

Lecture Notes in Computer Science 7274
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marjan Sirjani (Ed.)

Coordination Models
and Languages

14th International Conference, COORDINATION 2012
Stockholm, Sweden, June 14-15, 2012
Proceedings

13

Volume Editor

Marjan Sirjani
Reykjavik University
School of Computer Science
Menntavegur 1, 101 Reykjavik, Iceland,
E-mail: marjan@ru.is

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30828-4 e-ISBN 978-3-642-30829-1
DOI 10.1007/978-3-642-30829-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012938864

CR Subject Classification (1998): C.2, D.2, H.4, I.2, F.1, H.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

In 2012, the 7th International Federated Conferences on Distributed Computing
Techniques (DisCoTec) took place in Stockholm, Sweden, during June 13–16. It
was hosted and organized by KTH Royal Institute of Technology. The DisCoTec
2012 federated conference was one of the major events sponsored by the Interna-
tional Federation for Information Processing (IFIP) and it acted as an umbrella
event for the folllowing conferences:

• The 14th International Conference on Coordination Models and Languages
(Coordination)

• The 12th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS)

• The 14th Formal Methods for Open Object-Based Distributed Systems
and 32nd Formal Techniques for Networked and Distributed Systems
(FMOODS/FORTE)

Together, these conferences cover the complete spectrum of distributed comput-
ing subjects ranging from theoretical foundations to formal specification tech-
niques to systems research issues.

At a plenary session of the conferences, Schahram Dustdar of Vienna Uni-
versity of Technology and Bengt Jonsson of Uppsala University gave invited
talks. There was also a poster session, and a session of invited talks from
Swedish companies involved in distributed computing: Spotify, Peerialism, and
Severalnines. In addition to this, there were three workshops:

• The Third International Workshop on Interactions Between Computer Sci-
ence and Biology (CS2BIO) with keynote talks by Jane Hillston (University
of Edinburgh, UK) and Gianluigi Zavattaro (University of Bologna, Italy)

• The 5th Workshop on Interaction and Concurrency Experience (ICE) with
keynote lectures by Marcello Bonsague (Leiden University, The Netherlands)
and Ichiro Hasuo (Tokyo University, Japan)

• The 7th International Workshop on Automated Specification and Verifica-
tion of Web Systems (WWV) with a keynote talk by José Luiz Fiadeiro
(University of Leicester, UK)

I would like to thank the Program Committee Chairs of each conference and
workshop for their effort. The organization of DisCoTec 2012 was only possible
thanks to the dedicated work of the Publicity Chair Ivana Dusparic (Trinity
College Dublin, Ireland), the Workshop Chair Rui Oliveira (Universidade do
Minho, Portugal), the Poster Chair Sarunas Girdzijauskas (Swedish Institute of
Computer Science, Sweden), the Industry-Track Chair György Dán (KTH Royal
College of Technology, Sweden), and the members of the Organizing Committee

VI Foreword

from KTH Royal Institute of Technology and the Swedish Institute of Com-
puter Science: Amir H. Payberah, Fatemeh Rahimian, Niklas Ekström, Ahmad
Al-Shishtawy, Martin Neumann, and Alex Averbuch. To conclude I want to
thank the sponsorship of the International Federation for Information Process-
ing (IFIP) and KTH Royal Institute of Technology.

June 2012 Jim Dowling

Preface

This volume contains the papers presented at Coordination 2012: the 14th
International Conference on Coordination Models and Languages held during
June 13–14, 2012, in Stockholm. The conference focused on the design and
implementation of models that allow compositional construction of large-scale
concurrent and distributed systems, including both practical and foundational
models, runtime systems, and related verification and analysis techniques.

The Program Committee (PC) of Coordination 2012 consisted of 31 top re-
searchers from 14 countries. We received a total of 55 submissions from 23 coun-
tries out of which the PC selected 18 papers. Each submission was reviewed by
at least three independent referees. After a careful and thorough review process,
the PC selected 18 papers for publication, based on their quality, originality,
contribution, clarity of presentation, and relevance to the conference topics. The
selected papers constituted a program covering a varied range of topics including
coordination of social collaboration processes, coordination of mobile systems in
peer-to-peer and ad-hoc networks, programming and reasoning about distributed
and concurrent software, types, contracts, synchronization, coordination pat-
terns, and families of distributed systems. The program was further enhanced
by an inspiring invited talk by Schahram Dustdar from Vienna University of
Technology titled “Elastic Coordination—Principles, Models, and Algorithms.”

The success of Coordination 2012 was due to the dedication of many peo-
ple. We thank the authors for submitting high-quality papers, and the Program
Committee (and their co-reviewers) for their careful reviews, and lengthy dis-
cussions during the final selection process. We thank Gwen Salaun from INRIA
who acted as the Publicity Chair of Coordination 2012. With his help we had an
increase of 1.6 in the number of submissions compared to last year. We thank
the providers of the EasyChair conference management system, which was used
to run the review process and to facilitate the preparation of the proceedings.
Finally, we thank the Distributed Computing Techniques Organizing Commit-
tee (led by Jim Dowling) for their contribution in making the logistic aspects of
Coordination 2012 a success.

June 2012 Marjan Sirjani

Organization

Steering Committee

Farhad Arbab CWI and Leiden University, The Netherlands
(Chair)

Gul Agha University of Illinois at Urbana Champaign,
USA

Dave Clarke Catholic University of Leuven, Belgium
Wolfgang De Meuter Vrije Universiteit Brussels, Belgium
Rocco De Nicola University of Florence, Italy
Gruia-Catalin Roman Washington University in Saint Louis, USA
Carolyn Talcott SRI, USA
Vasco T. Vasconcelos University of Lisbon, Portugal
Gianluigi Zavattaro University of Bologna, Italy

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Borzoo Bonakdarpour University of Waterloo, Canada
Marcello Bonsangue Leiden University, The Netherlands
Roberto Bruni Università di Pisa, Italy
Carlos Canal University of Málaga, Spain
Frank De Boer CWI, The Netherlands
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola University of Florence, Italy
Patrick Eugster Purdue University, USA
Robert Hirschfeld Hasso-Plattner-Institut (HPI), Germany
Jean-Marie Jacquet University of Namur, Belgium
Mohammad Mahdi Jaghoori CWI, The Netherlands
Christine Julien University of Texas at Austin, USA
Ramtin Khosravi University of Tehran, Iran
Natallia Kokash CWI, The Netherlands
Christian Krause Hasso Plattner Institute (HPI), Germany
Doug Lea SUNY Oswego, USA
Jay Mccarthy Brigham Young University, USA
Shiva Nejati Simula Research Lab, Norway
Andrea Omicini Università di Bologna, Italy
Jose Proenca Katholieke Universiteit Leuven, Belgium
Jan Rutten CWI, The Netherlands
Gwen Salaün Grenoble INP - INRIA - LIG, France
Michael Ignaz Schumacher University of Applied Sciences Western

Switzerland (HES-SO)

X Organization

Manuel Serrano INRIA, France
Marjan Sirjani Reykjavik University, Iceland
Meng Sun Peking University, China
Vasco T. Vasconcelos University of Lisbon, Portugal
Carolyn Talcott SRI International, USA
Mirko Viroli Università di Bologna, Italy
Franco Zambonelli Università di Modena e Reggio Emilia, Italy

Additional Reviewers

Appeltauer, Malte
Bainomugisha, Engineer
Becker, Basil
Bozga, Marius
Bromuri, Stefano
Costa, David
De Koster, Joeri
Ferreira, Carla
Giachino, Elena
Grande, Johan
Gubian, Michele
Güdemann, Matthias
Harnie, Dries
Helvensteijn, Michiel
Jafari, Ali
Jongmans, Sung-Shik T.Q.
Kemper, Stephanie
Kersten, Anne
Lincke, Jens
Lluch Lafuente, Alberto
Lombide Carreton, Andoni
Loreti, Michele
Marques, Eduardo R.B.
Martins, Francisco
Mauro, Jacopo

Melgratti, Hernan
Merro, Massimo
Mostrous, Dimitris
Neumann, Stefan
Nobakht, Behrooz
Ouederni, Meriem
Padovani, Luca
Perscheid, Michael
Pianini, Danilo
Poll, Erik
Quilbeuf, Jean
Ricci, Alessandro
Rot, Jurriaan
Salaun, Gwen
Santini, Francesco
Scholliers, Christophe
Schumann, René
Steinert, Bastian
Taeumel, Marcel
Tiezzi, Francesco
Urovi, Visara
Vallejos, Jorge
Vogel, Thomas
Wong, Bernard
Zavattaro, Gianluigi

Elastic Coordination

Principles, Models, and Algorithms
Invited Talk

Schahram Dustdar

Vienna University of Technology

Elasticity is seen as one of the main characteristics of Cloud Computing today.
Social computing, as one of the most prominent applications deployed on Cloud
infrastructures, would gain significantly from elasticity. In this talk I will discuss
the main principles of elasticity related to coordination, present a fresh look
at this problem, and examine how to integrate people in the form of human-
based computing and software services into one composite system, which can be
modeled, programmed, and instantiated on a large scale in an elastic way.

Table of Contents

Statelets: Coordination of Social Collaboration Processes 1
Vitaliy Liptchinsky, Roman Khazankin, Hong-Linh Truong, and
Schahram Dustdar

A Social Software-Based Coordination Platform: Tool Paper 17
Davide Rossi

Synchronization of Multiple Autonomic Control Loops: Application to
Cloud Computing . 29

Frederico Alvares de Oliveira Jr., Remi Sharrock, and
Thomas Ledoux

Subobject Transactional Memory . 44
Marko van Dooren and Dave Clarke

Partial Connector Colouring . 59
Dave Clarke and José Proença

Using Coordinated Actors to Model Families of Distributed Systems 74
Ramtin Khosravi and Hamideh Sabouri

Scoped Synchronization Constraints for Large Scale Actor Systems 89
Peter Dinges and Gul Agha

First-Order Dynamic Logic for Compensable Processes 104
Roberto Bruni, Carla Ferreira, and Anne Kersten Kauer

Coordinating Parallel Mobile Ambients to Solve SAT Problem in
Polynomial Number of Steps . 122

Bogdan Aman and Gabriel Ciobanu

Recursive Advice for Coordination . 137
Micha�l Terepeta, Hanne Riis Nielson, and Flemming Nielson

Fluid Analysis of Foraging Ants . 152
Mieke Massink and Diego Latella

Real-Time Coordination Patterns for Advanced Mechatronic Systems . . . 166
Stefan Dziwok, Christian Heinzemann, and Matthias Tichy

Group Orchestration in a Mobile Environment . 181
Eline Philips, Jorge Vallejos, Ragnhild Van Der Straeten, and
Viviane Jonckers

XIV Table of Contents

Node Coordination in Peer-to-Peer Networks . 196
Luigia Petre, Petter Sandvik, and Kaisa Sere

Linda in Space-Time: An Adaptive Coordination Model for Mobile
Ad-Hoc Environments . 212

Mirko Viroli, Danilo Pianini, and Jacob Beal

A Space-Based Generic Pattern for Self-Initiative Load Clustering
Agents . 230

Eva Kühn, Alexander Marek, Thomas Scheller, Vesna Sesum-Cavic,
Michael Vögler, and Stefan Craß

On the Realizability of Contracts in Dishonest Systems 245
Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino

Types for Coordinating Secure Behavioural Variations 261
Pierpaolo Degano, Gian-Luigi Ferrari, Letterio Galletta, and
Gianluca Mezzetti

Author Index . 277

Statelets: Coordination of Social Collaboration

Processes

Vitaliy Liptchinsky, Roman Khazankin, Hong-Linh Truong,
and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

{lastname}@infosys.tuwien.ac.at

Abstract. Today people work together across time, space, cultural and
organizational boundaries. To simplify and automate the work, collab-
oration employs a broad range of tools, such as project management
software, groupware, social networking services, or wikis. For a collab-
oration to be effective, the actions of collaborators need to be properly
coordinated, which requires taking into account social, structural, and
semantic relations among actors and processes involved. This informa-
tion is not usually available from a single source, but is spread across
collaboration systems and tools. Providing a unified access to this data
allows not only to establish a complete picture of the collaboration en-
vironment, but also to automate the coordination decision making by
specifying formal rules that reflect social and semantic context effects on
the ongoing collaboration processes. In this paper we present Statelets,
a coordination framework and language for support and coordination
of collaboration processes spanning multiple groupware tools and social
networking sites, and demonstrate its suitability in several use cases.

Keywords: Coordination Language, Collaboration, Social Context,
Groupware Integration.

1 Introduction

Groupware and social software foster collaboration of individuals who work
across time, space, cultural and organizational boundaries, i.e., virtual teams
[22]. Problem of people coordination in collaborative processes has been already
extensively studied in academia, (e.g., in [7,9]), and addressed in industry with
ever more groupware products incorporating workflow and orchestration mech-
anisms (e.g., Microsoft Sharepoint). However, in many cases, people interact
and contribute in divergent commercial or non-profit on-line collaboration plat-
forms, such as social networks, open source development platforms, or discussion
forums, that remain decoupled, isolated and specific to their domains. The prob-
lem of coordination in such a setup gets a new look, where processes that need
to be coordinated are decentralized and distributed across different specialized
tools and online services.

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 1–16, 2012.
c© IFIP International Federation for Information Processing 2012

2 V. Liptchinsky et al.

Social network context is an integral part of human coordination. For example,
the following context aspects have an impact on the behavior of collaborating
individuals: actions taken by neighbors in social network [10], social neighbors’
preferences [4], and the social network structure itself [25]. The degree of the
impact varies from network context simply ’carrying’ the information that can
be used in a process to forcing adjustment or even cancellation of ongoing actions.
Also, social context can imply mutual dependency between processes, reflected
by such common coordination mechanisms in social networks as collective actions
[4], i.e., ’I’ll go if you go’. Social network context can be used for such advanced
activities as expertise location [17], composition of socially coherent collaborative
teams [5], discovery of unbiased reviewers, and so on.

Along with the social component of the network context, semantic relations
between processes may affect coordination decisions as well. In groupware and
wiki-like platforms, processes are reflected as incremental changes of common
deliverables (e.g., documentation of an idea, a technical specification, or a source
code file) connected into dependency and semantic networks. Relations between
these artifacts may influence the collaboration process. For example, actions on
a document should not be performed before related documents reach a certain
condition, or a change in a related document might force to re-do an activity.

Due to an information-centric nature of both social and semantic contexts, we
combine these notions together and define network context of a collaboration pro-
cess as information about related processes and people, their actions and states.
In our previous work [15] we discussed network context effects on collaboration
processes, and presented an approach for modeling them.

In spite of growing interest to social network effects in academia [4,10,25],
the problem of network context-based coordination has not been properly ad-
dressed by coordination languages and frameworks. As examined in the paper,
existing coordination languages lack necessary features to enable efficient pro-
gramming of coordination based on network effects. We refer here to suitability
as an amount of efforts a developer needs to spend to express such coordination
rules. Also, supplying the developer with social and semantic network context
requires horizontal composition of groupware and social networking sites, which
imposes yet additional challenges [6,14], which are not addressed properly by
existing frameworks as well.

In this paper we present Statelets, a programming language for coordination
of social collaboration processes spanning multiple software systems. A distin-
guishing characteristic of Statelets is the support for coordination based on social
and semantic network effects. Although the primary focus of the paper is the
programming language, our contribution also includes a conceptual architecture
of the underlying framework that aims at integration of groupware and social
networks to extract social and semantic contexts. To evaluate Statelets, we have
implemented use cases that show its advantages and suitability to the domain.

The rest of this paper is structured as follows: Section 2 provides a motivating
example and identifies the features that are crucial for a network context-based co-
ordination language. In Section 3we explore the suitability of existing coordination

Statelets: Coordination of Social Collaboration Processes 3

languages for the problem at hand in the perspective of these features. Sections 4
and 5 describe the Statelets coordination language and the conceptual architec-
ture of the underlying framework respectively. Section 6 demonstrates the usage
of the language with use cases. The paper is concluded in Section 7.

2 Motivation

As a motivating example, let us consider open source software engineering.
Projects in software engineering can be classified into analysis projects and en-
gineering projects (See Fig. 1b). An analysis project represents a non-routine
and changeable process, whereas an engineering project represents a rather rou-
tine and stable process. Both types of projects produce deliverables, such as
source code or technical documentation. Projects get assigned to members of
open source communities, who are located via social (professional) networks and
online collaboration services, and are then hold responsible for the progress of
corresponding activities.

Projects can be related to or depend on each other. For example, two projects
are related if they contribute to the same software product, are functionally
interdependent, or share components, goals, or resources. Similarly, social and
professional relations and technical dependencies exist between project members,
e.g., a software engineer depends on engineers who wrote previous versions of
the component or worked on the code in the past. Figure 1a depicts various
relations between projects and their members.

The key to success of such engineering and analysis projects are advanced
activities, such as expertise and resource discovery. Such activities are not possi-
ble without integration of professional (e.g., XING, LinkedIn) and private (e.g.,
Facebook, MySpace) social networks, and online collaboration tools (e.g., Source-
Forge). Figure 1a depicts integration and execution environment of processes
that correspond to analysis and engineering projects. Engineering projects are
more specific to the domain, and, therefore, require more specific groupware, e.g.,
VersionOne, or Jira. Analysis projects, on the contrary, require more flexible and
wide-spread groupware, such as MediaWiki (engine for Wikipedia).

Given the setup described above, let us consider the following possible coor-
dination rules:

1. If an Analysis project is in Post-Deliberation phase, and all its related
Analysis projects have transitioned to Post-Deliberation phase, then, if
any changes have occured among solutions in those projects during the tran-
sition, the project should be switched back to Deliberation phase and the
changes should be communicated to the project’s team. This rule ensures
proper communication of new or adjusted solutions between teams of in-
terrelated Analysis projects and allows a collaboration team to produce so-
lutions that are not affected by possibly incorrect solutions produced by
other teams. Similar strategies were adopted in agile software engineering
methodologies, e.g., in SCRUM estimation game1.

1 http://scrummethodology.com/scrum-effort-estimation-and-story-points/

4 V. Liptchinsky et al.

Post-deliberation

Deliberation
RelatedAnalysis

projects

Implementation

Design
Engineering

projects Depends

Friends Worked
together

Assigned

Source: Wiki

Project members
and

social relations

Source: SVN, soc. networks

Source:

Groupware and project
management

Assigned

Depend

(a) Integrated relations between projects and actors

Design

Implementation

Testing

Engineering project

Review

Deliberatrion

Post-deliberation

External
factors

Better
idea emerged

Analysis project

(b) Project types

Fig. 1. Projects in open source software engineering

2. An engineering project design should be reviewed by an expert from a func-
tionally dependent project. Moreover, it is preferable to assign an expert so-
cially unrelated to the project team members. This rule tries to avoid biased
reviews by finding socially unrelated experts.

3. In case of an expertise request, an appropriate expert should be socially con-
nected to one of the project team members, or work on a related project. This
rule ensures faster expert onboarding.

4. When starting an engineering project, a socially coherent team of qualified
experts should be assembled, which has connections to members of related
projects. This rule tries to maximize probability of a project success by en-
suring a good social environment in advance.

5. An engineering project can be started, if at least one project it depends on has
passed Design phase. This rule defines a balance between total serialization
of dependent projects Design phases, which results in a longer time-to-
market, and total parallelization of Design phases, which results in more
iterations.

6. Design phase of a project cannot be finished until all projects it depends on
pass Design phase. This rule minimizes chances of potential rework and
wasted efforts.

7. If an engineering project is in Implementation phase, and any of the
projects it depends on has switched back to Design phase, then the project
should switch back to Design phase. This rule covers possible redesign cases
and ensures proper handling of late adjustments.

8. All impediments in a project should be communicated to any engineer in ev-
ery related project. This rule ensures timely communication between project
teams.

Statelets: Coordination of Social Collaboration Processes 5

Let us consider the challenges that a developer faces when implementing the
aforementioned rules. Based on the challenges, we further draw conclusions and
identify the most important features that reflect the effectiveness of a coordina-
tion language and its underlying framework.

1. Optimized horizontal integration of external collaboration projects. The mo-
tivation scenario involves integration of many social networks and group-
ware products, such as MediaWiki, Subversion, LinkedIn, Facebook, and
VersionOne. The developer should concentrate on the coordination logic,
and not on how to extract the needed information from external sources. As
APIs of collaboration platforms could not provide all the needed information
in the right form, the framework needs to decouple the concepts perceived by
the developer from representation and transformation issues and take care
of the optimizing the data exchange seamlessly for the developer. Different
authorization mechanisms and the necessity for identity mapping between
entities coming from different sources makes integration even more complex.
The coordination language should in turn support the unconditioned access
to externally provided data in a manner that enables the optimization, and
the language’s semantics should reflect the nature of external APIs, i.e., con-
sider distinct behavioral classes of APIs’ methods (e.g., methods with and
without side-effects).

2. Condition-Action rules. Rules 5, 6, and 7 take the declarative condition-
action form, as opposed to more common event-condition-action rules, be-
cause the developer is interested in situations or patterns that need to be
managed rather than in events that lead to these situations. When a condi-
tion depends on external data sources, problems of continuous checking and
polling arise. Additionally, when a condition depends on time (e.g., escala-
tion), timers get involved as well. These problems should be abstracted away
from the developer and be handled by the framework, while the coordination
language should support condition-action expressivity.

3. Network context querying and processing. Integration of groupware and social
software enables social resource discovery and process coordination based on
rich network context. Manipulations with network context, as it can be seen
from most of the rules above, can be significantly simplified with quantifiers
(as in Rules 5, 6, or 8), and disjunctions (as in Rule 3), as they naturally fit
for expressing the coordination logic.

4. Network context synchronization. As depicted by Rule 1, when multiple re-
lated entities fulfill a rule, the action should be taken for all such entities
simultaneously to avoid a situation when the action for one entity discards
the condition for other related entities. Such synchronization issues should
be handled at the framework level and be taken into account by the language
design.

3 Related Work

In this section we examine existing coordination and orchestration languages
with respect to the features outlined in the previous section. Table 1 summarizes

6 V. Liptchinsky et al.

Table 1. Natively supported features in selected coordination languages

Seamless Condition- Context Context
integration Action queries synchronization

Control-driven languages [1,12,13] +/– – – –
Linda-based languages [2,3] – + + –
Reactors [8] – + + –
CEP languages [20,21,23] – + + –
BPEL4Data (BEDL) [18] – + – –

the suitability of considered languages to network context-based coordination.
The suitability of a language can be characterized as the amount of efforts a
developer needs to spend on a task at hand. We therefore regard the native
support of the aforementioned features, i.e., when no additional effort is needed
for their realization.

Control-driven coordination and orchestration (workflow) languages based on
messages (channels), such as BPEL [1], Orc [13], or Workflow Prolog [12] are
specifically designed for integration of services like those in external APIs. They
can also simulate network effects via messages or events, i.e., by notifying related
processes. However, context querying using point-to-point messages would result
in “chatty” communication, and context synchronization would require the im-
plementation of complex protocols similar to two-phase commit. Also, support
for integration is limited, as difference between methods w/o side-effects is not
considered.

Data-driven (Linda-like [11]) coordination languages (for example, [2]) ex-
press coordination as dependencies between removal/reading and insertion of
atoms from or into a shared space. However, groupware APIs are often assy-
metric and do not provide insert/remove operations for each read operation.
It is therefore hard to align API method calls with the removal and insertion
of atoms, because the actual changes made by API calls are not explicit and
occur rather as side-effects. Basic Linda operators provide only limited expres-
sivity of conditions expressing network context, unlike reactive Linda extensions
[3] that introduce additional notify operation. Two coordination approaches are
used in reactive extensions [3]: parallel (e.g., JavaSpaces, WCL) and prioritized
(e.g., MARS, TuCSoN (ReSpecT)). In order to express network context syn-
chronization, parallel reactions require implementing two-phase synchronization
protocols, similarly to control-driven languages. Prioritized extensions make the
implementation even more difficult by restricting the usage of coordination op-
erators within reactions.

Reactors [8] is a coordination language where networks of reactors can be
defined by means of relations. The behavior of reactors in the neighborhood
is observed as sequences of their states, which can be queried with Datalog-
based language, thus allowing the context querying. Also, Reactors eliminate
the distinction between events and conditions. Reactors react to stimuli defined

Statelets: Coordination of Social Collaboration Processes 7

as insertion or removal of relations. This is suitable for integrating RESTful
APIs, but is limited to them, as many groupware APIs are coarse-grained and it
is not intuitive to map insertion and removal of tuples to API calls. In general,
reactors are executed concurrently and independently. Synchronous execution
can only be achieved through a composition of reactors, which is not intuitive
to implement.

Given that processes can publish their states as events, modern Complex
Event Processing languages (e.g., [21]) can express conditions on network con-
text using event correlation and predicates. However, representation of external
data retrieved from request-response web APIs in the form of events is not in-
tuitive. Moreover, the recursiveness [16] (See Rule 1) of collaboration processes
can significantly complicate the definition of network context queries.

Typically, rules in Rule-based languages fire non-deterministically, thus com-
plicating the network context synchronization. However, two notably different
approaches here are: (i) to derive dependencies from postconditions (e.g., [23]),
which in scope of external APIs integration might be not known, or not possible
to define; and (ii) by explicit operators (e.g., [20]), which do not allow to specify
dependencies based on relations between events.

In XML-based language BPEL4Data [18] processes can communicate via
shared business entities, resembling thus a shared-space paradigm. Business en-
tities are represented as XML documents. Simple conditions can be expressed
as guards on Business entities using XPath/XQuery. However, it is not intu-
itive to describe network context querying, i.e., conditions on a graph of related
XML documents. Synchronization between processes is achieved through addi-
tional processes and locks. Similarly to CEP languages, integration with BEDL
requires representation of external data changes in the form of CRUDE notifi-
cations or invocations, which is not always intuitive.

As it can be seen, existing approaches partially support requirements outlined
in the motivating scenario, but none of them provides a full spectrum of features
necessary for efficient programming of coordination based on network effects.

4 Statelets Coordination Language

In this section we present Statelets, the coordination language designed for or-
chestration of activities in groupware and social software systems. The language
natively supports all four features outlined in the previous section. However,
native support of the ’Seamless integration’ feature requires additionally imple-
mentation of an extensible framework, conceptual design of which is discussed
in the next section. The main building block of Statelets is statelet - a construct
that corresponds to a state of a process and denotes coordination rules that
should be fulfilled when the process resides in this state. Statelets do not com-
pletely describe collaboration processes, but rather are complementary reactions
to workflows defined in groupware systems and human collaboration activities.
A statelet consists of mainly two parts: a condition(s) that formally describes
an anticipated situation and an action(s) which have to be undertaken if such a

8 V. Liptchinsky et al.

situation is detected. Conditions are given in a form of context queries against
the data integrated from external collaboration projects, and the actions are
given as either triggers that correspond to external commands in collaboration
software, or yield constructs that activate other statelets. All the data integrated
from external sources by the framework is accessed as relations in the language.
This allows the developer to easily design the coordination rules by seamlessly
combining the relations originating from diverse platforms into single conditions.

4.1 Context Queries and Commands

Assymetric nature of many collaborative software APIs is reflected in Statelets
as segregation of operations2 to read (side-effect free) operations, i.e., queries,
and modify operations, i.e., commands. Such segregation allows a programmer
to specify what API methods are side-effect free and what are not, enabling thus
the framework to treat them differently.

Queries. Read operations define data models, which in Statelets are represented
as a unified hypergraph comprised of overlay networks. Even though the data
model is defined by collaboration software adapters, additional relations may
be integrated, (e.g., Core Relations Library), denoting side-effect free external
computation. For example, querying the Factorial(X, Factorial) relation results
in computation of a factorial by an integrated component. Also, additional vir-
tual relations can be defined on top of the basic data model. For instance, a
SocialRelation virtual relation below is defined by means of relations coming
from Facebook and MySpace.

relation SocialRelation(User1, User2):
Facebook.Friends(User1, User2) || MySpace.Friends(User1, User2);

Querying a hypergraph relation at runtime creates a data stream, i.e., a lazy
sequence of records, which is gradually initialized by the framework with each
set of vertexes matching the given relation found. Given that relations in hyper-
graph constitute predicates, data streams can be formed by expressions using
the following binary operators based on the First-order logic:

– Operators &&, ||, not, and -> correspond appropriately to ∧, ∨, ¬, and →
first-order logic connectives with implicit existential quantification attached
to all variables within the expression.

– Operators =>, -!, and -x correspond to conditional (→) connector with
implicit universal quantification over the variables present in the left part
of the expression. Variables in the right part of the expression, that are not
present in the left part, are quantified as ∃, ∃!, and ¬∃ appropriately. Clearly,
second and third operators can be expressed using the first one.

2 http://martinfowler.com/bliki/CQRS.html

Statelets: Coordination of Social Collaboration Processes 9

Basically, a query expression describes a pattern (a subgraph) within a hyper-
graph. Appropriately, a data stream resulted from evaluation of this query con-
tains all occurrences of the pattern.

Queries in Statelets can be evaluated using define and wait operations:

– define operation simply evaluates a query expression and searches shared
space hypergraph for pattern instances. Each pattern instance found along
the hypergraph search is pushed into the data stream. If no instances are
found, then define returns an empty data stream.

– wait operation continuously evaluates a query expression until at least one
pattern instance is found. Therefore, wait operation always returns non-
empty data stream.

For instance, if it is necessary to wait until all related to the project documents
are completed, then we can use the following code snippet:

wait Related(Project, Document) => Status(Document, ‘Completed‘);

Here a data stream is created that remains uninitialized until the condition is
satisfied. However, if it is simply necessary to check if all related documents are
completed, then the following code snippet can be used:

define Related(Project, Documents) => Status(Document, ‘Completed‘);

Here an uninitialized data stream is created, which either is initialized with all
related documents if all of them are completed, or is initialized as empty. A
statelet can run many queries, getting thus many data streams. If query expres-
sions within a statelet share variables, then resulting streams are joined by those
shared variables.

Commands. Commands represent groupware API methods with side effects,
for example, send an e-mail, or delete a document. Commands in Statelets are
executed using trigger keyword:

trigger AssignReviewer(Document, Reviewer);

Commands in Statelets are used to process or handle records of data streams
defined by query evaluations. If a data stream is not yet initialized, then a com-
mand is suspended until it is initialized (similar to lists with unbound dataflow
tail [24]). However, if a data stream is empty, then the command is not executed
at all. A command can be executed for any or for every record in a data stream,
or for the whole collection of records. Any quantifier is a default quantifier, which
is implicitly attached if no quantifiers are specified. Consider the example below:

trigger SendForReview(every Team, any Programmer, all Documents);

This reads as follows: send a list of Documents (all Documents) for a review to
any Programmer in every Team.

10 V. Liptchinsky et al.

4.2 Programming Coordination

Coordination is managing dependencies between activities. Apart of being able
to express basic dependencies between human activities, Statelets also support
network context-based coordination.

Dependencies between Activities. A statelet by itself describes precedence
dependency: once completion of a human activity is registered in a shared space,
a succeeding activity is triggered by a command. Statelets can be composed using
alternative keyword expressing thus multiple different outcomes of a manual
or automated activity. We exemplify usage of such composition in the use case
scenarios. The statelet in the example below describes dependencies between
design activity, project owner notification activity, and assignment of multiple
experts activity:

statelet DesignPhase(Project):
{
wait DesignDocument(Project, Document) && Status(Document, ’Completed’);
trigger NotifyProjectOwner(Project);
define ExpertiseKeywords(Document, Keyword) && FindEngineers(Expert, Keyword);
trigger Assign(every Keyword, any Expert, Project);
};

Dependencies between Processes. A process in Statelets is comprised of a
sequence of statelets that produce each other by using yield new operation,
i.e., a sequence of states. A process may reside in multiple orthogonal states,
requiring thus presence of many statelets in parallel. Therefore, a statelet is
technically a coroutine: it can produce multiple new statelets along its execu-
tion. Statelet by itself complements shared space hypergraph at runtime, sim-
ulating thus a relation. In other words, a statelet can query existence of other
statelets in its neighborhood similarly to how it queries for existence of spe-
cific relations and nodes in a shared space hypergraph. A process in Statelets
thus communicates with its neighborhood by changing its own state. In other
words, observable behaviors of Statelets processes are sequences of states, rather
then messages. This behavior was inspired by Cellular Automata [19], a popular
abstraction for modeling complex behaviors in social and biological networks.
If a statelet queries for the presence of another statelet, then such situation
is treated by the framework as dependency, i.e., the assumption is that any
actions triggered by a statelet can discard conditions of dependent statelets.
Therefore, the framework ensures that actions of a statelet are triggered after
conditions in dependent statelets are checked. Appropriately, if two statelets
are mutually dependent, then the framework executes their actions simultane-
ously, allowing thus for expressing simultaneity dependencies, i.e., network con-
text synchronization and collective actions (see Sec. 2). Lifetime of a statelet
is bound to the data streams defined within it. A statelet is visible in shared
space hypergraph until all its data streams are initialized. Once the statelet
starts processing data streams by triggering actions, it becomes invisible to
other statelets, i.e., queries being evaluated within wait operations of all other
statelets will not consider presence of the relation correspondent to the statelet.

Statelets: Coordination of Social Collaboration Processes 11

Let us consider an example: an engineering project can be started if design
of all projects it depends on is finalized, and if at least one of them is in
the implementation phase. The following code snippet implements this rule:

statelet DesignFinalizedPhase(Project):
{
wait Depends(Project, DepProject) => (DesignFinalizedPhase(DepProject)

|| ImplementationPhase(DepProject));
yield new ImplementationPhase(Project);
};

4.3 Feature Support and Prototype Implementation

All four features outlined in Sec. 2 are integral part of and natively supported
by Statelets. Data streams and segregation of operations realize the horizon-
tal integration feature. Wait operation enables condition-action rules. Implicit
quantifiers in queries along with explicit quantifiers in commands allow for easy
network context querying and processing. Statelet dependency solves the syn-
chronization problem.

Statelets employ accustomed C-based syntax. Prototypes of the Statelets in-
terpretor and the initial version of the language runtime are implemented in the
functional programming language F#, and are publicly available for download3.

The complete abstract syntax tree of the Statelets coordination language is
provided below:

Quantifier Q ::= any | every | all
Constant C ::= boolean | number | string
Identifier ID ::= string without spaces
Expression variables EVARS ::= (ID | C |) list
Command variables EPARS ::= (Q ID | C) list
Expression E ::= EVARS | (ID, EVARS) | (E && E) | (E || E) | (not E) | (E −> E)

| (E => E) | (E −! E) | (E −x E)
VirtualRelation VR ::= (ID, ID list , E)
Statement S ::= define E | wait E | trigger ID EPARS | yield new ID EPARS
Statelet ::= (ID, ID list , S list)

5 Statelets Framework

In this section we present the conceptual architecture of the Statelets framework
that enables horizontal integration of collaborative software systems. The focus
of this paper is on the coordination language, therefore technical details are not
provided. Figure 2 shows the high level design of the framework comprised of
the following layers:

Connectors. Groupware APIs are diverse by their nature and employ distinct
protocols. This requires creation of fine-tuned integration points, i.e., connectors.
Connectors define supported relations and commands, and adapt object models
of groupware APIs to fit Statelets semantic model. Connectors may support not
only initialization of data streams corresponding to atomic relations, but also

3 http://sourceforge.net/p/statelets/

12 V. Liptchinsky et al.

Authorization & Authentication module

Entity mappers

Tokens
Storage

Language runtime

Connectors
1

Permissions
collector

E-Mail
mapper

Custom metadata
mapper

SchedulerCoordinatorLanguage
Interpretor

Authentication
module

Optimization module

Graph traversal
optimizers

Distr. Cache
Graph DB

2 3 4 5 ... N

OpenID Attribute-based
identity mapping

Context query rewriter Caching

Access Tokens
manager

Core Relations
Library

Fig. 2. Statelets framework architecture

interpretation of queries on relations in order to better utilize flexibility of APIs
and improve efficiency.

Authentication and Authorization. User-centric APIs are designed for ver-
tical composition [6], and often require authorization and authentication mech-
anisms with direct user involvement (e.g., OAuth 1.0/2.0). This complicates
traversal of social graphs, and imposes needs to store and maintain certificates,
application and user tokens, or even credentials. Moreover, a mechanism to up-
date or collect new tokens should be present as well.

Entity Mapping. Many user accounts and entities map to the same entity
in the real world. For instance, users usually have different accounts per each
collaboration tool they use, and two files in different tools may represent the
same research paper. Typical approaches to entity mappings [14] are attribute-
based identity, by e-mail address, by custom metadata, or even direct mappings
(e.g., based on Facebook Open Graph or OpenID).

Optimizations. Authentication and authorization mechanisms together with
identity mappings algorithms may introduce high latency. Additionally, some
data in social networks, like a friendship connection, or a user profile, change
rarely. This introduces unnecessary overhead for queries with existential quan-
tifiers, i.e., ’find any socially related expert in given area’. In this case, caching
and heuristic approaches may bring substantial value.

Language Runtime. The language interpretor is responsible for code parsing
and interpretation of the language semantic model. The scheduling component

Statelets: Coordination of Social Collaboration Processes 13

is responsible for polling graphs of artifacts and user profiles. The coordina-
tion component is responsible for enforcing dependencies between activities and
processes at runtime.

The multi-layer design decouples integration and optimization issues from the
coordination logic. The developer therefore only operates with entity abstrac-
tions and is not required to comprehend technical details of data access, whereas
the other layers are handled by appropriate integration experts.

6 Use cases

This section demonstrates the implementation of two process types considered
in Sec. 2, namely Analysis and Engineering projects. The use cases exemplify
main language features and implementation of coordination based on network
effects. More use-cases can be found online3.

6.1 Analysis Projects

MediaWiki engine used in Wikipedia is used as an underlying groupware plat-
form. Typically, work on wiki pages is coordinated by non-functional attributes,
for example, ‘Category:All articles with unsourced statements‘. Similarly, we add
a special marker category which is used to denote Post-Deliberation phase

of a project. Two analysis projects are considered to be related, if one of the
project wiki pages contains a link to a wiki page from the other project. Syn-
chronization between related projects is achieved in two steps: (i) residing in
the Post-Deliberation phase, a process waits until all related processes switch to
the Post-Deliberation phase; (ii) all changes made in related projects since last
synchronization are communicated to every team member in related projects,
and related projects switch back to the Deliberation phase simultaneously.

statelet AnalysisProject.Deliberation(WikiPage, Timestamp):
{
wait Wiki.Categories(WikiPage, ”PostDeliberation”);
yield new AnalysisProject.PostDeliberation(WikiPage, Timestamp);
};

statelet AnalysisProject.PostDeliberation(WikiPage, Timestamp):
{
wait
((Wiki.Links(WikiPage, RelatedPage) => AnalysisProject.PostDeliberation(RelatedPage,))
−> Wiki.Revisions(RelatedPage, , RelRevTimestamp))
&& >(RelRevTimestamp, Timestamp) && System.DateTime.Now(now);

define Wiki.Revisions(WikiPage, Contributor,);
trigger Wiki.EmailUser(every Contributor, every RelatedPage, all RelRevTimestamp);
trigger Wiki.DeleteCategory(WikiPage, ”PostDeliberation”);
yield new AnalysisProject.Deliberation(WikiPage, now);

}
alternative
{
wait WikiPage −x Wiki.Categories(WikiPage, ”PostDeliberation”);
yield new AnalysisProject.Deliberation(WikiPage, Timestamp);
};

This use case exemplifies simplicity of network context synchronization and
collective actions implementation in case of recursive collaboration processes.

14 V. Liptchinsky et al.

6.2 Engineering Projects

To save space, we exemplify only expertise discovery in social neighborhood.
The algorithm combines two ideas: (i) try to find a reviewer from a related
project, which is not socially related to any of the project team members; (ii)
try to find any reviewer who has appropriate expertise. In this example, social
context is retrieved from Facebook, LinkedIn, and Subversion (two engineers are
socially related if they committed to the same project in subversion). Project
data is retrieved from the VersionOne groupware. Subversion and VersionOne
are depicted in the code snippet as SVN and V1 respectively.

relation SVN.Related(User1, User2):
SVN.Logs(Path, User1, , ,) && SVN.Logs(Path, User2, , ,);

relation SocialRelation(User1, User2):
SVN.Related(User1, User2) || Facebook.Friends(User1, User2);

statelet EngeneeringProject.InProgress(Story):
{
wait V1.Attribute(Story, ”Status”, ”Completed”);
yield new EngineeringProject.ImplementationFinished(Story);

}
alternative
{
wait
V1.Attribute(Story, ”Status”, ”Review”) && not V1.Relation(Story, ”Reviewer”,)
&& V1.Relation(Story, ”Developer”, Dev)
&& V1.Relation(Story, ”FunctionalRelation”, RelStory)
&& V1.Relation(RelStory, ”Developer”, RelDev)
&& LinkedIn.Profile(RelDev, Profile) && ExpertiseFits(Profile, Story)
&& (not SocialRelation(Dev, RelDev) || RelDev);

trigger SetRelation(Story, ”Reviewer”, any RelDev);
yield new EngineeringProject.InProgress(Story);
};

The use case exemplifies implementation of such advanced activities as loca-
tion of socially connected experts, unbiased reviewers, and so on. The use case
also shows benefits arising from horizontal composition of social networking sites.

7 Conclusions and Future Work

This paper proposes a novel coordination language for network context-based
coordination, and demonstrates its suitability through use cases. Compared to ex-
isting approaches, our contribution provides a full spectrum of features that are
crucial for network context furnishing and coordinationbased on it.We have shown
that these features are necessary for an effective coordination of social collabora-
tion processes. However, at present the language is in its inception phase, and does
not support advanced features (e.g., hierarchical composition of Statelets) for ex-
pressing more complex and large-scale coordination problems than those exempli-
fied in the use cases. Therefore, our future work includes further advancement of
the Statelets coordination language, and design and development of various tech-
niques aiming at optimized integration of various groupware and social networking
sites APIs. Although Statelets was designed with the focus on collaboration, we do
not exclude its applicability in other areas.

Statelets: Coordination of Social Collaboration Processes 15

References

1. Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K.,
Thatte, S., Yendluri, P., Yiu, A.E.: Web services business process execution lan-
guage version 2.0 (May 2005)

2. Banâtre, J.-P., Fradet, P., Le Métayer, D.: Gamma and the Chemical Reaction
Model: Fifteen Years After. In: Calude, C.S., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 17–44. Springer, Heidelberg
(2001)

3. Busi, N., Zavattaro, G.: Prioritized and Parallel Reactions in Shared Data Space
Coordination Languages. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION
2005. LNCS, vol. 3454, pp. 204–219. Springer, Heidelberg (2005)

4. Chwe, M.S.Y.: Communication and coordination in social networks. Review of
Economic Studies 67(1), 1–16 (2000)

5. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Comput-
ing 15(3), 64–69 (2011)

6. Dustdar, S., Gaedke, M.: The social routing principle. IEEE Internet Comput-
ing 15(4), 80–83 (2011)

7. Dustdar, S.: Caramba a process-aware collaboration system supporting ad hoc and
collaborative processes in virtual teams. Distributed and Parallel Databases 15,
45–66 (2004)

8. Field, J., Marinescu, M.C., Stefansen, C.: Reactors: A data-oriented syn-
chronous/asynchronous programming model for distributed applications. Theoret-
ical Computer Science 410(23), 168–201 (2009)

9. Florijn, G., Besamusca, T., Greefhorst, D.: Ariadne and HOPLa: Flexible Coordi-
nation of Collaborative Processes. In: Ciancarini, P., Hankin, C. (eds.) COORDI-
NATION 1996. LNCS, vol. 1061, pp. 197–214. Springer, Heidelberg (1996)

10. Galeotti, A., Goyal, S., Jackson, M.O., Vega-Redondo, F., Yariv, L.: Network
games. Review of Economic Studies 77(1), 218–244 (2010)

11. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35, 97–107 (1992)

12. Gregory, S., Paschali, M.: A Prolog-Based Language for Workflow Programming.
In: Murphy, A., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp.
56–75. Springer, Heidelberg (2007)

13. Kitchin, D., Cook, W., Misra, J.: A Language for Task Orchestration and Its
Semantic Properties. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137, pp. 477–491. Springer, Heidelberg (2006)

14. Ko, M.N., Cheek, G., Shehab, M., Sandhu, R.: Social-networks connect services.
Computer 43(8), 37–43 (2010)

15. Liptchinsky, V., Khazankin, R., Truong, H.L., Dustdar, S.: A novel approach to
modeling context-aware and social collaboration processes. In: The 24th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE 2012)
(2012)

16. Martinez-Moyano, I.: Exploring the dynamics of collaboration in interorganiza-
tional settings. In: Creating a Culture of Collaboration: The International Associ-
ation of Facilitators Handbook, vol. 4, p. 69 (2006)

17. McDonald, D.W., Ackerman, M.S.: Just talk to me: a field study of expertise
location. In: Proceedings of the 1998 ACM Conference on Computer Supported
Cooperative Work, CSCW 1998, pp. 315–324. ACM, New York (1998)

16 V. Liptchinsky et al.

18. Nandi, P., Koenig, D., Moser, S., Hull, R., Klicnik, V., Claussen, S., Kloppmann,
M., Vergo, J.: Data4bpm, part 1: Introducing business entities and the business
entity definition language (bedl) (April 2010)

19. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press,
Champaign (1966)

20. Núñez, A., Noyé, J.: An Event-Based Coordination Model for Context-Aware
Applications. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 232–248. Springer, Heidelberg (2008)

21. Plociniczak, H., Eisenbach, S.: JErlang: Erlang with Joins. In: Clarke, D., Agha, G.
(eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 61–75. Springer, Heidelberg
(2010)

22. Powell, A., Piccoli, G., Ives, B.: Virtual teams: a review of current literature and
directions for future research. SIGMIS Database 35, 6–36 (2004)

23. Shankar, C., Campbell, R.: A policy-based management framework for pervasive
systems using axiomatized rule-actions. In: Proceedings of the Fourth IEEE Inter-
national Symposium on Network Computing and Applications, pp. 255–258. IEEE
Computer Society Press, Washington, DC (2005)

24. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. The MIT Press (February 2004)

25. Zhang, Y., Bolton, G.E.: Social Network Effects on Coordination: A Laboratory
Investigation. SSRN eLibrary (2011)

A Social Software-Based Coordination Platform

Tool Paper

Davide Rossi

Computer Science Department - University of Bologna - Italy
rossi@cs.unibo.it

Abstract. Organizational best practices are unstructured, emergent
processes that freely coordinate actors engaged in reaching organiza-
tions’ goals. In recent years we are witnessing the wide adoption of so-
cial software (blogs, microblogs, wiki, forums, shared calendars, etc.) as
primary technological tools to support organizational best practices, fos-
tering their creation, evolution and sharing, allowing their continuous
refinement and alignment with the organization’s mission and evolving
know-how.

While organizational best practices and social software tools are good
candidates to support specific processes within the organization (and
among organizations) they also present several issues, when compared
to classic BPM tools - those based on structured coordination and well-
defined process models: since they have no explicit representation it is
hard to analyze them (by analytic techniques or by simulation), to mon-
itor their evolution and to support their execution; moreover it is hard
to extract explicit knowledge from them.

In this paper we present a set of tools that complement social soft-
ware in creating a real coordination platform, mitigating some of the
aforementioned issues.

1 Introduction

Coordination can be structured or emergent. By this we mean that coordination
can be based on the idea of enforcing/supporting interaction patterns among
actors on the basis of a well-defined model or can be the result of independent
agents defining (and refining) their interactions in an emergent way.

BPMSs (Business Process Management Systems) and social software are in-
stances of these two models: BPMSs support process monitoring and enactment
on the basis of a process model defined by some kind of modeling language or
notation whereas social software is an emergent coordination facilitator. Social
software supports social interaction and social production and raises the level
and scope of the interaction facilitated by computer and computer networks [9].
It uses a self-organization and bottom-up approach where interaction is coordi-
nated by the collective intelligence of the individuals; the latter do not necessarily
know each other and are not organized a priori in a structured way. By publishing
and processing information in blogs, microblogs, wiki, forums; by using tagging

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 17–28, 2012.
c© IFIP International Federation for Information Processing 2012

18 D. Rossi

services; by collaboratively editing documents, users reach organizational goals
following sequences of activities that have been refined in previous interactions.

A BPMS is a coordination platform; social software, per se, is not. Social soft-
ware provides a set of basic tools to enable information sharing and exchange
but provides no support for automating interaction patterns. In this paper we
present a set of tools that, combined with social software, implement a coordi-
nation platform. We aim, specifically, at a platform supporting organizational
best practices : the unstructured, emergent processes that freely coordinate ac-
tors engaged in reaching organization’s goals by interacting with social software
tools.

This paper is structured as follows: in the next section we describe how social
software can be augmented to become a coordination platform; in section 3 we
describe the tools we designed. Section 4 contains a case study that shows the
platform in action. Section 5 introduces the coordination model that underpins
the platform. Section 6 discusses our approach. Section 7 concludes the paper
by presenting some related work and possible future enhancements.

2 The Platform

Coordination allows actors (persons and software systems) to share information
and synchronize their activities. At a very basic level of analysis we can argue
that social software is not a coordination platform in which, while offering a
way to share information, it lacks the ability to synchronize actors. When social
software tools are used in a process in which, for example, user A has to wait
for user B to complete a given task before resuming their activities, it is respon-
sibility of user A to realize that user B completed their task (which is typically
performed by checking the information shared using the social software tools).
In other words, users have to manually extract the relevant state information in
order make their processes progress. Moreover social software does not provide
any method to automatize sequences of activities, even when they are basic para-
metric sequences of interaction via a web browser; while automatization is not
a basic requirement for a coordination platform in itself, it is evident that this
ability is essential in order to provide support for organizational best practices.

These observation lead us to the design of two tools, InFeed and WikiRec-
Play, whose role is, respectively, to provide mechanisms to extract/manipulate
information from web applications and to record/replay parametric sequences
of interactions with web applications. The interplay between these tools allows
users to define sequences of parametric activities (performed on social software)
that can be synchronized with other actors’ activities (monitored by extracting
relevant state information from social software).

Our goal is to support organizational best practices and it would have been
unreasonable to build a prescriptive coordination system, that is a system that
enforces coordination patterns; moreover we wanted to support the sharing
of best practices and this can be facilitated by sharing information extrac-
tions/manipulations and parametric interaction sequences. To achieve this the

A Social Software-Based Coordination Platform 19

two tools are themselves integrated with a social software tool (a wiki that is used
as a repository extractions/manipulations and parametric interaction sequences)
and can provide recommendations to the users on the basis of the currently vis-
ited page and the information stored on the wiki. The user can then decide to
adopt a recommendation, add it to their favorites and, eventually, make its firing
automatic.

3 The Tools

3.1 WikiRecPlay

WikiRecPlay is a Firefox extension that allow users to record and re-play se-
quences of web activites (interactions with web sites using a browser). The way
users perform such activities has been subject to changes in the recent past:
web applications are getting more interactive, ubiquitous and easy to use; the
social dimension has become crucial: different users —with different skills and
tools— share content easily and complete tasks together, in a new and sponta-
neous way. From a technical perspective, monolithic server-side applications are
being replaced by Ajax-based ones that load and manipulate (pieces of) content
client-side. WikiRecPlay has been designed to support users in automating web
interactions within this context.

In order to define what we wanted from WikiRecPlay we selected a number
of test cases built around known web applications 1: GoogleDocs for its very
sophisticated interface and Ajax-based machinery; MediaWiki and WordPress
for their relevance as social software tools; PizzaBo and JQueryUI for the large
amount of highly dynamic client-side code.

WikiRecPlay has been built on an event-based model, in order to work on
highly dynamic web pages: the application is able to record and re-play the
events occurring in the browser (mouse click, form filling, selections, etc.). An
alternative approach would have been to capture, store and reply HTTP transac-
tions but such an approach cannot cope with (client-side) dynamic pages, leaving
all Ajax-based applications unsupported.

Figure 1 shows the main interface of WikiRecPlay. The sidebar lists all loaded
sequences and allows users to edit or replay each of them. A new sequence can
be recorded and stored through the same interface.

Figure 2 shows the interface for editing a sequence. Once it has been recorded,
in fact, its details appear in the ‘Step list’ panel. Each step can be configured,
moved or deleted separately.

Each step is associated to an event occurring on a page element. The interface
shows a screenshot of the page highlighting that element with a red bordered
rectangle, and allows users to decide:

– which event needs to be captured

1 http://docs.google.com, http://www.mediawiki.org, http://wordpress.com
http://www.pizzabo.it, http://jqueryui.com

20 D. Rossi

Fig. 1. The sidebar

Fig. 2. Configure sequence steps Fig. 3. Set parameters before re-
playing a sequence

– which information users are expected to provide

– how event-related data (like the content of a text field) will be set when
re-playing the same sequence. Three options are available: (i) default value,
to use the values originally recorded, (ii) ask at start time, to make users
provide that information before playing the whole sequence, or (iii) ask dur-
ing execution to let the application stop the sequence re-play and ask the
user to provide the required data right before they are used.

A Social Software-Based Coordination Platform 21

All these data are automatically collected by WikiRecPlay when recording a
sequence; users can update and customize them at any time.

Figure 3 shows a sample interface for inserting data when re-playing a se-
quence. Such a dialog is dynamically built by WikiRecPlay from the description
of [each step of] a registration.

A relevant feature of WikiRecPlay are synchronization steps, these are steps
that can be suspended until a given event occurs (or a timeout expires). The event
does not have to be necessarily triggered on the same page and can be associated
to different web applications, like the publication of some content on Twitter, the
tagging of a photo on Facebook and so on. This mechanism makes it possible to
replay sequences that need to synchronize with activities carried out by different
users. In order to support this feature WikiRecPlay can halt a sequence until an
XPath predicate on the content of a RSS stream changes from false to true (see
Sect. 5 for a discussion on this topic). InFeed, the second tool presented below,
has the ability of producing RSS streams as the result of extractions and manip-
ulations of data coming from different sources (other feeds, web applications like
social software tools or services like microblogs and e-mails) and is thus the ideal
companion to WikiRecPlay. Synchronization steps can be inserted in a sequence
after it has been recorded and before storing it. When a synchronization step is
inserted as the first step of a sequence we call that a guarded sequence. Guarded
sequences can be inserted (as any other sequence) among the favorites of a user and
the user has the option to mark the sequence so that any time its starting guard is
satisfied the sequence is automatically replayed (or fired).

WikiRecPlay also allows users to share sequences. Users can store data in
two places: in a local XML file or on a wiki (which the sidebar is configured to
communicate to). Wikis make it possible not only to easily share sequences but
also to edit and improve them collaboratively.

Another relevant feature of WikiRecPlay is the ability, given the current web
page the user is visiting and the set of sequences stored in the Wiki to pro-
pose to the user the execution of all the sequences that start from the current
page (possibly filtering only guarded sequences that would be activated). This
becomes a kind of recommendation system that improves the awareness of the
user with respect to existing sequences that are (possibly) description of (part
of) organizational best practices.

WikiRecPlay: Implementation Details. WikiRecPlay is built on the stan-
dard Firefox extension mechanisms and, in particular, the XPCOM framework.
The overall application follows the MVC (Model-View-Controller) design pat-
tern. An internal XML format —whose details are not relevant here— has been
defined to describe sequences and steps and is used throughout the application.
The main modules of WikiRecPlay are listed below:

Recorder: captures all the activities (DOM events) performed by the user.
Player: reads a sequence descriptor and replays it, in case asking input data
to the user; the player exploits browser facilities to send HTTP requests and to
parse responses. LocalStorageManager: saves sequence descriptors in a local
repository, by epxloiting the browser storage space. WikiStorageManager:

22 D. Rossi

saves sequence descriptors on a wiki. This module is in charge of login to the wiki,
posting data, retrieving sequences or updating them. It uses the WikiGateway
API [14] —that defines a set of operations exported by multiple wiki clones— so
that WikiRecPlay is not bounded to a specific server-side platform. Validator:
validates sequence descriptors, before saving and exporting them. This module
actually communicates with a web-service exporting validation features.

While a detailed description of the inner workings of WikiRecPlay is out
the scope of this paper we want to highlight that one of the main problems
we had to face is related to dynamic web pages: since most elements can be
created/moved/deleted at any time it can be tricky (if at all possible) to associate
events and current page elements; in several occasions we had to rely on smart
heuristics to overcome these kind of problems.

3.2 InFeed

InFeed is a feed aggregator/manipulator with an integrated e-mail gateway. It is
implemented as a mixed client and server side mashup making use of Dapper2

(a web content extractor) and Pipes3 (a visual, interactive feed aggregator and
manipulator), both from Yahoo!. With InFeed it is possible to extract data from
web applications (this includes usual social software tools but also services like
Google Docs, Google Calendar, Twitter, etc...), process them and render them
as a feed. The resulting feed can be very terse and easy to parse. For example it is
possible to set up a InFeed process that generates a simple “run, I’m away” item
in a feed when a Google calendar alarm e-mail has been received and the user
tweeted “#infeed away” (after any eventual previous “#infeed available” tweet).
This simple feed can easily be used in a synchronization step in WikiRecPlay
and let a sequence being played automatically.

4 A Case Study

Consider the following organizational best practice. A group of bird watchers
(that interact by participating to a public forum) decides to set up a photo-
graphic context. In order to run the context the forum itself will be used: a
new section is created (e.g. “photo contests”); each time a new contest is run,
a thread is created in this section (e.g. “photo contest for the month of May”).
The user who created this thread is the contest manager. The contest manager,
in the first post, details the subject of the contest (e.g. “eagles in the wild”).
Participants have to submit their photos by replying on this same thread; their
post have to include a link to the image and an embedded Goggle map detailing
the place where the photo was taken. Once the submission period is over the
manager locks the thread and starts a poll. The poll runs for a period of time
after which it is closed and the manager announces the winner by editing the
first post of the contest thread.

2 http://open.dapper.net/
3 http://pipes.yahoo.com/

A Social Software-Based Coordination Platform 23

This is a glaring example of emergent coordination: users defined how to in-
teract with social software tools in order to complete the photographic contest
process ; no formal description of the process exists but all participant are ex-
pected to follow a best practice. In case of anomalies (e.g. too few votes received)
it is easy to modify the process (e.g. ask the participant to vote for others’ sub-
mission). Notice that while we are giving a rather detailed description of the
workflow, still this is not a well-defined process in which no formal description of
it exists, since this is the result of emergent behavior, and it is very well possible
that it will be freely subject to refinements and modifications in future iterations
of the contest.

Our platform can support users in participating to this organizational best
practice: sequences can be recorded and shared with respect to the various ac-
tions required: open a new contest, submit a photo, vote, and so on. These
sequences can be used to automate some of the more time consuming (and bor-
ing) actions, like submitting a photo, by allowing users to replay (in a parametric
way) the sequence in which the user first has to submit his photo to a photo host-
ing site (like Photobucket), retrieve the URL to access it from outside, connect
to Google maps, enter the coordinate for the place, retrieve the HTML fragment
to embed the map then, at last, connect to the forum, identify the active con-
test thread and post the submission. WikiRecPlay can also assist new users in
which it has the ability, once users enter the contest thread, to suggest them
that a “submit photo” sequence is available, thus allowing them to participate
to the contest even if they are not aware about the rules that the community
decided. Other useful sequences include, for example, close a contest thread and
create a poll. By adding a synchronization step at the beginning of the sequence
and setting up a InFeed process as explained in section 3 it is possible to let
this sequence fire automatically when a Google calendar signals an event (so the
manager just has to set up the correct event in its calendar and can forget about
closing the contest manually). It is even possible for a user willing to participate
to the next context, whose subject has been anticipated, but who is going to
be away with limited connectivity in the period when the context is be run,
to prepare his submission and let the corresponding sequence fire automatically
when he tweets “#photocontest submit”.

Users, by creating and sharing these sequences (that are generally created
for their own benefit, to automatize repetitive/boring interactions) concur to
the spreading of organizational know-how. Several experiments [8] have been
conducted on using groupware tools within organizations in order to share how-
to knowledge but most failed because users have no immediate gain in publishing
their knowledge (to the contrary, they feel they are wasting time); with this
respect our platform elicits user participation by giving them immediate benefits.

5 The Coordination Model

Up to this point our description of the platform focused on its usage; this decision
postponed a discussion to its underpinning model for the last part of the paper.

24 D. Rossi

While unusual, we believe this decision helps in better assessing its relevance in
the context for which the platform has been designed. In this section we present
a more formalized view of the adopted coordination model.

First of all we introduce the concept of process state that we previously infor-
mally hinted. Please notice that in this section we assume for process the broad
definition of a coordinated set of activities leading to a goal (and not, for exam-
ple, the instance of a process model), a definition that includes organizational
best practices. In our context the state of a process is the combination of all
the data related to the process, data that can be scattered through the various
social software tools (like blog posts, twitter messages, RSS feed items and so
on) and emails exchanged by the actors involved in the process.

Actors pursue their goals through sequences of interactions with various web
applications; these sequences are composed of steps; each interaction step results
in a modification of the process state (of course there are interactions between
the actors and the tools that does not result in a state modification, we simply
do not take these into account here). We can then represent a sequence through
its steps:

a1, a2, ..., an

Some of the steps can be freely performed after their preceding ones has been ex-
ecuted; others require that different actions in the process are performed before
being activated. A typical example of this behavior is that of a scientific journal
editor waiting for three reviews from different reviewers to be received before
deciding whether to accept or reject a submitted article (using social software
tools we can support this process using a forum and an organizational best prac-
tice that suggest that reviews should to be posted as replies in a thread where
the submitted article is attached to the first message). We make these synchro-
nization requirements explicit in the sequence by introducing synchronization
steps. These steps halt the execution of a sequence until the process reaches a
specific state (or, more precisely, until a condition upon a subset of the state is
satisfied). In the aforementioned example the synchronization steps that halts
the sequence waiting for the three reviews to be posted is satisfied when the
number of the posts in the submission thread (that is displayed in the forum
web interface) reaches the value 4.

By denoting with s a synchronization step, the sequence becomes:

a1, ..., aj , s1, aj+1, ..., ak, s2, ak+1, ...

We can add a dummy sequence step at the beginning of the sequence and split
it at the synchronization steps obtaining sub-sequences of the form:

s1, a
′
1, ..., a

′
n′

s2, a
′′
1 , ..., a

′′
n′′

...

A Social Software-Based Coordination Platform 25

By adding a causal requirement to each step s1, ..., sn (in order to impose the
sequential activation of the sub-sequences) we produce s′1, ..., s

′
n that we use to

replace the original synchronization steps in our sub-sequences.
The sub-sequences thus obtained are rules in which the first step is a guard

and the following ones are actions that change the state of the system. The
use of state-based rules to realize coordination belongs to several well-known
coordination models, languages and systems: this is the case of Gamma [3] -
inspired languages (such as the CHAM [4]), of Interaction Abstract Machine [12]
-inspired languages (such as LO [1]), of blackboard-inspired languages (such as
(Extended) Shared Prolog [6]) and, to some extent, to Event-Condition-Action-
based workflow execution engines too (such as the one described in [5]).

It should be noted, however, that while most of the aforementioned propos-
als assume a rewriting approach in which the rules (atomically) consume and
produce elements of state, in our approach the guards do not consume state el-
ements but simply check a state-based predicate. One of the main consequences
of this approach is that, if no countermeasures are applied, once a rule has its
guard satisfied that rule can fire an indefinite amount of times until the predi-
cate associated to the guard becomes false. In order to avoid this behavior, as
described in Sect. 3, rules are activated only when a predicate associated to a
guard changes from false to true which means that, technically, the rules are
based on a state-transition event. Another relevant issue to keep in mind with
respect to the coordination model and its actual implementation is that our
systems realizes a coordination overlay on top of social software and, as such,
it inherits most of its limitations. This means that there is not a synchronized
view of the shared state and locking is not available (since is not provided by the
underlying system), thus it is not possible to guarantee transactionality, atom-
icity and mutual exclusion. Consider also that state changes are not notified by
the Web applications and our system has to recur to polling (which amplifies
the state-view synchronization problem).

While these limits are significant the reader has to keep in mind that this
system has been designed to support (and sometimes replace) the users in their
interactions within Web applications and, as such, these are the very same limits
human users have to cope with.

The coordination model we just introduced is quite similar to the one proposed
in X-Folders [13]. The differences in the platform, however, are noteworthy:
X-Folders operates on information stored in document spaces and actions are
sequences of Web service calls.

In general we argue that the use of a rule based coordination model in the
context of social software is quite natural: the fact that actions depend on a
shared state and not on the state of singular actors and the fact that interaction
patterns are not imposed from the environment (coordination is endogenous,
not exogenous [2]) clearly point to rule-based models as the better candidates.
It is interesting to notice that the structured/emergent dichotomy we cited in
Sect. 1 is related to the one between exogenous and endogenous coordination
languages: exogenous coordination languages (most business process modeling

26 D. Rossi

languages and notations fall under this category) are the ideal partners of struc-
tured coordination whereas emergent coordination is naturally better addressed
by endogenous languages (the astute reader may argue that structured coordi-
nation can be addressed with endogenous coordination languages as well; true,
but this case in not relevant in the context of this paper).

It is worth to notice that, whereas internally WikiRecPlay is implemented
on the basis of the presented model, the rule-based approach is never directly
exposed to the end user who can keep thinking in terms of long interaction
sequences that are usually easier to understand since users tend to take a personal
perspective of the process that ultimately results in the sequence of actions they
are in charge of.

6 Discussion and Related Works

Most of the existing coordination systems proposed to complement social soft-
ware tools are based on a prescriptive approach and usually require the modifi-
cation of the tools (that, ultimately, means that usual online services cannot be
adopted); this is for example the case for [7]. Some research work has also been
carried on the idea of sharing interaction sequences for web applications (part
of what WikiRecPlay does), CoScripter [10] (and its evolution ActionShot [11])
being notable examples. Just like WikiRecPlay, CoScripter allow users to share
recordings into a Wiki to share them. The main differences between WikiRecPlay
and CoScripter are: (i) CoScripter encodes user gestures with an easy-to-read
scripting language that mimics natural language whereas WikiRecPlay adopts
a much more refined user interface; (ii) CoScripter does not support most dy-
namic pages in which elements are created/modified after the page is loaded
in the web browser whereas WikiRecPlay has been designed to support most
of these pages; (iii) recordings personalization in CoScripter is implemented by
using a personal database in which user-dependent data can be stored whereas
WikiRecPlay allows the user to personalize recordings by showing dialogs in
which instance data can be provided; (iv) CoScripter has only basic support to
halt a sequence replay whereas WikiRecPlay can halt an action sequence and
resume its execution when a specific event takes place. This last point is possibly
the most glaring difference with respect to our approach: CoScripter, in fact, can
only be used to replay the interactions of a single user with a web application
but cannot be used in the context of multi-user coordinated processes since it
lacks support any explicit synchronization support.

7 Conclusions

Social software is an enabling technology for emergent processes. Social software,
however, is not a coordination platform in which it offers no support other than
making information available. In this paper we presented a coordination plat-
form built on top of social software, that requires no modifications to the existing
tools and that plays nicely with the open collaboration idea that is promoted by

A Social Software-Based Coordination Platform 27

social software. The platform is implemented by augmenting social software tools
with WikiRecPlay and InFeed providing support for defining, sharing, automat-
ing interaction sequences and synchronizing users’ activities, that is: providing
support to share and enact organizational best practices.

BothWikiRecPlay and InFeed, while actual running software, are to be mainly
intended as poofs-of-concept, as such they present several limitations. One of the
current limits of WikiRecPlay is that it is only available when the user’s browser
is in execution. This means that automatic guarded sequences are not fired
when the browser is not running. While this is a major limit to the actual use
of our platform (we acknowledge this, and in fact we are working on a off-line,
server-side version of the sequence player) the existing implementation has to be
intended as a proof-of-concept and as such it serves its purpose. InFeed does not
suffer from the major limitations present in WikiRecPlay, and it is also a much
simpler system, since it delegates most of its functionalities to Dapper and Pipes.
This also mean, however, that it inherits all the limits of these systems (that
are usually restriction with respect to the intended use rather than technical
limitations - for example Dapper cannot be used, by design, to extract content
from sites that can be accessed only after authentication).

Future versions will enhance the tools and improve their “on-the field usabil-
ity” but the basic working mechanism are going to be the same of the current
proof-of-concept implementations.

References

1. Andreoli, J.-M., Pareschi, R.: Communication as fair distribution of knowledge. In:
OOPSLA, pp. 212–229 (1991)

2. Arbab, F.: What do you mean, coordination? Technical report, Bulletin of the
Dutch Association for Theoretical Computer Science, NVTI (1998)

3. Banâtre, J.-P., Le Métayer, D.: Programming by multiset transformation. Com-
mun. ACM 36(1), 98–111 (1993)

4. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217–248 (1992)

5. Bussler, C., Jablonski, S.: Implementing agent coordination for workflow manage-
ment systems using active database systems. In: Proceedings Fourth International
Workshop on Research Issues in Data Engineering, Active Database Systems, pp.
53–59 (February 1994)

6. Ciancarini, P.: Coordinating rule-based software processes with esp. ACM Trans.
Softw. Eng. Methodol. 2(3), 203–227 (1993)

7. Dengler, F., Koschmider, A., Oberweis, A., Zhang, H.: Social Software for Coordi-
nation of Collaborative Process Activities. In: zur Muehlen, M., Su, J. (eds.) BPM
2010 Workshops. LNBIP, vol. 66, pp. 396–407. Springer, Heidelberg (2011)

8. Ellis, C.A., Gibbs, S.J., Rein, G.: Groupware: some issues and experiences. Com-
mun. ACM 34(1), 39–58 (1991)

9. Erol, S., Granitzer, M., Happ, S., Jantunen, S., Jennings, B., Johannesson, P.,
Koschmider, A., Nurcan, S., Rossi, D., Schmidt, R.: Combining BPM and social
software: contradiction or chance? Journal of Software Maintenance and Evolution:
Research and Practice 22(6-7), 449–476 (2010)

28 D. Rossi

10. Leshed, G., Haber, E.M., Matthews, T., Lau, T.: Coscripter: automating & sharing
how-to knowledge in the enterprise. In: Proceeding of the Twenty-Sixth Annual
SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp.
1719–1728. ACM, New York (2008)

11. Li, I., Nichols, J., Lau, T., Drews, C., Cypher, A.: Here’s what i did: sharing and
reusing web activity with actionshot. In: Proceedings of the 28th International
Conference on Human Factors in Computing Systems, CHI 2010, pp. 723–732.
ACM, New York (2010)

12. Andreoli, J.-M., Ciancarini, P., Pareschi, R.: Interaction abstract machines. In:
Trends in Object-Based Concurrent Computing, pp. 257–280. MIT Press (1993)

13. Rossi, D.: X-folders: documents on the move. Concurr. Comput.: Pract. Ex-
per. 18(4), 409–425 (2006)

14. Shanks, B.: Wikigateway: a library for interoperability and accelerated wiki devel-
opment. In: Proceedings of the 2005 International Symposium on Wikis, WikiSym
2005, pp. 53–66. ACM, New York (2005)

Synchronization of Multiple Autonomic Control

Loops: Application to Cloud Computing

Frederico Alvares de Oliveira Jr., Remi Sharrock, and Thomas Ledoux

Ascola Research Group (Mines Nantes-INRIA, LINA)
Ecole des Mines de Nantes,

4, rue Alfred Kastler, 44307 Nantes, France
{frederico.alvares,remi.sharrock,thomas.ledoux}@mines-nantes.fr

Abstract. Over the past years, Autonomic Computing has become very
popular, especially in scenarios of Cloud Computing, where there might
be several autonomic loops aiming at turning each layer of the cloud
stack more autonomous, adaptable and aware of the runtime environ-
ment. Nevertheless, due to conflicting objectives, non-synchronized au-
tonomic loops may lead to global inconsistent states. For instance, in
order to maintain its Quality of Service, an application provider might
request more and more resources while the infrastructure provider, due
to power shortage may be forced to reduce the resource provisioning. In
this paper, we propose a generic model to deal with the synchronization
and coordination of autonomic loops and how it can be applied in the
context of Cloud Computing. We present some simulation results to show
the scalability and feasibility of our proposal.

Keywords: Cloud Computing, Autonomic Computing, Autonomic Loop
Synchronization, Coordination.

1 Introduction

The necessity of modern software systems to be more responsive and autonomous
to environment changes is one of the main reasons for the popularization of Auto-
nomic Computing [7]. Cloud Computing is one of the most expressive examples
of this great adoption. Indeed, the flexibility inherent to cloud services along
with the high variability of demand for those services have recently contributed
to the large adoption of Autonomic Computing in Cloud-based systems [1].

In point of fact, from the application provider perspective, Autonomic Com-
puting makes application capable of reacting to a highly variable workload by
dynamically adjusting the amount of resources needed to be executed while keep-
ing its Quality of Service (QoS) [11]. From the infrastructure provider point of
view, it also makes the infrastructure capable of rapidly reacting to environment
changes (e.g. increase/decrease of physical resource usage) by optimizing the
allocation of resources and thereby reduce the costs related to energy consump-
tion [4].

However, getting several control loops working on common or inter-dependent
managed elements is not a trivial task [6]. For example, in order to cope with

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 29–43, 2012.
c© IFIP International Federation for Information Processing 2012

30 F.A. de Oliveira Jr., R. Sharrock, and T. Ledoux

a high demand, Application Providers may request more and more computing
resources to the Infrastructure Provider. At the same time, the Infrastructure
Provider may turn off part of its physical infrastructure to meet power con-
straints. Therefore, dealing with multiple control loops with conflicting objec-
tives (performance vs power) may lead to inconsistent global results. Besides,
inter-control loop interactions must be synchronised and coordinated for the
various phases of adaptations [13].

This paper proposes a generic model for synchronization and coordination of
control loops. We have studied a communication model for several control loops
and proposed a coordination protocol based on interloop events and actions. To
allow safe interactions, we propose a shared knowledge-based synchronization
pattern. That way, decisions taken by one control loop may take into considera-
tion some information provided by other control loops. This model is applied to
a Cloud Computing scenario in which several self-adaptive applications interact
with a common self-adaptive infrastructure. The objective at the application
level is to manage the runtime context to minimize costs while maximizing the
QoS, whereas at the infrastructure level, the objective is to manage the context
to optimize the utilization rate. The feasibility and scalability of this approach is
evaluated via simulation-based experiments on the Cloud Computing scenario.

The remainder of this paper is organized as follows: Section 2 presents our con-
tribution by describing a generic model for synchronization and coordination of
multiple control loops. In Section 3, thismodel is instantiated in a scenario ofCloud
Computing. Section 4 presents the evaluation of our approach. Section 5 presents
a brief discussion about the most relevant works related to this paper. Finally, Sec-
tion 6 concludes the paper and provides some future research directions.

2 A Multiple Control Loops Architecture Model

Autonomic computing [7] aims at providing self-management capabilities to sys-
tems. The managed system is monitored through sensors, and an analysis of this
information is used, in combination with knowledge about the system, to plan
and execute reconfigurations through actuators. Classically, an autonomic man-
ager internal structure is implemented by a MAPE-K (Monitor-Analyze-Plan-
Execute phases over a Knowledge base) control loop [5]. Bottom-up interactions
between the managed system and the autonomic manager are realized via events
whereas top-down interactions via actions.

Our approach aims to provide synchronized and coordinated control loops
by introducing a synchronization of the shared knowledge and a coordination
protocol.

2.1 A Model of Autonomic Behavior

We make a distinction between three kinds of control loops:

– Independent: this type of control loop is completely independent from the
others. The source of the received events is always the managed system

Synchronization of Multiple Autonomic Control Loops 31

Actions

On the
Managed System

Intraloop Interloop

Change Public
Knowledge

Invoke
Handle

Events

Endogenous Exogenous

Interloop Public Knowlege
Changed

Fig. 1. Actions and Events hierarchy

and the actions are executed only on the considered system. There is no
communication between control loops and the knowledge is entirely internal
(private to the control loop).

– Coordinated: this type of control loop communicates with the others.
Events may come from other control loops and actions may notify other
control loops. A business-specific protocol defines a way for the control loops
to communicate. In this case, we do not consider the sharing of information
between control loops but only simple asynchronous communication.

– Synchronized: this type of control loop synchronizes with the others in
order to share some information for a collective activity. Access to this shared
information may lead to concurrency and consistency problems.

In our Cloud Computing scenario, we consider coordinated and synchronized
control loops and demonstrate both situations.

A Public and Private Knowledge Model. In the case of synchronized con-
trol loops, regarding the sharing of information we separate the knowledge base
in two parts: the private knowledge that stores the internal information needed
by the internal control loop phases and the public knowledge shared among
other control loops. The public knowledge base may have to be synchronized if
the actions executed by the control loops require to modify the information (di-
rectly or indirectly). Indeed, the simultaneous actions of multiple control loops
may require to change the public knowledge at the same time (concurrency prob-
lem) and may lead to non-logical global results (consistency problem). In our
approach, we consider that the owner of the public knowledge is the only one
able to modify it directly, which limits the concurrency problem.

Actions. In order to clarify the interactions between several control loops, it is
important to differentiate actions and events that are part of the managed system
and those part of the multi control loop system model. Figure 1 introduces a
hierarchy of the different types of events and actions.

Actions can be executed on the considered managed system, can start a phase
within the control loop (intraloop) or notify another control loop (interloop).

The actions on the managed system and the interloop actions are always
executed by the execution phase of the control loop. The intraloop actions are

32 F.A. de Oliveira Jr., R. Sharrock, and T. Ledoux

either executed by the monitoring phase to launch the analysis phase or the
execution phase (M → A or M → E), by the analysis phase to launch the
planning phase (A → P) or by the planning phase to launch the execution
phase (P → E).

An interloop action may notify another control loop as if it was asking for a
service and waiting for the response. In this case, the planning phase creates a
handler that contains all the other actions that have to be executed in response
to this interloop action. This interloop action is therefore a notify action that
creates an interloop event for the target control loop.

Intraloop actions are either Change Public Knowledge or Invoke Handler ac-
tions. In our approach, we consider that these actions do not need analysis or
planning phases to be launched, which corresponds to the M → E case.

Events. In Figure 1, we differentiate endogenous and exogenous events. The
source of endogenous events is always the considered managed system. The
source of exogenous events is another control loop. For the exogenous events,
we consider the difference between the interloop events - created by the inter-
loop action - and the Public Knowledge Changed - created by the Change Public
Knowledge action.

In order for the control loops to send and receive events, we consider that
they already implement the publish/subscribe paradigm. The control loops using
some public knowledge of other control loops automatically subscribe to the
Public Knowledge Changed events.

2.2 Control Loop Synchronization and Coordination

Token Protocol for Synchronizing the Public Knowledge. The public
knowledge is divided into one non-critical section and some critical sections.
One control loop may access multiple non-critical sections but one and only
one critical section at a time in order to avoid deadlocks. To synchronize the
public knowledge we introduce a simple token protocol. Each critical section is
associated with one token. As for transactions in databases, this synchronization
protocol ensures that only one control loop can access a critical section. To access
the critical section, a control loop has to get the corresponding token. To get
the token, a control loop can either ask explicitly for the token with a TOKEN
REQUEST message (active token request) or can receive the token from another
control loop with a TOKEN TRANSFER message (passive token reception).
Whenever a control loop does not need the token anymore it releases it with a
TOKEN RELEASE message. Whenever a token is requested, the requester has
to wait for a TOKEN ACQUIRED message. Each control loop having a public
knowledge with critical sections implements a token manager which is in charge
of managing the token protocol.

Control Loop Coordination Protocol. Considering the coordinated case
with multiple control loops, we take into consideration what we call the col-
laboration problem where two control loops have to communicate in order to

Synchronization of Multiple Autonomic Control Loops 33

accomplish a global activity together. Indeed, the execution phase of one control
loop may ask another control loop a service and wait for the result in return. To
do this, the first control loop triggers an interloop event that starts the second
control loop. As for the ”future objects” in distributed concurrency problems [2],
the first control loop creates at the same time a handler containing all the actions
that need to be executed after the service is terminated. The interloop event is,
as always, detected by the monitoring phase of the second control loop. Once the
service is terminated, another interloop event is sent back to the caller control
loop. Parts of the results may be transferred using the public knowledge base,
to do this, the interloop events may be coupled with token transfer messages.

Timing the Control Loops. All the control loops are evolving in a dynamic
environment where multiple events may occur simultaneously. The arrival rate
of these events may vary from one control loop to another and are usually stored
in a waiting queue. In order to manage the arrival of these events, the moni-
toring phase of each control loop has a scheduling process. This scheduler may
implement different policies, some of them may take into account the events
priorities. In our approach and for the sake of simplicity, we consider a FIFO
(First-In First-Out) scheduling policy without priorities for endogenous events,
and consider the interloop events that invoke handlers with the highest priority.
Indeed, handlers are containing actions that have to be executed in response to a
service request and need to be treated in priority in order for the source event to
be considered as treated as soon as possible. Therefore, one event is considered
to be treated only if the entire control loop is finished, including the possible
handlers.

In order to formalize the timings, we introduce these notations:

T j
i = Tlock + μj

i (1)

μj
i = T jA

i + ρi(modif) ∗ (T jP
i + T jE

i) (2)

T jE
i = T jEactions

i + ρi(interloop) ∗ (T j′
i′ + T jEhandler

i) (3)

T j
i : Time to treat event i for control loop j

Tlock : Waiting time for the token to be acquired

μj
i : service time on control loop j for event i

ρi(modif) : probability to start a planning and execution phase (modification of the

system required)

T jA
i : Analysis phase time for event i and control loop j

T jP
i : Planning phase time for event i and control loop j

T jE
i : Execution phase time for event i and control loop j

T jEactions
i : First part of the execution phase time for event i and control loop j

ρi(interloop) : Probability to ask another control loop a service with an interloop event

T j′
i′ : Time for the other control loop j′ to treat the interloop event i′

T
jEhandlers
i : Time to execute the handlers for event i and control loop j

34 F.A. de Oliveira Jr., R. Sharrock, and T. Ledoux

A-1 P-1 E-1M-1 M-2

endogenous
event 1

TOKEN

1

1

INTER

INTER

2

2

TT

TReq

TA

TA

TA

TReq

TRel

TRel

TRel

Treq = Token request
Trel = Token release
TA = Token Aquired
TT = Token Transfer

INTRA = Intraloop action
INTER = Interloop action/event

TReq

A-2
P-2
E-2

waiting
queue

T
lo

ck
T

lo
ck

T
lo

ck

A-2
P-2
E-2

INTRA
Invoke Handler

endogenous
event 2

endogenous
event 3

endogenous
event 1

Event 1 treated

Event 2 treated

INTRA

INTRA

INTRA

INTRA

exogenous
event 2

T
1
A

2

T
1
P

2

T
1
E

a
c
ti

o
n

s
2

T
1
E

h
a

n
d
le

r
s

2

T
1
A

1

T 2
2

exogenous
event 4

Fig. 2. Control loops coordination and token synchronization protocols and timings

Figure 2 shows how two control loops would use the token synchronization
protocol and the coordination protocol with a sequence diagram. The M-1 to
E-1 vertical lines are the phases of the first control loop and we show only the
monitoring phase of the second control loop M-2. The TOKEN line shows which
control loop has the token to access one critical section of the public knowledge
of the second control loop.

