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Abstract. We develop a theory of contracting systems, where behavioural con-
tracts may be violated by dishonest participants after they have been agreed upon
— unlike in traditional approaches based on behavioural types. We consider the
contracts of [10], and we embed them in a calculus that allows distributed partic-
ipants to advertise contracts, reach agreements, query the fulfilment of contracts,
and realise them (or choose not to). Our contract theory makes explicit who is
culpable at each step of a computation. A participant is honest in a given context
S when she is not culpable in each possible interaction with S. Our main result is a
sufficient criterion for classifying a participant as honest in all possible contexts.

1 Introduction

Contracts are abstract descriptions of the behaviour of services. They are used to
compose services which are compliant according to some semantic property, e.g. the
absence of deadlocks [6,9,10], the satisfacion of a set of constraints [8], or of some
logical formula [1,4,15]. Most of the existing approaches tacitly assume that, once a set
of compliant contracts has been found, then the services that advertised such contracts
will behave accordingly. In other words, services are assumed to be honest, in that they
always respect the promises made.

In open and dynamic systems, the assumption that all services are honest is not quite
realistic. In fact, services have different individual goals, are made available by different
providers, and possibly do not trust each other. What happens is that services agree
upon some contracts, but may then violate them, either intentionally or not. Since this
situation may repeatedly occur in practice, it should not be dealt with as the failure
of the whole system. Instead, contract violations should be automatically detected and
sanctioned by the service infrastructure.

The fact that violations may be sanctioned gives rise to a new kind of attacks, that
exploit possible discrepancies between the promised and the runtime behaviour of ser-
vices. If a service does not accurately behave as promised, an attacker can induce it to a
situation where the service is sanctioned, while the attacker is reckoned honest. A cru-
cial problem is then how to avoid that a service results culpable of a contract violation,
despite of the honest intentions of its developer. More formally, the problem is that of
deciding if a process realizes a contract: when this holds, the process is guaranteed to
never be culpable w.r.t. the contract in all the possible execution contexts.

In this paper we develop a formal theory of contract-oriented systems that enjoys
a sound criterion for establishing if a process always realizes its contracts. Our theory
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combines two basic ingredients: a calculus of contracts, and a calculus of processes
that use contracts to interact. Contracts are used by distributed participants to reach
agreements; once stipulated, participants can inspect them and decide what to do next.

Ideally, a honest participant is supposed to harmoniously evolve with her contracts;
more realistically, our theory also encompasses computations of dishonest participants,
which may violate at run-time some contracts they have stipulated. A remarkable result
(Theorem 2) is that it is always possible to detect who is culpable of a contract viola-
tion at each state of a computation. Also, a participant can always exculpate herself by
performing the needed actions (Theorems 1 and 3).

Notably, instead of defining an ad-hoc model, we have embedded the contract cal-
culus in [10] within the process calculus CO2 [2]. To do that, the contracts of [10]
have been slightly adapted to define culpability, and CO2 has been specialized to use
these contracts. We have formalised when a participant realizes a contract in a given
context, i.e. when she is never (irreparably) culpable in computations with that context,
and when she is honest, i.e. when she realizes all her contracts, in all possible contexts.
We have proved that the problem of deciding whether a participant is honest or not is
undecidable (Theorem 4). Our main contribution (Theorem 6) is a sound criterion for
detecting when a participant is honest. Technically this is achieved through a semantics
of participants that abstracts away the behaviour of the context. Such semantics allows
us to define when a participant always fulfills her contracts, even in the presence of
dishonest participants.

Because of space constraints, we include the proofs of all our statements in a sepa-
rated Technical Report [3].

2 A Calculus of Contracts

We assume a finite set of participant names (ranged over byA,B, . . .) and a denumerable
set of atoms (ranged over by a,b, . . .). We postulate an involution co(a), also written as
ā, extended to sets of atoms in the natural way.

Def. 1 introduces the syntax of contracts, taking inspiration from [10]. We distin-
guish between (unilateral) contracts c, which model the promised behaviour of a single
participant, and bilateral contracts γ, which combine the contracts of two participants.

Definition 1. Unilateral contracts are defined by the following grammar:

c,d ::=
⊕

i∈I
ai ; ci

∣
∣ ∑

i∈I
ai .ci

∣
∣ ready a.c

∣
∣ rec X . c

∣
∣ X

where (i) the index set I is finite; (ii) the atoms in {ai}i∈I are pairwise distinct; (iii)
the ready prefix may appear at the top-level, only; (iv) recursion is guarded.

Let e be a distinguished atom such that e = ē, and with continuation E = rec X . e ; X.
We say that c succeeds iff either c = e ; E⊕d, or c = e .E+d, or c = ready e. E. We will
omit trailing occurrences of E in contracts.

Bilateral contracts are terms of the form A says c |B says d, where A �=B and at most
one occurrence of ready is present.
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A says (a ; c⊕c′) | B says (ā .d+d′) A says a−−−−−→→ A says c | B says ready ā.d [INTEXT]

A says (a ; c⊕c′) | B says ā ; d
A says a−−−−−→→ A says c | B says ready ā.d [INTINT]

A says (a .c+c′) | B says (ā .d+d′) A says a−−−−−→→ A says c | B says ready ā.d [EXTEXT]

A says ready a. c | B says d
A says a−−−−−→→ A says c | B says d [RDY]

a �∈ co({bi}i∈I)

A says a ; c⊕c′ | B says ∑i∈I bi .di
A says a−−−−−→→ A says E | B says 0

[INTEXTFAIL]

{a} �= co({bi}i∈I)

A says a ; c⊕c′ | B says
⊕

i∈I bi ; di
A says a−−−−−→→ A says E | B says 0

[INTINTFAIL]

