion system Mz = 0, we have C = RN .

We remark that for this proof to hold, all possible nonlinear monomials must be
present in the problem, which is generally not the case. We address this problem
in Sect. 4. A different treatment of the essentially the same concepts, which only
employs a bases of A instead of the (larger) companion system, was given in [8].

Replacing C with RN for some nonbasis N effectively replaces some nonlinear
monomial terms with linear constraints, and therefore contributes to simplify the
problem. A convex relaxation for the reformulated problem is readily obtained
by applying monomial convexification methods in the literature .
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3 Compact Convex Relaxation

First, we remark that virtually no practical polynomial problem exhibits all
possible nonlinear monomials. Let M = Mn and M1 = M1

n. We introduce
two sets: β ⊆ M indexing all nonlinear monomials appearing in the original
problem (1) and β′ ⊆ M indexing all nonlinear monomials appearing in (1)
and the rRLTS (3). Reduced RLT constraints are likely to give rise to compact
yet tight convex relaxations if N � β, in view of the fact that, by Thm. 2.1,
only monomials indexed by N need appear in the formulation — so the lower
and upper relaxations to monomials outside N can be dropped. Furthermore,
the proof of Thm. 2.1 also implies that the number of monomials that can
be replaced is equal to the rank ρ of the rRLTS. If the original problem has
few monomials, N might not be a proper subset of β, and in practice this oc-
currence is not rare. Limited to quadratic polynomials, we address this prob-
lem in [2]; in Sect. 4 we propose a technique to deal with sparse polynomial
programs.

In this section we discuss a choice of N whereby the monomial relaxations
that are dropped define “large volumes”, and are therefore more likely to be
dominated by the relaxations of monomials in N . Intuitively, this should yield a
compact relaxation whose bound is not far from the normal rRLT relaxation.

3.1 Convexity Gap

Definition 3.1. Consider a function f : X ⊆ Rn → R. Let f(x) be a convex

lower bounding function for f and f̄(x) be a concave upper bounding function
for f . Then the set S̄ = {(x,w) | f(x) ≤ w ≤ f̄(x)} is a convex relaxation of the
set S = {(x,w) | w = f(x)}. We define the convexity gap V (S) between S and
S̄ to be the volume of the set S̄; namely,

V (S) =

∫
x∈X

(f̄(x)− f(x))dx. (7)

We denote the convexity gap for a quadratic term xixj with Vij .

Convexity Gap for a Quadratic Term x2
i . The convex envelope of the set

ξ = {(xi, wii) | wii = x2
i , x

L
i ≤ xi ≤ xU

i } (where i ≤ n) consists of the area
between the function x2

i and the chord. The convexity gap of ξ is:

Vii =

∫ xU
i

xL
i

(
(xL

i )
2 +

(xU
i )

2 − (xL
i )

2

xU
i − xL

i

(xi − xL
i )− x2

i

)
dx =

1

6
(xU

i − xL
i )

3. (8)

Convexity Gap for a Bilinear Term xixj. For all i < j ≤ n, the convex
envelope of the set {(xi, xj , wij) | wij = xixj , x

L
i ≤ xi ≤ xU

i , x
L
j ≤ xj ≤ xU

j } is
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a tetrahedron Δ in R3 given by the McCormick inequalities [9,10]. The vertices
of Δ are: (xU

i , x
U
j , x

U
i x

U
j ), (x

U
i , x

L
j , x

U
i x

L
j ), (x

L
i , x

U
j , x

L
i x

U
j ), (x

L
i , x

L
j , x

L
i x

L
j ). Let

μ = xL
i − xU

i

ν = xL
j − xU

j

ξ = xL
i x

L
j − xU

i x
U
j

ζ = xL
i x

U
j − xU

i x
L
j

D̂ =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 ν2(1 + a2) μ2(1 + c2) μ2 + ν2 + ξ2

1 ν2(1 + a2) 0 μ2 + ν2 + ζ2 μ2(1 + d2)
1 μ2(1 + c2) μ2 + ν2 + ζ2 0 ν2(1 + b2)
1 μ2 + ν2 + ξ2 μ2(1 + d2) ν2(1 + b2) 0

∣∣∣∣∣∣∣∣∣∣
.

The volume Vij of Δ can be computed using the Cayley-Menger formula in 3

dimensions [11], i.e. Vij = (xL
i , x

U
i , x

L
j , x

U
j ) =

√
2D̂
24 .

Convexity Gap for a Multilinear Monomial. By [12], the convex under-
and over-approximating envelopes of a multilinear monomial x1 · · ·xp of degree p,
are polyhedral. Therefore, the facet defining inequalities of the enveloping poly-

tope can be computed using the 2p polytope vertices v� = (x�1
1 , . . . , x

�p
p ,
∏

j≤p x
�j
j )

in Rn+1, for every p-sequence � ∈ {L,U}p. We carry out this computation using
the Porta software [13]: although its worst-case complexity is exponential in p,
it is practically efficient for low values of p. Since our computational experiments
only address problems up to degree 4, this methodological choice is appropriate.
Standard methods to compute volumes of polytopes exist [14]. Our preliminary
implementation uses the volume of the smallest bounding box — this will be
changed later.

If J is the (ordered) sequence of p variable indices appearing in a multilinear
monomial μ(x), we let VJ denote the convexity gap for μ(x).

Convexity Gap for a General Monomial. By associativity, for any p ∈ Q
and a given sequence J ∈ N̄ p it is always possible to express the monomial
μ(x) =

∏
�≤p

xj� as a product of multilinear factors (xj1 · · ·xj2 ) · · · (xj3 · · ·xj4).

After replacement by the appropriate added variable, the monomial is reduced
to wJ1 · · ·wJ2 , where J1 = {j1, . . . , j2} and J2 = {j3, . . . , j4}. Associativity can
then be re-applied recursively. This allows us to use the results of the preced-
ing sections to derive a convexity gap for μ(x). This approach, albeit simple, is
similar, up to commutativity, to the standard reformulation exploited by sBB im-
plementations [15,16,17,18,19] in view to obtain the convex relaxation of general
monomials, and more specifically to the approach followed in [20] for quadrilinear
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monomials. Explicit monomial convex envelopes are also known for trilinear
terms [21,22] and univariate terms of odd degree [23].

Since we already treated the multilinear case separately, we assume that μ(x)
is not multilinear. In such cases, the recursive techniques described above yield
nonlinear convex relaxations. Because our computational results only refer to
linear relaxations, however, we take a simpler approach and use interval arith-
metic [24] to compute an interval range [μL, μU ] such that μL ≤ μ(x) ≤ μU

for all x ∈ [xL, xU ]. If J is the (ordered) sequence of variable indices appear-
ing in the monomial μ(x), we compute VJ as the volume of the bounding box
[xL, xU ]× [μL, μU ].

3.2 Choosing a Good Basis for the Companion System

Let B,N be the basic/nonbasic sets of column indices of the companion system
(4), which we write in this section as Mz = 0, or, equivalently, as MBzB +
MNzN = 0. As shown in Sect. 2, the elements of B,N are sequences J ∈ M.
For S ⊆ M and p ∈ Q we define V S,p =

∑
J∈S
|J|=p

VJ and V S =
∑
p∈Q

V S,p. If, for all

p ∈ Q, V N,p < V β,p then the total convexity gap of RN is smaller than that of
C. Thus, we aim to find N such that V N,p is minimized, or equivalently, to find
B such that V B,p is maximized for all p ∈ Q. This yields the multi-objective
problem:

∀p ∈ Q maxV B,p

MB is a basis of (4)

}
(9)

Next, we show that (9) is equivalent to a single-objective problem.
Consider a block diagonal m̄×n̄matrix Ā with r blocksAs (each a rectangular,

full-rank ms × ns matrix for each s ≤ r) having a basis indexed by the set
B̄ ⊆ {1, . . . , n̄}. For all s ≤ r let αs be the set of column indices corresponding
to the submatrix As of Ā. For a matrix T let span(T ) be the space spanned by
the columns of T .

Lemma 3.2. Let i, j ≤ n̄ be such that i ∈ B̄, j �∈ B̄ and π be the swap (i, j). If
i ∈ αq and j ∈ αt with q �= t then the columns of Ā indexed by πB̄ do not form
a basis.

We remark that M is a block-diagonal matrix. Instead of showing a formal
proof of this fact, which would be long and tedious, we exhibit an example for
the case of polynomials of degree at most 3. Example 3.3 does not exploit any
specific property of the given matrix, and therefore appropriately illustrates what
happens in the general case.

Example 3.3. The companion system (4) Mz = 0 derived from the system Ax =

b with A =

(
a1 a2 a3
a4 a5 a6

)
, x ∈ R3 with Q = {2, 3} is:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

a1 a2 a3
a4 a5 a6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z11
z12
z13
z22
z23
z33
z111
z112
z113
z122
z123
z133
z222
z223
z233
z333

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

The number of monomials of n variables of degree exactly p is given in [25]

as

(
p+ n− 1

p

)
. From this, it follows that M has m

∑
p∈Q

(
p+ n− 2
p− 1

)
rows and

∑
p∈Q

(
p+ n− 1

p

)
columns.

Theorem 3.4. Any solution B of (9) maximizing V B also maximizes V B,p for
all p ∈ Q.

The single-objective problem max{vB | MB a basis of (4)} has a matroidal
structure and can therefore be solved using a greedy algorithm.

Evidently, the technique based on compact rRLT constraints is not significant
whenever the bounds are the same across all decision variables, because in this
case all the VJ ’s are equal. This, however, is rarely true if bound tightening
techniques [26,18,19,27] are used as a preprocessing step; and it is never true
during sBB with rectangular partitioning schemes, as the variable ranges are
partitioned at each node. We also emphasize that the remark given in [8] p. 11
is also valid in our setting: for polynomial degrees ≥ 3, the proposed convex
relaxation might not be monotonically increasing w.r.t. following branches of the
sBB tree down from the root, thus preventing the sBB from converging. This
can be fixed at each node by adjoining those bound factor inequalities (derived
from the multiplication of different bound factors) that involve the branching
variable.

4 Dealing with Sparsity

Polynomial problems are rarely dense; this might prevent the set N , introduced
in Sect. 2 to index the added variables corresponding to nonbasic columns of
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the companion system (4), from being a subset of β, the set indexing the added
variables corresponding to all monomials appearing in (1). We deal with this
possibility by looking for a subset ρ of rows of Ax = b to be multiplied by a
subset σ of added variables indexed byM1. The rRLTS (3) and its companion
system (4) are derived in the same way as for dense polynomial problems.

Theoretically, we should require N � β: as remarked in Sect. 3, the rRLTS
is then likely to give rise to compact yet tight convex relaxations. In practice,
in sparse problems, this requirement will often force ρ or σ to be empty, which
means that the reformulation does not take place. Following the principle that
every equation corresponds to one fewer degree of freedom, we aim to find ρ, σ
such that the size of the sparse rRLTS obtained by multiplying rows in ρ by
added variables in σ exceeds the number of new monomials (i.e. monomials not
in β) generated by these multiplications. This flexibility in the choice of ρ, σ has
a trade-off in terms of relaxation compactness. In order for Thm. 2.1 to hold,
the quantifications J ∈ N̄ p in (5) and J ′ ∈ N̄ p−1 in (6) should be replaced by
J ∈ τ , J ′ ∈ σ respectively, where τ = {(J ′, j) | J ′ ∈ σ (|J ′| = p)∧ j ∈ N}. Since
σ ⊆ M1, fewer monomials are replaced by the rRLTS, yielding a relaxation
which might not be much more compact than the standard RLT relaxation.

We formalize the problem of finding suitable ρ, σ by considering a bipartite
graph that represents the incidence of monomials indexed by M in products
of rows aix = bi of Ax = b multiplied by monomials indexed by M1. Let
U = {(i, J ′) | i ≤ m∧J ′ ∈ M1} and define a set E such that, for (i, J ′) ∈ U and
J ∈ M� β, {(i, J ′), J} ∈ E if there is j ∈ N such that aij �= 0 and (J ′, j) = J .
Consider the bipartite graph G = (U,M � β,E): we want to find an induced
subgraph G′ = (U ′, V ′, E′) of G, with U ′ ⊆ U and V ′ ⊆M�β, such that: |U ′| is
maximum, |U ′| > |V ′| and V ′ = NE(U

′) = {v ∈M� β | ∃u ∈ U ′ ({u, v} ∈ E)}.
We define this problem using a Mathematical Programming (MP) formulation:
we employ binary variables ui,J′ for all (i, J ′) ∈ U and vJ for all J ∈ M� β:

max
∑

(i,J′)∈U

ui,J′∑
(i,J′)∈U

ui,J′ ≥
∑
J �∈β

vJ + 1

∀{(i, J ′), J} ∈ E vJ ≥ ui,J′

u ∈ {0, 1}|U|

v ∈ {0, 1}|M�β|.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(10)

We can then define ρ = {i ≤ m | ∃J ′ ∈ M1 (ui,J′ = 1)} and σ = {J ′ ∈
M1 | ∃i ≤ m (ui,J′ = 1)}. This is a Binary Linear Program (BLP), so it
cannot be solved in polynomial time with standard MILP technology (i.e. using
a Branch-and-Bound algorithm).

4.1 Bipartite Matching Based Algorithm for (10)

We propose an efficient algorithm based on bipartite matching for solving (10).
With respect to a matching M of G, a vertex of G is exposed if it is incident to an
edge which is not in M . For a subset of edges F ⊆ E, let U(F ) = {u ∈ U | ∃e ∈
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F (u ∈ e)} and V(F ) = {v ∈ M � β | ∃e ∈ F (v ∈ e)}. If M is a maximum
matching of G such that there exists an exposed vertex u ∈ U�U(M), the search
for an augmenting path from u which is alternating with respect to M will fail
by maximality of M [28]. A dilation rooted in u with respect to a maximum
matching M is a maximal simple alternating path pu (seen as a sequence of
edges in E) in G, from u to a vertex u′ ∈ U(M), whose even-indexed edges are
in M and odd-indexed edges are in E � M . Dilations are the certificates used
in cardinality bipartite matching algorithms to prove that the current matching
is optimal; informally, they certify the failure to find an augmenting alternating
path to increase the cardinality of the current matching in the classical bipartite
matching algorithm (see Fig. 10-3 in [29]).

Lemma 4.1. For a dilation pu from u in G w.r.t. a maximum matching M , we
have |U(pu)| = |V(pu)|+ 1.

Lemma 4.2. If p, p′ are different dilations in E, then |U(p∪ p′)| > |V(p∪ p′)|.

In order to deal with the case of isolated vertices, if u ∈ U is isolated, then it
is exposed w.r.t. the empty matching, and any empty path pu rooted at u is a
dilation; in this case, with a slight abuse of notation, we define U(pu) = {u}. A
dilation set is the set of edges in all dilations rooted at u with respect to M ;
dilation sets can be found in polynomial time using breadth first search (bfs)
from u (see [29], Sect. 10.2). By Lemma 4.2 above, dilation sets P are such that
|U(P )| > |V(P )|.

Algorithm 1. Matching-based algorithm for solving (10)

Require: A bipartite graph G = (U,M� β, E)
Ensure: A nontrivial subgraph G′ = (U ′, V ′, E) solving (10), or ∅ if none exists
1: Let G′ = ∅
2: while |U | > 0 do
3: Let M ⊆ E be a maximum matching in G
4: if |U(M)| < |U | then
5: Find u ∈ U exposed and a corresponding dilation set Pu

6: Let H = (U(Pu),V(Pu), Pu)
7: Update G′ ← G′ ∪H
8: Update G← G�H
9: else
10: break
11: end if
12: end while
13: return G′

Proposition 4.3. In polynomial time, Alg. 1 finds a subgraph G′ = (U ′, V ′, E′)
of G such that |U ′| is maximum, |U ′| > |V ′| and V ′ = NE(U

′), or determines
that no such subgraph exists.
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5 Computational Results

The best practical indication of the importance of rRLT techniques for linear
equality constrained polynomial programming is best observed by the compu-
tational results given in [2], where the presence or absence of rRLT yields dif-
ferences of up to five orders of magnitude on a class of pooling problems (these
are sparse polynomial problems of degree 2) from the oil industry. Those re-
sults are limited to quadratic programs and employ a restricted version of the
results for sparsity given in Sect. 4. We are currently in the process of extending
our code to deal with polynomial programming, so in this paper we only show
empirically that the compact rRLT-C formulation generally takes less time to
solve and yields bounds that are not much worse than those given by the rRLT
formulation.

We generate two sets of random polynomial programming instances of degree
2,3 and 4 with varying numbers of variables and linear equality constraints (all
the monomials are in the objective function, weighted by random scalars). Set
1 consists of 10 instances of degrees 2 and 3 with random variable ranges whose
widths follow a Gaussian distribution. Set 2 consists of 8 instances of degrees 3
and 4 with random variable ranges whose widths follow a superposition of two
Gaussian distributions (n/2 ranges have width of order 1, the other n/2 have
width of order 10); set 2 is designed to simulate the typical sBB node after a
few levels of branching, where some of the variable ranges have become small
whereas others are still at their original bounds.

For all these instances we construct and solve a linear relaxation with no rRLT
constraints (column labeled “simple” in Table 1), the rRLT linear relaxation
(column labeled “rRLT”) and the rRLT-C linear relaxation (column labeled
“rRLT-C”). We recall that rRLT-C is like rRLT without the constraints relaxing
monomial terms corresponding of basic columns of the companion system (4). We
record bound value and CPU time. Notice some of the generated instances are
infeasible: this is consistent with the fact that in a typical sBB search tree some of
the nodes represent infeasible subproblems. Since the infeasibility is determined
by the linear relaxation, performance on infeasible LPs is also an important
factor. These results were obtained using CPLEX 11 [30] on a Pentium Xeon
2.4GHz CPU with 8 GB of RAM running Linux. The results in Table 1 show
that rRLT brings considerable benefits to bound tightness within polynomial
optimization, and that the (significant) CPU time reduction yielded by rRLT-C
is not offset by an excessive loss in bound quality with respect to rRLT: the
cumulative bound worsening is 0.07% against a time improvement of
nearly 40%. The CPU time taken by the simple relaxation is of course much
lower than those of the rRLT relaxations, but already for the quadratic case it
was shown in [2] that this time difference is not sufficient to offset the benefits
of the bound improvement — hence the corresponding values do not appear
in Table 1. We remark that rRLT-C does not always yield better CPU time
results. This is simply because the relationship between CPU time and number
of constraints in solving an LP is neither regular nor monotonic.
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Table 1. Comparing bound strength and CPU time for linear relaxations

instance simple rRLT rRLT-C

name p n m q bound bound time bound time

1 1 20 10 2 2864.8 2982.63 0.20 2982.63 0.17
2 1 30 10 2 5286.23 5517.85 2.56 5517.85 1.29
3 1 10 3 3 48.6115 478.184 0.25 478.184 0.30
4 1 10 3 3 infeas infeas 0.23 infeas 0.22
5 1 20 3 3 infeas infeas 14.81 infeas 12.92
6 1 10 5 3 infeas infeas 0.11 infeas 0.10
7 1 10 5 3 infeas infeas 0.16 infeas 0.16
8 1 20 5 3 infeas infeas 29.01 infeas 31.41
9 1 10 7 3 infeas infeas 0.19 infeas 0.15
10 1 20 7 3 infeas infeas 65.22 infeas 46.98

11 2 10 3 3 130.693 1546.4 0.20 1542.39 0.13
12 2 10 3 3 18.8459 772.417 0.09 772.417 0.09
13 2 15 5 3 17.3797 701.723 10.13 701.588 11.03
14 2 16 8 3 infeas infeas 488.05 infeas 287.38
15 2 7 2 4 infeas infeas 0.17 infeas 0.17
16 2 8 3 4 47.4445 3468.56 1.26 3458.4 0.85
17 2 10 3 4 26.2698 4038.69 250.88 4038.68 131.95
18 2 12 3 4 56.9232 13127.5 166.62 13118.6 109.95
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Abstract. Bilinear, trilinear, quadrilinear and general multilinear terms
arise naturally in several important applications and yield nonconvex
mathematical programs, which are customarily solved using the spatial
Branch-and-Bound algorithm. This requires a convex relaxation of the
original problem, obtained by replacing each multilinear term by appro-
priately tight convex relaxations. Convex envelopes are known explicitly
for the bilinear case, the trilinear case, and some instances of the quadri-
linear case. We show that the natural relaxation obtained using duality
performs more efficiently than the traditional method.

Keywords: Global optimization, MINLP, mathematical programming.

1 Introduction

The general multilinear term is given by:

w(x) = x1 · · ·xk (1)

for some k ∈ N, and is possibly the most common nonlinear term occurring
naturally in Mathematical Programming (MP) applications. As the need arises,
we might also write (1) as w(x) = xj1 · · ·xjk with J = {j1, . . . , jk}, and let
WJ = {(x,wJ) | wJ =

∏
j∈J xj ∧ x ∈ [xL, xU ]}. The bilinear case is shown in

Fig. 1. We let P be the set of vertices of the hyperrectangle [xL, xU ] and PW be
the lifting of P in the space spanned by (x,wJ ), where, for each point x̄ ∈ P ,
the corresponding point in PW is obtained by setting wJ = w(x̄).

Convex envelopes for multilinear terms are available explicitly in function of
xL, xU for k = 2, 3 and partly k = 4. Such envelopes consist of sets of constraints
to be adjoined to the MP formulation. We argue in this paper that formulations
obtained this way (called primal relaxations) are larger and less accurate than
those obtained using a dual representation of such envelopes (called dual relax-
ations), i.e. the convex combination of points in PW . One further advantage of
these dual envelopes is that they are the same for all k and need no special
case-by-case treatment.

1.1 Contributions

The relaxations for multilinear MPs proposed in this paper, which are based on
duality, are a simple application of ideas which have been present in LP and

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 87–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The bilinear surface w(x1, x2) = x1x2

MILP theory for a long time. They constitute an original contribution insofar
as they have never been systematically tested computationally in the context of
multilinear terms. This contribution would be negligible, had we not found em-
pirically that dual relaxations provide a far superior way of relaxing multilinear
MPs than “traditional (primal) relaxations”. The fundamental purpose of this
paper is to convey an important message: it is possible that, until now, multi-
linear terms have been relaxed in the wrong way. On the other hand, we think
that the compact and elegant formulation of dual relaxations might provide a
successful tool for future theoretical research: the primal relaxation involves re-
markably different formulations for each value of k and it is difficult to see how
it can be exploited in a uniform way.

We remark that duality has been used in the context of multilinear relax-
ations in [6]. The authors exploited in several ways the same dual relaxations we
propose here. The term-wise computational comparison we perform, however,
which we feel is so important to convey the message above simply, clearly and
unequivocally, is absent from their treatment.

1.2 Applications

Several applications involve bilinear products between binary and continuous
variables that model situations where a continuous variable takes different val-
ues depending on whether a certain boolean variable is 0 or 1 [35]. In pool-
ing and blending problems [1,4,11,14,17,29], bilinear products (k = 2) occur
whenever x1 represents a (dimensionless) percentage and x2 an oil flow in a
pipe. The Hartree-Fock Problem [24] minimizes a quartic energy expression (in-
volving quadrilinear terms) subject to some orthogonality constraints (involving
bilinear terms). The Molecular Distance Geometry Problem [23] involves bilinear
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or quadrilinear terms depending on which formulation is used. General mul-
tilinear terms involving continuous variables occur in multilinear least-squares
problems [30]. In general, such products occur over bounded variables: most
applications require the variables x = (x1, . . . , xk) to be bounded to the hyper-
rectangle [xL, xU ], where xL = (xL

1 , . . . , x
L
k ) and xU = (xU

1 , . . . , x
U
k ). We remark,

however, that there exists an application from code debugging [15,25] exhibiting
bilinear terms x1x2 where x1 ∈ {0, 1} and x2 must be unbounded for the model
to be correct (such variables are used to ensure that loops terminate whenever
no upper bound is explicitly known for the loop counter).

1.3 Exact Linearizations

It was observed in [13,16] that if k = 2 and x1, x2 ∈ {0, 1}, then w(x) can
be replaced by an added variable w12 ∈ [0, 1] whilst the Fortet inequalities are
adjoined to the model:

w12 ≤ x1, w12 ≤ x2, w12 ≥ x1 + x2 − 1. (2)

It is easy to show that this reformulation is an exact linearization [21,22] of the
original bilinear program.

Whenever x ∈ [xL, xU ] and at least k− 1 variables out of k are constrained to
be integer, the corresponding multilinear term can be linearized exactly. Each
general integer variable is replaced by an aggregation of binary variables (for
example choosing the value taken by the original integer variable), and the orig-
inal multilinear term w(x) is replaced by a sum of multilinear terms with at
least k− 1 binary variables. A sequence of k− 1 Fortet’s linearizations will then
yield a Mixed-Integer Linear Programming (MILP) formulation of the original
multilinear term.

1.4 Products of Continuous Variables

Whenever at least 2 variables in a multilinear term are continuous, exact lin-
earizations are in general no longer possible, and one must resort to solution
techniques for nonconvex programs, such as the spatial Branch-and-Bound (sBB)
algorithm [2,8,12,20,32,33]. This involves repeatedly solving the original prob-
lem and a convex relaxation thereof over appropriate sets of ranges [xL, xU ]. The
relaxation is obtained by replacing each multilinear term with an added variable
wJ and adjoining some constraints to the formulation which define a convex
relaxation of WJ . In general, the tighter these relaxations are, the more efficient
the sBB will be. This has spawned a growing interest in finding constraints which
define the convex and concave envelopes ŵ(x) and w̌(x) of multilinear terms. By
definition, the set

W̆J = {(x,wJ ) | wJ ≥ ŵ(x) ∧wJ ≤ w̌(x) ∧ x ∈ [xL, xU ]} (3)

is the convex hull of the set WJ . With a slight abuse of notation, the constraints
on wJ appearing in the definition of W̆J are also called convex envelopes of the
multilinear terms.
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2 Convex Envelopes of Multilinear Terms

It was shown in [31] that the convex envelopes of multilinear terms are vertex
polyhedral [34], i.e. W̆J is a polyhedron having PW as vertex set. This makes it
possible to write the convex envelopes of multilinear terms by means of linear
constraints.

2.1 McCormick’s Inequalities

Figure 2 shows the lower convex (left) and upper concave envelopes for the
bilinear term x1x2, each consisting of two linear constraints. The corresponding

Fig. 2. Lower convex (left) and upper concave (right) envelopes for the bilinear term

constraints:

w12 ≥ xL
1 x2 + xL

2 x1 − xL
1 x

L
2 (4)

w12 ≥ xU
1 x2 + xU

2 x1 − xU
1 x

U
2 (5)

w12 ≤ xL
1 x2 + xU

2 x1 − xL
1 x

U
2 (6)

w12 ≤ xU
1 x2 + xL

2 x1 − xU
1 x

L
2 , (7)

called McCormick inequalities, were first described in [26] and later shown to be
envelopes in [3].

The McCormick inequalities are expressed explicitly in terms of xL, xU , and
are therefore referred to as explicit envelopes. By contrast, there exists software,
such as PORTA [10] (which implements the Fourier-Motzkin algorithm), which,
given specific values for xL, xU , is able to write the corresponding constraints
for the convex envelopes of the points in PW . Finding the explicit envelopes of
the multilinear term for each k is of practical interest because calling PORTA to
relax each multilinear term would be inefficient if there are several of them; and
ever since McCormick’s seminal paper, it has been a long-standing open ques-
tion. The matter is settled in general for the case where [xL, xU ] = [0, 1] [31]; but
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since the use of such envelopes in the sBB algorithm implies that the bounds
change at each node, this result may at best be useful only at the root node.

2.2 Meyer-Floudas Inequalities

Significant progress was made with Meyer and Floudas’ work [27,28], who were
able to write the explicit envelopes for the trilinear term w(x) = x1x2x3. Their
exact form depends on the relative sign of the variable bounds xL, xU . The
paper [27] discusses 6 cases where the bound signs are equal (each case giving
rise to 12 inequalities), whereas the other 9 cases are discussed in [28]. Several
of these cases also involve checking nontrivial bound relations. Although Meyer
and Floudas’ results are conceptually simple to apply (it suffices to establish
which is the case at hand, and adjoin the corresponding inequalities to the MP),
the inequalities themselves are way more involved than McCormick’s, and it is
very easy to make mistakes when integrating them in a computer program.

Worst of all, however, is the fact that some coefficients appearing in Meyer-
Floudas inequalities involve nontrivial floating point operations. For example,

the coefficient of x1 in [28, Case 3.5, p. 133] is
xU
1 xU

2 xL
3 −xL

1 xL
2 xL

3 −xU
1 xU

2 xU
3 +xU

1 xL
2 xU

3

xU
1 −xL

1
.

As is well known, floating point additions and subtractions are error-prone [19,
4.2.1]. This will yield an inaccurate constraint representation of W̆J ; to make
things worse, the simplex method will identify optimal solutions at the vertices
of the polyhedron rather than at the interior, which implies that this inaccuracy
will impact the optimal solution. In particular, if variables are constrained to be
integer, a feasible integer solution on or near the vertex of the polyhedron might
be deemed infeasible. However, this can be avoided when using PORTA, which
uses exact rational arithmetic.

By contrast, each coefficient of the the McCormick inequalities (k = 2) only
involves floating point multiplication, which is a much safer operation.

2.3 Quadrilinear Terms

One of us (LL) has often heard Prof. C. Floudas state, at various Global Op-
timization conferences, that “the explicit envelopes of the quadrilinear terms
haven’t been found yet” to entice research in that direction. Accordingly, we
undertook some effort in that direction in the past few years; although we failed
to settle the question for k = 4, we managed to show how to choose the associa-
tive expression for x1x2x3x4 yielding the tightest convex relaxation [7,9], and we
extended this result to associative expressions of general sequences of functions.

Very recently, Ms. S. Balram of the National University of Singapore (su-
pervised by Prof. Karimi) continued the “race” towards multilinear envelopes
for higher k: her M.Sc. thesis [5] includes 44 inequalities for the simplest of the
quadrilinear cases (all bounds in the nonnegative orthant). That thesis does not
mention how many cases there will be in total for k = 4, but several coefficients
of this simplest case involve even more floating point additions and subtractions
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than the Meyer-Floudas’ inequalities, and are therefore expected to yield inaccu-
rate formulations. As for the trilinear case, when integer variables are involved,
some feasible solutions might be incorrectly deemed infeasible.

2.4 Critique

From the cases k = 3 and k = 4 it appears clear that the explicit form of
the inequalities describing W̆J , in function of xL, xU , considerably increases in
complexity (from the point of view of floating point additions and subtractions)
as k increases, thereby causing numerical instability. But this is not all: the
number of such inequalities, even when they are found explicitly with PORTA,
also increases, thereby yielding ever more sizable formulations. While it is known
that this number increases as O(2k), the first column of Table 1 suggests that
the increase is more like O(k2k). Lastly, finding explicit envelopes of multilinear
terms for each separate value of k lacks elegance. The Meyer-Floudas inequalities
required two papers and 15 separate cases, each with its own proof. However, one
redeeming feature is that they only involve the primal variables of the original
formulation.

In the remainder of this paper, we shall propose dual envelopes: these are
derived in a natural way using well-known duality theory, they hold for each
k, and yield more compact, accurate and numerically stable formulations. We
shall henceforth refer to the convex envelopes presented in this section as primal
envelopes.

3 Dual Envelopes

The fact that the envelopes of multilinear terms are vertex polyhedral immedi-
ately suggests the following dual approach: express a point in W̆J as the convex
combination of the set PW of extreme points of W̆J . We look for a vector λ of
2k nonnegative Lagrange multipliers such that:

x =
∑
i≤2k

λipi ∧
∑
i≤2k

λi = 1,

where PW = {p1, . . . , p2k} ⊆ Rk+1. Now all that remains to do, in order to make
(3) explicit envelopes, is to express the pi’s in function of xL, xU . To this aim,

we define two parameter sequences d ∈ {0, 1}k2k and b : {0, 1}k → PW . Each dij
is either 0 or 1 according as to whether the j-th component of pi is a lower or
upper bound, and bj(dij) returns the correct component:

∀i ≤ 2k di = (dij |j ≤ k) =

(⌊
i− 1

2k−j

⌋
mod 2 | j ≤ k

)
(8)

∀j ≤ k bj(0) = xL
j ∧ bj(1) = xU

j . (9)

We relax the k-linear term w(x) = x1 · · ·xk as follows. We add 2k new nonneg-
atively constrained variables λi ≥ 0 (for i ≤ 2k) and k + 1 new constraints:
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∀j ≤ k xj =
∑
i≤2k

λibj(dij) (10)

w =
∑
i≤2k

λi

∏
j≤k

bj(dij) (11)

∑
i≤2k

λi = 1, (12)

where (11) is obtained by (10) and the fact that w =
∏

j<k xj . Let W̄J =

{(x,w, λ) | (10) − (12) ∧ λ ≥ 0}. It is well known that the projection of W̄J on
the (x,w) variables is precisely W̆J .

The dual envelope adds exactly 2k new nonnegative variables and k + 1 new
constraints to the formulation. Table 1 reports the size increases for the cases
k ∈ {2, 3, 4, 5}. Cases k ∈ {2, 3, 4} refer to the McCormick, Meyer-Floudas and
Balram [5] inequalities. The statistics for k = 5 are taken from [5], but devised
computationally using a method similar to PORTA.

Table 1. Per-multilinear-term size increase (new constraints and variables) for primal
and dual envelopes

k Primal Dual

2 4 7
3 12 12
4 44 21
5 130 38

3.1 Relaxations

Given a multilinear MP P , a relaxation can be obtained by replacing each mul-
tilinear term with its corresponding primal or dual envelope. This term-wise
fashion of construction relaxations was initially proposed in [26], refined and ex-
ploited in a sBB in [33], and further improved in [8]. As stated earlier, we shall
call relaxations constructed with primal envelopes primal relaxations and those
constructed with dual envelopes dual relaxations.

4 Computational Results

Our tests, carried out on an Intel Xeon CPU at 2.66GHz with 24GB RAM, show
that dual relaxations can be solved faster (as the formulation size increases)
than primal relaxations, and are also more stable. We measure speed by simply
solving the primal and dual relaxations for the same original problem using
the CPLEX 12.2 [18] simplex solver, and comparing CPU times. We define a
method stable when its CPU time increase looks empirically proportional to
the increase in formulation size. Firstly we consider NLP problems, and we
solve the corresponding dual LP relaxation and primal LP relaxation. Then we
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measure stability by enforcing integrality constraints on some of the problem
variables, obtaining MINLPs: this yields a dual MILP relaxation and a primal
MILP relaxation. Both are solved with the CPLEX 12.2 MILP solver, and the
CPU times are recorded and compared. This is meant to simulate the behaviour
of these relaxations in a Branch-and-Bound setting. It turns out that the running
times of the MILP solver on the dual MILP relaxation is proportional to the
relaxation size, whereas it varies wildly for the primal MILP relaxation.

We generated 2500 random multilinear nonseparable NLPs, involving linear,
bilinear and trilinear terms. For each such NLP P , we generated the primal LP
relaxation RP and the dual LP relaxation ΛP . Then we set some variables of the
previously generated NLPs to be integer, thus obtaining MINLPs, and for each
MINLP P , we generated the primal MILP relaxation R′

P and the dual MILP
relaxation Λ′

P . We let n (the number of original variables) vary in {10, 20}. For
n = 10 we let the number of bilinear terms β vary in {0, 10, 13, 17, 21, 25, 29, 33}
and of trilinear terms τ in {0, 10, 22, 34, 36, 58, 71, 83}. For n = 20, we let β
vary in {0, 20, 38, 57, 76, 95, 114, 133} and τ in {0, 20, 144, 268, 393, 517, 642, 766}.
Note that the total number of combinations of (n, β, τ), given n, is 63, because
the case β = τ = 0 is excluded. For each combination of the triplet (n, β, τ) we
generated 16 random instances. The variable bounds, chosen at random, were
all of magnitude ±1× 106.

The CPU time results (in seconds) comparing RP , ΛP are given in Fig. 3-4.
The horizontal axis is marked by the instance ID. Each recognizable “block” cor-
responds to a fixed value of β. Since bilinear terms give rise to fewer relaxation
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Fig. 3. CPU time averages (in seconds) over each 16-instance set with given (n, β, τ )
with n = 10 for the LP relaxations
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Fig. 6. CPU time averages (in seconds) over each 16-instance set with given (n, β, τ )
with n = 20 for the MILP relaxations

variables/constraints than trilinear ones, the formulation size is strongly propor-
tional to τ and weakly proportional to β. Although for n = 10 (Fig. 3) the CPU
time is very slightly in favour of the primal relaxation, the situation changes vis-
ibly for n = 20 (Fig. 4). Although the CPU times differ, we cannot infer much
on the comparative stability of the two methods.

The CPU time results (in seconds) comparing R′
P , Λ

′
P are given in Fig. 5-6.

The CPU differences are decidedly striking in the case n = 10 and even exces-
sively so for the case n = 20. The CPU time taken to solve primal relaxations
is far from proportional to formulation size, whereas the stability associated to
the dual relaxation is remarkable.
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Abstract. In this paper we propose a new algorithm for computing the
diameter of directed unweighted graphs. Even though, in the worst case,
this algorithm has complexity O(nm), where n is the number of nodes
and m is the number of edges of the graph, we experimentally show that
in practice our method works in O(m) time. Moreover, we show how to
extend our algorithm to the case of directed weighted graphs and, even in
this case, we present some preliminary very positive experimental results.

1 Introduction

The analysis of real-world networks such as biological, collaboration, communi-
cation, road, social, and web networks has attracted a lot of attention in the
last two decades, and many properties of these networks have been studied (see,
for example, [21,5,12]). Since the size of real-world networks has been increasing
rapidly, in order to study these properties, we need algorithms that can handle
huge amount of data. In this paper we will focus our attention on a very basic
property of real-world networks, that is, their diameter. Given a directed graph
G = (V, E), the diameter of G is the minimum D such that, for any pair of
nodes u, v ∈ V , the distance d(u, v) between them is at most D, where d(u, v) is
the length of the shortest path from u to v (whenever the graph includes a pair
of nodes u, v such that d(u, v) = ∞, we will study the diameter of its largest
strongly connected component).

The diameter is a relevant measure whose meaning depends on the semantics
of the real-world network. In the case of social networks, in which every node
is an individual and the edges represent their social relationships, the diameter
can indicate how quickly information reaches every individual in the worst case,
and it has been studied for several social networks (see, for example, [26,20,18]).
In the case of web networks, in which every node corresponds to a web page
and the edges correspond to hyper-links, the diameter indicates how quickly (in
terms of mouse clicks) any page can be reached in the worst case: for several
web networks, the diameter has been considered, for example, in [6,18,15]. In
the case of communication networks, in which every node is a device and the
edges represent communication links, the diameter indicates, for example, the
completion time of broadcast protocols based on network flooding. In the case of
biological networks, finally, the cellular metabolism is represented by a network
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of metabolites linked by biochemical reactions, and the diameter indicates how
many reactions have to be performed, in the worst case, in order to produce any
metabolite from any other metabolite [13]: for several such biological networks,
the diameter has been studied, for example, in [2,18].

Because of the huge size of real-world networks, in almost all the above cases,
the diameter of the strongly connected components has been only estimated.
Indeed, most algorithms for finding the exact diameter solve the all pair shortest
path problem, that is the problem of finding the shortest path between all pairs of
nodes of the graph: this can be done either by applying text-book algorithms (such
as breadth-first searches) for solving, for any node, the single source shortest
path problem, or by applying fast matrix multiplication algorithms with sub-
cubic complexity (see, for example, [20]). However in the context of real-world
networks, these approaches are not practical and usually just estimations or
bounds can be provided.

To this aim, some algorithms have been proposed in order to estimate the cu-
mulative distribution of the shortest path lengths of a graph and to thus obtain
an estimation of the diameter with a small additive error: this is the case, for
example, of the algorithms proposed in [22,4,14]. In other works lower bounds
for the diameter have been provided by using a sample of the nodes and return-
ing their maximum eccentricity, where the eccentricity of a node u is defined as
maxv∈V d(u, v) (see, for example, [17]). In the case of undirected graphs a lower
bound can also be provided by using the so called double sweep algorithm, in short
2-Sweep: pick the farthest node from a random node and return its eccentricity.
This idea can be iterated by picking at each step the farthest node from the previ-
ous one and maintaining the highest found eccentricity (see, for example, [18]). In
real-world networks, this lower bound is very good and, in order to prove its effec-
tiveness, several works, like [16,10], propose strategies to find a matching or close
upper bound. Recent advances [9,24] have experimentally shown that in real-world
networks a matching between a lower and upper bound for the diameter can be
found by applying a very small number of computations of breadth-first searches.
The most striking result, along this line of research, has been obtained in [1], where
the algorithm proposed in [9] has been applied in order to compute the diame-
ter of the biggest connected component of the Facebook network (approximately
721.1M of nodes and 68.7G of edges). In the case of directed graphs, in order to ob-
tain a lower bound for the diameter, the idea of the double sweep has been adapted
by [6]: pick the farthest node from a random node and return its backward eccen-
tricity, i.e. its eccentricity in the graph with reversed arcs (we will make use of this
adaptation in this paper).

In this paper we generalize the idea of the algorithm proposed in [9], by
presenting the directed ifub (in short, difub) algorithm, in order to calculate the
diameter of the strongly connected components of directed graphs. As far as we
know, difub is the first algorithm which is able to compute exactly the diameter
of the strongly connected components of huge real-world directed graphs. The
difub algorithm can also return a pair of nodes whose distance is exactly equal
to the diameter, and a natural adaptation of it works also for weighted graphs.
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The algorithm uses very basic operations that are provided basically by all graph
software libraries. Indeed, the main operation is the breadth-first search (in short,
bfs): since bfs has a good external-memory implementation [19] and works on
graphs stored in compressed format [3], we have been able to analyze very large
graphs. As a matter of fact, we show the effectiveness of the difub algorithm
with a wide set of experiments, by using real-world directed networks which have
been chosen in order to cover a large set of network typologies, and have been
already used to validate other popular tools, such as [22,14,3,4]. As we already
said, in the case of several of these networks, the exact value of the diameter
of the largest strongly connected component was still unknown: in almost all
the graphs with more than 10000 nodes, the number of bfses executed by the
algorithm is less than 0.01% of the total number of nodes in the component.

Structure of the Paper. In Section 2 we present and analyze the difub algorithm
in the case of directed unweighted strongly connected graphs, while in Section 3
we present our dataset and we show the results of our experiments. In Section
4 we extend the difub algorithm to the case of weighted graphs and we briefly
describe the corresponding experimental results. We conclude in Section 5 by
proposing some interesting directions for future research.

2 The DiFUB Algorithm

Let G = (V, E) be a directed strongly connected graph and let u be any node
in V . We denote by T F

u (respectively, T B
u ) a forward (respectively, backward)

breadth-first search tree rooted at node u, and by eccF (u) (respectively, eccB(u))
its height. Let FF

i (u) be the forward fringe of u, that is, the set of nodes x such
that d(u, x) = i. Similarly, let FB

i (u) be the backward fringe, that is, the set
of nodes x such that d(x, u) = i. In other words, FF

i (u) (respectively, FB
i (u))

includes all nodes at level i of T F
u (respectively, T B

u ).

Remark 1. For any two integers i, j with 1 ≤ i ≤ eccB(u) and 1 ≤ j ≤ eccF (u),
for any two nodes x, y such that x ∈ FB

i (u) and y ∈ FF
j (u), d(x, y) ≤ i + j ≤

2 max{i, j}.

Theorem 1. For any integer i with 1 < i ≤ eccB(u), for any integer k with
1 ≤ k < i, and for any node x ∈ FB

i−k(u) such that eccF (x) > 2(i − 1), there
exists y ∈ FF

j (u), for some j ≥ i, such that d(x, y) = eccF (x).

Proof. Since eccF (x) > 2(i− 1), then there exists y such that d(x, y) > 2(i− 1).
If y was in FF

j (u) with j < i, then from Remark 1 it would follow that d(x, y) ≤
2 max{i− k, j} ≤ 2 max{i− k, i− 1} = 2(i− 1), which is a contradiction. Hence,
y must be in FF

j (u) with j ≥ i.

Similarly to the proof of Theorem 1, we can also prove the following symmetrical
result.
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Theorem 2. For any integer i with 1 < i ≤ eccF (u), for any integer k with
1 ≤ k < i, and for any node x ∈ FF

i−k(u) such that eccB(x) > 2(i − 1), there
exists y ∈ FB

j (u), for some j ≥ i, such that d(y, x) = eccB(x).

In order to describe the difub algorithm, we also need the following definitions.
Let

BF
j (u) =

{
maxx∈F F

j (u) eccB(x) if j ≤ eccF (u),
0 otherwise

and

BB
j (u) =

{
maxx∈F B

j (u) eccF (x) if j ≤ eccB(u),
0 otherwise.

By using these two definitions, we are now ready to introduce the difub algo-
rithm, which is shown in Pseudocode 1. Intuitively, Theorems 1 and 2 suggest to
perform a forward and a backward bfs from a node u, and to visit T F

u and T B
u in

a bottom-up fashion, starting from the nodes in the last fringes. For each level
i, we compute the eccentricities of all the nodes in the corresponding fringes:
if the maximum eccentricity is greater than 2(i − 1) then we can discard vis-
iting the remaining levels, since the eccentricities of all their nodes cannot be
greater.

Pseudocode 1. difub
Input: A strongly connected di-graph G, a node u, a lower bound l for the diameter
Output: The diameter D
i← max{eccF (u), eccB(u)}; lb← max{eccF (u), eccB(u), l}; ub← 2i;
while ub− lb > 0 do

if max{lb, BB
i (u), BF

i (u)} > 2(i− 1) then
return max{lb, BB

i (u), BF
i (u)};

else
lb← max{lb, BB

i (u), BF
i (u)}; ub← 2(i− 1);

end
i← i− 1;

end
return lb;

An Example. Let us consider the graph shown in the top left part of Figure 1.
All pairwise distances, and the forward and backward eccentricities of all its
nodes are shown in the top right part of the figure. If we choose u = v1, the cor-
responding two breadth-first search trees T F

u and T B
u are shown in the bottom

left part of the figure. From these two trees we can easily derive the forward and
backward fringe sets, which are shown in the bottom right part of the figure. If we
choose i = 2, j = 3, x = v6, and y = v8, then it is easy to verify, by inspecting the
two bfses trees, that we can go from v6 to v8 by first going up in T B

v1
(by means

of two edges) and then by going down in T F
v1

(by means of three edges). Hence,
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v12 v11

v2

v1

v3

v8

v10

v5

v9v6

v4

v7

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 eccF

v1 0 2 1 3 1 3 2 3 2 4 1 2 4
v2 1 0 2 1 2 3 2 3 3 4 2 3 4
v3 2 1 0 2 3 2 1 2 4 3 3 4 4
v4 1 3 2 0 2 2 1 2 3 3 2 3 3
v5 3 2 1 2 0 3 2 2 1 3 4 5 5
v6 2 4 3 1 3 0 2 3 4 4 3 4 4
v7 3 4 3 2 2 1 0 1 3 2 4 5 5
v8 4 3 2 3 1 4 3 0 2 1 5 6 6
v9 2 4 3 1 2 3 2 1 0 2 3 4 4
v10 5 4 3 4 2 5 4 1 3 0 6 7 7
v11 2 4 3 5 3 5 4 5 4 6 0 1 6
v12 1 3 2 4 2 4 3 4 3 5 2 0 5

eccB 5 4 3 5 3 5 4 5 4 6 6 7

v1

v3 v11

v12

v5

v2 v7

v9

v4 v6 v8

v10

v1

v12

v11

v2 v4

v3 v6

v5

v7

v9

v8

v10

i F F
i (v1) F B

i (v1)

1 v3, v5, v11 v2, v4, v12
2 v2, v7, v9, v12 v3, v6, v9, v11
3 v4, v6, v8 v5, v7
4 v10 v8
5 v10

Fig. 1. A strongly connected di-graph with the corresponding all pairwise distances,
forward and backward eccentricities and bfses trees rooted at v1, and fringe sets

as observed in Remark 1, d(v6, v8) ≤ 5: indeed, d(v6, v8) = 3 (passing through
v4 and v7). Moreover, if we choose i = 2, k = 1, and x = v4 ∈ FB

1 (v1), then
we have that eccF (v4) = 3 > 2 = 2(i − 1): Theorem 1 is in this case witnessed
by node y = v2 ∈ FF

2 (v1) (indeed, d(v4, v2) = 3). If we choose j = 1, we have
that BF

1 (u) = max{eccB(v3), eccB(v5), eccB(v11)} = max{3, 6} = 6. On the
other hand, BB

1 (u) = max{eccF (v2), eccF (v4), eccF (v12)} = max{3, 4, 5} = 5.
Finally, suppose we invoke the algorithm shown in Pseudocode 1 with u = v1

and l = 0. Before the execution of the while loop starts, the two variables i
and lb are both set equal to max{eccF (v1), eccB(v1)} = max{4, 5} = 5, while
variable ub is set equal to 2i = 10. Since ub − lb = 5 > 0, the algorithm enters
the while loop with i = 5. Since 5 > eccF (u), BF

5 (u) = 0. On the other hand,
BB

5 (u) = eccF (v10) = 7: since, 7 < 8 = 2(i − 1), the algorithm enters the else
branch and set lb equal to 7 and ub equal to 8. Once again, ub − lb = 1 > 0
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and the algorithm continues the execution of the while loop with i = 4. This
time we have that BF

4 (u) = eccB(v10) = 6 and BB
4 (u) = eccF (v8) = 6: hence,

max{lb, BB
4 (u), BF

4 (u)} = 7 > 6 = 2(i − 1). The algorithm thus enters the if
branch and returns the value 7 which is the correct diameter value. In other
words, the diameter has been computed by exploring only three nodes (apart
from v1): note that we did not really need to compute BB

4 (u) and BF
4 (u), since

l was already greater than 2(i − 1).

Theorem 3. difub Algorithm correctly computes the value of the diameter of G.

Proof (Sketch). Let us prove that if, at the iteration corresponding to a given
value i, max{lb, BB

i (u), BF
i (u)} > 2(i − 1) then the diameter of G is equal to

max{lb, BB
i (u), BF

i (u)}. By contradiction, assume that the diameter is greater
than max{lb, BB

i (u), BF
i (u)} (note that the diameter cannot be smaller than

max{lb, BB
i (u), BF

i (u)} since this value is the length of a shortest path). This im-
plies that there exists x ∈ FB

i−k(u)∪FF
i−k(u) such that max{eccF (x), eccB(x)} =

D > 2(i − 1). From the previous two theorems, it follows that there exists y ∈
FF

j (u) ∪ FB
j (u) such that max{d(x, y), d(y, x)} = max{eccF (x), eccB(x)} = D

with j ≥ i, thus contradicting the fact that D > max{lb, BB
i (u), BF

i (u)} (note
that lb ≥ max{BB

j (u), BF
j (u)} for any j > i).

The time complexity of difub can be in the worst case O(nm) where n denotes
the number of nodes and m denotes the number of edges. However, the practical
performance of the algorithm depends on the chosen node u. Indeed, observe
that, at each iteration of the while loop, ub − lb decreases at least by 2: this
implies that the algorithm executes at most max{�eccB(u)/2, �eccF (u)/2} it-
erations (note that we have that the number of iterations is bounded by D/2).
A hopefully good starting point u (and a corresponding lower bound l) can be
obtained by applying the following heuristics, called 2-dSweep, which is a nat-
ural extension to directed graphs of the 2-Sweep method (in the following, the
middle node between two nodes s and t is defined as the node belonging to the
shortest path from s to t, whose distance from s is �d(s, t)/2).
1. Run a forward bfs from a random node r: let a1 be the farthest node.
2. Run a backward bfs from a1: let b1 be the farthest node.
3. Run a backward bfs from r: let a2 be the farthest node.
4. Run a forward bfs from a2: let b2 be the farthest node.
5. If eccB(a1) > eccF (a2), then set u equal to the middle node between a1

and b1 and l equal to eccB(a1). Otherwise, set u equal to the middle node
between a2 and b2 and l equal to eccF (a2).

3 Experiments

We collected several real-world directed graphs, which have been chosen in or-
der to cover the largest possible set of network typologies. In particular, we
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Table 1. For any graph, a summary of 10 executions of 2-dSweep (3rd and 4th
columns) and difub (7th and 8th columns)

Numb. of runs Worst Avg. Visits
Network name D (out of 10) l n m Numb. of in the

in which l = D found Visits worst run

Wiki-Vote 9 10 9 1300 39456 17 17
p2p-Gnutella08 19 9 18 2068 9313 45.9 64
p2p-Gnutella09 19 9 18 2624 10776 202.1 230
p2p-Gnutella06 19 10 19 3226 13589 236.6 279
p2p-Gnutella05 22 9 21 3234 13453 60.4 94
p2p-Gnutella04 25 7 22 4317 18742 36.7 38
p2p-Gnutella25 21 8 20 5153 17695 85.1 161
p2p-Gnutella24 28 10 28 6352 22928 13 13
p2p-Gnutella30 23 2 22 8490 31706 255.4 516
p2p-Gnutella31 30 9 29 14149 50916 208.7 255
s.s.Slashdot081106 15 10 15 26996 337351 22.3 25
s.s.Slashdot090216 15 10 15 27222 342747 21.5 26
s.s.Slashdot090221 15 10 15 27382 346652 22.8 26
soc-Epinions1 16 9 15 32223 443506 6.1 7
Email-EuAll 10 10 10 34203 151930 6 6
soc-sign-epinions 16 10 16 41441 693737 6 6
web-NotreDame 93 10 93 53968 304685 7 7
Slashdot0811 12 10 12 70355 888662 40 40
Slashdot0902 13 3 12 71307 912381 32.9 40
WikiTalk 10 9 9 111881 1477893 13.6 19
web-Stanford 210 10 210 150532 1576314 6 6
web-BerkStan 679 10 679 334857 4523232 7 7
web-Google 51 10 51 434818 3419124 9.4 10

wordassociation-2011 10 9 9 4845 61567 412.5 423
enron 10 10 10 8271 147353 19 22
uk-2007-05@100000 7 10 7 53856 1683102 14 14
cnr-2000 81 10 81 112023 1646332 17 17
uk-2007-05@1000000 40 10 40 480913 22057738 6 6
in-2004 56 10 56 593687 7827263 14 14
amazon-2008 47 10 47 627646 4706251 136.3 598
eu-2005 82 10 82 752725 17933415 6 6
indochina-2004 235 10 235 3806327 98815195 8 8
uk-2002 218 10 218 12090163 232137936 6 6
arabic-2005 133 10 133 15177163 473619298 58 58
uk-2005 166 10 166 25711307 704151756 170 170
it-2004 873 10 873 29855421 938694394 87 87

used web graphs, communication networks, product co-purchasing networks, au-
tonomous systems graphs, Internet peer-to-peer networks, social networks, road
networks, and words adjacency networks (see Table 1). All these networks have
been downloaded either from [27] or from [23]. As it can be seen in the fifth and
sixth columns of the table, an important feature is that almost all graphs in our
dataset are sparse (that is, m = O(n)). Finally, note that, in the case of several
of these graphs, the diameter value was still unknown.

Our computing platform is a machine with a Pentium Dual-Core CPU (In-
tel(tm) E5200 @ 2.50GHz), with a 8GB shared memory. The operating system
is a Debian GNU/Linux 6.0, with a Linux kernel version 2.6.32 and gcc ver-
sion 4.4.5. We have performed 10 experiments on the biggest strongly connected
component of each of the 36 networks, for a total of 360 experiments. The code
and the data set are available at http://piluc.dsi.unifi.it/lasagne/.
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3.1 Obtaining a Tight Lower Bound via 2-dSWEEP

For each of the analyzed graphs, we executed the 2-dSweep algorithm ten times.1

A summary of the results obtained by ten executions of the 2-dSweep algorithm
for the [23] dataset (upper part) and the [27] dataset (lower part) is shown in the
middle part of Table 1. For each graph, the diameter (D), the number of runs
in which the lower bound l returned by the 2-dSweep algorithm is equal to the
diameter D, and the worst lower bound returned among the ten experiments are
shown. It is worth noting that, in the case of web graphs and communication
networks, the obtained lower bound is tight for any experiment, while in the
case of the other networks, apart from p2p-Gnutella04, the absolute error, in
all the ten experiments, is at most 1.

3.2 Obtaining the Diameter via DiFUB

For each of the analyzed graphs, we executed the difub algorithm ten times:
the results are summarized in the rightmost part of Table 1. In particular, we
report the average number of visits performed by difub in order to obtain the
diameter, and the largest number of visits performed by difub among the ten
experiments. Observe that given a graph with n nodes, the number of bfses may
range between 6 (that is, the case in which the algorithm shown in Pseudocode
1 returns the exact value of the diameter without entering the while loop), and
O(n) (that is, the case in which the algorithm degenerates in the text-book algo-
rithm). The ratio between the number of bfses performed by the algorithm and
the number of nodes gives us the fraction of visits performed by our algorithm
with respect to the worst case. This performance ratio in almost any graph with
more than 10000 nodes is less than 0.01%. Moreover it is worth observing that
this ratio seems to decrease with respect to n, as shown in Figure 2: we argue
that the number of visits performed is asymptotically constant. In particular,
in the figure the ratio between the average number of visits and the number of
nodes is reported in log scale: from the figure is clear that our gain, that is the
ratio between the number of nodes and the average number of visits, increases
exponentially with the size of the graph.

4 The DiFUB Algorithm for Weighted Graphs

Theorem 1 and 2 can be easily extended to the case of directed weighted graphs.
Indeed, let T F

u (respectively, T B
u ) denote the forward (respectively, backward)

lightest path tree rooted at node u, computed, for instance, by means of the
Dijkstra algorithm [11] in G (respectively, in G by reversing the orientation of
the arcs). Moreover, let eccF (u) (respectively, eccB(u)) denote the weighted for-
ward (respectively, backward) eccentricity of u, that is the weight of the longest

1 No significant variance was observed also on more experiments because central nodes
are easily detected by the 2-dSweep algorithm: they usually are the same in all the
experiments, even if we perform random choices.
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Fig. 2. For any number of nodes n, on the x-axis, the average number of visits per-
formed by difub normalized with respect to n, is reported on the y-axis in log scale
(each point corresponds to a graph in Table 1)

path from (respectively, to) u to (respectively, from) one of the leaves of T F
u (re-

spectively, T B
u ). Finally, let FF

d (u) (respectively, FB
d (u)) denote the set of nodes

whose weighted distance from (respectively, to) u is equal to d: hence, FF
d (u) �= ∅

if and only if there exists at least one node x in T F
u such that the weight of the

path from u to x is equal to d, and FB
d (u) �= ∅ if and only if there exists at least

one node x in T B
u such that the weight of the path from x to u is equal to d.

Let d1, d2, . . . , dh be the sequence of distinct values d such that FF
d (u) �= ∅ or

FB
d (u) �= ∅ ordered in increasing order, that is, d1 < d2 < · · · < dh: note that

dh = max{eccF (u), eccB(u)}. We then have the following two results, whose
proofs are similar to the proofs of Theorems 1 and 2, respectively.

Theorem 4. For any integer i with 1 < i ≤ h, for any integer k with 1 ≤
k < i, and for any node x ∈ FB

di−k
(u) such that eccF (x) > 2di−1, there exists

y ∈ FF
dj

(u), for some dj ≥ di, such that d(x, y) = eccF (x).

Theorem 5. For any integer i with 1 < i ≤ h, for any integer k with 1 ≤
k < i, and for any node x ∈ FF

di−k
(u) such that eccB(x) > 2di−1, there exists

y ∈ FB
dj

(u), for some dj ≥ di, such that d(y, x) = eccB(x).

We can then appropriately modify the difub algorithm in order to deal with
directed weighted graphs. To this aim, we define

BF
di

(u) =

{
maxx∈F F

di
(u) eccB(x) if FF

di
(u) �= ∅ and di ≤ eccF (u),

0 otherwise

and

BB
dj

(u) =

{
maxx∈F B

dj
(u) eccF (x) if FB

dj
(u) �= ∅ and dj ≤ eccB(u),

0 otherwise.

The difub algorithm for directed weighted graphs is then described in Pseu-
docode 2: observe that, in order to start the execution of the algorithm, we



108 P. Crescenzi et al.

Pseudocode 2. difub for weighted directed graphs

Input: A weighted directed strongly connected graph G, a node u, a lower bound for
the diameter l

Output: The diameter D
Let d1 < d2 < . . . < dh be the sequence of values d such that FF

d (u) �= ∅ or FB
d (u) �= ∅

i← h; lb← max{eccF (u), eccB(u), l}; ub← 2di;
while ub− lb > 0 do

if max{lb, BB
di

(u), BF
di

(u)} > 2di−1 then
return max{lb, BB

di
(u), BF

di
(u)};

else
lb← max{lb, BB

di
(u), BF

di
(u)}; ub← 2di−1;

end
i← i− 1;

end
return lb;

can also modify the 2-dSweep algorithm by using single source lightest path
algorithm executions instead of bfses.

4.1 Dataset and Experiments

We have experimented the modification of the difub and 2-dSweep algorithms
on several directed weighted real-world graphs: these graphs have been down-
loaded either from the weighted network dataset available at [25] or from the
web site of the 9th DIMACS Implementation Challenge on shortest paths [7].
For the sake of brevity, we do not fully report these experimental results, but
we limit ourselves to observe that, in most of the cases, the performances are
very similar to the experiments on unweighted graphs. The only significant ex-
ceptions concern some of the road networks taken from the [7] dataset: in these
cases, the number of performed single source shortest path computations is a
quite large fraction (more than 50%) of the total number of nodes. Apart from
these exceptions, our results turn out to be very promising.

5 Conclusion and Open Questions

In this paper we have described and experimented a new algorithm for computing
the diameter of directed (weighted) graphs. Even though the algorithms has
O(nm) time complexity in the worst case, our experiments suggests that its
execution for real-world networks requires time O(m).

The performance of our algorithm depends on the choice of the starting
node u (indeed, it could be interesting to experimentally analyze its behav-
ior depending on this choice). Ideally, u should be a “center” of the graph
G, that is, the maximum between the forward and the backward eccentric-
ity of u should be close to the radius R of the graph (which is defined as
R = minv∈V {max{eccF (v), eccB(v)}}). Surprisingly, we have observed that in
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the case of real-world graphs, R is close to the minimum possible, that is D/2.
This peculiar structural property affects the performance of our algorithm: since
the minimum number of iterations performed by difub is obtained whenever
the starting node u is a center of the graph, we have that, in this case, the upper
bound on the iterations is minimum and equal to R−D/2+1. Since the radius is
approximately half the diameter and, as shown by our experiments, the double
sweep seems to be very effective in order to find central nodes, peripheral nodes
are discovered during the first iterations.

The main fundamental questions are now the following. Why the double
sweep, both in the directed and in the undirected version, is so effective in
finding tight lower bounds for the diameter and nodes with low eccentricity?
Which is the topological underlying property that can lead us to these results?
Why real world graphs exhibit this property? Some progress has been done by
[8], but still a lot has to be done. Finally, it could be interesting to analyze a
parallel implementation of the difub algorithm. Indeed, the eccentricities of the
nodes belonging to the same fringe set can be computed in parallel. Moreover,
a variety of parallel bfs algorithms have been explored in the literature and can
be integrated in the implementation of our algorithm.

References

1. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four Degrees of Sepa-
ration (2011) arXiv:1111.4570v1

2. Bansal, S., Khandelwal, S., Meyers, L.: Exploring biological network structure with
clustered random networks. BMC Bioinformatics 10(1), 405+ (2009)

3. Boldi, P., Vigna, S.: The WebGraph Framework I: Compression Techniques. In:
Proceedings of the 13th International World Wide Web Conference, pp. 595–601.
ACM Press, Manhattan (2003)

4. Boldi, P., Rosa, M., Vigna, S.: Hyperanf: approximating the neighbourhood func-
tion of very large graphs on a budget. In: WWW, pp. 625–634 (2011)

5. Brandes, U., Erlebach, T.: Network Analysis: Methodological Foundations.
Springer (2005)

6. Broder, A.Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata,
R., Tomkins, A., Wiener, J.L.: Graph structure in the web. Computer Networks
33(1-6), 309–320 (2000)

7. 9th DIMACS Implementation Challenge - Shortest Paths (2006),
http://www.dis.uniroma1.it/~challenge9/

8. Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and
approximating trees of delta-hyperbolic geodesic spaces and graphs. In: Proceed-
ings of the 24th Annual Symposium on Computational Geometry, SCG 2008, pp.
59–68. ACM, New York (2008)

9. Crescenzi, P., Grossi, R., Habib, M., Lanzi, L., Marino, A.: On Computing the
Diameter of Real-World Undirected Graphs. Presented at Workshop on Graph
Algorithms and Applications (Zurich–July 3, 2011) and selected for submission to
the special issue of Theoretical Computer Science in honor of Giorgio Ausiello in
the occasion of his 70th birthday (2011)

10. Crescenzi, P., Grossi, R., Imbrenda, C., Lanzi, L., Marino, A.: Finding the Diameter
in Real-World Graphs. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 302–313. Springer, Heidelberg (2010)

http://www.dis.uniroma1.it/~challenge9/


110 P. Crescenzi et al.

11. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1, 269–271 (1959)

12. Havlin, S., Cohen, R.: Complex Networks: Structure, Robustness and Function.
Cambridge University Press, Cambridge (2010)

13. Junker, B.O.H., Schreiber, F.: Analysis of Biological Networks. Wiley Series in
Bioinformatics. Wiley Interscience (2008)

14. Kang, U., Tsourakakis, C.E., Appel, A.P., Faloutsos, C., Leskovec, J.: Hadi: Mining
radii of large graphs. TKDD 5(2), 8 (2011)

15. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A Peta-Scale graph min-
ing system implementation and observations. In: 2009 Ninth IEEE International
Conference on Data Mining, pp. 229–238. IEEE (December 2009)

16. Latapy, M., Magnien, C.: Measuring Fundamental Properties of Real-World Com-
plex Networks. CoRR abs/cs/0609115 (2006)

17. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2006, pp. 631–636. ACM, New York (2006)

18. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics 6(1), 29–123 (2009)

19. Mehlhorn, K., Meyer, U.: External-Memory Breadth-First Search with Sublinear
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Abstract. We consider the following (re)optimization problem: Given
a minimum-cost Hamiltonian cycle of a complete non-negatively real
weighted graph G = (V,E, c) obeying the strengthened triangle inequal-
ity (i.e., for some strength factor 1

2
≤ β < 1, we have that ∀x, y, z ∈

V, c(x, y) ≤ β(c(x, z) + c(y, z))), and given a set of k edge weight modi-
fications producing a new weighted graph still obeying the strengthened
triangle inequality, find a minimum-cost Hamiltonian cycle of the mod-
ified graph. This problem is known to be NP-hard already for a single
edge weight modification. However, in this case, if both the input and
the modified graph obey the strengthened triangle inequality and the re-
spective strength factors are fixed (i.e., independent of |V |), then it has
been shown that the problem admits a PTAS (which just consists of ei-
ther returning the old optimal cycle, or instead computing — for finitely
many inputs — a new optimal solution from scratch, depending on the
required accuracy in the approximation). In this paper we first extend
the analysis of the PTAS to show its applicability for all k = O(1), and
then we provide a large set of experiments showing that, in most practical
circumstances, altering (uniformly at random) even several edge weights
does not affect the goodness of the old optimal solution.

1 Introduction

Optimization theory has always focused on the challenge of finding good feasible
solutions for input instances that were practically relevant, but it has almost
totally omitted to consider the possibility that a substantial part of the sought
solution could be known in advance. This seemingly paradoxical perspective
could instead be realistic in all those cases in which one has to cope with a
limited set of input instances, that can be reasonably supposed to be temporally
invariant, e.g., a railway system. Then, when the original setting undergoes a
modification, even minimal, is it really necessary to re-compute a new solution
from scratch by just forgetting the old one? Or does it make more sense to try
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to exploit the knowledge we have about the old solution in order to find the new
one in a more efficient way?

To get closer to the subject of this paper, imagine a scenario in which, given an
instance of the classic traveling salesman problem (TSP), i.e., a complete non-
negatively real weighted graphG = (V,E, c), along with an optimal solution, i.e.,
a minimum-cost Hamiltonian cycle of G, this is subject to a small modification,
e.g., the insertion or the deletion of a new node in the graph. Then the natural
arising questions are the following: Is it still NP-hard to find an optimal solution
for this problem? And in the positive case, what about its approximability?
This was exactly the pioneering formalization of a reoptimization problem given
in [4]. More precisely, the authors focused on the metric TSP (i.e., the TSP
restricted to graphs whose weight function obeys the triangle inequality), and
showed that the problem remains NP-hard. Moreover, they showed that the
adaptation of the classic cheapest insertion heuristic (i.e., start from a subcycle,
and among all nodes not inserted so far, choose a node whose insertion causes
the lowest increase in the cost of the cycle) guarantees a 3/2-approximation
factor, instead of the 2-factor we can get by recomputing a solution from scratch.
Inspired by this work, in [9] the authors addressed another natural reoptimization
variant of the metric TSP, namely that in which the instance undergoes the
alteration of the weight of a single edge. Once again, the authors proved the
NP-hardness of the problem, and therefore provided an extensive comparative
analysis with the canonical metric TSP as far as the approximability of the
problem was concerned. To this respect, the authors developed their study by
classifying the approximability of TSP depending on the “metricity” of both the
input and the modified instance. More formally, they proved that: (i) if the input
and the modified instance are both strengthened metric (i.e., their respective
weight functions obeys the triangle inequality up to a multiplying factor 1/2 ≤
β < 1), the problem admits a PTAS (this compares favorably with the APX-
hardness of the counterpart);1 (ii) if the input and the modified instance are both
metric, the problem can be approximated within 7/4 (this compares favorably
with the old-standing 3/2-approximation ratio guaranteed by the Christofidies
algorithm [14] for the counterpart); and finally, (iii) if the input and the modified
instance obey the relaxed triangle inequality up to a multiplying factor 1 < β <

3.34899, the problem admits a β2 15β2+5β−6
13β2+3β−6 -approximation algorithm, which is

better than its counterparts given in [6,11].
Further reoptimization versions of the metric TSP were developed for both

the strengthened and the relaxed case [5,9,13]. Afterwards, other authors have
faced the Steiner tree problem [7,12], or some classic optimization problems like
maximum independent set and minimum vertex cover [8].

Our Results. In this paper we focus on the reoptimization version of the strength-
ened metric TSP. We first extend the analysis of the PTAS provided in [9] to show
its applicability also when the number of modified edges k isO(1). More precisely,

1 Notice that β = 1
2
corresponds to the trivial case where all edge weights are equal;

thus, we will assume 1
2
< β < 1 for the remainder of the paper.
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if we assume that the original and the modified graph, say GO and GM, obey the
triangle inequality up to a strength factor of 1/2 ≤ βO < 1 and 1/2 ≤ βM < 1, re-
spectively, and if we set βL = min{βO, βM} and βH = max{βO, βM}, then we show
that the simple returning of the given optimal cycle of the original instance,

guarantees an approximation of 1 + 2kβH
2−k(1−βL)(1−βH)

(1−βL)(1−βH)|V | , which can be made ar-

bitrarily close to 1 for sufficiently large input graphs. To assess the practical
relevance of our result, which suggests that in strengthened metric graphs the
quality of optimal Hamiltonian cycles is resilient to multiple edge weight modi-
fications, we provide a large set of experiments showing that, in most practical
circumstances, altering (uniformly at random) even several edge weights does
not affect the goodness of the old optimal solution.

2 Reoptimizing the Strengthened Metric TSP

We start by giving a formal definition of our problem. For an input graph G,
let OptG denote the cost of a minimum-cost Hamiltonian cycle of G. Then, we
have the following:

Definition 1. The k-edge-modified strengthened metric TSP (k-em-smtsp)
is defined as follows: Given

– two complete weighted graphs GO = (V,E, cO), GM = (V,E, cM) such that GO

and GM obey the triangle inequality up to a strength factor of βO and βM,
respectively, with βO, βM < 1, and such that cO and cM coincide, except for
k ≥ 1 edges;

– a Hamiltonian cycle C of GO such that
∑
e∈C

cO(e) = OptGO
;

find a Hamiltonian cycle C of GM such that
∑
e∈C

cM(e) = OptGM
.

Notice that k-em-smtsp is NP-hard already for k = 1 [9]. Recall also that in a
strengthened metric graph G, the following holds (see [10]):

– Let cmax and cmin denote the maximum and the minimum edge weight in G,
respectively. Then,

cmax

cmin
≤ 2β2

1− β
. (1)

– Neighboring edges of G never differ by a factor of more than 1
1−β .

From this, by following the proof of Lemma 16 in [9], we get

Lemma 1. Let GO and GM be two weighted graphs such that GO and GM obey
the triangle inequality up to a strength factor of βO and βM, respectively, with
βO, βM < 1. For i ∈ {O,M}, let cmax,i and cmin,i denote the maximum and
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minimum weight of an edge in Gi, respectively. Let the edge weights in GO and
GM agree except for k < |V | − 1 edges. Then,

cmax,M ≤
1

1− βM

cmax,O; cmin,M ≤
1

1− βO

cmin,O;

cmax,O ≤
1

1− βO

cmax,M; and cmin,O ≤
1

1− βM

cmin,M.

(2)

Proof. Let e1, e2, ..., ek be the edges such that cO(e1) �= cM(e1), ..., cO(ek) �=
cM(ek). Since k < |V | − 1, every edge ei, i ∈ [1, ..., k], will have at least one
adjacent edge having the same weight in GO as in GM, and therefore bounded by
cmax,O. Hence, we have cM(ei) ≤ 1

1−βM
cmax,O, from which

cmax,M ≤ max{cM(e1), ..., cM(ek), cmax,O} ≤
1

1− βM

cmax,O.

Similarly, cO(ei) ≥ (1− βO)cmin,M, and then

cmin,O ≥ min{cO(e1), ..., cO(ek), cmin,M} ≥ (1− βO)cmin,M.

The two remaining inequalities are symmetric. ��
We are now ready to give our main result:

Theorem 1. Let (GO, GM, C) be an input instance of k-em-smtsp such that GO

and GM obey the triangle inequality up to a strength factor of βO and βM, respec-
tively, with βO, βM < 1. For i ∈ {O,N}, let cmax,i and cmin,i denote the maximum
and minimum weight of an edge in Gi, respectively. Let the edge weights in GO

and GM agree except for k < |V | − 1 edges. Let βH := max{βO, βM} < 1 and

βL := min{βO, βM}. Then, it is a
(
1+

2kβ2
H−k(1−βL)(1−βH)

(1−βL)(1−βH)|V |

)
-approximation to sim-

ply output C.

Proof. First of all, observe that for i ∈ {L, H} the following inequality holds:

β2
i

(1− βi)
≤ β2

H

(1 − βH)(1− βL)
. (3)

Indeed we have 1 ≤ 1
(1−βL)

, and then by multiplying both sides by
β2
H

(1−βH)
we get

β2
H

(1− βH)
≤ β2

H

(1 − βH)(1− βL)
.

Moreover

β2
L ≤ β2

H ≤
β2

H

(1− βH)

from which
β2

L

(1 − βL)
≤ β2

H

(1− βH)(1 − βL)
.

Suppose now that e1, e2, ..., ek are the edges whose weights are altered. The proof
is by cases.
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Case 1: Let cM(ei) > cO(ei) for i = 1, ..., k, and then OptGO
≤ OptGM

. Let
A = {ei1 , ..., eis} ⊆ {e1, e2, ..., ek} be the subset of altered edges that are
part of C (note that if A = ∅ then C is an optimal cycle in GM), and let
cM(C) =

∑
e∈C cM(e). Then

cM(C) = OptGO
+
∑
e∈A

(cM(e)− cO(e))

≤ OptGO
+ |A|(cmax,M − cmin,O)

≤ OptGM
+ |A|(cmax,M − cmin,O)

and since cmax,M ≥ cmin,O and |A| ≤ k

≤ OptGM
+ kcmax,M − kcmin,O (4)

(2)

≤ OptGM
+

k

1− βM

cmax,O − kcmin,O

(1)

≤ OptGM
+

k

(1− βM)

2β2
O

(1− βO)
cmin,O − kcmin,O. (5)

But we also have

cM(C)
(4)

≤ OptGM
+ kcmax,M − kcmin,O

(1)

≤ OptGM
+

2kβ2
M

(1− βM)
cmin,M − kcmin,O

(2)

≤ OptGM
+

2kβ2
M

(1− βM)

1

(1− βO)
cmin,O − kcmin,O. (6)

The combination of (5) and (6) yields

cM(C) ≤ OptGM
+

min{2kβ2
M
, 2kβ2

O
}

(1 − βM)(1 − βO)
cmin,O − kcmin,O

≤ OptGM
+

(
2kβ2

L

(1− βH)(1− βL)
− k

)
OptGM

|V |

≤
(
1 +

2kβ2
H − k(1− βH)(1 − βL)

(1− βH)(1 − βL)|V |

)
OptGM

.

Case 2:Nowsuppose that cM(ei) < cO(ei) for i=1, ..., k. LetAD1 ={ei1 , ..., eis} ⊆
{e1, e2, ..., ek} be the subset of altered edges that are part of C, and let AD2 =
{e1, e2, ..., ek}\AD1 . For i ∈ {1, 2}, let ΔADi =

∑
e∈ADi

(cO(e)− cM(e)). Note

that if AD1 = {e1, e2, ..., ek} then C is an optimal cycle in GM. Observe that

OptGO
≤ OptGM

+ |ΔAD1 +ΔAD2 |

= OptGM
+
∑

e∈AD1

(cO(e)− cM(e)) +
∑

e∈AD2

(cO(e)− cM(e)). (7)
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Hence

cM(C) = OptGO
+
∑

e∈AD1

(cM(e)− cO(e))

(7)

≤ OptGM
+
∑

e∈AD1

(cO(e)− cM(e)) +
∑

e∈AD2

(cO(e)− cM(e))

+
∑

e∈AD1

(cM(e)− cO(e))

≤ OptGM
+ |AD2 |(cmax,O − cmin,M)

and since cmax,O > cmin,M and |AD2 | ≤ k

≤ OptGM
+ kcmax,O − kcmin,M (8)

(2)

≤ OptGM
+

k

(1− βO)
cmax,M − kcmin,M

(1)

≤ OptGM
+

k

(1− βO)

2β2
M

(1− βM)
cmin,M − kcmin,M. (9)

But we also have

cM(C)
(8)

≤ OptGM
+ kcmax,O − kcmin,M

(1)

≤ OptGM
+

2kβ2
O

(1− βO)
cmin,O − kcmin,M

(2)

≤ OptGM
+

2kβ2
O

(1− βO)

1

(1− βM)
cmin,M − kcmin,M. (10)

The combination of (9) and (10) yields

cM(C) ≤ OptGM
+

min{2kβ2
M, 2kβ

2
O}

(1− βM)(1− βO)
cmin,M − kcmin,M

≤ OptGM
+

(
2kβ2

L

(1− βH)(1 − βL)
− k

)
cmin,M

≤ OptGM
+

(
2kβ2

L

(1− βH)(1 − βL)
− k

)
OptGM

|V |

≤
(
1 +

2kβ2
H
− k(1− βH)(1 − βL)

(1 − βH)(1 − βL)|V |

)
OptGM

.

Case 3: Now suppose that some of the edges whose weights are altered increase
their weight, while others decrease it. Let AI = {f1, f2, ..., fr} be the edges
such that cM(fi) > cO(fi) for i = 1, ..., r, while let AD = {g1, g2, ..., gk−r}
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be the edges for which cM(gi) < cO(gi) for i = 1, ..., k − r. Let AI1 =
{fi1 , ..., fis} ⊆ AI , and AD1 = {gz1, ..., gzt} ⊆ AD be the subsets of al-
tered edges that belong to C, and let AD2 = AD \ AD1 . Note that if
AI1 = ∅ and AD1 = {e1, e2, ..., ek}, then C is an optimal cycle in GM. Let
GI = (V,E, cI) be the graph obtained from GO by modifying only the edges
that belong to AI , i.e., such that cI(fi) = cM(fi) > cO(fi) for i = 1, ..., r,
and cI(e) = cO(e) for any e ∈ E \ AI . Then, OptGO

≤ OptGI . Finally, let
ΔAD =

∑
g∈AD

cO(g)−
∑

g∈AD
cM(g). Observe that

OptGI ≤ OptGM
+ |ΔAD| = OptGM

+
∑

g∈AD

(cO(g)− cM(g))

= OptGM
+
∑

g∈AD1

(cO(g)− cM(g)) +
∑

g∈AD2

(cO(g)− cM(g)). (11)

Then, we have that

cM(C) = OptGO
+
∑

f∈AI1

(cM(f)− cO(f)) +
∑

g∈AD1

(cM(g)− cO(g))

≤ OptGI +
∑

f∈AI1

(cM(f)− cO(f)) +
∑

g∈AD1

(cM(g)− cO(g))

(11)

≤ OptGM
+
∑

g∈AD1

(cO(g)− cM(g)) +
∑

g∈AD2

(cO(g)− cM(g))

+
∑

f∈AI1

(cM(f)− cO(f)) +
∑

g∈AD1

(cM(g)− cO(g))

≤ OptGM
+ |ΔAI1 |(cmax,M − cmin,O) + |ΔAD2 |(cmax,O − cmin,M)

and since |AI1 | ≤ r, cmax,M > cmin,O, |AD2 | ≤ k − r, and cmax,O > cmin,M

≤ OptGM
+ rcmax,M − rcmin,O + (k − r)cmax,O − (k − r)cmin,M. (12)

We now analyze the various subcases, depending on the four feasible orders
of cmin,M, cmax,M, cmin,O, and cmax,O.

Case 3.1: Let cmin,M ≤ cmin,O ≤ cmax,O ≤ cmax,M. Then, from (12) we have

cM(C) ≤ OptGM
+ kcmax,M − rcmin,M − (k − r)cmin,M

(1)

≤ OptGM
+

2kβ2
M

(1− βM)
cmin,M − kcmin,M

(3)

≤ OptGM
+

(
2kβ2

H

(1− βH)(1 − βL)
− k

)
cmin,M

≤
(
1 +

2kβ2
H − k(1− βH)(1 − βL)

(1− βH)(1 − βL)|V |
− k

)
OptGM

.
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Case 3.2: Let cmin,O ≤ cmin,M ≤ cmax,M ≤ cmax,O. Then, from (12) we have

cM(C) ≤ OptGM
+ kcmax,O − rcmin,O − (k − r)cmin,O

(1)

≤ OptGM
+

2kβ2
O

(1− βO)
cmin,O − kcmin,O

(3)

≤ OptGM
+

(
2kβ2

H

(1− βH)(1 − βL)
− k

)
cmin,O

≤ OptGM
+

(
2kβ2

H

(1− βH)(1 − βL)
− k

)
cmin,M

≤
(
1 +

2kβ2
H − k(1− βH)(1 − βL)

(1− βH)(1 − βL)|V |
− k

)
OptGM

.

Case 3.3: Let cmin,O ≤ cmin,M ≤ cmax,O ≤ cmax,M. Then, from (12) we have

cM(C) ≤ OptGM
+ kcmax,M − rcmin,O − (k − r)cmin,O

and then the rest of the proof follows the steps after inequality (4).

Case 3.4: Let cmin,M ≤ cmin,O ≤ cmax,M ≤ cmax,O. Then, from (12) we have

cM(C) ≤ OptGM
+ kcmax,O − rcmin,M − (k − r)cmin,M

and then the rest of the proof follows the steps after inequality (8).

��

The above result allows to construct the following algorithm, similar to that
given in [9]:

1. Compute βH, βL and |V | for the input instance;
2. By Theorem 1, compute the approximation which can be guaranteed by

simply returning C;
3. If it is good enough, then output C, otherwise perform exhaustive search for

an optimal solution.

Theorem 2. If βO and βM do not depend on |V |, and k = O(1), the above
algorithm is a PTAS for k-em-smtsp.

Proof. From the assumptions

c =
2kβH

2 − k(1− βL)(1 − βH)

(1− βL)(1 − βH)

is constant (and can actually be computed in O(|V |3)). Then, given an instance
of k-em-smtsp, for any ε > 0, we proceed as follows:
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1. if |V | ≥ c
ε , we know from Theorem 1 that returning C guarantees an ap-

proximation factor of 1 + c
|V | ≤ 1 + ε, and thus this case costs O(1) time;

2. otherwise, we perform exhaustive search for a new optimal solution, and this
costs O(|V |!) = O(|V | cε+1) time.

From this, the claim follows. ��

3 Experimental Results

To assess experimentally the obtained theoretical results, it was necessary to
create a set of input instances for strengthened metric graphs, along with an
optimal solution for each of them. For the computation of an optimal solution,
it was used the well known Concorde TSP Solver [3], the fastest solver for TSP
to date. The site contains also a library, TSPLIB [1], which provides a set of
instances for TSP coming from various sources. In particular, TSPLIB provides
three strengthened metric instances, i.e., si175, si535, and si1032 (notice that
all of them are synthetic instances having a number of nodes as specified by
their name). Additionally, by using Google Maps c© to get the latitude and the
longitude of any given site on the Earth, we have built three more strength-
ened metric instances, in which selected nodes are specified by their coordi-
nates, and edge weights are given by the geodetic distance between the nodes.
In this way we managed to build three instances: (i) the set of sites which are
part of the World Heritage List [2], that we called precisely UNESCO (this in-
stance was selected by imaging a virtual tour of the most beautiful places in
the World); (ii) and (iii) the set of nuclear power plants operating in Europe
and America (both North and South),respectively, and that we called EuNPP
and AmNPP (these two instances were selected by imaging a drone that flies
over these sites to make aerial monitoring). Instance UNESCO is composed by
193 nodes,2 and has a strength factor of 0.99994. Instance EuNPP consists of
79 nodes, and has a strength factor of 0.99987. Finally, AmNPP consists of 74
nodes, and has a strength factor of 0.99990. Obviously, also for these instances
we have generated the optimal solution through the use of the Concorde TSP
Solver.

On the above mentioned six instances we simulated a variation of the edge
weights as follows. We extracted randomly a number between 0 and 1, and: (i) if
this number was greater than 0.5, then we selected at random an edge belonging
to the optimal cycle, and we incremented its weight by a random value between 1
and its current weight; otherwise (ii) we selected at random an edge not belonging
to the optimal cycle, and we decremented its weight by a random value between
1 and the weight of the edge itself minus 1. In this way, we avoided the favorable
(but meaningless) cases of either reducing the weight of edges belonging to the
optimal original cycle, or increasing the weight of edges not belonging to it.

2 We have not included all the 936 World Heritage sites, because many of them are
very close, if not overlapping.
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We then performed a series of tests by changing the weight of 1, 2, 3, 5 and
10 edges (the case of modifying just one edge is included in order to perform a
comparison with the approximation ratio given in [9]). All over these experiments
the value of βM was always not less than the value of βO. This can be easily
explained, since on one hand the instances can have more than one triple of
vertices matching the strength factor of the associated graph, and on the other
hand reducing βO is possible only by altering exactly the weights of the edges
belonging to these triples.

In the following we provide a series of charts showing, in addition to the
estimated approximation ratio given by Theorem 1, the actual approximation
which is achieved by returning the optimal cycle of the original graph. Notice
that we have run ten different executions for each fixed number of modified
edges, and we sorted increasingly the obtained ratios. Notice also that for the
last three instances the strength factor of the original graph was very close to 1,
and this prevented us (although a very large number of attempts) to generate
randomly a modified graph obeying the strengthened triangle inequality for the
modification of 10 edges. From the set of experiments, it emerges clearly the
stability of the quality of the original optimal cycle, which performs much better
than that we theoretically expect.
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Fig. 1. Results obtained for si175 (175 nodes, βO = 0.84375, 0.84375 ≤ βM ≤ 0.99492)
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Fig. 2. Results obtained for si535 (535 nodes, βO = 0.87958, 0.87958 ≤ βM ≤ 0.99549)
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Fig. 3. Results obtained for si1032 (1032 nodes, βO = 0.87888, 0.87888 ≤ βM ≤
0.99173)
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Fig. 4. Results obtained for UNESCO (193 nodes, βO = 0.99994, 0.99994 ≤ βM ≤
0.99996)
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Fig. 5. Results obtained for EuNPP (79 nodes, βO = βM = 0.99987). The estimated
approximation is 1629366, 3258732, 4888097, 8146828, for k = 1, 2, 3, 5, respectively
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Fig. 6. Results obtained for AmNPP (74 nodes, βO = βM = 0, 99990). The estimated
approximation is 2845826, 56916512, 8537476, 14229126, for k = 1, 2, 3, 5, respectively
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Abstract. We present LFR (Loop Free Routing), a new loop-free dis-
tance vector routing algorithm, which is able to update the shortest paths
of a distributed network with n nodes in fully dynamic scenarios. If Φ is
the total number of nodes affected by a set of updates to the network,
and φ is the maximum number of destinations for which a node is af-
fected, then LFR requires O(Φ ·Δ) messages and O(n+φ ·Δ) space per
node, where Δ is the maximum degree of the nodes of the network.

We experimentally compare LFR with DUAL, one of the most popu-
lar loop-free distance vector algorithms, which is part of CISCO’s EIGRP
protocol and requires O(Φ ·Δ) messages and Θ(n · Δ) space per node.
The experiments are based on both real-world and artificial instances and
show that LFR is always the best choice in terms of memory require-
ments, while in terms of messages LFR outperforms DUAL on real-world
instances, whereas DUAL is the best choice on artificial instances.

