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I. Introduction

Plants interact with a diverse assemblage of soil
fungi, some of which colonize roots to form
mycorrhizas. Mycorrhizas have traditionally
been categorized partially on the identity of
the fungal partner(s) but mainly on the mod-
ifications of these fungi and their associated
roots that lead to the distinct mature structure
(Brundrett 2004; Peterson and Massicotte 2004;
Smith and Read 2008). Ectendomycorrhiza,
one of approximately seven currently recog-
nized mycorrhiza categories (Peterson et al.
2004; Smith and Read 2008), has been defined
either broadly (Smith and Read 2008) or nar-
rowly (Yu et al. 2001; Peterson et al. 2004). The
broad classification includes arbutoid mycor-
rhizas that are characteristic of several genera
in the large family, Ericaceae (Smith and Read
2008). The narrow view confines the term

ectendomycorrhizas to specialized associations
that form primarily with two conifer genera,
Pinus and Larix, and a limited number of asco-
mycete fungal species (Yu et al. 2001). Yu et al.
(2001) summarized the Pinus and Larix species
as well as several angiosperm species that have
been reported to have ectendomycorrhizas.
They pointed out, however, that the evidence
for some of these reports is not particularly
strong because observations were based on
field-collected material of unknown age and
the fungal symbionts were not identified.

There has been debate as to whether ecten-
domycorrhiza should be considered a separate
category or a developmental phase or evolu-
tionary stage of ectomycorrhizas (Egger and
Fortin 1988). More recently, Brundrett (2004)
argued that since ectendomycorrhizas do not
occur in a distinct and separate plant lineage,
they should be considered as a ‘fungal morpho-
type’ included within the category, ectomycor-
rhiza. The examination of root systems and
their associated symbiotic fungi of plant species
in parts of the world that until now have been
poorly studied may lead to a reassessment, not
only of the category, ectendomycorrhiza, but
also of other categories of mycorrhizas.

Beck et al. (2005) have used the term to
describe the morphological features of mycor-
rhizas formed by two members of the Glomer-
omycota with the tropical tree species (Alzatea
verticillata). The evidence cited for designating
the mycorrhiza as an ectendomycorrhiza is the
occurrence of highly branched intercellular
hyphae resembling Hartig net hyphae in ecto-
mycorrhizas as well as the presence of intracel-
lular structures, in this case typical arbuscules.
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In this chapter, ectendomycorrhizas will be
considered from a narrow perspective keeping
in mind that, with new evidence, this category
may not be maintained (Brundrett 2004) or
may be expanded to include a broader range
of plant species and fungal symbionts. Arbu-
toid mycorrhizas and similar mycorrhizas of
members of the Ericaceae (see Setaro et al.
2006) will not be discussed in this chapter
since they are covered elsewhere in this volume.

II. Structural Characteristics
of Ectendomycorrhizas

The short roots of pine species colonized by
ectendomycorrhizal fungal species are usually
monopodial (Fig. 11.1) but dichotomies may
occur (Fig. 11.2). Ectendomycorrhizas share
two important characteristics with ectomycor-
rhizas: a fungal mantle and Hartig net. The
mantle, however, may be poorly developed
(Figs. 11.1, 11.2, 11.3) or in some cases absent
(Smith and Read 2008). The mantle of an
E-strain fungal species associated with Pinus
strobus has been described, using laser scan-
ning confocal microscopy, as a loosely
organized net prosenchyma (Schelkle et al.