({a}∪{ai}i∈I) ∩ co({bi}i∈J) = /0

A says (a .c+∑i∈I ai .ci) | B says ∑i∈J bi .di
A says a−−−−−→→ A says E | B says 0

[EXTEXTFAIL]

Fig. 1. Semantics of contracts (symmetric rules for B actions omitted)

Intuitively, the internal sum
⊕

i∈I ai ; ci allows to choose one of the branches ai ; ci,
to perform the action ai, and then behave according to ci. Dually, the external sum
∑i∈I ai .ci constrains to wait for the other participant to choose one of the branches ai .ci,
then to perform the corresponding ai and finally behave according to ci. Separators ;
and . allow us to distinguish singleton internal sums (e.g., a ; c) from singleton external
sums (e.g., a .c). The atom e (for “end”) enables a participant to successfully terminate,
similarly to [10]. This will be reflected in Def. 4. Hereafter, we shall always consider
contracts with no free occurrences of recursion variables X . We shall use the binary
operators to isolate a branch in a sum: e.g. (a ; c)⊕ c′ where c′ is an internal sum. We
let ; and . have higher precedence than ⊕ and +, e.g., a ; c⊕ b ; c′ = (a ; c)⊕ (b ; c′).

The evolution of bilateral contracts is modelled by a labelled transition relation
µ−→→

(Def. 2), where labels µ = A says a model a participant A performing the action a.

Definition 2. The relation
µ−→→ on bilateral contracts is the smallest relation closed

under the rules in Fig. 1 and under the structural congruence relation ≡, defined as
the least congruence which includes α-conversion of recursion variables, and satisfies
rec X . c ≡ c{rec X . c/X} and

⊕
i∈ /0 ai ; ci ≡ ∑i∈ /0 ai .ci. Accordingly, empty sums (either

internal or external) will be denoted with 0. We will not omit trailing occurrences of 0.
Hereafter we shall consider contracts up to ≡.

In the first three rules in Fig. 1, A and B expose complementary actions a, ā. In rule [IN-
TEXT], participant A selects the branch a in an internal sum. Participant B is then forced
to commit to the corresponding branch ā in his external sum: this is done by mark-
ing that branch with ready ā while discarding all the other branches. Participant B will
then perform his action in the subsequent step, by rule [RDY]. In rule [INTINT], both
participants make an internal choice; a reaction is possible only if one of the two is a
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singleton — B in the rule — namely he can only commit to his unique branch. Were B
exposing multiple branches, the transition would not be allowed, to account for the fact
that B could pick a conflicting internal choice w.r.t. that of A. In rule [EXTEXT], both
participants expose external sums with complementary actions, and each of the two can
choose a branch (unlike in the case [INTEXT], where the internal choice has to move
first). In the [*FAIL] rules, the action chosen by A is not supported by B. Then, A will
reach the success state E, while B will fall into the failure state 0.

Example 1. Let γ=A says (a ; c1⊕b ; c2) |B says (ā .d1+ c̄ .d2). If the participantA in-
ternally chooses to perform a, then γ will take a transition to A says c1 |B says ready ā.d1.
Suppose instead that A chooses for perform b, which is not offered by B in his external
choice. In this case, γ will take a transition to A says E | B says 0, where 0 indicates that
B cannot proceed with the interaction. Coherently with [10], below we will characterise
this behaviour by saying that the contracts of A and B are not compliant.

The following lemma states that bilateral contracts are never stuck unless both partici-
pants have contract 0. Actually, if none of the first four rules in Fig. 1 can be applied,
the contract can make a transition with one of the [*FAIL] rules.

Lemma 1. A bilateral contract A says c | B says d is stuck iff c = d = 0.

Below we establish that contracts are deterministic. This is guaranteed by the require-
ment (ii) of Def. 1. Determinism is a very desirable property indeed, because it ensures
that the duties of a participant at any given time are uniquely determined by the past
actions. Note that the contracts in [10] satisfy distributivity laws like (a ; c)⊕ (a ; d) =
a ; (c⊕ d), which allow for rewriting them so that (ii) in Def. 1 holds. Therefore, (ii) is
not a real restriction w.r.t. [10].

Lemma 2 (Determinism). For all γ, if γ µ−→→ γ′ and γ µ−→→ γ′′, then γ′ = γ′′.

Compliance. Below we define when two contracts are compliant, in a similar fashion
to [10]. Intuitively, two contracts are compliant if whatever sets of choices they offer,
there is at least one common option that can make the contracts progress. Differently
from [10], our notion of compliance is symmetric, in that we do not discriminate be-
tween the participant roles as client and server. Consequently, we do not consider com-
pliant two contracts where only one of the parties is willing to terminate. For example,
the buyer contract ship ; E is not compliant with the seller contract ship .pay ; E, because
the buyer should not be allowed to terminate if the seller still requires to be paid.

Similarly to [10], given two contracts we observe their ready sets (Def. 3) to detect
when the enabled actions allow them to synchronise correctly.

Definition 3 (Compliance). For all contracts c, we define the set of sets RS(c) as:

RS(0) = { /0} RS(ready a.c) = {{ready}} RS(rec X . c) = RS(c)

RS(
⊕

i∈I ai ; ci) = {{ai} | i ∈ I} if I �= /0 RS(∑i∈I ai .ci) = {{ai | i ∈ I}} if I �= /0

The relation �� between contracts is the largest relation such that, whenever c �� d:

(1) ∀X ∈ RS(c),Y ∈ RS(d). co(X )∩Y �= /0 or ready ∈ (X ∪Y )\ (X ∩Y )
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(2) A says c | B says d
µ−→→ A says c′ | B says d′ =⇒ c′ �� d′

When c �� d, we say that the contracts c and d are compliant.

