

Lecture Notes in Computer Science 7273
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Holger Giese Grigore Rosu (Eds.)

Formal Techniques
for Distributed Systems

Joint 14th IFIP WG 6.1 International Conference, FMOODS 2012
and 32nd IFIP WG 6.1 International Conference, FORTE 2012
Stockholm, Sweden, June 13-16, 2012
Proceedings

13

Volume Editors

Holger Giese
Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482, Potsdam, Germany
E-mail: holger.giese@hpi.uni-potsdam.de

Grigore Rosu
University of Illinois at Urbana-Champaign
Department of Computer Science
201 N. Goodwin, Urbana, IL 61801, USA
E-mail: grosu@illinois.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30792-8 e-ISBN 978-3-642-30793-5
DOI 10.1007/978-3-642-30793-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012938642

CR Subject Classification (1998): D.2.4, D.2, I.2.2, D.3, F.3, F.4, I.2.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

In 2012, the seventh International Federated Conferences on Distributed Com-
puting Techniques (DisCoTec) took place in Stockholm, Sweden, during June
13–16. It was hosted and organized by KTH Royal Institute of Technology. The
DisCoTec 2012 federated conference was one of the major events sponsored by
the International Federation for Information Processing (IFIP) and it acted as
an umbrella event for the following conferences:

– The 14th International Conference on Coordination Models and Languages
(Coordination)

– The 12th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS)

– The 14th Formal Methods for Open Object-Based Distributed Systems and
32nd Formal Techniques for Networked and Distributed Systems (FMOODS/-
FORTE)

Together, these conferences cover the complete spectrum of distributed comput-
ing subjects ranging from theoretical foundations to formal specification tech-
niques to systems research issues.

At a plenary session of the conferences, Schahram Dustdar of Vienna Univer-
sity of Technology and Bengt Jonsson of Uppsala University gave invited talks.
There was also a poster session, and a session of invited talks from Swedish
companies involved in distributed computing: Spotify, Peerialism, and several-
nines.com. In addition to this, there were three workshops:

– The Third International Workshop on Interactions Between Computer Sci-
ence and Biology (CS2BIO) with keynote talks by Jane Hillston (University
of Edinburgh, UK) and Gianluigi Zavattaro (University of Bologna, Italy)

– The 5th Workshop on Interaction and Concurrency Experience (ICE) with
keynote lectures by Marcello Bonsague (Leiden University, The Netherlands)
and Ichiro Hasuo (Tokyo University, Japan)

– The 7th International Workshop on Automated Specification and Verifica-
tion of Web Systems (WWV) with a keynote talk by José Luiz Fiadeiro
(University of Leicester, UK)

I would like to thank the Program Committee Chairs of each conference and
workshop for their effort. The organization of DisCoTec 2012 was only possible
thanks to the dedicated work of the Publicity Chair Ivana Dusparic (Trinity
College Dublin, Ireland), the Workshop Chair Rui Oliveira (Universidade do
Minho, Portugal), the Poster Chair Sarunas Girdzijauskas (Swedish Institute
of Computer Science, Sweden), the Industry-Track Chair György Dán (KTH
Royal College of Technology, Sweden), and the members of the Organizing Com-
mittee from KTH Royal Institute of Technology and the Swedish Institute of

VI Foreword

Computer Science: Amir H. Payberah, Fatemeh Rahimian, Niklas Ekström,
Ahmad Al-Shishtawy, Martin Neumann, and Alex Averbuch. To conclude I want
to thank the sponsorship of the International Federation for Information Pro-
cessing (IFIP) and KTH Royal Institute of Technology.

June 2012 Jim Dowling

Preface

This volume contains the proceedings of the FMOODS/FORTE 2012 confer-
ence, a joint conference combining the 14th IFIP International Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS) and
the 32nd IFIP International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE) held during June 13–14, 2012, in Stockholm.

FMOODS/FORTE was hosted together with the 14th International Confer-
ence on Coordination Models and Languages (COORDINATION) and the 12th
IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS) by the federated conference event DisCoTec 2012, devoted to
distributed computing techniques and sponsored by the International Federation
for Information Processing (IFIP).