1996). Mantle hyphae are frequently embedded
in surface mucigel (Scales and Peterson 1991b;
Fig. 11.3). Hartig net hyphae develop between
the epidermal and cortical cells in Pinus spp.
(Mikola 1965; Wilcox 1969; Wilcox and
Ganmore-Neumann 1974; Piché et al. 1986;
Ivory and Pearce 1991; Scales and Peterson
1991a; Ursic and Peterson 1997; Peterson et al.
2004; Figs. 11.3 and 11.4) and in Larix occiden-
talis (Laiho 1965). An additional feature, intra-
cellular hyphae within root epidermal and
cortical cells, distinguishes ectendomycorrhi-
zas from typical ectomycorrhizas (Yu et al.
2001; Peterson and Massicotte 2004; Smith
and Read 2008; Figs. 11.3 and 11.4). These
hyphae are formed by the ingress of Hartig
net hyphae through epidermal and cortical cell
walls and, once within these cells, the hyphal
diameter increases substantially (Piché et al.
1986; Scales and Peterson 1991a; Figs. 11.4 and
11.5). Ultrastructural details of the intracellu-
lar hyphae of Wilcoxina mikolae var. mikolae
within Pinus banksiana root cells close to the
apical meristem showed that they are rich in
cytoplasmic organelles and are separated from
host cell cytoplasm by the development of a
host-derived plasma membrane and interfacial
matrix material (Scales and Peterson 1991a;
Fig. 11.6). The nature of the matrix material

Fig. 11.1. Scanning electron microscopy image of a
Pinus banksiana monopodial short root colonized by
Wilcoxina mikolae var. mikolae. The mantle (*) con-
sists of loosely arranged hyphae. A few extraradical
hyphae (arrowheads) are present

Fig. 11.2. Scanning electron microscopy image of a
Pinus banksiana dichotomous short root colonized by
Wilcoxina mikolae var. mikolae. The mantle (*) con-
sists of loosely arranged hyphae. A few extraradical
hyphae (arrowhead) are present
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has not been determined but its presence, along
with the host-derived plasma membrane, sug-
gests that intracellular hyphae may play a role

in nutrient exchange between the symbionts;
this has not been shown experimentally. Micro-
tubules are closely associated with the intracel-
lular hyphae and these may be involved in the
formation of the interface between the sym-
bionts (Kuga-Uetake et al. 2004).

The same isolate of W. mikolae var.
mikolae that forms ectendomycorrrhizas with
P. banksiana (Scales and Peterson 1991a) forms
typical ectomycorrhizas with Picea mariana
and Betula alleghaniensis (Scales and Peterson
1991b), indicating the importance of the host
genome in the type of mycorrhiza formed. Sim-
ilar results were reported previously with other
E-strain fungi (Laiho 1965) and these observa-
tions led Molina et al. (1992) to conclude that
ectendomycorrhizal fungi show broad host
range responses with species in which ectomy-
corrhizas typically form but intermediate spec-
ificity with Pinus and Larix species in which
ectendomycorrhizas form. This observation
was confirmed experimentally by Massicotte
et al. (1999) by growing seedlings of three coni-
fer species (Abies grandis, Pseudotsuga menzie-
sii, Pinus ponderosa) and two angiosperm
species (Lithocarpus densiflora, Arbutus men-
ziesii) in soil collected from three forest sites in
southwestern Oregon, United States. The
authors suggested that one of the morphotypes
formed on all species was consistent with
descriptions of that formed by W. mikolae.

Fig. 11.3. Light microscopy of a longitudinal section of
a monopodial short root of Pinus resinosa colonized by
Wilcoxina mikolae var. mikolae. Mantle hyphae
(arrowheads) are embedded in mucilage. Hartig net

hyphae (arrows) and intracellular hyphae (double
arrowhead) are present. Colonization has occurred
close to the root apical meristem (AM)

Fig. 11.4. Light microscopy of a longitudinal section of
a monopodial short root of Pinus resinosa colonized by
Wilcoxina mikolae var. mikolae. Few mantle hyphae
(arrowhead), Hartig net hyphae (arrow) and intracellu-
lar hyphae (double arrowhead) are evident
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III. Fungal Species Involved

A. Systematics

A detailed discussion of the history of the clas-
sification of fungi reported to be involved in the
formation of ectendomycorrhizas can be found

in Yu et al. (2001). Many of the early studies
identified the fungi based on morphological
characteristics either of sterile hyphae of iso-
lates cultured from roots of various gymno-
sperm species or from soil-borne mycelium
(e.g. Wilcox et al. 1974; Danielson 1982).
These fungi comprised a number of problem-
atic taxonomic isolates that were originally
placed into a broad group, ‘E-strain’ fungi
(Laiho and Mikola 1964). They were deter-
mined to be ascomycetes based on diagnostic
features of hyphae, including the presence of
Woronin bodies and regular septation (Daniel-
son 1982). Later studies (Egger and Fortin 1990;
Egger et al. 1991) comparing poymorphisms in
nuclear and mitochondrial rRNA genes, placed
most of the E-strain fungi into two species
W. mikolae and W. rehmii in the ascomycete
order Pezizales. Sequence analysis of W. miko-
lae identified two varieties W. mikolae var.
mikolae and var. tetraspora (Egger 1996).