Example 2. Recall from Ex. 1 the contracts c = a ; c1 ⊕b ; c2 and d = ā .d1 + c̄ .d2. We
have that RS(c) = {{a},{b}}, and RS(d) = {{ā, c̄}}, which do not respect item (1) of
Def. 3 (take X = {b} and Y = {ā, c̄}). Therefore, c and d are not compliant.

The following lemma provides an alternative characterization of compliance. Two con-
tracts are compliant iff, when combined into a bilateral contract γ, no computation of γ
reaches a state where one of the contracts is 0. Together with Lemma 1, we have that
such γ will never get stuck. (Below, the Kleene ∗ denotes reflexive transitive closure.)

Lemma 3. For all bilateral contracts γ = A says c | B says d:

c �� d ⇐⇒ (∀c′,d′. γ −→→∗ A says c′ | B says d′ =⇒ c′ �= 0 and d′ �= 0
)

The following lemma guarantees, for all c not containing 0, the existence of a contract
d compliant with c. Intuitively, we can construct d from c by turning internal choices
into external ones (and viceversa), and by turning actions into co-actions.

Lemma 4. For all 0-free contracts c, there exists d such that c �� d.

Culpability. We now tackle the problem of determining who is expected to make the
next step for the fulfilment of a bilateral contract. We call a participant A culpable in γ
if she is expected to perform some action so to make γ progress. Also, we consider A
culpable when she is advertising the “failure” contract 0. This agrees with our [*FAIL]
rules, which set A’s contract to 0 when the other participant legitimately chooses an
action not supported by A. Note that we do not consider A culpable when her contract
has enabled e actions.

Definition 4. A participant A is culpable in γ = A says c | B says d, written A ˙�̇ γ, iff:

c = 0 ∨ (

γ � A says e−−−−→→ ∧ ∃a. γ A says a−−−−→→ )

When A is not culpable in γ we write A ˙�̇ γ.

The following result states that a participant A is always able to recover from culpability
by performing some of her duties. Furthermore, this requires at most two steps in an “A-
solo” trace where no other participant intervenes.

Definition 5. Let −→ be an LTS with labels of the form Ai says (· · · ), for Ai ranging over
participants names. For all A, we say that a −→-trace η is A-solo iff η only contains

labels of the form A says (· · · ). If η = (µi)i∈0..n, we will write
η−→ for

µ0−→ ·· · µn−→.

Theorem 1 (Contractual exculpation). For all γ = A says c | B says d with 0-free c,

there exists γ′ and A-solo η with |η| ≤ 2 such that γ η−→→ γ′ and A ˙�̇ γ′.
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commutative monoidal laws for | on processes and systems

u[(v)P]≡ (v)u[P] if u �= v Z | (u)Z′ ≡ (u)(Z | Z′) if u �∈ fv(Z)∪ fn(Z) (u)(v)Z ≡ (v)(u)Z

(u)Z ≡ Z if u �∈ fv(Z)∪ fn(Z) A[K] | A[P]≡ A[K | P] ↓s c ≡ 0 ≡ fuses.P

Fig. 2. Structural equivalence for CO2 (Z,Z′ range over systems or processes)

A crucial property of culpability is to ensure that either two participants are both
succeeding, or it is possible to single out who has to make the next step. An external
judge is therefore always able to detect who is violating the contracts agreed upon.

Theorem 2. For all c,d if c �� d and A says c | B says d −→→∗ γ = A says c′ | B says d′,
then either c′ and d′ succeed, or A ˙�̇ γ, or B ˙�̇ γ.

Example 3. A participant might be culpable even though her contract succeeds. For
instance, let γ = A says c | B says d, where c = e+ ā and d = a+ b. By Def. 1 we have
that c succeeds, but A is culpable in γ because she cannot fire e, while she can fire ā by
rule [EXTEXT]. This makes quite sense, because A is saying that she is either willing to
terminate or to perform ā, but the other participant is not allowing A to terminate. Note
that also B is culpable, because he can fire a.

3 A Calculus of Contracting Processes

We now embed the contracts introduced in § 2 in a specialization of the parametric
process calculus CO2 [2]. Let V and N be two disjoint countably infinite sets of ses-
sion variables (ranged over by x,y, . . .) and session names (ranged over by s, t, . . .). Let
u,v, . . . range over V ∪N .

Definition 6. The abstract syntax of CO2 is given by the following productions:

Systems S ::= 0
∣
∣ A[P]

∣
∣ s[γ]

∣
∣ S | S

∣
∣ (u)S

Processes P ::= ↓u A says c
∣
∣ ∑i πi.Pi

∣
∣ P | P

∣
∣ (u)P

∣
∣ X(�u)

Prefixes π ::= τ
∣
∣ tellA ↓u c

∣
∣ fuseu

∣
∣ dou a

∣
∣ asku φ

The only binder for session variables and names is the delimitation (�u), both in systems
and processes. Free variables/names are defined accordingly, and they are denoted by
fv( ) and fn( ). A system or a process is closed when it has no free variables.