As we can see the monitoring phases are continuously listening for events.
A first endogenous event arrives for control loops 1 and 2. The control loop 1
acquires the token (TReq and TA), launches the analysis (INTRA) and releases
the token straight after the event is treated (TRel). The same goes for control
loop 2 which acquires the token as soon as it is released by control loop 1.

Synchronization of Multiple Autonomic Control Loops 35

A second endogenous event is treated by control loop 1 which requires a
coordination between control loop 1 and control loop 2. First, the loop 1 acquires
the token and launches the analysis A-1, the planning P-1 and the execution
phases E-1. As we can see control loop 1 sends an exogenous event to control
loop 2 (first INTER, exogenous event 2) along with the token (TT). This allows
control loop 2 to eventually modify its knowledge. As soon as control loop 2
finishes to treat this event, it sends back an exogenous event to control loop 1
(second INTER, exogenous event 4), which allows control loop 1 to execute the
handler (INTRA invoke handler) and to finish treating the event 2.

3 Cloud Computing Scenario

The objective of this section is to instantiate the generic model presented in
Section 2 in the context of Cloud Computing. First, we give some definitions and
assumptions for this scenario. Then, we present a multi-control loop architecture
along with its possible events, actions and public knowledge.

3.1 Definitions and Assumptions

The Cloud Computing architecture is typically defined as a stack of several
inter-dependent systems, in which systems on lower layer are service providers to
subsystems on upper layers. Our scenario consists of two types of inter-dependent
managed systems: Applications and Infrastructure. An application is defined as
a set of components. Each component offers a set of services, which, in turn,
might depend on a set of references to services offered by other components.
Services are bound to references through bindings. The application can operate
in different architectural configurations, which are determined by the subset of
components used and how they are linked to each other. In other words, one
configuration is composed of a set of bindings. In addition, each configuration
has also its QoS defined in terms of performance and an application-specific QoS.
The former corresponds to the application responsiveness when dealing with a
given number of simultaneous requests λ (requests/sec), whereas the latter is a
quality degree specific to the application domain.

The infrastructure consists of a set of Physical Machines (PMs), whose com-
puting resources (CPU and RAM) are made available by means of Virtual Ma-
chines (VMs). There might be one or several classes of VM, each one with a
different CPU or RAM capacity. Application Providers are charged an amount
per hour for using a VM instance. They may deploy the same component on
one or more VMs, that is, for each component there might be one or several
instances. Finally, the Infrastructure Provider may give a limited number of dis-
counts for each VM classes in order to attract Application Providers so as to
occupy portions of resources that are not being utilized and hence improve their
utilization rate.

Figure 3 illustrates two cloud applications hosted by the same infrastructure.
Application 1 is composed of 4 components and Application 2 is composed of

36 F.A. de Oliveira Jr., R. Sharrock, and T. Ledoux

3 components. The dotted lines express a potential bind between components,
whereas the solid lines mean a binding of the current configuration. For appli-
cation 1, there are two possible configurations ({c1, c2, c3} and {c1, c4, c3}). For
application 2, there are also two possible configurations: {c1, c2} and {c1, c3}.

PM1 PM2

VM1 VM2 VM3 VM4

PM3

VM5 VM6 VM7

c1

c4

c2

c3

Application1

c1

c3

c2

Application2

Fig. 3. Cloud Computing Scenario

The infrastructure is composed of
3 PMs and offers computing resources
through three different kinds of VMs
(small, medium and large). There are
7 VMs instances to host all the com-
ponents of both applications. It should
be noticed that there are two instances
for components c2 (application 1) and
c1 (application 2), that is, there are
two VMs allocated to each component.
That way, components may scale up
and down according to the application
demand.

3.2 Multi-control Loop Architecture

This scenario comprises several coordinated control loops: one at the infrastruc-
ture level, namely the infrastructure manager (IM) and one per-application at
application level, namely application manager (AM), as shown in Figure 4.

AMs control loops aim at minimizing the amount of VMs needed to keep
the level of QoS as high as possible. Furthermore, AMs are able to adapt their
application’s architectural configuration in order to cope with resource restriction
imposed by the IM. More precisely, AMs monitor/listen for events that come
either from the application itself or from the IM; analyze whether or not it
is necessary to reconfigure the application by considering the execution context
(e.g. the workload, the current application configuration, the current mapping of
components to VMs, etc.); elaborate a reconfiguration plan; and execute actions
corresponding to the reconfiguration plan.

Regarding the IM, apart from dealing with requests sent by AMs, its objective
is to optimize the placement of these VMs on PMs so that it is possible to
reduce the number of PMs powered on and consequently reduce the energy
consumption. To this end, the IM monitors/listens for events that come either
from the infrastructure itself (e.g. PMs Utilization) or from the AMs; analyze
whether or not it is necessary to replace or to change its current configuration
by considering the execution context (e.g. the current mapping VMs to PMs);
plan and execute the reconfiguration.

As previously mentioned, multiple control loops might have conflicting ob-
jectives. Particularly in this scenario, while the IM looks forward to allocate
all VMs in the fewest possible number of PMs (due to energy constraints rea-
sons), some AMs may request more VMs in order to cope with an increase in the
demand. In this context, we can apply the coordination and synchronization pro-
tocols presented in Section 2. The coordination protocol defines a set of messages

Synchronization of Multiple Autonomic Control Loops 37

App1 App2 Appn

Infrastructure

...

Action on the
Managed System

Endogenous
Event

Autonomic Loop

Public
Knowledge

Change Public Knowledge

Endogenous
Event

Action on
the Managed System

Interloop Action / Event

Public Knowledge
Changed

Endogenous Event Action on the Managed System

Interloop Event

Interloop Action

Change Public
Knowledge Action

Public Knowledge
Changed Event

Invoke Handler

Invoke Handler

Invoke Handler

Fig. 4. Multi-control loop Architecture for the Cloud Computing Scenario

exchanged by control loops that transformed into actions and events and used for
instance to inform AMs about energy shortage at the infrastructure level. The
synchronization protocol defines a set of public knowledge (critical) sections that
are used for all control loops. For instance, the IM can change the VMs renting
fees by putting some VMs on sale. The shared knowledge is used by AMs to take
into consideration those changes in order to take better decisions.

Application Manager Events and Actions. Workload Increased/Decreased
are endogenous events corresponding to the percentage of the workload in-
crease/decrease within a pre-defined amount of time. It triggers the analysis
phase to determine whether or not it is necessary to request or release resources
(VM). The result of this process is translated into a Request VMs interloop ac-
tion (Figure 5 (a)) or Stop and Unbind Component actions on the application
(managed system), followed by a Release VMs interloop (Figure 5 (b)).

It is important to notice that in this scenario the public knowledge resides at
infrastructure level and it corresponds to the VMs renting fees. Hence, Renting
Fees Changed is a Public Knowledge Changed event that happen when the VM
Renting Fees are changed (e.g. new VMs with discount available). This kind of
event triggers the analysis phase that may result in a Request VMs action (scale
up) (Figure 5 (c)).

Scale Down is an interloop (exogenous) event whose objective is to notify
the AM (from the IM) that it should meet some constraints on the number
of VMs allocated to the application. Basically, it informs which VMs among
those allocated to the application should be immediately destroyed, giving AMs
an amount of time to adapt to this constraint. Thus, this event triggers an
analysis phase to reallocate the components on a smaller number of VMs. To this
end, it might be necessary to change the application architectural configuration
(e.g. to replace components that are more resource consuming). As a result, a
set of Deploy, Bind/Unbind, Start/Stop Component actions on the application,
followed by a Release VMs interloop action are executed (Figure 5 (d)).

38 F.A. de Oliveira Jr., R. Sharrock, and T. Ledoux

M E

(a)

AAA PP

Workload
Increased

Request
VMs

(c)

(1) Stop Component
(2) Unbind Component

M EAA PP

Workload
Decreased

(3) Release
 VMs

(b)

M EAA PP

Renting
Fees Changed

Request
VMs

M EAA PP

(5) Release
 VMs

(1) Stop Component
(2) Deploy Component
(3) Bind Component /
(4) Start Component

Scale
Down

(d)

M E

Invoke Handler

VMs Created

(e)

(1) Deploy Component
(2) Bind Component
(3) Start Component

Endogenous Events

Actions on the
Managed System

Interloop Events

Interloop Actions
(notification)

Invoke Handler

Public Knowledge
Changed Events

Fig. 5. Application Manager Events and Actions

Finally, VMs Created is also an interloop event which objective is to notify
(from the IM) that the VMs Requested are ready for use. It triggers the execution
phase that does nothing but invoking the handler (Figure 5 (e)). In this case, the
executor deploys the components on the created VMs, bind those components
to other (existing or new ones) and start the just deployed components.

Infrastructure Manager Events and Actions. Regarding the IM, VM Re-
quested is an interloop event that happens when some AM performs a Request
VMs interloop action. They trigger the analysis phase that evaluates the place-
ment of the requested VMs on PMs so as to minimize the number of PMs needed.
The result of this analysis is translated into a set of Power-on PM actions and a
set of Create VM actions on the infrastructure. Finally, it notifies the AM that
requested the VMs by executing a VMs Created interloop action (Figure 6 (a)).

VMs Released is also an interloop event that happens when some AM performs
a Release VMs interloop action. It is directly translated into VM Destroy actions
on the infrastructure (Figure 6 (b)).

Energy Shortage is an endogenous event that comes from the infrastructure
context data (e.g. power meters or an announcement of energy unavailability).
It triggers the analysis phase to determine which VM should be destroyed. As a
consequence, which PMs should be powered-off. The result is translated into a
Scale Down interloop action to notify the concerned AMs about the constraints.
Then, it sets a timeout after which the VMs to be destroyed have actually to be
destroyed along with a set of possible Power-off PM actions (if there are unused
PMs) may take place on the infrastructure (Figure 6 (c)).

Low PM Utilization is also an infrastructure endogenous event which is de-
tected anytime a PM has been under-utilized during a certain period of time.
It triggers the analysis phase to evaluate whether to give a certain number of
discount on VMs or not. The result is translated into an Update Renting Fees
(Change Public Knowledge) action (Figure 6 (d)).

Synchronization of Multiple Autonomic Control Loops 39

M E

(a)

AAA PP

(3) Notify VMs
 Creation

(c)

(1) Power on PM
(2) Create VM

M E

(b)

M EAAA PP

Energy
Shortage

(1) Scale
 Down

(2) Set Timeout
(3) Power-off PM

M EAA PP

Update
Renting Fees

(d)

VMs
Requested

VMs
Released

Low PM
Utilization

Endogenous
Events

Actions on the
Managed
System

Interloop Events

Interloop Actions
(notification)

Invoke
Handler

Change
Public
Knowledge

Destroy VM

M EAA PP

Power off PM

(e)

Unused PM

M E

Timeout
Expired Invoke Handler

(1) Destroy VM
(2) Power off PM

(f)

Fig. 6. Infrastructure Manager Events and Actions

Similarly, Unused PM is an infrastructure endogenous event which is detected
anytime a PM has not hosted any VM during a certain period of time. It directly
triggers the execution phase that runs Power-off PM actions (Figure 6 (e)).

Finally, Timeout Expired is an infrastructure endogenous event which is de-
tected when the timeout set along with the Scale Down interloop action expires.
It directly triggers the execution phase that invokes the handler specified before
the Scale Down interloop action. This handler simply executes a set of Destroy
VM and Power off PM actions on the infrastructure (Figure 6 (f)).

Public Knowledge Management. In our scenario, only one token is used,
since the Renting Fees is the only Public Knowledge resource that is accessed by
more than one control loop. At the application level, every time an AM triggers
the analysis phase that takes into account the discount prices, a TOKEN RE-
QUEST message is sent to the token manager that responds back with a TOKEN
ACQUIRED message, once it has the token available. A TOKEN TRANSFER
message is sent along with a Request VMs interloop action from the AM to the
IM. Once the requested VMs (in discount) are created and the Renting Fees are
updated, the IM sends a TOKEN RELEASE message to the token manager.

In the same way, the IM sends a TOKEN REQUEST every time a Low PM
Utilization event is detected. Once it receives a TOKEN ACQUIRED message,
it analyzes the discount opportunity. If there are discounts to be given, the IM
sends a TOKEN RELEASE after having updated the Renting Fees. Otherwise,
the TOKEN RELEASE message is sent right after the analysis phase is done.

4 Evaluation

This section aims at presenting some results obtained from experiments on the
proposed approach. We applied the proposed model to the cloud computing sce-
nario presented in Section 3and performed simulation-based evaluations regarding

40 F.A. de Oliveira Jr., R. Sharrock, and T. Ledoux

the system stability and scalability when dealing with several control loops. The
evaluation regarding the optimization problems (e.g. QoS and energy consump-
tion trade-off improvements) were already addressed in our previous works [11].
We first describe the experiment setup, then we present and discuss the results
found.

4.1 Setup

The experiments were performed on a machine with the following configuration:
Intel Core 2 Duo processor, 4GB DRAM, Mac OS X Lion operating system. Con-
cerning the simulator, Java 6 was used to implement it. Based on our experience
from previous work [1], the execution time for each phase of each control loop j
was fixed as follows: T jA = 2 ∗ T jP and T jE = 3 ∗ T jP . For sake of simplicity
we assigned the same values for each phase execution time to all kinds events.

More precisely, for all AMs T amA = T imA = 200± εA, T
amP = T imP

= 100± εP
and T amE = T imE = 300± εE , where εA, εP and εE means a variation of more
or less at most 20% of the value.

We generate the arrival rates for the endogenous events based on a Poisson
distribution. Table 1 shows two classes of arrival rates used in the experiments:
high and low. Furthermore, we perform several runs while varying the number of
AM control loops: 10, 20, 30, 50 and 70. The idea is to observe how the variation
of these parameters (arrival rates and number of AMs) can affect the system
performance (e.g. the token waiting time and events processing time).

When the AMs detect a Workload Increased event, the probability that the
result of the analysis phase requires a Request VMs interloop action was fixed
to 0.7 (i.e. ρwi(modif) = 0.7 and ρwi(interloop) = 1). Idem for a Workload De-
creased event. When they receive a Renting Fees Changed event, the probability
that the result of the analysis phase requires a Request VMs interloop action
was fixed in 0.3 (i.e. ρrfc(modif) = 0.3 and ρrfc(interloop) = 1). The others
events are treated in a deterministic way, i.e. the probabilities ρi(modif) and
ρi(interloop) are equal either to 0 or 1 1.

4.2 Results

Table 1. Arrival Rates for Endogenous Events

Workload Workload Low PM PM Energy
Class Increased Decreased Util. Unused Shortage

High 0.1 0.1 0.1 0.05 0.01
Low 0.05 0.05 0.05 0.025 0.01

Stability. Figure 7
shows the average to-
ken waiting time Tlock

evolution in time. Each
line corresponds to one
run regarding a different
number of AMs in the
system. When dealing
with low arrival rates

1 Due to space limitations, we omit this information.

Synchronization of Multiple Autonomic Control Loops 41

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100A
v
e

ra
g

e
 T

o
k
e

n
 W

a
it
in

g
 T

im
e

 (
m

s
)

Time

10 20 30 50 70

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100A
v
e

ra
g

e
 T

o
k
e

n
 W

a
it
in

g
 T

im
e

 (
m

s
)

Time

10 20 30 50 70

(b)

Fig. 7. Average Token Waiting Time for (a) Low and (b) High Arrival Rates

 0

 20000

 40000

 60000

 80000

 100000

10 20 30 50 70

P
e

r-
E

v
e

n
t

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Number of AMs

ENERGY_SHORTAGE
LOW_PM_UTILIZATION

RENTING_FEES_CHANGED
SCALE_DOWN

TIMEOUT_EXPIRED
UNUSED_PMS

VMS_CREATED
VMS_RELEASED

VMS_REQUESTED
WORKLOAD_DECREASED
WORKLOAD_INCREASED

(a)

 0

 20000

 40000

 60000

 80000

 100000

10 20 30 50 70

P
e

r-
E

v
e

n
t

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Number of AMs

ENERGY_SHORTAGE
LOW_PM_UTILIZATION

RENTING_FEES_CHANGED
SCALE_DOWN

TIMEOUT_EXPIRED
UNUSED_PMS

VMS_CREATED
VMS_RELEASED

VMS_REQUESTED
WORKLOAD_DECREASED
WORKLOAD_INCREASED

(b)

Fig. 8. Per-Event Processing Time for (a) Low and (b) High Arrival Rates

(Figure 7 (a)), for 50 and 70 AMs, Tlock increases until it reaches a peak and sta-
bilizes afterwards. For 10, 20 and 30 AMs, Tlock remains always under 10000ms.
When dealing with high arrival rates (Figure 7 (b)), we can observe a similar
behavior for all the curves. Notice that Tlock rapidly increases for the highest
numbers of AMs (i.e. 30, 50, 70) and stabilizes afterwards.

Scalability. Figure 8 presents the evolution of the event processing time (T j
i ,

for control loop j and event i) when varying the number of AMs in the system.
Not surprisingly, Workload Increased, Renting Fees Changed, Scale Down and
Workload Decreased trigger the most time consuming processes, since the two
first ones might be followed by a token request, which may lead to a sharp
increase of the token manager queue. The two last ones may stay stuck waiting
until the others have finished.

Discussion. With respect to the stability, there might be high token waiting
times as the arrival rates approach the service rate (frequency in which a control
loop can process an event). For instance, a high rate of the Workload Increased
event along with a high number of concurrent AMs may produce a token arrival
rate that might exceed the token manager service, leading to an infinite growth
of the token manager queue. However, as long as the arrival and service rates
are well managed, the token waiting time will always tend to stabilize.

Conversely, the number of AMs along with high arrival rates may have a
negative impact on the system scalability. For instance, for events that depend
on a token, a long token waiting time may lead to long event processing time.
Thus, the more AMs the longer the token waiting times and consequently the
event processing times. Again, by adjusting the arrival rates and the number

42 F.A. de Oliveira Jr., R. Sharrock, and T. Ledoux

of AMs in the system properly, the system can be scaled with respect to the
number of AMs and the frequency of requests f produced by them (resulting
from the coordination). Although the control of exceeding arrival rates has not
been tackled in this work, we believe that admission control techniques [14], along
with event prioritization / preemption policies, can be effective to implement it.

5 Related Work

The issue of orchestrating autonomic managers has been addressed by IBM since
2005 [5] and the first interesting results have been proposed by J. Kephart and
al. in order to achieve specific power-performance trade-offs [6]. The authors
developed architectural and algorithmic choices allowing two managers to work
together to act in accordance, resulting in power savings.

Coordinating multiple autonomic managers to achieve specific and common
goal have been receiving a lot of attention in the last years. [8] identifies five
different patterns of interacting control loops in self-adaptive systems where each
pattern can be considered as a particular way to orchestrate the control loops. [3]
goes further and proposes a collection of architectural design patterns addressing
different classes of integration problems focusing on the possibly conflicting goals.
[10] proposes a hierarchical model of control loops where a coordination manager
orchestrates the other autonomic managers to satisfy properties of consistency.
[13] extends control loops with support for two types of coordination: intra-loop
and inter-loop coordinations very close to ours; however, the implementation
framework is dedicated to a self-healing use case.

In comparison to these works, this paper provides a more focused discussion
to the general problem of orchestrating autonomic managers and proposes a
generic model to manage the coordination of multiple autonomic loops.

In the context of Cloud Computing, [12] proposed an approach for cloud re-
sources management which objective is to determine the number of VMs neces-
sary and thereafter to pack those VMs into the minimum number of PMs. Our
work extends this approach by providing coordination protocols to cope with con-
flicting objectives. Finally, focusing on the granularity constraints of actuators and
sensors, [9] relied on proportional thresholding in order to provide a more effective
control for coarse-grained actuators.Ourwork, instead, focuses onminimizing con-
flicting objectives by providing a shared data-based knowledge along with a set of
protocols to help the coordination and synchronization of multiple control loops.

6 Conclusion

The flexible and dynamic nature of modern software systems is one of the main
reasons for the popularization of Autonomic Computing. As a consequence, mul-
tiple control loops cohabiting in the system is more and more often used. How-
ever, managing multiple control loops towards a single goal is not an easy task,
since it may pose problems like conflicting objectives and concurrency issues.

In this context, this paper proposed a generic model to manage the synchro-
nization and coordination of multiple control loops. The model was applied to

Synchronization of Multiple Autonomic Control Loops 43

a scenario in the context of Cloud Computing and evaluated under simulation-
based experiments. The results suggest the feasibility of our approach by showing
that the system scales and stabilizes in time.

Currently, we are working on a more realistic experimentation setup. Firstly,
we aim at deploying the Cloud Computing scenario on a large scale physical
infrastructure under mainstream cloud solutions (e.g. OpenNebula, Eucalyptus,
etc.). After, we plan to evaluate our proposal in other scenarios than Cloud
Computing to show the genericity of our approach.

References

1. Alvares De Oliveira Jr., F., Lèbre, A., Ledoux, T., Menaud, J.M.: Self-management
of applications and systems to optimize energy in data centers. In: Brandic, I.,
Villari, M., Tusa, F. (eds.) Achieving Federated and Self-Manageable Cloud In-
frastructures: Theory and Practice. IGI Global (May 2012)

2. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

3. Frey, S., Diaconescu, A., Demeure, I.: Architectural integration patterns for auto-
nomic management systems. In: Proc. of the 9th IEEE International Conference
and Workshops on the Engineering of Autonomic and Autonomous Systems (EASe
2012). IEEE (April 2012)

4. Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, L.J.: Entropy: a con-
solidation manager for clusters. In: Proc. of the International Conference on Virtual
Execution Environments, VEE 2009 (2009)

5. IBM: An architectural blueprint for autonomic computing. Tech. Rep. (June 2005)
6. Kephart, J.O., Chan, H., Das, R., Levine, D.W., Tesauro, G., Rawson, F., Le-

furgy, C.: Coordinating Multiple Autonomic Managers to Achieve Specified Power-
Performance Tradeoffs. In: Proc. of the 4th International Conference on Autonomic
Computing (ICAC 2007), pp. 24–24. IEEE (June 2007)

7. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1) (2003)
8. Lemos, R.D., et al.: Software Engineering for Self-Adaptive Systems: A Second Re-

search Roadmap (Draft Version of May 20, 2011). Tech. Rep. (October 2010) (2011)
9. Lim, H.C., Babu, S., Chase, J.S., Parekh, S.S.: Automated control in cloud com-

puting: challenges and opportunities. In: Proceedings of the 1st Workshop on Au-
tomated Control for Datacenters and Clouds, ACDC 2009. ACM (2009)

10. Mak-Karé Gueye, S., de Palma, N., Rutten, E.: Coordinating energy-aware admin-
istration loops using discrete control. Proc. of the 8th International Conference on
Autonomic and Autonomous Systems, ICAS 2012 (March 2012)

11. Alvares de Oliveira, Jr. F., Ledoux, T.: Self-management of applications qos for
energy optimization in datacenters. In: Proc. of the 2nd International Workshop
on Green Computing Middleware (GCM 2011), pp. 3:1–3:6. ACM (2011)

12. Van, H.N., Tran, F.D., Menaud, J.M.: Sla-aware virtual resource management for
cloud infrastructures. In: Proceedings of the 9th IEEE International Conference on
Computer and Information Technology, CIT 2009. IEEE Computer Society (2009)

13. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On Interacting Control Loops in
Self-Adaptive Systems. In: Proc. of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 202–207. ACM (2011)

14. Wu, L., Garg, S.K., Buyya, R.: Sla-based admission control for a software-as-a-
service provider in cloud computing environments. Journal of Computer and Sys-
tem Sciences, 195–204 (2011)

Subobject Transactional Memory

Marko van Dooren and Dave Clarke

IBBT-DistriNet, KU Leuven, Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

Abstract. Concurrent object-oriented programs are hard to write because of the
frequent use of state in objects. In a concurrent program, this state must be pro-
tected against race-conditions and deadlocks, which costs a lot of effort and
is error-prone. Software transactional memory is a mechanism for concurrency
control that is similar to mechanisms used in databases. The programmer does
not deal with low-level locks, but instead uses transaction demarcation to protect
shared memory.

We show that in a statically typed subobject-oriented programming lan-
guage, a transactional program requires less effort than writing a regular object-
oriented programming. In addition, we show how transactionality can be added to
existing classes without performing code transformations or using a meta-object
protocol.

1 Introduction

With the rise of multi-core processors, there is growing demand for multi-threaded ap-
plications. But to ensure proper functioning of the program, data that is shared between
threads must be guarded to avoid problems such as lost updates and dirty reads. With
lock-based approaches, the programmer must place locks in the appropriate places in
the code to prevent race conditions. Placing all locks correctly, however, is very hard and
requires a lot of effort. Software transactional memory [17] (STM) is popular mecha-
nism to support transactional behavior of a program that avoids the problems associated
with lock-based approaches. A programmer must only demarcate transactions, and the
STM ensures that the code in a transaction is executed atomically and isolated.

STM implementations can be divided into two categories: language implementations
and library implementations. Language implementations add dedicated language con-
structs to provide STM functionality and/or modify the language run-time to support
transactional semantics [2,5,12,13,16] The advantages of language implementations are
that they allow low-level optimizations and impose a minimal syntactic overhead on the
programmer. The disadvantages are that using non-standard language implementation
is usually not an option in an industrial setting, and that the implementation of a cus-
tomized transaction mechanism usually is difficult.

Library STM implementations in static languages [6,9,10,11] provide an API to use
the STM. The advantage of this approach is that neither the language nor the run-time
must be adapted. The disadvantage is that the programmer must use reified memory lo-
cations instead of the variables that are normally used, which results in more boilerplate
code. In addition, existing classes cannot be made transactional.

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 44–58, 2012.
c© IFIP International Federation for Information Processing 2012

Subobject Transactional Memory 45

Library STM implementations in dynamic languages work by dynamically rewriting
the program [15], or modifying the language semantics via a meta-object protocol [7].
In these approaches, the language semantics are changed without using modified lan-
guage run-times or external code generation tools. Therefore, the programming over-
head is limited and the standard language run-time can be used. The disadvantage of
these approaches is that the required language features are not available in static pro-
gramming languages.

The contribution of this paper is to show that an STM library in a statically typed
subobject-oriented programming language [19,18] can offer the same ease of use as
dynamic STM libraries and dedicated language implementations. We show that a trans-
actional subobject-oriented program contains even less boilerplate code than a non-
transactional object-oriented program. In addition, transactional behavior can be added
to existing non-transactional classes. We present a proof-of-concept implementation of
a multi-version concurrency control mechanism.

Overview

Section 2 gives a short introduction to subobject-oriented programming. Section 3 dis-
cusses how subobjects can be used to write transactional applications. Section 4 present
our proof-of-concept implementation. Section 5 discusses related work, and Section 6
concludes.

2 A Subobject-Oriented Approach

The focus of this paper is on improving the ease of use of an STM library in a static
language. Our proof-of-concept implementation is not optimized for performance or
memory footprint.

The context of our approach is a development process that uses a statically typed
programming language. We do not allow modifications to the compiler or the language
run-time for two reasons. First, such modifications are typically not allowed in an in-
dustrial setting. Second, such modifications make it harder to use develop transaction
mechanisms that are better suited for the read/write pattern of a particular application.

In this paper we use subobject-oriented programming to make an application
transactional. Subobject-oriented programming, which was developed by the first au-
thor [19,18], augments object-oriented programming with a mechanism to compose
classes from other classes. While the composition mechanism is relatively recent, and
thus not supported in mainstream programming languages, it is important to note that it
is a general purpose language construct. As such, we treat our prototype language JLo
as a standard programming language. The remainder of this section gives an introduc-
tion to subobject-oriented programming.

2.1 An Introduction to Subobject-Oriented Programming

Subobject-oriented programming augments object-oriented programming with subob-
jects. A subobject can be seen as a combination of inheritance and delegation, and

46 M. van Dooren and D. Clarke

allows a developer to easily create classes using other classes as configurable building
blocks. Subobjects allow high-level concepts such as associations, bounded values, and
graph nodes to be encapsulated in regular classes and reused to build applications. Sub-
objects avoid the name conflicts of regular multiple inheritance but still allow repeated
inheritance, unlike traits and mixins.

Fig. 1 shows how subobjects can be used to create a class of elevators. An elevator is
positioned on floor between the ground floor and the highest floor in the building, and
carries a load between 0kg and the maximum capacity.

class Elevator {
subobject floor BoundedValue<Int> {
export getValue() as getFloor,

setValue(Int) as selectFloor;
}
subobject currentLoad BoundedValue<Int> {
export getValue() as getLoad,

increaseValue(Int) as load,
decreaseValue(Int) as unload;

}
Elevator(Int nbFloors, Float capacity) {
subobject.floor(0,0,nbFloors);
subobject.currentLoad(0,0,capacity);

}
}
// Client code // Equivalent client code
Elevator elevator=...;
elevator.selectFloor(1); // elevator.floor.setValue(1);
elevator.load(100); // elevator.currentLoad.add(100);
elevator.selectFloor(0); // elevator.floor.setValue(0);

Fig. 1. A subobject-oriented class of elevators

Instead of duplicating the code to keep a value within certain bounds, the concept
of a bounded value is captured in class BoundedValue. Class Elevator uses subobjects
of type BoundedValue to model its floor and its current load. By default, the interface
of Elevator does not contain any methods of the floor subobject. To add such methods
to the interface of Elevator, they are exported in the body of the subobject. This avoids
an explosion of name conflicts when a class uses multiple subobjects of the same type,
as is the case for class Elevator.

An export clause creates an alias for a subobject member. For example, subobject
floor exports the getter and setter methods of its value under the respective names get-
Floor and selectFloor. A client can therefore change the floor of the elevator by invok-
ing either elevator.selectFloor(...) or elevator.floor.setValue(...). The alias relation both
methods cannot be broken in any way. If a subclass of Elevator overrides setFloor, the
new definition also overrides the setValue method of its floor subobject.

Subobject Transactional Memory 47

Subobject methods that are not exported can still be accessed by clients. A client
can access subobject floor as a real object of type BoundedValue<Int> through the
expression elevator.floor. She can then use the resulting reference to increase the current
floor by invoking elevator.floor.increaseValue(...)..

Subobject currentLoad models the current load of the elevator, and has the same
type as the floor subobject. Contrary to the semantics of traditional repeated inheritance,
however, both subobjects are completely isolated by default. Invoking selectFloor on an
elevator will only change the value field of the floor subobject. Similarly, internal calls
in the floor subobject are bound within the floor subobject. The subobject behaves as if
this is replaced with this.floor in the subobject code in the context of class Elevator. A
subobject can invoke methods on another subobject, but only if they it is explicitly given
a reference to such a subobject, or if its methods are overridden in the composing class
to do this. Parts of subobjects can be joined by overriding members of both subobjects
in the composed class. In this paper, however, we do not need this functionality.

class BoundedValue<T extends Number> {
subobject max Property<T> {...}
subobject value Property<T> {
export getValue, setValue;
def isValid(T t) =
outer.min.getValue <= t && t <= outer.max.getValue;

}
subobject min Property<T> {...}
...

}

Fig. 2. Enforcing the bounds of a bounded value

The composed class can override subobject members by redefining them in the body
of the subobject. Fig. 2 shows how class BoundedValue ensures that its value remains
between its bounds. Class BoundedValue uses three subobjects of type Property<T>
for its value and its bounds. The setValue method of Property invokes isValid to verify if
the given value can be set. Subobject value overrides isValid to check if the given value
exceeds the bounds. The outer expression is used to access the getter methods of the
min and max subobjects to obtain the bounds. The value of the outer expression is the
same as the value of this in the directly enclosing context. Similar to the this expression,
calls on outer are bound dynamically.

class EventElevator {
subobject floor EventBoundedValue<Int>;

}

Fig. 3. Refining a subobject

48 M. van Dooren and D. Clarke

A subobject can be refined in a subclass, which can customize the subobject by over-
riding its methods and changing its super class. The class of the new subobject is a sub-
class of the class of the refined subobject and the new superclass. A rule of dominance is
used to resolve conflicts, similar to C++ and Eiffel. Suppose that EventBoundedValue is
a subclass of BoundedValue that sends events if its value is changed. Fig. 3 shows how
subobject refinement is used for elevators that send events when changing floors. The
export clauses are not redefined, as they are inherited from Elevator.floor. With manual
delegation it would not be possible to modify the bounded value unless Elevator would
have contained additional boilerplate code to change the delegation object.

More details on subobject-oriented programming can be found in earlier work [19],
but note that the paper uses the term component instead of subobject.

3 Subobject Transactional Memory

The key to implementing software transactional memory with subobjects is that
subobject-oriented programs use subobjects to store the state of an object instead of
fields. The class library of JLo contains a class Property that models an encapsulated
field. Instead of using fields to store the state of object, a programmer can use subob-
jects of type Property. To maintain backward compatibility with Java, there are addi-
tional property classes for encapsulated lists, sets, and maps. After all, if a list of objects
of type T is stored in a Property<List<T>> subobject, it is impossible to encapsulate
the list because the client can directly access list. Fig. 4 shows a part of class Property,
along with an example of how to use it. In an object-oriented style, the code in class
Property would have been duplicated for every field in the application.

class Property<T> {
T _value;
def getValue() = _value;
def setValue(T t) {
if(isValid(t)) _value = t
else throw new IllegalArgumentException();

}
def isValid(T t) = true; // can be overridden in subobjects

}

class Person {
subobject name Property<String> {
export getValue() as getName, setValue(String) as setName;

}
subobject children ListProperty<Person> {
export add(Person) as addChild, values() as getChildren;

}
}

Fig. 4. Implementing state with subobjects

Subobject Transactional Memory 49

class Person {
subobject TProperty<String> name {
export getValue as getName, setValue as setName;

}
subobject TListProperty<Person> children {
export add(Person) as addChild, values as getChildren();

}
}

Fig. 5. A JLo implementation of a transactional person

Using subobjects to store the state of an object provides the opportunity to intercept
all read and write operations in an application. Suppose for example that TProperty,
TListProperty, and so forth are subclasses of Property, ListProperty, and so forth that
override all mutators and inspectors to add transactional behavior. We can then use a
TProperty<String> subobject in Person to make the state transactional. The code in
Fig. 5 and Fig. 6 show the JLo and Java implementations of a transactional class of per-
sons with a name and a list of children. The Java implementation uses versioned boxes.
Two things are noteworthy. First, the transactional JLo implementation is almost identi-
cal to the non-transactional JLo implementation. Second, the JLo implementation is not
only simpler than the Java implementation, but also simpler than a non-transactional
Java implementation. In addition, the more functionality the properties offer, the bigger
the difference becomes. For example, methods such as addAll() are still accessible in
the JLo version as person.children.addAll(), whereas the object-oriented implementa-
tion version would need an additional delegation method.

class Person {
VBox<String> name;

String getName() {
return name.get();

}
void setName(String name) {
name.set(name);

}
List<Person> getChildren() {
return new ArrayList<Person>(children.get());

}
void addChild(Person person) {
children.get().add(person);

}
}

Fig. 6. A Java implementation of a transactional person

50 M. van Dooren and D. Clarke

3.1 Making Existing Classes Transactional

To be practical, the STM should be able to work with non-transactional third-party
code. Remember from Fig. 1 and Fig. 2 that Elevator uses BoundedValue subobjects,
and that BoundedValue uses three Property subobjects. Suppose that BoundedValue is a
class from a third-party library, and uses regular Property subobjects for its bounds. To
create a transactional elevator class, we need to create a class of transactional bounded
values without modifying (or reimplementing) BoundedValue.

Remember from Sect. 2 that the type of a subobject can be changed in a subclass
through subobject refinement. Fig. 7 shows the definition of TBoundedValue, which re-
fines the min, max, and value subobjects such that the value and the bounds are store in
TProperty subobjects. No conflicts resolution is required because BoundedValue only
overrides the isValid methods of its Property subobjects while TProperty does not over-
ride them. The resulting subobjects in TBoundedValue uses the validation methods de-
fined in BoundedValue and the inspector and mutator methods defined in TProperty.

class TBoundedValue<T> extends BoundedValue<T> {
subobject max TProperty<Int>;
subobject value TProperty<Int>;
subobject min TProperty<Int>;

TBoundedValue(T min, T val, T max) {
super(min, val, max);
subobject.min(min);
subobject.value(val);
subobject.max(max);

}
}

Fig. 7. Creating a transactional bounded value through subobject refinement

The constructors for the subobjects must be called explicitly in TBoundedValue be-
cause the subobject types have changed. These subobject constructor calls replace the
corresponding subobject constructor calls in BoundedValue, and are executed when the
original subobject constructor calls would have been executed. This prevents the con-
struction of a subobject of the wrong type in the constructor of BoundedValue, but still
guarantees that the subobjects are initialized at the correct time.

Similar to TBoundedValue, class TElevator can also be implemented as a subclass
of Elevator that refines the floor and currentLoad subobjects, as shown in Fig. 8. It is
of course also possible to create a transactional elevator from scratch by directly using
TBoundedValue subobjects instead of BoundedValue subobjects.

The application logic of the program is not affected by the STM. Only the types of
the subobjects that store data are different. Other than the types of the subobjects that
store data, the interfaces of transactional classes such as TElevator and TBoundedValue
are the same as the interfaces of their non-transactional versions. Therefore, code that

Subobject Transactional Memory 51

class TElevator extends Elevator{
subobject floor TBoundedValue<Int>;
subobject currentLoad TBoundedValue<Int>;

TElevator(Int nbFloors, Float capacity) {
super(nbFloors, capacity);
subobject.floor(0,0,nbFloors);
subobject.currentLoad(0,0,capacity);

}
}

Fig. 8. Adding transactional behavior to a non-transactional elevator class

uses a the transactional class looks no different than code that uses the non-transactional
class. For example, the isValid methods, which are written in BoundedValue for non-
transactional Property subobjects do not have to be modified in TBoundedValue, where
they work with TProperty subobjects.

In an object-oriented style, is not always possible to add transactional behavior to
a class by overriding the individual getter and setter methods because fields are often
read and modified directly within a class. But even if the data is stored in reified memory
locations, anticipation and additional boilerplate code for the initialization is required to
be able to replace the delegation objects with transactional objects. Fig. 9 illustrates the
problem. Suppose that class Elevator uses Box objects instead of regular fields to store
its state. Without introducing additional boilerplate code to allow a subclass to initialize
the boxes, the state cannot be replaced with VBox objects to add transactionality.

In a subobject-oriented programming, no anticipation is required because it requires
less effort to store state in subobjects than to use fields. JLo still provides support for
fields due to backward compatibility with Java, but we plan to remove this feature and
use “native” code in the few core library classes that use fields.

3.2 Transaction Demarcation

Transactions are demarcated by writing the transactional code in the body of the execute
method of a subclass of Transaction. The advantage over using separate start and stop
calls is that the stop call could accidentally be forgotten. The execute method, which
is protected, is invoked by the commit method of Transaction. If the code in execute
throws an exception or if the transaction manager detects a conflict, the default policy
is to abort the transaction and propagate the exception. Custom retry policies can be
defined by overriding the retry method of Transaction. The code in Fig. 10 illustrates
how two threads can use the elevator without running the risk of overloading the elevator
or trying to load the elevator when it is on the wrong floor.

Adding transaction demarcation to an existing program can be done by overriding
the methods that must be executed as a transaction and performing a super call in the
execute method of a Transaction. Methods that create new threads may have to be reim-
plemented to ensure that all threads run in a separate transaction.

52 M. van Dooren and D. Clarke

class Elevator {
private Box<Int> nbFloors = new Box<Int>(0);
private Box<Int> floor = new Box<Int>(0);
private Box<Int> capacity = new Box<Int>(0);
private Box<Int> load = new Box<Int>(0);

Int nbFloors() {return nbFloors.get();}
Int floor() {return floor.get();}
Int capacity() {return capacity.get();}
Int load() {return load.get();}

Elevator(Int nbFloors, Float capacity) {
this.nBfloors.set(nbFloors);
this.capacity.set(capacity);

}
}
class TElevator extends Elevator {
// Impossible to change Box objects to VBox objects.

}

Fig. 9. Object-oriented delegation requires anticipation and additional boilerplate code

TElevator elevator = new TElevator(3,150);
new Thread() {
void run() {for(int i=0;i<100;i++) {

new Transaction() {
void execute() {
elevator.setFloor(2);
elevator.load(100);
elevator.setFloor(0);

}
}.commit();

}
}.start();
new Thread() {
void run() {for(int i=0;i<100;i++) {

new Transaction() {
void execute() {
elevator.setFloor(1);
elevator.load(100);
elevator.setFloor(0);

}
}.commit();}

}
}.start();

Fig. 10. Demarcating transactions with the Command pattern

Subobject Transactional Memory 53

th: Thread

m: Transaction
Manager

t1: Transaction

t0: Transaction

e4p4
p e

o

p: TProperty

e: Set

e ...

o1

... ...

p2 p3p1

writeMap

readSet

parent

…

x
value

edits

Fig. 11. Thread-local transaction managers provide a unique view per transaction

4 Example Implementation

In this section, we discuss our STM implementation. The current implementation uses
multi-version concurrency control [14,3], but other mechanisms can be used as well.

Classes TProperty, TListProperty, and so forth are subclasses of the regular prop-
erty classes Property, ListProperty, and so forth that add transactional behavior. The
transactional classes override the mutator and inspector methods to log all reads and
writes to provide transactional behavior. Write operations are reified as subclasses of
Edit. Transactions are modeled by the Transaction class.

Figure 11 illustrates the run-time object layout. The solid arrows represent normal
object references. The striped arrows represent weak object references, which are im-
plemented with WeakReference object in Java. Weak references do not prevent an object
from being garbage collected. The heap contains an object o with a transactional sin-
gle valued property p. Transaction t1 is nested in transaction t0, and has modified the
value of p to a reference to o1 via the Set object e. Class Set is a subclass of Edit that
represents a write operation to a single valued property. In addition, the transaction has
performed read operations on transactional properties p1, p2, and p3.

Class TransactionManager has a static thread-local variable manager that stores a
reference to a TransactionManager object. This gives each thread its own transaction
manager which it can access via TransactionManager.manager. A TransactionManager
keeps a reference to the transaction in which it is currently running. Nesting of trans-
actions is reflected in the object structure of the CompositeTransaction objects, which
keep a reference to their parent transaction. In Fig. 11, transaction t1 is nested in trans-
action t0, but it is not running in a separate thread.

To give a transaction its own unique version of the state of an object, it keeps track
of all reads and writes that are performed during its execution. The reads are stored as
a set of property subobjects that were read. The writes are stored as a map that stores
the latest Edit that was performed on a property subobject within the transaction. In the
example in Fig. 11, single valued property p points to o1 within transaction t1, whereas
it points to x in every transaction that has not modified p.

54 M. van Dooren and D. Clarke

Transactions in Action

The diagram in Fig. 12 illustrates the process of setting the value of p to v. The dotted
arrows represent temporary references via local variables. Instead of directly modifying
a its field, subobject p creates an object s of class Set that references the new value v.
Subobject p then and passes s to the transaction manager, which tells its transaction t of
the current thread to absorb s. Transaction t first checks whether its write map already
contains an Edit for subobject p. If that is the case, it tells the current Edit for p to
absorb s; otherwise, it registers s in its write map and lets s register itself in the edit list
of p to keep it from being garbage collected. For a Set object, the absorb method simply
replaces the referenced value.

The diagram in Fig. 13 illustrates the process of reading the value of a single valued
property. Subobject p asks the transaction manager to search for an Edit object that is
associated with p in the current transaction. If an Edit object e is found, it is returned
and p uses e to determine the current value. If no Edit object is found, the value that is
stored in p is returned. In either case, transaction t adds p to its read set.

The Edit objects for the other property classes are similar, but their implementa-
tion is more complex because the data structures are more complex. For example, the
Edit objects for a transactional list property become part of a linked list when being
absorbed. In addition, setting the i-th item in a list also implies a read operation. Other-
wise, there would be no conflict with a concurrent transaction that reduces the size of
the list below i.

When a transaction is committed, conflict resolution is performed, and the trans-
action is aborted when a cycle in the waits-for graph is detected. When a nested

o

p: TProperty m: TransactionManager

...
p

...
e

1: set(v)
3: recordWrite(s)

5: get(p)

e: Set

e

t: Transactione ...

v

x

s: Set

2: create(v)

6: absorb(s)

y

4: absorb(s)

7.b

7.a

write map

Fig. 12. Setting the value of a transactional property

Subobject Transactional Memory 55

o

p: TProperty m: TransactionManager

...
p

...
e

1: get() 2: read(p)

4: get(p)

e: Set

5: getValue()

v

e

e

v or x

t: Transactione ...

v

x

...

3: add(p)

read set

write map

Fig. 13. Getting the value of a transactional property

transactions commits, the read set and write map are merged with those of its parent
transaction. When a root transaction commits, the Edit objects apply their modifications
to the fields of the corresponding property subobjects. Read and write operations that
are performed outside of transactions are applied directly to the fields of the property
subobjects.

Memory Management

To ensure proper memory management, both the key and value references in the map
are weak references, each property subobject stores strong references to all basic trans-
actions that are applied to it. As a result, objects that were created and modified within
a transaction can be freed by the garbage collector when they are no longer reachable
in the view of any transaction.

Because of the weak references in the write map, however, we must prevent garbage
collection of objects that are created within a transaction and are referenced by a reach-
able object through an Edit object. The Edit object has a strong reference to the newly
created object, but there is no strong reference to the Edit object. Therefore, each prop-
erty subobject keeps a list of strong references (list edits in Fig. 11) to the Edit objects
that have modified it, and are part of living transactions. The Edit objects register them-
selves when they become part of the object structure in the write map.

Suppose for example that object v of Fig. 13 was created within the current transac-
tion and is referenced only by the transaction-local version of p. In this case, v cannot
be garbage collected because of the strong reference of e, which in turn is referenced
by p via the edits list. But if p is set to a new value within the transaction, the strong
reference from e is replaced with a reference to the new value. Object v then becomes
unreachable and will be garbage collected.

56 M. van Dooren and D. Clarke

5 Related Work

Approaches for software transactional memory can be divided into two categories: lan-
guage approaches and library approaches. Language implementations add dedicated
language constructs to provide STM functionality and/or modify the language run-
time to support transactional semantics. Library approaches provide STM functionality
through an API or by using the metaprogramming facilities of languages. For reasons
of space, we only discuss the approaches that are most closely related to our approach.

Language Approaches. Isolation types [4,5] provide a language approach that is sim-
ilar to versioned boxes. Instead of implementing an STM, isolation types implement a
revision control system that is similar to revision control systems used for managing
source code. Every asynchronous task runs isolated from the others and has its own re-
vision of the shared state. When tasks are joined, the state revisions are merged. Conflict
resolution is defined by the isolation type, is deterministic, and can never fail. The exe-
cution of concurrent programs is therefore deterministic, but isolation is not guaranteed.
Isolation type require the addition of dedicated language constructs to C#.

Static Library Approaches. TBoost.STM [9], DSTM2 [10], Versioned Boxes [6], and
SAW are library approach for static programming languages.

TBoost.STM (formerly known as DracoSTM [9]) is a C++ library for software trans-
actional memory. Memory locations are reified as objects of the native trans class.
Fields and local variables are wrapped in native trans objects and reads and writes
are performed by invoking methods on the current transaction object. As a result, algo-
rithms must be adapted to work with the transaction mechanism. The authors provide a
list class that can be used without knowing about the transaction mechanism.

DSTM2 [10] is a Java STM library with a customizable transaction mechanism.
Transactional classes are written as interfaces with getter and setter methods. To con-
struct an object whose class implements that interface, the Class object of the interface
is given to a transactional factory. The factory dynamically generates code that im-
plements the getters and setters in a transactional manner. The transaction mechanism
can be changed by changing the factory. DSTM2 cannot work with existing code since
standard Java classes do not use the transactional factories.

Versioned Boxes [6] are reified memory locations that are used to write transactional
applications. Mutator and inspector methods for single values, lists, and so forth are
implemented by delegating the calls to the versioned box. Existing classes written in
an object-oriented style cannot be made transactional because such classes may access
their fields directly.

SAW [20] is a Java library that adds synchronization to existing classes through
aspect weaving. Classes and transactional methods are marked with @shared and
@atomic annotations. The authors implement both an STM mechanism and a lock-
based mechanism. The active mechanism is chosen by selecting a particular aspect.
This choice, however, is not transparent because the programmer must manually pre-
vent dead-locks when the lock-based mechanism is used. As a result, SAW is more
difficult to use than a pure STM.

Subobject Transactional Memory 57

Dynamic Library Approaches. SSTM [7] and the Smalltalk library of Renggli and
Nierstrasz [15] are library approaches for dynamic programming languages. These ap-
proaches provide transactional functionality by using the metaprogramming facilities
of the host language.

CSTM [7] is an STM framework based on context-oriented programming. The
framework is implemented in ContextL, a context-oriented extension of CLOS. Slots
in an object do not store values directly, but instead store a reified memory location ob-
ject. The default behavior of these memory locations is to get and set the memory value
directly. ContextL provides a layered slot access protocol that allows context layers to
modify the behavior of slot accesses. A mode layer defines the semantics of regular
slot accesses and defines the transaction demarcation. The transaction layer defines the
semantics of transactional slot accesses. The transaction mechanism can be change at
run-time by enabling a different transactional layer. The enable the STM for a class, the
class must be annotated with the define-transactional-class function. Transactions are
demarcated by wrapping the code in a call to the atomic function. The use of memory
location objects is similar to the use of property subobjects.

Renggli and Nierstrasz implement a Smalltalk STM library that exploits the dynamic
nature of Smalltalk [15]. Their implementation lazily rewrites the Smalltalk program
while it runs to insert the transactional behavior. State accesses are rewritten to redirect
the control flow to the transaction mechanism. Primitive operations, such as #at: and
#put: are annotated with the name of an equivalent non-primitive method that must be
used instead in transactional code. When an object is accessed in a transaction, two
copies are made. One object represents the initial object, while the other object repre-
sents the transaction-local object. When a transaction is committed, the initial object is
compared to the current version of the original object to detect conflicts. A transaction
is created by sending the #atomic to a block.

6 Conclusion and Future Work

Existing STM libraries for static object-oriented programming languages require addi-
tional boilerplate code compared to STM librarires for dynamic languages, or dedicated
language extensions.

We have defined an STM library for a static subobject-oriented programming pro-
gramming language. We have shown that this library not only requires less boilerplate
code than static object-oriented STM libraries, but also requires less boilerplate code
than a regular object-oriented program. In addition, transactional behavior can be added
to existing subobject-oriented classes. We have implemented a multiversion concurrent
control mechanism as a proof-of-concept.

We plan to combine subobjects with classboxes [1] or higher-order hierarchies [8],
which are generic modularization techniques, to simplify adding transactionality to an
application. The transactional property classes can then be placed in a separate classbox
or hierarchy. Similarly, a subclass of Thread would create a transaction when a new
thread is started. To make an application transactional, a programmer would then extend
both the original application and the transactional classbox or hierarchy.

58 M. van Dooren and D. Clarke

References

1. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/j: controlling the scope of change in Java.
In: OOPSLA, pp. 177–189 (2005)

2. Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: safe multithreaded programming for
C/C++. In: OOPSLA, pp. 81–96 (2009)

3. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database systems. ACM
Comput. Surv. 13(2), 185–221 (1981)

4. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revisions and isola-
tion types. In: OOPSLA, pp. 691–707 (2010)

5. Burckhardt, S., Leijen, D., Sadowski, C., Yi, J., Ball, T.: Two for the price of one: a model
for parallel and incremental computation. In: OOPSLA, pp. 427–444 (2011)

6. Cachopo, J.A., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Sci.
Comput. Program. 63, 172–185 (2006)

7. Costanza, P., Herzeel, C., D’Hondt, T.: Context-oriented software transactional memory in
common lisp. In: DLS, pp. 59–68 (2009)

8. Ernst, E.: Higher-Order Hierarchies. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743,
pp. 303–328. Springer, Heidelberg (2003)

9. Gottschlich, J.E., Connors, D.A.: DracoSTM: A practical C++ approach to software transac-
tional memroy. In: Proceedings of the 2007 ACM SIGPLAN Symposium on Library-Centric
Software Design (LCSD). In conjunction with OOPSLA (October 2007)

10. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing software trans-
actional memory. In: OOPSLA, pp. 253–262 (2006)

11. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for
dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

12. Kulkarni, A., Liu, Y.D., Smith, S.F.: Task types for pervasive atomicity. In: OOPSLA, pp.
671–690 (2010)

13. Lublinerman, R., Zhao, J., Budimlić, Z., Chaudhuri, S., Sarkar, V.: Delegated isolation. In:
OOPSLA, pp. 885–902 (2011)

14. Reed, D.P.: Naming and Synchronization in a Decentralized Computer System. PhD thesis,
Cambridge, MA, USA (1978)

15. Renggli, L., Nierstrasz, O.: Transactional memory in a dynamic language. Comput. Lang.
Syst. Struct. 35, 21–30 (2009)

16. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM: a high
performance software transactional memory system for a multi-core runtime. In: PPoPP, pp.
187–197 (2006)

17. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing 10, 99–116
(1997)

18. van Dooren, M., Jacobs, B.: Implementations of subobject-oriented programming (2012),
http://people.cs.kuleuven.be/marko.vandooren/subobjects.html

19. van Dooren, M., Steegmans, E.: A Higher Abstraction Level Using First-Class Inheritance
Relations. In: Bateni, M. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 425–449. Springer, Hei-
delberg (2007)

20. Yamada, Y., Iwasaki, H., Ugawa, T.: SAW: Java synchronization selection from lock or soft-
ware transactional memory. In: 2011 IEEE 17th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 104–111. IEEE (2011)

http://people.cs.kuleuven.be/marko.vandooren/subobjects.html

Partial Connector Colouring�

Dave Clarke and José Proença

IBBT-DistriNet, Department of Computer Science,
K.U. Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract. Connector colouring provided an intuitive semantics of Reo
connectors which lead to effective implementation techniques, first based
on computing colouring tables directly, and later on encodings of colour-
ing into constraints. One weakness of the framework is that it operates
globally, giving a colouring to all primitives of the connector in lock-step,
including those not involved in the interaction. This global approach lim-
its both scalability and the available concurrency. This paper addresses
these problems by introducing partiality into the connector colouring
model. Partial colourings allow parts of a connector to operate indepen-
dently and in isolation, increasing scalability and concurrency.

1 Introduction

Reo [1] is a visual language for coordinating components and web services using
connectors composed from a small, but open, collection of primitives. A lot of
research has gone into semantic models for Reo, with the following (incomplete)
goals: to facilitate reasoning about Reo connectors; to provide context-dependent
behaviour; and to enable efficient implementations. Connector colouring [8] pro-
vided a great leap forward on these three fronts. Firstly, it is an intensional
semantic model that also gives a visual representation of what’s going on in-
side a connector. Secondly, connector colouring offered the first context depen-
dent semantics for Reo. Thirdly, the semantics were simple enough to enable a
straightforward implementation of Reo [4]. Further improvements in implemen-
tation efficiency were obtained by encoding connector colouring as constraints
and using SAT and constraint satisfaction techniques [9].

The problem with the resulting implementation approach, and indeed with
connector colouring as a semantic model, is that it gives only a global descrip-
tion of the behaviour of a connector, with all primitives participating lock-step
to determine what to do next. In the constraints encoding, the constraints of
all primitives are conjoined together to compute the next step. This has three
negative consequences: the amount of available concurrency is reduced; imple-
mentations are inherently unscalable; and the behavioural possibilities offered by
connectors are actually reduced—some desirable behaviour becomes impossible.

� This research is partly funded by the EU project FP7-231620 HATS: Highly Adapt-
able and Trustworthy Software using Formal Models (http://www.hats-project.eu)
and KULeuven BOF Project STRT1/09/031: DesignerTypeLab.

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 59–73, 2012.
c© IFIP International Federation for Information Processing 2012

60 D. Clarke and J. Proença

This paper proposes a solution to this problem which overcomes these nega-
tive consequences, simply by considering certain partial connector colourings as
valid. Rather than giving behaviour to the entire connector, a partial colouring
can give behaviour to a part of a connector in a coherent fashion. This enables
the local colouring of multiple parts of a connector concurrently and indepen-
dently. The details of partial connector colouring are worked out for existing
colouring schemes and new encodings as constraints are presented. We describe
how existing constraint satisfaction engines can be used to implement partial
colouring, and provide some benchmarks.

The paper is organised as follows. Section 2 gives a review of Reo and the con-
nector colouring model. Section 3 details the problem being addressed. Section 4
describes one solution, namely, partial connector colouring. Section 5 reviews
and adapts the constraint-based encoding of connector colouring. Section 6 dis-
cusses the implementation of our approach and gives some benchmarks. Section 7
discusses related work and Section 8 concludes.

2 Background: Reo and Connector Colouring

2.1 Reo Coordination Model

Reo [1] is a coordination model, wherein coordinating connectors are constructed
by composing more primitive connectors. Reo’s primitives, such as channels,
offer a variety of behavioural policies regarding synchronisation, buffering, and
lossiness. Being able to compose connectors out of smaller primitives is one
of the strengths of Reo. It allows, for example, multi-party synchronisation to
be expressed simply by plugging simple channels together. In addition, Reo’s
graphical notation helps bring intuition about the behaviour of a connector.

Communication with a primitive occurs through its ports, called ends : prim-
itives consume data through their source ends, and produce data through their
sink ends. (Source and sink ends correspond to the notions of source and sink
in directed graphs.) Connectors are formed by plugging the ends of primitives
together, without loss of generality, in a 1:1 fashion, connecting a sink end to
a source end, to form nodes. Data flows through a connector from primitive
to primitive through nodes, subject to the constraint that nodes cannot buffer
data—the two ends in a node are synchronised. The behaviour of each primitive
depends upon its current state and the semantics of a connector can be described
per-state in a series of rounds. Data flow on a primitive’s end occurs when a sin-
gle datum is passed through that end. Within any round data flow may occur on
some number of ends. This is equated with the notion of synchrony. Components
attach to the boundary of a connector.

Some Reo primitives are:

Replicator

(
a

b

c

)
replicates data synchronously from a to b and c.

Partial Connector Colouring 61

Merger

(
c

a

b

)
copies data synchronously either from a to c or b to

c, but not from both.

Priority merger

(
c

a

b

!
)

behaves like a merger, but prefers to select

data from a over b, if both alternatives are possible. The ! marks the higher
priority input.

LossySync
(
a b

)
has two possible behaviours. Data can either flow

synchronously from a to b, when possible, or can flow on a but not on b. The
LossySync is context-dependent, in that it prefers to allow data to flow from
a to b rather than lose it.

Sync
(
a b

)
passes data synchronously from a to b

SyncDrain
(
a b

)
synchronises ends a and b, consuming the data.

AsyncDrain
(
a b

)
consumes data either from a or from b, but not

from both.
FIFO1

(
a b

)
is a stateful channel representing a buffer of size 1.

When the buffer is empty it can receive data on a, but not output data on
b. It then changes state and becomes full. A full FIFO1 with data d, denoted(
a bd

)
, can output d through b, but cannot receive data on a. It

then changes state and becomes empty again.
Exclusive Router () denotes an exclusive router, which has one input and

multiple outputs. The input data is synchronously sent to exactly one output.

Doing nothing—no data flow—is always one of the behavioural possibilities.
In diagrams of connectors, nodes will be denoted (). In general, these can

also have multiple source and sink ends, to denote generalised mergers and repli-
cators, but these can be encoded in terms of binary mergers and replicators.

Example 1. The synchronous merge connector, presented in Fig. 1, is a common
workflow pattern [18]. The connector controls the execution of two components A
and B such that either A executes, or B executes, or both execute. The connector
then synchronises on the completion of whichever of A and/or B ran.

2.2 Connector Colouring: An Overview

The connector colouring (CC) semantics for Reo [8] is based on colouring the
ends of a connector using 2 colours to represent the presence or absence of data
flow. A more refined version using 3 colours enabled context-dependent seman-
tics. In each state, each primitive has a set of possible colourings that determine
its synchronisation constraints. Each colouring is a mapping from the ends of
a primitive to a colour, and the set of the colourings of a connector is called
its colouring table. These tables are composed by considering each entry in one
table with every entry in the other and joining compatible ones. Compatibility

62 D. Clarke and J. Proença

i o

A

B

Fig. 1. Synchronous merge connector

a b b c a b c

Primitives and their colouring tables Connector and its colouring table

Fig. 2. Connector colouring. The dotted lines indicates compatible colourings.

between colourings is determined by ensuring that they match where two ends
are joined to form a node. Fig. 2 illustrates the idea.

2-Colouring. The 2-colouring scheme consists of colours , which denotes
the presence of data flow, and , which denotes its absence. For orientation,
the indicates the end. When plugging together colouring tables to compute
the behaviour of connectors, both colours match only with themselves. That is,

and are the only valid combinations.

3-Colouring. The 3-colouring scheme is used to express context-dependent
behaviour. A primitive depends on its context if its behaviour changes non-
monotonically with increases in possibilities of data flowing on its ends [8,6].
That is, by adding more possibilities of data flow, the primitive actually rules
out already valid behaviour possibilities. One colour () marks ends in the
connector where data flows, and two colours mark the absence of data flow
(and). The arrow indicates the reason for no flow, which can be either
because no data is being written or because connector or component is not ready
to receive the data. The arrow flows from the cause. denotes that the reason
for no-flow originates from the context, and we say that the end requires a reason
for no flow. Dually, indicates that the reason for no-flow originates from the
primitive and we say that the end gives a reason for no-flow. Two 3-colours
match if both represent flow, or if the reason for no-flow comes from at least

Partial Connector Colouring 63

Table 1. Colouring tables for some primitives

Channel Representation Colouring table

LossySync a b
a b
a b
a b

Priority Merger c
a

b

!
c

a

b
c

a

b

c
a

b
c

a

b

FIFOEmpty1 a b
a b
a b

one of the ends. That is, the valid combinations are: , ,
and , but not . Table 1 presents the colouring tables for some
primitives. Fig. 2 gives a small example illustrating how 3-colouring works.

2.3 Formalism

Let X be the global set of node names. Let X � =
{
x↓ | x ∈ X} ∪ {x↑ | x ∈ X}.

Here x↓ denotes that x is a source end, and x↑ denotes that x is a sink end.
Let ‘◦’ range over the set {↑, ↓}; define ◦ as ↑ = ↓ and ↓ = ↑. Let P be the
set of primitives in a connector. Let P range over subsets of P . Function ends :
P → P(X �) gives the ends of a primitive. nodes : P → P(X) gives the set
of nodes (which is the set of ends with the direction marking removed). These
functions can be lifted to operate on P(P) in the obvious way. Function internal :
P(P) → P(X) gives all the internal nodes and boundary : P(P) → P(X �) gives
all the boundary ends for connector with primitives P . These are constrained by
internal(P) ∩ boundary(P)‡ = ∅, where (−)‡ removes the ↑ or ↓. A collection of
primitives P is a well-formed connector whenever ∀p, p′ ∈ P·ends(p)∩ends(p′) =
∅. That is, each node in P appears at most once as a sink and once as a source.

Connector colouring is formalised as follows, adapting the original descrip-
tion [8]. The basis of connector colouring is a colouring scheme, a tuple
(Colour,�), consisting of a set of colours and a symmetric match relation
� ⊆ Colour × Colour that determines when two colours may be plugged to-
gether.

Definition 1 (Connector Colouring). Given colouring scheme (Colour,�),
a colouring for connector P is a function c : X → Colour, where X =
ends(P) ⊆ X �, that maps each end to a colour such that for all x ∈ internal(P),
c(x↑)�c(x↓). A colouring table over ends X ⊆ X � is a set of colourings with do-
main X. Two colouring tables over disjoint sets of ends are compatible, denoted
c1 �c2, whenever ∀x ∈ X ·x◦ ∈ dom(c1)∧x◦ ∈ dom(c2) ⇒ c1(x

◦)�c2(x
◦). The

product of two colouring tables T1 and T2 with disjoint domains, denoted T1�T2,
is the following colouring table, whose domain is the union of the domains of T1

and T2, T1 � T2 = {c1 ∪ c2 | c1 ∈ T1, c2 ∈ T2, c1 �c2}.

64 D. Clarke and J. Proença

1A

a

c

1 B

b
!

∞C

d

1

a

c

0

b
!

∞
d

0

a

c

1

b

•

!

∞
d

0

a

c

0

b

•

!

∞
d

0

a

c

1

b
!

∞
d

0

a

c

0

b
!

∞
d

Fig. 3. Evolution of example connector

2-colouring is given by colouring scheme where Colour = { , }, where
binary relation � is ’=’. 3-colouring is given by Colour = { , , } and
� = {〈 , 〉, 〈 , 〉, 〈 , 〉, 〈 , 〉} .

The second colouring from Fig. 2, namely a b, is formalised as

colouring
{
a↓ �→ , b↑ �→ }

. It models the scenario where end a has data
flow and end b has no data flow but requires a reason for its absence.

A stateful connector with ends X and states Q can be modelled using au-
tomata with transition structure Δ ⊆ Q × (X → Colour) × Q, such that state
changes occur only when flow occurs at some end.

3 Problem Statement

The problem with connector colouring semantics (and their encoding into con-
straints) is that it takes a global view of the connector, that is, all primitives of
the connector are considered at every round. This has two negative consequences.
Firstly, it eliminates the opportunity to exploit the concurrent, potentially asyn-
chronous, evolution of distinct parts of a connector. Secondly, it means that
implementations based on connector colouring will not be scalable.

Partial Connector Colouring 65

Consider the connector in the top left-hand corner of Fig. 3. This consists of
a FIFO1 connected to priority merger. On the boundary are three components:
Both A and B are attempting to write a single message, while C is able to accept
as many messages as possible. The different boxes in the figure correspond to dif-
ferent states of this connector. The transitions between these states are labelled
with a 3-colouring if one exists, and a 2-colouring if not. (Valid 3-colourings can
be converted to valid 2-colourings by forgetting the direction-of-reason arrows.)

Ideally, all transitions except the dotted one should be permitted—the dotted
transition violates the preference of the priority merger. However, 2-colouring
allows all transitions, which is too lax. On the other end of the spectrum, the
only reachable transitions permitted by 3-colouring are those indicated with a
thick line. 3-colouring rules out the dotted transition, but it also rules out other
possibilities. Consider, for example, the transitions from the start state. These
correspond to allowing writers A and B to succeed independently or together.
But 3-colouring allows only both succeeding together. The other two behaviours
are reasonable, as there is no channel synchronising actions A and B.

4 Partial Connector Colouring

The problems described in the previous section are solved by partial connector
colouring. The idea is simple: only part of the connector is coloured to determine
the behaviour. The part that is not coloured plays no role in the computation.
The challenge is determining which partial colourings are sensible; this comes
down determining where the boundary of the coloured part can be draw and
what that boundary may look like.

Partial connector colouring is based on partial colouring schemes, which are
triples (Colour,�, valid), where Colour is a set of colours, � ⊆ (Colour + 1)×
(Colour + 1) is a symmetric matching relation such that ⊥�⊥, and valid :
Colour → 2 is a predicate that states which colours can appear on the boundary
of the coloured part, defined as valid(x) if and only if x � ⊥.

Definition 2 (Partial Connector Colouring). Given a partial colouring
scheme (Colour,�, valid), a partial colouring c : X ⇀ Colour for X ⊆ X � is a
partial function from ends to colours. The remainder of the definition (partial
colouring tables and table composition) follows Definition 1, with partial colour-
ings instead of total colourings.

A light gray colour will be used to denotes places where no colouring is
computed—that is where the colouring table is undefined. Valid partial colour-
ings satisfy two well-formedness conditions on the internal ends and boundary
ends.

Definition 3 (Valid Partial Colouring). A partial colouring c : X ⇀ Colour
for connector P , where X = ends(P), is valid iff for all x ∈ internal(P),
c(x↑)�c(x↓) and valid(x◦) holds for all x◦ ∈ boundary(P).

66 D. Clarke and J. Proença

Partial 2-colouring is defined as Colour = { , } and � = {〈 , 〉,
〈 , 〉, 〈 ,⊥〉, 〈⊥, 〉, 〈⊥,⊥〉}. Only valid() holds. A valid partial
2-colouring is one where no data flows at the boundaries. Partial 3-colouring
is defined as Colour = { , , } and � = {〈 , 〉, 〈 , 〉,
〈 , 〉, 〈 , 〉〈 ,⊥〉, 〈⊥, 〉, 〈⊥,⊥〉}. Only valid() holds. A
valid partial 3-colouring is one where all boundary ends give a reason for no flow.

Partial 2- and 3-colouring schemes are well-behaved with respect to compo-
sition; the composition of two valid colourings produces a valid colouring. A
partial n-colouring scheme can be seen as an (n + 1)-colouring scheme, but the
way it is used is different, as the aim is to avoid computing the (n+1)th colour.

The level of granularity expressed thus far is that of whole primitives, but we
can go finer. For some primitives, the behaviour of some ends is independent of
their other ends. This means that different parts of the primitive can be coloured
(or not coloured) independently. This kind of behaviour is called split colouring.

We illustrate split colourings using the FIFO1 buffer. Consider the partial
colouring of the FIFO1 buffer is it its empty state in Fig. 4(a). It is the case that
both ends of this primitive are independent (in the empty state), so the colour
tables could be presented as in Fig. 4(b), where the FIFO1 is actually treated
as two separate primitives. Based on this, the effective colouring table for the
FIFO1 buffer is the one in Fig. 4(c).

The remainder of the figure revisits our example connector. Fig. 4(d) shows
an attempt to find a colouring without split colourings for one of the transitions
leaving the initial state, but this colouring is not valid due to the node marked
x. This corresponds to a writer blocking for no reason. With split colourings, the
colouring in Fig. 4(e) can instead be used. This colouring does not even look at
the writer; it is not blocked, just not involved in the computation.

Two conditions govern the validity of a split colouring. The first is that when
we split the colouring table for the connector and then rejoin it, as in Fig. 4(a–c),
no additional data flow behaviour is introduced. The second condition deals with
stateful primitives. As each split colouring is derived from some partial colouring,
which itself may cause a change in the state, consistency demands that no no-
flow colouring can result in a state change and that any combination of split
colourings do not result in different state changes—there is at most one state

b c b c b c
x

(a) (b) (c) (d) (e)

Fig. 4. Splitting the colouring table of an empty FIFO1 buffer (a–c). Candidate con-
nector without split colourings (d) and with them (e).

Partial Connector Colouring 67

e f

(a)

e f

synchronise

e f

synchronise

(b) (c)

Fig. 5. Splitting the automaton of a FIFO1. The automata for the parts of the split
FIFO1 have an out-of-phase synchronisation step to keep the same view on the state.

change among the split colourings. Formal conditions capturing the correctness
criteria have been explored in Proença’s thesis [16].

When only one part causes a change of state, the two parts need to synchronise
to ensure that both have the same view on the state. We illustrate with an
example. Fig. 5(a) gives an automaton for a FIFO1, where transitions are labelled
with the split colourings that cause the respective transitions—each transition
has multiple colourings.When the primitive is split it results in the two automata
shown in Fig. 5(b–c), one for each end of the FIFO1. Now, if a data flow transition
is taken in the first automaton in state e, the second automaton is not aware of
the state change, as it has no behaviour to change the state. In order for them to
get into the same state, an out-of-phase synchronisation step is made between
the two ends of the split primitive.

Fig. 6 presents what partial 3-colouring will allow. Split colouring of the FIFO1

primitive is required for the transitions marked 1 and 2. Not only does partial
3-colouring with split colouring allows all desirable behaviours, but it also re-
duces the computation required to achieve these, thereby increasing scalability.
It allows mosaic evolution, whereby different parts of the connector can evolve
at different rates, increasing concurrency. Partial and split colourings thus offer
more potential concurrency, as the ends can be computed independently, better
scalability, as the size of the connector being considered can be smaller, and
more behavioural possibilities.

5 Constraint-Based Encoding

In previous work we showed how to encode connector colouring as constraints [9].
The constraints encode three aspects of behaviour: synchronisation constraints
(SC) describe the presence or absence of data flow at each end—that is, whether
or not those ends synchronise; data flow constraints (DFC) describe the data
flow at the ends that synchronise (which connector colouring does not capture);
and context constraints (CC) describe the direction of the reasons for no-flow.

68 D. Clarke and J. Proença

1

a

c

1

b
!

∞
d

1

a

c

0

b
!

∞
d

0

a

c

1

b

•

!

∞
d

0

a

c

0

b

•

!

∞
d

0

a

c

1

b
!

∞
d

0

a

c

0

b
!

∞
d

1 2

Fig. 6. Evolution of example connector with partial colouring

For encoding 2-colouring, context constraints can be dropped. State and state
transitions can also be encoded, but we omit them here for brevity.

Constraints are defined over (1) propositional synchronisation variables X , (2)

data flow variables X̂ = {x̂ | x ∈ X} ranging over Data⊥ =̂Data ∪ {NO-FLOW},
whereData be the domain of data and where NO-FLOW /∈ Data represents ‘no data
flow’, and (3) propositional context variables X �. The encoding of colourings into
constraints is given in the following table:

Colouring Constraint Colouring Constraint

x↓ �→ x x↑ �→ x
x↓ �→ ¬x ∧ x↓ x↑ �→ ¬x ∧ x↑

x↓ �→ ¬x ∧ ¬x↓ x↑ �→ ¬x ∧ ¬x↑

Constraints are expressed as quantifier-free, first-order logical formulas. Ta-
ble 2 presents the semantics of some commonly used primitives. A solution to a
formula ψ is an assignment of variables, defined in the usual manner [9].

The following axiom captures the relationship between the different kinds of
variables, and it is applicable to all ends in a connector:

(¬x ↔ x̂ = NO-FLOW) ∧ (¬x → x↑ ∨ x↓) (flow axiom)

Partial Connector Colouring 69

Table 2. Channel Encodings. SC=synchronisation constraints. DC=data flow con-
straints. CC=context constraints.

Channel Representation SC DFC CC

Sync a b a ↔ b â = b̂ a ∨ ¬a↓ ∨ ¬b↑

LossySync a b b → a b → (â = b̂)
¬a → (¬b ∧ ¬a↓ ∧ b↑) ∧
¬b → ((a ∧ ¬b↑) ∨ ¬a)

Priority
Merger

c
a

b

! (c ↔ (a ∨ b))
∧ ¬(a ∧ b)

a → (ĉ = â) ∧
b → (ĉ = b̂)

(c ∧ ¬a) → ¬a↓ ∧
(c ∧ ¬b) → b↓ ∧

¬c → ((¬a↓ ∧ ¬b↓) ∨ ¬c↑)

Replicator a
b

c

(a ↔ b) ∧
(a ↔ c)

b̂ = â ∧ ĉ = â a ∨ ¬a↓ ∨ ¬b↑ ∨ ¬c↑

FIFO1

(empty)
a b ¬b � (¬a → ¬a↓) ∧ b↑

FIFO1

(full)
a bd ¬a b → (̂b = d) a↓ ∧ (¬b → ¬b↑)

The first clause captures that NO-FLOW is used as the value of a data flow variable
when no flow occurs, which is the same as when the corresponding synchronisa-
tion variable is ⊥. The constraint x↑∨x↓ is interpreted as saying that the reason
for no data flow either comes from the sink end, from the source end, or from
both ends. The second clause is dropped when using 2-colouring. Let Flow(X)
denote the conjunction

∧
x∈X(¬x ↔ x̂ = NO-FLOW) ∧ (¬x → x↑ ∨ x↓).

The constraints for an entire connector are obtained by taking the conjunction
of the constraints of the primitives making up the connector and adding in the
flow axiom for the ends present. For example, the connector in Fig. 2 is encoded
in constraints as follows:

ΨSC = b → a ∧ ¬c ΨDFC = b → (â = b̂) ∧ �
ΨCC = ¬a → (¬b ∧ ¬a↓ ∧ b↑) ∧ ¬b → ((a ∧ ¬b↑) ∨ ¬a) ∧ (¬b → ¬b↓) ∧ c↑

Ψ = ΨSC ∧ ΨDFC ∧ ΨCC ∧ Flow({a, b, c}).

5.1 Partial 2- and 3-Constraints

Now we can modify the constraints generated to handle partial colouring. The
first difference is that the constraints will be applied not to all primitives,
but to a subset of the primitives—split primitives treated as separate primi-
tives. First, let constraintsp denote the constraints for connector p, and define
constraintsP =

∧
p∈P constraintsp. Two kinds of additional are constraints gen-

erated. The first ensures that the solution to the constraints corresponds to a
valid partial colouring by constraining the boundary:∧

x◦∈boundary(P)

¬x ∧ x◦ (boundary)

70 D. Clarke and J. Proença

The 2-colouring variant is obtained by dropping the ‘∧x◦’ part. It is straight-
forward to show that the collection of constraints faithfully encodes partial 2/3-
colouring. An additional kind of constraint is added to check whether there is any
flow within a connector, as ultimately we are only interested in partial colourings
where something happens: ∨

x∈internal(P)

x (internal-flow)

6 Implementation and Benchmarks

Partial connector colouring is implemented using constraint satisfaction in a
fashion similar to our constraint-based implementation of Reo [9]. The previous
implementation collected all the constraints for a connector and solved them.
The resulting solution described the behaviour in the connector.

To exploit partiality, a different approach is required. This involves trying to
solve the constraints for a part of the total connector; if no solution is found,
a larger part is tried. More specifically, each thread operating on a connector
performs the following steps. The thread is initially given a number of primitives,
which it is said to own. It collects the constraints for those primitives, including
the boundary and internal flow constraints, and solves the resulting constraint
satisfaction problem. A solution corresponds to flow within that part of the
connector, so the thread ensures that the corresponding data is moved to where
it belongs and the states of stateful primitives change. If, however, there is no
solution, then the part of the connector the thread is operating on is expanded
and the algorithm repeats. When two threads attempt to own the same part of
the connector, one claims both parts of the connector and the other thread is
returned to the thread pool to be reassigned work.

Due to the nature of this approach, we cannot expect that it will always be
better—implementations will need to be tuned to specific connectors. Never-
theless, a number of preliminary benchmarks do show that partial connector
colouring can produced a faster implementation. The benchmarks consist of two
parametric connectors, depicted in Fig. 7. These connector each have a part that
can be repeated a given number of times. We ran four versions of our implemen-
tation on these connectors on a 8-core 2.4 GHz Intel Xeon desktop with 16
GB RAM running Ubuntu Linux. As a baseline, the first version implemented
the original connector colouring model. The other versions implement partial
connector colouring, using one, two and four threads. These results show that
partial colouring can lead to a faster, more concurrent, and scalable implemen-
tation.

There are however a number of dimensions where heuristics can be applied to
improve the performance of the implementation, such as choosing the number
of threads, choosing where they start computing, and choosing how the set of
primitives considered grows. These will be investigated in future work.

Partial Connector Colouring 71

1A

1B

1C

1D
∞ Z

h

1W1

1R1

1W2

1R2

1Wn

1Rn

· · ·
· · ·
· · ·

n

0 1 2 3 4 5 6 7

1
1

0
1

0
0

1
0

0
0

0

Height (h)

T
im

e
(m

il
li

se
co

n
d

s)

Partial CC: 1 Thread

Partial CC: 2 Threads

Partial CC: 4 Threads

Connector Colouring

0 50 100 150 200

0
5

0
1

0
0

1
5

0
2

0
0

Size (n)

T
im

e
(m

il
li

se
co

n
d

s)

Partial CC: 1 Thread

Partial CC: 2 Threads

Partial CC: 4 Threads

Connector Colouring

(a) (b)

Fig. 7. Benchmarks: Multiple Merger (a) demonstrates that partial connector colour-
ing offers an order of magnitude improvement for one thread, though multiple threads
create too much contention. Pairwise Asynchronous (b) demonstrates significant ad-
vantages of partial colouring, which scales well as more threads (cores) are added.

7 Related Work

Many semantic models exist for Reo. Clarke et al. [6] outline the difference
between various models. Only connector colouring [8], Reo automata [6], inten-
tional automata [10], and the tile model [3] capture context dependent behaviour.
Connector colouring was the first to do so, and the others refine it in one way
or another. The models are all distinct—and the relationship between them has
not been investigated—but for our purposes, we do not consider automata-based
models as these do not lead to scalable implementations. The constraint-based
encoding of Reo [9] offers orders of magnitude improvement in performance and
scalability of Reo implementations.

Wegner describes coordination as constrained interaction [19] and Monta-
nari and Rossi express coordination as a constraint satisfaction problem [15].
They describe how to solve synchronisation problems using constraint solving
techniques, but they do not encode context dependency or identify the benefits
of partiality. Lazovik et al. [13] utilise constraints to provide a choreography
framework for web services. The choreography, the business processes, and the
requests are modelled as a set of constraints. Their setting, however, cannot
express the same kinds of coordination patterns as Reo. The analogy between

72 D. Clarke and J. Proença

Reo and constraint satisfaction has already been made [2], and indeed Klüppelholz
and Baier encode the constraint automata model for Reo in terms of binary deci-
sion diagrams in order to model check Reo connectors [12]. Constraint automata
are represented by binary decision diagrams, encoded as propositional formulæ.
Their encoding is similar to ours, though they use exclusively boolean variables,
whilst our constraint encoding is phrased in terms of a richer data domain.

Minsky and Ungureanu introduce the Law-Governed Interaction (LGI) mech-
anism [14], implemented by the Moses toolkit, where in laws are constraints
specified in a Prolog-like language, enforced on regulated events of the agents,
such as sending or receiving messages. This mechanism targets distributed co-
ordination of heterogenous agents using a policy that enforces extensible laws.
However, laws are local, in the sense that can only refer to the agent being
regulated. While this allows LGI to achieve good performance, it limits expres-
siveness.

Bruni et al.’s stateless algebra of connectors [7] and Sobociński’s [17] stateful
extension resemble the core of Reo, though they lack context dependency and
data. The semantics is similar to 2-colouring in this limited setting. Bliduze
and Sifakis [5] present a semantics for their BIP coordination model in terms
of boolean propositions. Although similar, BIP is not as expressive as Reo as it
lacks the ability to filter data passing through connectors. Jongmans et al. [11]
present an encoding of 3-colouring in terms of 2-colouring that resembles our
encoding into propositional constraints. Their approach adds fictitious nodes
into the Reo level, whereas ours is completely under the surface.

8 Conclusion

This paper presented partial connector colouring which improves on the ex-
isting connector colouring semantics for Reo and their subsequent encoding as
constraints in three respects. Firstly, the semantics enable a more scalable imple-
mentation by avoiding the lock-step evaluation of an entire connector. Secondly,
the amount of concurrency is increased by enabling different parts of a connector
to evolve independently at different rates. Finally, partial 3-colouring retains the
context dependent behaviour of 3-colouring but regains some of the behavioural
possibilities lost due to the lock-step computation. Benchmarks have also been
presented to confirm the possible performance improvements.