1 Introduction

Updating shortest paths in a distributed network whose topology dynamically
changes over the time is considered crucial in today’s communication networks.
This problem has been widely studied in the literature, and the solutions found
can be classified as distance-vector and link-state.

Distance-vector algorithms require that a node knows the distance from each
of its neighbors to every destination and stores them in a data structure called
routing table; a node uses its own routing table to compute the distance and the
next node in the shortest path to each destination. Most of the known distance-
vector solutions (e.g., see [6,9,10,15,16]) are based on the classical Distributed
Bellman-Ford method (DBF), originally introduced in the Arpanet [12], which
is implemented in the RIP protocol. The convergence of DBF can be very slow
(possibly infinite) due to the well-known looping phenomenon which occurs when
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a path induced by the routing table entries visits the same node more than
once before reaching the intended destination. Furthermore, if the nodes of the
network are not synchronized, even though no change occurs in the network,
the overall number of messages sent by DBF is exponential in the size of the
network (e.g., see [1]).

Link-state algorithms, as for example the Open Shortest Path First (OSPF)
protocol widely used in the Internet (e.g., see [13]), require that a node must
know the entire network topology to compute its distance to any destination,
usually running the centralized Dijkstra’s algorithm. Link-state algorithms are
free of looping, but each node needs to receive and store up-to-date information
on the entire network topology after a change, thus requiring quadratic space
per node. This is achieved by broadcasting each change of the network topology
to all nodes [13,18] and by using a centralized algorithm for shortest paths.

Related Works. In the last years, there has been a renewed interest in devising
new efficient light-weight loop-free distributed shortest paths solutions for large-
scale Ethernet networks (see, e.g., [3,7,8,17,19,20]), where usually the routing
devices have limited storage capabilities, and hence distance-vector algorithms
seem to be an attractive alternative to link-state solutions. For example, in [17]
a new technique has been introduced, named DIV, which is not a routing algo-
rithm by itself, rather it can run on top of any routing algorithm to guarantee
loop freedom. A distance vector algorithm has been recently introduced in [5]
and successively developed in [4], where it has been named DUST (Distributed
Update of Shortest paThs), which suffers of looping, although it has been de-
signed to heuristically reduce the cases where this phenomenon occurs.

Despite the renewed interest of the last years, the most important distance vec-
tor algorithm in the literature is surely DUAL (Diffuse Update ALgorithm) [9],
which is free of looping and is indeed part of CISCO’s widely used EIGRP pro-
tocol. DUAL has been experimentally tested in [4] against DUST and DBF in
various artificial and real-world scenarios. It has been shown that DUST is al-
ways the best choice in terms of space per node. In terms of messages, DUST is
the best choice on those real-world topologies in which it does not fall in looping,
while DUAL is better than DUST and DBF in all other cases.

Results of the Paper. We propose a new loop-free distance vector algorithm,
named LFR (Loop Free Routing), which is able to update the shortest paths
of a distributed network subject to arbitrary modifications on the edges of the
network. Let us denote by n the number of nodes in the network, by Δ the
maximum node degree, by Φ the number of nodes affected by a sequence of
updates on the edges of the network, that is the nodes changing their routing
table during that sequence, and by φ the maximum number of destinations for
which a node is affected. Then LFR requires O(Φ ·Δ) messages and O(Φ) steps
to converge and requires O(n + φ ·Δ) space per node. Compared with DUAL,
LFR sends the same number of messages but requires less memory per node.
In fact, DUAL requires O(Φ · Δ) messages and O(Φ) steps to converge and
Θ(n ·Δ) space per node. Compared with DUST, LFR is better in terms of both
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number of messages sent and memory requirement per node. In fact, the number
of messages sent by DUST cannot be bounded, as it suffers of looping, and its
space requirement per node is O(n ·Δ).

From the experimental point of view, we conducted an extensive study with
the aim of comparing the performances of the loop-free algorithms LFR and
DUAL also in practical cases. Our simulations were performed in the OM-
NeT++ simulation environment [14]. As input to the algorithms, we used both
real-world and artificial networks. In detail, we considered some of the Internet
topologies of the CAIDA IPv4 topology dataset [11] (CAIDA - Cooperative As-
sociation for Internet Data Analysis provides data and tools for the analysis of
the Internet infrastructure) and Erdös-Rényi random graphs [2]. The results of
our experiments can be summarized as follows: in real-world networks LFR out-
performs DUAL in terms of both number of messages and space occupancy per
node. In the experiments, we observe that this is in part due to the topological
structure of the CAIDA instances which are sparse and contain a high number
of nodes of small degree. Therefore, we considered also Erdös-Rényi random in-
stances with a variable degree of density. In this case, DUAL sends a number of
messages smaller than that of LFR. However, the space requirements of DUAL

grow drastically in these random networks while that of LFR are the same of
real-word networks. Since CAIDA instances used in the experiments follow a
power-law node degree distribution, we embedded the two algorithms in DLP

(Distributed Leaf Pruning), a general framework recently proposed in [7] which
can run on top of any routing algorithm and is able to reduce the number of
messages sent by such algorithms in this kind of graphs. These further experi-
ments show that the good performances of LFR in real-world instances improve
when it is used in combination with DLP.

2 Preliminaries

We consider a network made of processors linked through communication chan-
nels that exchange data using a message passing model, in which: each processor
can send messages only to its neighbors; messages are delivered to their destina-
tion within a finite delay but they might be delivered out of order; there is no
shared memory among the nodes; the system is asynchronous, that is, a sender
of a message does not wait for the receiver to be ready to receive the message.

Graph Notation. We represent the network by an undirected weighted graph
G = (V,E,w), where V is a finite set of n nodes, one for each processor, E is
a finite set of m edges, one for each communication channel, and w is a weight
function w : E → R+ ∪ {∞} on the edges. An edge in E that links nodes u and
v is denoted as {u, v}. Given v ∈ V , N(v) denotes the set of neighbors of v. A
shortest path between nodes u and v is a path from u to v with the minimum
weight. The distance d(u, v) from u to v is the weight of a shortest path from u to
v. Given two nodes u, v ∈ V , the via from u to v is the set of neighbors of u that
belong to a shortest path from u to v. Formally: via(u, v) ≡ {z ∈ N(u) | d(u, v) =
w(u, z) + d(z, v)}. We denote as wt(), dt() and viat() an edge weight, a distance
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Procedure: Update(u, s, Du[s])
Input: Node v receives the message update(u, s, Du[s]) from u

1 if STATEv[s] = false then
2 if Dv[s] > Du[s] +w(u, v) then Decrease(u, s, Du[s]);
3 else if Dv[s] < Du[s] +w(u, v) then Increase(u, s, Du[s]);

Fig. 1. Pseudocode of procedure Update

and a via in G at time instant t, respectively. We denote a sequence of update
operations on the edges of G by C = (c1, c2, ..., ck). Assuming G0 ≡ G, we denote
asGi, 0 ≤ i ≤ k, the graph obtained by applying ci to Gi−1. We consider the case
in which ci occurs at time ti ≥ ti−1 and either increases or decreases the weight
of {xi, yi} by a quantity εi > 0. The extension to delete and insert operations is
straightforward. In what follows, given a sequence C = (c1, c2, ..., ck) of update
operations, we denote as φci,s the set of nodes that change the distance or
the via to s as a consequence of ci, formally: φci,s = {v ∈ V | dti(v, s) �=
dti−1(v, s) or viati(v, s) �= viati−1(v, s)}. If v ∈ ∪ki=1 ∪s∈V φci,s we say that v

is affected by ci. We denote as Φ =
∑k

i=1

∑
s∈V |φci,s|. Furthermore, given a

generic destination s in V , we denote as φs = ∪ki=1φci,s and by φ = maxs |φs|.
Note that a node can be affected for at most φ different destinations.

Conditions for Loop Freedom. A distance vector algorithm can be designed
to be loop-free by using sufficient conditions as for example those described in
[9]. In particular, we focus on snc (Source Node Condition), which can be
implemented and work in combination with a distance vector algorithm that
maintains at least the routing table and the so-called topology table. The routing
table of a node v has two entries for each s ∈ V : the estimated distance Dv[s]
between v and s in G; the node VIAv[s] ∈ via(v, s) representing the via from
v to s in G. We denote as Dv[s](t) and VIAv[s](t) the estimated distance, and
the estimated via at a certain time t. The topology table of v has to contain
enough information for v to compute, for each u ∈ N(v) and for each s ∈ V , the
quantity Du[s]. These values are used in snc to determine whether a path is free
of loops as follows: if, at time t, v needs to change VIAv[s] for some s ∈ V , it can
select as VIAv[s](t) any neighbor k ∈ N(v) satisfying the following loop-free test :
Dk[s](t) + wt(v, k) = minvi∈N(v){Dvi [s](t) + wt(vi, v)} and Dk[s](t) < Dv[s](t). If
no such neighbor exists, then VIAv[s] does not change. Let VIAG[s](t) be the
directed subgraph of G induced by the set VIAv[s](t), for each v ∈ V . In [9] it is
proved that if VIAG[s](t0) is loop-free and snc is used when nodes change their
via, then VIAG[s](t) remains loop-free, for each time t ≥ t0.

3 The New Algorithm

In this section, we describe LFR which consists of four procedures named
Update, Decrease, Increase and SendFeasibleDist, which are reported
in Fig.s 1, 2, 3 and 4, resp. The algorithm is described wrt a source s ∈ V , and it
starts every time a weight change ci ∈ C = (c1, c2, ..., ck) occurs on edge {xi, yi}.



Engineering a New Loop-Free Shortest Paths Routing Algorithm 127

Procedure: Decrease(u, s, Du[s])

1Dv[s] := Du[s] + w(u, v); UDv[s] := Dv[s]; VIAv[s] := u;
2 foreach k ∈ N(v) \ {VIAv[s]} do
3 send update(v, s, Dv[s]) to k ;

Fig. 2. Pseudo-code of procedure Decrease

Data Structures. LFR stores, for each node v, the arrays Dv[s] and VIAv[s]
plus, for each s ∈ V , the following data structures: STATEv[s], which represents
the state of node v wrt source s, v is in active state and STATEv[s] = true, if and
only if it is performing procedure Increase or procedure SendFeasibleDist

with respect to s; UDv[s] which represents the distance from v to s through
VIAv[s]. In particular, if v is active UDv[s] is always greater or equal to Dv[s],
otherwise they coincide; in addition, node v stores a temporary data structure
tempDv needed to implement the topology table. tempDv is allocated for a certain
s only when needed, that is when v is active wrt s, and it is deallocated when
v turns back in passive state wrt s. The entry tempDv[u][s] contains UDu[s], for
each u ∈ N(v), and hence tempDv requires Δ space per node for each source for
which v is active. The number of nodes for which v is active is at most φ, thus
giving an O(n+φ ·Δ) bound for the space requirement per node, which is better
than DUAL. In Section 4 we will show that also in real practical cases the space
per node needed by LFR is always smaller than that of DUAL.

Description of LFR. Before LFR starts, at time t < t1, we assume that,
for each v, s ∈ V , Dv[s](t) and VIAv[s](t) are correct, that is Dv[s](t) = dt(v, s)
and VIAv[s](t) ∈ viat(v, s). We focus the description on a source s ∈ V and we
assume that each node v ∈ V , at time t, is passive wrt s. The algorithm starts
when the weight of an edge {xi, yi} changes. As a consequence, xi (yi resp.)
sends to yi (xi resp.) message update(xi, s, Dxi [s]) (update(yi, s, Dyi [s]) resp.).
Messages received at a node wrt a source s are stored in a queue and processed
in a FIFO order to guarantee mutual exclusion. If an arbitrary node v receives
update(u, s, Du[s]) from u ∈ N(v), then it performs procedure Update in Fig.
1. Basically, Update compares Dv[s] with Du[s] + w(u, v) to determine whether
v needs to update its estimated distance and its estimated via to s. If node
v is active, the processing of the message is postponed by enqueueing it into
the FIFO queue associated to s. Otherwise, if Dv[s] > Du[s] + w(u, v) (Line 2),
then v performs procedure Decrease, while if Dv[s] < Du[s] + w(u, v) (Line
3) v performs procedure Increase. Finally, if node v is passive and Dv[s] =
Du[s] + w(u, v) then there is more than one shortest path from v to s. In this
case the message is discarded and the procedure ends.

When a node v performs procedure Decrease, it simply updates D, UD and
VIA by using the updated information provided by u. Then, the update is for-
warded to all neighbors of v with the exception of VIAv[s] (Line 3).

When a node v performs procedure Increase, it first verifies whether the
update has been received from VIAv[s] or not (Line 1). In fact, only in the
affirmative case v changes its distance to s and needs to find a new via. To this
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Procedure: Increase(u, s, Du[s])

1 if VIAv[s] = u then
2 STATEv[s] := true;
3 Allocate tempDv[·][s];
4 tempDv[u][s] := Du[s];
5 UDv[s] := tempDv[u][s] + w(u, v);
6 foreach vi ∈ N(v) \ {VIAv[s]} do
7 receive UDvi [s] and store it in tempDv[vi][s] by sending get.dist(v, s, UDv[s])

to vi;
8 Dmin := minu∈N(v){tempDv [u][s] + w(u, v)};
9 VIAmin := argminu∈N(v){tempDv[u][s] + w(u, v)};

10 if tempDv[VIAmin][s] ≥ Dv[s] then
11 foreach vi ∈ N(v) \ {VIAv[s]} do
12 receive loop-free distance UDvi [s] and store it in tempDv[vi][s] by sending

get.feasible.dist(v, s, UDv[s]) to vi;
13 Dmin := minu∈N(v){tempDv[u][s] + w(u, v)};
14 VIAmin := argminu∈N(v){tempDv[u][s] + w(u, v)};
15 Deallocate tempDv[·][s];
16 Dv[s] := Dmin;
17 UDv[s] := Dv[s];
18 VIAv[s] := VIAmin;
19 foreach k ∈ N(v) do send update(v, s, Dv[s]) to k;
20 STATEv[s] := false;

Fig. 3. Pseudo-code of procedure Increase

aim, node v becomes active, allocates the temporary data structure tempDv, and
sets UDv[s] to the current distance through VIAv[s] (Lines 2–5). At this point,
v first performs the so called Local-Computation (Lines 6–9), which involves
all the neighbors of v. If the Local-Computation does not succeed, then node v
initiates the so called Global-Computation (Lines 11–14), which involves in the
worst case all nodes of the network.

In the Local-Computation, node v sends get.dist messages, carrying UDv[s],
to all its neighbors, except u. A neighbor k ∈ N(v) that receives a get.dist
message, immediately replies with the value UDk[s], and if k is active, it updates
tempDk[v][s] to UDv[s]. When v receives these values from its neighbors, it stores
them in tempDv, and it uses them to compute the minimal estimated distance
Dmin to s and the neighbor VIAmin which gives such a distance (Lines 8–9).

At the end of the Local-Computation v checks whether a feasible via exists,
according to snc, by executing the loop-free test at line 10. If the test does
not succeed, then v initiates the Global-Computation (Line 11), in which it
entrusts the neighbors the task of finding a loop-free path. In this phase, v sends
get.feasible.dist(v, s, UDv[s]) message to each of its neighbors. This message carries
the value of the estimated distance through its current via. This distance is not
guaranteed to be minimum but it is guaranteed to be loop-free. When v receives
the answers to get.feasible.dist messages from its neighbors, again it stores them
in tempDv and it uses them to compute the minimal estimated distance Dmin to
s and the neighbor VIAmin which gives such a distance (Lines 13–14).
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Procedure: SendFeasibleDist(u, s,D)
Input: Node v receives get.feasible.dist(u, s, UDu[s]) from u

1 if VIAv[s] = u and STATEv[s] = false then
2 STATEv[s] := true;
3 Allocate tempDv[·][s];
4 tempDv[u][s] := D;
5 UDv[s] := tempDv[u][s] + w(u, v);
6 foreach vi ∈ N(v) \ {VIAv[s]} do
7 receive UDvi [s] and store it in tempDv[vi][s] by sending get.dist(v, s, UDv[s])

to vi;
8 Dmin := minu∈N(v){tempDv[u][s] + w(u, v)};
9 VIAmin := argminu∈N(v){tempDv[u][s] + w(u, v)};

10 if tempDv[VIAmin][s] ≥ Dv[s] then
11 foreach vi ∈ N(v) \ {VIAv[s]} do
12 receive loop-free distance UDvi [s] and store it in tempDv[vi][s] by

sending get.feasible.dist(v, s, UDv[s]) to vi;
13 Dmin := minu∈N(v){tempDv[u][s] +w(u, v)};
14 VIAmin := argminu∈N(v){tempDv[u][s] +w(u, v)};
15 send Dmin to VIAv[s];
16 Deallocate tempDv[·][s];
17 Dv[s] := Dmin;
18 UDv[s] := Dv[s];
19 VIAv[s] := VIAmin;
20 foreach k ∈ N(v) do send update(v, s, Dv[s]) to k;
21 STATEv[s] := false;
22else
23 if STATEv[s] = true then

24 tempDv[u][s] := D;
25 send UDv[s] to u ;

Fig. 4. Pseudo-code of procedure SendFeasibleDist

At this point v has surely found a feasible via to s and it deallocates tempDv,
updates Dv[s], UDv[s] and VIAv[s] and propagates the change by sending update
messages to its neighbors (Lines 15–19). Finally, v turns back in passive state.

A node k ∈ N(v) which receives a get.feasible.dist message performs the
procedure SendFeasibleDist. If VIAk[s] = v and k is passive (Line 1), then
procedure SendFeasibleDist behaves similarly to procedure Increase, notice
indeed that Lines 2–21 of SendFeasibleDist are basically identical to Lines 2–
20 of Increase. The only difference is Line 15 of SendFeasibleDist which
is not present in Increase, and represents the answer to the get.feasible.dist
message. However, within SendFeasibleDist the Local-Computation and the
Global-Computation are performed with the aim of sending a reply with an
estimated loop-free distance in addition to that of updating the routing table.
In particular, node k needs to provide to v a new loop-free distance. To this aim,
node k becomes active, allocates the temporary data structure tempDk, and sets
UDk[s] to the current distance through VIAv[s] (Lines 2–5). Then, as in procedure
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Increase, k first performs the Local-Computation (Lines 6–9), which involves
all the neighbors of k. If the Local-Computation does not succeed, that is the snc
is violated, then node k initiates the Global-Computation (Lines 11–14), which
involves in the worst case all nodes of the network. At this point k has surely
found an estimated distance to s which is guaranteed to be loop-free and hence,
differently from Increase, it sends this value to its current via v (Line 15) as
answer to the get.feasible.dist message. Now, as in procedure Increase, node k
can deallocate tempDv, update its local data structures Dv[s], UDv[s] and VIAv[s],
and propagate the change by sending update messages to all its neighbors (Lines
15–19). Finally, v turns back in passive state.

Differently from the get.dist case, k immediately replies with UDk[s] only if
VIAk[s] �= v or STATEv[s] = false (Line 25). If VIAk[s] �= v, that is k does not
use v to reach s, and k is active with respect to s, then it updates tempDk[v][s]
with the received most recent value (Line 24) before sending to v the distance
to s through its current via. This is done to send to v the most up to date value.

The next theorems, whose proofs will be given in the full paper, show the
loop-freedom, correctness, and complexity of LFR. As highlighted in [9], the
complexity of a distributed algorithm in the asynchronous model depends on
the time needed by processors to execute the local procedures of the algorithm
and on the delays incurred in the communication among nodes. Moreover, these
parameters influence the scheduling of the distributed computation and hence
the number of messages sent. For these reasons, we consider the realistic case
where the weight of an edge models the time needed to traverse such edge and
all the processors require one unit of time to process a procedure. In this way,
the distance between two nodes models the minimum time that such nodes need
to communicate. We then measure the time complexity by the number of times
that a processor performs a procedure. Note that, in the realistic case, DUAL

has the same worst case complexity of LFR.

Theorem 1 (Loop-Freedom). Let s be a node in G and let C = (c1, c2, ..., ck)
be a sequence of edge weight changes on G, if VIAG[s](t0) is loop-free, then
VIAG[s](t) is loop-free for each t ≥ t0.

Theorem 2 (Correctness). There exists a time tF ≥ tk such that, for each
pair of nodes v, s ∈ V , and for each time t ≥ tF , Dv[s](t) = dtk(v, s) and
VIAt[v, s] ∈ viatk(v, s).

Theorem 3 (Complexity). Given a sequence of weight change operations C =
(c1, c2, ..., ck), LFR requires O(n + φ · Δ) space per node and sends O(Φ · Δ)
messages and needs O(Φ) steps to converge.

4 Experimental Analysis

In this section, we report the results of our experimental study on LFR and
DUAL. Our experiments have been performed on a workstation equipped with
a Quad-core 3.60 GHz Intel Xeon X5687 processor, with 12MB of internal cache
and 24 GB of main memory, and consist of simulations within the OMNeT++
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Fig. 5. Number of messages sent by LFR and DUAL on GIP−8000

4.0p1 environment [14]. The program has been compiled with GNU g++ com-
piler 4.4.3 under Linux (Kernel 2.6.32).

Executed Tests. For the experiments we used both the real-world instances
of the CAIDA IPv4 topology dataset [11] and Erdős-Rényi random graphs [2].
CAIDA is an association which provides data and tools for the analysis of the
Internet infrastructure. We parsed the files in the CAIDA dataset to obtain a
weighted undirected graph GIP where nodes represent routers, edges represent
links among routers and weights are given by Round Trip Times (RTT). As the
graph GIP consists of almost 35000 nodes, we cannot use it for the experiments,
due to the memory requirements of DUAL. Hence, we performed our tests on
connected subgraphs of GIP , with a variable number of nodes and edges, induced
by the settled nodes of a breadth first search starting from a node taken at
random. We generated a set of different tests, each consisting of a dynamic
graph characterized by a subgraph of GIP with n ∈ {1200, 5000, 8000} nodes (we
denote an n nodes subgraph of GIP with GIP−n) and a set of k concurrent edge
updates, where k assumes values in {5, 10, . . . , 200}. An edge update consists of
multiplying the weight of a random selected edge by a value randomly chosen
in [0.5, 1.5]. For each test configuration (a dynamic graph with a fixed value
of k) we performed 5 different experiments and we report average values. We
performed the experiments in the realistic case, that is we considered the RTT
as the time delay for receiving packets.

Graphs GIP turns out to be very sparse (i.e., m/n ≈ 1.3), so it is worth
analyzing LFR and DUAL also on graphs denser than GIP . To this aim we
considered Erdős-Rényi random graphs [2]. In detail, we randomly generated
a set of different tests, where a test consists of a dynamic graph characterized
by: an Erdős-Rényi random graph GER of 2000 nodes; the density dens of the
graph, computed as the ratio between m and the number of the edges of the n-
complete graph; and the number k of edge update operations. We chose different
values of dens in [0.01, 0.61] and k = 200. Edge weights are randomly chosen in
[1, 10000]. Edge updates are randomly chosen as in the CAIDA tests. For each
test configuration, we performed 5 different experiments and we report average
values. As in GIP , time delays are equal to the edge weights.
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Analysis. In Fig. 5 we report the number of messages sent by LFR and DUAL

on GIP−8000. The diagram shows that LFR always outperforms DUAL. The
ratio between the number of messages sent by DUAL and LFR is between 2.02
and 7.61. The results of our experiments on GIP−1200 and GIP−5000 give similar
results. These good performances of LFR are due in part to the topological
structure of GIP in which the average node degree is almost one. In fact, LFR
uses get.dist messages in order to know the estimated distances of its neighbors.
It follows that the number of get.dist messages sent by a node is proportional
to the node degree, and hence the contribution to the message complexity of
LFR of these messages is basically irrelevant. Note that, DUAL does not need
to use get.dist messages as it stores, for each node, the estimated distances of its
neighbors. We can hence conclude that the better performance of LFR on GIP

with respect to DUAL are basically due to the different way in which the two
algorithms manage the distributed computation of shortest paths.

To conclude our analysis on GIP , we considered the space occupancy per node
of the implemented algorithms (recall that DUAL and LFR require O(n · Δ)
and O(n+ φ ·Δ) space per node, resp.). The experimental results on the space
occupancy are reported in Fig. 6. Since in these sparse graphs the average degree
is almost one, the average space occupancy of the two algorithms are almost
equivalent although LFR is always slightly better than DUAL (Fig. 6 (left)).
If we consider the maximum space occupancy, that is the space occupied by
the node with the highest space requirements, then LFR is by far better than
DUAL (Fig. 6 (right)). In fact DUAL requires a maximum space occupancy
per node which is between 4.81 and 34.97 times the maximum space occupancy
required by LFR. This is due to the fact that the topology table, implemented
by the tempD data structure, is allocated by LFR only when needed.

As already observed, graph GIP and its subgraphs have a high number of
nodes with small degree. For instance, GIP−8000 has 3072 degree-one nodes
which corresponds to 38.4% of the nodes of the graph. Indeed, these graphs
follow a power-law degree distribution. Hence, we embedded LFR and DUAL

in DLP [7], a recently proposed framework which is able to reduce the number of
messages sent by any distance vector algorithm in this kind of graphs by avoiding
any computation involving degree-one nodes. The algorithms obtained by com-
bining LFR and DUAL with DLP are denoted as LFR-DLP andDUAL-DLP,
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resp. Our experiments on these algorithms show that the use of DLP reduced
the number of messages sent by a factor in [1.96, 2.78] in LFR and [2, 17, 8.33]
in DUAL. This allows us to state that the good performance of LFR obtained
in real-world instances are confirmed if it is used in combination with DLP. The
ratio between the number of messages sent by DUAL-DLP and LFR-DLP is
very similar to the ratio between the number of messages sent by DUAL and
LFR since it always lies between 1.47 and 6.25. Finally, our experiments show
that the space overhead resulting from the application of DLP is irrelevant.
In fact, the ratio between the average space occupancy of DUAL and DUAL-
DLP is 1.04 while the ratio between the average space occupancy of LFR and
LFR-DLP is in [1.04, 1.06]. Since the performances of LFR and DUAL on the
CAIDA graphs are in part influenced by the topological structure of such graphs,
it is worth investigating how these algorithms perform also on dense graphs. To
this aim we considered Erdős-Rényi random graphs GER with 2000 nodes, 200
weight changes and dens ranging from 0.01 to 0.61, which leads to a number
of edges ranging from about 20000 to about 1200000. Fig. 7 (left) shows the
number of messages sent by LFR and DUAL on these instances. Contrarily to
the case of GIP , DUAL is better than LFR on GER. In fact, in most of the
cases DUAL sends half the number of messages sent by LFR. This is due to the
high number of get.dist messages sent by LFR which in these dense graphs are
of course relevant. However, from the space occupancy point of view, we notice
that the space requirements of DUAL increase more than those of LFR with
the node degree, as highlighted in Fig. 7 (right). In detail, Fig. 7 (right) shows
the ratio between the average space occupancy per node of DUAL and that of
LFR in GER and the ratio between the maximum space occupancy per node
of DUAL and that of LFR in GER. The average space occupancy ratio grows
almost linearly with m, as the space occupancy of LFR depends on the degree
with a factor φ while that of DUAL is proportional to the node degree with a
factor n. Similar observations hold for the maximum space occupancy.

In conclusion, our experiments show that LFR is always the best choice in
terms of memory requirements, while in terms of messages LFR outperforms
DUAL on real-world instances and DUAL is the best choice on artificial ones.
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Abstract. The problem of finding best routes in road networks can be
solved by applying Dijkstra’s shortest paths algorithm. Unfortunately,
road networks deriving from real-world applications are huge yielding
unsustainable times to compute shortest paths. For this reason, great
research efforts have been done to accelerate Dijkstra’s algorithm on
road networks. These efforts have led to the development of a number
of speed-up techniques, as for example Arc-Flags, whose aim is to com-
pute additional data in a preprocessing phase in order to accelerate the
shortest paths queries in an on-line phase. The main drawback of most
of these techniques is that they do not work well in dynamic scenarios.

In this paper we propose a new algorithm to update the Arc-Flags of a
graph subject to edge weight decrease operations. To check the practical
performances of the new algorithm we experimentally analyze it, along
with a previously known algorithm for edge weight increase operations,
on real-world road networks subject to fully dynamic sequences of op-
erations. Our experiments show a significant speed-up in the updating
phase of the Arc-Flags, at the cost of a small space and time overhead
in the preprocessing phase.

1 Introduction

The problem of finding best connections in transportation networks has received
a lot of attention in the last years. If travel times are assigned to the edges of the
graph representing the network, this problem can be easily solved by applying
Dijkstra’s algorithm to find the shortest path between two points. Unfortunately,
transportation networks deriving from real-world applications tend to be huge
yielding unsustainable times to compute shortest paths. For this reason, great
research efforts have been done over the last decade to accelerate Dijkstra’s al-
gorithm on typical instances of transportation networks, such as road or railway
networks (see [5] for a recent overview). These research efforts have led to the
development of a number of speed-up techniques, whose aim is to compute ad-
ditional data in a preprocessing phase in order to accelerate the shortest paths
queries during an on-line phase. However, most of the speed-up techniques devel-
oped in the literature do not work well in dynamic scenarios, when edge weights
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changes occur to the network due to traffic jams or delays of trains. In other
words, the correctness of these speed-up techniques relies on the fact that the
network does not change between two queries. Unfortunately, such situations
arise frequently in practice. In order to keep the shortest paths queries correct,
the preprocessed data need to be updated. The easiest way is to recompute the
preprocessed data from scratch after each change to the network. This is in gen-
eral unfeasible since even the fastest methods need too much time. In general,
the typical update operations that can occur on a network can be modelled as
insertions and deletions of edges and edge weight changes (weight decrease and
weight increase). When arbitrary sequences of the above operations are allowed,
we refer to the fully dynamic problem, otherwise we refer to the partially dynamic
problem; if only insertions and weight decrease (deletion and weight increase, re-
spectively) operations are allowed, then the partially dynamic problem is known
as the incremental (decremental, respectively) problem.

Related Works. We refer here only to papers on the dynamic case and refer to [5]
as a survey for the static case. A number of efforts have been done in the last years
to accelerate the computation of shortest paths in dynamic scenarios [1–4, 6, 13,
15]. The first of these techniques was Geometric Containers [15], whose key idea
is to allow suboptimal containers after a few updates. However, this approach
yields a loss in query performance. The same holds for the dynamic variant
of Arc-Flags [9] proposed in [2], where, after a number of updates, the query
performances get worse yielding only a low speed-up over Dijkstra’s algorithm.
In [13] the authors combine ideas from highway hierarchies [12] and overlay
graphs [14] yielding very good query times in dynamic road networks. The ALT
algorithm, introduced in [7] works considerably well in dynamic scenarios where
edge weights can increase their value. Also in this case, query performances get
worse if too many edges weights change [6]. Summarizing, all above techniques
work in a dynamic scenario as long as the number of updates is small. As soon as
the number of updates is greater than a certain value, it is better to repeat the
preprocessing from scratch. To our knowledge, the only other dynamic technique
known in the literature with no loss in query performance is that in [13]. In [4], a
very practically efficient algorithm has been given to compute shortest paths in
continental road graphs with arbitrary metrics, whose efficiency is also due to the
use of parallelism. This algorithm is fast enough to be used in dynamic scenarios
for the recomputation from scratch of shortest paths. Recently, a data structure
named Road-Signs has been introduced in [3] to compute and update the Arc-
Flags of a graphs. In detail, in [3] the authors define an algorithm to preprocess
Road-Signs and a decremental algorithm to update them each time that a weight
increase operation occurs on an edge of the graph. As the updating algorithm is
able to correctly update Arc-Flags, there is no loss in query performance. They
also experimentally analyze this algorithm in real-world road networks showing
that it yields a significant speed-up in the updating phase of Arc-Flags with
respect to the recomputation from-scratch, at the price of a small space and
time overhead in the preprocessing phase. However, the solution in [3] is not
able to update Arc-Flags in a fully dynamic scenario.
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Contribution of the Paper. We propose a new incremental algorithmwhich is able
to update the Arc-Flags of a graph by updating Road-Signs, during a sequence
of weight decrease operations. Since the new incremental algorithm uses the same
data structures of the decremental solution of [3], then the combination of these
two solutions can be used to update Arc-Flags in a fully dynamic scenario. To
check the practical usefulness of this combination we implemented the two algo-
rithms and performed an extensive experimental study against the recomputation
from scratch of Arc-Flags on fully dynamic sequences ofweight increase andweight
decrease operations on real world road networks. The results of our experiments
can be summarized as follows: in comparison to the recomputation from-scratch
of Arc-Flags, we obtained a significant speed-up in the updating phase, at the cost
of a small space and time overhead in the preprocessing phase. In detail, we exper-
imentally show that the fully dynamic algorithm is able to update the Arc-Flags
between 40 and 431 times faster than the recomputation from scratch in average.
However, in order to compute and store the Road-Signs, we need an overhead in
the preprocessing phase and in the space occupancy.We experimentally show that
such an overhead is small compared to the speed-up gained in the updating phase.
In fact, the preprocessing requires, in average, 2.10 and 2.36 times the time and
the space required by Arc-Flags, respectively.

2 Preliminaries

Road Graphs. A road graph is a weighted directed graph G = (V,E,w), used to
model real road networks, where nodes represent points on the network, edges
represent road segments between two points and the weight function w : E → R+

represents an estimate of the travel time needed to traverse road segments. Given
G, we denote as Ḡ = (V, Ē) the reverse graph of G where Ē = {(v, u) | (u, v) ∈
E}. Aminimal travel time route between two crossings S and T in a road network
corresponds to a shortest path from the node s representing S and the node t
representing T in the corresponding road graph. The total weight of a shortest
path between nodes s and t is called distance and it is denoted as d(s, t). A
partition of V is a family R = {R1, R2, . . . , Rr} of subsets of V called regions,
such that each node v ∈ V is contained in exactly one region. Given v ∈ Rk, v is a
boundary node of Rk if there exists an edge (u, v) ∈ E such that u �∈ Rk. Minimal
routes in road networks can be computed by shortest paths algorithms such as
Dijkstra’s one. In order to perform an s-t query, the algorithm grows a shortest
path tree starting from s and stopping as soon as it visits t. A simple variation
of Dijkstra’s algorithm is bidirectional Dijkstra which grows two shortest path
trees starting from both s and t. In detail, the algorithm performs a visit of G
starting from s and a visit of Ḡ starting from t. The algorithm stops as soon the
two visits meet at some node in the graph.

Arc-Flags. The preprocessing phase of Arc-Flags first computes a partition
R = {R1, R2, . . . , Rr} of V and then associates a label to each edge (u, v) in E.
A label contains, for each region Rk ∈ R, a flag Ak(u, v) which is true if and only
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if a shortest path in G towards a node in Rk starts with (u, v). The set of flags
of an edge (u, v) is called Arc-Flags label of (u, v). The preprocessing phase
associates also Arc-Flags to edges in the reverse graph Ḡ. The query phase of
Arc-Flags consists of a modified version of the bidirectional Dijkstra’s algorithm:
the forward search only considers those edges for which the flag of the target
node’s region is true, while the backward search follows only those edges having
a true flag for the source node’s region. The main advantage of Arc-Flags is its
easy query algorithm combined with an excellent query performance. However,
preprocessing is very time-consuming since it grows a full shortest path tree from
each boundary node of each region. This is unpractical in dynamic scenarios
where, in order to keep correctness of queries, the preprocessing phase has to be
performed from scratch any time that an edge weight changes.

Road-Signs. Given a road graphG = (V,E,w), a partitionR = {R1, R2, . . . , Rr}
of V in regions, an edge (u, v) ∈ E and a regionRk ∈ R, the Road-Sign RSk(u, v)
of (u, v) to Rk is the subset of boundary nodes b of Rk, such that there exists
a shortest path from u to b that contains (u, v). The Road-Signs of (u, v) are
represented as a boolean vector, whose size is the overall number of boundary
nodes, where the i-th element is true if and only if the i-th boundary node is
contained in RSk(u, v), for some region Rk. Hence, such a data structure requires
O(|E| · |B|) memory, where B is the set of boundary nodes of G induced by R.
Notice that, in [3] it has been also proposed a technique to compact road signs
that requires O((|E| − |V |) · |B|) overall space. The Road-Signs of G can be
computed in the preprocessing phase of Arc-Flags. Given an edge (u, v) and a
region Rk, Ak(u, v) is set to true if and only if (u, v) is an edge in at least one of
the shortest path trees grown for the boundary nodes of Rk. Such a procedure
can be generalized to compute also Road-Signs. In fact, it is enough to add the
boundary node b to RSk(u, v) if (u, v) is in the tree grown for b.

3 Incremental Update of Arc-Flags

Given a road graph G = (V,E,w) and a partition R = {R1, R2, . . . , Rr} of V in
regions, we consider the problem of updating the Arc-Flags of G in a dynamic
scenario where a sequence of only weight decrease operations C = (c1, c2, . . . , ch)
occur on G. We denote as Gi = (V,E,wi) the graph obtained after i weight
decrease operations, 0 ≤ i ≤ h, G0 ≡ G. Each operation ci decreases the weight
of one edge ei = (xi, yi) of an amount γi > 0, such that wi(ei) = wi−1(ei)−γi > 0
and wi(e) = wi−1(e), for each edge e �= ei in E. Our algorithm is based on the
following proposition given in [3], which provides a straightforward method to
compute the Arc-Flags of a graph given the Road-Signs of such graph.

Proposition 1. [3] Given G = (V,E,w), a partition R = {R1, R2, . . . , Rr} of
V , an edge (u, v) ∈ E and a region Rk ∈ R, the following conditions hold:
(i) if u, v ∈ Rk, then Ak(u, v) = true;
(ii) if RSk(u, v) �= ∅, then Ak(u, v) = true;
(iii) if u or v is not in Rk and RSk(u, v) = ∅, then Ak(u, v) = false.
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Hence in what follows, we describe how our solution updates Road-Signs. The
algorithm is denoted as IncRS and its pseudo-code is given in Figure 1. The
algorithm is based on the observation that, when ci occurs, all the shortest
paths which contain (xi, yi) in Gi−1 (i.e. before ci) are shortest paths also in
Gi (i.e. after ci). Therefore, if some boundary node for some region Rk belongs
to RSk(xi, yi) before ci it belongs also to RSk(xi, yi) after ci and no update is
needed for it. However, it could happen that the shortest path from xi to some
boundary node b of Rk in Gi−1 does not contain (xi, yi) but, after the weight
decrease, the new shortest path in Gi contains (xi, yi). In this case, b needs to
be added to RSk(xi, yi) and removed from RSk(xi, w), where (xi, w) is the edge
outgoing xi whose road signs b belongs to. Same arguments can be applied to
the incoming edges of xi, (z, xi): if a boundary node belongs to RSk(z, xi) and
RSk(xi, yi) before ci, then it belongs also to RSk(z, xi) after ci; if a boundary
node b is in RSk(xi, yi) (because it was already in RSk(xi, yi) or because it has
been added to it as a consequence of ci) and it does not belong to RSk(z, xi)
before ci, then it might be added to RSk(z, xi) in the case that the shortest path
from z to b in Gi contains the sub-path (z, xi, yi). We iteratively apply the same
arguments to the other edges of the graph, starting from xi and traversing its
incoming edges. Note that, if at some point of the iteration we find out that the
shortest path from a node z to some boundary node b does not decrease, then
we do not need to add or remove b to any incoming edge of z. This allows us to
reduce the search space of the algorithm.

IncRS works in two phases. In the first phase (lines 1–8) RSk(xi, yi) is
updated by possibly adding new boundaries b �∈ RSk(xi, yi) to it. This phase
is performed for each b �∈ RSk(xi, yi) separately (line 1). In the pseudo-code,
when needed, we store distances between a node u and a boundary b in data
structure D[u, b] and we use an heap H to compute the minimum among the
computed distances. Since each boundary node is processed separately, these
data structures are overwritten at each computation, hence requiring O(n)
space in the worst case. In detail, at lines 2 and 3–4 we compute the distances
from yi to b and from node r̄ such that b ∈ RSk(xi, r̄) to b, respectively. Then,
at line 5, we check whether the weight of the path passing through yi is smaller
than that passing through r̄ (that is the shortest path from xi to b in Gi−1). In
the affirmative case, we update the road signs by adding b to RSk(xi, yi) and
removing b from RSk(xi, r̄) (lines 6–7). Moreover, we store the new distance
from xi to b in D[xi, b] (line 8) in order to use it in the next phase. In the second
phase (lines 9–22) the road signs are updated for each b ∈ RSk(xi, yi) separately.
The updating is done by mimicking the Dijkstra’s algorithm, that is by greedily
visiting the reverse graph starting from xi and stopping when a node does not
need to update the road signs of its outgoing edges wrt b. At line 11, H is initial-
ized by inserting xi into it using D[xi, b] as key. If b was already in RSk(xi, yi),
then D[xi, b] has not been computed at line 8 and hence it is computed at line 10.
Until H is not empty (line 12), a node z and its distance D[z, b] is extracted
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Procedure: IncRS(Gi−1, ci, Rk)
Input : Graph Gi−1, weight decrease ci on edge (xi, yi) and region Rk ∈ R
Output: Updated RSk(u, v) ∀ (u, v) ∈ E

1 foreach b 	∈ RSk(xi, yi) do
2 Compute D[yi, b];
3 Let r̄ : (xi, r̄) ∈ E and b ∈ RSk(xi, r̄);
4 Compute D[r̄, b];
5 if w(xi, yi) +D[yi, b] < w(xi, r̄) +D[r̄, b] then
6 RSk(xi, r̄) := RSk(xi, r̄) \ {b};
7 RSk(xi, yi) := RSk(xi, yi) ∪ {b};
8 D[xi, b] := w(xi, yi) +D[yi, b];

9 foreach b ∈ RSk(xi, yi) do
10 Compute D[xi, b] if it has not been already computed at line 8;
11 H.Insert(xi, D[xi, b]));
12 while H 	= ∅ do
13 (z,D[z, b]) := H.Delete Min();
14 foreach zi : (zi, z) ∈ E do
15 Let r̄ : (zi, r̄) ∈ E and b ∈ RSk(zi, r̄);
16 Compute D[r̄, b];
17 if w(zi, z) +D[z, b] < w(zi, r̄) +D[r̄, b] or r̄ = z then
18 RSk(zi, r̄) := RSk(zi, r̄) \ {b};
19 RSk(zi, z) := RSk(zi, z) ∪ {b};
20 D[zi, b] := w(zi, z) +D[z, b];
21 if zi ∈ H then H.Decrease Key(zi, D[zi, b]));
22 else H.Insert(zi, D[zi, b]));

Fig. 1. Pseudo-code of algorithm IncRS

from H. Then, for each node zi such that (zi, z) ∈ E, at lines 14–22 we perform
the same steps done for xi and (xi, yi): we compute the distance from r̄ such
that b ∈ RSk(zi, r̄) to b; we check whether the weight of the path from zi to b
passing through z is smaller than that passing through r̄ and, in the affirmative
case, we update the road signs by adding b to RSk(zi, z) and removing it from
RSk(zi, r̄); finally, we store the new distance from zi to b in D[zi, b] and insert
zi into H or decrease its key if it already belongs to H.

The following theorem states the correctness of IncRS.

Theorem 1. Given G = (V,E,w) and a partition R = {R1, R2, . . . , Rr} of V ,
for each (u, v) ∈ E and Rk ∈ R, IncRS correctly updates RSk(u, v) and Ak(u, v)
after a weight decrease operation on an edge of G.

Proof. Let us consider a region Rk ∈ R and a weight decrease operation ci
on edge (xi, yi). From Proposition 1, it is enough to show that IncRS correctly
updates RSk(u, v) after ci, for each (u, v) ∈ E. Given an edge (u, v), we denote as
RSk(u, v) and RS′

k(u, v) the road-signs of (u, v) before and after ci, respectively.
As ci decreases the weight of (xi, yi), then RSk(xi, yi) ⊆ RS′

k(xi, yi),
moreover for each (u, v) ∈ E, RSk(u, v) can be modified by adding or removing
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boundary nodes in RS′
k(xi, yi), that is RS′

k(u, v) \ RSk(u, v) ⊆ RS′
k(xi, yi) and

RSk(u, v)\RS′
k(u, v) ⊆ RS′

k(xi, yi). It follows that phase one (lines 1–8) correctly
updates the road-signs of edges outgoing from xi. The road-signs of the remaining
edges are updated in phase two, whose correctness is shown separately for each
boundary node b ∈ RS′

k(xi, yi) and derives from the following facts.

F1 The nodes are extracted from H at line 13 in non-decreasing order of keys.
Let us consider two nodes u and v extracted from H at times tu and tv with
keys D[u, b] and D[v, b], respectively. By contradiction, suppose that tu < tv and
D[u, b] > D[v, b]. Since at line 13 the node with the minimum key is extracted,
at time tu, D[u, b] was minimum and hence either u has been extracted into
H after tu or its key has been decreased after tu. In both cases, the algorithm
passed the test at line 17 which implies that there exists a node v1 and a time
tv1 < tv such that D[v1, b] < D[v, b] < D[u, b], where D[v1, b] is the key of v1
at time tv1 when v1 is extracted from H. If we iteratively repeat this arguments
for node v1, we obtain a sequence of nodes v ≡ v0, v1, v2, . . . , vk, where vk ≡ xi,
such that, if we denote as D[vj , b] the key of vj when it is extracted from H at
time tvj , then D[vj+1, b] < D[vj , b] and tvj+1 < tvj for each j = 0, 1, . . . k − 1.
For the condition at line 12, one of the nodes in the sequence vj has to belong
to H with key D[vj , b] < D[u, b] at time tu which contradicts the fact that, at
time tu, node u is the node with the minimum key.

F2 A node is extracted from H at line 13 at most once.
Suppose that a node u is extracted from H at two different times t1 < t2. Then,
node u has been inserted into H at two different times, denoted as t̄1 and t̄2,
when it does not belong to H. It follows that [t̄1, t1]∩ [t̄2, t2] = ∅. Further, let us
denote as Dt1 [u, b] (Dt2 [u, b], resp.) the key of u at time t̄1 (t̄2, resp.) which is
equal to that at time t1 (t2, resp.). Let us consider the two (possibly different)
nodes v1 and v2 which are extracted from H immediately before times t̄1 and
t̄2, respectively. Let us analyze the keys extracted from H. At time t̄1, v1 is
extracted with key D[v1, b], D[u, b] is set to Dt1 [u, b] = w(u, v1) +D[v1, b] and
b is added to RSk(u, v1). At time t1, u is extracted with key Dt1 [u, b]. At time
t̄2, v2 is extracted with key D[v2, b], and D[u, b] is set to Dt2 [u, b] = w(u, v2) +
D[v2, b], it follows that the test at line 17 returned true and, as b ∈ RSk(u, v1),
w(u, v2) +D[v2, b] < w(u, v1) +D[v1, b]. Hence Dt2 [u, b] < Dt1 [u, b]. At time t2,
u is extracted with key Dt2 [u, b] and, since t1 < t2, this contradicts Fact F1.

F3 For each edge (u, v) such that RS′
k(u, v) �= RSk(u, v), u is inserted into H.

We show a stronger statement that is: if a node changes its distance to b ∈
RS′

k(u, v) it is inserted into H. By contradiction, let us consider the node u such
that: it changes its distance to b, it is not inserted into H, and its distance to
b after ci is minimal among the nodes with the same properties. By this last
property, the node v on the shortest path from u to b after ci is inserted into H.
When v is extracted from H, either b belongs to RSk(u, v) or w(u, v)+D[v, b] <
w(u, r̄) +D[r̄, b], where r̄ is the node such that b ∈ RSk(u, r̄). In both cases, u
is inserted into H at line 22.
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Table 1. Tested road graphs. 1st col.: the graph; 2nd and 3rd col.s: number of nodes
and edges in the graph; 4th–7th col.s: percentage of edges into categories: motorways
(mot), national roads (nat), regional roads (reg), and urban streets (urb)

graph n. of nodes n. of edges %mot %nat %reg %urb

lux 30 647 75 576 0.55 1.95 14.77 82.71
dnk 469 110 1 090 148 24.02 3.06 0.48 72.45
bel 458 403 1 164 046 22.90 2.92 0.52 73.62
aut 722 512 1 697 902 27.60 5.33 1.71 65.21
esp 695 399 1 868 838 33.22 6.34 1.51 58.87
ned 892 027 2 278 824 0.40 0.56 5.16 93.86
swe 1 546 705 3 484 378 19.54 2.86 0.45 77.10

F4 When a node u is extracted from H at line 13, for each (u, v) ∈ E, RSk(u, v)
is correctly updated.
By contradiction, let us consider the first node u whose outgoing edges have
wrong road-signs when u is extracted from H. Let us consider the node v such
that b ∈ RSk(u, v) when u is extracted, that is v is the node that was extracted
from H immediately before the last time that either u is inserted into H or its
key is decreased. As u is the first node whose outgoing edges have wrong road-
signs when it is extracted from H, then the road-signs of the edges outgoing
from v are correctly updated. Moreover, also the road-signs of edges outgoing
from w, for each (u,w) ∈ E are correctly updated. In fact two cases may arise:
if w changes the road-signs of its outgoing edges then, by Fact F3, it is inserted
into H, by facts F1 and F2, it is extracted before u and hence, by hypothesis, it
correctly updates the road-signs of its outgoing edges; otherwise the road-signs
of its outgoing edges are already correct. In any case, when u is inserted into H

the distances used in the test of line 17 are correctly computed and hence the
road signs are correctly updated. �
From a theoretical point of view, IncRS requires a computational complexity
which is, in the worst case, comparable to that of the recomputation from scratch
of Arc-Flags. However, IncRS focuses the computation only on the nodes that
change shortest paths to a subset of the boundary nodes (and possibly on the
neighbors of such nodes). In contrast, the recomputation from scratch computes
all the shortest paths from any boundary node to each other node of the network.
This difference is difficult to be captured by a worst case analysis and this
motivates the experimental study of the next section.

4 Experimental Study

In this section, we compare the performances of the incremental algorithm
proposed in this paper and the decremental algorithm of [3], whose combination
is named here DynRS, on fully dynamic sequences of weight change operations
against the recomputation from scratch of Arc-Flags. We used the implementa-
tion of Arc-Flags of [2]. Furthermore, it has been shown in [10] that the best
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Fig. 2. Speed-up factors of the fully dynamic algorithm for the road network of Sweden,
without (left) and with (right) outliers

query performances for Arc-Flags are achieved when partitions are computed by
using arc-separator algorithms. For this reason, we used arc-separators obtained
by the METIS library [8]. Our experiments are performed on a workstation
equipped with a Quad-core 3.60 GHz Intel Xeon X5687 processor, with 12MB
of internal cache and 24 GB of main memory. The program has been compiled
with GNU g++ compiler 4.4.3 under Linux (kernel 2.6.32).

We consider seven road graphs available from PTV [11] representing the road
networks of Luxembourg, Denmark, Belgium, Austria, Spain, Netherlands and
Sweden, denoted as lux, dnk, bel, aut, esp, ned and swe, respectively. In
each graph, edges are classified into four categories according to their speed
limits: motorways (mot), national roads (nat), regional roads (reg) and urban
streets (urb). The main characteristics of these graphs are reported in Table 1.
We consider fully dynamic sequences of updates simulating disruptions on road
networks built as follows. The most significant operation that can occur on a road
segment is the increase of a weight, which simulates a delay in the travel time
on that segment due, for instance, to a traffic jam. This operation is usually
followed by a weight decrease on the same road segment which simulates the
restore from the delay. Hence, for each operation in the sequence that increases
the weight of an edge (xi, yi) of a quantity γi, there is a corresponding subsequent
operation which decreases the weight of edge (xi, yi) of the same amount γi. We
execute, for each graph considered and for each road category, random sequences
of 100 weight-change operations as described above. The weight-change amount
for each operation is chosen uniformly at random in [25%, 75%] of the weight of
the edge involved in that operation. As a performance indicator, we choose the
time used by the algorithms to complete a single update during the execution of
a sequence. We measure, as speed-up factor, the ratio between the time required
by the recomputation from scratch of Arc-Flags and that required by DynRS.
The results are reported in Fig. 2–3, and in Table 2.

Fig.s 2 and 3 show two box-plot diagrams representing the values of the speed-
up factors obtained for swe and ned. For each category, we represent minimum



144 G. D’Angelo et al.

1e+00

1e+01

1e+02

1e+03

1e+04

mot nat reg urb

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

mot nat reg urb

Fig. 3. Speed-up factors of the fully dynamic algorithm for the road network of the
Netherlands, without (left) and with (right) outliers

value, first quartile, median value, third quartile, and maximum value. In both
figures, the diagram on the left does not show outlier values while the diagram
on the right does. Outlier values occur when DynRS performs much better than
Arc-Flags because the number of Road-Signs changed is very small. We consider
a test as outlier if the speed-up factor is 1000 times the speed-up factor median
value. Even without outliers, the speed-up gained by DynRS is high.

Notice that, in the case of swe (Fig. 2), the speed-up factors are quite similar
on the different categories, thus highlighting an independency from categories.
This is the typical behavior of road networks, as shown also for bel, dnk, esp
and aut in Table 2, where we report the average time of the recomputation
from-scratch of Arc-Flags and the average time of DynRS, the average ratios
between these quantities and the speed-up factors. The only exceptions are lux
and ned, where the percentage of motorways is very low. This is the reason
why we highlight the behavior of DynRS on ned in Fig. 3, where the speed-up
factor reaches the highest values when update operations occur on urban edges,
while it is smaller when they occur on motorway edges. In fact, when an update
operation occurs on urban edges, the number of shortest paths that change is
small compared to the case that an update operation occurs on motorways edges.
This implies that DynRS, which selects the nodes that change such shortest
paths and focus the computation only on such nodes, performs better than the
recomputation from-scratch of the shortest paths from any boundary node.

We note that, the speed-up factor increases with the size of the network. This
can be explained by the fact that, when an edge update operation occurs, it af-
fects only a part of the graph, hence only a subset of the edges in the graph need
to update their Arc-Flags or Road-Signs. In most of the cases, this part is small
compared to the size of the network and, with high probability, it corresponds to
the subnetwork close to the edge increased or closely linked to it. In other words,
it is unlike that a traffic jam in a certain part of the network affects the shortest
paths of another part which is far or not linked to the first one. Clearly, this
fact is more evident when the road network is big. In conclusion, it is evident from
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Table 2. Avg update times and speed-up factors of DynRS. 1st col.: graph; 2nd col.:
category where the weight changes occur; 3rd and 4th col.s: avg computational time
for Arc-Flags and DynRS, resp.; 5th col.: ratio between the values of the 3rd and the
4th col.s; 6th col.: avg speed-up factors of DynRS against Arc-Flags

graph cat. AF (s) DynRS (s) ratio avg. speed-up

lux

mot 5.50

5.52

2.28

1.57

2.42

6.16

11.09

40.32
nat 5.51 2.64 2.09 32.81
reg 5.56 0.99 5.61 24.79
urb 5.52 0.38 14.50 92.60

dnk

mot 542.55

542.46

17.05

14.90

31.84

37.40

449.10

431.41
nat 542.83 11.24 48.31 430.16
reg 542.22 16.16 33.61 330.64
urb 542.25 15.13 35.84 515.72

bel

mot 644.48

644.34

23.16

23.73

27.83

29.18

195.53

238.23
nat 644.30 28.93 22.26 195.81
reg 644.31 28.00 23.03 421.83
urb 644.28 14.85 43.58 139.73

aut

mot 935.16

940.83

39.31

26.25

23.76

39.04

108.12

166.10
nat 934.16 19.08 48.99 185.48
reg 956.62 27.70 33.74 183.09
urb 937.38 18.89 49.65 187.71

esp

mot 736.81

737.31

22.21

21.41

33.15

34.91

392.19

373.98
nat 737.30 21.44 34.39 562.27
reg 736.50 24.46 30.12 264.78
urb 736.32 17.54 41.98 276.66

ned

mot 1 607.36

1 606.29

206.36

90.55

7.78

41.31

31.45

169.79
nat 1 606.22 107.27 14.97 107.20
reg 1 609.60 30.85 52.03 181.84
urb 1 601.96 17.71 90.45 358.67

swe

mot 2 681.54

2 681.16

113.90

76.12

23.65

38.14

180.36

316.64
nat 2 681.94 68.98 38.87 519.96
reg 2 678.81 52.79 50.75 394.99
urb 2 682.34 68.82 39.29 171.24

Table 2, that DynRS outperforms the recomputation from-scratch by far and
that it requires reasonable computational time.

Regarding the preprocessing phase, in Table 3 we report the computational
time and the space occupancy required by Arc-Flags and DynRS. Table 3 shows
that, for computing Road-Signs along with Arc-Flags, we need about twice the
computational time required for computing only Arc-Flags, which is a small
overhead compared to the speed-up gained in the updating phase. The same
observation can be done regarding the space occupancy. In fact, Table 3 also
shows that the space required for storing both Road-Signs and Arc-Flags is
between 1.44 and 3.48 times that required to store only Arc-Flags.
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Table 3. Preprocessing time and space. 1st col.: graph; 2nd col.: number of regions;
3rd col.: preprocessing time, in seconds, of Arc-Flags; 4th col.: preprocessing time, in
seconds, of Arc-Flags and Road-Signs; 5th col.: ratio between the values reported in the
4th and the 3rd column; 6th col.: space required, in Bytes, to store Arc-Flags; 7th col.:
space required, in Bytes, to store Arc-Flags and Road-Signs; 8th col.: ratio between
the values of the 7th and the 6th column

graph reg. AF (s) AF+RS (s) t. ratio AF (B) AF+RS (B) s. ratio

lux 64 5.52 11.79 2.14 1 209 216 1 744 531 1.44
dnk 128 542.46 1 104.16 2.04 17 442 368 43 932 508 2.52
bel 128 644.34 1 373.11 2.13 18 624 736 64 759 010 3.48
aut 128 940.83 1 995.93 2.12 27 166 432 78 720 055 2.90
esp 128 737.31 1 446.65 1.96 29 901 408 67 664 666 2.26
ned 128 1 606.29 3 214.34 2.00 36 461 184 64 612 836 1.77
swe 128 2 681.16 5 986.62 2.23 55 750 048 163 151 588 2.93
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Abstract. We propose a new greedy algorithm for the maximum car-
dinality matching problem. We give experimental evidence that this al-
gorithm is likely to find a maximum matching in random graphs with
constant expected degree c > 0, independent of the value of c. This is
contrary to the behavior of commonly used greedy matching heuristics
which are known to have some range of c where they probably fail to
compute a maximum matching.

1 Introduction

Maximum Cardinality Matchings. Consider an undirected graph G = (V, E)
with node set V , |V | = n, and edge set E ⊆ (V2), |E| = m. A matching M in
G is a subset of E with the property that the edges in M are pairwise disjoint.
The problem of finding a matching with the largest possible cardinality, a so
called maximum matching, has been a subject of study for decades. The first
polynomial time algorithm for this problem was given in 1965 by Edmonds [11].
A straightforward implementation of this algorithm has running time O(n2 · m).
Many other polynomial time algorithms followed, eventually reducing the run-
ning time to O(n1/2 ·m), as, e.g., the algorithm of Micali and Vazirani [16,21]. For
dense graphs, i.e., graphs with m = Θ(n2) edges, this was the best known until
2004 when Mucha and Sankowski [17] gave an algorithm that has (expected)
running time dominated by the time for multiplying two n × n matrices, which
is O(nω), with ω < 2.376 [8].

Heuristics. Usually matching algorithms, notably augmenting path algorithms,
are allowed to be initialized with a non-empty matching which is then iteratively
improved to a maximum matching. Hence a large enough initial matching deter-
mined with some fast heuristic approach can decrease the running time of an ex-
act algorithm significantly. Apart from the use of heuristics in the preprocessing
phase of exact algorithms there is an interest in graph classes where heuristics,
especially fast greedy algorithms, are likely to obtain maximum matchings. On
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such classes heuristics can replace the (overall) exact algorithms if the heuristics
are faster or at least equally fast but easier to implement.

Sparse Random Graphs. A well studied graph class in this context is the class
of random graphs with constant expected degree c. Let G(n; c) be a random
(general) graph with n nodes where each of the

(
n
2

)
possible edges is present with

probability p = c/(n − 1), and let B(n/2, n/2; c) be a random bipartite graph
with n nodes where each of the n2/4 possible edges is present with probability
p = 2·c/n. Bast et al. [3] showed that if c > c0 for c0 = 32.67 in the case of general
graphs, and c0 = 8.83 in the case of bipartite graphs, then with high probability
every non-maximum matching in G(n; c) and B(n/2, n/2; c) has an augmenting
path of length O(log n). (Note that this also holds for c ∈ (0, 1), and indeed it
is conjectured that the statement is true for all constant c > 0, in both cases.)
Hence matching algorithms using shortest augmenting paths like the algorithm
of Micali and Vazirani [16] for general graphs and the algorithm of Hopcroft and
Karp [13] for bipartite graphs have (expected) running time O(n·log n) on sparse
random graphs. Chebolu et al. [7] gave an algorithm with (expected) running
time O(n). The first, simple phase of their algorithm uses the well-known Karp-
Sipser heuristic. (The second part is much more complex.) Karp and Sipser [14]
proved that with high probability their greedy algorithm produces a matching
which is within o(n) of the maximum for every constant c > 0. This result was
improved by Aronson et al. [2] who showed that actually for c < e the Karp-
Sipser algorithm finds a maximum matching with high probability, and for c > e
the size of the matching found is within n1/5+o(1) of the maximum with high
probability. For practical purposes Karp and Sipser suggested a different greedy
algorithm, Algorithm 1 of [14], that turns out to give better results in their
experiments but seems to be more complicated to analyze because it utilizes an
operation called “contraction of nodes”. This operation plays a role in some of
the algorithms discussed below.

“Critical Region”. In an experimental study Magun [15] compared the perfor-
mance of several greedy matching algorithms in the style of the algorithms given
in [14] on sparse random graphs. It turned out that there are good greedy al-
gorithms that are likely to give maximum matchings for a wide range of c, but
even the best algorithm in this study often fails to find a maximum matching in
the range of about 2.6 ≤ c ≤ 3.8 (where the lower bound is likely to converge
to e ≈ 2.718 for n large enough). Hence there is some region for c that seems
critical for known greedy matching heuristics.

1.1 Our Results

We describe a new greedy matching algorithm and give experimental evidence
that this algorithm is likely to compute a maximum matching in sparse random
graphs for all ranges of c and large enough n; in particular, it seems to overcome
the critical region that shows up in the results of [15]. The algorithm is motivated
by the “selfless algorithm” of Sanders [18], for orienting undirected graphs such
that the maximum in-degree is below a given constant.
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Drawback. In comparison to the common greedy heuristics discussed above the
running time of our algorithm is larger and more affected by the expected degree
c. Hence, we propose using a combined algorithm that falls back on our approach
solely for the critical region.

1.2 Overview of the Paper

In the next section we consider several common greedy matching heuristics and
give some motivation for our new approach. Following that, in the main part of
the paper we describe the experiments and discuss the results.

2 Greedy Matching Heuristics

In this section we give a brief description of the greedy matching algorithms
considered here. The structure of this section is similar to Section 3 of [15].

Basic Structure. The algorithms work recursively. Let G0 = G be the input
graph. Consider some arbitrary recursion level l ≥ 0. Let Gl be the current
graph, and let d be the minimum degree of Gl. There are two cases:
d ≤ 2. Apply an “optimal reduction step” on Gl, i.e., depending on d, remove

nodes and edges from Gl to obtain Gl+1.
d ≥ 3. Apply a “heuristic reduction step” on Gl, i.e., choose an edge e = {u, v}

from Gl with the highest priority according to some heuristic order of prior-
ity, and remove u and v and all incident edges from Gl to obtain Gl+1.

Now run the algorithm recursively on Gl+1, which will return a matching Ml+1

for Gl+1. Finally, add an edge to Ml+1 to obtain a matching Ml for Gl. An opti-
mal step will never decrease the size of a maximum matching, while a heuristic
step might do that.

Optimal Steps. The two optimal steps that we consider are commonly known as
“degree 1 reduction” and “degree 2 reduction”. They are based on the following
facts proved by Karp and Sipser in [14].

Fact 1. Let G = (V, E) be a graph. If there exists a node u ∈ V with degree
deg(u) = 1, adjacent to a node v ∈ V , then there exists a maximum matching
M in G with {u, v} ∈ M .

Fact 2. Let G = (V, E) be a graph. If there exists a node u ∈ V with degree
deg(u) = 2, adjacent to nodes v1, v2 ∈ V , then there exists a maximum matching
M in G with either {u, v1} ∈ M or {u, v2} ∈ M .

For any subset V ′ of the nodes of G let G \ V ′ be the subgraph of G that is
induced by all nodes of V \V ′. (Note that if e is an edge of G, then G \ e means
that the two nodes of e are removed.) Let G◦V ′ be the graph that results from G
by contracting all nodes of V ′ into a single node and removing all multiple edges
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and self-loops. Using these definitions we can state the optimal degree reduction
steps as follows.
degree 1 reduction: Randomly choose a node u from Gl with degree deg(u) =

1, incident to an edge e. Shrink the graph Gl via Gl+1 ← Gl \ e. Enlarge the
matching Ml+1 given by the recursive call via Ml ← Ml+1 ∪ {e}.

degree 2 reduction: Randomly choose a node u from Gl with deg(u) = 2,
adjacent to nodes v1, v2. Contract the three nodes into a single node v via
Gl+1 ← Gl◦{u, v1, v2} and store how v was constructed. If an edge e = {v, w}
is part of the matching Ml+1 given by the recursive call, then to obtain the
matching Ml either replace e with {v1, w} in Ml+1 and add {u, v2} to Ml+1,
or replace e with {v2, w} in Ml+1 and add {u, v1} to Ml+1.

In the following we will use “OPT(1)” and “optimal degree 1 reduction”, as well
as “OPT(1,2)” and “optimal degree 1 and optimal degree 2 reduction” synony-
mously.

Heuristic Steps. The procedure for the heuristic step is similar to the degree 1
reduction step. First choose an edge e, then shrink the graph via Gl+1 ← Gl \ e,
and finally enlarge the matching Ml+1 obtained by the recursive call on Gl+1

via Ml ← Ml+1 ∪ {e}. The choice of the edge is based on a priority order of the
edges, where the priorities are calculated using properties in the neighborhood
of the nodes. We consider the following heuristics.
random edge: Randomly choose an edge e ∈ E.
double minimum degree: Randomly choose a node u ∈ V among the nodes

with smallest degree. Randomly choose an edge e = {u, v} ∈ E where v is
among the neighbors of u that have smallest degree.

minimum expected potential, minimum degree: Randomly choose a node
u ∈ V among the nodes with smallest potential π(u), where

π(u) =
∑

{u,v}∈E

1
deg(v)

.

Then randomly choose an edge e = {u, v} ∈ E where v is among the neigh-
bors of u that have smallest degree.

Simply choosing an edge at random can be seen as all edges having the same
priority, which disregards the structure of the graph. The idea of choosing a
node of low degree is that the lower the degree the fewer the possibilities of the
node u to be covered by a matching. This is taken one step further in the third
heuristic by calculating the values π(u). If each neighbor v of a node u randomly
declares one of its incident edges to be the only edge that is allowed to cover v
in a matching then the value π(u) is the expected number of potential matching
edges that could cover u. As before, the lower the number of possibilities the
more urgent it is to include the node in a matching edge.

In the following we will use interchangeably: “HEU(rand)” and “random edge
heuristic”, “HEU(deg,deg)” and “double minimum degree heuristic”, as well as
“HEU(pot,deg)” and “minimum expected potential, minimum degree heuristic”.
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Algorithms. We list six matching algorithms whose performance is examined
in our experiments, where the last two algorithms are new. The names of the
algorithms are generic, describing their structure as combination of the utilized
optimal and heuristic steps. If an algorithm uses OPT(1,2) then the degree 1
reduction step is always preferred to the degree 2 reduction step.

OPT(1):HEU(rand) This algorithm is commonly known as Karp-Sipser algo-
rithm as it was first analyzed by Karp and Sipser in [14, Algorithm 2]. If the
expected degree c of a sparse random graph is below e then the algorithm
finds a maximum matching (with high probability) and if c is larger than
e then the matching is within n1/5+o(1) of the maximum cardinality (with
high probability), see [2].

OPT(1,2):HEU(rand) This is a variant of the Karp-Sipser algorithm using
in addition the degree 2 reduction step, which was also proposed in [14]. It
is included to investigate the effect of the degree 2 reduction.

OPT(1):HEU(deg,deg) This algorithm is recommended in the experimental
study [15] as the most practical algorithm, see [15, Conclusion]. Note that
the optimal degree 1 reduction does not need to be implemented separately
since it is performed implicitly by the heuristic step.

OPT(1,2):HEU(deg,deg) This is one of the two algorithms proposed in [15]
that offer the highest quality of solution. The other one (called BlockRed) is
more complicated, using an additional optimal reduction, but has very sim-
ilar performance. It was demonstrated experimentally that both algorithms
are likely to compute a maximum matching in sparse random graphs when
c < 2.6 or c > 3.8, but fail to do so for other values of c. Moreover, in the
“critical region” 2.6 ≤ c ≤ 3.8 the number of edges that are missing from a
matching with maximum cardinality is increasing with increasing n.

OPT(1):HEU(pot,deg) This is the first new algorithm. It is a straightfor-
ward adaptation of the selfless algorithm proposed by Sanders in [18] for
determining an orientation of the edges of an undirected graph. The selfless
algorithm has been proven to be optimal in the sense that with high proba-
bility it obtains an orientation of the edges of an undirected sparse random
graph that gives maximum in-degree k, if the average degree c is such that
such an orientation is likely to exist, see [6].

OPT(1,2):HEU(pot,deg) This is the second new algorithm and the outcome
of our search for an algorithm that has probably no critical region. As shown
in the following experiments the additional use of the degree 2 reduction is
essential.

Note that the recursive structure of the algorithms can easily be transformed
into an iterative structure, if there is no degree 2 reduction or one only needs to
compute the size of a maximum matching, since in both cases there is no need
to undo the contraction of nodes.

Algorithm OPT(1,2):HEU(pot,deg) is the heuristic we propose for computing
maximum cardinality matchings in sparse random graphs. Therefore its pseu-
docode (Algorithm 1) is given below for completeness.
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Algorithm 1. OPT(1,2):HEU(pot,deg)[G: graph]
Input: simple graph G = (V, E) with node set V and edge set E
Output: matching M

M ← ∅;
if E �= ∅ then

d←minimum degree of all nodes in V ;
if d = 1 then

u← random node from V with deg(u) = 1;
v ← neighbor of u;
M ← OPT(1,2):HEU(pot,deg)[G \ {u, v}];
M ←M ∪ {{u, v}};

else if d = 2 then
u← random node from V with deg(u) = 2;
{v1, v2} ← set of 2 neighbors of u;
v ← {u, v1, v2};
M ← OPT(1,2):HEU(pot,deg)[G ◦ {u, v1, v2}];
if v is not matched in M then M ←M ∪ {{u, v1}};
else

w← matching neighbor of v;
M ←M \ {{v, w}};
if {v1, w} ∈ E then M ←M ∪ {{v1, w}, {u, v2}};
else M ←M ∪ {{v2, w}, {u, v1}};

else
π ←minimum potential of all nodes in V ;
u← random node from V with π(u) = π;
N ← set of neighbors of u;
v ← random node from N with minimum degree;
M ← OPT(1,2):HEU(pot,deg)[G \ {u, v}];
M ←M ∪ {{u, v}};

return M ;

3 Experiments

We examine the performance of the six greedy matching algorithms, described
in the last section, on random general graphs G(n; c) and random bipartite
graphs B(n/2, n/2; c) with n nodes and constant expected average degree c. We
cover parameter ranges n ∈ {104, 105, 106} and c ∈ [1, 10], where parameter c is
iteratively increased via c = 1 + i · 0.1, for i = 0, 1, . . . , 90.

Remark 1. It is well known that for c > 1 the size of the largest component
of the random graphs considered here is linear in n with high probability (the
“giant component”).
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Construction of Random Graphs. Let N =
(
n
2

)
, p = c/(n−1) for random general

graphs G(n; c), and let N = n2/4, p = 2 · c/n for random bipartite graphs
B(n/2, n/2; c). For fixed parameters (n, c) the construction of a random graph
G = (V, E) is done as follows. We start with the node set V = {1, 2, . . . , n} and an
empty edge set E. If n = 104 then each of the N possible edges is generated and
added to E with probability p independently of all other edges. If n ∈ {105, 106}
then, in order to keep the construction time manageable, we first determine the
number of edges X , which is expected to be linear in n, and then randomly
choose X edges from the set of N possible edges. The number of edges follows
a binomial distribution X ∼ Bin(N, p). To determine a realization x of X , we
obtain a realization y of a standard normal random variable Y ∼ Nor(0, 1) using
the polar method [20, Section 2.3.1]. The value x̃ = round(y·√N · p(1 − p)+N ·p)
is used as an approximation of x. As long as x̃ is not feasible the calculation is
repeated with new realizations of N .

Measurements. For each pair of parameters (n, c) we constructed 100 random
graphs (bipartite and general) and measured the following quantities for each of
the six heuristics:
– the failure rate λ. This is the fraction of graphs where the matching obtained

by the heuristic is not a maximum matching.
– the average number of “lost edges” ρ, which we define as the average number

of edges missing from a maximum matching, conditioned on the event that
a failure occurs. If no failure occurs we let ρ = 0.

To get insight in how the parameter c might influence the running time of our
new algorithm we did additional experiments using random graphs with n = 106

nodes. For each c we constructed 10 random graphs (bipartite and general) and
measured the following quantities for OPT(1,2):HEU(pot,deg):
– the average running time t̄ needed to obtain a matching, as well as the

corresponding sample standard deviation.
– the average fraction of: degree 1 reduction steps #o1, degree 2 reduction

steps #o2, and heuristic steps #h.

System. The source code for the graph generators as well as for the algorithms is
written in C++ and compiled with g++ version 4.5.1. The experiments regard-
ing the running time ran on an Intel Xeon CPU E5450 (using one core) under
openSUSE with kernel 2.6.37.6-0.11-desktop.

“Random” Numbers. For the necessary random choices for the algorithms as well
as for the construction of the random graphs we used the pseudo random number
generator MT19937 “Mersenne Twister” of the GNU Scientific Library [12].

3.1 Results

Here we consider results from the matching heuristics given in Section 2.
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Failure Rates. Figure 1 gives the failure rates
on general and bipartite random graphs with
n = 106 nodes and expected degree c rang-
ing from 1 to 10. The legend for both plots is
given to the right. Figures depicting the fail-
ure rates for graphs with 104 and 105 nodes
are given in the full version of the paper [10]. The results are qualitatively similar
to the results for n = 106.
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Fig. 1. Failure rates on graphs with n = 106 nodes

For 1 ≤ c ≤ 2.5 no failure occurred in any of the algorithms. Our new algo-
rithm OPT(1,2):HEU(pot,deg) never failed on bipartite graphs and failed three
times on general graphs, for c ∈ {3.3, 3.8, 8.2} with failure rate λ = 1/100. For
the other algorithms we observed the following behavior.
– For general graphs at c = 2.8 all of them have a failure rate λ of at least

0.86. For OPT(1,2):HEU(deg,deg) we could replicate the behavior, observed
in [15], that for c ≤ 2.6 and c ≥ 3.7 the failure rate of the algorithm is almost
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zero while for the other values of c the failure rate is very high, reaching
its peak with λ = 1 at c = 3.0. For the other heuristics λ stays quite high
beyond c = 2.8.

– For bipartite graphs the situation is different. The failure rates go up only
beyond 2.6 and the qualitative behavior varies widely among the different
heuristics. For OPT(1,2):HEU(deg,deg) we observed a critical region of 2.8 <
c < 3.5 but with a less pronounced failure rate, reaching its peak at c = 2.9
with λ = 0.37. For all other algorithms the failure rate seems to increase for
c beyond 8.

In [2], it is proved that OPT(1):HEU(rand) is likely to find a maximum match-
ing for c < e ≈ 2.718 mainly due to the optimal degree 1 reduction steps (so
called e-phenomenon). Our results indicate that including degree 2 reductions
does not influence this bound much. Overall, the heuristics with degree 2 re-
duction more often give a maximum matching than their counterparts that can
only utilize degree 1 reduction. In terms of the difference of the failure rates
this effect is smallest for OPT(1):HEU(rand) and OPT(1,2):HEU(rand) on gen-
eral random graphs. The best algorithms in terms of quality of solution are
OPT(1,2):HEU(deg,deg) and OPT(1,2):HEU(pot,deg).

Edges Lost if Failure Occurs. Unlike before, we are only interested in the algo-
rithms using degree 2 reduction, since on average they obtain the largest match-
ings. Figure 2 gives the average number of lost edges conditioned on the event
that a failure occurs, for general and bipartite random graphs with n = 106

nodes and expected degree c ranging from 1 to 10. The figures for the number
of lost edges for graphs with 104 and 105 nodes are given in [10]. The results are
qualitatively similar to the results for n = 106.

The number of lost edges for heuristic OPT(1,2):HEU(rand) and for heuristic
OPT(1,2):HEU(deg,deg), within their critical ranges, increases with increasing
n, cf. [10]. In the range of 2.8 ≤ c ≤ 10 the mean over the values ρ for heuris-
tic OPT(1,2):HEU(rand) is higher for the general graph scenario than for the
bipartite graph scenario, while the variance of ρ is lower. Outside its critical
range the double minimum degree heuristic OPT(1,2):HEU(deg,deg) loses zero
or one edges for most of the average degrees c on general graphs, and no edge
on bipartite graphs. Our new algorithm OPT(1,2):HEU(pot,deg) loses one edge
only in three cases.

Running Time Behavior. Figure 3 shows the average running time t̄ of algorithm
OPT(1,2):HEU(pot,deg) for calculating a matching, as well as the correspond-
ing average fraction of degree 1 reduction steps #o1, degree 2 reduction steps
#o2, and heuristic steps #h, on general random graphs with 106 nodes. The
run-time behavior on bipartite random graphs of this size is qualitatively and
quantitatively quite similar and given in [10]. The failure rate was zero in these
experiments.

The average running time exhibits a non-linear increase. In a first phase, for
1 ≤ c ≤ 2.7, the slope is linear and quite low. This is because in this range the
running time is dominated by the fraction of degree 1 reduction steps #o1, which
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Fig. 2. Average number of lost edges (if λ > 0) for graphs with n = 106 nodes

makes up more than 99 percent of all reduction steps. It follows a second phase
starting with a sudden increase of t̄ which starts to flatten soon at c about 3.5.
This goes along with a strong decrease of #o1 and increase of #o2 and #h. The
next slight increase of the slope seems to be between c = 6 and c = 7 when #o1
falls below 0.03 and the fraction of heuristic steps #h is more than 0.7, which
indicates the begin of a third phase. The slope in this phase is larger than in the
first phase and seems to be slightly non-linear. The sample standard deviation
of the running time is very low for the first phase and then increases slightly
with increasing c; we observed a maximum of about 0.46 sec for general random
graphs and of about 0.32 sec for bipartite random graphs.

Remark 2. To give an idea how to relate the running time of our implemen-
tation of the heuristic OPT(1,2):HEU(pot,deg) to the running time of an exact
matching algorithm, we give a rough comparison with the maximum cardinality
matching algorithm of the Boost C++ library [1], which is an implementation
of Edmonds’ algorithm [11] that follows closely [19]. On random general graphs,
using an initial matching from the OPT(1,2):HEU(rand) heuristic the exact
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Fig. 3. Run-time behavior of algorithm OPT(1,2):HEU(pot,deg) on general random
graphs with 106 nodes

algorithm was roughly 1.5 till 7.6 times faster (the gain increased with increas-
ing c), and using an empty initial matching the exact algorithm was about 59.4
times slower for c = 4 and about 40.4 times slower for c = 5.

4 Summary and Future Work

We proposed a new greedy algorithm to solve the maximum cardinality match-
ing problem on random graphs with constant expected degree c, and found in
experiments that this algorithm has a very low failure rate for a broad range
of c. It is an open problem to prove that this behavior is to be expected.

As suggested by a reviewer, an interesting possible future work is to study
the performance of our heuristic on other classes of sparse random graphs that
have the property that with high probability

– there exists a matching of size (1 − o(1)) · n/2, that is an almost perfect
matching, as proved in [4] for graphs with a fixed log-concave degree profile.

– there exists no almost perfect matching, see e.g. [5, Appendix].

The algorithm itself is an adaptation of the selfless algorithm of Sanders [18] for
orienting graphs, which was successfully generalized to orienting hypergraphs
before, see [9]. It seems possible that the “selfless approach” can be used as
generic building block for other greedy algorithms on random graphs too, like,
e.g., graph coloring, which would be interesting to investigate.

Acknowledgment. We thank the referees for their remarks that helped in
improving the paper.
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Abstract. In quicksort, due to branch mispredictions, a skewed pivot-
selection strategy can lead to a better performance than the exact-
median pivot-selection strategy, even if the exact median is given for
free. In this paper we investigate the effect of branch mispredictions on
the behaviour of mergesort. By decoupling element comparisons from
branches, we can avoid most negative effects caused by branch mispre-
dictions. When sorting a sequence of n elements, our fastest version of
mergesort performs n log2 n + O(n) element comparisons and induces at
most O(n) branch mispredictions. We also describe an in-situ version
of mergesort that provides the same bounds, but uses only O(log2 n)
words of extra memory. In our test computers, when sorting integer
data, mergesort was the fastest sorting method, then came quicksort,
and in-situ mergesort was the slowest of the three. We did a similar kind
of decoupling for quicksort, but the transformation made it slower.

1 Introduction

Branch mispredictions may have a significant effect on the speed of programs.
For example, Kaligosi and Sanders [8] showed that in quicksort [6] it may be
more advantageous to select a skewed pivot instead of finding a pivot close to
the median. The reason for this is that for a comparison against the median
the outcome has a fifty percent chance of being smaller or larger, whereas the
outcome of comparisons against a skewed pivot is easier to predict. All in all, a
skewed pivot will lead to a better branch prediction and—possibly—a decrease
in computation time. In a same vein, Brodal and Moruz [3] showed that skewed
binary search trees can perform better than perfectly balanced search trees.

In this paper we tackle the following question posed in [8]. Given a random
permutation of the integers {0, 1, . . . , n − 1}, does there exist a faster in-situ
sorting algorithm than quicksort with skewed pivots for this particular type of
input? We use the word in-situ to indicate that the algorithm is allowed to use
O(log2 n) extra words of memory (as any careful implementation of quicksort).

It is often claimed that quicksort is faster than mergesort. To check the cor-
rectness of this claim, we performed some simple benchmarks for the quicksort
(std::sort) and mergesort (std::stable sort) programs available at the GNU
implementation (g++ version 4.6.1) of the C++ standard library; std::sort is

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 160–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Table 1. The execution time [ns], the number of conditional branches, and the number
of mispredictions on two of our computers (Per and Ares), each per n log2 n, for the
quicksort and mergesort programs taken from the C++ standard library

Program std::sort std::stable sort

Time Branches Mispredicts Time Branches Mispredicts
n Per Ares Per Ares

210 6.5 5.3 1.47 0.45 6.2 5.0 2.05 0.14
215 6.2 5.2 1.50 0.43 5.9 4.7 2.02 0.09
220 6.2 5.1 1.50 0.43 6.3 4.7 2.01 0.07
225 6.1 5.1 1.51 0.43 6.1 4.6 2.01 0.05

an implementation of Musser’s introsort [13] and std::stable sort is an imple-
mentation of bottom-up mergesort. In our test environment1, for integer data,
the two programs had the same speed within the measurement accuracy (see
Table 1). An inspection of the assembly-language code produced by g++ revealed
that in the performance-critical inner loop of std::stable sort all element com-
parisons were followed by conditional moves. A conditional move is written in
C as if (a � b) x = y, where a, b, x, and y are some variables (or constants),
and � is some comparison operator. This instruction, or some of its restricted
forms, is supported as a hardware primitive by most computers. By using a
branch-prediction profiler (valgrind) we could confirm that the number of branch
mispredictions per n log2 n—referred to as the branch-misprediction ratio—was
much lower for std::stable sort than for std:.sort. Based on these initial ob-
servations, we concluded that mergesort is a noteworthy competitor to quicksort.

Our main results in this paper are:

1. We optimize (reduce the number of branches executed and branch mispre-
dictions induced) the standard-library mergesort so that it becomes faster
than quicksort for our task in hand (Section 2).

2. We describe an in-situ version of this optimized mergesort (Section 3). Even
though an ideal translation of its inner loop only contains 18 assembly-
language instructions, in our experiments it was slower than quicksort.

1 The experiments discussed in the paper were carried out on two computers:
Per: Model: Intel R© CoreTM2 CPU T5600 @ 1.83GHz; main memory: 1 GB; L2
cache: 8-way associative, 2 MB; cache line: 64 B.
Ares: Model: Intel R© CoreTM i3 CPU M 370 @ 2.4GHz × 4; main memory: 2.6 GB;
L2 cache: 12-way associative, 3 MB; cache line: 64 B.
Both computers run under Ubuntu 11.10 (Linux kernel 3.0.0-15-generic) and g++

compiler (gcc version 4.6.1) with optimization level -O3 was used. According to
the documentation, at optimization level -O3 this compiler always attempted to
transform conditional branches into branch-less equivalents. Micro-benchmarking
showed that in Per conditional moves were faster than conditional branches when the
result of the branch condition was unpredictable. In Ares the opposite was true. All
execution times were measured using gettimeofday in sys/time.h. For a problem
of size n, each experiment was repeated 226/n times and the average was reported.
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3. We eliminated all branches from the performance-critical loop of quicksort
(Section 4). After this transformation the program induces O(n) branch
mispredictions on the average. However, in our experiments the branch-
optimized versions of quicksort were slower than std::sort.

4. We made a number of experiments for quicksort with skewed pivots (Sec-
tion 4). We could repeat the findings reported in [8], but the performance
improvement obtained by selecting a skewed pivot was not very large. For
our mergesort programs the branch-misprediction ratio is significantly lower
than that reported for quicksort with skewed pivots in [8].

We took the idea of decoupling element comparisons from branches from
Mortensen [12]. He described a variant of mergesort that performs n log2 n+O(n)
element comparisons and induces O(n) branch mispredictions. However, the
performance-critical loop of the standard-library mergesort only contains 14
assembly-language instructions, whereas that of Mortensen’s program contains
more. This could be a reason why Mortensen’s implementation is slower than
the standard-library implementation. Our key improvement is to keep the in-
struction count down while doing the branch optimization.

The idea of decoupling element comparisons from branches was also used by
Sanders and Winkel [15] in their samplesort. The resulting program performs
n log2 n+O(n) element comparisons and induces O(n) branch mispredictions in
the expected case. As for Mortensen’s mergesort, samplesort needs O(n) extra
space. Using the technique described in [15], one can modify heapsort such that it
will achieve the same bound on the number of branch mispredictions in addition
to its normal characteristics. In particular, heapsort is fully in-place but it suffers
from a bad cache behaviour [5].

Brodal and Moruz [2] proved that any comparison-based program that sorts
a sequence of n elements using O(βn log2 n) element comparisons, for β > 1,
must induce Ω(n logβ n) branch mispredictions. However, this result only holds
under the assumption that every element comparison is followed by a condi-
tional branch depending on the outcome of the comparison. In particular, after
decoupling element comparisons from branches the lower bound is no more valid.

The branch-prediction features of a number of sorting programs were experi-
mentally studied in [1]; also a few optimizations were made to known methods.
In a companion paper [5] it is shown that any program can be transformed into
a form that induces only O(1) branch mispredictions. The resulting programs
are called lean. However, for a program of length κ, the transformation may
make the lean counterpart a factor of κ slower. In practice, the slowdown is
not that big, but the experiments showed that lean programs were often slower
than moderately branch-optimized programs. In [5], lean versions of mergesort
and heapsort are presented. In the current paper, we work towards speeding up
mergesort even further and include quicksort in the study.

A reader who is unfamiliar with the branch-prediction techniques employed
at the hardware level should recap the basic facts from a textbook on computer
organization (e.g. [14]). In our theoretical analysis, we assume that the branch
predictor used is static. A typical static predictor assumes that forward branches
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are not taken and backward branches are taken. Hence, for a conditional branch
at the end of a loop the prediction is correct except for the last iteration when
stepping out of the loop.

2 Tuned Mergesort

In the C++ standard library shipped with our compiler, std::stable sort is an
implementation of bottom-up mergesort. First, it divides the input into chunks of
seven elements and sorts these chunks using insertionsort. Second, it merges the
sequences sorted so far pairwise, level by level, starting with the sorted chunks,
until the whole sequence is sorted. If possible, it allocates an extra buffer of
size n, where n is the size of the input, then it alternatively moves the elements
between the input and the buffer, and produces the final output in the place of
the original input. If no extra memory is available, it reverts to an in-situ sorting
strategy, which is asymptotically slower than the one using extra space.

One reason for the execution speed is a tight (compact) inner loop. We repro-
duce it in a polished form below on the left together with its assembly-language
translation on the right. When illustrating the assembly-language translations,
we use pure C [10], which is a glorified assembly language with the syntax of
C [11]. In the following code extracts, p and q are iterators pointing to the cur-
rent elements of the two input sequences, r is an iterator indicating the current
output position, t1 and t2 are iterators indicating the first positions beyond the
input sequences, and less is the comparator used in element comparisons. The
additional variables are temporary: s and t store iterators, x and y elements,
and done and smaller Boolean values.