Systems are the parallel composition of participants A[P] and sessions s[γ].
A latent contract ↓x A says c represents a contract c (advertised by A) which has

not been stipulated yet; upon stipulation, x will be instantiated to a fresh session name.
We impose that in a system A[P] | A[Q] | S, either P or Q is a parallel composition
of latent contracts. Hereafter, K,K′, . . . are meta-variables for compositions of latent
contracts. We allow prefix-guarded finite sums of processes, and write π1.P1 + π2.P2

for ∑i=1,2 πi.Pi, and 0 for ∑/0 P. Recursion is allowed only for processes; for this we

stipulate that each process identifier X has a unique defining equation X(u1, . . . ,u j)
def
= P
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A[τ.P+P′ | Q]−→ A[P | Q] [TAU]

A[tellB ↓x c.P+P′ | Q]−→ A[P | Q] | B[↓x A says c] [TELL]

K �σ
x γ �u = dom σ s = σ(x) fresh

(�u)(A[fusex.P+P′ | K | Q] | S)−→ (s)(A[P | Q]σ | s[γ] | Sσ) [FUSE]

γ A says a−−−−−→→ γ′
s[γ] | A[dos a.P+P′ | Q]−→ s[γ′] | A[P | Q]

[DO]

γ � φ
A[asks φ.P+P′ | Q] | s[γ]−→ A[P | Q] | s[γ] [ASK]

X(�u)
def
= P P{�v/�u} −→ P′

X(�v)−→ P′ [DEF]
S −→ S′

S | S′′ −→ S′ | S′′ [PAR]
S −→ S′

(u)S −→ (u)S′ [DEL]

Fig. 3. Reduction semantics of CO2

such that fv(P) ⊆ {u1, . . . ,u j} ⊆ V and each occurrence of process identifiers in P is
prefix-guarded. We shall take the liberty of omitting the arguments of X(�u) when they
are clear from the context.

Prefixes include silent action τ, contract advertisement tellA ↓u c, contract stipulation
fuseu, action execution dou a, and contract query asku φ. In each prefix π �= τ, u refers to
the target session involved in the execution of π. We omit trailing occurrences of 0.

Note that participants can only contain latent contracts, while sessions can only con-
tain bilateral contracts, constructed from latent contracts upon reaching agreements.

The semantics of CO2 is formalised by a reduction relation −→ on systems that relies
on the structural congruence defined in Fig. 2, where the last law allows for collecting
garbage terms possibly arising from variable substitutions.

Definition 7. The relation −→ is the smallest relation closed under the rules of Fig. 3,
defined over systems up to structural equivalence, as defined in Fig. 2. The relation
K �σ

x γ holds iff (i) K has the form ↓y A says c |↓z B says d, (ii) c �� d, (iii) γ =A says c |
B says d, and (iv) σ = {s/x,y,z} maps all x,y,z ∈ V to s ∈ N .

Rule [TAU] simply fires a τ prefix as expected. Rule [TELL] advertises a latent contract
↓x A says c, by putting it in parallel with the existing participants and sessions (the struc-
tural congruence laws in Fig. 2 allow for latent contracts to float in a system and, by the
second last law, to move across the boxes of participants as appropriate). Rule [FUSE]
finds agreements among the latent contracts K of A; an agreement is reached when
K contains a bilateral contract γ whose unilater contracs are compliant (cf. Def. 7).
Note that, once the agreement is reached, the compliant contracts start a fresh session
containing γ. Rule [DO] allows a participant A to fulfill her contract γ, by performing
the needed actions in the session containing γ (which, accordingly, evolves to γ′). Rule
[ASK] checks if a condition φ holds in a session. The actual nature of φ is almost imma-
terial in this paper: the reader may assume that φ is a formula in an LTL logic [13]. For
closed γ and φ, γ � φ holds iff γ |=LTL φ according to the standard LTL semantics where,
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for a −→→-trace η = (γi
µi−→→ γi+1)i from γ0 = γ, we define η |= a ⇐⇒ ∃A. µ0 = A says a.

The last three rules are standard.
Hereafter it will be sometimes useful to record the prefix π fired by A by implicitly

decorating the corresponding reduction step, as in
A : π−−→.

The rest of this section is devoted to a few examples that highlight how bilateral
contracts can be used in CO2.

Example 4. Consider an online store A with the following contract cA: buyers can add
items to the shopping cart, and then either leave the store or pay with a credit card.
Assume the store modelled as the CO2 process PA = (x)(tellA ↓x cA.X | fusex), where:

cA = rec Z. addToCart.Z + creditCard.(ok⊕ no)+ e

X
def
= dox addToCart.X +dox creditCard.(τ.dox ok+ τ.dox no)

Let B be a buyer with contract cB = addToCart ; creditCard ; (ok+ no), and let:

PB = (y)tellA ↓y cB.Y Y
def
= doy addToCart.doy creditCard.doy ok

A possible, successful, computation of the system S = A[PA] | B[PB] is the following:

S −→∗(x,y)
(

A[↓x A says cA |↓y B says cB | fusex | X ] | B[Y ])

−→ (s)
(

A[X{s/x}] | B[Y{s/y}] | s[A says cA | B says cB]
)

−→∗(s)
(
A[X{s/x}] | B[]dos creditCard.doy ok | s[A says cA | B says creditCard ; (ok+no)]

)

−→∗(s)
(

A[τ.dox ok+ τ.dox no] | B[doy ok] | s[A says ok⊕no | B says ok+no]
)

−→ (s)
(

A[dox ok] | B[doy ok] | s[A says ok⊕no | B says ok+no]
)

−→∗(s)
(

A[0] | B[0] | s[A says E | B says E]
)

Example 5. An on-line store A offers buyers two options: clickPay or clickVoucher. If a
buyer B chooses clickPay, A accepts the payment (pay) otherwise A checks the validity
of the voucher with V, an electronic voucher distribution and management system. If V
validates the voucher, B can use it (voucher), otherwise he will pay.

The contracts cA = clickPay.pay+ clickVoucher.(reject;pay⊕ accept;voucher) and
c′A = ok+ no model the scenario above. A CO2 process for A can be the following

PA = (x)(tellA ↓x cA.(dox clickPay.dox pay+dox clickVoucher.((y)tellV ↓y c′A.X)))

X = doy ok.dox accept.dox voucher+doy no.dox reject.dox pay+ τ.dox reject.dox pay

Contract cA (resp. c′A) is stipulated when (i) B (resp. V) advertises to A (resp. V) a
contract d with cA �� d (resp. c′A �� d) and (ii) a fusez is executed in A (resp. V).

