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Abstract. The temporal evolution of mobile processes is governed by
independently operating local clocks and their migration timeouts. We
define a formalism modelling such distributed systems allowing (max-
imal) parallel execution at each location. Taking into account explicit
timing constraints based on migration and interprocess communication,
we introduce and study a number of timed behavioural equivalences,
aiming to provide theoretical underpinnings of verification methods. We
also investigate relationships between such behavioural equivalences.
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1 Introduction

Process calculi are a family of formalisms used to model distributed systems.
They provide algebraic laws allowing a high-level description and analysis of
concurrent processes, behavioural equivalences (e.g., bisimulations) between pro-
cesses, and automated tools for the verification of interaction, communication,
and synchronization between processes. During the past couple of decades, a
number of calculi supporting process mobility were defined and studied; in par-
ticular, π-calculus [16] and mobile ambients [5]. Various specific features were
introduced to obtain such formalisms, including explicit locations in distributed
π-calculus [14], explicit migration and timers in timed distributed π-calculus [12],
and timed mobile ambients [1]. Time is an important aspect of distributed com-
puting systems, and can play a key role in their formal description. Since time is
a complex subject, its introduction to the domain of process calculi has received
a lot of attention in, e.g., [2,3,6,15,17,21]. Papers like these assume the existence
of a global clock which is usually required in the description of complex sys-
tems. However, there are several applications and systems for which considering
a global clock would be inappropriate. This paper follows such an approach,
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in which local clocks operate independently, and so processes at different loca-
tions evolve asynchronously. Overall, temporal evolution of mobile processes is
governed by independent local clocks and their migration timeouts.

The ever increasing complexity of mobile processes calls for the development
of effective techniques and tools for the automated analysis and verification of
their properties including, in particular, behavioural equivalences between sys-
tems. Bisimulation is the most common mathematical concept used to capture
behavioural equivalence between processes. The corresponding equivalence rela-
tion, called bisimilarity, is used to abstract from certain details of the systems,
and is widely accepted as a standard behavioural equivalence for different kinds
of computational processes. Several kinds of bisimulations had been defined (e.g,
strong or weak bisimulation for π-calculus [16]).

In the paper [9], we defined TiMo, a basic language for mobile systems in
which it is possible to add timers to control process mobility and interaction. Af-
ter that, in [11], a local clock was assigned to each location of a system modelled
in TiMo. Each such clock determines the timing of actions executed at the cor-
responding location. Then, starting from TiMo, we created a flexible software
platform supporting the specification of agents and their physical distribution,
allowing also a timed migration in a distributed environment [8]. We obtained
this implementation by using an advanced software technology, creating a plat-
form for mobile agents with time constraints.

In this paper, we consider TiMo as the specification language for mobile
agents with timeouts, and define various behavioural equivalences taking into
account the timers which control the execution of communication and migration
actions. We study these bisimulations over networks, and then relax them by
applying the so-called ‘up-to’ technique. In [10] we discussed the TravelShop ex-
ample, in which clients buy tickets to predefined destinations from travel agents.
One can use the bisimilarities defined in this paper to differentiate, for example,
between two travel agents using the same databases for prices, but having differ-
ent delays for providing the answer (in an urgent situation, the faster one would
be preferred). On the other hand, it is possible to define equivalence classes of
agents offering similar services with respect to the waiting time (possibly up to
an acceptable time difference).

The paper is organised as follows. We start in Section 2 with a brief presenta-
tion of TiMo, including its syntax and operational semantics, and introduce an
example to illustrate the basic features of TiMo. In Sections 3 and 4, we formally
define a number of timed bisimulations, and present some of their properties.
Section 5 discusses the ‘up-to’ technique in the context of the bisimulations
introduced in this paper. Conclusion and references end the paper.

2 TiMo

Timing constraints for migration allow one to specify what is the longest time
it takes a mobile process to move to another location. A timer denoted by Δ3
associated to a migration action goΔ3work indicates that the process moves to
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location work after at most 3 time units. It is also possible to constrain the
waiting for a communication on a channel; if a communication action does not
happen before a deadline, the process gives up and switches its operation to an
alternative. E.g., a timer Δ5 associated to an output action aΔ5!〈10〉 makes the
channel available for communication only for the period of 5 time units.