FMOODS/FORTE provides a forum for fundamental research on the theory
and applications of distributed systems. Of particular interest are techniques
and tools that advance the state of the art in the development of concurrent and
distributed systems and that are drawn from a wide variety of areas including
model-based design, component and object technology, type systems, formal
specification and verification and formal approaches to testing. The conference
encourages contributions that combine theory and practice in application areas of
telecommunication services, Internet, embedded and real-time systems, network-
ing and communication security and reliability, sensor networks, service-oriented
architecture, and Web services.

The FMOODS/FORTE 2012 program consisted of 16 regular papers which
were selected by the Program Committee (PC) out of 42 submissions. Each
submitted paper was evaluated on the basis of at least four detailed reviews
from 31 PC members and 56 external reviewers. The final decision of acceptance
was preceded by a thorough online discussion of the PC members. The selected
papers constituted a strong program of stimulating, timely, and diverse research.

We are deeply indebted to the PC members and external reviewers for their
hard and conscientious work in preparing 166 reviews. We thank Jim Dowl-
ing, the DisCoTec General Chair, for his support, and the FMOODS/FORTE
Steering Committee for their guidance. Our gratitude goes to the authors for
their support of the conference by submitting their high-quality research works.
We thank the providers of the EasyChair conference tool that was a great help
in organizing the submission, the reviewing process, and the production of the
proceedings.

April 2012 Holger Giese
Grigore Rosu

Organization

Program Committee

Luciano Baresi DEI - Politecnico di Milano, Italy
Saddek Bensalem VERIMAG, France
Dirk Beyer University of Passau, Germany
Roberto Bruni Università di Pisa, Italy
John Derrick University of Sheffield, UK
Juergen Dingel Queen’s University, Canada
José Luiz Fiadeiro University of Leicester, UK
Robert France Colorado State University, USA
Holger Giese Hasso-Plattner-Institut, Germany
Susanne Graf Universite Joseph Fourier / CNRS /

VERIMAG, France
Klaus Havelund NASA/JPL, USA
Mark Hills Centrum Wiskunde en Informatica,

The Netherlands
Gerard Holzmann NASA/JPL, USA
Einar Broch Johnsen University of Oslo, Norway
Alexander Knapp Universität Augsburg, Germany
Antónia Lopes University of Lisbon, Portugal
Dorel Lucanu Alexandru Ioan Cuza University, Romania
Peter Müller ETH Zürich, Switzerland
Uwe Nestmann Technische Universität Berlin, Germany
Peter Olveczky University of Oslo, Norway
Doron Peled Bar Ilan University, Israel
Patrizio Pelliccione University of L’Aquila, Italy
Alexandre Petrenko CRIM, Canada
Arend Rensink University of Twente, The Netherlands
Grigore Rosu University of Illinois at Urbana-Champaign,

USA
Bernhard Rumpe RWTH Aachen University, The Netherlands
Vlad Rusu INRIA, France
Ketil Stoelen SINTEF, Norway
Heike Wehrheim University of Paderborn, Germany
Michael Whalen University of Minnesota, USA
Elena Zucca DISI - University of Genova, Italy

X Organization

Additional Reviewers

Abraham, Erika
Ancona, Davide
Arusoaie, Andrei
Axelsen, Holger Bock
Bae, Kyungmin
Becker, Steffen
Bocchi, Laura
Boström, Pontus
Ciobaca, Stefan
Combaz, Jacques
Delzanno, Giorgio
Duggan, Jerry
Erdogan, Gencer
Giachino, Elena
Gonnord, Laure
Griesmayer, Andreas
Göthel, Thomas
Haidar, May
Hallal, Hesham
Hansen, Hallstein A.
Heckel, Reiko
Helouet, Loic
Hermerschmidt, Lars
Kassios, Ioannis
Kurpick, Thomas
Lanese, Ivan
Legay, Axel
Lluch Lafuente, Alberto

Lund, Mass Soldal
Merro, Massimo
Merz, Stephan
Montesi, Fabrizio
Mostrous, Dimitris
Mueller, Klaus
Noll, Thomas
Omerovic, Aida
Phillips, Iain
Piterman, Nir
Refsdal, Atle
Ridge, Tom
Russo, Alejandro
Sammartino, Matteo
Schlatte, Rudolf
Schneider, Sven
Schremmer, Alexander
Seehusen, Fredrik
Solhaug, Bjørnar
Stolz, Volker
Summers, Alexander J.
Taylor, Ramsay
Timm, Nils
Ulrich, Andreas
Vogler, Walter
Willemse, Tim
Wortmann, Andreas
Ziegert, Steffen