An interesting direction for future work is a more in depth empirical explo-
ration of the heuristics alluded to in Section 6.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

2. Arbab, F.: Composition of interacting computations. In: Goldin, D., Smolka, S.,
Wegner, P. (eds.) Interactive Computation: The New Paradigm, pp. 277–321.
Springer-Verlag New York, Inc., Secaucus (2006)

Partial Connector Colouring 73

3. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55.
Springer, Heidelberg (2009)

4. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y., Proença, J.: Modeling, testing and
executing Reo connectors with the Eclipse Coordination Tools. In: International
Workshop on Formal Aspects of Component Software (FACS), Malaga. ENTCS
(2008)

5. Bliudze, S., Sifakis, J.: Synthesizing Glue Operators from Glue Constraints for the
Construction of Component-Based Systems. In: Apel, S., Jackson, E. (eds.) SC
2011. LNCS, vol. 6708, pp. 51–67. Springer, Heidelberg (2011)

6. Bonsangue, M.M., Clarke, D., Silva, A.: Automata for Context-Dependent Con-
nectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS,
vol. 5521, pp. 184–203. Springer, Heidelberg (2009)

7. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1-2), 98–120 (2006)

8. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and con-
text dependency. Science of Computer Programming 66(3), 205–225 (2007)

9. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011)

10. Costa, D.: Formal Models for Component Connectors. PhD thesis, Vrij Universiteit
Amsterdam (2010)

11. Jongmans, S.-S.T.Q., Krause, C., Arbab, F.: Encoding Context-Sensitivity in Reo
into Non-Context-Sensitive Semantic Models. In: De Meuter, W., Roman, G.-C.
(eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 31–48. Springer, Heidelberg
(2011)

12. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. ENTCS 175(2), 19–37 (2007)

13. Lazovik, A., Aiello, M., Gennari, R.: Choreographies: Using constraints to satisfy
service requests. In: Proc. of the Advanced International Conference on Telecom-
munications and International Conference on Internet and Web Applications and
Services, p. 150. IEEE Computer Society, Washington, DC (2006)

14. Minsky, N.H., Ungureanu, V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software
Engineering and Methodology 9(3), 273–305 (2000)

15. Montanari, U., Rossi, F.: Modeling process coordination via tiles, graphs, and
constraints. In: 3rd Biennial World Conference on Integrated Design and Process
Technology, vol. 4, pp. 1–8 (1998)

16. Proença, J.: Synchronous coordination of distributed components. PhD thesis, LI-
ACS, Leiden University (May 2011)

17. Sobociński, P.: Representations of Petri Net Interactions. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer,
Heidelberg (2010)

18. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

19. Wegner, P.: Coordination as Constrained Interaction (Extended Abstract). In:
Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp.
28–33. Springer, Heidelberg (1996)

Using Coordinated Actors to Model Families

of Distributed Systems�

Ramtin Khosravi1,2 and Hamideh Sabouri1

1 School of ECE, University of Tehran, Iran
2 School of CS, Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran

Abstract. Software product line engineering enables strategic reuse in
development of families of related products. In a component-based ap-
proach to product line development, components capture functionalities
appearing in one or more products in the family and different assemblies
of components yield to various products or configurations. In this ap-
proach, an interaction model which effectively factors out the logic han-
dling variability from the functionality of the system greatly enhances
the reusability of components. We study the problem of variability mod-
eling for a family of distributed systems expressed in actor model. We
define a special type of actors called coordinators whose behavior is de-
scribed as Reo circuits with the aim of encapsulating the variability logic.
We have the benefits of Reo language for expressing coordination logic,
while modeling the entire system as an actor-based distributed model.
We have applied this model to a case study extracted from an industrial
software family in the domain of interactive TV.

1 Introduction

Software Product Line Engineering (SPLE) focuses on proactive reuse to reduce
the cost of developing families of related systems. The goal is to promote reuse
from source code to other project artifacts as well, including models, documents,
etc. [1]. A key factor to achieve this is the explicit modeling and management
of commonalities and variabilities among the products in the family. Based on
the domain and characteristics of the software family, suitable ways to manage
variabilities in relevant models must be devised. In this paper, we deal with the
class of distributed software systems that are modeled as actor systems, which
is a well-known model for distributed and concurrent systems [2] (Sect. 2.1).

There are various approaches to variability modeling. Some use annotative
techniques in which parts of the model are annotated with specific features and
are present in the configurations that include those features. This technique is
more effective for smaller variations. When two variants differ in more than a few
lines of code, using annotations clutters the code and reduces maintainability.
On the other hand, compositional variability management uses components to
handle variability [3]. Each variant may be implemented by a separate component

� This research was in part supported by a grant from IPM. (No. CS1390-4-02).

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 74–88, 2012.
c© IFIP International Federation for Information Processing 2012

Using Coordinated Actors to Model Families of Distributed Systems 75

and alternatives for a variation point implement a common interface, through
which other components have a uniform access to the variants. This method
is more modular and is more flexible in the sense that the binding time for
variation points can be deferred easily to runtime. This makes the compositional
approach suitable for reconfigurable software, where decision about the variants
is made at runtime and can be changed dynamically [4]. This is specifically useful
for distributed systems in which failures or topology changes may require more
flexibility in configuration.

As the actor model can be treated as a component-based approach to engi-
neer a distributed system, compositional variability management seems a good
match for engineering families of actor systems. In [5], handling variability in an
actor-based modeling language Rebeca [6] is studied where both annotative and
compositional methods are used. However, expressing variability logic in actors
has the risk of making the core functionality of the actors messy.

Taking a compositional variability management approach for an actor system
makes the variability handling logic more about wiring of actors and routing
messages to appropriate actors. Having a way to model the variability logic in
a modular way and separate from the functionality will make the actors more
reusable and variability logic more manageable. This is almost the same as the
objective of coordination language Reo [7] that aims to capture the glue code
between components in a compositional and modular way (Sect. 2.2).

Hence, we define a special type of actors called coordinators and define their
behavior using Reo circuits. Externally, coordinators can be treated as ordinary
actors communicating with other actors/coordinators via asynchronous message
passing. This is essential to keep message passing as the basic communication
means in a distributed environment. Coordinators will be discussed in more de-
tail in Sect. 3. To express the way we integrate Reo circuits in an actor system
precisely, we present a formal operational semantics for the model in Sect. 4. Our
approach to variability management is dynamic in the sense that the configu-
ration parameters are modeled as inputs to the coordinators. This enables dy-
namic changes in the configuration, making our method closer to re-configurable
architectures as opposed to statically generating coordinators from a given con-
figuration (which has the benefit of less runtime overhead).

We use coordinated actors to model a part of a real-world distributed system
in the domain of interactive TV systems (Sect. 5). We show how coordinators can
capture variability logic among a set of components in a distributed environment,
keeping the components free from the variability handling code.

To the best of our knowledge, little work has been done addressing product
lines of distributed systems based on asynchronous message passing. In [8], a
methodology is presented for design, implementation and verification of highly
configurable systems, such as software product lines. This methodology is cen-
tered around the ABS language, which is a class-based language built on top
of the active object concurrency model of Creol [9], using asynchronous method
calls. The full ABS modeling framework extends ABS by delta modeling language
(DML) that is based on delta-oriented programming [10] to describe code-level

76 R. Khosravi and H. Sabouri

variability. The implementation of a product family contains a core module and
a set of delta modules specifying the changes that should be applied to the core
module to obtain a new product. In [11] a method is presented for verification
of families of services which is based on modal transition systems. Although
the service-based computing is inherently distributed, the authors have used a
synchronous model leaving support for asynchronous interactions to future work.

2 Preliminaries

2.1 Actor Model for Distributed Computing

Actor model is a well-known model for concurrent and distributed comput-
ing. The basic units of concurrency are called actors which communicate solely
through asynchronous message passing. Each actor has a unique identifier and
an unbounded message queue. An actor may know the identifier of a number of
other actors to which it can send messages. An actor takes messages from its
input queue one at a time. Processing each message will result in (a) a set of
newly created actors, (b) a set of messages sent to other actors, and (c) the new
behavior of the recipient actor. As soon as the new behavior is specified, it can
take the next message from the input queue to process. The behavior replace-
ment essentially makes the behavior of the actors history-sensitive. Hence the
actor model is known as a concurrent object-based computation model.

In practice, it is possible to describe the behavior of the actors using functional
or imperative paradigms. The way we treat actors in this paper is independent
of the implementation paradigm.

2.2 Reo Coordination Language

Reo is a channel-based coordination language in which complex entities, called
connectors, are constructed out of simpler ones. The behavior of each connector
in Reo defines a specific coordination pattern, through which the system compo-
nents perform I/O operations. The simplest connector types are called channels
which are basic means of communication with exactly two ends. Channel ends
are of two types: the source end through which data enters the channel, and
the sink end through which data exits the channel. Reo does not impose any
constraint on the channel behavior, so that each type can have its own policy
for synchronization, buffering, sequencing, computation and data management.
A number of channel types are commonly used in the literature. We use the
following set of channels in this paper which are defined briefly in the following
(Fig. 1).

Synchronous channel (Sync) Read and write operations are performed only
if there is a data item on the source end and the sink end is ready to read.
If one of the ends is not ready, the other end will be blocked.

Synchronous Drain channel (SyncDrain) The write operation is performed
in this channel only if both ends are ready to write. If one of the ends is not
ready, the other end will be blocked.

Using Coordinated Actors to Model Families of Distributed Systems 77

(a) (b) (c) (d) (e) (f)

Fig. 1. Common channel notations: (a) Synchronous (b) Synchronous Drain (c) Lossy
Synchronous (d) FIFO-1 (e) Filter (f) Transform

Lossy Synchronous channel (LossySync) A LossySynch channel is similar to
a Sync channel, except that it always accepts all data items through its source
end. If it is possible for it to simultaneously dispense the data item through
its sink, the channel transfers the data item; otherwise the data item is lost.

One-place FIFO channel (FIFO1) In a one-place FIFO channel, the source
end may put a data item on the channel if the buffer is empty. In this case,
the sink end will be blocked. Furthermore, the sink end can perform the read
operation if the buffer is full. In this case, the source end will be blocked.

Filter channel The read/write operation is synchronously performed (like Sync
channel) with the condition that the data on the source end must satisfy a
filter condition associated with the channel.

Transform channel The read/write operation is synchronously performed (like
Sync channel) and a transformation function associated with the channel is
applied to the input data to produce the output.

A connector is then constructed out of a number of channels organized in a
graph of nodes and edges. A node consists of one or more channel ends. When
all channel ends are of type source (resp. sink), the node is called a source node
(resp. sink node), otherwise, it is called a mixed node. There are several ways to
combine a set of channel ends of both types into a single node (Fig. 2).

The data items simply flow through a flow through node. A write on a repli-
cation node succeeds only if all outgoing channels are capable of consuming the
written data. A merge node delivers a value out of one of the incoming channels
non-deterministically. In our method, we usually face with the issue of prioriti-
zation over two or more inputs. In such cases, we use a special type of connector
named priority merger which behaves like a merge node but one of its source
ends has higher priority than the other (indicated by the exclamation mark).
Whenever data is present on both its source ends, the data from the preferred
input is passed to the sink end.

(a) (b) (c) (d)

!

Fig. 2. Three types of mixed nodes: (a) flow through, (b) replication, (c) non-
deterministic merge, and (d) a priority merger depicted as a node

78 R. Khosravi and H. Sabouri

3 Handling Variability through Coordination

We assume there are a number of special kind of actors named coordinators
with their behavior specified as a Reo circuit (Fig. 3). The coordination logic,
expressed as a Reo circuit, has one special input port for reading incoming mes-
sages from other actors, and a number of input ports specifying product config-
uration parameters. On the other side, there are a number of output message
ports through which the coordinator sends messages to other actors, each port
corresponding to a separate destination actor.

Coordination
Logic

(Reo circuit)

Incoming
Message

Queue

Output
Message

Ports

Configuration Parameters

Input
Message

Port

Fig. 3. A coordinator actor

Informally, the coordinator fetches one input message from the input queue
and makes the message data ready on the input port of the Reo circuit. The
Reo circuit then computes the output messages and provide them on the output
ports. Whenever an output message appears on an output port, the coordinator
takes the message and sends it to the corresponding actor. It is assumed that
the coordinator is always ready to take the output messages, so the Reo circuit
never blocks on the output ports.

An important assumption is made about the Reo circuit that is the cir-
cuit terminates after a finite number of steps when responding to a single
input message. This assumption is made to make the behavior of the coor-
dinators consistent with the semantics of the actor system given above. So,
like other actors, a coordinator takes one message from its input queue, pro-
cesses the message, generates a number of new messages, and possibly changes
its own state. Note that the internal state of the Reo circuit (i.e., the con-
tents of its buffer channels) may change when responding to a message, and
to respond to the next input message, the Reo circuit continues from its last
state.

3.1 Example: Handling Optional Features

As an illustrative example, consider a coffee machine that has an optional feature
of adding milk to a coffee. To keep it simple, assume that if this feature is included

Using Coordinated Actors to Model Families of Distributed Systems 79

coffeeReady

Milk

Milk

addMilk()

serveCoffee()

bound to
Additives

bound to
CoffeeMachine

actor CoffeeMachine {
def coffeeRequest() {

CoffeeMaker ! makeCoffee();
}
def serveCoffee() { // serve coffee }

}
actor CoffeeMaker {

def makeCoffee() {
// make coffee
AdditivesCoord ! coffeeReady();

}
}
actor Additives {

def addMilk() {
// add milk
CoffeeMachine ! serveCoffee();

}
}

AdditivesCoord

Fig. 4. Handling optional ‘Milk’ feature

in a product, then coffee is always served with milk. To handle this variability,
we consider three functional actors and one coordinator actor as depicted in Fig.
4. The CoffeeMachine actor tells CoffeeMaker to make coffee. When it is done,
CoffeeMaker informs a coordinator AdditvesCoord that the coffee is ready. The
behavior of AdditivesCoord is described by a simple Reo circuit. To make it
simple, we have provided both Milk and Milk configuration inputs to the circuit.
The circuit first filters the incoming messages to process ‘coffeeReady’ only (to
be complete, a mechanism must be added to discard irrelevant messages). Based
on the presence of ‘Milk’ feature, the coordinator decides to tell Additives to
add milk or just inform CoffeeMachine that the drink is ready.

Note that for this very simple example, the variability could be handled much
more easily in the actors itself. As the interactions become more complex how-
ever, the benefits of using Reo as a compositional coordination model becomes
more evident.

4 Formal Modeling of Coordinated Actor Systems

In this section, we formally demonstrate how the coordinators with their be-
havior described as Reo circuits are integrated into an actor system. The core
material is presented in Sect. 4.3 and 4.4, but to make our description complete,
we first give an operational semantics for actor systems in Sect. 4.1 and 4.2.

We use the following notations for working with sequences. Given a set A, the
set A∗ is the set of all finite sequences over elements of A. We write sequences as
[a1, a2, . . . , an], where ai ∈ A. The empty sequence is represented by [], and [h|T]
denotes a sequence whose first elements is h ∈ A and T ∈ A∗ is the sequence
comprising the elements in the rest of the sequence. For two sequences σ1 and
σ2 over A, σ1 ⊕ σ2 is the sequence obtained by appending σ2 to the end of σ1.

We assume the following sets are given:

80 R. Khosravi and H. Sabouri

– Id : The set of all actor identifiers
– Data: The set of all data items that can be communicated in messages.

We abstract from the details of this set, but note that it can contain actor
identifiers, allowing a dynamic topology for the actor system.

– State: The set of all local states of the actors. We also abstract from the
details of how actors keep track of their states. This can be a mapping from
the actor’s variables to values, or a function describing the actor’s current
behavior.

We also define Msg = Id × Data as the set of all messages. Each message is a
pair (α,m) where α is the receiver and m is the message data. We usually write
α.m as an alternative to (α,m).

4.1 Actor Systems

We define an actor as a tuple (α, q, s, b) where:

– α : Id is the unique identifier of the actor,
– q : Msg∗ is the unbounded FIFO message queue of the actor,
– s : State is the local state of the actor,
– b : Msg ×State ↔ 2Actor ×Msg∗×State is the behavior of the actor. Having

(A, σ, s′) ∈ b(α.m, s) means that the actor may respond to the incoming
message α.m by creating a set of actors A, sending the sequence of messages
σ, and changing its local state to s′.

Note that since the behavior of an actor may be modeled non-deterministically,
in responding to an incoming message several outcomes may happen, hence b is
defined as a relation, not a function. The uniqueness and freshness of identifiers
of the actors in A are assumed (expressed later). For a message sequence σ =
[α1.m1, α2.m2, . . . αk.mk], we define recipients(σ) = {α1, α2, . . . , αk}. If α is an
actor identifier, then σ[β] denotes the sequence of messages in σ restricted to β as
the recipient, i.e., it is obtained by removing the elements of σ whose recipients
are not β.

If Actor denotes the set of all actors, then we define a configuration of actors
as a set of actors. Since the actors in a configuration has unique identifiers, we
define a configuration as a mapping from identifiers to actors: C : Id → Actor .
If no actor with identifier α exists in a configuration C, we write C(α) =⊥. We
use the notation ids(C) to denote the domain of the mapping C, i.e., the set of
all actor identifiers in C. We define Conf as the set of all configurations.

4.2 Transition System Semantics

For an actor system with initial configuration C0, we define the transition system
TS = (Conf ,Msg,→, C0), with Conf as the set of states, Msg as the set of
actions (transition labels), C0 as the initial state, and →⊆ Conf ×Msg ×Conf
as the transition relation defined as the smallest relation satisfying the following
condition.

Using Coordinated Actors to Model Families of Distributed Systems 81

We have (C,α.m,C′) ∈→, (written alternatively as C
α.m−→ C′) if the following

conditions hold:

1. α ∈ ids(C) and C(α) = (α, [α.m|qα], sα, bα)
2. There exists (A, σ, s′α) ∈ bα(α.m, sα) such that

(a) ids(C′) = ids(C) ∪ ids(A)
(b) C′(α) = (α, qα ⊕ σ[α], s

′
α, bα)

(c) ∀β ∈ ids(C), β �= α · C(β) = (q, sβ , bβ) ⇐⇒ C′(β) = (q ⊕ σ[β], sβ, bβ)
(d) ∀(γ, qγ , sγ , bγ) ∈ A · C′(γ) = (γ, qγ ⊕ σ[γ], sγ , bγ)
(e) recipients(σ) ⊆ ids(C′)

Condition 1 states that the recipient of the message α.m must exist in the
configuration C and the α.m must be the first message in the actor’s queue.
The set of actors in the configuration must remain the same, except for the
set of newly created actors (cond. 2a). After processing the message, the actor
α changes its local state and possibly sends messages to itself (cond. 2b). All
other actors possibly have new messages in their queues, but their state remains
unchanged (cond. 2c). A number of new actors are created, and they may have
messages in their queues initially (cond. 2d). Note that the recipients of the sent
messages σ must exist at the time the messages are sent (cond. 2e).

To ensure uniqueness of identifiers in an actor system we make the following
assumption on the behavior of every actor in the system. In every configuration
C and an actor (α, [α.m|q], s, b) in C, the behavior function b is defined such that
if (A, σ, s′) ∈ b(α.m, s), then we have ids(A) ∩ ids(C) = ∅ and |ids(A)| = |A|.

4.3 Coordinator Actors

To describe the semantics of a coordinator, we assume the behavior of the Reo
circuit is described using a Constraint Automaton [12], which is a well-known
semantic model for Reo connectors. The notation we use in this paper is based
on [13], as it includes finite runs of constraint automata too. An important point
is that when handling variability using Reo circuits, we usually need priority
merger which is an example of a context-dependent connector. The original
constraint automata semantics for Reo does not handle context dependency (the
situation where the behavior of a connector depends on other connectors). This
issue is addressed in other automata-based semantics for Reo such as the one
based on Reo automata [14]. Despite our use of context-dependent channels, we
still express our semantics using constraint automata, as it is much simpler to
explain. Furthermore, it is not hard to lift our semantic description to other
types of automata-based semantics for Reo, supporting context dependency.

Since each coordinator is regarded as an actor, it will have a unique identifier.
Let the set CId ⊂ Id be the set of identifiers of coordinators. Suppose that the
behavior of a coordinator with identifier ρ is defined by the constraint automaton
A = (Q,N ,→,Q0). The set of states Q, the set of initial states Q0, and the
transition relation → are defined according to the standard semantics of Reo
circuits in constraint automata. Assuming the usual partitioning of the node set

82 R. Khosravi and H. Sabouri

N = N src �N snk �Nmix into source nodes, sink nodes, and mix nodes, we have
N src = {in, cfgρ1

, cfgρ2
, . . . cfgρk

}, where in is the input node, and cfgρi
is the

ith configuration port, N snk = {outρ1 , outρ2 , . . . , outρn}, the set of output ports,
and Nmix is determined by the internal structure of the Reo circuit.

To specify the behavior of the coordinator when responding to the incoming
message ρ.m, we must specify the messages it will create and the change in its
local state. The local state of the coordinator is the current state of its behavior
constraint automaton. So, suppose the coordinator is in state q and it receives
the incoming message ρ.m. According to the constraint automata semantics for
Reo circuits, and assuming that the behavior of the circuit terminates in finite
steps, we will have maximal finite runs of the following form, where Ni is the
set of nodes performing I/O operation and δi is a function giving data items on
nodes.

q = q0
N1,δ1−→ . . .

Nk,δk−→ qk

√
−→ qk

Since the message m is put initially on the input node of the coordinator, we
must have inρ ∈ N1 and δ1(inρ) = m.

The set of output messages are obtained by taking the data on each output
port and putting them as a sequence (to preserve the FIFO semantics of actors).
More formally, let μ : N snk → Id specify the binding of the output ports to
the identifiers of the destination actors. For each I/O operation (N, δ), we define
ς(N, δ) as the sequence of messages sent during the I/O operation. The sequence
is ordered (arbitrarily) based on the output port numbers of the Reo circuit:

ςi(N, δ) =

{
[] if outρi �∈ N
[μ(outρi).δ(outρi)] otherwise

ς(N, δ) = ς1(N, δ)⊕ ς2(N, δ)⊕ . . .⊕ ςn(N, δ)

Now, for the I/O-stream IOS = (N1, δ1) . . . (Nk, δk)
√
, we define the set of output

messages as the sequence of ς(Ni, δi), ordered by i = 1, 2, . . . , k, as follows:

outmsgρ(IOS) = ς(N1, δ1)⊕ ς(N2, δ2)⊕ . . .⊕ ς(Nk, δk)

It is important to note that initially (i.e., before processing the first message),
the automaton is in one of the states in Q0. After processing of the first message,
we assume the automaton saves its current state for processing the next message
(hence, the coordination may be history-sensitive).

To integrate our coordination model into actor systems, we consider a coordi-
nator as an actor in our semantic model, hence modeled as a tuple (ρ, q, s, b) as
defined in Sect. 4.1. We assume the coordination logic of the coordinator with
identifier ρ is defined by a Reo circuit specified by the constraint automaton
Aρ = (Qρ,Nρ,→ρ,Q0ρ) with the set of port names Nρ partitioned into N src

ρ ,

N snk
ρ , and Nmix

ρ as described previously. Also, we assume μρ is the mapping of
output ports into actor identifiers.

As said before, the state of a coordinator is the last state of the maximal finite
run it has taken to respond to the last message, or one of the initial states of Aρ

Using Coordinated Actors to Model Families of Distributed Systems 83

if it has not responded to any message yet. So, we have s ∈ Qρ and to make it
consistent with the definition of ordinary actors, we assume the following:⊎

ρ∈CId

Qρ ⊂ State

The behavior of the coordinator ρ, expressed as the relation bρ : Msg×State ↔
2Actor ×Msg∗×State is the smallest relation satisfying the condition (A, σ, s′) ∈
bρ(ρ.m, s) if

1. A = ∅
2. There exists a maximal finite run s = q0

N1,δ1−→ρ . . .
Nk,δk−→ρ qk

√
−→ρ qk = s′, such

that
(a) inρ ∈ N1 and δ1(inρ) = m
(b) σ = outmsgρ((N1, δ1) . . . (Nk, δk)

√
)

4.4 Initial Configurations

Initially, we have a set of (non-coordinator) actors of the form (α, q0α , s0α , bα).
We assume the initial local states and message queues are unique. We also have a
set of coordinators with the identifier set R. A coordinator with identifier ρ ∈ R,
can start in one of the possible initial states (ρ, [], q0, bρ) for some q0 ∈ Q0ρ .

5 Case Study

The case presented here is part of a larger project that is currently in progress in
the domain of an interactive TV product line at Soroush company1. The project
has a big feature model, as the product line ranges over various types of product
in the subdomains of IPTV, Hospitality, Digital Signage, etc.

The external variabilities that correspond to different usages of the system
lead to a relatively large number of internal variabilities too. For example, an
IPTV with a large number of subscribers scattered through a vast geographical
extent is different from a hotel offering hospitality services through its local TV
network in terms of performance and availability requirements. In this section, we
present a simplified view of the solution applied to handle an internal variability
concerning load balancing of the offered services aiming to improve performance
and availability.

5.1 The Video-On-Demand Use Case

In this example, an IPTV network is considered offering various services from
which we focus on Video-On-Demand (VOD) service. The subscribers of this
service can choose from a set of video contents, and receive the video via a
streaming protocol.

1 http://www.soroush.net

84 R. Khosravi and H. Sabouri

c : Client s: IPTV Server

m1 : Media Server

m2 : Media Server

m3 : Media Server

1. Request

2. Get_Info

3. media_info

4. stream

4'. copy_to

Fig. 5. Interaction diagram showing the basic scenario of VOD

To start the scenario, a client sends a request to the IPTV server. The server
maps the requested video to a media resource description. The corresponding
media may reside on a number of different media servers. Not every media server
contains the specified media resource. If it does, it is possible that it is currently
streaming media in its full capacity. So, the IPTV server first asks every media
server about the requested media resource and if the server has free streaming
capacity. If the IPTV server receives a reply from a media server which says it
has the media resource and it has free capacity, then the media server is asked
to stream the media to the client.

A variation point is defined for the case that no free server contains the re-
quested media resource. In the simpler variant, a message is returned to the
client to inform it that the requested media is not available at this time. In the
other variant however, one of the servers that has the media is asked to copy the
media into one of the servers that has free capacity. After the media is copied,
the free server is asked to stream the media. This scenario is depicted in Fig. 5.

5.2 Modeling Video-On-Demand with Coordinated Actors

We now show how to model VOD interactions using coordinated actors. Due to
space limitation, we focus only on the part that the IPTV server receives and
processes the media information (messages 3, 4, and 4’ in Fig. 5). The IPTV
server is supposed to receive one media info message from each media server.
The message format is assumed to be of the form media info(m, s, h, f) where m
denotes the requested media identifier, s is the identifier of the media server that
is the sender of the message, h is a boolean value indicating the server s contains
the media resource for m, and f is a boolean value showing that the server s has
free capacity for streaming.

In the coordinated model, the media servers are supposed to send the
media info message to a coordinator actor, instead of the IPTV directly. The
coordinator then decides how to continue based on the values received and the
configuration parameter replicate media which shows if the copying feature is
enabled in the product configuration. (To keep the model simpler, we give the

Using Coordinated Actors to Model Families of Distributed Systems 85

Incoming Message Format:

media_info(m, s, h, f)
▪ m: media_id
▪ s: server_id
▪ h: has the media?
▪ f: has free streaming

 capacity?

s = sid_0

s = sid_1

s = sid_2

Stream_Media

Copy_Media

sid_0

sid_1

sid_2

disable

replicate_media

Fig. 6. The behavior of the coordinator for handling media info messages

negation of this flag as the input to the coordinator.) The behavior of the coor-
dinator for three media servers is depicted as a Reo circuit in Fig. 6.

Upon receiving a messagemedia info(m, s, h, f), the circuit first routes the mes-
sage on one of the three channels corresponding to the server with identifier s.
It is assumed that the identifiers of the media servers are sid 0, sid 1, and sid 2.
The messages are buffered in FIFO1 channels, so that they are processed syn-
chronously. When all buffers are full, the messages are replicated synchronously
into two separate circuits Stream Media and Copy Media. The former decides if
one of the media servers can be chosen to stream the media (i.e., both has the
media resource and has free streaming capacity). In this case, a stream message
is put on the corresponding output node. The circuit Copy Media decides if one
of the media servers must copy the media resource to another one, and puts the
copy to message on the corresponding output port. The output ports of the two
circuits are then merged into single output ports of the coordinator.

The Copy Media circuit has an input that disables its operation. We merge
two values into this input. The first is replicate media configuration parameter
which is enabled if the media replication (copying media files) is not included
in the product configuration. The second one is an output from Stream Media
which indicates a suitable server has been found and is sent stream message,
hence no copying is necessary.

Figure 7 shows the internals of Stream Media and Copy Media circuits. The
inputs to Stream Media circuit are the media info(m, sid i, h, f) messages. The
filter channels select those media servers that both have the media and have free
streaming capacity. The merge node a is to activate at most one of these servers.
Note that there are two outgoing channels from a. The SyncDrain is used to keep
the passage of data synchronized with the input to the circuit (the choice of the
first input is arbitrary, as they are all synchronized from outside of the circuit).

86 R. Khosravi and H. Sabouri

h /\ f

h /\ f

h /\ f

stream(m)

stream(m)

stream(m)
h

h

h

f

f

f

copy_to(s)Stream_Media

Copy_Media

!
disable

a

b

Fig. 7. The internal structure of the Stream Media (left) and Copy Media (right) circuits

The Sync channel ending at the circuit port is used to disable Copy Media in
case one of the servers is chosen to stream. The selected server is sent a stream
message generated by the corresponding Transform channel.

The input to Copy Media is the same. The upper set of filters pass the mes-
sages from those servers that has free capacity, from which one is chosen as the
destination of the copy (hence the server identifier s is passed as the parame-
ter of copy to). The lower set of filters and subsequent channels choose a server
that has the media resource to which the generated copy to message is sent. The
purpose of the merge node b is similar to the node a in Stream Media, with the
additional disable input that has higher priority over all other inputs. Hence, if
the disable input is enabled, the data flow from all other inputs will be disabled
and no output is sent by copy to.

The circuits presented above only model the interactions needed to process
media info messages. There are other coordinators to handle other messages that
are not discussed here.

We have implemented a simulator of VOD in Erlang language. The choice
of the language was made due to its support of actor model, simplicity of the
language, and support for distributed execution. A preliminary prototype of Reo
simulator specifically designed to be used in our case study is implemented in
Erlang. It still needs more work to fully cover Reo features in general case.

6 Discussion and Conclusion

In this paper, we defined a special type of actors named coordinators with their
behavior defined by Reo circuits. We used coordinators to handle variabilities
in a product line of actor systems. This keeps the variability handling logic

Using Coordinated Actors to Model Families of Distributed Systems 87

separate from the functionality of the components. An important point is that
coordinators are still actors, so we can use them in a distributed setting.

Using Reo to describe the behavior of actors has a number of consequences.
First, we benefit from the compositional characteristic of the model to reuse
parts of the variability handling mechanism. Another advantage of Reo is its
support for synchronized interactions. In actor modeling, we usually face with
the problem of synchronizing a number of activities. Even thought there exist
patterns for this, it still needs to be coded by the modeler and will clutter
the main functionality of the system, especially in the absence of language-
level abstractions for synchronization. However, as there are a several types of
synchronized channels in Reo, various patterns for synchronization can be coded
easily in the coordinators.

The BIP model [15] is another way to factor out interaction logic from a set of
heterogenous components, by introducing connectors supporting rendezvous and
broadcast synchronization patterns. BIP can be compared to our coordinated
actors model as a whole. We think Reo is a better choice for our model, as it
enables us to create and use various types of connectors in a rich, compositional
method covering BIP interaction patterns too.

An issue that may limit the applicability of our model is the fact that the
nature of Reo is not dynamic in the sense that channels can be added or re-
moved dynamically. This will make a problem when the actor system changes
its topology dynamically. The problem of reconfiguring a Reo circuit is studied
in [16] and [17] based on graph transformations and coloring semantics. Still,
we need proper language-level abstraction and parameterization mechanisms to
easily describe reconfiguration in response to a message. Extending the model to
support dynamic topology with an integrated precise formal model is a direction
in which our work can be improved.

Another related work is the Dreams framework [18] which offers a distributed
implementation of Reo using Scala actors. Although this work is not specifially
designed to address software product lines, the fact that the coordination can be
expressed in a single global Reo circuit, while executed in a distributed manner
enables compositional description of the coordination logic. This is currently a
weakness in our work, since having a number of different coordinators commu-
nicating through message passing we cannot benefit from the compositionality
of Reo in reasoning about the coordination logic.

References

1. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc. (2005)

2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

3. Kästner, C., Apel, S.: Integrating compositional and annotative approaches for
product line engineering. In: Proc. Modularization, Composition and Generative
Techniques for Product Line Engineering (McGPLE). University of Passau (2008)

88 R. Khosravi and H. Sabouri

4. Lee, J., Kang, K.C.: A feature-oriented approach to developing dynamically recon-
figurable products in product line engineering. In: Proc. of the 10th International
on Software Product Line Conference, pp. 131–140. IEEE Computer Society (2006)

5. Sabouri, H., Khosravi, R.: Reducing the model checking cost of product lines using
static analysis techniques. In: FACS (to appear, 2012)

6. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63(4), 385–410 (2004)

7. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Comp. Sci. 14, 329–366 (2004)

8. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability Mod-
elling in the ABS Language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204–224. Springer, Heidelberg (2011)

9. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci. 365(1-2), 23–66 (2006)

10. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented
Programming of Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

11. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Model-Checking Tool for
Families of Services. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011.
LNCS, vol. 6722, pp. 44–58. Springer, Heidelberg (2011)

12. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

13. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Sci. Comput. Program. 74(9), 688–701 (2009)

14. Bonsangue, M., Clarke, D., Silva, A.: Automata for Context-Dependent Con-
nectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS,
vol. 5521, pp. 184–203. Springer, Heidelberg (2009)

15. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
bip. In: Proc. of the Fourth IEEE Int. Conf. on Software Engineering and Formal
Methods, pp. 3–12. IEEE Computer Society (2006)

16. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigura-
tions in Reo using high-level replacement systems. Sci. Comput. Program., 23–36
(January 2011)

17. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of reo connectors
triggered by dataflow. ECEASST 10 (2008)

18. Proenca, J.: Synchronous Coordination of Distributed Components. PhD thesis,
Leiden University (2011)

Scoped Synchronization Constraints

for Large Scale Actor Systems

Peter Dinges and Gul Agha

Department of Computer Science
University of Illinois at Urbana–Champaign, USA

pdinges@acm.org, agha@illinois.edu

Abstract. Very large scale systems of autonomous concurrent objects
(Actors) require coordination models to meet two competing goals. On
the one hand, the coordination models must allow Actors to dynami-
cally modify protocols in order to adapt to requirement changes over the,
likely extensive, lifetime of the system. On the other hand, the coordina-
tion models must enforce protocols on potentially uncooperative Actors,
while preventing deadlocks caused by malicious or faulty Actors. To meet
these competing requirements, we introduce a novel, scoped semantics
for Synchronizers [7,6]—a coordination model based on declarative syn-
chronization constraints. The mechanism used to limit the scope of the
synchronization constraints is based on capabilities and works without
central authority. We show that the mechanism closes an attack vector
in the original Synchronizer approach which allowed malicious Actors to
intentionally deadlock other Actors.

1 Introduction

A well-understood lesson from the design of the Internet helps to build scalable
software systems: having autonomous, loosely coupled components avoids central
bottlenecks that limit system growth. However, another lesson taught by the
Internet is often neglected: every component in a large system cannot be trusted.
The principle that components cannot be trusted not only holds in systems that
execute other users’ code. Even if all components are under a central trusted
regimen, the probability of having a faulty or compromised component increases
with the system size.

Coordination models for large systems must therefore take into account that
components may be uncooperative or even malicious [14,12]. Consequently, co-
ordination protocols must be enforced to fulfill their guarantees. For example,
ignoring a replication protocol can result in inconsistent state of the participat-
ing databases. Furthermore, coordination models for large systems must support
dynamic adaptation. Restarting is rarely an option for large systems and the
specification of a system is likely to change over its lifetime. Naively addressing
these two requirements severely hampers the system’s stability: allowing faulty
components to impose protocols on all other components can easily result in a
deadlock.

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 89–103, 2012.
c© IFIP International Federation for Information Processing 2012

90 P. Dinges and G. Agha

The contribution of this article is a novel, scoped semantics for Synchro-
nizers [7,6] that is better adapted to the requirements of large scale systems.
Synchronizers are declarative synchronization constraints that model coordina-
tion by enforcing restrictions on the interaction patterns between components.
Following the capability approach to security—but with a twist— we propose
to limit the scope of synchronization constraints. The central idea behind our
approach is that synchronization constraints restrict not the targets, but the
sources of interactions. Thus, every component may install constraints on other
components, but the constraints will affect only interactions originating from
components for which the installing component holds the required capabilities.

Without these capabilities, malicious components cannot intentionally dead-
lock their acquaintances by imposing impossible constraints. Consequently, our
scoped semantics close this attack vector. Scoping also mitigates accidental dead-
locks of a component from interfering constraints because the scoping requires
the interfering constraints to hold overlapping capabilities. However, as we ex-
plain later, scoping cannot completely prevent accidental deadlocks.

The questions of constraint inheritance and implementation performance are
not addressed in this article. In both cases, however, we believe the new seman-
tics to maintain the characteristics of the conventional Synchronizer semantics,
meaning that it does not impose an extra burden.

In the remainder of this article, we briefly introduce Synchronizers (section 2),
discuss the challenges of coordination in large systems (section 3), and—from
this motivation—develop a scoping mechanism for Synchronizers to adapt them
to the requirements of large systems (section 4). Next, we provide the exact
semantics of our solution (section 5). The conclusion (section 7) follows after a
discussion of related work (section 6).

2 Synchronization Constraints

This section gives a brief overview of Synchronizers and their conventional se-
mantics [7,6]. The examples are taken from Frølund and Agha’s ECOOP’93
article [7]. The term Actor takes the place of the generic system component be-
cause Actors are precisely defined in their properties [2]: they are concurrently
executing mobile objects with perfectly encapsulated state that communicate
via asynchronous messages. Actors are autonomous by design; the scalability of
the Actor model to large systems is well established [10,15].

Synchronizers are declarative synchronization constraints that can be imposed
on groups of Actors. The constraints express under which conditions an Actor
is able to handle a message. Until the conditions are met, the message stays
in the Actor’s message queue. The constraints have a global effect and affect
all messages an Actor receives. Conceptually, a Synchronizer can be seen as a
special kind of Meta-Actor [11,21] that observes and limits the message dispatch
of other Actors. The conventional form of Synchronizers supports disabling and
atomicity constraints:

Scoped Synchronization Constraints for Large Scale Actor Systems 91

Fig. 1. Constraints Enforced by Conventional Synchronizers. Synchronizers support
(combinations of) atomicity and disabling constraints. Atomicity constraints ensure
that a set of messages is dispatched as a whole and without temporal (happened be-
fore [9]) ordering. Messages m and n satisfy the atomicity constraint together and are
therefore dispatched at their target Actors. Message p matches a disabling pattern in
the lower Synchronizer and therefore cannot be dispatched. Synchronizers can overlap.
If message n matched the same disabling pattern as message p, then the atomicity
constraint would have to remain unsatisfied, preventing the delivery of message m.
Message o matches no pattern and thus is unconstrained.

Under the conventional semantics, Sychronizers observe and control all messages an
Actor receives. The synchronization constraints therefore form a conceptual membrane
around every Actor in a constrained group. Despite Synchronizers being drawn as a sin-
gle membrane around the whole group, messages sent between two Actors coordinated
by the same Synchronizer still have to satisfy the synchronization constraints.

Disabling constraints prevent the constrained Actor from handling messages
that match a given pattern. For example, by disabling the handlers for all
but the initialization message, a disabling constraint ensures that an Actor
dispatches (starts to process) the initialization message before it dispatches
any other message.

Atomicity constraints coordinate groups of Actors by bundling messages into
indivisible sets. A constraint enforces that either all the messages in a set are
dispatched, or none of them are (there is no partial delivery). The constraint
provides spatial atomicity. An atomicity constraint can, for example, imple-
ment a simple online music payment scheme by fusing the deduct money
from credit card message with the enable download message.

Programmers declare Synchronizers as templates. Similar to classes or Actor be-
haviors, these templates are dynamically instantiated at run-time with concrete
values filled in for the parameters. Thus, Synchronizers can adapt the system to
meet new specifications during execution. Actors may install Synchronizers at
any of their acquaintances. Synchronizers can have local state that changes with
the observed messages. They may also overlap, that is, multiple Synchronizers
can constrain the same Actor. Figure 1 shows example effects of Synchroniz-
ers. In this article, we employ the abstract syntax of Frølund and Agha [7] for
Synchronizer declarations given in Figure 2.

92 P. Dinges and G. Agha

〈Synchronizer〉 ::= 〈Id〉 (〈List{Id}〉) { [init 〈Binding〉] 〈Relation〉 }
〈Relation〉 ::= 〈Pattern〉 updates 〈Binding〉

| 〈BExp〉 disables 〈Pattern〉
| atomic (〈List{Pattern}〉)

| 〈Pattern〉 stops

| 〈Relation〉 , 〈Relation〉
〈Pattern〉 ::= 〈Id〉 . 〈Id〉

| 〈Id〉 . 〈Id〉 (〈List{Id}〉)

| 〈Pattern〉 or 〈Pattern〉
| 〈Pattern〉 where 〈BExp〉

〈Binding〉 ::= 〈Id〉 := 〈Exp〉
| 〈Binding〉 ; 〈Binding〉

Fig. 2. Abstract Syntax for Synchronizer Declarations. Names in angle brackets denote
syntactic categories; 〈List{·}〉 stands for a comma-separated list of elements in the
given category. We assume the category of identifiers, 〈Id〉, to range over alpha-numeric
strings. The categories 〈Exp〉 and 〈BExp〉 denote expressions and Boolean expressions
respectively.

Relations define the constraints that a Synchronizer enforces. The patterns are
matched against observed messages: using the customary dot-syntax, the identifier
before a dot specifies the name of the target Actor (a variable holding an Actor address),
and the identifier after the dot specifies the message type. The list of identifiers in
parentheses is a list of variable names that get bound to the message arguments.

Variables have a unique binding for every observed message. Thus, using the same
variable in two different places means that the same value must appear in these places
for the pattern to match. All expressions are free of side-effects.

2.1 Example: Cooperating Resource Administrators

Consider a system that provides two kinds of resources for its users, for example
disk drives and optical drives. There are multiple instances of both drive types
and each of these resource kinds is governed by an administrating Actor that
limits the number of instances that can be used at the same time. Suppose that
the disks and optical drives are accessed over the same network connection. To
ensure that drive accesses stay within the bandwidth limit, the administrating
Actors have to restrict the total allocations made of both drive types.

The Synchronizer below implements the necessary coordination pattern using
disabling constraints. It stores the total number of allocated drives in the system
in an internal counter alloc. Observing requests and releases at the resource
administrators updates the counter (lines 5 and 6). When the maximum number
of drives has been requested, the Synchronizer disables the request handlers of
both administrators (line 4). Thus, neither administrator can process further
allocation requests. These pending requests can be processed only after one of
them releases a drive.

Scoped Synchronization Constraints for Large Scale Actor Systems 93

1 AllocationPolicy(adm1, adm2, max) {
2 init alloc := 0
3
4 alloc >= max disables (adm1.request or adm2.request)
5 (adm1.request or adm2.request) updates alloc := alloc + 1,
6 (adm1.release or adm2.release) updates alloc := alloc − 1
7 }

2.2 Example: Dining Philosophers

In the classic problem of the dining philosophers, a group of philosophers (pro-
cesses) must coordinate their behavior to access a number of chopsticks (re-
sources). Typically, five philosophers sit at a round table and a chopstick is placed
between each of them. Thus, there as many chopsticks as there are philosophers.
To eat (make progress), every philosopher must pick up both, the left and right
neighboring chopstick. Without coordination, for instance if every philosopher
starts picking up the left chopstick, the system can deadlock and philosophers
can starve.

Suppose philosophers and chopsticks are modeled as Actors, and chopsticks
implement an allocation policy such that pick messages can be dispatched only
if the chopstick is currently lying on the table (free). Philosophers can then use
atomicity constraints to prevent deadlocks. By ensuring that every philosopher’s
two pick requests are either dispatched together, or not at all, every philosopher
is guaranteed to always pick up both neighboring chopsticks—given that the con-
straints are installed following the neighborhood relation. Under certain fairness
assumptions about the implementation, this prevents the system from deadlock-
ing. A Synchronizer implementing this approach could look as follows:

1 PickUpConstraint(c1, c2, phil) {
2 atomic((c1.pick(sender) where sender = phil),
3 (c2.pick(sender) where sender = phil))
4 }

3 Coordination in Large Scale Systems

This section discusses the challenges of coordination in large scale Actor systems
and demonstrates the semantic problems of Synchronizers in this context.

3.1 Properties of Large Systems

Scalable coordination models must not only use additional resources efficiently,
but also address the inherent requirements of large systems:

94 P. Dinges and G. Agha

Support of dynamic reconfiguration and adaptation. Large systems, for
instance a cloud computing service, are expensive to reboot. Nevertheless,
the environment and specifications of the system are likely to change over the
system lifetime, for example when new services are introduced. A scalable
coordination model must therefore support dynamic adaptation.

Robustness against misbehaving Actors. The chance of having a faulty,
compromised, or malicious Actor in a system increases with the system size.
A scalable coordination model must therefore be able to cope with uncoop-
erative Actors and gracefully degrade in the presence of failures. It must also
guard its reconfiguration mechanisms against abuse.

The second requirement implies that, in general, Actors in large systems cannot
rely on the good intentions of other Actors. We therefore think of Actors as
being mutually suspicious, that is, they do not trust each other. Consequently,
Actors try to give others as little control over themselves as possible and follow
the principle of least authority [12]. In particular, Actors try to avoid making
their—eventual—progress in computation dependent on others.

3.2 Problems of Globally Scoped Constraints

Mutual suspicion conflicts with the global scope of synchronization constraints
defined in the conventional Synchronizer semantics [6]. Under these semantics,
Synchronizers observe and affect all messages a constrained Actor receives. Any
Actor may install Synchronizers on acquaintances, which opens the door to ma-
licious Actors causing intentional deadlocks on other Actors, effectively resulting
in a denial of service at the target.

For example, suppose that an Actor A can handle messages of type message1,
message2, and so on, up to messageN. A malicious Actor M can prevent A from
receiving any further messages by installing a Synchronizer that disables all
message handlers in A:

1 DisablingAttack(a) {
2 true disables (a.message1 or a.message2 or ... or a.messageN)
3 }

Similar problems arise from atomicity constraints. If M forces A to only dis-
patch messages in unison with an anonymous Actor that never receives any mes-
sages, then A will deny all service. A Synchronizer achieving this effect could
look as follows:

1 AtomicityAttack(a, anonymous) {
2 atomic((a.message1 or a.message2 or ... or a.messageN),
3 anonymous.message)
4 }

Malice is not the only source of problems. Even if the access to Synchronizer
installation is limited and only legitimate Actors may install Synchronizers, in-
compatible constraints may cause deadlocks. Consider the case where two in-
dependent Actors, originating in different libraries and unaware of each other,

Scoped Synchronization Constraints for Large Scale Actor Systems 95

impose the BigEndianConstraint and LittleEndianConstraint on a common acquain-
tance G. The argument of any enjoyEgg message sent to G is either big or little,
which prevents G from enjoying any of them.

1 BigEndianConstraint(a) {
2 endianness(e) != ”big” disables a.enjoyEgg(e)
3 }
4
5 LittleEndianConstraint(a) {
6 endianness(e) != ”little” disables a.enjoyEgg(e)
7 }

4 Scoped Constraints

The previous section demonstrated that allowing Synchronizers to constrain all
messages an Actor receives is problematic in large systems. In this section, we
introduce a scoping mechanism for synchronization constraints that restricts
their effects to a subset of messages. The exact semantics of this approach are
the topic of the next section.

The central idea behind our approach is that synchronization constraints re-
strict not the receivers, but the sources of messages. Consequently, a constraint
installed on Actor A by Actor I should not apply to all messages that A receives.
Instead, the constraints should only apply to messages received by A if they were
sent by Actors that are under control of I. Thus, the constraints should only
apply if the installing Actor I has the capability to impose constraints on the
sending Actors.

4.1 Synchronization-Capabilities

Synchronization constraints, and thus Synchronizers, therefore work in the op-
posite direction of object-capabilities [12]. Object-capability security is the nat-
ural security model of Actor systems. Its defining notion is that once an Actor
address—the capability for this Actor—is known, any message may be sent to it.
Access to services hence depends on the knowledge of Actor addresses; security
can be implemented through their careful distribution. The underlying assump-
tions are that addresses are unique across the system and cannot be guessed.
For Actors, the only ways of obtaining knowledge of other Actors’ addresses are
(1) initialization: the system starts with this knowledge distribution; (2) parent-
hood : creating a new Actor yields an address; and (3) introduction: addresses
are values and can be propagated inside messages.

In addition to object-capabilities, we introduce synchronization-capabilities
that determine the scope of synchronization constraints. Synchronizers can con-
strain messages only if they hold the synchronization-capability to the message
source. They receive their synchronization-capabilities from the installing Actor.
Figure 3 shows the scoping effects of synchronization-capabilities.

96 P. Dinges and G. Agha

Fig. 3. Constraints Enforced by Scoped Synchronizers. Scoped Sychronizers (dashed
frames) constrain only messages sent by Actors for which they hold the synchronization-
capability. These Actors are placed in the left part of the Synchronizer. Their sent
messages must satisfy the constraints before they can be dispatched at the recipients
(placed right). Since message u matches a disabling pattern of the lower Synchronizer,
it cannot be dispatched. However, the respective Synchronizer lacks control over the
sender of message v, so v can be dispatched despite having the same shape as u.

As with object-capabilities, we assume that synchronization-capabilities are
unique across the system and cannot be guessed. Their distribution follows sim-
ilar rules. Actors can obtain synchronization-capabilities through initialization
and introduction. However, the parenthood rule is transitive: creating a new Actor
yields a synchronization-capability for this Actor and all its children. The transi-
tivity of synchronization-capabilities prevents Actors from escaping synchroniza-
tion constraints by transferring their behavior to a new Actor, thereby changing
their identity. Synchronization-constraints hence grant control over families of
Actors, including future members whose identities are yet unknown.

The two types of capabilities are separate; a capability of one type cannot
be used in places that require the other. This separation allows Actors to send
messages to other, potentially untrusted Actors, without submitting to the syn-
chronization constraints of the recipient Actors. In contrast to the conventional
Synchronizer semantics, the semantics of scoped Synchronizers ensures that the
reply address contained inside a message can be used solely for communication.

4.2 Scoped Synchronization Constraints

With Synchronizers only constraining messages for which they hold the synchro-
nization-capabilities, it becomes unnecessary to restrict access to the Synchro-
nizer installation primitive. Any Actor may therefore install Synchronizers on
all its acquaintances. The imposed constraints will simply stay without effect for
most messages.

Synchronization-capabilities thus prevent the intentional deadlock scenarios
discussed in section 3. Revisiting the DisablingAttack and AtomicityAttack

Scoped Synchronization Constraints for Large Scale Actor Systems 97

Synchronizer examples, we see that with scoping the situation is similar to that
of the lower right Actor in Figure 3: unless the Synchronizers hold some rele-
vant synchronization-capability, all messages will remain unaffected—as is the
case for message v in the figure. Hence, the malicious installing Actor poses no
threat if none of the other Actor in the system supplies it with a synchronization-
capability. However, even in this case, the deadlock concerns only parts of the
system.

Synchronization-capabilities cannot completely prevent deadlocks that arise
from incompatible constraints as in the endian example. However, the scoping of
constraints mitigates the problem. If the Actors imposing the BigEndianConstraint

and LittleEndianConstraint on G possess disjoint synchronization-capabilities, then
each Actor’s constraints have no effects on messages from the other parts of the
system. Thus, accidental interference of constraints becomes less likely.

5 Semantics

This section describes in detail the semantics of the synchronization-capabilities
introduced in section 4. The semantics are defined in the context of a toy pro-
gramming language called IMPACT-S. While IMPACT-S embodies some design
choices, the general principles behind the design of scoped Synchronizers can be
easily extracted from its description.

IMPACT-S adds Actor primitives—message sending and Actor creation—
to IMP, a pedagogical example of an imperative language [22]. Furthermore,
it adds Synchronizers and synchronization-capabilities. We limit the discussion
of IMPACT-S’s semantics to the parts relevant to synchronization-capabilities
without the distracting bookkeeping and infrastructure necessary for complete
semantics. A technical report that is currently being prepared defines the formal
semantics of IMPACT-S in the K rewriting logic framework [18].

5.1 Synchronization-Capabilities

In section 4, we introduced synchronization-capabilities as scoping mechanism
for synchronization constraints: the idea is to let Synchronizers control only
those messages for whose sender they hold the synchronization-capability. Unlike
object-capabilities, synchronization-capabilities are transitive; granting control
over the messages sent by an Actor and all its children prevents Actors from
escaping their constraints by transferring their behavior and state to a new
Actor. Thus, the set of synchronization-constraints S is partially ordered by this
hierarchy of control. For S1, S2 ∈ S, write

controls(S1, S2) iff S1 = S2 or actor(S1) is an ancestor of actor(S2),

where actor(Si) denotes the Actor to which the capability Si belongs. An ActorA
is an ancestor of another Actor B if either A created B, or A created an ancestor
of B.

98 P. Dinges and G. Agha

5.2 Actor Creation

IMPACT-S implements the controls(·, ·) relation through prefix comparison. In-
ternally, synchronization-capabilities are lists of integers. The list for a new Actor
is derived by extending the creating Actor’s list with the count of child Actors
created thus far. Assuming that all lists are distinct when the system starts, this
method yields a unique list for every new Actor. Furthermore, the derivation of
new lists is distributed and works without communication.

To avoid the redundancy of having every Actor store its own synchronization-
capability, IMPACT-S gives Actor addresses—that is, object-capabilities—the
same integer-list representation. This way, every Actor has to store only one
list of integers that doubles as its address and synchronization-capability. When
used as values, the system keeps the two kinds of capabilities separate by tagging
the lists with addr and syncap labels.

Suppose an Actor with address addr(i1; . . . ; in) creates an Actor with behav-
ior B by executing

new B(a1, . . . , al),

a1, . . . al being the arguments to the behavior’s constructor. Let the new Ac-
tor be the k-th child. Then the new Actor’s address is addr(i1; . . . ; in; k), its
synchronization-capability is syncap(i1; . . . ; in; k). Using prefix comparison, we
clearly have

controls
(
syncap(i1; . . . ; in), syncap(i1; . . . ; in; k)

)
.

Since the capabilities are separate, both are returned to the creating Actor. Thus,
creating an Actor in IMPACT-S yields not only the address of the new Actor,
but a pair of capabilities.

5.3 Message Sending and Dispatching

Synchronization constraints determine whether a message can be dispatched
(processed) at the receiving Actor. Because communication is asynchronous, the
sending Actor cannot answer this question as the state of the recipient Actor
may change while the message is in transit. Synchronizers therefore reside at the
receiving Actors; they can be regarded as constraint servers that are queried by
the message dispatch mechanism. This remains true despite the scoping mech-
anism’s focus on message senders. The only change is that Synchronizers now
have to possess the right synchronization-capability to control a message.

An Actor’s scheduler can dispatch a message only if the message is not disabled
by a Synchronizer. The scheduler identifies applicable Synchronizers by matching
the message against the patterns declared by installed Synchronizers. The scoped
semantics requires not only that the pattern matches (as in conventional Syn-
chronizer semantics), but also that the Synchronizer’s synchronization-capability
SSync ∈ S gives it control over the message. Thus, for a message sent by an Actor
with synchronization-capability SAct ∈ S, the scheduler checks whether

controls(SSync, SAct).

Scoped Synchronization Constraints for Large Scale Actor Systems 99

To have all matching information available, messages in IMPACT-S are therefore
stamped with the sender’s synchronization-capability. Thus, the command

send m(a1, . . . , al) to r

executed at an Actor with address addr(i1; . . . ; in) creates a message

msg
(
r; syncap(i1; . . . ; in);m; a1; . . . ; an

)
.

For applicable Synchronizers, the dispatcher then queries whether the con-
straint is active. This happens synchronously; if communication with other dis-
patchers is necessary, as is the case with atomicity constraints, the dispatcher
employs a suitable protocol such as atomic two-phase commitment. The message
can be dispatched if

1. all disabling patterns allow dispatching the message;
2. any of the matching atomic patterns allows dispatching.

For both, disabling and atomic patterns, no match means that the message is
enabled.

5.4 Synchronizer State Updates

When a message is dispatched, all Synchronizers belonging to matching update
patterns receive a notice. This includes Synchronizers that lack the required
synchronization-capability. Making the dispatch of messages public guarantees
a consistent view on the system; it allows Synchronizers to take into account the
actions of the uncontrolled part of the environment.

For example, consider the cooperating resource administrators of
subsection 2.1. If the AllocationPolicy Synchronizer was blind to the requests and
release messages of some users, then it could not enforce the intended limit on
the total number of drive allocations on the users it controls.

However, a globally visible message dispatch is a trade-off. While it allows
a consistent view on the system, it enables malicious Actors to spy on other
Actors; see Figure 4.

6 Related Work

Actor-Based Coordination. Much of the prior work on Actor-based coordi-
nation models ignores the question of trust between Actors. The models either
assume cooperative behavior, trustworthy protocols, or—if dynamic reconfigu-
ration is supported—do not clearly specify who has access to coordination prim-
itives and how they are installed. These factors make them less suited for large
scale systems.

Like Synchronizers, regulated coordination policies [14] are declarative coor-
dination constraints for autonomous agents. However, the policies have a purely
local effect so that agents can be subject to multiple policies without interfer-
ence. Policies are enforced by trusted agents, which directly translate to proxy

100 P. Dinges and G. Agha

Fig. 4. Information Leak through Updates. Scoping only limits the constraining power of
Synchronizers. To guarantee a consistent view on the system, Synchronizers can observe
all messages that an Actor dispatches—regardless of the synchronization-capabilities
the Synchronizer holds. The Attacker Actor exploits this fact to gather information
about the Target Actor: First, the Attacker creates a Trampoline Actor and installs a
Synchronizer on the Target and the Trampoline. The Synchronizer disables the dispatch
of message x at the Trampoline until it observes message y at the Target. Then, the At-
tacker sends message x to the Trampoline. Once the Trampoline dispatches x, it bounces
a message back to the Attacker, providing the Attacker with the knowledge that the
Target dispatched message y.

Actors. The strict separation between policies prevents the modular composi-
tion supported by (scoped) Synchronizers, which allows, for instance, combining
allocation policies (subsection 2.1) for single chopsticks with the philosophers’
coordination policies (subsection 2.2).

The Directors coordination model [20] organizes Actors into trees. Messages
sent between two Actors are delivered to the closest common ancestor and have
to be forwarded by all Actors along the branch leading to the recipient. Actors
higher in the tree can therefore determine what messages Actors in their sub-tree
receive. Unlike Synchronizers, Directors do not support arbitrarily overlapping
constraints. Furthermore, the model does not provide semantics for dynamic
reconfiguration: Actors are inserted into the tree when they are constructed.

The middleware architectures proposed by Astley [3] and Sturman [19] display
problems similar to conventional Synchronizers. Using Meta-Actors [11,21] as
foundation, protocols in these frameworks have global effects, which leads to the
problems described in section 3.

In the Actor-Role-Coordinator (ARC) model [17], coordination is transparent
to base-level Actors; coordination tasks are divided into intra-role and inter-
role communication. While this hierarchical design provides load-balancing for
highly dynamic systems, the coordination structure itself is static. ARC systems
therefore avoid security issues through reconfiguration, but require a restart to
adapt to changing specifications.

Transactors [5] extend the Actor model with distributed checkpointing as
a method for coordination. The goals are fault-tolerance and consistency. In
contrast to the assumptions made in this article, Transactors rely on cooperation.

Tuple-Spaces. The anonymous communication provided by tuple-spaces [8]
has been proposed as a good fit for open agent systems: writing information

Scoped Synchronization Constraints for Large Scale Actor Systems 101

tuples on a conceptual global blackboard, agents can coordinate their behavior
without knowing each other. This raises robustness concerns in the presence of
faulty agents because any agent may remove any tuple from the space. Several
mixed static–dynamic [16,23] and dynamic solutions [13] mitigate the problem
by limiting the access to tuples. (See these articles for references to many more
approaches.)

A recurring goal of security policies in tuple-spaces is secure message passing.
The Actor model provides this primitive without the overhead of first sharing,
and then enforcing limits on tuples. A tuple-space can be implemented as an
Actor, or the Actor model can be extended to include group messaging [1]; if
global access to the space is desired, the name of the space can always be provided
to any Actor joining the system. The contributions of policy enforcement in
tuple-spaces directly apply to the implementation of these tuple-space Actors.
We therefore think that tuple-spaces are a valuable communication concept, but
are subsumed by the Actor model.

7 Conclusion

We proposed a novel, scoped semantics for Synchronizers that better meets the
requirements of coordination in large scale systems. We started with a brief
overview of Synchronizers, then demonstrated that the global scope of their
constraints allow malicious Actors to intentionally deadlock other Actors, and
resolved this challenge by introducing synchronization-capabilities—informally
and formally—as a scoping mechanism. While scoping cannot completely pre-
vent accidental deadlocks as sketched at the end of section 3, it still mitigates
the problem. The central idea behind our approach was that synchronization
constraints should only affect messages originating from Actors to which the
constraint-installing Actor holds the capabilities.

Future Work. Declarative synchronization constraints offer a powerful method
for describing coordination patterns. However, in their current form, Synchro-
nizers are limited in their expressiveness through their choice to offer but a
functional core consisting of two constraint types. An interesting opportunity
for future research is extending the selection of available constraints. For in-
stance, syntactic sugar like ordering constraints allows programmers to express
their intentions more naturally, and thus make less mistakes. Other concepts like
non-interleaving of message sequences cannot be expressed at all.

Another opportunity concerns the robustness of Synchronizers against net-
work partitions and crash failures. Augmenting the semantics with failure detec-
tors [4] appears to be a promising approach. A further interesting direction are
methods for handling the information leak discussed in subsection 5.4.

Finally, implementing Synchronizers in a modern Actor framework and con-
ducting a large case study would give interesting insights into the (programmer
and computational) performance of Synchronizers.

102 P. Dinges and G. Agha

Acknowledgments. The authors wish to thank Minas Charalambides, Juan
Fernando Mancilla Caceres, and the anonymous reviewers for their insightful
comments on earlier versions of this article.

This material is based on research sponsored by the Air Force Research Lab-
oratory and the Air Force Office of Scientific Research, under agreement num-
ber FA8750-11-2-0084. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References

1. Agha, G., Callsen, C.J.: ActorSpaces: An open distributed programming paradigm.
In: Proceedings of the 8th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 1993, pp. 23–32 (1993)

2. Agha, G.A.: ACTORS — A Model of Concurrent Computation in Distributed
Systems. MIT Press series in artificial intelligence. MIT Press (1986)

3. Astley, M., Agha, G.: Customizaton and compositon of distributed objects: Mid-
dleware abstractions for policy management. In: SIGSOFT FSE, pp. 1–9 (1998)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43, 225–267 (1996)

5. Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally
consistent distributed state in unreliable environments. In: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, pp. 195–208. ACM (2005)

6. Frølund, S.: Coordinating distributed objects - an actor-based approach to syn-
chronization. MIT Press (1996)

7. Frølund, S., Agha, G.: A Language Framework for Multi-Object Coordination. In:
Wang, J. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 346–360. Springer, Heidelberg
(1993)

8. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

10. Letuchy, E.: Facebook chat. Blog entry (May 2008),
http://www.facebook.com/note.php?note id=

14218138919&id=9445547199&index=9 (retrieved on September 25, 2011)
11. Meseguer, J., Talcott, C.: Semantic Models for Distributed Object Reflection. In:

Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

12. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control. PhD thesis, Johns Hopkins University (2006)

13. Minsky, N.H., Minsky, Y., Ungureanu, V.: Safe tuplespace-based coordination in
multiagent systems. Applied Artificial Intelligence 15(1), 11–33 (2001)

14. Minsky, N.H., Ungureanu, V.: Regulated Coordination in Open Distributed Sys-
tems. In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS,
vol. 1282, pp. 81–97. Springer, Heidelberg (1997)

15. Mok, W.: How twitter is scaling. Blog entry (June 2009),
https://waimingmok.wordpress.com/2009/06/27/how-twitter-is-scaling/

(retrieved on September 25, 2011)

http://www.facebook.com/note.php?note_id=14218138919&id=9445547199&index=9
http://www.facebook.com/note.php?note_id=14218138919&id=9445547199&index=9
https://waimingmok.wordpress.com/2009/06/27/how-twitter-is-scaling/

Scoped Synchronization Constraints for Large Scale Actor Systems 103

16. De Nicola, R., Gorla, D., Hansen, R.R., Nielson, F., Nielson, H.R., Probst, C.W.,
Pugliese, R.: From Flow Logic to Static Type Systems for Coordination Languages.
In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp.
100–116. Springer, Heidelberg (2008)

17. Ren, S., Yu, Y., Chen, N., Marth, K., Poirot, P.-E., Shen, L.: Actors, Roles and Co-
ordinators — A Coordination Model for Open Distributed and Embedded Systems.
In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038,
pp. 247–265. Springer, Heidelberg (2006)

18. Rosu, G., Serbanuta, T.-F.: An overview of the K semantic framework. J. Log.
Algebr. Program. 79(6), 397–434 (2010)

19. Sturman, D.: Modular Specification of Interaction Policies in Distributed Comput-
ing. PhD thesis, University of Illinois at Urbana-Champaign (1996)

20. Varela, C.A., Agha, G.: A Hierarchical Model for Coordination of Concurrent
Activities. In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS,
vol. 1594, pp. 166–182. Springer, Heidelberg (1999)

21. Venkatasubramanian, N., Talcott, C.L.: Reasoning about meta level activities in
open distributed systems. In: PODC, pp. 144–152 (1995)

22. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cam-
bridge (1993)

23. Yang, F., Aotani, T., Masuhara, H., Nielson, F., Nielson, H.R.: Combining Static
Analysis and Runtime Checking in Security Aspects for Distributed Tuple Spaces.
In: De Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721,
pp. 202–218. Springer, Heidelberg (2011)

First-Order Dynamic Logic for Compensable Processes�

Roberto Bruni1, Carla Ferreira2, and Anne Kersten Kauer3

1 Department of Computer Science, University of Pisa, Italy
2 CITI / Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Portugal
3 IMT Institute for Advanced Studies, Lucca, Italy

Abstract. Compensable programs offer a convenient paradigm to deal with long-
running transactions, because they offer a structured and modular approach to the
composition of distributed transactional activities, like services. The basic idea
is that each activity has its own compensation and that the compensable program
fixes the order of execution of such activities. The main problem is how to guaran-
tee that if one or even many faults occur then the compensations are properly ex-
ecuted so to reach a consistent configuration of the system. We propose a formal
model for such problems based on a concurrent extension of dynamic logic that
allows us to distill the hypothesis under which the correctness of compensable
programs can be ensured. The main result establishes that if basic activities have
a correct compensation we can show the correctness of any compound compens-
able program. Moreover, we can use dynamic logic to reason about behavioural
and transactional properties of programs.

1 Introduction

Recent years have witnessed a massive distribution of data and computation, especially
in the case of emerging paradigms like service-oriented computing and cloud comput-
ing. This has led to a breakthrough in the design of modern distributed applications,
which need to integrate heterogeneous and loosely coupled components or services.
When passing from coarse grain design to fine grain implementation, it is often the case
that certain groups of activities must be performed in a transactional (all-or-nothing)
fashion. However, many such transactions are long-lasting (weeks or even months),
which prevents classical lock mechanisms from ACID transactions to be applicable in
this setting. Instead, compensable long-running transactions seem to offer a more con-
venient approach, that deals well with distribution and heterogeneity: each activity is
assigned a compensation; if the activity succeeds, then the compensation is installed; if
the transaction ends successfully, then the installed compensations are discarded; if a
fault occurs within the run of the transaction, then the installed compensations are exe-
cuted (in the reverse order of installation) to compensate the fault and restore the system
to a consistent state. While traditional perfect roll-back mechanisms guarantee that the
initial state is exactly restored after a fault occurs, in compensable long-running trans-
actions this is not realistic: if a message has been sent it cannot just be held back and

� Research supported by the EU Integrated Project 257414 ASCENS, the Italian MIUR Project
IPODS (PRIN 2008).

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 104–121, 2012.
c© IFIP International Federation for Information Processing 2012

First-Order Dynamic Logic for Compensable Processes 105

maybe another message has to be sent for compensation. For example, late canceling
of a booking may require some fees to be paid.

Compensable workflows enjoy an intuitive and expressive graphical representation
that has become widely popular in areas such as business process modeling and service
orchestration. However, analysis and verification techniques require more work to be
done in the area of formal foundation and modeling of programs-with-compensations.

Starting from StAC [7] a number of other formalisms emerged, especially in the
area of process calculi, and some of them have been applied as semantic frameworks
of widely adopted standard technologies [21,18,13]. Such formalisms often employ
basic activities abstract in nature [6,8,2] (i.e. taken over an alphabet of labels) or are
based on message passing approaches for interaction [26,19,5,12]. Other approaches
focus only on a basic notion of reversibility [11,17]. Moreover, although some recent
proposals addressed the problem of compensation correctness [25,9], they miss a well-
established logic counterpart, to be used by analysts, designers and programmers to
prove some basic consistency properties of faulty systems after a compensation.

In this paper, we improve over existing literature on compensable workflows by
proposing a rigorously formalised concurrent programming language with compensa-
tions and developing a logical framework based on dynamic logic to investigate pro-
gram properties. The choice of extending dynamic logic is not incidental: we have
been inspired by the interesting literature using deontic logic for error handling [4,10].
The main novelties with respect to previous approaches is that we study concurrent
programs based on compensation pairs. At the semantic level, instead of interpreting
programs over pairs of states (initial and final), we take traces and make explicit the
presence of possible faults. A more detailed discussion of related work is given in Sec-
tions 2.1 and 2.2. The main result establishes some sufficient conditions under which a
compensable program is guaranteed to always restore a correct state after a fault.

Structure of the paper. In Section 2 we overview some background on logical for-
malisms for error handling, and more specifically about first-order dynamic logic that
we shall extend twice: in Section 3 to deal with concurrent programs and in Section 4
to deal with compensable (concurrent) programs. Our framework is detailed over a toy
running example. Some concluding remarks are discussed in Section 5 together with
related work and future directions of research.

2 First Order Dynamic Logic

In this section we recap the basic concepts of first order dynamic logic [14]. It was intro-
duced to reason directly about programs, using classical first order predicate logic and
modal logics combined with the algebra of regular events. In the second part we shall
briefly overview related work on the two main concepts for our extension of dynamic
logic, namely deontic formalisms for error handling and concurrency.

Let Σ = {f, g, . . . , p, q . . .} be a finite first-order vocabulary where f, g range over
Σ-function symbols and p, q over Σ-predicates. Each element of Σ has a fixed arity,
and we denote by Σn the subset of symbols with arity n > 0. Moreover let V =
{x0, x1, . . .} be a countable set of variables. Let Trm(V) = {t1, . . . , tn, . . .} be the set
of terms over the signature Σ with variables in V .

106 R. Bruni, C. Ferreira, and A. Kersten Kauer

Definition 1 (Activities). Let x1, · · · , xn ∈ V and t1, · · · , tn ∈ Trm(V). A basic
activity a ∈ Act(V) is a multiple assignment x1, · · · , xn := t1, · · · , tn.

As special cases, we write a single assignment as x := t ∈ Act(V) (with x ∈ V and
t ∈ Trm(V)) and the empty assignment for the inaction skip.

Example 1. We take an e-Store as our first example (see Fig. 1 for the complete pre-
sentation). Activity acceptOrder ∈ Act(V) is defined as a multiple assignment to vari-
ables stock and card such that acceptOrder � stock , card := stock − 1, unknown.
This activity decreases the items in stock by one (the item being sold is no longer avail-
able), and resets the current state of the credit card to unknown.

Basic activities can be combined in different ways. While it is possible to consider
while programs (with sequential composition, conditional statements and while loops),
we rely on the more common approach based on the so-called regular programs.

Definition 2 (Programs). A program α is any term generated by the grammar:

α, β ::= a | α ;β | α� β | α∗

A program is either: a basic activity a ∈ Act(V); the sequential composition α ;β; the
nondeterministic choice α� β; or the iteration α∗ for programs α and β.

To define the semantics of programs we introduce a computational domain.

Definition 3 (Computational Domain). Let Σ be a first-order vocabulary. A first-
order structure D = (D, I) is called the domain of computation such that: D is a
non-empty set, called the carrier, and I is a mapping assigning:

– to every n-ary function symbol f ∈ Σ a function f I : Dn → D;
– to every n-ary predicate p ∈ Σ a predicate pI : Dn → Bool .

A state is a function s : V → D that assigns to each variable an element of D. The set
of all states is denoted by State(V). As usual, we denote by s[x �→ v] the state s′ such
that s′(x) = v and s′(y) = s(y) for y �= x. Now we can extend the interpretation to
terms in a given state.

Definition 4 (Term Valuation). The valuation val of a term t ∈ Trm(V) in a state
s ∈ State(V) is defined by:

val(s, x) � s(x) if x ∈ V ; val (s, f(t1, . . . , tn)) � f I(val (s, t1), . . . , val (s, tn)).

Basic activities (and thus programs) are interpreted as relations on states. For basic
activities this means evaluating the assignments in the current state replacing the old
values of the variables.

Definition 5 (Interpretation of Activities). The valuation ρ ∈ 2State(V)×State(V) of
an activity a ∈ Act(V) is defined by:

ρ(a) � {(s, s′) | s′ = s[x1 �→val (s, t1), · · · , xn �→val(s, tn)]}
if activity a is defined by a multiple assignment x1, · · · , xn := t1, · · · , tn.

First-Order Dynamic Logic for Compensable Processes 107

Definition 6 (Interpretation of Programs). We extend the interpretation ρ of basic
activities to programs in the following manner:

ρ(α ;β) � {(s, r) | (s, w) ∈ ρ(α) ∧ (w, r) ∈ ρ(β)}
ρ(α� β) � ρ(α) ∪ ρ(β)

ρ(α∗) � ρ(α)∗

Sequential composition is defined using the composition of relations. The union is used
for nondeterministic choice. The iteration is defined as the choice of executing a pro-
gram zero or more times.

To reason about program correctness, first order dynamic logic relies on the follow-
ing syntax for logical formulas.

Definition 7 (Formulas). The set of formulas Fml(V) is defined by the following
grammar:

ϕ, ψ ::= p(t1, · · · , tn) | � | ⊥ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ |
∀x.ϕ | ∃x.ϕ | 〈α〉ϕ | [α]ϕ

for p ∈ Σn a predicate, t1, · · · tn ∈ Trm(V), x ∈ V and α ∈ Prog(V).

The notion of satisfaction for logic formulas is straightforward for first order operators.
The program possibility 〈α〉ϕ states that it is possible that after executing program α, ϕ
is true. The necessity operator is dual to the possibility. It is defined as [α]ϕ � ¬〈α〉¬ϕ
stating that it is necessary that after executing program α, ϕ is true.

Definition 8 (Formula Validity). The satisfiability of a formula ϕ in a state
s ∈ State(V) of a computational domain D = (D, I) is defined by:

s |= p(t1, . . . , tn) iff pI(val(s, t1), . . . , val(s, tn))
s |= � for all s ∈ S
s |= ¬ϕ iff not s |= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= ∀x.ϕ iff s[x �→ d] |= ϕ for all d ∈ D
s |= 〈α〉ϕ iff there is a state r such that (s, r) ∈ ρ(α) and r |= ϕ

A formula is valid in a domain D if it is satisfiable in all states over D, it is valid if it is
valid in all domains.

A valid formula for Ex. 1 would be stock > 0 → [acceptOrder]stock ≥ 0 (assuming
that the computational domain are the natural numbers).

Below we show how in previous approaches dynamic logic is either extended with
deontic formalisms or concurrency. Most of these approaches use propositional dy-
namic logic [15]. It is more abstract than first order dynamic logic. The interpretation
of basic activities is an abstract relation on states, often Kripke frames are used. Thus
there is no need for the valuation of terms and the computational domain. However it
does not allow for quantification in formulas.

108 R. Bruni, C. Ferreira, and A. Kersten Kauer

2.1 Deontic Formalisms for Error Handling

In this section we overview previous approaches that combine dynamic logic with de-
ontic logic [27] by introducing operators for permission, obligation and prohibition.
While the original deontic logic reasons on predicates, in combination with dynamic
logic these operators are applied to actions.

Meyer [20] proposed the use of a violation condition V that describes an undesirable
situation, so that the violation condition corresponds to validity of proposition V . The
prohibition operator is defined such that s |= Fα iff s |= [α]V , i.e., it is forbidden to
do α in s iff all executions of α terminate in a violation. Obligation and permission are
defined based on prohibition. The main problem with Meyer’s work is that dependency
between permission and prohibition raises paradoxes. Paradoxes of deontic logics are
valid logical formulas that go against common sense, e.g., Ross’ paradox states if a
letter ought to be sent, then a letter ought to be sent or burnt.

While Meyer focused on permission of states, Meyden [24] defined permission on
the possible executions of an action. He extended models for dynamic logic with a
relation P on states. An execution of an action α is permitted if every (internal) state
transition of α is in P . This implies that if an execution of an action is permitted also
each of its subactions must be permitted. This avoids, for example, Ross’ paradox.
Meyden’s definition of violation is however not very different from Meyer’s. As shown
in [3] there is a correspondence between the two definitions.

In [4] Broersen et al. define permission of an action as a proposition over states and
actions. Each model contains a valuation function that maps permission propositions
over atomic actions to sets of states. Contrary to the previous approaches permission is
in fact based on the action itself. For compound actions permission is defined in terms
of possible traces and its subactions. Broersen extends this approach in [3] including
also concurrency.

Castro and Maibaum [10] refine Broersen’s approach. Their definition of violation is
very similar, however actions can be combined differently. While previous approaches
focused on free choice and sequence for the combination of atomic actions, the authors
define the domain of actions as an atomic boolean algebra. Actions can be combined us-
ing choice, intersection (i.e. concurrency) and a locally restricted form of complement.
This allows them to show not only that their logic is sound and complete, but moreover
it is decidable and compact.

2.2 Concurrency

There are only a few approaches adding concurrency to dynamic logic. The first, con-
current dynamic logic [23], interprets programs as a collection of reachability pairs,
such that for each initial state it assigns a set of final states. In case of parallel composi-
tion the sets of final states are joined, while for choice the reachability pairs are joined.
In this approach the formula 〈α〉ϕ holds in states s such that a reachability pair (s, U)
for the interpretation of α exists and each state s′ ∈ U satisfies ϕ. In particular, the
axiom 〈α ∩ β〉ϕ ↔ 〈α〉ϕ ∧ 〈β〉ϕ is valid, i.e., actions are independent of each other.

For Broersen [3] this is an undesirable property. He considers only true concur-
rency, i.e. executing actions in parallel has a different effect than interleaving them. The

First-Order Dynamic Logic for Compensable Processes 109

interpretation uses the intersection for concurrency. Moreover he considers an open
concurrency interpretation, which is not applicable to first order dynamic logic (that
follows a closed action interpretation).

In [1] the authors define a dynamic logic for CCS where the interpretation of con-
currency is based on the labelled transition system of CCS. Thus concurrency is either
interpreted as interleaving or the so-called handshake of CCS. This is the first article
applying dynamic logic to a process calculus.

As we have seen, concurrency in dynamic logic is often interpreted as a simultaneous
execution. This interpretation is not suited for the kind of systems we want to model,
where concurrent programs describe activities that can be executed concurrently, or
even in parallel, but do not have to happen simultaneously. A possible approach would
be to only allow parallel composition of independent processes, i.e., processes that do
not interfere with each other. This requirement is quite strong and excludes most long
running transactional systems. In the area of transactional concurrency control, exten-
sive work has been done on the correctness criterion for the execution of parallel trans-
actions. Proposed criteria include, linearizability [16], serializability [22], etc. These
criteria are more realistic, since they allow some interference between concurrent trans-
actions. Therefore, for our interpretation of concurrency we used a notion of serializ-
ability (less restrictive than linearizability), stating that: the only acceptable interleaved
executions of activities from different transactions, are those that are equivalent to some
sequential execution. Serializability is presented formally in Def. 17.

3 Concurrent Programs

We will consider an extension of first-order dynamic logic. We keep the definitions
for the term algebra and variables from Section 2. Our definition of basic activities is
extended to take into account a validity formula.

Definition 9 (Basic Activities). A basic activity a ∈ Act(V) is a multiple assignment
together with a quantifier and program-free formula E(a) ∈ Fml(V) that specifies the
conditions under which activity a leads to an error state.

Formula (not) E(a) can be seen as a precondition of activity a: if formula E(a) holds
on state s, executing a will cause an error. We exploit E(a) to classify state transitions
as successful or failed, depending on whether the precondition holds or not on a given
state. We could use instead for each activity a an explicit set of error transitions or
error states, but those sets (either of error transitions or states) can be obtained from
formula E(a). Another point worth discussing is the use of E(a) as a precondition or
postcondition for activity a. Using E(a) as a precondition of a ensures erroneous state
transitions do not occur, leaving the system in a correct state (the last correct state before
the error). Whereas using E(a) as a postcondition of a, the state transition has to occur
to determine if E(a) holds. Note that the empty assignment skip is always successful.
Consider once more activity acceptOrder from Ex. 1. A possible error condition could
be E(acceptOrder) � stock ≤ 0, that checks if there are any items in stock.

The definition of concurrent programs uses standard dynamic operators, including
parallel composition and a test operator for a quantifier-free formula ϕ.

110 R. Bruni, C. Ferreira, and A. Kersten Kauer

Definition 10 (Concurrent Programs). The set Prog(V) of programs is defined by the
following grammar:

α, β ::= a | ϕ? | α ;β | α� β | α ‖ β | α∗

Let the computational domain be as in Def. 3, as well as the valuation of terms as in
Def. 4. The interpretation of basic activities (and thus programs) differs from the usual
interpretation of dynamic logic. First we distinguish between activities that succeed or
fail. Second we use traces instead of the relation on states. This is due to the combination
of possible failing executions and nondeterminism. We will explain this further when
introducing the interpretation of concurrent programs.

Definition 11 (Traces). A trace τ is defined as a sequence of sets of triples [[�]] where
� ∈ {a,−a, ϕ?} (a ∈ Act(V) a multiple assignment x1, · · · , xn := t1, · · · , tn, ϕ ∈
Fml(V) a quantifier-free formula) and

[[a]] � {s a s′ | s′ = s[x1 �→val(s, t1), · · · , xn �→val (s, tn)] ∧ s |= ¬E(a)}
[[−a]] � {s a s | s |= E(a)}
[[ϕ?]] � {s ϕ? s | s |= ϕ}.

We will use [[]] for the singleton containing the empty (but defined) trace; when com-
bined with another trace it acts like the identity. Moreover we use the notation [[�.τ]] =
[[�]][[τ]] for traces with length ≥ 1. Note that if [[�]] = ∅ the trace is not defined. When
composing traces there is no restriction whether adjoining states have to match or not.
The system is in general considered to be open, i.e., even within one trace between two
actions there might be something happening in parallel changing the state. When we
build the closure of the system traces that do not match are discarded.