2.1 Syntax

We assume suitable data sets including a set Loc of locations and a set Chan of
communication channels. We use a set Id of process identifiers, and each id ∈ Id
has the arity mid. In what follows, we use x to denote a finite tuple of elements
(x1, . . . , xk) whenever it does not lead to a confusion.

The syntax of TiMo [11] is given in Table 1, where P are processes, L located
processes, andN networks. Moreover, for each id ∈ Id there is a unique definition
of the form:

id(u1, . . . , umid
: X id

1 , . . . , X
id
mid

) = Pid , (1)

where Pid is a process expression, the ui’s are distinct variables playing the role
of parameters, and the X id

i ’s are data types. In Table 1, it is assumed that:

– a ∈ Chan is a channel;
– lt ∈ N ∪ {∞} is a deadline, where lt stands for local time;
– each vi in v is an expression built from data values and variables;
– each ui in u is a variable, and each Xi in X is a data type;
– l is a location or a location variable; and
– � is a special symbol used to state that a process is temporarily ‘stalled’

and will be re-activated after a time progress.

The only variable binding constructor is aΔlt?(u:X) thenP elseP ′ which binds the
variablesuwithinP (but not withinP ′).We use fv(P ) to denote the free variables
of a process P (and similarly for networks). For a process definition as in (1), we
assume thatfv(Pid) ⊆ {u1, . . . , umid

} and so the free variables ofPid areparameter
bound. Processes are defined up to alpha-conversion, and {v/u, . . .}P is obtained
from P by replacing all free occurrences of a variable u by v, etc, possible after
alpha-convertingP in order to avoid clashes. Moreover, if v andu are tuples of the
same length then {v/u}P denotes {v1/u1, v2/u2, . . . , vk/uk}P .

Intuitively, a process aΔlt !〈v〉 then P else P ′ attempts to send a tuple of
values v over channel a for lt time units. If successful, it continues as process P ;
otherwise it continues as process P ′. Similarly, aΔlt?(u:X) then P else P ′ is a
process that attempts for lt time units to input a tuple of values of type X
and substitute them for the variables u. Mobility is implemented by a process
goΔlt l then P which moves from the current location to the location l within
lt time units. Note that since l can be a variable, and so its value is assigned
dynamically through the communication with other processes, migration actions
support a flexible scheme for the movement of processes from one location to
another. Processes are further constructed from the (terminated) process 0 and
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Table 1. TiMo syntax

Processes P ::= aΔlt !〈v〉 then P else P ′
� (output)

aΔlt?(u:X) then P else P ′
� (input)

goΔlt l then P � (move)

P | P ′
� (parallel)

0 � (termination)

id(v) (recursion)

�P (stalling)

Located processes L ::= l[[P ]]

Networks N ::= L � L | N

parallel composition P |P ′. A located process l[[P ]] specifies a process P running
at location l, and networks are composed out of located processes. A network N
is well-formed if the following hold:

– there are no free variables in N ;
– there are no occurrences of the special symbol � in N ;
– assuming that id is as in the recursive equation (1), for every id(v) occurring

in N or on the right hand side of any recursive equation, the expression vi is
of type corresponding toX id

i (where we use the standard rules of determining
the type of an expression).

The set of processes is denoted by P , the set of located processes by L, and the
set of networks by N .

By delaying the migration to another location, we can model in a simple way
the movement time of processes within the network which is, in general, outside
the control of a system designer.

2.2 Semantics

The first component of the operational semantics of TiMo is the structural
equivalence ≡ on networks; it is the smallest congruence such that the first three
equalities in Table 2 hold. Its role is to rearrange a network in order to apply
the action rules which are also given in Table 2. Using the first three equalities
in Table 2, one can always transform a given network N into a finite parallel
composition of located processes of the form

l1[[P1]] | . . . | ln[[Pn]]
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Table 2. TiMo operational semantics

(NComm) N | N ′ ≡ N ′ | N
(NAssoc) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)

(NSplit) l[[P | P ′]] ≡ l[[P ]] | l[[P ′]]

(Move) l[[goΔlt l′ then P ]]
l′@l−−→ l′[[�P ]]

(Com)
v1 ∈ X1 . . . vk ∈ Xk

l[[aΔlt !〈v〉 then P else Q | aΔlt′?(u:X) then P ′ else Q′]]
a〈v〉@l−−−−→ l[[�P | �{v/u}P ′]]

(Call) l[[id(v)]]
id@l−−−→ l[[�{v/u}Pid]]