Table of Contents

A Reversible Abstract Machine and Its Space Overhead 1
Michael Lienhardt, Ivan Lanese, Claudio Antares Mezzina, and
Jean-Bernard Stefani

A Small Model Theorem for Rectangular Hybrid Automata
Networks . 18

Taylor T. Johnson and Sayan Mitra

Analysis of May-Happen-in-Parallel in Concurrent Objects 35
Elvira Albert, Antonio E. Flores-Montoya, and Samir Genaim

Behavioural Equivalences over Migrating Processes with Timers 52
Bogdan Aman, Gabriel Ciobanu, and Maciej Koutny

Checking Soundness of Business Processes Compositionally Using
Symbolic Observation Graphs . 67

Kais Klai and Jörg Desel

Beyond Lassos: Complete SMT-Based Bounded Model Checking for
Timed Automata . 84

Roland Kindermann, Tommi Junttila, and Ilkka Niemelä

Conformance Testing of Boolean Programs with Multiple Faults 101
Pavithra Prabhakar and Mahesh Viswanathan

Knowledge-Based Distributed Conflict Resolution for Multiparty
Interactions and Priorities . 118

Saddek Bensalem, Marius Bozga, Jean Quilbeuf, and Joseph Sifakis

Modelling Probabilistic Wireless Networks (Extended Abstract) 135
Andrea Cerone and Matthew Hennessy

Noninterference via Symbolic Execution . 152
Dimiter Milushev, Wim Beck, and Dave Clarke

Defining Distances for All Process Semantics . 169
David Romero Hernández and David de Frutos Escrig

Secure Multi-Execution through Static Program Transformation 186
Gilles Barthe, Juan Manuel Crespo, Dominique Devriese,
Frank Piessens, and Exequiel Rivas

XII Table of Contents

Synchronous Interface Theories and Time Triggered Scheduling 203
Benôıt Delahaye, Uli Fahrenberg, Thomas A. Henzinger,
Axel Legay, and Dejan Ničković

TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for
Testing Actor Programs . 219

Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel
Legay, Darko Marinov, and Gul Agha

Verification of Ad Hoc Networks with Node and Communication
Failures . 235

Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro

Verification of Timed Erlang Programs Using McErlang 251
Clara Benac Earle and Lars-Åke Fredlund

Author Index . 269

A Reversible Abstract Machine

and Its Space Overhead�

Michael Lienhardt1, Ivan Lanese1,
Claudio Antares Mezzina2, and Jean-Bernard Stefani3

1 Focus Team, University of Bologna/INRIA, Italy
{lienhard,lanese}@cs.unibo.it
2 SOA Unit, FBK, Trento, Italy

mezzina@fbk.eu
3 INRIA Grenoble-Rhône-Alpes, France

jean-bernard.stefani@inria.fr

Abstract. We study in this paper the cost of making a concurrent pro-
gramming language reversible. More specifically, we take an abstract
machine for a fragment of the Oz programming language and make it
reversible. We show that the overhead of the reversible machine with
respect to the original one in terms of space is at most linear in the num-
ber of execution steps. We also show that this bound is tight since some
programs cannot be made reversible without storing a commensurate
amount of information.

1 Introduction

There has recently been renewed interest in the notion of reversible computa-
tion [4] and new studies initiated on reversible programming languages [7,12,18].
This is sparked by the potential usefulness of reversible computation in a num-
ber of areas, including low-power computation [10], quantum computing [1] and
building recoverable systems, typically using some form of undo [5].

In a previous paper [12], we have studied how to make the higher-order π-
calculus (HOπ) reversible, i.e. how to equip this small paradigmatic concurrent
higher-order language with a reduction semantics that comprises both forward
steps (the usual reductions of HOπ) and backward ones, which precisely undo
previous forward reductions. Specifically, if M,N are two reversible HOπ pro-
gram configurations and M can reduce to N in one forward step, noted M � N ,
then N can reduce to M in one backward step, noted N � M . The paper also
presented a faithful encoding of reversible HOπ into HOπ, which can be seen as
a first step towards understanding how to implement such a reversible language.
This encoding, however, was quite wasteful in terms of resources, leading in

� This work has been partially supported by the French National Research Agency
(ANR), project REVER n. ANR 11 INSE 007.