Other fungal species that are known to
form ectendomycorrhizas under some condi-
tions include Phialophora finlandia and
Chloridium paucisporum (Wang and Wilcox
1985; Wilcox and Wang 1987a, b). In a study
of the colonization of Pinus contorta (lodge-
pole pine) roots by a number of post-fire

Fig. 11.6. Transmission electron micrograph of a corti-
cal cell in a Pinus banksiana short root colonized by
Wilcoxina mikolae var. mikolae showing enlarged
intracellular hyphae each surrounded by interfacial
material (arrowheads) and a host-derived plasma mem-
brane (arrow). Some plasmolysis has occurred during
fixation

Fig. 11.5. Transmission electron micrograph of corti-
cal cells in of a Pinus banksiana short root colonized by
Wilcoxina mikolae var. mikolae showing Hartig net

hyphae (arrowheads) and an enlarged intracellular
hypha (double arrowhead)
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ascomycetes in the Pezizales, Egger and
Paden (1986) found that one species, Sphaer-
osporella brunnea formed typical ectendomy-
corrhizas. This was confirmed for this host
species as well as for P. banksiana (Jack
pine; Iwanyzki 1992). The mycorrhizal status
of S. brunnea may, however, vary depending
on the host species and conditions during
mycorrhiza formation (Danielson 1984).

B. Physiology

Physiological aspects of ectendomycorrhizal
fungi have not been studied to the same
extent as ectomycorrhizal fungi. Mikola
(1965) determined the carbon, nitrogen, and
pH requirements for a number of E-strain
isolates from pine and observed that none
could use cellulose as a carbon source. How-
ever, Caldwell et al. (2000) found that an iso-
late of Phialophora finlandia, when grown
in vitro, utilized cellulose, laminarin, starch,
and xylan as a carbon source. This isolate also
was capable of hydrolyzing protein, ribonu-
cleic acids, and a fatty acid ester. Redlak et al.
(2001) found that Wilcoxina spp. produced
cellulolytic, pectolytic, proteolytic and chiti-
nolytic activity in culture medium but at very
low levels. Phenolic compounds had various
effects on enzyme production in three ecten-
domycorrhizal fungal species; this depended
on the particular phenolic compound and the
enzyme being assayed (Dahm and Redlak
2000). For example, there was no effect on
the production of b-glucosidases or pectolytic
enzymes by any of the phenolic compounds
but endocellulases were inhibited. It is not
clear how these results relate to the coloniza-
tion of roots by ectendomycorrhizal fungi.

Sphaerosporella brunnea is able to hydro-
lyze complex compounds such as gelatin, cellu-
lose, oil, and pectins, depending on the pH of
the medium (Egger 1986). It is not known
whether carbon compounds resulting from the
breakdown of complex organic compounds
could be transported to host roots under cer-
tain conditions.

Martin et al. (1988), using 13C-labeled glu-
cose, found evidence for a direct pathway from
glucose to mannitol, the main carbohydrate

reserve substance in S. brunnea, as well as evi-
dence for a lesser accumulation of glycogen and
trehalose. In addition, as much as 40% of the
13C-labeled glucose ended up in the free amino
acid pools in mycelium.