(Par)
N

λ−→ N ′

N | N ′′ λ−→ N ′ | N ′′

(Equiv)
N ≡ N ′ N ′ λ−→ N ′′ N ′′ ≡ N ′′′

N
λ−→ N ′′′

(Time)
N �−→l

N
√

l−−→ φl(N)

such that no process Pi has the parallel composition operator at its topmost
level. Each located process li[[Pi]] is called a component of N , and the parallel
composition is called a component decomposition of the network N . Note that
these notions are well defined since component decomposition is unique up to
the permutation of the components. This follows from the rule (Call) which
treats recursive definitions as function calls which take a unit of time. Another
consequence of such a treatment is that it is impossible to execute an infinite
sequence of action steps without executing any time actions.

Table 2 introduces two kinds of rules,

N
λ−→ N ′ and N

√
l−−→ N ′ .

The former is an execution of an action λ, and the latter a time step at location l.
In the rule (Time),N 
→lmeans that the rules (Call) and (Com)aswell as (Move)
with Δlt = Δ0 cannot be applied to N for location l. It can be noticed that in
rule (Time) we use negative premises, i.e., an activity is performed in the absence
of other actions. This is due to the fact that sequencing the evolution
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in time units can only be defined using negative premises, as done for sequencing
processes in [4,13]. Moreover, φl(N) is obtained by taking the component decom-
position ofN and simultaneously replacing all components:

l[[aΔltω then P else Q]] by

{
l[[Q]] if lt = 0

l[[aΔlt−1ω then P else Q]] otherwise

l[[goΔlt l′ then P ]] by l[[goΔlt−1l′ then P ]]

whereω stands for !〈v〉 or ?(u:X).After that, all the occurrences of the symbol� in
N are erased since processes that were unfolded or interacted with other processes
or migrated need to be activated (note that the number of the symbols � to be
erased cannot exceed the number of the components of the network).

The rules of Table 2 express executions of individual actions. A complete
computational step is captured by a derivation of the form

N
Λ@l
===⇒ N ′ ,

where Λ = {λ1, . . . , λm} (m ≥ 0) is a finite multiset of actions for some location l
(i.e., actions λi of the form l′@l or a〈v〉@l or id@l) such that

N
λ1−→ N1 . . . Nm−1

λm−−→ Nm

√
l−−→ N ′ .

That means that a derivation is a condensed representation of a sequence of
individual actions followed by a clock tick, all happening at the same location.
Intuitively, we capture the cumulative effect of the concurrent execution of the
multiset of actions Λ at location l. If there is only a time progression at a

location l, we write N
∅@l
==⇒ N ′.

In terms of executing TiMo specifications on an abstract machine, one can
imagine the latter as a device transforming well-formed networks into well-
formed networks. At any stage, the machine selects one location l as the ac-
tive one. Then, it executes all interprocess communications within location l as
well as all migrations with expired (zero) timers in a maximally concurrent way.
This is followed by the execution of arbitrarily many migrations with unexpired
timers at location l. Finally, one decrements all the top-most timers in all the
network components at location l which have not yet been involved in the current
computational step.

2.3 An Example

The TravelShop example discussed in [10] is rather involved, so in this paper we
use its simplified version to illustrate the operational semantics of TiMo. In the
UrgentTravel example a client process attempts to initiate an unspecified travel
process as soon as it receives a flight offer.

The scenario involves three locations and three processes. The role of each
location is as follows: office is a location where the client process starts its work,
and agency i (for i = 1, 2) is a travel agency where the client can find out about
the price of tickets. The role of each process is as follows:
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– client resides in the office location, and is determined to pay for a flight as
soon as it receives an offer from one of two travel agencies. After sending an
email to each agency, it awaits for the quickest response to initiate the travel
process.

– agent i (for i = 1, 2) resides in the agency i location, and replies to emails
received from clients.

We use timers in order to impose deadlines on the execution of communications
and migrations. Each location has its local clock which determines the timing
of actions executed at that location. The process specifications that capture the
essential features of the above scenario are:

agent i = aΔ5!〈offer i〉 then agent i else agent i

client = dΔ6?(y) then travel(y) else 0

| goΔ2agency1 then (aΔ1?(x) then (goΔ2office then dΔ1!〈x〉) else 0)

| goΔ3agency2 then (aΔ1?(x) then (goΔ3office then dΔ1!〈x〉) else 0)

Note that in the above definitions we slightly simplified the notation and used:

- dΔt!〈x〉 instead of dΔt!〈x〉 then 0 else 0
- dΔ6?(y) instead of dΔ6?(y:1..1000)
- aΔ1?(x) instead of aΔ1?(x:1..1000).