Variables x and y in PA correspond to two separate sessions, where A respectively
interacts with B and V. The semantics of CO2 ensures that x and y will be instantiated
to different session names (if at all).

The advertisement of c′A causally depends on the stipulation of the contracts of A and
B, otherwise A cannot fire dox clickVoucher. Instead, A and B can interact regardless the
presence of V since tellV ↓y c′A is non blocking and the τ-branch of A in X is enabled
(letting A to autonomously reject the voucher, e.g. because B is not entitled to use it).
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Example 6. Consider a travel agencyA which queries in parallel an airline ticket broker
F and a hotel reservation service H in order to complete the organization of a trip. The
travel agency service A[P] can be defined as follows:

P = (x,y)(tellF ↓x ticket ; (commitF⊕ abortF).X | tellH ↓y hotel ; (commitH⊕ abortH).Y )

X
def
= dox ticket.((asky true.dox commitF)+ τ.dox abortF)

Y
def
= doy hotel.((askx true.doy commitH)+ τ.doy abortH)

where the τ actions model timeouts used to ensure progress. The travel agency in pro-
cess X starts buying a ticket, and commits to it only when the hotel reservation session
y is started. Similarly for process Y .

The next example shows a peculiar use of ask whereby a participant inspects a stipu-
lated contract to decide its future behaviour.

Example 7. An online store A can choose whether to abort a transaction (abort) or to
commit to the payment (commit). In the latter case, the buyer has two options, either he
pays by credit card (creditCard) or by bank transfer (bankTransfer). The contract of A
is modelled as c = abort⊕ commit;(creditCard+ bankTransfer). Consider the process

PA = (x)(tellA ↓x c.(askx φ.dox commit.dox creditCard+dox abort))

where φ = �(commit → ¬�bankTransfer). The process PA first advertises c. Once a
session s[γ] is initiated with γ = A says c | B says d, A tests γ through askx φ before
committing to the payment. If askx φ detects that B has promised not to use the bank
transfer option, then A commits to the payment, and then never offers B to perform
a bank transfer. Otherwise, if d does not rule out the bank transfer, even if B might
actually pay by credit card, A aborts the session. Note that in both cases A realizes
her own contract, even if she is never performing the bank transfer. This notion of
“realization of a contract” will be formalized in Def. 11.

4 On Honesty

In this section we set out when a participant A is honest (Def. 11). Intuitively, we con-
sider all the possible runs of all possible systems, and require that in every session A
is not definitely culpable. To this aim, we first provide CO2 with the counterpart of the
(non)culpability relation introduced in Def. 4. Intuitively, we write A ˙�̇ sS when, in the
system S, if the participant A is involved in the session s, then she is not culpable w.r.t.
the contract stipulated therein.

Definition 8. We write A ˙�̇ sS whenever ∀�u,γ,S′. (S ≡ (�u)(s[γ] | S′) =⇒ A ˙�̇ γ
)

. We
write A ˙�̇ S whenever A ˙�̇ sS for all session names s.

A technical issue is that a participant may not get a chance to act in all the traces. For

instance, let S = A[dos pay] | B[X ] | S′, where S′ enables A’s action and X
def
= τ.X ; note

that S generates the infinite trace S −→ S −→ S −→ ·· · in which A never pays, despite her
honest intention. To account for this fact, we will check the honesty of a participant in
fair traces, only, i.e. those where persistent transitions are eventually followed.
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Definition 9. Given an LTS
µ−→, we say that a (finite or infinite) trace η = (Pi

µi−→ Pi+1)i

having length |η| ∈ N∪{∞} is fair w.r.t. a set of labels L if and only if

∀i ∈N,µ ∈ L.
(

i ≤ |η| ∧ (∀ j ∈ N. i ≤ j ≤ |η| =⇒ Pj
µ−→) =⇒ ∃ j ≥ i. µ j = µ

)

A fair trace is a trace which is fair w.r.t. all the labels in the LTS.

Note that, by Def. 9, a fair trace is also a maximal one (w.r.t. L). Indeed, if a fair trace
is finite, the condition above guarantees that its final state has no L transitions enabled.

Finally, when checking the fairness of a trace, we shall implicitly assume that the
labels µ in our LTSs of contracts and processes always distinguish between different
occurrences of the same prefix. E.g., a −→-fair trace of A[X | X ] where X

def
= τ.X is not

allowed to only perform the τ’s of the first X . Technically, labels µ always implicitly
carry the syntactic address of the prefix which is being fired, in the spirit of the En-
hanced Structured Operational Semantics [12].

It is often useful to reason about how a specific session s evolves in a given trace.
Technically, α-conversion allows the name s to be renamed at every step, making it hard
to trace the identity of names. More concretely, α-conversion is only needed to make
delimitations fresh when unfolding recursive processes. Accordingly, w.l.o.g. hereafter
we shall often restrict α-conversion by considering stable traces, only, defined below.
In this way, we ensure that s represents the same session throughout the whole trace.

Definition 10. A stable −→-trace is a trace (�u0)S0 −→ (�u1)S1 −→ (�u2)S2 −→ ·· · in which
(1) all delimitations carry distinct names and variables, (2) delimitations have been
brought to the top-level as much as possible (using ≡), and (3) no α-conversion is
performed in the trace except when unfolding recursive processes.