1 while (p != t1 && q != t2) {
2 i f (less(∗q , ∗p)) {
3 ∗r = ∗q ;
4 ++q ;
5 }
6 else {
7 ∗r = ∗p ;
8 ++p ;
9 }

10 ++r ;
11 }

1 test :
2 done = (q == t2) ;
3 i f (done) goto exit ;
4 entrance :
5 x = ∗p ;
6 s = p + 1;
7 y = ∗q ;
8 t = q + 1;
9 smaller = less(y , x) ;

10 i f (smaller) q = t ;
11 i f (! smaller) p = s ;
12 i f (! smaller) y = x ;
13 ∗r = y ;
14 ++r ;
15 done = (p == t1) ;
16 i f (! done) goto test ;
17 exit :

Since the two branches of the if statement are so short and symmetric, a good
compiler will compile them using conditional moves. The assembly-language
translation corresponding to the pure-C code was produced by the g++ com-
piler. As shown on the right above, the output contained 14 instructions.

By decoupling element comparisons from branches, each merging phase of
two subsequences induces at most O(1) branch mispredictions. In total, the
merge procedure is invoked O(n) times, so the number of branch mispredictions
induced is O(n). Other characteristics of bottom-up mergesort remain the same;
it performs n log2 n + O(n) element comparisons and element moves.
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Table 2. The execution time [ns], the number of conditional branches, and the num-
ber of mispredictions, each per n log2 n, for bottom-up mergesort taken from the C++
standard library and our optimized mergesort

Program std::stable sort Optimized mergesort
Time Branches Mispredicts Time Branches Mispredicts

n Per Ares Per Ares

210 6.2 5.0 2.05 0.14 4.4 3.5 0.75 0.06
215 5.9 4.7 2.02 0.09 4.4 3.5 0.66 0.04
220 6.3 4.7 2.01 0.07 5.2 3.7 0.62 0.03
225 6.1 4.6 2.01 0.05 5.2 3.7 0.60 0.02

To reduce the number of branches executed and the number of branch mis-
predictions induced even further, we implemented the following optimizations:

– Handle small subproblems differently: Instead of using insertionsort, we sort
each chunk of size four with a straight-line code that has no branches. In brief,
we simulate a sorting network for four elements using conditional moves.
Insertionsort induces one branch misprediction per element, whereas our
routine only induces O(1) branch mispredictions in total.

– Unfold the main loop responsible for merging: When merging two subse-
quences, we move four elements to the output sequence in each iteration.
We do this as long as each of the two subsequences to be merged has at least
four elements. Hereafter in this performance-critical loop the instructions
involved in the conditional branches, testing whether or not one of the input
subsequences is exhausted, are only executed every fourth element compari-
son. If one or both subsequences have less than four elements, we handle the
remaining elements by a normal (not-unfolded) loop.

To see whether or not our improvements are effective in practice, we tested
our optimized mergesort against std::stable sort. Our results are reported in
Table 2. From these results, it is clear that even improvements in the linear term
can be significant for the efficiency of a sorting program.

3 Tuned In-Situ Mergesort

Since the results for mergesort were so good, we set ourselves a goal to show
that some variation of the in-place mergesort algorithm of Katajainen et al. [9]
will be faster than quicksort. We have to admit that this goal was too ambitious,
but we came quite close. We should also point out that, similar to quicksort, the
resulting sorting algorithm is no more stable.

The basic step used in [9] is to sort half of the elements using the other half as
a working area. This idea could be utilized in different ways. We rely on the sim-
plest approach: Before applying the basic step, partition the elements around the
median. In principle, the standard-library routine std::nth element can accom-
plish this task by performing a quicksort-type partitioning. After partitioning
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and sorting, the other half of the elements can be handled recursively. We stop
the recursion when the number of remaining elements is less than n/ log2 n and
use introsort to handle them. An iterative procedure-level description of this
sorting program is given below. Its interface is the same as that for std::sort.

1 template <typename iterator , typename comparator>
2 void sort(iterator p , iterator r , comparator less) {
3 typedef typename std : : iterator_traits<iterator>::difference_type index ;
4 index n = r − p ;
5 index threshold = n / ilogb(2 + n) ;
6 while (n > threshold) {
7 iterator q_1 = p + n / 2;
8 iterator q_2 = r − n / 2;
9 converse_relation<comparator> greater(less) ;

10 std : : nth_element(p , q_1 , r , greater) ;
11 mergesort(p , q_1 , q_2 , less) ;
12 r = q_1 ;
13 n = r − p ;
14 }
15 std : : sort(p , r , less) ;
16 }

Most of the work is done in the basic steps, and each step only uses O(1)
extra space in addition to the input sequence. Compared to normal mergesort,
the inner loop is not much longer. In the following code extracts, the variables
have the same meaning as those used in tuned mergesort: p, q, r, s, t, t1, and
t2 store iterators; x and y elements; and done and smaller Boolean values.

1 while (p != t1 && q != t2) {
2 i f (less(∗q , ∗p)) {
3 s = q ;
4 ++q ;
5 }
6 else {
7 s = p ;
8 ++p ;
9 }

10 x = ∗r ;
11 ∗r = ∗s ;
12 ∗s = x ;
13 ++r ;
14 }

1 test :
2 done = (q == t2) ;
3 i f (done) goto exit ;
4 entrance :
5 x = ∗p ;
6 s = p + 1;
7 y = ∗q ;
8 t = q + 1;
9 smaller = less(y , x) ;

10 i f (smaller) s = t ;
11 i f (smaller) q = t ;
12 i f (! smaller) p = s ;
13 i f (! smaller) y = x ;
14 x = ∗r ;
15 ∗r = y ;
16 −−s ;
17 ∗s = x ;
18 ++r ;
19 done = (p == t1) ;
20 i f (! done) goto test ;
21 exit :

As shown on the right above, an ideal translation of the loop contains 18 assembly-
language instructions, which is only four more than that required by the inner loop
of mergesort. Because of register spilling, the actual code produced by the g++
compiler was a bit longer; it contained 26 instructions. Again, the two branches
of the if statement were compiled using conditional moves.

For an input of size m, the worst-case cost of std::nth element and std::sort

is O(m) and O(m log2 m), respectively [13]. Thus, the overhead caused by these
subroutines is linear in the input size. Both of these routines require at most a
logarithmic amount of extra space. To sum up, we rely on standard library com-
ponents and ensure that our program only induces O(n) branch mispredictions.
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Table 3. The execution time [ns], the number of conditional branches, and the number
of mispredictions, each per n log2 n, for two in-situ variants of mergesort

Program In-situ std::stable sort In-situ mergesort
Time Branches Mispredicts Time Branches Mispredicts

n Per Ares Per Ares

210 49.2 29.7 9.0 2.08 7.3 5.7 1.93 0.26
215 57.6 35.0 11.1 2.38 7.1 5.6 1.94 0.15
220 62.7 38.5 12.9 2.53 7.4 5.7 1.92 0.11
225 68.0 41.3 14.4 2.62 7.6 5.7 1.92 0.09

In our experiments, we compared our in-situ mergesort against the space-
economical mergesort provided by the C++ standard library. The library routine
is recursive, so (due to the recursion stack) it requires a logarithmic amount of
extra space. The performance difference between the two programs is stunning,
as seen in Table 3. We admit that this comparison is unfair; the library routine
promises to sort the elements stably, whereas our in-situ mergesort does not.
However, this comparison shows how well our in-situ mergesort performs.

4 Comparison to Quicksort

In the C++ standard library shipped with our compiler, std::sort is an imple-
mentation of introsort [13], which is a variant of median-of-three quicksort [6].
Introsort is half-recursive, it coarsens the base case by leaving small subprob-
lems (of size 16 or smaller) unsorted, it calls insertionsort to finalize the sorting
process, and it calls heapsort if the recursion depth becomes too large. Since
introsort is known to be fast, it was natural to use it as our starting point.

The performance-critical loop of quicksort is tight as shown on the left below; p
and r are iterators indicating how far the partitioning process has proceeded from
the beginning and the end, respectively; v is the pivot, and less is the comparator
used in element comparisons; the four additional variables are temporary: x and
y store elements, and smaller and cross Boolean values.

1 while (true) {
2 while (less(∗p , v)) {
3 ++p ;
4 }
5 −−r ;
6 while (less(v , ∗r)) {
7 −−r ;
8 }
9 i f (p >= r) {

10 return p ;
11 }
12 x = ∗p ;
13 ∗p = ∗r ;
14 ∗r = x ;
15 ++p ;
16 }

1 −−p ;
2 goto first_loop ;
3 swap :
4 ∗p = y ;
5 ∗r = x ;
6 first_loop :
7 ++p ;
8 x = ∗p ;
9 smaller = less(x , v) ;

10 i f (smaller) goto first_loop ;
11 second_loop :
12 −−r ;
13 y = ∗r ;
14 smaller = less(v , y) ;
15 i f (smaller) goto second_loop ;
16 cross = (p < r) ;
17 i f (cross) goto swap ;
18 return p ;
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In the assembly-language translation displayed in pure C [10] on the right above,
both of the innermost while loops contain four instructions and, after rotating
the instructions of the outer loop such that the conditional branch becomes its
last instruction, the outer loop contains four instructions as well. Due to instruc-
tion scheduling and register allocation, the picture was a bit more complicated
for the code produced by the compiler, but the simplified code displayed to the
right above is good enough for our purposes.

For the basic version of mergesort, the number of instructions executed per
n log2 n, called the instruction-execution ratio, is 14. Let us now analyse this ratio
for quicksort. It is known that for the basic version of quicksort the expected
number of element comparisons performed is about 2n ln n ≈ 1.39n log2 n and
the expected number of element exchanges is one sixth of this number [16].
Combining this with the number of instructions executed in different parts of
the performance-critical loop, the expected instruction-execution ratio is

(4 + (1/6) × 4) × 1.39 ≈ 6.48 .

This number is extremely low; even for our improved mergesort the instruction-
execution ratio is higher (11 instructions).

The key issue is the conditional branches at the end of the innermost while

loops; their outcome is unpredictable. The performance-critical loop can be made
lean using the program transformation described in [5]. A bit more efficient code
is obtained by numbering the code blocks and executing the moves inside the
code blocks conditionally. We identify three code blocks in the performance-
critical loop of Hoare’s partitioning algorithm: the two innermost loops and the
swap. By converting the while loops to do-while loops, we could avoid some
code repetition. The outcome of the program transformation is given on the
left below; variable lambda indicates the code block under execution. It turns out
that the corresponding code is much shorter for Lomuto’s partitioning algorithm
described, for example, in [4]. Now the performance-critical loop only contains
one if statement, and the swap inside it can be executed conditionally. The code
obtained by applying the program transformation is shown on the right below.

1 int lambda = 2;
2 −−p ;
3 do {
4 i f (lambda == 1) ∗p = y ;
5 i f (lambda == 1) ∗r = x ;
6 i f (lambda == 1) lambda = 2;
7 i f (lambda == 2) ++p ;
8 x = ∗p ;
9 smaller = less(x , v) ;

10 i f (lambda != 2) smaller = true ;
11 i f (! smaller) lambda = 3;
12 i f (lambda == 3) −−r ;
13 y = ∗r ;
14 smaller = less(v , y) ;
15 i f (lambda != 3) smaller = true ;
16 i f (! smaller) lambda = 1;
17 } while (p < r) ;
18 return p ;

1 while (q < r) {
2 x = ∗q ;
3 condition = less(x , v) ;
4 i f (condition) ++p ;
5 i f (condition) ∗q = ∗p ;
6 i f (condition) ∗p = x ;
7 ++q ;
8 }
9 return p ;
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Table 4. The execution time [ns], the number of conditional branches, and the number
of mispredictions, each per n log2 n, for two branch-optimized variants of quicksort

Program Optimized quicksort (Hoare) Optimized quicksort (Lomuto)
Time Branches Mispredicts Time Branches Mispredicts

n Per Ares Per Ares

210 9.2 6.5 2.93 0.43 6.5 5.2 2.14 0.40
215 9.5 6.4 3.24 0.42 6.5 5.1 2.34 0.40
220 9.7 6.5 3.33 0.42 6.6 5.2 2.40 0.40
225 9.8 6.5 3.46 0.42 6.7 5.3 2.42 0.40

The resulting programs are interesting in several respects. When we rely on
Hoare’s partitioning algorithm, in each iteration of the loop two element compari-
sons are performed. Since the loop is executed ∼2n ln n times on the average,
the expected number of element comparisons increases to ∼2.78n log2 n. This
increase does not occur for Lomuto’s partitioning algorithm. Note that in the
above C code we allow conditional moves between memory locations, and even
allow conditional arithmetic. If we are restricted to only use conditional moves
(as in pure-C), these instructions need to be substituted by pure-C instructions.
Because the underlying hardware only supports conditional moves to registers,
the assembly-language instruction counts were a bit higher than that indicated
by the C code above; the actual counts were 20 and 11, respectively. This means
that the expected instruction-execution ratio (that is a 1.39 factor of the in-
struction counts) is around 27.8 when Hoare’s partitioning is in use and around
15.29 when Lomuto’s partitioning is in use. Thus, the cost of eliminating the
unpredictable branches is high in both cases!

When testing these branch-optimized versions of quicksort, we observed that
the compiler was not able to handle that many conditional moves. In some
architectures each such move requires more than one clock cycle, so it may
be more efficient to use conditional branches. The performance of our branch-
optimized quicksort programs is reported in Table 4. Compared to introsort (see
Table 1), these programs are slower. To avoid branch mispredictions, it would
be necessary to write the programs in assembly language.

We also tested other variants of introsort by trying different pivot-selection
strategies: random element, first element, median of the first, middle and last
element, and α-skewed hypothetical element. Since in our setup the elements
are given in random order, the simplest pivot-selection strategy—select the first
element as the pivot—was already fast, but it was slower than the median-of-
three pivot-selection strategy used by introsort. On the other hand, the selection
of a skewed pivot indeed improved the performance. In our test environment, for
small problem instances the median pivot worked best (i.e. α = 1/2), whereas
for large problem instances α = 1/5 turned out to be the best choice. The results
for the naive and α-skewed pivot-selection strategies are given in Table 5.

From these experiments, our conclusion is that the performance of the sort-
ing programs considered is ranked as follows: mergesort, quicksort, and in-situ
mergesort. Still, quicksort is the fastest method for in-situ sorting.
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Table 5. The execution time [ns], the number of conditional branches, and the number
of mispredictions, each per n log2 n, for two other variants of introsort.

Program Introsort (naive pivot) Introsort ((1/5)-skewed pivot)
Time Branches Mispredicts Time Branches Mispredicts

n Per Ares Per Ares

210 7.0 5.6 1.78 0.45 6.4 5.1 1.48 0.37
215 6.6 5.3 1.78 0.43 6.1 4.8 1.53 0.36
220 6.5 5.1 1.74 0.42 6.0 4.7 1.55 0.35
225 6.4 5.1 1.72 0.42 6.0 4.7 1.56 0.34

5 Advice for Practitioners

Like sorting programs, most programs can be optimized with respect to different
criteria: the number of branch mispredictions, cache misses, element compari-
sons, or element moves. Optimizing one of the parameters may mean that the
optimality with respect to another is lost. Not even the optimal bounds are the
best in practice; the best choice depends on the environment where the programs
are run. The task of a programmer is difficult. As any activity involving design,
good programming requires good compromises.

In this paper we were interested in reducing the cost caused by branch mispre-
dictions. In principle, there are two ways of removing branches from programs:

1. Store the result of a comparison in a Boolean variable and use this value
in normal integer arithmetic (i.e. rely on the setcc family of instructions
available in Intel processors).

2. Move the data from one place to another conditionally (i.e. rely on the cmovcc

family of instructions available in Intel processors).

In Intel’s architecture optimization reference manual [7, Section 3.4.1], a clear
guideline is given how these two types of optimizations should be used.

Use the setcc and cmov[cc] instructions to eliminate unpredictable con-
ditional branches where possible. Do not do this for predictable branches.
Do not use these instructions to eliminate all unpredictable conditional
branches (because using these instructions will incur execution overhead
due to the requirement for executing both paths of a conditional branch).
In addition, converting a conditional branch to setcc or cmov[cc] trades
off control flow dependence for data dependence and restricts the ca-
pability of the out-of-order engine. When tuning, note that all Intel ...
processors usually have very high branch prediction rates. Consistently
mispredicted branches are generally rare. Use these instructions only if
the increase in computation time is less than the expected cost of a
mispredicted branch.

Complicated optimizations often mean complicated programs with many
branches. As a result, it will be more difficult to remove the branches by hand.
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Fortunately, an automatic way of eliminating all branches, except one, is known
[5]. However, the performance of the obtained program is not necessarily good
due to the high constant factor introduced in the running time. In our work we
got the best results by starting from a simple program and reducing branches
from it by hand.

Implicitly, we assumed that the elements being manipulated are small. For
large elements, it may be necessary to execute each element comparison and
element move in a loop. However, in order for the general O(n log2 n) bound for
sorting to be valid, element comparisons and element moves must be constant-
time operations. If this was not the case, e.g. if we were sorting strings of char-
acters, the comparison-based methods would not be optimal any more. On the
other hand, if the elements were large but of fixed length, the loops involved
in element comparisons and element moves could be unfolded and conditional
branches could be avoided. Nonetheless, the increase in the number of element
moves can become significant.

At this point we can reveal that we started this research by trying to make
quicksort lean (as was done with heapsort and mergesort in [5]). However, we
had big problems in forcing the compiler(s) to use conditional moves, and our
hand-written assembly-language code was slower than the code produced by the
compiler. So be warned; it is not always easy to eliminate unpredictable branches
without a significant penalty in performance.

6 Afterword

We leave it for the reader to decide whether quicksort should still be considered
the quickest sorting algorithm. It is definitely an interesting randomized algo-
rithm. However, many of the implementation enhancements proposed for it seem
to have little relevance in contemporary computers.

We are clearly in favour of mergesort instead of quicksort. If extra memory is
allowed, mergesort is stable. Multi-way mergesort removes most of the problems
associated with expensive element moves. The algorithm itself does not—even
though our in-situ mergesort does—use random access. This would facilitate an
extension to the interface of the C++ standard-library sort function: The input
sequence should only support forward iterators, not random-access iterators.

In algorithm education at many universities a programming language is used
that is far from a raw machine. Under such circumstances it gives little mean-
ing to talk about the branch-prediction features of sorting programs. A cursory
examination showed that in one of our test computers (Ares) the Python
standard-library sort was a factor of 135 slower than the C++ standard-library
sort when sorting million integers.
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Abstract. In this paper we present a general approach to string match-
ing based on multiple sliding text-windows, and show how it can be
applied to some among the most efficient algorithms for the problem
based on nondeterministic automata and comparison of characters.

From our experimental results it turns out that the new multiple slid-
ing windows approach leads to algorithms which obtain better results
than the original ones when searching texts over relatively large alpha-
bets. Best improvements are obtained especially for short patterns.

Keywords: string matching, bit parallelism, text processing, nondeter-
ministic automata, design and analysis of algorithms, natural languages.

1 Introduction

Given a text t of length n and a pattern p of length m over some alphabet
Σ of size σ, the string matching problem consists in finding all occurrences of
the pattern p in t. This problem has been extensively studied in computer sci-
ence because of its direct application to many areas. Moreover string matching
algorithms are basic components in many software applications and play an im-
portant role in theoretical computer science by providing challenging problems.

Among the most efficient solutions the Boyer-Moore algorithm [1] is a com-
parison based algorithm which deserves a special mention since it has been par-
ticularly successful and has inspired much work. Also automata based solutions
have been developed to design algorithms with efficient performance on aver-
age. This is done by using factor automata, data structures which identify all
factors of a word. Among them the Extended Backward Oracle Matching al-
gorithm [6] (EBOM for short) is one of the most efficient algorithms especially
for long patterns. Another algorithm based on the bit-parallel simulation [17] of
the nondeterministic factor automaton, and called Backward Nondeterministic
Dawg Match algorithm [13] (BNDM), is very efficient for short patterns.

Most string matching algorithms are based on a general framework which
works by scanning the text with the help of a substring of the text, called win-
dow, whose size is equal to m. An attempt of the algorithm consists in checking
whenever the current window is an occurrence of the pattern. This check is gen-
erally carried out by comparing the pattern and the window character by char-
acter, or by performing transitions on some kind of automaton. After a whole

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 172–183, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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match of the pattern (or after a mismatch is detected) the window is shifted to
the right by a certain number of positions, according to a shift strategy. This
approach is usually called the sliding window mechanism.

At the beginning of the search the left end of the window is aligned with the
left end of the text, then the sliding window mechanism is repeated until the
right end of the window goes beyond the right end of the text.

In this paper we investigate the performance of a straightforward, yet efficient,
approach which consists in sliding two or more windows of the same size along
the text and in performing comparisons (or transitions) at the same time as long
as possible, with the aim of speeding up the searching phase. We call this general
method the multiple sliding windows approach.

The idea of sliding multiple windows along the text is not original. It was
firstly introduced in [11] where the author presented a simple algorithm, called
Two Sliding Windows, which divides the text into two parts of size �n/2� and
searches for matches of p in t by sliding two windows of size m. The first window
scans the left part of the text, proceeding from left to right, while the second
window slides from right to left scanning the right part of the text. An additional
test is performed for searching occurrences in the middle of the text.

More recently Cantone et al. proposed in [3] a similar approach for increasing
the instruction level parallelism of string matching algorithms based on bit-
parallelism. This technique, called bit-(parallelism)2, is general enough to be
applied to a lot of bit-parallel algorithms.

It includes two different approaches which run two copies of the same au-
tomata in parallel and process two adjacent windows simultaneously, sliding
them from left to right. In both cases the two automata are encoded by using a
single computer word. Thus, due to its representation, the approach turns out
to be efficient only for searching very short patterns.

However the two approaches introduced by the bit-parallelism2 technique are
not general enough to be applied to all bit-parallel algorithms. For instance the
structure of the BNDM algorithm does not allow it to process in parallel two
adjacent (or partially overlapping) windows, since the starting position of the
next window alignment depends on the the shift value performed by the leftmost
one. Unfortunately such a shift has not a fixed value and it can be computed
only at the end of the each attempt.

Moreover the approaches proposed in [3] can be applied only for improving
the performance of automata based algorithms, thus they are not applicable for
all algorithms based on comparison of characters.

The paper is organized as follows. In Section 2 we introduce some notation
and the terminology used along the paper. In Section 3 we describe the new
general multiple sliding windows approach and apply it to some of the most
efficient algorithms based on the simulation of nondeterministic automata (Sec-
tion 3.1) and on comparison of characters (Section 3.2). Finally we present an
experimental evaluation in Section 4. Conclusions are drawn in Section 5.
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2 Notations and Terminology

Throughout the paper we will make use of the following notations and terminol-
ogy. A string p of length m > 0 is represented as a finite array p[0 . .m − 1] of
characters from a finite alphabet Σ of size σ. Thus p[i] will denote the (i+1)-st
character of p, for 0 ≤ i < m, and p[i . . j] will denote the factor (or substring)
of p contained between the (i + 1)-st and the (j + 1)-st characters of p, for
0 ≤ i ≤ j < m. A factor of the form p[0 . . i] is called a prefix of p and a factor
of the form p[i . .m − 1] is called a suffix of p for 0 � i < m. We denote with
Fact(p) the set of all factors of a string p.

The factor automaton of a pattern p, also called the factor DAWG of p (for
Directed Acyclic Word Graph), is a Deterministic Finite State Automaton (DFA)
which recognizes all the factors of p. Formally its recognized language is defined
as the set {u ∈ Σ∗ | exists v, w ∈ Σ∗ such that p = vuw}.

We also denote the reverse of the string p by p̄ , i.e. p̄ = p[m−1]p[m−2] · · ·p[0].
Finally, we recall the notation of some bitwise infix operators on computer

words, namely the bitwise and “&”, the bitwise or “|” and the left shift “�”
operator (which shifts to the left its first argument by a number of bits equal to
its second argument).

3 A General Multiple Sliding Windows Approach

In this section we describe a general multiple windows approach which can be
used for improving the practical performances of a large class of string matching
algorithms, including all comparison based algorithms. The general approach can
be seen as a filtering method which consists in processing k different windows of
the text at the same time, with k ≥ 2. Then, specific occurrences of the pattern
are tested only when candidate positions have been located.

Suppose p is a pattern of length m and t is a text of length n. Without loss in
generality we can suppose that n can be divided by k, otherwise the rightmost
(n mod k) characters of the text could be associated with the last window (as
described below). Moreover we assume for simplicity that m < n/k and that
the value k is even. Under the above assumptions the new approach can be
summarized as follows: if the algorithm searches for the pattern p in t using a text
window of size m, then partition the text in k/2 partially overlapping substrings,
t0, t1, . . . , tk/2−1, where ti is the substring t[2i�n/k� . .2(i+ 1)n/k +m− 2], for
i = 0, . . . , (k− 1)/2, and tk/2−1 (the last window) is set to t[n− (2n/k) . . n− 1].

Then process simultaneously the k different text windows, w0, w1, . . . , wk−1,
where we set w2i = t[s2i−m+1 . . s2i] (and call them left windows) and w2i+1 =
t[s2i+1 . . s2i+1 +m− 1] (and call them right windows), for i = 0, . . . , (k − 2)/2.

The couple of windows (w2i, w2i+1), for i = 0, . . . , (k−2)/2, is used to process
the substring of the text ti. Specifically the window w2i starts from position
s2i = (2n/k)i + m − 1 of t and slides from left to right, while window w2i+1

starts from position s2i+1 = (2n/k)(i + 1) − 1 of t and slides from right to
left (the window wk−1 starts from position sk−1 = n − m). For each couple
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MultipleSlidingWinsowsMatcher(p,m, t, n, k)
1. for i ← 0 to (k − 2)/2 do s2i ← (2n/k)i + m − 1
2. for i ← 0 to (k − 2)/2 − 1 do s2i+1 ← (2n/k)(i + 1) − 1
3. sk−1 ← n − m
4. while (∃ i such that s2i � s2i+1 + m − 1) do
5. if (checkSimultaneously(w0, w1, . . . , wk−1)=true) then
6. for i ← 0 to (k − 2)/2 do
7. if (s2i < s2i+1 − m + 1) then
8. Naively check if p = t[s2i . . s2i + m − 1]
9. if (s2i � s2i+1 − m + 1) then

10. Naively check if p = t[s2i+1 − m + 1 . . s2i+1]
11. Performs shifts for s2i and s2i+1

Fig. 1. A General Multiple Sliding Windows Matcher

of windows (w2i, w2i+1) the sliding process ends when the window w2i slides
over the window w2i+1, i.e. when s2i > s2i+1 +m − 1. It is easy to prove that
no candidate occurrence is left by the algorithm due to the m − 1 overlapping
characters between adjacent substrings ti and ti+1, for i = 0, . . . , k − 2.

Fig. 1 shows the pseudocode of a general multiple sliding windows matcher
which processes k windows in parallel, while Fig. 2 presents a scheme of the
search iteration of the multiple sliding windows matcher for k = 1, 2 and 4.

Procedure checkSimultaneously is used as a filtering method for locating can-
didate occurrences of the pattern in the k different text windows. Observe that,
when n cannot be divided by k, the assignment of line 3, which set sk−1 to n−m,
implies that the rightmost (n mod k) characters of the text are associated with
the last window. Moreover it can be proved that the general matcher algorithm
shown in Fig. 1 is correct if the value of checkSimultaneously(w0, w1, . . . , wk−1)
is true whenever wi = p for some i in the set {0, . . . , k − 1}.

If s2i = s2i+1+m−1 (which implies w2i = w2i+1) and a candidate position is
found, only the right window is checked for a real occurrence, in order to avoid
to report a duplicate occurrence of the pattern. This is done in lines 7 and 9.

This general approach can be applied to all string matching algorithms, in-
cluding comparison based and BMDN based algorithms. Moreover it can be
noticed that the worst case time complexity of the original algorithm does not
degrade with the application of the multiple sliding windows approach.

From a practical point of view, when computation of the filter can be done
in parallel and the alphabet is large enough, the new approach leads to more
efficient algorithms. As an additional feature, observe also that the two way
sliding approach enables exploitation of the structure of the pattern in both
directions, leading on average to larger shift advancements and improving further
the performance of the algorithm. On the other hand, when the alphabet is small
the performances of the original algorithm degrade by applying the new method,
since the probability to find mixed candidate positions increases substantially.

In the following sections we present simple variants, based on the multiple
sliding windows approach, of some among the most efficient algorithms based
on comparison of characters and bit-parallelism.
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(C) ︸ ︷︷ ︸
w0

s0 → ︸ ︷︷ ︸
w1

s1←

w2︷ ︸︸ ︷
s2 →

w3︷ ︸︸ ︷
s3←

(B) ︸ ︷︷ ︸
w0

s0 →

w1︷ ︸︸ ︷
s1←

(A) ︸ ︷︷ ︸
w0

s0 →

Fig. 2. A general scheme for the multiple sliding windows matcher. The scheme with
(A) a single window, (B) two windows and (C) four windows

3.1 Multiple Windows Variants of Bit-Parallel Algorithms

In the context of string matching, bit-parallelism [17] is used for simulating the
behavior of Nondeterministic Finite State Automata (NFA) and allows multiple
transactions to perform in parallel with a constant number of operations.

In this section we show the application of the multiple sliding windows ap-
proach to a simplified version of the BNDM algorithm [13] which, among the
several algorithms based on bit-parallelism, deserves a particular attention as it
has inspired a lot of variants and is still considered one of the fastest algorithms.
Among the various improvements of the BNDM algorithm we mention the Sim-
plified BNDM algorithm improved with Horspool shift [9], with q-grams [4,15],
and with lookahead characters [6,15]. The BNDM algorithm has been also mod-
ified in order to match long patterns [5] and binary strings [7].

Specifically, the BNDM algorithm simulates the suffix automaton of p̄. Its
bit-parallel representation of the suffix automaton uses an array, Bp, of σ bit-
vectors, each of size m, where the i-th bit of Bp[c] is set iff p[i] = c, for c ∈ Σ
and 0 � i < m. The algorithm works by shifting a window of length m over the
text. Specifically, for each text window alignment t[s−m+1 . . s], it searches the
pattern by scanning the current window backwards and updating the automaton
configuration accordingly. In the simplified version of BNDM the bit vector D
is initialized to Bp[p[s]], i.e. the configuration of the automaton after the first
transition. Then any subsequent transition on character c can be implemented
as D ← ((D � 1) & Bp[c]) .

An attempt ends when either D becomes zero (i.e., when no further factors of
p can be found) or the algorithm has performed m iterations (i.e., when a match
has been found). The window is then shifted to the start position of the longest
recognized proper factor.

Fig. 3 shows the code of the Simplified BNDM algorithm [14] (SBNDM for
short) and the code of its multiple sliding windows variant with 4 windows.

In general the k-windows variant of a SBNDM algorithm simulates k different
copies of two suffix automata, one for the reverse of the pattern and one for
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SBNDM(p,m, t, n)
1. for each c ∈ Σ do Bp(c) ← 0m

2. Fp ← 0m−11
3. for i ← m − 1 downto 0 do
4. Bp(p[i]) ← Bp(p[i]) | Fp

5. Fp ← Fp 
 1
6. s ← m − 1
7. while (s ≤ n − 1) do
8. D ← Bp(t[s])
9. j ← s − m + 1

10. while (D �= 0) do
11. s ← s − 1
12. D ← (D 
 1) & Bp(t[s])
13. if (s < j) then
14. s ← s + 1
15. Output(s)
16. s ← s + m

SBNDM-W4(p,m, t, n)
1. for each c ∈ Σ do Bp(c) ← Bp̄ ← 0m

2. Fp ← 0m−11
3. for i ← m − 1 downto 0 do
4. Bp(p[i]) ← Bp(p[i]) | Fp

5. Bp̄(p[m − 1 − i]) ← Bp̄(p[m − 1 − i]) | Fp

6. Fp ← Fp 
 1
7. s0 ← m − 1; s1 ← n/2 − 1; s2 ← n/2 + m − 1; s3 ← n − m
8. while (s0 ≤ s1 + m − 1 and s2 ≤ s3 + m − 1) do
9. D ← Bp(t[s0]) | Bp̄(t[s1]) | Bp(t[s2]) | Bp̄(t[s3])

10. j ← s0 − m + 1
11. while (D �= 0) do
12. s0 ← s0 − 1; s1 ← s1 + 1; s2 ← s2 − 1; s3 ← s3 + 1
13. D ← D 
 1
14. D ← D & (Bp(t[s0]) | Bp̄(t[s1]) | Bp(t[s2]) | Bp̄(t[s3]))
15. if (s0 < j) then
16. s0 ← s0 + 1; s1 ← s1 − 1; s2 ← s2 + 1; s3 ← s3 − 1
17. if (s0 < s1 + m − 1 and p = t[s0 − m + 1 . . s0])
18. then Output(s0 − m + 1)
19. if (s0 ≤ s1 + m − 1 and p = t[s1 . . s1 + m − 1])
20. then Output(s1)
21. if (s2 < s3 + m − 1 and p = t[s2 − m + 1 . . s2])
22. then Output(s2 − m + 1)
23. if (s2 ≤ s3 + m − 1 and p = t[s3 . . s3 + m − 1])
24. then Output(s3)
25. s0 ← s0 + m; s1 ← s1 − m; s2 ← s2 + m; s3 ← s3 − m

Fig. 3. (On the left) The SBNDM algorithm and (on the right) the multiple sliding
windows variant of the SBNDM algorithm with 4 windows.

the pattern p itself. Their bit-parallel representations use two arrays Bp̄ and Bp,
respectively, of σ bit-vectors, each of size m.

Specifically the i-th bit of Bp[c] is set iff p[i] = c, while the i-th bit of Bp̄[c] is
set iff p[m− i− 1] = c, for c ∈ Σ, 0 � i < m. Then while searching, left windows
use vector Bp while right windows use vector Bp̄, to perform transitions.

A bit-vector D, with m bits, is used for simulating the mixed behavior of the
k automata, when running in parallel. Specifically the i-th bit of D is set to 1 iff
the i-th state of, at least, one of the k automata is active. For this purpose, at the
beginning of each attempt, the bit-vector D is initialized with the assignment

D ← Bp[t[s0]] | Bp̄[t[s1]] | Bp[t[s2]] | · · · | Bp̄[t[sk−1]].

Then the k windows are searched for candidate occurrences of the pattern by
scanning the left windows backwards and the right windows forwards, and up-
dating the mixed automaton configurations accordingly. The transitions are per-
formed in parallel for all k windows by applying the following bitwise operations,
for i = 1 to m− 1

D ← D � 1
D ← D & (Bp[t[s0 − i]] | Bp̄[t[s1 + i]] | Bp[t[s2 − i]] | · · · | Bp̄[t[sk−1 + i]]).

An attempt ends when either D becomes zero (i.e., when no further candidate
factors of p or p̄ can be found) or the algorithm inspected m characters of
the windows (i.e., when candidate matches has been found). In the last case a
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additional naive test is performed in order to check if any of the current windows
corresponds in a whole match of the pattern.

At the end of each attempt the left and the right windows are shifted to the
right and to the left, respectively, in order to be aligned with the start position
of the longest recognized proper candidate factor.

3.2 Multiple Windows Variants of Comparison Based Algorithms

Most efficient comparison based algorithms are variants of the well-known Boyer-
Moore algorithm [1]. It compares characters of the pattern and the current win-
dow of the text by scanning the pattern p from right to left and, at the end of the
matching phase, computes the shift increment as the maximum value suggested
by the good suffix rule and the bad character rule, provided that both of them
are applicable (see [1] for more details).

Many variants of the Boyer-Moore algorithm have been proposed over the
years, mostly focusing on the bad character rule. The first practical variant was
introduced by Horspool in [10], which proposed a simple modification of the
original rule and used it as a simple filtering method for locating candidate
occurrences of the pattern.

Specifically the Horspool algorithm labels the current window of the text,
t[s − m + 1 . . s], as a candidate occurrence if p[m − 1] = t[s]. Failing this the
shift advancement is computed in such a way that the rightmost character of
the current window, t[s], is aligned with its rightmost occurrence in p[0 . .m −
2], if present; otherwise the pattern is advanced just past the window. This
corresponds to advance the shift by hbc

p
(t[s]) positions where, for all c ∈ Σ,

hbc
p
(c) = min({0 < k < m | p[m− 1− k] = c} ∪ {m}) .

Otherwise, when t[s] = p[m − 1] a candidate occurrence of the pattern has
been located and a naive test is used for checking the whole occurrence (there is
no need to test again if p[m−1] = t[s]). After an occurrence is found the pattern
is advanced of an amount equal to min({0 < k < m | p[m−1−k] = t[s]}∪{m}).

Fig. 4 (on the left) shows the code of the Horspool algorithm and (on the
right) the code of its multiple sliding windows variant with 4 windows.

In general the k-windows variant of the Horspool algorithm searches for can-
didate positions by checking if the rightmost (leftmost) character of the pattern
is equal to the rightmost (leftmost) character of any of the left (right) windows
(line 11 in our example code).

A lot of variants of the Horspool algorithm have been proposed over the years.
In this paper we propose the application of the new approach to the Fast-Search
algorithm [2] and to the TVSBS algorithm [16], since they turn out to be among
the most efficient in practice.

In particular the Fast-Search algorithm computes its shift increments by ap-
plying the Horspool bad-character rule when p[m − 1] �= t[s], otherwise, if a
candidate occurrence is found, it uses the good-suffix rule for shifting.

Differently the TVSBS algorithm discards the good suffix rule and uses the
first and the last characters of the current window of the text, (t[s − m + 1],
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Horspool(p,m, t, n)
1. for each c ∈ Σ do hbcp(c) ← m
2. for i ← 0 to m − 2 do
3. hbcp(p[i]) ← m − 1 − i
4. s ← m − 1
5. cl ← p[m − 1]
6. while (s ≤ n − 1) do
7. if (cl = t[s]) then
8. if p = t[s − m + 1 . . s]
9. then Output(s − m + 1)

10. s ← s + hbcp(t[s])

Horspool-W4(p,m, t, n)
1. for each c ∈ Σ do hbcp(c) ← hbcp̄(c) ← m
2. for i ← 0 to m − 2 do
3. hbcp(p[i]) ← m − 1 − i
4. hbcp̄(p[m − 1 − i]) ← i
5. s0 ← m − 1, s1 ← n/2 − 1, s2 ← n/2 + m − 1, s3 ← n − m
9. cf = p[0]; cl ← p[m − 1]

10. while (s0 ≤ s1 + m − 1 or s2 ≤ s3 + m − 1) do
11. if (cl = t[s0] or cf = t[s1] or cl = t[s2] or cf = t[s3]) then
12. if (s0 < s1 + m − 1 and p = t[s0 − m + 1 . . s0])
13. then Output(s0 − m + 1)
14. if (s0 ≤ s1 + m − 1 and p = t[s1 . . s1 + m − 1])
15. then Output(s1)
16. if (s2 < s3 + m − 1 and p = t[s2 − m + 1 . . s2])
17. then Output(s2 − m + 1)
18. if (s2 ≤ s3 + m − 1 and p = t[s3 . . s3 + m − 1])
19. then Output(s3)
20. s0 ← s0 + hbcp(t[s0]), s1 ← s1 − hbcp̄(t[s1])
22. s2 ← s2 + hbcp(t[s2]), s3 ← s3 − hbcp̄(t[s3])

Fig. 4. (On the left) The Horspool algorithm and (on the right) the multiple sliding
windows variant of the Horspool algorithm with 4 windows.

t[s]), for locating a candidate occurrence of the pattern, while using the couple
of characters (t[s+ 1], t[s+ 2]) for computing the shift advancement.

4 Experimental Results

In this section we compare, in terms of running times and under various condi-
tions, the performances of the multiple sliding windows variants of some among
themost efficient stringmatching algorithms. Specifically we tested the k-windows
variants of the following algorithms:

• Fast-Search (FS-W(k)), with k ∈ {1, 2, 4, 6, 8}
• TVSBS (TVSBS-W(k)), with k ∈ {1, 2, 4, 6, 8}
• Simplified BNDM (SBNDM-W(k)), with k ∈ {1, 2, 4, 6}
• Forward Simplified BNDM (FSBNDM-W(k)), with k ∈ {1, 2, 4, 6}

Observe that when k is equal to 1 we refer to the original algorithms.
All algorithms have been implemented in the C programming language and

tested using the smart research tool [8]. The code used in our evaluation can be
downloaded from the smart tool.

The experiments have been conducted on a MacBook Pro with a 2 GHz Intel
Core i7 processor, a 4 GB 1333 MHz DDR3 memory and a 64 bit word size. In
particular, all algorithms have been tested on seven 4MB random text buffers
(randσ in smart) over alphabets of size σ with a uniform character distribution,
where σ ranges in the set {16, 32, 64, 128}. For each input file, we have searched
sets of 1000 patterns of fixed length m randomly extracted from the text, for m
ranging from 2 to 512. Then, the mean of the running times has been reported.

Table 1 shows experimental results obtained by comparing multiple sliding
windows variants of the above algorithms. Running times are expressed in hun-
dredths of seconds and best results have been boldfaced and underlined.
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Table 1. Running times of multiple sliding windows variants of the (A) Fast-Search,
(B) TVSBS, (C) SBNDM and (D) FSBNDM algorithms

(A) m 2 4 8 16 32 64

σ = 16
FS-W(1) 15.83 10.79 8.32 7.26 6.97 6.91
FS-W(2) 11.31 8.12 6.56 5.89 5.72 5.69
FS-W(4) 9.41 7.11 5.93 5.48 5.37 5.36
FS-W(6) 9.59 7.20 5.99 5.51 5.41 5.38
FS-W(8) 9.98 7.41 6.14 5.63 5.48 5.48

σ = 32
FS-W(1) 15.02 10.18 7.79 6.69 6.44 6.39
FS-W(2) 10.21 7.45 6.06 5.45 5.39 5.41
FS-W(4) 8.13 6.31 5.46 5.08 5.07 5.14
FS-W(6) 8.17 6.34 5.45 5.07 5.06 5.10
FS-W(8) 8.22 6.35 5.47 5.12 5.10 5.13

σ = 128
FS-W(1) 14.29 9.69 7.43 6.34 5.88 5.92
FS-W(2) 9.43 6.97 5.76 5.21 5.04 5.10
FS-W(4) 7.16 5.79 5.17 4.90 4.88 4.95
FS-W(6) 7.18 5.79 5.15 4.87 4.84 4.90
FS-W(8) 7.04 5.73 5.12 4.91 4.87 4.91

(B) m 2 4 8 16 32 64

σ = 16
TVSBS-W(1) 12.89 10.32 8.30 7.01 6.28 5.99
TVSBS-W(2) 10.00 8.31 6.98 6.04 5.62 5.49
TVSBS-W(4) 9.77 8.13 6.84 5.94 5.51 5.37
TVSBS-W(6) 10.30 8.22 6.81 5.92 5.48 5.33
TVSBS-W(8) 12.31 8.76 7.02 6.08 5.64 5.52

σ = 32
TVSBS-W(1) 12.18 9.90 8.10 6.93 6.21 5.94
TVSBS-W(2) 9.64 8.05 6.83 5.95 5.54 5.42
TVSBS-W(4) 8.65 7.38 6.36 5.68 5.36 5.29
TVSBS-W(6) 8.80 7.38 6.32 5.65 5.33 5.24
TVSBS-W(8) 10.26 8.00 6.77 5.92 5.53 5.38

σ = 128
TVSBS-W(1) 13.88 10.99 8.76 7.29 6.46 6.07
TVSBS-W(2) 10.15 8.53 7.18 6.27 5.77 5.54
TVSBS-W(4) 8.51 7.38 6.40 5.78 5.53 5.44
TVSBS-W(6) 8.26 7.19 6.28 5.84 5.63 5.44
TVSBS-W(8) 9.44 8.07 7.04 6.38 6.02 5.69

(C) m 2 4 8 16 32 64

σ = 16
SBNDM-W(1) 12.9 9.73 8.20 6.59 5.61 5.61
SBNDM-W(2) 11.2 8.57 6.66 5.52 6.85 6.90
SBNDM-W(4) 11.7 7.97 6.41 5.70 9.21 9.36
SBNDM-W(6) 12.5 8.75 6.99 5.80 16.8 17.1

σ = 32
SBNDM-W(1) 11.4 8.56 7.22 6.62 5.78 5.79
SBNDM-W(2) 9.03 7.18 6.31 5.46 5.97 5.96
SBNDM-W(4) 8.48 6.88 5.84 5.22 6.08 6.08
SBNDM-W(6) 9.41 7.22 5.90 5.31 7.53 7.58

σ = 128
SBNDM-W(1) 10.6 7.86 6.57 5.97 5.89 5.85
SBNDM-W(2) 7.76 6.23 5.49 5.19 5.20 5.18
SBNDM-W(4) 6.54 5.61 5.22 5.06 5.11 5.09
SBNDM-W(6) 7.08 5.76 5.32 5.11 5.26 5.28

(D) m 2 4 8 16 32 64

σ = 16
FSBNDM-W(1) 11.5 8.26 6.72 5.95 5.53 5.54
FSBNDM-W(2) 10.4 7.34 6.05 5.71 5.28 5.30
FSBNDM-W(4) 10.9 7.42 6.01 5.43 5.08 5.11
FSBNDM-W(6) 12.6 8.31 6.39 5.63 5.27 5.27

σ = 32
FSBNDM-W(1) 9.75 7.36 6.22 5.62 5.35 5.34
FSBNDM-W(2) 8.91 6.69 5.60 5.40 5.19 5.20
FSBNDM-W(4) 8.44 6.28 5.40 5.08 5.05 5.04
FSBNDM-W(6) 9.42 6.78 5.62 5.21 5.10 5.10

σ = 128
FSBNDM-W(1) 8.84 6.72 5.86 5.45 5.18 5.18
FSBNDM-W(2) 7.94 6.18 5.36 5.00 4.98 4.97
FSBNDM-W(4) 7.32 5.71 5.12 4.90 4.89 4.88
FSBNDM-W(6) 7.45 5.92 5.19 4.90 4.89 4.88

Best running times are obtained when a good compromise between the values
of k, m and σ is reached. In the case of comparison based algorithms it turns out
that the best results are obtained for k = 4 and k = 6 while, for large alphabets
and short patterns, the Fast-Search algorithm performs better with k = 8. In
this latter case the variant is up to 50% faster than the original algorithm.

In the case of bit parallel algorithm we obtain in most cases best results for
multiple windows variants with k = 4. For small alphabets and long patterns
the better results are obtained with k = 2. In the case of the SBNDM algorithm,
when the value of m is small enough and the alphabet is large, we obtain results
up to 40% better than that obtained by the original algorithm. However the per-
formance of the new variants degrades when the length of the pattern increases,
especially for small alphabets. In all cases best improvements are obtained in
the case of short patterns.
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Table 2. Experimental results on random text buffers over alphabets of size 16, 32, 64
and 128, respectively. Best results are boldfaced and underlined

(σ = 16) / m 2 4 8 16 32 64 128 256 512

EBOM 9.14 6.77 6.07 5.75 5.61 5.58 5.54 5.53 5.49

HASH(q) 17.4(1) 11.52(1) 8.46(2) 6.72(2) 5.81(5) 5.41(5) 5.32(5) 5.30(4) 5.26(5)

FSBNDM(q, f) 10.6(2,1) 7.6(2,0) 6.29(3,1) 5.63(3,1) 5.37(3,1) 5.40(3,1) 5.38(3,1) 5.39(3,1) 5.39(3,1)

QF(q, s) - 7.5(2,4) 6.16(2,4) 5.63(3,4) 5.37(3,4) 5.24(3,4) 5.18(3,4) 4.97(3,4) 4.70(3,4)

FSBNDM-W(k) 10.4(2) 7.34(2) 6.01(4) 5.43(4) 5.08(4) 5.11(4) 5.11(4) 5.10(4) 5.11(4)

SBNDM-W(k) 11.2(2) 7.97(4) 6.41(4) 5.52(2) 5.38(1) 5.37(1) 5.37(1) 5.37(1) 5.38(1)

FS-W(k) 9.41(4) 7.11(4) 5.93(4) 5.48(4) 5.37(4) 5.36(4) 5.36(4) 5.33(4) 5.31(4)

TVSBS-W(k) 9.77(4) 8.13(4) 6.81(6) 5.92(6) 5.48(6) 5.33(6) 5.19(6) 5.06(6) 4.94(6)

(σ = 32) / m 2 4 8 16 32 64 128 256 512

EBOM 9.05 6.61 5.90 5.64 5.51 5.48 5.43 5.32 5.37

HASH(q) 15.88(1) 10.79(1) 7.95(1) 6.54(2) 5.80(3) 5.45(5) 5.36(5) 5.30(4) 5.26(4)

FSBNDM(q, f) 9.28(2,1) 7.09(2,1) 6.06(2,0) 5.54(2,0) 5.32(2,0) 5.33(2,0) 5.33(2,0) 5.33(2,0) 5.32(2,0)

QF(q, s) - 7.21(2,6) 5.97(2,6) 5.50(2,6) 5.31(2,6) 5.22(2,6) 5.12(2,6) 4.92(2,6) 4.71(4,3)

FS-W(k) 8.13(4) 6.31(4) 5.45(6) 5.07(6) 5.06(6) 5.10(6) 5.06(6) 5.06(6) 5.05(6)

FSBNDM-W(k) 8.44(4) 6.28(2) 5.40(4) 5.08(4) 5.05(4) 5.04(4) 5.04(4) 5.03(4) 5.04(4)

SBNDM-W(k) 9.03(2) 6.88(4) 5.84(4) 5.22(4) 5.57(1) 5.55(1) 5.57(1) 5.57(1) 5.56(1)

TVSBS-W(k) 8.65(4) 7.38(4) 6.32(6) 5.65(6) 5.33(6) 5.24(6) 5.07(6) 4.84(6) 4.66(6)

(σ = 64) / m 2 4 8 16 32 64 128 256 512

EBOM 9.75 6.81 5.95 5.65 5.51 5.47 5.25 5.29 5.29

HASH(q) 15.18(1) 10.11(1) 7.60(1) 6.46(2) 5.70(2) 5.44(5) 5.35(4) 5.31(4) 5.27(4)

QF(q, s) - 7.13(2,6) 5.92(2,6) 5.47(2,6) 5.28(2,6) 5.03(2,6) 5.11(2,6) 4.85(2,6) 4.61(2,6)

FSBNDM(q, f) 8.59(2,1) 6.80(2,1) 5.89(2,1) 5.44(2,1) 5.25(2,1) 5.27(2,1) 5.10(2,1) 5.27(2,0) 5.28(2,0)

FS-W(k) 7.37(8) 5.91(8) 5.20(8) 4.92(6) 4.90(6) 4.94(8) 4.97(6) 4.92(6) 4.91(6)

FSBNDM-W(k) 8.02(6) 5.87(4) 5.17(4) 4.92(4) 4.92(4) 4.92(4) 4.95(4) 4.93(4) 4.92(4)

SBNDM-W(k) 7.11(4) 6.01(4) 5.50(4) 5.09(6) 5.33(2) 5.32(2) 5.34(2) 5.32(2) 5.32(2)

TVSBS-W(k) 8.19(6) 7.07(6) 6.14(6) 5.57(6) 5.28(6) 5.12(6) 5.03(6) 4.75(6) 4.54(6)

(σ = 128) / m 2 4 8 16 32 64 128 256 512

EBOM 9.99 6.93 6.02 5.74 5.57 5.52 5.42 5.28 5.30

HASH(q) 14.83(1) 9.88(1) 7.42(1) 6.27(1) 5.63(2) 5.43(5) 5.33(3) 5.28(4) 5.24(4)

QF(q, s) - 7.15(2,6) 5.95(2,6) 5.50(2,6) 5.29(2,6) 5.19(2,6) 5.10(2,6) 4.87(2,6) 4.61(2,6)

FSBNDM(q, f) 8.28(2,1) 6.65(2,1) 5.83(2,1) 5.43(2,1) 5.25(2,1) 5.25(2,1) 5.25(2,1) 5.26(2,0) 5.25(2,1)

FS-W(k) 7.04(8) 5.73(8) 5.12(8) 4.90(4) 4.84(6) 4.90(6) 4.81(8) 4.66(8) 4.57(8)

FSBNDM-W(k) 7.32(4) 5.71(4) 5.12(4) 4.90(4) 4.89(4) 4.88(4) 4.88(4) 4.89(4) 4.89(6)

SBNDM-W(k) 6.54(4) 5.61(4) 5.22(4) 5.06(4) 5.11(4) 5.09(4) 5.09(4) 5.09(4) 5.10(4)

TVSBS-W(k) 8.26(6) 7.19(6) 6.28(6) 5.78(4) 5.53(4) 5.44(4) 4.99(6) 4.70(6) 4.53(6)

We performed an additional comparison where we tested our proposed vari-
ants against the following efficient algorithms, which turn out to be very efficient
in practical cases:

• the HASHq algorithm [12] (HASH(q)), with q ∈ {1, . . . , 8};
• the EBOM algorithm [6] (EBOM);
• the Forward SBNDM algorithm [6] enhanced with q-grams and f forward
characters [15] (FSBNDM(q, f)), with q ∈ {2, . . . , 8} and f ∈ {0, . . . , 6};
• the Q-gram Filtering algorithm [5] (QF(q, s)), with q ∈ {2, . . . , 6}, s ∈
{2, . . . , 8}.
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Table 3. Experimental results on a protein sequence (on the top) and on a natural
language text buffer (on the bottom). Best results are boldfaced and underlined.

protein / m 2 4 8 16 32 64 128 256 512

EBOM 9.21 6.83 6.05 5.76 5.61 5.57 5.54 5.51 5.47

HASH(q) 17.29(1) 11.45(1) 8.35(2) 6.68(2) 5.90(3) 5.49(5) 5.41(5) 5.36(4) 5.31(5)

QF(q, s) - 7.65(2,6) 6.21(2,6) 5.64(3,4) 5.39(3,4) 5.26(3,4) 5.19(4,3) 4.9(4,3) 4.73(4,3)

FSBNDM(q, f) 10.5(2,1) 7.61(2,0) 6.32(3,1) 5.63(3,1) 5.38(3,1) 5.39(3,1) 5.37(3,1) 5.37(3,1) 5.37(3,1)

FS-W(k) 9.41(4) 7.12(4) 5.92(4) 5.47(4) 5.35(4) 5.30(6) 5.24(4) 5.21(6) 5.24(4)

FSBNDM-W(k) 10.4(2) 7.35(4) 5.96(4) 5.44(4) 5.13(4) 5.15(4) 5.16(4) 5.13(4) 5.12(4)

SBNDM-W(k) 11.1(2) 7.93(4) 6.39(4) 5.61(2) 5.64(1) 5.54(1) 5.54(1) 5.53(1) 5.53(1)

TVSBS-W(k) 9.85(4) 8.13(4) 6.79(6) 5.94(6) 5.50(6) 5.36(6) 5.21(4) 5.02(6) 4.89(6)

natural lang./m 2 4 8 16 32 64 128 256 512

EBOM 9.69 7.35 6.63 6.30 6.00 5.87 5.71 5.62 5.62

HASH(q) 17.72(1) 12.02(1) 8.38(2) 6.72(2) 5.92(3) 5.55(5) 5.46(4) 5.38(4) 5.32(4)

QF(q, s) - 8.52(2,6) 6.66(3,4) 5.77(4,3) 5.41(4,3) 5.24(6,2) 5.12(4,3) 4.97(4,3) 4.7(6,2)

FSBNDM(q, f) 11.4(2,1) 8.37(2,0) 6.73(3,1) 5.98(4,1) 5.46(4,1) 5.46(4,1) 5.45(4,1) 5.46(4,1) 5.47(4,1)

FS-W(k) 10.3(4) 7.80(4) 6.41(4) 5.80(4) 5.38(4) 5.23(4) 5.08(4) 5.00(6) 4.89(6)

FSBNDM-W(k) 11.7(2) 8.17(2) 6.49(4) 5.72(4) 5.21(4) 5.20(4) 5.23(4) 5.22(4) 5.23(4)

SBNDM-W(k) 12.2(4) 8.90(4) 7.10(4) 6.06(4) 6.07(1) 6.07(1) 6.06(1) 6.07(1) 6.08(1)

TVSBS-W(k) 10.6(4) 8.66(4) 7.04(6) 6.02(6) 5.52(6) 5.36(6) 5.18(4) 5.02(6) 4.82(6)

Table 2 shows the experimental results obtained on random text buffers over
alphabets of size 16, 32, 64 and 128, while Table 3 shows experimental results
performed on two real data problems and in particular a protein sequence and
on a natural language text buffer. All text buffers are available on smart.

For each different algorithm we have reported only the best result obtained by
its variants. Parameters of the variants which obtained the best running times
are reported as apices. The reader can find a more detailed discussion about the
performances of the different variants in the original papers [12,15,5].

From experimental results it tuns out that the new variants obtain very good
results, especially in the cases of large alphabets (σ ≥ 32). Specifically, best
results are obtained by the FS-W(4) algorithm, in the case of small patterns,
and by the FSBNDM-W(2) algorithm, in the case of moderately length patterns
(16 ≤ m ≤ 128). Moreover for very long patterns (m ≥ 256) multiple windows
variants of the TVSBS algorithm turn out to be the fastest, even in the case of
moderate large alphabets. In the case of small alphabets the EBOM and the QF
algorithms still obtain the best results for short and long patterns, respectively.

5 Conclusions

We presented a general multiple sliding windows approach which could be ap-
plied to a wide family of comparison based and automata based algorithms. The
new approach turns out to be simple to implement and leads to very fast algo-
rithms in practical cases, especially in the case of large alphabets and natural
language texts, as shown in our experimental results. It would be interesting to
investigate further the application of this approach to other more effective solu-
tions for the string matching problem, or to apply it to other related problems.
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Abstract. Subnetwork mining is an essential issue in network analysis,
with specific applications e.g. in biological networks, social networks, in-
formation networks and communication networks. Recent applications
require the extraction of subnetworks (or patterns) involving several re-
lations between the objects of interest, each such relation being given as
a network. The complexity of a particular mining problem increases with
the different nature of the networks, their number, their size, the topol-
ogy of the requested pattern, the criteria to optimize. In this emerging
field, our paper deals with two networks respectively represented as a
directed acyclic graph and an undirected graph, on the same vertex set.
The sought pattern is a longest path in the directed graph whose vertex
set induces a connected subgraph in the undirected graph. This problem
has immediate applications in biological networks, and predictable ap-
plications in social, information and communication networks. We study
the complexity of the problem, thus identifying polynomial, NP-complete
and APX-hard cases. In order to solve the difficult cases, we propose a
heuristic and a branch-and-bound algorithm. We further perform exper-
imental evaluation on both simulated and real data.

1 Introduction

The use of communication, social and telecommunication networks has dramat-
ically increased recently, resulting in new prominent applications of network
analysis. In addition to these real-world applications, network representations
of new types of data - and particularly biological data - highlight the drastic
need for a new, multi-dimensional, type of (sub)network mining in which several
networks, representing several relations between the same objects, are simulta-
neously investigated for the extraction of a multi-dimensional pattern [5,13,15].

The study of multi-dimensional mining started several years ago, but it mainly
concerns homogeneous representations of data: directed graph alignment [4],
undirected graph alignment [6], relational data mining [8], social networks min-
ing [13] are several examples. Recently, such approaches found applications in
computational biology [12,14,16], but also showed their limits, due to the multi-
ple types of biological networks that are used to describe different views of the
same biological process. In such applications, a process is often represented as a
path in a directed network (e.g., a metabolic network), and as a connected graph
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in an undirected network (e.g., a protein-protein interaction network); the link
between the two networks is then ensured by the components involved in the
process, that are represented as vertices in each network. Identifying a particular
biological process then requires to identify parts of the two networks (directed
and undirected) that have the suited topological patterns and the same ver-
tex set. The need for such applications to replace either manual or case-by-case
studies is nowadays fundamental [3,7,15,17].

In this paper, we approachmulti-dimensional mining within two heterogeneous
networks, driven by the previously cited applications in biological networks. The
paper is organized as follows. Section 2 presents the problem. In Section 3, we show
that the problem is APX-hard in the general case, NP-complete even in restricted
cases, and exhibit classes of instances for which the problem is polynomial. In Sec-
tion 4, we propose a heuristic and a branch-and-bound algorithm, that we evaluate
in Section 5 both on simulated and real (biological) data. Section 6 is the conclu-
sion. Note that due to space constraints, some proofs and illustrations are omitted.

2 The Problem

All along the paper, D will denote a directed graph and G an undirected graph,
built on the same set of vertices V . In general, given a graph H , V (H) is its
vertex set. If H is undirected (resp. directed) then its edge set (resp. its arc
set) is denoted E(H) (resp. A(H)). Given a set S ⊆ V (H), we denote H [S] the
subgraph of H induced by S.

A (D,G)-consistent path is a (directed) path P in D such that G[V (P )] is
connected. The Skew SubGraph Mining problem (abbreviated SkewGraM)
is formulated as follows:

SkewGraM

Instance : A DAG D and an undirected graph G.
Requires : Find a longest (D,G)-consistent path.

Several more general variants of the problem (e.g. when D has circuits, or
when D and G have different, but related, vertex sets) may be useful in practice,
but they should be reduced to this simpler variant, for which we provide effective
solutions. See [2] for details.

3 The Complexity of SkewGraM

We study the complexity of SkewGraM considering different topological con-
straints on graphsD andG. In Table 1,D∗ is the underlying graph ofD, obtained
by removing the arc orientations. A star (resp. bi-star) is a tree whose number of
vertices with degree 2 or more is exactly one (resp. two), whereas an outerplanar
graph is a graph admitting a planar embedding with all vertices on a circle, all
edges inside the circle and such that edges do not cross each other. Recall that
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Table 1. Complexity of the SkewGraM problem

���������������G

D∗
Tree Outerplanar General graph

Chordless path or cycle, (bi-)star P [Lem. 1]

Tree with diameter 4 P [Lem. 1] NPC [Thm. 1] NPC [Thm. 1]

General graph P [Lem. 1] NPC [Thm. 1] NPC [Thm. 1]
APX-hard [Thm. 2]

the diameter of a graph is the maximum length of a shortest path between any
two of its vertices.

According to Table 1, SkewGraM is polynomially solvable as soon as D∗ is
a tree, but it becomes NP-complete even for relatively simple graph structures,
e.g. when G is a tree with diameter 4 and D∗ is an outerplanar graph. In the
most difficult cases, the problem is APX-hard.

The following lemma gathers together the polynomial-time solvable cases we
identified:

Lemma 1. SkewGraM is polynomial-time solvable when at least one of the
following conditions holds: a) D∗ is a tree. b) G is a chordless path or cycle. c)
G is a (bi-)star.

The theorem below shows the NP-completeness of the problem in a particular
configuration.

Theorem 1. SkewGraM (in its decision version) is NP-complete, even when
D∗ is an outerplanar graph and G is a tree with diameter 4.

Proof. The problem is clearly inNP.We propose a reduction fromMAX2Sat[11].
Let C = {C1, . . . , Cp} be a collection of p clauses with two literals each, over the
variable set Xn = {x1, . . . xn}. LetD be built on 2p+2n+2 levels, called optional
(marked with a star) or compulsory (not marked):

• level 0 : a vertex s;
• level∗ 2i−1, 1 ≤ i ≤ p: two vertices vi,1 and vi,2 corresponding to the literals

of clause Ci;
• level 2i, 1 ≤ i ≤ p: a vertex ci corresponding to the clause Ci;
• level 2p + 1: two vertices vp+1,1 and vp+1,2 corresponding, respectively, to

variables xn and xn;
• level 2p+ 2: a vertex cp+1;
• level 2p+ 2 + 2i− 1, 1 ≤ i ≤ n: two vertices ai and bi;
• level 2p+ 2 + 2i, 1 ≤ i < n: a vertex Ai.

Then add (a) all possible arcs between any two consecutive levels, (b) the arc
sc1 and (c) the arcs cici+1, 1 ≤ i < p. It is clear that D is a DAG. To see
that D∗ is an outerplanar graph, it is sufficient to draw the vertices on a cir-
cle according to the order s, v1,1, c1, v2,1, c2, . . . , vp+1,1, cp+1, a1, A1, . . . , an−1,
An−1, an, bn, . . . , b1, vp+1,2, . . . , v1,2.
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Graph G is a tree with root s. There is an edge between s and each vertex in
{ai, bi : 1 ≤ i ≤ n} ∪ {Ai : 1 ≤ i < n} ∪ {ci : 1 ≤ i ≤ p + 1}. There is an edge
between each vertex ai (resp. bi) and any vertex vl,m with 1 ≤ l ≤ p + 1, 1 ≤
m ≤ 2, such that vl,m corresponds to the literal xi (resp. xi). Obviously, G has
diameter 4. We claim that there is an assignment for the variables in Xn that
satisfies at least k clauses if and only if there is a (D,G)-consistent path with
length at least p+ k + 1+ 2n. This assertion is based on the following remarks:

1. Each consistent path of length at least 1 contains s. Indeed, the connected
components of G− {s} do not allow to compute paths in D.

2. No consistent path P contains two vertices associated with literals xi, xi, for
some i. Indeed, at most one of the vertices ai, bi belongs to P (by construction
of D), and thus in G only vertices corresponding to xi or to xi may be
connected to s (via ai or, respectively, bi).

3. Every consistent path P of length at least p+1 necessarily contains one vertex
from each compulsory level. Indeed, such a path contains s (as before) and,
because of its length, at least one vertex vi,j , 1 ≤ i ≤ p+ 1 and 1 ≤ j ≤ 2.
The connectivity in G implies that ai or bi belongs to P and consequently, in
D, we deduce that vp+1,1 or vp+1,2 (that correspond respectively to xn and
xn) belongs to P . Then, the connectivity in G implies that an or bn belongs
to P and the claim follows.

⇒: Given an assignment A of the variable set Xn that satisfies k′ clauses of C,
s.t. k′ ≥ k, assume w.l.o.g. that variables vi1,1, . . . , vik′ ,1, vp+1,1 correspond to
true literals. Let B(i) = ai if xi is true, and B(i) = bi otherwise. Then the path P
with vertices s, vi1,1, . . . , vik′ ,1, vp+1,1, c1, . . ., cp+1, B(1), A1,B(2), A2, . . . ,B(n−
1), An−1,B(n) is (D,G)-consistent and has length p + k′ + 1 + 2n. Indeed, in
G the vertices vi1,1, . . . , vik′ ,1, vp+1,1 are connected to s using the corresponding
vertex B(lij) (s. t. vij ,1 is xlij

or xlij
), 1 ≤ j ≤ k′, and B(n) respectively. All the

other vertices are adjacent to s.
⇐: Let P be a (D,G)-consistent path P s.t. |V (P )| ≥ p+k+2+2n. Let k′ be the
number of vertices in P that belong to optional levels. According to Remark 2,
assigning the value true to the literals associated to these vertices yields a correct
assignment, that satisfies k′ clauses. Moreover, by Remarks 1 and 3, P contains
p+ 2+ 2n vertices on the compulsory levels, and thus |V (P )| = p+ 2+ k′ + 2n
vertices. We deduce that k′ ≥ k. ��

Moreover, we can also show (proof omitted here) using a reduction from Maxi-

mum Independent Set on cubic graphs that:

Theorem 2. SkewGraM is APX-hard.

4 Two Algorithms for SkewGraM

We propose two algorithms for SkewGraM: a heuristic called AlgoH, and an
exact exponential-time algorithm called AlgoBB using the branch and bound
method. Both algorithms look for a longest (D,G)-consistent path going through
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a given arc xy of D. Then, to solve SkewGraM, an execution is needed for every
arc xy of D.

Let i �D j denote a path inD from vertex i to vertex j (becomes i→D j when
reduced to an edge). Given two undirected graphs G1(U,E1) and G2(U,E2), a
common connected component of G1 and G2 is any maximal setX ⊆ U such that
G1[X ] and G2[X ] are connected. We note by CCC(D∗, G, i �D j) the common
connected component of D∗ and G that contains all the vertices of the path
i �D j, if such a common connected component exists (equal to ∅ otherwise).
The notation S+

i stands for the set of vertices that are reachable by a path
from vertex i in D, whereas S−

i stands for the set of vertices of D reaching
vertex i by a path in D. Finally, vertex r ∈ V is called a bridge of i �D j with
respect to G if there is no common connected component of D∗[V − {r}] and
G[V − {r}] containing all the vertices of i �D j (i.e. CCC(D∗[V − {r}], G[V −
{r}], i �D j) = ∅).

The Heuristic AlgoH. We construct the (D,G)-consistent path progressively
by starting with the given arc xy and extending it. AlgoH first computes the
cover set of a path, which is used to reduce the graph by removing vertices not
compatible with the bridges.

Definition 1. The cover set of a path i �D j, denotedCoverSet(D,G, i �D j),
is the setX satisfying:

1. V (i �D j) ⊆ X ⊆ S−
i ∪ S+

j ∪ V (i �D j).
2. D∗[X ] and G[X ] are connected.
3. If r is a bridge of i �D[X] j w.r.t. G[X ] then X ⊆ S−

r ∪ S+
r ∪ {r}.

4. X is maximal (with respect to the inclusion order).

If, for a path i �D j, no vertex set X satisfies conditions 1., 2. and 3., then by
convention CoverSet(D,G, i �D j)= ∅.

The cover set of a path is unique, and easily computable (see Algorithm 1 which
uses Algorithm GenPartRefinement described in [10] to compute the common
connected components):

Lemma 2. The cover set of a given path i �D j is well-defined.

Lemma 3. Algorithm GetCoverSet correctly computes the cover set of a given
path in O(n2 logn+ nm log2 n).

Now, to compute a (D,G)-consistent path going through xy, we use Algorithm
AlgoH (see Algorithm 2) to successively increase the current path cp (which is
initially the arc x→D y) as follows. Once Algorithm GetCoverSet is applied
to reduce D and G when possible (line 7), either V (D) = ∅ (and there is no
(D,G)-consistent path containing xy), or D is Hamiltonian (and the algorithm
returns the best current solution), or cp must be extended. The possible exten-
sions p (by adding one vertex at the beginning or at the end of the path, using
function Extend) are computed (lines 12-16) as well as the resulting reduced
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Algorithm 1. GetCoverSet(D,G, i �D j)

Require: A DAG D = (V,A(D)), an undirected graph G(V,E(G)), a path i �D j.

Ensure: Computes the cover set of i �D j.
1: S := S−

i ∪ S+
j ∪ V (i �D j)

2: S := CCC(D∗[S], G[S], i �D[S] j); STOP := false;
3: while ((STOP = false) and (S �= ∅)) do

4: Stmp := S; /* note that i �D[S] j is identical to i �D j */

5: for each bridge r of i �D j in G do
6: Stmp := Stmp ∩ ({r} ∪ S−

r ∪ S+
r )

7: end for
8: if (S = Stmp) then
9: STOP := true
10: else
11: S := Stmp; S := CCC(D∗[S], G[S], i �D[S] j);
12: end if
13: end while
14: return S

Algorithm 2. AlgoH(D, G, xy)
Require: A DAG D = (V,A(D)), an undirected graph G(V,E(G)), an arc xy ∈ A(D).
Ensure: S ⊆ V : D[S] is a (D,G)-consistent path containing the arc xy or S = ∅.
1: /* bcs: best current solution; cp: current path */
2: /* Lext: the list of all paths in D extending the current path by one vertex */
3: /* DCS: the subgraphs of D induced by the cover sets of paths in Lext */
4: /* HCS: the Hamiltonian subgraphs induced by the cover sets of paths in Lext */

5: bcs := ∅; cp := x →D y; f := x; l := y; STOP := false;
6: while (STOP = false) do
7: S := GetCoverSet(D,G, cp); D := D[S]; G := G[S];
8: if (S = ∅ or D is Hamiltonian) then
9: STOP := true;
10: if |bcs| > |S| then S := bcs end if
11: else
12: Lext := ∅; /* compute the extensions of cp = f �D l */
13: for each v that is a predecessor of f or a successor of l do
14: p = Extend(cp, v); /* extends cp with v */
15: Lext := Lext ∪ {p};
16: end for
17: DCS = {D[CoverSet(D,G, p)] : p ∈ Lext};
18: HCS := {d ∈ DCS : d is Hamiltonian};
19: Let hmax ∈ HCS s.t. |V (hmax)| = max{|V (h)| : h ∈ HCS}
20: if |bcs| < |V (hmax)| then bcs := V (hmax) end if

21: Let pmax = fmax �D lmax s.t. value(pmax) = max{value(p) : p ∈ Lext};
22: if |bcs| ≥ value(pmax) then
23: /* No (D,G)-consistent path through xy and longer than |bcs| exists */
24: S := bcs; STOP := true;
25: else
26: cp := pmax; /* continue with the most promising extension */
27: f := fmax; l := lmax

28: end if
29: end if
30: end while
31: return S

graphs (line 17). The Hamiltonian graphs among them are considered for im-
proving the best current value (lines 18-20). Then, the most promising extension
is computed using the evaluation value(p), equal to the length of the longest
path in D[CoverSet(D,G, p)] (line 21). If this extension allows to hope an
improvement of bcs, then it is kept (lines 22-28). An experimental evaluation of
AlgoH is given in the next section.
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Complexity of Algorithm AlgoH: let Δ be the maximum total degree of a ver-
tex in D, and L be the length of the optimal solution of SkewGraM. Then,
the while loop in line 6 is executed at most L times. The most time consum-
ing internal instruction is the one in line 17, which makes 2Δ calls to Algo-
rithm GetCoverSet. Recall that the longest path is easily computed in a DAG.
Then the complexity of Algorithm AlgoH is in O(ΔL(n2 logn+ nm log2 n)).

The Exact Algorithm AlgoBB. This algorithm is based on the branch and
bound method. The tree TS of sub-solutions is built as follows. The root is
associated to the arc xy given as input of SkewGraM. Each vertex s of TS is
associated to a path p(s) extending the arc xy. At the end of the construction
of TS, its leaves are associated to (D,G)-consistent paths containing xy. The
solution of SkewGraM is thus a longest path i �D j such that there exists a
leaf of TS associated to i �D j.

Branching. We expand vertex s with p(s) = vl �D vm as follows. For each vk
that is a predecessor of vl (resp. successor of vm), we add in TS a child of s
associated to the path vk.p(s) (resp. p(s).vk). For a vertex s ∈ TS, recall that
value(p(s)) is the length of the longest path in D[CoverSet(D,G, p(s))]. Let
BBvalue(s) denote the evaluation of a vertex s in TS. This function is defined
as follows: (i) if s is to be expanded, then BBvalue(s) = value(p(s)) ; (ii) if
s has already been expanded at some specific moment of the construction of
TS, then BBvalue(s) is the length of p(s) if it is (D,G)-consistent. Otherwise,
BBvalue(s) = 0. Using this evaluation function, we define the bounding and
pruning rules as follows.

Bounding (Rule 1). Among vertices {s1, s2, . . . , sk} to be expanded, we choose
the vertex s∗ such that BBvalue(s∗) = max{BBvalue(si) : 1 ≤ i ≤ k}. If there
are several such vertices, we arbitrarily choose one.

Pruning (Rule 2). Let smax be a vertex of TS satisfying the two following
conditions: (i) smax was expanded, and (ii) BBvalue(smax) ≥ BBvalue(s), for
any expanded vertex s of TS. Then, delete from TS any leaf vertex s with
BBvalue(s) ≤ BBvalue(smax). This deletion is applied recursively for vertices
that become leaves after the deletion of all their children.

Theorem 3. Algorithm AlgoBB exactly solves SkewGraM.

5 Experimental Results

In order to show the reliability of our heuristic AlgoH, we first applied it on
random (Erdös-Rényi and scale-free) graphs and we compared the obtained so-
lutions to the optimal ones computed by our exact algorithm AlgoBB. We also
applied AlgoH on different types of biological networks.

5.1 Performances of AlgoH

Let |AlgoBB| (resp. |AlgoH|) be the number of vertices of a solution found by
AlgoBB (resp. found by AlgoH). We measured the performance of AlgoH by
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Fig. 1. Performances of heuristic AlgoH. We show the percentage of arcs whose
|AlgoH|
|AlgoBB| × 100 belongs to an interval Ii (see Section 5.2). (a) General graphs. For

fixed n and p we generated 100 couples (D,G). (b) Scale-free graphs. Algorithms
AlgoH and AlgoBB were run on 100 couples (D,G) of order 100.

computing the ratio ρ = |AlgoH|
|AlgoBB| for every input instance. By convention, ρ = 1

whenever the exact algorithm finds no (D,G)-consistent path for a given arc.

a) General graphs. We chose to vary two parameters: the number n of ver-
tices of D and G (in the range 20, 30, 40, 50, 60), and the probability p that
an edge between any given two vertices exists (in the range 0.05, 0.1, 0.15,
0.2). Taking any combination of these two parameters thus leads to 20 runs.
We generated the undirected graphs G by using the Erdös-Rényi [9] random
graphs generation method. We adapted this method, in order to construct ran-
dom DAGs D, by randomly orienting the edges. For fixed n and p, we gen-
erated 100 couples (D,G). For each of these couples, we applied AlgoH and
AlgoBB for 5 randomly chosen arcs, and computed the ratio ρ for each of the

5 corresponding instances. We then computed the number denoted N
(D,G,p,n)
i ,

0 ≤ N
(D,G,p,n)
i ≤ 5, of arcs whose ρ × 100 belongs to Ii, with 1 ≤ i ≤ 10 and

I1 = [0, 10[, I2 = [10, 20[, . . . , I10 = [90, 100]. We obtained a global result by

computing, for each Ii, the value m
(n,p)
i =

∑
(D,G)N

(D,G,n,p)
i i.e., the sum of

N
(D,G,n,p)
i for all 100 generated couples (D,G), with fixed n, p .

b) Scale-free graphs. We also applied our method on randomly generated scale-
free graphs, since recent studies have shown that a large number of real-world
networks tend to be scale-free (see e.g. [1]). In this experiment, we gener-
ated 100 couples (D,G) of 100 vertices, by using the public toolkit NGCE
(http://ngce.sourceforge.net/). We observed that consistent paths are not abun-
dant in scale-free graphs, thus we randomly chose, for each graph D, 10 arcs
rather than 5 arcs as in the previous experiment. We then computed for each

couple (D,G) and for each interval Ii, the number N
(D,G,n)
i , 0 ≤ N

(D,G,n)
i ≤ 10,

of arcs whose ρ× 100 belongs to Ii and the global value mn
i =

∑
(D,G) N

(D,G,n)
i

(here, n is fixed to 100).
We observe a very good behaviour of our heuristic AlgoH, since more than

90% of the input instances have a ρ × 100 belonging to the interval [90, 100]
(see Figure 1). Also, it is very important to note the speed-up obtained by our
heuristic with respect to the exact algorithm AlgoBB. For example, for the 500



192 G. Fertin, H. Mohamed Babou, and I. Rusu

instances of random graphs evaluated in the case n = 60 and p = 0.2 (Figure
1.a), Algorithm AlgoH was 11 times faster than AlgoBB.

5.2 Applying AlgoH on Biological Networks

We have also applied our heuristic AlgoH on real biological networks, in two
different contexts, in order to verify that its results corroborate biological as-
sumptions.

Metabolic Pathway vs PPI Network. A metabolic network is usually mod-
eled by a directed graph (called a reaction graph) whose vertices are the re-
actions, and where there is an arc between two reactions if the first uses, as
substrate, a product of the second. A metabolic network is represented in the
KEGG database as a collection of functional modules (small networks) called
metabolic pathways. Therefore, metabolic pathways can be modeled by DAGs
[16]. A protein-protein interaction network (PPI) is modeled by an undirected
graph whose vertices are the proteins, and there is an edge between each pair
of physically interacting proteins. We applied our heuristic to extract automat-
ically, in a metabolic pathway, a chain of reactions (i.e., a path) that are cat-
alyzed by interacting proteins (i.e., a connected subgraph) in a PPI network.
Such paths are biologically meaningful [7]: indeed, the authors of [7] divided the
PPI network for the species S. cerevisiae into functional clusters and observed
that proteins involved in successive reactions are generally more likely to in-
teract than other protein pairs. They provided an example of a short path (of
length 6) in the metabolic pathway “Glycolysis/Gluconeogenesis” correspond-
ing to a functional cluster in the PPI network. In order to compare our results
with theirs, we built the PPI graph G, of the same species S. cerevisiae, from
the BioGRID database (http://thebiogrid.org/, version (v2.0.63)).We also con-
structed the metabolic pathway “Glycolysis/Gluconeogenesis” (graph D) from
KEGG (pathwaysce00010.xml). We established the correspondence between the
two graphs using the names of the genes which encode proteins that (a) catalyze
reactions in the metabolic pathway and (b) interact in the PPI network. Notice
that G does not have the same vertex set as D. In order to circumvent this diffi-
culty, we used an additional graph G′: the new graph G′ is an undirected graph
whose vertices are the reactions (V (G′) = V (D)) and there is an edge between
two vertices r1, r2 ∈ V (G′), iff there are two interacting proteins p1, p2 ∈ V (G)
s.t. p1 catalyzes r1 and p2 catalyzes r2 (see also [2], where the construction of
such a graph is detailed). Applying our heuristic AlgoH with the arc between
vertices 1 and 23 as input, we automatically computed a (D,G′)-consistent path
of 12 vertices, inducing a connected subgraph of 20 proteins in the PPI network.
Such a path includes those observed in [7].

Metabolic Pathway vs. Linear Genome.We also applied AlgoH to automat-
ically extract, in a metabolic pathway, a chain of reactions that are catalyzed by
the products of adjacent genes in the genome. The genome network is modeled
by an undirected graph whose vertices are the genes, and in which there is an
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edge between each adjacent pair of genes. The species under study was the bac-
terium E. coli. We built the linear sequence of genes (graph G) from the NCBI
database. We constructed the metabolic pathway (graph D) from KEGG (path-
wayeco00550.xml). We established the correspondence between the two graphs
using the names of the genes. Finally, as in the previous example, we constructed
an additional undirected graph G′ built on same vertex set of D. The longest
(D,G′)-consistent path we found by applying AlgoH for all the arcs of D is the
same as the path found by Boyer et al. [3] (see Figure 3.b in [3]).

6 Conclusion

The SkewGraM problem belongs to a new type of subnetwork mining prob-
lems, arising from recent applications of biological, social or information net-
works: several graphs, of various types, represent different relations between
objects, and a subset of objects is sought, with particular properties in each
network. Due to an important set of parameters (the networks nature, the prop-
erties to fulfill, etc.), these problems are very complex. Still, they need good
algorithmic solutions, since the size of the networks is often very large. In this
paper, we studied the limits, in terms of graph classes (a graph representing a
network), between difficult and easy cases, and we provided two algorithms, a
reliable heuristic and an exact algorithm. We tested them on random data, in
order to show the performances of our heuristics in terms of execution time and
quality of the results. We also tested them on real data, in order to show their
effectiveness on biological networks. Further studies should either investigate
the complexity of SkewGraM in terms of approximability (on specific graph
classes) and fixed parameter algorithms, or inexact variants of the problem ob-
tained, for instance by allowing small differences between the vertex set of the
path in D and the connected set in G.
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Abstract. Let G = (V,E) be a directed graph. A vertex v ∈ V (re-
spectively an edge e ∈ E) is a strong articulation point (respectively a
strong bridge) if its removal increases the number of strongly connected
components of G. We implement and engineer the linear-time algorithms
in [9] for computing all the strong articulation points and all the strong
bridges of a directed graph. Our implementations are tested against real-
world graphs taken from several application domains, including social
networks, communication graphs, web graphs, peer2peer networks and
product co-purchase graphs. The algorithms implemented turn out to be
very efficient in practice, and are able to run on large scale graphs, i.e., on
graphs with ten million vertices and half billion edges. Our experiments
on such graphs highlight some properties of strong articulation points,
which might be of independent interest.

Keywords: graph algorithms, strong connectivity, strong articulation
points, strong bridges, large scale graphs.

1 Introduction

Let G = (V,E) be a directed graph. A vertex v ∈ V is a strong articulation
point if its removal increases the number of strongly connected components of
G. Similarly, an edge e ∈ E is a strong bridge if its removal increases the number
of strongly connected components of G (see Figure 1). Note that strong articu-
lation points and strong bridges are related to the notion of 2-vertex and 2-edge
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Fig. 1. (a) A strongly connected graph G = (V,E). (b) Edge (5, 2) is not a strong
bridge, while (c) edge (4, 5) is a strong bridge. (d) Vertex 3 is a strong articulation
point, while (e) vertex 1 is not a strong articulation point. The strong articulation
points in G are vertices 3 and 5, and the strong bridges in G are edges (2, 3) and (4, 5).

connectivity of directed graphs. We recall that a strongly connected graph G is
said to be 2-vertex-connected if the removal of any vertex leaves G strongly con-
nected; similarly, a strongly connected graph G is said to be 2-edge-connected
if the removal of any edge leaves G strongly connected. The strong articula-
tion points are exactly the vertex cuts for 2-vertex connectivity, while the strong
bridges are exactly the edge cuts for 2-edge connectivity: G is 2-vertex-connected
(respectively 2-edge-connected) if and only if G does not contain any strong ar-
ticulation point (respectively strong bridge). Surprisingly, the study of 2-vertex
and 2-edge connectivity in directed graphs seems to have been overlooked and it
only received attention quite recently. Although there is no specific linear-time
algorithm in the literature, the 2-edge connectivity of a directed graph can be
tested in O(m+n): one can check whether a directed graph is 2-edge-connected
by using Tarjan’s algorithm [14] to compute two edge-disjoint spanning trees
in combination with the disjoint set-union algorithm of Gabow and Tarjan [6].
For testing 2-vertex connectivity, there is a very recent linear-time algorithm
of Georgiadis [7]. Note that none of the above algorithms finds all the strong
articulation points or all the strong bridges of a directed graph.

There are certain applications, however, when one is interested in computing
all the strong articulation points or all the strong bridges of a directed graph.
This includes the identification of cores in directed social networks [11], filtering
algorithms for the tree constraint in constrained programming [2], and verifying
the restricted edge connectivity of strongly connected graphs [15]. Linear-time
algorithms for computing all the strong bridges and all the strong articulation
points of a directed graph were recently proposed in [9]. In this paper, we im-
plement and engineer the algorithms in [9] and test our implementations against
real-world graphs taken from several application domains, including social net-
works, communication graphs (such as email graphs), web graphs, peer2peer
networks and product co-purchase graphs. Our implementations appear to be
fast and memory-efficient in practice, and this makes it possible to compute
all the strong articulation points and the strong bridges of large scale graphs,
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namely graphs up to twenty million vertices and half billion edges, in a dozen
minutes. In addition, our experiments highlight some properties of strong artic-
ulation points, which might help to further characterize the structure of large
scale real-world graphs, and in particular to identify cores in social networks. We
next describe briefly some of the observations that arise from our experiments.

First, strong articulation points appear frequently in real-world graphs: in-
deed, most of the graphs in our datasets have quite a high number of strong
articulation points. As an example, between 15% and 25% of the vertices in
product co-purchase graphs are strong articulation points, while in social graphs
this figure ranges between 11% and 18%. The relative number of strong bridges
is much smaller, with the only notable exception of email graphs, where strong
bridges are about 10% of the total number of edges. Another interesting prop-
erty is that in our dataset the vast majority of the strong articulation points and
the strong bridges tend to be inside the largest strongly connected component.
As a further indication of their importance, we mention that the indegree, out-
degree and PageRank of the strong articulation points tend to be much higher
than average in communication graphs and substantially higher than average in
social and web graphs.

2 Graph Terminology

We assume that the reader is familiar with the standard graph terminology, as
contained for instance in [5]. Let G = (V,E) be a directed graph, with m edges
and n vertices. A directed path in G is a sequence of vertices v1, v2, . . ., vk, such
that edge (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1. A directed graph G is strongly
connected if there is a directed path from each vertex in the graph to every
other vertex. The strongly connected components of G are its maximal strongly
connected subgraphs. A directed graph Gt is said to be a transitive reduction of
G if (i) Gt has a directed path from vertex u to vertex v if and only if G has
a directed path from vertex u to vertex v, and (ii) there is no graph with fewer
edges than Gt satisfying condition (i). Given a directed graph G = (V,E), its
reversal graph GR = (V,ER) is defined by reversing all edges of G: namely, GR

has the same vertex set as G and for each edge (u, v) in G there is an edge (v, u)
in GR. We say that the edge (v, u) in GR is the reversal of edge (u, v) in G.

A flowgraph G(s) = (V,E, s) is a directed graph with a start vertex s ∈ V
such that every vertex in V is reachable from s. The dominance relation in G(s)
is defined as follows: a vertex u is a dominator of vertex v if every path from
vertex s to vertex v contains vertex u. Let dom(v) be the set of dominators of
v. Clearly, dom(s) = {s} and for any v �= s we have that {s, v} ⊆ dom(v): we
say that s and v are the trivial dominators of v in the flowgraph G(s). The
dominance relation is transitive and its transitive reduction is referred to as the
dominator tree DT (s). Note that the dominator tree DT (s) is rooted at vertex
s. Furthermore, vertex u dominates vertex v if and only if u is an ancestor of
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v in DT (s). We say that u is an immediate dominator of v if u is a dominator
of v, and every other non-trivial dominator of v also dominates u. It is known
that if a vertex v has any non-trivial dominators, then v has a unique immediate
dominator: the immediate dominator of v is the parent of v in the dominator tree
DT (s). In the following, we denote by D(s) the set of non-trivial dominators in
G(s). Let GR = (V,ER) be the reversal graph of G, and let GR(s) = (V,ER, s)
be the flowgraph with start vertex s: we denote by DR(s) the set of non-trivial
dominators in GR(s).