Table 3 shows a typical execution of the following network modelling our sce-
nario:

UrgentTravel = office[[client ]] | agency1[[agent1]] | agency2[[agent2]]

3 Timed Bisimulations in TiMo

In what follows, we define various behavioural equivalences for networks of lo-
cated processes. Similarly as in timed distributed π-calculus [7], we start by
extending the standard notion of strong bisimilarity to take into account timed
transitions.

Definition 1 (strong timed bisimulation)
Let R ⊆ N ×N be a binary relation on networks of processes.

1. R is a strong timed simulation (ST simulation) if

(N1, N2) ∈ R ∧ N1
ψ−→ N ′

1 implies ∃N ′
2 ∈ N : N2

ψ−→ N ′
2 ∧ (N ′

1, N
′
2) ∈ R .

where ψ is any action allowed by the operational semantics.
2. R is a strong timed bisimulation (ST bisimulation) if both R and R−1 are

strong timed simulations.
3. The strong timed bisimilarity ∼ is the union of all ST bisimulations.
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Table 3. Applying operational semantics

UrgentTravel

∅@office
=====⇒ ∅@office

=====⇒ ∅@office
=====⇒ ∅@agency1=======⇒ ∅@agency1=======⇒ ∅@agency2=======⇒

office [[dΔ4?(y) then travel (y) else 0

| goΔ0agency1 then (aΔ1?(x) then (goΔ2office then dΔ1!〈x〉) else 0)

| goΔ1agency2 then (aΔ1?(x) then (goΔ3office then dΔ1!〈x〉) else 0)]]

| agency1[[a
Δ4!〈offer 1〉 then agent1 else agent1]]

| agency2[[a
Δ5!〈offer 2〉 then agent2 else agent2]]

{agency1@office, agency2@office}@office
=========================⇒
{a〈offer1〉@agency1}@agency1===================⇒ {a〈offer2〉@agency2}@agency2===================⇒

office [[dΔ3?(y) then travel (y) else 0]]

| agency1[[agent1 | goΔ2office then dΔ1!〈offer1〉]]
| agency2[[agent2 | goΔ3office then dΔ1!〈offer2〉]]
{office@agency1}@agency1=================⇒

office [[dΔ3?(y) then travel (y) else 0 | dΔ1!〈offer1〉]]
| agency1[[a

Δ5!〈offer 1〉 then agent1 else agent1]]

| agency2[[agent2 | goΔ3office then dΔ1!〈offer2〉]]
{d〈offer1〉@office}@office
================⇒
office [[travel (offer1) | 0]]

| agency1[[a
Δ5!〈offer 1〉 then agent1 else agent1]]

| agency2[[agent2 | goΔ3office then dΔ1!〈offer2〉]]

Essentially, the above definition treats timed transitions just as any other transi-
tions, and therefore coincides with the original notion of bisimilarity for labelled
transition systems. It is easy to check that ∼ is an equivalence relation, and also
the largest strong timed bisimulation. From the point of view of the behaviour
of TiMo networks, a crucial result is that strong timed bisimularity can be
used to compare their evolutions in terms of complete computational steps of
well-formed networks.
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Theorem 1. Let N1 and N2 be two well-formed networks. Then:

N1 ∼ N2 ∧ N1
Λ@l
===⇒ N ′

1 implies ∃N ′
2 ∈ N : N2

Λ@l
===⇒ N ′

2 ∧ N ′
1 ∼ N ′

2 .

Together with the fact that, for every well-formed network N , N
Λ@l
===⇒ N ′ im-

plies that N ′ is also well-formed (see [11]), this means that the strong timed
bisimilarity is an adequate tool for comparing the behaviour of (well-formed)
networks.

The above definition of equivalence compares the evolution of whole networks,
but does not provide means for reasoning about equivalence of compositionally
defined networks. Consider, for example, two networks:

N1 = l[[aΔlt!〈1〉 then 0 else 0]] and N2 = l[[0]] .