Below, we define several notions of contract faithfulness for participants. We start by
clarifying when a participant A realizes a contract (inside a session s) within a spe-
cific context. This happens when from any reachable system state S0, participant A will
eventually perform actions to exculpate herself (in s). In this phase, A is protected from
interference with other participants. Then, we say A honest in a system if she realizes
every contract in that system. When A[P] is honest independently of the system, we
simply say that A[P] is honest. In this last case, we rule out those systems carrying stip-
ulated or latent contracts of A outside of A[P]; otherwise the system can trivially make
A culpable: e.g., we disallow A[P] | B[↓x A says pay | · · ·].
Definition 11 (Honesty). We say that:

– A realizes c at s in S iff whenever S = (�u)(s[A says c | B says d] | S′), S −→∗ S0, and
(Si)i is a {A : π}-fair A-solo stable −→-trace then A ˙�̇ sS j for some j ≥ 0;

– A is honest in S iff for all c and s, A realizes c at s in S;
– A[P] is honest iff for all S with no A says · · · nor A[· · ·], A is honest in A[P] | S.

Example 8. A computation of the store-buyer system S = A[PA] | B[PB] from Ex. 4 is:

S −→∗(s)
(

A[τ.dox ok+ τ.dox no] | B[doy ok] | s[A says ok⊕ no | B says ok+ no]
)

−→ (s)
(

A[dox no] | B[doy ok] | s[A says ok⊕ no | B says ok+ no]
)

−→ (s)
(

A[0] | B[doy ok] | s[γ]
)
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where γ=A says E |B says ready no. The system is then stuck, because γ is not allowing
the [DO] step. By Def. 4 we have A ˙�̇ γ, B ˙�̇ γ, so A is honest in S while B is not.
Actually, B has violated the contract agreed upon, because he is waiting for a positive
answer from the store, while in cB he also promised to accept a no. By Def. 11, B is not
honest, while we will show in § 5 that A is honest (see Ex. 10).

Example 9. Consider the system A[(x,y) (PA | fusex | fusey)] | B[PB] | C[PC], where:

PA
def
= tellA (↓x a .E) . tellA (↓y b ; E) .dox a .doy b

PB
def
= (z) (tellA (↓z b̄ .E) .doz b)

PC
def
= (w) (tellA (↓w ā ; E) .0)

Even though A might apparently look honest, she is not. Indeed, A cannot fulfill her
contract with B, because the dox a is blocked due to the fact that C (dishonestly) does
not perform his internal choice. Note that, if we considered honest a participant whose
culpability only depends on the culpability of someone else, then a participant could
cunningly have one of her contracts violated, so to avoid fulfilling another contract
(e.g., to avoid paying one million euros to B, A stipulates a dummy contract “I ship one
candy if you pay 1 cent”, which is then violated by a colluding participant C).

We now define when a process enables a contract transition, independently from the
context. To do that, first we define the set RDs(P) (after “ready do”), which collects all
the atoms with an unguarded action dos in P.

Definition 12. For all P and all s, we define the set of atoms RDs(P) as:

RDs(P) = {a | ∃�u,P′,Q,R . P ≡ (�u) (dos a.P′+Q | R) and s �∈�u}
Next, we check when a contract “unblocks” a set of atoms X : e.g., if X accounts for at
least one branch of an internal choice, or for all the branches of an external choice.

Definition 13. For all sets of atoms X and for all c �= 0, we say that c unblocks X iff:

∃Y ∈ RS(c).Y ⊆ X ∪{e} or c = ready a.c′ ∧ a ∈ X ∪{e}
Lemma 5. For all P and for all γ = A says c | B says d, if c unblocks RDs(P) and

S = (�u)(A[P] | s[γ] | S′), then either A ˙�̇ γ or S
A : dos a−−−−→.

The following theorem is the CO2 counterpart of Theorem 1. It states that, when a
session s is established between two participants A and B, A can always exculpate
herself by performing (at most) two actions A : do−. Note that when the contracts used
to establish s are compliant, then we deduce the stronger thesis A ˙�̇ sS j.

Theorem 3 (Factual exculpation). Let (Si)i be the following A-solo stable −→-trace,
with Si = (�ui)

(

A[Qi] | s[A says ci | B says di] | S′i
)

, and:

S0
µ0−→ ·· · µi−2−−→ Si−1

A : dos a−−−−→ Si
µi−→ ·· · µ j−2−−→ S j−1

A : dos b−−−−→ S j
µ j−→ ·· ·

where µh �= A : dos− for all h ∈ [i, j− 2]. Then, either c j = 0 or A ˙�̇ sS j.
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a ; c⊕c′ a−→→� c a .c+c′ a−→→� c ready a. c
a−→→� c a ; c⊕c′ a−→→� E a .c+c′ a−→→� E

⊕
ai ; ci

0−→→� 0 ∑ ai .ci
0−→→� 0 ∑ ai .ci

ctx−→→� ready an.cn a ; c
ctx−→→� ready a.c c

ctx−→→� c

π.P+Q | R
π−→�

⎧

⎨

⎩

open(↓x A says c | P | R) if π = tellA ↓x c

open(P | R)σ otherwise

P
ctx−→� ↓x B says c | P if B �= A

P
ctx−→�Pσ

open(P) = P′ where P ≡ (�ui)P′ and no delimitation of P′ can be brought to the top level

Fig. 4. Abstract LTSs for contracts and processes (σ : V → N , name A in −→A
� is omitted)

The following theorem states the undecidability of honesty. Our proof reduces the halt-
ing problem to checking dishonesty.

Theorem 4. The problem of deciding whether a participant A[P] is dishonest is recur-
sively enumerable, but not recursive.

5 A Criterion for Honesty

In this section we devise a sufficient criterion for honesty. Actually, checking honesty
is a challenging task: indeed, by Th. 4, it is not even decidable. We will then provide
a semantics of contracts and processes, that focusses on the actions performed by a
single participant A, while abstracting from those made by the context. Note that our
abstract semantics assumes processes without top-level delimitations, in accordance
with Def. 10 which lifts such delimitations outside participants. Further, we sometimes
perform this lifting explicitly through the open(−) operator.