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 1–17, 2012.
c© IFIP International Federation for Information Processing 2012

2 M. Lienhardt et al.

particular to a potential space overhead, compared to standard (forward only)
HOπ executions, which can be exponential in the number computation steps.1

In this paper we initiate a study of the implementation of a reversible higher-
order concurrent language and of its attendant costs. We start with a subset of
the Oz kernel programming language [16]. This fragment of Oz, called μOz, is
very close to HOπ, and its formal operational semantics is specified as a simple
and rather classical stack-based abstract machine, itself directly inspired by the
abstract machine of the Oz kernel programming language, which provides an
interesting and well-known point of reference. We then define a reversible variant
of μOz by means of an extended abstract machine, and we prove (i) that this
new machine implements exactly the forward reductions of the initial one, and
(ii) that it indeed implements reversibility for μOz, as characterized above for
HOπ. Finally we study the space overhead that the reversible abstract machine
adds to a forward execution compared to the same execution carried out by the
μOz abstract machine. We prove that this overhead is at worst linear in the
number of execution steps, and that this linear upper bound is tight : we show
that some reversible μOz programs cannot execute with less than an amount
of additional information – required to allow reversing their execution – that is
linear in the number of execution steps. It would have been difficult to carry on
a similar analysis directly in HOπ, since there is no largely accepted abstract
machine for HOπ to be used as a reference. In fact, HOπ operational semantics
is not precise enough on the use of memory space to act as a reference in such
a context. To the best of our knowledge this is the first study of its kind. There
is work investigating the time and space complexity of simulating irreversible
computations by reversible ones e.g. [6,17], as well as recent work investigating
the compilation of a reversible sequential language [2], but we do not know of
work focusing as we do on the implementation or simulation of a reversible
concurrent language and the analysis of its space costs.

Outline. The paper is organized as follows. Section 2 presents the syntax and ab-
stract machine for μOz, the fragment of Oz we consider; Section 3 presents the re-
versible extension of the μOz abstract machine; Section 4 describes its

1 To explain this without going into details of our reversible HOπ, let us just mention
that a forward computation step in this calculus requires retaining in a so-called
memory the message a〈P 〉 and the receiver process a(X) � Q that participated in
it (in HOπ and its reversible variant the only – forward – computation steps are
message receipts). Thus the space overhead of a computation step in reversible HOπ
compared to standard HOπ is at least ‖P‖, the size of the payload of message a〈P 〉.
Now consider the following recursive programs: P = c(X) � P | a〈X | X〉 and
Q = a(X) � Q | c〈X | X〉. We have a〈R〉 | P | Q → P | Q | c〈R | R〉 so the space
overhead of this first step starting from a〈R〉 | P | Q is at least ‖R‖. On the second
step we have P | Q | c〈R | R〉 → P | Q | a〈R | R | R | R〉, so the space overhead of
this second step is at least 2‖R‖. By induction, one can see that the space overhead
associated with making the program a〈R〉 | P | Q reversible is at least 2n−1‖R‖,
where n is the number of computation steps taken from the initial state a〈R〉 | P | Q.

A Reversible Abstract Machine and Its Space Overhead 3

S ::= Statements
skip Empty statement

| S1 S2 Sequential composition

| let x = v in S end Variable declaration

| if x then S1 else S2 end Conditional statements

| thread S end Thread creation

| let x = c in S end Procedure declaration

| { x x1 . . . xn } Procedure call

| let x = NewPort in S end Port creation

| { Send x y } Send on a port

| let x = { Receive y } in S end Receive from a port

v ::= true | false Simple values
c ::= proc { x1 . . . xn } S end Procedure

Fig. 1. μOz Syntax

reversibility properties; Section 5 studies the overhead reversibility adds compared
to the μOz abstract machine; Section 6 discusses related work; and Section 7
concludes the paper.