Clearly, N1 ∼ N2 as both networks allow only the transition
∅@l
==⇒. However,

when we compose them with N = l[[aΔlt?(u : N) then 0 else 0]] then:

N1 | N 
∼ N2 | N

as the first composition can execute transition
{a〈1〉@l}@l
=======⇒ whereas the second

one can only execute
∅@l
==⇒.

To be able to reason about networks in a compositional way, one may augment
(only for the purpose of dealing with equivalences) the operational semantics of
processes with two additional rules relating to communication, which intuitively
represent individual evolutions of interacting processes:

(Snd) l[[aΔlt !〈v〉 then P else Q]]
a!〈v〉@l−−−−−→ l[[�P ]]

(Rcv)
v1 ∈ X1 . . . vk ∈ Xk

aΔlt?(u:X) then P else Q]]
a?〈v〉@l−−−−−→ l[[{v/u}P ]]

All the previous rules remain unchanged. In particular, N 
→l in the rule (Time)
still means that the rules (Call) and (Com) as well as (Move) with Δlt = Δ0
cannot be applied toN for location l; in other words the two new rules, (Snd) and
(Rcv), are not taken into account. The transitions of the extended operational

semantics will be denoted by
ψ−→e rather than

ψ−→.

Definition 2 (strong extended timed bisimulation)

Let R ⊆ N ×N be a binary relation on networks of processes.

1. R is a strong extended timed simulation (SET simulation) if

(N1, N2) ∈ R ∧ N1
ψ−→e N

′
1 implies ∃N ′

2 ∈ N : N2
ψ−→e N

′
2 ∧ (N ′

1, N
′
2) ∈ R .

where ψ is any action allowed by the extended operational semantics.
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2. R is a strong extended timed bisimulation (SET bisimulation) if both R and
R−1 are strong extended timed simulations.

3. The strong extended timed bisimilarity ∼e is the union of all SET bisimu-
lations.

The strong extended timed bisimilarity is compositional, and it implies strong
timed bisimilarity.

Theorem 2. Let N1, N
′
1, N2 and N ′

2 be well formed networks. Then:

N1 ∼e N2 and N ′
1 ∼e N ′

2 implies N1 | N ′
1 ∼e N2 | N ′

2 .

Proposition 1. Let N and N ′ be well formed networks. Then:

N ∼e N ′ implies N ∼ N ′ .

It therefore follows, in the context of Theorem 1, that strong extended timed
bisimilarity provides an adequate tool for comparing behaviours of composition-
ally defined networks considered up to certain time deadline.

4 Bounded Timed Bisimulations in TiMo

The above notion of equivalence takes into account the timed behaviour requir-
ing an exact match of transitions of two networks, for their entire evolution.
Sometimes these requirements are too strong. According to [18] where a similar
approach is presented, real-time distributed systems usually require a certain
behaviour within a given threshold of time units. That is why we will now re-
strict equivalences up-to some threshold time values specified individually for
each location l ∈ Loc, defining bounded timed equivalences.

In what follows we assume that Loc = {l1, . . . , ln}. We then introduce some
additional notations and terminology:

– T = {(t1@l1, . . . , tn@ln) | t1, . . . tn ∈ N} comprises tuples in which each loca-
tion li has an associated number of time units in which it will be observed.
We use t̂ to denote (t1@l1, . . . , tn@ln), and t̂li to denote ti.

– For every t̂ = (t1@l1, . . . , tn@ln) ∈ T and li ∈ Loc,

t̂� li = (t1@l1, . . . , ti−1@li−1, ti − 1@li, ti+1@li+1, . . . , tn@ln) .

Intuitively, t̂ � li records that one time unit has passed at location li, and
the remaining observation time has been updated accordingly.

– Any relation R ⊆ N × T×N is a timed relation over networks.
– The inverse of a timed relation R is

R−1 = {(N ′, t̂, N) | (N, t̂, N ′) ∈ R} .
– If R is a timed relation and t̂ ∈ T then the t̂-projection of R is:

R
̂t = {(N1, N2) | (N1, t̂, N2) ∈ R} .
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Definition 3 (strong bounded timed bisimulation)

Let R ⊆ N × T×N be a timed relation over N .