Similarly, we say that an edge (u, v) is an edge dominator of vertex w if every
path from vertex s to vertex w contains edge (u, v). Furthermore, if (u, v) is an
edge dominator of w, and every other edge dominator of u also dominates w,
we say that (u, v) is an immediate edge dominator of w. Similar to the notion of
dominators, if a vertex has any edge dominators, then it has a unique immediate
edge dominator. As before, we denote by DE(s) the set of edge dominators in
G(s) and by DER(s) the set of edge dominators in GR(s).

3 Experimental Setup

Test Environment. All our experiments were performed on a machine with a
CPU Intel Xeon X5650 with 6 cores, running at 2.67GHz, with 12MB of cache
and 32GB RAM DDR3 at 1GHz. The operating system was Linux Red Hat 4.1.2-
46, with kernel version 2.6.18, Java Virtual Machine version 1.6.0 16 (64-Bit) and
WebGraph library version 3.0.1. Our implementations have been written in Java,
in order to exploit the features offered by the WebGraph library [3], which has
been designed especially to deal with large graphs. Our code is available upon
request. All the running times reported in our experiments were averaged over
ten different runs.

Datasets. In our experiments we considered several large-scale real-world graphs,
with up to ten million vertices and half billion edges. Our graphs come from dif-
ferent application areas, including web graphs, communication networks, peer-
to-peer networks, social networks and product co-purchase graphs. Vertices of
a co-purchase graph correspond to products, while edges connect commonly co-
purchased products (i.e., there is a directed edge from x to y when users who
bought product x also bought product y). The graphs considered in our exper-
iments, together with their type, information about the repository where the
graph was taken, number of vertices (n) and edges (m), average vertex degree
(δavg), are listed in Table 1. As already mentioned, we represent the graphs using
the WebGraph file format, storing both the original and the reversal of a graph
in order to access the adjacency lists in both directions. All the graphs taken
from other repositories (such as the SNAP graphs) were converted into this for-
mat before performing the experiments. For lack of space, we refer the interested
reader to the repositories SNAP [12] and WebGraph [16] for an explanation and
more information about those graph datasets and their file formats.
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Table 1. Real-world graphs in our experiments, sorted by number of edges (m)

Graph Type Repository n m δavg

p2p-Gnutella04 Peer2peer SNAP 11 K 40 K 3.7
wiki-Vote Social SNAP 7 K 103 K 14.5
enron Communication WebGraph 69 K 276 K 4.0
email-EuAll Communication SNAP 265 K 420 K 1.58
soc-Epinions1 Social SNAP 76 K 509 K 30.5
soc-Slashdot0811 Social SNAP 77 K 905 K 11.7
soc-Slashdot0902 Social SNAP 82 K 948 K 11.5
amazon0302 Product co-purchase SNAP 262 K 1.2 M 4.7
web-NotreDame Web WebGraph 325 K 1.4M 4.6
uk-2007-05@100K Web WebGraph 100 K 3 M 30.5
cnr-2000 Web WebGraph 325 K 3.2 M 9.8
amazon0312 Product co-purchase SNAP 400 K 3.2 M 8.0
amazon-2008 Product co-purchase SNAP 735 K 5.1 M 7.0
wiki-Talk Communication SNAP 2.3 M 5.0 M 2.1
web-Google Web SNAP 875 K 5.1 M 5.8
web-BerkStan Web SNAP 685 K 7.6 M 11.0
in-2004 Web WebGraph 1.3 M 16.9 M 12.2
eu-2005 Web WebGraph 862 K 19.2 M 22.3
uk-2007-05@1M Web WebGraph 1 M 41.2 M 41.2
soc-LiveJournal1 Social SNAP 4.8 M 68.9 M 14.2
ljournal-2008 Social SNAP 5.3 M 79.0 M 14.7
indochina-2004 Web WebGraph 7.4 M 194 M 26.1
uk-2002 Web WebGraph 18.5M 298 M 16.1
arabic-2005 Web WebGraph 22.7 M 640 M 28.1

4 Algorithms for Strong Articulation Points and Strong
Bridges

In this section we describe algorithms for computing strong bridges and strong
articulation points for strongly connected graphs. This is without loss of general-
ity, since the strong bridges (respectively strong articulation points) of a directed
graph G are given by the union of the strong bridges (respectively strong artic-
ulation points) of the strongly connected components of G.

There are trivial algorithms that compute all the strong articulation points
and all the strong bridges of a graph G in O(n(m + n)) time. To compute
whether a vertex v is a strong articulation point, it is enough to check whether
the graph G\v is strongly connected. This yields an O(n(m+n)) time algorithm
for computing all strong articulation points. To compute all strong bridges in
O(n(m+n)) time is less immediate, and we describe next how to accomplish this
task. Fix any vertex v of G. Let T+(v) be an out-branching rooted at v, i.e., a
directed spanning tree rooted at v with all edges directed away from v. Similarly,
let T−(v) be an in-branching rooted at v, i.e., a directed spanning tree rooted at
v with all edges directed towards v. Note that G′ = T+(v)∪T−(v) is not unique.
However, as shown in [9], every graph G′ produced in this way contains at most
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1. Choose arbitrarily a vertex s ∈ V in G, and test whether s is a strong articu-
lation point in G. If s is a strong articulation point, output s.

2. Compute D(s), the set of non-trivial dominators in the flowgraph G(s) =
(V,E, s).

3. Compute the reversal graph GR = (V,ER).
4. Compute DR(s), the set of non-trivial dominators in the flowgraph GR(s) =

(V,ER, s).
5. Output D(s) ∪DR(s).

Fig. 2. Algorithm ILS(SAP) for computing all strong articulation points of G

1. Choose arbitrarily a vertex s ∈ V in G.
2. Compute DE(s), the set of edge dominators in the flowgraph G(s) = (V,E, s).
3. Compute the reversal graph GR = (V,ER).
4. Compute DER(s), the set of edge dominators in the flowgraph GR(s) =

(V,ER, s).
5. Output DE(s) ∪DER(s).

Fig. 3. Algorithm ILS(SB) for computing all strong bridges of G

(2n− 2) edges, can be computed in O(m + n) time and includes all the strong
bridges of G. This implies that all the strong bridges of G can be computed in
O(n(m+n)) time by simply computing a graph G′ = T+(v)∪T−(v) from G and
checking for each edge e of G′ whether the graph G \ e is strongly connected.

Throughout this paper, we refer to both trivial O(n(m + n)) algorithms as
Naive, and in particular we refer to the naive algorithm for computing strong
articulation points (respectively strong bridges) as Naive(SAP) (respectively
Naive(SB)). To obtain their linear-time algorithms, Italiano et al. [9] exploited
the relationship between strong articulation points, strong bridges and domina-
tors in flowgraphs stated in the following theorem:

Theorem 1. [9] Let G = (V,E) be a strongly connected graph, and let s ∈ V
be any vertex in G. Then vertex v �= s is a strong articulation point in G if and
only if v ∈ D(s)∪DR(s). Furthermore, edge (u, v) is a strong bridge in G if and
only if (u, v) ∈ DE(s) or (v, u) ∈ DER(s).

We implemented the algorithms for computing all strong articulation points and
all strong bridges which stem directly from Theorem 1, as described respectively
in Figures 2 and 3. We call both algorithms ILS, and we refer to the algorithm for
computing strong articulation points (respectively strong bridges) as ILS(SAP)
(respectively ILS(SB)). We next show how to compute dominators and edge
dominators, which are the building blocks for the ILS algorithms.

Computing Dominators. Several algorithms for computing dominators in
flowgraphs have been proposed in the literature. The algorithm by Lengauer
and Tarjan [10], which we refer to as LT, runs in O(mα(m,n)) worst-case time,
where α(m,n) is a slowly growing inverse Ackermann function. Later on,
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Fig. 4. Experimental comparison of LT and semi-NCA. The number of edges is shown
in logarithmic scale and the running times (in microsecs) are normalized to the number
of edges.

Alstrup et al. [1] designed linear-time solutions for computing dominators. As ob-
served in the experimental study of Georgiadis et al. [8], this linear-time solution
is “significantly more complex and thus unlikely to be faster than LT in prac-
tice”. Georgiadis et al. [8] proposed a hybrid algorithm, dubbed semi-NCA, which
despite being slower from the theoretical viewpoint (it runs in O(n2 +m logn)
time), appears to be very efficient in practice. In our study, we rewrote the
implementations of LT and semi-NCA within the WebGraph framework [3] and
performed some experiments in order to select the best method for computing
dominators in our framework. We confirm on a larger scale the experimental
findings of Georgiadis et al. [8], as the running times of LT and semi-NCA are
very close in practice. The result of one such experiment on graphs in our dataset
is illustrated in Figure 4. Since both algorithms appear to be comparable, and
there is no clear winner, in the remainder of the paper we will only show the
results of experiments where the dominator trees are computed by one of them,
in particular LT.

Computing Edge Dominators. Our algorithm for computing edge domina-
tors in flowgraphs hinges on the following lemma by Tarjan:

Lemma 1. [13] Let G = (V,E, s) be a flowgraph and let T be a DFS tree of
G with start vertex s. Edge (v, w) is an edge dominator in G if and only if
all of the following conditions are met: (v, w) is a tree edge, w has no entering
forward edge or cross edge, and there is no back edge (x,w) such that w does not
dominate x.

From the algorithmic viewpoint, the only non-trivial part of this lemma is to
check whether w dominates x. To do this, it is enough to test whether w is
an ancestor of x in the dominator tree DT (s). We can accomplish this task
in constant time, once DT (s) is available together with the preordering and
postordering numbers produced by a depth-first search visit of DT (s). Recall
that the preordering number first(v) is given by the order in which vertex v
was first visited, while the postordering number last(v) is given by the order
in which vertex v was last visited. Now, it is easy to see that w dominates x if
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and only if first(w) < first(x) < last(x) < last(w). Our algorithm for computing
edge dominators requires all the extra work implied by Lemma 1 in addition to
the computation of dominator trees. Thus, we expect that in practice ILS(SB)

will be slightly slower than ILS(SAP). This was confirmed by our experiments.

5 Experimental Results

In this section we report the results of our experimental evaluation. To check
when they become faster than the simple-minded Naive algorithms, we per-
formed some experiments with small graphs. As it can be seen from Table 2, the
ILS algorithms appear to be superior to the Naive algorithms even for very small
graphs (few hundred vertices and thousand edges), and they become substan-
tially faster for larger graphs. This shows that the ILS implementations seem to
be the method of choice even in the case of very small graphs.

Table 3 illustrates the results of another experiment with large scale graphs,
where the Naive algorithms are omitted due to their extremely high running
times. In our experiments the ILS algorithms appeared to be very fast in practice:
quite surprisingly, they were able to handle large graphs (hundred million edges)
only in about a dozen minutes. As expected, ILS(SAP) was slightly faster than
ILS(SB), since computing edge dominators is slightly more complicated than
computing dominators (see Lemma 1).

The efficiency of our ILS implementations makes it possible to compute the
strong articulation points and the strong bridges of large graphs, and allows us
to try to characterize some of their main properties, as shown in Table 3. The
data collected in our experiments suggest that in the graphs considered most of
the strong articulation points are in the largest strongly connected component.
This seems to be true especially for peer2peer, social and product co-purchase
graphs. For instance in p2p-Gnutella04 all the strong articulation points and
all strong bridges are inside the largest strongly connected component, even if
this component contains only about 40% of the vertices and 47% of the edges.
For web graphs, however, there are few instances (such as uk-2007-05@100k and
web-BerkStan) where a susbstantial fraction of the strong articulation points lie

Table 2. ILS and Naive running times, measured in seconds. We use #sap and #sb
to denote respectively the number of strong articulation points and of strong bridges
in the graph

Graph n m #sap #sb ILS(SAP) Naive(SAP) ILS(SB) Naive(SB)

c.elegans 0.3 K 2.3 K 36 45 0.097 0.231 0.067 0.313
political_blogs1 0.6 K 2.7 K 43 84 0.049 0.214 0.064 0.296
political_blogs2 1.0 K 8.2 K 80 154 0.050 0.822 0.068 1.479
political_blogs3 1.4 K 19 K 115 216 0.101 2.049 0.099 4.238
p2p-Gnutella04 11 K 40 K 1344 1674 0.150 29.22 0.180 42.73
wiki-Vote 7 K 103 K 143 152 0.180 12.57 0.180 24.77
enron 69 K 276 K 796 4967 0.580 371.39 0.690 700.37
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Table 3. Analysis of strong articulation points and bridges, and corresponding ILS

running time (in seconds), for graphs from 40 K to 640 M edges. We denote by nscc

(resp. mscc) the number of vertices (resp. edges) in the largest strongly connected
component of the graph, and #sapscc and #sbscc to denote the number of strong
articulation points and of strong bridges in that component.

Graph n m #sap #sb nscc mscc #sapscc #sbscc ILS(SAP) ILS(SB)

p2p-Gnutella04 11 K 40 K 1.3 K 1.6 K 4.3 K 18.7 K 1.3 K 1.6 K 0.15 0.18
wiki-Vote 7 K 103 K 143 152 1.3 K 39.4 K 143 152 0.18 0.18
enron 69 K 276 K 796 4.9 K 8.2 K 147 K 781 4.8 K 0.58 0.69
email-EuAll 265 K 420 K 962 46.0 K 34 K 151 K 960 46.0 K 1.32 1.80
soc-Epinions1 76 K 509 K 8.4 K 23.5 K 32 K 443 K 8.1 K 20.9 K 1.07 1.20
soc-Slashdot0811 77 K 905 K 14.0 K 417 70 K 888 K 13.0 K 3 1.76 2.19
soc-Slashdot0902 82 K 948 K 14.2 K 501 71 K 912 K 14.1 K 69 1.79 2.35
amazon0302 262 K 1.2 M 71.9 K 75.7 K 241 K 11.3 M 69.6 K 73.3 K 3.55 4.77
web-NotreDame 325 K 1.4 M 13.8 K 61.8 K 54 K 304 K 9.6 K 31.9 K 2.48 3.27
uk-2007-05@100K 100 K 3 M 9.4 K 47.0 K 53 K 1.6 M 2.8 K 16.8 K 3.00 3.46
cnr-2000 325 K 3.2 M 32.5 K 104 K 112 K 1.6 M 14.6 K 44.1 K 4.28 5.08
amazon0312 400 K 3.2 M 69.5 K 83.2 K 380 K 3.0 M 69.0 K 82.6 K 11.37 12.40
amazon-2008 735 K 5.1 M 103 K 159 K 627 K 4.7 M 102 K 156 K 25.81 21.89
wiki-Talk 2.3 M 5.0 M 14.8 K 86.7 K 111 K 14.7 M 14.8 K 85.5 K 19.02 18.58
web-Google 875 K 5.1 M 102 K 267 K 434 K 3.4 M 89.8 K 211 K 13.59 15.48
web-BerkStan 685 K 7.6 M 108 K 297 K 334 K 4.5 M 53.6 K 164 K 9.91 12.15
in-2004 1.3 M 16.9 M 82.0 K 421 K 480 K 7.8 M 33.5 K 216 K 32.39 39.02
eu-2005 862 K 19.2 M 104 K 160 K 752 K 17.9 M 99.3 K 146 K 23.95 27.67
uk-2007-05@1M 1 M 41.2 M 147 K 415 K 593 K 22.0 M 82.5 K 259 K 20.90 24.51
soc-LiveJournal1 4.8 M 68.9 M 654 K 1.3 M 3.8 M 65.8 M 649 K 1.3 M 260.03 273.60
ljournal-2008 5.3 M 79.0 M 734 K 1.3 M 4.1 M 74.9 M 727 K 1.3 M 275.53 299.57
indochina-2004 7.4 M 194 M 774 K 2.2 M 3.8 M 98.8 M 503 K 1.4 M 155.83 192.06
uk-2002 18.5 M 298 M 2.3 M 6.1 M 12.0 M 232 M 1.8 M 4.8 M 404.92 478.13
arabic-2005 22.7 M 640 M 2.7 M 6.7 M 15.1 M 473 M 2.2 M 5.2 M 681.47 837.89

outside of the largest strongly connected component. Similar properties hold for
strong bridges, with the only exception of few instances of social graphs, namely
soc-Slashdot0811 and soc-Slashdot0902, where, differently from strong ar-
ticulation points, more than 90% of the strong bridges lie outside of the largest
strongly connected component.

In general, our experiments show that strong articulation points appear fre-
quently in our datasets. Their actual frequency seems to depend on the type
of the graph considered: product co-purchase graphs seem to have the highest
percentage of strong articulation points (between 15% and 25% of their vertices
are strong articulation points), followed closely by social graphs (where between
11% and 18% of the vertices are strong articulation points). Another interesting
aspect is that in our dataset only the email graphs (such as email-EuAll) seem
to have a large number of strong bridges, which are again mostly contained in
the largest strongly connected component.

To further check what are the bottlenecks of the ILS algorithms and whether
there could be room for further improvements, we broke down their running
times into smaller subtasks. In particular, Figure 5 shows the results of such an
experiment with ILS(SAP), where we measured the running time of (i) loading
the graph G into memory; (ii) computing the strongly connected components of
G; (iii) computing the dominators with LT and (iv) testing whether the root r
is a strong articulation point (by simply checking whether the strongly connected
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Fig. 5. Running times of ILS(SAP), broken down in the following subtasks: 1) loading
the graph G into memory, 2) computing the strongly connected components of G, 3)
computing the dominators with LT and 4) testing whether the root r is a strong artic-
ulation point. All the remaining running times are accounted for in a generic subtask
called “other”. The input graphs are partitioned according to their type (peer2peer,
communication, product co-purchase, social and web graphs).

component containing r breaks down after the removal of r). Note that all the
remaining running times are accounted for in a generic subtask called “other”.

As shown in Figure 5, most of the graphs of the same type (peer2peer, com-
munication, product co-purchase, social and web graphs) tend to share the same
break down structure in their running times. As expected, for most of the graphs
the bottleneck of ILS(SAP) appears to be the computation of dominators (via
the LT algorithm), which nevertheless seems to be slower than the computation
of the strongly connected components only by a small constant factor. On the
other hand, checking whether the root is a strong articulation point is consis-
tently faster than computing the strongly connected components of the entire
graph. The most notable exception to this general behavior arises from the com-
munication graphs, such as enron, email-EuAll and wiki-Talk. This happens
since those graphs tend to have a much different structure from the other graphs
in our dataset: indeed, they consist of one big strongly connected component,
containing slightly more than 10% of the vertices, and a very large number of
tiny strongly connected components (each having less than about 10 vertices).
In such a case, LT and the root test run on much smaller inputs (i.e., the strongly
connected components) than the entire graph.

Similar results are obtained for strong bridges. Figure 6 shows the results of
such an experiment with ILS(SB), where we measured the running time of (i)
loading the graph G into memory; (ii) computing the strongly connected compo-
nents of G and (iii) computing the edge dominators. As with strong articulation
points, all the remaining running times are accounted for in a generic subtask
called “other”. The main difference is that now the computation of edge dom-
inators requires more time than the computation of dominators, as implied by
Lemma 1. All those experiments seem to suggest that in order to obtain sub-
stantially faster ILS implementations, one should be able to produce faster codes
for computing dominators.
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Fig. 6. Running times of ILS(SB), broken down in the following subtasks: 1) loading
the graph G into memory, 2) computing the strongly connected components of G and
3) computing the edge dominators. All the remaining running times are accounted for
in a generic subtask called “other”. The input graphs are partitioned according to their
type (peer2peer, communication, product co-purchase, social and web graphs).

Table 4. For each graph, in this table we report, distinguished between the vertices (V )
and the strong articulation points (sap), the average values of indegree (δ−avg), outdegree
(δ+avg) and PageRank (PRavg); in the last three columns we can see, respectively, the
number of the strong articulation points in the main strongly connected components
(sapscc) and, amongst these, the one that belongs to the top 10% vertices sorted by
indegree (δ−(10%)) and by outdegree (δ+(10%)).

δ−avg δ+avg PRavg #sapscc #sapscc in #sapscc in

Graph V sap V sap V sap δ−(10%) δ+(10%)

p2p-Gnutella04 3.68 4.87 3.68 9.60 9.19·10−5 1.12·10−4 1.3 K 132 69

enron 3.99 62.79 3.99 103.48 1.46·10−5 1.63·10−4 781 24 8

email-EuAll 1.58 280.43 1.58 103.06 3.80·10−6 4.29·10−4 960 3 5

wiki-Talk 2.1 69.35 2.10 290.50 4.18·10−7 2.86·10−6 14.8 K 53 152

amazon0302 4.71 4.65 4.71 4.89 3.82·10−6 3.42·10−6 69.6 K 2497 4801
amazon0312 7.99 6.81 7.99 8.65 2.50·10−6 2.06·10−6 69.0 K 998 3628

amazon-2008 7.02 8.21 7.02 8.97 1.36·10−6 2.05·10−6 102 K 374 1825

wiki-Vote 12.5 79.29 12.50 68.91 1.21·10−4 6.83·10−4 143 3 11

soc-Epinions1 6.71 34.29 6.71 32.47 1.32·10−5 5.83·10−5 8.1 K 89 90
soc-Slashdot0811 11.7 38.73 11.70 39.90 1.21·10−5 3.06·10−5 13.0 K 1 3

soc-Slashdot0902 11.54 39.08 11.54 40.48 1.16·10−5 2.92·10−5 14.1 K 2 5

soc-LiveJournal1 14.23 35.89 14.23 35.47 2.07·10−7 5.69·10−7 649 K 3057 3113
ljournal-2008 14.73 38.46 14.73 37.56 1.88·10−7 5.10·10−7 727 K 3729 3666

web-NotreDame 4.6 14.13 4.60 13.63 3.11·10−6 1.25·10−5 9.6 K 797 478

uk-2007-05@100K 30.51 139.95 30.51 46.40 1.01·10−5 4.32·10−5 2.8 K 24 153

cnr-2000 9.88 27.59 9.88 16.79 3.12·10−6 9.08·10−6 14.6 K 1587 741
web-BerkStan 11.09 21.08 11.09 10.87 1.46·10−6 3.36·10−6 53.6 K 1640 4179

web-Google 5.57 17.80 5.57 9.24 1.09·10−6 3.30·10−6 89.8 K 5150 4037
in-2004 41.25 222.67 41.25 45.78 1.01·10−6 5.06·10−6 33.5 K 2641 2907

eu-2005 22.3 49.35 22.30 25.20 1.16·10−6 2.99·10−6 99.3 K 10441 12928

uk-2007-05@1M 12.23 41.71 12.23 19.61 7.32·10−7 2.09·10−6 82.5 K 5825 8360
indochina-2004 26.18 62.23 26.18 27.60 1.37·10−7 4.09·10−7 503 K 30252 38724

uk-2002 16.1 43.93 16.10 20.82 5.48·10−8 1.43·10−7 1.8 M 152773 183997

arabic-2005 28.14 82.68 28.14 34.96 4.44·10−8 1.31·10−7 2.2 M 139907 176214
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To investigate further properties of strong articulation points, we computed
average indegree, outdegree and PageRank of strong articulation points and
of vertices in our graph instances. The result of such experiment is shown in
Table 4. While in co-purchase graphs strong articulation points seem to have
vertex degrees and PageRank close to average, there are more striking differences
for the other graphs in our dataset. In particular, the indegree, outdegree and
PageRank of the strong articulation points tend to be much higher than average
in communication graphs and higher than average in social and web graphs.

Another application where strong articulation points may be handy is the
identification of cores in directed social networks. As defined in [11], a core is a
minimal set of vertices which are necessary for the connectivity of the network,
i.e., removing vertices in the core breaks the remainder of the vertices into many
small, disconnected strongly connected components. In recent work, Mislove et
al. [11], following an approximation commonly used in web graph analysis [4],
observed that after removing 10% of the highest indegree (or highest outdegree)
vertices in a social graph, the largest strongly connected component will be split
into smaller components. It seems thus natural to ask how many of the removed
vertices are actually strong articulation points, i.e., how many of the removed
vertices are really effective in splitting the largest strongly connected component.
Table 4 reports the results of an experiment where we tried to answer this
question. As shown in the last columns of Table 4, only few strong articulation
points are selected by this process, which indeed seems to miss the vast majority
of strong articulation points (roughly 95% on average). This gives some evidence
that using strong articulation points in place of high degree vertices may provide
a better approximation of the core of a directed graph.

Acknowledgments. We are indebted to Massimo Bernaschi for providing the
computing infrastructure on which our experiments were run. We thank also
Loukas Georgiadis for helpful discussions and for providing the source code of
the implementation of LT and semi-NCA described in [8], and the anonymous
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Abstract. An important function of overlay networks is the facilita-
tion of connection, interaction and resource sharing between peers. The
peers may maintain some private notion of how a “desirable” peer should
look like and they share their bounded resources with peers that they
prefer better than others. Recent research proposed that this problem
can be modeled and studied analytically as a many-to-many matching
problem with preferences. The solutions suggested by the latter proposal
guarantee both algorithmic convergence and stabilization, however they
address static networks with specific properties, where no node joining or
leaving is considered. In this paper we present an adaptive, distributed
algorithm for the many-to-many matching problem with preferences that
works over any network, provides a guaranteed approximation for the to-
tal satisfaction in the network and guarantees convergence. In addition,
we provide a detailed experimental study of the algorithm that focuses
on the levels of achieved satisfaction as well as convergence and reconver-
gence speed. Finally, we improve, both for static and dynamic networks,
the previous known approximation ratio.

1 Introduction

Overlay networks play an increasingly important role in today’s world: from so-
cial networks to ad hoc communication networks, people and machines connect,
interact and share resources through novel overlay networks laid over Internet’s
infrastructure or other communication substrate. Unstructured overlays in partic-
ular aim at connecting peers withminimal assumptions on the protocols to be used,
while addressing universal challenges: peers are willing to share both concrete re-
sources, such as bandwidth, and abstract ones, such as attention span, but these
resources are naturally limited and usually the contributors expect something in
return. As an example, in a generic, fully distributed scenario each peer may rate
its neighbors according to one or more individual metrics (e.g. distance, interests,
available resources) but choose to connect to only a handful of them due to its own
resource scarcity. The challenge in this scenario is to maintain a high level of the
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implemented service on a network scale, while at the same time adapt to and tol-
erate the high dynamicity commonly found in these networks, with peers leaving,
joining or changing ratings about their neighbors at any time.

This kind of connection problem with limited resources and reciprocal re-
lations between contributors gives rise to a natural modeling using undirected
graphs where nodes have limited (but different) connection capacities. It is es-
sentially a form of a matching problem in a graph, where nodes must be matched
one to one with some neighbor of theirs in a maximal way on the graph level.
The particular form of matching which is relevant here is many-to-many match-
ing with preferences (commonly referred to as stable fixtures [1] or b-matching
with preferences [2] problem), where each node maintains a preference list of
its neighbors (rated from most to least preferable) and a total quota of desired
connections bi for each node i. The goal for each node in this setting is to be
able to form the desired amount of connections with the highest quality (most
preferred) neighbors.

Although current literature includes efficient algorithms for many-to-many
matching with preferences that can produce a stable configuration if one exists,
recent research showed [2] that the problem does not always admit stable so-
lutions. Furthermore, most suitable algorithms from literature are centralized
and cannot be deployed in a distributed setting such as the unstructured over-
lay networks considered here. In addition to the above, none of the currently
available distributed algorithms for the b-matching problem can handle the dy-
namic aspect of overlay networks (e.g. node arrivals/departures and preference
changes). Concrete examples of previous work, along with their relation to the
present study, can be found in the subsection below.

In this paper we focus on the problem of adaptive, distributed many-to-many
matching problem with preferences. Using the metric of node satisfaction [2]
that can be used for measuring the quality of a node’s connections, we build on
earlier work that modeled the problem from an optimization perspective. The
contribution is threefold:

(i) We show an improved approximation ratio, that can also be applied to
existing algorithms and imply improved bounds for their satisfaction guar-
antees.

(ii) We propose an adaptive, distributed algorithm for the problem, which
guarantees that the calculated solution maximizes the total satisfaction in
the network within the newly shown bound: an approximation of
1
4

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
in every case, where bmax is the maximum con-

nection quota in the graph and s = Lmax

Lmin
is the ratio of the maximum and

minimum neighbor list sizes in the graph, Lmax and Lmin respectively. To
the extend of our knowledge it is the first algorithm that can handle dy-
namicity while solving the many-to-many matching problem, with node
joining, leaving and preference changes fully supported. Its key features in-
clude the use of only local information, a given approximation bound and
a guaranteed convergence once the changes complete.
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(iii) We also provide a extensive experimental study of the behavior of the al-
gorithm under a variety of scenarios, including normal operation but also
operation under high stress. Under normal operation, we focus on the lev-
els of achieved satisfaction as well as convergence and reconvergence speed.
Specifically, we show that the resulting satisfaction is high but also re-
mains on high levels during and after reconvergence, while reconvergence is
achieved in an efficient way under a variety of changes. Besides, motivated
by [3,4] we conducted experiments that focus on the stability of the network
under join/leave attacks, by exposing it to high churn rates, and observed
that it withstands the attacks while maintaining graceful satisfaction values
throughout them.

1.1 Related Work

Matching problems are well studied in their centralized form and an extensive
literature exists, including solutions for the many-to-many variants (cf for exam-
ple [1,5,6,7]). However, it has been shown [8] that exact solutions of even simple
matching problems cannot be derived locally in a distributed manner, leading to
a significant research interest for approximation distributed algorithms [9,10,11].
Prominent examples of this research area are the one-to-one weighted matching
algorithms of Manne et al. [12] and Lotker et al. [10,13], with the former having
proven self-stabilization properties and the latter having variants that can handle
joins and leavings of nodes. However, whether it is possible to extend these tech-
niques to many-to-many matchings remains an open research question. On the
other hand, Koufogiannakis et al. [14] proposed a randomized δ-approximation
distributed algorithm for maximum weighted b-matching in hypergraphs (with
δ = 2 for simple graphs) but it addresses only static graphs and its elaborate
nature makes its extension to support a dynamic setting non-trivial.

Additionally to the approaches above, there is an extensive research focus on
many-to-many matchings with preferences [2,15,16,17]. First Gai et al. in [16]
proved that in the case of an acyclic preference system there is always a stable
configuration, and also supplied examples of preference systems based on global
or symmetric metrics. Mathieu in [2] introduced the measure of node satisfaction
as a metric aimed to describe the quality of the proposed solutions. Georgiadis
et al. in [18] modeled the b-matching with preferences problem as an optimiza-
tion problem that uses satisfaction to achieve convergence. The authors showed
an approximation is possible through the reduction of the original problem to
a many-to-many weighted matching problem. However, the proposed algorithm
is only suitable for static networks, since it cannot adapt to and guarantee con-
vergence after changes in the topology of the network (joins/leavings) or nodes’
preferences. Previously Lee [17] had used a similar credit metric in order to
optimize the proposed solutions from their heuristic algorithms.
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2 Problem Definition and System Model

In this paper we use standard terms and notions from the literature [1,2,13,18])
which we briefly describe here for self-containment. We represent an overlay
network as an undirected graph G(V,E) with |V | = n, |E| = m, where V is
the set of overlay peers and E the set of potential connections. Each node i has
degree di and keeps a preference list Li of all nodes in its neighborhood Γi

1.
Let Ri(j) denote the rank of node j in node i’s preference list, with Ri(·) ∈
{0, 1, . . . , |Li| − 1}, attributing 0 to its most desirable neighbor. Each node i
wants to maintain at most bi connections to the best possible nodes according to
its preference list and rank function, and at no point it can exceed this number. In
the following sections we will refer to two nodes as neighboring nodes when they
are connected by an edge in graph G and connected or matched nodes when they
are matched by a matching algorithm. The problem of trying to find a many-to-
many matching that respects the individual preferences and connection quotas
bi is a form of a generalized stable roommates problem called the stable fixtures
problem [1] or b-matching [2]. We call adaptive b-matching the dynamic form
of b-matching, where nodes can join, leave or change preferences at any time.
In the remaining of this paper we will refer to these events simply as changes.
We will also consider an asynchronous model for messages and will not consider
link or node failures, i.e. messages arrive asynchronously but do not get lost and
nodes depart gracefully or their absence can be detected by other means (for
example special periodic “alive” messages).

In order to measure the success of a node i’s efforts in establishing its bi
connections, we make use of the notion of satisfaction Si (defined in [2] and
analyzed in [18]) to be equivalent to the following:

Si =
ci
bi
−

∑
j∈Ci

(Ri (j)−Qi (j))

biLi
(1)

where Ci (with |Ci| = ci ≤ bi) is an ordered list of node i’s established connec-
tions in decreasing preference and Qi (j) is the rank of node j in the connection
list Ci of node i. According to the above formula, Si takes values between 0
and 1, depending on how many and which connections a node has formed. A
satisfaction value 1 is achieved by a node that has formed all bi desired connec-
tions with its bi most preferable neighbors, while a penalty is inserted for each
non-optimal connection that it forms. Note that we can write formula 1 as:

Si =
∑
j∈Ci

(
Li −Ri (j)

biLi

)
+
∑
j∈Ci

(
Qi (j)

biLi

)
=
∑
j∈Ci

Ss
i,j +

∑
j∈Ci

Sd
i,j = Ss

i + Sd
i (2)

We refer to the quantities Ss
i and Sd

i as the a priori part and the a poste-
riori part of node i’s satisfaction respectively, as the former summation terms
are computable for each j regardless of whether it is matched with i or not, while

1 In the rest of the paper and when it is clear from context, we will use notation Li

to denote both the list and its length.
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the latter summation’s terms are computable only for those j that are matched
with i by the solution.

The Truncateds Maximizing Satisfaction b-Matching Problem. Geor-
giadis et al. in [18] modeled the b-matching problem as an optimization prob-
lem that uses satisfaction to achieve convergence, and defined the problem of
maximizing the total sum of node satisfaction as the maximizing satisfaction
b-matching problem. That paper showed that an approximation to the original
problem is possible by forming edge weights w(i, j) using only both endpoints’
marginal a priori part of satisfaction Ss

i,j and Ss
j,i,

w (i, j) = Ss
i,j + Ss

j,i =

(
Li −Ri (j)

biLi

)
+

(
Lj −Rj (i)

bjLj

)
. (3)

When the above approximation is used for satisfaction calculations, the satis-
faction for each node i is essentially computed by using only the a priori part
of satisfaction in formula 2. The resulting problem, called here truncatedS maxi-
mizing satisfaction b-matching problem, has been proven equivalent to a many-
to-many weighted matching problem with edge weights as defined in formula 3
[18]. Note here that a simple weighted matching problem is defined as the prob-
lem of finding a set of edges whose weight sum is maximized and which have no
common endpoints between them. The many-to-many variant used here replaces
the constraint on no common endpoints with node capacities that need to be
respected, in this case the connection quotas bi per node i.

In the analysis of the algorithm we will also use the notion of a locally heaviest
edge [19]. Let Eij be the set of edges having either of nodes i and j as an endpoint
(but not both):

Eij = {(i, ni) |ni ∈ Γi\j} ∪ {(j, nj) |nj ∈ Γj\i} (4)

An edge (i, j) is called locally heaviest if it has the greatest weight among all
edges e ∈ Eij :

w (i, j) > w (e) , e ∈ Eij (5)

3 Improved Approximation Ratio

Before proceeding to the presentation and analysis of the algorithm, we show
an improved approximation ratio for the problem under study. As shown in the
proof (due to space limitations, it can be found in [20]), the new ratio applies
both for the static case of [18] and the dynamic case studied here.

Theorem 1. The truncatedS maximizing satisfaction b-matching problem is a
1
2

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
-approximation of the maximizing satisfaction

b-matching problem, where bmax is the maximum connection quota in the graph
and s = Lmax

Lmin
is the ratio of the maximum and minimum neighbor list sizes in

the graph, Lmax and Lmin respectively.

The above theorem does not make any assumptions on whether the problem/-
graph is static or dynamic. Hence it leads to an improved approximation bound
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for the Local Information-based Distributed (LID) algorithm in [18] that solves
the b-matching with preferences problem.

Corollary 1. The LID algorithm solves the b-matching with preferences prob-

lem with 1
4

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
-approximation.

4 Adaptive Matching Algorithm

The adaptivematching algorithmbuilds on themodeling of the Local Information-
basedDistributed (LID) algorithm [18] and utilizes the notion of node satisfaction
to optimize thematching; for self-containmentwe summarize it here. The core idea
of the LID algorithm is that every node maintains a preference list of all its neigh-
bors and regards every potential connection as able to give a fraction of satisfac-
tion, amounting to 1 for a full connection quota with top choices or less in the case
of sub-optimal choices (0 for no connections). The network optimization goal we
are considering is to maximize the total sum of individual node satisfaction while
respecting individual node preferences and connection quotas. During initializa-
tion of the algorithm every node i exchanges approximatedmarginal a priori parts
of satisfaction scores Ss

i,j with its neighbors j and forms edge weightsw (i, j) using
the scores it receives. Already at this point, the first approximation over the orig-
inal maximizing satisfaction many-to-many matching is being employed by using
the approximated form ofmarginal satisfaction.Using the resultingweights for the
matching effectively converts the original problem into a maximum weight many-
to-manymatching problem, which the nodes proceed to solve by choosing greedily
only locally heaviest edges. This second approximation (i.e. choosing locally heav-
iest edges instead of globally heaviest ones) along with the first one jointly lead to

a 1
4

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
-approximation solution of the original problem but

also lead to valuable properties for the algorithm: on the one hand to a simple, fully
distributed scheme and on the other to provable termination even when cycles are
present among node preferences (cf lemma 5 in [18]).

In a dynamic setting, where nodes join/leave the network or change prefer-
ences about their neighbors at any time, there is a partial or full solution that
is disturbed by a specific operation. In this case it is desirable to “repair” the
solution instead of recomputing it from the beginning. It would also be advan-
tageous to limit the repairs to the neighborhood of the operation, so that far
enough nodes would remain unaffected. Note that the locally-heaviest-edge prop-
erty that we are using here seems ideal for this purpose: it only makes sense to
preserve and use it further to support dynamicity.

In the adaptive algorithmAdaptiveLID presented here, all three cases of dy-
namicitymentioned above (join/leave/change) are supported. In the case of a join-
ing (resp. departing) node, neighboring nodes add (resp. delete) it to (resp. from)
their preference lists.On theother hand,whenanode changespreferences nochange
occurs to the neighboring nodes’ preference lists but edge weights may change rad-
ically. A common thread between these cases is that the nodes directly involved in
the operationsmust recalculate their marginal satisfactions for their neighbors and
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exchange them so that their adjacent edges have the correct weights. Afterwards,
they must re-evaluate their connections: if they are not locally heaviest any more,
the nodes abandon the least weighted ones and try to get matched with the locally
heaviest ones. Note here that this method avoids the recalculation of the solution
over the whole network, instead limiting it to a neighborhood around the network
area where the dynamic operation took place. An additional benefit is that the in-
volved nodes maintain their current connections unless proven to be non-optimal,
i.e. they change them only if necessary.

In literature, many of the algorithms for matching with preferences are in-
spired by the proposal-refusal algorithm of Gale and Shapley [6]. This also the
case with AdaptiveLID but it addresses a different problem with unique char-
acteristics: while the Gale-Shapley algorithm is focused on absolute stability,
AdaptiveLID solves an optimization problem and aims for the maximum pos-
sible satisfaction. So, for example, it is important to guarantee that no cycles
exist in the case of Gale-Shapley algorithm since, given the distributed nature
of the algorithm, a reply may not be possible to be given immediately by a node
to another node’s proposal. This is not necessary in the case of AdaptiveLID

since any cycles in preference orders are broken by reducing the original problem
to an acyclic weighted many-to-many matching, upon which the algorithm oper-
ates (cf also lemma 3). On the other hand, it is important for the AdaptiveLID

algorithm to tolerate and work under changes in the underlying network and by
focusing on optimization it achieves exactly that (cf lemma 5).

The AdaptiveLID algorithm uses at each node i five sets (Pi,Ki, Ai, Ri, Bi)
and an incoming message queue queuei, and sends three kinds of messages
(PROP, REJ and WAKE):

– A node i sends PROP messages to propose to its heaviest-weight neighbors
the establishment of a connection. If an asked node also sends a PROP

message to node i then the connection is established (locked): note that this
will happen in both endpoints. Set Pi stores the neighbors to which node i
proposed with a PROP message, Ai stores the neighbors which approached
node i with a PROP message, Ki stores the locked neighbors, Bi stores the
neighbors that rejected node i and Ri the neighbors that node i rejected.
Sets B∗

i and A∗
i are copies of sets Bi and Ai respectively that do not contain

neighbors of edges heavier than the edge of the worst connected neighbor.
– A node sends a REJ message when it has locked as many neighbors as it

could. Nodes can send additional PROP messages to available neighbors
if they receive a REJ message. PROP messages are sent to neighbors in
decreasing ranking order and there are at most bi such unanswered messages
originated from i at any time.

– Node i is constantly checking if its PROPmessages are addressed to heaviest-
weight neighbors, as ranking can change due to a change in the network. If
it detects a better available node than the currently proposed ones, it sends
a REJ message to the worst connected neighbor and a PROP to the better
candidate. However, if the better candidate has simultaneously rejected and
been rejected by node i, node i sends only a WAKE message.
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Algorithm 1. AdaptiveLID()

ReceiveMsgs()

SendMsgs()

BookkeepingUpdates()

Procedure 1. ReceiveMsgs()

for msg ∈ queuei do
if msg.type = PROP then

Ai ← Ai ∪msg.sender
Bi ← Bi −msg.sender

if msg.type = REJ then
Bi ← Bi ∪msg.sender
Ai ← Ai −msg.sender
Ki ← Ki −msg.sender
Pi ← Pi −msg.sender

if msg.type = WAKE then
Bi ← Bi −msg.sender

Procedure 2. SendMsgs()

while (|Γi − Pi − (Bi −Ri)| �= 0) ∧ (|Pi| < bi) do
find heaviest edge neighbor c that belongs

in (Γi − Pi − (Bi −Ri))
if c �= null then

if c ∈ Bi then
send a WAKE msg to c
Ri ← Ri − c

else
send a PROP msg to c
Pi ← Pi ∪ c
Ri ← Ri − c

Function 1. GetWorstNode(node i)

return

{
l : w (l, i) = min

j∈Pi

w (j, i)

}

Function 2. GetBestNode(node i)

return

{
h : w (h, i) = max

j∈(Γi−Pi−(Bi−Ri))
w (j, i)

}

Procedure 3. BookkeepingUpdates()

Ti ← (Pi −Ki) ∩Ai

if |Ti| �= 0 then
Ai ← Ai − Ti

Ki ← Ki ∪ Ti

match node i to all nodes in Ti

if (|Γi − Pi − (Bi −Ri)| �= 0)∧ (|Pi| �= 0)∧ (|Ki| �= 0)
then

l← GetWorstNode(i)
h← GetBestNode(i)
while (l �= null) ∧ (h �= null) do

if w (h, i) > w (l, i) then
if h ∈ Bi then

send a WAKE msg to h
Ri ← Ri − h

else
send a REJ msg to l
Ai ← Ai − l
Ri ← Ri ∪ l
Pi ← Pi − l
Ki ← Ki − l
send a PROP msg to h
Pi ← Pi ∪ h
Ri ← Ri − h

l← GetWorstNode(i)
h← GetBestNode(i)

else if Pi = Ki then
for j ∈ (Γi −Ri −B∗

i +A∗
i − Pi) do

send a REJ msg to j
Ai ← Ai − j
Ri ← Ri ∪ j

break

else
break

unmatch node i from all nodes in Bi

5 Analysis

The following lemmas (omitted proofs can be found in [20]) prove that the algo-
rithm always converges after a finite amount of steps or, in the case of changes in
the network, in a finite amount of steps after the changes stop. Although implied
by the distributed nature of the algorithm, it is useful to note that the algorithm
continues to run at all nodes regardless of any changes that are happening in the
network. In fact, as we show in the experimental section, it manages to maintain
a reduced but steady level of service while under extremely heavy stress or possi-
bly a network attack. However, convergence can be guaranteed after all changes
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complete since any changes that might occur require appropriate readjustment
by the distributed algorithm.

Lemma 1. In a failure free execution, edge weight updates that are caused by
node or preference changes complete in a finite amount of time.

We define as available with respect to node i, a node j in the neighborhood of
node i that has neither been proposed by node i nor rejected node i.

A node j is a locally heaviest node in the neighborhood of node i at some point
in time if there are no available nodes that are endpoints of heavier edges. Note
that when the endpoints of an edge consider simultaneously each other locally
heaviest, the edge between them is a locally heaviest edge.

Lemma 2. In a finite amount of time after a node or preference change, every
node cancels all proposals towards neighbors that are no longer locally heaviest
and issues an equal amount towards available neighbors that are locally heaviest.

Lemma 3. The AdaptiveLID algorithm terminates for every node i ∈ V after
changes complete.

Lemma 4. For every node i, algorithm AdaptiveLID chooses all locally heavi-
est edges that are adjacent to it, if there is enough quota bi available, or otherwise
chooses bi of them that are heavier than any unchosen one.

Lemma 5. The AdaptiveLID algorithm when run on a network with changes
produces the same matching with the LID algorithm that is run on the same
network after the changes complete.

From lemma 5 and theorem 1, as well as lemma 2 and theorem 2 of [18], we get
the following theorem about the approximation ratio of AdaptiveLID:

Theorem 2. The AdaptiveLID algorithm solves the adaptive b-matching with

preferences problem with 1
4

(
1 + b−1

max

(
1 +

1−b−1
max

2s+b−1
max

))
-approximation.

Observation 1. Following the main argument of the classic Chandy and Misra
[21] Drinking Philosophers algorithm, we observe that the convergence complexity
is bounded by the longest increasing edge weight path in the network.

6 Experimental Study

The following extensive experimental study complements the preceding analyt-
ical part with useful observations and conclusions about the behavior of the
AdaptiveLID algorithm in a variety of scenarios. Focus was given on the per-
formance of the algorithm in regard to the following points:

– Behavior on different types of networks
– Behavior during different operations (joins, leaves, preference changes and

churn)
– Convergence and reconvergence times
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– Satisfaction levels, both in normal operation and under heavy stress (i.e.
during a network-level attack)

– Fairness properties of satisfaction-based optimization

The following experiments were conducted using the PeerSim [22] platform in a
synchronous way, i.e. execution proceeded in rounds, where each node in each
round made a receive-respond-process step, unless it had nothing to execute.
This synchronous execution mode is not necessary for the algorithm but it is
used here to measure the time needed by the AdaptiveLID algorithm to con-
verge. For every network instance used, a matching was calculated and the fol-
lowing operations were performed on a varying amount of nodes (1% to 50%
of the network size, in increments of 1%): join/leave, where nodes enter/exit
the network simultaneously, preference change, where existing nodes change the
ranking of their neighbors in their preference lists simultaneously, and churn,
where existing nodes exit and an equal amount of new nodes enter the network
simultaneously. For the first three cases the network was left to reconverge after
one operation, while in the case of churn the operation was repeated for several
rounds before the network was left to reconverge. Each of these operations was
conducted on networks of size n = 100, 250, 500, 750 and 1000 nodes, consider-
ing 30 network instances for each size, and the results presented here are mean
values over these instances.

6.1 Network Types

The networks used during the experiments were power-law and random net-
works, created with the Barabási-Albert (BA) [23] and Erdős-Rényi (ER) [24]
procedures respectively. These networks were selected for their different node de-
gree distributions: in power-law networks the vast majority of nodes has very low
degree and few nodes have very high degree (power-law distribution), while in
ER random networks all nodes have comparable degrees (binomial distribution).
In fact, high degree nodes in BA networks are connected mostly with many low
degree ones, which leads to the creation of very different neighborhoods around
individual nodes for these two network types. This difference, coupled with the
algorithm’s ability to perform local repairing operations, leads to the varying
behaviors that can be seen in the experiments below.

On the other hand, both network types had node preferences formed uni-
formly at random since previous research [2,16] showed that (a) a strict match-
ing solution can not always be found when they are used and (b) the measured
satisfaction of unconverged instances can be relatively low. These characteristics
make random preferences the challenging test case to evaluate the performance
of the algorithm.

6.2 Convergence and Reconvergence

The mean value and standard deviation of convergence speed for a variety of
network sizes can be found in figure 1. It is easy to see that the convergence
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speed depends on the type of the network. For example, BA networks of size
1000 take almost twice the amount of time to converge than networks of size
100, while ER networks of size 1000 need less than twice the amount of time
needed by networks of size 100 and only slightly higher amount of time than the
networks of size 500 and 750.
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Fig. 1. Convergence speed per network size

Likewise, the time needed for reconvergence can be seen in figures 2 and 3,
for networks of size 1000 of both types and for the four types of operations
under consideration. By focusing on low percentages of affected nodes (i.e. up
to 20% of the network size, which is a high volume of change), it is easy to
see that reconvergence is obtained in most cases for a fraction of the rounds
needed for initial convergence. For join and leave operations reconvergence is
expressed not in rounds but in relation to the convergence time, since network
sizes change significantly. Note here that this extreme change in network sizes
leads in some cases to percentages greater than 100%, i.e. more rounds are needed
for the reconvergence than for the initial convergence. For the preference change
and churn operations this is not the case: the network size remains the same
either because no node joins or leaves (preference change case) or the amount of
nodes joining and leaving is the same (churn case) and the reconvergence time
is expressed is rounds.

In the case of join operations, nodes arrive at the network and want to join the
already established equilibrium of connections by being more attractive choices
for some of the nodes they are neighbors with. This creates cascade effects of
nodes rejecting old connections in favor of the newcomers, the rejected nodes
trying to repair their lost connections and so on. Naturally, the more nodes
wanting to join the network the bigger upheaval is created. A similar effect is
generated during leave operations, where previously rejected nodes suddenly be-
come attractive choices for nodes that were left behind by departing nodes. Note
here that the BA networks reconverge much faster than the corresponding ER
networks in the case of join operations. This happens because new nodes (being
of low degree) connect preferentially to relatively few high degree nodes, limit-
ing the extension of the upheaval in the network. In the case of leave operations
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the same behavior poses a challenge since departing nodes may happen to be of
high degree themselves, leaving behind a lot of low degree nodes to repair their
connections. Notice though that in both cases (ER or BA networks), when a sub-
stantial percentage of the network departs (i.e. above 35%) the remaining nodes
repair their connections much easier since they have more unformed connections
than established ones.

1 01 21 51 71 61 81
71

61

81

91

31

41

011

001

021

051

1 01 21 51 71 61 81
71

61

81

91

31

41

011

001

021

Fig. 2. Reconvergence speed per operation, joins/leaves, n = 1000

Preference change affects both network types in the same way: a node that
changes preferences destroys some connections, creating waves of changes in its
neighborhood. For the case of BA networks, it may happen that a node changing
preferences is a high degree one, causing a lot of nodes to repair their connections.
However, this effect dies off quickly, since most of its neighbors are of low degree,
leading to an overall performance similar to the ER case.

The two network types show their differences more prominently under churn
(figure 3). For the ER networks, a joining node under churn can be seen as
a “reincarnation” of a leaving node with all its previous connections dropped
and its preferences changed, since both of them have comparable node degrees.
However, the churn operation is detrimental for the BA network since the join-
ing nodes are of low degree and the departing ones of potentially much higher
degree. As a result the degree distribution itself is changing, leading to higher
reconvergence times (cf join operation).

In both cases though, by comparing the churn and preference change graphs in
figure 3 it is easy to see that, somewhat counterintuitively, it takes progressively
more time for the algorithm to reconverge when more nodes change preferences
but the reconvergence time stays more or less the same even for high values of
churn or it is consistently lower than preference change, as is the case in BA
networks.

The reason behind this behavior is that in churn situations there are more
parallel events taking place: a new, joining node that replaces a leaving one starts
as an empty slate and sends an amount of PROP messages equal to the desired
number of connections. On the other hand, a node that changes preferences
might need to repair only some of its connections (which are now suboptimal) by
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Fig. 3. Reconvergence speed per operation, preference change/churn, n = 1000

sending appropriate PROP messages. However, in both cases some responding
nodes might decline, which will lead to additional PROP messages to be send
and so on, until the issuing nodes are satisfied or no available nodes are left.

One may even wish to compare the two situations from the point of view of
what is a desirable action by a node who changes preferences: to improve existing
connections or to perform a leave and come back (thus contributing to churn).
This is especially meaningful in the case of ER networks, since for BA networks
churn is consistently cheaper in any case due to their special structure and the
parallelism mentioned above. In the case of ER networks, comparing the recon-
vergence times of the two situations, churn has the advantage over preference
change in high values. This is only natural since in that case more nodes start
with no connections and all possibilities are explored in parallel. In contrast,
having high values of preference change means that more nodes want to repair
their connections but other nodes have already connections that they want to
maintain, leading to longer times of reconvergence. It could be useful in prac-
tical terms if there was a mechanism able to detect high volume of preference
changes in the network and enforce a policy of pseudo-churn, with nodes drop-
ping all connections when changing preferences. However, as it is shown below,
the amount of satisfaction under churn is far less than the satisfaction under
preference change before reconvergence, which is a significant argument in favor
of improving connections instead of dropping them and starting again.

6.3 Satisfaction

The mean satisfaction in the network achieved by the AdaptiveLID algorithm
for a variety of network sizes can be found in figure 4, along with the values
of minimum and maximum satisfaction in the network. Note that satisfaction
is slightly lower in the case of BA networks due to differences in topology (i.e.
minimum satisfaction is lower due to the large amount of low degree nodes)
but it follows the same behavior as in the ER case. It is easy to see that the
AdaptiveLID algorithm achieves consistently high satisfaction values, which
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are also increasing as network sizes increase. Of particular interest is that (a)
the minimum satisfaction in the network is being increased also, meaning that
individual nodes enjoy high levels of satisfaction too, implying asymptotically
improved fairness properties as well and (b) the minimum satisfaction does
not affect significantly the mean satisfaction, which implies that the number of
nodes having low satisfaction is consistently very low compared to the size of
the network.
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Fig. 4. Satisfaction per network size

Even though the reconvergence results showed that the algorithm can effi-
ciently repair its solution once churn stops, it is interesting to see the levels of
achieved satisfaction while churn is in progress. The relative satisfaction for ER
networks under churn (to the one achieved before churn starts) can be found in
figure 5: the different graphs from top to bottom correspond to the relative satis-
faction when churn affects 5% to 50% of the network’s nodes (in steps of 5%), for

0 . 10 1. 20 2. 30

045

04.

046

047

048

049

1

Fig. 5. Satisfaction while churn is in
progress, affecting 5% to 50% of the
network’s nodes (in steps of 5%, top to
bottom)

0 . 0 10 20 30 40
053

054

056

057

058

059

.

Fig. 6. Satisfaction right after preference
change or churn per amount of affected
nodes



222 G. Georgiadis and M. Papatriantafilou

a network of 100 nodes. It is obvious that the amount of satisfaction achieved re-
mains fairly constant during churn and depends greatly on the amount of churn.
However, even though churn is an intense operation, it is possible to retain a
significant percentage of the original satisfaction, even for churn as high as 50%
(i.e. when half of the network is changing at every round).

On the other hand the satisfaction drop is significant compared to the one
caused by preference change. Figure 6 shows the relative satisfaction for both
preference change and churn on ER networks, right after the change happens, for
various amounts of affected nodes, supporting our argument in favor of improving
connections instead of rebuilding them from the beginning.

7 Conclusions

The adaptive algorithm AdaptiveLID for distributed matching with prefer-
ences proposed in this paper provides a method to form overlays with preferences
with guaranteed satisfaction and convergence, as shown in the analysis. The pa-
per also shows an improved approximation ratio for the maximizing satisfaction
problem, which holds both for static and dynamic networks.

Besides, an extensive experimental study of the proposed algorithm encom-
passes a variety of scenarios, including ones that put the algorithm under heavy
stress and that have been previously used in literature to simulate network at-
tacks. In these scenarios the algorithm succeeds in maintaining a reduced but
steady level of network service while under attack, and resumes to normal service
levels after the attack stops. Furthermore, the algorithm shows attractive prop-
erties with respect to the satisfaction it can achieve and the convergence time
(and hence overhead) it needs. In particular, the experiments clearly strengthen
the argument that it is preferable to improve connections and adapt to changes
instead of rebuilding all the connections from the ground up.

To the best of our knowledge it is the first adaptive method with satisfaction
and convergence guarantees for this problem. We expect that this contribution
will be helpful for future work in the area, since the method can facilitate overlay
construction with guarantees in a wide range of applications, from peer-to-peer
resource sharing, to overlays in intelligent transportation systems and adaptive
power grid environments.
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T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 825–834. Springer, Heidelberg (2007)

17. Lee, H.: Online stable matching as a means of allocating distributed resources.
Journal of Systems Architecture 45(15), 1345–1355 (1999)

18. Georgiadis, G., Papatriantafilou, M.: Overlays with preferences: Approximation
algorithms for matching with preference lists. In: Proceedings of 24th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2010). IEEE
Computer Society Press (April 2010)

19. Preis, R.: Linear Time 1
2
-Approximation Algorithm for MaximumWeighted Match-

ing in General Graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS,
vol. 1563, pp. 259–269. Springer, Heidelberg (1999)

20. Georgiadis, G., Papatriantafilou, M.: Adaptive distributed b-matching in over-
lays with preferences. Technical report, Chalmers University of Technology (March
2012)

21. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems 6(4), 632–646 (1984)

22. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator,
http://peersim.sf.net

23. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

24. Bollobás, B.: Random Graphs. Academic Press, New York (1985)

http://peersim.sf.net


Dynamizing Succinct Tree Representations

Stelios Joannou and Rajeev Raman

University of Leicester, Department of Computer Science, University of Leicester,
University Road, Leicester, LE1 7RH

Abstract. We consider succinct, or space-efficient, representations of or-
dinal trees. Representations exist that take 2n + o(n) bits to represent a
static n-node ordinal tree – close to the information-theoretic minimum –
and support navigational operations in O(1) time on a RAM model; and
some implementations have good practical performance.

The situation is different for dynamic ordinal trees. Although there is
theoretical work on succinct dynamic ordinal trees, there is little work
on the practical performance of these data structures. Motivated by ap-
plications to representing XML documents, in this paper, we report on a
preliminary study on dynamic succinct data structures. Our implementa-
tion is based on representing the tree structure as a sequence of balanced
parentheses, with navigation done using the min-max tree of Sadakane
and Navarro (SODA ’10). Our implementation shows promising perfor-
mance for update and navigation, and our findings highlight two issues
that we believe will be important to future implementations: the differ-
ence between the finger model of (say) Farzan and Munro (ICALP ’09)
and the parenthesis model of Sadakane and Navarro, and the choice of
the balanced tree used to represent the min-max tree.

1 Introduction

A number of applications that involve indexing and processing textual or semi-
structured data now need to deal with increasingly large volumes of data. Typi-
cally, these applications do not have satisfactory external-memory solutions and
so the data has to be held and processed in main memory; examples include
the various applications of suffix trees and a number of XML processing tasks
(including XQuery search, XSLT transformation). An important bottleneck in
many such applications is the space required to represent some kind of tree-
structured object: in such applications, succinct, or highly space-efficient, rep-
resentations of trees[18] are having increasing impact. The focus of this paper
is on ordinal trees, which are arbitrary rooted trees where the children of each
node are ordered. As there are 1

n

(
2n−2
n−1

)
ordinal trees on n nodes, storing an or-

dinal tree requires 2n−O(lg n) bits, as opposed to the standard representation
that takes asymptotically Θ(n) words, or Θ(n lg n) bits, of memory. In recent
years, a number of representations of static ordinal trees have been developed
[14,15,5,13,20] that use 2n+ o(n) bits of memory, and support a wide range of
navigational operations in O(1) time assuming the RAM model of computation
with word size Θ(log n) (the default theoretical model that we will assume in

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 224–235, 2012.
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this paper). The excellent practical performance of succinct ordinal tree repre-
sentations has been shown in many papers including [8,12,2]. For example, when
representing XML documents, which are essentially ordinal trees, a standard
pointer-based representation [1] has five pointers per node1 (320 bits per node
on a 64-bit machine) to represent the tree structure and support fast navigation;
thus, the attractiveness of a representation that takes just a few bits per node
but supports operations quickly in practice, is clear. Indeed, succinct ordinal
trees have been successfully applied to several XML applications [25,9,3,7].

Despite the success of static succinct data structures, more needs to be done.
For example, in the XML context, efficient support for updates to documents
is fundamental: the W3C standard DOM API specifies a number of methods
for modifying XML documents [24]. In discussions with industry contacts we
have found that there are few “purely static” real-world XML applications that
deal with large documents. While static succinct trees have received a lot of
attention, there has been much less work on dynamizing them, in theory or in
practice. Farzan and Munro [10] and Sadakane and Navarro [20] studied the
theory of dynamic succinct ordinal trees. Practical studies of dynamic succinct
data structures are few, and we are only aware of one work that discusses the
implementation of a dynamic succinct ordinal tree [25]; however, they implement
a theoretically non-optimal tree, and also their (good) perfomance results are
for their entire system, rather than the tree in isolation.

In this paper, we consider practical performance issues in implementing dy-
namic succinct trees. The operations we consider are:

– Basic navigation: first-child, last-child, parent, next-sibling,
prev-sibling.

– Updates: insertion and deletions of leaves.

Furthermore, we are concerned not just with the performance of individual op-
erations, but also focus on traversals, or relatively long sequences of navigational
operations. We give a brief introduction to the approach we take to dynamiza-
tion, before summarizing our main contributions.

Our approach is to represent the current n-node ordinal tree as a balanced
parenthesis (BP) sequence of length 2n (see Fig. 1). For specificity, assume that
a node is represented by the opening parenthesis of the pair representing it.
We obtain the BP sequence representing a tree by going through a tree depth-
first, outputting an opening parenthesis when a node is first encountered and
a closing one when every node of its sub-tree has been encountered. The BP
sequence is divided into blocks of size Θ(B) for some parameter B–in theory
B = Θ((log n)2)–and a min-max excess tree, a balanced binary tree, is stored
over the blocks to perform excess search [17,20] (see Section 2 and 4 for details).
So far, we are following the approach proposed by [20], who show that if some
details are handled carefully, this approach yields an implementation with space
bound 2n+ o(n) bits, and time bounds O(log n) for both navigation and update
operations; the time bound can further be reduced to O(log n/ log logn) while

1 Parent, first child, last child, previous sibling and next sibling.
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Fig. 1. Example ordinal tree and its BP representation (left), the min-max tree (right)

maintaining the space bound. However, more work needs to be done to obtain
a satisfactory practical data structure from this idea, as we now discuss.

Parentheses versus Fingers. The first question that arises is what the precise
interface through which the data structure implements the navigation opera-
tions should be. Navigation in the BP is usually understood [15] in terms of the
following two operations:

– findclose(i): if the i-th parenthesis is an opening parenthesis, then find the
position of the matching closing parenthesis (findopen is similar).

– enclose(i): find the opening parenthesis that corresponds to the parenthesis
pair that most closely encloses position i.

In this scenario, we may, for example, number the nodes 1, . . . , n in depth-
first order, and the operation next-sibling(i) may take a node number as
an argument2. In this case, we need to proceed as follows:

1. Find the position of the opening parenthesis corresponding to i, say p.
2. Let q = findclose(p).
3. Inspect the q+1st parenthesis of the sequence, and if it is a closing parenthe-

sis, then return null. Otherwise, the next sibling is the node whose opening
parenthesis is in at position q + 1.

4. Determine the number j such that the parenthesis at position q + 1 is the
j-th opening parenthesis; return j.

Unfortunately, all four of the above steps require Ω(log n/ log logn) time if we
wish to support updates to the BP string in at most poly-log n time, by reduc-
tions [6,10] to the well-known list-ranking and subset-sum problems [11]. This
appears to be a high price to pay for dynamizing, considering that operations
take O(1) time in the static case.

An alternative is the finger model [10,19,16], where the key object is a finger
f, on which the following operations may be supported: (a) initialize the finger

2 This is the approach taken by the implementation of [2].
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to the root of the tree (b) perform operations such as f.op where op is one of
the navigation operations mentioned above. The result of an operation f.op is
either true, in which case the required node (parent, next sibling etc.) exists,
and the finger is moved to that node, or false, i.e. the node does not exist, and
the finger does not move. Updates are limited to occurring in the vicinity of the
finger. Interestingly, in the finger model, navigation operations can in fact be
performed in O(1) time [10]. While the approach proposed by [10] appears to be
complex and unsuitable for a practical implementation, the simpler and practical
approach of [20] that we are following appears inherently to take time Ω(log n)
for an individual operation. This raises the question: in an implementation of
dynamic succinct ordinal trees based on [20], is there any practical difference
between the finger model and the parenthesis-position model?

We show that the answer is “yes”. For traversals, this is partly because we can
largely omit steps (1), (3) and (4) above in the finger model, but also because
(2) turns out to be significantly cheaper than “logarithmic” for many practical
traversal seqeuences. For updates, we show that a simple strategy of “buffering”
updates (only possible in the finger model) greatly improves the speed of updates
for some update patterns (in our implementations we assume that we have only
one finger, but the principle easily extends to multiple fingers).

Traversals vs. Individual Operations. An implementation of static succinct or-
dinal trees, based on the approach of [20], was reported in [2]. As with the
dynamic approach of [20], the implementation of [2] also has Θ(log n) worst-case
time for individual operations. On the other hand, the implementation of [12]
is in principle O(1) time per operation. The starting point of our investigation
was that the implementation of [2], on traversals of ordinal trees derived from
some typical “benchmark” XML files, apparently had linear—rather than the
expected Θ(n log n)—behaviour. The basic cause of this is that if the answer
to a findclose or enclose operation is at distance d from the argument, then
the answer is usually found in O(log d) rather than O(log n) time. This led us
to investigate some “worst-case” trees for the implementation of [2]. While this
investigation (see Section 3) produced some interesting results, the real insight
was to try and directly exploit the “locality” of typical traversal sequences.
As noted above, in the data structure of [20], the min-max tree built over the
blocks needs to be a balanced binary tree, but the choice of balanced binary tree
is not specified (however, a kind of (a, b)-tree is needed to obtain the optimal
O(log n/ log logn) time bound). The desire to exploit locality led us to consider
using a splay tree [22], which has a number of interesting locality properties
[4,22], some conjectured, others proven. In the traversals we considered, using
splay trees allowed our example files to be traversed in linear observed time in
some cases. The time spent on splay tree operations (measured by number of
nodes accessed) appears sub-logarithmic in all the cases we considered. We do
not yet have a theoretical understanding of this phenomenon.

Structure of Paper. The rest of the paper is structured as follows. Section 2
summarizes the approach of [20,2], Section 3 summarizes our experiments on
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static trees, Section 4 summarizes our dynamic implementation, which is followed
by an empirical evaluation in Section 5.

2 Preliminaries

Consider the BP bit string of length 2n where 1 represents ‘(’ and 0 ‘)’. The
excess at any position i is the number of 1’s minus the number of 0’s prior to
position i. The excess of an opening parenthesis is also the depth of the node in
the ordinal tree. We use the terms global excess for the excess as defined above,
and local excess relative to some sub-string of the BP bit string for the excess of
a position, measured from the start of the sub-string. We also use the term sum
(relative to a sub-string again) for the excess at the end of the substring (which
is 0 for the entire BP). We use the terms min excess and max excess to denote
the minimum and maximum excess reached in a sub-string of the BP bit string.
A key step in [2,17,20] is excess search, which is as follows:

– fwd excess(i, rel): starts at position i going forward in the bit string search-
ing for the leftmost node after i that has relative excess to i equal to rel;

– bwd excess(i, rel): starts at position i going backward in the bit string
searching for the rightmost node before i that has relative excess to i equal
to rel.

Using the operations fwd excess(i, rel) and bwd excess(i, rel), the operations
findclose(i), findopen(i) and enclose(i) can be implemented. For example,
findclose(i) = fwd excess(i,−1).

Excess Search and the Min-Max Tree. As noted above, the BP sequence is par-
titioned into blocks of size B each. These blocks are placed at the leaves of a
tree such that each node contains the minimum, maximum (local) excess and
sum of the concatenation of blocks under it. In the static case, this min-max
tree is implemented as a binary tree stored in an array using the “heap-like”
numbering; in the dynamic case, an unspecified balanced tree is recommended.
An excess search starting at a block p and ending at a block q �= p will navigate
up to the lowest common ancestor of p and q in the min-max tree from p, and
down again to q, see [20] or Section 4 for details.

3 Traversals on Static Trees

Input trees and traversals. Although a number of real-life “benchmark” XML
files are available [9], we did not use them extensively, for a variety of reasons.
Firstly, the files were relatively small – the largest, although 600MB in size,
had only about 25 million nodes: if stored in the information-theoretic mini-
mum amount of space, the tree would almost completely fit into a 6MB cache.
Clearly, experiments on such trees would not give a complete account of the
performance of our data structures for very large trees, particularly since cache
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misses are an important cause of poor performance in succinct data structures.
Furthermore, our aim was to detect patterns of performance and to find “worst-
case” instances. (Although not reported here, the results we got from the larger
real-life benchmark XML files were in line with those we have reported.)

The experiments we performed were on four kinds of trees, of sizes approxi-
mately 64, 128, 256 and 512 million nodes. These were:

– Trees of about the above sizes obtained from XML files generated by the
XMark synthetic benchmark generator (this is a standard generator for test-
ing XML systems) [21].

– Regular k-ary trees of height h: we looked at the case k = 2 and h =
25, 26, 27 and 28 (referred to as binary trees henceforth), and h = 2 and
k = 8000, 11314, 16000 and 22618 (henceforth k-ary trees).

– A “centipede” tree, where a tree with n nodes (n odd) has a path of (n+1)/2
nodes, with each non-root node on this path having a leaf as a right sibling.

We considered two kinds of traversals: a non-recursive depth-first traversal (DFS)
and the all root-leaf (ALR) traversal [9], where we do DFS, but whenever the
DFS encounters a leaf we trace the path back to the root.

Fig. 2. Performance of the static implementations of Geary et al. (GRRR) and Ar-
royuelo et al. X-axis is the number of nodes (log-scale). (Left) Y-axis is the time for
traversal divided by the number of nodes. (Right) number of tree nodes visited by
Arroyuelo et al.’s implementation (ACNS) divided by the number of nodes.

Input Trees and Traversals. We timed the static implementations of [2,12], code
obtained from Sadakane, on the above sets of trees (see Figure 23). Timings
were only taken for the following pairs of inputs: XMark, Binary and Centipede
with DFS, and k-ary with ALR.4 It should be emphasized that we cannot really
compare the two data structures against each other: the code of [2] is a 32-bit
C implementation that takes about 2.3 bits/node with the default parameter
settings, while the code of [12] is a 64-bit C++ implementation that takes just
over twice as much space with the default parameter settings. We note that the

3 Some plotted data sets have y-values close to 0, hence they are not clearly visible
4 This is mainly for succinctness, though clearly it is infeasible to run ALR on Cen-
tipede for our data sizes.
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time for DFS (per node) varies greatly with the tree for both implementations:
Centipede is an order of magnitude slower. Also, for DFS on Xmark, Centipede
and the binary tree, the implementation of [2] shows linear behaviour, but for
ALR traversal on k-ary trees it clearly shows Θ(n log n) behaviour. The loga-
rithmic growth of numbers of tree nodes visited per input node is clearly visible
in both the (Centipede, DFS) and (k-ary, ALR) pairs in the graph on the right.
As expected in Geary et al.’s implementation, the traversal time per node is
constant for all traversals.

We explain this by looking at the traversal distance of a traversal on a BP
sequence: if the ith step of the DFS moves from a node whose parenthesis is at
position p to one at position q, we set di = |p− q|, and the traversal distance is
simply

∑
i di. It is easy to see that (i) the traversal distances of DFS and ARL

on a k-ary tree are Θ(n) and Θ(n2) respectively, and (ii) the traversal distance
of DFS on a binary tree and Centipede is respectively Θ(n logn) and Θ(n2). In
general it is easy to show (proof omitted):

Lemma 1. The traversal distance of non-recursive DFS on an ordinal tree with
n nodes of height h is O(nh).

Since the XMark files have a small (fixed) depth, the traversal distance for DFS
on XMark files is also linear.

Using the heuristic that a navigation operationwith traversal distance d usually
takes O(1 + log�d/B�) time (since the start and end points will be �d/B� blocks
apart), we see that the time spent in the min-max tree for a traversal over a tree
with n nodes with overall traversal distance D would be O(n(1+ log�D/(nB)�)).
This provides some explanation of the observed data (albeit partially) – for exam-
ple, we do not see a logarithmic growth in time for Arroyuelo et al.’s implementa-
tion when running DFS on Centipede. However, the traversal distance argument
does suggest that in the dynamic case, a normal balanced tree (e.g. red-black)
will also have relatively poor performance in cases such as ALR traversal on k-ary
trees; one may get better performance by exploiting locality directly (e.g. succes-
sive leaf-to-root traversals in ALR traversals will tend to visit many min-max tree
nodes in common, and have high temporal locality).

4 Engineering a Dynamic Succinct Implementation

Our base implementation divides the BP sequence into blocks of size B, which
are leaf nodes in a binary min-max tree. Each node of the min-max tree contains
the data mentioned in Section 2, see Figure 1 (right) for example. Similarly to
[20,2] we use the excess to navigate around the succinct tree and find the matches
of our parentheses.

Forward excess search using the min-max tree is shown below (backward ex-
cess is similar). The function E(i) returns the global excess at position i. In
Step 1 we use the length information in the min-max tree to locate the block in
which parenthesis i is located, starting from the root of the tree and descending
(this is needed as the number of parentheses in the blocks is not equal). We
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initialize the base implementation by bulk loading it. Bulk loading splits the full
BP string of a tree in equal sized blocks (except the last) and builds the min-max
tree on top of them, which results in a complete balanced binary tree.

forwardExcess (i, d)
1. Use the min-max tree to locate the block in which i resides keeping track of

global excess at beginning of block
2. Scan the block of i for the next parenthesis j where i < j and E(j) = E(i)+ d

– If found return j
3. Search min-max tree for lowest common ancestor of block containing i and

block containing E(i)+d using minimum and maximum excess adjusting global
excess at start of block while moving between nodes

4. Search min-max tree for a leaf where min excess ≤ (E(i) + d) ≤ max excess
starting from right child of lowest common ancestor, by moving to the right
child of current node when E(i) + d not within range of excesses of left child

5. Scan the current node and find position j such that E(j) = E(i) + d

Finger Model. We add the finger model to our base implementation. A finger
sits at a node (the finger node) and contains the block in which the parenthesis
representing the finger node lies, its local position in the block, its current local
excess and the excess at the beginning of the block. Clearly, Step 1 above is not
needed in the finger model.

In addition to bulk loading, we also provide the following dynamic operations
for modifying the finger model:

– insert-first-child(): insert a leaf as the first child of the finger node
– insert-next-sibling(): insert a leaf as the next sibling of the finger node

Operations delete-first-child() and delete-next-sibling() are analogous.
This API can also be used to create an ordinal tree.

Implementation of Updates. To insert a new leaf we shift all the parenthesis
in the block to the right of the finger to make room for the leaf node. Observe
that the sum of a block does not change by adding a leaf, and neither does
the minimum excess. The maximum excess increases by 1, but only if a leaf is
inserted at a position where the excess is already maximum. Thus, we do not
need to scan the block after an insertion. Deleting a node is similar, but if the
excess at the node to be deleted is the same as the current maximum excess in
the block we will need to rescan the block to discover if there is another node
that has the same excess, or if the block maximum excess has changed. In all
cases though, the length values (if needed the excess values) of all ancestors of
the block in the min-max tree have to be updated.

When the block is full, it is then split into two new blocks, each containing half
of the parentheses of the previous block. If we use fixed-size blocks then we run
the risk of having each block half empty. To improve the space usage of blocks (as
low as 50% in the above), we implemented incremental copying of the blocks. We
start off with a block of size B. When the block gets full we increase its capacity
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by a word, with an upper bound of 2B. When the block size is 2B we split the
block as above. By incremental copying, the wasted space is at most one word per
block. Furthermore, since Θ(log n) updates happen before the block’s capacity is
extended again, and extension costs O(log n) time – each block has only O(log n)
words – the amortized cost of extension is only O(1) per update. Moreover, we
buffer all updates that occur in a block so long as the finger does not move to a
different block. When the finger moves we flush the excess and length changes to
all the ancestors of the block before leaving the block.

The min-max tree was implemented as a splay tree [23]. When the finger
moves to a new block, then the parent of that block (which is an internal node)
is splayed to the top of the tree.

5 Experimental Evaluation

The data structure as well as the tests were written in C++. The machine that
was used to run these tests was an Intel Pentium 64-bit machine with 8GB of
main memory and a G6950 CPU clocked at 2.80GHz with 3MB L2 cache, running
Ubuntu 10.04.1 LTS Linux and g++ 4.4.3 with optimization level 3. The Xerces-
C++ 2.80 was used. Furthermore, we use the code from [2], henceforth referred
to in this section as ACNS.

We first aim to justify the use of the finger model in a dynamic succinct
data structures. As noted previously, the base implementation is based on the
parenthesis model, and therefore each navigation operation is based upon the
findopen(i), findclose(i) and enclose(i) operations, where i is the position of
a parenthesis in the BP bit string. The first step in these operations is to start
from the root of the min-max tree to locate the block in which the ith parenthesis
lies. This step is unnecessary if no updates are made to a bulk-loaded tree, as in
this case all blocks are equal-sized; we augment the base implementation with
an array containing pointers to each block and find the block containing the
ith parenthesis by indexing into this array. This is the base + pointer array
implementation. Using the trees in Section 3 we perform traversals on a bulk-
loaded base implementation and the base+pointer array implementation, and
also on the ACNS implementation (as a “control” test).

Table 1 presents the time it took to do a DFS traversal on XMark files of size 64,
128 and 256 million nodes. We observe from the the results of the test that ACNS
and Base + Pointer implementation are showing O(n) behaviour for XMark files.
However, the base implementation shows O(n log n) increase and is much slower.
Since the only difference of base implementation with base + pointer is that to
access any block we need to descend the tree, it is clearly shown that this has a
significant impact on the performance of the navigational operations.

For our second test, we test the speed of the insertions. Since there is no
existing succinct dynamic tree implementation we compare with Xerces-C++.
This is accomplished by using a SAX parser. A SAX parser will go through an
XML file and raise an event when an opening/closing XML tag was encountered.
We use that with our finger implementation to create an ordinal tree using
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Table 1. (Left) DFS Traversal per-node time of base implementation, base + pointer
array implementation, ACNS in μs (Right) Parsing time of XMark file for DOM and
Splay tree implementation. Results measure CPU time in seconds.

Nodes
Base Base + Pointer Array

ACNS
Implementation Implementation

64M 0.336 0.060 0.049

128M 0.361 0.060 0.049

256M 0.383 0.060 0.049

512M 0.407 0.060 0.049

Nodes DOM Splay Trees

16M 46.17 31.95

32M 90.83 65.05

64M 204.04 128.37

insert-first-child, insert-next-sibling and we compare the parsing time
by creating a Xerces-C++ DOM tree using an analogous method. For the DOM
case all nodes are named “a”. In these tests we used XMark files up to 64M
nodes. Larger sizes were not attempted due to the memory usage of DOM.

As shown in Table 1, the creation time for our finger model is faster. This can
be partially explained by the cache effects. Due to the small number of nodes,
most of the tree will easily fit to cache in the finger model case. It was 40% faster
in the case of 32 million nodes and 60% faster in the case of 64 million nodes. In
that specific case the fact that the percentage was so high might have been due to
the excessive memory usage of a Xerces-C++ DOM tree (for 64M nodes virtual
memory exceeded 12GB). Also the speed difference seems to diverge slightly
with the last test. The gap seems to be widening due to thrashing.

As a third test, we compare the traversal times for a splay tree against a bulk
loaded tree. To do these we check both against 64, 128 and 256 million nodes
generated by XMark, as well as with k-ary trees with similar number of nodes.

Table 2. DFS and ALR traversal comparison with using balanced tree and splay tree.
Results are in seconds.

Nodes
XMark k-ary tree

ACNS Balanced Splay ACNS Balanced Splay
DFS ALR DFS ALR DFS ALR DFS ALR DFS ALR DFS ALR

64M 3.17 130.15 1.77 155.83 2.06 144.22 2.03 99.38 0.86 163.21 0.7 145.71

128M 6.35 261.25 3.54 310.76 4.15 281.45 4.05 209.60 1.74 330.36 1.41 294.29

256M 12.70 550.00 7.10 628.82 8.31 573.43 8.11 448.65 3.45 667.01 2.76 591.84

From Table 2 it is clear that for DFS our data structure, both with the
balanced tree and splay tree on top is faster than the ACNS data structure.
This is possibly a result that was influenced from the different block sizes used
between ACNS and the finger model (balanced tree and splay tree versions use
the same block size). Using a balanced tree appears to be faster for DFS, but
when for the ALR traversal the splay tree version appears to be faster when
compared with the balance tree. Figure 3 shows that for our tests the splay
tree accesses fewer nodes of the min-max tree, hence proving that previously
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Fig. 3. Comparison of Splay trees and balanced trees. X-axis is number of nodes (log-
scale). Y-axis is nodes of min-max tree visited divided by number of nodes

traversed nodes are closer to the top of the min-max tree. The fewer number
of accessed blocks explains the speed difference for ALR traversals, since the
specific traversal makes uses of previously accessed blocks to reach the root of
the ordinal tree, after a leaf is encountered.

6 Conclusions

We have performed an empirical evaluation of a first implementation of dynamic
succinct trees. We observe that the performance of static succinct tree imple-
mentations, particularly those based on the min-max tree which have (near-
)logarithmic worst-case per-operation time complexity, is very dependent on the
tree and the sequence of operations performed, more specifically, on the local-
ity properties of the sequence of operations. By using a self-adjusting tree (the
splay tree) as a basis for the min-max tree, we obtain good performance, which
is arguably superior to any other balanced search tree scheme. The dynamic im-
plementation compares well with static succinct implementations for navigation
operations and with pointer-based ones for update operations. However, further
work is required to expand the functionality, to better understand the effects of
the splay tree on traversal performance and to investigate implementations of
O(1)-time dynamic succinct trees.
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3 Mediamobile

Abstract. We consider shortest paths on a realistic multi-modal trans-
portation network where restrictions or preferences on the use of certain
modes of transportation or types of roads arise. The regular language
constraint shortest path problem deals with this kind of problem. It mod-
els constraints by using regular languages. The problem can be solved
efficiently by using a generalization of Dijkstra’s algorithm (DRegLC). In
this paper we present a new label correcting algorithm (lcSDALT) with
a speed-up, in our setting, of a factor 3 to 30 in respect to DRegLC and
up to a factor 2 in respect to a similar algorithm.

1 Introduction

Multi-modal transportation networks include roads, public transportation, bi-
cycle lanes, etc. Shortest paths in such networks must satisfy some additional
constraints: passengers may want to exclude some modes of transportation, they
may wish to pass by some grocery shop on the way or to limit the number of
changes between public transportation vehicles. Feasibility has also to be as-
sured: whereas walking is permitted at any point of the itinerary, private cars
or bicycles can only be used when they are available.

The regular language constrained shortest path problem (RegLCSP) deals with
this kind of problem. It uses an appropriately labeled graph and a regular lan-
guage to model constraints. A valid shortest path minimizes some cost function
(distance, time, etc.) and, in addition, the word produced by concatenating the
labels on the arcs along the shortest path must form an element of the regular
language. In [3], a systematic theoretical study of the more general formal lan-
guage constrained shortest path problem can be found. The authors prove that
the problem is solvable in deterministic polynomial time when regular languages
are used and they provide a generalization of Dijkstra’s algorithm (DRegLC) to
solve RegLCSP.

In recent years many scholars worked on speed-up techniques for Dijkstra’s al-
gorithm and shortest paths on continental sized road networks can now be found
in a few milliseconds; see [5] for a comprehensive overview. The authors iden-
tify three basic ingredients to most modern speed-up techniques: bi-directional
search, goal-directed search, and contraction.

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 236–247, 2012.
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DRegLC has received less attention. In [1], various speed-up techniques includ-
ing bi-directional and goal-directed search have been applied to DRegLC on rail
and road networks. The performance of the algorithm depends on the network
properties and on how restrictive the regular language is.

The authors of [4] propose Access Node Routing to isolate the public trans-
portation network from road networks so that they can be treated individually.
A similar approach has been followed in [7] where contraction has been applied
only to arcs belonging to the road network of a multi-modal transportation net-
work including roads, public transport, and flight data.

The authors of [17] use contraction on a large road network where roads are
labeled according to their road type. A subclass of the regular languages, the
Kleene languages, is used to constrain the shortest path. It can be used to exclude
certain road types. Kleene languages are less expressive than regular languages
but contraction proves to be very effective in such a scenario. The authors of [7]
and [17] report on speed-ups of over 3 orders of magnitude compared to DRegLC.

A recent work [14] proposes the algorithm SDALT (State Dependent uniALT)
which succeeds in accelerating DRegLC by anticipating information on the addi-
tional constraints, modeled by the regular language, during a pre-processing
phase. SDALT is based on ALT which is a bi-directional, goal directed search
technique based on the A∗ search algorithm [11] and which has been first dis-
cussed in [9]. It uses lower bounds on the distance to the target to guide Dijkstra’s
algorithm. UniALT is the uni-directional version of the ALT algorithm. Efficient
implementations of uniALT and ALT as well as experimental data on continental
size road networks with time-dependent edges cost are given in [15].

Our Contribution. SDALT is based on the uniALT algorithm, which works cor-
rectly only if the node potential function is feasible. The potential function is
used to determine lower bounds to guide the algorithm faster to the target. We
propose the algorithm lcSDALT which overcomes this limitation. It introduces
more flexibility in the choice of the potential function. It therefore runs faster
than SDALT by up to a factor 2 in our setting. Furthermore, it reduces mem-
ory requirements. We provide experimental results on a realistic multi-modal
transportation network including time-dependent cost functions on arcs. It is
composed of the road and public transportation network of the French region
Ile-de-France, private and rental bicycles, walking, car (including changing traffic
conditions), and public transportation. The experiments show that our algorithm
performs well in networks where some modes of transportation tend to be faster
than others or the constraints cause a major detour on the non-constrained
shortest path. We observed speed-ups of a factor 3 to 30, in respect to plain
DRegLC.

Overview. Section 2 will first define the graph we are using to model the trans-
portation network and give more details about RegLCSP and SDALT. Section
3 presents our new algorithm lcSDALT and its implementation. Its application
to a realistic multi-modal transportation network and computational results, as
well as some conclusive remarks are presented in section 4.
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2 Preliminaries

Consider a labeled, directed graph G = (V,A,Σ) consisting of a set of nodes
v ∈ V , a set of labels l ∈ Σ, and a set of labeled arcs (i, j, l) ∈ A which are
triplets in V × V ×Σ, i, j ∈ V , l ∈ Σ. The triple (i, j, l) represents an arc from
node i to node j having label l. The labels are used to mark arcs as, e.g., foot
paths (label f), bicycle lanes (label b), etc. Arc costs represent travel times.
They are positive and time-dependent: c : A→ (R+ → R+), i.e. cijl(τ) gives the
traveling times from node i to node j using transportation mode l at time τ ≥ 0.
We only use functions which satisfy the FIFO property as the time-dependent
shortest path problem in FIFO networks is polynomially solvable [13]. FIFO
means that cijl(x) + x ≤ cijl(y) + y for all x, y ∈ R+, x ≤ y, (i, j, l) ∈ A or, in
other words, that for any arc (i, j, l), leaving node i earlier guarantees that one
will not arrive later at node j.

2.1 Solving the RegLCSP

The regular language constrained shortest path problem (RegLCSP) consists in
finding a shortest path from a source node r to a target node t with starting
time τstart on the graph G by minimizing some cost function and, in addition,
the concatenated labels along the shortest path must form a word of a given
regular language L0. The regular language is used to model the constraints on
the sequence of labels (e.g., exclusion of labels, predefined order of labels, etc.).
Any regular language L0 can be described by a non-deterministic finite state
automaton A0 = (S0, Σ0, δ0, s0, F0), consisting of a set of states S0, a set of
labels Σ0 ⊆ Σ, a transition function δ0 : Σ0 × S0 → 2S0 , an initial state s0,

and a set of final states F0 (for an example see Figure 4a). Note that
←→
S (s,A)

and
←→
Σ (s,A) return all states and labels reachable by multiple transitions on an

automaton A by starting at state s, backward and forward, respectively. E.g.,

in Figure 4a,
←−
S (s1,A0) = {s0, s1, s3},

−→
Σ (s4,A0) = {cfast, cpav, f, t, v}.

To efficiently solve RegLCSP, a generalization of Dijkstra’s algorithm (which
we denote DRegLC throughout this paper) has first been proposed in [3]. The
DRegLC algorithm can be seen as the application of Dijkstra’s algorithm [8] to
the product graph P = G × S0 with tuples (v, s) as nodes for each v ∈ V and
s ∈ S0 such that there is an arc ((v, s)(w, s′)) between (v, s) and (w, s′) if there is
an arc (i, j, l) ∈ A and a transition such that s′ ∈ δ0(l, s). To reduce storage space
DRegLC works on the implicit product graph P by generating all the neighbors
which have to be explored only when necessary.