2 The μOz Language

In this section we present the syntax and semantics of μOz, a strict but non-
trivial subset of Oz, to be extended with reversibility mechanisms in the next
sections. We define the operational semantics of μOz by specifying an abstract
machine for executing μOz programs which is directly inspired by the stack-
based abstract machine in Chapter 13 of [16]. We refer to [16] for a description
of the whole Oz language. We chose Oz because it came with a simple well
documented abstract machine, and this subset of Oz because it was very close
to HOπ. We do not know of a similarly simple stack-based abstract machine for
HOπ in the literature. We could of course have come up with our own abstract
machine for HOπ, but starting from on a non reversible abstract machine not
devised by us is more appealing.

The syntax of μOz is in Figure 1. μOz is a higher-order language with thread-
based concurrency and asynchronous communication via ports. For the sake of
simplicity, the only values we consider in μOz are booleans, ports and closures.
We eschew Oz logical variables in favor of simple immutable variables, i.e. read-
only variables that are initialized at the time of their declaration. Dealing with
the full Oz kernel programming language would not have posed more conceptual
difficulties but would have obscured the technical details. The statements in
μOz are fairly classical. Let us just point out that communication on a port, by
means of send and receive operations, is asynchronous and by way of a FIFO
queue. Variable declaration, procedure declaration, port creation and receiving
are binders. Specifically, x is bound in let x = v in S end, let x = c in S end,
let x = NewPort in S end, and let x = { Receive y } in S end.

4 M. Lienhardt et al.

T ::= Thread
〈〉 Null thread

| 〈S T 〉 Thread with statement

U, V ::= Task
0 No task

| T Thread

| U ‖ V Parallel composition

w ::= v | ξ Extended value
σ ::= Store

0 Empty store

| x = w Binding

| ξ : c Closure

| ξ : Q Port

| σ ‖ σ′
Conjunction

Q ::= Port queue
⊥ Empty queue

| x | Q;Q′
Sequence of variables

Fig. 2. μOz Runtime Syntax

S =α S′ ⇒ S ≡ S′ 〈(S1 S2) T 〉 ≡ 〈S1 〈S2 T 〉〉

Q1; (Q2;Q3) ≡ (Q1;Q2) Q3 Q;⊥ ≡ ⊥;Q

E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3 E ‖ 0 ≡ E E1 ‖ E2 ≡ E2 ‖ E1

Fig. 3. μOz Structural Congruence

Runtime Syntax. To describe the abstract machine defining μOz semantics we
need a runtime syntax defining tasks and threads, used for statement execution,
port queues, for communication, and the store. The runtime syntax of μOz is
presented in Figure 2. Tasks are a parallel composition of threads. Threads are
stacks of statements. The store (or heap) is a conjunction of bindings, closures,
and ports (essentially implemented as named FIFO queues).

Structural Congruence. We consider tasks, threads, statements and the store up
to a structural congruence relation. Structural congruence, written ≡, is defined
as the smallest congruence that validates the rules presented in Figure 3, where
=α stands for equality up to α-conversion. We write E for an execution term,
i.e. either a task U or a store σ. The neutral element of concatenation for queues
is ⊥.

Reduction Rules. The μOz semantics is defined as a reduction relation, noted
→, between configurations of the form (U, σ). To follow Oz notation, the relation
→ is defined by a set of rules of the form below, specifying that (U, σ) reduces
to (U ′, σ′) if condition G is satisfied:

A Reversible Abstract Machine and Its Space Overhead 5

R:skp
〈skip T 〉 T

0 0

R:var
〈let x = v in S end T 〉 〈S{x

′

/x} T 〉

0 x′ = v
if x′ fresh

R:npr
〈let x = c in S end T 〉 〈S{x

′

/x} T 〉

0 x′ = ξ ‖ ξ : c
if x′, ξ fresh

R:npt
〈let x = NewPort in S end T 〉 〈S{x

′

/x} T 〉

0 x′ = ξ ‖ ξ : ⊥
if x′, ξ fresh

R:if1
〈if x then S1 else S2 end T 〉 〈S1 T 〉

x = true x = true

R:if2
〈if x then S1 else S2 end T 〉 〈S2 T 〉

x = false x = false

R:nth
〈thread S end T 〉 T ‖ 〈S 〈〉〉

0 0

R:pc
〈{ x x1 . . . xn } T 〉 〈S{x1/y1} . . . {

xn/yn} T 〉

x = ξ ‖ ξ : proc { y1 . . . yn } S end x = ξ ‖ ξ : proc { y1 . . . yn } S end

R:snd
〈{ Send x y } T 〉 T

x = ξ ‖ ξ : Q x = ξ ‖ ξ : y;Q

R:rcv
〈let x = { Receive y } in S end T 〉 〈S{x

′

/x} T 〉

y = ξ ‖ ξ : Q; z ‖ z = w y = ξ ‖ ξ : Q ‖ z = w ‖ x′ = w
if x′ fresh

Fig. 4. μOz Abstract Machine Semantics

U U ′

σ σ′ if G

The reduction relation → is closed under evaluation contexts, and is defined
modulo structural congruence. We capture this with the notion of evaluation-
closed relation.

Definition 1. A relation R between configurations is said to be evaluation-
closed if it satisfies the following inference rules:(

U U ′

σ σ′ ⇒ U ‖ Uk U ′ ‖ Uk

σ ‖ σk σ′ ‖ σk

)
(
U1 ≡ U ′

1 ∧ U2 ≡ U ′
2

σ1 ≡ σ′
1 ∧ σ2 ≡ σ′

2

)
∧ U1 U2

σ1 σ2
⇒ U ′

1 U ′
2

σ′
1 σ′

2

Intuitively, the first rule corresponds to closure under evaluation contexts (par-
allel composition of threads), while the second rule is closure under structural
congruence.

6 M. Lienhardt et al.

We define the reduction relation → to be the smallest evaluation-closed rela-
tion on configurations that validates the rules in Figure 4.

Rule R:var creates a new binding x′ = v in the store. Also, x′ is substituted
for x in the scope S to avoid variable capture. Rule R:npr is similar, but deals
with closures. The closure c is assigned a fresh name ξ, and the name is bound to
the fresh variable x′. Similarly, rule R:npt creates a new port, and initializes the
queue to ⊥. Rule R:nth creates a new thread. Rule R:pc executes a procedure
call, substituting the actual parameter variables for the formal ones in the code
to be executed. Rule R:snd performs a send, by enqueuing a variable in the cor-
responding queue. Rule R:rcv performs a receive, dequeuing the corresponding
element z and fetching its value w. The value w is assigned to the fresh variable
x′ that substitutes the formal variable x.

3 A Reversible Abstract Machine for μOz

In this section we extend the μOz abstract machine presented in Section 2 to
make it reversible. Since our language is concurrent, we aim at defining a causally
consistent form of reversibility [7], where the execution can go back to any state
that could have been reached in the forward execution by changing the order of
execution of concurrent steps. We start by extending μOz runtime syntax.

μOz Reversible Runtime Syntax. The runtime syntax used in the definition of
μOz reversible semantics is in Figure 5.

With respect to μOz runtime syntax (Figure 2) we now consider extended
stacks C, which may also contain the scope delimiter esc as a statement. This is
needed to reverse the let and if statements, as well as procedure calls. Consider
for instance the case of procedure calls: esc is needed to find out where the
procedure code ends (the body of the procedure should be removed to reverse
the call) and the caller code begins (the caller code should be preserved).

Threads now have a name t (which is unique) and a history H , and execute
an extended statement stack C. The history stores information about executed
statements. Note that sent variables are actually stored in the queue, not in the
history. Also, for an if statement just the discarded branch has to be stored,
since the other one is available in the thread code. History is needed also inside
ports, to remember the order of communications.

Structural congruence. Structural congruence has to be extended from threads
T to extended stacks C, and from store σ to store θ. The rules are however the
same as in Figure 3.