1. R is a strong bounded timed simulation (SBT simulation) if⎧⎨
⎩

(N1, t̂, N2) ∈ R

N1

√
l−−→ N ′

1 and t̂l > 0

⎫⎬
⎭ implies ∃N ′

2 ∈ N :

⎧⎨
⎩ N2

√
l−−→ N ′

2

(N ′
1, t̂� l, N ′

2) ∈ R

⎫⎬
⎭

and, for each λ of the form l′@l or a〈v〉@l or id@l,⎧⎨
⎩

(N1, t̂, N2) ∈ R
N1

λ−→ N ′
1 and t̂l > 0

⎫⎬
⎭ implies ∃N ′

2 ∈ N :

⎧⎨
⎩ N2

λ−→ N ′
2

(N ′
1, t̂, N

′
2) ∈ R

⎫⎬
⎭

2. R is a strong bounded timed bisimulation (SBT bisimulation) if both R and
R−1 are strong bounded timed simulations.

3. The strong bounded timed bisimilarity � is the union of all SBT bisimula-
tions.

One can see that � is the largest SBT bisimulation. Moreover, SBT bisimulations
enjoy properties similar to those satisfied by equivalence relations.

Proposition 2. The inverse, composition and union of SBT bisimulations are
SBT bisimulations, where the composition of timed relations R and R′ comprises
all triples (N, t̂, N ′′) for which there is N ′ ∈ N satisfying (N, t̂, N ′) ∈ R and
(N ′, t, N ′′) ∈ R′.

Strong bounded timed bisimilarity is such that being equivalent up-to a certain
time bound implies equivalence up-to any smaller time bound.

Proposition 3. Let N �
̂t N

′ be two well-formed networks. Then N �
̂t′ N

′, for
every t̂′ ∈ T satisfying t1 ≤ t′1, . . . , tn ≤ t′n.

Finally, we have a crucial result that strong bounded timed bisimularity can be
used to compare the complete computational steps of two networks.

Theorem 3. Let N1 and N2 be two well-formed networks. Then:{
N1 �

̂t N2

N1
Λ@l
===⇒ N ′

1 and t̂l > 0

}
implies ∃N ′

2 ∈ N :

{
N2

Λ@l
===⇒ N ′

2

N ′
1 �

̂t�l N
′
2

}

Similarly as strong time bisimilarity is not preserved by network composition,
strong bounded time bisimilarity is not preserved by network composition. How-
ever, as in the previous case, one can consider two additional rules, (Snd) and
(Rcv), and obtain the extended version of �

̂t.

Definition 4 (strong extended bounded timed bisimulation).

Let R ⊆ N × T×N be a timed relation over N .
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1. R is a strong extended bounded timed simulation (SEBT simulation) if⎧⎨
⎩

(N1, t̂, N2) ∈ R

N1

√
l−−→e N

′
1 and t̂l > 0

⎫⎬
⎭ implies ∃N ′

2 ∈ N :

⎧⎨
⎩ N2

√
l−−→e N

′
2

(N ′
1, t̂� l, N ′

2) ∈ R

⎫⎬
⎭

and, for each ψ of the form l′@l or a〈v〉@l or a!〈v〉@l or a?〈v〉@l or id@l,⎧⎨
⎩

(N1, t̂, N2) ∈ R
N1

ψ−→e N
′
1 and t̂l > 0

⎫⎬
⎭ implies ∃N ′

2 ∈ N :

⎧⎨
⎩ N2

ψ−→e N
′
2

(N ′
1, t̂, N

′
2) ∈ R

⎫⎬
⎭

2. R is a strong extended bounded timed bisimulation (SEBT bisimulation) if
both R and R−1 are strong extended bounded timed simulations.

3. The strong extended bounded timed bisimilarity is the union �e of all SEBT
bisimulations.

The strong extended bounded timed bisimilarity is compositional, and it implies
strong bounded timed bisimilarity.

Theorem 4. Let N1, N
′
1, N2 and N ′

2 be well formed networks and t̂ ∈ T. Then:

N1 �e
̂t
N2 and N ′

1 �e
̂t
N ′

2 implies N1 | N ′
1 �e

̂t
N2 | N ′

2 .

Proposition 4. Let N1 and N2 be well formed networks and t̂ ∈ T. Then:

N1 �e
̂t
N2 implies N1 �

̂t N2 .

It therefore follows, in the context of Theorem 3, that strong extended timed
bisimilarity provides an adequate tool for comparing behaviours of composition-
ally defined networks.