2.2 SDALT

The SDALT algorithm [14] is a speed-up technique for DRegLC based on A∗

[11] and landmarks [9]. Different from DRegLC, SDALT uses an estimated lower
bound of the distance to the target to guide the search more directly toward the
target. More precisely, it employs a key k(v, s) = dr(v, s)+π(v, s) where dr(v, s)
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is the tentative distance label from (r, s0) to (v, s) and the potential function
π : (V × S) → R gives an under-estimation of the distance from (v, s) to (t, s),
s ∈ F0. At every iteration, the algorithm selects the node (v, s) with the smallest
key k(v, s). Intuitively, nodes which are close to the shortest estimated path from
the source to the target node are explored first. So the closer π(v, s) is to the
actual remaining distance, the faster the algorithm will find the target.

It can be shown [12] that SDALT is equivalent to DRegLC on a product graph
with reduced arc costs cπ(v,sv)(w,sw)l = cvwl− π(v, sv) + π(w, sw). DRegLC is based
on Dijkstra’s algorithm which works only for non-negative arc costs, so not all
potential functions can be used. A potential function π is feasible, if cπ(v,sv)(w,sw)l

is non-negative for all (v, w, l) ∈ A. Note that if π′ and π′′ are feasible potential
functions, then max(π′, π′′) is a feasible potential function [9].

Good bounds can be produced by using landmarks and the triangle inequality
[9]. The main idea is to select a small set of nodes � ∈ L ⊂ V (also called land-
marks), appropriately spread over the network, and pre-compute all distances
of shortest paths between the landmarks and any other node. By using these
landmark distances and the triangle inequality, lower bounds on the distances
between any two nodes can be derived. Finding good landmarks is difficult and
several heuristics exist [9,10]. SDALT applies these concepts to speed-up DRegLC

by using the following potential function (see also Figure 1):

π(v, s) = max
⋃
�∈L
{d′(�, t, s)− d′(�, v, s), d′(v, �, s)− d′(t, �, s), 0} (1)

v

�

t
d′(�, v, s), L�→v

s

d′(�, t, s), L�→t

s

d′(v, t, s), Lv→t

s

v

�

t

d′(v, �, s), Lv→�

s

d′(t, �, s), Lt→�

s

d′(v, t, s), Lv→t

s

Fig. 1. Landmark distances for SDALT

d′(i, j, s) denotes the constrained landmark distance, which is the travel time
on the shortest path from (i, s) to (j, s′) for some s′ ∈ F0 constrained by a regular
language Li→j

s . Here lies the major conceptual difference between SDALT and
uniALT. Different from uniALT, SDALT does not use Dijkstra’s algorithm to
determine landmark distances, but uses the DRegLC algorithm instead. In this
way, it is possible to constrain the landmark distance calculation by a regular
languages Li→j

s which will be derived from L0. Thus SDALT is able to already
consider the constraints given by L0 during the preprocessing phase. Note that
d′(v, t, s) is constrained by Lv→t

s = Ls
0. L

s
0 is equal to L0 except that the initial

state of A0 is replaced by s. Intuitively Ls
0 represents the constraints of L0 to

be considered for the remaining portion of the shortest path from an arbitrary
node (v, s) to the target.
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In [14] three methods, (bas), (adv), and (spe) have been presented on how to
choose L�→t

s , L�→v
s , Lv→�

s , Lt→�
s used to constrain the calculation of d′(�, t, s),

d′(�, v, s), d′(v, �, s), d′(t, �, s), respectively, in such a way that the resulting po-
tential function (Equation 1) results feasible and provides correct lower bounds.
They are based on Proposition 1. Note that the concatenation of two regular lan-
guages L1 and L2 is the regular language L3 = L1◦L2 = {v◦w|(v, w) ∈ L1×L2}.
E.g., if L1 = {a, b} and L1 = {c, d} then L1 ◦ L2 = L3 = {ac, ad, bc, bd}.

Proposition 1 ([14]). For all s ∈ S, if L�→v
s ◦ Lv→t

s ⊆ L�→t
s , then d′(�, t, s)−

d′(�, v, s) is a lower bound for the distance d′(v, t, s). Equally, if Lv→t
s ◦ Lt→�

s ⊆
Lv→�
s then d′(v, �, s)− d′(t, �, s) is a lower bound for d′(v, t, s).

3 Label Correcting State Dependent uniALT: lcSDALT

SDALT works correctly only if reduced arc costs are non-negative. It turns out,
however, that by violating this condition often tighter lower bounds can be pro-
duced. This compensates, at least in our scenario, the additional computational
effort required to remedy the disturbing effects of negative reduced costs on the
underlying Dijkstra’s algorithm and in addition results in shorter query times
and lower memory requirements. This is why we propose a variation of SDALT,
which can handle negative reduced costs. The major impact of this is that settled
nodes may be re-inserted into the priority queue for re-examination (correction).
In our setting, the number of arcs with non-negative reduced arc costs is limited
and we can prove that the algorithm may stop once the target node is extracted
from the priority queue. We name the new algorithm Label Correcting State
Dependent uniALT (lcSDALT). Note that here label refers to the distance labels
and not to the labels on arcs.

3.1 Query

The algorithm lcSDALT is similar to DRegLC and uniALT. As priority queue Q we
use a binary heap. The pseudo-code in figure 2 works as follows: the algorithm
maintains, for every visited node (v, s) in the product graph P , a tentative
distance label dr(v, s) and a parent node p(v, s). It starts by computing the
potential for the start node (r, s0) and by inserting it into Q (line 3). At every
iteration, the algorithm extracts the node (v, s) in Q with the smallest key (the
node is settled) and relaxes all outgoing arcs (line 9), i.e. checking and possibly
updating the key and distance label for every node (w, s′) where s′ ∈ δ(l, s). More
precisely, a new temporary distance label dtmp = dr(v, s)+ cvwl(τstart + dr(v, s))
is compared to the currently assigned distance label (lines 10). If it is smaller,
it either inserts or re-inserts node (w, s′) into the priority queue or decreases
its key (line 14, 18, 21). Note that it is necessary to calculate the potential of
a node (w, s′) only the first time it is visited. The cost of arc (v, w, l) might
be time-dependent and thus has to be evaluated for time τstart + dr(v, s). The
algorithm terminates when a node (t, s) with s ∈ F0 is settled.
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1 function lcSDALT(G,r,t,τstart,L0)
2 dr(v, s):= ∞, p(v, s):=-1, πv,s := 0, ∀(v, s) ∈ V × S
3 path_found:= false, dr(r, s0):= 0, k(r, s0):= π(r, s0), p(r, s0):= -1
4 insert (r, s0) in priority queue Q
5 while Q is not empty:
6 extract (v, s) with smallest key k from Q
7 if v == t and s ∈ F0:
8 path_found:= true, break
9 for each (w, s′) s.t. (v, w, l) ∈ A ∧ s′ ∈ δ(l, s):

10 dtmp:= dr(v, s) + cvwl(τstart + dr(v, s)) //time-dependency
11 if dtmp < dr(w, s′):
12 p(w, s′):= (v, s), dr(w, s′):= dtmp

14 if (w, s′) not in Q and never visited: //insert
15 πw,s′:= π(w, s′)

16 k(w, s′):= dr(w, s′) + πw,s′

17 insert (w, s′) in Q
18 elif (w, s′) not in Q: //re-insert
19 k(w, s′):= dr(w, s′) + πw,s′

20 insert (w, s′) in Q
21 else: //decrease
22 k(w, s′):= dr(w, s′) + πw,s′

23 decreaseKey w, s′ in Q
24 end for
25 end while

Fig. 2. Pseudo-code lcSDALT

Correctness. The algorithm lcSDALT is based on DRegLC and uniALT. It suf-
fices to prove that when the target node (t, s′), s′ ∈ F0 is extracted from the
priority queue, the algorithm can stop (see Lemma 1 and Proposition 2). Note
that π(t, s′) = 0, that d∗r(v, s) is the distance of the shortest path from (r, s0)
to (v, s), and that there are no negative cycles as arc costs and potentials are
always non-negative.

Lemma 1. The priority queue always contains a node (i, s′) with key k(i, s′) =
d∗r(i, s

′) + π(i, s′) and which belongs to the shortest path from (r, s0) to (t, s′′)
where s′′ ∈ F0, s

′ ∈ S.

Proposition 2. If solutions exist, lcSDALT finds a shortest path.

Proof. Let us suppose that a node (t, s), where s ∈ F0, is extracted from the
priority queue but its distance label is not optimal, so dr(t, s) �= d∗r(t, s). Node
(t, s) has key k(t, sf ) = dr(t, sf ) + π(t, s) �= d∗r(t, s). By Lemma 1, this means
that there exists some node (i, s′) in the priority queue on the shortest path
from (r, s0) to (t, s) which has not been settled because its key k(i, s′) > k(t, s).
This means k(i, s′) = d∗r(i, s

′) + π(i, s′) > dr(t, s) + π(t, s) = k(t, s), which is a
contradiction. ��

Complexity Complexity of DRegLC, SDALT as well as lcSDALT when a feasible
potential function is used is equal to the complexity of Dijkstra’s algorithm on
the product graph P which is O(m log n) where m = |A||S|2 and n = |V ||S| are
the number of arcs and nodes of P . If the potential function is non-feasible the
key of a node extracted from the priority queue could not be minimal, hence
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already extracted nodes might have to be re-inserted into the priority queue at a
later point (line 18-20) and re-examined (corrected). In this case the complexity
of lcSDALT is similar to the complexity of the Bellman-Ford algorithm (plus the
time needed to manage the priority queue): O(mn logn).

3.2 Constrained Landmark Distances

For calculating the distance bounds for a generic node (v, s) of P , we give three
procedures to determine L�→t

s , L�→v
s , Lv→�

s , Lt→�
s (see Table 1). Remember, Li→j

s

denotes the language used to constrain the landmark distance calculation from
(i, s) to (j, s′), s′ ∈ F0. The languages produced by Procedure 1 allow every
combination of labels in Σ0. The languages produced by Procedure 2 are similar
but depend on the state s of the node (v, s). They allow every combination
of labels in Σ0 except those labels for which there is no longer any transition
between states which are reachable from s. Procedure 3 is the trickiest and
produces four distinct languages for a node (v, s). L�→t

s is determined in such
a way that all constraints given by A0 on shortest paths which pass by a node
(v, s) on A0 will be considered. Lv→�

s considers only those constraints that apply
to paths starting from (v, s) to a final node. L�→v

s and Lt→�
s are derived in such

a way that they put as few constraints as possible on the distance calculation
but assure that Proposition 1 is valid. Consider a transportation network. The
procedures are based on the intuition that fast modes of transportation which are
excluded by L0 should not be used to calculate the bounds. Also, if constraints
infer a major detour from the unconstrained shortest path, this detour should
also be considered by the landmark distance calculation.

In [14] these procedures have been used with SDALT to produce three methods
which assure that reduced costs are always non-negative: a basic method (bas)
which applies Procedure 1 to all nodes (v, s); an advanced method (adv) which
applies Procedure 2 to all nodes and uses a slightly modified potential function;
a specific method (spe) which applies Procedure 3 to all nodes. These methods
can be used with lcSDALT. Now we will present two new methods which can
only be used with lcSDALT, as reduced costs may be negative:

(advlc). Equal to (adv), this method applies Procedure 2 to all nodes (v, s) of
P . Different to (adv) it uses Equation 1 as potential function and thereby
considerably reduces the number of potentials to be calculated. (adv) applies

the feasable potential function πadv(v, s) = max{π(v, sx)|sx ∈
←−
S (s,A0)}.

(mixlc). The method (spe) applies the regular languages constructed by apply-
ing Procedure 3 for each state of L0. This is space-consuming and bounds for
nodes with certain states may be worse than those produced by Procedure
2. This is why we introduce a more flexible new method (mixlc) which pro-
vides the possibility to freely choose for each state between the application
of Procedure 2 or 3. This provides a trade-off between memory requirements
and performance improvement. The right calibration for a given L0 and the
choice of whether to use Procedure 2 or 3 is determined experimentally.
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Table 1. With reference to a generic RegLCSP where the SP is constrained by a
regular language L0 where A0 = (S0, Σ0, δ0, s0, F0), the table shows three procedures
to determine the regular language to constrain the distance calculation for a generic
node (n, s) of the product graph P .

procedure regular language and/or NFA

1 Lv→�
s = Lt→�

s = L�→v
s = L�→t

s = Lproc1 = {Σ∗
0}

Lproc1 : Aproc1 = ({s}, Σ0, δ : {s} ×Σ0 → {s}, s, {s})
2 Lv→�

s = Lt→�
s = L�→v

s = L�→t
s = Lproc2,s = {−→Σ (s,A0)

∗}
Lproc2,s : Aproc2,s = ({s},−→Σ (s,A0), δ : {s} ×

−→
Σ (s,A0) → {s}, s, {s})

3 L�→v
s : A�→v

s = (S =
←−
S (s,A0), Σ =

←−
Σ (s,A0), δ0|S×Σ , s0, {s})

L�→t
s : A�→t

s = (S =
←−
S (s,A0) ∪

−→
S (s,A0),

Σ =
←−
Σ (s,A0) ∪

−→
Σ (s,A0), δ0|S×Σ , s0, F0 ∩

−→
S (s,A0)

Lv→�
s : Av→�

s = (S =
−→
S (s,A0), Σ =

−→
Σ (s,A0), δ0|S×Σ , s, F0 ∩ S)

Lt→�
s : At→�

s = ({s}, Σ =
⋂

s∈F0∩
−→
S (s,A0)

{l|l ∈ Σ0 ∧ ∃δ0(s, l) = {s}},
δ : s×Σ = {s}, s, {s})

s0 s2s1
t t

f b f

(a) A0: Automaton allows walking (f) and bik-
ing (b). Once the bike is discarded (state s2) it
may not be used again. S0 = {s0, s1, s2}, initial
state s0, F = {s0, s2}, Σ0 = {f, b, t}.

L0 : f∗|(f∗tb∗tf∗)

(b) A0 expressed as a regular
expression. The vertical bar | rep-
resents the boolean ’or’ and the as-
terisk ∗ indicates that there are zero
or more of the preceding element.

methods: (bas) (adv)/(advlc) (mixlc) (spe)

L�→v
s0

s0

f

f∗

L�→t
s0

s0

bft

(b|f |t)∗
s0 s2s1

t t

f b f

f∗|(f∗tb∗tf∗)

L�→v
s1

s0 s1
t

f b

f∗tb∗

L�→t
s1

L�→v
s2

= L�→t
s2

s0

f

f∗ s0 s1 s2
t t

f b f

f∗tb∗tf∗

Fig. 3. Example of a regular language L0 (Scenario A) and its representation as an
automaton (3a) and regular expression (3b). The table lists the languages used to
constrain the landmark distance calculation for the different methods.. E.g., for (adv):
L�→v

s0 = L�→t
s0 = L�→v

s1 = L�→t
s1 : (b|f |t)∗, L�→v

s2 = L�→t
s2 : f∗.
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Memory Requirements and Time-Dependency. Memory requirements to
hold preprocessing data for (advlc) grow linearly in respect to |L| × |V | × |S|.
(mixlc) may require in the worst case up to four times more space than (advlc).
Similar to D, DRegLC and lcSDALT can easily be adapted to time-dependent
scenarios by selecting landmarks and calculating landmark distances by using
the minimum weight cost function cijl = minτ cijl(τ). Potentials stay valid as
long as arc weights only increase and do not drop below a minimal value [2,6].

4 Experimental Results

The algorithm is implemented in C++. A binary heap is used as priority queue.
Similar to uniALT, dynamic additions of landmarks (max 6 landmarks) take
place [15]. Experiments are run on a Intel Xeon, 2.6 Ghz, 16 GB RAM.

The multi-modal transportation network is based on road and public trans-
portation data of the French region Ile-de-France. It consists of five layers: private
bike, rental bike, walking, car and public transportation. Each layer is connected
to the walking layer through transfer arcs which model the time needed to trans-
fer from one layer to another. Each arc has exactly one associated label, e.g. f
for arcs representing foot paths, pr for rail tracks, ctoll for toll roads. The graph
consists of approximately 4.1mil arcs and 1.2mil nodes (see Table 2).

Data of the public transportation network have been provided by STIF1.
It includes geographical information, as well as timetable data on bus lines,
tramways, subways and regional trains. Our model is similar to the one pre-
sented in [16]. Data for the car layer is based on road and traffic information
provided by Mediamobile2. Arc labels and travel times are set according to the
road type. Approximately 15% of the road arcs have a time-dependent cost func-
tion to represent changing traffic conditions throughout the day. The walking
as well as the private and rental bike layers are based on road data (walking
paths, cycle paths, etc.) extracted from geographical data freely available from
OpenStreetMap. Arc cost equals walking or biking time. Arcs are replicated and
inserted in each of the layers if both walking and biking are possible. The rental
bike layer includes only arcs in the area around the city of Paris, where the rental
bike service3 is available. Bike rental stations serve as connection points between
the walking layer and the rental bike layer as rental bikes have to be picked up
and returned at bike rental stations. In addition, we introduced twenty arcs with
label z between nodes of the foot layer. They represent foot paths close to loca-
tions of interest, and are used to simulate the problem of reaching a target and
in addition passing by any pharmacy, grocery shop, etc.

We ran 500 test instances for five RegLCSP scenarios, see Figures 3a and 4.
They have been chosen with the intention to represent real-world queries, which
may arise when looking for constraint shortest paths on amulti-modal transporta-
tion network. Source node r, target node t, and start time τstart are picked at

1 Syndicat des Transports IdF, www.stif.info, data for scientific use (01/12/2010)
2 www.v-trafic.fr, www.mediamobile.fr
3 Vélib’, www.velib.paris.fr
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Table 2. Dimensions of the graph

layer nodes arcs labels
walking 275 606 751 144 f (all arcs except 20 arcs with label z)
public trans-
portation

109 922 292 113 pb (bus, 72 512 arcs), pm (metro, 1 746), pr (tram, 1 746), pt

(train, 8 309), pc (connection between stations, 32 490), pw

(walking station intern, 176 790), time-dependent 82 833
private bike 250 206 583 186 b
rental bike 38 097 83 928 v
car 613 972 1 273 170 ctoll (toll roads, 3 784), cfast (fast roads, 16 502), cpav (paved

roads except toll and fast roads, 1 212 957), cunpav (un-
paved roads, 27 979), time-dependent 188 197

transfers - 1 107 457 t (walking↔private bike 493 601, walking↔rental bike
2 404, walking↔car 572 604, walking↔public transporta-
tion 38 848)

tot 1 287 803 4 095 971 time-dependent arcs 271 030 (7 687 204 time points)

s0

s1 s2

s3

s4 s5

f t t

t

t

pc

t
t

t

t

pbptpw pbptpw

b

cfastcpav fvt

(a) Scenario B

s0

s2

s1

s3

s4

t

f

t

t

p

t

f

b ftv

s0 s1
z

bft bftz

(b) Scenarios C and E

s0

s1 s2

s3 s4

s5 s6

ft

ft

ft

fppctv

bft

cft

z

z

z

fppctvz

bftz

cftz

(c) Scenario D

Fig. 4. Scenarios used for experimental evaluation. Note that labels pbpmprptpw have
been substituted by p and ctollcfastcpav by c.

random. r and t always belong to the walking layer. We use 32 landmarks which
are placed exclusively on the walking layer. Preprocessing for the different scenar-
ios takes less than a minute. For each instance we compare running times of the
different methods withDRegLC. See Table 3 for experimental results. Column time
gives the average running time in msec of the algorithm over 500 test instances.
SettNo, reInsNo and nCalcPot give the average of the number of settled nodes,
re-inserted nodes and calculated potentials. MaxSett gives the maximum number
of settled nodes and size gives the size in MB of the file holding the landmark
distances determined during the preprocessing phase. For (mix)lc we specifiy all
states for which Procedure 2 has been applied. For all other states Procedure 3
has been used.

4.1 Discussion of Experimental Results and Conclusive Remarks

The algorithm lcSDALT, by adopting the five methods (bas), (adv), (advlc),
(spe) and (mixlc), in comparison to DRegLC, succeeds in directing the constrained
shortest path search faster toward the target. (bas) works well in situations
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Table 3. Experimental results

scenario method time(ms) speed-up settNo maxSett reInsNo nCalPot size(MB) proc 2
A DRegLC 238 1.0 296 656 986 292 - - 0

(bas) 19 12.4 21 476 950 992 0 76 144 311
(adv) 18 13.6 10 930 684 296 0 129 020 622
(adv)lc 13 18.1 10 927 682 981 11 68 820 622
(spe) 62 3.9 45 548 202 382 0 272 174 1 244
(mix)lc 13 *18.9 11 034 254 259 19 74 544 933 s1

B DRegLC 624 1.0 610 375 1 487 766 - - 0
(bas) 219 2.9 156 828 973 345 0 676 969 311
(adv) 190 3.3 51 258 346 549 0 2 295 030 1 866
(adv)lc 174 3.6 145 535 857 619 30 623 198 1 866
(spe) 237 2.6 176 766 667 125 0 543 388 2 177
(mix)lc 89 *7.0 60 053 350 237 87 343 585 1 244 s0, s3, s4

C DRegLC 630 1.0 658 738 1 785 747 - - 0
(bas) 515 1.2 414 553 1 721 989 0 1 981 520 311
(adv) 338 1.9 158 193 977 793 0 2 437 770 933
(adv)lc 263 2.4 223 070 2 217 083 64 034 919 554 933
(spe) 238 2.7 156 739 929 544 0 633 859 1 866
(mix)lc 149 *4.2 91 917 499 646 1 064 674 115 1 244 s0, s1, s2, s4
(mix)lc 161 3.9 97 119 620 991 2 564 686 516 933 s0, s1, s2

D DRegLC 1 722 1.0 1 248 060 3 085 428 - - 0
(bas) 565 3.0 373 695 1 830 094 0 1 731 400 311
(adv) 695 2.5 352 969 1 557 331 0 3 297 090 1 244
(adv)lc 558 3.1 356 679 1 575 981 40 1 640 950 1 244
(spe) 476 3.6 337 849 1 791 504 0 734 068 2 488
(mix)lc 364 *4.7 221 631 1 278 208 48 953 802 2 177 s0

E DRegLC 764 1.0 795 822 1 458 519 - - 0
(bas) 143 5.3 115 941 598 273 0 407 108 311
(adv) 119 6.4 115 941 598 273 0 411 869 311
(adv)lc 120 6.4 116 042 598 273 32 406 877 311
(spe) 25 30.3 27 532 216 389 0 109 125 622
(mix)lc 22 *34.4 23 607 145 308 608 85 776 933 s0

where L0 excludes a priori fast transportation modes (Scenario A). (adv) gives
a supplementary speed-up in cases where initially allowed fast transportation
modes are excluded from a later state on A0 onward. (spe) has a positive im-
pact on running times for scenarios where the visit of some infrequent labels is
imposed by L0 (Scenario E) or the use of fast transportation modes is somehow
limited (Scenario B). Finally, the new methods (advlc) and (mixlc) prove to be
very efficient. (advlc) runs up to 20% faster than (adv) as it substantially reduces
the number of calculated potentials, especially for larger automata. The extra
flexibility provided by (mixlc) often results in a reduction of running time (up
to 50%) and a reduction of memory space.

Recent works on finding constrained shortest paths on multi-modal networks
reported speed-ups of different orders of magnitude. They succeed in doing this
by using contraction hierarchies and by either limiting the constraints which
can be imposed on the shortest paths [17] or by identifying homogenous regions
(arcs with the same label) of the network and by applying contractions only to
those regions [7]. lcSDALT does not provide such speed-ups but can handle more
difficult constraints than the one considered in [17] and works on dis-homogenous
graphs, such as the one considered in this paper. Also, time-dependent cost
functions on arcs can be easily incorporated. Therefore, lcSDALT seems a good
ingredient to future more advanced algorithms on multi-modal networks.
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(eds.) ESA 2002. LNCS, vol. 2461, pp. 126–138. Springer, Heidelberg (2002)

3. Barrett, C., Jacob, R., Marathe, M.: Formal-Language-Constrained Path Problems.
SIAM Journal on Computing 30(3), 809 (2000)

4. Delling, D., Pajor, T., Wagner, D.: Accelerating Multi-modal Route Planning by
Access-Nodes. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
587–598. Springer, Heidelberg (2009)

5. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. Algorithmics of Large and Complex Networks 2, 117–139 (2009)

6. Delling, D., Wagner, D.: Time-Dependent Route Planning. Online 2, 207–230
(2009)

7. Dibbelt, J., Pajor, T., Wagner, D.: User-Constrained Multi-Modal Route Planning.
In: Proceedings of the 14th Workshop on Algorithm Engineering and Experiments
(ALENEX 2012). SIAM (2012)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

9. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A search meets graph
theory. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 156–165. SIAM (2005)

10. Goldberg, A.V., Werneck, R.: Computing point-to-point shortest paths from ex-
ternal memory. US Patent App. 11/115,558 (2005)

11. Hart, P., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernet-
ics 4(2), 100–107 (1968)

12. Ikeda, T., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Tenmoku, K.,
Mitoh, K.: A fast algorithm for finding better routes by AI search techniques.
IEEE (1994)

13. Kaufman, D., Smith, R.: Fastest paths in time-dependent networks for intelligent
vehicle-highway systems applications. Journal of Intelligent Transportation Sys-
tems 1(1), 1–11 (1993)

14. Kirchler, D., Liberti, L., Pajor, T., Wolfler Calvo, R.: UniALT for Regular Lan-
guage Constrained Shortest Paths on a Multi-Modal Transportation Network.
In: Kontogiannis, A.C., Spyros (eds.) 11th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems, pp. 64–75. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)

15. Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A search for
time-dependent fast paths. Experimental Algorithms 2(2), 334–346 (2008)

16. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable
information in public transportation systems. Journal of Experimental Algorith-
mics 12(2), 1–39 (2007)

17. Rice, M., Tsotras, V.J.: Graph indexing of road networks for shortest path queries
with label restrictions. In: Proceedings of the VLDB Endowment, pp. 69–80 (2010)



Efficient Enumeration of the Directed Binary

Perfect Phylogenies from Incomplete Data�

Masashi Kiyomi1, Yoshio Okamoto2, and Toshiki Saitoh3

1 School of Information Science,
Japan Advanced Institute of Science and Technology, Nomi, Japan

2 Center for Graduate Education Initiative,
Japan Advanced Institute of Science and Technology, Nomi, Japan
3 ERATO Minato Discrete Structure Manipulation System Project,

Japan Technology and Science Agency, Sapporo, Japan

Abstract. We study a character-based phylogeny reconstruction prob-
lem when an incomplete set of data is given. More specifically, we con-
sider the situation under the directed perfect phylogeny assumption with
binary characters in which for some species the states of some characters
are missing. Our main object is to give an efficient algorithm to enumer-
ate (or list) all perfect phylogenies that can be obtained when the miss-
ing entries are completed. While a simple branch-and-bound algorithm
(B&B) shows a theoretically good performance, we propose another ap-
proach based on a zero-suppressed binary decision diagram (ZDD). Ex-
perimental results on randomly generated data exhibit that the ZDD
approach outperforms B&B. We also prove that counting the number
of phylogenetic trees consistent with a given data is #P-complete, thus
providing an evidence that an efficient random sampling seems hard.

1 Introduction

One of the most important problems in phylogenetics is reconstruction of phylo-
genetic trees. In this paper, we focus on the character-based approach. Namely,
each species is described by their characters, and a mutation corresponds to a
change of characters. However, in the real-world data not all states of all charac-
ters are observable or reliable, which makes the data incomplete. Thus, we need
a methodology that can cope with such incompleteness.

Following Pe’er et al. [1], we work with the perfect phylogeny assumption, which
means that the set of all nodes with the same character state induces a connected
subtree. All characters are binary, namely take only two values. Without loss of
generality, assume that these two values are encoded by 0 and 1. Then, the phy-
logeny is directed in a sense that for each character a mutation from 0 to 1 is pos-
sible only once, but a mutation from 1 to 0 is impossible (this is also called the
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Camin–Sokal parsimony [2]). We consider the situation where for some species
the states of some characters are unknown. Under this setting, Pe’er et al. [1] pro-
vided a polynomial-time algorithm to reconstruct a phylogenetic tree that can be
obtained when the unknown states are completed, if it exists.

Although their algorithm can find a phylogenetic tree efficiently, it does not
take the likelihood into account. This motivates people to look at optimization
problems; namely we may introduce an objective function (or an evaluation
function) and try to find a perfect phylogeny that maximizes the value of the
function. For example, Gusfield et al. [3] looked at such an optimization problem
and formulated it as an integer linear program. One big issue here is that these
optimization problems tend to be NP-hard, and thus we cannot expect to obtain
polynomial-time algorithms. Therefore, we need some compromise. If we insist
on efficiency, then we need to sacrifice the quality of an obtained solution. This
approach leads us to approximation algorithms. If we insist on optimality, then
we need to sacrifice the running time. This approach leads us to exponential-time
exact algorithms. However, techniques in the literature as Gusfield et al. [3] with
these approaches use specific structures of the form of objective functions.

Our Results. The focus of this paper is the exact approach. However, unlike the
previous work, we aim at enumeration algorithms, which give a more flexible
framework for scientific discovery independent of the form of objective func-
tions. The use of enumeration algorithms is highlighted in data mining and ar-
tificial intelligence. For example, the apriori algorithm by Agrawal and Srikant
[4] enumerates all maximal frequent itemsets in a transaction database. It is not
expected that such enumeration algorithms run faster than non-enumeration al-
gorithms. Therefore, the goal of this paper is to examine a possibility and a
limitation of enumerative approaches.

One of the difficulties in designing efficient enumeration algorithms is to avoid
duplication. Suppose that we are to output an object, and need to check if this
object was already output or not. If we store all objects that we output so far,
then we can check it by going through them. However, storing them may take
too much space, and going through them may take too much time. The number
of obejcts is typically exponentially large. Our algorithm cleverly avoids such
checks, but still ensures exhaustive enumeration without duplication.

It is rather straightforward to give an algorithmwith theoretical guarantee such
as polynomiality. Namely, a simple branch-and-bound idea gives an algorithm that
has a running time polynomial in the input size and linear in the output size. Notice
that an enumeration algorithm outputs all the objects, and thus the running time
needs to be at least as high as the number of output objects. Thus, the linearity in
the output size cannot be avoided in any enumeration algorithms.

However, such a theoretically-guaranteed algorithm does not necessarily run
fast in practice. Thus, we propose another algorithm that is based on a zero-
suppressed binary decision diagram (ZDD). A ZDD was introduced by Minato
[5]. It is a directed graph that has a similar structure to a binary decision dia-
gram (BDD). While a BDD is used to represent a boolean function in a com-
pressed way, a ZDD only represents the satisfying assignments of the function in a
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compressed way (a formal definition will be given in Section 3). Furthermore,
we may employ a lot of operations on ZDDs, called the family algebra, which
can be used for efficient filtering and optimization with respect to some objective
functions. A book of Knuth [6] devotes one section to ZDDs, and gives numerous
applications as exercises.

Although the size of a constructed ZDD is bounded by a polynomial of the
number of output objects, we cannot guarantee that the size of a ZDD that is
created at the intermediate steps in the course of our algorithm is bounded. This
means that we cannot guarantee a polynomial-time running time (in the input
size and the output size) for our ZDD algorithm. However, the crux here is that
the size of a constructed ZDD can be much smaller than the number of output
objects. We exhibit this phenomenon in two ways. First, we give an example in
which the number of phylogenetic trees is exponential in the input size, but the
size of the constructed ZDD is polynomial in the input size. Second, we perform
experiments on randomly generated data, and the result shows that our ZDD
algorithm can solve more instances than a branch-and-bound algorithm. This
suggests that the ZDD approach is quite promising.

Having enumeration algorithms, we can also count the number of phyloge-
netic trees. In particular, the branch-and-bound algorithm can count them in
polynomial time in the input size and the output size. This naturally raises the
following question: Is it possible to count them in polynomial time only in the
input size? Note that since we only compute the number, we do not have to
output each object one by one, and thus the linearity of the running time in
the output size could be avoided. Such a polynomial-time counting algorithm
could be combined with a branch-and-bound enumeration algorithm to design
a random sampling algorithm. Namely, when we branch, we count the number
of outputs in each subinstance in polynomial time, and choose one subinstance
at random according to the computed numbers. For more on the connection of
counting and sampling, we refer to a book by Sinclair [7].

We prove that this is unlikely. Namely, counting the number of phylogenetic
trees for the incomplete directed binary perfect phylogeny is #P-complete. The
complexity class #P contains all counting problems in which a counted object has
a polynomial-time verifiable certificate. Since no #P-complete problem is known
to be solved in polynomial time, the #P-completeness suggests the unlikeliness
for the problem to be solved in polynomial time.

Graph Sandwich. Pe’er et al. [1] rephrased the incomplete directed binary
perfect phylogeny problem as a bipartite graph sandwich problem. The graph
sandwich problem, in general, was introduced by Golumbic et al. [8]. In
the graph sandwich problem, we fix a class C of graphs, and we are given
two graphs G1 = (V,E1), G2 = (V,E2) such that E1 ⊆ E2. Then, we are
asked to find a graph G = (V,E) ∈ C such that E1 ⊆ E ⊆ E2. Golumbic
et al. [8] proved that even for some restricted classes of graphs, the problem is
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NP-complete. The subsequent results by various researchers also show that for a
lot of cases the problem is NP-complete, even though the recognition problem for
those classes can be solved in polynomial time (we will not include here a long list
of literature). Thus, the result by Pe’er et al. [1] gives a rare example for which
the graph sandwich problem can be solved in polynomial time.

Recently, the graph sandwich enumeration problem has been studied.
Kijima et al. [9] studied the graph sandwich enumeration problem for chordal
graphs. They provided efficient algorithms when G1 or G2 is chordal, where “ef-
ficient” means that it runs in polynomial time in the input size and linear time
in the output size. Their approach was generalized by Heggernes et al. [10] to
all sandwich-monotone graph classes. In this respect, this paper gives another
example of efficient graph sandwich enumeration algorithms.

Organization. In Section 2, we introduce the problemmore formally. In Section 3,
we provide the algorithm based on ZDDs, and give an example in which the com-
pression reallyworks. InSection4,weprove that the countingversion is intractable.
Section 5 gives experimental results. We conclude in the final section.

For missing details, we refer to the arXiv version [11].

2 Preliminaries

Due to the pairwise compatibility lemma (see, e.g., [12]), we may define our
problem in terms of laminars. We adapt this view throughout the paper.

A sequence S = (S1, . . . , Sm) of subsets of a finite set S is a laminar if for
every two i, j ∈ {1, . . . ,m} the intersection Si ∩ Sj is either Si, Sj , or ∅.1 In
the incomplete directed binary perfect phylogeny problem (IDBPP), we are given
two sequences L = (L1, . . . , Lm), U = (U1, . . . , Um) of m subsets of S such
that Li ⊆ Ui ⊆ S for all i ∈ {1, . . . ,m}, and the question is to determine
whether there exists a laminar S = (S1, . . . , Sm) such that Li ⊆ Si ⊆ Ui for all
i ∈ {1, . . . ,m}. We call such a laminar a directed binary perfect phylogeny for
(S,L,U). The IDBPP can be solved in polynomial time [1].

Let us briefly describe the correspondence to phylogenetic trees. The set S
represents the set of species, and the indices 1, . . . ,m represent the characters.
Then, Si represents the set of species that has the character i. The species in Li

are recognized as those we know having the character i, and the species in S \Ui

are recognized as those we know not having i.
In this paper, we consider the following variants that take the same input as

the IDBPP. In the counting version of IDBPP, the objective is to output the
number of directed binary perfect phylogenies. In the enumeration version of
IDBPP, the objective is to output all the directed binary perfect phylogenies.
Note that enumeration should be exhaustive, and also should not output the
same object twice or more.

1 Usually, a laminar is defined as a family of subsets, but for our purpose it is conve-
nient to define as a sequence of subsets.
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3 ZDD Approach

3.1 Introduction to ZDDs

Let f : {0, 1}N → {0, 1} be an N -variate boolean function with boolean variables
x1, . . . , xN . We assume a linear order on the variables {x1, . . . , xN} as xi precedes
xj if and only if i < j. A binary decision diagram (BDD) for f , denoted by B(f),
is a vertex-labeled directed graph with the following properties.

– There is only one vertex with indegree 0, called the root of B(f).
– There are only two vertices with outdegree 0, called the terminals of B(f).
– Each vertex of B(f), except for the terminals, is labeled by a variable from
{x1, . . . , xN}.

– One terminal is labeled by 0 (called the 0-terminal), and the other terminal
is labeled by 1 (called the 1-terminal).

– Each edge of B(f) is labeled by 0 or 1. An edge labeled by 0 is called a
0-edge, and an edge labeled by 1 is called a 1-edge.

– Each vertex of B(f), except for the terminals, has exactly one outgoing
0-edge and exactly one outgoing 1-edge.

– If there is a path from a vertex v to a non-terminal vertex u in B(f), then
the label of v is smaller than the label of u.

– A boolean assignment α : {x1, . . . , xN} → {0, 1} satisfies f (i.e.,
f(α(x1), . . . , α(xN )) = 1) if and only if there exists a path P from the root
to the 1-terminal in B(f) that satisfies the following condition: α(xi) = 1 if
and only if there exists a vertex v on P labeled by xi such that P traverses
the 1-edge leaving v.

0 1

x1

x2

x3

Fig. 1. A ZDD
for the function
f(x1, x2, x3) =
(x1 ∧ x2 ∧ x3) ∨
(x2 ∧ x3)

A BDD for a function f is not unique, and may contain redun-
dant information.However, the following reduction rules turn a
BDD into a smaller equivalent BDD. A zero-suppressed binary
decision diagram (ZDD) for a function f is a BDD, denoted by
Z(f), for which the reduction rules cannot be applied.

1. If the outgoing 1-edge of a vertex v points to the 0-
terminal and the outgoing 0-edge of a vertex v points to
a vertex u, then we remove v and its outgoing edges, and
reconnect the incoming edges to v to the vertex u.

2. If two vertices v, v′ have the same label xi, their outgoing
1-edges point to the same vertex u1, and their outgoing 0-
edges point to the same vertex u0, then replace v, v′ with
a single vertex w with label xi. The incoming edges to w
are those to v, v′, the outgoing 1-edge from w points to
u1, and the outgoing 0-edge from w points to u0.

Fig. 1 shows an example of a ZDD. The edges are assumed to be directed down-
ward. A dashed line represents a 0-edge, and a solid line represents a 1-edge.

The size of a ZDD Z(f) is defined as the number of vertices, and denoted
by |Z(f)|. It is easy to observe that the size of ZDD Z(f) is O(NA) where A
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is the number of satisfying assignments of f . However, this is merely an upper
bound, and in practice the size can be much smaller. Thus, a ZDD for f gives
a compressed representation of the family of all satisfying assignments of f .
Especially, if we have a family F of subsets of a finite set S and consider a
boolean function f : {0, 1}S → {0, 1} such that f(x) = 1 if and only if {e ∈ S |
xe = 1} ∈ F , then a ZDD for f compactly encodes the family F .

There are a family of operations that can be performed on ZDDs. Here,
we list those which we use in our algorithm. Let f, f ′ : {0, 1}N → {0, 1}
be boolean functions with variables x1, . . . , xN , and ZDDs Z(f), Z(f ′) be
given. Then, a ZDD Z(f ∨ f ′) of the disjunction (logical OR) can be
obtained in O(|Z(f)||Z(f ′)|) time. Let f [xi=0] : {0, 1}N−1 → {0, 1} be a
boolean function with variables x1, . . . , xi−1, xi+1, . . . , xN obtained from f by
f [xi=0](x1, . . . , xi−1, xi+1, . . . , xN ) = f(x1, . . . , xi−1, 0, xi+1, . . . , xN ). Then, a
ZDD Z(f [xi=0]) can be found in O(|Z(f)|) time. Similarly, we may define f [xi=1],
and a ZDD Z(f [xi=1]) can be found in O(|Z(f)|) time.

3.2 ZDD-Based Enumeration Algorithm

We introduce a boolean variable xi,e for each pair (i, e) of an index i ∈ {1, . . . ,m}
and an element e ∈ S. Then, we consider the conjunction (logical AND) of the
following conditions, which gives rise to a boolean function f : {0, 1}{1,...,m}×S →
{0, 1}.

1. For every i ∈ {1, . . . ,m}, if e ∈ Li, then xi,e = 1.
2. For every i ∈ {1, . . . ,m}, if e ∈ S \ Ui, then xi,e = 0.
3. For every distinct i, j ∈ {1, . . . ,m}, exactly one of the following three is

satisfied.
(a) For all e ∈ S, if xi,e = 1, then xj,e = 1.
(b) For all e ∈ S, if xi,e = 0, then xj,e = 0.
(c) For all e ∈ S, if xi,e = 1, then xj,e = 0.

We can easily see that if we set Si = {e ∈ S | xi,e = 1} for every i ∈ {1, . . . ,m},
then S = (S1, . . . , Sm) is a directed binary perfect phylogeny for (S,L,U).
Namely, the condition 1 translates to Li ⊆ Si; the condition 2 translates to
Si ⊆ Ui; the condition 3(a) translates to Si ∩ Sj = Si; the condition 3(b) trans-
lates to Si ∩ Sj = Sj ; the condition 3(c) translates to Si ∩ Sj = ∅.

These conditions naturally induce the following algorithm.

Algorithm: ZDD(S,L,U)
Precondition: S is a finite set, L = (L1, . . . , Lm), U = (U1, . . . , Um), each

member of L and U is a subset of S, and Li ⊆ Ui for every i ∈ {1, . . . ,m}.
Postcondition: Output a ZDD Z(f) for the boolean function f over the vari-

ables {xi,e | i ∈ {1, . . . ,m}, e ∈ S} defined above, which encodes all the
directed binary perfect phylogenies for (S,L,U).

Step 0: Let g = 1 be the constant-one function. Construct a ZDD Z(g).
Step 1: For each i ∈ {1, . . . ,m} and each e ∈ S, if e ∈ Li, then construct

Z(g[xi,e=1]) from Z(g) and reset g := g[xi,e=1].
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Step 2: For each i ∈ {1, . . . ,m} and each e ∈ S, if e ∈ S \ Ui, then construct
Z(g[xi,e=0]) from Z(g) and reset g := g[xi,e=0].

Step 3: For each distinct i, j ∈ {1, . . . , n} and each e ∈ S, we perform the
following.

Step 3-a: Let g1 := g[xi,e=1,xj,e=1] ∨ g[xi,e=0]. Construct Z(g1) from Z(g).
Step 3-b: Let g2 := g[xi,e=0,xj,e=0] ∨ g[xi,e=1]. Construct Z(g2) from Z(g).
Step 3-c: Let g3 := g[xi,e=1,xj,e=0] ∨ g[xi,e=0]. Construct Z(g3) from Z(g).
Step 3-d: Construct Z(g1 ∨ g2 ∨ g3) from Z(g1), Z(g2), Z(g3), and reset g :=

g1 ∨ g2 ∨ g3.
Step 4: Output Z(g) and halt.

Although the output size |Z(f)| is bounded by O(mnh) where n = |S| and
h is the number of directed binary perfect phylogenies for (S,L,U), we cannot
guarantee that ZDDs that appear in the course of execution have such a bounded
size. Thus, the algorithm could be quite slow or could stop due to memory
shortage.

3.3 Example with Huge Compression

We exhibit an example for which the size of a ZDD is exponentially smaller
than the number of directed binary perfect phylogenies. While the example is
artificial, this indicates a possibility that our ZDD-based algorithm outperforms
the branch-and-bound algorithm.

Consider the following example. Let S = {(i, j) | i ∈ {1, . . . , n}, j ∈
{0, 1, . . . , k}}. Then |S| = (k + 1)n. For each i ∈ {1, . . . , n}, let Li = {(i, 0)}
and Ui = {(i, 0), (i, 1), . . . , (i, k)}. As before, let L = (L1, . . . , Ln) and U =
(U1, . . . , Un). Then, the number of directed binary perfect phylogenies for
(S,L,U) is 2kn. On the other hand the size of a ZDD is O(kn).

4 Hardness of Counting

Theorem 1. The counting version of the IDBPP is #P-complete.

Proof. We reduce the problem of counting the number of matchings in a (simple)
bipartite graph, which is known to be #P-complete [13].

Let G = (V,E) be a (simple) bipartite graph with a bipartition V = A ∪ B
of the vertex set. For each vertex v ∈ V , we set up an element sv, and let
S = (sv | v ∈ V ). Then, for each edge e = {a, b} ∈ E, where a ∈ A and
b ∈ B, let Le = {sa} and Ue = {sa, sb}. Then, we set up L = (Le | e ∈ E)
and U = (Ue | e ∈ E). Note that for each e ∈ E, it holds that Le ⊆ Ue. Thus,
S, L, and U form an instance of the IDBPP. We can show that the number of
matchings in G equals the number of directed binary perfect phylogenies for L
and U . ��
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Table 1. The number of solved instances by B&B and ZDD out of 100 for each case

B&B ZDD
(m,n) (50, 50) (50, 100) (100, 50) (100, 100) (50, 50) (50, 100) (100, 50) (100, 100)

p = 0.1 52 17 0 0 99 99 93 90
p = 0.2 0 0 0 0 57 33 6 4

5 Experiments

Data. We have used the program ms by Hudson [14] to generate a random
data set without incompleteness that admits a directed binary perfect phylogeny
S = (S1, . . . , Sm). Then, we have constructed Li from Si by removing each
element of Si independently with probability p, and constructed Ui from Si by
adding each element of S \ Si independently with probability p.

We have created 100 instances independently at random for each triple of
values (m,n, p) ∈ {50, 100}× {50, 100}× {0.1, 0.2, 0.3, 0.4, 0.5}.

Implementation and Experiment Environment. We have implemented the algo-
rithm ZDD described in Section 3 and another algorithm based on the branch-
and-bound idea, which we call B&B. We have implemented both algorithms
in C++. For the implementation of ZDD, we have used the library BDD+
developed by Minato. We introduced some heuristic methods to gain a prac-
tical performance. All programs have run on the machine with the following
specification; OS: SuSE Linux Enterprise Server 10 (x86 64); CPU: Quad-Core
AMD Opteron(tm) Processor 8393 SE (#CPUs 16, #Processors 32, Clock Freq.
3092MHz); Memory: 512GB.

The Number of Solved Instances. We have counted the number of instances that
were solved by our implementation within two minutes for p = 0.1, 0.2. Here,
“solved” means that the algorithm successfully halts. Table 1 shows the result.
As we can see from the table, B&B was not able to solve most of the instances,
even if they are small. On the other hand, ZDD was able to solve almost all
instances when p = 0.1. However, when p = 0.2, the number of solved instances
rapidly decreases.

Fig. 2 shows the accumulated number of solved instances by ZDD. Note that
the horizontal axis is in log-scale. For (m,n, p) = (50, 50, 0.1), ZDD solved each
of the 99 instances within one second. For (m,n, p) = (50, 100, 0.1), it solved
each of the 99 instances within five seconds. This shows high effectiveness of the
algorithm ZDD.

The Running Time of ZDD and the Size of ZDDs. Fig. 3 shows a scatter plot in
which each point represents an instance solved by ZDD for p = 0.1, 0.2 with the
running time (the horizontal coordinate) and the size of the ZDD constructed by
ZDD (thevertical coordinate).Note that this is a log-logplot.Wecan see a tendency
that the algorithm spends more time for instances with larger ZDDs. A simple �2-
regression reveals that the spent time is dependent on the size almost linearly.
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stances solved by ZDD for each case
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perfect phylogenies found by B&B for
each case

The Number of Perfect Phylogenies and the Size of ZDDs. Fig. 4 shows a log-
log scatter plot in which each point represents an instance solved by ZDD for
p = 0.1, 0.2 with the number of perfect phylogenies (the horizontal coordinate)
and the size of the ZDD constructed by ZDD (the vertical coordinate). The plot
exhibits high compression rate of ZDDs. If we define the logarithmic compression
ratio of ZDD by the logarithm (with base 10) of the size of ZDD divided by the
number of perfect phylogenies, then Table 2 presents the means and the stan-
dard deviations of the logarithmic compression ratio of the instances solved by
ZDD categorized by the choice of parameters. It shows the high-rate compres-
sion by ZDDs, and for larger values of parameters the compression ratios get
larger. Among the solved instances, the logarithmic compression ratios range
from −17.77 to −1.82. Namely, for the most extreme case, the size of ZDD is
approximately 1017.77 times smaller than the number of perfect phylogenies.

The Number of Solutions Found by B&B. Unlike ZDD, the algorithm B&B
can output some directed binary perfect phylogenies even if the execution is
interrupted. Fig. 5 shows the averages of the logarithm of the numbers of
directed binary perfect phylogenies (together with standard deviations) found
by B&B within two minutes for each case: Four groups correspond to
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Table 2. The means and the standard deviations of logarithmic compression ratios

p 0.1 0.2
(m,n) (50, 50) (50, 100) (100, 50) (100, 100) (50, 50) (50, 100) (100, 50) (100, 100)

mean −4.13 −7.25 −5.62 −10.00 −8.06 −13.61 −9.24 −14.04

s.d. 1.22 1.35 1.74 1.79 1.48 2.04 1.86 1.02
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Fig. 6. The number of directed binary
perfect phylogenies found by B&B for
each case
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Fig. 7. The number of directed binary
perfect phylogenies in the instances solved
by ZDD for each case

(m,n) = (50, 50), (50, 100), (100, 50), (100, 100) from left to right, and in each
group there are five bars corresponding to p = 0.1, 0.2, 0.3, 0.4, 0.5 from left to
right. When (m,n, p) = (50, 50, 0.1), the standard deviation is high since about
a half of the instances were solved within two minutes. Even for the seemingly
difficult case (m,n, p) = (100, 100, 0.5), B&B was able to find around 105.4 per-
fect phylogenies. This suggests that B&B can be useful even if ZDD does not
finish the computation.

The Number of Solutions Found by ZDD and B&B. Fig. 6 is a scatter plot
in which each point represents an instance solved by ZDD with the number
of directed binary perfect phylogenies found by B&B within two minutes (the
horizontal coordinate) and the number of directed binary perfect phylogenies in
the instance (the vertical coordinate). This shows the percentage of the directed
binary perfect phylogenies that were found by B&B. Since this is a log-log plot,
we can see that this percentage is quite low. There is one instance for (m,n, p) =
(100, 50, 0.2) with 49,614,003,829,608,756,019,200 perfect phylogenies for which
B&B could only find 991,232. Thus the percentage is around 10−17 %. This really
shows the power of ZDDs.

Running Time of ZDD and the Number of Solutions. Fig. 7 shows a scatter plot
in which each point represents an instance solved by ZDD for p = 0.1, 0.2 with
the running time (the horizontal coordinate) and the number of directed binary
perfect phylogenies in the instance (the vertical coordinate). Note that this is
a log-log plot. There is a weak tendency that the algorithm spends more time
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for instances with more directed binary perfect phylogenies. We can see that the
algorithm is able to solve an instance with more than 1017 perfect phylogenies
within one second.

6 Conclusion

We have presented the algorithm ZDD to enumerate all directed binary per-
fect phylogenies from incomplete data, and compare it with the algorithm B&B
based on a simple branch-and-bound idea. Theoretically, B&B runs in polyno-
mial time, but ZDD has no such guarantee. In experiments, ZDD solved more
instances than B&B. This shows some gap between theory and practice, and it
is desirable to have some theoretical justification why ZDD can outperform. We
have theoretically exhibited an example for which the compression by a ZDD is
effective. However, that example was artificial. The experiments also show ZDD
can compress very well on random instances. It is desirable to obtain a more
natural theoretical evidence why such a good compression is achieved.

The approach by ZDDs looks quite promising, and there must be more prob-
lems in bioinformatics that can get benefits from them.

Acknowledgments. We thank Jesper Jansson for bringing the problem into
our attention, and Jun Kawahara and Yusuke Kobayashi for a fruitful discussion.
We also thank the anonymous referees for detailed comments.
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Abstract. We present a fast algorithm with preprocessing for comput-
ing multiple good alternative routes in road networks. Our approach is
based on single via node routing on top of Contraction Hierarchies and
achieves superior quality and efficiency compared to previous methods.
The algorithm has neglectable memory overhead.

1 Introduction and Related Work

Today’s requirements for routing services, be it in-car or as a web-service, ask
for more than just computing the shortest or quickest paths. Thus it is desirable
to not only present a single path to a user, but instead a set of paths which are
perceived as reasonable alternatives.

We show how to engineer previous algorithms to provide reasonable alterna-
tive paths with better efficiency. Then, we build on the results and introduce
the notion of candidate via nodes to further speed up the computation by an
order of magnitude. We show how to perform query variants and how to conduct
the preprocessing efficiently. Finally, we conduct an experimental study on the
performance and quality of our method.

The shortest path problem can be solved by Dijkstra’s seminal algorithm [1].
Unfortunately, it does not scale to large-scale instances. Heuristics to prune the
search space like that provide goal direction [2,3] ease the problem. An early op-
timal and perfomant technique that provides substantial speedups is arc flags ;
originally conceived by Lauther [4,5]; later by Möhring et al. [6] and Köhler et
al. [7]. The road network is partitioned into regions and each edge stores a flag
to indicate if there is a shortest path into a region. Techniques exploiting the
hierarchy of a road network follow the notion that sufficiently long routes will
enter the arterial network at some point, e.g. enter a highway or national road.
Contraction Hierarchies (CH) [8] have a convenient trade-off between prepro-
cessing and query time. Road networks of continental size can be preprocessed
within minutes and queries run in the order of about one hundred microseconds.
CH heuristically order the nodes by some measure of importance and shortcut
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them in this order. This means that a node is removed from the graph and as few
edges as possible are inserted to preserve shortest path distances. The original
edges are augmented by the shortcut edges to build the search data structure.
A query (a bidirected Dijkstra) only needs to follow edges that lead to more
important nodes. Hence, the data structure forms a directed acyclic graph. Al-
beit the length of any shortest path is optimal, it may consist of shortcut edges
that need to be recursively unpacked. The fastest CH variant is CHASE [9] that
combines CH with arc flags. Its queries run in the order of ten microseconds.

Recently, Abraham et al. [10,11] give analyses of the performance of speedup
techniques to Dijkstra’s algorithm. Also, Abraham et al. [12] give an efficient
implementation of the theoretical algorithm, which achieves distance query times
below a single microsecond. Please note that we refer to various papers when
speaking of Abraham et al. [10,11,12,13].

Alternative paths that combine two shortest paths over a via node are used
by Choice Routing [14], also referred to as plateau method. The road network
is modelled as a graph G = (V,E) and shortest path trees are grown from
nodes s and t. Plateaus 〈u, . . . , v〉 running from node u to v are maximal paths
that appear in both trees. They give candidates for natural alternative paths,
i.e. follow the forward tree from s to u, then the plateau, and then the reverse
tree from v to t. Although not entirely published, the plateau method provides
alternatives of good quality in practice. Further discussion on this can be found
in [13].

2 The Baseline Algorithm

Abraham et al. [13] define a class of admissible alternative paths. For a given
s–t-pair and via node v the (via) path Pv is a concatenation of the two shortest
paths s–v and v–t. The shortest path between s and t is called Popt and the
length of a path Pv is denoted by l(Pv). Via path Pv has to be reasonable to
be considered as a viable alternative and thus must obey three heuristic, but
natural properties:

First, Pv has to be significantly different from Popt. This states that the total
length of the edges both paths share must only be a fraction of the length
of the optimal path. Second, Pv has to be T -locally optimal (T-LO), which
means that every sufficiently short subpath P ′ of Pv must be a shortest path. In
other words, every local decision along the alternative path must be reasonable.
This is formalized by two properties. Every sufficiently short subpath P ′ ⊆ Pv

with l(P ′) ≤ T has to be a shortest path. If P ′ is a subpath of Pv and P ′′ is
obtained by removing endpoints of P ′ then P ′ must also be a shortest path if
l(P ′) > T ∧ l(P ′′) < T holds. Third, the alternative path needs to have limited
stretch. A path Pv is said to have (1+ε) uniformly bound stretch (UBS) if every
subpath P ′ ⊆ Pv has stretch of at most (1+ε). As such, every alternative should
only be a fraction longer than a shortest path.

Given parameters 0 < α < 1, 0 ≤ γ ≤ 1, and ε ≥ 0 as well as the above
properties, we formalize
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Definition 1 (Admissible path). A path Pv between s and t is an admissible
alternative if

a) l(Popt ∩ Pv) ≤ γ · l(Popt) (limited sharing),
b) Pv is T -locally optimal for T = α · l(Popt) (local optimality), and
c) Pv has (1 + ε)-UBS (uniformly bounded stretch).

These measures require a quadratic number of shortest path queries to be veri-
fied, which is not feasible for a real-time setting. Thus, more practical algorithms
are needed that have a narrower focus on easy computability. There exists a quick
2-approximation (T -test) for T -local optimality. Given a via path Pv and a pa-
rameter T , let x be the closest node on s–v that is at least T away from v or s.
Likewise, y is the closest node on v–t that is also at least T away or s. A path
Pv is said to pass the T -test if the portion of Pv between x and y is a shortest
path.

Abraham et al. [13] give a practical solution based on a bidirectional Dijkstra
(BD), called X-BDV, to compute single via paths that are reasonable and good
alternatives. The algorithm incorporates ideas from the plateau method. An
Exploration Dijkstra identifies potential alternative paths: A (forward) shortest
path tree is grown from s, and another (backward) tree from t, until all nodes
are settled that are not farther than (1 + ε) · l(Popt) away from the root of
their respective tree. Note that no admissible path can be any longer. Each
node v that is settled in both search trees becomes a via node candidate and
three measurements are computed in linear time: l(Pv), the length of via path
Pv, σ(Pv), the amount of sharing of Pv with the optimal route, and pl(Pv),
the length of a longest plateau containing v. Note that if pl(Pv) > T , the T -
test is always successful. These more practical measures are used to sort all
candidates in non-decreasing order according to the priority function f(Pv) =
2 · l(Pv) + σ(Pv) − pl(Pv). The first path Pv is returned that is approximately
admissable as described below.

Definition 2 (Approximately Admissible). A path Pv between s and t is
approximately admissible if the following three conditions hold

1. σ(Pv) < γ · l(Popt) (limited sharing),
2. successful T -test for T = α · l(Pv\Popt) (local optimality), and
3. l(Pv\Popt) < (1 + ε) · l(Popt\Pv) (small stretch).

Local optimality and stretch are defined with respect to the detour of the al-
ternative. The above method yields the algorithm X-CHV [13] when combined
with Contraction Hierarchies. The forward and backward (CH) search spaces of
nodes s and t are explored. Nodes v in the forward search space are reached
with a forward distance l↑(Psv) and nodes in the backward search space with
a backward distance l↓(Pvt). For nodes v that occur in both search spaces
a preselection is run. Nodes are discarded, if the sum of forward and back-
ward distance is longer than a certain fraction of the length of the shortest
path: l↑(Psv) + l↓((Pvt) < (1 + ε) · l(Popt). Note that these distances are not
necessarily correct but upper bounds. It is tested if the approximated overlap
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σapx(Pv) is no longer than a certain fraction of the length of the shortest path:
σapx(Pv) < (1+ ε) · l(Popt). Additionally, the following condition concerning the
stretch must hold: l↑(Psv) + l↓(Pvt)− σapx(Pv) < (1 + ε) · (l(Popt)− σapx(Pv)).
Remaining candidates are ranked according to the priority function of X-BDV.
The exact path 〈s..v..t〉 is computed for nodes v in that order. The first node
for which the properties of Definition 2 hold is selected as via node.

The success rate of X-CHV is inferior to X-BDV since search spaces are much
narrower. To cope with the smaller success rate, Abraham et al. [13] introduce
a relaxed exploration phase: The exploration query is allowed to search more
nodes than the plain CH query. Let pi(u) be the i-th ancestor of u in the search
tree. The x-relaxed X-CHV query prunes an edge (u, v) if and only if v precedes
all vertices u, p1(u), . . . , px(u) in the order of the CH. Note, the x-relaxed variant
of X-CHV, with x ∈ {0, 3}, is the baseline of our work. This section ends the
recap of previous work.

3 Engineering the Baseline Algorithm

Recall that the baseline is a two step approach. A bidirectional Exploration (CH)
Dijkstra searches for via node candidates that are then tested for admissibility
using a number of point-to-point (p2p) shortest path queries, which we call
Target (CH) Dijkstras. The obvious approach to apply engineering is to handle
the Target Dijkstras by faster methods than the normal Contraction Hierarchies
query algorithm. For instance, we apply CHASE that computes these queries by
exploiting additional arc flags [9]. This does not apply to Exploration Dijkstras,
because search spaces would be too narrow. Storing all shortcuts pre-unpacked
speeds up path computation as well. Both optimization have equal impact and
result in an algorithm with query times of less than half of plain X-CHV. We
refer to this straight-forward engineered baseline algorithm by X-CHASEV.

The analyses of Abraham et al. [10] show that speedup-techniques to Dijk-
stra’s algorithm work especially well on certain classes of graphs in which all
shortest paths out of a region are covered by a small node set. This theoretical
analysis leads to the following assumption:

Assumption 1 (limited number of alternative paths). If the number of
shortest paths between any two sufficiently far away regions of a road network
is small [10], so is the number of plateaus for Choice Routing [14]. Likewise the
number of admissible paths of the algorithm of Abraham et al. [13] is small and
can be covered by a small number of nodes.

4 Single-Level via Node Candidates

We partition the graph and apply bootstrapping to generate via node candidate
sets for pairs of partitions. Here, bootstrapping means that the query algorithm
which is used later on to actually compute an alternative path is used during
preprocessing as well.
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Assume that for each pair of non-neighboring partitions, we have computed a
set of via node candidates. Note that since candidates are already present, we do
not need to identify them during an exploration step. Computing an alternative
path for a given s–t-query now becomes straight-forward. We loop over all nodes
v in the via node candidate set of the pair of partitions of s and t. For each v we
check whether Pv is approximately admissible using the properties of Definition
2. The first approximately admissible path found is returned as the result. If no
candidate is viable or if the size of the candidate set is zero, no alternative path
is returned.

In a s–t query between neighboring partitions or within a single partition we
perform X-CHASEV as fallback instead. The reason for this is that the number
of candidates between those pairs of partitions and within a single one can be
numerous. It is faster to use the fallback algorithm than to check pregenerated
node sets in most of these cases.

Precomputating via node candidates starts with a partitioning of the underly-
ing road network. A number of such schemes have been proposed before. We do
not focus on that subproblem but refer to [15,16] instead. A set of via node can-
didates is generated greedily for each pair of partitions. A tentative via node set
that keeps track of the candidates identified so far during preprocessing for each
pair. We use the above algorithm with the tentative node set. If no alternative
is found, we run X-CHASEV as bootstrapping to identify one. Whenever such
a fallback run results in a new via node, it is inserted into the set of tentative
via nodes.

4.1 Multi-level via Node Candidates

We propose a multi-level partitioning to compute via node candidates for neigh-
boring pairs of partitions or within a single partition. The graph is further parti-
tioned into an order of magnitude more partitions. The finer partitioning respects
the coarser one in the sense that the nodes of a fine partition belong to one and
only one of the coarse partitions. We do not run full preprocessing for all pairs of
fine partitions. This would induce an amount of additional preprocessing steps
(quadratic in the number of partitions). Our algorithm runs fine for most coarse
partition pairs and we run the same preprocessing algorithm as before only on a
subset of all fine partition pairs. These are the pairs for which origin an destina-
tion were too close together, i.e. in the same coarse partition or in neighboring
ones. Note, we preprocess each non-neighboring fine partition pair that either
belongs to the same or to a pair of neighboring coarse partitions. This implies
only a linear amount of additional preprocessing work.

A query recurses to the multi-level partitioning for nodes of two neighboring
coarse partitions or between nodes within the same coarse partition. When ori-
gin and destination are within the same or in neighboring fine partitions, plain
X-CHASEV is run as fallback. Fine partitions are much smaller, and origin and
destination are generally close to each other.

128 partitions are used for the arc flags of X-CHASEV. The number of ex-
plored nodes during a CHASE query with 128 partitions that do not belong to
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the shortest path is tiny [9]. Hence, we do not see any benefit of investing time
into the generation of arc flags for 1 024 partitions.

4.2 Further Engineering

The preprocessing is easily adaptable to shared-memoryparallelismby preprocess-
ing all pairs of partitions independently. This parallelization scales almost linearly
with the number of processors until the memory bandwidth is reached. Most pre-
processing runs verify the existence of a via node, but do not result in a new one.
Sampling effectively decreases the preprocessing timewhen the sample is of reason-
able size. E.g. running such a preprocessing on 1/16 of all of the pairs of boundary
nodes for each partition pair results in only slightly inferior query performance.

Much effort during preprocessing is spent in search space exploration. The
search space of each boundary node is required repeatedly. This can be hastened
by about a factor of three by storing the search spaces of boundary nodes. An-
other tuning parameter is the order in which the nodes are stored in the tentative
sets. We order by the number of how often a node occurs as a via node during
preprocessing. This order is not necessarily the best of all orders. It depends on
the order in which the pairs of boundary nodes are visited. Computing a best
among all possible sorting orders, independent of the visiting order, is feasible
and leads to slightly superior query times, but is computationally expensive.
Note that selecting a via node greedily is of course faster since the first viable
node is used, while selecting the via node that yields a best quality alternative
is more expensive. Queries can be further accelerated by storing (forward and
backward) search spaces of the via node candidate sets and also by storing the
shortcuts pre-unpacked, as mentioned before.

5 Experiments

We implement the above algorithms in C++ using GCC’s compiler with full opti-
mizations. A binary heap is used as priority queue data structure. The experiments
are conducted on two separate machines. Queries run on one core of an Intel Core
i7-920 CPU (4 cores), clocked at 2.66 GHz with 12 GiB main memory. It is run-
ning Linux (kernel 2.6.34, gcc version 4.5.0). Parallel preprocessing is done on 4
AMDOpteron 6168 CPUs (12 cores each), clocked at 1.90 Ghz with 256 GiB main
memory. Thismachine is running Linux (kernel 2.6.38,GCC version 4.5.2) and has
roughly half the single-core performance compared to theCore i7machine.Timings
are done using the clock cycle counter available in 64 bit x86 CPUs.

5.1 Methodology

We test our approach on a road network of Western Europe provided by PTV
AG for the 9th Dimacs Challenge [17]. It consists of 18 million nodes and 42
million edges and uses the travel time metric as edge weights. We partition the
graph into 128 partitions using the algorithm of Sanders and Schulz [16], yielding
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an average edge cut of 6 360 and 91.8 boundary nodes per partition. Note that
their partitioner does not necessarily yield connected partitions. On average each
partition is adjacent to 5.2 neighboring ones. Our finer partioning into 1 024
partitions has an edge cut of 25 715 with an average of 46.5 boundary nodes and
5.3 neighbors. All figures are based on 10 000 random but fixed queries, unless
otherwise stated. To compare against the results of [13], we use the same quality
parameter values. Minimum (detour based) local-optimality is set to α = 0.25,
maximum sharing to γ = 0.8, and maximum stretch to ε = 0.25.

We test the performance of our algorithm in terms of both efficiency and
quality according to Definition 1.

5.2 Engineered Baseline Algorithm

We compare our engineered baseline algorithm, X-CHASEV, against X-BDV
and X-CHV. The results of Table 1 report on the query performance and path
quality of the engineered baseline algorithm. As described in Section 3 the engi-
neered baseline algorithm is faster by a factor of two than the other algorithms.
We reimplemented both X-BDV and X-CHV algorithms. A direct comparison
against the numbers of Abraham et al. [13] is unfair, since the heuristics of the
underlying CH are different. X-BDV has the highest success rate and, of course,
the highest query times by several orders of magnitude. This makes X-BDV un-
suitable for any practical setting in which speed is a factor. The success rates
of all three algorithms drop with the number of alternatives. The average path
quality measures are very similar for all algorithms and identical for X-CHV and
X-CHASEV by design. This is expected behavior.

5.3 Preprocessed Candidate Sets

Table 2 reports on the performance of the preprocessing required for the single-
and multi-level algorithms. Preprocessing is run in parallel for up to three al-
ternatives with relaxation either off (x = 0) or set to x = 3. Row multi-level

Table 1. Query performance of algorithms for alternatives p = 1, 2, 3

performance path quality
time success UBS[%] sharing[%] locality[%]

p algorithm [ms] rate[%] avg max avg max avg min

1 X-BDV 11 451.5 94.5 9.4 52.5 42.7 79.9 77.0 26.2
X-CHV 1.2 75.5 9.2 48.1 44.7 80.0 74.8 26.3
X-CHASEV 0.5 75.5 9.2 48.1 44.7 80.0 74.8 26.3

2 X-BDV 12225.8 80.6 11.5 43.0 60.0 80.0 78.6 27.0
X-CHV 1.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0
X-CHASEV 0.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0

3 X-BDV 13330.9 59.5 13.2 52.9 68.1 80.0 76.2 25.9
X-CHV 2.3 14.2 10.0 33.4 65.0 79.9 84.3 30.9
X-CHASEV 1.0 14.2 10.0 33.4 65.0 79.9 84.3 30.9
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Table 2. Preprocessing results for normal (x = 0) and 3-relaxed (x = 3) algorithms

candidate sets
p=1 p=2 p=3

time size empty avg. empty avg. empty avg.
x preprocessing [h] [kiB] [%] size [%] size [%] size

0 single-level 1.1 859 2.6 4.4 12.7 5.1 30.5 4.4
multi-level 1.7 3 669 6.2 6.1 17.4 5.9 36.9 4.2

3 single-level 2.3 1 742 1.4 6.7 3.0 10.2 10.8 11.5
multi-level 4.3 8 909 1.1 12.2 4.9 15.0 11.6 14.2

denotes the results of adding a finer partitioning compared to just the single-
level approach. Numbers are listed for alternative p = 1, 2, 3 and only pertain to
candidate sets of non-neighboring, non-equal pairs of partitions.

We note that preprocessing can be done on server hardware in a few hours
for all of the experiments. The relative speedup on 48 cores is only about 28 due
to the memory-bandwidth bottleneck, which is about 60% of the perfect linear
speedup. The space overhead is more or less neglectable. Even for relaxation with
x = 3 and multi-level partitioning the amount of additionally data is less than
9 MiB. Multi-level preprocessing shows a higher average number of candidates
per partition pair as only partition pairs close to each other are processed. Fewer
candidate sets remain empty using the relaxed algorithm.

X-CHASEVwithout candidate sets is compared to single- andmulti-level candi-
date sets. Table 3 gives basic performance numbers. Algorithms with preprocessed
candidate sets have query times well below 0.5 ms on average even for the third
alternative, which is more than practical. We see that the multi-level optimization
even improves the success rate, while the path quality remains at high level. Fall-
back rates to the baseline are generally low, 95% of the queries are covered by pre-
processed via node candidates. We tested on omitting the fallback entirely for this
setting and observe that results do not degrade noticeably. A third partitioning
level would not give any further improvements to the performance of the query.

Table 3. Query performance with preprocessed candidate sets

performance path quality candidate sets
time success UBS[%] sharing[%] locality[%] v.cand. fallb. avg.

p algorithm [ms] rate [%] avg max avg max avg min [%] [%] tested

1 X-CHASEV 0.5 75.5 9.2 48.1 44.7 80.0 74.8 26.3 - - -
single-level 0.1 80.7 9.8 48.1 48.5 80.0 75.8 26.3 92.4 4.9 1.9
multi-level 0.1 81.2 9.9 48.1 48.6 80.0 75.8 26.3 96.5 0.6 2.0

2 X-CHASEV 0.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0 - - -
single-level 0.3 50.8 10.7 40.4 57.1 80.0 80.3 26.3 91.6 2.6 2.8
multi-level 0.3 51.2 10.7 40.4 57.0 80.0 80.4 26.3 93.8 0.3 2.9

3 X-CHASEV 1.0 14.2 10.0 33.4 65.0 79.9 84.3 30.9 - - -
single-level 0.4 24.8 10.7 41.0 59.9 79.9 82.5 27.9 88.7 1.1 3.8
multi-level 0.4 25.0 10.7 41.0 59.8 79.9 82.6 27.9 89.7 0.1 3.8
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Table 4. Query performance of multiple algorithms with 3-relaxation

p=1 p=2 p=3
time success avg. time success avg. time success avg.

algorithm [ms] rate[%] tested [ms] rate[%] tested [ms] rate[%] tested

X-BDV 11 451.5 94.5 - 12 225.8 80.6 - 13 330.9 59.5 -

X-CHV 3.4 88.5 - 4.3 64.7 - 5.3 38.0 -
X-CHASEV 2.7 88.5 - 3.2 64.7 - 3.8 38.0 -

single-level 0.2 90.0 2.22 0.4 70.2 3.8 0.6 44.0 5.6
multi-level 0.1 90.0 2.3 0.3 70.4 4.0 0.5 44.2 5.8

Results of the 3-relaxed variant of the query are given in Table 4. Numbers
for X-BDV and X-CHV are shown for reference. We omit path quality since it
is virtually unaffected and remains high.

The success rate further improves especially for the second and third alterna-
tive. Using precomputed candidate sets is faster by an order of magnitude than
X-CHASEV and naturally much faster than the original method. We identify
two reasons. A) an expensive (relaxed) Exploration Dijkstra has to be done only
in the rare case when a fallback is needed. B) the average number of nodes to
be tested as via node candidates is small and always less than half a dozen. Our
single- and multi-level approaches deliver consistently higher success rates than
the (engineered) baseline with the more speedup the more relaxation is applied.

Figure 1 shows success rates with varying Dijkstra ranks to test performance
for local and long range queries alike. Success rates (left) are consistently equal
or better for our algorithms than for the baseline. With relaxation (right) the
numbers get even closer to the rates of X-BDV. The difference is less than
10%. Success rates are compared to X-BDV as the quality “gold standard” even
though its computation is prohibitively high.
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Fig. 1. Success rates according to Dijkstra rank: normal (x = 0, left) and 3-relaxed
algorithm (x = 3, right). The Dijkstra rank of node v with respect to a node s is i if
v is the i-th node removed from the priority queue of a unidirectional Dijkstra started
at s. Each data point represents 1 000 queries.
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6 Conclusion and Future Work

We introduced via node candidate sets. We showed their compact size, their
efficient precomputation on large-scale networks and report one order of magni-
tude faster queries. We also show that success rates are higher than for previous
algorithms with neglectable memory overhead. As a result of our extensive exper-
imental evaluation, we conclude that Assumption 1 holds. There are a number
of interesting directions for future work. We would like to explore the amount of
preprocessing that is necessary to match the success rates of X-BDV. Also, we
would like to use our method to generate alternative graphs similar to [18]. A
challenging question is to extend alternative path computation to multiple via
nodes. Combining the idea of transit nodes with via node candidates may be
a great opportunity of future research. Instead of characterizing an alternative
by a single via node, via entrance nodes for source and target partitions may
provide access to an overlay network with fast lookups of alternatives.
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Abstract. We study the computational problem of identifying optimal
sets of kidney exchanges in the UK. We show how to expand an integer
programming-based formulation [1,19] in order to model the criteria that
constitute the UK definition of optimality. The software arising from this
work has been used by the National Health Service Blood and Transplant
to find optimal sets of kidney exchanges for their National Living Donor
Kidney Sharing Schemes since July 2008. We report on the characteristics
of the solutions that have been obtained in matching runs of the scheme
since this time. We then present empirical results arising from the real
datasets that stem from these matching runs, with the aim of establishing
the extent to which the particular optimality criteria that are present
in the UK influence the structure of the solutions that are ultimately
computed. A key observation is that allowing 4-way exchanges would be
likely to lead to a significant number of additional transplants.

1 Introduction

It is understood that transplantation is the most effective treatment that is
currently known for kidney failure. In the UK alone, as of 31 March 2011 there
were 6871 patients waiting on the transplant list for a donor kidney, with the
median waiting time being 1153 days for an adult and 307 days for a child.
Kidneys used for transplantation can come from both deceased and living donors.
In the UK, around 38% of all kidney transplants are from living donors [14].

It is often the case that a patient requiring a kidney transplant has a willing
donor, but due to blood- and/or tissue-type incompatibilities, the transplant
cannot take place. However, in the UK, the Human Tissue Act 2004 and the
Human Tissue (Scotland) Act 2006 (HTA) introduced, among other things, the
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legal framework required to allow the transplantation of organs between donors
and patients with no genetic or emotional connection.

With the introduction of the HTA, a patient with an incompatible donor can
now “swap” their donor with that of another patient in a similar position, via
“kidney exchanges” that involve two or more incompatible patient–donor pairs.
For example, a pairwise (kidney) exchange involves two incompatible patient–
donor pairs (p1, d1) and (p2, d2), where d1 is compatible with p2, and d2 is com-
patible with p1: d1 donates a kidney to p2 in exchange for d2 donating a kidney
to p1. 3-way exchanges extend this concept to three pairs in a cyclic manner.

In a number of countries, centralised programmes (also known as kidney ex-
change matching schemes) have been introduced to help optimise the search for
kidney exchanges. These include the USA [13,2,15], the Netherlands [9,10] and
South Korea [17,16].

Following the introduction of the HTA, in early 2007 the UK established what
has now become the National Living Donor Kidney Sharing Schemes (NLDKSS),
administered by the National Health Service Blood and Transplant (NHSBT)
(formerly UK Transplant) [8]. The purpose of the NLDKSS is two-fold: firstly to
identify those pairs that are compatible with one another and then subsequently
to optimise the selected set of kidney exchanges subject to certain criteria. It
is the responsibility of NHSBT (and in particular its Kidney Advisory Group)
to supply the scoring system that is used to measure the benefit of potential
transplants, and the optimality criteria for the selection of kidney exchanges.

In general, it is seen as logistically challenging to carry out the transplants
involved in a kidney exchange when the number of pairs involved increases. This
is because all operations have to be performed simultaneously due to the risk of
a donor reneging on his/her commitment to donate a kidney after their loved one
has received a kidney. Mainly for this reason, at the present time the NLDKSS
does not allow exchanges involving more than three pairs.

A kidney exchange matching scheme may also include altruistic donors, who
do not have an associated patient and who are willing to donate a kidney to a
stranger. An altruistic donor d0 can either donate directly to a patient (without
a donor) on the Deceased Donor Waiting List (DDWL), or else trigger a domino
paired chain (DPC) [3] involving one or more incompatible patient–donor pairs:
here d0 donates to a patient p1 in exchange for p1’s donor donating to the patient
p2 in the next pair in the chain, with the final donor donating to the DDWL. A
DPC is short (resp. long) if it consists of one (resp. two) incompatible patient–
donor pairs). At present the NLDKSS allows short but not long chains.

Kidney exchange has received considerable attention in the computer science,
economics and medical literature in recent years [1,3,4,5,6,7,18,19,20,21]. It has
been observed that when only pairwise exchanges are permitted, an optimal
solution can usually (depending of course on the definition of optimality) be
found in polynomial time using maximum weight matching in a general graph
(see e.g., [5] for more details). However when pairwise and 3-way exchanges are
allowed, the problem of finding a set of exchanges that maximises the number
of transplants is NP-hard [1] and indeed APX-hard [5].
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Abraham et al. [1], and independently Roth et al. [19], described two integer
programming (IP)-based formulations of the problem of finding a maximum
weight set of kidney exchanges, when both pairwise and 3-way exchanges are
permitted (here, the weights can measure the benefit of potential transplants).
Abraham et al. [1] showed that, due to scaling issues with the first of these
models (the so-called edge formulation), the second model (the so-called cycle
formulation) is the preferred way to model the problem using an IP.

In this paper we present an application-driven case study, showing how the
cycle formulation can be extended in order to handle kidney exchange in the UK.
In particular, we show how to model a complex set of criteria (given in Section 2)
that form the definition of an optimal set of kidney exchanges. Although most
of the criteria have not been explicitly mentioned elsewhere in the literature,
they are natural rather than idiosyncratic. We have implemented the technique
and it has been used by NHSBT to find optimal sets of kidney exchanges for the
NLDKSS since July 2008. Our contribution in this paper is as follows:

1. We describe the IP constraints that are required in order to enforce the
NLDKSS optimality definition (Section 3). The description could help to
inform decision makers in other countries who are in the early stages of
setting up a kidney exchange matching scheme.

2. We report on our practical experience over a 3-year period of using the
technique to find optimal solutions for matching runs of the NLDKSS, which
are carried out approximately every quarter (Section 4).

3. We present empirical results arising from a web application that is capable of
automating the experimental comparison of solutions according to a range of
different optimality criteria (Section 5). Again, these results arise from real
datasets and indicate the extent to which the particular optimality criteria
that are present in the UK influence the structure of the solutions that are
ultimately computed. A key observation is that allowing 4-way exchanges
would be likely to lead to a significant number of additional transplants.

2 The NLDKSS Optimality Criteria

The problem of finding an optimal set of kidney exchanges essentially corre-
sponds to computing optimal cycle packings in weighted directed graphs. Sup-
pose we have n incompatible patient–donor pairs {(pi, di) : 1 ≤ i ≤ n} and k
altruistic donors {dn+i : 1 ≤ i ≤ k}. We associate with each altruistic donor dn+i

a dummy patient pn+i who is compatible with every donor dj where 1 ≤ j ≤ n.
We model the kidney exchange problem by forming a weighted directed graph

D = (V,A), where V = {v1, . . . , vn+k} and vi corresponds to (pi, di) (1 ≤ i ≤
n+k). Moreover (vi, vj) ∈ A if and only if di is compatible with pj . In this way, 2-
cycles and 3-cycles in D not involving an altruistic donor correspond to pairwise
and 3-way exchanges respectively, whilst 2-cycles and 3-cycles in D involving an
altruistic donor dn+i correspond to short and long chains respectively, where in
practice the final donor in the chain donates a kidney to the DDWL. (Note that
our model handles both short and long chains.)



274 D.F. Manlove and G. O’Malley

(p2,d2)(p3,d3)

(p1,d1)

Fig. 1. Example of a 3-cycle containing a back-arc and an embedded 2-cycle

An arc (vi, vj) has a real-valued weight w(vi, vj) > 0 that arises from a scor-
ing system employed by NHSBT to measure the potential benefit of a transplant
from di to pj . Factors involved in computing this weight include waiting time for
pj (based on the number of previous matching runs that pj has been unsuccess-
fully involved in), pj ’s sensitisation (based on calculated HLA antibody reaction
frequency), HLA mismatch levels between di and pj (which roughly speaking
corresponds to levels of tissue-type incompatibility) and points relating to the
difference in ages between di and dj (see [8] for more details). The weight of a
cycle c in D is the sum of the weights of the individual arcs in c.

A set of exchanges in D is a permutation π of V such that (i) for each vi ∈ V ,
if π(vi) �= vi then (vi, π(vi)) ∈ A, and (ii) no cycle in π has length > 3. If
π(vi) �= vi then vi is said to be matched, otherwise vi is unmatched. Suppose
some vi ∈ V is unmatched. If 1 ≤ i ≤ n, then neither di nor pi will participate in
a kidney exchange. However if i > n, di will donate directly to the DDWL. For
this reason, we define the size of π (corresponding to the number of transplants
yielded by this set of exchanges) to be the number of vertices matched by π plus
the number of unmatched vertices corresponding to altruistic donors.

Given a 3-cycle c inD with arcs (vi, vj), (vj , vk), (vk, vi), we say that c contains
a back-arc if without loss of generality (vj , vi) ∈ A. In such a case we say that
c contains an embedded 2-cycle involving arcs (vi, vj), (vj , vi). A 3-cycle with a
back-arc and an embedded 2-cycle is illustrated in Figure 1. An effective 2-cycle
is either a 2-cycle or a 3-cycle with a back-arc.

A back-arc can be seen as a form of fault-tolerance in a 3-cycle. To understand
why, consider the 3-cycle in Figure 1. If either p3 or d3 drops out (for example
due to illness), then the pairwise exchange involving (p1, d1) and (p2, d2) might
still be able to proceed. On the other hand, if either of the pairs (p1, d1) or
(p2, d2) were to withdraw, then this pairwise exchange would have failed anyway.
Thus the risk involved with a 3-way exchange, due to the greater likelihood (as
compared to a pairwise exchange) of the cycle breaking down before transplants
can be scheduled, is mitigated with the inclusion of a back-arc.

We now present the definition of an optimal set of exchanges for the NLDKSS,
as determined by the Kidney Advisory Group of NHSBT.

Definition 1. A set of exchanges π is optimal if:
1. the number of effective 2-cycles in π is maximised;
2. subject to (1), π has maximum size;
3. subject to (1)-(2), the number of 3-cycles in π is minimised;
4. subject to (1)-(3), the number of back-arcs in the 3-cycles in π is maximised;
5. subject to (1)-(4), the overall weight of the cycles in π is maximised.
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We give some intuition for Definition 1 as follows. The first priority is to ensure
that there are at least as many 2-cycles and embedded 2-cycles as there would
be in an optimal solution containing only 2-cycles. This is to ensure that the
introduction of 3-way exchanges is not detrimental to the maximum number
of pairwise exchanges that could possibly take place. Subject to this we max-
imise the total number of transplants (this is the number of unmatched altruistic
donors, plus twice the number of pairwise exchanges and short chains, plus 3
times the number of 3-way exchanges and long chains). Subject to this we min-
imise the number of 3-way exchanges. Despite Criterion 1, this is still required:
for example an optimal solution could either comprise three 3-way exchanges,
each with a back-arc, or three pairwise exchanges and one 3-way exchange (both
solutions have size 9 and contain three effective 2-cycles) – see Appendix A in
[11] for an illustration. Clearly there is less risk of cycles breaking down with the
second solution. Next the number of back-arcs in 3-way exchanges is maximised
(note that a 3-way exchange could contain more than one back-arc). Finally we
maximise the sum of the cycle weights.

3 Finding an Optimal Solution

In this section we describe an algorithm that uses a sequence of IP formulations
to find an optimal set of kidney exchanges with respect to Definition 1. After
each run of the IP solver, we use the optimal value calculated at that iteration to
enforce a constraint that must be satisfied in subsequent iterations. This ensures
that once Criteria 1..r in Definition 1 have been satisfied by an intermediate
solution, they continue to hold when we additionally enforce Criterion r + 1
(1 ≤ r ≤ 4). At the outset, an IP formulation, called the basic IP model, is
created. This extends the cycle formulation of [1,19] in order to enable unmatched
altruistic donors to be quantified. Recall that n is the number of incompatible
patient–donor pairs and k is the number of altruistic donors. The basic IP model
is then constructed as follows:

1. list all the possible cycles of length 2 and 3 in the directed graph D as
C1, C2, . . . , Cm, where, without loss of generality, the 2-cycles are C1, . . . . ,
Cn2 , the 3-cycles are Cn2+1, . . . , Cn2+n3 , and the 3-cycles with back-arcs are
Cn2+1, . . . , Cn2+nb

3
(so m = n2 + n3);

2. let x be an (m + k) × 1 vector of binary variables x1, x2, . . . , xm+k, where
for 1 ≤ i ≤ m, xi = 1 if and only if Ci belongs to an optimal solution, and
for 1 ≤ i ≤ k, xm+i = 1 if and only if altruistic donor dn+i is unmatched;

3. let A be an (n + 2k) × (m + k) {−1, 0, 1}-valued matrix, whose entries are
all 0 apart from the following:
(a) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, Ai,j = 1 if and only if Cj contains di;
(b) for each i (1 ≤ i ≤ k), in rows n+ 2i− 1 and n+ 2i:

i. for 1 ≤ j ≤ m, An+2i−1,j = 1 if and only if cycle Cj contains dn+i,
and for 1 ≤ j ≤ k, An+2i−1,m+j = 1 if and only if i = j;

ii. for 1 ≤ j ≤ m, An+2i,j = −1 if and only if cycle Cj contains dn+i,
and for 1 ≤ j ≤ k, An+2i,m+j = −1 if and only if i = j;



276 D.F. Manlove and G. O’Malley

4. let b be an (n+ 2k)× 1 vector where:
(a) for each i (1 ≤ i ≤ n), bi = 1;
(b) for each i (1 ≤ i ≤ k) bn+2i−1 = 1 and bn+2i = −1;

5. let c be a 1 × (m + k) vector of values corresponding to the coefficients of
current objective criterion, e.g., cj could be the length of Cj ;

6. solve max cx such that Ax ≤ b.

We now provide some intuition for the model above. Part 3(a) (in combination
with 4(a)) ensures that each patient–donor pair is involved in at most one cycle
in any solution. Similarly 3(b)(i) (with 4(b)) ensures that each altruistic donor
is involved in at most one cycle. 3(b)(i) (with 4(b)) also ensures that if a cycle
involving an altruistic donor dn+i is chosen then vn+i must be matched. Similarly,
3(b)(ii) (with 4(b)) ensures that if no cycle involving an altruistic donor dn+i is
chosen then vn+i must be unmatched.

We now describe the sequence of steps that is used in order to compute an
optimal set of exchanges in D according to Definition 1. Item r in the following
list corresponds to the step in the algorithm that enforces Criterion r (together
with Criteria 1..r− 1) in the optimality definition. At each iteration we indicate
the additional constraints that are added to the basic IP model and also the
objective function used at each iteration (where appropriate).