A closed trace is a trace where adjoining states match. We define a predicate closed
on traces such that closed(s � s′) = � and closed(s � s′.τ) = closed(τ) ∧ (s′ =
first(τ)). For closed traces we can define functions first and last that return the first
and the last state of the trace.

Definition 12 (Interpretation of Basic Activities). The valuation ρ of an activity a ∈
Act(V) is defined by:

ρ(a) � [[a]] ∪ [[−a]]

With this semantic model an activity a may have ”good” (committed) or ”bad” (failed)
traces, depending on whether the initial state satisfies E(a) or not. As it is clear from
the interpretation of basic activities, a precondition violation forbids the execution of
an activity. Therefore failed transitions do not cause a state change.

Example 2. Take activity acceptOrder from Ex. 1 and its error formula
E(acceptOrder). In this setting, we have that

[[acceptOrder]] � {s acceptOrder s′ | s′ = s[stock
→s(stock)−1, card
→unknown] ∧
s |= stock>0}

[[−acceptOrder]] � {s acceptOrder s | s |= stock ≤ 0}

First-Order Dynamic Logic for Compensable Processes 111

As we mentioned for basic activities, we use traces instead of a state relation for the
interpretation of programs. To illustrate this decision consider the behaviour of a com-
pensable program. If it is successful the complete program will be executed. If it fails
the program is aborted and the installed compensations will be executed. Thus we need
to distinguish between successful and failing executions. Hence we need to extend the
error formula E. But extending E to programs does not suffice as programs introduce
nondeterminism, i.e., a program with choice may both succeed and fail in the same
state. Using E for programs would however only tell us that the program might fail, not
which execution actually does fail. For a trace we can state whether this execution fails
or not.

Definition 13 (Error Formulas of Traces). We lift error formulas from activities to
traces τ by letting E(τ) being inductively defined as:

E([[]]) � ⊥ E([[a]]τ) � E(τ) E([[ϕ?]]τ) � E(τ) E([[−a]]τ) � �
We exploit error formulas for defining the sequential composition ◦ of traces. If the
first trace raises an error, the execution is aborted and thus not combined with the sec-
ond trace. If the first trace succeeds sequential composition is defined as usual, i.e. we
append the second trace to the first trace.

τα ◦ τβ �
{
τα if E(τα)

τα τβ if ¬E(τα)

Abusing the notation we use the same symbol ◦ to compose sets of traces.
Next, to build the trace for parallel composition of two basic programs we would

consider the interleaving of any combination of traces:

[[]] ‖ τ2 � {τ2} [[�1]]τ1 ‖ [[�2]]τ2 � {[[�1]]τ | τ ∈ (τ1 ‖ [[�2]]τ2)}
τ1 ‖ [[]] � {τ1} ∪ {[[�2]]τ | τ ∈ ([[�1]]τ1 ‖ τ2)}

Now we can define the interpretation of concurrent programs:

Definition 14 (Interpretation of Concurrent Programs). We extend the interpreta-
tion ρ from basic activities to concurrent programs in the following manner:

ρ(ϕ?) � [[ϕ?]]

ρ(α ;β) � {τα ◦ τβ | τα ∈ ρ(α) ∧ τβ ∈ ρ(β)}
ρ(α� β) � ρ(α) ∪ ρ(β)

ρ(α ‖ β) � {τ | τα ∈ ρ(α) ∧ τβ ∈ ρ(β) ∧ τ ∈ τα ‖ τβ}
ρ(α∗) � [[]] ∪ ρ(α) ◦ ρ(α∗)

Test ϕ? is interpreted as the identity trace for the states that satisfy formula ϕ. The
interpretation of sequential programs is the sequential composition of traces. Failed
transitions are preserved in the resulting set as executions of α that have reached an
erroneous state and cannot evolve. Choice is interpreted as the union of trace sets of
programs α and β. The interpretation of parallel composition is the set of all possible
interleavings of the traces for both branches. Iteration is defined recursively (by taking
the least fixpoint).

112 R. Bruni, C. Ferreira, and A. Kersten Kauer

eStore � acceptOrder ; ((acceptCard � rejectCard ; throw) ‖ bookCourier)

aO � stock , card := stock − 1, unknown E(aO) � stock ≤ 0
aC � card := accepted E(aC) � false
rC � card := rejected E(rC) � false
bC � courier := booked E(bC) � card = rejected
throw � skip E(throw) � true

ρ(aO ; ((aC� rC ; throw) ‖ bC)) =
[[aO.aC.bC]] ∪ [[aO.bC.aC]] ∪
[[aO.aC.− bC]] ∪ [[aO.− bC.aC]] ∪
[[aO.rC.− throw .bC]] ∪ [[aO.bC.rC.− throw]] ∪ [[aO.rC.bC.− throw]] ∪
[[aO.rC.− throw .− bC]] ∪ [[aO.− bC.rC.− throw]] ∪ [[aO.rC.− bC.− throw]] ∪ [[−aO]]

Fig. 1. eStore example

To build the closure of the system, i.e., a program α, we define the set of all closed
traces for α such that closure(α) � {τ | τ ∈ ρ(α) ∧ closed(τ)}.

Next we show in an example the application of Definition 14. Take program eStore
defined as in Fig. 1. Note that we abbreviate activities using initials, e.g., we write aO for
acceptOrder . This program describes a simple online shop and it starts with an activity
that removes from the stock the ordered items. Since for most orders the credit cards are
not rejected, and to decrease the delivery time, the client’s card processing and courier
booking can be done in parallel. In this example, the activities running in parallel may
interfere with each other as bookCourier will fail once the card is rejected. As the order
of the execution for the parallel composition is not fixed after rejecting the credit card
we issue a throw (defined as the empty assignment that always fails). In the interpreta-
tion of program eStore we can first distinguish the traces where acceptOrder succeeds
and where it fails. In the latter case no other action is executable. In the successful case
the parallel composition is executed where both branches may succeed or fail and we in-
clude any possible interleaving. Note that the traces [[−aC]], [[−rC]] and [[throw]] are not
defined, as their condition is not satisfied by any possible state. Building the closure for
these traces we can rule out some possibilities, namely [[aO.aC.− bC]], [[aO.− bC.aC]],
[[aO.rC.− throw .bC]] and [[aO.rC.bC.− throw]] and [[aO.− bC.rC.− throw]] would be
excluded. A possible closed trace would be

closed(s aO s′ . s′aC r . rbC s′′

| s′ = s[stock
→ s(stock)− 1, card
→ unknown] ∧ r = s′[card
→ accepted]
∧s′′ = r[courier
→ booked] ∧ s |= stock > 0 ∧ r |= ¬card = rejected)

For formulas we include two modal operators related to program success where success
of a program is interpreted as not reaching an erroneous state. The modal operator
success S(α) states that every way of executing α is successful, so program α must
never reach an erroneous state. The modal operator weak success SW(α) states that
some way of executing α is successful. The failure modal operator F(α) is a derived
operator, F(α) = ¬SW(α), and states that every way of executing α fails. Notice that
both weak success and program possibility ensure program termination, while success
and program necessity do not.

Definition 15 (Formulas). The set of formulas Fml(V) is defined by the grammar:

First-Order Dynamic Logic for Compensable Processes 113

ϕ, ψ ::= p(t1, · · · , tn) | � | ⊥ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ |
∀x.ϕ | ∃x.ϕ | 〈α〉ϕ | [α]ϕ | S(α) | SW(α) | F(α)

for p ∈ Σn a predicate, t1, · · · tn ∈ Trm(V), x ∈ V and α ∈ Prog(V).

Definition 16 (Formula Validity). The validity of a formula ϕ in a state s ∈ State(V)
of a computational domain D = (D, I) is defined by:

s |= p(t1, . . . , tn) iff pI(val (s, t1), . . . , val(s, tn))
s |= � for all s ∈ S
s |= ¬ϕ iff not s |= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= ∀x.ϕ iff s[x �→ d] |= ϕ for all d ∈ D
s |= 〈α〉ϕ iff ∃ τ ∈ closure(α) such that first(τ) = s ∧ last(τ) |= ϕ
s |= S(α) iff for all τ ∈ closure(α), first(τ) = s implies ¬E(τ)
s |= SW(α) iff ∃ τ ∈ closure(α) such that first(τ) = s and ¬E(τ)
s |= F(α) iff s |= ¬SW(α)

The new modal operators for success and failure are defined according to the description
given above. Considering Fig. 1 a possible formula would be F(acceptOrder), that is
only satisfiable in some states. However stock ≤ 0 → F(acceptOrder) is a valid
formula for any state.

As it was discussed in Section 2, we want an interpretation of concurrency where
concurrent activities do not have to happen simultaneously. For example, packing the
items in a client’s order and booking a courier to deliver that same order are independent
activities that can be run in parallel. If, contrary to the example just mentioned, parallel
activities are not independent then concurrency becomes more complex: as activities
may interfere with each other, this may lead to unexpected results. In this work parallel
composition is not restricted to independent programs (such that the set of variables
updated and read by those programs is disjoint), however without any restriction the
logic is too liberal to state any properties. Instead we use a notion of serializability
(Def. 17). We will use the abbreviation τ �� τ ′ for traces τ and τ ′ denoting

τ �� τ ′ � closed(τ) ∧ closed(τ ′) ∧ first(τ) = first(τ ′) ∧ last(τ) = last(τ ′)

Definition 17 (Serializable Concurrent Programs). Processes α and β are serializ-
able if for every trace τ ∈ closure(α ‖ β) there exist ν ∈ ρ(α) and μ ∈ ρ(β) such that
either τ �� (νμ) or τ �� (μν).

Note that serializability is defined as an implication, as the equivalence cannot be en-
sured. The fact that activities may be executed independently does not ensure, in the
presence of interference, that those activities may be executed concurrently.

We show some useful logical equivalences involving the novel modal operators. We
are particularly considering their interplay with parallel composition.

Proposition 1. Let α, β be two serializable programs. The following are valid formulas
in the presented dynamic logic:

〈α〉〈β〉ϕ ∨ 〈β〉〈α〉ϕ ↔ 〈α ‖ β〉ϕ S(α ;β� β ;α) ↔ S(α ‖ β)
SW(α ;β) ∨ SW(β ;α) ↔ SW(α ‖ β) F(α ;β) ∧ F(β ;α) ↔ F(α ‖ β)

114 R. Bruni, C. Ferreira, and A. Kersten Kauer

4 Compensable Programs

This section defines compensable programs, where the basic building block is the com-
pensation pair. A compensation pair a ÷ a is composed by two activities, such that if
the execution of the first activity is successful, compensation a is stored. Otherwise,
if activity a fails, no compensation is stored. Compensation pairs can be composed
using similar operators as for basic programs. The transaction operator {[·]} converts
a compensable program into a basic program by discarding stored compensations for
successful executions and running compensations for failed executions.

Definition 18 (Compensable Programs). The set Cmp(V) of compensable programs
is defined by the following grammar (for a, a ∈ Act(V)):

α ::= . . . | {[δ]}
δ, γ ::= a÷ a | δ ; γ | δ� γ | δ ‖ γ | δ∗

In order to ensure the overall correctness of a compensable program, the backward pro-
gram of a compensation pair a÷ a must satisfy a condition: a must successfully revert
all forward actions of activity a. In the following we do not require that a exactly un-
does all assignments of a and thus revert the state to the exact initial state of a. Instead,
we require that it performs some compensation actions that lead to a ”sufficiently” sim-
ilar state. The way to determine if two states are similar depends on the system under
modeling, so we do not enforce any rigid definition. Still, we propose a concrete notion
that may characterize a widely applicable criterion of correctness (but other proposals
may be valid as well).

The notion we give is parametric w.r.t. a set of variables whose content we wish to
monitor.

Definition 19. Let X be a set of integer variables. We call s\Xs′ the distance over
X between two states, i.e., the set of changes occurred over the variables in X , when
moving from s to s′. Formally, we define (s\Xs′)(x) = s′(x) − s(x) for any x ∈ X
(and let (s\Xs′)(x) = 0 otherwise).

For an empty trace the distance is null, the same holds for s\Xs.

Definition 20 (Correct Compensation Pair). Let X be a set of integer variables. Ac-
tivity a ∈ Act(V) is a correct compensation over X of a iff for all traces s a s′ ∈ ρ(a)
with s |= ¬E(a), then for all t′ a t ∈ ρ(a) we have t′ |= ¬E(a) and s\Xs′ = t\Xt′.

Example 3. For most hotels the cancellation of a booking requires the payment of a
cancellation fee. This can be modeled by a compensation pair bookHotel÷cancelHotel ,
where forward activity bookHotel books a room and sets the amount to be paid, while
the compensation cancelHotel cancels the reservation and charges the cancellation fee.

bookHotel � rooms , price , fee := rooms − 1, 140$, 20$

cancelHotel � rooms , price , fee := rooms + 1, fee, 0$

In this example cancelHotel does not completely revert all of bookHotel actions, and
in fact it is likely that room cancelation imposes some fees. However, if we are only

First-Order Dynamic Logic for Compensable Processes 115

interested in the consistency of the overall number of available rooms, we can take
X = {rooms} and consider s\Xs′ as a measure of distance. The idea is that a correct
compensation should restore as available the rooms that were booked but later canceled.

In Definition 21 each compensable program is interpreted as a set of pairs of traces,
where the first element is a trace of the forward program, while the second element is
a trace that compensates the actions of its forward program. Compensation pairs are
interpreted as the union of two sets. The first set represents the successful traces of
forward activity a, paired with the traces of compensation activity a. The second set
represents the failed traces, paired with the empty trace as its compensation. Sequen-
tial composition of compensable programs δ ; γ is interpreted by two sets, one where
the successful termination of δ allows the execution of γ, the other where δ fails and
therefore γ cannot be executed. As for the compensations of a sequential program, their
traces are composed in the reverse order of their forward programs.

The interpretation of a transaction includes two sets: the first set discards compens-
able traces for all successful traces; while the second set deals with failed traces by
composing the correspondent compensation trace with each failed trace. Notice that for
this trace composition to be defined, it is necessary to clear any faulty activities in the
failed forward trace. Therefore, in defining the interpretation of a transaction {[δ]}, we
exploit a function cl that clears failing activities from a run:

cl([[]]) � [[]] cl([[�]]τ) �
{
[[E(a)?]] cl(τ) if � = −a

[[�]] cl(τ) otherwise

where E(a)? is the test for the error formula of activity a. It is always defined in s as
activity a only aborts if s |= E(a), thus it is in general like a skip. In fact, if τ is faulty
but successfully compensated by τ , then we want to exhibit an overall non faulty run, so
that we cannot just take τ ◦ τ (if E(τ) then obviously E(τ ◦ τ)). The following lemma
states that cl does not alter the first nor the last state of a trace:

Lemma 1. For any τ : ¬E(cl(τ)), first(τ) = first(cl(τ)) and last(τ) = last(cl(τ)).

Definition 21 (Interpretation of Compensable Programs). Now we can define the
interpretation ρc of compensable programs in the following manner:

ρc(a÷ a) � {(τ, τ) | τ ∈ ρ(a) ∧ τ ∈ ρ(a) ∧ ¬E(τ)} ∪
{(τ, [[]]) | τ ∈ ρ(a) ∧ E(τ)}

ρc(δ� γ) � ρc(δ) ∪ ρc(γ)

ρc(δ ; γ) � {(τ ◦ ν, ν ◦ τ) | (τ, τ) ∈ ρc(δ) ∧ (ν, ν) ∈ ρc(γ) ∧ ¬E(τ)} ∪
{(τ, τ) | (τ, τ) ∈ ρc(δ) ∧ E(τ)}

ρc(δ ‖ γ) � {(τ, τ) | (ν, ν) ∈ ρc(δ) ∧ (μ, μ) ∈ ρc(γ) ∧ τ ∈ ν ‖ μ ∧ τ ∈ ν ‖ μ}
ρc(δ

∗) � {([[]], [[]])} ∪ ρc(δ ; δ
∗)

ρ({[δ]}) � {τ | (τ, τ) ∈ ρc(δ) ∧ ¬E(τ)} ∪
{cl(τ) ◦ τ | (τ, τ) ∈ ρc(δ) ∧ E(τ)}

In Fig. 2 we present a compensable program that specifies a hotel booking system. In
this example the activity bookHotel updates several variables: it decreases the rooms

116 R. Bruni, C. Ferreira, and A. Kersten Kauer

HotelBooking � bookHotel÷cancelHotel ;
(acceptBooking÷skip � cancelBooking÷skip ; throw÷skip))

bH � rooms , status , price , fee := rooms − 1, booked , 140$, 20$ E(bH) � rooms ≤ 0

cH � rooms , price, fee := rooms + 1, fee, 0$ E(cH) � false

aB � status := confirmed E(aB) � false

cB � status := cancelled E(cB) � false

ρc(bH÷cH ; (aB÷skip � cB÷skip ; throw÷skip))

= ([[bH.aB]], [[skip.cH]]) ∪ ([[bH.cB.− throw]], [[skip.cH]]) ∪ ([[−bH]], [[]])

Fig. 2. HotelBooking example

HotelTransactions � {[HotelBooking1]} ‖ {[HotelBooking2]}
ρ({[HotelBooking]}) = [[bH.aB]] ∪ [[bH.cB.E(throw)?.skip.cH]] ∪ [[E(bH)?]]

ρ(HotelTransactions)
= [[bH1.aB1]] ‖ [[bH2.aB2]] ∪ [[E(bH1)?]] ‖ [[E(bH2)?]]

∪ [[bH1.cB1.E(throw 1)?.skip1.cH1]] ‖ [[bH2.cB2.E(throw2)?.skip2.cH2]]

∪ [[bH1.aB1]] ‖ [[bH2.cB2.E(throw2)?.skip2.cH2]]

∪ [[bH1.cB1.E(throw 1)?.skip1.cH1]] ‖ [[bH2.aB2]]

∪ [[E(bH1)?]] ‖ [[bH2.cB2.E(throw2)?.skip2.cH2]]

∪ [[bH1.cB1.E(throw 1)?.skip1.cH1]] ‖ [[E(bH2)?]]

∪ [[bH1.aB1]] ‖ [[E(bH2)?]] ∪ [[E(bH1)?]] ‖ [[bH2.aB2]]

Fig. 3. HotelTransactions example

available, sets the booking status to booked , while the price and cancellation fee are
set to predefined values. Next, there is a choice between confirming or canceling the
booking. These last two activities do not have a compensation, represented by defin-
ing compensation as skip. After cancelBooking the process is aborted by executing
throw . Regarding the interpretation of HotelBooking , each forward run is paired with
a compensation trace that reverts all its successfully terminated activities. For example,
the first pair of traces represents a successful execution, where after booking a room
the client accepts that reservation. In this case the stored compensation reverts both
the acceptance of the booking and the booking it self. Note that as in Example 3, the
compensation activity cancelHotel does not revert completely its main activity: it re-
verts the room booking, charges the cancellation fee, and it leaves the booking status
unchanged.

Fig. 3 shows the parallel composition of two HotelBooking transactions (the sub-
scripts are used only to distinguish activities from different transactions). The set of all
possible interleaving is quite large, even after discarding traces that are not satisfied by
any possible state. An example of a trace to be discarded is [[E(bH1)?.bH2.aB2]], as
E(bH1) is true in a state s such that s |= rooms ≤ 0 and in that case [[bH2.aB2]] could
not be executed.

First-Order Dynamic Logic for Compensable Processes 117

The program of Fig. 3 shows how the interleaved execution of processes may lead to
interferences. Consider θ1 = [[bH1.cB1.E(throw1)?.skip1.cH1]] that describes traces
where the booking succeeds and is later canceled by the client, and θ2 = [[E(bH2)?]]
that describes traces where no rooms are available and therefore no activity can be
executed. Take the interleaving of traces of θ1 and θ2 on an initial state s such that
s |= rooms = 1. In this setting, θ1 has to be executed first and consequently ac-
tivity bH1 books the last room available. There is no serial execution of θ1 and θ2
(these sets of traces cannot be sequentially composed), since after the execution of a
trace of θ1 activity bH2 should succeed (the last room becomes available again af-
ter the execution of cB1). However, the following interleaved execution is possible
[[bH1.E(bH2)?.cB1.E(throw1)?.skip1.cH1]], because when bH2 is executed there are
no rooms available. This shows that HotelTransactions is not serializable, since some
interleaved traces do not correspond to a serial execution.

The aim of compensable programs is that the overall recoverability of a system can
be achieved through the definition of local recovery actions. As the system evolves,
those local compensation actions are dynamically composed into a program that reverts
all actions performed until then. Therefore, it is uttermost important that the dynami-
cally built compensation trace does indeed revert the current state to the initial state.
Next, we define the notion of a correct compensable program, where any failed forward
trace can be compensated to a state equivalent to the initial state.

Definition 22 (Correct Compensable Program). Let X be a set of integer variables.
A compensable program δ has a correct compensation over X if for all pairs of traces
(τ, τ) ∈ ρc(δ), if closed(τ) and closed(τ) then first(τ)\X last(τ)= last(τ)\Xfirst(τ).

Serializability is extended from basic programs to compensable programs:

Definition 23 (Serializable compensable parallel programs). Compensable
programs δ and γ are serializable if for all (τ, τ) ∈ ρc(δ ‖ γ) with closed(τ) and
closed(τ) there exist (ν, ν) ∈ ρc(δ) and (μ, μ) ∈ ρc(γ) such that the following holds:
Either τ �� (νμ) or τ �� (μν) and either τ �� (ν μ) or τ �� (μ ν).

The following theorem shows the soundness of our language, since it proves that com-
pensation correctness is ensured by construction: the composition of correct compens-
able programs results in a correct compensable program.

Theorem 1. Let X be a set of integer variables and δ a serializable compensable pro-
gram where every compensation pair is correct over X , then δ is correct over X .

As in general serializability is hard to prove we suggest the simpler definition of apart-
ness. If the set of variables updated and consulted by two programs are disjoint, those
programs can be concurrently executed since they do not interfere with each other (a
similar approach was taken in [9]). Two compensable programs δ and γ are apart if they
do not update or read overlapping variables, then δ and γ can be executed concurrently
and their resulting traces can be merged. The final state of a concurrent execution of
apart programs can be understood as a join of the resulting states of each program.

Formulas for basic programs can be easily extended to compensable programs as
they can be applied to the forward program and stored compensations can be ignored.

118 R. Bruni, C. Ferreira, and A. Kersten Kauer

The modal operator C(δ) states that every failure of δ is compensable. A weak com-
pensable operator CW(δ) states that some failures of δ are compensable.

We extend the notion of closed traces from basic to compensable programs as

closure(δ) � {(τ, τ) | (τ, τ) ∈ ρc(δ) ∧ closed(τ) ∧ closed(τ)}.
Definition 24 (Formula Validity). We extend Definition 16 with the new modal oper-
ators for compensable programs.
s |= 〈δ〉ϕ iff ∃ (τ, τ) ∈ closure(δ) such that first(τ) = s ∧ last(τ) |= ϕ
s |= S(δ) iff for all traces (τ, τ) ∈ closure(δ) if first(τ) = s then ¬E(τ)
s |= SW(δ) iff ∃(τ, τ) ∈ closure(δ) such that first(τ) = s and ¬E(τ)
s |= F(δ) iff s |= ¬SW(δ)
s |= C(δ,X) iff for all traces (τ, τ) ∈ closure(δ) if E(τ) and first(τ) = s

then first(τ)\X last(τ) = last(τ)\Xfirst(τ)
s |= CW(δ,X) iff ∃(τ, τ) ∈ closure(δ) such that E(τ) and first(τ) = s

and first(τ)\X last(τ) = last(τ)\Xfirst(τ)

Considering Fig. 2 a possible formula is 〈HotelBooking 〉status = confirmed . More-
over we can prove C(HotelBooking , {rooms}) for any state.

Proposition 2. Let δ, γ be two compensable programs that are apart. The following are
valid formulas in the presented dynamic logic:

C(δ ‖ γ,X) ↔ C(δ,X) ∧ C(γ,X) CW(δ ‖ γ,X) → CW(δ,X) ∨ CW(γ,X)

5 Conclusion

In this paper we have introduced a rigorous language of compensable concurrent pro-
grams together with a dynamic logic for reasoning about compensation correctness and
verification of behavioral properties of compensable programs. In this sense we go one
step further of the approach in [25,9], where the formulas were mainly concerned with
the temporal order of execution of actions in a message-passing calculus with dynamic
installation of compensation, by allowing to express properties about the adequacy of
the state restored by the compensation after a fault occurred. As detailed in Sections 2.1
and 2.2, our dynamic logic differs from previous proposal for the way in which con-
currency is handled and for dealing with compensations. The works presented in [8,9]
study the soundness of a compensating calculus by formalizing a notion of compen-
sation correctness, which we also address in Theorem 1, but do not tackle the subject
of verification of behavioral properties for compensable programs. Furthermore, even
though compensation correctness is ensured by construction, our logic allows the veri-
fication of strong and weak correctness (through a formula) for compensable programs
that contain some compensation pairs that are not correct.

Our research programme leaves as ongoing work the development of a suitable com-
putational model and corresponding logic for allowing a quantitative measure of cor-
rectness, so that different kinds of compensations can be distinguished (and the best
can be selected) depending on their ability to restore a more satisfactory state than the
others can do. Moreover, we would like to develop suitable equivalences over states that
can reduce the complexity of the analysis, and facilitate the development of automatic
reasoning tools.

First-Order Dynamic Logic for Compensable Processes 119

References

1. Benevides, M.R.F., Schechter, L.M.: A Propositional Dynamic Logic for CCS Programs. In:
Hodges, W., de Queiroz, R. (eds.) WOLLIC 2008. LNCS (LNAI), vol. 5110, pp. 83–97.
Springer, Heidelberg (2008)

2. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and compensa-
tion. Math. Struct. in Comput. Sci. 19(3), 565–599 (2009)

3. Broersen, J.: Modal Action Logics for Reasoning about Reactive Systems. PhD thesis, Fac-
ulteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam (2003)

4. Broersen, J., Wieringa, R., Meyer, J.-J.: A fixed-point characterization of a deontic logic of
regular action. Fundamenta Informaticae 48(2-3), 107–128 (2001)

5. Bruni, R., Melgratti, H., Montanari, U.: Nested Commits for Mobile Calculi: Extending Join.
In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IFIP AICT, vol. 155, pp. 563–576.
Kluwer Academics (2004)

6. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations in flow
composition languages. In: Palsberg, J., Abadi, M. (eds.) POPL 2005, pp. 209–220. ACM
(2005)

7. Butler, M., Ferreira, C.: A Process Compensation Language. In: Grieskamp, W., Santen, T.,
Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 61–76. Springer, Heidelberg (2000)

8. Butler, M., Hoare, C., Ferreira, C.: A Trace Semantics for Long-Running Transactions. In:
Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. The
First 25 Years. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

9. Caires, L., Ferreira, C., Vieira, H.: A Process Calculus Analysis of Compensations. In: Kak-
lamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103. Springer, Heidelberg
(2009)

10. Castro, P., Maibaum, T.S.E.: Deontic action logic, atomic boolean algebras and fault-
tolerance. Journal of Applied Logic 7(4), 441–466 (2009)

11. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P., Yoshida, N.
(eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)

12. de Vries, E., Koutavas, V., Hennessy, M.: Communicating Transactions - (Extended Ab-
stract). In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583.
Springer, Heidelberg (2010)

13. Eisentraut, C., Spieler, D.: Fault, Compensation and Termination in WS-BPEL 2.0 — A
Comparative Analysis. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387, pp.
107–126. Springer, Heidelberg (2009)

14. Harel, D.: First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg (1979)
15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. In: Handbook of Philosophical Logic, pp.

497–604. MIT Press (1984)
16. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
17. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing Higher-Order Pi. In: Gastin, P.,

Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg
(2010)

18. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. J. Log. Algebr. Pro-
gram. 70(1), 96–118 (2007)

19. Mazzara, M., Lanese, I.: Towards a Unifying Theory for Web Services Composition. In:
Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 257–272.
Springer, Heidelberg (2006)

20. Meyer, J.-J.: A different approach to deontic logic: Deontic logic viewed as a variant of
dynamic logic. Notre Dame Journal of Formal Logic 29, 109–136 (1988)

120 R. Bruni, C. Ferreira, and A. Kersten Kauer

21. OASIS. WSBPEL (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

22. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4), 631–
653 (1979)

23. Peleg, D.: Concurrent dynamic logic. J. ACM 34, 450–479 (1987)
24. Van Der Meyden, R.: The dynamic logic of permission. Journal of Logic and Computation 6,

465–479 (1996)
25. Vaz, C., Ferreira, C.: Towards Compensation Correctness in Interactive Systems. In: Laneve,

C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 161–177. Springer, Heidelberg (2010)
26. Vaz, C., Ferreira, C., Ravara, A.: Dynamic Recovering of Long Running Transactions. In:

Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215. Springer, Hei-
delberg (2009)

27. Von Wright, G.: I. deontic logic. Mind LX(237), 1–15 (1951)

A Proof Theorem 1

We use ΔX(τ) to denote first(τ)\X last(τ) and ∇X(τ) for last(τ)\Xfirst(τ). In the
following operation ⊕ denotes the union of two distances of two states.

Lemma A. Let s, s′, s′′ ∈ State(V). The following equality holds:

s\Xs′ ⊕ s′\Xs′′ = s\Xs′′

Theorem 1. Let X be a set of integer variables and δ a serializable compensable pro-
gram where every compensation pair is correct over X , then δ is correct over X .

Proof. We proceed by induction on the structure of compensable δ.

1. δ = a ÷ a. For any (τ, τ) ∈ ρc(a ÷ a) with ¬E(τ) we conclude by applying the
hypothesis that the compensation pair a÷ a is correct over X . For any failed trace
(τ, τ) ∈ ρc(a ÷ a) with E(τ), we have that τ = s a s for some state s such that
s |= E(a). Furthermore, the compensation trace for a failed basic activity is empty.
It is easy to see that ΔX(τ) = null , which concludes the proof for this case.

2. δ = δ1 � δ2. By induction on δ1 and δ2.
3. δ = δ1 ; δ2. We need to distinguish two cases, by the definition of ρc(δ1 ; δ2).

– For any pair (τ ◦ ν, ν ◦ τ) ∈ ρc(δ1 ; δ2) such that (τ, τ) ∈ ρc(δ1), (ν, ν) ∈
ρc(δ2), and¬E(τ), then we want to prove that if closed(τ◦ν) and closed(ν◦τ)
then ΔX(τ ◦ ν) = ∇X(ν ◦ τ).
As we consider closed traces we can conclude that also closed(τ) and closed(ν)
with last(τ) = first(ν) and the same holds for the compensation. Thus we
can apply the induction hypothesis getting ΔX(τ) = ∇X(τ) and ΔX(ν) =
∇X(ν). We build the union of these two sets, i.e.,ΔX(τ)⊕ΔX(ν) = ∇X(ν)⊕
∇X(τ). As last(τ) = first(ν) and last(ν) = first(τ) we can conclude with
Lemma A that first(τ)\X last(ν) = last(τ)\Xfirst(ν) which is equivalent to
ΔX(τ ◦ ν) = ∇X(ν ◦ τ).

– For any (τ, τ) ∈ ρc(δ1 ; δ2) such that (τ, τ) ∈ ρ(δ1) and E(τ), then the result
follows immediately from the induction hypotheses on δ1.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

First-Order Dynamic Logic for Compensable Processes 121

4. δ = δ1 ‖ δ2. With δ1, δ2 serializable. For any (τ, τ) ∈ ρc(δ1 ‖ δ2) with (ν, ν) ∈
ρc(δ1), (μ, μ) ∈ ρc(δ2) τ ∈ ν ‖ μ, τ ∈ ν ‖ μ, we need to show that if closed(τ)
and closed(τ) then ΔX(τ) = ∇X(τ).
Note that in general neither closed(ν) and closed(ν) nor closed(μ) and closed(ν)
holds, because the interleaving is defined independently of this.
According to serializability there exist traces (ν′, ν′) ∈ ρc(δ1) and (μ′, μ′) ∈
ρc(δ2) with several different possibilities for a sequential representation (though
at least one holds). Without loss of generality we assume that τ �� (ν′μ′) and
τ �� (ν ′ μ′). (The other representations can be treated similarly.)
From closed(ν′ μ′) we know that closed(ν′), closed(μ′) and last(ν′) = first(μ′).
The same holds for closed(ν ′ μ′). Thus we can apply the induction hypothesis. We
obtain ΔX(ν′) = ∇X(ν ′) and ΔX(μ′) = ∇X(μ′). As for the sequential case we
build the union of the two sets ΔX(ν′)⊕ΔX(μ′) = ∇X(μ′)⊕∇X(ν ′). From the
equivalences and Lemma A we obtain first(ν′)\X last(μ′) = last(μ′)\Xfirst(ν′)
which is equivalent to ΔX(ν′ μ′) = ∇X(ν′ μ′). From the equivalences for serial-
izability we can conclude ΔX(τ) = ∇X(τ).

5. δ = δ∗1 (by induction on the depth of recursion).

Coordinating Parallel Mobile Ambients to Solve

SAT Problem in Polynomial Number of Steps

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iaşi, Romania
“A.I.Cuza” University, Blvd. Carol I no.11, 700506 Iaşi, Romania

gabriel@info.uaic.ro, bogdan.aman@gmail.com

Abstract. In this paper we present a version of mobile ambients, called
parMA, having a weak form of replication and a parallel semantics. We
investigate how parMA can solve intractable problems in a polynomial
number of computational steps. We use parMA to give a semiuniform
solution to a well-known strong NP-complete problem, namely to the
Boolean satisfiability problem (SAT).

1 Introduction

Ambient calculus is a formalism for describing distributed and mobile comput-
ing [11]. In contrast with the π-calculus [19] where mobility is expressed by
communication, the ambient calculus uses an explicit notion of movement given
by moving actions (in and out) together with an “opening” action and (local)
communication. An ambient is a named location, and it represents the unit of
movement. The authors of [11] introduce the mobile ambients as “a paradigm
of mobility where computational ambients are hierarchically structured, where
agents are confined to ambients and where ambients move under the control of
agents”. Their initial goal was “to make mobile computation scale-up to widely
distributed, intermittently connected and well administered computational en-
vironments”. The resulting ambient model is elegant and powerful, well suited
for expressing issues of mobile computations as working environment, allowing
access to information or resources [2,16]. Many variants have been proposed;
among them, we mention mobile safe ambients [17], push and pull ambient cal-
culus [16] and boxed ambients [7]. Despite the fact that the initial motivation
of mobile ambients assumes a high degree of parallelism in their evolution, the
usual semantics of the proposed variants is the interleaving semantics.

Some results show that mobile ambients have the computational power of
Turing machines by encoding into ambient calculus (or fragments of it) some for-
malisms known to be Turing complete: asynchronous π-calculus [11,12], counter
machines [9] and Turing machines [11,18]. A link between mobile ambients and
π-calculus is established in [13], where it is proven that pure mobile ambients can
be embedded into a fragment of the π-calculus, namely in the localized sum-free
synchronous monadic π-calculus with matching and mismatching. Other authors
relate ambients to security issues and to system biology. Some simulators were

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 122–136, 2012.
c© IFIP International Federation for Information Processing 2012

Coordinating Parallel Mobile Ambients to Solve SAT Problem 123

also developed [14] in which the evolution of mobile ambients can be observed
easily (see http://www-sop.inria.fr/mimosa/ambicobjs/).

Many formal machine models (e.g., Turing machines) have an infinite number
of memory locations. Mobile ambients are computing devices of finite size having
a finite description with a fixed amount of initial resources (ambients and pro-
cesses), that can evolve to a possibly infinite family of mobile ambients obtained
by replication in order to solve a (decision) problem. A decision problem X is a
pair (IX , θX) such that IX is a language over a finite alphabet (whose elements
are called instances) and θX is a total boolean function (that is, a predicate)
over IX . Its solvability is defined through the recognition of the language asso-
ciated with it. Let M be a Turing machine with the working alphabet Γ , L a
language over Γ , and the result of any halting computation is yes or no. If M
is a deterministic device, it recognizes or decides L whenever, for any string u
over Γ , if u ∈ L, then M accepts u (the result on input u is yes), or M rejects u
(the result on input u is no). If M is a non-deterministic device, it recognizes or
decides L whenever, if for any string u over Γ , u ∈ L, and only if there exists a
computation of M with input u such that the answer is yes.

According to [15], the NP-complete problems are divided into weak (e.g.,
Knapsack) and strong (e.g., SAT) depending on the size of the input. We show
how a parallel version of mobile ambients with a weak form of replication can
solve NP-complete problems in a polynomial number of steps. We provide a
semiuniform solution to the best known strong NP-complete problem (SAT) in
a polynomial number of steps [22]. To give such a solution, we treat mobile
ambients as “deciding devices” that respect the following conditions: (1) all
computations halt, (2) two special names yes and no are used, and (3) in a
halting configuration a channel ans is ready to output one of the names yes
and no; the computation is accepting if yes is present in the halting configuration,
and rejecting if no is present in the halting configuration on channel ans. Mobile
ambients respect these conditions if we impose some constraints:

• We use a true concurrent semantics allowing processes to run in parallel.
The key rule is

P → P ′ and Q → Q′ implies P | Q → P ′ | Q′.
This parallel semantics is natural if we recall that in [11] a process is de-
scribed as “running even when the surrounding ambient is moving”, aspect
which the interleaving semantics does not reflect properly. Other reasons to
consider a parallel semantics are presented in [14] where the authors present
a distributed implementation of mobile ambients.

• A restricted form of replication is used by considering a weaker duplication
operator which only doubles a process; this means that a reduction rule
!P → P | P is used instead of the congruence rule !P ≡ P | !P or instead
of the reduction rule !P → P | !P . This duplication rule is also used by
R. Milner in [20]. It helps in controlling all the computations to halt (and so
fulfilling condition 1. of deciding devices).

• We use a special symbol � that helps in delimiting the computational
steps. � is a purely technical device that is used in the subsequent

124 B. Aman and G. Ciobanu

formalization of the structural operational semantics of parMA; intuitively,
�P specifies a process P which is temporarily stalled and so cannot execute
any action.

• We use two kinds of action rules: → and
φ⇒. The former is an execution of

a set of actions, and the latter is used to remove all occurrences of � (using
a tree parsing algorithm) in order to start a new round of parallel actions.

The differences between parallel and interleaving semantics is underlined also
in [5]: “The parallel construct is interpreted in terms of interleaving, as usual
in many (timed) process algebras Alternatively one could adopt maximal
parallelism, which means that at each moment every enabled process of the
system is activated”. In defining a parallel semantics, we follow the solution
used also in [8] where such a semantic is defined in brane calculi [10], a process
algebra related to BioAmbients [23].

The paper is organised as follow. Section 2 defines the syntax and semantics
of parallel mobile ambients (parMA). In Section 3 we give some notions of com-
plexity, and show how to solve SAT problem in a polynomial number of steps.
Section 4 illustrates how mobile ambients compute effectively by considering a
SAT instance with three clauses and three variables as an example. Conclusion
and references end the paper.

2 Parallel Mobile Ambients

In this section we present a variant of mobile ambients having a parallel seman-
tics. Initially, mobility in ambient calculus involved the authorization to enter
or exit certain domains in order to access information; the access to informa-
tion is controlled at many levels: local computer, local area network, regional
area network, wide-area intranet and internet. We consider a framework given
by mobile ambients hierarchically structured inside a well-defined environment,
where ambients move under the control of agents running inside them.

2.1 Syntax

Table 1 describes the syntax of parMA.

Table 1. Parallel Mobile Ambients Syntax

c channel name P,Q ::= processes
a, b, Env ambient names 0 inactivity

x, y variables M.P movement

M ::= capabilities a[P] ambient

in a can enter a P |Q composition

out a can exit a c〈a〉.P output action

open a can open a c(x).P input action

!P duplication

�P stalled

Coordinating Parallel Mobile Ambients to Solve SAT Problem 125

The name Env represents the environment in which the mobile ambients reside,
and can appear only once, at the top of the hierarchical structure. Process 0
is an inactive process (it does nothing). A movement M.P is provided by the
capabilityM , followed by the execution of process P . An ambient a[P] represents
a bounded place labelled by a in which a process P is executed. P |Q is a parallel
composition of processes P and Q. An output action c〈a〉.P releases a name a
on channel c, and then behaves as process P . An input action c(x). P captures a
name from channel c, and binds it to a variable x within the scope of process P .
A weak form of replication, namely the duplication of a process P (producing
two parallel copies of process P) is denoted by !P . The process �P is used to
state that process P is temporarily “stalled”.

2.2 Operational Semantics

The first component of the operational semantics of parMA is the structural
congruence ≡. It is the smallest congruence such that the equalities from Table 2
hold. Its role is to rearrange a process in order to apply the action rules given in
Table 3. The axioms from Table 2 describe the commutativity and associativity
of the parallel composition.

Table 2. Structural Congruence

P ≡ P P |Q ≡ Q |P
(P |Q) |R ≡ P | (Q |R) P |0 ≡ P

!0 ≡ 0

The set fn(P) of free names of a process P is defined as:

fn(P)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if P = 0
fn(R) ∪ {a} if P = in a.R or P = out a.R

or P = open a.R or P = a[R]
fn(R) ∪ {a, c} if P = c〈a〉.R
fn(R) ∪ {c} if P = c(x).R
fn(R) ∪ fn(Q) if P = R | Q
fn(R) if P =!R

Table 3 introduces two kinds of action rules: P → P ′ and P
φ⇒ P ′. The

former is an execution of a set of actions, and the latter is used to remove all
occurrences of � in order to start a new round of parallel actions. The first
five rules of Table 3 are one-step reductions for in, out, open, communication
and duplication. In rule (Com), by P ′{a/x} we denote the substitution by a of
each free occurrence of variable x in process P ′. The next three rules propagate
reductions across ambient nesting and parallel composition. In rule (Par2), by
R �→ is denoted a process R that cannot evolve. Rule (Struct) allows the use of
structural congruence during reduction. When no rule can be applied in Env,
rule (Step) is used to delete all occurrences of � in order to start a new round of
transitions. It can be noticed that in rules (Par2) and (Step) we use negative

126 B. Aman and G. Ciobanu

premises: an activity is performed based on the absence of actions. This is due
to the fact that sequencing the evolution can only be defined using negative
premises, as done for sequencing processes [4,21].

Table 3. Reduction Rules

(In)
a �= Env b �= Env

a[in b. P |Q] | b[R] → b[a[�P |Q] |R]

(Out)
a �= Env b �= Env

a[b[out a. P |Q] |R] → b[�P |Q] | a[R]

(Open)
a �= Env

open a. P | a[Q] → �P |Q
(Com) c〈a〉. P | c(x). P ′ → �P |�P ′{a/x}
(Dupl) !P → �P | �P

(Amb)
P → Q

a[P] → a[Q]

(Par1)
P → P ′ Q → Q′

P |Q → P ′ |Q′

(Par2)
P → Q R �→
P |R → Q |R

(Struct)
P ′ ≡ P, P → Q, Q ≡ Q′

P ′ → Q′

(Step)
Env[P] �→
P

φ⇒ φ(P)

The rules of Table 3 define execution of processes. A complete computational
step in mobile ambients is captured by a derivation of the form

Env[P] → φ⇒ Env[P ′].
This means that a derivation is a compressed representation of a sequence of
individual actions followed by a reinitialization step (removing of all� symbols).

2.3 Example

To illustrate the basic components of parMA, we use an example in which several
students wish to move from the campus to the university and back, having the
possibility to use either a tram or a bus. The scenario involves eight ambients
and four processes.

Env[campus[student[P1 | P4] | student[P1 | P4]
| tram[P2 | P4] | bus[P3 | P4]] | univ[student[P1 | P4]]]

The role of the ambients is suggested by their names. The processes are:

• P1 = Q1 | Q2

Q1 = in tram.c(x).c(x).c(x).out tram.Q1

Q2 = in bus.c(x).c(x).c(x).c(x).out bus.Q2

Coordinating Parallel Mobile Ambients to Solve SAT Problem 127

• P2 = c(x).out campus.c(x).in univ.P ′
2

P ′
2 = c(x).out univ.c(x).in campus.P2

• P3 = c(x).out campus.c(x).c(x).in univ.P ′
3

P ′
3 = c(x).out univ.c(x).c(x).in campus.P3

• P4 = c〈a〉.P4

The communication on channel c, that takes place inside ambients, is used to
model the fact that the tram, bus and students perform the following actions:

• the first c(x) from P2, P
′
2, P3 and P ′

3 represents the fact that the bus and
tram, once inside the campus or univ, are willing to wait for students that
intend to travel between campus and univ.

• the others c(x) from P2, P
′
2, P3 and P ′

3 are used to model the fact that the
movement of the tram and bus between campus and univ takes a number
of steps (equal with the number of input actions on channel c).

• all c(x) from Q1 and Q2 are used to prevent the students from getting out
of the tram or bus before reaching the desired location.

It can be noticed that both students from campus can enter either the bus or
the tram. Suppose both choose the tram. Then the mobile ambient

Env[campus[student[P1 | P4] | student[P1 | P4]
| tram[P2 | P4] | bus[P3 | P4]] | univ[student[P1 | P4]]]

evolves to
Env[campus[tram[�out campus.c(x).in univ.P ′

2 | �P4

| student[�c(x).c(x).c(x).out tram.Q1 | Q2 | �P4]
| student[�c(x).c(x).c(x).out tram.Q1 | Q2 | �P4]]

| bus[�out campus.c(x).c(x).in univ.P ′
3 | �P4]] | univ[student[P1]]]

The tram and the bus are still inside campus since they communicated on chan-
nel c in order to permit the willing students to get inside them. At this moment
it can be noticed that only rule (Step) can be applied in order to eliminate the
symbols �, obtaining the mobile membrane

Env[campus[tram[out campus.c(x).in univ.P ′
2 | P4

| student[c(x).c(x).c(x).out tram.Q1 | Q2 | P4]
| student[c(x).c(x).c(x).out tram.Q1 | Q2 | P4]]

| bus[out campus.c(x).c(x).in univ.P ′
3 | P4]] | univ[student[P1]]]

After three steps, the tram is inside univ where it waits for the students to
exit/enter it, while the bus is still between the two campus and univ, being
ready to enter univ in the next step. Thus the next mobile ambient is obtained

Env[campus[] | bus[in univ.P ′
3 | P4] | univ[tram[P ′

2 | P4

| student[out tram.Q1 | Q2 | P4]
| student[out tram.Q1 | Q2 | P4]] | student[P1]]]

In the next step the two students from the tram get out inside univ, while
the student that was waiting enters the tram in order to reach campus. The
obtained mobile ambients is

Env[campus[] | univ[bus[P ′
3 | P4] | tram[out univ.c(x).in campus.P2 | P4

| student[c(x).c(x).c(x).out tram.Q1 | Q2 | P4]]
| student[P1] | student[P1]]]

128 B. Aman and G. Ciobanu

The mobile ambient continues to change, but we stop here since we have illus-
trated the expressive power of the proposed formalism.

3 Solving NP-Complete Problems in Polynomial Steps

As stated in the introduction, we use mobile ambients as deciding devices, in
which all computation starting from the initial ambient agree on the result.
A family MA, a collection of ambients, solves a decision problem if for each
instance of the problem there is a member of the family able to decide on the
instance. In order to define the notions of (semi)uniformity, we denote:

• for a suitable alphabet O, each instance of the decision problem is encoded
as a string v over O;

• V = {v1, . . .} - the language of encoded instances of the given problem;
• MA(v) - the member of MA which solves the instance v;
• MAn - the member of MA which solves all instances of length n.

Definition 1. The family MA

(i) decides V if for any string v ∈ O∗, the mobile ambient MA(v) (or MAn

for all instances v, |v| = n) generates an yes answer whenever v ∈ V and
a no answer otherwise;

(ii) is sound with respect to V when, for any string v ∈ O∗, if there exists an
accepting computation of MA(v) (MAn), then v ∈ V ;

(iii) is complete with respect to V when, for any string v ∈ O∗, if v ∈ V , then
every computation of MA(v) (MAn) is accepting.

Inspired by the uniformity conditions applied to families of Boolean circuits [6],
we imposed similar ones on families of processes. By imposing certain resource
restrictions (on number of steps and space) to the function that constructs each
member of the family MA, it can be ensured that the set of problems decided
by the family does not increase. The function is called an

• uniformity condition if an instance size is mapped to a mobile ambient that
decides all instances of that length;

• semiuniformity condition if a single instance is mapped to a mobile ambient
that decides that instance.

Definition 2. If we consider a set of problem instances V = {v1, v2, . . .}, two
classes of functions E,F and a total function t : N → N, such that:

1. there exist a F -uniform family of mobile ambients MA = {MA1, . . .};
this means that there exist a function f ∈ F , f : {1}∗ → MA such that
f(1n) = MAn, namely all instances vk of length n are solved by MAn,
where MAn can be constructed by a function f ∈ F ;

Coordinating Parallel Mobile Ambients to Solve SAT Problem 129

2. there exists an encoding function e ∈ E such that e(v) is the input process
of MAn, for |v| = n;

3. MA is t-efficient: MAn halts in t(n) steps (e.g., MA is polynomial efficient
if t(n) is polynomial in n for all n);

4. MA is sound and complete with respect to V ,

then we say that the class of problems V is solved by an (E,F)-uniform family
of mobile ambients MA, and denote the family by (E,F)-MA(t). The set of
languages decided by a uniform family of mobile ambients in a polynomial number
of steps is defined as (E,F)-PMA =

⋃
k∈N

(E,F)-MA(nk).

Semiuniformity is a generalization of uniformity, namely

Definition 3. If we consider a set of problem instances V = {v1, v2, . . .}, a
class of functions H and a total function t : N → N, such that:

1. there exist a H-semiuniform family of mobile ambients MA = {MAv1 ,
MAv2 , . . .}; namely, there exist a function h ∈ H, h : V → MA such that
h(vi) = MAvi ;

2. MA is t-efficient: MAn halts in t(|vn|) steps;
3. MA is sound and complete with respect to V ,

then we say that the class of problems V is solved by an (H)-semiuniform fam-
ily of mobile ambients MA, and denote the family by (H)-MA(t). The set of
languages decided by a semiuniform family of mobile ambients in a polynomial
number of steps is defined as (H)-PMA =

⋃
k∈N

(H)-MA(nk).

3.1 Boolean Satisfiability Problem

The SAT problem checks the satisfiability of a propositional logic formula in con-
junctive normal form (CNF). Let {x1, x2, . . . , xn} be a set of Boolean variables.
A formula in CNF is of the form

ϕ = C1 ∧ C2 ∧ · · · ∧Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form
Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n),

where each yj is either a variable xk or its negation ¬xk. In this section we
show how, starting from a formula ϕ, to construct a process P that provides a
semiuniform solution to the SAT problem by using mobile ambients with parallel
semantics and duplication (for an instance of SAT we construct a mobile ambient
which decides it). We start with the process

P = P1 | Q1

in which P1 is used to provide the answer to the problem when placed in par-
allel with Q1, a process that generates all possible assignments over the set
{x1, x2, . . . , xn} of Boolean variables. In what follows we describe how each of
these two processes are constructed starting from the ϕ formula.

130 B. Aman and G. Ciobanu

– process Q1 is defined recursively using the processes Qi (1 ≤ i < n) and Qn.
For each variable xi from the set {x1, x2, . . . , xn} of Boolean variables, we
construct a process Qi defined as follows:

Qi = xi〈ti〉.x〈z〉.x〈z〉 | xi〈fi〉.x〈z〉.x〈z〉 |
|!xi(yi).(x(y).x(y).open ki | ki[Qi+1]), for 1 ≤ i < n
Qn = xn〈tn〉 | xn〈fn〉 |!xn(yn).A[x1〈y1〉 | . . . | xn〈yn〉

| y1〈a〉 | . . . | y1〈a〉 | . . . | yn〈a〉 | . . . | yn〈a〉 | Q].
where:

• process Q contains terms of the form tk(b).in Cj (if xk appears in Cj) or
fk(b).in Cj (if ¬xk appears in Cj). For example if we consider a 3CNF
satisfiability problem with ϕ = C1 ∧ C2 ∧ C3 and X = {x1, x2, x3},
C1 = x1 ∨ ¬x3, C2 = ¬x1 ∨ ¬x2 and C3 = x2 we have

Q = t1(b).in C1 | f3(b).in C1 | f1(b).in C2 | f2(b).in C2 | t2(b).in C3

• each ambient A will contain a different assignment over the set {x1, x2,
. . . , xn} of Boolean variables; after Qn is executed, there will be 2n am-
bients A, obtained by using the duplication operator ! that proceeds the
processes that generate an A ambient.

• yj〈a〉 | . . . | yj〈a〉 stands for m parallel processes yj〈a〉, one for each
disjunction, and, after all yj are instantiated, are used to communicate
with the processes from Q.

• x〈z〉.x〈z〉 are used to introduce a delay that prevents that an ambient ki
containing a Qi+1 is not opened to soon and cause unwanted evolutions.

– process P1 has the form:
P1 = C1[. . . [Cm[J [x(y) . . . x(y) | x〈z〉 . . . x〈z〉.K[out J]]

| L[in A.ans〈yes〉 | in K.ans〈no〉]]]]
where:

• to each disjunction Ci, 1 ≤ i ≤ m we associate an ambient Ci;
• the ambients Ci, 1 ≤ i ≤ m are placed one inside the other, forming an
ambient structure of depth m. The order in which these ambients are
placed is not important (thus the construction is not unique), but for
simplicity we consider the ambient

C1[. . . [Cm[. . .]] . . .]
• the previous ambient is used to check if there exists an assignments
over the set {x1, x2, . . . , xn} of Boolean variables that respects all these
disjunctions. If such an assignment exists, this means that an ambient A
containing this assignment, will eventually reach inside ambient Cm (an
ambient A enters an ambient Ci if the assignment placed inside A respect
the disjunction Ci)

• x(y) . . . x(y) stands for a 2n +m + 1 sequence of capabilities x(y), and
together with x〈z〉 . . . x〈z〉 that stands for a 2n+m+1 sequence of capa-
bilities x〈z〉, introduces a delay equal with the number of steps needed
by an ambient A to get inside ambient Cm, before the ambient K exits
ambient J . It can be noticed that if an ambient A gets near the ambi-
ent L (inside ambient Cm), this ambient enters the ambient A, generates
the yes answer and prevents K to generate the negative answer (the am-
bient K cannot interact with the ambient L inside the ambient A).

Coordinating Parallel Mobile Ambients to Solve SAT Problem 131

In what follows we explain how these two processes (P1 and Q1) once con-
structed from the ϕ formula, can generate an answer to the problem.

Starting from P1 the evolution in the first 2n + 1 steps is given by the rule

Pi → φ⇒ Pi+1, where Pi+1 is obtained from Pi by performing a communication on
channel x. In parallel, starting from the process Q1, are generated 2n ambients A
that contain all possible assignments over the variables {x1, . . . , xn}, namely each
assignment is contained inside an ambient A.

Next we describe in detail the evolution of Q1. We have two cases.

Case 1: For 1 ≤ i ≤ n− 1, the evolution of each

Qi = xi〈ti〉.x〈z〉.x〈z〉 | xi〈fi〉.x〈z〉.x〈z〉
| !xi(yi).(x(y).x(y).open ki | ki[Qi+1])

from the 2i−1 processesQi running in parallel, starts with a duplication,
because any other reduction is not possible. The process that duplicates
is in fact the process containing the ambient labelled by ki in which the
process Qi+1 is placed. This is done because the variables y1, . . . , yi−1,
i ≥ 2 are already instantiated in the process Qi+1, and we want to create
two new copies: one in which yi is replaced by ti, and one in which yi
is replaced by fi, keeping also the already instantiated variables. We
obtain the process:

Q1
i = xi〈ti〉.x〈z〉.x〈z〉 | xi〈fi〉.x〈z〉.x〈z〉
| xi(yi).(x(y).x(y).open ki | ki[Qi+1])
| xi(yi).(x(y).x(y).open ki | ki[Qi+1])

At this moment Q1
i has two input actions on channel xi, and two out-

put actions on channel xi that are ready to communicate the values of
ti and fi. This means that two (Comm) rules are applied in parallel,
leading to:

Q2
i = x〈z〉.x〈z〉 | x〈z〉.x〈z〉

| x(y).x(y).open ki | ki[Qi+1{ti/yi}]
| x(y).x(y).open ki | ki[Qi+1{fi/yi}]

After the communications on channels xi are performed, the communi-
cation of ti+1 and fi+1 inside Qi+1 on channels xi+1 takes place in two
steps. This motivates a delay in opening the ambients ki, such that the
communication from all ki running in parallel does not get mixed up
on channels xi+1, leading to some unwanted assignments. The obtained
process is:

Q3
i = x〈z〉 | x〈z〉 | x(y).open ki | ki[Q1

i+1{ti/yi}]
| x(y).open ki | ki[Q1

i+1{fi/yi}]
The channels xi+1 are ready to communicate inside the processes Qi+1,
and so the capabilities open ki are released in the next step.

Q4
i = open ki | ki[Q

2
i+1{ti/yi}] | open ki | ki[Q

2
i+1{fi/yi}]

Once the communication inside ambients ki on channels xi+1 has fin-
ished, these ambients are opened, thus obtaining

132 B. Aman and G. Ciobanu

Q5
i = Q3

i+1{ti/yi} | Q3
i+1{fi/yi}

Since the process Q5
i does not contain any capabilities or replication

operators, except the ones from Q3
i+1, it means that each Qi evolves

for 5 steps, from which 3 steps are in parallel with the ones from Qi+1.
Case 2: for i = n the evolution of each

Qn = xn〈tn〉 | xn〈fn〉
| !xn(yn).A[x1〈y1〉 | . . . xn〈yn〉 | y1〈a〉 | . . . y1〈a〉 | . . . yn〈a〉 | . . . | yn〈a〉 | Q]

from the 2n−1 processesQn running in parallel, starts with a duplication
rule, obtaining

Q1
n = xn〈tn〉 | xn〈fn〉

| xn(yn).A[x1〈y1〉 | . . . xn〈yn〉 | y1〈a〉 | . . . y1〈a〉 | . . . yn〈a〉 | . . . | yn〈a〉 | Q]
| xn(yn).A[x1〈y1〉 | . . . xn〈yn〉 | y1〈a〉 | . . . y1〈a〉 | . . . yn〈a〉 | . . . | yn〈a〉 | Q]

and after communications of tn or fn on channels xn:

Q2
n = A[x1〈y1〉 | . . . xn〈yn〉 | y1〈a〉 | . . . y1〈a〉 | . . . yn〈a〉 | . . . | yn〈a〉 | Q]{tn/yn}
| A[x1〈y1〉 | . . . xn〈yn〉 | y1〈a〉 | . . . y1〈a〉 | . . . yn〈a〉 | . . . | yn〈a〉 | Q]{fn/yn}

Since there are only ambients labelled by A and no open capabilities,
the process Q2

n cannot evolve any more. However, in order to cope with
the fact that Q5

i = Q3
i+1{ti/yi} | Q3

i+1{fi/yi}, for 1 ≤ i ≤ n − 1, we
consider Q2

n to be equal with Q3
n.

Starting from P1 | Q1, after 2n+ 1 steps we obtain P2n+2 | Q′′, where:
Q′′ = A[x1〈t1〉 | . . . | xn〈tn〉 | t1〈a〉 | . . . | t1〈a〉 | . . . | tn〈a〉 | . . . | tn〈a〉 | Q]

| . . . | A[x1〈f1〉 | . . . | xn〈fn〉 | f1〈a〉 | . . . | f1〈a〉 | . . . | fn〈a〉 | . . . | fn〈a〉 | Q]

To illustrate how such a process Q′′ looks, we give a small example in which
n = m = 2, we have 22 = 4 ambients generated by Q1, and process Q′′ is:

Q′′ = A[x1〈t1〉 | x2〈t2〉 | t1〈a〉 | t1〈a〉 | t2〈a〉 | t2〈a〉 | Q]
| A[x1〈t1〉 | x2〈f2〉 | t1〈a〉 | t1〈a〉 | f2〈a〉 | f2〈a〉 | Q]
| A[x1〈f1〉 | x2〈t2〉 | f1〈a〉 | f1〈a〉 | t2〈a〉 | t2〈a〉 | Q]
| A[x1〈f1〉 | x2〈f2〉 | f1〈a〉 | f1〈a〉 | f2〈a〉 | f2〈a〉 | Q]

As it can be noticed, the four ambients A contain all the Boolean assignments
over the variables {x1, x2}, namely {t1, t2}, {t1, f2}, {f1, t2}, {f1, f2}, and each
possible assignment ti and fi is kept as an output value on channel xi.

After obtaining all possible assignments, we need to check which one satisfies
all the clauses Cj . To do this, we use the processes Q that contain either terms of
the form tk(b).in Cj meaning that xk appears in Cj , or of the form fk(b).in Cj

meaning that ¬xk appears in Cj . To be able to use the capability in Cj , there
should be a tk〈a〉, respectively a fk〈a〉 inside the ambient A, both resulting
from the instantiation of yk. All ambients that satisfy the clause Cj enter in
parallel the ambient Cj . If there exist at least one ambient A that contains
in C1 | . . . | in Cm, it means that this ambient can go inside ambient Cm, and
contains a solution to the SAT problem; in this case the ambient L enters the
ambient A placed inside membrane Cm, releasing the yes answer on channel ans
(1 step). Otherwise, ambient K exits ambient J , and so ambient L enters K;
thus the no answer is send on channel ans (2 steps).

Coordinating Parallel Mobile Ambients to Solve SAT Problem 133

We have a deterministic evolution of the mobile ambients, and so no interfer-
ence (redex overlapping) exists in our solution of SAT problem. This motivates
the use of mobile ambients rather than safe mobile ambients [17].

3.2 Analysis

If n is the number of variables (x1, . . . , xn), and m is the number of clauses
(C1, . . . , Cm), then the number of ambients, capabilities and duplication opera-
tors in the initial process is given by the sum of:

• 3 ambients and 4n+ 2m+ 7 capabilities in process P1;
• 10 capabilities, 1 ambient and 1 replication operator in each Qi, 1 ≤ i < n;
• n+ 3 +mn capabilities, 1 ambient and 1 replication operator in Qn;
• maximum 4m capabilities in Q.

Thus, the total size of the initial process is O(mn). The maximum number of
computational steps performed in an execution is equal with 2n+m+3, a number
determined by:

• 2n + 1 steps to generate all the possible Boolean assignments over a set of
variable {x1, . . . , xn};

• m steps required by a solution to move inside ambient Cm;
• either 1 step to generate a yes answer on channel ans, or 2 steps to generate
a no answer on channel ans.

It is straightforward to show that:

• the construction of P1 | Q1 is semiuniform;
• sound and complete: P1 | Q1 says yes iff the given SAT instance is satisfiable;
• function H required for the above construction is in P.

Proposition 1. Using parMA, NP-complete problems can be solved in a poly-
nomial number of steps.

4 An Example of How Mobile Ambients Solve 3CNF-SAT

To illustrate how mobility can “compute” and solve hard problems, we consider
a 3CNF satisfiability problem with ϕ = C1 ∧ C2 ∧ C3 and X = {x1, x2, x3},
C1 = x1 ∨¬x3, C2 = ¬x1 ∨¬x2 and C3 = x2. In this case n = 3 and m = 3. We
start with the mobile ambient:

P = P1 | Q1

where
P1 = C1[. . . [C3[J [x(y) . . . x(y) | x〈z〉 . . . x〈z〉.K[out J]]

| L[in A.ans〈yes〉 | in K.ans〈no〉]]]]
with Qi (1 ≤ i < n) and Qn defined as follows

Qi = xi〈ti〉.x〈z〉.x〈z〉 | xi〈fi〉.x〈z〉.x〈z〉 |

134 B. Aman and G. Ciobanu

|!xi(yi).(x(y).x(y).open ki | ki[Qi+1]), for 1 ≤ i < 3
Q3 = x3〈t3〉 | x3〈f3〉 |!x3(y3).A[x1〈y1〉 | x2〈y2〉 | x3〈y3〉

| y1〈a〉 | y1〈a〉 | y1〈a〉 | y2〈a〉 | y2〈a〉 | y2〈a〉 | y3〈a〉 | y3〈a〉 | y3〈a〉
| t1(b).in C1 | f3(b).in C1 | f1(b).in C2 | f2(b).in C2 | t2(b).in C3]

The evolution of this term (by applying duplication and communication rules)
leads in the first 2n+1 = 2 ∗ 3+1 = 7 steps to the generation of all the possible
truth assignments over a set of variables {x1, x2, x3). Since we have described
in the previous section how Q1 evolves to Q5

1, here we just enumerate the first
five obtained ambients. In what follows we bold the capabilities and ambients
involved actively in an evolution step.

P1 | Q1 → φ⇒ . . . → φ⇒ P6 | Q5
1

We replace Q5
1 with Q3

2{t1/y1} | Q3
2{f1/y1} obtaining

P6 | Q3
2{t1/y1} | Q3

2{f1/y1}
and then we substitute Q3

2 processes for obtaining

P6 | x〈z〉 | x〈z〉 | x〈z〉 | x〈z〉
| x(y).open k2 | k2[Q1

3{t1/y1, t2/y2}] | x(y).open k2 | k2[Q1
3{t1/y1, f2/y2}])

| x(y).open k2 | k2[Q1
3{f1/y1, t2/y2}] | x(y).open k2 | k2[Q1

3{f1/y1, f2/y2}])
In the next step the communication on all channels x takes place in parallel,
leading to all the possible assignments placed inside ambients A.

→ φ⇒ P7 | open k2 | k2[Q2
3{t1/y1, t2/y2}] | open k2 | k2[Q2

3{t1/y1, f2/y2}]
| open k2 | k2[Q2

3{f1/y1, t2/y2}] | open k2 | k2[Q2
3{f1/y1, f2/y2}]

We replace Q2
3 processes in order to see how the assignments look.

P7 | open k2 | k2[A{t1/y1, t2/y2, t3/y3} | A{t1/y1, t2/y2, f3/y3}]
| open k2 | k2[A{t1/y1, f2/y2, t3/y3} | A{t1/y1, f2/y2, f3/y3}]
| open k2 | k2[A{f1/y1, t2/y2, t3/y3} | A{f1/y1, t2/y2, f3/y3}]
| open k2 | k2[A{f1/y1, f2/y2, t3/y3} | A{f1/y1, f2/y2, f3/y3}]

where A = A[x1〈y1〉 | x2〈y2〉 | x3〈y3〉
| y1〈a〉 | y1〈a〉 | y1〈a〉 | y2〈a〉 | y2〈a〉 | y2〈a〉 | y3〈a〉 | y3〈a〉 | y3〈a〉
| t1(b).in C1 | f3(b).in C1 | f1(b).in C2 | f2(b).in C2 | t2(b).in C3].

From this point forward, the performed steps are:

• Since all the possible assignments are generated, we open in parallel all am-
bients k2 such that all ambients A become siblings with the ambient C1,
ready to start the checking stage. Also all possible communications inside
ambients A are performed, thus launching the in Cj capabilities correspond-
ing to the clauses Cj .

• In the next m = 3 steps, the solutions of ϕ should go inside ambient C3.
First, the solutions of C1 go inside ambient C1 in parallel.

• Next, from the solutions of C1 are selected the solutions of C2, namely the
solutions are all moved inside ambient C2 in parallel.

• Finally, the solutions of C3 are selected among the solutions of C1 and C2,
namely the solutions which move in parallel inside ambient C3.

Coordinating Parallel Mobile Ambients to Solve SAT Problem 135

• Since we have an ambient A inside ambient C3, an yes answer is released on
channel ans in the next step. In parallel, ambient K comes out of
ambient J , but since ambient L is not present, the no answer cannot be
sent on channel ans.

• Alternatively, if after 2n +m + 1 steps there is no ambient A inside ambi-
ent C3, then ambient K exits ambient J , and so allowing the ambient L to
enter ambient K and to release a no answer on channel ans.

5 Conclusion

There are a large number of process calculi used to model complex systems in
which interactions and mobility are essential (e.g., [3]). Following this research
line, we have previously extended mobile ambients with timers [2] and types [1] in
order to study their ability of modelling complex systems in distributed networks.
In this paper we use mobile ambients with a parallel semantic (parMA) in order
to study their complexity aspects. Thus we provide a semiuniform solution of
the SAT problem in a polynomial number of steps by using mobile ambients
with a weak form of replication which work according to a parallel semantics.

As far as we know, this is a first attempt to use mobile ambients with par-
allelism (as they were introduced initially) to create an algorithm that solves
an NP-complete problem in a polynomial number of steps. In this way, we show
how the mobile ambients can be coordinated to solve problems. There are several
topics that could be investigated as further work, including finding other hard
problems and complexity classes that can be solved using mobile ambients or
related formalisms (process calculi).

Acknowledgements. The work of Bogdan Aman and Gabriel Ciobanu was
supported by a grant of the Romanian National Authority for Scientific Research,
CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0919.

References

1. Aman, B., Ciobanu, G.: Mobile Ambients with Timers and Types. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 50–63. Springer,
Heidelberg (2007)

2. Aman, B., Ciobanu, G.: Timed Mobile Ambients for Network Protocols. In:
Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS,
vol. 5048, pp. 234–250. Springer, Heidelberg (2008)

3. Aman, B., Ciobanu, G.: Mobility in Process Calculi and Natural Computation.
Springer (2011)

4. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation Can’t Be Traced: Preliminary
Report. In: 15th ACM Symposium on Principles of Programming Languages, pp.
229–239 (1988)

5. Boer, F., Gabbrielli, M., Meo, M.: A Timed Linda Language and its Denotational
Semantics. Fundamenta Informaticae 63 (2004)

136 B. Aman and G. Ciobanu

6. Borodin, A.: On Relating Time and Space to Size and Depth. SIAM Journal of
Computing 6, 733–744 (1977)

7. Bugliesi, M., Castagna, G., Crafa, S.: Access Control for Mobile Agents: the Cal-
culus of Boxed Ambients. ACM Transactions on Programming and Systems 26,
57–124 (2004)

8. Busi, N.: On the Computational Power of the Mate/Bud/Drip Brane Calculus:
Interleaving vs. Maximal Parallelism. In: Freund, R., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 144–158. Springer, Heidelberg
(2006)

9. Busi, N., Zavattaro, G.: On the Expressive Power of Movement and Restriction in
Pure Mobile Ambients. Theoretical Computer Science 322, 477–515 (2004)

10. Cardelli, L.: Brane Calculi - Interactions of Biological Membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer,
Heidelberg (2005)

11. Cardelli, L., Gordon, A.: Mobile Ambients. Theoretical Computer Science 240,
177–213 (2000)

12. Charatonik, W., Gordon, A.D., Talbot, J.-M.: Finite-Control Mobile Ambients.
In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 295–313. Springer,
Heidelberg (2002)

13. Ciobanu, G., Zakharov, V.A.: Encoding Mobile Ambients into the π-Calculus.
In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 148–165.
Springer, Heidelberg (2007)

14. Fournet, C., Lévy, J.-J., Schmitt, A.: An Asynchronous, Distributed Implementa-
tion of Mobile Ambients. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J.,
Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 348–364. Springer, Heidelberg
(2000)

15. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of
NP-Completeness. Freeman (1979)

16. Teller, D., Zimmer, P., Hirschkoff, D.: Using Ambients to Control Resources. In:
Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 288–303. Springer, Heidelberg (2002)

17. Levi, F., Sangiorgi, D.: Mobile Safe Ambients. ACM Transactions on Programming
and Systems 25, 1–69 (2003)

18. Maffeis, S., Phillips, I.: On the Computational Strength of Pure Ambient Calculi.
Theoretical Computer Science 330, 501–551 (2005)

19. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press (1999)

20. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press (2009)

21. Moller, F.: Axioms for Concurrency. PhD Thesis, Department of Computer Science,
University of Edinburgh (1989)

22. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1995)
23. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients:

An Abstraction for Biological Compartments. Theoretical Computer Science 325,
141–167 (2004)

Recursive Advice for Coordination�

Michał Terepeta, Hanne Riis Nielson, and Flemming Nielson

Technical University of Denmark
{mtte,riis,nielson}@imm.dtu.dk

Abstract. Aspect-oriented programming is a programming paradigm
that is often praised for the ability to create modular software and sepa-
rate cross-cutting concerns. Recently aspects have been also considered in
the context of coordination languages, offering similar advantages. How-
ever, introducing aspects makes analyzing such languages more difficult
due to the fact that aspects can be recursive — advice from an aspect
must itself be analyzed by aspects — as well as being simultaneously
applicable in concurrent threads. Therefore the problem of reachability
of various states of a system becomes much more challenging. This is
important since ensuring that a system does not contain errors is often
equivalent to proving that some states are not reachable.

In this paper we show how to solve these challenges by applying a
successful technique from the area of software model checking, namely
communicating pushdown systems. Even though primarily used for anal-
ysis of recursive programs, we are able to adapt them to fit this new
context.

1 Introduction

Motivation. Aspect-oriented programming [1,2] is a successful programming
paradigm that is used in many environments and supported by all major pro-
gramming languages. Its biggest advantage is the ability to separate cross-cutting
concerns and thus make it possible to create very modular software. The classi-
cal example is of course logging — in order to be useful it should be performed
in many different and unrelated parts of the code. Aspects allow to separate the
code for logging from the code implementing the program logic.

Usually an aspect consists of a pointcut and an advice. A pointcut is basically
a pattern that specifies when some join point (e.g. location in a program, some
action, etc.) matches the aspect. An advice consists of some additional code or
actions that should be executed if the pointcut matches. Often an advice might
specify actions that should be performed after, before or instead of the matched
one. All of this allows one to easily separate the code for the actual functionality
from the code for e.g. logging, which could be specified using aspects.

Aspects have also been used in the context of process calculi — [3] intro-
duced a language called AspectK, which is an extension of the coordination
� The research presented in this paper has been supported by MT-LAB, a VKR Centre

of Excellence for the Modelling of Information Technology.

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 137–151, 2012.
c© IFIP International Federation for Information Processing 2012

138 M. Terepeta, H.R. Nielson, and F. Nielson

language KLAIM with aspect-oriented features. However, the introduction of
aspects makes the analysis of such languages much more challenging. When one
allows the advice to contain before and/or after actions, the code can suddenly
“grow” due to advice. Moreover the actions from the advice must itself be sub-
ject to other aspects as they have a recursive structure. Therefore it is possible
that a process could grow arbitrarily large. In this paper we focus on solving
these challenges.

Contributions. We define a process calculi allowing concurrent threads com-
municating via message-passing. The definition of aspects is quite similar to the
one in [3] and allows both before and after actions. Our main contribution is the
use of a technique from software model checking field, namely pushdown systems,
which have been used for software model checking [4] and static analysis [5,6,7]
of recursive programs. We show that they can be adapted to our context and
give us the ability to model arbitrarily large processes as well as to summarize
the actions they execute. Furthermore, we present how to go a step further and
reason about concurrent systems with aspects. We focus on proving unreacha-
bility of certain states of such systems since the problem of reachability is often
of highest importance — many desired properties of various systems (not only
concurrent) can be reduced to the question of reachability of the error states.

Related work. In [8] static analysis techniques have been used to analyze
AspectKE (and a programming language AspectKE∗), which are based on As-
pectK. However, these languages do not allow the advice to contain before or
after actions, which practically avoids the above mentioned challenges. In this
paper we focus on techniques that allow lifting this restriction. In [9,10] the
authors use communicating pushdown systems to analyze concurrent programs
with recursive procedures and synchronization-based communication. This ap-
proach has been also applied to C programs in [11]. Our approach is based on
this work, it does however, have some crucial differences. Clearly the context is
quite different as we do not deal with procedural programming languages but
process calculi. In particular the source of recursion are the aspects and not the
procedures. Consequently we shall use the stack in a completely different way.
In [9,10,11] the stack is used for storing locations of the programs, whereas we
do not even have the concept of location and use the stack to represent the ac-
tual process itself (i.e. the action to be executed). In [12] pushdown systems are
used to analyze concurrent software, but in a setting of shared memory concur-
rency. Moreover this approach is under-approximating with respect to control
flow, since it performs the analysis under a context bound. That is, it limits the
number of possible context switches that the threads can make.

Structure of the paper. The paper is organized as follows. First in Sect. 2 we
introduce the language that is used for examples and analysis. Then in Sect. 3
we present the basic theory behind pushdown systems and our adaptation to the
context of process calculi with aspects. Furthermore in Sect. 4 we illustrate our
approach on an example. Finally we conclude in Sect. 5.

Recursive Advice for Coordination 139

2 Language

Let us introduce the language that we will be working with. It allows multi-
ple threads running concurrently and communication via synchronous message
passing.

nets N ::= N1||N2 | c :: P | c :: RecX . P
processes P ::=

∑
i ai.Qi

Q ::= P | X
actions a ::= receive(p̄)@c | send(t̄)@c |

if(e) a | break | skip
tests e ::= t1 = t2 | t1 �= t2 | true
terms t ::= c | x
patterns p ::= t |!x

For readability we write constants with an uppercase first letter and variables
with a lowercase one. One subtlety about receive is that the two actions:
receive(!x)@N and receive(x)@N are quite different — the former will eval-
uate to itself when ready to execute and will accept any value from the process
N and bind it to x. Whereas in the latter case x is an already bound variable,
so assuming that it is bound to C the action will evaluate to receive(C)@N
and thus only accept C from N. Finally the communication is performed in CSP
style [13] where the send and receive actions specify the recipient and sender
respectively.

As already mentioned, one of the main features of our language is the presence
of aspects. They can be defined as follows.

aspects asp ::= A[cut; e] � adv
advice adv ::= as break | as proceed as
action sequence as ::= a . as | ε
pointcut cut ::= c :: a

Informally the semantics of the aspects says that before executing an action
we need to check what aspects apply to it and then combine the advice from
them. Checking if an aspect applies to an action amounts to pattern matching
against the cut and evaluating the applicability condition e associated with the
aspect. Note that in case of receive action with input, e.g. receive(!x)@N , the
condition cannot refer to x — the aspect needs to evaluate before executing the
action (it must be able to disallow it). But using x in a condition would require
executing the action first, thus we do not allow using x in such situations. One of
the important things to emphasize here is that we use the order in which aspects
are defined and trap actions based on that order. We will use this fact in our
analysis. This also means that changing the order can change the behavior of
the system. Furthermore the advice from an aspect (i.e. the right-hand side) is
also analyzed by all aspects except for the proceed, which corresponds to the
original trapped action and should be only analyzed by the aspect next in the
order. Therefore a single action can be trapped by many aspects.

140 M. Terepeta, H.R. Nielson, and F. Nielson

Example 1. Consider the following process with an aspect (for simplicity we skip
here the processes Q and Log and assume that sending anything to them will
always succeed).

P :: send(Test)@Q
A1[P :: send(a)@q; true] � send(a)@Log . proceed

The aspect will trap any send action of P. However, since the advice will also
be analyzed by the aspect it will also trap the send action directed to Log.
So this example actually demonstrates the possibility of non-termination and a
process that can grow infinitely large. Clearly the aspect as defined above is not
providing the desired behavior. The correct way to specify it is to restrict what
actions should be trapped.

A1[P :: send(a)@q; q �= Log] � send(a)@Log . proceed

With this small refinement the aspect will only trap the send actions that are
not sent to the Log. Thus the system will successfully terminate.

We will now present some more involved example that will be used throughout
the paper to demonstrate our approach. Imagine an ATM1 session — it first
receives some credentials from the user and checks the credentials against the
information stored on the card. If everything matches it dispenses the cash and
informs the bank to deduct the given amount from the account. The following
definition models this behavior

ATM :: receive(!credentials, !amount)@User .
check(credentials) .
send(amount)@User .
send(credentials, amount)@Bank

where check is an internal action that does not involve any communication
or synchronization and either executes successfully if the credentials are valid
or otherwise terminates the session. This process seems reasonable but we can
imagine that in order to increase the security of this solution one could add
aspects that actually confirmed the credentials with the bank.

A1[ATM :: check(c); true] � proceed . send(c)@Bank .
receive(!a)@Bank

A2[ATM :: receive(!a)@Bank; true] � proceed .
if (a = Abort) send(ErrorMessage)@User .
if (a = Abort) break .

The above two aspects make the additional check of credentials with the bank
(after checking locally) to improve the security. Obviously we want the ATM
session to terminate (with an error message) when this check fails.
1 Automated Teller Machine.

Recursive Advice for Coordination 141

Apart from that we need to define the process modelling the Bank

Bank :: (receive(!credentials)@ATM . send(Ok)@ATM .
receive(credentials, !amount)@ATM)

+(receive(!credentials)@ATM . send(Abort)@ATM)

We do not define the process for User since it does not actually bring anything
interesting to the example.

Now having such a system, one of the things that we would like to guarantee
is that whenever the bank aborts a transaction, the ATM will not dispense the
cash. In other words we want to ensure that both the bank and the ATM have a
consistent view on the transaction. To achieve that we will use communicating
pushdown systems that are introduced in the following section.

3 Pushdown Systems

3.1 Basic Concepts of Pushdown Systems

Pushdown systems are a formalism very close to pushdown automata. The main
difference is that pushdown automata define languages, i.e. they have some input
alphabet and use a stack to decide whether a word is accepted or not. Pushdown
systems do not have an input alphabet and thus have a flavor of a description of
a system that executes with an unbounded stack2. As such they are very useful
for analyzing recursive programs — the stack is used to determine the location in
the program along with the return locations of the procedures that were called.
Below we give the formal definition of a pushdown system.

Definition 1. A pushdown system is a four-tuple P = (Q, Act, Γ, Δ), where Q
is a finite set of control locations (in other words states), Act is a finite set of
actions, Γ is a finite stack alphabet and Δ is a finite set of pushdown rules of
the form 〈p, γ〉 a

↪−→ 〈p′, w〉 where p, p′ ∈ Q, γ ∈ Γ , w ∈ Γ ∗ and a ∈ Act.
Most definitions of pushdown systems require that |w| ≤ 2. This is useful es-
pecially when discussing some algorithms that take advantage of this property.
Moreover this is not a restriction — we can easily transform any set of rules that
does not satisfy this assumption into one that does by adding new rules and some
fresh control locations. Therefore, for convenience and clarity of presentation we
will not impose this requirement.

One of the reasons behind the success of pushdown systems and why the rules
are presented in this way is that they correspond quite closely to how a procedu-
ral program executes. For this we need just three kinds of rules that correspond
to calling a procedure, returning from a procedure and simply progressing to the
next statement:

〈p, γ〉 a
↪−→ 〈p′, γ′γ′′〉 〈p, γ〉 a

↪−→ 〈p′, ε〉 〈p, γ〉 a
↪−→ 〈p′, γ′〉

2 Although if the pushdown rules are annotated with actions, as in this paper, then
one could say that they constitute the input alphabet.

142 M. Terepeta, H.R. Nielson, and F. Nielson

Moreover it is worth mentioning that p, p′ ∈ Q are often used to store the global
state of a program and γ, γ′, γ′′ ∈ Γ can be used to track the location of the
current statement along all the return locations of the various procedures as well
as the local state of procedures.