Definition 14. For all participant namesA, the abstract LTSs −→→� and−→A
� on contracts

and on processes, respectively, are defined by the rules in Fig. 4, where σ : V → N .

The intuition behind the abstract rules is provided by Lemma 6 and Lemma 7 below,
which establish the soundness of the abstractions.

Lemma 6. For all bilateral contracts γ = A says c | B says d:

1. γ A says a−−−−→→ A says c′ | B says d′ =⇒ c
a−→→� c′ ∧ (d

ctx−→→� d′ ∨ d
0−→→� d′)

2. γ A says a−−−−→→ A says c′ | B says d′ ∧ c �� d =⇒ c
a−→→� c′ ∧ d

ctx−→→� d′

Intuitively, a move of γ is caused by an action performed by one of its components c
and d. If c moves, the

a−→→� rules account for its continuation. This might make d commit

to one of the branches of a sum, as shown in the
ctx−→→� rules. Further, c can perform an

action not supported by d, by using a [*FAIL] rule: accordingly,
0−→→� transforms d into 0.

The compliance between c and d ensures the absence of such failure moves.
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Lemma 7. For each (finite or infinite) stable −→-trace (Si)i, with Si = (�ui)(A[Qi] | S′i),
there exists a −→�-trace Q0

µ0−→�Q1
µ1−→�Q2

µ2−→� · · · where µi = π if Si
A : π−−→ Si+1, and µi =

ctx otherwise. Moreover, if (Si)i is fair, then (Qi)i is {τ, tell }-fair.

In the above lemma, each step of the whole system might be due to either the process
Qi or its context. If Qi fires a prefix π, then it changes according to the

π−→� rule in Fig. 4.
In particular, that accounts for tellA− adding further latent contracts to Qi, as well as
fuse possibly instantiating variables. Newly exposed delimitations are removed using
open(−): indeed, they already appear in �ui, since the trace is stable.

We now define when a process P “�-realizes” a contract c in a session s (written
P |=s c), without making any assumptions about its context. Intuitively, P |=s c holds
when (1) P eventually enables the dos actions mandated by c, and (2) in the ab-
stract LTS −→�, the continuation of P after firing some dos must realize the contin-
uation of c (under −→→�). Note that P is not required to actually perform the relevant
dos , because the context might prevent P from doing so. For instance, in the system
A[P] | s[A says c | B says ready a.d] the process P can not fire any dos.

Definition 15. Given a session s and a participant A, we define the relation |=A
s

(“�-realizes”) between processes and contracts as the largest relation such that, when-
ever P0 |=A

s c, then for each {τ, tell }-fair −→A
� -trace (Pi)i without labels dos−, we have:

1. ∃k. ∀i ≥ k. c unblocks RDs(Pi)

2. ∀i,a,P′,c′.
(

Pi
dos a−−→�P

′ ∧ c
a−→→� c′ =⇒ P′ |=A

s c′
)

Example 10. Recall the online store A from Ex. 4. We show that X{s/x} |=s cA. First
note that transitions in {τ, tell }-fair −→�-traces without dos from X{s/x} can only be la-
belled with ctx. Thus, each Pi on such traces has the form X{s/x} | Ki, for some Ki. We
have RDs(Pi)=RDs(X{s/x})= {addToCart,creditCard}. Also, cA unblocks RDs(X{s/x})
hence condition (1) of Def. 15 holds. For condition (2), if cA

creditCard−−−−−→→� c′ = accept⊕
reject and Pi

dos creditCard−−−−−−−→�P
′ = τ.dos accept+ τ.dos reject | Ki then P′ |=s c′. Actually,

all processes on a {τ, tell }-fair −→�-traces without dos from P′ have either the form

dos accept | K or the form dos reject | K. For the recursive case, cA
addToCart−−−−−→→� cA and

Pi
dos addToCart−−−−−−−→�X{s/x}, hence X{s/x} |=s cA by coinduction. Note that the case cA

e−→→�

did not apply, because Pi cannot take −→�-transitions labelled dos e.

Theorem 5 below establishes an invariant of system transitions. If a participant A[Q0]
�-realizes a stipulated contract c0, then in each evolution of the system the descendant
of A[Q0] still �-realizes the related descendant of c0. The theorem only assumes that c0

is in a session with a compliant contract, as it is the case after firing a fuse.

Theorem 5. Let (Si)i be a stable−→-trace with Si = (�ui)(A[Qi] | s[A says ci | B says di] |
S′i) for all i. If c0 �� d0 and Q0 |=A

s c0, then Qi |=A
s ci for all i.

We now define when a participant is �-honest. Intuitively, we classify as such a partici-
pant A[P] when, for all prefixes tell ↓x c contained in P, the continuation Q of the prefix
�-realizes c. We also require that the session variable x cannot be used by any process
in parallel with Q, because such processes could potentially compromise the ability of
Q to realise c (see Ex. 11).
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Definition 16 (�-honest participant). A participant A[P] is �-honest iff P does not con-
tain ↓y A says c, and for all linear contexts C (•), x, c, Q, R, and s fresh in P

P = C (tell ↓x c.Q+R) =⇒ open(Q{s/x}) |=A
s c ∧ C is x-safe

where C (•) is x-safe iff ∃C ′. C (•) = C ′((x)•) or C is free from dox−.

Example 11. Substitute Q= fusex.dox creditCard for fusex in the process PA from Ex. 4.
Then A[PA] is not honest, because A cannot complete her contract if the dox within Q
is performed. However, the modified A[PA] violates x-safety, hence it is not �-honest.

The following lemma relates �-honesty with the abstract semantics of processes. If
a �-honest process P abstractly fires a tell↓x c, then the continuation of P realises c
(item 1). Also, �-honesty is preserved under abstract transitions (item 2).