1. The number of effective 2-cycles is maximised.
Construct an undirected graph G = (V,E) corresponding to the underlying
digraph D, where the vertices in G and D are identical, and an edge in G
corresponds to a 2-cycle in D (i.e., {vi, vj} ∈ E if and only if (vi, vj) ∈ A
and (vj , vi) ∈ A). Compute N2, the size of a maximum cardinality matching
in G using Edmonds’ algorithm [12]. Then add the following constraint:

x1 + x2 + . . .+ xn2+nb
3
≥ N2. (1)

2. Subject to (1), the size is maximised.
Consider the basic IP model, together with (1), and with the objective
max cx, where ci = 2 (1 ≤ i ≤ n2), ci = 3 (n2 + 1 ≤ i ≤ n2 + n3) and
ci = 1 (n2 + n3 + 1 ≤ i ≤ n2 + n3 + k). That is, for r ∈ {2, 3}, each variable
representing an r-cycle has coefficient r, and each variable representing an
altruistic donor has coefficient 1, where the objective is to maximise. After
calculating the optimal value N , add the following constraint:

2x1+. . .+2xn2+3xn2+1+. . .+3xn2+n3+xn2+n3+1+. . .+xn2+n3+k ≥ N. (2)

3. Subject to (1)-(2), the number of 3-cycles is minimised.
Consider the basic IP model, together with (1)-(2), and with the objective
min cx, where ci = 0 (1 ≤ i ≤ n2), ci = 1 (n2 + 1 ≤ i ≤ n2 + n3) and ci = 0
(n2+n3+1 ≤ i ≤ n2+n3+ k). That is, each variable representing a 3-cycle
has coefficient 1, whilst all others have coefficient 0. After calculating the
optimal value N3, add the following constraint:

xn2+1 + . . .+ xn2+n3 ≤ N3. (3)
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4. Subject to (1)-(3), the number of back-arcs in the 3-cycles is maximised.
Let ki be the number of back-arcs in cycle Ci (n2 + 1 ≤ i ≤ n2 + n3).
Consider the basic IP, together with (1)-(3), and with the objective max cx,
where ci = 0 (1 ≤ i ≤ n2), ci = ki (n2 + 1 ≤ i ≤ n2 + n3) and ci = 0
(n2 + n3 + 1 ≤ i ≤ n2 + n3 + k). That is, each variable corresponding to
a 2-cycle or to an altruistic donor has coefficient 0, and each variable xi

representing a 3-cycle has coefficient ki. Suppose that an optimal solution
has value NB. Add the following constraint:

kn2+1xn2+1 + . . .+ kn2+nb
3
xn2+nb

3
≥ NB. (4)

5. Subject to (1)-(4), the overall weight is maximised.
For each i (1 ≤ i ≤ n2 + n3), let wi be the weight of cycle Ci. Consider the
basic IP model, together with (1)-(4), and with the objective max cx, where
ci = wi (1 ≤ i ≤ n2 + n3) and ci = 0 (n2 + n3 + 1 ≤ i ≤ n2 + n3 + k). That
is, each variable corresponding to a cycle has coefficient equal to the weight
of that cycle, whilst each variable corresponding to an altruistic donor has
coefficient 0. A solution to this final IP is an optimal set of exchanges relative
to Definition 1.

We remark that an alternative to solving a series of IP formulations would be to
solve a single IP relative to a weight function that captures the various criteria
in the optimality definition (together with their priority levels) by assigning
weights of successively decreasing orders of magnitude starting from Criterion
1 downwards. This is however impractical: due to the size of the datasets in
practice, it would be computationally infeasible to work with such weights.

Another approach would be to assign smaller weights that somehow prioritise
cycles with “good” characteristics, such as 3-cycles with back-arcs. However it
is not clear how such weights should be defined, especially as theoretically there
is no upper bound on the score of an arc as provided by NHSBT. Any attempt
along these lines could never result in a concrete definition of exactly what is
being optimised in an optimal solution, as we have obtained here.

4 NLDKSS in Practice

Prior to our involvement, NHSBT used an in-house algorithm that identified only
pairwise exchanges. With the need to find both pairwise and 3-way exchanges,
a new software application was developed based on the algorithm outlined in
Section 3. At its heart the application uses the COIN-Cbc IP solver to solve
each of the IP problems involved. COIN-Cbc was chosen due to its open licence
agreement and the need to deploy the application commercially. Speed improve-
ments using IBM ILOG CPLEX and Gurobi Optimizer were minimal with the
current size of the datasets.

The application can be extended via a plugin architecture that allows con-
straints to be created, added or removed in a straightforward manner. This
added flexibility allows our software to be easily adapted for use in other kidney
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Table 1. Results arising from matching runs from July 2008 to October 2011

Matching run 2008 2009 2010 2011
Jul Oct Jan Apr Jul Oct Jan Apr Jun Oct Jan Apr Jun Oct

#vertices 85 123 126 128 141 147 150 158 141 178 186 163 176 180
Properties #arcs 236 734 617 771 1248 901 832 876 533 939 1263 750 992 919
of D #2-cycles 2 14 17 20 55 4 17 23 4 20 19 9 34 18

#3-cycles 0 116 72 71 166 4 33 77 1 39 145 27 101 73

Identified #2-cycles 1 6 5 5 4 0 3 2 3 3 3 0 5 7
solution #3-cycles 0 3 1 2 7 2 1 6 0 2 10 4 4 5

size 2 21 13 16 29 6 9 22 6 12 36 12 22 29

Actual #pairwise 1 4 5 2 3 0 2 4 0 3 2 0 2 6
transplants #3-way 0 0 0 0 2 2 0 3 0 1 5 2 4 3

total 2 8 10 4 12 6 4 17 0 9 19 6 16 21

exchange matching schemes, whether that involves simply changing the order of
constraints or adding completely new ones.

The application can either be accessed programatically through a web API
or alternatively manually via a web interface1. The former version (along with
several prototypes) has been used by NHSBT to find an optimal solution in each
of the matching runs (occurring at roughly quarterly intervals), since July 2008.

Table 1 summarises the input to, and output from, each matching run between
July 2008 and October 2011. In each case an optimal solution2 was returned
within a second (on a Linux Centos 5.5 machine with a Pentium 4 3GHz single
core processor with 2Gb RAM) despite a gradually increasing pool of donors.
In total 235 potential transplants were identified (47 pairwise and 47 3-way
exchanges), which have resulted in 134 actual transplants3 (34 pairwise and 22
3-way exchanges). Together with the 4 pairwise exchanges that were identified
as part of the NLDKSS prior to our involvement, there have been a total of 142
actual transplants to date. Note that altruistic donors were not introduced into
the NLDKSS until January 2012, and hence in Table 1, the number of vertices
corresponds to the number of patient–donor pairs in each matching run.

The table shows that the matching run in January 2011 had the largest num-
ber of vertices and arcs in the underlying digraph, and the largest number of
potential transplants of any matching run were identified (36). Even so, the
digraph underlying the July 2009 dataset had a larger number of 2-cycles and
3-cycles. It is expected that the digraphs will become much denser once altruistic
donors are introduced, and larger as awareness of the scheme grows over time.

1 http://kidney.optimalmatching.com
2 Note that the optimality criteria were slightly different from July 2008 to July 2009.
See Appendix B in [11] for a more detailed discussion of this issue.

3 In general not all transplants identified by the software will lead to operations in
practice: one reason is that more detailed cross-matching between each donor and
patient identified for transplant takes place after the matching run, which may lead
to new incompatibilities being identified; also a donor or patient may become ill
between the date of the matching run and the date of the operation.

http://kidney.optimalmatching.com
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5 Data Analysis Software and Empirical Results

Due to the complex nature of the optimality criteria used by the NLDKSS, it
became obvious that there was a need to analyse the effect of each constraint.
Furthermore, as the NLDKSS evolves it is likely that the maximum length of a
DPC and/or the maximum length of cycle allowed in a solution will increase.
In turn, these developments might lead to additional constraints being required.
The effect of such changes is often difficult to quantify, as carrying out experi-
mental comparisons can be time-consuming due to the significant development
work required, and the execution of simulations.

To this end a web application4 (referred to as the toolkit) was developed
that allows NHSBT staff to examine the impact of adding/removing constraints,
allowing longer altruistic chains, and increasing the maximum cycle length. The
output from the application can determine information such as the size and
weight of an optimal set of exchanges, the number of each type of exchange
(i.e. pairwise, 3-way, etc.), and the number of DPCs. This information can be
downloaded in the form of a spreadsheet.

In this section we report on an empirical analysis, using the toolkit, of the
14 matching runs that have taken place between July 2008 and October 2011.
The aim is to determine the effect (in terms of the overall size or weight) of (i)
prioritising pairwise exchanges, (ii) minimising the number of 3-way exchanges
and maximising the number of back-arcs, and (iii) allowing 4-way exchanges in
the optimality definition. Again, a Linux Centos 5.5 machine with a Pentium 4
3GHz single core processor with 2Gb RAM was used, and every optimal solution
was computed in under two seconds.

First we examine the effect on the size of an optimal set of exchanges π in
three cases concerning whether to prioritise 2-cycles or effective 2-cycles:

(A) when Definition 1 is unchanged;
(B) when Criterion 1 is omitted from Definition 1;
(C) when Criterion 1 is replaced by “maximise the number of 2-cycles”.

Figure 2 shows the size of an optimal solution in each case, over the 14 matching
runs. It reveals that on average if we relax the need to first maximise the number
of 2-cycles or effective 2-cycles (case B from the above list) we would obtain only
a single extra transplant per matching run. In contrast, if we require the number
of pairwise exchanges alone to be maximised as first priority, then we would see
a reduction in the number of transplants by, on average, 3 per matching run.
In many cases obtaining a single extra transplant could make it worth changing
the criteria, however in this case, given the desirable properties of embedded
2-cycles, the extra risk involved for the single extra transplant is unlikely to be
justified.

We now analyse the effect on an optimal solution when we first apply Criteria
1 and 2 from Definition 1, then decide whether or not to apply Criteria 3 and
4 (i.e., minimise the number of 3-cycles and maximise the number of back-arcs

4 http://toolkit.optimalmatching.com

http://toolkit.optimalmatching.com
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respectively), and subsequently maximise the total weight. This gives four cases
that correspond to the combinations of including / excluding Criteria 3 and 4.

It turns out that in each of these four cases, the solution output in each of the
14 matching runs is exactly the same, i.e., posting constraints to minimise the
number of 3-ways exchanges or maximise the number of back-arcs has no effect.
It appears that enforcing Criterion 1 (maximise the number of effective 2-cycles)
results in a very small set of candidates for a solution that is optimal overall. If
we no longer insist that Criterion 1 is enforced, then variations on the weight of
an optimal solution are observed in the four cases. The additional time required
to find a solution that satisfies Criteria 3 and 4 (as opposed to satisfying only
Criteria 1, 2 and 5) is minimal (a solution is found in both cases in under two
seconds for each dataset). Hence Criteria 3 and 4 should be retained as they
may well have an impact for larger / denser datasets that are likely to feature
in matching runs in the short / medium term.

We next determine the effect of increasing the maximum cycle size. Initially
the NLDKSS allowed only pairwise exchanges in an optimal solution, but 3-way
exchanges were permitted from April 2008 (subject to the condition that the
number of effective 2-cycles is first maximised). Clearly extending the solution
to allow for 4-way exchanges ought to increase further the number of transplants,
but this must be set against the greater risk of such exchanges not proceeding.

In Figure 3 we show the total number of transplants at each of the 14 matching
runs if an optimal set of exchanges π is defined as follows:

(A) maximise the size of π, allowing only 2-cycles;
(B) first maximise the number of effective 2-cycles, then subject to that max-

imise the total number of transplants, allowing only 2-cycles and 3-cycles;
(C) first maximise the number of effective 2-cycles, then subject to this max-

imise the number of effective 3-cycles (defined to be the number of 3-cycles
plus the number of 4-cycles with embedded 3-cycles), then subject to this
maximise the size of π, allowing 2-cycles, 3-cycles and 4-cycles.

As expected, allowing 4-way exchanges leads to an increased number of trans-
plants: on average, an additional 4 transplants per matching run (compared to
allowing only pairwise and 3-way exchanges). This number is smaller than the
increase observed when allowing both pairwise and 3-way exchanges (compared
to allowing only pairwise exchanges) where on average there are 7 additional
transplants per matching run.

Finally we observe the effects of including altruistic donors in the dataset.
Altruistic donors are set to be included in the NLDKSS from January 2012. In
order to understand their impact in terms of increased numbers of transplants,
the data from the January 2009 matching run was augmented by NHSBT staff
with six altruistic donors known at that time. Of particular interest was to
determine the benefits of including only short chains or both short and long
chains (subject to the optimality criteria in Definition 1).

The test results indicated that, in the absence of altruistic donors, 15 trans-
plants were obtained. When only short chains are permitted, 27 transplants were
identified. Finally, if we allow both short and long chains, 31 transplants were
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Fig. 2. Effect of prioritising pairwise ex-
changes

Fig. 3. Effect of increasing the maximum
cycle size

identified. This shows that the difference between including only short chains, as
opposed to both short and long chains, is of lesser importance than the benefit
obtained by allowing short chains, as compared to not includng altruistic donors.
However, given that any long chain must have at least one embedded 2-cycle,
the risk of including long chains should be seen as minimal.

6 Future Work

Our case study has been driven by a particular practical application, and as
such the empirical evaluation in Section 5 was based on real datasets (spanning
a period of 42 months). However further experiments are required on artificially
generated data which will facilitate both a larger number of trials and bigger
datasets. This will provide important information on how far the software, in its
current form, is likely to scale. Furthermore, using these datasets may provide
greater insight into the effect a particular constraint has on the system.

Future work must also ensure that the algorithms described in this paper can
scale as participation in the NLDKSS increases. It is anticipated that column
generation techniques, along the lines of those described by Abraham et al. [1],
will be required to ensure that we can meet the needs of the NLDKSS in the
future, given the likelihood of larger datasets and the potential introduction of
long chains and 4-way exchanges.
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18. Roth, A.E., Sönmez, T., Utku Ünver, M.: Pairwise kidney exchange. J. Economic

Theory 125, 151–188 (2005)
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Abstract. Community detection algorithms are widely used to study
the structural properties of real-world networks. In this paper, we ex-
perimentally evaluate the qualitative performance of several community
detection algorithms using large-scale email networks. The email net-
works were generated from real email traffic and contain both legitimate
email (ham) and unsolicited email (spam). We compare the quality of
the algorithms with respect to a number of structural quality functions
and a logical quality measure which assesses the ability of the algorithms
to separate ham and spam emails by clustering them into distinct com-
munities. Our study reveals that the algorithms that perform well with
respect to structural quality, don’t achieve high logical quality. We also
show that the algorithms with similar structural quality also have similar
logical quality regardless of their approach to clustering. Finally, we re-
veal that the algorithm that performs link community detection is more
suitable for clustering email networks than the node-based approaches,
and it creates more distinct communities of ham and spam edges.

Keywords: Community detection, Email networks, Quality functions.

1 Introduction

Unfolding the communities in real networks is widely used to determine the struc-
tural properties of these networks. Community detection or clustering algorithms
aim at finding groups of related nodes that are densely interconnected and have
fewer connections with the rest of the network. These groups of nodes are called
communities or clusters and they exist in a variety of different networks [9]. The
problem of how to find communities in networks has been extensively studied
and a substantial amount of work has been done on developing clustering algo-
rithms (an overview can be found in [8,21]). However, there is no consensus on
which algorithm is more suitable for which type of network. Therefore, a number
of studies have experimentally compared the qualitative performance of differ-
ent community detection algorithms on synthetic and benchmark graphs with
built-in community structure [12,5]. However, these graphs are different from
real-world networks as the assumptions they make are not completely realistic
[8]. Delling et al. [6] have shown that the implicit dependencies between com-
munity detection algorithms, synthetic graph generators, and quality functions
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used for assessing the qualitative performance of the algorithms make mean-
ingful benchmarking very difficult. Therefore, empirical studies of the existing
algorithms on real-world networks are crucial in order to evaluate different al-
gorithms and to find the most suitable methods for different types of networks.

Moreover, community detection in real-networks has many different applica-
tions. Community detection algorithms can be used to find users with similar
interests in a social network in order to provide recommendations to them, to
group the peers that are geographically close in a peer-to-peer system to improve
the performance of the system, or to detect the communities generated by ma-
licious users in order to mitigate Sybil attacks [24]. In this paper, we study the
community structure of a number of large email networks containing both legiti-
mate ham and unsolicited spam emails. In an email network, the nodes represent
email addresses and the edges represent email communications. In addition to
a qualitative comparison of the algorithms, our goal is to find the best commu-
nity detection algorithm that can separate spam and ham emails by clustering
them into distinct communities. Such an algorithm can potentially be deployed
in spam detection mechanisms that aim at mitigating the spam problem by
looking at email traffic rather than email contents.

In order to achieve our goals, we have selected a number of broadly used
community detection algorithms that are known to perform well on synthetic,
benchmark, and a limited number of real graphs. In this study we evaluate
and compare the qualitative performance of these algorithms when they are
applied to large-scale email networks. Since the true community structure of our
networks is unknown, it is important to use a quality measure to compare the
algorithms. It is known that there is no single perfect quality metric for the
comparison of the communities detected by different algorithms [2], therefore we
use a number of structural quality functions such as modularity [17], coverage,
and conductance [11], as well as a logical quality measure which is determined
based on how homogeneous the edges inside the communities are. We use this
measure to investigate and compare the ability of the selected algorithms in
separating ham and spam emails into distinct communities.

The contributions of the paper are as follows. We show that there is a trade-off
between creating high structural and high logical quality communities. There-
fore, hierarchical and multiresolution algorithms which allow us to select the
granularity of the clustering are more suitable to create the communities with
the desired quality. We reveal that different algorithms that create communi-
ties with similar size distribution achieve similar structural and logical qualities,
even though they use different approaches for clustering. Finally, we show that
an algorithm that clusters networks based on the similarity of edges is superior
to the algorithms that perform node-based clustering.

The rest of this paper is organized as follows. Section 2 presents the qual-
ity functions which are used for evaluating and comparing the algorithms. The
community detection algorithms being compared are presented in Section 3.
Section 4 reviews related previous research. In Section 5, the dataset used for
empirical comparison is presented and the experimental results are discussed.
Finally Section 6 concludes the work.
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2 Quality of Community Detection Algorithms

In this section, we present the notations and the quality functions that are used
in the rest of the paper.

Preliminaries. Let G = (V,E) represent a connected, undirected, and un-
weighted graph where V is the set of n nodes and E is the set of m edges of
G. A clustering C = {C1, . . . , Ck} is a partitioning of V into k clusters Ci, by a
node-based community detection algorithm. A cluster containing only a single
node is called a singleton, and a cluster with only one internal edge is called
trivial. If nodes can be shared between clusters, the clustering is called overlap-
ping. The number of intra- and inter-cluster edges of a cluster C are denoted by
m(C) and m(C), respectively and m(C) :=

∑
C∈C m(C) is the total number of

intra-cluster edges in C.

Quality Functions. A quality function is used either as an objective function
to be optimized in order to find the communities of a network, or as a measure
for assessing the quality of a clustering [6]. When the true community structure
of a network is not known, quality functions are necessary for evaluating the
qualitative performance of clustering algorithms. Since no single best quality
function exists [2], we investigate three widely used structural quality functions:
coverage, modularity [17], and conductance [11].

Coverage. Coverage of a clustering, cov(C) := m(C)
m , is the most simple quality

function, however, it is biased towards coarse-grained clusterings.

Modularity. Modularity is defined as Q(C) := m(C)
m − 1

4m2

∑
C∈C

(∑
v∈C deg(v)

)2
and is based on the idea that a good cluster should have higher internal and
lower external density of edges compared to a null model with similar structural
properties but without a community structure [17].

Conductance. Conductance of a cut (C, V \C) in a graph is defined as φ(C) :=
m(C)

min(
∑

v∈C deg(v),
∑

v∈V \C deg(v)) , and tends to favor clusterings with fewer number

of clusters [2]. Inter-cluster conductance, δ(C) := 1−maxi φ(Ci), i ∈ {1, . . . , k},
is usually used as a worst-case measure to assess the quality of a clustering. The
average conductance ( 1

|C|
∑

C∈C φ(C)) is also a useful metric, since if an algo-

rithm creates singletons, the inter-cluster conductance value will be dominated
by the zero value for these clusters, while the average would not [4].

The above widely used structural quality functions cannot be directly cal-
culated for assessing the quality of link community detection methods because
of the community overlaps. For instance, modularity of a link community can
be calculated by applying a modified modularity function on a projected and
weighted transformation of the network [7]. In this paper we investigate the
structural quality of link communities by using two of the quality measures in-
troduced in [1]. Community coverage measures the fraction of the nodes that
belong to at least one non-trivial community, and Overlap coverage measures
the average number of times a node is clustered inside non-trivial communi-
ties. Higher values for overlap coverage mean that the algorithm has extracted
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more information from the network. The algorithms that don’t find overlapping
communities yield the same value for both overlap and community coverage.

In addition to the structural quality, we determine the logical quality of a clus-
tering based on the type of the edges inside its communities. A clustering which
yields only homogeneous communities, in which all of the edges are of the same
type, has a perfect logical quality. For instance, a clustering with communities
that contain only spam emails or only ham emails has higher logical quality
compared to a clustering which yields communities containing a mixture of both
ham and spam. In addition, the amount of spam and ham emails that can be
separated into distinct homogeneous communities by an algorithm is used to
determine its logical quality.

3 Studied Community Detection Algorithms

In this section we briefly describe the community detection algorithms we have
selected and compared using our email networks.

Fast Modularity Optimization (Blondel) by Blondel et al. [3]. This algorithm, also
known as Louvain method, is a greedy approach to modularity maximization.
The algorithm starts with assigning each node to a singleton and progresses
by moving nodes to neighboring clusters in order to improve modularity. This
method has complexity O(m) and unfolds a hierarchical community structure
with increasing coarseness and meaningful intermediate communities.

Maps of Random Walks (Infomap) by Rosvall and Bergstrom [19]. This algorithm
is a flow-based and information theoretic clustering approach with complexity
O(m). It uses a random walk as a proxy for information flow on a network and
minimizes a map equation, which measures the description length of a random
walker, over all the network clusters to reveal its community structure. Infomap
aims at finding a clustering which generates the most compressed description
length of the random walks on the network.

Multilevel Compression of Random Walks (InfoH) by Rosvall and Bergstrom
[20]. This method generalizes the Infomap method to reveal multiple levels of
a network. InfoH minimizes a hierarchical map equation to find the shortest
multilevel description length of a random walker.

Potts Model Community Detection (RN) by Ronhovde and Nussinov [18]. This
algorithm is based on minimization of the Hamiltonian of a local objective func-
tion, the absolute Potts model. The multiresolution variant of the algorithm
deploys information theory-based measures to find the best communities on all
scales. The complexity of this method is superlinear O(m1.3) for the community
detection algorithm and O(m1.3 logn) for the multiresolution algorithm.

Markov Clustering (MCL) by Dongen [23]. MCL is based on the idea that
a random walk entering a dense cluster likely remains for a long time inside
the cluster before switching between sparsely connected communities. The ran-
dom walks are calculated deterministically and simultaneously using a matrix of
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transition probabilities. The MCL algorithm has a complexity of O(nk2), where
k refers to the average or maximum number of allowed neighbors for the nodes.

Link Community Detection (LC) by Ahn et al. [1]. All of the above algorithms
aim at clustering nodes into densely connected communities. However, Ahn et
al. [1] have defined communities as a group of topologically similar edges and
have introduced a link community detection algorithm for revealing them. The
algorithm unfolds the hierarchical structure and overlapping communities of a
network. Although the clustering is meaningful at all scales, an objective func-
tion, the partition density, is used to select the optimum level of hierarchy.

All of the above algorithms are known to perform well on large networks.
Infomap, InfoH, and MCL are suitable for clustering networks where edges rep-
resent flows. Emails can be seen as flows of data between people, so flow-based
approaches are good candidates for clustering email networks. Email communi-
cations can also be seen as pairwise relationships between people, so the other
topological methods could also be suitable. LC which is based on calculating the
similarity of the edges in a network can also be suitable since we are interested
in grouping the same type of edges into the same clusters.

In this study, we have used the implementations of the algorithms, which
were publicly available, in order to conduct the experiments. Blondel creates a
hierarchy of clusterings where the best modularity is achieved at its last level.
We have also looked at the clustering yield at Blondel’s first level of hierarchy,
which has smaller meaningful communities, and refer to it as Blondel L1. We
have also used the basic RN algorithm instead of its multiresolution variant to
be able to choose the desired clustering granularity. The granularity of the clus-
terings should be considered when comparing the quality of the algorithms since
structural quality functions are usually in favor of coarse-grained clusterings [2].

4 Related Work

Experimental comparisons of different community detection algorithms have
been conducted on both real and benchmark graphs. Lancichinetti and For-
tunato [12] compared different algorithms including Blondel, Infomap, RN, and
MCL, on GN and LFR benchmark graphs. They showed that Infomap, Blondel,
and RN perform well, but MCL performs worse especially for large communities.
They also showed that the performance of Blondel decreases for large graphs,
whereas Infomap remains stable. Brandes et al. [4] conducted an experimental
evaluation of three clustering methods including MCL using random clustered
graphs and showed that MCL performs well with respect to some quality func-
tions but produces more clusters than contained in the network.

Community detection algorithms have also been evaluated and compared
using different real networks. Tibély et al. [22] have analyzed the community
structure of a large mobile phone call graph using Blondel L1, Infomap, and
an overlapping method. Leskovec et al. [14] studied a number of real networks,
including the Enron email network and an email network of a large organization,
to empirically compare two different clustering methods. The latter dataset was
also used by Lancichinetti et al. [13], in addition to other real networks, to study
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the characteristics of communities in different types of complex networks. They
used Infomap together with another algorithm to show that although different
methods output different clusterings, the statistical properties of their commu-
nities are quite similar for similar classes of networks. Studies of the community
structure of email networks have also been conducted by Guimerà et al. [10]
using emails in a university.

In contrast to previous studies, the dataset used in this study is based on email
traffic captured on a high speed Internet backbone link, and is not limited to a
single organization. To the best of our knowledge, this is the first study of the
community structure of large-scale email networks containing spam. This dataset
enables us to evaluate the ability of the community detection algorithms in
separating spam from legitimate email by clustering them into distinct clusters.

5 Experimental Evaluation

In this section, the email dataset and the the experimental results are presented.

5.1 Dataset

The dataset used for creating the email networks was generated by collecting
SMTP packets on a 10 Gbps link of the core-backbone of SUNET1 during a
period of 14 consecutive days in March 2010. During the collection period more
than 797 million SMTP packets were collected, which were sent and received
by 614,601 distinct domains. Around 3.4 million emails were extracted from
the collected packets after removing unusable and rejected email transmissions.
These emails were then classified to be either spam or ham using a well-trained
filtering tool 2. Following that, email contents were discarded and email addresses
were anonymized in order to preserve privacy in a way that no information about
the senders, receivers, and content of the emails are retrievable.

In addition to a complete email network, we generated daily and weekly email
networks. An email network consists of email addresses as nodes, and the email
communications between them as edges. More details on the measurement loca-
tion, data collection and pre-processing, and the structural and temporal prop-
erties of the email networks can be found in [15] and [16], respectively.

5.2 Comparison of the Algorithms

In this section, the experimental results regarding the qualitative performance
of the clustering algorithms with respect to their structural and logical quality
is presented. A summary of the results can be found at the end of the section.

Table 1 shows the total number of nodes and edges, and the number of spam
edges in each studied email network, as well as the number of communities

1 The Swedish University Network (http://www.sunet.se/) serves as a backbone for
university traffic, student dormitories, research institutes, etc.

2 The SpamAssassin (http://spamassassin.apache.org) was in use for a long time
in our University mail server and it incurs high detection and low false positive rates.

http://www.sunet.se/
http://spamassassin.apache.org
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Table 1. The properties of the GCC of the generated email networks (larger networks
become more connected) and the number of communities created by each algorithm.

Network # Nodes # Edges # Spam Blondel InfoH Infomap Blondel L1 MCL RN LC

Day 1 167,329 236,673 173,640 253 546 10,505 39,477 38,775 41,215 88,028
Day 2 153,734 194,797 97,260 194 397 8,025 28,077 27,011 28,499 61,027
Day 3 123,878 168,896 108,996 218 412 8,151 29,150 28,031 30,022 64,310
Day 4 128,200 172,836 113,299 218 398 8,484 29,123 28,043 30,167 63,165
Day 5 101,643 135,195 89,119 195 311 6,664 22,212 21,593 23,935 46,928
Day 6 72,068 99,361 75,713 236 183 4,714 13,904 13,716 17,697 30,236
Day 7 73,131 103,293 85,879 199 271 4,842 17,305 16,808 18,631 37,581

Week 1 901,699 1,441,731 961,809 558 1,470 41,916 149,131 144,054 187,960 451,275

Day 8 115,232 155,919 90,299 234 379 7,745 27,661 26,514 28,409 57,931
Day 9 112,713 152,569 88,273 188 383 7,521 26,395 25,549 26,942 56,443
Day 10 140,843 195,999 121,158 255 441 8,664 31,033 30,231 39,020 67,741
Day 11 125,029 179,410 116,056 192 398 8,171 28,501 27,897 30,484 65,285
Day 12 106,816 149,407 100,595 211 380 7,319 25,314 24,328 28,040 54,317
Day 13 73,325 98,713 71,954 339 296 5,275 16,736 16,074 22,476 32,403
Day 14 68,315 100,089 76,408 179 210 4,741 14,567 14,254 17,822 31,463

Week 2 810,543 1,348,373 859,324 436 380 40,553 143,569 139,366 156,822 430,232

All 1,599,732 2,790,322 1,858,686 1,028 1,740 63,471 230,013 220,346 294,581 817,074

created by each clustering algorithm. The algorithms were applied to the giant
connected component (GCC) of each email network, which is a subset of the
nodes in the network where a path exists between any pair of them. The networks
are also considered as unweighted and undirected.

Blondel creates a coarse-grained clustering and in average achieves 46% mod-
ularity gain over Blondel L1. InfoH also creates coarse clusters and in average
gains more than 15% in the compression of the description length of the random
walks on the networks over the non-hierarchical version (Infomap). MCL allows
us to select the granularity of the clustering by choosing an inflation parameter.
It is also possible to choose the resolution parameter for RN to achieve a clus-
tering with the desired granularity. We have selected the inflation parameter in
MCL and the resolution parameter in RN so that for most of the networks they
yield clusterings with a close granularity to that of Blondel L1. This allows us to
further investigate and compare the effect of the granularity of the clusterings
on their quality. LC is different in nature from the other algorithms as it is based
on link community detection rather than a node-based approach. LC yields the
finest-grained clustering for all of the networks at its best level of hierarchy.

Figure 1 summarizes the distribution of the size of the communities created
by the different algorithms for the “week 2” email network. The distributions for
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Fig. 1. A comparison of community size distribution using “Week 2” email network.
Blondel L1, MCL, and RN follow very similar distributions.
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Fig. 2. Comparison of structural quality of the algorithms on daily, weekly, and com-
plete email networks. Blondel and InfoH yield the best structural quality.

other daily and weekly networks are quite similar. It can be seen that Blondel and
InfoH, which create very coarse-grained clusters, have very different community
size distributions compared to each other and the rest of the algorithms. It can
also be seen in Figure 1(b) that, surprisingly, Blondel L1, MCL, and RN follow
similar distributions. The main difference is that MCL and RN create a number
of singletons, but Blondel L1 does not. The community size distribution of LC
is also close to the other three methods, but it creates more clusters.

Structural Quality. Figure 2 shows a comparison of the structural quality
of the different clusterings. Each bar corresponds to a daily network (day 1 to
day 14), except the last three bars from the left for each of the algorithms,
which correspond to week 1, week 2, and complete email networks, respectively.
It can be seen that Blondel, which aims at maximizing modularity, have the
highest structural quality with respect to all of the quality functions. Although
InfoH uses a fundamentally different approach it achieves equally good structural
quality, however its quality degrades for larger networks. Blondel L1, MCL, and
RN, which have closer granularities, also show similar quality with respect to
coverage, modularity, and average conductance. However, based on the inter-
cluster conductance, MCL and RN do not perform well since they might create
a number of singletons which results in an inter-cluster conductance of zero.

Our experimental results reveal that the structural quality of clusterings are
roughly consistent for different daily networks. The clusterings with similar gran-
ularity and community size distribution also show similar structural quality,
therefore, it is important to take the granularity of the clusterings into account
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when comparing the algorithms. LC creates a clustering with the finest granular-
ity, however the studied structural quality functions cannot be directly used for
assessing the quality of this algorithm due to its different nature. In this paper,
we look at community coverage and overlap coverage which were introduced for
assessing the quality of link-based clustering by Ahn et al.[1].

LC, Blondel, and InfoH yield full community coverage for all of the email
networks. Infomap, Blondel Ll, MCL, and RN achieve community coverage of
around 0.99, 0.84, 0.83, and 0.8, respectively. However, this function on its own is
not enough for assessing the quality of a clustering method, it is also important to
consider the overlap coverage of the clusterings. None of the algorithms, except
MCL and LC, find overlapping clusters so their overlap coverage is equal to
their community coverage. MCL is not an overlapping clustering method, but
for some specific graphs it might find overlaps [23]. In our email networks, MCL
yields very few overlapping communities so its overlap coverage is just slightly
higher than its community coverage. LC yields overlap coverage of 2.6, 3.1, and
3.4 in average for the daily, weekly, and complete email networks, meaning that
it unfolds more overlaps in larger networks.

Logical Quality. Our experiments show that all algorithms create a number
of spam communities that only contain spam, ham communities that only con-
tain ham, and mix communities with a mixture of both ham and spam edges.
Figure 3 shows a comparison between the percentage of spam, ham, and mix
communities created by the different algorithms. The last three bars from the
left for each of the algorithms correspond to week 1, week 2, and the complete
email networks, respectively. It can be seen that InfoH and Blondel perform
worse, since these algorithms tend to merge smaller homogeneous communities
into mix communities to achieve higher structural quality. The best results for
all networks are achieved by LC.

Moreover, it is important to assess the amount of spam and ham emails that
can be separated by community detection algorithms, in order to investigate the
possibility of deploying clustering approaches to perform spam detection. Fig-
ure 4 shows the ratio of total spam and ham edges that are inside homogeneous
spam and ham communities. In all of the networks, communities created by LC
contain the highest number of spam and ham edges. Blondel and InfoH have
the worst logical quality and Blondel L1, MCL, and RN have almost similar
quality. For all algorithms, except LC, some of the spam and ham emails end
up as inter-cluster edges and can therefore not be separated by the clustering
algorithms. It can also be seen that the percentage of spam (ham) edges which
are clustered inside spam (ham) communities decreases for larger networks.

Our experiments suggest that the logical quality tends to be higher for fine-
grained clusterings. The granularity of the best clustering created by LC is finer
than the other clusterings in our experiments. LC cuts its hierarchy of clustering
at an optimum threshold which results in maximal partition density. By choosing
a threshold below the optimum value, we can have a clustering with coarser
granularity. Since the algorithm reveals meaningful communities at all scales,
we changed the threshold so that the granularity of the clustering became more
similar to that of Blondel L1, MCL, and RN. Our experiments with the new
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Fig. 3. Comparison of percentage of spam, ham, and mix communities created by
different algorithms. LC creates the highest number of homogeneous communities.
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Fig. 4. Ratio of spam (ham) in homogeneous spam (ham) communities. LC clusters a
higher percentage of total spam (ham) edges inside the spam (ham) communities.

clusterings show that, the percentage of spam (ham) edges inside the spam (ham)
communities was reduced. For instance, for the first daily network the percentage
of spam (ham) edges decreased from 87% to 66% (from 76% to 56%). Although
the logical quality degrades by changing the coarseness of the clustering, LC still
shows higher logical quality than all of the other algorithms.

Summary of the Experimental Results

– Blondel and InfoH create coarse-grained clusters and achieve the best quality
with respect to all of the structural quality functions. However, they have
the worst logical quality with respect to both number of homogeneous com-
munities and amount of spam and ham emails that are clustered inside these
homogeneous communities.

– Infomap, which is the non-hierarchical version of InfoH, achieves quite good
structural quality and decent logical quality. However, Blondel L1, which
is based on the first level of Blondel’s hierarchy of clusterings, yields much
better logical quality than Infomap, but worse structural quality with respect
to all of the structural quality functions.

– MCL and RN allow us to change the resolution of the clustering by modify-
ing different parameters. When the granularity of their clusterings is set to
be close to that of Blondel L1, they show almost similar community size dis-
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tribution as well as similar structural and logical quality. However, Blondel
L1 is superior to the other two methods due to its lower complexity.

– LC, which performs link community detection, has the best logical quality
and separates the highest amount of spam and ham emails into distinct
homogeneous communities.

6 Conclusions

In this study, we have performed an empirical comparison and evaluation of a
number of high quality community detection algorithms using large-scale email
networks. The studied email networks contain both legitimate and spam emails
and are created from real email traffic. Our study reveals that yielding high
structural quality by community detection algorithms is not enough to unfold
the true logical communities of the email networks. Therefore, it is necessary to
deploy more realistic measures for clustering real-world networks.

More specifically, our study suggests that the community detection algorithms
that achieve maximum modularity, coverage, inter-cluster conductance, or min-
imum average conductance do not reveal the communities that coincide with the
true clustering of the email networks.For instance the algorithmswhichyieldworse,
but acceptable, averageconductance values actually could separate a large number
of spam (ham) emails into distinct spam (ham) communities. Therefore, the value
of this function can be indicative of good logical quality. However, this observation
is based on our email networks, and might not be conclusive as it was shown that
different classes of networks show different community structures [12,2].

Overall, our experiments reveal that link community detection is the most
suitable approach for separating spam and ham emails into distinct communities
compared to the other node-based algorithms.
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Abstract. Rank and select queries on bitmaps are fundamental for the
construction of a variety of compact data structures. Both can, in theory,
be answered in constant time by spending o(n) extra bits on top of the
original bitmap, of length n, or of a compressed version of it. However,
while the solution for rank is indeed simple and practical, a similar result
for select has been elusive, and practical compact data structure imple-
mentations avoid its use whenever possible. In addition, the overhead
of the o(n) extra bits is in many cases very significant. In this paper we
bridge the gap between theory and practice by presenting two structures,
one using the bitmap in plain form and another using a compressed form,
that are simple to implement and combine much lower space overheads
than previous work with excellent time performance for rank and select
queries. In particular, our structure for plain bitmaps is far smaller and
faster for select than any previous structure, while competitive for rank
with the best previous structures of similar size.

1 Introduction

Compact data structures represent data within little space and can efficiently
operate on it, in contrast to plain structures that do not compress, and with
pure compression that needs full decompression in order to operate the data.
They have become particularly interesting due to the increasing performance
gap between successive levels in the memory hierarchy, in particular between
main memory and disk. Since Jacobson’s work [9], compact data structures for
trees [9,11], graphs [9,11], strings [8,6], and texts [8,4], etc. have been proposed.

Jacobson [9] noticed that bit vectors were fundamental to support various
compact data structures. In particular, he used the following two operations to
simulate general trees, and since then these two operations have proved funda-
mental to implement many other compact structures:

rankb(B, i) = number of occurrences of bit b in B[0, i];

selectb(B, i) = position of the i-th occurrence of bit b in B.
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Much effort has been spent on implementing rank and select efficiently. In
theory, they have long been solved in O(1) time using just o(n) bits on top of B
[2,10], an even on top of a compressed representation of B using nH0(B) + o(n)
bits [15,14]. H0(B) = n0 lg(n/n0)+n1 lg(n/n1), where B has n0 0s and n1 1s, is
the called the zero-order entropy of B, and is smaller when B has a few 0s or 1s.
By default we assume b = 1 (many applications need just rank1 and select1).

The practical solutions for rank over plain bitmaps are indeed simple, and
there exist implementations solving it within a few tenths of microsecond (μsec)
using 5% of extra space on top of B [7]. For select, instead, no practical solution
with guaranteed constant time exists. The original solution [2] leads to more
than 60% extra space in practice [7]. Only very recently there have been better
proposals running in a few tenths of μsec and requiring around 25% [12] and
even 7% [16] of extra space, on a bitmap with half 0s and 1s. Even worse, those
structures only solve select, and thus need to be coupled with another solving
rank, and we need two copies of them to solve both select0 and select1 (this
does not happen with rank because rank0(i) = i−rank1(i)). On the other hand,
implementations of compressed solutions [15,3] pose in practice an overhead over
27% (of the original bitmap size) on top of the entropy of the bitmap.

This situation has noticeably slowed down the growth of the area of compact
data structures in practice: While many solutions building on select, or relying
on bitmap compression, are very attractive in theory, in practice one must try to
avoid the use of select, and have in mind the significant space overhead associated
to the o(n) terms. We largely remedy both problems in this paper.

First, we introduce a new implementation of compressed bitmaps [15] that
retains the time performance of the current implementation [3] while drastically
reducing its space overhead by 50%–60%. The resulting structure has a space
overhead of around 10% (of the original bitmap size) on top of the entropy
(compare to the 27% of the current implementation [3]) and solves rank queries
within about 0.4 μsec and select within 1 μsec. This is achieved by replacing
the use of universal tables by on-the-fly generation of their cells. These universal
tables are of size exponential on a block size t, and the space overhead of the
data structure is O(n lg t/t). Removing the tables let us use t values that are 4
times larger, thereby reducing the space by a factor of ≈ lg 4/4 = 50%.

Second, we present a new combined data structure that solves rank and select
on plain bitmaps, instead of solving each operation separately. It integrates two
samplings, one for rank that is regular on the bitmap positions, and one for select
that is regular on the positions of the 1s. Each operation uses its own sampling
but takes advantage of the other if possible. We show that this structure is able
to solve both rank and select queries within around 0.2 μsec, using just 3% of
extra space on top of the plain bitmap. This is an unprecedented result, very far
from what current representations achieve, that finally puts rank and select on
the map of the operations that can be used in practice without reservations.
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2 Related Work

Jacobson [9] showed that attaching a dictionary of size o(n) to a bit vector
B[0, n− 1] is sufficient to support rank operation in constant time on the RAM
model. Later, Munro [10] and Clark [2] obtained constant-time complexity for
select on the RAM model, using also o(n) extra space. Golynski [5] showed how
to reduce the o(n) term to O(n lg lgn/ lgn), and that this space is optimal if B
is stored explicitly. Others have studied representations that store a compressed
form of B, useful when it has few or many 1s [13,15,12,14]. Some [15,14] use
nH0(B) + o(n) bits and solve both operations in constant time, where o(n) can
be as small as O(n/ lgc n) for any constant c [14]. Others [12] solve select in
constant time and rank in time O(lg(n/n1)), using nH0(B) +O(n1) bits.

The original solution for rank was simple, easy to program, and required three
table accesses. It has followed a simple path through practice. For example, a
competitive implementation [7] solves rank in a few tenths of microseconds using
5% of extra space on top of B, and in a few hundredths using 37.5% of extra
space. The first figure is sufficiently fast in most practical scenarios.

The solution for select, instead, has followed a more complicated path. The
original constant-time solution [2,10] is much more complicated than that of
rank, and in practice it is much slower and requires more space. An implemen-
tation [7] showed that it requires more than 60% of extra space. Indeed, a simple
solution that works better [7] for all reasonable bitmap sizes is to solve select via
binary searches on the rank directories. This, however, makes select significantly
slower than rank, and less attractive in practice.

Okanohara and Sadakane [12] proposed a simplification of the original so-
lution that, although does not guarantee constant time, it works very well in
practice (a few tenths of microseconds). It requires, however, around 25% of
extra space and does not solve rank, so their complete rank/select solution for
their structure called dense array requires more than 50% extra space. Later on,
Vigna [16] achieved similar times within much less space overhead (7% to 12%
in our experiments), with a structure called simple-select. Again, this structure
does not solve rank. He proposed other two structures, rank9sel and rank9b, that
solve both operations within the same time and a space overhead of around 24%.

As for compressed bitmaps, Claude and Navarro [3] implemented the solution
by Raman et al. [15], achieving around 27% space overhead (this percentage
refers to the original bitmap size) on top of the entropy of the bitmap, and
solved rank within tenths of microseconds and select within a microsecond. This
space overhead is very significant in practice. The structure is useful for densities
(n1/n) of up to 20% (at which point the entropy is more than 80% anyway, so
not much can be done). Okanohara and Sadakane [12] presented a structure
called sparse array, that uses n1 lg(n/n1) +O(n1) bits, and is very fast to solve
rank and select (as fast as rank on plain bitmaps). However, its space overhead
is very large for all but very sparse bitmaps (densities below 5%).
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3 A Structure for Compressed Bitmaps

We describe our rank/select data structure for compressed bitmaps. It is based
on the proposal by Raman et. al. [15] and its practical implementation [3]. We
first describe this implementation and then our improvement.

The structure partitions the input bitmap B into blocks of length t = � lgn
2 �.

These are assigned to classes: a block with k 1s belongs to class k. Class k
contains

(
t
k

)
elements, so �lg

(
t
k

)
� bits are used to refer to an element of it. A

block is identified with a pair (k, r), where k is its class (0 ≤ k ≤ t, using
�lg(t + 1)� bits), and r is the index of the block within the class (using �lg

(
t
k

)
�

bits). A global universal table for each class k translates in O(1) time any index
r into the corresponding t bits. The sizes of all those tables add up to 2t t bits.

The sequence of �n/t� class identifiers k is stored in one array, K, and that of
the indexes r is stored in another, R. Note the indexes are of different width, so
it is not immediate how to locate the r value of the j-th block. The blocks are
grouped in superblocks of length s = �t lgn�. Each superblock stores the rank
up to its beginning, and a pointer to R where its indexes start.

To solve rank(i), we first compute the superblock i belongs to, which stores
the rank value up to its beginning. Then we scan the classes from the start of the
superblock, accumulating the k values into our rank answer. At the same time
we maintain the pointer to array R: the superblock knows the pointer value
corresponding to its beginning, and then we must add �lg

(
t
k

)
� for each class k

we process. These values are obviously preprocessed, and note we do not access
R. This scanning continues up to the block i belongs to, whose index is extracted
from R and its bits are recovered from the universal table. We then scan the
remaining bits of the block and finish. Solving select(j) is analogous, except that
we first binary search for the proper superblock and then scan the blocks.

The size of R is upper bounded by nH0(B), and the main space overhead
comes from K, which uses n�lg(t+ 1)/t� bits (the superblocks add O(n/t) bits,
which is negligible). So we wish to have a larger t to reduce the main space
overhead. The size 2t t of the universal table, plus its low access locality, however,
prevents using a large t. In the practical implementation [3] they used t = 15,
so K is read by nibbles and the universal table requires only 64 KB of memory.
The price is that the space overhead is �lg(t+ 1)/t� = 4/15 ≈ 27%.

Our Proposal. We propose to remove the universal table and compute its entry
on the fly. Although we require O(t) time to rebuild a block from its index r,
we note this is done only once per query, so the impact should not be much. As
a reward, we will be able to use larger block sizes, such as t = 31 (with a space
overhead of 5/31 ≈ 16%) and t = 63 (with a space overhead of 6/63 ≈ 9.5%).1

The Computation of r. At compression time, the index r of a block of length
t and k 1s is assigned as follows. We start with r = 0. We consider the first bit.

1 We do not use blocks larger than 63 because we would need special multiword
arithmetics in our computer, and all of our multiword approaches have been orders
of magnitude slower than the native arithmetic.
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We number first the blocks with this first bit in zero (there are
(
t−1
k

)
of them)

and then those with the first bit in one (there are
(
t−1
k−1

)
). Therefore, if the first

bit is zero we just continue with the next bit (now the block is of length t − 1
and still has k 1s). Otherwise, we increase r by

(
t−1
k

)
and continue with the next

bit (now the block is of length t− 1 and has k − 1 1s).

Reconstructing a Block on the Fly. We must reverse the encoding process.
By checking the range of values r belongs to, we extract the bits consecutively.
If r ≥

(
t−1
k

)
, then the first bit of the block was a 1. In this case we decrement t

and k, and decrease r by
(
t−1
k

)
. Otherwise, the first bit of the block was a 0. In

this case we only decrement t. Now we continue extracting the next bit from a
block of length t− 1.

Note we can stop if r becomes zero, as this means that all the remaining bits
are zero. Also, to solve rank or select queries, it may also be possible to stop this
process before obtaining all the bits of the block. Finally, we (obviously) have
all the binomial coefficients precomputed.

4 A Structure for Plain Bitmaps: Combined Sampling

We introduce a structure that answers rank/select queries on top of plain bitmaps.
This structure combines two sampling schemes: the first one is a regular sam-
pling on positions, that is, we divide the input bitmap B into blocks of fixed size
Sr. Then, we store a sampling of rank answers from the beginning of B up to
the end of each block, sampleRank[j] = rank1(B, j ·Sr). In the second sampling
scheme, we create blocks containing exactly Ss 1s. Note these blocks are of vari-
able length. We ensure that each block starts with a 1, to minimize unnecessary
scanning. Thus sampleSelect[j] = select1(B, j · Ss + 1). Both samplings are
similar to the top-level samplings proposed in classical solutions [2,10] to rank
and select queries. The novelty is in how we combine them to solve each query.

Answering rank queries. To solve rank1(i), we start from block number
j = �Sr/i�, up to which the number of 1s in B is sampleRank[j], and scan the
bitmap from position i′ = j ·Sr+1 to position i. This scanning is done bytewise,
using a universal preocomputed table that counts the number of 1s in all the
256 bytes2. The sampling step Sr is always a multiple of 8, so that the scanning
starts at a byte boundary. On the other extreme, we may need to individually
scan the bits of the last byte.

Up to this point the technique is standard, and in fact corresponds to the
“small space” variant of González et al. [7]. The novelty is that we will also
make use of table sampleSelect to speed up the scanning. Imagine that r =
sampleRank[j], and we have to complete the scanning from bit positions i′ to i.
It is possible that some sampleSelect values point between i′ and i, and we can
easily find them: compute r′ = �r/Ss�. Then sampleSelect[r′] points somewhere

2 In some architectures, a native popcount operation may be faster. We have not ex-
ploited this feature as it is not standard.
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before i′. We scan sampleSelect[r′+k] for k = 1, 2 . . ., until sampleSelect[r′+
k + 1] > i. At this point we call i′′ = sampleSelect[r′ + k] ≤ i, and know that
rank1(i

′′) = (r′ + k) · Ss + 1. Thus we only need to scan from i′′ + 1 to i. This
can give a speedup unless k = 0.

A final tweak is that starting from positions i′′ + 1 that are not byte-aligned
is cumbersome and affects the performance. For this reason we slightly change
the meaning of table sampleSelect[j]. Instead of pointing to the precise bit
position of the (j · Ss + 1)-th 1, it points to its byte position, so the scanning
is always resumed from a byte-aligned position. A problem is that now do not
know which is the rank value up to the beginning of the byte (previously we
knew that there were exactly j ·Ss+1 bits set up to position sampleSelect[j]).
Fortunately, pointing to bytes instead of bits frees three bits from the integers
where the positions are stored. The three least significant bits are therefore used
to store correction information, namely the number of 1s from the beginning of
the byte pointed by sampleSelect[j] to just before the exact position of the
(j · Ss + 1)-th 1. Therefore, the number of 1s up to the beginning of the byte
pointed by sampleSelect[j] is j · Ss minus the correction information.

Answering select Queries. To solve select1(B, i), we first compute j = �Ss/i�,
and use sampleSelect[j] to find a byte-aligned position p up to where we know
the value r = rank1(B, p−1). Then we scan byte-wise, incrementing r using the
universal popcount table, until we find a byte where we exceed the rank value
we are looking for, r > i. Then we rescan the last byte bit-wise until finding the
exact position of the i-th 1 in B.

Once again, the byte-wise scanning can be sped up because we may go through
several sampled values in sampleRank. We compute q = �p/Sr�, and scan the
successive values sampleRank[q+k], k = 1, 2 . . . until sampleRank[q+k+1] > i.
Then we may start the byte-wise scanning from position p′ = (q + k) · Sr, with
rank value r = sampleRank[q + k], thus speeding up the process.

5 Experimental Results

We compare our implementations with various existing solutions. All the experi-
ments were carried out on a machine with two IntelCore2 Duo processors, with 3
Ghz and 6 MB cache each, and 8 GB of RAM. The operating system is Ubuntu
8.04.4. We used gcc compiler with full optimization. We experiment on bitmaps
of length n = 228 and average all our values over one million repetitions.

5.1 Compressed Representations

To benchmark this structure we compared the performance of rank and select
operations with the original Raman et. al. (RRR [15]) implementation [3], and
with the sparse array of Okanohara and Sadakane (Sada sparse [12]). For our
structure we considered block sizes of b = 15, 31, and 63, and for each block size
we considered superblocks of 32, 64, and 128 blocks. (Recall that RRR can use
only blocks of size 15.) We generated random bitmaps with densities 5%, 10%,
and 20% (their zero-order entropies are 0.286, 0.469, and 0.772, respectively).
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Fig. 1. Results for compressed bitmaps. Time is measured in μsec per query and space
in total bits per bit of the bitmap. The x coordinates start at the zero-order entropy
of the bitmap, so that the redundancy can be appreciated.

Fig. 1 gives the results. Increasing the block size from 15 to 63 greatly reduces
the space overhead of the representation, to around 40%–50% of its value.

Our implementation is 30-50% faster than RRR for select queries, even with
the same block size b = 15. Our times for select are almost insensitive to the
block size. This shows that the time to decode a block is negligible compared
to that of the binary search. On the other hand, smaller superblocks make the
operation faster, and a superblock of 32 or 64 blocks is recommended.

RRR is slightly faster than our implementation for rank, and also using longer
blocks has a more noticeable (but still slight) effect on the performance. Overall,
the price is very low compared to the large space gain.

Finally, Sada sparse is significantly faster than all other implementations,
especially for select. However, its space is competitive only for very low densities.

Overall, using block size b = 63 and superblocks of 32 or 64 blocks, our
data structure computes rank in about half a microsecond, select in about one



302 G. Navarro and E. Providel

microsecond, and requires a space overhead of less than 10% on top of the en-
tropy. Overall this is a very convenient alternative for sparse bitmaps (of density
up to 20%, as thereafter the entropy becomes too close to 1.0). For very sparse
bitmaps (density well below 5%), Sada sparse technique becomes the best choice.
Note that our result would immediately improve on 128-bit processors.

5.2 Combined Sampling

We compare our combined sampling structure with several others. We con-
sider, from González et al. [7], the variant that use blocks and superblocks and
pose 37.5% extra space (RG 37%) and the one that uses one level of blocks
(RG 1Level). From Vigna [16] we consider variants rank9sel, rank9b, and
simple-select. From Clark [2] we consider its implementation for select [7]
that uses 60% of extra space (Clark). Finally, from Okanohara and Sadakane
[12] we use their dense bitmaps (Sada dense).

For our structure, we try different Sr and Ss combinations in the range
[28, 213]. We show a curve for each Sr, with varying values of Ss. In addition,
to test whether our combined approach is better than each structure separately,
we add a modified Combined Sampling structure in which each kind of query
only uses its respective supporting structure. In that case we use only the Sr

(for rank) or Ss (for select) sampling, without using the other sampling.
We made two experiments: in the first, we evaluate rank and select queries

separately, to study their performance. In the second, we emulate a real appli-
cation that requires both kinds of queries, and test combined sequences with
different proportions of rank/select queries.

Independent Queries We execute either rank or select queries over bitmaps
of densities 10%, 50%, and 90%. The results are shown in Fig. 2.3

Note that our techniques provide a continuum of space/time tradeoffs by
varying Sr and Ss. The most interesting zone is the one where the extra space is
below 5% and the times are below 0.2 μsec (for rank) and 0.3 μsec (for select). In
particular, using Sr = 1024 and Ss = 8192 achieves extra space around 3% and
times in the range 0.1–0.2 μsec for rank and 0.2–0.25 for select. This space/time
tradeoff had never been achieved before.

By regarding the performance without using Ss, it can be seen that the use
of the sampling of select does not make a big difference for rank (so we could use
the basic technique that does not use sampleSelect). However, the performance
without using Sr shows that select is sped up considerably by using the sampling
of rank. As a result, our combined structure is more than two separate structures
put together, as most of the structures in the literature.

3 We are aware that most of our curves are visually indistinguishable. However, our
aim is to show that, using some parameterization (for which we will give explicit
recommendations), our curves improve upon previous work, which is clearly distin-
guishable. Thus our curves can be regarded as a single, thick curve. We have not
replaced them by a single one formed by the dominant points because we want to
emphasize that the results are not much sensitive to a careful parameterization.
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Fig. 2. Rank/Select queries for plain bitmaps. Time is measured in μsec per query and
space in extra bits per bit of the bitmap.

For rank, structures like rank9b, rank9sel, and Sada dense, occupy significantly
more space and are not noticeably faster than our 3%-space combination. Only
structure RG 37% is considerably faster, yet it requires 10 times more space.
Structure RG 1Level achieves a performance very similar to that of our new
structure, as expected.

For select, however, RG 1Level performs poorly. Other structures that do
not achieve better time than our 3%-space combination, while using much more
space, are rank9b, rank9sel, RG37%, Sada dense, and Clark. The best perfor-
mance, still not competitive with ours, is that of simple-select. This one reaches
similar time, but 2–3 times more space than our 3%-space combination.

Mixed Queries In this experiment we use bitmap density 50% and execute
mixed queries, which combine rank and select, to mimic applications that need
both of them. We try rank/select proportions of 90%/10%, 70%/30%, 50%/50%,
and 30%/70%.We include a variant of our structure with the same value for both
samplings, Sr = Ss. The results are shown in Fig. 3 (see also Footnote 3).
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Fig. 3. Performance of mixed rank/select queries. Time is measured in μsec per query
and space in extra bits per bit of the bitmap.

It can be seen that, as soon as we have more than 10% of select queries,
our new structures become unparalleled. This is because operation select is, in
other structures, much slower than rank, and therefore a small fraction of those
queries affects the overall time. Our structures, on the other hand, retain a
performance close to 0.2 μsec within 3% of extra space, achieved with Sr = 1024
and Ss = 8192. The variant using the same value for both samples is usually
suboptimal: Spending more space on the rank sampling pays off.

5.3 Applications

We illustrate the many applications of rank/select data structures with two
examples. In the first one, we use our compressed representation to reimple-
ment an FM-index [4]. This is a data structure that represents a text collec-
tion in compressed form and offers search capabilities on it. Its most practical
and compact implementation [3] uses a Huffman-shaped tree storing at most
n(H0(T ) + 1) bits, and those bits are represented in compressed form. The FM-
index can count the number of occurrences of a pattern P in T via a number
of rank operations over the bitmaps. We took this FM-index implementation
from http://libcds.recoded.cl, and compared this implementation with one
where we changed the compressed bitmaps to our new implementation. We in-
dexed the 50 MB English text from http://pizzachili.dcc.uchile.cl and
searched for 50,000 patterns of length 20 extracted at random from the text.

As Fig. 4 (left) shows, our index with b = 63 is slightly slower than the original,
but still it counts in 90 μsec using 0.28 bits per bit, whereas the original one
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needs 0.335 bits per bit to achieve the same time. That is, we reduce the space by
around 16%. Indeed, we achieve the least space ever reported for an FM-index
for this text (the results on other texts were similar).

Our second experiment uses a recent benchmark on compact representations
of general trees of n nodes, using 2n+o(n) bits [1]. They showed that LOUDS [9]
was one of the best performers, if its limited functionality was sufficient. LOUDS
simulates various tree operations (like going to the parent, to the i-th child, etc.)
via rank/select queries on the 2n bits that describe the tree topology.

We consider their 72-million node “suffix tree” [1] and, following their experi-
mental setup, choose 33,000 random nodes with 5 children or more, and carry out
the operation that finds the 5th child. Fig. 4 (right) shows the effect of replacing
the rank/select structure used in LOUDS with our combined sampled structure
(using various samplings in the range Sr = [512, 2048] and Ss = [1024, 32768]).
As it can be seen, LOUDS is much better than the alternatives, and we improve
RG-based LOUDS as soon as we use 3% of extra space or more, reaching an
improvement of up to 20% when using the same space.

Fig. 4. On the left, counting on the FM-index. On the right, operation child on suffix
trees. Time is measure in μsec per query, and space in overall number of bits per bit
of the plain encoding of the sequence.

6 Conclusions

We have introduced two new techniques that aim at solving two recurrent prob-
lems in rank/select data structures: (1) too much space overhead, (2) bad perfor-
mance for select. We have achieved (i) a structure for compressed bitmaps that
retains the performance of existing ones, but reduces their space overhead by
50%–60%, reaching just 0.1 bit of space overhead over the entropy and solving
rank in about 0.4 μsec and select in about 1 μsec; and (ii) a structure for plain
bitmaps that combines rank/select data in a way that achieves just 3% of extra
space and solves both operations in about 0.2 μsec, very far from the current
space/time tradeoffs. In additions, our structures are rather simple.

These are two very relevant improvements that will find immediate applica-
tions. We have already illustrated one application to compressed text indexes
and another to compact representations of trees.
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Our data structures could perform slower for select if the bitmap had very long
areas without 1s, even if we would traverse then fast using the Sr sampling. For
such long areaswe could apply the basic idea ofClark [2] and store the precomputed
select answers inside. This requires insignificant extra space if applied on very long
blocks.Also, in order to support select0wecouldaddanother sparse samplingusing
Ss (recall that in the recommended setup this stores just one integer every 8192
positions, so doubling this sampling impacts very little). Finally, it is natural to
combine our two ideas into a single index for compressed bitmaps: right now our
compressed representation carries out select by binary searching the superblocks.
Our combined structure could speed this up to the times for rank, which are around
0.4 μsec on the compressed structure. This is our future work plan.
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Abstract. Supporting top-k document retrieval queries on general text
databases, that is, finding the k documents where a given pattern occurs
most frequently, has become a topic of interest with practical applica-
tions. While the problem has been solved in optimal time and linear
space, the actual space usage is a serious concern. In this paper we study
various reduced-space structures that support top-k retrieval and pro-
pose new alternatives. Our experimental results show that our novel
structures and algorithms dominate almost all the space/time tradeoff.

1 Introduction

Ranked document retrieval is the basic task of most search engines. It consists in
preprocessing a collection of d documents, D = {D1, D2, . . . , Dd}, so that later,
given a query pattern P and a threshold k, one quickly finds the k documents
where P is “most relevant”.

The best known application scenario is that of documents being formed by
natural language texts, that is, sequences of words, and the query patterns being
words, phrases (sequences of words), or sets of words or phrases. Several relevance
measures are used, which attempt to establish the significance of the query in a
given document [2]. The term frequency, the number of times the pattern appears
in the document, is the main component of most measures.

Ranked document retrieval is usually solved with some variant of a simple
structure called an inverted index [2]. This structure, which is behind most
search engines, handles well natural language collections. However, the term
“natural language” hides several assumptions that are key to the efficiency of
that solution: the text must be easily tokenized into words, there must not be
too many different words, and queries must be whole words or phrases.

Those assumptions do not hold in various applications where document re-
trieval is of interest. The most obvious ones are documents written in Asian
languages , where it is not easy to split words automatically, and search engines
treat the text as a sequence of symbols, so that queries can retrieve any sub-
string of the text. Other applications simply do not have a concept of word, yet
ranked retrieval would be of interest: DNA or protein sequence databases where
one seeks the sequences where a short marker appears frequently, source code
repositories where one looks for functions making heavy use of an expression or
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function call, MIDI sequence databases where one seeks for pieces where a given
short passage is repeated, and so on.

These problems are modeled as a text collection where the documents Di are
strings over an alphabet Σ, of size σ, and the queries are also simple strings. The
most popular relevance measure is the term frequency, meaning the number of oc-
currences of the string P in the stringsDi (we discuss other measures in Section 6).
We call n =

∑
|Di| the collection size and m=|P | the pattern length.

Muthukrishnan [17] pioneered the research on document retrieval for general
strings. He solved the simpler problem of “document listing”: reporting the occ
distinct documents where P appears in optimal time O(m + occ) and linear
space, O(n) integers (or O(n log n) bits). Muthukrishnan also considered various
other document retrieval problems, but not top-k retrieval.

The first efficient solution for the top-k retrieval problem was introduced by
Hon et al. [13]. They achieved O(m+ logn log logn+ k) time, yet the space was
superlinear, O(n log2 n) bits. Soon, Hon et al. [12] achieved O(m+ k log k) time
and linear space, O(n log n) bits. Recently, Navarro and Nekrich [18] achieved
optimal time, O(m + k), and reduced the space from O(n log n) to O(n(log σ +
log d)) bits (albeit the constant is not small).

While these solutions seem to close the problem, it turns out that the space
required by O(n log n)-bit solutions is way excessive for practical applications.
A recent space-conscious implementation of Hon et al.’s index [20] showed that
it requires at least 5 times the text size.

Motivated by this challenge, there has been a parallel research track on how
to reduce the space of these solutions, while retaining efficient search time
[21,22,12,7,5,3,19,11]. In this work we introduce a new variant with relevant
theoretical and practical properties, and show experimentally that it dominates
previous work. The next section puts our contribution in context.

2 Related Work

Most of the data structures for general text searching, and in particular the
classical ones for document retrieval [17,12], build on on suffix arrays [16] and
suffix trees [23]. Regard the collection D as a single text T [1, n] = D1D2 . . .Dd,
where each Di is terminated by a special symbol “$”. A suffix array A[1, n] is a
permutation of the values [1, n] that points to all the suffixes of T : A[i] points
to the suffix T [A[i], n]. The suffixes are lexicographically sorted in A: T [A[i], n] <
T [A[i+1], n] for all 1 ≤ i < n. Since the occurrences of any pattern P in T
correspond to suffixes of T that are prefixed by P , the occurrences are pointed
from a contiguous area in the suffix array A[sp, ep]. A simple binary search finds
sp and ep in O(m log n) time [16]. A suffix tree is a digital tree with O(n) nodes
where all the suffixes of T are inserted and unary paths are compacted. Every
internal node of the suffix tree corresponds to a repeated substring of T and
its associated suffix array interval;, suffix tree leaves correspond to the suffixes
and their corresponding suffix array cells. A top-down traversal in the suffix tree
finds the internal node (called the locus of P ) from where all the suffixes prefixed
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with P descend, in O(m) time. Once sp and ep are known, the top-k query finds
the k documents where most suffixes in A[sp, ep] start.

A first step towards reducing the space in top-k solutions is to compress
the suffix array. Compressed suffix arrays (CSAs) simulate a suffix array within
as little as nHk(T ) + o(n log σ) bits, for any k ≤ α logσ n and any constant
0 < α < 1. Here Hk(T ) is the k-th order entropy of T , a measure of its statistical
compressibility. The CSA, using |CSA| bits, finds sp and ep in time search(m),
and computes any cell A[i], and even A−1[i], in time lookup(n). For example, a
CSA achieving the small space given above [6] achieves search(m) = O(m(1 +

log σ
log logn )) and lookup(n) = O(log1+ε n) for any constant ε > 0. CSAs also replace
the collection, as they can extract any substring of T .

In their very same foundational paper, Hon et al. [12] proposed an alternative
succinct data structure to solve the top-k problem. Building on a solution by
Sadakane [21] for document listing, they use a CSA for T and one smaller CSA
for each document Di, plus a little extra data, for a total space of 2|CSA|+o(n)+
d log(n/d)+O(d) bits. They achieve time O(search(m)+k log3+ε n·lookup(n)), for
any constant ε > 0. Gagie et al. [7] slightly reduced the time to O(search(m) +
k log d log(d/k) log1+ε n · lookup(n)), and Belazzougui and Navarro [3] further
improved it to O(search(m) + k log k log(d/k) logε n · lookup(n)).

The essence of the succinct solution by Hon et al. [12] is to preprocess top-
k answers for the lowest suffix tree nodes containing any range A[i · g, j · g]
for some sampling parameter g. Given the query interval A[sp, ep], they find
the highest preprocessed suffix tree node whose interval [sp′, ep′] is contained in
[sp, ep]. They show that sp′ − sp < g and ep − ep′ < g, and then the cost of
correcting the precomputed answer using the extra occurrences at A[sp, sp′−1]
and A[ep′+1, ep] is bounded. For each such extra occurrence A[i], one finds out
its document, computes the number of occurrences of P within that document,
and lets the document compete in the top-k precomputed list. Hon et al. use the
individual CSAs and other data structures to carry out this task. The subsequent
improvements [7,3] are due to small optimizations on this basic design.

Gagie et al. [7] also pointed out that in fact Hon et al.’s solution can run
on any other data structure able to (1) telling which document corresponds to
a given A[i], and (2) count how many times the same document appears in
any interval A[sp, ep]. A structure that is suitable for this task is the document
array D[1, n], where D[i] is the document A[i] belongs to [17]. While in Hon
et al.’s solution this is computed from A[i] using d log(n/d) + O(d) extra bits
[21], we need more machinery for task (2). A good alternative was proposed
by Mäkinen and Valimäki [22] in order to reduce the space of Muthukrishnan’s
document listing solution [17]. The structure is a wavelet tree [10] on D. The
wavelet tree represents D using n log d + o(n) log d bits and not only computes
any D[i] in O(log d) time, but it can also compute operation ranki(D, j), which
is the number of occurrences of document i in D[1, j], in O(log d) time too. This
solves operation (2) as rankD[i](D, ep) − rankD[i](D, sp−1). With the obvious
disadvantage of the considerable extra space to representD, this solution changes
lookup(n) by log d in the query time. Gagie et al. show many other combinations
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that solve (1) and (2). One of the fastest uses Golynski et al.’s representation
[9] on D and, within the same space, changes lookup(n) to log log d in the time.
Very recently, Hon, Shah, and Thankachan [11] presented new combinations in
the line of Gagie et al., using also faster CSAs. The least space-consuming one
requires n log d + n o(log d) bits of extra space on top of the CSA of T , and
improves the time to O(search(m) + k(log k + (log logn)2+ε)).

Belazzougui and Navarro [3] used an approach based on minimum perfect
hash functions to replace the array D by a weaker data structure that takes
O(n log log log d) bits of space and supports the search in time O(search(m) +
k log k log1+ε n · lookup(n)). This solution is intermediate between representing
D or the individual CSAs and it could have practical relevance.

Culpepper et al. [5] built on an improved document listing algorithm on
wavelet trees [8] to achieve two top-k algorithms, called Quantile and Greedy,
that use the wavelet tree alone (i.e., without Hon et al.’s [12] extra structures).
Despite their worst-case complexity being as bad as extracting the results one
by one in A[sp, ep], that is, O((ep − sp + 1) log d), in practice the algorithms
performed very well, being Greedy superior. They implemented Sadakane’s so-
lution [21] of using individual CSAs for the documents and showed that the
overheads are very high in practice. Navarro et al. [19] arrived at the same con-
clusion, showing that Hon et al.’s original succinct scheme is not promising in
practice: both space and time were much higher in practice than Culpepper et
al.’s solution. However, their preliminary experiments [19] showed that Hon et
al.’s scheme could compete when running on wavelet trees.

Navarro et al. [19] also presented the first implemented alternative to reduce
the space of wavelet trees, by using Re-Pair compression [15] on the bitmaps.
They showed that significant reductions in space were possible in exchange for
an increase in the response time of Culpepper et al.’s Greedy algorithm (half the
space and twice the time is a common figure).

This review exposes interesting contrasts between the theory and the practice
in this area. On one hand, the structures that are in theory larger and faster
(i.e., the n log d-bits wavelet tree versus a second CSA of at most n log σ bits) are
in practice smaller and faster. On the other hand, algorithms with no worst-case
bound (Culpepper et al.’s [5]) perform very well in practice. Yet, the space of
wavelet trees is still considerably large in practice (about twice the plain size of
T in several test collections [19]), especially if we consider that they represent
totally redundant information that could be extracted from the CSA of T .

In this paper we study a new practical alternative. We use Hon et al.’s [12]
succinct structure on top of a wavelet tree, but instead of brute force we use a
variant of Culpepper et al.’s [5] method to find the extra candidate documents
in A[sp, sp′−1] and A[ep′+1, ep]. We can regard this combination either as Hon
et al.’s method boosting Culpepper et al. or vice versa. Culpepper et al. boost
Hon et al.’s method, while retaining its good worst-case complexities, as they
find the extra occurrences more cleverly than by enumerating them all. Hon et
al. boost plain Culpepper et al.’s method by having precomputed a large part
of the range, and thus ensuring that only small intervals have to be handled.
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We consider the plain and the compressed wavelet tree representations, and
the straightforward and novel representations of Hon et al.’s succinct structure.
We compare these alternatives with the original Culpepper et al.’s method (on
plain and compressed wavelet trees), to test the hypothesis that adding Hon
et al.’s structure is worth the extra space. Similarly, we include in the com-
parison the basic Hon et al.’s method (with and without compressed structure)
over Golynski et al.’s [9] sequence representation, to test the hypothesis that
using Culpepper et al.’s method over the wavelet tree is worth compared to the
brute force method over the fastest sequence representation [9]. This brute force
method is also at the core of the new proposal by Hon et al. [11].

Our experiments show that our new algorithms and data structures dominate
almost all the space/time tradeoff for this problem, becoming a new practical
reference point.

3 Implementing Hon et al.’s Succinct Structure

The succinct structure of Hon et al. [12] is a sparse generalized suffix tree of
T (SGST; “generalized” means it indexes d strings). It is obtained by cutting
A[1, n] into blocks of length g and sampling the first and last cell of each block
(recall that cells of A are leaves of the suffix tree). Then all the lowest common
ancestors (lca) of pairs of sampled leaves are marked, and a tree τk is formed
with those (at most) 2n/g marked internal nodes. The top-k answer is stored for
each marked node, using O((n/g)k logn) bits. This is done for k = 1, 2, 4, . . .,
and parameter g is of the form g = k · g′. The final space is O((n/g′) log d logn)
bits. This is made o(n) by properly choosing g′.

To answer top-k queries, they search the CSA for P , to obtain the suffix range
A[sp, ep] of the pattern. Then they turn to the closest higher power of two of k,
k∗ = 2�log k�, and let g = k∗ · g′ be the corresponding g value. They now find
the locus of P in the tree τk∗ by descending from the root until finding the first
node v whose interval [spv, epv] is contained in [sp, ep]. They have at v the top-k
candidates for [spv, epv] and have to correct the answer considering [sp, spv−1]
and [epv+1, ep]. Now we introduce two implementations of this idea.

3.1 Sparsified Generalized Suffix Tree (SGST)

Let us call li = A[i] the i-th leaf. Given a value of k we define g = k · g′,
for a space/time tradeoff parameter g′, and sample n/g leaves l1, lg+1, l2g+1, . . .,
instead of sampling 2n/g leaves as in the theoretical proposal. We mark internal
SGST nodes lca(l1, lg+1), lca(lg+1, l2g+1), . . .. It is easy to prove that any v =
lca(lig+1, ljg+1) is also v = lca(lrg+1, l(r+1)g+1) for some r (precisely, r is the
rightmost sampled leaf descending from the child of v that is ancestor of lig+1).
Thus these n/g SGST nodes suffice and can be computed in linear time [4].

Now we note that there is a great deal of redundancy in the log d trees τk,
since the nodes of τ2k are included in those of τk, and the 2k candidates stored
in the nodes of τ2k contain those in the corresponding nodes of τk. To factor out
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some of this redundancy we store only one tree τ , whose nodes are the same of τ1,
and record the class c(v) of each node v ∈ τ . This is c(v) = max{k, v ∈ τk} and
can be stored in log log d bits. Each node v ∈ τ stores the top-c(v) candidates
corresponding to its interval, using c(v) log d bits, and their frequencies, using
c(v) logn bits, plus a pointer to the table, and the interval itself, [spv, epv], using
2 logn bits. All the information on intervals and candidates is factored in this
way, saving space. Note that the class does not necessarily decrease monotoni-
cally in a root-to-leaf path of τ , thus we store all the topologies independently to
allow for efficient traversal of the τk trees, for k > 1. Apart from topology infor-
mation, each node of such τk trees contains just a pointer to the corresponding
node in τ , using log |τ | bits.

In our first data structure, the topology of the trees τ and τk is represented
using pointers of log |τ | and log |τk| bits, respectively. To answer top-k queries,
we find the range A[sp, ep] using a CSA (whose space and negligible time will
not be reported because it is orthogonal to all the data structures). Now we find
the locus in the appropriate tree τk∗ top-down, binary searching the intervals
[spv, epv] of the children of the current node, and extracting those intervals
using the pointer to τ . By the properties of the sampling [12] it follows that we
will traverse in this descent nodes v ∈ τk∗ such that [sp, ep] ⊆ [spv, epv], until
reaching a node v so that [spv, epv] = [sp′, ep′] ⊆ [sp, ep] ⊆ [sp′ − g, ep′ + g] (or
reaching a leaf u ∈ τk such that [sp, ep] ⊆ [spu, epu], in which case ep− sp+1 <
2g). This v is the locus of P in τk∗ , and we find it in time O(m log σ). This is
negligible compared to the subsequent costs, as well as it is the CSA search.

3.2 Succinct SGST

Our second implementation uses represents the tree topologies without point-
ers. Although the tree operations are slightly slower than with pointers, this
slowdown occurs on a less significant part of the search process, and a succinct
representation allows one to reduce the sampling parameter g for the same space.

Arroyuelo et al. [1] showed that, for the functionality it provides, the most
promising succinct representation of trees is the so-called LOUDS [14]. It requires
2N + o(N) bits of space (in practice, as little as 2.1N) to represent a tree of N
nodes, and it solves many operations in constant time (less than a microsecond
in practice). We resort to their labeled trees [1] implementation, We encode the
values spv and epv, pointers to τ (in τk), and pointers to the candidates in a
separate array, indexed by the LOUDS rank of the node v, managing them as
Arroyuelo et al. [1] manage labels. We use that implementation [1].

4 A New Top-k Algorithm

We run a combination of the algorithm by Hon et al. [12] and those of Culpep-
per et al. [5], over a wavelet tree representation of the document array D[1, n].
Culpepper et al. introduce, among others, a document listing method (DFS) and
a Greedy top-k heuristic. We adapt these to our particular top-k subproblem.
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If the search for the locus of P ends at a leaf u that still contains the interval
[sp, ep], Hon et al. simply scan A[sp, ep] by brute force and accumulate frequen-
cies. We use instead Culpepper et al.’s Greedy algorithm, which is always better
than a brute-force scanning.

When, instead, the locus of P is a node v where [spv, epv] = [sp′, ep′] ⊆ [sp, ep],
we start with the precomputed answer of the k ≤ k∗ most frequent documents in
[sp′, ep′], and update it to consider the subintervals [sp, sp′−1] and [ep′+1, ep].
We use the wavelet tree of D to solve the following problem: Given an interval
D[l, r], and two subintervals [l1, r1] and [l2, r2], enumerate all the distinct values
in [l1, r1]∪ [l2, r2], and their frequencies in [l, r]. We propose two solutions, which
generalize the heuristics proposed by Culpepper et al. [5].

4.1 Restricted Depth-First Search (DFS)

Let us consider a wavelet tree [10] representation of an array D. At the root, a
bitmap B[1, n] stores B[i] = 0 if D[i] ≤ d/2 and B[i] = 1 otherwise. The left
child of the root is, recursively, a wavelet tree handling the subsequence of D
with values D[i] ≤ d/2, and the right child handles the subsequence of values
D[i] > d/2. Added over the log d levels, the wavelet tree requires n log d bits
of space. With o(n log d) additional bits we answer in constant time any query
rank0/1(B, i) over any bitmap B [14].

Note that any interval D[i, j] can be projected into the left child of the root
as [i0, j0] = [rank0(B, i−1)+1, rank0(B, j)], and into its right child as [i1, j1] =
[rank1(B, i−1)+1, rank1(B, j)], where B is the root bitmap. Those can then be
projected recursively into other wavelet tree nodes.

Our restricted DFS algorithm begins at the root of the wavelet tree and
tracks down the intervals [l, r] = [sp, ep], [l1, r1] = [sp, sp′−1], and [l2, r2] =
[ep′+1, ep]. More precisely, we count the number of zeros and ones in B in ranges
[l1, r1] ∪ [l2, r2], as well as in [l, r], using a constant number of rank operations
on B. If there are any zeros in [l1, r1] ∪ [l2, r2], we map all the intervals into
the left child of the node and proceed recursively from this node. Similarly, if
there are any ones in [l1, r1]∪ [l2, r2], we continue on the right child of the node.
When we reach a wavelet tree leaf we report the corresponding document, and
the frequency is the length of the interval [l, r] at the leaf.

When solving the problem in the context of top-k retrieval, we can prune some
recursive calls. If, at some node, the size of the local interval [l, r] is smaller than
our current kth candidate to the answer, we stop exploring its subtree since it
cannot contain competitive documents.

4.2 Restricted Greedy

Following the idea of Culpepper et al., we can not only stop the traversal when
[l, r] is too small, but also prioritize the traversal of the nodes by their [l, r] value.

We keep a priority queue where we store the wavelet tree nodes yet to process,
and their intervals [l, r], [l1, r1], and [l2, r2]. The priority queue begins with one
element, the root. Iteratively, we remove the element with highest r−l+1 value
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from the queue. If it is a leaf, we report it. Otherwise, we project the intervals into
its left and right children, and insert each such children containing nonempty
intervals [l1, r1] or [l2, r2] into the queue. As soon as the r−l+1 value of the
element we extract from the queue is not larger than the kth frequency known
at the moment, we can stop.

4.3 Heaps for the k Most Frequent Candidates

Our two algorithms solve the query assuming that we can easily know at each
moment which is the kth best candidate known up to now. We use a min-heap
data structure for this purpose. It is loaded with the top-k precomputed candi-
dates corresponding to the interval [sp′, ep′]. At each point, the top of the heap
gives the kth known frequency in constant time. Given that the previous algo-
rithms stop when they reach a wavelet tree node where r−l+1 is not larger than
the kth known frequency, it follows that each time the algorithms report a new
candidate, that candidate is more frequent than our kth known candidate. Thus
we replace the top of our heap with the reported candidate and reorder the heap
(which is always of size k, or less until we find k distinct elements in D[sp, ep]).
Therefore each candidate reported costs O(log d+log k) time (there are also steps
that do not yield any result, but the overall bound is still O(g(log d+ log k))).

A remaining issue is that we can find again, in our DFS or Greedy traversal, a
node that was in the original top-k list, and thus possibly in the heap. This means
that the document had been inserted with its frequency in D[sp′, ep′], but since it
appears more times in D[sp, ep], we must now increase its frequency and restore
the min-heap invariant. It is not hard to maintain a hash table with forward and
backward pointers to the heap so that we can track their current positions and
replace their values. However, for the small k values used in practice (say, ten or
at most hundreds), it is more practical to scan the heap for each new candidate
to insert than to maintain all those pointers upon all operations.

5 Experimental Results

We test our implementations of Hon et al.’s succinct structure combined with a
wavelet tree (as explained, the original proposal is not competitive in practice
[19]). We used three test collections of different nature: ClueWiki, a 141 MB
sample of ClueWeb09, formed by 3,334 Web pages from the English Wikipedia;
KGS, a 25 MB collection of 18,838 sgf-formatted Go game records (http://www.
u-go.net/gamerecords); andProteins, a 60 MB collection of 143,244 sequences
of Human and Mouse proteins (http://www.ebi.ac.uk/swissprot).

Our tests were run on a 4-core 8-processors Intel Xeon, 2Ghz each, with 16GB
RAM and 2MB cache. We compiled using g++ with full optimization. For queries,
we selected 1,000 substrings at random positions, of length 3 and 8, and retrieved
the top-k documents for each, for k = 1 and 10.
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Choosing Our Best Variant. Our first round of experiments compares our dif-
ferent implementations of SGSTs (i.e., the trees τk, see Section 3) over a single
implementation of wavelet tree (Alpha, choosing the best value for α in each
case [19]). We tested a pointer-based representation of the SGST (Ptrs, the
original proposal [12]), a LOUDS-based representation (LOUDS), our variant of
LOUDS that stores the topologies in a unique tree τ (LIGHT), and our variant of
LIGHT that does not store frequencies of the top-k candidates (XLIGHT). We used
sampling steps of 200 and 400 for g′. For each value of g, we obtain a curve with
various sampling steps for the rank computations on the wavelet tree bitmaps.

We also tested different algorithms to find the top-k among the precomputed
candidates and remaining leaves (see Section 4): Our modified greedy (Greedy),
our modified depth-first-search (DFS), and the brute-force selection procedure of
the original proposal [12] on top of the same wavelet tree (Select). As this is
orthogonal to the data structures used, we compare these algorithms only on top
of the Ptrs structure. The other structures will be tested using the best method.

Figure 1 shows the results. Method Greedy is always better than Select (up
to 80% better) and DFS (up to 50%), which confirms intuition. Using LOUDS

representation instead of Ptr had almost no impact on the time. This is because
time needed to find the locus is usually negligible compared with that to explore
the uncovered leaves. Further costless space gains are obtained with variant
LIGHT. Variant XLIGHT, instead, reduces the space of LIGHT at a noticeable cost
in time that makes it not so interesting, except on Proteins. In various cases the
sparser sampling dominates the denser one, whereas in others the latter makes
the structure faster if sufficient space is spent. To compare with other techniques,
we will use variant LIGHT on ClueWiki and KGS, and XLIGHT on Proteins,
both with g′ = 400. This combination will be called generically SSGST.

Comparison with Previous Work. We now compare ours with previous work.
The Greedy heuristic [5] is run over different wavelet-tree representations of the
document array: a plain one (WT-Plain) [5], a Re-Pair compressed one (WT-RP),
and a hybrid that at each wavelet tree level chooses between plain, Re-Pair, or
entropy-based compression of the bitmaps (WT-Alpha) [19]. We combine these
with our best implementation of Hon et al.’s structure (suffixing the previous
names with +SSGST). We also consider variant Goly+SSGST [7,11], which runs
the rank-based method (Select) on top of the fastest rank-capable sequence
representation of the document array (Golynski et al.’s [9], which is faster than
wavelet trees for rank but does not support our more sophisticated algorithms;
here we used the implementation at http://libcds.recoded.cl).

Our new structures dominate most of the space-time map. When using lit-
tle space, variant WT-RP+SSGST dominates, being only ocassionally and slightly
superseded by WT-RP. When using more space, WT-Alpha+SSGST takes over,
and finally, with even more space, WT-Plain+SSGST becomes the best choice.
Most of the exceptions arise in Proteins, which due to its incompressibility [19]
makes WT-Plain+SSGST essentially the only interesting variant. The alternative
Goly+SSGST is no case faster than a Greedy algorithm over plain wavelet trees
(WT-Plain), and takes more space.
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Fig. 1. Our different alternatives for top-k queries. On the left for k = 1 and pattern
length m = 3; on the right for k = 10 and m = 8.

6 Final Remarks

We can further reduce the space in exchange for possibly higher times. For
example the sequence of all precomputed top-k candidates can be Huffman-
compressed, as there is much repetition in the sets and a zero-order compression
would yield space reductions of up to 25%. The pointers to those tables could also
be removed, by separating the tables by size, and computing the offset within
each size using rank on the sequence of classes of the nodes in τ .

More in perspective, term frequency is probably the simplest relevance
measure. In Information Retrieval, more sophisticated ones like BM25 are used.
Such formula involves the sizes of the documents, and thus techniques like
Culpepper et al.’s [5] do not immediately apply. However, Hon et al.’s [12] does,
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Fig. 2. Comparison with previous work, for m = 3 (left) and m = 8 (right)

by simply storing the precomputed top-k answers according to BM25 and using
their brute-force traversal instead of our “restricted Greedy/DFS” methods. The
times would be very similar to the variant we called Select in this paper.

Sadakane [21] showed how to efficiently compute document frequencies (i.e.,
in how many documents does a pattern appear), in constant time and using just
2n+o(n) bits. With term frequency, these two measures are sufficient to compute
the popular tf-idf score. Note, however, that as long as queries are formed by
a single term, the top-k ranking is the same as given by term frequency alone.
Document frequency makes a difference on bag-of-word queries, which involve
several terms. Structures like those we have explored in this paper are able to
emulate a (virtual) inverted list, sorted by decreasing term frequency, for any
pattern, and thus enable the implementation of any top-k algorithm for bags of
words designed for inverted indexes.
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Abstract. In the field of online algorithms paging is a well studied prob-
lem. LRU is a simple paging algorithm which incurs few cache misses
and supports efficient implementations. Algorithms outperforming LRU
in terms of cache misses exist, but are in general more complex and
thus not automatically better, since their increased runtime might an-
nihilate the gains in cache misses. In this paper we focus on efficient
implementations for the OnOPT class described in [13], particularly on
an algorithm in this class, denoted RDM, that was shown to typically
incur fewer misses than LRU. We provide experimental evidence on a
wide range of cache traces showing that our implementation of RDM is
competitive to LRU with respect to runtime. In a scenario incurring re-
alistic time penalties for cache misses, we show that our implementation
consistently outperforms LRU, even if the runtime of LRU is set to zero.

1 Introduction

Paging is a prominent, well studied problem in the field of online algorithms. It
also has significant practical importance, since the paging strategy is an essential
efficiency issue in the field of operating systems. Formally, the problem is defined
as follows. Given a cache of size k and a memory of infinite size, the algorithm
must process pages online, i.e. make decisions based on the input sequence seen
so far. If the page requested is not in the cache, a cache miss occurs and the page
must be loaded in the cache; additionally, if the cache was full, some page must
be evicted to accommodate the new one. The goal is to minimize the number of
cache misses.