Ectendomycorrhizal fungi, like other
mycorrhizal symbionts, are likely to benefit
plant species by the increased uptake of
various nutrients from the substrate. Mycor-
rhizal fungi have access to inorganic and
organic nitrogen sources in various ecosystems
(Smith and Read 2008), an important feature
since nitrogen is often limiting to plant growth
in many of these ecosystems. Rudawska et al.
(1994) confirmed that the ectendomycorrhizal
fungal isolate MrgX obtained originally from
roots of Pinus sylvestris (Pachlewski 1983),
grew on medium with ammonium as the source
of nitrogen and that this fungus possessed
ammonium assimilation enzymes with the
glutamine synthetase (GS-GOGAT) pathway
being the most important. Prabhu et al. (1995)
provided the first evidence for the presence
of a NADPH-specific nitrate reductase which
catalyzes the first step in nitrate assimilation,
in an ectendomycorrhizal ascomycete fungal
species, W. mikolae var. mikolae. By using
urea, a neutral nitrogen source, in the culture
medium Prabhu et al. (1996a) showed that this
enzyme was induced by nitrate and repressed
by ammonium.

Two isolates of W. mikolae and one of
W. rehmii were shown to produce the sidero-
phore, ferricrocin (Prabhu et al. 1996b). Side-
rophores act as chelating agents solubilizing
ferric iron and therefore increasing iron absorp-
tion by mycorrhizal plants (Haselwandter 1995).

The ectendomycorrhizal fungal isolate
MrgX is capable of synthesizing a number of
indole compounds (Rudawska et al. 1992). Of
these, indole-3-acetic acid (auxin) and indole-
3-carboxyl acid are produced in the greatest
amounts.

IV. Factors Affecting Mycorrhiza
Formation

Temperature has been shown to affect growth
of E-strain fungal isolates in culture with iso-
lates from northern United States growing
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better at 20 �C and isolates from southern
United States growing better at 24 �C (Wilcox
et al. 1983). Northern isolates showed some
growth at 4 �C but southern isolates failed to
grow at this temperature. Northern isolates
formed ectendomycorrhizas with Pinus resi-
nosa whereas a southern isolate formed ecto-
mycorrhizas with the same pine species
(Wilcox et al. 1983).

Exposure of P. halepensis to the atmo-
spheric pollutants, ozone and sulfur dioxide
in combination, resulted in a decrease in the
percentage of mycorrhizal colonization and a
change in the morphological appearance of
mycorrhizas, with fewer coralloid morphotypes
and more simple morphotypes formed (Dı́az
et al. 1996). Although the fungal symbionts
were not identified, structural features of the
latter morphotype included a thin mantle, Har-
tig net hyphae, and intracellular hyphae, typical
of ectendomycorrhizas.

Pine nurseries are frequently treated with
herbicides as a weed control measure and, in a
P. resinosa nursery in Victoria, Australia, two
herbicides, propazine and chlorthal dimethyl
are widely used (Marks and Becker 1990).
These authors showed that both herbicides sup-
pressed mycorrhiza formation in greenhouse
experiments and that in both control and her-
bicide treatments only two unidentified mor-
photypes formed, an ectomycorrhiza and an
ectendomycorrhiza. The ratio of the ectomy-
corrhiza morphotype to the ectendomycorrhiza
morphotype was reduced in both herbicide
treatments. The structure of the ectendomycor-
rhiza morphotype was modified in the chlorthal
dimethyl treatment with only the development
of a Hartig net without an evident mantle or
intracellular hyphae.

Pathogenic fungi are often problematic in
conifer nurseries leading to the use of various
fungicides to minimize seedling loss. The
effect of two fungicides, benomyl and oxine
benzoate, on mycelial growth of four ecten-
domycorrhizal fungal species was studied by
Chakravarty et al. (1990). Treatments with
both fungicides at 50 ppm and above signifi-
cantly reduced mycelial growth, indicating
that the much higher recommended field
rates of both fungicides are likely detrimental
to these fungi in nurseries.