Lemma 8. For all �-honest participants A[P], such that P = open(P):

1. if P
tellB ↓xc−−−−→�P

′, then P′{s/x} |=A
s c, for all s fresh in P.

2. if P−→�P
′, then A[P′] is �-honest.

Our main result states that �-honesty suffices to ensure honesty. Note that while honesty,
by Def. 11, considers all the (infinite) possible contexts, �-honesty does not. Hence,
while verifying honesty can be unfeasible in the general case, it can also be ensured by
establishing �-honesty, which is more amenable to verification. For instance, for finite
control processes [11] it is possible to decide �-honesty e.g. through model-checking.
In fact, in these processes parallel composition cannot appear under recursion, hence
their behaviour can be represented with finitely many states.

Theorem 6. All �-honest participants are honest.

Noteworthily, by Theorem 6 we can establish that all the participants named A in Ex-
amples 4, 5, and 6 are honest. This is obtained by reasoning as in Example 10. Instead,
participant A in Example 7 is honest but not �-honest.

6 Related Work and Conclusions

We have developed a formal model for reasoning about contract-oriented systems. Our
approach departs from the common principle that contracts are always respected after
they are agreed upon. We represent instead the more realistic situation where promises
are not always kept. The process calculus CO2 [2] allows participants to advertise con-
tracts, to establish sessions with other participants with compliant contracts, and to ful-
fill them (or choose not to). Remarkably, instead of defining an ad-hoc contract model,
we have embedded the contract theory of [10] within CO2. To do that, we have slightly
adapted the contracts of [10] in order to define culpability, and we have specialized
CO2 accordingly at the system-level. The main technical contribution of this paper is a
criterion for deciding when a participant is honest, i.e., always respects the advertised
contracts in all possible contexts. This is not a trivial task, especially when multiple
sessions are needed for realizing a contract (see e.g. Ex. 5 and 6) or when participants
want to inspect the state of a contract to decide how to proceed next (see e.g. Ex. 7).
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At the best of our knowledge, this is the first paper that addresses the problem of es-
tablishing when a participant is honest in a contract-based system populated by dishon-
est participants. Several papers investigated the use of contracts in concurrent systems;
however, they typically focus on coupling processes which statically guarantee confor-
mance to their contracts. This is achieved e.g. by typing [5,9,10], by contract-based
process synthesis [7], or by approaches based on behavioural preorders [6]. As future
work, it may also be interesting to study weaker notions of honesty, e.g., by requiring
participants to respect contracts in honest contexts, only.

The process calculus CO2 has been introduced in [2] as a generic framework for
relating different contract models; the variant in this paper has been obtained by instan-
tiating it with the contracts of [10]. Some primitives, e.g. multiparty fuse, have been
consequently simplified. In [2], a participant A is honest when A becomes not culpable
from a certain execution step; here, we only require that, whenever A is culpable, then
she can exculpate herself by performing some actions. This change reflects the fact that
bilateral contracts à la [10] can describe endless interactions.

The notion of compliance in [10] is asymmetric. Namely, if c is the client contract
and d is the server contract, then c and d are compliant if c always reaches a success state
or engages d in an endless interaction. In our model instead compliance is symmetric:
the server contract, too, has to agree on when a state is successful. The LTS semantics
of unilateral contracts in [10] yields identical synchronization trees for internal and ex-
ternal choice; to differentiate them, one has to consider their ready sets. We instead give
semantics to bilateral contracts, and distinguish between choices at the LTS level. Note
that we do not allow for unguarded sums, unlike [10]. Were these be allowed, we would
have to deal e.g. with a participant A with a contract of the form a ; c0 ⊕ (b .c1 + c .c2).
According to our intuition A should be culpable, because of the internal choice. If A
legitimately chooses not to perform a, to exculpate herself she would have to wait for
the other participant to choose (internally) between b and c. Therefore, A can exculpate
herself only if the other participant permits her to. By contrast, by restricting to guarded
sums our theory enjoys the nice feature that a culpable participant can always excul-
pate herself by performing some actions, which pass the buck to the other participant
(Theorems 1 and 3).

Design-by-contract is transferred in [5] to distributed interactions modelled as (mul-
tiparty) asserted global types [14]. The projection of asserted global types on local
ones allows for the automatic generation of monitors whereby incoming messages are
checked against the local contract. Such monitors have a “local” view of the computa-
tion, i.e. they can detect a violation but cannot, in general, single out the culpable com-
ponent. In fact, a monitor cannot know if an expected message is not delivered because
the partner is violating his contract, or because he is blocked on interactions with other
participants. Conversely, in our approach we compose participants in a “bottom-up”
fashion: a participant declares its contract independently of the others and then adver-
tises it; the fuse primitive tries then to harmonise contracts by searching for a suitable
agreement. Our notion of honesty singles out culpable components during the computa-
tion. An interesting problem would be to investigate how our notion of culpability could
be attained within the approach in [5]. In fact, this seems to be a non trivial problem,
even if forbidding communication channels shared among more than two participants.
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Contracts are rendered in [8,7] as soft constraints (values in a c-semiring) that al-
low for different levels of agreement between contracts. When matching a client with
a service, the constraints are composed. This restricts the possible interactions to those
acceptable (if any) to both parties. A technique is proposed in [7] for compiling clients
and services so that, after matching, both actually behave according to the mutually
acceptable interactions, and reach success without getting stuck. Our framework is fo-
cused instead on blaming participants, and on checking when a participant is honest,
i.e. always able to avoid blame in all possible contexts. The use of soft constraints in a
context where participants can be dishonest seems viable, e.g. by instantiating the ab-
stract contract model of CO2 with the contracts in [7]. A challenging task would be that
of defining culpability in such setting.
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