Traditionally, when evaluating the performance of paging algorithms, most
work focuses exclusively on the number of misses incurred. However, in practice,
apart from cache misses, factors such as runtime and space usage have a major
impact in deciding on which algorithms to use [15, Section 3.4]. In particular,
the fact that LRU (Least Recently Used) and its variants are widely popular
stems not only from the fact that they incur few cache misses (typically no more
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than a factor of four more than the optimal cost [16]), but also because they
have efficient implementations with low overhead in terms of space and runtime.

Typically, online algorithms in general and paging algorithms in particular
are analyzed using competitive analysis [10,14], where the online algorithm is
compared against an optimal offline algorithm. An algorithm is c-competitive
if the number of misses incurred is up to a factor of c away from an optimal
offline solution. Any deterministic paging algorithm has a competitive ratio of at
least k [14], and several k-competitive algorithms are known. Examples include
LRU, FIFO, and FWF (Flush When Full); furthermore, all these algorithms
can be implemented efficiently in terms of space and runtime. For randomized
algorithms, in [7] a lower bound of Hk on the competitive ratio was shown1,
and a 2Hk-competitive algorithm, denoted Mark, was proposed. Subsequently,
several Hk-competitive paging algorithms were proposed, namely Partition [12],
Equitable and Equitable2 [1,2], and OnMIN [6].

Based on the layer partition in [11], we proposed in [13] a measure quantifying
the “evilness” of the adversary that we denoted attack rate. For inputs having at-
tack rate r, we introduced a class of r-competitive algorithms, denoted OnOPT,
and we showed that these algorithms achieve a small fault rate on many practi-
cal inputs. Finally, we singled out an algorithm in this class, denoted Recency

Duration Mix (in short RDM), which we showed to consistently outperform
LRU and some of its variants with respect to cache misses on most inputs and
cache sizes considered, at times by more than a factor of two.

Our Contributions. In this work we focus on the runtime of paging algorithms
that, together with the cache misses, is an important factor in practice. We
propose a compressed representation of the layer partitioning in [6,11]. Based
on this and on the fact that typically most requests are to so-called revealed
pages (pages that are for sure in the cache of an optimal algorithm), we engineer
speed-up techniques for implementating the OnOPT class. If the fraction of
revealed requests is 1 − O(1/k) these yield an RDM implementation with an
amortized runtime of O(1) per request with very small constant factors. We
show on real-world input traces2 that the new implementation outperforms the
tree based approach in [6]. Moreover, we compare the runtime of RDM with
LRU and FIFO and show that the runtimes of RDM and LRU are comparable,
albeit slower than FIFO. Finally, we use a more general performance measure
for paging algorithms, namely the sum of runtime and cache miss penalties.
Assuming a realistic cache miss penalty of 9ms, the fact that RDM typically
incurs fewer misses than both LRU and FIFO ensures that it achieves better
performance for many traces and cache sizes, even if we charge LRU and FIFO
a runtime of zero. This shows that OnOPT algorithms in general and RDM in
particular may be of practical value.

1 Hk =
∑k

i=1 1/i is the k
th harmonic number.

2 We used all the available original reference traces from
http://www.cs.amherst.edu/~sfkaplan/research/trace-reduction/index.html.

http://www.cs.amherst.edu/~sfkaplan/research/trace-reduction/index.html
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Related Work. Although competitive analysis seems too pessimistic, some of its
refinements have lead to paging algorithms with low fault rates on traces ex-
tracted during the execution of real-world programs. In [8], heuristics motivated
by the access graph model from [4] outperformed LRU. These perform an on-
line approximation of the access graph, which models the page access pattern.
Another algorithm, RLRU (Retrospective LRU), was proposed in [5], where it
was proven to be better than LRU with respect to the relative worst order ra-
tio. RLRU uses information about the optimal offline solution for its decisions.
EELRU (Early Eviction LRU) [9] is an adaptive paging algorithm from a less the-
oretical direction, which simulates a large collection of about 256 parametrized
instances of an algorithm which is a mix of LRU and MRU (Most Recently Used).
All of these algorithms, including the OnOPT class, have in common that they
are more complex than classical algorithms like LRU and FIFO. Because of this
it is not obvious whether there exist fast implementations such that the savings
in cache misses compensate for the higher runtime overhead.

1.1 Preliminaries

Layer partitioning. Given the request sequence σ seen so far, in an online sce-
nario it is of interest to know the actual cache content COPT of the optimal offline
algorithm LFD (Longest Forward Distance), which evicts, upon a cache miss, the
page in cache which is re-requested farthest in the future [3]. Although in general
COPT is not known since it depends also on the future request sequence τ , we are
provided with partial information (from σ) about the structure of COPT , e.g. it
contains for sure the most recently requested page, and pages not requested in σ
are not in COPT . We say that immediately after processing σ a set C of k pages
is a valid configuration iff there exists a future request sequence τ such that
LFDs cache content equals C. A precise mathematical characterization of all
possible valid configurations was given by Koutsoupias and Papadimitriou [11]
and an equivalent variant of this characterization is used by the OnOPT algo-
rithm class [13]. It consists of a partition L = (L0| . . . |Lk) of the pageset in k+1
disjoint sets, denoted layers. Initially, each layer in L1, . . . , Lk contains one of
the first k pairwise distinct pages and L0 contains all the remaining pages. If L
is the layer partition for input σ, let Lp denote the layer partition for σp, the
sequence resulting by the request of page p. The layers are updated as follows:

Lp =

{
(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |Lk|{p}), if p ∈ Li, i > 0

In [11] it has been shown that a cache configuration C is valid iff it holds that
for each i ∈ {1, . . . , k} we have |C ∩ (∪ij=1Lj)| ≤ i.

The support of L is defined as L1 ∪ · · · ∪ Lk. Denoting by singleton a layer
with one element, let r be the smallest index such that Lr, . . . , Lk are singletons;
the pages in Lr ∪ · · · ∪ Lk are denoted revealed. We denote by Opt-miss pages
the pages in L0, while the remaining pages, i.e. pages in support that are not
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revealed, are unrevealed pages. A valid configuration contains all revealed pages
and no page from L0. Note that by the layer update rule all layers are non-empty.

OnOPT Algorithms. Algorithms from the OnOPT class use the layer partition
as a subroutine. The currently requested page is assigned a priority which shall
reflect the rank of its next request among the other pages. Given a priority
based future prediction the cache update rule ensures that their cache content is
always identical to LFD’s, if the prediction is correct. The pseudo-code is given in
Algorithm 1. The fact that no cache misses are performed on revealed requests
guarantees a reasonable performance, due to the high percentage of revealed
requests in the input. In OnOPT we singled out RDM, which combines two
priority policies, one based on recency and the other on the time-frame that
pages spent in support. RDM achieves good results, outperforming LRU on
many real-world traces and cache sizes [13].

Algorithm 1. OnOPT framework

procedure OnOPT(Page p, Cache M) � Processes page p
Assign p its priority
if p /∈ M and p ∈ L0 then � Update cache

Evict page in M with smallest priority
else if p /∈M and p ∈ Li, i > 0 then

Identify minimal j, with j ≥ i, satisfying |(L1 ∪ · · · ∪ Lj) ∩M | = j
Evict page from (L1 ∪ · · · ∪ Lj) ∩M having smallest priority

end if
Update the layers � Layers update

end procedure

1.2 Revealed Requests

We give experimental evidence that a very high percentage of requests are to
revealed pages, which is the main motivation for the OnOPT implementations
we propose in this paper. For the remainder of the paper we use a collection
of cache traces extracted from various applications for our experiments; due to
space limitations, details about these traces are given in the full version.

The charts in Figure 1 show that if enough pages fit in memory (usually about
10%), almost all of the requests are to revealed pages. In these cases the ratio
of revealed requests in the input is about (k − 1)/k, which we approximate by
1−O(1/k). For the remainder of the paper we will focus on how to process these
requests as fast as possible at the expense of increasing the worst case time for
processing requests to Opt-miss and unrevealed pages.

2 Compressed Layers

We simplify the layer partition with the main purpose of reducing the runtime
for layer updates. The layer partition can be seen as a sequence of conditions that
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Fig. 1. The ratio of revealed requests against for all cache traces. For decently large
cache sizes the ratio of revealed requests is about (k − 1)/k for all traces

a valid configuration must fulfill. Consider the initial partition, where each Li

contains exactly one page pi. The partition implies the constraints that a valid
configuration contains at most one element from {p1}, two elements from {p1, p2}
and so on. Since each layer has only one page, these k conditions can be reduced
to one, namely at most k pages from {p1, . . . , pk}. We generalize this example as
follows. Given the original layer partition L, we define a compressed partition L
which groups all consecutive singletons of L into the first non-singleton layer to
the right. An algorithmic description of this process is given in Algorithm 2, an
example for k = 7 is provided below.

L = (10, 3|2|7, 5|4|1, 11|8|9|6), L = (10, 3|∅|2, 7, 5|∅|4, 1, 11|∅|∅|8, 9, 6)

Algorithm 2. Layer compression

procedure Layer compression(Partition L = (L0, . . . , Li)) � Compress L
T = ∅;
for i = 1 to k − 1 do

if |Li| = 1 then � Li is singleton
Li = ∅; T = T ∪ Li;

else � Li is not singleton
Li = Li ∪ T ; T = ∅;

end if
end for
Lk = Lk ∪ T ;

end procedure

The compressed partition L may contain empty sets and describes the same
valid configurations as L. For L we provide a corresponding update rule, which
has the advantage that upon revealed requests nothing changes, leading to signif-
icant runtime improvements of OnOPT algorithms. Another advantage is that
on the cache traces considered the number of non-empty layers is much smaller
than k, which allows for more efficient implementations.

Denoting Si = L1 ∪ · · · ∪ Li, a set of k pages is a valid configuration iff
|C ∩ Si| ≤ i for all i. Similarly, let Si = L1 ∪ · · · ∪ Li.
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Lemma 1. The compressed partition L describes the same valid configurations
as L, more precisely it holds for all i: |C ∩ Si| ≤ i iff |C ∩ Si| ≤ i.

Proof. Let x and y, x < y, be two indices such that |Lx| > 1, |Ly| > 1, and
Lx+1, . . . , Ly−1 are singletons. Further let L′ be the partially compressed layer
partition up to the iteration step i = x. We assume that L′ and L describe
the same valid configurations and show that this also holds for L′′, the latter
resulting from iterating up to i = y. For j ≤ x or j ≥ y it holds S′

j = S′′
j and thus

|C ∩ S′
j | ≤ j iff |C ∩ S′′

j | ≤ j. It remains to prove the equivalence for x < j < y.
Assume that C is a valid configuration in L′. This means |C ∩ S′

x| ≤ x < j and
S′′
j = S′′

j−1 = · · · = S′′
x = S′

x resulting in |C ∩ S′′
j | < j.

Now let C be a valid configuration in L′′ implying |C ∩ S′′
x | ≤ x. We have

|C ∩ S′
j | = |C ∩ (S′

x ∪ Lx+1 ∪ · · · ∪ Lj)| ≤ x + (j − x) = j. The last inequality
results from S′

x = S′′
x and the fact that Lx+1, . . . , Lj are singletons. ��

Given the compressing mechanism which shows how to construct L from L we
adapt the update rule of L for L. Let p1, . . . , pk be the first k pairwise distinct
pages. We initially set Lk to the set of these k pages, L0 contains all other pages
and the remaining layers are empty. The update rule of L is given in Theorem 1.

Theorem 1. Let L and Lp be the compressed partition of L and Lp respectively.
Lp can be obtained directly from L as follows:

Lp =

⎧⎪⎨
⎪⎩
(L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0
(L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |∅|Lk ∪ {p}), if p ∈ Li, 0 < i < k

(L0|L1| . . . |Lk−1|Lk), if p ∈ Lk
Proof. Due to space limitations, the proof is available only in the full version.

3 Engineering an Implementation for RDM

In this section we first engineer a novel implementation for OnOPT algorithms
in general and RDM in particular, with the goal of obtaining runtimes as fast as
possible. We then give experimental results which support that our improved im-
plementation not only significantly outperforms the original approaches from [6],
but also is competitive with LRU and FIFO.

3.1 Implementation

Given the overwhelming amount of requests to revealed pages in practical inputs,
our implementation mainly focuses on processing these as fast as possible. We
first recall that RDM is an OnOPT algorithm which assigns to each requested
page the priority 0.8t + 0.1(t − t0), where t is the current timestamp and t0
is the timestamp when the page lastly entered the support. Moreover, t is not
increased upon revealed requests.

Throughout this section we denote by n the input size (the number of re-
quests), by l the number of non-empty layers (at the current request time), and
by m the page-set size (the number of pairwise distinct pages in the input).
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Structure. We require that for each page p in the support the following informa-
tion is stored: p.t – the timestamp of the last request, p.prio – the priority of the
page, and any additional fields that might be required for computing the priority
(e.g., in the case of RDM p.t0 – the timestamp when p entered the support).
To do so we use direct addressing, i.e. an array of page-set size where for each
page the associated information is accessed by a look-up at the corresponding
element. We note that an alternative implementation using a hash table has the
advantage of using space proportional to the support size, but this increases the
runtime via higher constant factors.

We first note that new layers are created only upon requests to Opt-miss
pages, i.e. pages in L0. When this happens, we assign to the newly created layer
a timestamp t equal to the current timestamp. This value is not modified while
the layer is in support, i.e. until it is merged with L0.

Fact 1 For each layer Li having timestamp t and for any pages p ∈ Li and
q ∈ Lj with j < i, it holds that t ≤ p.t and t > q.t.

Proof. By construction, for each i with 0 ≤ i < k we have that the last request
for any page in Li is smaller than the last request of any page in Li+1. ��

We store in a layer structure information only about the non-empty layers in the
support. We do not store the empty layers – it suffices for each non-empty one to
keep the number of empty layers preceding it. For each non-empty layer Li, we
keep the following: the timestamp t, a value v which is at all times equal to 1+ei
where ei is the number of consecutive empty layers preceding Li, andmem which
stores the amount of pages in Li that are in the cache, see e.g. Figure 2. We store
these layers in an array (l1, . . . , ll) where li corresponds to the ith non-empty
layer. By Fact 1, we have that l1.t < l2.t < · · · < ll.t. Therefore, identifying the
layer that a certain page belongs to can be done using binary search with its last
request as key. Also, layers can be inserted and deleted in O(l) time. Finally,
it supports a find-layer-j operation, which, given a layer index i, returns some
layer lj , with j ≥ i such that |M ∩ Sj | = j. This layer is identified as the first lj
with j > i, satisfying

∑j
i=1 li.v =

∑j
i=1 li.mem.

We note that, asymptotically, a search tree augmented with fields for prefix
sum computations is much more efficient than an array. Nonetheless, we chose
the array structure because of the particular characteristics of the layers: inser-
tions are actually appends and take O(1) time, few non-empty layers, and the
constants involved are small.

Finally, we store the pages contained in the cache in an (unsorted) array of
size k, where page replacements are done by overwriting.

Implementing OnOPT. We implementOnOPT algorithms using the structures
described above.

If a page is revealed, no replacement is done because it is in cache. Moreover,
no layer changes are required. A page is revealed iff its last request is greater
than or equal to ll.t. Therefore, processing a revealed page takes O(1) time.
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Fig. 2. Example for L = (∅|∅|2, 3, 5, 10|∅|1, 4, 7, 11|∅|∅|6, 8, 9), emphasized pages are in
cache M = (2, 10, 1, 4, 11, 6, 8, 9). Pages are not stored in the layer structure.

If the requested page is an Opt-miss page, it is not in the cache and we
first evict the page having the smallest priority. We identify the victim page
by scanning the cache array for the minimum priority. Finally, we replace the
selected page with the requested one. To update the layers, we first merge Lk−1

and Lk as follows: if ll.v > 1 then set ll.v = ll.v−1 as Lk−1 was empty; otherwise,
i.e. ll.v = 1, delete this layer. Afterwards, we simply append a new layer ll with
ll.t set to the current timestamp, ll.v = 1, and ll.mem = 1: there are no empty
sets before the last layer and the new Lk has one element which is in memory.
Altogether, processing an Opt-miss page takes O(k) time.

It remains to deal with requests to unrevealed pages. If a cache miss occurs
we first identify a page to evict as follows. We look the page’s layer li up in the
layer structure. Using the operation find-layer-j, we identify the layer lj , and then
by scanning the cache array find and evict the page with the smallest priority
among the pages having last request strictly less than lj+1.t. This ensures that
the selected page is in the first j layers. To update the layers, we set li.v = li.v−1
if li.v > 1 and delete li otherwise. This not only sets Li−1 = Li−1 ∪ Li, but
also ensures the necessary left shifts of the layers to the right. Finally, we set
ll.v = ll.v + 1 to reflect a new empty layer before Lk. After updating the last
request for the requested page, it becomes revealed since this value is greater
than ll.t. Thus, processing an unrevealed page takes O(l) time for a cache hit
and O(k) time for a cache miss.

Theorem 2. Assuming m pairwise distinct pages are requested, a cache of size k,
and l non-empty layers, our implementation uses O(m) space and processes a
revealed page in O(1) time and an Opt-miss page in O(k) time. Unrevealed pages
take O(l) time for cache hits and O(k) time for cache misses.

Corollary 1. Assuming that a ratio of 1−O(1/k) requests are to revealed pages,
our implementation processes a request in O(1) amortized time.

3.2 Experimental Results

In this section we conduct experiments which demonstrate empirically that our
implementation for OnOPT algorithms is competitive with both LRU and
FIFO, which leads us to believe that algorithms in this class, and RDM in
particular, are of practical interest.

Experimental Setup. For OnOPT algorithms, apart from the engineered version
previously introduced we implemented the two versions described in [6]. The first
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one uses linked lists and processes a page in O(|S|) time and the second uses a
binary search tree which takes O(log |S|) time per page, where |S| is the support
size. Furthermore, for each of these implementations we also developed versions
using the compressed layer partition. We also consider two implementations for
LRU and one for FIFO. Similarly to the OnOPT implementations, we assume
that for each page we associate O(1) information which can be accessed in O(1)
time. This is done by direct addressing, i.e. we store an m-sized array where the
ith entry stores data about page i. For LRU, the first implementation, denoted
LRUlist, uses a linked list storing the pages in cache sorted by their last request.
Keeping for each cached page a pointer to the corresponding list element, a page
request takes O(1) time. The second implementation, LRUlinear, uses an array
of size k to store the cache contents. On a cache miss, the array is scanned to
identify the page to evict. The first implementation treats a cache miss much
faster than the second one but pays more time per cache hit to update the
recency list. For FIFO, a circular array stores the FIFO queue.

All the experiments were conducted on all cache traces on a regular Linux
computer having an Intel i7 hex-core CPU at 3.20 GHz, 10 GB of RAM, kernel
version 3.1, and the sources were compiled using gcc version 4.5.3 with opti-
mization -O3 enabled. For each data set and each cache size the runtimes were
obtained as the median of five runs. Due to space limitations we show experi-
mental results for only two cache traces, namely go and winword; the results for
all traces are available in the full version.

Amount of Non-empty Layers. We first compare the amount of non-empty lay-
ers that we use in our implementation against the k layers used in the non-
compressed one. In Figure 3 it is shown that typically both the maximum and
the average number of layers are much smaller than k. As an extreme example,
the gnuplot trace has a page-set of nearly 8000 pages, yet the maximum num-
ber of layers never exceeds 7, and the average is mostly between 2 and 3. This
greatly reduces the runtime for updating the layers.

OnOPT Implementations. We compare the five OnOPT implementations using
the RDM priority assignment, namely the one previously described and the two
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Fig. 4. The runtime for the various implementations of RDM on selected datasets

implementations in [6], each of them using the compressed and uncompressed
layer partition. Surprisingly, both implementations using the binary trees were
hopelessly slow, mainly because they require for each request, revealed or not,
to update the path in the binary tree from the requested page to the root. In-
stead we use an approximation of RDM for the tree implementation using the
compressed partition, where for revealed requests priorities do not change and
this update is not necessary; the results shown are for this approximation. The
runtime results for the two selected traces are given in Figure 4. As expected, our
new implementation outperforms the previous ones, for small cache sizes by sig-
nificant factors. Also, the implementations using the compressed layer partition
significantly outperform their non-compressed counterparts.

OnOPT vs. LRU and FIFO. Having established that our new implementation
is the fastest for OnOPT algorithms in general and RDM in particular, we
compare it against FIFO and the two LRU implementations. The results in
Figure 5 show that typically FIFO is the fastest algorithm while the LRUlist

is the slowest. While FIFO being the fastest is expected due to its processing
pages in O(1) time with very small constants, the fact that LRUlinear out-
performs LRUlist despite its worst case of O(k) time per page is explained by
the overwhelming amount of cache hits (over the observed ratio of 1 − O(1/k)
of revealed requests). For these requests, LRUlinear only updates the last re-
quest for the requested page, whereas LRUlist moves elements in the recency
list which triggers higher constants in the runtime. Finally, we note that RDM

typically is slower than LRUlinear by small margins, which can be explained
by the fact that both algorithms process revealed requests very fast and cache
misses by scanning the memory; RDM has a slight overhead in runtime to up-
date the layers and assign priorities. An interesting behavior is that for large
cache sizes RDM is slightly faster than LRULinear, which we explain by a
machine-specific optimization which does not write a value in a memory cell if
the cell already stores the given value. Essentially, LRUlinear always updates
the last request for the current page, while RDM does not increase the timer for
revealed requests meaning that no data associated with pages changes if many
consecutive revealed requests occur. This typically happens for large cache sizes.
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Fig. 5. The runtime for LRU, FIFO, and our RDM implementation

Misses with time penalty. We simulate a scenario where each cache miss inflicts
a time penalty. We choose a typical cost of 9ms [15, Chapter 1.3.3] per cache
miss. Again, we compare RDM against LRU and FIFO, however the runtime
of the algorithm will be given by its actual runtime plus the penalty of 9ms
for each miss, i.e. total = runtime + #misses · 9ms. Moreover, for both LRU

and FIFO we set the runtime to zero, so they only pay the penalty for cache
misses. In this scenario the total cost is dominated by this penalty. The results
in Figure 6 show that despite the zero runtime for LRU and FIFO, RDM still
outperforms them on many cache sizes; in general, these results hold for the other
thirteen cache traces as well. This is because the runtime component for RDM is
about one second, which corresponds to about 100 misses. Given that typically
RDM outperforms LRU and FIFO by more than 100 misses, it becomes the best
algorithm for most datasets if the cache size is not too large; for large cache sizes
algorithms incur significantly fewer misses and the runtime component becomes
more important.
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Abstract. Primal heuristics have become an essential component in
mixed integer programming (MIP). Generic heuristic paradigms of the
literature remain to be extended to the context of a column generation so-
lution approach. As the Dantzig-Wolfe reformulation is typically tighter
than the original compact formulation, techniques based on rounding its
linear programming solution have better chance to yield good primal so-
lutions. However, the dynamic generation of variables requires specific
adaptation of heuristic paradigms. We focus here on “feasibility pump”
approaches. We show how such methods can be implemented in a context
of dynamically defined variables, and we report on numerically testing
“feasibility pump” for cutting stock and generalized assignment prob-
lems.

Keywords: Primal Heuristic, Dantzig-Wolfe Decomposition, Branch-
and-Price Algorithms.

1 Introduction

Heuristics are algorithms that attempt to derive “good” primal feasible solutions
to a combinatorial optimization problem. They include constructivemethods that
build a solution and iterative improvement methods such as local search proce-
dure that starts with an incumbent. The term “primal heuristic” generally refers
to methods based on the tools of exact optimization, truncating an exact proce-
dure or constructing solutions from the relaxation on which the exact approach
relies: techniques range from greedy constructive procedures to rounding a solu-
tion of the linear programming (LP) relaxation, using the LP solution to define a
target, or simply exploiting dual information to price choices. Today’sMIP solvers
rely heavily on generic primal heuristics: progress in primal heuristics is quoted
as one of the main source of commercial solver performance enhancement in the
last decade [6]. High quality primal values help pruning the enumeration by bound
and by preprocessing (constraint propagation). They are also essential in tackling
large scale real-life applications where the exact solver is given limited running
time and a realistic ambition is to obtain good primal solutions.

Heuristics based on exact methods have found a new breath in the recent
literature. The latest developments are reviewed in [5,12]. Here we focus on
the so-called feasibility pump algorithm [1,11]. The method entails rounding the
solution of the Linear Programming (LP) relaxation to the closest integer. It
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might lead to an infeasible integer solution. But it defines a target for integer
optimization, i.e., the LP is re-optimized with the objective of minimizing both
the distance to that target and the original objective value. And the process
iterates. Recently this paradigm has been extended from the context of binary
integer programs to general integer programs [4,13]. Our purpose is to examine
possible extensions of feasibility pump to the case where one works with a column
generation approach for the Dantzig-Wolfe reformulation of the problem.

The column generation literature reports many application specific studies
where primal heuristics are a key to success: some heuristics have been imple-
mented either by taking decision in the space of the original compact formulation
(using a so-called robust approach), others involve decision directly in the space
of the Dantzig-Wolfe reformulation. Here, we focus on the latter direct approach
that fully exploits the specificity of Dantzig-Wolfe decomposition: the price coor-
dination mechanism that brings a global view and the more aggregate decisions
that enable rapid progress in building a primal solution (fixing variables of the
Dantzig-Wolfe reformulation has a much stronger impact than when fixing vari-
ables of the original formulation). Our aim is to extract generic methods for use
in branch-and-price algorithms.

Making heuristic decision on the variables of the Dantzig-Wolfe (DW) refor-
mulation requires particular attention to derive heuristics that are “compatible”
with the pricing problem solver as highligthed herein. Otherwise, it may impair
the effectiveness of the column generation approach that relied on the existence
of an efficient pricing oracle. Hence, the generic primal heuristic paradigm must
be adapted if one works with the column generation formulation. Alternatively, if
one makes heuristic decision on the variables of the original compact formulation,
then the generic primal heuristics for mixed integer programming apply directly.
However, projecting the master solution in the original variable space is not al-
ways straightforward. First, the projection is not defined in the common case of
identical subsystems. Second, because a modified original formulation (as induced
by the primal heuristic) calls for a modified DW reformulation with possibly the
same issues as when implementing the heuristic in the DW reformulation.

The rest of the paper is organized as follows. In Section 2, we review stan-
dard primal heuristics techniques based on mathematical programming and more
specifically the feasibility pump heuristic. We then discuss in Section 3 the specific
difficulties in implementing primal heuristics in a column generation context and
we propose a simple strategy to get around these technical issues. In Section 4,
we develop a general purpose feasibility pump heuristic for use in a column gen-
eration approach. This generic method is evaluated experimentally as reported in
Section 5. In our conclusion, we analyze the results and discuss further work.

2 Primal Heuristics for MIP and Feasibility Pump

Assume a bounded integer program with n variables:

z := min{c x : A x ≥ a, x ∈ INn} .
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Let xLP be a solution to its Linear Programming (LP) relaxation, and let zLP

be its value. A “rounding heuristic” consists in iteratively selecting a fractional
component of xLP that must take integer value and fix it to an integer value or
simply reset the lower (resp. upper) bound on this component. The method is
defined by a rule for selecting the component and its fixed value or bound (such
as least fractional or guided search among the rules reviewed in [5]). “Diving
heuristics” differ from simple rounding heuristics by the fact that the LP is re-
optimized after bounding or fixing one (or several) variables. Diving can be seen
as a heuristic search in a LP-based branch-and-bound tree: the search plunges
depth into the enumeration tree by selecting a branch heuristically at each node.

The feasibility pump heuristic can be seen as specific iterative rounding pro-
cedure [1,11]. It was originally developed for a binary integer program:

min{c x : A x ≥ a, x ∈ {0, 1}n} .

Feasibility pump entails exploring a sequence of trial solutions, x̃, obtained by
rounding to the closed integer solution to the LP solution, xLP , of a program
with modified objective function. If the rounded trial integer solution is feasible
the algorithm stops with this primal candidate. Otherwise, the rounded solution
serves as a target to which one aims to minimize some distance measure. As-
suming that the new objective function combines the original objective with the
L1 norm to the target solution, the modified problem takes the form:

min{c x+ ε(
∑
j∈J0

xj +
∑
j∈J1

(1 − xj)) : Ax ≥ a, x ∈ [0, 1]n} . (1)

The index sets J0 ⊂ J and J1 ⊂ J form a partition of J = {1, . . . , n}. They
define respectively the components that take value 0 or 1 in the previous trial
integer solution, x̃, obtained through rounding the LP solution of (1). Parameter
ε controls the impact of the cost modifications relative to the original objective.
Extending feasibility pump to a general integer program requires an adapted
distance measure [4,13]. Assuming bounded integer variables xj ∈ IN , with lj ≤
xj ≤ uj , j ∈ J , the modified problem could take the form:

min{c x+ ε(
∑

j:x̃j=lj

(xj − lj) +
∑

j:x̃j=uj

(uj − xj) +
∑

j:lj<x̃j<uj

dj) : Ax ≥ a, (2)

dj − x̃j ≤ xj ≤ dj + x̃j ∀j, x ∈ IRn }(3)

where (3) are additional constraints needed to define auxiliary variables dj .

3 Primal Heuristics Combined with Column Generation

In the context of a column generation approach, we assume a mixed integer
program with decomposable structure (a subset of constraints is assumed to
have a block diagonal structure):

[P ] min{cx : Ay ≥ a, y =
∑
k

xk, Bkxk ≥ bk ∀k, xk ∈ INn︸ ︷︷ ︸
xk∈Xk

} (4)
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where Ay ≥ a represent “complicating constraints”, while optimization over
subsystems Xk defined by subsystem Bkxk ≥ bk is “relatively easy” (i.e., op-
timization over Xk is assumed to be tractable). In the sequel, to simplify the
presentation, subsystems Xk are assumed to be bounded pure integer programs
and Gk is an enumeration of the feasible solutions to Xk, i.e., Xk = {xg}g∈Gk .
The structure of [P ] can be exploited to reformulate it as the master program:

min{
∑

k,g∈Gk

(cxg)λk
g :

∑
k,g∈Gk

(Axg)λk
g ≥ a;

∑
g∈Gk

λk
g = 1 ∀k; λk

g ∈ {0, 1} ∀g, k} .

(5)
When each block is identical, as is the case in many applications, let Bx ≥ b
be the constraint set defining one block subsystem Xk = X = {Bx ≥ b, x ∈
INn} ∀k, and the master takes the form:

[M] ≡ min{
∑
g∈G

(cxg)λg :
∑
g∈G

(Axg)λg ≥ a;
∑
g∈G

λg = K; λg ∈ IN ∀g} (6)

where λg =
∑

k λ
k
g , G is the set of generators of X , and K is the number

of identical blocks. In the sequel, we assume identical subproblems and hence
master formulation (6) unless specified otherwise. The master program [M ] is
solved by Branch-and-Price: at each node of the Branch-and-Bound tree the
linear relaxation of [M ] is solved by column generation. The reduced cost of a
column g ∈ G takes the form (c− πA) xg − σ, where (π, σ) are the dual solution
associated with constraints Ax ≥ a in [M ] and

∑
g∈G λg = K respectively. Thus,

the pricing problem is of the form: min{(c− πA) x : Bx ≥ b, x ∈ INn}.
The most commonly used generic primal heuristic in this column generation

context is the so-called restricted master heuristic. The column generation for-
mulation is restricted to a subset of generatorsG and associated variables, and it
is solved as a static IP. The main drawback of this approach is that the resulting
restricted master integer problem is often infeasible (the columns of G – typically
defined by the LP solution – may not be combined to an integer solution). In
an application specific context, an ad-hoc recourse can be designed to “repair”
infeasibility. Such implementation has been developed for network design [8],
vehicle routing [2,9,20] and delivery [19] problems. Alternatively, one can use
the master LP solution as a base for column selection giving rise to a round-
ing heuristics. Such heuristics (sometimes coupled with local search) have been
successfully applied [3,7,10,15] (on cutting stock, planning, and vehicle routing
problems). However, reaching feasibility remains a difficult issue that is often
handled in an application specific manner. Diving heuristics are generic ways of
‘repairing” infeasibility as we highlight it in [14].

Deriving primal heuristics based on rounding the Dantzig-Wolfe reformulation
LP solution raises some difficulties. Bounding a master variable or modifying its
cost can be incompatible with the column generation approach in the sense that
it can induce modifications to the subproblem that are not amenable to the
pricing oracle. Depending on the application, the oracle may or may not still
be applicable after some modifications to the problem structure. In the context



336 P. Pesneau, R. Sadykov, and F. Vanderbeck

of this paper, our aim is to derive a generic algorithm that applies without
any required modifications to the pricing subproblem formulation. To achieve
this goal, we restrict our problem modifications to operations that are easy-to-
implement in the master and do not induce subproblem modifications: namely
master variable lower bound setting and cost reduction.

Indeed, setting an upper bound on an existing column, i.e., enforcing λg ≤ ug,
or a slightly more general constraint of the form (3) in the master, yields an
associated dual variable that must be accounted for in pricing (by modeling an
extra cost for a specific solution xg). Alternatively, one must restrict the pricing
problem to avoid regenerating xg; indeed, if λg ≤ ug is ignored, the column
xg might otherwise be wrongly regenerated as the best price solution. Both
approaches induce significant modifications to the pricing procedure. However,
setting a lower bound on an existing column of the form λg ≥ lg is trivial: this
constraint can safely be ignored when pricing. Indeed, ignoring the dual price
“reward” for generating this column, means that the pricing oracle overestimates
its reduced cost and might not generate it; but the column needs not be generated
since it is already in the master. Similarly, we cannot increase the cost cg of
a variable λg beyond its true cost, because then λg will price out negatively
according to the original pricing oracle, and hence it can be regenerated as
the best subproblem solution, unless we modify the pricing problem to avoid
this. On the other hand, decreasing the cost cg of a variable λg is amenable
to the unmodified column generation scheme, as the pricing oracle shall simply
overestimate the reduced cost of such already included column.

An alternative approach is to perform the feasibility pump problem modifica-
tions in the space of the original formulation (4). Having solved the LP relaxation
of (5), one can project its solution in the original space, defining

xk =
∑
g∈Gk

xgλk
g , (7)

and apply the primal heuristic procedures of Section 2 on this projected solution.
There remains a key issue however. The projection is not uniquely defined in the
case where there are K identical subproblems. Then, the LP solution of the
aggregate master (6) can be disaggregated using for instance:

λk
g = min{1, λg −

k−1∑
κ=1

λk
g , (k −

∑
γ≺g

λγ)
+} ∀k = 1, . . . ,K, g ∈ G , (8)

where ≺ defines a lexicographic ordering of columns g ∈ G (see [23] for details).
With such disaggregated λk

g values, one can use projection (7), but the reverse

relation cannot be properly enforced, i.e., a restriction on xk
j variables cannot

be modeled in (6).
It is also important to observe that acting on the variables of the original

formulation is a completely different decision space than acting on the DW re-
formulation variables. In particular, variable bounding or cost modification deci-
sions have a more macroscopic effect when done in the DW reformulation. This
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can be both an advantage (faster progress to a integer solution) and a drawback
(of quickly painting yourself in a corner). This study focus on primal heuristics
for the DW reformulation because in many applications making more aggregate
fixing is more an advantage than a drawback and secondly because that is where
the need for innovation lies (primal heuristics in the original formulation can
implemented as defined in the standard paradigm for MIPs).

From the above discussion, we conclude that to implement the feasibility pump
paradigm, we shall restrict the method to using lower bound setting and cost
reduction. Our algorithm shall combine rounding and diving paradigm: defining
lower bound on master variables is implemented by defining a partial solution.
Indeed, rounding down variable λg amounts to taking �λg� copies of this column
in the partial solution. The residual master problem that remains once the partial
solution, denoted λ̃, is extracted takes the form:

[RM ] ≡ min{
∑
g∈G

(cxg)λg :
∑
g∈G

(Axg)λg ≥ ã;
∑
g∈G

λg = K̃; λg ∈ IN ∀g} (9)

where ã = a −
∑

g(Ax
g)λ̃g and K̃ = K −

∑
g λ̃g. The columns that are part

of the partial solution remain in the residual problem for further selection if
suitable. Thus, the master variable lower bounds are implemented implicitly by
the definition of the partial solution.

A key feature in this primal heuristic is preprocessing: it is important to
“cleanup” the residual problem after fixing a partial solution, deleting all columns
that could not be part of an integer solution to the residual problem (and hence
would lead to infeasibility if selected). Thus, preprocessing helps to avoid the pri-
mal heuristic dead-ending with a unfeasible solution. In this context, so-called
“proper columns” are columns that could take integer value in an optimal so-
lution to the residual master problem [22]. If the oracle assumes a bounded
subproblem, one can tighten lower and upper bounds on subproblem variables
to generate proper columns. In that case, we refine the bounds on subproblem
variables by constraint propagation after fixing a partial master solution.

Observe that, as the residual master problem (9) that remains after a rounding
operationmight bemodified by preprocessing, its re-optimizationmight not neces-
sarily be trivial and it can lead to generating new columns. This mechanism yields
the “missing” complementary columns to build feasible solutions. If the residual
master is however infeasible for a given partial solution, re-optimization can be a
way to prove it early through a Simplex phase 1 and/or preprocessing.
Re-optimization of the master LP after fixing, however important feature for the
success of the approach, can be time consuming. Tuning the level of approximation
in this re-optimization allows one to control the computational effort.

4 A Generic Feasibility-Pump Algorithm

In Table 1, we propose a generic heuristic for use in a column generation context
that exploits the main ideas of the feasibility pump paradigm. A target solution λ̃
is defined by rounding each component of the LP solution of the master (6) to the
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closest integer. If λ̃ defines a feasible solution to (6), we stop. Otherwise we use it
as a target point. To induce a new master LP solution “closer” to target solution
λ̃, we decrease the cost of columns that were rounded-up to define λ̃ and increase
the cost of those that were rounded down. However, we do not increase column
costs beyond their original value; otherwise, this would induce the regeneration
of the same column at its initial cost. The two cost modification factor functions
that we considered are presented in Figure 1. The first one is a direct adaptation
of the cost modification arising in (1). The second is a complementary variant
that aims at stabilizing the part of the solution that is currently integer, using
the cost modification to make the current integer solution even more attractive.

λ

f1(λ,α)

0.1

−0.1

α

1

f1(λ, α) =

{
0.1 λ

α
if λ ≤ α

−0.1 (1−λ)
(1−α)

if λ > α

λ

f2(λ,α)

−0.1

1

0.1

1

α

f2(λ, α) =

{
0.1 (1− λ

α
) if λ ≤ α

−0.1 (λ−α)
(1−α)

if λ > α

Fig. 1. Two cost modification factor functions of the form f(λ, α) where λ ∈ [0, 1]
is the factional part of a column value in the master LP solution and α ∈ (0, 1) is a
fractionality threshold parameter

At iteration t, the modified master program becomes:

[M t] ≡ min{
∑
g∈Gt

ctgλg :
∑
g∈Gt

(Axg)λg ≥ at;
∑
g∈Gt

λg = Kt; λg ∈ IN ∀g ∈ Gt}

(10)
where Gt, at, Kt, and ctg are updated in the course of the algorithm. Initially,
G0 is the set of columns generated in the course of solving the linear relaxation
of the master program, [M] given in (6), by column generation, a0 = a, K0 = K,
and c0g = cxg for all g ∈ G0. Then, at iteration t, we compute the LP solution λt

to (10), and its rounded value λ̃. If the later is not feasible for (6), we iterate the
feasibility pump procedure. In our implementation, we define an initial partial
solution by rounding down the LP solution to the master (6) before going into
the feasibility pump heuristic (see Step 2 in Table 1). In this way, our residual
master program is close to a 0 - 1 problem and we omit the subtleties required
to handle general integer problems. Finally, observe that the algorithm cycles
with the same master LP solution if no columns are rounded up in the target
solution and hence no column cost are decreased. To avoid this situation, we then
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Table 1. Feasibility Pump heuristic. Let Gf denote the current set of fractional value
columns, i.e., Gf = {g ∈ Gt : �λt

g� < λt
g < �λt

g�}), while λ̃g denotes the rounded value

of λt
g, which can be obtained by rounded up or down the current LP value. λ̂ denotes

the current partial solution, while f(.) is one of the function of Figure 1.

Step 1: Solve the LP relaxation of the master (6) by column generation. Set the
iteration counter t ← 0. Initialize the column set G0 to the columns generated in
solving the master LP, the right-hand-sides to a0 ← a and K0 ← K. Let λ0 be
the master LP solution. Initialize the master column current costs, c0g ← cg, and

the current partial solution, λ̂g ← 0, for all g ∈ G0. The fractionality threshold is
initially set to α ← 0.5.

Step 2: Fix a partial IP solution: λ̂g ← λ̂g + �λt
g� for all g ∈ Gt. Reset λ̃ ← 0; then

set λ̃g ← �λt
g� and reset λt

g ← λt
g − �λt

g�.
Step 3: Update the master constraint right-hand-sides: at ← at−

∑
g∈Gt Ax

gλ̃g,K
t ←

Kt −
∑

g∈Gt λ̃g. Apply preprocessing to the master, deleting non-proper columns

from Gt and possibly update the pricing problems (possibly setting new bounds on
subproblem variables in one aims to generate only proper columns). Using column
generation, re-optimize the linear relaxation of the residual master program (10),
possibly adding columns to Gt. If residual master problem is shown infeasible
through preprocessing or Phase 1 of the Simplex algorithm, STOP. Else, reset λt

to the current master LP solution and update Gf .
Step 4: Define the solution rounded to the closest integer: reset λ̃ ← 0; then set

λ̃g ← �λt
g� if λt

g ≤ α and λ̃g = �λt
g� otherwise, for all g ∈ Gt.

Step 5: If no columns were rounded up, try to reset the fractionality threshold α.
I.e., let αmin = ming∈Gf {λt

g − �λt
g�} and αmax = maxg∈Gf {λt

g − �λt
g�}. If αmin <

αmax, decrease the fractionality threshold: α ← αmin+αmax

2
and return to step 4.

Otherwise, if αmin = αmax, apply a diversification step by fixing a column from
g ∈ Gf to value λ̃g = �λt

g� and go-to Step 3.

Step 6: If (λ̂+ λ̃) defines a complete primal solution, i.e., is a feasible integer solution
to (6), record this solution and STOP.

Step 7: Define the updated column costs using rule: ct+1
g ← ctg for g ∈ Gt \Gf and

ct+1
g ← min{cg, f(λt

g − �λt
g�, α) ctg} ∀g ∈ Gf .

Step 8: Let t ← t + 1 and re-optimize the linear relaxation of the residual master
program (10) with modified cost using column generation; record its solution λt

and update Gf .
Step 9: If the maximum number, T , of feasibility pump iterations has been reached,

go-to Step 2.
Step 10: Go-to Step 3.

decrease the fractionality threshold parameter (see Step 5 in Table 1), unless all
fractional columns have the same fractionality. In the later case, we arbitrarily
fix a column to its rounded up value to induce a diversification.

5 Computational Results

We built the above feasibility pump heuristic into BaPCod [21], a generic Branch-
and-Price Code that we developed. We tested these procedures on standard
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models: the Cutting Stock Problem (CSP) and the Generalized Assignment Prob-
lem (GAP). For each model, we present average computational results on random
instances similar to those of the literature. We tried both cost modification fac-
tor functions presented in Figure 1. In the numerical result tables, column “found”
gives the fraction of instances for which the feasibility pump heuristic found a fea-
sible primal solution. Tables report either the number of instances solved to opti-
mality or the “gap” computed as the difference between the solution found and the
column generation lower bound in per cent from the latter. This statistic is the av-
erage among instances for which a feasible solution has been found. Column “time”
gives the average heuristic execution time in seconds over all instances, including
those for which the heuristic fails to find a primal solution (those require typically
larger computing time). For comparison, we present the performance of the diving
heuristic presented in [14]: after fixing the lower integer part of themaster solution,
this heuristic rounds one column value selected according to the least fractional cri-
teria, re-optimize the residual master, and reiterates until either finding a feasible
solution or reaching infeasibility.

The results for the Cutting Stock Problem (CSP) are given in Table 2 for
instances with 50 and 100 items respectively. For the CSP, the master linear
program is:

min

⎧⎨
⎩∑

g∈G

λg :
∑
g∈G

xg
i λg ≥ di ∀i;

∑
g∈G

λg ≤ K; λg ≥ 0 ∀g

⎫⎬
⎭ (11)

where G is the set of feasible solutions to the pricing subproblem:

max

{∑
i

πixi :
∑
i

wixi ≤W, xi ∈ IN, i = 1, . . . , n

}

We solve the latter using the integer knapsack solver of Pisinger [17]. Note that
for this application, the residual master problem is always feasible as one can use
as many patterns as needed. Fifty random instances are generated using uniform
distributions: W = 10000, wi ∈ U [500, 2500], di ∈ U [1, 50]. For these tests, the
primal solution is always equal to the root dual bound or one unit above.

In the Generalized Assignment Problem (GAP), one searches for a minimum
cost assignment of a set of jobs indexed by j to a set of machines indexed by m
with limited capacity. The master linear program is:

Table 2. Results for Cutting Stock instances

n max di function found opt gap time

50 50 f1 50/50 45/50 0.05 6.14
50 50 f2 50/50 41/50 0.09 4.82
50 50 Pure Div 50/50 43/50 0.07 1.17

100 50 f1 50/50 43/50 0.04 23.93
100 50 f2 50/50 40/50 0.05 17.98
100 50 Pure Div 50/50 35/50 0.08 4.08
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min

⎧⎨
⎩ ∑

m,g∈Gm

cgλg :
∑

m,g∈Gm

xg
jλg = 1 ∀j ∈ J ;

∑
g∈Gm

λg ≤ 1 ∀m ∈M ; λg ≥ 0 ∀g

⎫⎬
⎭ ,

where Gm is the set of feasible assignments to machine m solving the 0 − 1
knapsack problem:

max

⎧⎨
⎩∑

j∈J

(πj − cmj ) xm
j :

∑
j∈J

pjmxm
j ≤ wm; xm

j ∈ {0, 1} ∀j ∈ J

⎫⎬
⎭ .

We solve the latter using the code of Pisinger [16]. Random instances were gen-
erated in the same way as the hard instances of type D in [18]. The results are
shown in Table 3.

Table 3. Average results for 50 instances of type D for the Generalized Assignment
Problem

m n function found gap time

10 50 Pur Div. 34/50 1.00% 0.37
10 50 f1 36/50 0.98% 1.81
10 50 f2 48/50 1.14% 0.81

20 100 Pur Div. 35/50 0.65% 2.46
20 100 f1 36/50 0.55% 14.56
20 100 f2 42/50 0.75% 5.92

6 Conclusion

Our study demonstrates that the feasibility pump primal heuristics paradigm can
be successfully extended to a column generation context. The key to such exten-
sion is to restrict problem modifications to those that are compatible with the
column generation procedure: our implementation relies only on a cost reduction
mechanism and implicitly on setting lower bound on master variables. As in the
case for diving heuristics, the variable fixing done in our implementation of the
feasibility pump heuristic can lead to a dead-end with an unfeasible residual mas-
ter program. Compared to our previous experience using a pure diving heuristic,
as reported in [14], our numerical preliminary experiment shows that feasibil-
ity pump leads to more feasible primal solutions and relatively good solutions.
The diversification mechanisms that we experimented for diving heuristics in
[14] (i.e., a limited backtracking when the heuristic dead-ends) could be adapted
for feasibility pump. In future work, we also intend to test the approach on a
larger scope of applications and to compare feasibility pump implementations in
the master program, versus implementing cost modification in the space of the
compact formulation, when this is feasible, i.e., in case such as the GAP where
there are no multiple identical subproblems.
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Abstract. The Generalized Traveling Salesman Path Problem (GT-
SPP) involves finding the shortest path from a location s to a location t
that passes through at least one location from each of a set of general-
ized location categories (e.g., gas stations, grocery stores). This NP-hard
problem type has many applications in transportation and location-based
services. We present two exact algorithms for solving GTSPP instances,
which rely on a unique product-graph search formulation. Our exact al-
gorithms are exponential only in the number of categories (not in the
total number of locations) and do not require the explicit construction
of a cost matrix between locations, thus allowing us to efficiently solve
many real-world problems to optimality. Experimental analysis on the
road network of North America demonstrates that we can optimally solve
large-scale, practical GTSPP instances typically in a matter of seconds,
depending on the overall number and sizes of the categories.

1 Introduction

Within the last decade, the growing online presence of geospatial information
systems has made possible many novel applications in the fields of transportation
and location-based services. Many massive, online location databases are now
being made publicly available for mining spatial locations based on categorical
points of interest, thus paving the way for highly-advanced navigation solutions.

As an example, consider a traveler in a new city for the first time. On their
way to do some sightseeing at a local attraction, they wish to visit a coffee
house, a gas station, and an ATM (in no particular order). However, there may
be many such locations to choose from for each of these location types. As the
traveler likely does not care exactly which gas station, ATM, or coffee house
they visit (since each provides the same general type of service1), a desirable
solution is then any path which visits one of each of these location types with
the least overall detour on the way to the destination. Such a scenario is a
common occurrence for everyday personal navigation needs, and also has many
additional applications in transportation, in general.

In this paper, we establish an algorithmic framework for efficiently solving
such problem types on large-scale, real-world road networks. In Section 2, we

1 The locations are user-defined and may be made more specific; e.g., only consider
gas stations of a certain brand.

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 344–355, 2012.
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formalize this problem as the Generalized Traveling Salesman Path Problem
(GTSPP), and we discuss related work and our contributions. Section 3 presents
the foundation for our work by formulating GTSPP as a unique graph search
problem, including a standard search algorithm for this approach. Section 4
extends these ideas into a more advanced search algorithm, based around the
Contraction Hierarchies preprocessing technique. We present an experimental
analysis of these algorithms on the road network of North America in Section 5.
We conclude the paper with future research in Section 6.

2 Generalized Traveling Salesman Path Problems

Let G = (V,E,w) be a directed graph, with n = |V |, m = |E|, and edge weight
function w : E → R+. Let Ps,t = 〈v1, v2, . . . , vq〉 be a path in G from s = v1 ∈ V
to t = vq ∈ V . Let w(Ps,t) =

∑
1≤i<q w(vi, vi+1) be the total weight, or cost, of

Ps,t. The minimum-weight, or “shortest”, path cost from s to t is d(s, t).
A category set, C = {C1, C2, . . . , Ck}, defines a set of node subsets where,

for 1 ≤ i ≤ k, Ci = {ci,1, ci,2, . . . , ci,|Ci|} ⊆ V represents a distinct category of
locations. A path, Ps,t, satisfies a category set C if, for 1 ≤ i ≤ k, Ps,t ∩ Ci �= ∅
(i.e., Ps,t contains at least one node from each category). This is formally written
as Ps,t |= C. For any GTSPP instance 〈s, t, C〉, having category count k = |C|
and category density g = max

1≤i≤k
{|Ci|}, an optimal solution is a path P ′

s,t in G

such that P ′
s,t |= C and, ∀Ps,t in G where Ps,t |= C, w(P ′

s,t) ≤ w(Ps,t). This

optimal solution path is formally referred to as PC
s,t.

Related Work. The Generalized Traveling Salesman Problem (GTSP), also known
as Errand Scheduling, Group TSP, Set TSP, One-of-a-Set TSP, Multiple-Choice
TSP, and TSP with Neighborhoods, was originally introduced in the late 1960s
[7,15] as a generalization of the well-known TSP formulation. Given a set of
nodes partitioned into groups, or categories, the goal is to find a minimum-cost
tour that visits exactly one node from each category. As TSP is a special case of
GTSP in which each node defines its own category, then GTSP is also NP-hard.
A review of many original applications of this problem type is presented in [8].

Initial solutions for this problem were based on exact dynamic programming
formulations [7,14,15]. Other exact algorithms based on integer- and linear-
programming techniques are presented in [5,9,10,13]. Much research has also
been focused on transforming GTSP instances into standard TSP instances with
roughly the same number of total nodes [1,4,11]. Under these transformations,
an optimal solution to the transformed TSP instance is optimal for the original
GTSP instance. However, most exact TSP algorithms remain exponential in the
total number of nodes.

TSP problem variants having a fixed source node, s, and a fixed target node,
t, are more commonly known as Traveling Salesman Path Problems. Therefore,
in the remainder of our discussion we will be focused on the more specific Gen-
eralized Traveling Salesman Path Problem (GTSPP).
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Our Contributions. Unfortunately, nearly all of the previous exact algorithms
assume a pre-existing, complete graph on the set of category nodes (represented
as a cost matrix). Such an assumption is invalid for most real-world navigation
scenarios involving road networks, as these cost matrices must be computed
explicitly from the underlying road network, and we do not know the category
locations until query time (as they are likely to change from one use case to the
next). Furthermore, computing such matrices requires O(kg) graph searches, and
can thus be quite time consuming, and potentially even prohibitive, in practice,
especially for very large numbers of locations. For example, road networks can
have categories with potentially millions of locations, and a complete matrix on
such locations would require up to several terabytes of storage space.

To avoid these difficulties, we reformulate GTSPP as a unique graph search
problem which does not require the construction of a complete matrix between
category locations. Using this as our foundation for a general algorithmic frame-
work, we present two exact search algorithms for efficiently solving GTSPP in-
stances on real-world road networks.

Additionally, while the number of locations to consider may be quite large
in practice for many real-world GTSPP transportation and personal-navigation
applications (e.g., g = 100, 000), the number of categories is typically very small
(e.g., k = 5). For such real-world problems in which k � g (and often even 2k �
g) is typically true, our proposed approach proves highly-advantageous because,
unlike many of the algorithms discussed previously, our exact algorithms are
exponential only in the number of categories, k.

3 GTSPP Product Graphs

Given any category set C = {C1, C2, . . . , Ck}, let Bk = (P(C),⊂) be the
partially-ordered set (poset) defined by the power set of C when ordered by
inclusion. Such a poset, Bk, is called a Boolean lattice. The covering graph
of a Boolean lattice poset Bk = (P(C),⊂) on a category set C is a graph
G(Bk) = (P(C), E(Bk)), where E(Bk) = {(c, c′) | c, c′ ∈ P(C) ∧ c ⊂ c′ ∧ � c′′ ∈
P(C) : c ⊂ c′′ ⊂ c′}. The covering graph defines a directed acyclic graph (DAG)
on Bk. We present examples of the covering graphs for several Boolean lattices
in Fig. 1. Note that any path in the covering graph from the empty set to the
full set represents a specific sequence of categories along the path, based on their
order of accumulation (see Fig. 1). All k! category sequences are thusly repre-
sented as paths in this graph. Also note that the Boolean lattice and its covering
graph are exactly the same for any set of size k, as we can map the set members
into the natural numbers {1, 2, . . . , k} (hence the subscript k, not C, in Bk).

Given any graph G = (V,E,w) and Boolean lattice Bk for a category set C
of size k, we define the GTSPP product graph as GC = G × G(Bk) = (V ×
P(C), E1 ∪ E2), where product nodes are represented as 〈u, c〉 such that u ∈
V and c ∈ P(C), E1 = {(〈u, c〉, 〈v, c′〉) | c = c′ ∧ (u, v) ∈ E}, and E2 =
{(〈u, c〉, 〈v, c′〉) | u = v∧(c, c′) ∈ E(Bk)∧v ∈ c′\c}. The E1 edges represent a copy
of each original edge from G for every subset of C. For all (〈u, c〉, 〈v, c′〉) ∈ E1,
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{∅}

{C1}

(a) G(B1)

{∅}

{C1, C2}

{C1} {C2}

(b) G(B2)

{∅}

{C1, C2, C3}

{C1} {C2} {C3}

{C1, C2} {C1, C3} {C2, C3}

(c) G(B3)

Fig. 1. Covering graphs for Boolean lattice posets B1, B2, and B3 (from left to right),
respectively. The path highlighted in grey for G(B3) represents the category traversal
sequence 〈C2, C1, C3〉, based on the order of category accumulation along the path.

we define w(〈u, c〉, 〈v, c′〉) = w(u, v). The E2 edges represent the accumulation
of a new category (based on a corresponding covering graph edge) by inclusion
of a specific node within that category. For all (〈u, c〉, 〈v, c′〉) ∈ E2, we define
w(〈u, c〉, 〈v, c′〉) = 0. Any path from 〈s, ∅〉 to 〈t, C〉 in GC therefore represents a
satisfying path in the original graph, based on a specific accumulation sequence
of category nodes from each category.

We present a simple example of a GTSPP product graph in Fig. 2. For this
problem instance, we have two unique categories (each with two unique nodes),
and we must find the minimum-cost path from s to t which traverses one node
from each category (as shown in green in the original graph). The resulting
product graph is shown on the right of the figure. Edges from the set E1 are
shown as solid edges, whereas edges from the set E2 are shown as dashed edges.
The shortest path from 〈s, ∅〉 to 〈t, C〉 in the product graph is highlighted in grey,
and its cost is equivalent to the optimal solution cost for this GTSPP instance.

Theorem 1. Given any graph G and category set C = {C1, C2, . . . , Ck} (defined
on G), the shortest path from 〈s, ∅〉 to 〈t, C〉 in the product graph GC represents

{∅}

{C1, C2}

{C1} {C2} × =

s t

c1,1

c1,2

c2,1

c2,2

〈s, ∅〉

〈t, C〉

G(B2) G

∅

C1 C2

C

Fig. 2. Example product graph of graph G (with unit-cost edge weights) for category
set C = {C1, C2}
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an equivalent-cost, optimal solution for the GTSPP from s to t in the original
graph G; i.e., d(〈s, ∅〉, 〈t, C〉) = w(PC

s,t).

It follows from Theorem 1 that any shortest path algorithm will suffice to search
the resulting product graph (e.g., Dijkstra’s algorithm [3]).

Theorem 2. Given any graph G and category set C = {C1, C2, . . . , Ck} (defined
on G), a Dijkstra search from 〈s, ∅〉 to 〈t, C〉 in the product graph GC runs in
O(2k(m+ nk + nlogn)) time.

Note that we do not need to explicitly construct the entire product graph to
carry out the proposed search. We may instead perform an equivalent search
in this product graph by materializing the nodes of the graph only as they
are encountered implicitly during the search. This results in the potential for
significant space savings for cases in which a solution path is found before most
of the nodes are explored.

4 Product Graph Search Using Contraction Hierarchies

In this section, we further improve upon our proposed product-graph search ap-
proach by incorporating the graph preprocessing technique known as Contraction
Hierarchies (CH) [6], originally designed for solving point-to-point (PTP) short-
est path queries. We start with a brief overview of CH, followed by a discussion
of how to integrate CH for efficiently solving GTSPP queries.

4.1 Contraction Hierarchies Overview

Preprocessing. CH preprocessing orders the nodes in the graph, φ : V →
{1, . . . , |V |}, and then contracts the nodes in this order. Contracting a node,
v, removes it (temporarily) from the graph and adds so-called shortcut edges
(if needed) to preserve shortest path costs in the remaining subgraph. For each
pair of incoming and outgoing edges, (u, v) and (v, x), respectively, if the path
〈u, v, x〉 is a unique shortest path, then a new shortcut edge (u, x) is added with
weight w(u, v) + w(v, x) to bypass v in the remaining subgraph. The result is a
new graph G′ = (V,E ∪ E′, w), where E′ represents the added shortcut edges.

Query. The traditional CH shortest path query involves performing a forward
Dijkstra search from s in the “upward” graphG↑ = (V,E↑) where E↑ = {(u, v) ∈
E ∪E′ | φ(u) < φ(v)} along with a simultaneous backward Dijkstra search from
t in the “downward” graph G↓ = (V,E↓) where E↓ = {(u, v) ∈ E ∪ E′ | φ(u) >
φ(v)}. Let R↑

s = {v ∈ V | ∃Ps,v ⊆ G↑} be the set of all nodes reachable from

s in the upward graph. Similarly, let R↓
t = {v ∈ V | ∃Pv,t ⊆ G↓} be the set

of all nodes from which t is reachable in the downward graph. Let d↑s(v) and

d↓t (v) represent the shortest path cost from s to v in G↑ and from v to t in G↓,

respectively. The shortest path cost is taken as d(s, t) = min
∀v∈R↑

s∩R↓
t

{d↑s(v)+d↓t (v)}.
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4.2 Contraction Hierarchies for GTSPP

Sweeping Search. We preface this discussion by first establishing an alternative
PTP query approach, which does not require bidirectional Dijkstra search, but
instead takes advantage of a nice structural property of the resulting CH search
graphs.2 Specifically, each search graph is acyclic by definition (i.e., each search
can only increase in node rank order φ), thus allowing us to compute shortest
path costs using only linear scans of the search graphs in topological order. Since
the shortest path cost can be determined by considering only the reachable search
spaces of s and t in G↑ and G↓ respectively, it suffices to consider only the union
of these two search spaces R = R↑

s ∪R↓
t . Let Rφ = 〈v1, v2, . . . , vz〉 be the nodes

of R arranged in increasing rank order, φ, establishing a valid topological order.
For any v ∈ R, let the value d(v) represent the cost of the shortest path from s
found so far during the search.

The search begins by initializing d(s) = 0 and d(v) = ∞ for all v �= s ∈ R.
The search progresses in two phases: an upsweep and a downsweep phase. The
upsweep phase processes each node vi in increasing order of φ. For each outgoing
edge (vi, x), such that x ∈ R and φ(vi) < φ(x), we set d(x) = min{d(x), d(vi) +
w(vi, x)}. The downsweep phase then processes each node vi in the opposite
(decreasing) order of φ. For each incoming edge (u, vi), such that u ∈ R and
φ(u) > φ(vi), we set d(vi) = min{d(vi), d(u) + w(u, vi)}.

Lemma 1. Upon completion of the upsweep and downsweep phases, d(v) =
d(s, v) for all v ∈ R such that R↓

v ⊆ R.

This approach may be further extended to support many-to-many scenarios
with multiple sources S = {s1, s2, . . . , s|S|} and targets T = {t1, t2, . . . , t|T |} by
maintaining |S| separate cost values for each node in the unioned search space

R = {
⋃|S|

i=1 R
↑
si} ∪ {

⋃|T |
i=1 R

↓
ti}. Now, when relaxing the edges of a node during

both the upsweep and downsweep phases on Rφ, we relax all |S| costs before
progressing to the next node.

LEvel Sweeping Search (LESS). We incorporate this alternative CH-based search
algorithm into our GTSPP product-graph framework as follows. For the re-
mainder of the paper, we shall assume that our product graph incorporates
the preprocessed CH graph. By construction, each product graph is comprised
of exactly (k + 1) unique levels (as shown in Fig. 3). For 0 ≤ i ≤ k, level
Gi = GC [{〈u, c〉 ∈ V (GC) | i = |c|}] is the subgraph induced by product nodes
whose associated category subset has cardinality i. Each level is further com-
prised of smaller subgraphs Gx = G|x|[{〈u, c〉 ∈ V (G|x|) | c = x}], which we shall
call here set-equivalent (SE) subgraphs (also shown in Fig. 3). Within each level
Gi, by definition of our product graph, there cannot exist any path between two
distinct SE subgraphs (since the E1 edges only connect nodes within the same
SE subgraph and the E2 edges only connect nodes between consecutive levels).
For i > 0, this suggests that the costs within each SE subgraph of level Gi must
therefore depend solely on the costs established in the previous level Gi−1.

2 A similar approach has been discussed independently in [2].
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Fig. 3. An abstraction of the product graph GC for C = {C1, C2, C3}, illustrating
levels (shown in dark grey) and SE subgraphs (shown in light blue)

We wish to take advantage of this useful property in our GTSPP search.
Specifically, this allows us to process our product graph search one level at a
time. Furthermore, for each level, we may process the costs for each SE subgraph
independently, as these costs cannot influence one another. One solution would
be to separately search each SE subgraph (using separate upsweep/downsweep
phases), in any given order, for a given level. However, this would require 2k

separate upsweep and downsweep phases, one for each SE subgraph, and could
be largely redundant as the separate sweeps may re-explore many of the same
nodes and edges. An equivalent and more cache-efficient formulation is to instead
perform only (k+1) upsweep/downsweep phases (one for each level), maintaining
a separate cost value per node for each SE subgraph within a given level. That
is, when we process a node during a sweeping phase, we process all SE subgraph
costs at the current level for that node before proceeding to the next node.

Since we only need to consider shortest paths that begin at s, travel through
some nodes in C, and end at t, we may represent this search space as R = {R↑

s}∪
{
⋃k

i=1

⋃|Ci|
j=1{R↓

ci,j ∪R↑
ci,j}}∪{R

↓
t }. We begin by initializing d(〈s, ∅〉) = 0, and for

all other product nodes 〈u, c〉 �= 〈s, ∅〉 ∈ R × P(C), we initialize d(〈u, c〉) = ∞.
For 0 ≤ i ≤ k, we process each level Gi by keeping track of exactly

(
k
i

)
costs

for each node in R: one for each SE subgraph in level Gi. Before beginning
each sweeping phase on a given level Gi, if i > 0 we must transfer costs from
the previous search level Gi−1 via the established E2 edges, according to our
product graph definition. Specifically, for all (〈u, c〉, 〈v, c′〉) ∈ E2 : |c′| = i, we set
d(〈v, c′〉) = min{d(〈v, c′〉), d(〈u, c〉)} to transfer the costs. We then proceed to
perform an upsweep and then downsweep of Rφ (similar to before) taking care

to relax all
(
k
i

)
costs for each node in each sweeping phase.

Lemma 2. Upon completion of the upsweep and downsweep phases for level Gi,
d(〈v, c〉) = d(〈s, ∅〉, 〈v, c〉) for all 〈v, c〉 ∈ R × Pi(C) such that R↓

v ⊆ R, where
Pi(C) is the power set of C containing only subsets of at most cardinality i.

Corollary 1. Upon completion of the upsweep and downsweep phases for level
Gk, d(〈t, C〉) = d(〈s, ∅〉, 〈t, C〉) represents the optimal GTSPP solution cost.

Theorem 3. The LESS algorithm runs in O(2k(m′ + nk)) time, where m′ =
|E ∪ E′|.
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Pruning. While our current solution is correct, its relative performance is ex-
pected to be highly sensitive to the density of a given GTSPP query. This is
because our runtimes for this algorithm are directly proportional to the size of
our search space, R, which typically grows in size proportional to the density, g,
of the GTSPP instance under consideration (i.e., more distinct locations make
for larger unioned search spaces). This expected behavior suggests that before
the search it could be beneficial for us to try and aggressively prune any locations
which we determine cannot possibly belong to any optimal GTSPP solution, in
order to minimize the overall search space size and resulting runtime.

To achieve this, we require a method for estimating the cost of a solution
which contains a given category node. A straightforward and fast approach is
to utilize a constant-time heuristic function, h : V × V → R≥0, which returns
a non-negative estimate on the shortest-path cost between any two nodes. We
only require that the heuristic function be admissible such that h(s, t) ≤ d(s, t)
for all s, t ∈ V (i.e., it must always underestimate the shortest-path cost).

Given any admissible heuristic function, h, we must first establish an up-
per bound, μ, on the optimal GTSPP solution cost w(PC

s,t). Starting at node
x0 = s and ending at node xk+1 = t, for 1 ≤ i ≤ k, we apply a greedy
nearest-neighbor strategy to select a node xi = argmin

∀ci,j∈Ci

{h(xi−1, ci,j)}, giv-

ing us the resulting node sequence 〈x0, x1, . . . , xk, xk+1〉. We then compute the
value μ =

∑
0≤i≤k d(xi, xi+1) by performing (k+1) fast, point-to-point shortest

path queries in the CH search graph (using the traditional bidirectional Dijk-
stra search). Since, by definition, the path established by the node sequence
〈x0, x1, . . . , xk, xk+1〉 is a satisfying path for the instance 〈s, t, C〉, then μ is also
therefore a valid upper bound on w(PC

s,t).
We now prune each category, Ci, as follows. For each ci,j ∈ Ci, if h(s, ci,j) +

h(ci,j , t) > μ, we remove node ci,j from Ci. This is because the value h(s, v) +
h(v, t) is a valid lower bound on any GTSPP solution which contains node v.
After pruning, we may then carry out the proposed LESS algorithm, as before.

5 Experiments

In this section, we present experiments highlighting the performance charac-
teristics of our proposed GTSPP algorithms. Specifically, we examine the per-
formance impacts of our two primary measures of interest regarding GTSPP
complexity: category density (g) and the number of categories (k). For each ex-
periment, we consider four algorithms for comparison: unidirectional Dijkstra
search (U. Dijkstra), bidirectional Dijkstra search (B. Dijkstra), CH-based
Level-Sweeping Search (LESS), and LESS with Pruning (P-LESS).

For each experiment, we further consider two variants of GTSPP queries to
model two possible extremes of locality: non-local queries in which s �= t are
examined to model relatively long-distance routes and local queries in which
s = t are examined to model relatively short-distance routes.
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Test Environment. All experiments were carried out on a 64-bit server machine
running Linux CentOS 5.3 with 2 quad-core CPUs clocked at 2.53 GHz with 18
GB RAM (only one core was used per experiment). All programs were written
in C++ and compiled using gcc version 4.1.2 with optimization level 3.

Test Dataset and Preprocessing. All experiments were performed on the road
network of North America3, with 21, 133, 774 nodes and 52, 523, 592 edges. The
weight function, w, is based on travel time (in minutes). This dataset was derived
from NAVTEQ data products, under their permission. We have chosen the Pre-
Computed Cluster Distances (PCD) heuristic function from [12] as our pruning
function, h. In brief, PCD partitions the graph into r partitions and computes
an r × r cost matrix of the shortest path costs between the closest nodes from
each pair of partitions. The heuristic function h(u, v) returns the matrix value
between the partitions of u and v, which is a lower bound on d(u, v). For our
experiments, we have chosen r = 10, 000. PCD preprocessing required 7 minutes
using the CH search graph, resulting in an overhead of 23 bytes per node. CH
preprocessing required 18 minutes, resulting in an overhead of 35 bytes per node.

5.1 Category Density

We begin by examining the impact of category density, g, on the performance
of our proposed algorithms. In Fig. 4(a) and Fig. 4(b) we present the results of
our four algorithms for both non-local and local queries, respectively.

For all experiments in this section, we fixed the category count at k = 5. For
every 0 ≤ i ≤ 6, we constructed 100 random query instances in which each of the
5 categories were populated with g = 10i nodes selected uniformly at random.
All source and target nodes, s and t, were additionally selected uniformly at
random. The numbers presented in the figures represent average query times.

Starting with the non-local experiments of Fig. 4(a), we see that both Dijkstra
variants have very high runtimes across all densities, but tend to improve as the
density increases. B. Dijkstra is consistently faster than U. Dijkstra by a factor
of 1.8, on average. However, it requires over 130 seconds, even in the best case.

In contrast, our advanced LESS algorithm can be seen to perform extremely
well for low-density scenarios, but (as expected), begins to degrade as the den-
sity increases. Despite this degradation, it still outperforms the best Dijkstra
algorithm by a factor of over two orders of magnitude, on average. The P-LESS
approach reduces the runtimes even further, showing an additional 41% improve-
ment, on average, over the unpruned LESS algorithm for these non-local queries,
and requiring no more than 16 seconds in the worst case (for g = 1, 000, 000).

The story is slightly different, however, for the local query cases in Fig. 4(b).
Here we see the Dijkstra algorithms show a much more significant overall im-
provement as the density increases (B. Dijkstra is less than 1 second for cases in
which g ≥ 1, 000). This is due primarily to the fact that, as the density grows,
so do the number of available zero-cost E2 edges in the product graph. For such

3 This includes only the US and Canada.
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Fig. 4. Category Density Experiments for (a) non-local queries and (b) local queries

extremely-local cases (e.g., where s = t), this greatly benefits greedy search algo-
rithms such as the Dijkstra variants which can then quickly transition along these
increasingly-available E2 edges to arrive at the nearby target in the final level.
Alternatively, this scenario presents a slight disadvantage for both LESS-based
strategies, which are not greedy by nature, but are instead forced to progress
through the product graph search one level at a time, regardless of locality or
density. Despite this, P-LESS is still the only algorithm which requires no more
than 7 seconds across all of the densities tested here for such cases.

Furthermore, for such extremely local cases, we also see a marked improve-
ment in our P-LESS approach over the unpruned LESS algorithm (e.g., pruning
gives nearly an order of magnitude speed improvement for the highest-density
scenario). This is anticipated from the fact that local cases are expected to have
much smaller μ values, especially for high densities, leading to greater pruning.

5.2 Category Count

Next we examine the impact of the number of categories, k, on the performance
of our algorithms. In Fig. 5(a) and Fig. 5(b) we present the results for both non-
local and local queries, respectively (showing average query times, as before).

For all experiments in this section, we fixed the category density at g = 10, 000.
For every 1 ≤ i ≤ 7, we constructed 100 random query instances, each with i
categories populated with g nodes selected uniformly at random. All source and
target nodes, s and t, were additionally selected uniformly at random.

Again, we start by reviewing the non-local query results in Fig. 5(a). As
before, for non-local queries, the Dijkstra algorithms perform the worst overall,
reaching nearly 300-second query times. Additionally, they are unable to even
complete for cases with k ≥ 6, due to memory exhaustion from such increasingly-
large search spaces. Our LESS-based algorithms show similar improvements as
before for such non-local queries, and appear to scale quite well across these
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Fig. 5. Category Count Experiments for (a) non-local queries and (b) local queries

experiments, with the P-LESS algorithm requiring no more than 6 seconds for
even the largest number of categories at k = 7.

For the local query results in Fig. 5(b), we see similar improvements for the
Dijkstra search algorithms as before, with the B. Dijkstra algorithm requiring
only up to 0.2 seconds in the worst case. This gives over an order of magnitude
improvement, on average, compared to the U. Dijkstra search. Comparatively,
our LESS-based algorithms perform the worst overall for these local scenarios,
suggesting a similar pattern to that from the previous experiments, in which the
greedy algorithms perform best for local queries, but worst for non-local queries.

Across both sets of experiments, the P-LESS algorithm again provides signifi-
cant improvements over LESS, although its relative speedups appear to degrade
with increasing category counts (going from a speedup of over 7 for k = 1 down
to just over 2 for k = 7 for non-local queries, and over 20 down to just over 3 for
local queries). As our current heuristic estimates for pruning are most accurate
for fewer categories, this suggests that a more accurate heuristic may lead to
further improvements over queries with larger numbers of categories.

6 Conclusion

We have demonstrated a new algorithmic framework based on a unique product-
graph formulation, which allows us to solve real-world, large-scale GTSPP in-
stances using various graph search algorithms. Our proposed algorithms are able
to efficiently solve such problem instances to optimality, typically in a matter of
seconds. These algorithms may also be used interchangeably, as needed, based
on their respective performance advantages across various problem sizes and
scales of locality. Specifically, our results suggest that, for highly-local, very-
dense queries, a greedy Dijkstra search in our proposed product graph may be
sufficient and effective in practice (and does not require preprocessing). However,
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for more consistently-efficient performance over longer distances and for various
problem sizes, our proposed LESS algorithm (with pruning) is justifiably better.

Several promising areas of future research include pursuing more-aggressive
pruning strategies and incorporating goal-directed search techniques (e.g., A∗

search). Additionally, since each SE subgraph cost in a given level may be pro-
cessed independently, this suggests that our level-sweeping search algorithm may
further lend itself to strong parallelization, similar to that achieved in [2].

Acknowledgement. Work funded by NSF grants IIS-1144158 and IIS-0910859.
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Abstract. Walsh [23,22], Davies et al. [9], and Narodytska et al. [20] studied
various voting systems empirically and showed that they can often be manip-
ulated effectively, despite their manipulation problems being NP-hard. Such an
experimental approach is sorely missing for NP-hard control problems, where
control refers to attempts to tamper with the outcome of elections by adding/delet-
ing/partitioning either voters or candidates. We experimentally tackle NP-hard
control problems for Bucklin and fallback voting, which among natural voting
systems with efficient winner determination are the systems currently known to
display the broadest resistance to control in terms of NP-hardness [12,11]. We
also investigate control resistance experimentally for plurality voting, one of the
first voting systems analyzed with respect to electoral control [1,18].

Our findings indicate that NP-hard control problems can often be solved effec-
tively in practice. Moreover, our experiments allow a more fine-grained analysis
and comparison—across various control scenarios, vote distribution models, and
voting systems—than merely stating NP-hardness for all these control problems.

1 Introduction and Motivation

Electoral control [1,18] refers to attempts to tamper with the outcome of elections by
adding/deleting/partitioningeither voters or candidates. To protect elections against such
control attempts and other ways of manipulation (see, e.g., the surveys [14,2,13,16]),
much work has been done recently to show that the attacker’s task can be computa-
tionally hard: Certain voting systems are resistant to manipulation [13,16,8] or con-
trol [1,18,12,11] in certain scenarios. However, most of this work is concerned with
NP-hardness results, which is a worst-case measure of complexity and leaves open the
possibility that many elections can still be manipulated or controlled in a reasonable
amount of time. Therefore, manipulation and control problems have also been tackled
from different angles [21]. From a theoretical perspective, Zuckerman et al. [24] pro-
posed approximation algorithms for NP-hard manipulation problems and Faliszewski
et al. [15] showed that restricting to single-peaked electorates may strip manipulation
and control problems off their NP-hardness shields. From an experimental perspec-
tive, Walsh [23,22], Davies et al. [9], and Narodytska et al. [20] (see also Coleman and
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Teague [7]) studied various voting systems empirically, such as single transferable vote
(STV), veto, Borda’s, Nanson’s, and Baldwin’s rules, and showed that they can often
be manipulated effectively, even though their manipulation problems are NP-hard. Such
an experimental approach is sorely missing for NP-hard control problems to date.

This paper makes the first attempt to tackle NP-hard control problems via an experi-
mental analysis. Among natural voting systems with efficient winner determination, the
system currently known to display the broadest resistance (NP-hardness) to control is
fallback voting, proposed by Brams and Sanver [5] via combining approval with Buck-
lin voting. Erdélyi et al. [12,11] showed that fallback voting is resistant to 20 out of
the 22 standard types of control and that only Bucklin voting behaves almost as (and
possibly equally) well. We empirically study the eight common voter control scenar-
ios and four of the 14 common candidate control scenarios for Bucklin, fallback, and
plurality voting. While the papers [23,22,9,20] focused on constructive manipulation
problems only (where the aim is to make some favorite candidate win), we study both
constructive and destructive control problems (the latter aiming at preventing some de-
spised candidate’s victory). When generating random elections in our experiments, we
consider two probability distributions: the Impartial Culture model (where votes are dis-
tributed uniformly and are drawn independently) and the Two Mainstreams model (in-
troduced here to model two mainstreams in society by adapting the Pólya–Eggenberger
urn model [3]).

In general, our findings indicate that NP-hard control problems can often be solved
effectively in practice. Our experiments also allow a more fine-grained analysis than
merely stating NP-hardness for all the corresponding control problems: Specifically,
we can compare constructive with destructive control, control across various voting
systems in various control scenarios, and our two particular models of vote distribution.

After introducing some basic background on elections and electoral control in
Section 2, we present the experimental setup and the algorithms implemented in Sec-
tion 3. In Section 4 we outline and analyze our experimental control results. We discuss
these results in Section 5, and give some conclusions and a brief outlook.

2 Preliminaries

Elections and Voting Systems: An election is a pair (C,V ), where C = {c1,c2, . . . ,cm}
is a finite candidate set and V = (v1,v2, . . . ,vn) is a finite list of voters expressing their
preferences over the candidates in C. How the votes are represented depends on the
voting system used. A voting system E determines how the voters’ ballots are cast and
who has won a given election (C,V ), where the set W ⊆C of winners may be empty
or have one or more elements. We call an election with votes cast according to E an E
election. Here we focus on the systems Bucklin, fallback, and plurality voting.

Bucklin voting is a preference-based voting system named after James W. Buck-
lin [19]. “Preference-based” means that the voters’ ballots are (strict) linear orders over
all candidates in C. For example, if C = {c1,c2,c3} and a vote v is given by c2 c1 c3, then
this voter v strictly prefers c2 to c1 and c1 to c3. Let (C,V ) be a given Bucklin election.
The level i score of a candidate c ∈C (scorei

(C,V )(c), for short) is the number of voters
in V ranking c among their top i positions. Letting the strict majority threshold of a
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list V of votes be maj(V ) = �‖V‖/2�+ 1, the Bucklin score of c ∈C is defined to be the
smallest i such that scorei

(C,V )(c)≥ maj(V ). Every candidate with the smallest Bucklin
score (say �) and the highest level � score is a level � Bucklin winner (BV winner, for
short). Note that there always exists a Bucklin winner and only level 1 Bucklin winners
are always unique.

Fallback voting is a hybrid voting system introduced by Brams and Sanver [5]. It
combines Bucklin voting with approval voting [4]. In a fallback election, each voter
determines those candidates he or she approves of, and provides a linear order of the
approved candidates. For example, if C = {c1,c2,c3} then a vote in a fallback election
could be of the form c3 c1, meaning that this voter approves of c1 and c3, strictly pre-
ferring c3 to c1, and disapproves of c2. Winners are determined as follows in fallback
voting: Given a fallback election (C,V ), the notions of level i score of a candidate c ∈C
and level i fallback winner are defined analogously as in Bucklin voting. If there is a
level � fallback winner with � ≤ ‖C‖, then he or she is a fallback winner in (C,V ).
Otherwise (i.e., if no fallback winner exists in (C,V )), every candidate with a highest
approval score (which is the number of voters approving of this candidate) is a fallback
winner in (C,V ). The second case can occur in fallback elections, since the voters can
prevent the candidates from gaining points by disapproving them, and so it is possible
that no candidate reaches or exceeds the strict majority threshold on any level.

In plurality voting, the most preferred candidate in each vote gains one point, and the
candidates with the most points are the plurality winners. Note that there always exists
at least one plurality winner. This voting rule is preference-based as well, even though
the ranking of the candidates after the top candidate is irrelevant.

Standard Control Scenarios and Their Problems: Unlike manipulation where voters
cast insincere votes to strategically influence election outcomes [13,16], electoral con-
trol describes ways to tamper with the outcome of an election by changing the structure
of the election itself [1,18]. These structural changes include adding, deleting, and par-
titioning either voters or candidates, and are exerted by an external actor, the “chair,”
having full knowledge of the voters’ preferences (for a detailed discussion of why and
where this assumption is appropriate for control complexity, see [18]). Bartholdi et
al. [1] introduced the notion of constructive control where the chair’s goal is to make a
designated candidate end up winning alone the resulting election. The case where the
chair’s control action aims at preventing a given candidate from being a unique winner
is called destructive control and has been introduced by Hemaspaandra et al. [18].

To study the complexity of control in different scenarios, a decision problem is de-
fined for each standard type of electoral control. As these control scenarios and the re-
lated decision problems have been motivated and formally described in detail in many
papers (see, e.g., [1,18,14,2,12,11]), we refrain from repeating these 22 definitions here,
but rather refer to the literature. Here we only give two sample definitions of control
problems, where for the first one we give the formal description:

E -CONSTRUCTIVE CONTROL BY DELETING VOTERS (E -CCDV)

Given: An E election (C,V ), a designated candidate c ∈C, and a positive integer k.

Question: Is there a subset V ′ ⊆ V with ‖V ′‖ ≤ k such that c is the unique E winner of
election (C,V −V ′)?
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Table 1. Known results on the control complexity of fallback, Bucklin, and plurality voting, for
those control types considered here. Key: R = resistance, V = vulnerability, and S = susceptibility.

Fallback Voting Bucklin Voting Plurality Voting

Control by Constr. Destr. Constr. Destr. Constr. Destr.

Adding Voters R V R V V V
Deleting Voters R V R V V V

Partition of Voters
TE: R TE: R TE: R TE: R TE: V TE: V
TP: R TP: R TP: R TP: S TP: R TP: R

Adding Candidates R R R R R R
Deleting Candidates R R R R R R

Control by partition of voters is modeled via a two-stage election. In the first stage,
V is partitioned into V1 and V2, and the winners (subject to the tie-handling rule used,
see below) of subelections (C,V1) and (C,V2) run against each other in the runoff, with
respect to V . Hemaspaandra et al. [18] introduced the tie-handling rules “ties promote”
(TP: all subelection winners participate in the runoff), and “ties eliminate” (TE: only a
unique winner from either subelection can move on to the runoff; if there is more than
one winner, none of them moves on).

Among the 14 standard candidate control problems [2] that are defined similarly, we
confine ourselves here to constructive and destructive control by adding and by deleting
candidates.

Let C be a type of electoral control (e.g., constructive control by deleting voters).
Using the notions defined by Bartholdi et al. [1] (see also [18]), we say a voting system
E is immune to C if the chair never succeeds in exerting control of type C. If E is not
immune to C, it is susceptible to C. If E is susceptible to C, we say it is vulnerable to
C if the corresponding decision problem is decidable in deterministic polynomial time,
and we say it is resistant to C if the corresponding decision problem is NP-hard.

Control in Bucklin, Fallback, and Plurality Voting: Plurality voting is one of the
first voting systems for which the complexity of constructive control [1] and destruc-
tive control [18] has been studied in the above scenarios. Control in fallback voting
and Bucklin voting has been previously studied by Erdélyi et al. [12,11] with respect to
classical complexity and also with respect to parameterized complexity [10]. In terms
of NP-hardness, among natural systems with polynomial-time winner determination
fallback voting has the most resistances to control (namely, 20 out of the 22 standard
control types) and Bucklin voting behaves similarly well—just one case is open (de-
structive control by partition of voters in model TP). Table 1 gives an overview of
known complexity results for electoral control in these three voting systems. The the-
oretical importance of NP-hardness notwithstanding, these results have only limited
significance in practical applications, as an NP-hard control problem might still be easy
to solve on the average, or on “typical” instances. That is why we challenge the NP-
hardness results of Table 1 experimentally.
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3 Experimental Setup

In this section we describe the experimental setting. As stated above, the instances of
the problems corresponding to control by adding or by deleting either candidates or
voters contain a parameter k bounding the number of candidates or voters that can be
added or deleted, which is crucial for the running time of the implemented algorithms.
To realize our experiments in an acceptable time frame, we confine ourselves to the
case of k = �m/3� and k = �n/3�, respectively, where m is the number of candidates and
n is the number of voters.1 Also, since we have to cope with NP-hard problems, a time
limit has been implemented such that the algorithm stops when exceeding this limit,
indicating by the output “timeout” that the search process is aborted unsuccessfully.
Again, this allows us to handle the worst-case scenarios in a reasonable amount of time.

We randomly generated elections (C,V ) with m = ‖C‖ and n = ‖V‖ for all com-
binations of n,m ∈ {4,8,16,32,64,128}. Each such combination is one data point for
which we evaluated 500 of these elections, trying to determine for each given election
whether or not control is possible, and if it is possible, we say that this election is con-
trollable. This restriction to 500 elections per data point, again, results from practical
issues balancing out manageability and informative value of the experiments conducted.

Election Generation and Distributions of Votes: Before we specify the different dis-
tribution models underlying our election generation, we explain how random votes can
be cast in the considered voting systems and how many different votes can exist. As-
suming that the generated election has m candidates, in Bucklin voting and in plurality
voting a random vote can be obtained by generating a random permutation over the m
different candidates, so the overall number of different votes in Bucklin and plurality
elections is m!. In fallback voting, random votes can be generated as follows:

– randomly draw a preference p from all m! possible preferences with m candidates;
– randomly draw the number, say � ∈ {0,1, . . . ,m}, of approved candidates;
– the generated vote consists of the first � candidates in p.

Thus, there can be ∑m
�=0

(m
�

)
�! different votes in fallback elections with m candidates.

In the Impartial Culture model (IC model) we assume uniformly distributed votes
and draw each vote independently out of all possible preferences. In addition, we intro-
duce the Two Mainstreams model (TM model) by adapting the Pólya–Eggenberger urn
model (PE model, see [3]; this has been used, e.g., by Walsh [23]) as follows:

– randomly draw two preferences out of an urn containing all possible, say t, prefer-
ences, where either t = m! or t = ∑m

�=0

(m
�

)
�!, depending on the voting system;

– put each preference back into the urn with t additional copies;
– draw the votes out of this urn independently at random with replacement.

Each of the two preferences drawn in the first step can be interpreted as a representative
of one “mainstream” in society (e.g., liberal and conservative). We consider this model
to be better suited for investigating control problems than the PE model itself, since in
PE with relatively high probability many (or even all) votes can be identical (including,

1 Since every yes-instance for a given k is also a yes-instance for each k′ ≥ k, the number of yes-
instances found in our experiments are a lower bound for the true number of yes-instances.
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e.g., unregistered votes that may be added), which artificially would make control im-
possible or trivial to find and the problem easy. By contrast, in manipulation [23,22,9]
this effect has less impact, as manipulators can deviate from this one mainstream if they
so wish.

A High-Level Description of the Algorithms: Our algorithms are heuristics, designed
so as to test the most “promising” cases (depending on the control type at hand) first,
by using appropriate preorderings. Due to space limitations, we only roughly sketch
them here. All algorithms for the different types of control share the same essential
method of testing various subsets, and they differ only in the type of preordering and
internal testing. Before actually searching for a successful sublist of voters or subset of
candidates, the algorithms check conditions that, if true, indicate that the given instance
is a no-instance. Let c be the distinguished candidate. Depending on the control type,
some of the following conditions are tested:

Condition 1: The designated candidate is ranked last (for Bucklin and plurality), or is
ranked last or disapproved (for fallback), in every vote.