Apart from that, following [9,10], we also need the concept of a configuration
of a pushdown system P , which is a pair 〈q, w〉 such that q ∈ Q and w ∈ Γ ∗.
Moreover we say that a set of configurations C is regular if for each q ∈ Q
the language {w ∈ Γ ∗ | 〈q, w〉 ∈ C} is regular. Having the definition of a
configuration we can define the transition relation a==⇒ between configurations
— if 〈p, γ〉 a

↪−→ 〈p′, w〉 then 〈p, γs〉 a==⇒ 〈p′, ws〉 for all s ∈ Γ ∗. Moreover, we
also define a1...an=====⇒ to be the reflexive, transitive closure of the above relation.
Now we can define the concept of successor configuration. We say that cs is an
immediate successor of c if there exists a such that c

a==⇒ cs and is a successor of
c′ if there exist a1 . . . an such that c′ a1...an=====⇒ cs. Finally the set of all successors
of some set of configurations C is defined by:

Post∗(C) = {c′ | ∃c ∈ C : c′ is a successor of c}
The concepts of immediate predecessor, predecessor and set of predecessors are
defined analogously.

Clearly a set of pushdown rules gives rise to a possibly infinite transition
system and thus a possibly infinite set of reachable configurations. The reason for
this is the fact that the stack is unbounded. However, one of the crucial results
in this area is that the set of successors (or predecessors) of a regular set of
configurations is itself regular. This is essential because even though the number
of configuration can be infinite, we can still represent them symbolically using
finite automata. In [14,4] efficient algorithms for computing both Post∗ and Pre∗

were presented. They work by saturating an initial automaton A (representing
some regular set of configurations) by adding new transitions and states to arrive
at Apost∗ (or Apre∗) automaton that represents the regular set of all its successor
(or predecessor) configurations.

3.2 Representing Processes and Aspects

One of the challenges of using pushdown systems in our setting is the fact that
there are no procedures and we do not have the concept of program locations.
However, the behavior of aspects does remind of a stack. As an example, consider
a process A . B, if the first action A is trapped by an aspect that gives advice
C . D . proceed then we suddenly have a process C . D . A . B (where A should
not be considered by this aspect again). But this can be thought of as a stack
— we push two additional actions on it and then want to continue with the
remaining ones. In other words we want the stack to characterize the process
itself (i.e. the actions to be executed). The only remaining problem is how to
ensure that the aspect will not trap action A again. Fortunately there is a solution
for that — we can embed some additional information in the stack to indicate
what aspect should consider the given action next. Apart from that, since the

Recursive Advice for Coordination 143

stack is used for control flow, we can often improve the precision of our analyses
by embedding in the stack some information about the communication that
takes place. The most natural choices are the sender and receiver as well as the
contents of the tuples that are sent or received. However, we usually do not want
to consider all possible constants and all possible tuples that can arise at runtime
— often just a subset of them along with some abstraction of the remaining ones
will be enough. We will call them abstract constants and abstract tuples — since
they abstract away from some of the possible runtime values. For instance in our
example of an ATM and bank we are probably interested in when Ok and Abort
can be sent and received, but the rest of the information (such as the amount
of money to be withdrawn) is not that important, because it does not influence
the control flow of the processes.

Therefore we define the stack alphabet Γ in the following way

Γ = ((Proc × Proc × Tuples) ∪ Internal) × (Asp ∪ {�})

where Proc is the set of processes, Asp is the set of aspects and � is a special
symbol indicating that all aspects have already analyzed the given action, Tuples
is the set of all possible abstract tuples that are sent over the channels in the given
system and Internal are internal actions of the process. Note that the definition
of pushdown systems requires that these sets are finite. But this is not really a
big restriction since we are already using abstract tuples and concrete processes
are always finite. Furthermore, we need to define the set of actions. In our case
this is actually quite similar to the stack elements. We define them as follows

Act = (Proc × Proc × Tuples) ∪ {τ}
The intuition here is that we do want to know the sender (first component of the
tuple), the receiver (the second component) and what is communicated (the third
component). This information will be essential in the subsequent section on com-
municating pushdown systems. Apart from that we also need to accommodate
internal actions that are not important from the point of view of synchroniza-
tion with other processes — thus the inclusion of τ that has the property that
aτ = τa = a.

Notice that in some cases we do not actually know what is sent/received in
a given action (e.g. in receive(!x)@N we do not know what x might be). In
such cases we can simply generate rules for all the possibilities. However, in
many situations we could be quite a bit more clever about this — for instance
it should be possible to generate such possibilities lazily, i.e. if some action is
never pushed on a stack, we do not really need to add rules to pop it. Another
example would be if we can determine that some constant is sent only between
two processes, then we do not have to consider it when generating rules for
actions of other processes.

Now let us get back to our example. Since we are only interested in Ok and
Abort constants and the maximum arity of a tuple send by any process is equal
to two, our set of abstract tuples will be:

Tuples = {(c) | c ∈ C} ∪ {(c1, c2) | c1 ∈ C, c2 ∈ C}

144 M. Terepeta, H.R. Nielson, and F. Nielson

where C = {Ok, Abort, *} and * stands for any constant other than Ok or Abort.
Rules for creating processes. To create a process the first thing that we do is

to push all its actions on the stack. So if we have a process P :: a1 . a2 . a3 then
we create a rule

〈P, �〉 τ
↪−→ 〈P, a1 a2 a3〉

where � is a “start” symbol that can be used for creating the initial set of
configurations (we will explain that later on). Furthermore this idea can be used
to express recursion. Consider the following process: Q :: RecX . a1 . a2 . X By
pushing X on the stack and treating it as a start symbol of the process we can
easily model this recursion — the moment all actions are executed and X is on
top of the stack, the rule is used to “recreate” the process:

〈Q, X〉 τ
↪−→ 〈Q, a1 a2 X〉

Apart from that we need to be able to handle choice. This can be achieved by
creating all possible linear shapes of the process. For instance when generating
the initial rules for process P :: a1 . (a2 + a3) we would create:

〈P, �〉 τ
↪−→ 〈P, a1 a2〉 〈P, �〉 τ

↪−→ 〈P, a1 a3〉
For the ATM in our example we can generate a set of rules for all choices of

x ∈ C and y ∈ C:
⎧
⎪⎪⎨

⎪⎪⎩

〈ATM, �〉 τ
↪−→ 〈ATM, (User, ATM, (x, y),�)

(check(x), A1)
(ATM, User, (y),�)
(ATM, Bank, (x, y),�))〉

∣
∣
∣
∣
∣
∣
∣
∣

x ∈ C
y ∈ C

⎫
⎪⎪⎬

⎪⎪⎭

As already mentioned, we can often be much smarter about generating the rules
and create only a subset of the above (for instance Abort is never sent between
User and Bank).

Rules for aspects. When generating the rules for the aspects we often have
sufficient information in the stack element of the pointcut to be able to decide
whether the aspect traps it or not. In the example above we could easily tell
that some of the actions could never be trapped by any of our aspects (the
aspects in the example trap only actions of the ATM). However, if we do not
know whether the aspect will trap the action, we simply over-approximate and
generate rules for both possibilities. One of the essential parts of generating the
rules is to update the component of the stack that tracks what aspect should
analyze the action next. In other words, if an action a is trapped by aspect A1
then the proceed of the aspect should be the same action a but annotated with
the next aspect. To make that clear, let us consider the internal check action of
our ATM:

⎧
⎨

⎩

〈ATM, (check, (x), A1)〉 τ
↪−→ 〈ATM, (check, (x),�)

(ATM, Bank, (x),�)
(Bank, ATM, (y), A2)〉

∣
∣
∣
∣
∣
∣

x ∈ C
y ∈ C

⎫
⎬

⎭

Recursive Advice for Coordination 145

As can be seen above, we have the internal action check with aspect A1 on the
left-hand side of the pushdown rule, but on the right-hand side we annotate it
with � as there are no more aspects that can match. This ensures that check
will not be trapped by this aspect again.

Moreover, we must also handle the if conditions. Since we generate rules for
various combinations of constants, we can often determine whether a condition
is true at the stage of generating the rules. And if so, we can generate rules
just for the right branch. However, in general this is not always possible. In such
situations we can simply generate the rules for both cases, i.e. one if the condition
is true and one if it is false. This corresponds to over-approximating the control
flow. Therefore, from the point of view of precision, it might be beneficial to
include in the set of abstract constants the ones that are used for comparisons.

Rules for executing actions. All of the above rules do not model the execution
of any actions (and thus are considered as internal actions and labeled with τ).
Execution in our context is nothing else than simply popping a stack element.
So in general we simply create rules of the form 〈p, a〉 l

↪−→ 〈p, ε〉 for all possible
actions a that are annotated with �, where l is either τ if a is an internal action
or a otherwise. An example from ATM is as follows:

{

〈ATM, (User, ATM, (x, y),�〉) (User,ATM,(x,y))
↪−−−−−−−−−−→ 〈ATM, ε〉

∣
∣
∣
∣x ∈ C y ∈ C

}

which corresponds to execution of all actions where ATM receives a two-tuple
from the user. Note that we require that the actions are annotated with �, which
indicates that all aspects have been considered and the action can be executed.

Finally, we need to define the initial set of configurations whose successors
we are interested in. This should clearly be the singleton with the name of
the process (control location) and the start symbol (a single element stack). In
case of ATM it is {〈ATM,�〉}. Running the Post∗ algorithm on it will yield an
automaton that represents all the possible future configurations of the thread.
In this case it will describe what the process can be in the future (i.e. grow due
to advice, shrink due to executing the actions, etc.).

3.3 Communicating Pushdown Systems

For now we have considered only a single thread at a time and we can create push-
down systems for each of them. However, since this construction does not take
into account that communication takes place, it is quite an over-approximation
of the behavior of the system. In this section we will remedy this and cover both
the basic theory behind communicating pushdown systems, as well as how we
can use them in our context.

Communicating pushdown systems have been introduced in [9,10] and sub-
sequently used in [11]. We define them here with just slight modifications to
accommodate for the fact that we handle message passing and not only synchro-
nization as in [9,10].

146 M. Terepeta, H.R. Nielson, and F. Nielson

Definition 2. Communicating pushdown system (CPDS) is a tuple (P1, . . . , Pn)
of pushdown systems over the same set of actions Act.

A global configuration of CPDS is a tuple g = (c1, . . . , cn) of configurations of
P1, . . . , Pn. We extend the relation a==⇒ to global configurations in the following
way:

– g
τ==⇒ g′ if there is 1 ≤ i ≤ n such that ci

τ==⇒ c′
i and c′

j = cj for all j �= i

– g
(s,r,t)=====⇒ g′ if there are i �= j such that ci

(s,r,t)=====⇒ c′
i and cj

(s,r,t)=====⇒ c′
j

(“s” stands for sender, “r” for receiver and “t” for tuple). Finally for all
k �= i ∧ k �= j we have that c′

k = ck.

Using the pushdown systems we have the ability to characterize the set of all
possible successors of some initial regular set of configurations. Moreover we want
to annotate the result with the summarization of what happens on the paths
to those successor configurations. Note that the pushdown rules are associated
with actions, so each path in the transition system of a PDS has a corresponding
sequence of actions, which is an element of the language generated by the set of
actions. More formally it is a subset of the free monoid Act∗ generated by the
set of actions Act. Moreover, it is important to note that in general the paths of
a process correspond to a context-free language [9,10].

Now let us consider a CPDS (P1, . . . Pn) and assume that we are interested in
the question whether a configuration from C′

1 × · · · × C′
n is reachable from some

configuration from C1 × · · · × Cn. In the following we will use Li = L(Ci, C′
i)

to denote the language summarizing all paths of the process i that go from any
configuration of Ci to any configuration of C′

i. If we restrict ourselves, just for
a moment, to the case where n = 2 then this problem is really nothing else
than testing for emptiness of the intersection of the languages L1 and L2. The
intuition behind this is that the intersection is empty only if there are no commu-
nication traces of the two processes that would match. However, the problem for
reachability for arbitrary n is a bit more demanding. Consider a simple scenario
with three process where process 1 first communicates with process 2, then with
process 3 and then with 2 again. With the above “recipe” we could get that the
L1 ∩ L2 is empty. The problem is that the above does not account for the fact
that process 1 communicates with process 3 and that this is not important from
the point of view of synchronizing with process 2. Therefore in order to gener-
alize this technique for arbitrary number of processes one has to accommodate
for the interleaving of communication between different processes. Therefore we
define L̂i to be an inverse homomorphic image of Li

L̂i = h−1
i Li

where hi is defined as

hi (s, r, t) =

{
(s, r, t) if r = i ∨ s = i

ε otherwise

Recursive Advice for Coordination 147

The idea behind this is that process i allows for any communication that does
not involve it, to take place between any of its actions. Intuitively when thinking
about the pushdown system Pi we want to extend it with self-loops, which cor-
respond to all possible communication actions of some other processes, on all its
control locations. In [9,10] this problem is solved by introduction of interleaving
(shuffle) operator. Also note that in case n = 2 we simply have L̂i = Li.

With the above we can finally reason about the reachability in a system of
arbitrary many processes. More formally, if we have sets of global configurations
G = C1 × . . . × Cn and G′ = C′

1 × . . . × C′
n and if

L̂1 ∩ . . . ∩ L̂n = ∅
then we can conclude that no configuration of G′ is reachable from any con-
figuration of G. However, there is still a minor problem with this approach —
as already mentioned the generated languages are in general context-free and
checking the emptiness of the intersection of context-free languages is undecid-
able. Therefore the next section will consider abstractions that can be used for
over-approximation.

4 Analysis

4.1 Basic Concepts

The Post∗ and Pre∗ algorithms can annotate the transitions of the Apost∗ and
Apre∗ automata with “weights”, i.e. some abstraction of the language generated
by the set of actions. Our approach is based on [9,10] with some changes to
accommodate for our slightly different context.

First of all we recall the definition of a semiring.

Definition 3. A semiring is a tuple (D, ⊕, ⊗, 0̄, 1̄) such that

– (D, ⊕, 0̄) is a commutative monoid (hence 0̄ is a neutral element for ⊕)
– (D, ⊗, 1̄) is a monoid (hence 1̄ is a neutral element for ⊗)
– ⊗ distributes over ⊕, that is a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c =

(a ⊗ c) ⊕ (b ⊗ c)
– 0̄ is an annihilator for ⊗, that is a ⊗ 0̄ = 0̄ ⊗ a = 0̄

We consider an idempotent3 semiring (D, ⊕, ⊗, 0̄, 1̄) with an associated abstract
lattice (D, �, �, ⊥) such that a � b iff a ⊕ b = b, � = ⊕, ⊥ = 0̄. Furthermore we
require that the lattice satisfies the ascending chain condition [15].

Moreover we also need to establish a Galois connection between the language
generated by the transition system of the communicating pushdown system and
our abstraction. Below we recall the definition of a Galois connection.

Definition 4. A Galois connection is a tuple (L, α, γ, M) such that L and M
are complete lattices and α, γ are monotone functions (called abstraction and
concretization functions) that satisfy α ◦ γ � λm.m and γ ◦ α � λl.l.
3 The operator ⊕ is additionally idempotent.

148 M. Terepeta, H.R. Nielson, and F. Nielson

Intuitively a Galois connection specifies a semantically correct way to move our
analysis from a precise lattice L (for which certain problems might be very hard
or even undecidable) to a more abstract one M which has some desired compu-
tational properties. In our case we want to go from possibly infinite P(Act∗) to
one that allows Post∗ to terminate and gives us a decidable way of intersecting
languages of various processes. We define the α and γ functions in the following
way:

α : P(Act∗) → D

α(L) =
⊕

a1···an∈L

va1 ⊗ . . . ⊗ van

γ : D → P(Act∗)
γ(x) = {a1 · · · an | va1 ⊗ . . . ⊗ van � x}

where va is an abstract value of a (which will be defined by a particular abstrac-
tion). Note that α(∅) = ⊥. Furthermore we also require that γ(⊥) = ∅. This
gives us the desired property:

∀L1, . . . , Ln : α(L1) � . . . � α(Ln) = ⊥ =⇒ L1 ∩ . . . ∩ Ln = ∅
Therefore, if these languages correspond to some paths between initial and target
configurations, we know that there are no paths of those processes that are
feasible when the communication is taken into account. This gives us the ability
to prove that certain configurations of our system are not reachable.

Finally the only remaining thing to do is to actually compute the abstractions
for each of the processes. Let C and C′ be two regular sets of configurations and
AC and AC′ be the automata representing them. We consider the problem of
computing α(L(C, C′)). Assuming that we have used the Post∗ algorithm to com-
pute the Apost∗ weighted automaton. In the following we will use λ(t) to denote
the weight of the transition t. Since our automaton represents all the possible
successors of C and we are only interested in some of them (only those in C′), we
need to restrict the accepted configurations. In simple cases this can be achieved
by querying the automaton for the weight of certain successors. But in general
we can construct AC′

post∗ that is a restriction of Apost∗ to the configurations in C′.
To do that we can simply intersect Apost∗ with AC′ automaton, that is create
an automaton induced by the smallest set of transitions such that if q1

a−→ q′
1 is

in Apost∗ and q2
a−→ q′

2 is in AC′ then we have a transition (q1, q2) a−→ (q′
1, q′

2) in
AC′

post∗ and its weight is λ(q1
a−→ q′

1). The result is exactly what we want — those
successors of C that are in C′. And the weights represent the summarization of
what happens along the paths between configurations in C and C′. The final
step is to compute (using for instance a slightly modified algorithm presented in
[7]):

⊕ {
λ(w) | p

w−→ q ∈ AC′
post∗ where p is an initial state and q a final one

}

where we extend λ to work over paths by using ⊗.

Recursive Advice for Coordination 149

4.2 Abstraction

There are many possibile abstractions that can be used for these problems, for
instance [9,10] presents a few options. Since in our problems we usually do not
expect the stack to grow very large, we will use the ith-prefix abstraction as
introduced in [11]. The intuition behind it is that we simply impose a maximum
length i that a word can have, i.e. we consider prefixes of words. The definition
is as follows. Let Wi be the set of words of length less than ore equal to i. Then
we define the semiring as follows: D = P(Wi), 0̄ = ∅, 1̄ = {ε}, ⊕ = ∪ and
U ⊗ V = {(uv)i | u ∈ U, v ∈ V } where (w)i is the prefix of w whose length is at
most i. Moreover for every a ∈ Act we take va = a. Note that this automatically
establishes a Galois connection where α and γ are defined as above.

4.3 Experiments

We have implemented this abstraction and used an off-the-shelf library WALi
[16] for computing the Post∗ weighted automaton. Currently our implementation
can be seen as a small library on top of WALi that offers higher level API capable
of generating all pushdown rules (and their weights) for a given set of abstract
constants. Since the resulting graphs are simply too large to include here, we
have simplified the rules (without compromising the results) and present some
of the more interesting parts in Fig. 1 and Fig. 2. The annotations on the edges
are pairs of stack element (first component; * denotes an ε transition) and the
weight of the transition (second component). Moreover EA stands for � and
LabelAbort() is an additional internal action that we inserted just after the
action sending Abort to make it easier to see in the summarization of bank’s
actions at this point, which is:

ATMBank(*)BankATM(Abort)

Fig. 1. Part of the simplified graph for the ATM

Fig. 2. Part of the simplified graph for the bank

150 M. Terepeta, H.R. Nielson, and F. Nielson

Turning to the ATM, we can see that the process successfully dispenses the
money and is about to inform the bank about the withdrawal with the following
summarization of its communication:

UserATM(**)ATMBank(*)BankATM(Ok)ATMUser(*)

Now it should be clear that the intersection of the communication of the bank
when it sends the abort message and the ATM when it dispenses the cash is
empty — BankATM(Ok) and BankATM(Abort) do not match. This means that
it is impossible for the bank and the ATM to reach this error configuration.
In other words the cash will never be dispensed in a situation where the bank
aborts the transaction.

5 Conclusions
In this paper we have considered a concurrent language equipped with message-
passing primitives and support for the aspect-oriented paradigm. We believe that
it also has a lot to offer in the context of coordination languages. In particular
it gives us the ability to create very modular systems and separate unrelated
functionality, which should make it easier to model complex systems.

However, the addition of aspects with advice allowing before or after actions
leads to some interesting challenges. Those additional actions make it possible
for a process to “grow” — one action trapped by an aspect can result in advice
consisting of two or more actions. Furthermore, since the advice itself is analyzed
by aspects, the processes can suddenly become arbitrarily large. Obviously this
makes it much more difficult to analyze such systems. Our main contribution
is to present an approach that is capable of solving analysis problems is such
a context. To achieve this we used a technique from software model checking,
namely communicating pushdown systems. Even though it is used mainly for
analysis of recursive programs, we managed to adapt it to our setting. It proved
to be a very useful and quite flexible tool, able to provide us with description
of a process that can be arbitrarily large. Moreover, with the right abstraction,
we can compute the summarization of its communication actions, allowing us
to reason about the reachability in systems of concurrent threads. Since many
safety problems can be reduced to reachability of error states, our approach can
be used for verification purposes of such systems.

We believe that this approach can be adapted to various process calculi that
use aspect-oriented paradigm. However, application to programming languages
might pose additional challenges. Apart from already mentioned differences, we
would also have to deal with two sources of recursion (procedures and aspects).

Finally, there are still some interesting future challenges. For instance, the
question of how far can we extend the language and still be able to model it
using pushdown systems. Moreover, from the point of view of efficiency we would
prefer to generate only a small number of rules. On the other hand, to achieve
better precision we would like to include as much information in the rules as
possible. There is clearly a lot of room for experiments with various approaches
and compromises depending on the situation.

Recursive Advice for Coordination 151

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

2. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

3. Hankin, C., Nielson, F., Nielson, H.R., Yang, F.: Advice for Coordination. In: Lea,
D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 153–168.
Springer, Heidelberg (2008)

4. Schwoon, S.: Model-Checking Pushdown Systmes. PhD thesis, Technical University
Munich (2002)

5. Esparza, J., Knoop, J.: An Automata-Theoretic Approach to Interprocedural Data-
Flow Analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30.
Springer, Heidelberg (1999)

6. Reps, T.W., Schwoon, S., Jha, S.: Weighted Pushdown Systems and their Applica-
tion to Interprocedural Dataflow Analysis. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 189–213. Springer, Heidelberg (2003)

7. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2),
206–263 (2005)

8. Yang, F.: Aspects with Program Analysis for Security Policies. PhD thesis, Tech-
nical University of Denmark (2010)

9. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL, pp. 62–73 (2003)

10. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. Int. J. Found. Comput. Sci. 14(4), 551–582
(2003)

11. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying Concurrent Message-
Passing C Programs with Recursive Calls. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

12. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural Analysis of Concurrent Pro-
grams Under a Context Bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

13. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

14. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient Algorithms for
Model Checking Pushdown Systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis (2. corr.
print). Springer (2005)

16. Kidd, N., Lal, A., Reps, T.W.: Wali: The weighted automaton library (December
2007)

Fluid Analysis of Foraging Ants

Mieke Massink and Diego Latella

Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy

Abstract. Workers of the Argentine ant, Iridomyrmex humilis, are
known to be capable to find efficiently the shortest route from their
nest to a food source. Their approach is based on a simple pheromone
trail-laying and following behaviour accessing only local information. In
this note we explore the modelling and analysis of foraging ants in Bio-
PEPA [8,6]. The simple case study concerns ants that need to cross a
bridge with two branches of different length to reach food and carry
the food home and is based on empirical data described by Goss and
Deneubourg et al. [13,10]. We explore the conditions for which the short-
est path emerges as the preferred one by the ants. The analysis is based
on stochastic simulation and fluid flow analysis. The behaviour of ant
colonies has inspired the development of an interesting class of opti-
misation algorithms ranging from alternative shortest path algorithms
to new scheduling and routing algorithms, algorithms to solve set parti-
tion problems and for distributed information retrieval. Process algebraic
fluid flow analysis may be an important additional technique to the anal-
ysis of such algorithms in a computationally efficient way.

Keywords: Fluid flow, process algebra, collective dynamics,
self-organisation, emergence.

1 Introduction

The behaviour of ant colonies has inspired the development of an interesting
class of optimisation algorithms ranging from alternative shortest path algo-
rithms to new scheduling and routing algorithms, algorithms to solve set par-
tition problems and for distributed information retrieval, see for example work
by Dorigo et al. [11]. The formal specification and scalable analysis of such sys-
tems, that in general consist of a large number of autonomous entities, is still a
challenging problem. Such analysis is however essential to assure functional and
non-functional properties of such systems, especially when they are employed
in safety critical applications. Algorithms based on ant colony behaviour are
also inspiring the development of techniques to contribute to the solution of
difficult problems of self-organisation, self-awareness, autonomous and collective
behaviour, and resource optimisation in a complex system setting such as those
that can be found in collaborative swarms of robots, see for example the AS-
CENS project [1]. In this preliminary work we address the formal modelling and
analysis of a colony of foraging ants in Bio-PEPA and in particular we study
the emergent behaviour of this model using a process algebra based fluid flow
approach.

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 152–165, 2012.
� IFIP International Federation for Information Processing 2012

Fluid Analysis of Foraging Ants 153

2 The Problem of Foraging Ants

To study the problem of foraging ants the following experimental set up is con-
sidered from the literature [13,10]. A nest of ants is situated at site nest and
some food is situated at site food. Ants can reach the food from the nest through
two alternative branches of a bridge, a long branch passing by locations L1 and
L2, and a short branch, passing by locations S1 and S2. The ants choose a
branch based on the relative quantity of pheromone present at the start of the
two branches, i.e. in L1 and S1 for ants leaving choice point A moving towards
site food, and L2 and S2 for ants leaving choice point B and going towards site
nest. Pheromone is a chemical substance that is released by the ants as they
move. It is assumed that once a branch is chosen the ant’s decision is not re-
verted, i.e. the ant eventually arrives at destination once it starts moving along
a particular branch. After the ant has found the food it returns to the nest fol-
lowing the same procedure. Pheromone is assumed not to be subject to decay in
the present set up since the behaviour is studied over a time interval of ca. 40
minutes, which is compatible with the lifetime of pheromone. However, such a
feature could be easily added when longer time intervals are of interest. The aim
of this modelling exercise is to find a high-level, process algebraic, agent based
model that can be used to determine under which conditions which of the two
branches is emerging as the preferred one when ants apply the above described
local, pheromone based, algorithm. The site nest and choice point A are rep-
resented as two different locations. Similarly for site food and choice point B.
A constant flow of ants leaving the nest is assumed, with, on average, one ant
leaving the nest every two seconds. The choice behaviour of the ants depends
on the relative amounts of pheromone present at the beginning of each branch.
In [10] a simple general choice function is used, which quantifies the way in which
a higher concentration of pheromone on one branch gives a higher probability
of choosing that branch, depending on the absolute and relative amounts on the
beginning of these branches. The particular choice function suggested for the
probability to choose the short branch at a choice point is of the form:

probS = (k + P Si)
d/((k + P Si)

d + (k + P Li)
d)

where P Si represents the amount of pheromone in location Si and P Li the
amount of pheromone in location Li, for i ∈ {1, 2}. In a similar way probL can
be defined. The parameter k quantifies the degree to which ants are sensitive to
the difference in amounts of pheromone marking at the two branches when there
is still relatively little pheromone present. For example, for k = 1 the probability
for the first ant passing choice point A to choose one of the branches is k/2k = 1/2
because there is no pheromone on either branch yet. Suppose this ant chooses
the long branch, then it lays a unit of pheromone at site L1. So, the next ant
that passes choice point A in the same direction (assuming that no other ants
have passed) has now a probability of 1/3 to choose the short branch and 2/3 to
choose the long branch. For larger values of k the initial amounts of pheromones
laid by the first ants produce a less accentuated difference in the probabilities.

154 M. Massink and D. Latella

For example, for k = 20 and d = 1 the probability that the second ant chooses
the short branch reduces to 21/41 = 0.51. Empirical results described in [10] have
shown that k = 20 provides a realistic value. The parameter d in the formula
determines the degree of non-linearity of the choice. A higher value of d amplifies
the effect of the difference between the amounts of pheromone present on the
two branches at a choice point. Empirical results showed that n = 2 provides a
good fit between empirical data and the function modelling the choice. Note that
probS+probL = 1. This simple mechanism, in which each ant that passes a choice
point during exploratory recruitment modifies the following ant’s probability to
choose a particular branch by adding pheromone on the chosen branch, forms
a positive feedback system in which, after some initial fluctuation, one branch
emerges as being “selected”, which is usually the shortest branch.

3 Bio-PEPA Briefly Recalled

Bio-PEPA [8,6,7], is a process algebraic language that originally was developed
for the stochastic modelling and analysis of biochemical systems. Bio-PEPA
models consist of two main kinds of components. The first kind is called the
“species” component, describing the behaviour of individual entities. The second
kind is the model component, describing the interactions between the various
species. In the context of the paper, the individual entities are the robots, and
the model component defines how they interact.

The syntax of Bio-PEPA components is defined as:

S ::= (α, κ) op S | S + S | C with op = ↓ | ↑ | ⊕ | � | � and P ::= P ��
L P | S(x)

where S is a species component and P is a model component.
The prefix combinator “op” in the prefix term (α, κ) op S represents the im-

pact that action α has on species S. Specifically, ↓ indicates that the number of
entities of species S reduces when α occurs, and ↑ indicates that this number
increases. The amount of the change is defined by the stoichiometry coefficient
κ. This coefficient captures the multiples of an entity involved in an occurring
action. We will see an example of its use in the next section. The default value
of κ is 1 in which case we simply write α instead of (α, κ). Action durations are
assumed to be random variables (RVs) with negative exponential distributions,
characterised by their rates. The rate of action α is defined by a so called func-
tional rate or kinetics rate. Action rates are defined in the context section of a
Bio-PEPA specification. The symbol ⊕ denotes an activator, # an inhibitor and
� a generic modifier, all of which play a role in an action without being pro-
duced or consumed and have a defined meaning in the biochemical context. The
operator “+” expresses the choice between possible actions, and the constant
C is defined by an equation C=S. The process P ��

L Q denotes synchronisation
between components P and Q, the set L determines those actions on which the
components P and Q are forced to synchronise. The shorthand P ��∗ Q denotes
synchronisation on all actions that P and Q have in common. In S(x), the pa-
rameter x ∈ IR represents the initial amount of the species. A Bio-PEPA system

Fluid Analysis of Foraging Ants 155

with locations consists of a set of species components, a model component, and
a context containing definitions of locations, functional/kinetics rates, param-
eters, etc.. The prefix term (α, κ) op S@l is used to specify that the action is
performed by S in location l.

Bio-PEPA is given a formal operational semantics [8] which is based on Con-
tinuous Time Markov Chains (CTMCs). An alternative semantics for Bio-PEPA
is also given in [7,8] where Bio-PEPA models are mapped into sets of ordinary
differential equations (ODEs) which allow for fluid flow approximation. As we
have seen above, a Bio-PEPA model consists of a number of sequential com-
ponents each of which represents a number of entities in a distinct state. The
result of an action is to increase the number of some entities and decrease the
number of others, these adjustments reflecting the stoichiometry with respect
to the action. Thus we can represent the total state of the system at any point
in time as a vector whose elements store the counts of each species component.
This gives rise to a discrete state system which undergoes discrete events. In-
tuitively, the idea of fluid flow approximation is to approximate these discrete
jumps by continuous flows between the states of the system. This approximation
becomes good when entities are present in such high numbers as to make the
frequency of actions high and the relative change from each single event small.
In this case we can derive a set ODEs capturing the continuous approximation
of system jumps, the solution of which is a vector of functions of time, which
approximate the average behaviour of the CTMC; there is one such a function
per each species and its value at time t gives the expected fraction, over the total
population, of entities of that species at time t.

Bio-PEPA is supported by a suite of software tools which automatically pro-
cess Bio-PEPAmodels and generate internal representations suitable for different
types of analysis [8,5]. These tools include mappings from Bio-PEPA to ODEs,
supporting fluid flow approximation [14], to stochastic simulation models [12],
to CTMCs with levels [7] and to PRISM models [16,17] amenable to (statisti-
cal) model-checking. Consistency of the analyses is supported by a rich theory
including process algebra, and the relationships between CTMCs and ODE.

4 A Bio-PEPA Model of Foraging Ants

To model the behaviour of foraging ants in Bio-PEPA [8,6] the following param-
eters are used:

– N denotes the total, and constant, number of worker ants in the ants colony.
– move denotes the constant rate at which ants leave site nest to look for

food. The rate at which ants leave site food depends also on the number of
ants present on site food and is modelled by a mass action law.

– walk long (walk short) is the rate related to the average time an ant needs
to traverse a section of the long (short, respectively) branch of the bridge.

Both the long and the short branch are composed of the same number of sections,
i.e. 2. The length of a branch is modelled by the average time it takes an ant

156 M. Massink and D. Latella

to traverse a section on that branch. This time is longer for the long branch
than for the short branch and is specified by the two parameters walk long and
walk short. An alternative solution would be to vary the number of sections on
the paths and keep the average walking time for each section the same.

The following compartments (locations) are introduced (apart from the de-
fault location ‘top’):

– nest is the location of the ants’ nest from which ants start initially.
– A is the location where they choose between the long and the short path

when leaving the nest.
– S1 and S2 are the locations where ants lay pheromone after they selected

the short branch. They do this every time they pass by these locations.
– L1 and L2 are the locations where ants lay pheromone after they selected

the long branch. They do this every time they pass by these locations.
– food is the place where they collect food.
– B is the location where the ants decide which branch to take when returning

from the food to the nest.

In Figure 1 the locations as well as the names of the transitions modelling the
movement of individual ants are indicated. The direction of movement of the
ants is modelled as part of the name of the species.

nest

A

B

food

S1

S2L2

L1

go A S1go A L1

go nest A

go L1 nest
go S1 nest

go L1 L2 go S1 S2go S2 S1go L2 L1

go B S2go B L2

go S2 foodgo L2 food

go food B

Fig. 1. Locations and transitions of ants in the model

In the following the behaviour of an individual ant is modelled. The focus is on
how its behaviour effects the population of ants and the amount of pheromones
in the relevant locations. It is assumed that all ants are in location nest initially.
From there they move with a rate of one ant every 2 seconds towards the food.
This rate is associated with the action go nest A labelling the transition of an
ant moving from location nest to choice point A. In A ants choose between the
long (go A L1) and the short (go A S1) branch. The total exit rate of an ant at a

Fluid Analysis of Foraging Ants 157

choice point is 1, i.e. the sum of the probabilities given by the choice function to
choose a branch. In this paper, we assume that, initially, there is no pheromone
in locations S1 and L1, so an ant chooses either way with approximately equal
probability for k = 20. When there is significantly more pheromone in one of
the locations, the rate with which that branch is chosen increases and the race
condition between the rates for the long and the short branch model a proba-
bilistic choice between them. So, the larger the difference between the amounts
of pheromone at the beginning of a path, the higher the probability that an
ant chooses the branch with the highest amount of pheromone. The Bio-PEPA
fragment below models this initial behaviour of the ant:

Ant nest = go nest A↓Ant nest@nest+
go S1 nest↑Ant nest@nest+
go L1 nest↑Ant nest@nest;

Ant A = go A S1↓Ant A@A+
go A L1↓Ant A@A+
go nest A↑Ant A@A;

After an ant selects a branch, it lays some pheromone in the location at the begin-
ning of a branch in S1 or L1 as a side-effect of the actions go A S1 and go A L1,
respectively. This part of the behaviour is modelled as processes Ant S1 NtoF
and Ant L1 NtoF , where the suffix ‘NtoF’ indicates that the ant’s travelling
direction is from nest to food. Pheromone is also left in the locations along the
branch when ants pass by them on their way back. This part of the behaviour is
modelled by the processes with suffix ‘FtoN’. Below an excerpt from the model
for an ant moving to and returning via S1 is shown. The behaviour involving
S2, L1 and L2 is similar and not shown.

Ant S1 NtoF = go A S1↑Ant S1 NtoF@S1+
go S1 S2↓Ant S1 NtoF@S1;

Ant S1 FtoN = go S2 S1↑Ant S1 FtoN@S1+
go S1 nest↓Ant S1 FtoN@S1;

After traversing the short or long branch, ants end up in location food. From
there they go eventually back to the nest, passing by choice point B, as specified
in the fragment below:

Ant food = go food B↓Ant food@food+
go S2 food↑Ant food@food+
go L2 food↑Ant food@food;

Ant B = go B S2↓Ant B@B+
go B L2↓Ant B@B+
go food B↑Ant B@B;

The increment in pheromone level takes place as a side-effect of an ant passing
by a particular location on its path. This is modelled by the change in pheromone

158 M. Massink and D. Latella

level at each of the locations and occurs when a go X Y action happens on which
the pheromone process is synchronised, for example:

P S1 = go A S1↑P S1@S1 + go S2 S1↑P S1@S1;

The system model below shows the initial number of ants in each location using
cooperation with synchronisation on shared actions:

Ant Nest@Nest[N]��∗ Ant A@A[0]��∗
Ant S1 NtoF@S1[0] ��∗ Ant S1 FtoN@S1[0] ��∗ P S1@S1[0] ��∗
Ant S2 NtoF@S2[0] ��∗ Ant S2 FtoN@S2[0] ��∗ P S2@S2[0] ��∗
Ant L1 NtoF@L1[0] ��∗ Ant L1 FtoN@L1[0] ��∗ P L1@L1[0] ��∗
Ant L2 NtoF@L2[0] ��∗ Ant L2 FtoN@L2[0] ��∗ P L2@L2[0] ��∗
Ant Food@Food[0]��∗ Ant B@B[0]

The rates of the actions in the model reflect those found empirically by Goss et
al. [13].

Ants leave the nest at a rate of one ant every 2 seconds. This is modelled by
the constant rate move. To avoid that a reaction takes place when there are no
ants present in the nest, the rate is multiplied with a factor that makes sure
that there is a positive number of ants in the nest (H(Ant nest@nest)). Ants
returning to their nest from location food are assumed to leave that location
with a rate depending on the number of ants present in that location.

kineticLawOf go nest A : move ∗H(Ant nest@nest);
kineticLawOf go food B : move ∗ Ant food@food;

The rates at which ants choose a branch at a choice point are defined using the
choice function of degree 2, for example for ants leaving choice point A:

kineticLawOf go A S1 : (k+P S1@S1)2

(k+P S1@S1)2+(k+P L1@L1)2
∗Ant A@A;

kineticLawOf go A L1 : (k+P L1@L1)2

(k+P S1@S1)2+(k+P L1@L1)2
∗Ant A@A;

It takes ants more time to traverse a section on the long branch than on the
short branch. This is simply modelled by two different rates; walk long and
walk short. For example:

kineticLawOf go L1 L2 : walk long ∗ Ant L1 NtoF@L1;
kineticLawOf go S1 S2 : walk short ∗ Ant S1 NtoF@S1;

5 Emerging Paths

Despite the simplicity of the model of foraging ants there are a number of in-
teresting aspects to analyse. In the present paper we focus on whether or under
what conditions stochastic simulation and fluid flow analysis confirm that the
simple trail laying and selection mechanism indeed are enough to lead to the
emergence of the shortest path in most cases. In other words, we want to know

Fluid Analysis of Foraging Ants 159

whether or under what conditions our model shows a similar emergent behaviour
as has been observed in empirical research, so that we can validate it.

In order to be able to compare results obtained from the model with those
from empirical research presented in Goss et al. [13] the model is analysed for
the following values of the parameters taken from [13]:

– N = 1000: number of workers in the ant colony
– move = 0.5: one ant every two seconds leaves the nest
– r = 2: relation between length of long branch w.r.t. short branch
– walk short = 0.05: the short branch takes on average 20 seconds to be

traversed
– walk long = 0.05/r: traversing the long branch takes r times much time as

traversing the short branch
– k = 20: factor k in the choice function

One way to visualize the relative preference of ants for one branch w.r.t. the
other is to show how the fraction of pheromone present on each branch changes
over time. This is shown in Fig. 2(a) for a stochastic simulation with 10000
independent runs over a time period of 3000 seconds (50 min.), covering the
duration of the experiments by Goss et al.. The figure shows that, after a brief
initial time interval, on average, there is more pheromone on the short branch
than on the long branch. Inspection of single simulation runs reveals that the
behaviour tends to two different stable states: one in which all ants use the short
branch (Fig. 3(a)) and one in which all ants use the long branch (Fig. 3(b)).
Two such simulations are shown in Fig. 3. However, on average the short branch
emerges more often than the long branch for the given parameter values, which
explains the results in Fig. 2(a).

Fig. 2(b) shows the total number of ants in the colony and the number of ants
that are in the nest over time, which are at least 942 at any time.

Let us now turn to a fluid flow analysis of the same model and same parameter
values as shown in Fig. 5(a). It is immediately clear that the fluid results are

0 500 1000 1500 2000 2500 3000

Time [s]

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Pheromone Fraction Long Branch
Pheromone Fraction Short Branch

(a) Fraction of pheromone amounts at be-
ginning of short (S1) and long (L1) branch
over time

0 500 1000 1500 2000 2500 3000

Time [s]

0

200

400

600

800

1000

P
op

ul
at

io
n

Ants_nest@nest
Total number of ants

(b) Number of ants present in the nest

Fig. 2. Stochastic simulation, 10000 independent runs

160 M. Massink and D. Latella

0 500 1000 1500 2000 2500 3000

Time [s]

0

0.2

0.4

0.6

0.8

1
P

er
ce

nt
ag

e

Pheromone Fraction Long Branch (G1)
Pheromone Fraction Short Branch (G1)

(a) Fraction of pheromone amounts in S1

and L1

0 500 1000 1500 2000 2500 3000

Time [s]

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Pheromone Fraction Long Branch (G1)
Pheromone Fraction Short Branch (G1)

(b) Fraction of pheromone amounts in S1

and L1

Fig. 3. Two different single simulation runs

quite different from the simulation results of Fig. 2(a). Fig. 5(a) seems to indicate
that the short branch emerges much earlier and more often than results from a
stochastic simulation of the same model with 10000 independent runs.

An important result by Kurtz [15] on continuous approximation of stochastic
processes says that the fluid approximation can be obtained as the limit of a
sequence of CTMC models for increasing population levels. In particular, it has
been shown that such approximation works well if the rates of the model can
be shown to be density dependent. But let us first consider what it would mean
to generate a sequence of models with increasing population levels for the ant
colony model. If a system has a total number of components that does not change
when the system evolves this total could be taken as the system size. However,
in the ant colony model the number of ants is constant, but the amount of
pheromone in the various locations grows unlimited over time. So, let us consider
as the system size the sum of the initial populations of ants and pheromone and
consider a sequence of systems where this populations are scaled with a factor
E ∈ N, so N = 1000 ∗E. Unfortunately, this alone does not mean that there are
really more ants active (i.e. out of the nest) in our system. This is due to the
fact that ants leave the nest with a constant rate of one ant every two seconds.
We can work around this by scaling the exit rate as well by factor E, i.e. define
move = 0.5 ∗ E. Fig. 4(a) shows the result of a single simulation of the model
scaled by a factor E = 100000 and renormalised afterwards. The shape of the
graph seems to get closer to the fluid flow results of Fig. 5(a). However, a second
simulation, shown in Fig. 4(b) of exactly the same model and parameters shows
that it is also possible that the long branch emerges, giving a simulation trace
that differs completely from that obtained by fluid flow analysis. In other words
the simulation results are very unstable despite the large population considered.

Let us consider the rate function of the actions go A S1 and go A L1 for
the choice between two branches. The factor k in that function could also be
interpreted as the initial amount of pheromone present at both branches. Viewed
that way, it would be interesting to consider a model in which also k is scaled

Fluid Analysis of Foraging Ants 161

0 500 1000 1500 2000 2500 3000

Time [s]

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Pheromone Fraction Long Branch (GSA)
Pheromone Fraction Short Branch (GSA)

(a) Fraction of pheromone amounts in S1

and L1

0 500 1000 1500 2000 2500 3000

Time [s]

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Pheromone Fraction Long Branch (GSA)
Pheromone Fraction Short Branch (GSA)

(b) Fraction of pheromone amounts in S1

and L1

Fig. 4. Two different single simulation runs for model scaled by E=100000

in a similar way as N , i.e. k = 20 ∗ E. We found that, in this case, single
simulation traces, such as the one shown in Fig. 5(b), give indeed results that
are very similar to the fluid flow results in Fig. 5(a); in the sequel we give
a formal justification to this intuitive interpretation. A closer inspection of the
rate function involving the choice between branches showed that it is indeed easy
to verify that it is density dependent when also k is scaled, thus the hypothesis
of Kurtz’ theorem are fulfilled and the stochastic process associated with the
underlying CTMC—which the simulation is based on—coincides, in the limit,
when scaling the population to infinite, with the solution of the ODEs. If k is
not scaled, it is not immediate how a remaining dependency on the population
size in the formula could be dealt with.

More formally, consider the rate function for the transition go A S1 for the
choice of the short branch at choice point A:

fgo A S1(X̄) = (k+P S1@S1)2

(k+P S1@S1)2+(k+P L1@L1)2
∗Ant A@A;

where X̄ denotes the population vector of the model containing the values for
P S1@S1, P L1@L1, Ant A@A etc. To show that this rate function is density
dependent we need to find a function g such that:

E · A0 · g(1

E ·A0
(X̄)) = f(X̄)

where A0 is the initial value of ants in the nest and E is the multiplication factor.
Let us focus on transition go A S1. Consider a function g such that its com-

ponent for transition go A S1, which we denote by ggo A S1, is defined as below,
assuming that also k is scaled and is part of the population vector X̄. Let us
also assume that the arguments of ggo A S1 for the values related to P S1@S1,
P L1@L1, Ant A@A, k etc. are indicated by YP S1, YP L1, YAnt A, Yk etc., resp.:

ggo A S1(Ȳ) =
(Yk + YP S1)

2

((Yk + YP S1)2 + (Yk + YP L1)2)
· YAnt A

Now we need to show that E · A0 · g(1
E·A0

(X̄)) = f(X̄) for the transition from
A to the short branch:

162 M. Massink and D. Latella

E · A0 · ggo A S1(
1

E·A0
(X̄))

=

E · A0 · (k
E·A0

+P S1@S1
E·A0

)2

((k
E·A0

+P S1@S1
E·A0

)2+(k
E·A0

+P L1@L1
E·A0

)2)
· Ant A@A

E·A0

=
(k
E·A0

+P S1@S1
E·A0

)2

((k
E·A0

+P S1@S1
E·A0

)2+(k
E·A0

+P L1@L1
E·A0

)2)
· Ant A@A

=
1

(E·A0)2
·(k+P S1@S1)2

1
(E·A0)2

·(k+P S1@S1)2+ 1
(E·A0)2

·(k+P L1@L1)2
∗Ant A@A

=
(k+P S1@S1)2

(k+P S1@S1)2+(k+P L1@L1)2 ∗Ant A@A

It is easy to see that g in this case is indeed the function we were looking for.
Other rate functions in the model are simple mass action functions or similar to
the one shown above. So, the model can be shown to be density dependent when
scaling the ant population, the pheromones and the factor k. This explains the
good correspondence found in that case between fluid flow results and renor-
malised stochastic simulation runs of a scaled model with E = 100000 as shown
in Fig. 4.

6 Related Work

It is not the first time that formalisms of a process algebraic nature are used to
model and analyse the social behaviour of insects. In the work by Tofts in the
early nineties [20] the calculus Weighted Synchronous CCS (WSCCS), an exten-
sion of Milner’s SCCS [18], was used to describe a probabilistic synchronisation
algorithm assumed to underly the observed auto-synchronisation behaviour of
ants. In that work the behaviour of individual ants has been modelled and the

0 500 1000 1500 2000 2500 3000

Time [s]

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Pheromone Fraction Long Branch (ODE)
Pheromone Fraction Short Branch (ODE)

(a) Fraction of pheromone amounts in S1

and L1 (ODE)

0 500 1000 1500 2000 2500 3000

Time [s]

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Pheromone Fraction Long Branch (GS)
Pheromone Fraction Short Branch (GS)

(b) Fraction of pheromone amounts in S1

and L1 (G1 scaled)

Fig. 5. Fluid flow analysis and scaled simulation

Fluid Analysis of Foraging Ants 163

global behaviour has been analysed by studying the related transition matrices
and by performing model based simulation. Later work by Sumpter et al. [19]
extends Tofts’ work on modelling ant colony behaviour by further types of anal-
yses of the WSCCS models, like Markov chain analysis and mean field methods.
Mean field approximation is a technique which is similar to fluid flow analysis
but it is usually applied to Discrete Time Markov Chains (DTMCs) rather than
CTMCs. The use of CTMCs instead of DTMCs adds to the model the dimension
of (continuous) time, still preserving the probabilistic behaviour. Consequently,
it makes it natural to model issues like the fact that it takes longer to ants to
traverse the long path.

7 Discussion and Further Work

The emergent effect of ants choosing the short branch can be explained by the
positive feedback information that returning ants provide. The ants that choose
the short branch arrive before those that chose the long branch and therefore
more pheromone builds up at the beginning of the short branch. This only works
if pioneer ants have time to return to the nest before many of their fellow ants
start to look for food too. Choosing a constant rate for ants leaving the nest
leads to a model that better reflects such experimental observations.

The small exploratory study of ants described in the present note illustrates
some of the progress that has been made in recent years that facilitates consider-
ably the analysis of process algebraic models of collective behaviour. Among such
progress is the development of automated tools for the generation of stochas-
tic simulations and continuous fluid flow approximations from process algebraic
models of large collectives of interacting agents. The inclusion of explicit no-
tions of locality and context dependent flexible definition of activity rates in
the formalism may further broaden the kind of dynamical systems that can be
modelled and analysed using a formal modelling approach. Such an approach
has the additional advantage that it provides a mathematical underpinning of
the collective behaviour under study and the related underlying distributed and
stochastic algorithms. Furthermore, fluid flow methods exhibit a high degree of
scalability in the numbers of individuals of each species or, more generally, in
the number of processes in a certain state. In fact, such numbers are just the
initial condition of the initial value problem for the associated ODEs. On the
other hand, the approach is more sensitive to the number of different species,
since the number of differential equations in the system grows (linearly) with it.

As we have seen, scaling k made it easy to prove density dependence. This
fact brought us to the conjecture that if k is considered a constant of the model,
then the scaling conditions of Kurtz’ theorem might not be fulfilled. The full
consequences of these findings are topic of further study.

There are several other issues which remain to be addressed and which we
would like to study further, in the future. We have observed that which of the
two branches emerges depends critically on the initial conditions of the model.
Such effects can be studied by imposing artificially a larger initial amount of

164 M. Massink and D. Latella

pheromone on the long branch than on the short branch and perform a fluid
flow analysis. It would be interesting to study this phenomenon and establish a
critical value for such a “phase shift” for different conditions of sensitivity of ants
to pheromone differences and its relation to the value k, i.e. the sensitivity of
ants to differences in relatively small amounts of pheromone. Another parameter
to which sensitivity of the model could be studied is the ratio r between the
long and the short path (set to 2 in this paper). It would also be interesting
to investigate the effect of choice functions with higher or lower degrees and, of
course, to investigate whether and how the model could be extended for more
complicated topologies.

Finally, in this work we have used Bio-PEPA as modelling language and
the related Bio-PEPA toolset for fluid flow analysis and simulation. However,
a number of other interesting formal languages for stochastic modelling have
been proposed, among which SCCP [2,3,4], a Stochastic Concurrent Constraint
language, fluid flow PEPA [14] and StoKLAIM [9], a stochastic variant of a
Linda-like language based on tuple spaces and with asynchronous coordination.
These languages reflect different modelling concepts, while for all of them, anal-
ysis techniques such as stochastic simulation, e.g. in PRISM [16], and fluid flow
approximation have been implemented or are under development. We plan to
consider the various approaches taking variants of the foraging ant colony as a
central modelling theme.

Acknowledgments. The authors would like to thank Stephen Gilmore, Allan
Clark and Adam Duguid (University of Edinburgh) for their support with the
Bio-PEPA plug-in and other features. We also would like to thank Jane Hillston
(University of Edinburgh) for making us aware of the earlier work on modelling
ant colony behaviour and Mirco Tribastone (LMU Munich), Luca Bortolussi
(University of Trieste) and Michele Loreti (University of Florence) for taking
up ant modelling as well in different formalisms and sharing with us their find-
ings and results which contributed to improvements in the model and analysis
presented in the present paper. This research has been partially funded by the
EU-IP FET-Open project ASCENS (nr. 257414) and Project TRACE-IT - PAR
FAS 2007-2013 - Regione Toscana.

References

1. Ascens Project, http://www.ascens-ist.eu/
2. Bortolussi, L.: Stochastic concurrent constraint programming. In: Proceedings of

the 4th International Workshop on Quantitative Aspects of Programming Lan-
guages, QAPL 2006. ENTCS, vol. 164-3 (2006)

3. Bortolussi, L., Policriti, A.: Modeling biological systems in concurrent constraint
programming. Constraints 13(1-2), 66–90 (2008)

4. Bortolussi, L., Policriti, A.: Dynamical Systems and Stochastic Programming: To
Ordinary Differential Equations and Back. In: Priami, C., Back, R.-J., Petre, I.
(eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp.
216–267. Springer, Heidelberg (2009)

http://www.ascens-ist.eu/

Fluid Analysis of Foraging Ants 165

5. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J.: The Bio-
PEPA Tool Suite. In: Proc. of the 6th Int. Conf. on Quantitative Evaluation of
SysTems, QEST 2009, pp. 309–310 (2009)

6. Ciocchetta, F., Guerriero, M.L.: Modelling biological compartments in Bio-PEPA.
ENTCS 227, 77–95 (2009)

7. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA
for biochemical networks. ENTCS 194(3), 103–117 (2008)

8. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis
of biological systems. TCS 410(33-34), 3065–3084 (2009)

9. De Nicola, R., Katoen, J., Latella, D., Loreti, M.: StoKLAIM: A stochastic exten-
sion of KLAIM, CNR-ISTI Technical Report number ISTI-2006-TR-01 (2006)

10. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing ex-
ploratory pattern of the argentine ant. Journal of Insects Behaviour 3(2) (1990)

11. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press (2004)
12. Gillepie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Jour-

nal of Physical Chemistry 81(25), 2340–2361 (1977)
13. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in

the Argentine Ant. Naturwissenschaften 76, 579–581 (1989)
14. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of QEST

2005, pp. 33–43. IEEE Computer Society (2005)
15. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure Markov

processes. Journal of Applied Probability 7(1), 49–58 (1970)
16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic model checking

for performance and reliability analysis. ACM SIGMETRICS Performance Evalu-
ation Review (2009)

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

18. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Sci-
ence 25(3), 267–310 (1983)

19. Sumpter, D.J.T., Blanchard, G.B., Broomhead, D.S.: Ants and agents: a process
algebra approach to modelling ant colony behaviour. Bulletin of Mathematical
Biology 63, 951–980 (2001), doi:10.1006/bulm.2001.0252

20. Tofts, C.: The autosynchronisation of leptothorax acervorem (fabricius) described
in WSCCS. Tech. Rep. ECS-LFCS-90-128, LFCS, University of Edinburgh (1990)

Real-Time Coordination Patterns for Advanced

Mechatronic Systems

Stefan Dziwok1, Christian Heinzemann1, and Matthias Tichy2

1 Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Germany

{stefan.dziwok,christian.heinzemann}@uni-paderborn.de
2 Software Engineering Division, Department of Computer Science and Engineering,

Chalmers University of Technology and University of Gothenburg, Sweden
tichy@chalmers.se

Abstract. Innovation in today’s mechanical systems is often only pos-
sible due to the embedded software. Particularly, the software connects
previously isolated systems resulting in, so-called, advanced mechatronic
systems. Mechatronic systems are often employed in a safety-critical con-
text, where hazards that are caused by faults in the software have to be
prevented. Preferably, this is achieved by already avoiding these faults
during development. A major source of faults is the complex coordi-
nation between the connected mechatronic systems. In this paper, we
present Real-Time Coordination Patterns for advanced mechatronic sys-
tems. These patterns formalize proven communication protocols for the
coordination between mechatronic systems as reusable entities. Further-
more, our approach exploits the patterns in the decomposition of the
system to enable a scalable formal verification for the detection of faults.
We illustrate the patterns with examples from different case studies.

Keywords: Advanced Mechatronic Systems, Patterns, Coordination,
Communication, Real-Time, MechatronicUML.

1 Introduction

Mechanical engineering has a long tradition in sustained development of inno-
vation, e.g., innovation in cars in the last century. However, in the last decades,
software is the driving force for innovation in mechanical engineering as, e.g., in
the automotive domain [17]. Modern mechanical systems are developed by ex-
perts from several engineering disciplines: mechanical engineering, electrical engi-
neering, control engineering, and software engineering. These systems are called
mechatronic systems. Mechatronic systems often operate in a safety-critical con-
text where failures can lead to death or serious injury to people.

Furthermore, previously isolated systems increasingly form systems of sys-
tems where each autonomous part communicate with each other by means of
complex message exchange protocols [16] in an ad-hoc manner. This results in
very complex systems.

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 166–180, 2012.
c© IFIP International Federation for Information Processing 2012

Real-Time Coordination Patterns 167

(i) RailCabs building a

convoy

(iii) Robots playing ping-pong without

using a camera

(ii) BeBots exploring the area

together

Fig. 1. Examples for advanced mechatronic systems

These trends make the development of advanced mechatronic systems a big
challenge. Thus, appropriate development approaches have to be utilized and
rigorously followed. Particularly, the software has to be subject of rigorous ver-
ification and validation activities.

Figure 1 shows three advanced mechatronic systems developed at the Uni-
versity of Paderborn in the last couple of years. On the left, two autonomous
shuttles of the RailCab systems are shown. RailCab shuttles are autonomous
railway vehicles which combine the flexibility of individual transport with the
energy efficiency of public transport systems. They save energy by forming con-
voys which reduce the air resistance. In the middle, two miniature robots called
BeBots are shown. BeBots form ad-hoc networks in order to jointly execute
tasks. The robots can collectively agree on taking different roles to achieve the
common task. On the right, two cooperating robots are shown which play ping-
pong. They do so without any external global camera system but instead rely
on the timely exchange of position, velocity, and trajectory of the batted ball.

In all three advanced mechatronic systems, coordination plays an impor-
tant role because they consist of independent, communicating actors (e.g., au-
tonomous mechatronic systems), who join their efforts towards mutually defined
goals (cf. [15]). For example, the communication actors decide on a common
strategy (e.g., activating the convoy) or they decide on a master who delegates
tasks to the slaves. These coordination aspects require sophisticated coordination
protocols.

We developed the coordination protocols for these systems based on the pat-
terns presented in [10,6,7,8] in order to exploit the vast amount of existing ex-
perience. The patterns listed in these approaches proved to be very helpful in
developing our systems. However, they lack a formal description which may lead
to the introduction of errors in the application to new systems. As we focus on
safety-critical mechatronic systems, a pattern approach which avoids this intro-
duction of errors in the first place is beneficial in order to guarantee the safety
of the system.

Based on that experience, we developed Real-Time Coordination Patterns
which formalize coordination protocols for mechatronic systems with a particular
focus on safety properties and hard real-time constraints. Furthermore, protocols
that are based on these patterns enable to decompose the mechatronic system
in such a way that a scalable formal verification using model checking can be

168 S. Dziwok, C. Heinzemann, and M. Tichy

employed. This is possible because of our previous work on compositional verifi-
cation [12]. In contrast to the pattern formalism of [12], we further abstract from
application-specific details for a better reusability, define a description format
for the patterns, and have build up a catalog of patterns.

In summary, the contribution of this paper is as follows: (1) we present Real-
Time Coordination Patterns as formal representation of reusable coordination
protocols, (2) we present formal refinement steps which define how these patterns
are applied and refined, and (3) we report on a case study in which the approach
was applied to the aforementioned cooperating robots example.

Section 2 presents MechatronicUML, which is the foundation for our ap-
proach. In Section 3, we introduce Real-Time Coordination Patterns that are
patterns for Real-Time Coordination Protocols. We show how these patterns
are applied to new systems in Section 4. Thereafter, we present the cooperating
robots case study in Section 5. Next, we distinguish our results from related work
in Section 6. Finally, we conclude with an outlook on future work in Section 7.

2 MechatronicUML

MechatronicUML [3] is a language for the model-driven design of software of
advanced mechatronic systems. It follows the component-based approach where
each component encapsulates a part of the software. In advanced mechatronic
systems, the components that constitute the software do not work in isolation,
but they have to coordinate their actions using communication for achieving the
intended functionality of the system. Therefore, each component defines a set of
external interaction points, which we call ports. Components can communicate
via their ports if a connector connects them.

A connection between two components implies that they are able to commu-
nicate correctly. The protocol definition formally defines the message exchange
and the timing constraints that the message exchange needs to adhere to. In
MechatronicUML, a protocol is defined by a pair of communicating roles and
a connector. We call it a Real-Time Coordination Protocol. We describe the
behavior of each role with a Real-Time Statechart.

Real-Time Statecharts are an extension of UPPAAL timed automata [5] to
support, e.g., modeling of worst-case execution times and deadlines for actions.
Real-Time Statecharts especially support the specification of asynchronous mes-
sages as well as real-time constraints. In addition, Real-Time Statecharts may
define variables and operations that are required for the communication. Their
semantics is defined by a mapping to UPPAAL timed automata [11].

Figure 2 shows an example of a Real-Time Coordination Protocol named
Convoy Coordination which is used for coordinating a convoy of RailCabs. The
behavior is as follows: Initially, both Real-Time Statecharts are in the states
NoConvoy/Default. Then, the rear RailCab, i.e., the RailCab driving behind, may
switch to state Waiting by sending an asynchronous message convoyProposal to
the front RailCab to initiate the convoy build-up. The front RailCab receives this
message and switches to EvaluateProposal. In this state, the front RailCab decides

Real-Time Coordination Patterns 169

rear

NoConvoy

Default / convoyProposal
(destinationID)

2 1convoyProposalRejected() /

var: int destinationID; cl: c_wait;

Waiting
c_wait 1000ms

entry / {reset:c_wait}

[c_wait 1000ms]

Convoy

startConvoy() /

/ breakConvoy()

3

front

NoConvoy

Default convoyProposal
(destinationID) /

1
/ convoyProposalRejected()

var: int destinationID; cl: c_eval;

EvaluateProposal
c_eval 599ms

entry / {reset:c_eval}

Convoy

/ startConvoy()

breakConvoy() /

2

convoyProposal
(destinationID) /

1 2

r2:RailCab rear r1:RailCabfront

Fig. 2. Real-Time Statecharts of Real-Time Coordination Protocol Convoy Coordina-
tion

whether a convoy is useful or not. The decision depends, among others, on how
long both RailCabs share the same route. For this reason, the rear RailCab sends
the ID of its destination as a parameter of the convoyProposal. Within 599ms,
either the front RailCab rejects the proposal by sending convoyProposalRejected or
it accepts by sending startConvoy. In the first case, both Real-Time Statecharts
return to the Default states. In the second case, both Real-Time Statecharts
switch to state convoy. For avoiding a deadlock in the rear RailCab, it specifies a
time out in state Waiting which causes it to return to Default after 1000ms. The
transition, however, has lowest priority (indicated by 1) such that a message
will be considered if it has been received. While being in state Convoy, the rear

RailCab may propose to break the convoy by sending breakConvoy, which causes
both to return to the NoConvoy/Default state. The transition from Convoy to
EvaluateProposal is needed to prevent deadlocks in case of message loss.

The protocol definition in MechatronicUML explicitly considers that a
transmission of a message from sender to receiver takes time. Therefore, the
connectors may receive a transmission delay. In our example, we assume a trans-
mission delay of up to 200ms.

In many cases, the communication of the components is safety-critical, i.e., a
malfunctioning communication may cause severe damage to property or human
lives. For example in case of the convoy coordination, RailCabs may collide if
the RailCab driving behind assumes to be in convoy mode while the RailCab
driving in front does not. In convoy mode, the RailCab driving in front must
notify its follower before braking. If the RailCab driving in front is not in convoy
mode, it will not send the notification. Thus, we must ensure that the RailCab
driving behind, i.e., the rear role of the protocol, only enters the state Convoy if
the front role is in state Convoy as well. We formalize such properties using the
Timed Computation Tree Logic (TCTL) [1]. Thus, the aforementioned property
is formalized as AG rear.Convoy implies front.Convoy.

170 S. Dziwok, C. Heinzemann, and M. Tichy

The properties are formally verified using timed model checkers like UP-
PAAL [4]. In our verification, we explicitly consider the delay of the connector
as well as the case that messages may be lost, e.g., when using an unreliable
transmission medium. In addition, we assume that messages are not reordered
during the transmission and that they are stored in a FIFO-queue allowing only
access to the first element. The protocol introduced in this section remains safe
w.r.t. the specified property and free of deadlocks.

The behavior of a component constitutes from the Real-Time Statecharts of
the ports. In addition, the component may provide additional internal behavior,
e.g., for resolving conflicts between different ports or for providing additional
operations as discussed in Section 4.

In most cases, the system under construction cannot be verified as a whole us-
ing model checking because of the state space explosion problem (the number of
reachable states is often exponential in the size of the specification). To achieve
a scalable formal verification, we use the compositional verification approach
of [12]. Here, we verify each Real-Time Coordination Protocol separately be-
fore verifying each component. This is enabled by clearly separating component
internal behavior and communication behavior using Real-Time Coordination
Protocols.

3 Patterns for Real-Time Coordination Protocols

In MechatronicUML, connectors are first class entities. Therefore, the focus
within the first process steps is to design the coordination and communication
behavior. Based on given requirements, the developer has to specify one Real-
Time Coordination Protocol per connector. While doing so, he has to ensure
that it is free of faults despite hard real-time constraints, message delay and
the possibility of message loss. Although the developer is able to identify faults
regarding the behavior description using model checkers, removing the faults
is a non trivial task. In general, specifying a Real-Time Coordination Protocol
is very complex and thus, very time-consuming and error-prone. Moreover, the
intention of an already existing protocol is often hard to grasp.

While modeling Real-Time Coordination Protocols for different advanced
mechatronic systems, we identified that the coordination is based on recurring
use-cases. This applies for the coordination between autonomous systems, but
also for the coordination between components within one system. Therefore, we
define general, reusable solutions for these recurring use cases (we call them
Real-Time Coordination Patterns). These patterns support the developer by
offering solutions that contain formal models and a comprehensive documenta-
tion. By doing so, our goal is to increase the quality of the resulting Real-Time
Coordination Protocols as well as the efficiency of their development.

3.1 Real-Time Coordination Patterns

In general, a pattern within software design “provides a scheme for refining the
subsystems or components of a software system, or the relationships between

Real-Time Coordination Patterns 171

them. It describes a commonly recurring structure of communicating components
that solves a general design problem within a particular context” [6].

A Real-Time Coordination Pattern describes a well-proven, reusable, and for-
mal solution to a commonly occurring coordination problem within the domain
of advanced mechatronic systems. These systems communicate under hard real-
time constraints in a safety-critical environment. Hence, Real-Time Coordina-
tion Patterns are a special kind of software patterns and support inexperienced
developers in specifying Real-Time Coordination Protocols. A Real-Time Coor-
dination Pattern is defined such that it respects certain safety properties, which
can be formally verified using model checkers. Moreover, if a developer defines
coordination protocols based on our patterns, the system under construction can
be fully verified based on our compositional verification approach [12].

A Real-Time Coordination Pattern abstracts from application-specific details
to be reusable in different scenarios. For example, time parameters are defined
instead of concrete time values. However, the correctness of a protocol depends
on real-time constraints and properties of the connector (e.g., reliability) and
is therefore not automatically correct for all possible time parameters and all
connectors. Thus, we define the steps a developer has to execute for each pattern
to get a correct protocol (see Section 4).

The Real-Time Coordination Patterns that we identified so far are collected
and described within a pattern catalog [9]. Currently, the catalog consists of
eight patterns. A briefly overview of those follows:

Synchronized Collaboration synchronizes the activation and deactivation
of a collaboration of two roles. The pattern assumes that a safety-critical situa-
tion appears if the role, which initialized the activation, is in collaboration mode
and the other role is not in collaboration mode. Therefore, the pattern ensures
that this situation never happens.

Fail-Safe Delegation realizes a delegation of a task from a master role to a
slave role. The slave executes the task in a certain time and answers regarding
success or failure. If the execution fails, no other task may be delegated until the
master ensures that the failure has been corrected. Moreover, only one delegation
at a time is allowed.

Fail-Operational Delegation realizes a delegation of a task from a master
role to a slave role. The slave executes the task in a certain time and answers
regarding success or failure. The pattern assumes that a failure is not safety-
critical, though only one delegation at a time is allowed.

Master-Slave-Assignment is used if two systems can dynamically change
between one state in which they have equal rights and another state in which
one is the master and the other one is the slave.

Periodic Transmission can be used to periodically transmit information
from a sender to a receiver. If the receiver does not get the information within a
certain time, a specified behavior must be activated to prevent a safety-critical
situation.

172 S. Dziwok, C. Heinzemann, and M. Tichy

Producer-Consumer is used when two roles shall access a safety-critical
section alternately. For example, one produces goods, the other consumes them.
The pattern guarantees that only one is in the critical section at the same time.

Block Execution coordinates a blocking of actions, e.g., due to safety-critical
reasons.

Limit Observation is used to communicate if a certain value violates a
defined limit or not.

3.2 Description Format of Our Patterns

For describing our patterns, we defined a uniform description format such that
a developer can understand, compare, and use our patterns more easily.

Several popular description formats for software patterns already exist [6,10].
We analyzed how well they fit to our patterns and, hence, decided to choose the
format of Buschmann et al. [6] and adapt it to our needs.

We use all attributes of their description format except of implementation
and example resolved because we propose to use code generators and resolve
our example already within the other attributes. Furthermore, we divide the
attribute see also into the two attributes alternative patterns and combinability
because these are two different contents, which are easier to find and understand
for the developer if they are separated from each other. At last, we add the
attribute verification properties to explain the verification properties that must
hold for the pattern.

To conclude, Real-Time Coordination Patterns are described with the follow-
ing attributes: name (including a short summary), context, problem, solution,
structure, behavior, verification properties, consequences, examples, variants, al-
ternative patterns, and combinability.

3.3 Example: Synchronized Collaboration

The Real-Time Coordination Protocol Convoy Coordination (Fig. 2) is a good
solution when two communicating actors have to synchronize the (de-) activation
of a concrete collaboration. Therefore, we abstracted it from all its application
specific details and defined the Real-Time Coordination Pattern Synchronized
Collaboration (Fig. 3). We will now give a short description for this pattern. We
omitted the attributes variants, alternative patterns, and combinability because
of the limited space of the paper. The full description can be found within our
pattern catalog [9].

Name: Synchronized Collaboration (also known as: Strategy Coordination)

This pattern synchronizes the activation and deactivation of a collaboration of
two systems. The pattern assumes that a safety-critical situation appears if the
system that initialized the activation is in collaboration mode and the other
system is not in collaboration mode. Therefore, the pattern ensures that this
situation never happens.

Real-Time Coordination Patterns 173

master

CollaborationInactive

Default / activationProposal()

2 1activationRejected() /

cl: c_wait;

Waiting
c_wait $timeout

entry / {reset:c_wait}

[c_wait $timeout]

CollaborationActive

activationAccepted() /

/ deactivation()

3

master slave

Synchronized
Collaboration

slave

CollaborationInactive

Default activationProposal() /

1/ activationRejected()

cl: c_eval;

EvaluateProposal
c_eval $eval-time
entry / {reset:c_eval}

/ activationAccepted()

deactivation() /

2

CollaborationActive activationProposal() /1 2

AG not deadlock
AG master.CollaborationActive implies
slave.CollaborationActive

Fig. 3. Structure and behavior of Real-Time Coordination Pattern Synchronized Col-
laboration

Context: Two independent systems can dynamically collaborate in a safety-
critical environment.

Problem: Switching between collaboration and no collaboration adds hazards.
It may be the case that one system assumes they are working together while the
other one does not think so. This must be avoided. The possibility for this prob-
lem occurrence increases, if the communication is asynchronous and the com-
munication channel is unreliable. This patterns assumes that the safety-critical
situation only occurs, if system s1 assumes they are working together and sys-
tem s2 does not think so. The other way round is considered as not safety-critical.

Solution: Define a coordination protocol that enables to activate and deactivate
the collaboration while it considers the given problems. The systems act with
different roles: System s1 is the master and system s2 is the slave. The master
initiates the activation and the deactivation. The activation is a proposal so that
the slave can decide whether the collaboration is possible and useful. The deac-
tivation is a direct command so that the master can deactivate the collaboration
as soon as it is no longer useful.

Structure: The pattern consists of the two roles master and slave and a connector
(Fig. 3). The master may send the messages activationProposal and deactivation to
the slave. The slave may send the messages activationAccepted and activationRe-

jected to the master. The time parameter of the master role is $timeout, the time
parameter of slave role is $eval-time. The connector may lose messages. The delay
for sending a message is defined by the time parameters $delay-min and $delay-max.

Behavior: The Real-Time Statecharts of both roles are shown in Fig. 3. A short
description is as follows: First, the collaboration is in both roles inactive. The
slave is passive and has to wait for the master to decide to send a proposal for
activating the collaboration. In this case, the slave has a certain time to answer

174 S. Dziwok, C. Heinzemann, and M. Tichy

if he accepts or rejects the proposal. If the slave rejects, the collaboration will
remain inactive. If the slave accepts, he activates the collaboration and informs
the master so that he also activates the collaboration. If the master receives
no answer in a certain time (e.g. because the answer of the slave got lost), he
cancels its waiting and may send a new proposal. Only the master can decide
to deactivate the collaboration. He informs the slave so that he also deactivates it.

Verification Properties: There will never be a deadlock within the protocol:
AG not deadlock. If the master is in state CollaborationActive, then the slave
must always be in state CollaborationActive:
AG master.CollaborationActive implies slave.CollaborationActive.

Consequences: Both roles must have a pre-defined behavior when the collabora-
tion is active or inactive. At run-time, the behavior must be adapted accordingly,
because master and slave decide on this defined behavior to activate or deac-
tivate the collaboration. Moreover, the slave cannot deactivate the collaboration.

Examples: Two RailCabs are driving on the same track. The rear RailCab wants
to create a convoy to take advantage of the slipstream. However, it has to drive
with a small gap to the front RailCab. Therefore, the rear RailCab cannot avoid
a collision, if the front RailCab brakes hard without informing the rear RailCab.
Synchronized Collaboration enables to build a secure convoy if the rear RailCab
acts as the master and the front RailCab acts as the slave and the rear RailCab
only drives with a small gap as long as the convoy collaboration is active.

4 Developing Advanced Mechatronic Systems Using
Real-Time Coordination Patterns

In this section, we illustrate how a developer may use the provided Real-Time
Coordination Patterns during the development of a concrete system. The general
process for each pattern is depicted in Fig. 4.

The developer starts with the requirements for the coordination protocol.
Based on these requirements, the developer selects a Real-Time Coordination
Pattern which suites the requirements in Step 1. In Step 2, the developer may
adapt the Real-Time Coordination Pattern to the concrete domain of the system
under development. We call this an application-specific adaptation which we de-
scribe in detail in Section 4.1. At the end of Step 2, we perform model checking
to ensure that all verification properties are met. The result is a Real-Time Co-
ordination Protocol. In Step 3, this protocol is applied to the components of the

artefact process step integrated analysis stepLegend:

Application-specific
AdaptationSelect Real-Time

Coordination Pattern

Implementation-
specific Refinement

Refinement
Check

Model
Checking1 2 3

requirements
MechatronicUML

model

Real-Time
Coordination
Protocol

Fig. 4. Process for Developing with Design Patterns

Real-Time Coordination Patterns 175

system to specify their communication. That requires an implementation-specific
refinement which we introduce in Section 4.2. The correctness of the refinement
is ensured by a refinement check. Finally, the result is a MechatronicUML
model of the system under construction.

4.1 Application-Specific Adaptation

Real-Time Coordination Patterns are intended to be reused in different appli-
cations that operate in different domains. Consequently, they abstract from all
application-specific details, e.g., concrete timing information, and use generic
names for states and messages. The Real-Time Coordination Pattern Synchro-
nized Collaboration in Fig. 3 gives an example.

When applying a Real-Time Coordination Pattern to an application of a
specific domain, the developer needs to specify concrete values for all time pa-
rameters and the properties of the connector. That includes message delay, con-
sideration of message loss, and the concrete implementation variant of a buffer.

Besides the mandatory steps described above, the developer may adapt the
Real-Time Coordination Pattern to the application. This adaptation includes:
(1) renaming elements (protocol, roles, states, messages, clocks, variables, oper-
ations) to concretize their application-specific meaning, (2) adding new message
parameters, (3) changing the state hierarchy (increasing or flattening), (4) adding
variables and clocks, and (5) splitting transitions into several transitions with
intermediate states. Further adaptations, e.g., adding entirely new states, tran-
sitions, and messages, change the solution provided by the pattern significantly.
Then, it cannot be assured that the verification properties are still meaningful
and sufficient for guaranteeing the safety of the resulting protocol.

After executing all adaptation steps, we obtain a Real-Time Coordination
Protocol for the specific application. Given the essential timing information, we
can perform model checking on the Real-Time Coordination Protocol to ensure
that it satisfies all verification properties specified in the pattern definition. The
model checking task is carried out by a timed model checker, e.g., UPPAAL [4].

4.2 Implementation-Specific Refinement

In this step, we assign the resulting Real-Time Coordination Protocols to the
components of the system under construction to define their communication. The
assignment of a Real-Time Coordination Protocol to a component requires to
integrate it with the internal behavior of the component and to resolve conflicts
or dependencies between several protocols. As an example for such dependencies,
consider the RailCab system. A RailCab may only enter the convoy mode if it
is correctly registered at a track side control unit. The registration is performed
by another Real-Time Coordination Protocol.

The assignment of a protocol to a concrete component might also require the
implementation of component-specific operations. In our example, the front role
of the convoy coordination protocol needs to be extended by an implementation
that determines whether a convoy is useful or not. The changes which are applied

176 S. Dziwok, C. Heinzemann, and M. Tichy

to a Real-Time Coordination Protocol must not invalidate the verified safety and
liveness properties which is achieved by a refinement.

The changes which we allow for the implementation-specific refinement are so-
called lightweight changes only. The lightweight changes that we support are: (1)
adding deadlines to transitions, (2) adding actions to states and transitions, (3)
adding synchronizations, and (4) splitting transitions into a sequence of states
and transitions. We allow to add invariants to the states and time guards to the
transition that originate from splitting transitions.

After applying the lightweight changes, we need to verify that they have been
applied correctly. Model checking the whole Real-Time Coordination Protocol,
again, is costly and not necessary in this case. Instead, we only need to verify
that each role of the Real-Time Coordination Protocol has been refined cor-
rectly. That requires the refined role to be checked against the role obtained
after application-specific adaptation. If the refinement has been done correctly,
the Real-Time Coordination Protocol with the refined role fulfills all verified
properties. In [13], we have shown that checking for correct refinement of a
single role is more efficient than a repetition of the verification of the whole
Real-Time Coordination Protocol. Formal definitions for refinements of timed
automata have been introduced in [19] and [13].

5 Case Study: Cooperating Robots

After we collected a set of eight Real-Time Coordination Patterns, we started a
case study to answer the following questions: (1) Are our patterns reusable? (2)
Is our pattern catalog including our pattern description format helpful? (3) Is
our proposed process after selecting a pattern appropriate?

Our new case study were the cooperating robots (Fig. 1 (iii)) that have to
play ping-pong using different squash balls without needing a camera to trace the
ball. Instead, the two fully independent robots use contact sensors to trace the
ball and use communication to inform each other. Among others, the following
requirements were defined: (1) Initially, one of both robots receives the ball. (2)
Balls with different properties should be supported. (3) The robot that initially
receives the ball, first has to juggle it alone to identify the ball properties. (4)
The game is restricted to a maximum of 30s. (5) The robot that initially receives
the ball has to ensure that the other robot must be ready and knows the ball
properties before the ball is hit to it. Otherwise, the other robot cannot hit the
squash ball correctly or will not perform a hit at all. Both problems lead to an
unwanted behavior.

A computer science student, who has basic knowledge regarding model-driven
development, carried out the design of the MechatronicUML model and es-
pecially the modeling of the coordination and communication. We gave him a
detailed introduction of MechatronicUML, our existing case studies including
the documentation and our pattern catalog. Afterward, we defined the require-
ments of the application. The student worked primarily on his own except some
questions of him regarding the given documents.

Real-Time Coordination Patterns 177

ping <master>

InitOrJuggling

Default ballEvaluated(ballParams)?
/ gameProposal(ballParams)

2 1

rejected(rejectID)!
gamingRejected(rejectID) /

var: int[] ballParams, int rejectID; cl: c_wait, c_game;

Waiting
c_wait 2000ms

entry / {reset:c_wait}

timeout! [c_wait 2000ms]

serve! readyForServe () /

endGame? / gameEnded()

3

ping <master> pong <slave>

Game Coordination
<Synchronized Collaboration>

pong <slave>

Idle

Default evalGameStart(ballParams)!
gameProposal(ballParams) /

1
reject(rejectID)? / gamingRejected(rejectID)

var: int[] ballParams, int rejectID; cl: c_eval;

accept?
/ readyForServe()

ended!
gameEnded() /

Note: Ping is the robot that gets
the ball from the user. Pong is
the second robot.

Gaming
c_game 30s

entry / {reset:c_game}

Gaming

Waiting
c_eval 1800ms

entry / {reset:c_eval}
2

evalGameStart(ballParams)!
gameProposal(ballParams) /21

AG not deadlock
AG ping.Gaming implies pong.Gaming

Fig. 5. Real-Time Coordination Protocol Game Coordination that is adapted and re-
fined for the coordination of the cooperating robots

As a result, the student defined four Real-Time Coordination Protocols to
realize the robot-to-robot communication. Two are based on Real-Time Coor-
dination Patterns, namely: Master-Slave-Assignment, and Synchronized Collab-
oration. One of the two non pattern-based protocols is a good solution for an
alternating transmission. Thus, we want to abstract it to a new pattern. Regard-
ing the internal communication within each robot, the student used just three
protocols to define all 13 internal connectors. Two of them were patterns and
the third is a good candidate for a new pattern.

For example, the student selected the pattern Synchronized Collaboration to syn-
chronize the start and the end of the game between the robots while ensuring
that the robot that initially receives the ball may only start the game if the other
robot is aware of that and does know the ball properties. He adapted the pat-
tern to the Real-Time Coordination Protocol Game Coordination (Fig. 5), e.g., he
defined the time variables, renamed some elements, and added a new invariant
for state Gaming of statechart ping to restrict the length of the game. The model
checker did not found any errors within the resulting protocol. Therefore, the
student assigned the protocol to a connector and refined it by synchronization
channels to integrate it with the internal behavior of the connected components.

Concluding, the student successfully reused our Real-Time Coordination Pat-
terns, adapted them to Real-Time Coordination Protocols, and reused these
protocols, but with different refinement-variants. Regarding the pattern catalog,
the student found the description and its format fitting and on the correct level
of abstraction. The student was able to carry out the steps of our proposed pro-
cess, which defined the application-specific adaptation and the implementation-
specific refinement, in an efficient manner.