5 Relaxing Timed Bisimulations

In what follows we use the ‘up-to’ technique presented in [19] in the context of
bounded timed bisimulations. The standard proof technique to establish that N1

andN2 are bisimilar is to find a bisimulationR s.t.such that (N1, N2) ∈ R andR
is closed under transitions of the operational semantics; in particular, that the
derivatives (N ′

1, N
′
2) of (N1, N2) are also in R. Sometimes it is difficult to find

directly such a relation R. Instead, there is an useful alternative technique, the
so-called bisimulation ‘up-to’ some relation R′: for a relation R, which is not a
bisimulation, if (N1, N2) ∈ R, then one requires that the derivatives (N ′

1, N
′
2)

are in R′. Under certain conditions one can then establish that N1 and N2

are bisimilar. For such a technique, a general framework working for untimed
operational semantics was presented in [20]. We cannot make a direct use of that
framework, but we can adapt it in a straightforward manner to our setting.

We begin by introducing a notion of ‘progressing’ a timed relation towards
another timed relation.
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Definition 5 (strong progress)

Let R and R′ be two timed relations. Then R strongly progresses to R′ if⎧⎨
⎩

(N1, t̂, N2) ∈ R

N1

√
l−−→ N ′

1 ∧ t̂l > 0

⎫⎬
⎭ =⇒ ∃N ′

2 ∈ N :

⎧⎨
⎩ N2

√
l−−→ N ′

2

(N ′
1, t̂� l, N ′

2) ∈ R′

⎫⎬
⎭

and, for each λ of the form l′@l or a〈v〉@l or id@l,⎧⎨
⎩

(N1, t̂, N2) ∈ R
N1

λ−→ N ′
1 ∧ t̂l > 0

⎫⎬
⎭ =⇒ ∃N ′

2 ∈ N :

⎧⎨
⎩ N2

λ−→ N ′
2

(N ′
1, t̂, N

′
2) ∈ R′

⎫⎬
⎭

We denote this by R � R′.

The above definition is similar to that of SBT bisimulation, except that the
derivatives (N ′

1, t̂, N
′
2) and (N ′

1, t̂� l, N ′
2) must be in R′ rather than R.

Proposition 5. If R � R′ and R′ is an SBT bisimulation, then R is also an
SBT bisimulation.

Therefore, to establish that N1 �
̂t N2 it is enough to find a relation R with

(N1, t̂, N2) ∈ R which strongly progresses to a known SBT bisimulation R′. The
choice of R′ depends on the particular equivalence we are trying to establish.
One of the most common cases is when R′ = �. However, in general we may
not have a relation R′ known to be a bisimulation. Nevertheless, we may find
that R progresses to a relation R′ = F(R) for some mapping F over relations.
The idea is that if R progresses to F(R) and F satisfies certain conditions,
then R is included in �. Thus, to establish N1 �

̂t N2 we need to find such an F
whenever R contains (N1, t̂, N2).

Suitable mappings F are characterised in [20] as being strongly safe which,
in our context, means that for any timed relations R and R′, if R ⊆ R′ and
R � R′, then F(R) ⊆ F(R′) and F(R) � F(R′). More details about the
‘up-to’ techniques and safe functions can be found in [20].

6 Conclusion

This paper presents an approach in which local clocks operate independently,
and so processes at different locations evolve asynchronously. On the other hand,
processes operating at the same location evolve synchronously, and temporal
evolution of mobile processes is governed by independent local clocks and their
migration timeouts. A computational step captures the cumulative effect of the
concurrent execution of a group of actions executed at one location.

In process calculi such as distributed π-calculus, timed distributed π-calculus
and other formalisms with explicit migration operators, bisimulations are used
to compare behaviours of mobile processes evolving in distributed systems with
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explicit locations. Bisimulations are behavioural equivalences used to study the
properties of a concurrent system by verifying its bisimilarity with a system
known to enjoy those properties. Moreover, given the model of a system, bisim-
ulations can be used to consider equivalent simplified models.

In this paper, we defined behavioural equivalences between migrating process
in distributed systems in terms of local time and locations. In particular, the
strong timed bisimilarity can be used to compare the complete computational
steps of two networks. Moreover, two networks that are strong bounded timed
bisimilar up to certain deadlines t̂ remain equivalent provided that their execu-
tion is restricted to the time limit given by t̂. We also defined extended versions
of both equivalences which can support compositional reasoning.
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