Reduction Rules. We define the two reduction relations � (forward execution)
and � (backward execution) to be the smallest evaluation-closed relations that
validate the rules presented in Figure 6 and Figure 7, respectively. In the rules
and in the following, we will abbreviate a sequence (possibly empty) of variables

A Reversible Abstract Machine and Its Space Overhead 7

C ::= Extended stack
〈〉 Null stack

| 〈S C〉 Stack with statement

| 〈esc C〉 Stack with scope

M,N ::= Task
0 No task

| t[H]C Thread

| M ‖ N Parallel composition

H ::= History
⊥ Empty history

| skip Executed a skip

| H H ′
Sequential composition

| ↑ x Sent on port x

| ↓ x(y) Received y from port x

| ∗x Created variable x

| { x x1 . . . xn } Called procedure x

| ∗t Created thread t

| if(x)S Executed an if statement

| esc Scope statement

θ ::= Store
0 Empty store

| x = w Binding

| ξ : c Closure

| ξ : K|Kh Port

| θ ‖ θ′ Parallel composition

K ::= Message queue
⊥ Empty queue

| t :x | K;K′
Messages

Kh ::= Queue history
⊥ Empty queue history

| t :x, t′;Kh Message in queue history

Fig. 5. μOz Reversible Runtime Syntax

x1 . . . xn as (xi)
n
1 (with n ≥ 0). Similarly, we will abbreviate a sequence of sub-

stitutions {x1/y1} . . . {xn/yn} as({xi/yi})n1 . We define the reduction relation →vm

as →vm=� ∪�.
Rule R:fw:var stores ∗x′ in the history, meaning that x′ has been used as fresh

variable, and uses the scope delimiter esc to recall the scope of the binding. Rules
R:fw:npr and R:fw:npt are similar. In rule R:fw:npt the created queue comes with
an empty history ⊥. Rules R:fw:if1 and R:fw:if2 store the branch discarded by
the choice in the history. In rule R:fw:nth the new thread is given a fresh name
t′ and an empty history ⊥. The fresh name t′ is also stored in the history of the
creating thread. In rule R:fw:pc the name and actual parameters of the invoked
procedure are stored in the history. In rule R:fw:snd we store in the queue the
name of the thread sending the value, to avoid that a different thread takes
the value when rolling back. In rule R:fw:rcv the read value is also kept in the

8 M. Lienhardt et al.

R:fw:skp
t[H]〈skip C〉 t[H skip]C

0 0

R:fw:var
t[H]〈let x = v in S end C〉 t[H ∗ x′]〈S{x

′

/x} 〈esc C〉〉

0 x′ = v
if x′ fresh

R:fw:npr
t[H]〈let x = c in S end C〉 t[H ∗ x′]〈S{x

′

/x} 〈esc C〉〉

0 x′ = ξ ‖ ξ : c
if x′, ξ fresh

R:fw:npt
t[H]〈let x = NewPort in S end C〉 t[H ∗ x′]〈S{x

′

/x} 〈esc C〉〉

0 x′ = ξ ‖ ξ : ⊥|⊥
if x′, ξ fresh

R:fw:if1
t[H]〈if x then S1 else S2 end C〉 t[H if(x)S2]〈S1 〈esc C〉〉

x = true x = true

R:fw:if2
t[H]〈if x then S1 else S2 end C〉 t[H if(x)S1]〈S2 〈esc C〉〉

x = false x = false

R:fw:nth
t[H]〈thread S end C〉 t[H ∗ t′]C ‖ t′[⊥]〈S 〈〉〉

0 0
if t′ fresh

R:fw:pc
t[H]〈{ x (xi)

n
1 } C〉 t[H { x (xi)

n
1 }]〈S({xi/yi})

n
1 〈esc C〉〉

x = ξ ‖ ξ : proc { (yi)
n
1 } S end x = ξ ‖ ξ : proc { (yi)

n
1 } S end

R:fw:snd
t[H]〈{ Send x y } C〉 t[H ↑ x]C

x = ξ ‖ ξ : K|Kh x = ξ ‖ ξ : t :y;K|Kh

R:fw:rcv
t[H]〈let y = { Receive x } in S end C〉 t[H ↓ x(y′)]〈S{y

′

/y} 〈esc C〉〉

θ ‖ ξ : K; t′ :z|Kh θ ‖ ξ : K|t′ :z, t;Kh ‖ y′ = w

if y′ fresh ∧ θ � x = ξ ‖ z = w

R:fw:scp
t[H]〈esc C〉 t[H esc]C

0 0

Fig. 6. μOz Abstract Machine Forward Semantics

queue history, with information on who read it. Rule R:fw:scp is new, allowing
to record the scope delimiter esc in the history.