There is increasing evidence that the
mycorrhizosphere and the hyphosphere host
a variety of bacteria (Bending et al. 2006; Smith
and Read 2008), some of which have been
designated as ‘mycorrhiza helper bacteria’
since they have a positive effect on the forma-
tion of ectomycorrhizas (Garbaye 1994). Bend-
ing et al. (2006) provide a thorough discussion
of the diverse interactions that occur between
bacteria and the two most prevalent mycorrhi-
zas: ectomycorrhizas and arbuscular mycor-
rhizas. Research on interactions between
bacteria and ectendomycorrhizal fungi is lim-
ited. Chanway and Holl (1991) determined the
effect of a plant growth promoting Bacillus
isolate, either alone or in combination with
W. mikolae, on the growth and nutrient status
of P. contorta seedlings. Treatment with Bacil-
lus alone had no effect on shoot and root
biomass or total leaf nitrogen content, whereas
treatment with W. mikolae alone reduced
shoot biomass and total leaf nitrogen content.
Inoculation with both resulted in higher root
and shoot biomass but lower foliar nitrogen
content compared with controls.

Chitinase genes have been inserted into a
number of plant species in attempts to increase
their resistance to pathogenic fungi. The endo-
chitinase gene ech-42 has been transferred into
Picea glauca (white spruce) and subsequently
the transformed seedlings were shown to be
more resistant to the root fungal pathogen
Cylindrocladium floridanum than controls
(Noël et al. 2005). Transformed white spruce
with the same inserted gene was recently tested
for mycorrhiza formation by ectendomycorrhi-
zal Wilcoxina spp. (Stefani et al. 2010). The
authors showed that mycorrhization was not
affected, with roots of transformed seedlings
developing a Hartig net and intracellular
hyphae. It is of interest however, thatWilcoxina
spp. usually form ectomycorrhizas with Picea
spp. (Mikola 1988; Scales and Peterson 1991b).

V. Occurrence and Ecological
Considerations

Early studies by Laiho (1965) and Mikola
(1965) and later by Mikola (1988) and Lehto
(1989) established that ectendomycorrhizas
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formed on pine seedlings by E-strain fungi
were common in Finnish and other European
nurseries. A number of other reports confirm
the prevalence of ectendomycorrhizas in pine
nurseries in Canada (Danielson and Visser
1989a; Ursic and Peterson 1997; Ursic et al.
1997), the United States (Laiho 1965; Wilcox
1971; Wilcox et al. 1983), several African
countries, New Zealand, and Australia (Mikola
1980). Ectendomycorrizas have also been
reported in pine plantations in the United
States (Menge and Grand 1981).

There is some evidence that pine seedlings
colonized with ectendomycorrhizal fungi are
more resistant to harsh environments than
those colonized by ectomycorrhizal fungi. For
example, Pinus resinosa seedlings inoculated
with either the E-strain fungus BDG-58 or Phia-
lophora finlandia, both shown to produce typi-
cal ectendomycorrhizas with this pine species,
had better survival rates than seedlings inocu-
lated with two ectomycorrhizal fungal species
when grown on iron tailings (LoBuglio and
Wilcox 1988). In a study of survival of Pinus
banksiana seedlings inoculated with 11 mycor-
rhizal fungal species and outplanted to oil-sands
tailings, only E-strain ectendomycorrhizas were
present in substantial numbers after 3 years
(Danielson and Visser 1989b).

In a study of successional changes in mycor-
rhizas of a chronological sequence of P. bank-
siana stands following a wild fire, E-strain fungi
were prevalent as early-stage fungi (Visser 1995)
in 6-year-old plantations; these were replaced in
older stands, primarily by ectomycorrhizal
basidiomycete species. In bioassays with P. hale-
pensis seedlings grown in soil collected from two
sites in which fire had killed all conifer and shrub
species, E-strain morphotypes were up to 20
times more frequent than all ectomycorrhizal
morphotypes combined after 1 and 2 years
growth (Torres and Honrubia 1997). Also,
W. rehmii, a known ectendomycorrhizal fungus
on pine species, was the most common ascomy-
cete identified by analysis of 18S rDNA and ITS 1
data collected from colonized root tips of
P. ponderosa after a prescribed burn in eastern
Oregon, United States (Fujimura et al. 2005).

The widespread occurrence of ectendomy-
corrhizas geographically, their occurrence in

pine seedlings under nursery conditions, and
the resilience of ectendomycorrhizal fungal
species following various disturbance events,
suggests that they may play important roles
in conifer seedling establishment. However,
more controlled experiments are needed before
decisions are made to use these fungal species
as inoculum for outplanted seedlings.
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