178 S. Dziwok, C. Heinzemann, and M. Tichy

6 Related Work

Patterns regarding the coordination and communication between classes, com-
ponents, and systems already exist and were a great help for defining our own
patterns. However, most of them only illustrate the communication informally
using sequence diagrams. If at all, they only define simple timing behavior. Ex-
amples for these are the patterns Chain of Responsibility, Command, and Ob-
server by Gamma et al. [10] and the patterns Master-Slave, Forwarder-Receiver,
Client-Dispatcher-Server, and Publisher-Subscriber by Buschmann et al [6]. In
contrast to these pattern systems, we formally specify the coordination using
Real-Time Statecharts. Using them, the messages a communication participant
may receive and send depend on its current state and on additional real-time
constraints.

Real-Time Coordination Patterns are protocol patterns for the domain of
advanced mechatronic systems. Other domains-specific languages also defined
patterns for communication, e.g., in the domain of multi-agent-system. For ex-
ample,AgentUML is a modeling language to specify agent interaction protocols
[2]. For such protocols the Foundation of Intelligent Physical Agents defined so-
called protocol templates, e.g., the Propose Interaction Protocol, which proposes
an interaction that can be accepted or rejected. Agent interaction protocols com-
bine sequence diagrams with the notion of state diagrams, though they do not
support real-time constraints that are mandatory in our domain of advanced
mechatronic systems.

Douglass [7,8] defined real-time design patterns for the collaboration between
components, e.g., Watchdog. The behavior is described by UML state machines
including useful real-time constraints and message exchanges. However, our be-
havior is described using Real-Time Statecharts, which are more expressive (e.g.,
they can define how long a state may be active). Furthermore, Douglass does
not define how a developer may adapt this pattern for his application.

We define our patterns in a formal way and describe the process of their sub-
sequent adaptation and refinement. Taibi et al. [18] describe several approaches
regarding the formalization of patterns and their subsequent refinement, but
they do not focus on coordination protocols of advanced mechatronic systems.

In contrast to the mentioned related work, our patterns consider safety-critical
situations (in the domain of advanced mechatronic systems) that must not hap-
pen. They offer a solution which ensures that these situations never appear.
Furthermore, we define a process that preserves these characteristics during the
application of the pattern.

7 Conclusions and Future Work

In this paper, we proposed patterns for Real-Time Coordination Protocols, which
we call Real-Time Coordination Patterns. They describe safety-critical problems
that appear when a developer designs the coordination through communication
between advanced mechatronic systems. Furthermore, our patterns suggest a

Real-Time Coordination Patterns 179

solution that is reusable in different applications and specifies the behavior in
such a way that it can be proven regarding safety-critical requirements. We
used a real application example to explain the need of our patterns. Moreover,
we defined how developers should develop the coordination when they use our
patterns. We identified eight patterns through several case studies and were
able to reuse them in a new case study. We mainly differ from existing pattern
systems, because we specify safety-critical requirements that our patterns ensure.

Our patterns may help developers to increase the quality of coordination pro-
tocols for advanced mechatronic systems and to improve the efficiency developing
them.

Several topics require further investigations: (1) We have to carry out a com-
prehensive evaluation to confirm our results. (2) We want to examine more case
studies for advanced mechatronic systems to identify additional Real-Time Coor-
dination Patterns. (3) In this paper we only introduced patterns for a one-to-one
communication. However, Real-Time Coordination Protocols for one-to-many
and many-to-many communication also exist. Therefore, we want to extend our
catalog with such patterns. (4) To enable a developer to improve the search
for an appropriate pattern, we are currently designing an ontology to store our
patterns within the Semantic Web as suggested in [14]. Afterward, we want to
enable the developer to search after patterns within our MechatronicUML
modeling tool Fujaba Real-Time Tool Suite. (5) Our patterns have many vari-
ants. Therefore, we want to define a feature model for each pattern so that a
developer may select a feature configuration and the system automatically con-
structs the corresponding structure, behavior model, and verification properties.

Acknowledgment. We thank Marcel Sander for being the test person of our
case study cooperating robots. This work was developed in the project “EN-
TIME: Entwurfstechnik Intelligente Mechatronik” (Design Methods for Intel-
ligent Mechatronic Systems). The project ENTIME is funded by the state of
North Rhine-Westphalia (NRW), Germany and the EUROPEAN UNION, Eu-
ropean Regional Development Fund, “Investing in your future”. This work was
developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and funded by the Deutsche Forschungsgemein-
schaft. Christian Heinzemann is supported by the International Graduate School
Dynamic Intelligent Systems.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and Computation 104, 2–34 (1993)

2. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Mul-
tiagent Software Systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 91–103. Springer, Heidelberg (2001)

180 S. Dziwok, C. Heinzemann, and M. Tichy

3. Becker, S., Brenner, C., Dziwok, S., Gewering, T., Heinzemann, C., Pohlmann, U.,
Priesterjahn, C., Schäfer, W., Suck, J., Sudmann, O., Tichy, M.: The Mechatron-
icUML method – process, syntax, and semantics. Tech. Rep. tr-ri-12-318, Software
Engineering Group, University of Paderborn (February 2012)

4. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

5. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture. A System of Patterns, vol. 1. Wiley (1996)

7. Douglass, B.P.: Doing hard time: developing real-time systems with UML, objects,
frameworks, and patterns. Addison-Wesley, Boston (1999)

8. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems. Addison-Wesley, Boston (2002)

9. Dziwok, S., Bröker, K., Heinzemann, C., Tichy, M.: A catalog for Real-Time Coor-
dination Patterns of advanced mechatronic systems. Tech. Rep. tr-ri-12-319, Uni-
versity of Paderborn (February 2012)

10. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

11. Giese, H., Burmester, S.: Real-time statechart semantics. Tech. Rep. tr-ri-03-239,
Software Engineering Group, University of Paderborn (June 2003)

12. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the composi-
tional verification of real-time UML designs. In: Proceedings of the 9th European
Software Engineering Conference held Jointly with the 11th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, ESEC/FSE 2003,
pp. 38–47. ACM Press (September 2003)

13. Heinzemann, C., Henkler, S.: Reusing dynamic communication protocols in self-
adaptive embedded component architectures. In: Proceedings of the 14th Interna-
tional Symposium on Component Based Software Engineering, CBSE 2011, pp.
109–118. ACM (June 2011)

14. Henninger, S., Corrêa, V.: Software pattern communities: Current practices and
challenges. In: Proceedings of the 14th Conference on Pattern Languages of Pro-
grams, PLoP 2007, Monticello, Illinois, USA, September 5-8 (2007)

15. National Science Foundation: A report by NSF-IRIS review panel for research on
coordination theory and technology. Tech. rep., NSSF Forms and Publication Unit,
National Science Foundation, Washington, D.C (1989)

16. Schäfer, W., Wehrheim, H.: The Challenges of Building Advanced Mechatronic
Systems. In: FOSE 2007: 2007 Future of Software Engineering, pp. 72–84. IEEE
Computer Society (2007)

17. Scharnhorst, T., Heinecke, H., Schnelle, K.P., Bortolazzi, J., Lundh, L.,
Heitkämper, P., Leflour, J., Maté, J.L., Nishikawa, K.: Autosar - challenges and
achievements 2005. In: 12th International VDI Congress Electronic Systems for
Vehicles 2005, Baden-Baden. VDI Berichte, vol. 1907. VDI (2005)

18. Taibi, T. (ed.): Design Patterns Formalization Techniques. IGI Publishing, Hershey
(2007)

19. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Formal Methods in System Design 18(1), 25–68 (2001)

Group Orchestration in a Mobile Environment

Eline Philips�, Jorge Vallejos,
Ragnhild Van Der Straeten, and Viviane Jonckers

Software Languages Lab, Vrije Universiteit Brussel, Belgium
{ephilips,jvallejo,rvdstrae}@vub.ac.be,

vejoncke@soft.vub.ac.be

Abstract. The increasing popularity of mobile devices fosters the om-
nipresence of services in mobile environments. Software systems in a
mobile environment often want to manage a set of services that form a
logical group and orchestrate the execution of a particular process for
all its members. To orchestrate a group of services, abstractions are re-
quired which allow control over the execution in a way that transcends
the individual process of a single member. Currently, existing languages
do not offer adequate abstractions to perform said group orchestration in
a reliable way. In this paper we present high-level abstractions for group
orchestration as a new set of workflow patterns. We show how these
patterns are integrated in an existing workflow language for nomadic
networks, i.e. NOW. The workflow language NOW handles network and
service failures at the core of the language. By extending this fault tol-
erance to the new group abstractions, we show how to conduct these in
a reliable way.

1 Introduction

People everywhere are surrounded by a wide range of mobile and stationary de-
vices that can perform all kinds of services. For instance, today’s smartphones are
able to determine the temperature, location, orientation, etc. Since devices and
services are everywhere nowadays, there is a need to address several services or
devices at the same time. For instance, to determine the current temperature at
a certain location, one could retrieve that information from several temperature
services in the neighbourhood and calculate the average.

Existing approaches that interact with a group of services can be either clas-
sified in the domain of group communication or group behaviour. Group com-
munication [14] addresses technologies that can enable effective communication
between various groups in the network, using for instance multicasting. Group
behaviour [12] is the capability of services to coordinate with each other. In order
to coordinate a group of services, the dependencies between the members of the
group must be managed in order to let them collaborate.

These domains focus on communication and/or coordination, but have little
support for orchestration. Service orchestration is defined by Peltz [15] as a

� Funded by a doctoral scholarship of the “Institute for the Promotion of Innovation
through Science and Technology in Flanders” (IWT Vlaanderen).

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 181–195, 2012.
c© IFIP International Federation for Information Processing 2012

182 E. Philips et al.

business process that interacts with both internal and external Web services. We
define group orchestration in a mobile environment as the management of a set
of services that form a logical group where all its members execute a particular
process. Moreover, there is a need to control the execution of the group members
in a way that transcends the individual process. Group orchestration should
be able to deal with both the voluntary and involuntary removal and addition
of group members. It is also essential that there are ways to synchronise and
streamline the execution process of several group members.

As group orchestration provides high-level abstractions to manage the execu-
tion of processes for the group members, it differs from group communication
which is only concerned about the low-level protocols that can be used for the un-
derlying communication. Group orchestration also differs from group behaviour.
Even though group behaviour also needs to take the necessary precautions to
handle unforeseen network failures, it focusses on the collaboration between the
group members unlike group orchestration which aims at the management of the
execution of a process by all the members of the group.

In this paper we present high-level abstractions for group orchestration and
introduce these abstractions in the workflow language NOW. NOW is a work-
flow language that allows the orchestration of distributed services in a mobile
network. This workflow language introduces high-level control flow patterns and
abstractions which can deal with network failures that are inherent to a mo-
bile environment. We extend this workflow language with novel abstractions to
enable reliable group orchestration in a mobile environment.

The paper is organised as follows: in Section 2 we give a motivating example
and an enumeration of the requirements the proposed abstractions need to fulfill.
In Section 3 we give a short introduction to NOW as we extend this language
with novel patterns for group orchestration. In Section 4 the novel abstractions
for group orchestration with services are presented. Before concluding the paper,
we describe related work.

2 Motivation

In this section we describe an example scenario which emphasises requirements
for group orchestration in a mobile environment.

“The headliner of the Pukkelpop festival decides to surprise its fans with a
special concert by letting them vote for the songs that will be played. In order
to accomplish this they use the festival’s infrastructure to communicate with the
mobile phones of the fans who are present in the festival area. All fans who are
interested in participating in this vote receive a list of the band’s discography.
They are able to vote until two hours before the band’s concert is scheduled. All
votes that are received afterwards are considered invalid. As a special bonus, the
voters have the benefit of receiving the band’s final playlist before the start of the
concert.”

Group Orchestration in a Mobile Environment 183

We enumerate the requirements for group orchestration that can be distilled
from this small example. These requirements for group orchestration in a mobile
environment can be divided into three categories, namely “definition of group
membership”, “synchronisation mechanisms”, and “failure handling”.

1. [C1] Definition of Group Membership:

– Intensional definition [R1]: Users should be able to define processes
that will be executed by a set of services that form a logical group. This
group can be either defined extensionally, by enumerating all its mem-
bers, or intensionally by giving a description all members must fulfill.
In the example scenario, a group is defined intensionally, namely all fans
of the headliner who are located in the festival area.

– Plurality encapsulation [R2]: First of all, users want to orchestrate a
group of services as if they are one single unit. Moreover, as we are target-
ing mobile environments, this quantity of group members can fluctuate
over time as new services join and disjoin the group. This requirement is
known in existing literature as the need for encapsulating plurality [11]
or arity decoupling [10].
As we show in the scenario, the members of the group are not known
a priori and can change over time. For instance, fans can arrive at the
festival area at a later point in time then other fans who were there
earlier and who have already received the request to vote.

– Dynamic modification [R3]: During the execution of the group it
must be possible to redefine the members of this group. It should be
possible to restrict the members by filtering out members based on a
certain condition and also to change the group’s description causing the
arity of the group to change.
In the motivating example, the group initially consists of all fans of the
headliner. Later on, only those fans who are interested in voting are
being addressed.

2. [C2] Synchronisation Mechanisms [R4]: In order to streamline all exe-
cution processes of the group members, the fact which service can do which
task at what time needs to be managed and controlled. Moreover, the num-
ber of times a specific task is executed and the data needed during this
execution should be controllable. Synchronisation mechanisms can let pro-
cesses wait, redirect and even abort in order to let given criteria persist. This
way, synchronisation mechanisms influence the amount of members of the
group.
In the example scenario, all results need to be gathered two hours before the
headliner’s concert is going to start. This task should only be performed by
a single service at a specific point in time. Therefore, all data needs to be
collected before the execution of that task can start.

3. [C3] Failure Handling [R5]: As mobile environments are liable to volatile
connections, ways to detect and handle failures must be available. First of
all, it should be possible to react upon a failure that occurs during the
individual process execution of a single member of the group. Moreover,

184 E. Philips et al.

there must be mechanisms to detect and handle failures at the group level
and even propagate individual failures to the group level.
In case a failure occurs within an individual process execution of a single fan,
there should be a compensating action that tries to re-execute the process
(for instance, resending the message). However, when something goes wrong
when the votes of all fans are being gathered, the compensation should apply
for all fans, hence the entire group’s execution.

3 Small Introduction to NOW

In this section we give a brief introduction of the workflow language NOW,
as this is the language we extended with novel abstractions to support group
orchestration. NOW [5] is a workflow language sculpted for nomadic networks
[1]. These networks consist of a fixed infrastructure and mobile devices that try
to maintain a connection with that infrastructure. These kinds of networks are
omnipresent, for instance, airports, shopping malls, hospitals, etc.

NOW is built as a library on top of AmbientTalk, a distributed scripting
language targeting mobile ad hoc networks [3]. For both types of mobile net-
works, disconnections are considered the rule rather than the exception. Hence,
in order to ensure that the workflow description cannot become unavailable dur-
ing its execution, the workflow description resides on the fixed infrastructure of
the network.

Failure Handling. NOW introduces control flow patterns and failure handling
patterns. The control flow patterns that are supported by the language range
from very basic ones, like sequence and parallel split, to more advanced ones,
like multiple instances patterns. NOW’s failure pattern wraps a subworkflow
and specifies compensating actions for possible failures that can occur. The dif-
ferent kinds of failures that can be detected are: a service that cannot be found,
a disconnection that occurred, a timeout that occurred while interacting with
a specific service, or an exception raised by that service. For these failures, one
can specify compensating actions like restart, retry, rediscover, skip, wait, or ex-
ecuting an alternative subworkflow. These compensating actions can be chained
together, to support compensations like wait 20 seconds, retry to invoke the
same service twice, when this fails execute another subworkflow. As volatile con-
nections are inherent to the type of networks targeted by NOW, the language
supports default compensating actions.

Data Flow. NOW also uses a dynamic data flow mechanism that passes data
between the distributed services in the environment by employing a data environ-
ment. Such a data environment is a dictionary, containing variable bindings, that
is passed between the activities of the workflow. Each activity can specify input
and output variables used for its service invocation. The output variables (spec-
ified by the @Output annotation) cause (new) variable bindings to be added to

Group Orchestration in a Mobile Environment 185

the data environment. In case of fork patterns (like parallel split), this data en-
vironment is conceptually copied and when a join occurs (like a synchronization
pattern), these incoming data environments are merged using a merging strategy
(like choosing the one with a maximum value for a certain variable). For more
detailed information we refer the interested reader to [5] and [6].

4 Abstractions for Group Orchestration

In this section we describe the novel abstractions we introduce in NOW in order
to satisfy the requirements for group orchestration we presented in Section 2.
The description of these abstractions adheres to the categories and requirements
we presented in Section 2. The implementation of NOW is extended with these
novel abstractions and is available at [13]. In the remainder of this section we use
small excerpts from the motivating example to illustrate their use. The entire
implementation of this example scenario can also be found at [13].

4.1 Definition of Group Membership

First of all, we need to introduce an abstraction for a group, namely a subwork-
flow that must be executed for a set of services. In order to do so, we extended
NOW with the notion of a group pattern.

Group(<description>, <variable name>, <subworkflow>)

This pattern is instantiated with a description of the services, a variable name
that can be used to refer to the member services individually, and the subwork-
flow that must be executed several times.

Intensional Definition [R1]. The description of the services can be either
achieved by enumerating all of them (extensional description) or by describing
all properties those services must fulfill (intensional description). Deciding which
services to interact with in a dynamically changing environment is hard when
reasoning extensionally about it, as the set of services can vary over time. In
these kinds of environments it is opportune to provide intensional descriptions
for those services. Intensional descriptions abstract away the precise number
of services during interaction and let services maintain anonymity during this
interaction. A group should be able to specify a description such that not only
services of the same type, like temperature services, but also more sophisticated
characterisation of members can be achieved. In particular, there is a need for
intensional descriptions of services such as “the service I last used”, “my favourite
service”, or “all temperature services that are nearby and have an accuracy of
more than 95%”. In order to support such intensional descriptions, the logical
coordination language Crime [4] can be used.

The Fact Space Model [4] of Crime provides a logic coordination language for
reasoning about context information that is represented as facts in a federated

186 E. Philips et al.

fact space. Concretely, facts are locally published by applications and transpar-
ently shared between nearby devices as long as they are within communication
range. Applications have the ability to react upon the appearance of facts, by
making use of rules. This logic language uses the forward chaining strategy for
deriving new conclusions as this data-driven technique is very suitable for the
event-driven nature of Crime. Therefore, we integrated Crime in NOW which
is targeted towards nomadic networks where lots of events (connections, discon-
nections, etc.) occur.

We support both types of group descriptions: extensional and intensional.
First of all, it is possible to instantiate a group with an array of objects. These
objects can be either references to the services (e.g. the fans of Pukkelpop’s
headliner), or just plain objects (for instance all ids of those fans). Additionally,
we allow intensional description of the group members by either using a type
tag1 or by writing a logical expression in Crime.

In our example scenario, all the fans of Pukkelpop’s headliner need to be
addressed. This can be expressed by writing a logical expression in Crime2:

pp_visitor(?id), band_info(?band, "headliner"), fan_info(?id, ?band)

private<-age("PP3489", 23)

shared<-fan_info("PP3489", "Kasabian")
shared<-fan_info("PP3489", "Foo Fighters")

shared<-pp_visitor("PP3489")

private<-age("PP1721", 25)
public<-fan_info("PP1721", "Kasabian")
shared<-pp_visitor("PP1721")

public<-fan_info("PP1721", "Kasabian")

 private<-band_info("Kasabian", headliner)

 public<-fan_info("PP1721", "Kasabian")

 shared<-fan_info("PP3489", "Foo Fighters")
 shared<-fan_info("PP3489", "Kasabian")
 shared<-pp_visitor("PP3489")
 shared<-pp_visitor("PP1721")

FACT SPACE 1 FACT SPACE 2

FACT SPACE 3

Fig. 1. Federated fact spaces of co-located devices

In Figure 1 we depict the federated fact spaces of two fans and the federated
fact space residing on the festival’s infrastructure who are connected in a mobile
ad hoc network. Those fact spaces consist of qualified facts which denote the
fact space the fact belongs to. The different kinds of fact spaces we support
are “private”, “public” and “shared”.3 Private facts are not exchanged between
co-located devices, whereas public ones are. In order to limit the exchange of
facts between co-located devices, we added a third type of fact space “shared”.
Facts that are published in this fact space are only exchanged to fact spaces who

1 AmbientTalk’s type tags, wrapped Java interfaces, represent service types.
2 Crime’s syntax resembles the one of Prolog, although Crime is a forward chainer.
3 The shared fact space was added when integrating Crime in NOW.

Group Orchestration in a Mobile Environment 187

have subscribed to that type of facts. In our example, the infrastructure of the
festival is interested in a lot of information of the fans, for instance the facts of
type pp visitor and fan info, whereas fans are, in general, not interested
in those published facts of other fans. Therefore, the facts that are published
in the shared fact space are only asserted in the federated fact space of the
infrastructure (fact space 3 in Figure 1).

Plurality Encapsulation [R2]. A group pattern can be started by executing
its start method with its incoming data environment, the same way it is done
for other workflow patterns in NOW [6]. When the group pattern is started,
first all services satisfying the group’s description need to be retrieved. In case
of an extensional description, there is no need to query the backbone, but for
intensional descriptions the services satisfying the description need to be looked
up. Once these services are retrieved, the incoming data environment is cloned
for each of these services. This way, each member of the group has his own data
environment where local changes can occur. In order to access the specific service
(member) for which the subworkflow is executed, a reference to the service is
added in the data environment used to start each individual instance. When
an intensional description was used to define the group members, the variable
name (<variable name>) is bound to an AmbientTalk far reference4 to the
particular member. Afterwards, the subworkflow that is wrapped by the group
pattern, is started with each of these data environments, as can be seen in
Figure 2.5

description: all fans of headliner
variable name: fan

Env.fan.show("vote?")
@Output(Env.interested)

"cd1, cd2, ..."discography

fan FarRef 1

"cd1, cd2, ..."discography

fan FarRef 2

"cd1, cd2, ..."discography

fan FarRef n

"cd1, cd2, ..."discography

...

...

Fig. 2. Starting the execution of a group pattern

Once the group pattern is started, it is possible that the backbone discovers a
new service that satisfies the group’s description. In this case, a new member is
added to the group and the subworkflow wrapped by the group is started once
more. Note that this only applies when an intensional description (type tag or
Crime expression) was given. However, sometimes this behaviour is not wanted.

4 A far reference is AmbientTalk’s remote object reference.
5 This diagram and the other diagrams in the remainder of the paper are used to help
the reader follow the examples we present.

188 E. Philips et al.

Therefore, NOW also allows the specification of a snapshot group, where the
number of services communicated with is fixed.

SnapshotGroup(<description>, <variable name>, <subworkflow>)

Unlike a normal group, such a snapshot group does not allow new members
to join the execution once started. Note however that once the snapshot group
is made, members of the group can still disconnect. By using NOW’s failure
handling mechanisms, it is possible to react upon such a disconnection of a group
member in an appropriate way. This is described in more detail in Section 4.3.

Dynamic Modification [R3]. As we already mentioned, it should be possible
to redefine the members of a group when its execution is going on. For instance,
it should be possible to restrict the members of the group by filtering out those
members that do not satisfy a certain condition. Therefore, we introduce a filter
pattern which only allows the instances who satisfy the given condition6 to
continue their execution.

Filter(<condition>)

In the motivating example of Section 2, the group is initially executed for all
fans of Pukkelpop’s headliner. However, after being asked if they are interested
in participating, the members of the group are restricted to only those whom ex-
pressed their enthusiasm. This is depicted in Figure 3, where the condition of the
filter will verify the value of the variable interested in the data environment,
Env.

Env.interested == yes

interested yes

fan FarRef 1

interested no

fan FarRef 2

interested yes

fan FarRef 3

... ...

description: all fans of headliner

variable name: fan

interested yes

fan FarRef 1

interested yes

fan FarRef 3

Fig. 3. Restricting the members of the group by using a filter

4.2 Synchronisation Mechanisms [R4]

The introduction of group orchestration gives rise to more advanced synchroni-
sation patterns. The inherent volatile connections of the network cause commu-
nication partners to disconnect making full synchronisation not always possible.

6 In Section 4.2 we give more details about the kinds of conditions that can be used
to instantiate a filter with.

Group Orchestration in a Mobile Environment 189

For instance, synchronisation should be able to succeed when only partial results
are returned (after the first result, after a number of results, after some time,
etc.). In this section we elaborate on the different synchronisation mechanisms
needed to orchestrate a group in NOW. All of these synchronisation mecha-
nisms do not only have an influence on the execution of the subworkflow by each
of the group members, they are also reflected on the group itself. We present
several types of synchronisation mechanisms that can be used to streamline the
execution of the group’s instances.

In this section we describe four patterns that enable group synchronisation,
namely a barrier, cancelling barrier, group join, and synchronised task. Those
patterns have some criteria in common:

– A condition is given to specify when the synchronisation may succeed. All in-
dividual instances whose execution was blocked, can continue their execution
the moment the condition is satisfied.

– When the given condition is fulfilled, it is possible that next instances (i.e.
instances that reach the synchronisation at a later point in time) should not
continue their execution. Therefore, it should be possible to state whether
or not a cancellation should take place.

– It is possible that when the condition is fulfilled, a specific task (subworkflow)
needs to be executed once.

– When such a one-time task is specified, a merging strategy can be defined
to specify which data must be available during the execution of that task.

In the remainder of this section, we first elaborate on the conditions that are
used to instantiate group synchronisation patterns. Thereafter we describe four
specific synchronisation patterns which use some of the criteria mentioned above.

Conditions Used by Group Synchronisation Patterns. All group syn-
chronisation patterns are instantiated with a certain condition, such as “after
10 seconds”, “when all instances have succeeded”, or “when 90% of the instances
have succeeded”. Such a condition can be either classified as a time constraint, a
quota constraint, or a combination of both. NOW supports two different kinds
of time constraints, namely a deadline (At) and a duration constraint (After).
The at condition is fulfilled at a certain moment in time, whereas after succeeds
a predefined time after the synchronisation pattern is reached for the first time.
NOW also supports two kinds of quota constraints: Percentage and Amount.
The amount and percentage condition take as argument a number and are sat-
isfied when that number, or that given percentage of instances respectively, has
reached the pattern. The above conditions can be combined using logical ex-
pressions and a combiner pattern. For instance the expression Combiner(or(
Amount(1), After(60)) implements a condition that is satisfied “when one
instance has started the synchronisation pattern, or after 60 seconds”. It is also
possible to extend the quota constraints with a user-defined function.

190 E. Philips et al.

Barrier and CancellingBarrier Pattern. We now present two novel patterns
that allow synchronisation of individual instances of group members by blocking
their execution until a specified condition is fulfilled.

Barrier(<condition>)
CancellingBarrier(<condition>)

When the execution of an individual instance of a group member reaches a
barrier, the condition of the pattern is verified. When the condition is not yet
fulfilled, the execution of that instance is blocked. At the moment the condition
is fulfilled, all instances that were blocked resume their execution.

Figure 4(a) depicts the scenario where the individual instances of two group
members are blocked as the barrier’s condition is not yet satisfied. Once the
condition is satisfied (e.g. time has passed 20:30 o’clock), the blocked instances
can continue their execution. This is shown in Figure 4(b).

... ...

fan FarRef 1

... ...

fan FarRef 2

description: all fans of headliner

variable name: fan

20:30

(a) Barrier of which the condition is not
yet satisfied.

description: all fans of headliner

variable name: fan

20:30

... ...

fan FarRef 1

... ...

fan FarRef 2

(b) Barrier with a fulfilled condition.

Fig. 4. Synchronisation: the barrier pattern

The difference between a (normal) barrier and a cancelling barrier is explained
by the way they treat instances that arrive at a barrier whose condition is already
fulfilled (i.e. the “cancellation” criteria mentioned earlier). Individual instances
of a member that arrive later at a normal barrier continue their execution with-
out waiting. On the other hand, when a cancelling barrier is used, only the
blocked instances will execute the remainder of the workflow after the barrier.
The execution of the next instances that reach the cancelling barrier pattern are
cancelled.

Remark that a cancelling barrier, by definition, has an influence on the amount
of members of the group. Once the condition of the cancelling barrier pattern is
fulfilled, the blocked instances of the individual members continue their execu-
tion. From that moment on, the amount of members of the group is restricted
to those that were able to continue their execution.

GroupJoin Pattern. In order to terminate the execution of the group pattern
both control flow and data flow must be merged. The group join pattern allows

Group Orchestration in a Mobile Environment 191

managing how control flow and data flow are merged. The default merging strat-
egy used to merge the data environments of all instances is “accumulating all
values for each variable”, one of the merging strategies proposed in [5]. However,
it is often wanted to specify another merging strategy. Therefore, the fourth
optional argument to instantiate a group can be instantiated with a specific
GroupJoin pattern.

Group(<description>, <variable name>, <subworkflow>, [<group join>])

A group join pattern is instantiated with both a condition and a merging strat-
egy. Once this condition is fulfilled, the control flow of all individual instances is
merged such that the remainder of the workflow pattern after the group pattern
is executed only once. Therefore, a group join pattern is, by definition, always
cancelling, meaning that instances that reach the pattern after the condition is
fulfilled, will not be able to continue their execution.

GroupJoin(<condition>, <merging strategy>)

In Figure 5 we show how both control flow and data flow are merged to
terminate the execution of a group pattern. Note that we do not depict the
group join pattern explicitly, as it is the only place the pattern is allowed.

description: all fans of headliner

variable name: fan

... Env.fan.show(Env.playlist)

FarRef 1

......

yesinterested

fan

FarRef 3

......

yesinterested

fan

......

[yes, yes]interested

...

Fig. 5. Synchronisation: a group join pattern to terminate the group

Synchronised Task. In this section we present the notion of a synchronised
task, a subworkflow that only needs to be executed once for the entire group
at a specific moment. In essence, each member of the group executes its own
instance, but there should be provisions to allow a single task to be executed
once for several or all members of the group. Therefore, a synchronised task is,
by definition, always cancelling, meaning that instances that reach the pattern
after the condition is fulfilled, will not be able to continue their execution.

SynchronisedTask(<subworkflow>, <condition>, <merging strategy>)

A synchronised task starts the execution of its wrapped subworkflow once a
given condition is fulfilled. In Figure 6 we show the functionality of the syn-
chronised task, that is depicted as a gray box wrapping a subworkflow (in this

192 E. Philips et al.

example, one single activity). As can be seen in the figure, both control flow and
data flow of the instances must be merged before the wrapped subworkflow can
be started.

During the execution of the synchronised task’s subworkflow, new variable
bindings can be added to the merged data environment. In this concrete example,
shown in Figure 6, a new binding is added for the variable playlist. At the
end of the synchronised task pattern, the incoming data environments of all
instances are restored, and extended with those new variable bindings.

selection [1, 2]

fan FarRef 1

selection [2, 3, 4]

fan FarRef 2

selection [1, 5]

fan FarRef 3

description: all fans of headliner
variable name: fan

Headliner.show(Env.selection)
@Output(Env.playlist)

selection [1, 2, 2, 3,
 4, 1, 5] [1, 2, 5]playlist

selection [1, 2, 2, 3,
 4, 1, 5]

playlist [1, 2, 5]

selection [1, 2]

fan FarRef 1

playlist [1, 2, 5]

selection [2, 3, 4]

fan FarRef 2

playlist [1, 2, 5]

selection [1, 5]

fan FarRef 3

Fig. 6. Synchronised task: executing a single task synchronised

4.3 Failure Handling [R5]

As mobile environments are liable to volatile connections, ways to detect and
handle failures must be available.NOW’s failure handling mechanism, described
in Section 3, allows the specification of compensating actions for specific kinds of
failures. In this section we present the influence of this failure handling mecha-
nism on the novel abstractions for group orchestration we presented above. First
of all, we describe individual failure handling, meaning the handling of failures
that occurred during the individual instance of a group member. Thereafter we
elaborate on how failures can be detected for the entire group.

Individual Failure Handling. In order to specify compensating actions for a
single individual instance of a group member, it is necessary to use the failure
pattern wrapping a subworkflow inside the group pattern. When using the failure
pattern outside the group pattern, compensating actions might (depending on
the specific type) affect the group as a whole.

Group(<description>, <variable name>,
Failure(<subworkflow>, <failure descriptions>))

When a failure pattern is defined inside a group pattern and wraps (part of)
its subworkflow, the compensating actions only have an effect on the individual
instance of that subworkflow. For instance, suppose that during the execution

Group Orchestration in a Mobile Environment 193

of a single instance a disconnection failure occurs, whose compensating action
is defined as “restart the wrapped subworkflow”. In that particular case, the
subworkflow is restarted for that single instance (i.e. one single group member).
This is in contrast with the behaviour that is accomplished when this failure
pattern is defined on the outside of the group pattern.

Failure Handling for Groups It is also possible to wrap the group pattern
itself with a failure pattern.

Failure(Group(<description>, <variable name>, <subworkflow>),
<failure descriptions>)

When the failure pattern is defined outside the group pattern, the compensating
actions have an effect on the execution of the entire group. Recall the example we
used earlier. When a disconnection failure occurs now, the compensating action
will restart the wrapped subworkflow, in this case the group pattern. This causes
all instances of the group to be cancelled and to restart the execution of the entire
group.

We extended the failure handling support of NOW in order to distinguish be-
tween a failure that occurred during the execution of a group member (service),
or another service, such that all failures have a participant variant. For instance,
we make the distinction between a normal disconnection and a participant-
disconnection failure. In our example scenario, we would like to specify a different
compensating action for when the mobile device of single fan disconnects (for
instance, drop that fan from the group), in contrast to a disconnection of the
headliner (where the compensation will send a message to the crew members
backstage).

The compensating actions that were provided by NOW are extended with two
group-specific ones, namely drop and wait-and-resume. Both compensating ac-
tions can only be used in combination with a participant-failure (a failure that
affects a group member or the communication with that member). The drop
compensating action drops the member from the group. The second compen-
sating action, wait-and-resume, can be used in combination with a participant-
disconnection or a participant-not-found failure. When such a failure occurs, the
place (activity) where that failure occurs is stored, such that the execution can
be resumed when that specific group member (re)connects.

5 Related Work

van der Aalst [2] describes multiple instances patterns which wrap part of a
process that needs to be instantiated multiple times. These patterns are sup-
ported by YAWL [7]. Defining a group of services can be achieved in YAWL
by writing queries to retrieve the data for which the multiple instances pattern
must be executed, and defining a multiple instances variable that can be used
during its execution. However, this multiple instance variable does not have a
reference to the service as its value, but the data resulting from the query. In
YAWL it is possible to add new instances during the execution of the “multiple

194 E. Philips et al.

instances without a priori run-time knowledge” pattern. However, the synchroni-
sation mechanisms that are supported by YAWL are rather restricted. The only
synchronisation mechanism YAWL supports, is used to terminate the execution
of the multiple instances pattern. There are no mechanisms like the barriers we
propose provided to synchronise the execution of all instances inside the multi-
ple instances pattern. Moreover, there is no support for the synchronised task
abstraction we presented. This behaviour can be modelled in YAWL by defining
a multiple instances pattern, followed by an activity or subworkflow proceeding
a second multiple instances pattern. The disadvantage of this approach is that
contextual information, i.e. the data for which the first multiple instances pat-
tern was started, is discarded. The last requirement, regarding failure handling,
is also not supported by YAWL. The language only has built-in support for fail-
ure handling for atomic tasks (i.e. a single activity and no subworkflow). Hence,
it is not trivial to express failure handling strategies over all the activities in a
group.

In the web services community, the notion of a service group [8] is introduced
to denote a heterogeneous collection of web services that satisfy a given con-
straint. Such a service group only consists of fixed web services that are known
beforehand (by means of a URL). Plurality encapsulation is supported as ser-
vices can be added or removed from the service group, causing the service group
registration to notify requestors of modifications to that service group.

Ambient References [9] enable communication with a volatile group of proxi-
mate objects by means of asynchronous message sends. Ambient references are
developed as a programming language abstraction for AmbientTalk [3]. Both
definition by means of an intensional description and arity decoupling are sup-
port by this language construct. Ambient references provide synchronisation
mechanisms by providing observers that are triggered either when the first ser-
vice has answered or when all services have responded. However, as communi-
cation with the set of services is expressed by means of an atomic message send,
redefinition of group members and synchronised task abstractions do not make
sense. Moreover, there are no mechanisms provided to express failure handling
on an ambient reference, for instance express the action that must be performed
when a service disconnects.

6 Conclusion

In this paper, we have presented the design of group orchestration patterns
on top of the workflow language NOW. We introduced a novel group pattern
and explained the need for advanced group synchronisation patterns. We also
showed how network and service failures can be detected and handled during the
orchestration of a group of services. By providing these high-level abstractions
we enable orchestration with a group of services in a mobile environment where
volatile connections dominate.

Group Orchestration in a Mobile Environment 195

References

1. Mascolo, C., Capra, L., Emmerich, W.: Mobile Computing Middleware. In: Gregori,
E., Anastasi, G., Basagni, S. (eds.) NETWORKING 2002. LNCS, vol. 2497, pp.
20–58. Springer, Heidelberg (2002)

2. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
control-flow patterns: A revised view. Technical report, BPMcenter.org (2006)

3. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.:
AmbientTalk: object-oriented event-driven programming in mobile ad hoc net-
works. In: Proceedings of SCCC 2007, pp. 3–12 (2007)

4. Mostinckx, S., Scholliers, C., Philips, E., Herzeel, C., De Meuter, W.: Fact Spaces:
Coordination in the Face of Disconnection. In: Murphy, A.L., Ryan, M. (eds.)
COORDINATION 2007. LNCS, vol. 4467, pp. 268–285. Springer, Heidelberg
(2007)

5. Philips, E., Van Der Straeten, R., Jonckers, V.: NOW: A Workflow Language for
Orchestration in Nomadic Networks. In: Clarke, D., Agha, G. (eds.) COORDINA-
TION 2010. LNCS, vol. 6116, pp. 31–45. Springer, Heidelberg (2010)

6. Philips, E., Van Der Straeten, R., Jonckers, V.: NOW: Orchestrating Services in
a Nomadic Network using a dedicated Workflow Language. Science of Computer
Programming (2011), http://dx.doi.org/10.1016/j.scico.2011.10.012

7. ter Hofstede, A.H.M.: YAWL: yet another workflow language. Information Sys-
tems 30, 245–275 (2005)

8. Graham, S., Maguire, T., Frey, J., Nagaratnam, N., Sedukhin, I., Snelling, D.,
Czajkowski, K., Tuecke, S., Vambenepe, W.: Web Services Service Group - Speci-
fication (WS-Service Group), Version 1.2,
http://docs.oasis-open.org/wsrf/
wsrf-ws service group-1.2-spec-os.pdf

9. Van Cutsem, T., Dedecker, J., Mostinckx, S., Gonzalez Boix, E., D’Hondt, T.,
De Meuter, W.: Ambient references: addressing objects in mobile networks. In:
OOPSLA Companion, pp. 986–997 (2006)

10. Van Cutsem, T., Dedecker, J., De Meuter, W.: Object-Oriented Coordination in
Mobile Ad Hoc Networks. In: Murphy, A.L., Ryan, M. (eds.) COORDINATION
2007. LNCS, vol. 4467, pp. 231–248. Springer, Heidelberg (2007)

11. Black, A.P., Immel, M.P.: Encapsulating Plurality. In: Nierstrasz, O.M. (ed.)
ECOOP 1993. LNCS, vol. 707, pp. 57–79. Springer, Heidelberg (1993)

12. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.
Springer-Verlag New York, Inc., Secaucus (2006)

13. Philips, E.: Website NOW (2012), http://soft.vub.ac.be/˜ephilips/NOW
14. Luo, J., Eugster, P.T., Hubaux, J.-P.: PILOT: ProbabilistIc Lightweight grOup

communication sysTem for Mobile Ad Hoc Networks. IEEE Transactions on Mobile
Computing, 164–179 (2004)

15. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10),
46–52 (2003)

http://dx.doi.org/10.1016/j.scico.2011.10.012
http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf
http://soft.vub.ac.be/~ephilips/NOW

Node Coordination in Peer-to-Peer Networks

Luigia Petre1, Petter Sandvik1,2, and Kaisa Sere1

1 Department of Information Technologies, Åbo Akademi University
2 Turku Centre for Computer Science (TUCS)

Turku, Finland

Abstract. Peer-to-peer networks and other many-to-many relations
have become popular especially for content transfer. To better under-
stand and trust these types of networks, we need formally derived and
verified models for them. Due to the large scale and heterogeneity of
these networks, it may be difficult and cumbersome to create and analyse
complete models. In this paper, we employ the modularisation approach
of the Event-B formalism to model the separation of the functional-
ity of each peer in a peer-to-peer network from the network structure
itself, thereby working towards a distributed, formally derived and ver-
ified model of a peer-to-peer network. As coordination aspects are fun-
damental in the network structure, we focus our formalisation effort in
this paper especially on these. The resulted approach demonstrates con-
siderable expressivity in modelling coordination aspects in peer-to-peer
networks.

1 Introduction

In recent years, there has been a trend of moving away from the traditional
client-server model in network software towards peer-to-peer networks and other
many-to-many relations. Especially when it comes to large scale content transfer,
peer-to-peer applications and protocols such as BitTorrent [8] have become pop-
ular [24], and even found their way into electronic appliances such as network
routers [6] and television sets [26]. In short, the paradigm switch from client-
server communication models to BitTorrent-supporting networks amounts to
enabling “clients” that are already downloading e.g., video streams, to also be-
come “servers” for other potential clients that may download the same content.
The participation of every peer in content communication provides a tremendous
increase in the communication efficiency, in the communication model flexibility,
and in the content availability. It is therefore highly beneficial to have a thor-
ough understanding of this communication paradigm, to uncover its potential
weaknesses and recognise how to avoid them.

Peer-to-peer networking proposes a mixed coordination model among peers.
At first sight, it resembles data-based coordination, such as distributed tuple
spaces, in that one peer enumerates in a webpage its downloadable material and
another peer starts downloading the material of interest, found via the web-
page or via a special server called tracker. However, even during downloading,

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 196–211, 2012.
c© IFIP International Federation for Information Processing 2012

Node Coordination in Peer-to-Peer Networks 197

the second peer also becomes a data provider of that material, solely due to its
downloading and without any enumeration of downloadable material in a web-
page. This resembles event-based coordination where communication between
processes (peers) is enabled by events generated when certain state changes ap-
pear. This is also reminiscent of the publisher-subscriber model of coordination.
This partial adherence of peer-to-peer networking to several coordination models
is currently not singular. In [18], the authors propose the separation of the coarse
grained (coordination) control flow into several event handlers that coordinate
(via events) the mobile applications. In their turns, the event handlers need to
communicate with each other, typically implicitly, via shared data. Coordina-
tion and concurrency are studied in the context of Prolog [25] by decoupling
logic engines and multithreads for efficiency; cooperative constructs are then
illustrated for both Linda [7] blackboards and publish/subscribe models. Real-
time coordination in dataflow networks is typically asynchronous, but in [16],
coordination patterns are proposed which combine synchrony and asynchrony.
All these models simply try to address the ever-increasing complexity of con-
temporary software-intensive systems from various viewpoints. However, due to
combining several aspects of several coordination models, peer-to-peer network-
ing is a rather complicated model to analyse. In this paper we focus on this
analysis problem.

In order to gain a thorough understanding of peer-to-peer networking, we
develop and analyse models of a peer-to-peer media distribution system. In par-
ticular, in this paper we focus on modelling how peers in a such a system could
discover and interact with each other, i.e., we model inter-peer relations as the
basis of the peer-to-peer coordination model. In swarm-like peer-to-peer systems,
where peers interact only when interested in the same content, a peer that is
unable to receive incoming connections, for instance when it is behind a firewall,
is at a serious disadvantage compared to other peers [10]. Extensions to the
original BitTorrent protocol such as peer exchange (PEX) and distributed hash
tables (DHT) [17] have been developed to alleviate this problem, and we need
a reusable, extendable model of peer discovery and connectivity to be able to
model these. Peer-to-peer systems and other distributed architectures have been
formally modelled before [15,28,29], but our focus here is on creating a reusable
formal model of inter-peer relations using BitTorrent as our model protocol.

Based on the formal modelling of peer-to-peer relations, we make the following
contributions:

– We propose a formal model for analysing properties of peer-to-peer relations
and networking.

– We distribute this model and the proven properties as a correct development
from the initial model.

– We put forward the dual coordination nature of the distributed model (both
data-driven and control-oriented) and the further applicability of our em-
ployed formal methodology.

We develop our models based on the Event-B formal method [2], which offers
excellent tool support in form of the Rodin platform [3,11]. When developing

198 L. Petre, P. Sandvik, and K. Sere

models in Event-B, the primary concept is that of abstraction [2], as models are
created from abstract specifications and then refined stepwise towards concrete
implementations. We prove the correctness of each step of the development using
the Rodin platform, which automatically generates proof obligations. These are
mathematical formulas to prove in order to ensure correctness; the proving can
be done automatically or interactively using the Rodin platform tool. The imme-
diate feedback from the provers makes it possible to adapt our model to better
suit automatic proving, and this ability to interleave modelling and proving is
a big advantage of development in Event-B using the Rodin platform. Event-B
is currently extending to also incorporate modularisation methodology [13]. This
essentially amounts to proposing distributed versions for various models and
proving the correctness of the distribution via refinement. Consider the example
of a peer connection operation involving two nodes. We can specify this feature in
Event-B typically within one module (called machine) that has data and opera-
tions on the data; we can also model various properties of the module and prove
their correctness. However, at the implementation phase, the peer connection
operation typically involves two modules, corresponding to the two connecting
peers that synchronise with each other, so that each peer adds the required ref-
erence to the other. The modularisation methodology allows the transformation
of the modelled peer connection operation into a distributed addition of links
among the two peers.

We proceed as follows. In Section 2 we describe the Event-B formalism and
its modularisation extension. In Section 3 we introduce our inter-peer relation
modelling and in Section 4 we present our modular approach to this. We elabo-
rate on our contribution in Section 5. We conclude this paper in Section 6 with
discussion of our findings as well as future work.

2 Event-B and Its Modularisation Approach

In this section we overview Event-B and its modularisation approach to the
extent needed in this paper.

2.1 Event-B

Event-B [2] is a state-based formal method focused on the stepwise development
of correct systems. This formalism is based on Action Systems [5,27] and the
B-Method [1]. In Event-B, the development of a model is carried out step by
step from an abstract specification to more concrete specifications. The general
form of an Event-B model is illustrated in Fig. 1. Models in Event-B consist of
contexts andmachines. A context describes the static part of a model, containing
sets and constants, together with axioms about these. A machine describes the
dynamic part of a model, containing variables, invariants (boolean predicates on
the variables), and events, that evaluate (via event guards) and modify (via event
actions) the variables. The guard of an event is an associated boolean predicate
on the variables, that determines if the event can execute or not. The action of

Node Coordination in Peer-to-Peer Networks 199

an event is a parallel composition of either deterministic or non-deterministic
assignments. Computation proceeds by a repeated, non-deterministic choice and
execution of an enabled event (an event whose guard holds). If none of the events
is enabled then the system deadlocks. The relationship Sees between a machine
and its accompanying context denotes a structuring technique that allows the
machine access to the contents of the context.

Machine M
Variables v
Invariants I
Events

Init
evt1· · ·
evtN

Sees−−−→
Context C
Carrier Sets d
Constants c
Axioms A

Fig. 1. A machine M and a context C in Event-B

The semantics of Event-B actions is defined using before-after (BA) predi-
cates [2,3]. A before-after predicate describes a relationship between the sys-
tem states before and after the execution of an event. The semantics of a whole
Event-B model is formulated as a number of proof obligations, expressed in the
form of logical sequents. The full list of proof obligations can be found in [2].

System Development. Event-B employs a top-down refinement-based approach
to the formal system development. The development starts from an abstract
system specification that models some essential functional requirements. While
capturing more detailed requirements, each refinement step typically introduces
new events and variables into an abstract specification. These new events corre-
spond to stuttering steps that are not visible in the abstract specification. This
type of refinement is called superposition refinement. Moreover, Event-B for-
mal development supports data refinement, allowing us to replace some abstract
variables with their concrete counterparts. In that case, the invariant of a re-
fined model formally defines the relationship between the abstract and concrete
variables; this type of invariants are called gluing invariants.

In order to prove the correctness of each step of the development, a set of
proof obligations needs to be discharged. Thus, in each development step we
have mathematical proof that our model is correct. The model verification effort
and, in particular, the automatic generation and proving of the required proof
obligations, are significantly facilitated by the provided tool support – the Rodin
platform [3,4].

2.2 The Event-B Modularisation Approach

Recently the Event-B language and tool support have been extended with a
possibility to define modules [13,12,21] – i.e., components containing groups of
callable atomic operations. Modules can have their own external (i.e., global) and
internal (i.e., local) state and invariant properties. An important characteristic

200 L. Petre, P. Sandvik, and K. Sere

of modules is that they can be developed separately and, when needed, composed
with the main system.

A module description consists of two parts – a module interface and a mod-
ule body, the latter being an Event-B machine. Let M be a module. A module
interface MI is a separate Event-B component. It allows the user of the module
M to invoke its operations and observe the external variables without having
to inspect the module implementation details. MI consists of external module
variables w, constants c, sets s, the external module invariant M Inv(c, s, w),
and a collection of module operations Oi, characterised by their pre- and post-
conditions, as shown in Fig. 2.

Interface MI
Sees MI Context
Variables w
Invariants M Inv(c, s, w)
Initialisation · · ·
Process

PE1 = any vl where g(c, s, vl, w) then S(c, s, vl, w,w′) end· · ·
Operations

O1 = any p pre PRE(c, s, vl, w) post POST (c, s, vl, w,w′) end· · ·

Fig. 2. Interface Component

In addition, a module interface description may contain a group of standard
Event-B events under the Process clause. These events model the autonomous
module thread of control, expressed in terms of their effect on the external
module variables. In other words, the module process describes how the module
external variables may change between operation calls.

A formal module development starts with the design of an interface. Once
an interface is defined, it is not further developed. This ensures that a module
body may be constructed independently from a model relying on the module
interface. A module body is an Event-B machine that implements the interface
by providing a concrete behaviour for each of the interface operations. A set
of additional proof obligations are generated to guarantee that each interface
operation has a suitable implementation.

When the module M is imported into another Event-B machine (which is
specified by a special clause USES), the importing machine can invoke the
operations of M and read the external variables of M . To make a module speci-
fication generic, in MI Context we can define some constants and sets (types) as
parameters. The properties over these sets and constants define the constraints
to be verified when the module is instantiated. The concrete values or constraints
needed for module instantiation are supplied in the USES clause of the import-
ing machine.

Module instantiation allows us to create several instances of the same module;
we distinguish among these instances using a certain prefix. Different instances
of a module operate on disjoint state spaces. Via different instantiation of generic
parameters the designers can easily accommodate the required variations when

Node Coordination in Peer-to-Peer Networks 201

developing components with similar functionality. Hence module instantiation
provides us with a powerful mechanism for reuse.

The latest developments of the modularisation extension also allow the de-
veloper to import a module with a given concrete set as its parameter. This
parameter becomes the index set of module instances. In other words, for each
value from the given set, the corresponding module instance is created. Since
each module instance operates on a disjoint state space, parallel calls to opera-
tions of distinct instances are possible in the same event.

3 Modelling Inter-peer Relations

We illustrate the first three steps of our development of a formal model for inter-
peer relations in Fig. 3. In this section we shortly describe this Event-B model in
order to facilitate an easier understanding of the modularised model described
in the next section. More details can be found in our technical report [20].

Initial
model

Events

discovery
connection
disconnect

First
refinement

Events

discovery
connection
disconnect
connectionattempt
abortattempt
changelimit

Second
refinement

Events

discovery
connection
disconnect
connectionattempt
abortattempt
changelimit
changeincoming
join
leave

refines refines

Fig. 3. Model Development

Our initial model is very abstract, with only two major functions. The first
concerns one peer becoming aware of other peers. In a peer-to-peer network
such as BitTorrent, this would correspond to receiving a list of other peers from
a tracker, i.e., a server that keeps track of which peers are involved in sharing a
particular content. However, at this stage we are not interested in the specifics
of how this subset of all peers is retrieved, only that there is a way of peers
to discover other peers. We also note that the tracker is an instantiation of the
publish/subscribe coordination model. The second major function is to create a
connection between a peer and another peer, where the first peer must be aware
of the second but not necessarily vice versa. To model these functions, we define
relations between peers, assuming peers are represented by natural numbers for
simplicity. An “awareness” relation from 1 to 2 thereby means that peer 1 is
aware of peer 2, which is different from a relation from 2 to 1. For the “con-
nection” relation, we note that in practice we only have one connection between
two peers, because in peer-to-peer networks such as those based on BitTorrent,
connections are symmetrical and traffic can flow in both directions [9]. For that
reason, we allow only one connection per peer pair here, e.g., if a “connection”
relation exists from 1 to 2 we do not allow one from 2 to 1.

202 L. Petre, P. Sandvik, and K. Sere

Our initial model is therefore composed of the following events, besides the
obligatory initialisation event: discovery, which creates “awareness” relations
from a peer to a subset of other peers, connection, which creates a “connection”
relation between a peer and another if there is an “awareness” relation from the
first to the second, and disconnect, which removes an existing “connection” rela-
tion between two peers. This disconnection could occur because of network issues
or because the peer has decided to no longer participate in the swarm. However,
peers also close connections that have had no traffic for a while; Iliofotou et al
claim that the differences in download speed between BitTorrent clients can be
partly attributed to differences in when they decide to close connections [14].
For this reason it is important for us to model a disconnect event that later can
be refined into different types of disconnection events. The situation in which
peers become unaware of each other does not exist in the actual peer-to-peer
networks we are interested in, and therefore there is no need for an event that
models such a situation.

For our first refinement step, we limit the amount of connections a peer can
have, because otherwise every peer would eventually end up being connected
to all the other peers. While this would be possible when the number of peers
is low, it would be unrealistic for a large system, and we therefore introduce a
connection limit specific to each peer. This means that a connection between
two peers may not always be possible, and therefore we also need to modify our
connection functionality. Because peers do not know whether another peer can
accept their connection or not, we replace our single connection event with two
events. The connectionattempt event takes a peer whose connection limit has not
been reached and another peer that the first peer is aware of but not connected
to, and adds a “connection attempt” relation from the first peer to the second
one. The connection event here takes a peer whose connection limit has not been
reached and another peer such that there is a “connection attempt” relation from
the second to the first, and creates a “connection” relation from the second to
the first while removing the corresponding “connection attempt” relation. We
also add another event, abortattempt, for aborting a connection attempt, which
in practice would happen after a time limit. Because the connection limit is
not necessarily constant and can vary between peers, we also add the abstract
changelimit event describing how the limit may change. The total amount of
connections for a peer, specified by the variable connections, is here taken to be
the sum of the amount of “connection” relations to and from the peer, and the
amount of “connection attempt” relations originating from the peer. This means
that the limit on connections is a limit on the amount of simultaneous active
successful connections and unsuccessful connection attempts.

In the second refinement step we introduce the concept of peers not being
able to accept incoming connections, i.e., not being able to have “connection”
relations from another peer to itself. First we achieve this in an abstract way,
by simply having a boolean variable for each peer and checking the value of
that variable before allowing the connection to be created. We add the abstract
event changeincoming to be able to change the value of this boolean variable for

Node Coordination in Peer-to-Peer Networks 203

each peer. Later we can refine this situation by specifying a set of more complex
relations, such as in the real-life situation where two peers are behind the same
firewall and thereby able to accept incoming connections from each other but
not from other peers. Furthermore, we refine our model to include join and
leave events for when peers join and leave the swarm, respectively. To reduce
the complexity of our model, we specify that all the connections to and from
a peer, as well as all connection attempts made by the peer, must be removed
before the peer can leave. This can be seen in the following Event-B code:

EVENT leave =̂
any

peer
where

grd1 : peer ∈ peers ∧ peer ∈ onlinepeers
grd2 : ∀p, r ·({p �→ r} ∈ connection) ⇒ (p �= peer ∧ r �= peer)
grd3 : ∀p, r ·({p �→ r} ∈ connectionattempt) ⇒ (p �= peer)

then
act1 : onlinepeers := onlinepeers \ {peer}

end

So far, we have described a monolithic model of inter-peer relations in a peer-to-
peer network. Our next step is to use the modularisation approach described in
Section 2.2 to separate the internal functionality of a peer from the coordinating
functionality of the network structure.

4 Modularising Inter-peer Relations

Our intent with modularising our model of inter-peer relations is to separate the
internal functionality of each peer from the functionality of the network itself;
this makes the peers, in a sense, independent of other peers. As we specify the
interface that a peer presents to the coordinating network, we can continue to re-
fine and implement the peer separately from the network coordination structure.
Therefore, we need to consider which events from our previous model should be
implemented in the peer module and which in the Event-B machine specifying
the network coordination.

We note that the events changelimit and changeincoming affect only one
peer at a time, and thus should be modelled as processes internal to the peer.
Likewise, the discovery event only adds to one peer’s view, and although it
could be argued that this is an event concerning network coordination, nothing
specifies that this event needs to invoke the network at all. In BitTorrent, for
instance, peer discovery never depends on how peers connect to each other, and
therefore it should be seen as a process internal to the peer in this context.
The join and leave events also only affect one peer’s status, because we require
that the leave event is enabled only when the peer has no connections and no
connection attempts. This is also reflected in the identically named process in
the peer interface, which can be compared to the leave event shown in Section 3.

PROCESS leave =̂
when

grd1 : isonline = TRUE
grd2 : connection = ∅ ∧ connectionattempt = ∅

204 L. Petre, P. Sandvik, and K. Sere

Monolithic
Model
(Refined)

Events

discovery
connection
disconnect
connectionattempt
abortattempt
changelimit
changeincoming
join
leave

refines

Network
Coordination
Structure

Uses

Peer_Interface
 with prefix peer_

Peer
Interface

Process

discovery
connectionattempt
abortattempt
changelimit
changeincoming
join
leave
disconnectattempt

Operations

connect
acceptconnection
disconnect
getdisconnected

Events

connectpeers
disconnectpeers
networkdisconnect

Imports

jo
e
i

O

o
c

e

e

c
i
e

e
i

O

o
c

c

jo
le

cc
lele
dit

ge
di
ge

ac
di

di

O

co
ac

t

Calls

Distributed Model

Fig. 4. Decomposition refinement

then
act1 : isonline := FALSE

end

Regarding the connectionattempt and abortattempt events, we note that these
events model the intent of one peer, and thus should be modelled as an event
internal to the peer, although the variables modified will be read by the network
coordination structure. The remaining events connection and disconnect require
coordination between peers, and thus we will describe in more detail how the
equivalent functionality is implemented in the distributed model. The overall
structure of this decomposition refinement can be seen in Fig. 4.

As mentioned in Section 2.2, we use the USES clause to import an interface
into an Event-B machine, specifying the name of the interface, the indexing set,
and the prefix used to access varibles and operations from the interface.

USES Peer Interface (peers) with prefix peer

We previously added a guard specifying that a connectionattempt must be done
before a connection. Here, the connectionattempt is internal to the peer, and the
network coordination structure has an event connectpeers. Given two different
online peers s and t, who are not connected to each other, and where s has
made a connection attempt to t and t can accept an incoming connection, the
operation acceptconnection of peer t is called with the argument s, and likewise
the operation connect of peer s is called with the argument t.

Node Coordination in Peer-to-Peer Networks 205

EVENT connectpeers =̂
any

s t
where

grd1 : s ∈ peers ∧ t ∈ peers ∧ s �= t
grd2 : t ∈ peer connectionattempt(s) ∧ peer acceptincoming(t) = TRUE
grd3 : t /∈ peer connection(s) ∧ s /∈ peer connection(t)
grd4 : peer isonline(s) = TRUE ∧ peer isonline(t) = TRUE
grd5 : peer connections(t) < peer connectionlimit(t)

then
act1 : void1 := peer acceptconnection(t)(s)
act2 : void2 := peer connect(s)(t)

end

The variables void1 and void2 used here are of the type VOID, which is used
when an operation call has no return value.

There is a difference between the acceptconnection and connect operations
of the peer interface, in that the former is to be called on a peer that has not
made a connection attempt, while the latter is to be called on a peer who has
made one. This means that among the preconditions for the acceptconnection
operation is that the peer must accept incoming connections and must not have
reached its connection limit.

OPERATION acceptconnection =̂
any

dest
pre

pre1 : dest ∈ peers ∧ dest /∈ connection ∧ dest /∈ connectionattempt
pre2 : connections < connectionlimit
pre3 : acceptincoming = TRUE ∧ isonline = TRUE

return
void

post
post1 : connection′ = connection ∪ {dest}
post2 : connections′ = connections + 1
post3 : void′ :∈ VOID

end

For the peer receiving the connect operation call the amount of connections was
already increased when making the connection attempt, and therefore should
not be increased here. However, as a peer is added to the set of connections, it
must also be removed from the set of connection attempts.

OPERATION connect =̂
any

dest
pre

pre1 : dest ∈ peers ∧ dest /∈ connection ∧ dest ∈ connectionattempt
pre2 : isonline = TRUE

return
void

post
post1 : connection′ = connection ∪ {dest}
post2 : connectionattempt′ = connectionattempt \ {dest}
post3 : void′ :∈ VOID

end

In our monolithic model, the disconnect event simply disconnected two peers
that were connected. However, we note that in this refinement we need to sep-
arate disconnection into two cases; the first of which concerns a peer actively
wanting to disconnect from another peer, and another case when the disconnec-
tion happens without the intent of any of the peers involved. In the first case,

206 L. Petre, P. Sandvik, and K. Sere

we will handle it similarly to the connection process. In the peer interface, we
specify a new process, disconnectattempt, which modifies a variable that will be
read by the network coordination machine. When the prerequisites are fulfilled,
i.e., when two distinct peers are connected and one of them has made a discon-
nection attempt concerning the other, the event disconnectpeers in the machine
then calls the disconnect operation on the originating peer and getdisconnected
on the other.

EVENT disconnectpeers =̂
any

p r
where

grd1 : p ∈ peers ∧ r ∈ peers ∧ p �= r
grd2 : r ∈ peer connection(p) ∧ p ∈ peer connection(r)
grd3 : r ∈ peer disconnectionattempt(p)

then
act1 : void1 := peer getdisconnected(r)(p)
act2 : void2 := peer disconnect(p)(r)

end

In the peer interface, the two operations getdisconnected and disconnect are very
similar. In the first, the peer must remove the connection to a specific peer for
which no “disconnection attempt” has been created, and decrease the number
of total connections.

OPERATION getdisconnected =̂
any

dest
pre

pre1 : dest ∈ peers ∧ dest ∈ connection ∧ dest /∈ disconnectionattempt
pre2 : connections > 0

return
void

post
post1 : connection′ = connection \ {dest}
post2 : connections′ = connections − 1
post3 : void′ :∈ VOID

end

For the disconnect operation to be enabled, there must be a “disconnection at-
tempt”, but otherwise the preconditions are the same as in the getdisconnected
operation. The postconditions are also identical to the previously described oper-
ation, with the addition that the “disconnection attempt” must also be removed.

OPERATION disconnect =̂
any

dest
pre

pre1 : dest ∈ peers ∧ dest ∈ connection ∧ dest ∈ disconnectionattempt
pre2 : connections > 0

return
void

post
post1 : connection′ = connection \ {dest}
post2 : connections′ = connections − 1
post3 : void′ :∈ VOID
post4 : disconnectionattempt′ = disconnectionattempt \ {dest}

end

As we mentioned, two peers can get disconnected not only by their own intent
but also because of external factors. We model this in the network structure
machine with the event networkdisconnect. This event simply calls the operation

Node Coordination in Peer-to-Peer Networks 207

getdisconnected on each of the two peers, with the other peer as argument, with
the prerequisite that the peers must be connected to each other but not have
tried to disconnect of their own intent.

EVENT networkdisconnect =̂
any

u v
where

grd1 : u ∈ peers ∧ v ∈ peers ∧ u �= v
grd2 : v ∈ peer connection(u) ∧ u ∈ peer connection(v)
grd3 : v /∈ peer disconnectattempt(u) ∧ u /∈ peer disconnectattempt(v)

then
act1 : void1 := peer getdisconnected(u)(v)
act2 : void2 := peer getdisconnected(v)(u)

end

The intended goal when creating any formal model such as ours is to be able
to prove various properties in the system being modelled. For our monolithic
model, all generated proof obligations can be easily discharged using the prov-
ing environment of the Rodin platform tool [11]. As the Modularisation plugin
includes proof generation and proving support for its extensions to the Event-B
language [13], many of the properties that we can prove in the original monolithic
model we can also prove in the distributed model. We put forward an example of
the transformation of a property to prove from the monolithic to the distributed
model in the following section.

Using this modularisation technique to do decomposition refinement increases
the complexity of the model, which makes proving more difficult. This applies
equally to the automatic proof obligation discharging and interactive proving in
the Rodin platform tool. As the tool and the Modularisation plugin evolves, we
hope that it will enable us to develop our models further than what is currently
possible.

5 Discussion

In this section we summarise the contributions of this paper.
First, we propose a (stepwise developed) monolithic model for inter-peer re-

lations in a peer-to-peer network. This model has a (simple) state consisting of
the values of the variables and a set of events that can all access and modify the
state. Due to the high level of abstraction, we can formulate and prove various
properties about our model. For instance, we have an invariant stating that any
peer that is connected to another peer, i.e., has a “connection” relation to it, can-
not have a “connection attempt” relation to the same peer, put forward below.
Coordination between peers is centralised and endogenous, for instance the event
connectionattempt coordinates the establishment of a “pre-connection” relation
and the event connection coordinates the establishment of a real “connection”
when the proper conditions for it are met.

∀p, r·({p �→ r} ∈ connection)⇒ ({p �→ r} /∈ connectionattempt) (1)

Second, we refine the monolithic model into a distributed one, in which we sep-
arate the coordination between peers from the internal actions (computation) of

208 L. Petre, P. Sandvik, and K. Sere

the peers. Coordination is now exogenous, modelled by the events connectpeers,
disconnectpeers, and networkdisconnect. The properties proven in the monolithic
model evolve as well, as exemplified in the following. In the peer interface of the
distributed model, we are modelling the interface of one peer, and therefore that
peer does not need to be included. Thus, the corresponding invariant in the peer
interface states that each peer that we have a connection to must not be in the
set of connection attempts.

∀p·p ∈ peers ∧ p ∈ connection⇒ p /∈ connectionattempt (2)

In both cases, it is of course also trivial to prove the inverse implication, i.e.,
that a connection attempt between two peers implies that there is no existing
connection between the two.

We note that the coordination in the distributed model is rather sophisticated.
The coordinator (the network coordination structure) only reads the value of
the coordinated peer state (via external variables such as peer connection(u) in
event networkdisconnect). The peer state is only modified via the nodes’ own
actions, as described in the operation getdisconnected. We can also argue for
the coordination paradigm displayed by our modelling to be of a mixed nature.
On one hand, the external variables of the peers model a distributed (tuple)
space; the coordinator only acts based on reading this space, hence a data-driven
coordination. On the other hand, the execution of the coordination actions is
not performed directly on the data, but via procedure calls mechanisms, hence,
a control-oriented coordination model.

6 Conclusions

Using the refinement approach, a system can be described at different levels
of abstraction, and the consistency in and between levels can be proved math-
ematically. With the aim of modelling and analysing a whole, fully featured
peer-to-peer media distribution system, we have used Event-B to model inter-
peer relations in a BitTorrent-like peer-to-peer network. We have started from
an abstract specification and stepwise introduced functionality so that the prov-
ing effort remains reasonable. For instance, we could have introduced the join
and leave events already in the first model; however, this would have generated
unnecessary proving at an abstract level.

Our focus has been on creating a model of a peer-to-peer system in a way
that allows it to be reused and extended for different protocol additions, while
keeping the reliability of the system intact. This gives us a foundation from which
we can develop a well behaving and scalable peer-to-peer media distribution
system. Our goal is to have all the parts, from the network structure up to the
content playback, formally modelled and verified. We have previously modelled
different parts of such a system, including algorithms for acquiring pieces of
media content [22,23] and parts of a video decoding process [19].

A general strategy of a distributed system development in Event-B is to start
from an abstract centralised specification and incrementally augment it with

Node Coordination in Peer-to-Peer Networks 209

design-specific details. When a suitable level of details is achieved, certain events
of the specification are replaced by the calls of interface operations and variables
are distributed across modules [12]. As a result, a monolithic specification is
decomposed into separate modules. Since decomposition is a special kind of re-
finement, such a model transformation is also correctness-preserving. Therefore,
refinement allows us to efficiently cope with complexity of distributed systems
verification and gradually derive an implementation with the desired properties
and behaviour [2].

With respect to proving properties about models, our strategy is very use-
ful: we formulate and prove properties for the monolithic model and then we
develop the distributed model from the monolithic one so that the properties
remain valid. This is however not new, as it has been proposed in a number of
earlier works, for instance in [5]. With respect to the coordination paradigm, we
consider that modularisation in Event-B provides a very interesting methodology
for emphasising the separation of the coordination features from the computa-
tion ones. This is especially useful in the context of the Rodin tool platform [11]
that can significantly improve the property proving effort and thus puts forward
our approach to coordination as a practical one.

As future work, we plan to develop the peer-to-peer networking models into
an Event-B theory. This means that we can then model specific peer-to-peer
networks simply by instantiating them from the theory, much like declaring data
types. Hence, we envision a language construct for modern network architectures.
With this, we stress once more the reuse potential of our proposal.

Acknowledgements. We would like to thank Alexei Iliasov for helping us to
better understand the Modularisation plugin.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. International Journal
on Software Tools for Technology Transfer (STTT) 12(6), 447–466 (2010)

4. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An Open Extensible Tool En-
vironment for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 588–605. Springer, Heidelberg (2006)

5. Back, R., Kurki-Suonio, R.: Decentralization of Process Nets with Centralized Con-
trol. In: Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pp. 131–142 (1983)

6. Belkin Play N600 HD Wireless Dual-Band N+ Router F7D8301,
http://www.belkin.com/IWCatProductPage.process?Product_Id=522112

(accessed April 2012)

http://www.belkin.com/IWCatProductPage.process?Product_Id=522112

210 L. Petre, P. Sandvik, and K. Sere

7. Carriero, N., Gelernter, D.: Data Parallelism and Linda. In: Banerjee, U., Gelernter,
D., Nicolau, A., Padua, D.A. (eds.) LCPC 1992. LNCS, vol. 757, pp. 145–159.
Springer, Heidelberg (1993)

8. Cohen, B.: Incentives Build Robustness in BitTorrent. In: 1st Workshop on Eco-
nomics of Peer-to-Peer Systems (June 2003)

9. Cohen, B.: The BitTorrent Protocol Specification (January 2008),
http://www.bittorrent.org/beps/bep_0003.html (accessed April 2012)

10. D’Acunto, L., Meulpolder, M., Rahman, R., Pouwelse, J., Sips, H.: Modeling and
Analyzing the Effects of Firewalls and NATs in P2P Swarming Systems. In: IEEE
International Symposium on Parallel & Distributed Processing, Workshops and
PhD Forum, IPDPSW (2010)

11. Event-B and the Rodin Platform, http://www.event-b.org/ (accessed April 2012)
12. Iliasov, A., Laibinis, L., Troubitsyna, E., Romanovsky, A.: Formal Derivation of a

Distributed Program in Event B. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 420–436. Springer, Heidelberg (2011)

13. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting Reuse in Event B Development: Modularisation Approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010)

14. Iliofotou, M., Siganos, G., Yang, X., Rodriguez, P.: Comparing BitTorrent Clients
in the Wild: The Case of Download Speed. In: Freedman, M.J., Krishnamurthy,
A. (eds.) Proceedings of the 9th International Workshop on Peer-to-Peer Systems,
IPTPS 2010. USENIX (April 2010)

15. Kamali, M., Laibinis, L., Petre, L., Sere, K.: Self-Recovering Sensor-Actor Net-
works. In: Mousavi, M., Salan, G. (eds.) Proceedings of the Ninth International
Workshop on the Foundations of Coordination Languages and Software Architec-
tures, FOCLASA 2010, vol. 30, pp. 47–61. EPTCS (2010)

16. Kemper, S.: Compositional Construction of Real-Time Dataflow Networks. In:
Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 92–106.
Springer, Heidelberg (2010)

17. Loewenstern, A.: DHT Protocol (2008),
http://www.bittorrent.org/beps/bep_0005.html (accessed April 2012)

18. Lombide Carreton, A., D’Hondt, T.: A Hybrid Visual Dataflow Language for Co-
ordination in Mobile Ad Hoc Networks. In: Clarke, D., Agha, G. (eds.) COORDI-
NATION 2010. LNCS, vol. 6116, pp. 76–91. Springer, Heidelberg (2010)

19. Lumme, K., Petre, L., Sandvik, P., Sere, K.: Towards Dependable H.264 Decoding.
In: Ahmed, N., Quercia, D., Jensen, C.D. (eds.) Workshop Proceedings of the Fifth
IFIP WG 11.11 International Conference on Trust Management (IFIPTM 2011),
pp. 325–337. Technical University of Denmark (June 2011)

20. Petre, L., Sandvik, P., Sere, K.: A Modular Approach to Formal Modelling of Peer-
to-Peer Networks. Tech. Rep. 1039, Turku Centre for Computer Science (TUCS)
(2012)

21. RODIN Modularisation Plug-in,
http://wiki.event-b.org/index.php/Modularisation_Plug-in

(accessed April 2012)
22. Sandvik, P., Neovius, M.: The Distance-Availability Weighted Piece Selection

Method for BitTorrent: A BitTorrent Piece Selection Method for On-Demand
Streaming. In: Liotta, A., Antonopoulos, N., Exarchakos, G., Hara, T. (eds.)
Proceedings of The First International Conference on Advances in P2P Systems,
AP2PS 2009, pp. 198–202. IEEE Computer Society (October 2009)

http://www.bittorrent.org/beps/bep_0003.html
http://www.event-b.org/
http://www.bittorrent.org/beps/bep_0005.html
http://wiki.event-b.org/index.php/Modularisation_Plug-in

Node Coordination in Peer-to-Peer Networks 211

23. Sandvik, P., Sere, K.: Formal Analysis and Verification of Peer-to-Peer Node Be-
haviour. In: Liotta, A., Antonopoulos, N., Di Fatta, G., Hara, T., Vu, Q.H. (eds.)
The Third International Conference on Advances in P2P Systems, AP2PS 2011,
pp. 47–52. IARIA (November 2011)

24. Schulze, H., Mochalski, K.: Ipoque Internet Study (2008/2009),
http://www.ipoque.com/en/resources/internet-studies

(accessed April 2012)
25. Tarau, P.: Coordination and Concurrency in Multi-Engine Prolog. In: De Meuter,

W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 157–171.
Springer, Heidelberg (2011)

26. Vestel to Launch the First Bittorrent Certified Smart TV,
http://www.bittorrent.com/company/about/vestel to

launch the first bittorrent certified smart tv (accessed April 2012)
27. Waldén, M., Sere, K.: Reasoning About Action Systems Using the B-Method.

Formal Methods in Systems Design 13, 5–35 (1998)
28. Yan, L.: A Formal Architectural Model for Peer-to-Peer Systems. In: Shen, X., Yu,

H., Buford, J., Akon, M. (eds.) Handbook of Peer-to-Peer Networking, Part 12,
pp. 1295–1314. Springer, US (2010)

29. Yan, L., Ni, J.: Building a Formal Framework for Mobile Ad Hoc Computing.
In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004,
Part I. LNCS, vol. 3036, pp. 619–622. Springer, Heidelberg (2004)

http://www.ipoque.com/en/resources/internet-studies
http://www.bittorrent.com/company/about/vestel_to_launch_the_first_bittorrent_certified_smart_tv
http://www.bittorrent.com/company/about/vestel_to_launch_the_first_bittorrent_certified_smart_tv

Linda in Space-Time:

An Adaptive Coordination Model
for Mobile Ad-Hoc Environments

Mirko Viroli1, Danilo Pianini1, and Jacob Beal2

1 Alma Mater Studiorum – Università di Bologna, Italy
{mirko.viroli,danilo.pianini}@unibo.it

2 Raytheon BBN Technologies, USA
jakebeal@bbn.com

Abstract. We present a vision of distributed system coordination as a
set of activities affecting the space-time fabric of interaction events. In
the tuple space setting that we consider, coordination amounts to con-
trol of the spatial and temporal configuration of tuples spread across
the network, which in turn drives the behaviour of situated agents. We
therefore draw on prior work in spatial computing and distributed sys-
tems coordination, to define a new coordination language that adds to
the basic Linda primitives a small set of space-time constructs for link-
ing coordination processes with their environment. We show how this
framework supports the global-level emergence of adaptive coordination
policies, applying it to two example cases: crowd steering in a perva-
sive computing scenario and a gradient-based implementation of Linda
primitives for mobile ad-hoc networks.

1 Introduction

A common viewpoint in developing coordination models on top of Linda [16] is
that tuples are a mechanism to reify and exchange events/data/knowledge that
are important to system coordination, and to synchronise the activities of coor-
dinated components in a parallel and/or distributed system. A tuple is, however,
a very point-wise abstraction, and applications often need to express relation-
ships articulated across the physical environment through which the computa-
tional system is distributed. There is thus a need for coordination models and
languages that raise the level of abstraction from the single tuple to a spatial
structure of tuples, without forgetting the possibility that such a structure, as
well as being distributed, may also be highly dynamic and mobile.

Such spatial coordination models have been developed in a number of pre-
vious papers [29,17,18,24]. These span multiple application contexts, such as
pervasive computing, where mobility, large system scale, and/or situatedness in-
vite the coordination space to be interpreted as a distributed substrate for spatial
data structures. These models enhance the standard tuple-space settings with
primitives for spreading tuples from nodes to their neighbors, and letting them

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 212–229, 2012.
c© IFIP International Federation for Information Processing 2012

Linda in Space-Time 213

affect (or be affected by) the context of neighbors. Iterative spreading can then
lead to the stabilisation of given tuple structures, which find applications such as
retrieval of items of interest in mobile environments, as in the TOTA middleware
[17] or the pervasive ecosystems model [30]. These prior models, however, tend
to be either ad hoc (e.g., [24]) or tightly tied to a particular metaphor (e.g., [29]).

These approaches may also be viewed through the research lens of spatial
or amorphous computing [6], which argues that computation in a dense and
mobile system is best understood and designed in terms of spatial abstractions
(e.g., regions, partitions, gradients, trails, paths) and temporal abstractions (e.g.,
fading, growth, movement, perturbation). The Proto language [4] is an archetype
of this approach, presenting a model in which these abstraction—intrinsically
discrete because of the nature of computing devices—would actually tend toward
their continuum version as the density of the network, which we are continuing
to experience with current ICT technologies. As this research program links
geometric continuum abstractions and individual computing devices, it thus has
the potential of addressing the crucial issue of designing distributed systems
where adaptiveness globally emerges out of local interactions in a predictable
and controllable way.

Based on the above works, and on an existing trend of studies of concurrency
“in space” [12,11], we introduce a new coordination model and language aiming
at further bridging the gap between coordination and the continuum ideas of spa-
tial computing. In our model, we make situated agents interact by injecting into
the coordination substrate so-called space-time activities, namely, processes that
manipulate the space-time configuration of tuples in the network. Such activi-
ties are expressed in terms of a process-algebra like language, composing atomic
coordination primitives in the style of Linda with additional Proto-derived con-
structs that deal with spatial and temporal aspects: (i) spreading of an activity
in a node’s neighbourhood depending on its relative orientation; (ii) scheduling
an activity at the next computation round of a node; and (iii) accessing space-
time contextual information to link the configuration of tuples with the actual
physical space.
Contribution: The main contribution of this work is hence the definition of a
spatial computing coordination language, which we call στ -Linda, extending
Linda to flexibly enact coordinated activities tightly linked in space-time with
their environment. It provides more advanced mechanisms for controlling space-
time behaviour of coordination activities than those of existing coordination
middlewares such as TOTA [17], and overcomes the restrictions of Proto [4] that
make it unsuitable as an open coordination framework (as will be detailed in
Section 5).

The proposed model can be used to design coordination mechanisms that
emergently adapt to environment stimuli, such as agent interactions or changes
due to mobility and faults. We describe two applications for this model: first
we develop an adaptive crowd steering coordination service by which people in
a structured environment can be guided (by signs appearing in their personal
smartphone or public devices) towards a point of interest through the shortest

214 M. Viroli, D. Pianini, and J. Beal

path that circumvents dynamically-formed crowded areas. Second, we provide a
space-time extension of standard Linda coordination primitives (out, in and rd)
working in a distributed mobile environment, and relying on the self-organisation
pattern known as a computational gradient [2].

The remainder of this paper is organised as follows. Section 2 illustrates the
proposed model and language, Section 3 describes a formalisation expressed as
a core calculus, Section 4 presents application cases, Section 5 relates our model
with prior work, and finally Section 6 concludes with final remarks.

2 Linda in Space-Time

2.1 Basic Model

Our coordination infrastructure runs on a (possibly very dense and mobile) set
of situated computational devices, e.g., located in specific points (i.e. nodes)
of the physical environment. Each node hosts software agents (the coordinated
components) and a tuple space, and has ability of interaction with nodes in the
neighbourhood—where proximity can be seen as a physical or virtual property.
Differently from Linda, in which agents interact by atomic actions (inserting,
removing and reading tuples in the local tuple space), in στ -Linda, agents inter-
act by injecting space-time activities (activities for short). These activities are
processes composing atomic Linda-like actions with additional constructs allow-
ing the activity to diffuse in space (i.e. to other nodes) and in time (i.e. to be
delayed). The net effect of an activity is hence to evolve the population of tuples
in the network, thereby affecting the distributed structures of tuples that agents
use to for global coordination.

In our model, each node undergoes the following computation round : (i) it
sleeps, remaining frozen; (ii) it wakes up, gathers all incoming activities (con-
tained in messages received either from neighbour nodes or from local agents)
and executes them; (iii) it executes the continuation of the activity executed in
previous computation round; (iv) spreads asynchronous messages to neighbour-
hood; and (v) schedules an activity continuation for next round. The node then
sleeps again, returning to the beginning of the cycle. The duration of the com-
putation round is dictated by the underlying infrastructure, and could possibly
change over time or from device to device (as in [1]). We only assume that it is
long enough for executing steps (ii-iii-iv) above. This particular computational
model for a tuple space has many similarities with the platform assumptions of
the Proto language [4,27], which we adopt for its facility of situating computa-
tions in space-time—a thorough comparison is reported in Section 5.

2.2 The Coordination Language

A key role in the proposed coordination model is played by the concept of space-
time activities. We here incrementally describe their features by presenting a
surface language for their specification.

Linda in Space-Time 215

Primitive Actions. We being with three basic Linda actions for manipulating
the tuple space: “out tuple”, “in tuple”, “rd tuple”. These respectively insert,
remove and read a tuple from the local tuple space. A tuple is a ground first-order
term in our model—similarly to [22]. Read and removal specify a template (a
term with variables, denoted as literals starting with an upper-case letter) that
should be syntactically matched with the retrieved tuple. Read and removal
are predicative: they are non-blocking and yield a negative result if no matching
tuple is found. To these, we add a fourth primitive, “eval pred”, which evaluates
the predicate expression pred.