Condition 2: For each k′ ≤ k, determine the smallest i and j such that

scorei
(C,V )(c

′)≥ �(‖V‖−k′)/2�+ 1+ k′ and score j
(C,V )(c)≥ �(‖V‖−k′)/2�+ 1

hold for c′ ∈C−{c}. Note that i≤ j− 1 for all k′ ≤ k.
Condition 3: For each k′ ≤ k determine the smallest i and j such that

scorei
(C,V )(c

′)≥ �(‖V‖+ k′)/2�+ 1 and score j
(C,V )

(c)≥ �(‖V‖+ k′)/2�+ 1− k′

hold for c′ ∈C−{c}. Note that i≤ j− 1 for all k′ ≤ k.
Condition 4: In the given election, the winner has a strict majority on the first level.

Condition 1 (respectively, Condition 4) is tested for every constructive (respectively,
destructive) control type investigated here. Note that these conditions must hold in the
election for both the registered and the unregistered voters for control by adding voters,
and both for the original and the spoiler candidates for control by adding candidates.
Condition 2 is tested in addition for the deleting-voters cases, whereas Condition 3 is
tested in addition for the adding-voters cases. After having excluded these trivial cases,
each of the algorithms searches for a successful sublist/subset of preordered versions
of V or C. Let us describe this procedure only for constructive control by deleting voters
in detail, where the voters are ordered ascending for c. That is, after the preordering v1

is a voter ranking c worst and vn is a voter ranking c best among all voters. (In fallback
voting, the “worst” position for a candidate is to be not approved at all.) The algorithm
now starts with deleting those votes c benefits least of. It follows the procedure of a
depth-first search on a tree of height k that is structured as shown in Figure 1. In each
node, it is tested whether deleting the votes on the path is a successful control action. For
example, on path s→ 1→ 2→ 3 the algorithm tests the sublists (v1),(v1,v2),(v1,v2,v3)
and then tracks back testing the sublists (v1,v2,v4),(v1,v2,v5), (v1,v3),(v1,v3,v4), and
so on. The branches on the left side are visited first and, due to the preordering of the
votes, these are the votes c benefits least of.

For the adding-voters cases, the unregistered voters are ordered in a descending order
for the designated candidate, and the algorithm proceeds similarly as the algorithm for
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Fig. 1. Tree for n = 5 voters where up to k = 3 voters may be deleted. A node i corresponds to
voter vi after the preordering.

the deleting-voters cases. With this preordering, the algorithm first tests those voters the
designated candidate can benefit most of when these are added to the voter list.

For the partition cases, the algorithm considers every possible sublist of the voter
list up to size k = �n/2� as V1, sets V2 = V −V1, and tests whether this is a successful
control action or not. For the constructive cases, the voters are preordered descendingly
with respect to the designated candidate, whereas for the destructive control cases no
preordering is implemented.

In the candidate control scenarios, the candidates are also ordered with respect to the
designated candidate, where a descending order here means that the first candidate has
the most voters ranking him or her before the designated candidate and the last candidate
has the fewest voters doing so. An ascending order is defined analogously. Again, in the
adding-candidates case, the votes over all candidates (including the spoiler candidates)
are considered. A descending ordering is used for finding control actions for constructive
control by deleting candidates and for destructive control by adding candidates, whereas
for the remaining candidate control cases an ascending order is used.

4 Summary of Experimental Results

We investigated the three voting systems only for those control types they are not known
to be vulnerable to, which is indicated by an R- or an S-entry in Table 1. Due to space
limitations we do not discuss the results for all types of control in detail.

Constructive Control by Deleting and by Adding Voters: We focus on presenting
the results for control by deleting voters only, due to space limitations and since the
results for control by adding voters are very similar for fallback and Bucklin voting.

In the Impartial Culture model, increasing the number of candidates decreases the
number of yes-instances in the generated fallback elections. On the other hand, the
number of yes-instances increases with the number of voters growing. In the Two Main-
streams model, the same correlations can be observed but here the overall numbers of
yes-instances is smaller than in the IC model. Bucklin voting behaves very similarly,
so for both distributions and both voting systems increasing the number of candidates
makes successful actions of control by deleting voters less likely. In both voting sys-
tems and in both distribution models, timeouts occur whenever the number of voters
exceeds 32. If the number of candidates is 128, we have timeouts already with 16 vot-
ers. The time limit is reached in about 11% of the elections analyzed in our experiments
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Fig. 2. Results for fallback voting in the IC model for destructive control by partition of voters in
model TP, for a fixed number of candidates

(i.e., in about 8,225 out of 72,000 elections). Here again, the results for control by
adding voters are very similar: Timeouts occur for the same election sizes and in about
10% of the elections the computation is aborted unsuccessfully. The algorithms for both
control by adding and by deleting voters quickly find yes-instances, whereas the deter-
mination of no-instances becomes time-consuming for larger election sizes.

Control By Partition of Voters: As mentioned in Section 2, control by partition of
voters comes in four problem variants, where each case must be investigated separately.

For constructive control by partition of voters in model TP we made the following
observations: Similarly to control by deleting or by adding voters, the number of con-
trollable elections increases with the number of voters increasing. This was observed
for all three voting systems investigated. We have seen that in at most 13% of the tested
plurality elections in the TM model a successful control action can be found. Note that
no timeouts occur for up to 32 candidates, so more than 87% of the elections tested
are demonstrably not controllable in these cases. For both distribution models, plurality
elections produce fewer timeouts than the corresponding fallback or Bucklin elections.
This suggests that the control problem for plurality voting is easier to solve on average
than for fallback or Bucklin voting. Using the tie-handling model TE instead of TP, in
both Bucklin and fallback voting an increase of yes-instances in the constructive cases
is evident. By contrast, in the destructive counterparts no significant difference can be
observed with respect to the tie-handling rule used.

The most striking results are those obtained for the destructive cases. Here we have
that, for all three voting systems (and both tie-handling models for fallback and Bucklin
voting) in the TM model, the average number of controllable elections is very high; and
in the IC model, control is almost always possible, see Figure 2.

In light of the fact that for these cases the resistance proofs of Erdélyi et al. [12,11]
for fallback and Bucklin voting tend to be the most involved ones (yielding the most
complex instances for showing NP-hardness), these results might be surprising at first
glance. However, one explanation for the observed results can be found in exactly this
fact: The elections constructed in these reductions have a very complex structure which
seems to be unlikely to occur in randomly generated elections (at least in elections
generated under the distribution models discussed in this paper). Another explanation
is that the problems used to reduce from in [12,11] tend to be easy to solve for small
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Fig. 3. Results for fallback voting in the TM model for constructive control by adding candidates,
for a fixed number of voters

input sizes, but due to the complexity of the reduction, the resulting elections have many
voters/candidates compared to the elections generated for the conducted experiments.

In the destructive cases, the number of timeouts is for all three voting systems with
about 9% the lowest for all control types investigated. In Bucklin elections with uni-
formly distributed votes and for control by partition of voters in model TP, for only
3.32% of the elections no decision can be found within the time limit. As expected, in
the corresponding constructive cases the number of timeouts is significantly higher.

Control By Adding Candidates: So far, the results for constructive control by adding
candidates show the highest number of timeouts. For those election sizes where no time-
outs occur (i.e., the determination of, respectively, yes- and no-instances is successful),
we have that in none of the three voting systems many elections can be controlled
successfully. In Figure 3, we see the results for fallback voting in the TM model, exem-
plifying the low numbers of yes-instances for this type of candidate control. In the IC
model where, again, the overall number of controllable elections is higher, the highest
percentage of controllable fallback elections is 11%. Bucklin elections behave similarly,
but show more yes-instances: Up to 23% of the elections are controllable for less than
32 candidates in the IC model and up to 11% in the TM model. Plurality voting shows
similar results as fallback voting with at most 20% yes-instances in the IC model and
less than 4% in the TM model for those election sizes where no timeouts occur.

Turning now to the destructive variant of control by adding candidates, for Bucklin
elections generated with the IC model, 71% is a lower bound for the number of con-
trollable elections. For up to 16 candidates, a successful control action can be found
in nearly all elections. The results for the TM model reconfirm the observation made
before, namely that the tendencies in both models are similar, but with at most 77%
and at least 42% of controllable elections the overall numbers are again lower than in
the IC model. The latter results hold for fallback elections generated in the TM model
as well, whereas in the IC model at least 53% and no more than 92% of the fallback
elections are controllable. In the tested plurality elections generated with the IC model,
similarly to Bucklin voting, more than 70% and nearly up to 100% are controllable.
In the TM model, roughly between 50% and 60% of yes-instances are found for those
election sizes where no timeouts occur, so between 40% and 50% of these plurality
elections are not controllable. In this control scenario, for about 46% of the elections
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no definite output is given in the constructive case, whereas in only about 8% of the
elections timeouts occur in the destructive case.

5 Discussion and Conclusions

We have empirically studied the complexity of NP-hard control problems for plurality,
fallback, and Bucklin voting in the most important of the common control scenarios.
This is the first such study for control problems in voting and complements the corre-
sponding results [23,22,9,20,7] for manipulating elections. In general, our findings in-
dicate that control can often be exerted effectively in practice, despite the NP-hardness
of the corresponding problems. Our experiments also allow a more fine-grained anal-
ysis and comparison—across various control scenarios, vote distribution models, and
voting systems—than merely stating NP-hardness for all these problems. Table 2 gives
an overview of our experimental results. A detailed analysis and discussion follows.

IC versus TM: Comparing the results for the different distribution models, we see that
in every voting system for all control types studied (except fallback voting in construc-
tive control by deleting candidates) the overall number of yes-instances is higher in the
IC than in the TM model. This may result from the fact that in elections with uniformly
distributed votes, all candidates are likely to be approximately equally preferred by the
voters. So both constructive and destructive control actions are easier to find. This also
explains the observation that the IC model produces fewer timeouts.

Constructive versus Destructive Control: For all investigated types of control where
both constructive and destructive control was investigated, we found that the destruc-
tive control types are experimentally much easier than their constructive counterparts,
culminating in almost 100% of controllable elections for certain control types in the

Table 2. Overview of results: the “min” and “max” columns give the bottom and top percentage
of yes-instances observed for the given control type; “to” gives the percentage of timeouts that
occurred for the 18,000 tested elections; “n.i.” stands for “not investigated” due to P-membership
of the control problem. Results in boldface refer to elections generated in the TM model.

FV BV PV

min max to min max to min max to

CCAC 1 / 0 11 / 7 51 / 50 0 / 0 23 / 11 50 / 49 0 / 0 20 / 3 50 / 34
DCAC 53 / 39 92 / 71 11 / 14 71 / 42 99 / 77 6 / 12 70 / 47 99 / 60 7 / 25
CCDC 13 / 15 33 / 36 37 / 37 13 / 17 58 / 45 34 / 37 5 / 22 66 / 40 37 / 35
DCDC 8 / 12 78/ 63 15 / 22 48 / 25 99 / 77 7 / 18 7 / 4 99 / 50 10 / 35
CCPV-TP 1 / 1 53 / 20 40 / 50 1 / 0 72 / 23 31 / 48 0 / 0 54 / 13 24 / 23
DCPV-TP 37 / 27 100 / 87 6 / 17 60 / 39 100 / 88 3 / 10 55 / 15 100 / 59 4 / 35
CCPV-TE 2 / 0 97 / 34 9 / 45 2 / 0 98 / 32 8 / 44 n.i. n.i. n.i.
DCPV-TE 50 / 34 100 / 88 4 / 16 64 / 40 100 / 89 4 / 10 n.i. n.i. n.i.
CCDV 2 / 1 97 / 39 16 / 12 2 / 1 100 / 42 11 / 7 n.i. n.i. n.i.
CCAV 4 / 1 99 / 41 13 / 13 2 / 1 99 / 41 11 / 6 n.i. n.i. n.i.
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IC model. These findings confirm—and strengthen—the theoretical insight of Hemas-
paandra et al. [18] that the destructive control problems disjunctively truth-table-reduce
to their constructive counterparts and thus are never harder to solve, up to a polynomial
factor (see also the corresponding observation of Conitzer et al. [8] regarding manipula-
tion): In fact, destructive control tends to be even much easier than constructive control.

Comparison Across Voting Systems: For constructive control, we have seen that fall-
back and Bucklin voting show similar tendencies and numbers of yes-instances, espe-
cially regarding voter control. We also observed that their constructive voter control
problems are in general harder to solve than those for plurality voting. In all three vot-
ing systems, constructive control by adding candidates seems to be the hardest control
problem investigated so far, which leads to the interesting question of whether control
by partition of candidates (left here for future research) is harder to solve on average.

Adding Candidates versus Deleting Candidates: Comparing control by adding can-
didates to control by deleting candidates in the constructive case we observed that the
number of yes-instances for control by deleting candidates is significantly higher. These
findings are perhaps not overly surprising, since in the voting systems considered here
adding candidates to an election can only worsen the position of the designated can-
didate in the votes. That is, constructive control can be exerted successfully only if by
adding candidates rivals of the designated candidate lose enough points so as to get
defeated by him or her. This, in turn, can happen only if the designated candidate was
already a highly preferred candidate in the original election.

Voter Control versus Candidate Control: For fallback and Bucklin voting, we can
also compare constructive candidate and voter control directly. In both voting systems
and both distribution models, the number of yes-instances for constructive control by
adding voters is around four times higher than the number of yes-instances in the cor-
responding candidate control type, which confirms the argument above, saying that
adding candidates cannot push the designated candidate directly. Constructive control
by deleting voters can be successfully exerted more frequently when votes are less cor-
related, whereas the proportion of successful control actions for deleting candidates is
about the same for both considered distribution models. The observed differences be-
tween these types of voter and candidate control may result from the fact that adding or
deleting candidates only shifts the position of the designated candidate, which may not
influence the outcome of the election as directly as increasing or decreasing the candi-
dates’ scores by adding or deleting voters does. This explains why voter control can be
tackled more easily than candidate control by greedy approaches such as ours.

Concluding Remarks: Just as Walsh [22,23] observes for manipulation in the veto
rule and in STV, for all types of control investigated in our experiments, the curves do
not show the typical phase transition known for “really hard” computational problems
such as the satisfiability problem (see [17,6] for a detailed discussion of this issue).

These observations raise the question of how other distribution models influence the
outcome of such experiments. Furthermore, the algorithms implemented could be im-
proved in terms of considering a higher number of elections per data point, increasing
the election sizes, or allowing a higher number of voters or candidates to be deleted or
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added in the corresponding control scenarios. Besides this, other voting systems can be
analyzed since only their winner determination has to be implemented in addition to a
few minor adjustments such as trivial-case checks for the investigated control scenar-
ios tailored to the voting system at hand. In future work, we will also investigate the
remaining partition-of-candidates scenarios in Bucklin, fallback, and plurality voting.
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experiments, and the anonymous reviewers for their helpful comments.
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Abstract. The graph partitioning problem is widely used and studied
in many practical and theoretical applications. Today multilevel strate-
gies represent one of the most effective and efficient generic frameworks
for solving this problem on large-scale graphs. Most of the attention in
designing multilevel partitioning frameworks has been on the refinement
phase. In this work we focus on the coarsening phase, which is respon-
sible for creating structurally similar to the original but smaller graphs.
We compare different matching- and AMG-based coarsening schemes,
experiment with the algebraic distance between nodes, and demonstrate
computational results on several classes of graphs that emphasize the
running time and quality advantages of different coarsenings.

1 Introduction

Graph partitioning is a class of problems used in many fields of computer science
and engineering. Applications include VLSI design, load balancing for parallel
computations and network analysis. The goal is to partition the vertices of a
graph into a certain number of disjoint sets of approximately the same size, so
that a cut metric is minimized. This problem is NP-complete even for several
restricted classes of graphs, and there is no constant factor approximation algo-
rithm for general graphs [2]. In this paper we focus on a version of the problem
that constrains the maximum block size to (1 + ε) times the average block size
and tries to minimize the total cut size, namely, the number of edges that run
between blocks.

Because of the practical importance, many heuristics of different nature (spec-
tral [3], combinatorial [4], evolutionist [5], etc.) have been developed to provide an
approximate result in a reasonable computational time. However, only the intro-
duction of the general-purpose multilevel methods during the 1990s has provided
a breakthrough in efficiency and quality. Well-known software packages based on
this approach include Metis [6] and Scotch [7] (to mention just few of them).
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A multilevel algorithm consists of two main phases: coarsening – where the prob-
lem instance is gradually mapped to smaller ones to reduce the original complex-
ity and uncoarsening – where the solution for the original instance is constructed
by using the information inherited from the solutions created at the next coarser
levels. In this work we focus on the coarsening phase, which is responsible for cre-
ating graphs that are smaller than but structurally similar to the given graph.
We compare different coarsening schemes, introduce new elements to them, and
demonstrate computational results. For this purpose algebraic multigrid (AMG)
based coarsening components [8] have been integrated into the graph partitioning
framework KaFFPa [9]. Similar integration has been done in [10]. We describe the
difference between our approaches in [1].

2 Preliminaries

Consider an undirected graph G = (V,E, c, ω) with edge weights1 ω : E →
R>0, node weights c : V → R≥0, n = |V |, and m = |E|. We extend c and ω
to sets; in other words, c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e). Here,

Γ (v) := {u : {v, u} ∈ E} denotes the neighbors of v. We are looking for blocks
of nodes V1,. . . ,Vk that partition V , namely, V1∪· · ·∪Vk = V and Vi∩Vj = ∅ for
i �= j. The balancing constraint demands that ∀i ∈ {1, · · · , k} : c(Vi) ≤ Lmax :=
(1+ ε)c(V )/k+maxv∈V c(v) for some parameter ε. The objective is to minimize
the total cut

∑
i<j ω(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. A vertex

v ∈ Vi that has a neighbor w ∈ Vj , i �= j, is a boundary vertex. We denote by
nnzr(A, i) and nnzc(A, i) the number of nonzero entries in the ith row or column
of a matrix A, respectively.

A matching M ⊆ E is a set of edges that do not share any common nodes;
that is, the graph (V,M) has maximum degree one. Contracting an edge {u, v}
means replacing the nodes u and v by a new node x connected to the former
neighbors of u and v, and setting c(x) = c(u) + c(v). If replacing edges of the
form {u,w},{v, w} would generate two parallel edges {x,w}, we insert a single
edge with ω({x,w}) = ω({u,w}) + ω({v, w}). Uncontracting an edge e undoes
its contraction.

Multilevel Graph Partitioning. In the multilevel framework we construct a hi-
erarchy of decreasing-size graphs, G0, G1, . . . , Gk, by coarsening, starting from
the given graph G0 such that each next-coarser graph Gi reflects structural
properties of the previous graph Gi−1. At the coarsest level Gk is partitioned
by a hybrid of external solvers, and starting from the (k − 1)th level the solu-
tion is projected gradually (level by level) to the finest level. Each projection
is followed by the refinement, which moves nodes between the blocks in order
to reduce the size of the cut. This entire process is called a V-cycle. KaFFPa
[9] extended the concept of iterated multilevel algorithms which was introduced
for graph partitioning by Walshaw [11]. The main idea is to iterate coarsening

1 Subscripts will be used for a short notation; i.e., ωij corresponds to the weight of
{i, j} ∈ E.
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Fig. 1. V- and F-cycles schemes.

and uncoarsening taking into
account the existing solution
before next coarsening. Non-
decreased partition quality is
guaranteed at all stages of
KaFFPa. In this paper, we con-
sider also F-cycles [9] as a
stronger and slower version of
the multilevel framework for the
graph partitioning problem.

3 Coarsening Schemes

One of the most important concerns of multilevel schemes is a measure of the
connection strength between vertices. For matching-based coarsening schemes,
experiments indicate that more sophisticated edge rating functions are superior
to edge weight as a criterion for the matching algorithm [12]. To be more precise
first the edges get rated using a rating function that indicates how much sense
it makes to contract an edge. Then a matching algorithm tries to maximize the
sum of the ratings of the edges to be contracted. The default configurations of
KaFFPa employ the ratings

expansion∗2({u, v}) := ω({u, v})2/c(u)c(v), and

innerOuter({u, v}) := ω({u, v})/(Out(v) + Out(u)− 2ω(u, v)),

where Out(v) :=
∑

x∈Γ (v) ω({v, x}), since they yielded the best results in [12].

Algebraic Distance for Graph Partitioning. The notion of algebraic distance
introduced in [8,13] is based on the principle of obtaining low-residual error
components used in the Bootstrap AMG [14]. When a priori knowledge of the
nature of this error is not available, slightly relaxed random vectors are used
to approximate it. This principle was used for linear ordering problems to dis-
tinguish between local and global edges [8]. The main difference between the
k-partitioning problem and other problems for which the algebraic distance has
been tested so far is the balancing constraints. For many instances, it is im-
portant to keep the coarsening balanced; otherwise, even though the structural
information will be captured by a sophisticated coarsening procedure, most of
the actual computational work that constructs the approximate solution will
be done by the refinement iterations. Bounding the number of refinement itera-
tions may dramatically decrease its quality. Thus, a volume-normalized algebraic
distance is introduced to take into account the balancing of vertices.

Given the Laplacian of a graph L = D−W , where W is a weighted adjacency
matrix of a graph and D is the diagonal matrix with entries Dii =

∑
j ωij , we

define its volume-normalized version denoted by L̃ = D̃ − W̃ based on volume-
normalized edge weights ω̃ij = ωij/

√
c(i)c(j). We define an iteration matrix

H for Jacobi over-relaxation (also known as a lazy random-walk matrix) as
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H = (1−α)I+αD̃−1W̃ , where 0 ≤ α ≤ 1. The algebraic distance coupling ρij is

defined as ρij =
(∑R

r=1 |χ
(k,r)
i −χ

(k,r)
j |2

) 1
2 , where χ(k,r) = Hkχ(0,r) is a relaxed

randomly initialized test vector (i.e., χ(0,r) is a random vector sampled over
[-1/2, 1/2]), R is the number of test vectors, and k is the number of iterations.
In our experimental settings we set α = 0.5, R = 5, and k = 20.

3.1 Coarsening

To the best of our knowledge, the existing multilevel algorithms for combinatorial
optimization problems (such as k-partitioning, linear ordering, clustering, and
segmentation) can be divided into two classes: matching-based schemes [9] and
algebraic multigrid (AMG)-inspired schemes [8].

AMG-inspired coarsening. One of the most traditional approaches for deriva-
tion of the coarse systems in AMG is the Galerkin operator, which projects the
fine system of equations to the coarser scale. In the context of graphs this pro-
jection is defined as Lc = PLfP

T , where Lf and Lc are the Laplacians of fine
and coarse graphs Gf = (Vf , Ef ) and Gc = (Vc, Ec), respectively. The (i, J)th
entry of projection matrix P represents the strength of the connection between
fine node i and coarse node J .

The coarsening begins by selecting a dominating set of (seed or coarse) nodes
C ⊂ Vf such that all other (fine) nodes in F = Vf \ C are strongly coupled to
C. This selection can be done by traversing all nodes and leaving node i in F
(initially F = Vf , and C = ∅) that satisfy

∑
j∈C 1/ρij ≥ Θ ·

∑
j∈Vf

1/ρij , where
Θ is a parameter of coupling strength.

The Galerkin operator construction differs from other AMG-based approaches
for combinatorial optimization problems. Balancing constraints of the partition-
ing problem require a limited number of fine-to-coarse attractions between i ∈ C
(ith column in P ) and its neighbors from F (nonzero entries in the ith column in
P ). In particular, this is important for graphs where the number of high-degree
nodes in C is smaller than the number of parts in the desired partition. Another
well-known problem of AMG that can affect the performance of the solver is
the complexity of coarse levels. Consideration of the algebraic distance makes
it possible to minimize the order of interpolation (the number of fractions a
node from F can be divided to) to 1 or 2 only [8]. Algorithm 1 summarizes the
construction of the ith row of P .

Algorithm 1 can be viewed as simplified version of bootstrap AMG [14] with
the additional restriction on future volume of aggregates and adaptive interpo-
lation order. PiI(j) thus represents the likelihood of i belonging to the I(j)th
aggregate. The edge connecting two coarse aggregates p and q is assigned with
the weight wpq =

∑
k �=l PkpwklPlq. The volume of the pth coarse aggregate is∑

j c(j)Pjp. We emphasize the property of adaptivity of C (line 9 in Algorithm
1), which is updated if the balancing of aggregates is not satisfied.

Matching Based Coarsening. Another coarsening framework, which is
more popular because of its simplicity and faster performance, is the matching
based scheme. In this scheme a coarse graph is constructed by using contractions
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Algorithm 1. Interpolation weights for P

input: G, i ∈ Vf , P

1: if i ∈ C then PiI(j) ← 1;
2: else
3: l ← list of at most κ algebraically strongest connections of i to C
4: {e1, e2} ← strongest pair of edges (w.r.t. ρe1 + ρe2) in l such that the

C-neighbors are not over-loaded if i is divided between them
5: if {e1, e2} 	= ∅ then l ← {e1, e2}
6: else e1 ← strongest connection of i to C such that the corresponding

C-neighbor is not over-loaded if i is aggregated with it; l ← {e1}
7: if l is empty then move i to C
8: else Nc

i ← C-neighbors of i that adjacent to edges in l
9: PiI(j) ← 1/(ρij ·

∑
k∈Nc

i
1/ρik) for j ∈ Nc

i

10: update future volumes of j ∈ Nc
i

derived from a preprocessed edge matching. This scheme represents a special case
of PLfP

T in which nnzr(P, r) = 1 for all rows r in P , and 1 ≤ nnzc(P, c) ≤ 2
for all columns c in P .

The Global Paths Algorithm (GPA), was proposed in [15] as a synthesis of
Greedy and Path Growing algorithms. Experiments indicate that GPA yields
better overall results in graph partitioning (w.r.t. final cut) than other matching
algorithms [12]. Similar to the Greedy approach, GPA scans the edges in order
of decreasing rating; but rather than immediately building a matching, it first
constructs a collection of paths and even length cycles. It then computes optimal
matchings on those using dynamic programming. For more details see [12].

The RandomGPA Algorithm is used by the KaFFPaEco configuration. It is a
synthesis of the most simple randommatching algorithm and the GPA algorithm.
To be more precise this matching algorithm depends on the number of blocks the
graph has to be partitioned in. It matches the first max{2, 7−logk} levels, where
k is the number of blocks, using the random matching algorithm and switches
to the GPA algorithm afterwards. The random matching algorithm traverses
the nodes in a random order and if the current node is not already matched it
chooses a random unmatched neighbor for the matching.

The Coarsest Level. Coarsening is terminated when the graph is small enough
to be directly partitioned. We use the same initial partitioning scheme as in
KaFFPa [9], namely, the libraries Scotch and Metis for initial partitioning. For
AMG, some modifications have been made since Scotch and Metis cannot deal
with fractional numbers and Metis expects ωij ≥ 1. To overcome this problem,
we apply a scheme based on randomized rounding (for details see [1]).

3.2 Uncoarsening

Recall that uncoarsening undoes contraction. For AMG-based coarsening
this means that fine nodes have to be assigned to blocks of the partition of
the finer graph in the hierarchy. We assign a fine node v to the block that
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minimizes cutB · pB(v), where cutB is the cut after v would be assigned to block
B and pB(v) is a penalty function to avoid blocks that are heavily overloaded.
To be more precise, after some experiments we fixed the penalty function to

pB(v) = 2max(0,100 c(B)+c(v)
Lmax

), where Lmax is the upper bound for the block weight.
Note that slight imbalances (e.g. overloaded blocks), can usually be fixed by the
refinement algorithms implemented within KaFFPa. For matching-based coars-
ening the uncoarsening is straightforward: a vertex is assigned to the block of
the corresponding coarse vertex.

Karlsruhe Fast Flow Partitioner (KaFFPa). Since we integrated different coars-
ening schemes into the multilevel graph partitioner KaFFPa [9], we give a very
rough overview over the techniques KaFFPa uses during uncoarsening. After a
matching is uncontracted, local search-based refinement algorithms move nodes
between block boundaries in order to reduce the cut while maintaining the balanc-
ing constraint. These local improvement algorithms are usually variants of the FM
algorithm [4]. KaFFPa additionally uses more advanced refinement algorithms.
The first method is based on max-flow min-cut computations between pairs of
blocks, in other words, a method to improve a given bipartition. Roughly speak-
ing a max-flow min-cut algorithm is applied to an area around the initial cut of a
bipartition. The second method for improving a given partition is called multi-try
FM which is a FM variant achieving a very localized search (for details see [9]).

4 Experimental Evaluation

The AMG coarsening was implemented separately based on the coarsening for
linear ordering solvers from [8] and was integrated into KaFFPa [9]. The com-
putational experiments have been performed with six configurations of KaFFPa
(see Table 1). All configurations use the FM algorithm and flows for the refine-
ment. The strong configurations further employ flows using larger areas, multi-try
FM and F-cycles. Throughout this section, because of the different running times,
we concentrate on two groups of comparison: for fast versions (AMG-ECO, ECO,
ECO-ALG) and for strong versions (AMG, STRONG, F-CYCLE). To be precise,
usually the running time of F-CYCLE is bigger than that of STRONG and AMG.
However, the running time gap between fast and strong versions is even more sig-
nificant on the average. Since the main goal of this paper is to introduce the AMG
coarsening with different uncoarsenings, most of the comparisons will be of type
AMG vs respective non-AMG ratios (between corresponding averages over 10 tri-
als for each configuration). A comprehensive comparison of the F-CYCLE and the
STRONG configuration can be found in [9]. All experiments are performed with
fixed imbalance factor 3%. Detailed results of all benchmarks presented here can
be found in [16].

Benchmark I: Walshaw’s Partitioning Archive. This collection of real-world in-
stances [17] is the most popular graph partitioning benchmark in the literature.
Over the years many different heuristics have been tested and adjusted on this
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Table 1. Description of the six configurations used for the computational experiments

ECO KaFFPaEco configuration for good trade-off of quality and runtime.

ECO-ALG Same refinement as in ECO, coarsening uses the GPA algorithm at each
level and the edge rating function employs algebraic distances; i.e., it uses
the rating function ex alg(e) := expansion∗2(e)/ρe.

F-CYCLE KaFFPaStrong configuration with strong refinement schemes and the F-
cycle scheme for high partition quality; this configuration achieved the
best known partitions for many instances from Benchmark I in 2010 [9].

STRONG Uses the same refinement and matching schemes as in the F-CYCLE
configuration; however, here only one single V-cycle is performed.

AMG-ECO AMG coarsening based on algebraic distances with interpolation order at
most 2, refinement as in ECO.

AMG Same coarsening as in AMG-ECO, same refinement as in STRONG.

benchmark, so that many heuristics are able to obtain good results on these
graphs. In contrast to Benchmarks II and III, the comparison of our methods has
not demonstrated surprisingly new results. Overall, we observed that uncoars-
ening performance of fast versions (ECO, ECO-ALG, AMG-ECO) are more or
less similar to each other and algebraic distance can improve the quality. The
uncoarsening of a STRONG V-cycle is somewhat slower than AMG because of
the density of coarse levels. Full results are summarized in [1].

Benchmark II: Scale-free networks. In scale-free networks the distribution of
vertex degrees asymptotically follows the power-law distribution. These types of
networks often contain irregular parts and long-range links that can confuse both
contraction and AMG coarsening schemes. Since Walshaw’s benchmark doesn’t
contain graphs derived from such networks, we evaluate our algorithms on 15
graphs collected from [17,18].

Because of the large running time of the strong configurations on these graphs,
we compare only the fast versions of AMG and matching-based coarsenings.
The results of the comparison on scale-free graphs are presented in Figures 2
and Table 2. Each figure corresponds to a different number of blocks k. The
horizontal axes represent graphs from the benchmark. The vertical axes are
for ratios that represent comparison of averages of final results for a pair of
methods. Each graph corresponds to one quadruple of bars. First, second, third
and fourth bars represent averages of ratios ECO/AMG-ECO, ECO-ALG/AMG-
ECO after finest refinement, ECO/AMG-ECO, ECO-ALG/AMG-ECO before
finest refinement, respectively.

Benchmark III: Potentially Hard Graphs for Fast k-partitioning Algorithms. We
present a simple strategy for checking the quality of multilevel schemes. To con-
struct a potentially hard instance for gradual multilevel projections, we con-
sider a mixture of graphs that are weakly connected with each other. These
graphs have to possess different structural properties (such as finite-element
faces, power-law degree distribution, and density) to ensure nonuniform coars-
ening and mutual aggregation of well-separated graph regions. Such mixtures of
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Fig. 2. Comparison of coarsening schemes on scale-free graphs. Figures (a)-(f) contain
results of comparison for k = 2, 4, 8, 16, 32, and 64, respectively. Each quadruple of
bars correspond to one graph. First, second, third and fourth bars represent averages
of ratios ECO/AMG-ECO, ECO-ALG/AMG-ECO after refinement, ECO/AMG-ECO,
and ECO-ALG/AMG-ECO before refinement, respectively.

structures (e.g., multi-mode networks) may have a twofold effect. First, they can
force the algorithm to contract incorrect edges; and second, they can attract a
“too strong” refinement to reach a local optimum, which can contradict better
local optimums at finer levels. The last situation has been observed in different
variations also in multilevel linear ordering algorithms [19].

We created a benchmark (available through [17]) with potentially hard mix-
tures. Each graph in this benchmark represents a star-like structure of different
graphs S0, . . . , St. Graphs S1, . . . , St are weakly connected to the center S0 by
random edges. Since all the constituent graphs are sparse, a faster aggregation of
them has been achieved by adding more than one random edge to each boundary
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Table 2. Computational comparison for scale-free graphs

ECO
ECO-ALG

ECO
ECO-ALG

ECO
ECO-ALG

ECO-ALG
AMG-ECO

ECO-ALG
AMG-ECO

k quality full time uncoarsening time quality uncoarsening time

2 1.38 0.77 1.62 1.16 3.62
4 1.24 1.32 1.85 1.11 2.14
8 1.15 1.29 1.45 1.07 1.94
16 1.09 1.27 1.33 1.06 1.69
32 1.06 1.18 1.23 1.00 1.60
64 1.06 1.13 1.13 1.01 2.99

Table 3. Computational comparison for potentially hard graphs

ECO
ECO-ALG

ECO
ECO-ALG

ECO-ALG
AMG-ECO

ECO-ALG
AMG-ECO

STRONG
AMG

STRONG
AMG

F-CYCLE
AMG

quality full quality uncoarsening quality uncoarsening quality
k time time time

2 1.42 0.51 1.18 0.55 1.15 2.11 1.11
4 1.15 0.88 1.23 0.64 1.13 1.69 1.12
8 1.12 1.08 1.08 0.98 1.05 1.37 1.04

node. The total number of edges between each Si and S0 was less than 3% out
of the total number of edges in Si. We considered the mixtures of the follow-
ing structures: social networks, finite-element graphs, VLSI chips, peer-to-peer
networks, and matrices from optimization solvers.

The comparison on this benchmark is demonstrated in Figure 3. Each graph
corresponds to one quadruple of bars. The first, second, third and the fourth bar
represent averages over 10 ratios of ECO/AMG-ECO, ECO-ALG/AMG-ECO,
STRONG/AMG, and F-cycle/AMG, respectively. In almost all experiments we
observed that introduction of algebraic distance as a measure of connectivity
plays a crucial role in both fast versions AMG-ECO and ECO-ALG since it helps
to separate the subgraphs and postpone their aggregation into one mixture. We
also observe that both fast and slow AMG coarsenings almost always lead to
better results. Note that in contrast to Benchmarks I and II, the uncoarsening
of ECO-ALG is significantly faster than that of AMG-ECO.

Role of the algebraic distance. In this work the importance of the algebraic
distance as a measure of connectivity strength for graph partitioning algorithms
has been justified in all experimental settings. In particular, the most significant
gap was observed between ECO and ECO-ALG (see all benchmarks), versions
which confirms preliminary experiments in [13], where the algebraic distance has
been used at the finest level only. The price for improvement in the quality is the
additional running time for Jacobi over-relaxation, which can be implemented by
using the most suitable (parallel) matrix-vector multiplication method. However,
in cases of strong configurations and/or large irregular instances, the difference in
the running time becomes less influential as it is not comparable to the amount of
work in the refinement phase. For example, for the largest graph in Benchmark
I (auto, |V | = 448695, |E| = 3314611) the ECO coarsening is approximately
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Fig. 3. Comparison of coarsening schemes on hard examples. Figures (a,c,e) contain
results of comparison before applying finest level refinement. Figure (b,d,f) contain
results of comparison of final results. Each quadruple of bars correspond to one graph.
First, second, third and fourth bars represent averages of ratios ECO/AMG-ECO,
ECO-ALG/AMG-ECO, STRONG/AMG, and F-cycle/AMG, respectively. Four ex-
ceptionally high ratios on both Figures are between 3.5 and 5.7.

10 times faster than that in the ECO-ALG; but for both configurations when
k = 64, it takes less than 3% of the total time. Note that for irregular instances
from Benchmark II, already starting k = 4 the total running time for ECO
becomes bigger than in ECO-ALG (see Table 2).

Does AMG coarsening help? The positive answer to this question is given
mostly by Benchmarks II and III, that contain relatively complex and irregular
instances (Tables 2 and 3). On Benchmark III we have demonstrated that the
AMG configuration is superior to F-CYCLE, which runs significantly longer.
This result is in contrast to Benchmark I, in which we did not observe any
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particular class of graphs that corresponded to stable significant difference in
favor of one of the methods in pairs ECO-ALG vs AMG-ECO and STRONG
vs AMG. However, we note that in both Benchmarks I and II several graphs
exhibited that AMG versions yield to the respective matching for large k. The
problem is eliminated when we stabilize ρ by using more relaxations according to
Theorem 4.2 in [8]. We cannot present here the exact comparison of coarsening
running times because their underlying implementations are very different. The-
oretically, however, if in both matching and AMG configurations the algebraic
distance is used and when the order of interpolation in AMG is limited by 2
(and usually it is 1, meaning that the coarse graphs are not dense like in [10]),
the exact complexity of AMG coarsening is not supposed to be bigger than that
of matching.

5 Conclusions

We introduced a new coarsening scheme for multilevel graph partitioning based
on the AMG coarsening and the algebraic distance connectivity measure. Both
matching and AMG coarsening schemes have been compared under fast and
strong configurations of refinement. In addition to known benchmarks, we intro-
duced a new benchmark with potentially hard graphs for large-scale graph par-
titioning solvers (available through [17]). As the main conclusion of this work,
we emphasize the success of the proposed AMG coarsening and the algebraic
distance connectivity measure between nodes demonstrated on highly irregular
instances. One has to take into account the trade-off between increased run-
ning time when using algebraic distance and improved quality of the partitions.
The increasing running time becomes less tangible with growth of graph size
compared with the complexity of the refinement phase.
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Abstract. We address the clustering problem in the context of ex-
ploratory data analysis, where data sets are investigated under different
and desirably contrasting perspectives. In this scenario where, for flex-
ibility, solutions are evaluated by criterion functions, we introduce and
evaluate a generalized and efficient version of the incremental one-by-one
clustering algorithm of MacQueen (1967). Unlike the widely adopted two-
phase algorithm developed by Lloyd (1957), our approach does not rely
on the gradient of the criterion function being optimized, offering the
key advantage of being able to deal with non-convex criteria. After an
extensive experimental analysis using real-world data sets with a more
flexible, non-convex criterion function, we obtained results that are con-
siderably better than those produced with the k-means criterion, making
our algorithm an invaluable tool for exploratory clustering applications.

1 Introduction

In clustering, one seeks to partition a given set D = {x1, . . . ,xn} containing
d-dimensional unlabeled samples into k nonempty subsets or clusters so as to
aggregate samples that are most similar into a common cluster. In the variational
approach to clustering [2], the quality of a solution (k-partition) is evaluated
by a criterion function (or functional), and the optimization process consists
in finding a k-partition that minimizes such functional. Under this framework,
the most successful criteria are based on the sufficient statistics of each cluster
Di, that is, their sample prior probabilities p̂Di , means μ̂Di, and variances σ̂2

Di
,

which yield not only mathematically motivated but also perceptually confirmable
descriptions of the data. Examples of functionals include not only the widely
studied minimum sum-of-squares clustering criterion J1 =

∑k
i=1 p̂Di σ̂

2
Di

, but also
variants rooted in the theory of sampling such as J2 =

∑k
i=1 p̂Di σ̂Di , introduced

by Neyman [14], and J3 =
∑k

i=1 p̂2
Di

σ̂2
Di

, proposed by Kiseleva et al. [9]. The
key difference between J1 when compared to J2 and J3 is that the former only
employs the first two sufficient statistics of the clusters to discriminate samples
(namely, their priors and means), while the latter makes use of the estimated
variances as well. As a result, the decision boundaries resulting from J2 and J3

are quadratic and thus more flexible than the linear boundaries produced by J1.

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 381–392, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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There are plenty of algorithms for optimizing J1, mostly local search methods.
Along this line, perhaps the most successful one is the two-phase algorithm
by Lloyd [11], commonly referred to as the k-means clustering algorithm. This
gradient-based procedure was recently extended to work successfully with J2 as
well [12]. However, gradient-based optimization algorithms can only work with
convex functionals, a fact that holds true for both J1 and J2, but fails for J3,
recently shown to be non-convex [12]. Even though there exist more complex
algorithms that provide performance guarantees for J3 (see e.g., [17,6]), to our
knowledge, no implementations validating such approaches have been reported
in the literature, perhaps due to their inherent complexities.

This paper is motivated by the lack of a simple but yet fairly efficient local
search procedure with the added support for non-convex criteria such as J3.
Hence, we propose an efficient iterative implementation of the one-by-one clus-
tering procedure of MacQueen [13] where each sample is greedily assigned to
the cluster that most improves the current functional value, with the cluster
statistics being updated before the next sample is considered. This process is
iterated until a predefined convergence condition is met. The main advantage of
this approach is the ability to deal with functionals for which convexity does not
hold. Throughout the minimization of non-convex criteria with gradient-based
methods including the two-phase procedure, the actual criterion may increase
when a sample is moved to the cluster whose membership function value (i.e.,
the gradient of the functional) is minimized. In fact, this is likely to happen in
early iterations [12], resulting in poor solutions. Working directly on the func-
tional avoids this problem since the procedure is monotonically decreasing and
does not rely on convexity.

We address the concerns about efficiency by showing that our implementation
of the one-by-one approach offers the same theoretical running time found in a
common, straightforward implementation of the two-phase method. To validate
our algorithm in practice, we first briefly discuss an experimental comparison
with the two-phase procedure, where our contribution is found slower though
slightly more accurate in the majority of the data sets adopted. Next, our ap-
proach is set to optimize the non-convex criterion J3, which we show that can
offer interesting alternative interpretations of the data when compared to J1.
This way, our algorithm has the potential to be an invaluable tool in exploratory
data analysis.

Our paper is organized as follows. In the next section, we establish the notation
and discuss the background of our work. Then, we introduce our iterative one-
by-one heuristic in Sec. 3. The experimental evaluation is conducted in Sec. 4,
and in Sec. 5 we offer a summary and future research possibilities.

2 Notation and Background

Henceforth, we represent a k-partition {D1, . . . ,Dk} by the set of functions

hDi(x) =
{

1, if x ∈ Di

0, otherwise, (1)
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where i = 1, . . . , k. Additionally, hDi(x) = 1 ⇐⇒ hDj (x) = 0 for all j �= i. With
the number of samples in a given cluster Di denoted by nDi =

∑
x∈Di

hDi(x),
the prior probability of Di is estimated as p̂Di = nDi

n . By employing the first
and second sample central moments

M(1)
Di

= μ̂Di =
1

nDi

∑
x∈Di

x, and

M(2)
Di

=
1

nDi

∑
x∈Di

||x||2,

respectively, the sample cluster variance is computed as σ̂2
Di

= M(2)
Di

−||M(1)
Di

||2.
Note that p̂Di ∈ R, μ̂Di ∈ Rd, and σ̂2

Di
∈ R, for all i = 1, . . . , k.

In the variational approach to clustering [2], functionals can be written as

J(p̂D1 , μ̂D1 , σ̂
2
D1

, . . . , p̂Dk
, μ̂Dk

, σ̂2
Dk

) =
k∑

i=1

JDi(p̂Di , μ̂Di , σ̂
2
Di

). (2)

Among the functionals derived from Eq. 2 is the minimum sum-of-squares clus-
tering criterion, defined as

J1 =
k∑

i=1

p̂Di σ̂
2
Di

(3)

=
k∑

i=1

∑
x∈Di

||x − μ̂Di ||2, (4)

where Eq. 4 follows from [12]. While Eq. 4 explicitly denotes the similarity of a
sample with respect to a cluster through a membership function, Eq. 3 quantifies
the similarity of each cluster directly. The former is in fact the gradient of the
latter, which, in this case, is convex [2]. In J1, the separating hyperplane (also
known as decision boundary) between two clusters Di and Dj with respect to a
sample x is given by the linear equation

||x − μ̂Di ||2 − ||x − μ̂Dj ||2 = 0. (5)

The so called k-means clustering algorithm is perhaps the most studied local
search heuristic for the minimization of J1. In fact, k-means usually refers to
(variants of) one of the following two algorithms. The first is an iterative two-
phase procedure due to Lloyd [11] that is initialized with a k-partition and
operates in two alternating phases: (1) given the set of samples D and the k
means (centers) representing the current clusters, it reassigns each sample to
the closest center; and (2) with the resulting updated k-partition of D, it up-
dates the centers. This process is iteratively executed until a stopping condition
is met. An efficient implementation of this algorithm is studied in [8]. The second
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variant is an incremental one-by-one procedure which utilizes the first k samples
of D as the cluster centers. Each subsequent sample is assigned to the closest
center, which is then updated to reflect the change. This procedure was intro-
duced by MacQueen [13] and is a single-pass, online procedure, i.e., samples are
considered only once. In [18], an efficient iterative variant of this approach was
given. A comprehensive survey on the origins and variants of k-means clustering
algorithms can be found in [3].

The main difference between the two approaches above is when the cluster
centers are updated: in a separate phase, after all the samples have been consid-
ered (two-phase), or sample after sample (one-by-one). It is here that the main
drawbacks of the one-by-one method appear. The computational time required
to update the cluster centers after each sample is analyzed may be prohibitively
large, especially in medium to large-sized data sets. Another concern is clustering
quality, since its ability to escape from local minima has also been questioned [5].
In contrast, significant improvements have been made in the two-phase algorithm
when tied with J1, such as tuning it to run faster [8,15], to be less susceptible
to local minima [4], or to be more general [10,16].

We now discuss two alternative criteria whose key characteristic lies on their
separating hyperplanes. The first, initially proposed by Neyman [14] for one-
dimensional sampling, was recently generalized to multidimensional data [12]
and is defined as

J2 =
k∑

i=1

p̂Di

√
σ̂2
Di

. (6)

The decision boundaries produced by criterion J2 are given by

[
σ̂Di

2
+

1
2σ̂Di

(||x − μ̂Di ||2)
]
−
[
σ̂Dj

2
+

1
2σ̂Dj

(||x − μ̂Dj ||2)
]

= 0. (7)

Since convexity holds for J2, successful experimental progress has been made in
the application of the two-phase procedure with such criterion [12].

The second criterion, introduced by Kiseleva et al. [9], is written as

J3 =
k∑

i=1

p̂2
Di

σ̂2
Di

, (8)

and discriminates according with the following decision boundaries:[
p̂2
Di

σ̂2
Di

+ p̂2
Di

(||x − μ̂Di ||2)
]
−
[
p̂2
Dj

σ̂2
Dj

+ p̂2
Dj

(||x − μ̂Dj ||2)
]

= 0. (9)

This criterion was extended to multidimensional clustering [17], and a recent
manuscript has shown that it is non-convex, thus rendering the two-phase gra-
dient approach useless [12]. Next, we introduce a local search heuristic that can
tackle J3 as well as any variance-based clustering criteria.
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3 Heuristic for Variance-Based Criteria

In this section, we present our iterative one-by-one algorithm together with data
structures that allow for a fast evaluation of the change in the criterion function
when a sample is considered as a member of another cluster. The algorithm
minimizes any additive criterion function specializing Eq. 2, and is a generalized
variant of the k-means algorithm for J1 studied in [18].

Before introducing the main algorithm, we first present an efficient proce-
dure to update a given functional value to reflect the case where an arbitrary
sample x ∈ Dj is reassigned to cluster Di (i �= j). In Algorithm 1, we use the
notation J (x→Di) to indicate that x, currently in cluster Dj , will be considered
in cluster Di. For efficiency, similarly to [18,5], we maintain the unnormalized
statistics of each cluster, namely nDi =

∑
x∈D hDi(x), mDi =

∑
x∈Di

x, and
s2
Di

=
∑

x∈Di
||x||2. Such equations can be efficiently updated when a sample

is moved from one cluster to another. Further, it is straightforward to compute
the estimated priors, means, and variances of any cluster given these auxiliary
statistics (see Sec. 2). We note that in [18,5], only nDi needs to be maintained
given that their algorithms are tied with J1.

Algorithm 1. Computes J (x→Di)

Input: sample x ∈ Dj , target cluster Di, current criterion value J∗, and cluster statis-
tics: nDj , mDj , s2

Dj
, p̂Dj , μ̂Dj , σ̂2

Dj
, nDi , mDi , s2

Di
, p̂Di , μ̂Di , and σ̂2

Di
.

1: Let n′
Dj

:= nDj − 1 and n′
Di

:= nDi + 1.
2: Let m′

Dj
:= mDj − x and m′

Di
:= mDi + x.

3: Let (s2
Dj

)′ := s2
Dj
− ||x||2 and (s2

Di
)′ := s2

Di
+ ||x||2.

4: Let p̂′
Dj

:=
n′
Dj

n
and p̂′

Di
:=

n′
Di
n

.
5: Let μ̂′

Dj
:= 1

n′
Dj

mD′
j

and μ̂′
Di

:= 1
n′
Di

m′
Di

.

6: Let (σ̂2
Dj

)′ := 1
n′
Dj

(s2
Dj

)′ − ||μ̂′
Dj
||2 and (σ̂2

Di
)′ := 1

n′
Di

(s2
Di

)′ − ||μ̂′
Di
||2.

7: Compute J(x→Di) with the updated statistics for clusters Di and Dj .

In this procedure, the auxiliary statistics are updated in lines 1–3 in Θ(d)
time. Then, the sufficient statistics are computed in lines 4–6, again in Θ(d)
time. Finally, in line 7, assuming that JDi(p̂Di , μ̂Di , σ̂

2
Di

) can be evaluated in
Θ(1) for all i = 1, . . . , k, the functional J∗ is updated in Θ(1). As an example,
for J1, we have that J

(x→Di)
1 = J∗

1 − p̂Di σ̂
2
Di

− p̂Dj σ̂
2
Dj

+ p̂′Di
(σ̂2

Di
)′ + p̂′Dj

(σ̂2
Dj

)′.
This shows that Algorithm 1 runs in Θ(d). Correctness follows from Sec. 2.

Let us now present our clustering heuristic in Algorithm 2. The procedure
is initialized with a k-partition that is used to compute the auxiliary and the
sample statistics in lines 1 and 2, respectively. In the main loop (lines 5–17),
every sample x ∈ D is considered as follows: Algorithm 1 is used to assess the
functional value when the current sample is tentatively moved to each cluster
D1, . . . ,Dk (lines 6–8). If there exists a cluster Dmin for which the objective
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Algorithm 2. Minimizes a clustering criterion function.
Input: an initial k-partition (Equation 1).
1: Compute nDi , mDi , and s2

Di
∀ i = 1, . . . , k.

2: Compute p̂Di , μ̂Di , and σ̂2
Di
∀ i = 1, . . . , k.

3: Set J∗ := J(p̂D1 , μ̂D1 , σ̂2
D1 , . . . , p̂Dk , μ̂Dk , σ̂2

Dk
).

4: while convergence criterion not reached do
5: for all x ∈ D do
6: for all i | hDi(x) = 0 do
7: Compute J(x→Di) via Algorithm 1.
8: end for
9: if ∃ i | J(x→Di) < J∗ then

10: Let min = i | mini J(x→Di). (i.e., x→ Dmin mostly improves J∗.)
11: Let j = i | hDi(x) = 1. (i.e., Dj is the current cluster of x.)
12: Set hDmin(x) := 1 and hDj (x) := 0. (i.e., assign x to cluster Dmin.)
13: Update: nDmin , nDj , mDmin , mDj s2

Dmin
, s2

Dj
.

14: Update: p̂Dmin , p̂Dj , μ̂Dmin , μ̂Dj , σ̂2
Dmin

, σ̂2
Dj

.
15: Set J∗ := J(x→Dmin).
16: end if
17: end for
18: end while

function can be improved, the sample is reassigned to such cluster and all the
statistics are updated. The algorithm stops when a convergence goal is reached.

Because the procedure is monotonically decreasing, convergence is guaranteed.
The running time to execute one iteration of Algorithm 2 is Θ(nkd), the same
than an iteration of a simple two-phase procedure [5]. Concerns with running
times of our heuristic are justifiable because: (1) the procedures based on the two-
phase approach are tuned to a particular functional (J1) that does not rely on
the variances of each cluster; and (2) they do not update the cluster statistics on
the fly (i.e., after considering each sample). In a final note, procedures adopting
the one-by-one approach are reportedly more susceptible to local minima [5]. We
address these concerns in the following empirical study.

4 Experimental Results

In this section, we validate Algorithm 2, henceforth denoted one-by-one, and
its effectiveness in optimizing the non-convex criterion J3, through a series of
computational experiments focused on the quality of the solutions and the com-
putational time needed to obtain them. All algorithms were coded in C++,
compiled with g++ version 4.1.2, and run on a single 2.3 GHz CPU with 128
GBytes of RAM. The algorithms were stopped whenever no sample changed
cluster in a given iteration.

In a preamble, we compared our algorithm with a simple implementation
of the two-phase approach (the so called k-means procedure, but offering the
flexibility of working with any convex membership function such as those from J1

or J2). This first step indicated a tradeoff between quality and running time, with
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one-by-one outperforming the simple two-phase algorithm in the first, though
by a small margin, but being outperformed in the latter. The results for clustering
quality were unexpected, since in the vast majority of data sets the procedures
found surprisingly similar results, contradicting previous reports that the one-by-
one approach was more prone to local minima. As for the computational times,
the two-phase implementation ran about 2.5 times faster than one-by-one in
real-world data sets. These results are more carefully presented in Appendix 5.

After having shown that the optimization performance of one-by-one is com-
parable with (and even slightly better than) that of the two-phase approach, we
now move on to the main reason behind our work on this implementation: cri-
terion J3, a promising non-convex functional that, to our knowledge, was never
empirically studied before due to the lack of an appropriate clustering algorithm.
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(c) Criterion J3.

Fig. 1. Decision boundaries for a mixture of five equiprobable Gaussian distributions.
The central cluster has a quarter of the variance of the external clusters.

To begin, we used one-by-one to provide a visual comparison between the
three criteria mentioned in this paper, illustrating in Fig. 1 how their decision
boundaries discriminate samples. Here, J2 and J3 built quadratic boundaries
around the central cluster (of smaller variance) and linear hyperplanes between
the external clusters (of the same variance), since Eqs. 7 and 9 become linear
when σ̂2

Di
= σ̂2

Dj
. For J1, all boundaries are linear and thus unable to provide a

proper discrimination for the central cluster.

4.1 Clustering Quality Analysis

In the subsequent experiments, we selected twelve real-world classification data
sets (those with available class labels) from the UCI Machine Learning Reposi-
tory [1] having fairly heterogeneous parameters as shown in Table 1.

To collect evidence backing one-by-one as a good local search procedure
for variance-based criteria in general, we ran the algorithm on 1,000 randomly
generated initial k-partitions and stored both the initial (random) and the final
(optimized) criterion value for each run. For J1, the ratio between the initial and
local optimal solution was 0.4131; for J2, 0.5748, and for J3, 0.3640. Though no
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conclusion can be made about the effectiveness of each criterion in particular, it
is clear that one-by-one effectively reduces the criterion value over its course.

Next, the available class labels from the selected data sets were used in order
to compare the functionals under the following measures of clustering quality:
accuracy, widely adopted by the classification community, and the Adjusted
Rand Index or ARI [7], a pair-counting measure adjusted for chance that is
extensively adopted by the clustering community. (See Vinh et al. [19].)

Table 1. Description and solution quality for real-world data sets obtained from the
UCI Repository [1]. Quality measures are averaged over 1,000 runs with random initial
k-partitions.

p

Dataset
Parameters Accuracy Adjusted Rand Index

k d n J1 J2 J3 J1 J2 J3

arcene 2 10000 200 0.6191 0.6173 0.6750 0.0559 0.0536 0.1180

breast-cancer 2 30 569 0.8541 0.8735 0.8770 0.4914 0.5502 0.5613

credit 2 42 653 0.5513 0.5865 0.5819 0.0019 0.0226 0.0193
inflammations 4 6 20 0.6773 0.6606 0.7776 0.4204 0.4008 0.6414

internet-ads 2 1558 2359 0.8953 0.8279 0.7961 0.4975 0.3434 0.2771
iris 3 4 150 0.8933 0.8933 0.8933 0.7302 0.7302 0.7282
lenses 2 6 24 0.6036 0.6011 0.6012 0.0346 0.0326 0.0382

optdigits 10 64 5619 0.7792 0.7702 0.7959 0.6619 0.6498 0.6810

pendigits 10 16 10992 0.6857 0.6960 0.7704 0.5487 0.5746 0.6155

segmentation 7 19 2310 0.5612 0.5516 0.5685 0.3771 0.3758 0.4028

spambase 2 57 4601 0.6359 0.6590 0.6564 0.0394 0.0773 0.0726
voting 2 16 232 0.8966 0.8875 0.8865 0.6274 0.5988 0.5959

Average 0.7211 0.7187 0.7400 0.3739 0.3675 0.3959

Wins 4 3 7 3 3 7

In Table 1, we note that J3 significantly outperforms both J1 and J2 on
average, being about 2% better than its counterparts in both quality measures.
Although we chose not to display the individual standard deviations for each data
set, the average standard deviation in accuracy across all datasets was 0.0294,
0.0291, and 0.0276 for J1, J2, and J3 respectively; for ARI, 0.0284, 0.0282, and
0.0208 respectively. In this regard, J3 also offered a more stable operation across
the different initial solutions.

4.2 Runtime Analysis

The purpose of this section is twofold: to assess the running time of one-by-one
on real-world problems, and to check whether different clustering criteria have
any impact in the running time of one-by-one. In Table 2, we report both the
average running time, in milliseconds, to optimize each criterion function, and
the average number of iterations completed upon termination.
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Table 2. Average running times (ms) until convergence, for real-world data, reported
as the average over 1,000 runs with random initial k-partitions.

g , p

Dataset
Parameters Running times Iterations

k d n J1 J2 J3 J1 J2 J3

arcene 2 10000 200 139.66 153.90 208.03 2.427 2.715 3.724
breast-cancer 2 30 569 2.48 3.16 2.07 4.000 4.376 3.022
credit 2 42 653 5.55 4.24 2.86 6.000 4.066 3.006
inflammations 4 6 20 0.59 0.58 0.94 4.352 4.513 8.652
internet-ads 2 1558 2359 572.91 855.59 458.24 5.075 7.936 4.000
iris 3 4 150 0.30 0.47 0.34 3.670 3.761 4.123
lenses 2 6 24 0.02 0.04 0.04 2.488 2.472 2.649
optdigits 10 64 5619 1562.97 1475.40 2020.39 15.812 14.575 20.040
pendigits 10 16 10992 811.74 959.45 611.11 15.671 17.647 11.915
segmentation 7 19 2310 126.19 112.43 102.56 15.585 13.244 12.596
spambase 2 57 4601 84.57 52.29 36.65 9.000 5.349 3.519
voting 2 16 232 0.95 0.81 0.62 4.039 4.456 3.501

Even for larger datasets such as optdigits, pendigits, internet-ads, and seg-
mentation, the running times have barely reached the two-second mark; in fact,
only for optdigits the algorithm needed more than a second to converge. Thus,
we are confident that one-by-one can be used in real-world clustering applica-
tions. It is important to note that we saw no significant change in the running
time when a different clustering criteria was selected. The average number of
iterations spent before convergence also corroborates to our conclusions.

5 Summary and Future Research

We have proposed a local search heuristic for the clustering problem of minimiz-
ing additive criterion functions taking as parameters the sample priors, means,
and variances of each cluster. The main contribution of this paper is an algorithm
that can effectively handle both convex and non-convex clustering criteria.

The theoretical running time of our accelerated technique is the same achieved
by the widely studied two-phase procedure, though preliminary results on both
synthetic and real-world data sets have indicated a tradeoff between running time
and clustering quality: the simple two-phase implementation was considerably
faster, but found marginally worse solutions in terms of quality.

However, because gradient-based algorithms like those based on the two-phase
approach are not suitable for non-convex criteria, to our knowledge, we have in-
troduced the first local search procedure designed to optimize functionals like
J3. Moreover, with such algorithm we were able to show that J3 is indeed very
promising, providing outstanding results for data sets of heterogeneous real-
world applications including digit recognition, image segmentation, and discov-
ery of medical conditions.
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Future research paths include a more extensive experimentation with func-
tionals J2 and J3 to better understand their strengths and weaknesses. The pro-
posed method is also a natural choice for applications that might benefit from
new additive variations of J1, J2, and J3, and also for criteria with additional
penalty factors or regularization terms.

References

1. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2009)
2. Bauman, E.V., Dorofeyuk, A.A.: Variational approach to the problem of automatic

classification for a class of additive functionals. Automation and Remote Control 8,
133–141 (1978)

3. Bock, H.-H.: Origins and extensions of the k-means algorithm in cluster analysis.
Electronic Journal for History of Probability and Statistics 4(2) (2008)

4. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In:
Proceedings of the 15th International Conference on Machine Learning, pp. 91–99.
Morgan Kaufmann Publishers Inc. (1998)

5. Duda, R.O., Hart, P.E., Storck, D.G.: Pattern Classification, 2nd edn. Wiley In-
terscience (2000)

6. Efros, M., Schulman, L.J.: Deterministic clustering with data nets. Technical Re-
port 04-050, Electronic Colloquium on Computational Complexity (2004)

7. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218
(1985)

8. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 881–892
(2002)

9. Kiseleva, N.E., Muchnik, I.B., Novikov, S.G.: Stratified samples in the problem of
representative types. Automation and Remote Control 47, 684–693 (1986)

10. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means algorithm. Pattern Recog-
nition 36, 451–461 (2003)

11. Lloyd, S.P.: Least squares quantization in PCM. Technical report, Bell Telephone
Labs Memorandum (1957)

12. Lytkin, N.I., Kulikowski, C.A., Muchnik, I.B.: Variance-based criteria for clustering
and their application to the analysis of management styles of mutual funds based
on time series of daily returns. Technical Report 2008-01, DIMACS (2008)

13. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–297. University of California Press (1967)

14. Neyman, J.: On the two different aspects of the representative method: the method
of stratified sampling and the method of purposive selection. Journal of the Royal
Statistical Society 97, 558–625 (1934)

15. Pelleg, D., Moore, A.: Accelerating exact k-means algorithms with geometric rea-
soning. In: Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 277–281. ACM (1999)

16. Pelleg, D., Moore, A.: x-means: Extending k-means with efficient estimation of
the number of clusters. In: Proceedings of the 17th International Conference on
Machine Learning, pp. 727–734. Morgan Kaufmann Publishers Inc. (2000)



Heuristic for Variance-Based Clustering Criteria 391

17. Schulman, L.J.: Clustering for edge-cost minimization. In: Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing, pp. 547–555. ACM (2000)

18. Späth, H.: Cluster analysis algorithms for data reduction and classification of ob-
jects. E. Horwood (1980)

19. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings com-
parison: is a correction for chance necessary? In: Proceedings of the 26th Annual
International Conference on Machine Learning, pp. 1073–1080. ACM (2009)

Appendix: One-by-One versus Two-Phase Approaches

To provide a fair and balanced comparison between our procedure and the two-
phase approach, denoted by two-phase, we set one-by-one to optimize J1.
No accelerated two-phase implementations (e.g., [8,15]) were considered because
they are tied to functional J1.

5.1 Synthetic Data

Synthetic data sets were generated following [8,15] in order to determine how
each algorithm scales with respect to the number of clusters (k), attributes (d),
and samples (n). Samples were drawn from an even mixture of Gaussian distribu-
tions Ni(μi, σ

2I), i = 1, . . . , k, and assembled follows. Each cluster center μi was
sampled from a uniform distribution inside the d-hypercube [0, 1]d. Covariance
matrices were fixed as σ2I, with σ2 ∈ {0.05, 0.10, 0.30}, which, for k ≤ d, trans-
lates into clusters with no, little, and some overlap, respectively. The remain-
ing parameters were varied as follows: n ∈ {2000, 5000, 10000, 25000, 50000},
k, d ∈ {2, 5, 10, 25, 50}. For each 4-tuple (n, d, k, σ2), we generated 10 random
data sets, and for each data set, 30 random initial k-partitions.

Clustering Quality Analysis. The average performance of each algorithm is
shown in Fig. 2, where we plot the final criterion obtained by each algorithm
when varying the number of samples (Fig. 2a) and number of clusters (Fig. 2b).
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Fig. 2. Average criterion function value for different instance parameters
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Varying the number of attributes resulted in nearly identical curves. On aver-
age, one-by-one marginally outperformed two-phase regarding solution quality
while also obtaining much smaller standard deviations.

Runtime Analysis. In Fig. 3, we plot the average running times to generate
the solutions reported in the previous experiment. Here, as predicted, two-phase
was indeed faster than one-by-one.

10-2

10-1

100

101

102

 0  10  20  30  40  50

tim
e 

(s
)

number of samples (K)

two-phase
one-by-one

(a) Varying n.

100

101

102

 0  10  20  30  40  50

tim
e 

(s
)

number of attributes

two-phase
one-by-one

(b) Varying d.

10-2

10-1

100

101

102

 0  10  20  30  40  50

tim
e 

(s
)

number of classes

two-phase
one-by-one

(c) Varying k.

Fig. 3. Average running times, displayed in logarithmic scale

5.2 Real-World Data

We set both implementations to optimize J1 and J2 on the same real-world in-
stances from Sec. 4. Based on the four average performance indicators in Table 3,
one-by-one is again slightly more accurate but about 2.5 times slower.

Table 3. Performance indicators on real-world instances

Performance criterion
J1 J2

two-phase one-by-one two-phase one-by-one

Ratio final/initial criterion value 0.4160 0.4131 0.5828 0.5748

Accuracy 0.7171 0.7211 0.7099 0.7187

Adjusted Rand Index 0.3745 0.3739 0.3665 0.3675

Normalized runtime 1.0000 2.5863 1.0000 2.0911
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Abstract. The problem of detecting critical elements in a network in-
volves the identification of a subset of elements (nodes, arcs, paths,
cliques, etc.) whose deletion minimizes a connectivity measure over the
induced network. This problem has attracted significant attention in re-
cent years because of its applications in several fields such as telecom-
munications, social network analysis, and epidemic control. In this paper
we examine the problem of detecting critical cliques (CCP). We first in-
troduce a mathematical formulation for the CCP as an integer linear
program. Additionally, we propose a two-stage decomposition strategy
that first identifies a candidate clique partition and then uses this parti-
tion to reformulate and solve the problem as a generalized critical node
problem (GCNP). To generate candidate clique partitions we test two
heuristic approaches and solve the resulting (GCNP) using a commer-
cial optimizer. We test our approach in a testbed of 13 instances ranging
from 25 to 100 nodes.
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1 Introduction

The problem of detecting critical elements (nodes, arcs, paths, clusters, cliques,
etc.) in a network has recently become a major endeavor. Identifying these ele-
ments can be crucial for studying many structural characteristics of a network
such as connectivity, centrality, robustness, and vulnerability, as well as for iden-
tifying dominant clusters and/or partitions.

There is a wide variety of applications for which the detection of critical
elements may be of great value. For example, analyzing beforehand how well a
network would perform under certain disruptive events plays a vital role in the
design and the operation such network. In order to detect vulnerability issues, it
is particularly important to analyze how well connected a network remains after
a disruptive event takes place destroying or impairing a set of elements in the
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network. The main strategy is to identify which is the set of critical elements that
must be protected or reinforced in order to mitigate the negative impact that the
absence of such elements may produce in the network. Applications of this kind
arise in many different contexts and fields such as in social networks analysis [4],
homeland security [12], evacuation planning [16], immunization strategies [21],
transportation [15], and power grid construction [19], among others.

In general, most of the critical element detection problems fall into the fol-
lowing definition. Given a connected undirected network G = (V , E), where V
and E are the set of nodes and edges, respectively, the critical element detection
problem involves finding a subset of elements A = {1, . . . , k} (k < |V|) such that
its deletion minimizes a given connectivity measure over G.

Several measures have been used to assess the level of disconnection of the resid-
ual network. There are mainly two classes in which these measures can be catego-
rized. Themeasures from the first class can be associatedmostly with network flow
problems (e.g., shortest path problems and maximum flow problems) [5,10,16,22].
For these cases, the critical elements are the ones whose deletion results in the
maximum increase of the shortest path, or consequently, the maximum decrease
of the flow capacity between two predefined nodes s and t. This kind of measures
are commonly used in the context of network interdiction, and are generally de-
signed to tackle arc interdiction problems (detecting critical arcs).

On the other hand, the measures of the second class are associated with
topological characteristics of the network. For example, one can account for
the total number of pairwise connections (i.e., the total number of node pairs
that are connected in the network by at least one path) [2,7], the total cost of
pairwise connectivity (i.e., a weighted sum of the pairwise connections) [2,7], the
size of the largest connected component (i.e., the number of nodes that belong
to the largest maximal connected subgraph of G) [17,20], and the total number
of connected components [1,20]. The measures of this class are the ones that we
will consider in this work.

Among all the critical element detection problems, the one of detecting critical
nodes (CNP) is the one that has attracted more attention. From the complex-
ity point of view, the CNP is proven to be NP-hard on general networks for
most of the connectivity measures described above [2,7,8]. There are few cases,
though, for which the CNP is solvable in polynomial time (see, [7,20]). Exist-
ing methodologies for solving the CNP include heuristics (and metaheuristics)
[1,2,4], mathematical programing [2,5,10,16,17,22], dynamic programing [7,20],
approximated algorithms [8], and simulation approaches [14].

A simple heuristic approach regarding the CNP was explored by Albert et al.
[1]. This work aims at analyzing the tolerance of complex networks with respect
to strategic node deletions. Instead of finding the collection of nodes that must
be removed to impair the connectivity of the network, the authors analyze the
resulting consequences over the network when (i) a set of randomly chosen nodes
is removed and (ii) when the nodes with large degree are removed.

Recent endeavors using mathematical programing techniques can be found in
[2] and [17]. In their work, Aurslevan et al. [2] provide a prove of theNP-hardness
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of the CNP for the pairwise connectivity measure. They also introduce a linear
integer formulation and a fast constructive heuristic. An alternative formulation
was presented in [17]. In this paper, the authors provide a detailed polyhedral
analysis for different valid inequalities as well as a branch-and-cut framework.

The use of dynamic programming has been studied by Shen and Smith [20] and
Di Summa et al. [7]. In both studies, the authors provide a detailed complexity
analysis of the CNP over trees and other structures. They also prove that the
cardinality version of some CNP variations over trees are polynomially solvable
via dynamic programing.

From the approximation algorithms perspective, a variation of the CNP prob-
lem is presented in [8]. In this work, the authors propose a reformulation for the
CNP where the objective function is set to minimize the number of nodes (or
edges) that must be removed in order to achieve a certain degradation (disrup-
tion) in the connectivity of the network. In addition to these reformulations, a
thorough complexity and inapproximability analysis is presented as well as a
pseudo-approximation scheme.

The main purpose of this paper is to extend the scope of previous works re-
lated with the CNP, and analyze the problem of detecting critical cliques on
networks. We organize this paper as follows. In Section 2, we introduce the crit-
ical clique detection problem (CCP) including a complexity analysis regarding
the NP-completeness of the CCP. We also introduce a integer linear formula-
tion and its respective variations for two of the connectivity measures described
above. In Section 3, we present a decomposition approach for solving the CCP.
The proposed approach is based on a reduction from the CCP to a generalized
critical node problem (GCNP) by means of a clique partitioning problem. We
also present two algorithms that can be used to obtain candidate clique parti-
tions, as well as a formulation for the GCNP that is used to solve the resulting
problem. In Section 4, we present our computational results, and finally, in Sec-
tion 5 we provide conclusions an further directions for subsequent projects.

2 The Critical Clique Detection Problem (CCP)

Given a connected undirected network G = (V , E) where V and E are the set of
nodes and edges, respectively, and an integer k, the CCP involves finding a set of
k disjoint cliques such that its deletion results in the maximum network discon-
nection. Additional constraints regarding the structure of the cliques can also be
imposed, for instance, an upper bound on the size of the critical cliques. Notice
that the CCP can be seen as a generalization of the CNP, where the objective is
to find cliques instead of nodes. The CNP is then the case where the size of the
cliques is limited to be one. Figure 1 presents an example of the CCP over a 9-node
graph, where k = 2. Figure 1(a) displays the original network, and Figure 1(b) the
optimal solution where the cliques selected are colored in gray and white.

Among the different connectivity measures described above which can be used
as objective functions we discuss two: the total number of pairwise connections
and the size of the largest component. A description of these objectives follows:
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(a) Original graph (b) Optimal solution

Fig. 1. Example for a 9-node graph

2.1 Objective Functions

Before presenting the objectives, we need to introduce the following definitions.
For any subset V ′ ⊆ V we define E(V ′) ⊆ E as the set of edges such that, for each
edge e ∈ E(V ′), both endpoints of e belong to V ′. We also define the induced
graph G(V ′) as the graph comprised by the set of nodes V ′, and the set of edges
E(V ′). We assume that two nodes i, j ∈ V are connected over G if there exist at
least one path that connects i with j in G. Let Q be the set of maximal connected
components of G. We define a maximal connected component Cq ∈ Q as a subset
Cq ⊆ V of nodes such that every pair of nodes i, j ∈ Cq is connected over G(Cq),
and such that, for every node l ∈ V \ Cq, there is no edge connecting l with any
node i ∈ Cq. From now on we will refer to the maximal connected components
only as components unless otherwise stated. Let σq = |Cq| be the number of
nodes of component Cq ∈ Q. We define the number of pairwise connections of
component Cq ∈ Q as

(
σq

2

)
= σq(σq − 1)/2. Let T = {K1, . . . ,Kk} be the set of

k critical cliques of G, V(Kt) ⊆ V be the subset of nodes that comprise clique
Kt ∈ T , and V(T ) ⊆ V be the set of all the nodes that belong to the critical
cliques. Finally, let GT = (V \V(T ), E(V \V(T ))) be the resulting network after
the deletion of the critical cliques, and QT the corresponding set of remaining
components. The definitions of the two objectives used follow:

Minimize the Total Pairwise Connectivity (TPW): Given a network G =
(V , E) and an integer k, we try to find a collection of cliques T , of size |T | ≤ k,
such that the sum of the pairwise connections of all the components left is
minimized:

min
∑

q∈QT

σq(σq − 1)/2 (1)

Minimize the Size of the Largest Component (MinMS): Given a network
G = (V , E) and an integer k, we try to find a collection of cliques T , of size
|T | ≤ k, such that the size of the largest component is minimized:

min max
q∈QT

{σq} (2)

2.2 NP-Completeness of the CCP

We now prove that the decision version of the CCP problem is NP-complete.
The decision version of the CCP, defined as the α–CCP can be stated as follows.
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Given a graph G = (V , E) and a positive integer k, is there a set of disjoint cliques
T = {K1,K2, . . . ,Kt}, t ≤ k such that the size of the largest component of GT
is at most α? Note that in this case we use expression (2) as the connectivity
measure, although, we could easily adapt this result for (1) as well.

Clearly, the α–CCP belongs to the class NP for any given G = (V , E). Notice
that given a collection of cliques T in G, identifying the size of each compo-
nent of GT can be done in polynomial time by means of a breadth first search
algorithm [13].

To prove that the α–CCP belongs to the NP–complete class, we propose
the following reduction from the clique partitioning problem known to be NP–
complete [9]. The clique partitioning problem is defined as follows: Given a graph
G = (V , E) and a positive integer k, is it possible to partition set V into t ≤ k
disjoint cliques K1,K2, . . . ,Kt?

It can be easily argued that the α–CCP generalizes the partition into cliques
problem. Note that for α = 0, there is a collection of at most k cliques K1, . . . ,Kk

such that every component left in the network has size zero (i.e., |QT | = 0) if and
only if, every vertex in V belongs to one of the following subsets induced by the
critical cliques V(K1),V(K2), . . . ,V(Kk). Thereby, the α–CCP is NP-complete.

2.3 CCP formulations

When studying combinatorial problems, using a linear integer formulation is in
general a natural starting point. Despite the inherent difficulty of these problems,
techniques such as branch and bound, branch and cut, and others are proven
to be very efficient approaches to obtain solutions for instances of manageable
size. We now present an integer linear formulation for the CCP as well as the
respective modifications to tackle the two objectives proposed above.

Let V(e) be the set of endpoints of edge e ∈ E and T be the set of critical cliques
such that |T | = k. Let xt

i be a binary variable that takes the value of one if node
i is assigned to clique Kt ∈ T , and zero otherwise. Let yij be a binary variable
that takes the value of one if nodes i and j, belong to the same component in the
residual graph, and zero otherwise. Let zi be an auxiliary binary variable that takes
the value of one if node i does not belong to a critical clique, and zero otherwise.
The formulation for the CCP for the TPW objective is as follows:

min
∑
i,j∈V

yij (3)

s.t. xt
i + xt

j ≤ 1 e ∈ V × V \ E , i, j ∈ V(e), t ∈ T (4)

zi +
∑
t∈T

xt
i = 1 i ∈ V (5)

yij ≥ zi + zj − 1 e ∈ E , i, j ∈ V(e) (6)

yij + yjl − yil ≤ 1 i, j, l ∈ V (7)

yij − yjl + yil ≤ 1 i, j, l ∈ V (8)

− yij + yjl + yil ≤ 1 i, j, l ∈ V (9)
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xt
i ∈ {0, 1} i ∈ V , t ∈ T (10)

zi ∈ {0, 1} i ∈ V (11)

yij ∈ {0, 1} i, j ∈ V (12)

where the objective function (3) minimizes the sum of pairwise connections.
Note that since yij is equal to 1 if nodes i and j belong to the same component,∑

i,j∈V yij is equivalent to
∑

q∈QT σq(σq−1). Constraint (4) ensures that if there
is no edge e ∈ E between nodes i and j (i.e., e ∈ V×V\E), both nodes cannot be
assigned to the same clique. Constraint (5) ensures that if node i is not assigned
to a clique, its corresponding variable zi must be equal to one. Constraints (6)
define the relationship between y variables and z variables. Constraints (7–9)
define the triangular relationship of y variables (i.e., if in the residual network
node i is connected to node j and node j is connected to node k, then node i
must also be connected to node k). And finally constraints (10–12) define the
domain of the variables used. We will refer to this problem as CCP–TPW.

To use the MinMS as the objective, we can adapt the proposed model by
introducing a new variable β defined as the size of the largest component. Then
the model can be formulated as follows:

min β (13)

s.t. (4− 12)∑
i∈V

yij ≤ β i ∈ V (14)

where objective function (13) combined with constraints (14) enforces the min-
imization of the size of the largest component. We will refer to this problem as
CCP–MinMS.

Formulations CCP–TPW and CCP–MinMS are relatively large in size with
respect to the size of the network (they require O(|V|2) variables and O(|V|3)
constraints). To solve these formulations, it is common to use a cutting plane
generation scheme that sequentially includes constraints (7–9) as needed. More-
over, it is easy to see that we can strengthen these formulations using some valid
inequalities originally designed for similar problems [11,17], as well as symmetry
breaking constraints.

As an alternative solution approach, we also provide a decomposition strategy
for the CCP.

3 Decomposition Approach for Solving the CCP

The decomposition strategy proposed in this paper is based on the following
theorem:

Theorem 1. The set of critical cliques of any feasible solution (x,y, z) belongs
to at least one clique partition of the original network G.
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Proof. Let T be the set of critical cliques of solution (x,y, z), and V(T ) be the
set of nodes comprising the cliques. Let R̄ be any clique partition of the residual
network G(V \ T ). Note that R = T ∪ R̄ is a clique partition of G as T and R̄
are two disjoint sets of cliques that cover all the nodes in G. �

Since every set of critical cliques can be associated with a clique partition, we
propose to solve the CCP by: (i) generating a clique partition, (ii) collapsing
each clique of the given partition into a single node forming a network H, and
(iii) using an exact or heuristic method, for solving a generalized CNP over H
(see Algorithm 1). We now analyze each of the steps of this approach.

Algorithm 1. CCPCollapseAlgorithm(G)
R ← generate a clique partition
H ← collapse(R)
T ∗ ← SolveGeneralizedCNP(H)
return T ∗

3.1 Constructing Clique Partitions

The main component of this approach is the way in which the clique partition
is generated. This is because, in order to obtain a good solution, we would
like to generate a clique partition containing the optimal set of critical cliques
(or at least a good proxy). We propose to heuristically generate candidate clique
partitions. The idea behind our approach is that if we want to greedily reduce the
number of pairwise connections, we can either aim at eliminating a large clique,
or a clique with a large degree (i.e., a clique with many edges emanating from
it), we propose two different algorithms for partitioning the network following
this analysis.

The first approach approach is to use as a clique partition the solution of
a maximum edge clique partition problem (Max-ECP). The Max-ECP prob-
lem looks for a clique partition that maximizes the number of edges within
the cliques. Even though the Max-ECP is proven to be NP–hard, there are
several approximation algorithms to solve this problem. We decided to use the
2-approximation algorithm proposed by [6] that we called MaxECP (see Algorithm
2). Since Algorithm 2 requires solving sequentially a maximum clique problem,
we used the approximation algorithm proposed in [3]. Note that it is also possi-
ble to get both, the clique partitioning or/and the maximum clique, by solving
the corresponding mathematical problems, or by means of any other technique
(exact or heuristic).

For the second approach, we propose to use a clique partition based on the
degree of the cliques. We use a heuristic that greedily finds a clique with a
large degree in G (see Algorithm 3). Once we find this clique, we remove it from
the network and continue following the same process until all the nodes are
eliminated (see Algorithm 4).
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Algorithm 2. MaxECP(G) [6]

T ← ∅
repeat

Select the maximum clique K̄ in G(V \ V(T )).
T ← K̄ ∪ T
G ← G(V \ V(T ))

until G = ∅
return T

Algorithm 3. GreedyGetClique(G)
K ← ∅
repeat

Select vertex i with maximum degree in the subgraph induced by G.
K ← K ∪ {i}
N (i) ← neighbors of i
G ← G ∩ N (i)

until G = ∅
return K

Algorithm 4. MaxDegree(G = (V , E))
i← 1
while V 	= ∅ do

Kt ← GreedyGetClique(V)
V ← V \ Kt

t ← t+ 1
end while

3.2 Clique Collapsing

First, assume that we have a clique partition R = {K1,K2, . . . ,Kl}. We can
collapse each of the cliques inR into a single node. LetH be a network comprised
by these nodes. Let VR be the set of nodes representing the cliques and ER be
the edges connecting the nodes in VR. There exists an edge (i, j) in ER if there
exists at least one edge in E connecting a node in Ki with a node in Kj . Let
H = (VR, ER) be the network induced by the collapsed nodes. Finally, let s(Ki)
be the size of clique Ki. Figure 2 provides an example of the clique collapsing,
given a clique partition.

3.3 CNP Generalization for Solving the CCP

Assuming that we have a partition R, once we have the collapsed network H we
can obtain the solution of the CCP by solving a generalized CNP problem. We
will discuss only the reformulation for the CCP-TPW case, although, this result
can be trivially extended for the CCP-MinMS.

Notice that if we want to count the total number of pairwise connections in
H, we need to take into account the connections at the interior of each node in
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VR (recall that at the point, each clique is now represented by a node), as well as
the connection associated with each edge in ER. For the sake of clarity, we abuse
the notation in this formulation using i and j when referring to the collapsed
nodes in VR and by defining xi as a binary variable that takes the value of one
if collapsed node i is removed and zero otherwise. Within each clique Ki ∈ R,
the total number of connections is given by pi =

(
s(Ki)

2

)
= (s(Ki)(s(Ki)− 1)/2).

Moreover, note that if nodes i and j are connected in H, the number of pairwise
connections represented by edge (i, j) ∈ ER is given now by tij = s(Ki)s(Kj).
Thus, the generalized formulation for the CNP follows.

(a) Clique Partition (b) Clique Collapse

Fig. 2. Clique collapse

min
∑
i∈VR

pi(1− xi) +
∑

i,j∈VR

tijyij (15)

s.t. yij + xi + xj ≥ 1 ∀(i, j) ∈ ER (16)

yij + yjk − yki ≤ 1 ∀(i, j, k) ∈ VR (17)

yij − yjk + yki ≤ 1 ∀(i, j, k) ∈ VR (18)

− yij + yjk + yki ≤ 1 ∀(i, j, k) ∈ VR (19)∑
i∈VR

xi ≤ k (20)

xi ∈ {0, 1} ∀i ∈ VR (21)

yij ∈ {0, 1} ∀(i, j) ∈ VR (22)

where objective (15) accounts for the minimization of the total pairwise con-
nections taking into account the connections at the interior of the cliques. Con-
straints (16–22) are defined exactly as in [2].

4 Computational Experiments

We tested efficacy of our approach on 13 randomly generated networks ranging
in size from 25 to 100 nodes. All the networks were generated using the algorithm
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proposed by Palmer and Steffan [18] such that the degree of the nodes follows a
power-law distribution. We solved the IP formulations and applied the decom-
position strategy for the CCP-TWP and the CCP-MinMS for different values of
k. We solved first the IP formulations using the commercial optimizer CPLEX
12.0, fixing a time limit of four hours (14,400 seconds). We also implemented
both the MaxDegree and the MaxECP algorithms to generate the clique partitions
and used CPLEX to solve the resulting GCNP formulations. The computational
results are listed in Table 1. For the cases in which the optimizer fails to obtain
an optimal solution within the time frame, we provide the best integer solution
found.

Table 1. Computational results. The optimal solutions are listed in bold and the time
is described in seconds. (*) indicates that the optimizer was not able to find an integer
solution within the time limit

CCP-TPW CCP-MinMS

IP Form. MaxDeg MaxECP IP Form. MaxDeg MaxECP
|V| |E| k Best Time Best Time Best Time Best Time Best Time Best Time

25 75 3 80 381.03 105 0.59 120 0.16 13 658.33 15 0.55 16 0.20
25 75 5 25 96.52 36 0.17 39 0.08 6 184.51 9 0.25 9 0.14
25 75 7 2 14,400 4 0.05 5 0.05 1 8.23 3 0.14 3 0.08
50 100 5 398 9,730.05 497 126.48 535 89.94 28 7,125.01 32 1,482.40 33 450.59
50 100 10 18 3,470.09 26 1.16 76 9.94 2 6,256.77 4 7.01 9 34.58
50 150 5 502 14,400 561 47.69 561 17.77 49 14,400 34 247.77 34 62.86
50 150 10 54 12,701.60 76 3.73 114 6.32 10 14,400 10 16.22 13 20.67
75 150 10 1,545 14,400 836 465.68 947 270.75 52 14,400 41 14,153.12 43 12,981.10
75 150 15 423 14,400 50 13.37 132 640.41 4 14,400 6 461.36 11 13,984.49
75 200 20 50 14,400 7 3.35 39 31.74 1 13,7028.50 3 63.72 5 306.00

100 200 15 1,152 14,400 295 6,385.16 412 9,685.28 * 14,400 28 4,295.45 39 6,458.30
100 200 30 * 14,400 6 9.79 17 19.90 * 14,400 2 59.49 3 3,647.48
100 300 30 * 14,400 17 18.23 18 13.49 * 14,400 3 718.34 3 443.96

We were able to obtain optimal solutions for 6 instances out of 13 for both,
the CCP-TPW and the CCP-MinMS. Furthermore, note that with the proposed
approach, we obtained good solutions for most of the instances. Notice that
for the CCP-TPW case, since the total number of pairwise connections grows
quadratically with respect to the size of the remaining components, a near opti-
mal solution having just a few additional nodes may have a significantly larger
number of pairwise connections compared to the optimal solution.

In terms of the running times, the decomposition approach ran significantly
faster than the IP formulation. Moreover, we found that the execution time for
finding clique partitions is negligible (less that a second) compared with the time
used by CPLEX to solve the GCNP. Note that the time required to solve the
GCNP can be significantly reduced by using a simple variation of the heuristic
proposed in [2]. Finally, we observe that the clique partitions obtained with
MaxDegree yield better results for both objectives.

5 Concluding Remarks

This study was motivated by the increasing interest of solving critical element
detection problems. We introduced the problem of identifying critical cliques
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(CCP) over networks considering two connectivity measures: the total pairwise
connectivity and the size of the largest component. To address this problem, we
formulated it as an integer program. In addition, we proposed a decomposition
strategy for solving large-scale instances that first generates a clique partition
and then reformulates and solves the problem as a generalized critical node
problem (GCNP). We introduced two heuristics for obtaining clique partition
candidates. The resulting GCNP is then solved using a commercial optimizer.
We evaluated the performance of our approach by solving 13 randomly generated
instances ranging in size from 25 to 100 nodes.

Future research may involve testing additional methodologies for obtaining
clique partitions, as well as testing the performance of the proposed approach
when additional constraints over the cliques are included.
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