When such actions are defined for an activity injected by an agent, and are
executed in the tuple space where the agent is situated in, then a notification
result is shipped to the agent—although, following the spirit of [8], we shall not
discuss internal aspects of agent interactions in this paper.

Protocols. Primitive actions can be sequentially composed in a protocol-like
manner. Other standard operators of parallel composition and choice could be
orthogonally added, but are not discussed in this paper for brevity. Additionally,
in, rd and eval define branches leading to two different continuations, one for
positive and one for negative outcome of the predicative action. Three examples
of activities are:

out t(1,2,3); out t(a,1+2,b)

in r(X,2,3) ? out r(X,2,3) : out r(0,2,3)

(in r(X,2,3) ? (eval X=1 ? out r(X,2,3) : 0) : 0); out ok

The first expression inserts tuple t(1,2,3) and then t(a,3,b). Note that tuples
are evaluated before being used in actions: evaluation amounts to computing the
result of (mathematical) expressions used in a tuple’s arguments.

The second expression removes any tuple matching r(X,2,3) (variable X is
bound to the value of first argument, and this substitution propagates through
the remainder of the activity). If it succeeds (? branch) the tuple is inserted
back, otherwise (: branch) a new tuple r(0,2,3) is inserted.

The third example attempts to remove any tuple matching r(X,2,3). If it
succeeds and X = 1 then it inserts it back, otherwise it does nothing (0). Indepen-
dently of the outcome of such a removal, tuple ok is then inserted. We may also
omit the denotation of a “:” branch when it leads to the execution of empty pro-
cess 0, writing e.g. “(in r(X,2,3) ? eval X=1 ? out r(X,2,3)); out ok”
in place of the third example above.

Definitions. When desired, one can equip the specification of an activity with
definitions (which can possibly be recursive), in the style of agent definition
in π-calculus. These have the form “N(x1,...,xn) is activity”, which define
activity as having name N and arguments x1,. . .,xn. For instance, after declara-
tion

in-out(T) is (in T; out T)

216 M. Viroli, D. Pianini, and J. Beal

we have for instance that activity “in-out(r(1,2,3))” behaves just like
“in r(1,2,3); out r(1,2,3)”, namely, the tuple is added if it is not already
there. Note that since no branches are used for the removal operation, this in
turn is equivalent to “(in r(1,2,3)?0:0); out r(1,2,3)”, or, similarly, to
“in r(1,2,3)?out r(1,2,3):out r(1,2,3)”.

Time. The language provided so far is still point-wise in space and time. We
now expand it, beginning by adding construct next to situate activities in time.
Executing action “next P” (where P is the protocol – also called process –
defining an activity), amounts to scheduling P for execution at the next com-
putation round of the current node. Special variable $delay can be used in P
and evaluates to the amount of time passed in between the current computation
round and the previous one. Similarly, variable $this can be used to denote the
identifier of the node on which it is evaluated. Useful examples of definitions
(along with a brief descriptions of them) are then the following ones:

% When a tuple matching T is found, it is removed and replaced with T2

chg(T,T2) is (in T ? out T2 : next chg(T,T2))

% Inserts a tuple time(T,X), updated as time X passes

rep(T) is (out time(T,0); next rep2(T))

rep2(T) is (in time(T,Y); out time(T,Y+$delay); next rep2(T))

% Inserts tuple T that is removed after X time units elapse

outt(T,X) is (in-out(T); eval X<=0 ? in T : next outt(T,X-$delay))

Note that by the use of next in conjunction with a recursive definition, chg
actually declares an activity with a duration in time, which will be stopped only
when a tuple matching T is eventually found. Concerning the use of $delay, we
then observe that – in the spirit of a Proto-style space-time computing model –
as the average duration of computation rounds tends to zero, activity rep tends
to define a continuous update of tuple time(T,X) as time X passes, and similarly,
outt(T,X) tends to remove tuple T precisely as time X passed.

Space. To situate activities in space we introduce construct neigh. Executing
action “neigh P” amounts to sending a broadcast message containing P to all
neighbours, which will then execute P at their next computation round. Special
variable $distance is also introduced, which evaluates to the estimated distance
between the node that sent the message and the one that received it. Similarly,
variable $orientation can be used to denote the relative direction from the
receiver to the sender (e.g., as a vector of coordinates [11]). Some examples are
as follows:

% Broadcasts tuple T in the neighbourhood

bcast(T) is (neigh out T)

% Broadcasts tuple T in the neighbourood but only within range R

Linda in Space-Time 217

bcastr(T,R) is (neigh (eval $distance<R ? out T))

% Gossips tuple T in the whole network within range R

goss(T,R) is (eval R>=0 ? (in-out(T); neigh goss(T,R-$distance)))

Of particular interest is the last definition, which spreads one copy of T to all
the nodes whose hop-by-hop distance from the source is smaller than R. As in
the case of time, as devices become increasingly dense, and their distance tends
to zero, the set of devices holding tuple T will actually form a continuous sphere
with radius R around the origin of goss.

Note that it is an easy exercise to define processes dealing with both space and
time—as will be developed in Section 4. For instance, one can define a process
gosst that adds temporal aspects to the goss example, such as to make the
sphere of tuples created by goss all disappear following a timeout. In the sense
of spatial computing interpretation [4], the definition of gosst(T,R,TO) would
be the definition of a geometric space-time activity called “sphere of tuple T

with radius R and timeout TO”—useful to limit the spatial and temporal extent
of some advertised information.

Finally. We conclude by introducing a construct named finally, used to sim-
plify the task of structuring the activities executed at a given round. Executing
action “finally P” makes activity P executed in the current round, but only
when all the others actually completed. A typical use of this construct is to start
an aggregation activity for incoming messages only when all of them have been
processed, as in the following equivalent specification of gossiping:

gossf(T,R) is (eval R>=0 ? (out T; neigh gossf(T,R-$distance);

finally clean(T)))

% Cleans multiple copies of T, leaving just one of them

clean(T) is (in T ? (in-out(T); clean(T)))

Messages spread by gossiping cause the receiver to execute the gossf activ-
ity, which inserts tuple T, further spreads messages, and finally schedules the
clean(T) process for a later time. Only when all such messages have been pro-
cessed in a round (and there are typically more than one) will the set of all clean
activities be executed . The result of their execution is that only one tuple T will
remain in the tuple space. The finally construct can thus, e.g., serve a similar
aggregation and simplification role to the *-hood constructs in Proto.

3 Core Calculus

In this section we introduce a formalisation of the proposed framework similar
in spirit to those of [8,18,28], namely, by a core calculus taking the shape of a
process algebra.

218 M. Viroli, D. Pianini, and J. Beal

3.1 Syntax

Let meta-variable σ range over tuple space (or node) identifiers, x over logic
variables, τ over real numbers used to model continuous time, and f over
function names (each with a given arity, and used either in infix of prefix
notation)—as usual we refer to functions with arity 0 as constants. Meta-
variable t ranges over terms built applying functions to variables, numbers,
identifiers, and constants, and will be written in typetext font. For simplic-
ity, we shorten special variable $orientation to ω, and neglect $distance

since it can be “compiled away” to term length(ω) where length is a function.
We let ε range over evaluations (functions) for terms, write tε for application
of ε to term t, and denote ε(σ, τ) the evaluation that (other than computing
mathematical functions) maps $this to σ and $delay to τ . For instance, we

have a($this,1+$delay)ε(id23,5.1) = a(id23,6.1). A substitution θ of vari-
ables x1, . . . , xn to terms t1, . . . , tn is expressed by notation {t1/x1, . . . , tn/xn},
and is applied to a term t by syntax tθ, e.g., a(x, 1){x/2} means a(2, 1). We
write mgs(t, t′) for the most general substitution θ such that t′θ = t—such a
notation makes no sense (as in partial functions) if mgs(t, t′) =⊥, i.e., when t is
not an instance of t′.

Given these premises, the core syntax of the model is expressed by the gram-
mar in Figure 1 (a). P defines the syntax of a process (or activity): it in-
cludes empty process 0, action prefix, predicative actions with branches, and
call of a definition. Note we skipped from this syntax the composition op-
erator “;”, which can be basically compiled away once we have action pre-
fix “.” and branching “? :”—by straightforward equivalences like 0;P ≡ P ,
(π?P : Q);R ≡ π?(P ;R) : (Q;R) and (α.P);R ≡ α.(P ;R). A space S is a
composition, by operator “ | ”, of processes and tuple sets. The topology of a

network is modelled by a composition L of connections of kind σ
t�σ′, represent-

ing proximity of node σ′ to σ with orientation vector t—e.g., expressed as term
coord(x,y,z) or the like. Finally, a system configuration C is a composition,
by operator ⊗, of nodes [S]τ,τ

′
σ (with id σ, space S, current round at time τ

and previous one at τ ′), topology L, and messages P � σ (with content P and
recipient σ).

Figure 1 (b) introduces a congruence relation “≡”, stating when two config-
urations are to be considered syntactically equal, and hence can be used one
in place of the other. First line introduces standard multiset-like properties of
operators “ | ” and “⊗”. Second line states that scheduling operators can be
lifted out of action prefix placed in parallel with the continuation, and can also
distribute in parallel processes. Last line states that when a finally and next

actions are in parallel composition, the latter can enter the former: this will in
fact leave scheduling policy for Q unchanged.

3.2 Operational Semantics

We define operational semantics by transitions C
λ−→ C′, where labels λ can have

the syntax described in Figure 1 (a). Label “·” means a silent action internal

Linda in Space-Time 219

t ::= x | σ | τ | f | f(t1, . . . , tn) Terms
P,Q,R ::= 0 | α.P | π?P : Q | D(t1, . . . , tn) Process

α ::= out t | �P Action
� ::= next | neigh | finally Scheduling operator
π ::= rd t | in t | eval t Predicative action
T ::= 0 | t | (T | T) Tuple set
S ::= 0 | T | P | (S | S) Space

L ::= 0 | σ t�σ | (L | L) Topology

C,D ::= 0 | [S]τ,τ ′
σ | P � σ | L | (C ⊗ C) Configuration

λ ::= · | σ!P | στ?P | P � σ | L : L Labels

“ | ” and “⊗” are commutative, associative, and absorb 0
(�P).Q ≡ Q | �P �(P | Q) ≡ (�P) | (�Q) �0 ≡ 0

finally P | next Q ≡ finally (P | next Q)

(STR)
C ≡ C′ C′ λ−→ D′ D′ ≡ D

C
λ−→ D

(SND)
C

σ!P−−→ C′

(σ
t�σ′)⊗ C

σ!P−−→ C′ ⊗ (P{t/ω} � σ′)⊗ (σ
t�σ′)

(BRO)
(σ

t�σ′) /∈ C P �≡ 0

[S|neigh P]τ,τ
′

σ ⊗ C
σ!P−−→ C ⊗ [S]τ,τ

′
σ

(REC)
C

στ?P |Q−−−−−→ C′

(P � σ)⊗ C
στ?Q−−−→ C′

(NEW)
P � σ /∈ C τ2 > τ1

[T |next Q]τ1,τ0σ ⊗C
στ2?P−−−−→ C ⊗ [T |P |finally Q]τ2,τ1σ

(FIN)
−

[T |finally P]τ,τ
′

σ ⊗C
·−→ C ⊗ [T |P]τ,τ

′
σ

(RUN) S〈P 〉 ε(σ,τ−τ ′)
↪−−−−−−→ S′〈P ′〉

[S|P]τ,τ
′

σ ⊗ C
·−→ C ⊗ [S′|P ′]τ,τ

′
σ

(MOV)
−

L⊗ C
L:L′−−−→ C ⊗ L′ (AGN)

−
C

P�σ−−−→ C ⊗ (P � σ)

(OUT) S〈out t.P 〉 ε
↪−→ (S | tε)〈P 〉

(IN1) (S | t′)〈in t?P : Q〉 ε
↪−→ S〈Pθ〉 if θ = mgs(t′, tε)

(IN2) S〈in t?P : Q〉 ε
↪−→ S〈Q〉 if �t′ ∈ S and mgs(t′, t) �=⊥

(RD1) (S | t′)〈rd t?P : Q〉 ε
↪−→ (S | t′)〈Pθ〉 if θ = mgs(t′, tε)

(RD2) S〈rd t?P : Q〉 ε
↪−→ S〈Q〉 if �t′ ∈ S and mgs(t′, t) �=⊥

(EV1) S〈eval t?P : Q〉 ε
↪−→ S〈P 〉 if tε = true

(EV2) S〈eval t?P : Q〉 ε
↪−→ S〈Q〉 if tε �= true

(D) S〈D(t1, . . . , tn)〉 ε
↪−→ S〈P{tε1/x1, . . . , t

ε
n/xn}〉 if D(x1, . . . , xn) is P

Fig. 1. (a) Grammar, (b) Congruence, (c) Global semantics and (d) Local semantics

220 M. Viroli, D. Pianini, and J. Beal

to a node σ; “σ!P” means device σ is broadcasting a message with content P ;
“στ?P” means device σ starts a new computation round at (its local) time τ
and still needs to gather messages with content P (at the top level it will take
the form στ?0); “P �σ” means an agent is injecting process P in the tuple space
σ; and “L : L′” means (sub)topology L changes to L′ to reflect some mobility
or failure in the system. Semantic rules are shown in Figure 1 (c).

Rule (STR) defines classical structural congruence. Rules (BRO) and (SND)
recursively handle broadcasting (mostly in line with [26]), namely, create mes-
sages for all neighbours as soon as a process P is scheduled for broadcasting. Rule
(SND) recursively selects a neighbour σ′ at orientation t, and creates a message
for it in which orientation variable ω is substituted with t. Rule (BRO) is the
fixpoint: when all neighbours have been handled, scheduling action neigh P is
removed. Note we do not send empty messages.

Similarly, rules (REC) and (NEW) recursively handle the reception of all
messages when a new computation round starts. Rule (NEW) states that, given
node σ in which Q is the process to execute at the next round, when a new round
starts at time τ2 and with overall incoming messages P , then the new process to
start with is “P |finally Q”, since we prescribe messages to be handled before Q
as already described in previous section. Also note that this rule updates round
times τ1, τ0 to τ2, τ1, and that it activates only when all incoming messages have
been actually handled. Rule (REC) recursively gathers all incoming messages:
it takes one with content P and proceeds recursively adding P to the set Q of
messages considered so far.

Rule (FIN) handles semantics of finally P construct, by simply stating that
when this is the only activity in a node, we can simply execute P—note
all “finally-scheduled” processes can be gathered together (along with “next-
scheduled” ones) because of congruence. Rule (RUN) handles one-step execution

of a process, by simply deferring the task to transition relation
ε
↪−→, defined in

Figure 1 (d)—its rules are quite straightforward, as they correspond to the stan-

dard semantics of Linda primitives in their predicative version [8]. Note that
ε
↪−→

takes the evaluation function to use, initialised in rule (RUN) with the proper
value of $this and $delay. Finally, rule (MOV) addresses topological changes
due to mobility or failures, and rule (AGN) models the injection of a process by
an agent in the local node.

We conclude stating isolation and progress properties. First property allows
one to reason about the execution of an activity into a node without considering
its environment. Namely, we have that nodes get affected by the external envi-
ronment only at the time a new computation round starts (because of reception
of messages), otherwise they proceed in isolation possibly just spawning new
messages.

Property 1. If C⊗ [S]
τ0,τ

′
0

σ
λ−→ C′ ⊗ [S′]τ,τ

′
σ with S �≡ S′ then λ is either ·, σ!P , or

στ?P . In the former two cases (namely, unless we change computation round),
τ0 = τ , τ ′0 = τ ′, and C′ ≡ C ⊗ Cm (where Cm is either 0 or a broadcast),

and moreover, for each D we have also D ⊗ [S]
τ0,τ

′
0

σ
λ−→ D ⊗ [S′]τ0,τ

′
0

σ ⊗ Cm, i.e.,
computation is independent of the environment.

Linda in Space-Time 221

The progress property states instead that when a computation round is com-
pleted it is necessarily composed of a next scheduling: at that point (NEW) can
surely fire for that node, starting a new computation round. This ensures that
our computations never get stuck.

Property 2. C ⊗ [S]τ,τ
′

σ
·
� and C ⊗ [S]τ,τ

′
σ

σ!P
� iff S ≡ (T | next P). In that case,

we have C ⊗ [S]τ,τ
′

σ
στ0?0−−−→ C′ ⊗ [S′]τ0,τσ for any τ0 > τ .

4 Case Studies

4.1 Adaptive Crowd Steering

As a first example we study a specification able to support the case study pre-
sented in [30,25], with the goal of showing how στ -Linda can provide support to
easily define complex, distributed and adaptive data structures, and how they
can be used in practice in a pervasive computing scenario.

Crowd-aware gradient
% creating a gradient spreading tuple T

source(T) is (in-out(source(T)); grad(T,0,$this))

% gradient process for tuple T, at distance D, coming from node S

grad(T,D,S) is grad(T,D,S,$this)

grad(T,D,S,This) is (

rd source(T)

? in-out(pre(T,0))

: in pre(T,N) ? (eval N<D

? out pre(T,N)

: (in target(T,M); out target(T,S); out pre(T,D)))

); finally (in pre(T,N)? (in field(T,M);

(rd crowd(C)

? out field(T,N-1.2*C)

: out field(T,N)); rd field(T,V); neigh grad(T,V+$distance,This)))

Fig. 2. Definitions for the crowd-aware computational gradient. At each site, if this is
the source we consolidate pre(T,0). Otherwise, we replace the pre tuple if a smaller
distance D is found, and target tuple is inserted as well. Finally, we take the remaining
pre tuple, and apply the crowd factor: the resulting distance N goes into the field

tuple.

Our reference environment is a bidimensional continuous space made of var-
ious rooms connected by strict corridors. Inside rooms and corridors, a dense
grid of computational devices (nodes) is set up. Each node hosts its own tuple
space, receives coordination activities (programmed using our spatial language)
by software agents running in it, interacts with nodes in its proximity, and has
a sensor locally injecting a tuple crowd(CrowdLevel) where CrowdLevel is an
estimation of the number of people sensed around. People want to reach a point

222 M. Viroli, D. Pianini, and J. Beal

Fig. 3. Simulation snapshots: the coloured visitors reach its POI avoiding crowd

of interest (POI) by the fastest path, and receives directions suggested by their
handheld device and/or by public displays on the walls. It is worth noting that
the fastest path does not correspond to the shortest: if everybody followed the
same way, in fact, corridors would become crowded. We want the system to be
able, relying only on local interactions, to avoid crowded paths, dynamically
adapting to any emerging and unforeseen situation. However, we will not imple-
ment algorithms to predict future situations, but rather make information about
a crowded area spread around such that it becomes a less attractive transiting
place to reach a POI.

Our strategy is to build a computational gradient injected by an agent located
in the POI. A computational gradient holds in any node the estimated distance
to the source by the shortest path [4], computed by further spreading and then
aggregating at the destination the local estimation of distance. This distributed
data structure must take into account also the crowding level, increasing esti-
mated distance where a crowd is forming, and thus deflecting people towards
longer but less crowded paths. This strategy can be encoded as in Figure 2,
where the goal is achieved by maintaining a tuple target(Poi,Id) containing
the Id of the neighbour node where to steer people to following a certain Poi.
The crowding level influences the local field generation, and is weighted using a
constant Kcrowd = 1.2. Values between 1 and 1.5 have been established as good
ones after running several simulations: more generally, the higher Kcrowd, the
more sensitive is path computation to the presence of crowd.

We implemented and ran simulations using Alchemist simulator [25], assuming
that computation rounds are fired at the same rate for all nodes, and modelling
such a rate following the Continuous-Time Markov Chain model. Four screen-
shots of a simulation run are provided in Figure 3, in which we built an envi-
ronment of fifteen rooms with an underlying grid-like network of infrastructure

Linda in Space-Time 223

nodes, an initial configuration with two groups of people, and a POI of interest
for the first group which is reachable by a path crossing a crowded area. Note
that not only every visitor reached the POI, but they all bypassed the crowded
room (even if it is part of the shortest path, the large amount of people inside
makes the whole area rather disadvantageous to walk); additionally, the visitors
group is subject to “self-crowding”, in that when a group is following a path it
forms crowded areas itself (e.g. near doors), hence people behind the group tend
to follow different paths. Further simulations we do not describe here for the
sake of space show that the above properties hold for a large set of situations,
including presence of crowds in different locations and dynamic formation and
movement of such crowds during simulation1.

4.2 Linda in a Mobile Ad-Hoc Environment

As a second case study we show a possible extension for Linda standard prim-
itives taking into account both time and spatiality. In particular, our aim is
to show how would it be possible in a mobile ad-hoc environment to specify,
along with an operation over a tuple, a spatial and temporal horizon of validity:
only retrieval operations whose horizon embraces the respective target tuple will
actually succeed. We will show an implementation for the spatio-temporal out
(stout) and the spatio-temporal in (stin) primitives—the easier case of strd
being a simple variant of stin.

The key idea is to make primitive Linda actions actually generate waveform-
like space-time data structures, with limited extent in space and dissolving as a
timeout expires. Those structures will be responsible to determine the pertinence
in space and time of each operation. An example of such a structure is realised
by the code shown in Figure 4 (top). A wave works similarly to the gradient in
Figure 2, maintaining a target tuple reifying the shortest past through a similar
specification. A main difference – other than the obvious absence of any crowd
management – is the evaluation of the age and distance, which makes the wave
disappear whenever and wherever the horizon is reached.

When a stin operation requiring retrieval of a tuple template T is triggered,
it will spawn a messenger activity called hermes (with Op set to in) which will
propagate to a matching tuple T’ following the corresponding wave it generated.
As soon as the tuple is found, a new hermes (with Op set to in back) is spawned
which will follow the stin gradient back. This behaviour can be coded as shown
in Figure 4 (middle).

Given these two basic bricks, the stout and stin primitives would be encoded
as in Figure 4 (bottom). For each, a tuple template, a spatial range and a validity
time must be specified. stout implementation is concise, because it just needs
to manifest itself trough a wave and make the tuple available; stin, instead,
needs also to spawn a hermes, whose goal is to retrieve a tuple and move it to
the tuple space where the operation was spawned.

1 The interested reader can download an example clip at:
http://apice.unibo.it/xwiki/bin/download/Publications/

Coord2012/museum-small.avi

http://apice.unibo.it/xwiki/bin/download/Publications/Coord2012/museum-small.avi
http://apice.unibo.it/xwiki/bin/download/Publications/Coord2012/museum-small.avi

224 M. Viroli, D. Pianini, and J. Beal

Wave-form: a space-time gradient
wave(T,Range,Ttl) is wawe(T,Range,0,$this,$this,Ttl, 0)

wave(T,Range,D,Source,Ttl,Age) is wave(T,Range,D,Source,$this,Ttl,Age)

wave(T, Range, D, Dest, This, Ttl, Age) is (

eval (Age>Ttl or D>Range)

? (in pre(T,D); in field(T,N)) % disappearing

: rd source(T)

? (in-out(pre(T,0)) % default behaviour in a source

: in pre(T,N) ? (eval N<D % choosing minimum distance

? out pre(T,N)

: (in target(T,_); out target(T,Dest);

out pre(T,D))))

); finally (in pre(T,N) ? (% consolidating target

in field(T,M); out field(T,N);

rd target(T, Dest); next wave(T,Range,D,Dest,This,Ttl,$delay);

eval Age = 0 ? neigh wave(T,Range,N+$distance,This,Ttl,0)))

Tuple retrieval
hermes(Op, T, This) is

eval This = $this

? (eval Op = in ? (in T

? (rd target(op_in(T), Dest); neigh hermes(in_back, T, Dest))

: (rd target(op_out(T), Dest); neigh hermes(in, T, Dest))))

: (eval Op = in_back ? (in in_request(T)

? out(T)

: (rd target(op_in(T), Dest); neigh hermes(in_back, T, Dest))))

Space-time Linda operations
stout(T,Range,Ttl) is out(T); wave(op_out(T), Range, Ttl)

stin(T, Range, Ttl) is out in_request(T);

wave(op_in(T), Range, Ttl);

hermes(in, T, $this)

Fig. 4. Definitions of Linda space-time operations

These new primitives allow agents to publish/retrieve information flexibly
tuning the space-time horizons, relying on lower-level gradients (and routing
paths) which adapt to the mobility of the network [2].

5 Related Work

Spatial Computing. The coordination model presented in this paper is very
much in line with the motivations and basic mechanisms proposed in spatial
computing research [6,5], and in particular by Proto [4]. Proto is a functional
language used to specify the aggregate behaviour of all nodes in a space-filling
network. It introduces specific space-time operators to situate computation in
the physical world, and these operators form the inspiration for the space-time
operators introduced in στ -Linda. For example, there is a neighbourhood prim-
itive nbr by which one can atomically compute an expression locally, spread

Linda in Space-Time 225

the result to neighbours, gather neighbours’ messages previously sent, and re-
turn their collection. In Proto, the function computing a gradient data structure
could be specified as:

(def distance-to (source) % defining a unary function distance-to

(rep d inf % d starts with value infinity

(mux source 0 % d becomes 0 in the source, otherwise..

(fold-hood* min inf % d is the minimum value taken from

(+ (nbr d) (nbr-range)) % neighbour’s d plus neighbour’s range

))))

As previously noted, the underlying execution on a node follows a cycle roughly
similar to the one we use in Section 2 [27]. To achieve a similar expressiveness to
Proto, we introduced the next and neigh constructs (playing a role similar to
Proto’s constructs rep and nbr), along with the space-time variables #distance
and #delay (similar to Proto’s constructs nbr-range and dt), and finally,
which plays a role similar to Proto’s *-hood constructs.

The main differences with respect to Proto are as follows: (i) in our model
a node stores a tuple space, whereas in Proto only a fixed tuple of values is
maintained, hence specific constructs to perform generative communication are
lacking in Proto; (ii) being purely functional, Proto cannot easily deal with state
transitions as typically required when programming coordination activities; and
(iii) in Proto all nodes run the same program, which is assumed to be installed
everywhere before computation starts (this is because the information to be
exchanged and the structure of programs has to be known at design-time for
construct nbr to properly work), whereas we assume nodes are initially empty,
and computation starts from the run-time injection of activities by agents.

On the other hand, Proto provides functionalities that we neglected at this
stage, though they are interesting for future works: Proto nodes can be pro-
grammed to move, a feature that could be interesting as a coordination metaphor
for pervasive scenarios featuring physically-mobile devices; and Proto functions
can be seen as operators applying to whole spatial structures and their behavior
can be modified by changing the region of space on which they execute, a very
important property for modularly building complex spatial computations.

It is also interesting to mention a trend in formal calculi for distribution
converging to spatial computing. 3π was developed as an extension of π-calculus
with the idea of modelling the space where processes execute as a 3-dimensional
geometric space [11]. In 3π, each process has a position and an orientation in
space (a basis), encoded in a so-called geometric data. Other than accessing
it (symbolically), a process can also send or receive geometric data through
channels and can evolve to new processes located elsewhere (i.e., movement).
From 3π we inherited the idea of letting orientation vector of a node being
accessible from a neighbour. An even more abstract approach is taken in the
Ambient calculus [12] and its derivatives – like Brane Calculi [10] and P-systems
[23] – in which processes execute in a spatial system of hierarchically nested
compartments, which could be of interest as soon as one wants to considered the
hierarchical structure of complex environments.

226 M. Viroli, D. Pianini, and J. Beal

Traditional Coordination Models. Our approach relates to the idea of en-
gineering the coordination space of a distributed system by some policy “inside”
the tuple spaces, following e.g. the pioneer work of programmable tuple spaces
like TuCSoN [22] or Mars [9]—and subsequent coordination frameworks such as
those of coordination artifacts [20,19]. Though our coordination activities can be
mapped to a certain extent on top of those fully-expressive programming mod-
els, we believe they are different in spirit in at least two ways: first, we foster
the idea that agents inject the desired behaviour (which is not to be seen as
a program for the space), and second, we push forward the idea of space-time
computations which the above works typically neglect.

The KLAIM language and core calculus [18] extend the tuple-space concept
with several notions that are related to our approach. KLAIM has a networked
tuple-space model very similar to ours, since nodes host a tuple space, processes,
and has interaction ability with a (virtual) neighbourhood; it also supports the
idea of executing processes in a remote location, with a mechanism by which
a process explicitly mentions the location of the action to be executed. Our
approach differs in the use of broadcasts for node-to-node communication, in
its ability of controlling temporal evolution and spatial location of a process
continuation, and in the use of computation rounds for tuple spaces. It is an
interesting future work to see to which extent KLAIM can be seen as a lower
level model to describe our space-time activities, or vice versa.

The application example shown in Section 4.2 is also related to Geo-Linda
[24], another example of spatial coordination approach combining the tuple ma-
nipulation of LINDA with the geometric addressing concepts of SPREAD [13].
In Geo-Linda, tuples are read and published over an assortment of geometric
primitives, such as boxes, spheres, cylinders, and cones, all defined relative to
a device. The language also introduces primitives to detect coarse movement of
devices through the appearance or disappearance of tuples.

Self-organisation in Tuple Spaces. As described in [21], applications of coor-
dination models and languages – and especially space-based ones – are inevitably
entering the realm of self-organisation, where complexity of interactions becomes
the key to make desired properties appear by emergence. Given the intrinsic diffi-
culty of designing emergence, most approaches mimic nature-inspired techniques
to organise and evolve tuples according to specified rules.

Among the many existing approaches, one that is very related to ours is
TOTA (Tuples On The Air) [17], a tuple-based middleware supporting field-
based coordination for pervasive-computing applications. In TOTA each tuple,
when inserted into a node of the network, is equipped with a content (the tuple
data), a diffusion rule (the policy by which the tuple has to be cloned and diffused
around) and a maintenance rule (the policy whereby the tuple should evolve due
to events or time elapsing). Compared with the language proposed here, and
although TOTA was an evident inspiration to the idea of building dynamic and
distributed structures of tuples, we observe a number of differences: (i) TOTA
is a middleware and defines no true language or primitives to program spatial
structures (content and maintenance rule are programmed directly in Java and

Linda in Space-Time 227

can access and manipulate the whole tuple space); (ii) TOTA has no specific
mechanisms to keep track of physical space and time, for it only has a concept
of “spreading to the neighbourhood”, which allows to estimate distance in terms
of number of hops to the source. TOTA could be possibly used as an underlying
framework for implementing our language, provided additional ability to perceive
the physical world are added.

A chemical-inspired self-organisation model is instead studied in [28,29].
There, tuples are associated with an activity level, which resembles chemical con-
centration and measures the extent to which the tuple can influence the state
of system coordination—e.g., a tuple with low activity level would be rather
inert, hence taking part in coordination with very low frequency. Chemical-like
reactions following the CTMC model, properly installed into the tuple space,
evolve activity level of tuples over time in the same way chemical concentration
is evolved in chemical systems, and provide a diffusion mechanism that is shown
to provide spatial notions like gradients as well. The SAPERE approach in [30]
adds to this model the notion of semantic matching and tailors it to the perva-
sive computing context. We believe that, as density and speed of nodes grows,
our language can be used to approximate the behaviour of those chemical rules.

6 Conclusions and Future Work

The current trend in ICT will shortly bring us distributed systems of huge size,
density, mobility and opennes. Following the direction of a good deal of recent
works – including [17,6,11] and many others – we claim that this will require
to elect the notion of “spatial coordination” as first-class abstraction in coordi-
nation models and languages, and distributed systems in general. The present
paper is a first exploration in the direction of filling the gap between Linda-based
and spatial computing models, obtained by a coordination model incorporating
– though in an innovative guise – mechanisms for the space-time situation of
processes [4], used to realise adaptive coordination mechanisms. We argue that
the proposed language can be rather easily implemented on top of those existing
coordination middleware providing basic features of space-to-space interaction
and space programmability, such as TuCSoN [22], Klava [7] and TOTA [17]. We
also plan to implementation further case studies of self-organisation, according
e.g. to the pattern-based approaches in [15,14].

Another interesting thread of future research activities will be devoted to clar-
ify what would be a good notion of expressiveness, and what would be a minimal
set of primitives for fully-expressive space-time computation—a problem already
stated in [3] for the spatial computing settings. Accordingly, we plan to use the
presented language to define basic calculi in the style of the one presented here,
which would be able to model higher-level languages like, e.g., the eco-law lan-
guage for pervasive service ecosystems [30], and paving the way towards formal
methods for the predictability and control of emergent adaptation in collective
systems.

228 M. Viroli, D. Pianini, and J. Beal

Acknowledgments. This work has been supported by the EU FP7 project
“SAPERE - Self-aware Pervasive Service Ecosystems” under contract No.
256873.

References

1. Bachrach, J., Beal, J., Fujiwara, T.: Continuous space-time semantics allow adap-
tive program execution. In: IEEE SASO 2007, New York, pp. 315–319. IEEE (July
2007)

2. Beal, J.: Flexible self-healing gradients. In: Proceedings of the 2009 ACM Sympo-
sium on Applied Computing, SAC, pp. 1197–1201. ACM (2009)

3. Beal, J.: A basis set of operators for space-time computations. In: Self-Adaptive and
Self-Organizing Systems Workshop (SASOW 2010), pp. 91–97 (September 2010)

4. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator
networks. IEEE Intelligent Systems 21(2), 10–19 (2006)

5. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
Languages for spatial computing. CoRR, abs/1202.5509 (2012)

6. Beal, J., Michel, O., Schultz, U.P.: Spatial computing: Distributed systems that
take advantage of our geometric world. ACM Transactions on Autonomous and
Adaptive Systems 6, 11:1–11:3 (2011)

7. Bettini, L., Nicola, R.D., Pugliese, R.: Klava: a java package for distributed and
mobile applications. Softw., Pract. Exper. 32(14), 1365–1394 (2002)

8. Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of Linda coordination
primitives. Inf. Comput. 156(1-2), 90–121 (2000)

9. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)

10. Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer,
Heidelberg (2005)

11. Cardelli, L., Gardner, P.: Processes in Space. In: Ferreira, F., Löwe, B., Mayordomo,
E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer,
Heidelberg (2010)

12. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1),
177–213 (2000)

13. Couderc, P., Banatre, M.: Ambient computing applications: an experience with
the spread approach. Hawaii International Conference on System Sciences, HICSS
2003 (January 2003)

14. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Arcos,
J.L.: Self-organising design patterns. Natural Computing (to appear, 2012)

15. Gardelli, L., Viroli, M., Omicini, A.: Design Patterns for Self-organising Systems.
In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 123–132. Springer, Heidelberg (2007)

16. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

17. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009)

18. Nicola, R.D., Ferrari, G.L., Pugliese, R.: Klaim: A kernel language for agents in-
teraction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

Linda in Space-Time 229

19. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisation,
roles and contexts in MAS. Applicable Algebra in Engineering, Communication and
Computing 16(2-3), 151–178 (2005)

20. Omicini, A., Ricci, A., Viroli, M.: Coordination Artifacts as First-Class Abstrac-
tions for MAS Engineering: State of the Research. In: Garcia, A., Choren, R.,
Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005.
LNCS(LNAI), vol. 3914, pp. 71–90. Springer, Heidelberg (2006)

21. Omicini, A., Viroli, M.: Coordination models and languages: From parallel comput-
ing to self-organisation. The Knowledge Engineering Review 26(1), 53–59 (2011);
Special Issue 01 (25th Anniversary Issue).

22. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

23. Paun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc.,
New York (2002)

24. Pauty, J., Couderc, P., Banatre, M., Berbers, Y.: Geo-linda: a geometry aware
distributed tuple space. In: IEEE 21st International Conference on Advanced Net-
working and Applications (AINA 2007), pp. 370–377 (May 2007)

25. Pianini, D., Montagna, S., Viroli, M.: A chemical inspired simulation framework
for pervasive services ecosystems. In: Proceedings of the Federated Conference on
Computer Science and Information Systems, pp. 667–674. IEEE Computer Society
Press (2011)

26. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75(6), 440–469 (2010)

27. Viroli, M., Beal, J., Casadei, M.: Core operational semantics of Proto. In: 26th
Annual ACM Symposium on Applied Computing, SAC 2011, Tunghai University,
TaiChung, Taiwan, March 21-25. ACM (2011)

28. Viroli, M., Casadei, M.: Biochemical Tuple Spaces for Self-organising Coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521,
pp. 143–162. Springer, Heidelberg (2009)

29. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of
pervasive services through chemical-inspired tuple spaces. ACM Transactions on
Autonomous and Adaptive Systems 6(2), 14:1–14:24 (2011)

30. Viroli, M., Pianini, D., Montagna, S., Stevenson, G.: Pervasive ecosystems: a co-
ordination model based on semantic chemistry. In: Ossowski, S., Lecca, P., Hung,
C.-C., Hong, J. (eds.) 27th Annual ACM Symposium on Applied Computing, SAC
2012, Riva del Garda, TN, Italy, March 26-30. ACM (2012)

A Space-Based Generic Pattern

for Self-Initiative Load Clustering Agents

Eva Kühn, Alexander Marek, Thomas Scheller, Vesna Sesum-Cavic,
Michael Vögler, and Stefan Craß

Vienna University of Technology, Institute of Computer Languages
Argentinierstr. 8, Vienna, Austria

{eva,amarek,ts,vesna,mvoegler,sc}@complang.tuwien.ac.at

Abstract. Load clustering is an important problem in distributed sys-
tems, which proper solution can lead to a significant performance im-
provement. It differs from load balancing as it considers a collection of
loads, instead of normal data items, where a single load can be described
as a task. Current approaches that treat load clustering mainly lack of
provisioning a general framework and autonomy. They are neither agent-
based nor configurable for many topologies. In this paper we propose a
generic framework for self-initiative load clustering agents (SILCA) that
is based on autonomous agents and decentralized control. SILCA is a
generic architectural pattern for load clustering. The SILCA framework
is the corresponding implementation and thus supports exchangeable
policies and allows for the plugging of different algorithms for load clus-
tering. It is problem independent, so the best algorithm or combination
of algorithms can be found for each specific problem. The pattern has
been implemented on two levels: In its basic version different algorithms
can be plugged, and in the extended version different algorithms can be
combined. The flexibility is proven by means of nine algorithms. Further
contributions are the benchmarking of the algorithms, and the working
out of their best combinations for different topologies.

Keywords: Agents, Load Clustering, Load Balancing, Coordination,
Tuple Space.

1 Introduction

Clustering or cluster analysis is a method of unsupervised learning and a tech-
nique for the analysis of statistical data. It is used in many fields, including data
mining, machine learning and information retrieval. Clustering deals with the
problem of grouping a collection of observations into smaller subsets, so called
clusters. A cluster therefore consists of elements which are similar in some way
and dissimilar to elements that belong to other clusters. The greater the simi-
larity within a cluster and the greater the difference between the clusters, the
better or more distinct is the clustering.

Load clustering, as the name already states, deals with the clustering of work
loads in a computer system. It is strongly related to load balancing, which is a

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 230–244, 2012.
c© IFIP International Federation for Information Processing 2012

A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents 231

methodology to distribute load among multiple computers to achieve an optimal
utilization of resources. The difference between the two is that load clustering
tries to make further optimizations of the load distribution based on the content
of the load items: A single load item can be described as a task that consists of
several attributes (e.g. a certain priority), has a payload, a dynamic life cycle and
is handled by a computer or processor. The goal of load clustering is to cluster
loads not only on the basis of simple attributes but also take into consideration
the payload, as well as the dynamic and therefore changing status of the system
load. Load clustering is a derived form of simple data clustering. Its main goal is
to increase performance, by allowing a worker in a computer system to process
not only a single load at once but a cluster of loads which are similar and
therefore easier and faster to process.

Since load clustering systems are complex and need to react to various fac-
tors, it is important that they are self-organizing and adaptive, so that they can
flexibly adapt to dynamically changing loads and resources. Different algorithms
and configurations are needed to satisfy different kinds of load clustering sce-
narios, so a framework is needed that allows the comparison of algorithms and
fine-tuning of their behavior to achieve optimal performance results. There are
currently no frameworks with the needed degree of flexibility to satisfy these
requirements. Existing frameworks are specialized for data clustering, not load
clustering. Moreover they follow no agent based approach, hence need a central
coordinator. This makes the system more prone to errors since that coordinator
is a single point of failure.

In this paper we present a load clustering framework, that provides the possi-
bility for plugging and benchmarking different clustering algorithms. It is based
on autonomous agents with decentralized control and a blackboard based com-
munication mechanism.

According to this specification the framework is called Self-Initiative Load
Clustering Agents (in short SILCA). The design of SILCA is based on [18],
which is a generic architectural pattern for load balancing that consists of several
sub-patterns that can be composed to solve different problem scenarios.

In section 2 we review existing work about clustering in general and load
clustering in particular. In section 3 we present our load clustering approach
and explain the different patterns that are part of it. To show the validity of our
approach we evaluate it with several different load clustering algorithms which
are presented in section 4. The results of this evaluation are shown in section 5,
where we present benchmarks for each load clustering algorithm.

2 Related Work

Until today, a lot of research has been done on the subject of clustering and
a broad range of solutions around that problem has evolved spanning different
problem domains.

An interesting problem domain is search clustering. Carrot2 [30] is an open
source search clustering engine allowing for automatically clustering collections
of search results or document abstracts into thematic categories. Hence it

232 E. Kühn et al.

supports data clustering, not load clustering. Furthermore, Carrot2 does not
allow for plugging in different clustering algorithms.

Other popular domains are data mining and analysis. There exists a broad
range of open source and proprietary solutions: KNIME (Konstanz Information
Miner) [3] is an open source data analysis, reporting and integration platform
mainly used in pharmaceutical research. Proprietary products are STATISTICA1

by Statsoft, SPSS Modeler2 by SPSS Inc. and SAS3 by SAS Institute Inc.
Another domain is machine learning. WEKA [14] (Waikato Environment for

Knowledge Analysis) for example is an open source software for machine learning
and supports several standard data-mining tasks like data preprocessing, clus-
tering and classification. RapidMiner, formerly YALE (Yet Another Learning
Environment) [21], is another open source machine learning environment with
data-mining and clustering capabilities. Shogun [27] is an open source software
toolbox focusing on kernel machines such as support vector machines for regres-
sion and classification problems. It was designed for bioinformatics applications
and is therefore capable of processing datasets with up to 10 million samples. Or-
ange [8] is another machine learning software suite designed for bioinformatics,
coming with a visual front-end allowing for performing data analysis, -mining
and visualization.

However, none of the mentioned software solutions supports all features we
require: SPSS Modeler and SAS do not allow for the plugging of other algorithms,
and the others are specialized on data clustering whereas SILCA aims to provide
a framework for load clustering. Additionally, while most of these tools support
extensibility through scripts, none of them follows a framework approach.

Frameworks in the area of data mining and analysis are jHepWork [6] and
ELKI (Environment for DeveLoping KDD-Applications Supported by Index-
Structures) [1]. jHepWork is a free data-analysis framework designed for scien-
tists, engineers and students aiming to create a data-analysis environment based
on open-source packages to create a tool that is competitive to commercial pro-
grams. However, it does not allow for benchmarking algorithms. ELKI is written
in Java and allows for combining arbitrary algorithms, distance functions and
indexes in order to evaluate and benchmark these combinations.

ELKI offers framework abstraction, the pluggability of algorithms and ability
to benchmark those, but it does not follow a decentralized, agent-based approach,
which is one of the main aims of SILCA. Moreover, to obtain the best perfor-
mance results, it must be possible to fine-tune algorithms by changing related
parameters and swapping similarity functions, which is not supported by ELKI.

SILCA follows a similar approach as introduced in [18] where a generic pattern
for a load balancing framework is proposed, allowing for plugging and bench-
marking different load balancing algorithms in different configurable settings
and therefore easing the selection of the best algorithm for a specific problem
scenario.

1 http://www.statsoft.com/
2 http://www-01.ibm.com/software/analytics/spss/
3 http://www.sas.com/

A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents 233

3 Load Clustering Pattern

The objective of SILCA is the design of general patterns that abstract the prob-
lem of load clustering. Patterns are re-usable building blocks that can be com-
posed towards solutions for certain problems like in our case the load clustering
scenario. The SILCA framework is built according to these patterns to provide
the needed flexibility.

The main requirement on the SILCA design is support of decentralized con-
trol so that the system can flexibly react on dynamically changing loads and
resources, which is a basic condition for a self-organized, adaptive system. More-
over, a peer-to-peer system is less vulnerable. This means the avoidance of a
central coordinator and leads to a software architecture design based on au-
tonomous agents. Such an agent is an autonomic software component [10] that
is self-responsible to be up and running, implements a reactive and continuous
behavior, and can dynamically join and leave.

The blackboard based architectural style supports very well communication
and synchronization between many independent, distributed software compo-
nents, especially if they carry out computations where a complex task must be
divided into smaller ones [2]. Therefore the SILCA design is based on a secure
tuple space based middleware [7] that has proven useful in agent based use cases
[17]. We assume the possibility to add reactive behavior [9] which especially en-
ables notifications in near time as well as dynamic policies that are triggered by
the arising of events, and the support of transactions with specifiable timeouts.

A second requirement on SILCA is the flexible exchange of different algorithms
(see section 4) simply through “plugging” in order to gain a testbed for the
comparison and evaluation of best solutions for certain problem scenarios. This
is achieved by means of a component based design of the agents.

In all patterns, shared spaces hold the information produced by agents, as
well as all events on which agents react. Pattern composition is carried out in
that several agents access the same space and agree about its entries’ structures,
semantics and coordination principles.

The sub-patterns of SILCA and their implementation and composition to-
wards a load clustering framework that can be configured for many different
network topologies are explained in the following.

3.1 Local Node Pattern

The local node pattern has many similarities with local load balancing [25] as on
one single computer site there is no load to be distributed or clustered, yet. Its
main purpose is to model the autonomous agents as independent workers that
actively compete for work. Worker agents register themselves at a load space.
Clients write work into the load space which triggers the workers by means of
aspects to take the load in chunks, process it and write the result into a result
space (Figure 1) where the clients will pick them up eventually. If a worker fails,

234 E. Kühn et al.

another one takes over its work. This is achieved by using the same transaction
to take the load and write the result back. This transaction possesses a timeout
and if it expires, the entire action of the worker is rolled back, the locks on the
taken entries are released and another worker can proceed.

Fig. 1. Local node pattern

3.2 Arbiter Pattern

The arbiter pattern implements the clustering activation policy which determines
whether load shall be shifted from the local node to a cluster. This can e.g. be
configured by a parameter that specifies a certain threshold for loads: If this
amount is exceeded and if not enough workers are available, load is taken from
the load space and written to a clustering space (Figure 2). Comparable to
worker agents, the arbiter agents are also implemented as space aspects that are
activated every time when new load arrives, and in addition also when load is
removed, or a new worker is de/registered. The arbiter also reacts on clustered
loads that it receives via the clustering space and moves it from there to the
local load space.

Fig. 2. Arbiter pattern

3.3 Clustering Pattern

The clustering pattern consists of clustering agents that execute a clustering
strategy to distribute the load in the network. They access clustering spaces and
clustering agent spaces. Figure 3 shows this pattern with one clustering space
and one clustering agent space. The latter space holds information like neighbor
nodes, pheromones etc. that the clustering agents need to collaborate with each
other by executing a particular algorithm (see section 4).

3.4 Pattern Composition

The three described patterns can now be used to build up arbitrary load cluster-
ing patterns. The composition of the local node, arbiter and clustering pattern

A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents 235

Fig. 3. Clustering pattern

Fig. 4. Pattern composition example

forms the Basic SILCA pattern. The Extended SILCA pattern is the compo-
sition of several Basic SILCA patterns. A load clustering agent may interact
with many arbiters and other load clustering agents in that it accesses multiple
clustering and clustering agent spaces. Depending on the compositions of the
arbiter and load clustering patterns via their shared spaces, different logical net-
work overlay topologies arise. Figure 4 shows e.g. three single nodes that form
a chain topology. Moreover, the load clustering agents might execute different
algorithms within the same framework setting.

236 E. Kühn et al.

The space-based pattern approach leads to highly flexible agent coordination
and an agile software architecture that is resistant against changing requirements
concerning new policies and algorithms. Its advantages are a loose coupling of the
collaborating agents through asynchronous communication, general abstraction
of the load clustering problem, and modularization into re-usable sub-patterns.

4 Algorithms

Since many different algorithms cope with the clustering problem, we chose some
of the well known and widely used clustering algorithms: Hierarchical, K-Means,
Fuzzy C-Means, Genetic K-Means and Ant K-means.

As classification or statistical classification can also be seen as a supervised
form of clustering, where observations get assigned into classes according to a
given training set, we will also use some algorithms which cope with the clas-
sification problem, to demonstrate the agility of SILCA: K-Nearest Neighbor,
Decision Tree, Ant-Miner, cAnt-Miner.

These 9 algorithms are implemented and benchmarked with SILCA, since
they are well documented and implementations of them are already tested and
available. The focus here is not the choice of the algorithms, but to prove the
concept of SILCA with the help of them.

Hierarchical clustering is used to build a hierarchy of clusters. There are two
types to build a hierarchy. The first one is the Agglomerative [12] approach
(bottom up) where each data point is assigned to one cluster and pairs of clusters
get merged to build the hierarchy. The second one is the Divisive [13] approach
(top down), where all data points are captured in one cluster and this cluster is
recursively split to build the hierarchy.

K-Means [15,28] is one of the simplest clustering algorithms. K-Means uses
k centriods (one for each cluster), which get placed far away from each other.
According to the location of the centriods each data point from the given data
set is associated to the cluster which has the nearest centriod. In the next step
k new centriods get calculated in the barycenters of the previously generated
groupage. Now the data points get reassigned according to new centroids. The
step of the recalculation of centriods and the reassignment of data points is
performed in a loop. As a result of this loop the centriods change their location
as long the centriods don’t move anymore.

Fuzzy C-Means [11,4] is an adapted version of the K-Means algorithm,
that allows data items to belong to more than one cluster. The Fuzzy C-Means
algorithm almost works the same way as the K-Means algorithm, but with the
small difference that each data item has some kind of parameter that indicates
the degree of membership to a certain cluster. For each recalculation of the k
centriods, the degree of membership of each data item is updated. At the end
of the algorithm the degree of membership parameter can be used to place the
data item in the best cluster.

The Genetic K-Means [16] algorithm is a mixture of the classical K-Means
algorithm and an algorithm that follows Darwin’s theory of evolution. The

A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents 237

algorithm uses an initial population of clusters, where data items get placed ran-
domly, and the clustering gets evolved over several generations. At each genera-
tion phase, every cluster gets evaluated and fresh clusters get generated with two
genetic operations: crossover and mutation. The crossover operation randomly
selects a location at a cluster and concatenates two clusters at this crossover
point with each other to generate new clusters. The mutation operation brings
disturbance in the crossover operation by inverting some elements during the
regeneration process. This operation provides diversity and prevents stagnation.

Ant K-Means [26,19,29] combines the classical K-Means algorithm with an
ant colony optimization. The principle of ant colony optimization is a pheromone
trail which is used by real ants to communicate with each other. When an ant
follows a certain trail it leaves a specific amount of pheromones. The more ants
follow this trail, the more pheromones are placed and therefore this trail becomes
more attractive for other ants, which also obtains the shortest route. Now this
behaviour is used in the clustering domain to produce an optimal assignment of a
set of observations to several clusters. The algorithm usesR agents (ants) to build
the solution. To represent the pheromone trail a so called pheromone matrix τ
is used, where a pheromone value τij stands for the pheromone concentration
of observation i associated to cluster j. At any iteration of the algorithm, each
agent develops a trail solution by using the pheromone matrix to produce an
optimal clustering. After this step R trail solutions are produced, a local search
is performed to improve the solutions and the pheromone matrix gets updated.
According to the updated pheromone matrix the previous steps are repeated for
a specified number of iterations to improve the solution.

The K-Nearest Neighbor [20,24] algorithm is one of the simplest classi-
fication algorithms. K-Nearest Neighbor classifies an object according to its k
nearest neighbors, where k is a positive (small) number. These neighbors are
taken from the given training set where the correct classification of the objects
is already known.

Decision Tree [5] learning is a commonly used method in data mining. This
algorithm uses a tree structure that consists of leaves which represent the clas-
sifications and branches which describe the conjunctions of the observations’
attributes that lead to the classification. To construct the tree the algorithm
chooses an attribute of the data set that efficiently splits the set into two sub-
sets which are classified by one class or the other. This step gets recursively
repeated for the sub-sets as long as there is a split of the sub-set possible.

Ant-Miner [23] and cAnt-Miner [22] are classification methods that use an
ant colony optimization approach. These algorithms follow a sequential approach
to construct a list of rules (so called classification-rules) to classify objects. The
algorithms are executed several times in a loop, each time against a reduced
test data set. During one cycle of the loop the ants sequentially start their rule
generation phase with an empty rule set and add one term, which represents the
attribute of an object, at time. The choice of adding a term depends on both a
heuristic value (based on the entropy of the term) and the current pheromone
level of each term. When an ant produced a rule the pheromone levels get

238 E. Kühn et al.

updated and another ant starts its run. If all possible cases of the training set are
covered the loop stops and each data item of the data set is classified according
to the previously retrieved classification rules.

5 Benchmarks and Evaluation

We performed benchmarks in several settings in order to demonstrate the agility
of the SILCA pattern and prove that nature/swarm based enhanced algorithms
can outperform several well-known algorithms. For this purpose we implemented
the algorithms mentioned in Section 4.

Each test-run for one of the nine algorithms consisted of five cycles and the
average was taken as result which guarantees their validity. The load tuples
had the form ”[taskID:12345, clientID:client1, priority:high, param:Prog1, de-
scription:’compile prog1’, answerURL:url, workerType:compiler, timeout:200]”
where ”param” refers to a real and compilable Java class file. Each load tuple
had a size of 5 to 10 kB. The comparison was done based on the given attributes
and the similarities among the source code of the Java class file. All tests were
executed on a cluster of four machines with 2*Quad AMD 2.0 GHz CPUs and
three GB of RAM. Additionally we used three test settings for Basic SILCA and
one for Extended SILCA.

5.1 Basic SILCA Benchmarks

The first basic test setting (Figure 5) uses only one worker to investigate how
good a particular clustering-algorithm can find similarities among the load and
how fast one worker can process that load.

Fig. 5. Setting with 1 worker

In the second and third basic test setting (Figures 6 and 7), we added
additional workers to investigate how the clustering results change if the worker-
type is also taken into consideration and how the number of workers affect the
clustering performance.

For each of the three basic test settings, each algorithm was benchmarked
with 10, 20 and 50 loads. The results are shown in the figures 8, 9 and 10. Note
that increasing the number of workers does not decrease execution time, because

A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents 239

Fig. 6. Setting with 2 workers

Fig. 7. Setting with 3 workers

each worker is responsible for a separate load type. In essence, increasing the
number of workers also increases clustering complexity and thus execution time.

Using the absolute execution time as metric for the benchmarks, the Hierar-
chical algorithm shows the best results for all test-settings. Not only is it fast in
constructing clusters, but also performs distinct and therefore good clustering.
Additionally, its execution time is nearly constant in all three test-settings. More
surprisingly is the fact that the biological enhanced Ant K-Means algorithm per-
forms better than K-Means and quite equal to Fuzzy C-Means. The worst per-
forming algorithm is Genetic K-Means, because of the algorithmic complexity of
the genetic approach. According to the results, the classification algorithms also
perform well on the given test settings. All of them deliver a good grouping of the
loads and are able to keep up with the clustering algorithms. The best of them is
the Ant-Miner algorithm due to the result of the fast rule generation phase and
a good and distinct classification. Ant-Miner performs 2% faster than Decision
Tree, 5% faster than cAnt-Miner and 14% faster than K-Nearest Neighbour. De-
cision Tree is not as good as Ant-Miner, since the generation of the tree is not as
fast as the rule generation phase of Ant-Miner. The biologically enhanced cAnt-
Miner does not outperform the well-known Decision Tree algorithm due to the
fact that it has a pretty slow rule generation phase. The K-Nearest Neighbour
algorithm performed worst during the benchmarks, since this algorithm strongly
depends on the amount of neighbours to choose the correct class and therefore
produced a worse classification for some test-settings. Nevertheless we have to
mention that the training step of the classification algorithms was not included
into the absolute execution time.

240 E. Kühn et al.

K-M
ea

ns

Ant
K-M

ea
ns

Fu
zzy

C-M
ea

ns

Gen
eti

c K-M
ea

ns

Hier
ar
ch

ica
l

K-N
ea

res
t Neig

hb
or

Ant
-M

ine
r

cA
nt
-M

ine
r

Deci
sio

n Tr
ee

0

10

20

30

40

50

5.54 5.67 5.32

9.24

3.72
5.2 5.98 5.85 5.69

12.5 11.99 11.33

19.89

5.53

10.51 10.11 10.01
11.27

18.69
16.36 15.53

52.29

7.88

16.85 16.85 18
16.27

ti
m

e
in

se
co

nd
s

10 loads 20 loads 50 loads

Fig. 8. Comparison of algorithm results for one worker

K-M
ea

ns

Ant
K-M

ea
ns

Fu
zzy

C-M
ea

ns

Gen
eti

c K-M
ea

ns

Hier
ar
ch

ica
l

K-N
ea

res
t Neig

hb
or

Ant
-M

ine
r

cA
nt
-M

ine
r

Deci
sio

n Tr
ee

0

10

20

30

40

50

6.44 6.73 7.41
9.47

4.98
7.79

6.49 6.62 5.84

13.39 12.62
11.01

20.76

5.66

12.82
10.19

11.46 10.38

17.36
16.04 16.18

50.63

8.15

17.7
16.06

20.86

15.48

ti
m

e
in

se
co

nd
s

10 loads 20 loads 50 loads

Fig. 9. Comparison of algorithm results for two workers

K-M
ea

ns

Ant
K-M

ea
ns

Fu
zzy

C-M
ea

ns

Gen
eti

c K-M
ea

ns

Hier
ar
ch

ica
l

K-N
ea

res
t Neig

hb
or

Ant
-M

ine
r

cA
nt
-M

ine
r

Deci
sio

n Tr
ee

0

10

20

30

40

50

60

9.18 8.58
10.2

12.16

5.46

10.9
8.79

10.89
9.27

18.18
16.19 17.39

26.7

6.87

18.88

15.63 15.39
17.15

21.14
18.07 18.99

55.16

8.3

20.74 20.1 19.57 18.59

ti
m

e
in

se
co

nd
s

10 loads 20 loads 50 loads

Fig. 10. Comparison of algorithm results for three workers

A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents 241

5.2 Extended SILCA Benchmarks

The extended SILCA pattern makes use of SILCAs composability and hence
allows for combining different algorithms within one collaborative clustering ap-
proach. To prove this we created a test setting that allows for combining two
algorithms at a time (Figure 11).

Fig. 11. Test Setting for extended SILCA benchmarks

In each benchmark, two clients assign 20 loads each, so in total 40. The met-
ric used in these benchmarks is the absolute execution time. According to the
obtained results (Figure 12), it can be seen that the combination of the Hierar-
chical algorithm with any other, except the Genetic K-Means algorithm, leads
to a good execution time. The best result is delivered by the combination of the
Hierarchical and Fuzzy C-Means algorithm, which is obvious since both perform
well in the basic benchmarks. Also the combination of Ant K-Means with Hi-
erarchical and Fuzzy C-Means with Ant K-Means produces pretty good results.
Any combination with Genetic K-Means, compared to the other combinations,
is extremely slow (taking up to 295% more time than the fastest combination),
which is also foreseeable since the genetic aspect leads to a big performance lack
in these test settings.

Hier
ar
ch

ica
l /

Fu
zzy

C-M
ea

ns

Hier
ar
ch

ica
l /

Ant
K-M

ea
ns

Fu
zzy

C-M
ea

ns
/ Ant

K-M
ea

ns

Fu
zzy

C-M
ea

ns
/ K-M

ea
ns

Hier
ar
ch

ica
l /

K-M
ea

ns

Ant
K-M

ea
ns

/ K-M
ea

ns

Gen
eti

c K-M
ea

ns
/ Ant

K-M
ea

ns

Hier
ar
ch

ica
l /

Gen
eti

c K-M
ea

ns

Gen
eti

c K-M
ea

ns
/ Fu

zzy
C-M

ea
ns

Gen
eti

c K-M
ea

ns
/ K-M

ea
ns

5

10

15

20

25

6.19 6.55 6.72

8.02
8.59

10.34

20.49
21.57 21.75

24.48

ti
m

e
in

se
co

nd
s

Fig. 12. Comparison of algorithm combinations in extended SILCA

242 E. Kühn et al.

The aforementioned benchmark settings are clearly kept simple and are not
meant to be representative for real-world scenarios. Yet we claim that they are
sufficient as a proof of concept and to demonstrate that increasing workers and
worker types can increase execution time, and mixing different clustering algo-
rithms can lead to better performance

6 Conclusions

In this paper, we presented a generic framework for self-initiative load clustering
agents (SILCA), which is based on autonomous agents that communicate and
operate in a peer-to-peer manner, and decentralized control. SILCA is a com-
posable and agile software architecture pattern for load clustering that has been
implemented on two levels: basic and extended. SILCA is problem independent
and allows for plugging different clustering and classification algorithms (both
intelligent and unintelligent). Basic SILCA consists of several sub-patterns, im-
plemented in a space-based architectural style, which allows decoupling of the
agents and guarantees their autonomic behavior. This allows finding the best
algorithm for each specific problem. In extended SILCA several Basic SILCA
nodes are connected via shared spaces towards arbitrary network topologies,
which supports the plugging of combinations of different algorithms. Further
contributions include benchmarking of the algorithms, and finding their best
combinations for different topologies. The following clustering and classifying
algorithms have been implemented and benchmarked on a cluster of 4 machines
through 4 different test settings: K-Means, Ant K-Means, Fuzzy C-Means, Ge-
netic K-Means, Hierarchical Clustering, K-Nearest Neighbor, Ant-Miner, cAnt-
Miner, and Decision Tree. The absolute execution time was used as metric for
the benchmarks. The preliminary results show the following: From the group of
clustering algorithms, Hierarchical Clustering obtained the best results, whereas
from the group of classification algorithms the Ant-Miner algorithm was the
best which is the result of the fast rule generation phase and a good and distinct
classification. In the extended SILCA, several combinations were benchmarked.
The combination of the Hierarchical algorithm with any other, except the Ge-
netic K-Means algorithm, leads to a good execution time. The best result was
delivered by the combination of the Hierarchical and Fuzzy C-Means algorithm
(both performed well in the Basic SILCA benchmarks, too). The unintelligent
Hierarchical Clustering showed the best results in a small network with only one
client that supplies load. For large and more complex networks, an intelligent ap-
proach with an appropriate similarity function will help. The similarity function
is a crucial issue on which the quality of obtained clusters depends, so an intel-
ligent approach should provide an improvement in results: both quantitatively -
the absolute execution time, and qualitatively – the quality of obtained clusters.
Future work will include the following issues: Plugging of new intelligent cluster-
ing algorithms based on bee intelligence and slime mold behavior, composition
of load clustering and load balancing, and benchmarking on networks with other
topologies and of larger dimensions.

A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents 243

Acknowledgments. The work is partly funded by the Austrian Government
under the programBRIDGE (Brückenschlagprogrammder FFG), project 827571
AgiLog – Komplexitätsreduzierende Middleware-Technologien für Agile Logistik
and under the program FFG FIT-IT (Forschung, Innovation und Technologie
für Informationstechnologien), project 825750 Secure Space – A Secure Space
for Collaborative Security Services.

References

1. Achtert, E., Kriegel, H.-P., Zimek, A.: ELKI: A Software System for Evaluation of
Subspace Clustering Algorithms. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM
2008. LNCS, vol. 5069, pp. 580–585. Springer, Heidelberg (2008)

2. Avgeriou, P., Zdun, U.: Architectural patterns in practice. In: Longshaw, A., Zdun,
U. (eds.) EuroPLoP, pp. 731–734. UVK - Universitaetsverlag Konstanz (2005)

3. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P.,
Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The konstanz information miner. In:
Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis,
Machine Learning and Applications. Studies in Classification, Data Analysis, and
Knowledge Organization, pp. 319–326. Springer, Heidelberg (2008)

4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, Norwell (1981)

5. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees, 1st edn. Chapman and Hall/CRC (January 1984)

6. Chekanov, S.: Hep data analysis using jhepwork and java. In: Proceedings of the
Workshop HERA and the LHC, 2nd Workshop on the Implications of HERA for
LHC Physics (2008)

7. Craß, S., Kühn, E.: Coordination-based access control model for space-based com-
puting. In: 27th Annual ACM Symposium on Applied Computing (2012)

8. Demšar, J., Zupan, B., Leban, G., Curk, T.: Orange: From Experimental Ma-
chine Learning to Interactive Data Mining. In: Boulicaut, J.-F., Esposito, F., Gi-
annotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 537–539.
Springer, Heidelberg (2004)

9. Denti, E., Omicini, A.: An architecture for tuple-based coordination of multi-agent
systems. Softw. Pract. Exper. 29, 1103–1121 (1999)

10. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Trans. Auton. Adapt. Syst. 1, 223–259 (2006)

11. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. Journal of Cybernetics 3(3), 32–57 (1973)

12. Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual
nearest neighbourhood. Pattern Recognition 10(2), 105–112 (1978)

13. Gowda, K.C., Ravi, T.V.: Divisive clustering of symbolic objects using the concepts
of both similarity and dissimilarity. Pattern Recognition 28(8), 1277–1282 (1995)

14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

15. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31, 264–323 (1999)

16. Krishna, K., Narasimha-Murty, M.: Genetic K-means algorithm. IEEE Transac-
tions on Systems, Man and Cybernetics, Part B (Cybernetics) 29(3), 433–439
(1999)

244 E. Kühn et al.

17. Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C.: Introducing the concept of
customizable structured spaces for agent coordination in the production automa-
tion domain. In: The Eighth International Conference on Autonomous Agents and
Multiagent Systems, AAMAS, May 10-15, pp. 625–632 (2009)

18. Kühn, E., Sesum-Cavic, V.: A Space-Based Generic Pattern for Self-Initiative Load
Balancing Agents. In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009.
LNCS, vol. 5881, pp. 17–32. Springer, Heidelberg (2009)

19. Kuo, R.J., Wang, H.S., Hu, T.L., Chou, S.H.: Application of ant k-means on clus-
tering analysis. Comput. Math. Appl. 50, 1709–1724 (2005)

20. Mhamdi, F., Elloumi, M.: A new survey on knowledge discovery and data mining.
In: RCIS, pp. 427–432 (2008)

21. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: rapid proto-
typing for complex data mining tasks. In: KDD 2006: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
935–940. ACM, New York (2006)

22. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: Handling continuous attributes in ant
colony classification algorithms. In: CIDM, pp. 225–231. IEEE (2009)

23. Parpinelli, R., Lopes, H., Freitas, A.: Data Mining with an Ant Colony Optimiza-
tion Algorithm. IEEE Trans. on Evolutionary Computation, Special Issue on Ant
Colony Algorithms 6(4), 321–332 (2002)

24. Phyu, T.N.: Survey of classification techniques in data mining. In: Proceedings of
the International Multi Conference of Engineers and Computer Scientists 2009,
IMECS 2009, Hong Kong, March 18-20. Lecture Notes in Engineering and Com-
puter Science, vol. I, pp. 727–731. International Association of Engineers, News-
wood Limited (2009)

25. Šešum-Čavić, V., Kühn, E.: Chapter 8 Self-Organized Load Balancing through
Swarm Intelligence. In: Bessis, N., Xhafa, F. (eds.) Next Generation Data Technolo-
gies for Collective Computational Intelligence. SCI, vol. 352, pp. 195–224. Springer,
Heidelberg (2011)

26. Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: An ant colony approach for clus-
tering. Analytica Chimica Acta 509(1) (2004)

27. Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., de Bona,
F., Binder, A., Gehl, C., Franc, V.: The SHOGUN Machine Learning Toolbox.
Journal of Machine Learning Research (2010)

28. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn., ch.
8. Addison-Wesley Longman Publishing Co., Inc., Boston (2005)

29. Tiwari, R., Husain, M., Gupta, S., Srivastava, A.: Improving ant colony optimiza-
tion algorithm for data clustering. In: Proceedings of the International Conference
and Workshop on Emerging Trends in Technology, ICWET 2010, pp. 529–534.
ACM, New York (2010)

30. Weiss, D.: A Clustering Interface For Web Search Results In Polish And English.
Master’s thesis, Poznan University of Technology, Poland (2001)

On the Realizability of Contracts in Dishonest Systems

Massimo Bartoletti1, Emilio Tuosto2, and Roberto Zunino3

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
2 Department of Computer Science, University of Leicester, UK

3 DISI, Università di Trento and COSBI, Italy

Abstract. We develop a theory of contracting systems, where behavioural con-
tracts may be violated by dishonest participants after they have been agreed upon
— unlike in traditional approaches based on behavioural types. We consider the
contracts of [10], and we embed them in a calculus that allows distributed partic-
ipants to advertise contracts, reach agreements, query the fulfilment of contracts,
and realise them (or choose not to). Our contract theory makes explicit who is
culpable at each step of a computation. A participant is honest in a given context
S when she is not culpable in each possible interaction with S. Our main result is a
sufficient criterion for classifying a participant as honest in all possible contexts.

1 Introduction

Contracts are abstract descriptions of the behaviour of services. They are used to
compose services which are compliant according to some semantic property, e.g. the
absence of deadlocks [6,9,10], the satisfacion of a set of constraints [8], or of some
logical formula [1,4,15]. Most of the existing approaches tacitly assume that, once a set
of compliant contracts has been found, then the services that advertised such contracts
will behave accordingly. In other words, services are assumed to be honest, in that they
always respect the promises made.

In open and dynamic systems, the assumption that all services are honest is not quite
realistic. In fact, services have different individual goals, are made available by different
providers, and possibly do not trust each other. What happens is that services agree
upon some contracts, but may then violate them, either intentionally or not. Since this
situation may repeatedly occur in practice, it should not be dealt with as the failure
of the whole system. Instead, contract violations should be automatically detected and
sanctioned by the service infrastructure.

The fact that violations may be sanctioned gives rise to a new kind of attacks, that
exploit possible discrepancies between the promised and the runtime behaviour of ser-
vices. If a service does not accurately behave as promised, an attacker can induce it to a
situation where the service is sanctioned, while the attacker is reckoned honest. A cru-
cial problem is then how to avoid that a service results culpable of a contract violation,
despite of the honest intentions of its developer. More formally, the problem is that of
deciding if a process realizes a contract: when this holds, the process is guaranteed to
never be culpable w.r.t. the contract in all the possible execution contexts.

In this paper we develop a formal theory of contract-oriented systems that enjoys
a sound criterion for establishing if a process always realizes its contracts. Our theory

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 245–260, 2012.
c© IFIP International Federation for Information Processing 2012

246 M. Bartoletti, E. Tuosto, and R. Zunino

combines two basic ingredients: a calculus of contracts, and a calculus of processes
that use contracts to interact. Contracts are used by distributed participants to reach
agreements; once stipulated, participants can inspect them and decide what to do next.

Ideally, a honest participant is supposed to harmoniously evolve with her contracts;
more realistically, our theory also encompasses computations of dishonest participants,
which may violate at run-time some contracts they have stipulated. A remarkable result
(Theorem 2) is that it is always possible to detect who is culpable of a contract viola-
tion at each state of a computation. Also, a participant can always exculpate herself by
performing the needed actions (Theorems 1 and 3).

Notably, instead of defining an ad-hoc model, we have embedded the contract cal-
culus in [10] within the process calculus CO2 [2]. To do that, the contracts of [10]
have been slightly adapted to define culpability, and CO2 has been specialized to use
these contracts. We have formalised when a participant realizes a contract in a given
context, i.e. when she is never (irreparably) culpable in computations with that context,
and when she is honest, i.e. when she realizes all her contracts, in all possible contexts.
We have proved that the problem of deciding whether a participant is honest or not is
undecidable (Theorem 4). Our main contribution (Theorem 6) is a sound criterion for
detecting when a participant is honest. Technically this is achieved through a semantics
of participants that abstracts away the behaviour of the context. Such semantics allows
us to define when a participant always fulfills her contracts, even in the presence of
dishonest participants.

Because of space constraints, we include the proofs of all our statements in a sepa-
rated Technical Report [3].

2 A Calculus of Contracts

We assume a finite set of participant names (ranged over byA,B, . . .) and a denumerable
set of atoms (ranged over by a,b, . . .). We postulate an involution co(a), also written as
ā, extended to sets of atoms in the natural way.

Def. 1 introduces the syntax of contracts, taking inspiration from [10]. We distin-
guish between (unilateral) contracts c, which model the promised behaviour of a single
participant, and bilateral contracts γ, which combine the contracts of two participants.

Definition 1. Unilateral contracts are defined by the following grammar:

c,d ::=
⊕
i∈I

ai ; ci
∣∣ ∑

i∈I
ai .ci

∣∣ ready a.c
∣∣ rec X . c

∣∣ X

where (i) the index set I is finite; (ii) the atoms in {ai}i∈I are pairwise distinct; (iii)
the ready prefix may appear at the top-level, only; (iv) recursion is guarded.

Let e be a distinguished atom such that e = ē, and with continuation E = rec X . e ; X.
We say that c succeeds iff either c = e ; E⊕d, or c = e .E+d, or c = ready e. E. We will
omit trailing occurrences of E in contracts.

Bilateral contracts are terms of the form A says c |B says d, where A �=B and at most
one occurrence of ready is present.

On the Realizability of Contracts in Dishonest Systems 247

A says (a ; c⊕c′) | B says (ā .d+d′) A says a−−−−−→→ A says c | B says ready ā.d [INTEXT]

A says (a ; c⊕c′) | B says ā ; d
A says a−−−−−→→ A says c | B says ready ā.d [INTINT]

A says (a .c+c′) | B says (ā .d+d′) A says a−−−−−→→ A says c | B says ready ā.d [EXTEXT]

A says ready a. c | B says d
A says a−−−−−→→ A says c | B says d [RDY]

a �∈ co({bi}i∈I)

A says a ; c⊕c′ | B says ∑i∈I bi .di
A says a−−−−−→→ A says E | B says 0

[INTEXTFAIL]

{a} �= co({bi}i∈I)

A says a ; c⊕c′ | B says
⊕

i∈I bi ; di
A says a−−−−−→→ A says E | B says 0

[INTINTFAIL]

({a}∪{ai}i∈I) ∩ co({bi}i∈J) = /0

A says (a .c+∑i∈I ai .ci) | B says ∑i∈J bi .di
A says a−−−−−→→ A says E | B says 0

[EXTEXTFAIL]

Fig. 1. Semantics of contracts (symmetric rules for B actions omitted)

Intuitively, the internal sum
⊕

i∈I ai ; ci allows to choose one of the branches ai ; ci,
to perform the action ai, and then behave according to ci. Dually, the external sum
∑i∈I ai .ci constrains to wait for the other participant to choose one of the branches ai .ci,
then to perform the corresponding ai and finally behave according to ci. Separators ;
and . allow us to distinguish singleton internal sums (e.g., a ; c) from singleton external
sums (e.g., a .c). The atom e (for “end”) enables a participant to successfully terminate,
similarly to [10]. This will be reflected in Def. 4. Hereafter, we shall always consider
contracts with no free occurrences of recursion variables X . We shall use the binary
operators to isolate a branch in a sum: e.g. (a ; c)⊕ c′ where c′ is an internal sum. We
let ; and . have higher precedence than ⊕ and +, e.g., a ; c⊕ b ; c′ = (a ; c)⊕ (b ; c′).

The evolution of bilateral contracts is modelled by a labelled transition relation
µ−→→

(Def. 2), where labels µ = A says a model a participant A performing the action a.

Definition 2. The relation
µ−→→ on bilateral contracts is the smallest relation closed

under the rules in Fig. 1 and under the structural congruence relation ≡, defined as
the least congruence which includes α-conversion of recursion variables, and satisfies
rec X . c ≡ c{rec X . c/X} and

⊕
i∈ /0 ai ; ci ≡ ∑i∈ /0 ai .ci. Accordingly, empty sums (either

internal or external) will be denoted with 0. We will not omit trailing occurrences of 0.
Hereafter we shall consider contracts up to ≡.

In the first three rules in Fig. 1, A and B expose complementary actions a, ā. In rule [IN-
TEXT], participant A selects the branch a in an internal sum. Participant B is then forced
to commit to the corresponding branch ā in his external sum: this is done by mark-
ing that branch with ready ā while discarding all the other branches. Participant B will
then perform his action in the subsequent step, by rule [RDY]. In rule [INTINT], both
participants make an internal choice; a reaction is possible only if one of the two is a

248 M. Bartoletti, E. Tuosto, and R. Zunino

singleton — B in the rule — namely he can only commit to his unique branch. Were B
exposing multiple branches, the transition would not be allowed, to account for the fact
that B could pick a conflicting internal choice w.r.t. that of A. In rule [EXTEXT], both
participants expose external sums with complementary actions, and each of the two can
choose a branch (unlike in the case [INTEXT], where the internal choice has to move
first). In the [*FAIL] rules, the action chosen by A is not supported by B. Then, A will
reach the success state E, while B will fall into the failure state 0.

Example 1. Let γ=A says (a ; c1⊕b ; c2) |B says (ā .d1+ c̄ .d2). If the participantA in-
ternally chooses to perform a, then γ will take a transition to A says c1 |B says ready ā.d1.
Suppose instead that A chooses for perform b, which is not offered by B in his external
choice. In this case, γ will take a transition to A says E | B says 0, where 0 indicates that
B cannot proceed with the interaction. Coherently with [10], below we will characterise
this behaviour by saying that the contracts of A and B are not compliant.

The following lemma states that bilateral contracts are never stuck unless both partici-
pants have contract 0. Actually, if none of the first four rules in Fig. 1 can be applied,
the contract can make a transition with one of the [*FAIL] rules.

Lemma 1. A bilateral contract A says c | B says d is stuck iff c = d = 0.

Below we establish that contracts are deterministic. This is guaranteed by the require-
ment (ii) of Def. 1. Determinism is a very desirable property indeed, because it ensures
that the duties of a participant at any given time are uniquely determined by the past
actions. Note that the contracts in [10] satisfy distributivity laws like (a ; c)⊕ (a ; d) =
a ; (c⊕ d), which allow for rewriting them so that (ii) in Def. 1 holds. Therefore, (ii) is
not a real restriction w.r.t. [10].

Lemma 2 (Determinism). For all γ, if γ µ−→→ γ′ and γ µ−→→ γ′′, then γ′ = γ′′.

Compliance. Below we define when two contracts are compliant, in a similar fashion
to [10]. Intuitively, two contracts are compliant if whatever sets of choices they offer,
there is at least one common option that can make the contracts progress. Differently
from [10], our notion of compliance is symmetric, in that we do not discriminate be-
tween the participant roles as client and server. Consequently, we do not consider com-
pliant two contracts where only one of the parties is willing to terminate. For example,
the buyer contract ship ; E is not compliant with the seller contract ship .pay ; E, because
the buyer should not be allowed to terminate if the seller still requires to be paid.

Similarly to [10], given two contracts we observe their ready sets (Def. 3) to detect
when the enabled actions allow them to synchronise correctly.

Definition 3 (Compliance). For all contracts c, we define the set of sets RS(c) as:

RS(0) = { /0} RS(ready a.c) = {{ready}} RS(rec X . c) = RS(c)

RS(
⊕

i∈I ai ; ci) = {{ai} | i ∈ I} if I �= /0 RS(∑i∈I ai .ci) = {{ai | i ∈ I}} if I �= /0

The relation �� between contracts is the largest relation such that, whenever c �� d:

(1) ∀X ∈ RS(c),Y ∈ RS(d). co(X)∩Y �= /0 or ready ∈ (X ∪Y)\ (X ∩Y)

On the Realizability of Contracts in Dishonest Systems 249

(2) A says c | B says d
µ−→→ A says c′ | B says d′ =⇒ c′ �� d′

When c �� d, we say that the contracts c and d are compliant.

Example 2. Recall from Ex. 1 the contracts c = a ; c1 ⊕b ; c2 and d = ā .d1 + c̄ .d2. We
have that RS(c) = {{a},{b}}, and RS(d) = {{ā, c̄}}, which do not respect item (1) of
Def. 3 (take X = {b} and Y = {ā, c̄}). Therefore, c and d are not compliant.

The following lemma provides an alternative characterization of compliance. Two con-
tracts are compliant iff, when combined into a bilateral contract γ, no computation of γ
reaches a state where one of the contracts is 0. Together with Lemma 1, we have that
such γ will never get stuck. (Below, the Kleene ∗ denotes reflexive transitive closure.)

Lemma 3. For all bilateral contracts γ = A says c | B says d:

c �� d ⇐⇒ (∀c′,d′. γ −→→∗ A says c′ | B says d′ =⇒ c′ �= 0 and d′ �= 0
)

The following lemma guarantees, for all c not containing 0, the existence of a contract
d compliant with c. Intuitively, we can construct d from c by turning internal choices
into external ones (and viceversa), and by turning actions into co-actions.

Lemma 4. For all 0-free contracts c, there exists d such that c �� d.

Culpability. We now tackle the problem of determining who is expected to make the
next step for the fulfilment of a bilateral contract. We call a participant A culpable in γ
if she is expected to perform some action so to make γ progress. Also, we consider A
culpable when she is advertising the “failure” contract 0. This agrees with our [*FAIL]
rules, which set A’s contract to 0 when the other participant legitimately chooses an
action not supported by A. Note that we do not consider A culpable when her contract
has enabled e actions.

Definition 4. A participant A is culpable in γ = A says c | B says d, written A ˙�̇ γ, iff:

c = 0 ∨ (
γ � A says e−−−−→→ ∧ ∃a. γ A says a−−−−→→)

When A is not culpable in γ we write A ˙�̇ γ.

The following result states that a participant A is always able to recover from culpability
by performing some of her duties. Furthermore, this requires at most two steps in an “A-
solo” trace where no other participant intervenes.

Definition 5. Let −→ be an LTS with labels of the form Ai says (· · ·), for Ai ranging over
participants names. For all A, we say that a −→-trace η is A-solo iff η only contains

labels of the form A says (· · ·). If η = (µi)i∈0..n, we will write
η−→ for

µ0−→ ·· · µn−→.

Theorem 1 (Contractual exculpation). For all γ = A says c | B says d with 0-free c,

there exists γ′ and A-solo η with |η| ≤ 2 such that γ η−→→ γ′ and A ˙�̇ γ′.

250 M. Bartoletti, E. Tuosto, and R. Zunino

commutative monoidal laws for | on processes and systems

u[(v)P]≡ (v)u[P] if u �= v Z | (u)Z′ ≡ (u)(Z | Z′) if u �∈ fv(Z)∪ fn(Z) (u)(v)Z ≡ (v)(u)Z

(u)Z ≡ Z if u �∈ fv(Z)∪ fn(Z) A[K] | A[P]≡ A[K | P] ↓s c ≡ 0 ≡ fuses.P

Fig. 2. Structural equivalence for CO2 (Z,Z′ range over systems or processes)

A crucial property of culpability is to ensure that either two participants are both
succeeding, or it is possible to single out who has to make the next step. An external
judge is therefore always able to detect who is violating the contracts agreed upon.

Theorem 2. For all c,d if c �� d and A says c | B says d −→→∗ γ = A says c′ | B says d′,
then either c′ and d′ succeed, or A ˙�̇ γ, or B ˙�̇ γ.

Example 3. A participant might be culpable even though her contract succeeds. For
instance, let γ = A says c | B says d, where c = e+ ā and d = a+ b. By Def. 1 we have
that c succeeds, but A is culpable in γ because she cannot fire e, while she can fire ā by
rule [EXTEXT]. This makes quite sense, because A is saying that she is either willing to
terminate or to perform ā, but the other participant is not allowing A to terminate. Note
that also B is culpable, because he can fire a.

3 A Calculus of Contracting Processes

We now embed the contracts introduced in § 2 in a specialization of the parametric
process calculus CO2 [2]. Let V and N be two disjoint countably infinite sets of ses-
sion variables (ranged over by x,y, . . .) and session names (ranged over by s, t, . . .). Let
u,v, . . . range over V ∪N .

Definition 6. The abstract syntax of CO2 is given by the following productions:

Systems S ::= 0
∣∣ A[P]

∣∣ s[γ]
∣∣ S | S

∣∣ (u)S

Processes P ::= ↓u A says c
∣∣ ∑i πi.Pi

∣∣ P | P
∣∣ (u)P

∣∣ X(�u)

Prefixes π ::= τ
∣∣ tellA ↓u c

∣∣ fuseu
∣∣ dou a

∣∣ asku φ

The only binder for session variables and names is the delimitation (�u), both in systems
and processes. Free variables/names are defined accordingly, and they are denoted by
fv() and fn(). A system or a process is closed when it has no free variables.

Systems are the parallel composition of participants A[P] and sessions s[γ].
A latent contract ↓x A says c represents a contract c (advertised by A) which has

not been stipulated yet; upon stipulation, x will be instantiated to a fresh session name.
We impose that in a system A[P] | A[Q] | S, either P or Q is a parallel composition
of latent contracts. Hereafter, K,K′, . . . are meta-variables for compositions of latent
contracts. We allow prefix-guarded finite sums of processes, and write π1.P1 + π2.P2

for ∑i=1,2 πi.Pi, and 0 for ∑/0 P. Recursion is allowed only for processes; for this we

stipulate that each process identifier X has a unique defining equation X(u1, . . . ,u j)
def
= P

On the Realizability of Contracts in Dishonest Systems 251

A[τ.P+P′ | Q]−→ A[P | Q] [TAU]

A[tellB ↓x c.P+P′ | Q]−→ A[P | Q] | B[↓x A says c] [TELL]

K 	σ
x γ �u = dom σ s = σ(x) fresh

(�u)(A[fusex.P+P′ | K | Q] | S)−→ (s)(A[P | Q]σ | s[γ] | Sσ) [FUSE]

γ A says a−−−−−→→ γ′
s[γ] | A[dos a.P+P′ | Q]−→ s[γ′] | A[P | Q]

[DO]

γ ' φ
A[asks φ.P+P′ | Q] | s[γ]−→ A[P | Q] | s[γ] [ASK]

X(�u)
def
= P P{�v/�u} −→ P′

X(�v)−→ P′ [DEF]
S −→ S′

S | S′′ −→ S′ | S′′ [PAR]
S −→ S′

(u)S −→ (u)S′ [DEL]

Fig. 3. Reduction semantics of CO2

such that fv(P) ⊆ {u1, . . . ,u j} ⊆ V and each occurrence of process identifiers in P is
prefix-guarded. We shall take the liberty of omitting the arguments of X(�u) when they
are clear from the context.

Prefixes include silent action τ, contract advertisement tellA ↓u c, contract stipulation
fuseu, action execution dou a, and contract query asku φ. In each prefix π �= τ, u refers to
the target session involved in the execution of π. We omit trailing occurrences of 0.

Note that participants can only contain latent contracts, while sessions can only con-
tain bilateral contracts, constructed from latent contracts upon reaching agreements.

The semantics of CO2 is formalised by a reduction relation −→ on systems that relies
on the structural congruence defined in Fig. 2, where the last law allows for collecting
garbage terms possibly arising from variable substitutions.

Definition 7. The relation −→ is the smallest relation closed under the rules of Fig. 3,
defined over systems up to structural equivalence, as defined in Fig. 2. The relation
K 	σ

x γ holds iff (i) K has the form ↓y A says c |↓z B says d, (ii) c �� d, (iii) γ =A says c |
B says d, and (iv) σ = {s/x,y,z} maps all x,y,z ∈ V to s ∈ N .

Rule [TAU] simply fires a τ prefix as expected. Rule [TELL] advertises a latent contract
↓x A says c, by putting it in parallel with the existing participants and sessions (the struc-
tural congruence laws in Fig. 2 allow for latent contracts to float in a system and, by the
second last law, to move across the boxes of participants as appropriate). Rule [FUSE]
finds agreements among the latent contracts K of A; an agreement is reached when
K contains a bilateral contract γ whose unilater contracs are compliant (cf. Def. 7).
Note that, once the agreement is reached, the compliant contracts start a fresh session
containing γ. Rule [DO] allows a participant A to fulfill her contract γ, by performing
the needed actions in the session containing γ (which, accordingly, evolves to γ′). Rule
[ASK] checks if a condition φ holds in a session. The actual nature of φ is almost imma-
terial in this paper: the reader may assume that φ is a formula in an LTL logic [13]. For
closed γ and φ, γ ' φ holds iff γ |=LTL φ according to the standard LTL semantics where,

252 M. Bartoletti, E. Tuosto, and R. Zunino

for a −→→-trace η = (γi
µi−→→ γi+1)i from γ0 = γ, we define η |= a ⇐⇒ ∃A. µ0 = A says a.

The last three rules are standard.
Hereafter it will be sometimes useful to record the prefix π fired by A by implicitly

decorating the corresponding reduction step, as in
A : π−−→.

The rest of this section is devoted to a few examples that highlight how bilateral
contracts can be used in CO2.

Example 4. Consider an online store A with the following contract cA: buyers can add
items to the shopping cart, and then either leave the store or pay with a credit card.
Assume the store modelled as the CO2 process PA = (x)(tellA ↓x cA.X | fusex), where:

cA = rec Z. addToCart.Z + creditCard.(ok⊕ no)+ e

X
def
= dox addToCart.X +dox creditCard.(τ.dox ok+ τ.dox no)

Let B be a buyer with contract cB = addToCart ; creditCard ; (ok+ no), and let:

PB = (y)tellA ↓y cB.Y Y
def
= doy addToCart.doy creditCard.doy ok

A possible, successful, computation of the system S = A[PA] | B[PB] is the following:

S −→∗(x,y)
(
A[↓x A says cA |↓y B says cB | fusex | X] | B[Y])

−→ (s)
(
A[X{s/x}] | B[Y{s/y}] | s[A says cA | B says cB]

)
−→∗(s)

(
A[X{s/x}] | B[]dos creditCard.doy ok | s[A says cA | B says creditCard ; (ok+no)]

)
−→∗(s)

(
A[τ.dox ok+ τ.dox no] | B[doy ok] | s[A says ok⊕no | B says ok+no]

)
−→ (s)

(
A[dox ok] | B[doy ok] | s[A says ok⊕no | B says ok+no]

)
−→∗(s)

(
A[0] | B[0] | s[A says E | B says E]

)
Example 5. An on-line store A offers buyers two options: clickPay or clickVoucher. If a
buyer B chooses clickPay, A accepts the payment (pay) otherwise A checks the validity
of the voucher with V, an electronic voucher distribution and management system. If V
validates the voucher, B can use it (voucher), otherwise he will pay.

The contracts cA = clickPay.pay+ clickVoucher.(reject;pay⊕ accept;voucher) and
c′A = ok+ no model the scenario above. A CO2 process for A can be the following

PA = (x)(tellA ↓x cA.(dox clickPay.dox pay+dox clickVoucher.((y)tellV ↓y c′A.X)))

X = doy ok.dox accept.dox voucher+doy no.dox reject.dox pay+ τ.dox reject.dox pay

Contract cA (resp. c′A) is stipulated when (i) B (resp. V) advertises to A (resp. V) a
contract d with cA �� d (resp. c′A �� d) and (ii) a fusez is executed in A (resp. V).

Variables x and y in PA correspond to two separate sessions, where A respectively
interacts with B and V. The semantics of CO2 ensures that x and y will be instantiated
to different session names (if at all).

The advertisement of c′A causally depends on the stipulation of the contracts of A and
B, otherwise A cannot fire dox clickVoucher. Instead, A and B can interact regardless the
presence of V since tellV ↓y c′A is non blocking and the τ-branch of A in X is enabled
(letting A to autonomously reject the voucher, e.g. because B is not entitled to use it).

On the Realizability of Contracts in Dishonest Systems 253

Example 6. Consider a travel agencyA which queries in parallel an airline ticket broker
F and a hotel reservation service H in order to complete the organization of a trip. The
travel agency service A[P] can be defined as follows:

P = (x,y)(tellF ↓x ticket ; (commitF⊕ abortF).X | tellH ↓y hotel ; (commitH⊕ abortH).Y)

X
def
= dox ticket.((asky true.dox commitF)+ τ.dox abortF)

Y
def
= doy hotel.((askx true.doy commitH)+ τ.doy abortH)

where the τ actions model timeouts used to ensure progress. The travel agency in pro-
cess X starts buying a ticket, and commits to it only when the hotel reservation session
y is started. Similarly for process Y .

The next example shows a peculiar use of ask whereby a participant inspects a stipu-
lated contract to decide its future behaviour.

Example 7. An online store A can choose whether to abort a transaction (abort) or to
commit to the payment (commit). In the latter case, the buyer has two options, either he
pays by credit card (creditCard) or by bank transfer (bankTransfer). The contract of A
is modelled as c = abort⊕ commit;(creditCard+ bankTransfer). Consider the process

PA = (x)(tellA ↓x c.(askx φ.dox commit.dox creditCard+dox abort))

where φ = �(commit → ¬�bankTransfer). The process PA first advertises c. Once a
session s[γ] is initiated with γ = A says c | B says d, A tests γ through askx φ before
committing to the payment. If askx φ detects that B has promised not to use the bank
transfer option, then A commits to the payment, and then never offers B to perform
a bank transfer. Otherwise, if d does not rule out the bank transfer, even if B might
actually pay by credit card, A aborts the session. Note that in both cases A realizes
her own contract, even if she is never performing the bank transfer. This notion of
“realization of a contract” will be formalized in Def. 11.

4 On Honesty

In this section we set out when a participant A is honest (Def. 11). Intuitively, we con-
sider all the possible runs of all possible systems, and require that in every session A
is not definitely culpable. To this aim, we first provide CO2 with the counterpart of the
(non)culpability relation introduced in Def. 4. Intuitively, we write A ˙�̇ sS when, in the
system S, if the participant A is involved in the session s, then she is not culpable w.r.t.
the contract stipulated therein.

Definition 8. We write A ˙�̇ sS whenever ∀�u,γ,S′. (S ≡ (�u)(s[γ] | S′) =⇒ A ˙�̇ γ
)
. We

write A ˙�̇ S whenever A ˙�̇ sS for all session names s.

A technical issue is that a participant may not get a chance to act in all the traces. For

instance, let S = A[dos pay] | B[X] | S′, where S′ enables A’s action and X
def
= τ.X ; note

that S generates the infinite trace S −→ S −→ S −→ ·· · in which A never pays, despite her
honest intention. To account for this fact, we will check the honesty of a participant in
fair traces, only, i.e. those where persistent transitions are eventually followed.

254 M. Bartoletti, E. Tuosto, and R. Zunino

Definition 9. Given an LTS
µ−→, we say that a (finite or infinite) trace η = (Pi

µi−→ Pi+1)i

having length |η| ∈ N∪{∞} is fair w.r.t. a set of labels L if and only if

∀i ∈N,µ ∈ L.
(

i ≤ |η| ∧ (∀ j ∈ N. i ≤ j ≤ |η| =⇒ Pj
µ−→) =⇒ ∃ j ≥ i. µ j = µ

)
A fair trace is a trace which is fair w.r.t. all the labels in the LTS.

Note that, by Def. 9, a fair trace is also a maximal one (w.r.t. L). Indeed, if a fair trace
is finite, the condition above guarantees that its final state has no L transitions enabled.

Finally, when checking the fairness of a trace, we shall implicitly assume that the
labels µ in our LTSs of contracts and processes always distinguish between different
occurrences of the same prefix. E.g., a −→-fair trace of A[X | X] where X

def
= τ.X is not

allowed to only perform the τ’s of the first X . Technically, labels µ always implicitly
carry the syntactic address of the prefix which is being fired, in the spirit of the En-
hanced Structured Operational Semantics [12].

It is often useful to reason about how a specific session s evolves in a given trace.
Technically, α-conversion allows the name s to be renamed at every step, making it hard
to trace the identity of names. More concretely, α-conversion is only needed to make
delimitations fresh when unfolding recursive processes. Accordingly, w.l.o.g. hereafter
we shall often restrict α-conversion by considering stable traces, only, defined below.
In this way, we ensure that s represents the same session throughout the whole trace.

Definition 10. A stable −→-trace is a trace (�u0)S0 −→ (�u1)S1 −→ (�u2)S2 −→ ·· · in which
(1) all delimitations carry distinct names and variables, (2) delimitations have been
brought to the top-level as much as possible (using ≡), and (3) no α-conversion is
performed in the trace except when unfolding recursive processes.

Below, we define several notions of contract faithfulness for participants. We start by
clarifying when a participant A realizes a contract (inside a session s) within a spe-
cific context. This happens when from any reachable system state S0, participant A will
eventually perform actions to exculpate herself (in s). In this phase, A is protected from
interference with other participants. Then, we say A honest in a system if she realizes
every contract in that system. When A[P] is honest independently of the system, we
simply say that A[P] is honest. In this last case, we rule out those systems carrying stip-
ulated or latent contracts of A outside of A[P]; otherwise the system can trivially make
A culpable: e.g., we disallow A[P] | B[↓x A says pay | · · ·].
Definition 11 (Honesty). We say that:

– A realizes c at s in S iff whenever S = (�u)(s[A says c | B says d] | S′), S −→∗ S0, and
(Si)i is a {A : π}-fair A-solo stable −→-trace then A ˙�̇ sS j for some j ≥ 0;

– A is honest in S iff for all c and s, A realizes c at s in S;
– A[P] is honest iff for all S with no A says · · · nor A[· · ·], A is honest in A[P] | S.

Example 8. A computation of the store-buyer system S = A[PA] | B[PB] from Ex. 4 is:

S −→∗(s)
(
A[τ.dox ok+ τ.dox no] | B[doy ok] | s[A says ok⊕ no | B says ok+ no]

)
−→ (s)

(
A[dox no] | B[doy ok] | s[A says ok⊕ no | B says ok+ no]

)
−→ (s)

(
A[0] | B[doy ok] | s[γ]

)

On the Realizability of Contracts in Dishonest Systems 255

where γ=A says E |B says ready no. The system is then stuck, because γ is not allowing
the [DO] step. By Def. 4 we have A ˙�̇ γ, B ˙�̇ γ, so A is honest in S while B is not.
Actually, B has violated the contract agreed upon, because he is waiting for a positive
answer from the store, while in cB he also promised to accept a no. By Def. 11, B is not
honest, while we will show in § 5 that A is honest (see Ex. 10).

Example 9. Consider the system A[(x,y) (PA | fusex | fusey)] | B[PB] | C[PC], where:

PA
def
= tellA (↓x a .E) . tellA (↓y b ; E) .dox a .doy b

PB
def
= (z) (tellA (↓z b̄ .E) .doz b)

PC
def
= (w) (tellA (↓w ā ; E) .0)

Even though A might apparently look honest, she is not. Indeed, A cannot fulfill her
contract with B, because the dox a is blocked due to the fact that C (dishonestly) does
not perform his internal choice. Note that, if we considered honest a participant whose
culpability only depends on the culpability of someone else, then a participant could
cunningly have one of her contracts violated, so to avoid fulfilling another contract
(e.g., to avoid paying one million euros to B, A stipulates a dummy contract “I ship one
candy if you pay 1 cent”, which is then violated by a colluding participant C).

We now define when a process enables a contract transition, independently from the
context. To do that, first we define the set RDs(P) (after “ready do”), which collects all
the atoms with an unguarded action dos in P.

Definition 12. For all P and all s, we define the set of atoms RDs(P) as:

RDs(P) = {a | ∃�u,P′,Q,R . P ≡ (�u) (dos a.P′+Q | R) and s �∈�u}
Next, we check when a contract “unblocks” a set of atoms X : e.g., if X accounts for at
least one branch of an internal choice, or for all the branches of an external choice.

Definition 13. For all sets of atoms X and for all c �= 0, we say that c unblocks X iff:

∃Y ∈ RS(c).Y ⊆ X ∪{e} or c = ready a.c′ ∧ a ∈ X ∪{e}
Lemma 5. For all P and for all γ = A says c | B says d, if c unblocks RDs(P) and

S = (�u)(A[P] | s[γ] | S′), then either A ˙�̇ γ or S
A : dos a−−−−→.

The following theorem is the CO2 counterpart of Theorem 1. It states that, when a
session s is established between two participants A and B, A can always exculpate
herself by performing (at most) two actions A : do−. Note that when the contracts used
to establish s are compliant, then we deduce the stronger thesis A ˙�̇ sS j.

Theorem 3 (Factual exculpation). Let (Si)i be the following A-solo stable −→-trace,
with Si = (�ui)

(
A[Qi] | s[A says ci | B says di] | S′i

)
, and:

S0
µ0−→ ·· · µi−2−−→ Si−1

A : dos a−−−−→ Si
µi−→ ·· · µ j−2−−→ S j−1

A : dos b−−−−→ S j
µ j−→ ·· ·

where µh �= A : dos− for all h ∈ [i, j− 2]. Then, either c j = 0 or A ˙�̇ sS j.

256 M. Bartoletti, E. Tuosto, and R. Zunino

a ; c⊕c′ a−→→� c a .c+c′ a−→→� c ready a. c
a−→→� c a ; c⊕c′ a−→→� E a .c+c′ a−→→� E

⊕
ai ; ci

0−→→� 0 ∑ ai .ci
0−→→� 0 ∑ ai .ci

ctx−→→� ready an.cn a ; c
ctx−→→� ready a.c c

ctx−→→� c

π.P+Q | R
π−→�

⎧⎨
⎩

open(↓x A says c | P | R) if π = tellA ↓x c

open(P | R)σ otherwise

P
ctx−→� ↓x B says c | P if B �= A

P
ctx−→�Pσ

open(P) = P′ where P ≡ (�ui)P′ and no delimitation of P′ can be brought to the top level

Fig. 4. Abstract LTSs for contracts and processes (σ : V → N , name A in −→A
� is omitted)

The following theorem states the undecidability of honesty. Our proof reduces the halt-
ing problem to checking dishonesty.

Theorem 4. The problem of deciding whether a participant A[P] is dishonest is recur-
sively enumerable, but not recursive.

5 A Criterion for Honesty

In this section we devise a sufficient criterion for honesty. Actually, checking honesty
is a challenging task: indeed, by Th. 4, it is not even decidable. We will then provide
a semantics of contracts and processes, that focusses on the actions performed by a
single participant A, while abstracting from those made by the context. Note that our
abstract semantics assumes processes without top-level delimitations, in accordance
with Def. 10 which lifts such delimitations outside participants. Further, we sometimes
perform this lifting explicitly through the open(−) operator.

Definition 14. For all participant namesA, the abstract LTSs −→→� and−→A
� on contracts

and on processes, respectively, are defined by the rules in Fig. 4, where σ : V → N .

The intuition behind the abstract rules is provided by Lemma 6 and Lemma 7 below,
which establish the soundness of the abstractions.

Lemma 6. For all bilateral contracts γ = A says c | B says d:

1. γ A says a−−−−→→ A says c′ | B says d′ =⇒ c
a−→→� c′ ∧ (d

ctx−→→� d′ ∨ d
0−→→� d′)

2. γ A says a−−−−→→ A says c′ | B says d′ ∧ c �� d =⇒ c
a−→→� c′ ∧ d

ctx−→→� d′

Intuitively, a move of γ is caused by an action performed by one of its components c
and d. If c moves, the

a−→→� rules account for its continuation. This might make d commit

to one of the branches of a sum, as shown in the
ctx−→→� rules. Further, c can perform an

action not supported by d, by using a [*FAIL] rule: accordingly,
0−→→� transforms d into 0.

The compliance between c and d ensures the absence of such failure moves.

On the Realizability of Contracts in Dishonest Systems 257

Lemma 7. For each (finite or infinite) stable −→-trace (Si)i, with Si = (�ui)(A[Qi] | S′i),
there exists a −→�-trace Q0

µ0−→�Q1
µ1−→�Q2

µ2−→� · · · where µi = π if Si
A : π−−→ Si+1, and µi =

ctx otherwise. Moreover, if (Si)i is fair, then (Qi)i is {τ, tell }-fair.

In the above lemma, each step of the whole system might be due to either the process
Qi or its context. If Qi fires a prefix π, then it changes according to the

π−→� rule in Fig. 4.
In particular, that accounts for tellA− adding further latent contracts to Qi, as well as
fuse possibly instantiating variables. Newly exposed delimitations are removed using
open(−): indeed, they already appear in �ui, since the trace is stable.

We now define when a process P “�-realizes” a contract c in a session s (written
P |=s c), without making any assumptions about its context. Intuitively, P |=s c holds
when (1) P eventually enables the dos actions mandated by c, and (2) in the ab-
stract LTS −→�, the continuation of P after firing some dos must realize the contin-
uation of c (under −→→�). Note that P is not required to actually perform the relevant
dos , because the context might prevent P from doing so. For instance, in the system
A[P] | s[A says c | B says ready a.d] the process P can not fire any dos.

Definition 15. Given a session s and a participant A, we define the relation |=A
s

(“�-realizes”) between processes and contracts as the largest relation such that, when-
ever P0 |=A

s c, then for each {τ, tell }-fair −→A
� -trace (Pi)i without labels dos−, we have:

1. ∃k. ∀i ≥ k. c unblocks RDs(Pi)

2. ∀i,a,P′,c′.
(
Pi

dos a−−→�P
′ ∧ c

a−→→� c′ =⇒ P′ |=A
s c′
)

Example 10. Recall the online store A from Ex. 4. We show that X{s/x} |=s cA. First
note that transitions in {τ, tell }-fair −→�-traces without dos from X{s/x} can only be la-
belled with ctx. Thus, each Pi on such traces has the form X{s/x} | Ki, for some Ki. We
have RDs(Pi)=RDs(X{s/x})= {addToCart,creditCard}. Also, cA unblocks RDs(X{s/x})
hence condition (1) of Def. 15 holds. For condition (2), if cA

creditCard−−−−−→→� c′ = accept⊕
reject and Pi

dos creditCard−−−−−−−→�P
′ = τ.dos accept+ τ.dos reject | Ki then P′ |=s c′. Actually,

all processes on a {τ, tell }-fair −→�-traces without dos from P′ have either the form

dos accept | K or the form dos reject | K. For the recursive case, cA
addToCart−−−−−→→� cA and

Pi
dos addToCart−−−−−−−→�X{s/x}, hence X{s/x} |=s cA by coinduction. Note that the case cA

e−→→�

did not apply, because Pi cannot take −→�-transitions labelled dos e.

Theorem 5 below establishes an invariant of system transitions. If a participant A[Q0]
�-realizes a stipulated contract c0, then in each evolution of the system the descendant
of A[Q0] still �-realizes the related descendant of c0. The theorem only assumes that c0

is in a session with a compliant contract, as it is the case after firing a fuse.

Theorem 5. Let (Si)i be a stable−→-trace with Si = (�ui)(A[Qi] | s[A says ci | B says di] |
S′i) for all i. If c0 �� d0 and Q0 |=A

s c0, then Qi |=A
s ci for all i.

We now define when a participant is �-honest. Intuitively, we classify as such a partici-
pant A[P] when, for all prefixes tell ↓x c contained in P, the continuation Q of the prefix
�-realizes c. We also require that the session variable x cannot be used by any process
in parallel with Q, because such processes could potentially compromise the ability of
Q to realise c (see Ex. 11).

258 M. Bartoletti, E. Tuosto, and R. Zunino

Definition 16 (�-honest participant). A participant A[P] is �-honest iff P does not con-
tain ↓y A says c, and for all linear contexts C (•), x, c, Q, R, and s fresh in P

P = C (tell ↓x c.Q+R) =⇒ open(Q{s/x}) |=A
s c ∧ C is x-safe

where C (•) is x-safe iff ∃C ′. C (•) = C ′((x)•) or C is free from dox−.

Example 11. Substitute Q= fusex.dox creditCard for fusex in the process PA from Ex. 4.
Then A[PA] is not honest, because A cannot complete her contract if the dox within Q
is performed. However, the modified A[PA] violates x-safety, hence it is not �-honest.

The following lemma relates �-honesty with the abstract semantics of processes. If
a �-honest process P abstractly fires a tell↓x c, then the continuation of P realises c
(item 1). Also, �-honesty is preserved under abstract transitions (item 2).

Lemma 8. For all �-honest participants A[P], such that P = open(P):

1. if P
tellB ↓xc−−−−→�P

′, then P′{s/x} |=A
s c, for all s fresh in P.

2. if P−→�P
′, then A[P′] is �-honest.

Our main result states that �-honesty suffices to ensure honesty. Note that while honesty,
by Def. 11, considers all the (infinite) possible contexts, �-honesty does not. Hence,
while verifying honesty can be unfeasible in the general case, it can also be ensured by
establishing �-honesty, which is more amenable to verification. For instance, for finite
control processes [11] it is possible to decide �-honesty e.g. through model-checking.
In fact, in these processes parallel composition cannot appear under recursion, hence
their behaviour can be represented with finitely many states.

Theorem 6. All �-honest participants are honest.

Noteworthily, by Theorem 6 we can establish that all the participants named A in Ex-
amples 4, 5, and 6 are honest. This is obtained by reasoning as in Example 10. Instead,
participant A in Example 7 is honest but not �-honest.

6 Related Work and Conclusions

We have developed a formal model for reasoning about contract-oriented systems. Our
approach departs from the common principle that contracts are always respected after
they are agreed upon. We represent instead the more realistic situation where promises
are not always kept. The process calculus CO2 [2] allows participants to advertise con-
tracts, to establish sessions with other participants with compliant contracts, and to ful-
fill them (or choose not to). Remarkably, instead of defining an ad-hoc contract model,
we have embedded the contract theory of [10] within CO2. To do that, we have slightly
adapted the contracts of [10] in order to define culpability, and we have specialized
CO2 accordingly at the system-level. The main technical contribution of this paper is a
criterion for deciding when a participant is honest, i.e., always respects the advertised
contracts in all possible contexts. This is not a trivial task, especially when multiple
sessions are needed for realizing a contract (see e.g. Ex. 5 and 6) or when participants
want to inspect the state of a contract to decide how to proceed next (see e.g. Ex. 7).

On the Realizability of Contracts in Dishonest Systems 259

At the best of our knowledge, this is the first paper that addresses the problem of es-
tablishing when a participant is honest in a contract-based system populated by dishon-
est participants. Several papers investigated the use of contracts in concurrent systems;
however, they typically focus on coupling processes which statically guarantee confor-
mance to their contracts. This is achieved e.g. by typing [5,9,10], by contract-based
process synthesis [7], or by approaches based on behavioural preorders [6]. As future
work, it may also be interesting to study weaker notions of honesty, e.g., by requiring
participants to respect contracts in honest contexts, only.

The process calculus CO2 has been introduced in [2] as a generic framework for
relating different contract models; the variant in this paper has been obtained by instan-
tiating it with the contracts of [10]. Some primitives, e.g. multiparty fuse, have been
consequently simplified. In [2], a participant A is honest when A becomes not culpable
from a certain execution step; here, we only require that, whenever A is culpable, then
she can exculpate herself by performing some actions. This change reflects the fact that
bilateral contracts à la [10] can describe endless interactions.

The notion of compliance in [10] is asymmetric. Namely, if c is the client contract
and d is the server contract, then c and d are compliant if c always reaches a success state
or engages d in an endless interaction. In our model instead compliance is symmetric:
the server contract, too, has to agree on when a state is successful. The LTS semantics
of unilateral contracts in [10] yields identical synchronization trees for internal and ex-
ternal choice; to differentiate them, one has to consider their ready sets. We instead give
semantics to bilateral contracts, and distinguish between choices at the LTS level. Note
that we do not allow for unguarded sums, unlike [10]. Were these be allowed, we would
have to deal e.g. with a participant A with a contract of the form a ; c0 ⊕ (b .c1 + c .c2).
According to our intuition A should be culpable, because of the internal choice. If A
legitimately chooses not to perform a, to exculpate herself she would have to wait for
the other participant to choose (internally) between b and c. Therefore, A can exculpate
herself only if the other participant permits her to. By contrast, by restricting to guarded
sums our theory enjoys the nice feature that a culpable participant can always excul-
pate herself by performing some actions, which pass the buck to the other participant
(Theorems 1 and 3).

Design-by-contract is transferred in [5] to distributed interactions modelled as (mul-
tiparty) asserted global types [14]. The projection of asserted global types on local
ones allows for the automatic generation of monitors whereby incoming messages are
checked against the local contract. Such monitors have a “local” view of the computa-
tion, i.e. they can detect a violation but cannot, in general, single out the culpable com-
ponent. In fact, a monitor cannot know if an expected message is not delivered because
the partner is violating his contract, or because he is blocked on interactions with other
participants. Conversely, in our approach we compose participants in a “bottom-up”
fashion: a participant declares its contract independently of the others and then adver-
tises it; the fuse primitive tries then to harmonise contracts by searching for a suitable
agreement. Our notion of honesty singles out culpable components during the computa-
tion. An interesting problem would be to investigate how our notion of culpability could
be attained within the approach in [5]. In fact, this seems to be a non trivial problem,
even if forbidding communication channels shared among more than two participants.

260 M. Bartoletti, E. Tuosto, and R. Zunino

Contracts are rendered in [8,7] as soft constraints (values in a c-semiring) that al-
low for different levels of agreement between contracts. When matching a client with
a service, the constraints are composed. This restricts the possible interactions to those
acceptable (if any) to both parties. A technique is proposed in [7] for compiling clients
and services so that, after matching, both actually behave according to the mutually
acceptable interactions, and reach success without getting stuck. Our framework is fo-
cused instead on blaming participants, and on checking when a participant is honest,
i.e. always able to avoid blame in all possible contexts. The use of soft constraints in a
context where participants can be dishonest seems viable, e.g. by instantiating the ab-
stract contract model of CO2 with the contracts in [7]. A challenging task would be that
of defining culpability in such setting.

Acknowledgments. This work has been partially supported by the Aut. Region of
Sardinia under grants L.R.7/2007 CRP2-120 (Project TESLA) and CRP-17285 (Project
TRICS), and by the Leverhulme Trust Programme Award “Tracing Networks”.

References
1. Artikis, A., Sergot, M.J., Pitt, J.V.: Specifying norm-governed computational societies. ACM

Trans. Comput. Log. 10(1) (2009)
2. Bartoletti, M., Tuosto, E., Zunino, R.: Contracts in distributed systems. In: ICE (2011)
3. Bartoletti, M., Tuosto, E., Zunino, R.: On the Realizability of Contracts in Dishonest Systems.

In: COORDINATION 2012. LNCS, vol. 7274, pp. 245–260. Springer, Heidelberg (2012)
4. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS (2010)
5. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A Theory of Design-by-Contract for Dis-

tributed Multiparty Interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

6. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Conformance and
Contract Compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829,
pp. 34–50. Springer, Heidelberg (2007)

7. Buscemi, M.G., Coppo, M., Dezani-Ciancaglini, M., Montanari, U.: Constraints for service
contracts. In: TGC (2011) (to appear)

8. Buscemi, M.G., Montanari, U.: CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32.
Springer, Heidelberg (2007)

9. Carpineti, S., Laneve, C.: A Basic Contract Language for Web Services. In: Sestoft, P. (ed.)
ESOP 2006. LNCS, vol. 3924, pp. 197–213. Springer, Heidelberg (2006)

10. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. ACM Trans-
actions on Programming Languages and Systems 31(5) (2009)

11. Dam, M.: On the Decidability of Process Equivalences for the π-calculus. Theoretical Com-
puter Science 183(2), 215–228 (1997)

12. Degano, P., Priami, C.: Enhanced operational semantics. ACM Comput. Surv. 33(2), 135–
176 (2001)

13. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B). North-Holland Pub. Co./MIT Press (1990)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL
(2008)

15. Prisacariu, C., Schneider, G.: A Formal Language for Electronic Contracts. In: Bonsangue,
M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189. Springer, Hei-
delberg (2007)

Types for Coordinating Secure Behavioural Variations

Pierpaolo Degano, Gian-Luigi Ferrari, Letterio Galletta, and Gianluca Mezzetti

Dipartimento di Informatica
Università di Pisa

{degano,giangi,galletta,mezzetti}@di.unipi.it

Abstract. Context-Oriented programming languages provide us with primitive
constructs to adapt program behaviour depending on the evolution of their opera-
tional environment. We are interested here in software components, the behaviour
of which depend on the following: their actual operating context; the security
policies that control accesses to their resources and the potential interactions with
the external environment. For that, we extend a core functional language with
mechanisms to program behavioural variations, to manipulate resources and to
enforce security policies over both variations and resource usages. Additionally,
there are message passing primitives to interact with the environment, also sub-
ject to a simple policy. Changes of the operational context are triggered both by
the program and by the exchanged messages. Besides a definition of the dynamic
semantics, we introduce a static analysis for guaranteeing programs to safely op-
erate in any admissible context, and to correctly interact with the environment
they comply with.

1 Introduction

A major concern of current software engineering is the development of adaptive soft-
ware components, capable of dynamically modifying their behaviour depending on
changes in their execution environment and in response to the interactions with other
components. The problem of developing adaptive components has been investigated
from different perspectives (control theory, artificial intelligence, programming lan-
guages) and some solutions have been proposed. We refer to [1,2,3] for a more com-
prehensive discussion. In this paper, we adopt a programming languages approach, that
allows us to describe fine-grain adaptability mechanisms.

We consider the Context-Oriented Programming (COP)[4] paradigm, that extends
standard programming languages with suitable constructs to express context-dependent
behaviour in a modular fashion. The design and development of ubiquitous and auto-
nomic systems would greatly benefit from such languages [5]. The fundamental concept
in COP is that of behavioural variation. A behavioural variation is a chunk of behaviour
that can be activated depending on the current working environment so to dynamically
modify the execution. The current working environment is represented by the notion of
context. The context is a stack of layers, i.e. properties identifying the actual structure
of the environment. In this setting a programmer can (de)activate layers to represent

 This work has been partially supported by IST-FP7-FET open-IP project ASCENS and
Regione Autonoma Sardegna, L.R. 7/2007, project TESLA.

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 261–276, 2012.
c© IFIP International Federation for Information Processing 2012

262 P. Degano et al.

changes in the environment. This (de)activation mechanism is the engine of context
evolution. Usually, behavioural variations are bound to layers: the (de)activation of a
layer correspond to the (de)activation of a behavioural variation.

The development of complex adaptive systems presents issues that cannot be tackled
only by COP primitives. Indeed, a complex adaptive system is made up of a massive
number of interacting components. Each component is able to modify its behaviour, it
can access a private set of resources and it has security constraints (security policies).
Policies govern behaviour adaptation, access to resources, interaction with other com-
ponents. A system behaves correctly when each component respects its own security
policies and interacts with others by respecting the communication protocol.

We aim at contributing to the design of language-based methods and techniques that
support the development of complex adaptive components. An adaptive component has
(i) mechanisms to manipulate the context, (ii) security policies governing behaviour
and resource usages, (iii) an abstract, declarative representation of the operational en-
vironment. We adopt a top-down approach [1] to describe the interactions with other
components, because we do not want to wire a component to a specific communication
infrastructure. Our communication model is based on a bus through which messages
are exchanged.

The main contribution of this paper is the introduction of a method to program adap-
tive components. This proposal suitably extends and integrates together techniques from
COP, type theory and model-checking. In particular, it consists of a static technique en-
suring that a component (i) adequately reacts to context changes, (ii) accesses resources
in accordance with security policies, (iii) exchanges messages on the bus, complying
with a specific communication protocol provided by the operating environment.

Our proposal requires several stages.

I First, we extend the COP functional language ContextML [6] with constructs for
resource manipulation, following [7]. Also, our extension of ContextML has mech-
anisms to declare and enforce security policies by adopting the local sandbox ap-
proach of [7]. Finally, another novel feature is the introduction of message passing
constructs for the communication with external parties (Section 3).

II Next, we design a type and effect system for ContextML (Section 5). We exploit it
for ensuring that programs adequately react to context changes and for computing
as effect an abstract representation of the overall behaviour. This representation, in
the form of History Expressions (Section 4), describes the sequences of resource
manipulation and communication with external parties in a succinct form.

III Finally, we model check effects to verify that the component behaviour is correct,
i.e. that the behavioural variations can always take place, that resources are manip-
ulated in accordance with the given security policies and that the communication
protocol is respected. The model checking is performed in two phases. The first de-
termines whether security policies are obeyed, the second one verifies compliance
with the protocol (Section 6).

In Section 2 we introduce a motivating example, that is also instrumental in displaying
our methodology at a glance.

Types for Coordinating Secure Behavioural Variations 263

2 A Motivating Example: An e-Library App

Consider a simple scenario consisting of a smartphone app that uses some service sup-
plied by a cloud infrastructure. The cloud offers a repository to store and synchronize
a library of ebooks and computational resources to execute customised applications
(among which full-text search).

A user buys ebooks online and reads them locally through the app. The purchased
ebooks are stored into the remote user library and some books are kept locally in the
smartphone. The two libraries may not be synchronized. The synchronization is trig-
gered on demand and depends on several factors: the actual bandwidth available for
connection, the free space on the device, etc. We specify below the fragment of the app
that implements the full-text search over the user’s library.

Consider now the context dependent behaviour emerging because of the different
energy profiles of the smartphone. We assume that there are two: one is active when the
device is plugged in, the other is active when it is using its battery. These profiles are
represented by two layers: ACMode and BatMode. The function getBatteryProfile
returns the layer describing the current active profile depending on the value of the
sensor (plugged):

fun getBatteryProfile x = if (plugged) then ACMode else BatMode

Layers can be activated, so modifying the context. The expression

with(getBatteryProfile()) in exp1 (1)

activates the layer obtained by calling getBatteryProfile. The scope of this acti-
vation is the expression exp1 in Fig. 1(a). In lines 2-10, there is the following layered
expression:

ACMode. 〈DO SEARCH〉,
BatMode. 〈DO SOMETHING ELSE〉

This is the way context-dependent behavioural variations are declared. Roughly, a
layered expression is an expression defined by cases. The cases are the different lay-
ers that may be active in the context, here BatMode and ACMode. Each layer has an
associated expression. A dispatching mechanism inspects at runtime the context and
selects an expression to be reduced. If the device is plugged in, then the search is per-
formed, abstracted by 〈DO SEARCH〉. Otherwise, something else gets done, abstracted
by 〈DO SOMETHING ELSE〉. Note that if the programmer neglects a case, then the pro-
gram throws a runtime error being unable to adapt to the actual context.

In the code of exp1 (Fig. 1(a)), the function g consists of nested layered expressions
describing the behavioural variations matching the different configurations of the ex-
ecution environment. The code exploits context dependency to take into account also
the actual location of the execution engine (remote in the cloud at line -3- or local on
the device -4-), the synchronization state of the library -5,6- and the active energy pro-
file -2,10-. The smartphone communicates with the cloud system over the bus through
message passing primitives -7-9-.

264 P. Degano et al.

The search is performed locally only if the library is fully synchronized and the
smartphone is plugged in. If the device is plugged in but the library is not fully syn-
chronized, then the code of function g is sent to the cloud and executed remotely by a
suitable server.

In Fig. 1(b) we show a fragment of the environment provided by the cloud infrastruc-
ture. The service considered is offering generic computational resources to the devices
connected on the bus by continuously running function f . The function f listens to the
bus for incoming code (a function) and an incoming layer. Then, it executes the received
function in a context extended with the received layer.

In the code of the cloud it appears a security policy ϕ to be enforced before running
the received function. This is expressed by the security framing ϕ[. . .] that causes a
sandboxing of the enclosed expression, to be executed under the strict monitoring of
ϕ. Take ϕ to be a policy expressing that writing on the library write(library) is
forbidden (so only reading is allowed). The framing guarantees that the execution of
foreign code does not alter the remote library. In this example, we simply state that
ϕ only concerns actions on resources, e.g. the library. Our approach also allows us to
enforce security policies governing behaviour adaptation and communication.

The cloud system constraints communications on the bus by also declaring a protocol
P, prescribing the viable interactions. Additionally, the cloud infrastructure will make
sure that the protocol P is indeed an abstraction of the behaviour of the various services
of it involved in the interactions. We do not address here how protocols are defined by
the environment and we only check whether a user respect the given protocol.

The actual protocol guaranteed by the environment is

P = (sendτsendτ′receiveτ′′)
∗

It expresses that the client must send a value of type τ then a value of type τ′ and then
must receive back a value of type τ′′. These actions can be repeated a certain number of
times. We will discuss later on the actual types τ,τ′,τ′′.

Function getBatteryProfile returns a value of type ly{ACMode,BatMode}. This type
means that the returned layer is one between ACMode and BatMode.

The type of function g is τ′ = unit
P|H−−→ τ′′, assuming that the value returned by the

search function has type τ′′. The type τ′ is annotated by a set of preconditions P (see
below) and a latent effect H (discussed later on).

P= {{ACMode,IsLocal,LibrarySynced} ,{ACMode,IsCloud} , . . .}
Each precondition in P is a set of layers. To apply g, the context of the application must
contains all the layers in υ, for a precondition υ ∈ P.

As we will see later on, our type system guarantees that the dispatching mecha-
nism always succeeds at runtime. In our example, the expression (1) will be well-typed
whenever the context in which it will be evaluated contains IsLocal or IsCloud and
LibraryUnsyncedor LibrarySynced. The requirements about ACMode and BatMode
coming from exp1 are ensured in (1). This is because the type of getBatteryProfile
guarantees that one among them will be activated in the context by the with.

An effect H (history expression) represents (an over-approximation of) the sequences
of events, i.e. of resource manipulation or layer activations or communication actions.

Types for Coordinating Secure Behavioural Variations 265

1

2

3

4

5

6

7

8

9

10

11

fun gx =

ACMode.

IsCloud.search(),

IsLocal.

LibrarySynced.search(y),

LibraryUnsynced.

sendτ(ACMode);

sendτ′(g);

receiveτ′′

BatMode.〈DO SOMETHING ELSE〉
g()

(a) The definition of exp1

1

2

3

4

5

6

7

8

fun f x =

let lyr = receiveτ in

let g = receiveτ′ in

ϕ[with(lyr) in

let res = g() in

sendτ′′(res)

]; f ()

f ()

(b) The code for a service

Fig. 1. Fragments of an App and of a service in the cloud

The effect H in τ′ is the latent effect of g, over-approximating the set of histories, i.e.
the sequences of events, possibly generated by running g.

Effects are then used to check whether a client complies with the policy and the
interaction protocol provided by the environment. Verifying that the code of g obeys the
policy ϕ is done by standard model-checking the effect of g (a context-free language)
against the policy ϕ (a regular language). Obviously, the app never writes, so the policy
ϕ is satisfied, assuming that the code for the BatMode case has empty effect.

To check compliance with the protocol, we only considering communications. Thus,
the effect of exp1 becomes:

Hsr = sendτ · sendτ′ · receiveτ′′
Verifying whether the program correctly interacts with the cloud system consists of
checking that the histories generated by Hsr are a subset of those allowed by the protocol
P. In our scenario this is indeed the case.

3 ContextML: A Context-Oriented ML Core

ContextML [6] is a fragment of ML designed to deal with adaptation, providing us
with mechanisms to change the context and to define behavioural variations in a func-
tional style. We extend it by introducing resources manipulation, enforcement of secu-
rity properties and communication.

Resources available in the system are represented by identifiers and can be manip-
ulated by a fixed set of actions. For simplicity, we do not provide ContextML with
constructs for dynamically creating resources, but these can be added following [7,8].

We enforce security properties by protecting expressions with policies: ϕ[e]. This
mechanism is known in the literature as policy framing [8]. Roughly, it means that
during the evaluation of e the computation must respect ϕ. Our policies turn out to be
regular properties of computation histories; more details in Section 6.

266 P. Degano et al.

The communication model is based on a bus which allows programs to interact with
the environment by message passing. The operations of writing and reading values over
this bus can be seen as a simple form of asynchronous I/O. We will not specify this bus
in detail, but we will consider it as an abstract entity representing the whole external en-
vironment and its interactions with programs. Therefore, ContextML programs operate
in an open-ended environment.

The syntax and the structural operational semantics of ContextML follow.
Syntax Let N be the naturals, Ide a set of identifiers, LayerNames a finite set of layer
names, Policies a set of security policies, Res a finite set of resources identifiers and Act
a finite set of actions for manipulating resources. Then, the syntax of ContextML is:

n ∈ N x, f ∈ Ide L ∈ LayerNames

ϕ ∈ Policies r ∈ Res α,β ∈ Act

v,v1,v
′ ::= n | L | () | λ f x ⇒ e

e,e1,e
′ ::= ϕ[e] | v | x | e1e2 | let x = e1 in e2 | e1 op e2 |

if e0 then e1 else e2 | with(e1) in e2 | unwith(e1) in e2 | lexp

sendτ(e) | receiveτ | α(r)
lexp ::= L.e | L.e, lexp

Additionally, we assume the syntactic sugar e1;e2 � (λ f x ⇒ e2)e1 where x and f are
not free in e2.

The novelties of ContextML with respect to ML are primitives for handling re-
sources, policy framing and communication and some features borrowed from COP
languages (for their description we refer the reader to the seminal paper [4]). Usually,
COP paradigm have layers as expressible values; the (unwith) with construct for ma-
nipulating the context by (de)activating layers; layered expressions (lexp), defined by
cases each specifying a context-dependent behaviour. The expression α(r) indicates that
we access the resource r through the action α, possibly causing side effects. The secu-
rity properties are enforced by policy framing ϕ[e] guaranteeing that the computation
satisfies the policy ϕ. Of course, policy framings can be nested. The communication is
performed by sendτ and receiveτ. They allow us to interact with the external environ-
ment by writing/reading values of type τ (see Section 5) to/from the bus.

Dynamic Semantics. We endow ContextML with a small-step operational semantics,
only defined for closed expressions as usual. Note that, since ContextML programs can
read values from the bus, a closed expression can be open with respect to the external
environment. For example, let x = receiveτ in x+ 1 is closed but it reads an unknown
value v from the bus. To give meaning to such programs, we have an early input similar
to that of the π-calculus [9].

Our semantics is history dependent. Program histories are sequences of events,
namely histories, occurring during program execution. Events ev indicate (de)activation
layers, selection of behavioural variations and program actions, be they resource ac-
cesses, entering/exiting policy framing and communication. The syntax of events ev
and programs histories η is the following:

Types for Coordinating Secure Behavioural Variations 267

ev ::= �L | �L | {L | }L | Disp(L) | α(r) | sendτ | receiveτ | [ϕ|]ϕ (2)

η ::= ε | ev | ηη (3)

The event (�L) �L marks that we (end) begin the evaluation of a with body in a context
where the layer L is (de)activated; symmetrically, the event (}L) {L signals that we (end)
begin the evaluation of a unwith body in a context where the layer L is (un)masked;
the event Disp(L) signals that layer L has been selected by the dispatch mechanism; the
event α(r) marks that the action α has been performed over the resource r; the event
sendτ/receiveτ indicates that we have sent/read a value of type τ over/from the bus; the
event (]ϕ) [ϕ marks that we (end) begin the enforcement of the policy ϕ.

A context C is a stack of active layers with two operations. The first C−L remove a
layer L from the context C if present, the second L :: C pushes L over C−L. Formally:

Definition 1. We denote the empty context by [] and a context with n elements with top
L1 by [L1, . . . ,Ln].
Let C = [L1, . . . ,Li−1,Li,Li+1, . . . ,Ln],1 ≤ i ≤ n then

C−L =

{
[L1, . . . ,Li−1,Li+1, . . .Ln] if L = Li

C otherwise

Also, let L :: C = [L,L1, . . . ,Ln] where [L1, . . . ,Ln] =C−L.

The transitions have the form C 'η,e →η′,e′, meaning that in the context C, starting
from a program history η, the expression e may evolve to e′ and the history η to η′ in
one evaluation step.

Most of semantic rules are inherited from ML. Fig. 2 shows the ones for new con-
structs. We briefly comment on them.

The rules for (unwith(e1) in e2) with(e1) in e2 evaluate e2 in a context where the
layer obtained evaluating e1 is (de)activated. Additionally, we store in the history the
events �L and �L ({L and }L) marking the beginning and the end of the evaluation of e2

(note that being within the scope of layer L activation is recorded by using L).
When a layered expression e = L1.e1, . . . ,Ln.en has to be evaluated (rule lexp), the

current context is inspected top-down to select the expression ei to which e reduces.
This dispatching mechanism is implemented by the partial function Dsp, defined as

Dsp([L′
0,L

′
1, . . . ,L

′
m],A) =

{
L′

0 if L′
0 ∈ A

Dsp([L′
1, . . . ,L

′
m],A) otherwise

that returns the first layer in the context [L′
0,L

′
1, . . . ,L

′
m] which matches one of the layers

in the set A. If no layer matches, then the computation gets stuck.
The rule (action) establishes that performing an action α over a resource r yields the

unit value () and extends η with α(r).
The rules governing communications reflect our notion of protocol, that abstractly

represents the behaviour of the environment, showing the sequence of direction/type
of messages. Accordingly, our primitives carry types as tags, rather than dynamically

268 P. Degano et al.

with1
C ' η,e1 → η′,e′1

C ' η,with(e1) in e2 → η′,with(e′1) in e2

with2
C ' η,with(L) in e → η �L,with(L̄) in e

with3
L :: C ' η,e → η′,e′

C ' η,with(L̄) in e → η′,with(L̄) in e′
with4

C ' η,with(L̄) in v → η �L,v

unwith1
C ' η,e1 → η′,e′1

C ' η,unwith(e1) in e2 → η′,unwith(e′1) in e2

unwith2
C ' η,unwith(L) in e → η{L,unwith(L̄) in e

unwith3
C−L ' η,e → η′,e′

C ' η,unwith(L̄) in e → η′,unwith(L̄) in e′

unwith4
C ' η,unwith(L̄) in v → η}L,v

lexp
Li = Dsp(C,{L1, . . . ,Ln})

C ' η,L1.e1, . . . ,Ln.en → ηDisp(Li),ei
action

C ' η,α(r)→ η α(r),()

send1
C ' η,e → η′,e′

C ' η,sendτ(e)→ η′,sendτ(e′)
send2 C ' η,sendτ(v)→ η sendτ,()

receive
C ' η,receiveτ → η receiveτ,v

framing1
η−[] � ϕ

C ' η,ϕ[e]→ η[ϕ,ϕ[e]

framing2
C ' η,e → η′,e′ η′−[] � ϕ

C ' η,ϕ[e]→ η′,ϕ[e′]
framing3

η−[] � ϕ
C ' η,ϕ[v]→ η]ϕ,v

Fig. 2. Semantic rules for new constructs

checking the exchanged values. In particular, there is no check that the type of the
received value matches the annotation of the receive primitive. Our static analysis will
guarantee the correctness of this operation.

In detail, sendτ(e) evaluates e and sends the obtained value over the bus. Addition-
ally, the history is extended with the event sendτ. A receiveτ reduces to the value v read
from the bus and appends the corresponding event to the current history. This rule is
similar to that used in the early semantics of the π-calculus, where we guess a name
transmitted over the channel [9].

The rules for framing say that an expression ϕ[e] can reduce to ϕ[e′], provided that
the resulting history η′ obeys the policy ϕ, in symbols η′−[]
 ϕ (see Section 4 and
Section 6 for a precise definition). Also here, placing a bar over ϕ records that the
policy is active. If η′ does not obey ϕ, then the computation gets stuck. Of course, we
store in the history through [ϕ/]ϕ the point where we begin/end the enforcement of ϕ.

Types for Coordinating Secure Behavioural Variations 269

ε ·H ε−→ H α(r)
α(r)−−→ ε µh.H

ε−→ H{µh.H/h}
H1

α(r)−−→ H ′
1

H1 ·H2
α(r)−−→ H ′

1 ·H2

H
α(r)−−→ H ′

H1 +H2
α(r)−−→ H ′

1

H2
α(r)−−→ H ′

2

H1 +H2
α(r)−−→ H ′

2

Fig. 3. Transition system of History Expressions

4 History Expressions

History Expressions [10,7,8] are a simple process algebra providing an abstraction over
the set of histories that a program may generate. We recall here the definitions and
the properties of [8] but we consider histories with a different set of events ev, also
endowing communication, layer activation and dispatching.

Definition 2 (History Expressions). History Expressions are defined as follows:

H,H1 ::= ε empty H1 +H2 sum

ev events in (2) H1 ·H2 sequence

h recursion variable µh.H recursion

ϕ[H] safety framing, abbrev. for [ϕ·H·]ϕ
The signature defines sequentialization, sum and recursion operations over sets of his-
tories containing events; µh is a binder for the recursion variable h.

The following definition exploits the labelled transition system in Fig. 3.

Definition 3 (Semantics of History Expressions). Given a closed H (i.e. without free
variables), we define its semantics �H� to be the set of histories η = w1 . . .wn (wi ∈
ev∪{ε},0 ≤ i ≤ n) such that ∃H ′. H

w1−→ ·· · wn−→ H ′.

We remark that the semantics of a history expression is a prefix closed set of histories.
Back to the example in Section 2, assume that H is the history expression over-

approximating the behaviour of function g. Then, the history expression of the fragment
of the cloud service (Fig. 1(b)) is µh.receiveτ · receiveτ′ ·ϕ [(ACMode·H · sendτ′′)ACMode] · h
assuming τ = lyACMode.

Closed history expressions are partially ordered: H (H ′ means that the abstrac-
tion represented by H ′ is less precise than the one by H. The structural ordering (is
defined over the quotient induced by the (semantic preserving) equational theory pre-
sented in [7] as the least relation such that H (H and H (H + H ′. Clearly, H (
H ′ implies �H� ⊆ �H ′�.

Validity of History Expressions Given a history η we denote with η−[] the history
purged of all framings events [ϕ,]ϕ. For details and examples, see [7].

The multiset ap(η) of the active policies of a history η is defined as follows:
ap(ε) = {} ap(η [ϕ) = ap(η)∪{ϕ}
ap(ηγ) = ap(η) γ ∈ ev\ {[ϕ,]ϕ} ap(η]ϕ) = ap(η)\ {ϕ}

270 P. Degano et al.

The validity of a history η (|= η in symbols) is inductively defined as follows, assuming
the notion of policy compliance η
 ϕ of Section 6.

 ε and
 η′w w ∈ ev if
 η′ and (η′w)−[]
 ϕ for all ϕ ∈ ap(η′w)

A history expression H is valid when |= η for all η ∈ �H�.
The following lemma states that validity is a prefix-closed property.

Property 1. If a history η is valid, then each prefix of its is valid.

The semantics of ContextML (in particular the rules for framing) ensure that the
histories generated at runtime are all valid.

Property 2. If C ' ε,e → η′,e′, then η′ is valid.

5 ContextML Types

We provide here ContextML with a type and effect system. We use it for over-
approximating the programs behaviour and for ensuring that the dispatch mechanism
always succeeds at runtime. The associated effect is a history expression representing
all the histories that a program may generate. Here, we only give a logical presentation
of our type and effect system, and we are confident that an inference algorithm can be
developed, along the lines of [10].

Our typing judgements have the form 〈Γ;C〉 ' e : τ �H. This means that in “in the
type environment Γ and in the context C the expression e has type τ and effect H”.

Types are integers, unit, layers and functions:

σ ∈℘(LayerNames) P ∈℘(℘(LayerNames))

τ,τ1,τ′ ::= int | unit | lyσ | τ1
P|H−−→ τ2

We annotate types with sets of layer names σ for analysis reason. In lyσ, σ over-
approximates the set of layers that an expression can be reduced to at runtime. In

τ1
P|H−−→ τ2, P is a set of preconditions υ. Each υ ∈ P over-approximates the set of layers

that must occur in the context to apply the function. The history expression H is the
latent effect, i.e. the sequence of events generated while evaluating the function.

Fig. 4 introduces the rules for subeffecting (H (H ′) and for subtyping (τ1 ≤ τ2).
The rule (Sref) states that the subtyping relation is reflexive. The rule (Sly) says that
a layer type lyσ is a subtype of lyσ′ whenever the annotation σ is a subset of σ′. The
rule (Sfun) defines subtyping for functional types. As usual, it is contravariant in τ1 but
covariant in P,τ2 and H. The ordering on the set of preconditions is defined as follows
P (P

′ iff ∀υ ∈ P .∃υ′ ∈ P
′ .υ′ ⊆ υ. By the (Tsub) rule, we can always enlarge types

and effects.
Fig. 5 shows the rules of our type and effect system. Most of them are inhered from

that of ML, so we only comment in detail on the rules for the new constructs. The rule
(Talpha) gives expression α(r) type unit and effect α(r). The rule (Tly) asserts that the
type of a layer L is ly annotated with the singleton set {L} and its effect is empty. In the
rule (Tfun) we guess a set of preconditions P, a type for the bound variable x and for
the function f . For all precondition υ ∈ P we also guess a context C′ satisfying υ. A

Types for Coordinating Secure Behavioural Variations 271

(Sref) τ ≤ τ (Sfun)
τ′1 ≤ τ1 τ2 ≤ τ′2 P(P′ H (H ′

τ1
P|H−−→ τ2 ≤ τ′1

P
′|H ′

−−−→ τ′2

(Sly)
σ ⊆ σ′

lyσ ≤ lyσ′
(Tsub)

〈Γ;C〉 ' e : τ′ �H ′ τ′ ≤ τ H ′ (H

〈Γ;C〉 ' e : τ�H

Fig. 4. Subtyping rules

context satisfies the precondition υ whenever it contains all the layers in υ, in symbols
|C′| ⊆ υ, where |C′| denotes the set of layers active in the context C′. We determine the
type of the body e under these additional assumptions. Implicitly, we require that the
guessed type for f , as well as its latent effect H, match that of the resulting function.
Additionally, we require that the resulting type is annotated with P.

The rule (Tapp) is almost standard and reveals the mechanism of function precon-
dition. The application gets a type if there exists a precondition υ ∈ P such that it is
satisfied in the current context C. The effect is obtained by concatenating the ones of
e2 and e1 and the latent effect H. To better explain how preconditions work, consider
the technical example in Fig. 6. There, the function λ f x ⇒ L1.0 is shown having type

int
{L1}−−→ int (for the sake of simplicity we ignore the effects). This means that L1 must

be in the context in order to apply the function.
The rule (Twith) establishes that the expression with(e1) in e2 has type τ, provided

that the type for e1 is lyσ (recall that σ is a set of layers) and e2 has type τ in the context
C extended by the layers in σ. The effect is the union of the possible effects resulting
from evaluating the body. This evaluation is carried on the different contexts obtained by
extending C with one of the layers in σ. The special events �L and �L express the scope
of this layer activation. The rule (Tunwith) is similar to (Twith), but instead removes
the layers in σ and use {L and }L to delimit layer hiding.

By (Tlexp) the type of a layered expression is τ, provided that each sub-expression ei

has type τ and that at least one among the layers L1, . . .Ln occurs in C. When evaluating
a layered expression one of the mentioned layers will be active in the current context
so guaranteeing that layered expressions will correctly evaluate. The whole effect is the
sum of sub-expressions effects Hi preceded by Disp(Li).

The expression sendτ(e) has type unit and its effect is that of e extended with event
sendτ. The expression receiveτ has type τ and its effect is the event receiveτ. Note that
the rules establish the correspondence between the type declared in the syntax and the
checked type of the value sent/received. An additional check is however needed and
will be carried on also taking care of the interaction protocol (Section 6).

For technical reasons, we need the following rules dealing with the auxiliary syntac-
tic constructs.

(Tbphi)
〈Γ;C〉 ' e : τ�H

〈Γ;C〉 ' ϕ[e] : τ�H·]ϕ (Tbwith)
〈Γ;L :: C〉 ' e2 : τ�H

〈Γ;C〉 ' with(L) in e2 : τ�H·�L

(Tbunwith)
〈Γ;C−L〉 ' e2 : τ�H

〈Γ;C〉 ' unwith(L) in e2 : τ�H·}L

Our type system enjoys the following soundness results.

272 P. Degano et al.

(TVar)
Γ(x) = τ

〈Γ;C〉 ' x : τ�ε
(Tint) 〈Γ;C〉 ' n : int�ε

(Tunit) 〈Γ;C〉 ' () : unit�ε
(Tly) 〈Γ;C〉 ' L : ly{L}�ε

(Talpha) 〈Γ;C〉 ' α(a) : unit �α(a)

(Tfun)
∀υ ∈ P. 〈Γ,x : τ1, f : τ1

P|H−−→ τ2;C′〉 ' e : τ2 �H |C′| ⊆ υ

〈Γ;C〉 ' λ f x ⇒ e : τ1
P|H−−→ τ2 �ε

(Tlet)
〈Γ;C〉 ' e1 : τ1 �H 〈Γ,x : τ1,C〉 ' e2 : τ2 �H ′

〈Γ;C〉 ' let x = e1 in e2 : τ2 �H ·H ′

(Tif)
〈Γ;C〉 ' e0 : int �H 〈Γ;C〉 ' e1 : τ�H1 〈Γ;C〉 ' e2 : τ�H2

〈Γ;C〉 ' if e0 then e1 else e2 : τ�H · (H1 +H2)

(Twith)
〈Γ;C〉 ' e1 : ly{L1,...,Ln} �H ′ ∀Li ∈ {L1, . . . ,Ln}.〈Γ;Li :: C〉 ' e2 : τ�Hi

〈Γ;C〉 ' with(e1) in e2 : τ�H ′ ·∑Li
�Li ·Hi·�Li

(Tunwith)
〈Γ;C〉 ' e1 : ly{L1,...,Ln} �H ′ ∀Li ∈ {L1, . . . ,Ln}.〈Γ;C−Li〉 ' e2 : τ�Hi

〈Γ;C〉 ' unwith(e1) in e2 : τ�H ′ ·∑Li
{Li ·Hi·}Li

(Tlexp)
∀i.〈Γ;C〉 ' ei : τ�Hi L1 ∈ |C|∨ · · ·∨Ln ∈ |C|

〈Γ;C〉 ' L1.e1, . . . ,Ln.en : τ� ∑
Li∈{L1,...,Ln}

Disp(Li) ·Hi

(Tapp)
〈Γ;C〉 ' e1 : τ1

P|H−−→ τ2 �H1 〈Γ;C〉 ' e2 : τ1 �H2 ∃υ ∈ P.υ ⊆ |C|
〈Γ;C〉 ' e1e2 : τ2 �H2 ·H1 ·H

(Top)
〈Γ;C〉 ' e1 : int�H1 〈Γ;C〉 ' e2 : int�H2

〈Γ;C〉 ' e1 op e2 : int�H1 ·H2
(Tphi)

〈Γ;C〉 ' e : τ�H

〈Γ;C〉 ' ϕ[e] : τ� [ϕ·H·]ϕ

(Trec) 〈Γ;C〉 ' receiveτ : τ� receiveτ
(Tsend)

〈Γ;C〉 ' e : τ�H H ′ = H · sendτ

〈Γ;C〉 ' sendτ(e) : unit�H ′

Fig. 5. Typing rules

Theorem 1 (Subject reduction). Let e be a closed expression, if 〈Γ;C〉 ' e : τ�H and
C ' η,e → η′,e′, then 〈Γ;C〉 ' e′ : τ�H ′ with ηH) η′H ′

As a corollary we get that the history expression obtained as effect of an expres-
sion e over-approximates the set of histories that may actually be generated during the
execution of e.

Corollary 1 (Over-approximation). If 〈Γ;C〉 ' e : τ �H and C ' ε,e →∗ η,e′, then
η ∈ �H�.

We also have the following result, where C ' η,e � means that e is stuck.

Theorem 2 (Progress). Let e be a closed expression such that 〈Γ;C〉 ' e : τ �H. If
C ' η,e � and ηH is valid and with balanced policy framings, then e is a value.

Subject reduction and progress prove the soundness of our type system.

Types for Coordinating Secure Behavioural Variations 273

Corollary 2. If 〈 /0;C〉 ' e.τ�H and H is valid and with balanced policy framings, then
C ' ε,e →∗ η′,v.

This corollary guarantees that a well-typed expression will eventually be reduced to a
value, provided that its H is valid and that it complies with the communication protocol.

6 Model Checking

In this section we introduce a model-checking machinery for verifying whether a history
expression is compliant with respect to a policy ϕ and a protocol P. The idea is that
the environment specifies P, and only accepts a user to join that follows P during the
communication.

Policy checking A policy ϕ will be actually a safety property [11], expressing that noth-
ing bad will occur during a computation. Policies are expressed through standard Finite
State Automata (FSA). We take a default-accept paradigm, i.e. only the unwanted be-
haviour is explicitly mentioned. Consequently, the language of ϕ is the set of unwanted
traces, hence an accepting state is considered as offending. Let L(ϕ) denote the lan-
guage of ϕ.

We depict in the left part of Fig. 7 a simple policy ϕ2 that prevents the occurrence of
two consecutive actions α on the resource r at the beginning of the computation.

We now define the meaning of η
 ϕ, completing the definition of validity presented
in Section 4.

Definition 4 (Policy compliance). Let η be a history without framing events, then
η
 ϕ iff η /∈ L(ϕ).

The semantics of a history expression may contain histories with redundant fram-
ings, i.e. nesting of the same policy framing. For instance, µh.(ϕ[α(r)h]+ ε) generates
[ϕα(r)[ϕα(r)]]. Formally, a history η has redundant framing whenever the active poli-
cies ap(η′) contain a duplicate ϕ for some prefix η′ of η.

Redundant framing can be eliminated without affecting validity of a history [7]. This
is because the expressions monitored by the inner-framings are already under the scope
of the outermost one and the definition of validity in Section 4 uses η−[]. Actually,
given H there is a regularisation algorithm returning his regularized version H↓ such
that (i) each history in �H↓� has no redundant framing, (ii) H↓ is valid if and only if H

〈Γ,x : τ, f : τ
{|C′|}−−−→ τ;C′〉 ' 0 : τ L1 ∈C′

〈Γ,x : τ, f : τ
{|C′|}−−−→ τ;C′〉 ' L1.0 : τ

〈Γ;C〉 ' λ f x ⇒ L1.0 : τ
{|C′|}−−−→ τ

〈Γ,g : τ
{|C′|}−−−→ τ;C〉 ' g : τ → τ

〈Γ,g : τ
{|C′|}−−−→ τ;C〉 ' 3 : τ |C′| ⊆ |C|

〈Γ,g : τ
{|C′|}−−−→ τ;C〉 ' g3 : τ

〈Γ;C〉 ' let g = λ f x ⇒ L1.0 in g3 : τ

Fig. 6. Derivation of a function with precondition. We assume that C′ = [L1], L1 is active in C,
LayerNames = {L1} and, for typesetting convenience, we also denote τ = int and we ignore
effects.

274 P. Degano et al.

is valid [7]. Hence, checking validity of a history expression H can be reduced to the
problem of checking validity of a history expression H↓ without redundant framings.

Our approach fits into the standard automata based model checking [12]. Indeed,
there is an efficient and fully automata based method for checking the
 relation for a
regularized history expression H.

Let {ϕi} be the set of all policies ϕi occurring in H. From each ϕi it is possible to

obtain a framed automata ϕ[]
i such that η is valid iff η /∈ L(

⋃
ϕ[]

i). The detailed con-
struction of framed automata is in [7]. Roughly the framed automaton for the policy ϕ
has two copies of ϕ. The first copy has no offending states, the second has the same of-
fending states of ϕ. Intuitively, one uses the first copy when the actions are made while
the policy is not active. The second copy is reached when the policy is activated by a
framing event. Indeed, there are edges labelled with [ϕ from the first copy to the second
and]ϕ in the opposite direction. So when a framing gets activated we can also reach an
offending state. Fig. 7 shows the framed automaton used to model check the policy ϕ2.

Validating a regularized history expression H amounts to verifying �H�∩⋃
L(ϕ[]

i)
is empty. Using the fact that for any history expression H there exists a pushdown au-
tomaton B(H) (see [8]) that recognizes the semantics of H, we can state the following:

Theorem 3 (Model checking policies). A given history expression H is valid if and

only if L(B(H↓))∩⋃
L(ϕ[]

i) = /0.

Since regular languages are closed by union, context-free languages are closed by in-
tersection with a regular language and the emptiness of context-free languages is decid-
able [13] the above is decidable.

Protocol compliance We are now ready to check whether a program will well-behave
when interacting with other parties through the bus. We take a protocol P to be sequence
S of sendτ and receiveτ actions designating the coordination interactions, possibly re-
peated (in symbols S∗), as defined below:

P ::= S | S∗ S ::= ε | sendτ.S | receiveτ.S

A protocol P specifies the regular set of allowed interaction histories. We require a pro-
gram to interact with the bus following the protocol, but we do not force the program to
do the whole interaction specified. For this motivation the language L(P) of P is a prefix

q0 q1 q2

α(r) α(r)
q0 q1 q2

q′0 q′1 q′2

α(r)

α(r)

]ϕ[ϕ]ϕ[ϕ [ϕ]ϕ

α(r)

α(r)

Fig. 7. On the left: a policy ϕ2 expressing that two consecutive actions α on r at the beginning of
the computation are forbidden. On the right: the framed automaton obtained from ϕ2.

Types for Coordinating Secure Behavioural Variations 275

closed set of histories, obtained by considering all the prefixes of the sequences defined
by P. Then we only require that all the histories generated by a program (projected so
that only sendτ and receiveτ appear) belong to L(P).

Let Hsr be a projected history expression where all non sendτ,receiveτ events have
been removed. Then we define compliance to be:

Definition 5 (Protocol compliance). Let e be an expression such that 〈Γ,C〉 ' e : τ�H,
then e is compliant with P if �Hsr� ⊆ L(P).

This theorem provides us with a decidable model checking procedure to establish
protocol compliance. In its statement we write L(P) for the complement of L(P). Note
that the types annotating sendτ/receiveτ can be kept finite in both L(P) and L(P), be-
cause we only take the types occurring in the effect H under checking.

Theorem 4 (Model checking protocols). Let e be an expression such that 〈Γ,C〉 ' e :
τ�H, then e is compliant with P iff

L(B(Hsr))∩L(P) �= /0∧L(B(Hsr))∩L(P) = /0

We remark that, in our model, protocol compliance cannot be expressed only through
security policies introduced above. As a matter of fact, L(B(Hsr))∩L(P) = /0 expresses
that H has no forbidden communication patterns, and this is a requirement much similar
to a default-accept policy. However L(B(Hsr))∩L(P) �= /0 requires that some commu-
nication pattern in compliance with P must be done. This highlights the different nature
of security policies and protocols in our framework.

7 Conclusions

This paper is an initial step in defining language-based methods for the development
of complex adaptive systems. We introduce static techniques for ensuring that a com-
ponent developed in ContextML language (i) adequately reacts to context changes, (ii)
securely manipulates its resources and (iii) correctly interacts with other parties.

This work crosses the boundaries of several research fields. Space limitation prevents
us to make a comprehensive discussion of related works. Therefore we only point the
reader to some papers — we apologise for our omissions. On the foundational aspects of
COP, we only cite to [14,15,6], [16,4] that focus on implementation issues, while [5] is
on the methodological side. The ContextML primitives for resources usage control are
borrowed from [17,7]. Here we additionally deal with layer activation and dispatching,
and with a restricted form of communication. Indeed, our communication model can be
read as a minimal coordination paradigm, as it only requires the knowledge of the flow
of the exchanged messages and their types. Other work in the literature presents richer
coordination models; among others, see [18,19].

Our types are a simple form of dependent types, while effects and protocols may be
seen as a form of behavioural types [20].

We plan to extend the present work by dealing with a more powerful coordination
model including concurrency, distribution and asynchrony. It would be also interesting
to investigate the relationships between our notion of protocol and session types [21].

Acknowledgments. We would like to thank the anonymous referees for their comments
that pointed us inaccuracies and guided us to improve the quality of our paper.

276 P. Degano et al.

References

1. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidel-
berg (2009)

2. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A Conceptual Frame-
work for Adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2010. LNCS, vol. 7212, pp.
240–254. Springer, Heidelberg (2012)

3. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
TAAS 4(2) (2009)

4. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Journal of Ob-
ject Technology 7(3), 125–151 (2008)

5. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A programming
paradigm for autonomic systems. CoRR abs/1105.0069 (2011)

6. Degano, P., Ferrari, G.L., Galletta, L., Mezzetti, G.: Typing context-dependent behavioural
variations. In: PLACES 2012. EPTCS (to appear, 2012)

7. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource usage anal-
ysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)

8. Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composition. Journal
of Computer Security 17(5), 799–837 (2009)

9. Sangiorgi, D., Walker, D.: The Pi-Calculus - a theory of mobile processes. Cambridge Uni-
versity Press (2001)

10. Skalka, C., Smith, S., Horn, D.V.: Types and trace effects of higher order programs. Journal
of Functional Programming 18(2), 179–249 (2008)

11. Hamlen, K.W., Morrisett, J.G., Schneider, F.B.: Computability classes for enforcement
mechanisms. ACM Trans. on Programming Languages and Systems 28(1), 175–205 (2006)

12. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification
(preliminary report). In: LICS, pp. 332–344. IEEE Computer Society (1986)

13. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to automata theory, languages, and com-
putation, vol. 2. Addison-wesley, Reading (1979)

14. Clarke, D., Sergey, I.: A semantics for context-oriented programming with layers. In: In-
ternational Workshop on Context-Oriented Programming, COP 2009, pp. 10:1–10:6. ACM,
New York (2009)

15. Hirschfeld, R., Igarashi, A., Masuhara, H.: Context FJ: a minimal core calculus for context-
oriented programming. In: Proceedings of the 10th International Workshop on Foundations
of Aspect-Oriented Languages, pp. 19–23. ACM (2011)

16. Costanza, P.: Language constructs for context-oriented programming. In: Proceedings of the
Dynamic Languages Symposium, pp. 1–10. ACM Press (2005)

17. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: POPL, pp. 331–342 (2002)
18. Proença, J., Clarke, D., de Vink, E.P., Arbab, F.: Decoupled execution of synchronous coor-

dination models via behavioural automata. In: Mousavi, M.R., Ravara, A. (eds.) FOCLASA.
EPTCS, vol. 58, pp. 65–79 (2011)

19. Bonsangue, M., Clarke, D., Silva, A.: Automata for Context-Dependent Connectors. In:
Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 184–203.
Springer, Heidelberg (2009)

20. Nielson,H.R.,Nielson,F.:Higher-orderconcurrentprogramswithfinitecommunication topol-
ogy (extended abstract). In: Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 1994, pp. 84–97. ACM, New York (1994)

21. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline for
Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

Author Index

Agha, Gul 89
Alvares de Oliveira Jr., Frederico 29
Aman, Bogdan 122

Bartoletti, Massimo 245
Beal, Jacob 212
Bruni, Roberto 104

Ciobanu, Gabriel 122
Clarke, Dave 44, 59
Craß, Stefan 230

Degano, Pierpaolo 261
Dinges, Peter 89
Dustdar, Schahram 1
Dziwok, Stefan 166

Ferrari, Gian-Luigi 261
Ferreira, Carla 104

Galletta, Letterio 261

Heinzemann, Christian 166

Jonckers, Viviane 181

Kersten Kauer, Anne 104
Khazankin, Roman 1
Khosravi, Ramtin 74
Kühn, Eva 230

Latella, Diego 152
Ledoux, Thomas 29
Liptchinsky, Vitaliy 1

Marek, Alexander 230
Massink, Mieke 152
Mezzetti, Gianluca 261

Nielson, Flemming 137
Nielson, Hanne Riis 137

Petre, Luigia 196
Philips, Eline 181
Pianini, Danilo 212
Proença, José 59

Rossi, Davide 17

Sabouri, Hamideh 74
Sandvik, Petter 196
Scheller, Thomas 230
Sere, Kaisa 196
Sesum-Cavic, Vesna 230
Sharrock, Remi 29

Terepeta, Micha�l 137
Tichy, Matthias 166
Truong, Hong-Linh 1
Tuosto, Emilio 245

Vallejos, Jorge 181
Van Der Straeten, Ragnhild 181
van Dooren, Marko 44
Viroli, Mirko 212
Vögler, Michael 230

Zunino, Roberto 245

	Title
	Foreword
	Preface
	Organization
	Elastic Coordination Principles, Models, and Algorithms Invited Talk
	Table of Contents
	Statelets: Coordination of Social Collaboration Processes
	Introduction
	Motivation
	Related Work
	Statelets Coordination Language
	Context Queries and Commands
	Programming Coordination
	Feature Support and Prototype Implementation

	Statelets Framework
	Use cases
	Analysis Projects
	Engineering Projects

	Conclusions and Future Work
	References

	A Social Software-Based Coordination Platform
	Introduction
	The Platform
	The Tools
	WikiRecPlay
	InFeed

	A Case Study
	The Coordination Model
	Discussion and Related Works
	Conclusions
	References

	Synchronization of Multiple Autonomic Control Loops: Application to Cloud Computing
	Introduction
	A Multiple Control Loops Architecture Model
	A Model of Autonomic Behavior
	Control Loop Synchronization and Coordination

	Cloud Computing Scenario
	Definitions and Assumptions
	Multi-control Loop Architecture

	Evaluation
	Setup
	Results

	Related Work
	Conclusion
	References

	Subobject Transactional Memory
	Introduction
	A Subobject-Oriented Approach
	An Introduction to Subobject-Oriented Programming

	Subobject Transactional Memory
	Making Existing Classes Transactional
	Transaction Demarcation

	Example Implementation
	Related Work
	Conclusion and Future Work
	References

	Partial Connector Colouring
	Introduction
	Background: Reo and Connector Colouring
	Reo Coordination Model
	Connector Colouring: An Overview
	Formalism

	Problem Statement
	Partial Connector Colouring
	Constraint-Based Encoding
	Partial 2- and 3-Constraints

	Implementation and Benchmarks
	Related Work
	Conclusion
	References

	Using Coordinated Actors to Model Families of Distributed Systems
	Introduction
	Preliminaries
	Actor Model for Distributed Computing
	Reo Coordination Language

	Handling Variability through Coordination
	Example: Handling Optional Features

	Formal Modeling of Coordinated Actor Systems
	Actor Systems
	Transition System Semantics
	Coordinator Actors
	Initial Configurations

	Case Study
	The Video-On-Demand Use Case
	Modeling Video-On-Demand with Coordinated Actors

	Discussion and Conclusion
	References

	Scoped Synchronization Constraints for Large Scale Actor Systems
	Introduction
	Synchronization Constraints
	Example: Cooperating Resource Administrators
	Example: Dining Philosophers

	Coordination in Large Scale Systems
	Properties of Large Systems
	Problems of Globally Scoped Constraints

	Scoped Constraints
	Synchronization-Capabilities
	Scoped Synchronization Constraints

	Semantics
	Synchronization-Capabilities
	Actor Creation
	Message Sending and Dispatching
	Synchronizer State Updates

	Related Work
	Conclusion
	References

	First-Order Dynamic Logic for Compensable Processes
	Introduction
	First Order Dynamic Logic
	Deontic Formalisms for Error Handling
	Concurrency

	Concurrent Programs
	Compensable Programs
	Conclusion
	References

	Coordinating Parallel Mobile Ambients to Solve SAT Problem in Polynomial Number of Steps
	Introduction
	Parallel Mobile Ambients
	Syntax
	Operational Semantics
	Example

	Solving NP-Complete Problems in Polynomial Steps
	Boolean Satisfiability Problem
	Analysis

	An Example of How Mobile Ambients Solve 3CNF-SAT
	Conclusion
	References

	Recursive Advice for Coordination
	Introduction
	Language
	Pushdown Systems
	Basic Concepts of Pushdown Systems
	Representing Processes and Aspects
	Communicating Pushdown Systems

	Analysis
	Basic Concepts
	Abstraction
	Experiments

	Conclusions
	References

	Fluid Analysis of Foraging Ants
	Introduction
	The Problem of Foraging Ants
	Bio-PEPA Briefly Recalled
	A Bio-PEPA Model of Foraging Ants
	Emerging Paths
	Related Work
	Discussion and Further Work
	References

	Real-Time Coordination Patterns for Advanced Mechatronic Systems
	Introduction
	MechatronicUML
	Patterns for Real-Time Coordination Protocols
	Real-Time Coordination Patterns
	Description Format of Our Patterns
	Example: Synchronized Collaboration

	Developing Advanced Mechatronic Systems Using Real-Time Coordination Patterns
	Application-Specific Adaptation
	Implementation-Specific Refinement

	Case Study: Cooperating Robots
	Related Work
	Conclusions and Future Work
	References

	Group Orchestration in a Mobile Environment
	Introduction
	Motivation
	Small Introduction to NOW
	Abstractions for Group Orchestration
	Definition of Group Membership
	Synchronisation Mechanisms [R4]
	Failure Handling [R5]

	Related Work
	Conclusion
	References

	Node Coordination in Peer-to-Peer Networks
	Introduction
	Event-B and Its Modularisation Approach
	Event-B
	The Event-B Modularisation Approach

	Modelling Inter-peer Relations
	Modularising Inter-peer Relations
	Discussion
	Conclusions
	References

	Linda in Space-Time: An Adaptive Coordination Model for Mobile Ad-Hoc Environments
	Introduction
	Linda in Space-Time
	Basic Model
	The Coordination Language

	Core Calculus
	Syntax
	Operational Semantics

	Case Studies
	Adaptive Crowd Steering
	Linda in a Mobile Ad-Hoc Environment

	Related Work
	Conclusions and Future Work
	References

	A Space-Based Generic Pattern for Self-Initiative Load Clustering Agents
	Introduction
	Related Work
	Load Clustering Pattern
	Local Node Pattern
	Arbiter Pattern
	Clustering Pattern
	Pattern Composition

	Algorithms
	Benchmarks and Evaluation
	Basic SILCA Benchmarks
	Extended SILCA Benchmarks

	Conclusions
	References

	On the Realizability of Contracts in Dishonest Systems
	Introduction
	A Calculus of Contracts
	A Calculus of Contracting Processes
	On Honesty
	A Criterion for Honesty
	Related Work and Conclusions
	References

	Types for Coordinating Secure Behavioural Variations
	Introduction
	A Motivating Example: An e-Library App
	ContextML: A Context-Oriented ML Core
	History Expressions
	ContextML Types
	Model Checking
	Conclusions
	References

	Author Index