The backward rules in Figure 7 are in one to one correspondence with the
forward ones, and use the stored information to get back to the original state.
Notably, rules R:bk:var, R:bk:npr, R:bk:npt and R:bk:rcv go back to a term
which is not the starting one, but which is equivalent up to α-conversion. Also,
rules R:bk:var, R:bk:npr, R:bk:npt, R:bk:if1, R:bk:if2, R:bk:pc and R:bk:rcv ex-
ploit the scope delimiter esc to identify the scope of the statement to be reversed.
Note that the occurrence of esc in the rule is always matched by the nearest oc-
currence in the term. In rule R:bk:nth the ⊥ in the history of the second thread
ensures that the thread is rolled-back before its creation is rolled-back. The same
happens for ports in R:bk:npt.

A Reversible Abstract Machine and Its Space Overhead 9

R:bk:skp
t[H skip]C t[H]〈skip C〉

0 0

R:bk:var
t[H ∗ x]〈S 〈esc C〉〉 t[H]〈let x = v in S end C〉

x = v 0

R:bk:npr
t[H ∗ x]〈S 〈esc C〉〉 t[H]〈let x = c in S end C〉

x = ξ ‖ ξ : c 0

R:bk:npt
t[H ∗ x]〈S 〈esc C〉〉 t[H]〈let x = NewPort in S end C〉

x = ξ ‖ ξ : ⊥|⊥ 0

R:bk:if1
t[H if(x)S2]〈S1 〈esc C〉〉 t[H]〈if x then S1 else S2 end C〉

x = true x = true

R:bk:if2
t[H if(x)S1]〈S2 〈esc C〉〉 t[H]〈if x then S1 else S2 end C〉

x = false x = false

R:bk:nth
t[H ∗ t′]C ‖ t′[⊥]〈S 〈〉〉 t[H]〈thread S end C〉

0 0

R:bk:pc
t[H { x (xi)

n
1 }]〈S 〈esc C〉〉 t[H]〈{ x (xi)

n
1 } C〉

0 0

R:bk:snd
t[H ↑ x]C t[H]〈{ Send x y } C〉

x = ξ ‖ ξ : t :y;K|Kh x = ξ ‖ ξ : K|Kh

R:bk:rcv
t[H ↓ x(z)]〈S 〈esc C〉〉 t[H]〈let z = { Receive x } in S end C〉

z = w ‖ x = ξ ‖ ξ : K|t′ :y, t;Kh x = ξ ‖ ξ : K; t′ :y|Kh

R:bk:scp
t[H esc]C t[H]〈esc C〉

0 0

Fig. 7. μOz Abstract Machine Backward Semantics

4 Properties of the Reversible Abstract Machine

In this section we prove that the forward and backward semantics actually define
a causally consistent reversible version of μOz, following the lines of [7,12].

First of all we show that the reversible language is a conservative extension of
μOz, i.e. forward computations of our reversible machine are indeed a decorated
version of the μOz reductions. To this end we define a function, called erase,
which takes a reversible μOz configuration and erases all the information needed
only for reversibility purposes. The function is defined in Figure 8.

Lemma 1. Let (M, θ) and (N, θ′) be two reversible configurations such that
(M, θ)� (N, θ′). We have either

erase((M, θ)) → erase((N, θ′)) or erase((M, θ)) = erase((N, θ′))

Proof. By case analysis on the reduction rule applied. The equality case holds
for rule R:fw:scp only.

10 M. Lienhardt et al.

erase(〈〉) � 〈〉 erase(〈S C〉) � 〈S erase(C)〉 erase(〈esc C〉) � erase(C)

erase(0) � 0 erase(t[H]C) � erase(C)

erase(M ‖ N) � erase(M) ‖ erase(N)

erase(x = w) � x = w erase(ξ : c) � ξ : c erase(ξ : K|Kh) � ξ : erase(K)

erase(θ ‖ θ′) � erase(θ) ‖ erase(θ′)

erase(⊥) � ⊥ erase(t :x) � x erase(K;K′) � erase(K); erase(K′)

Fig. 8. Function Erasing Reversibility Information

Lemma 2. Let (T, σ) and (M, θ) be a simple and a reversible configuration such
that erase((M, θ)) → (T, σ). Then, there exists a reversible configuration (N, θ′)
with erase((N, θ′)) = (T, σ) and such that (M, θ)�+ (N, θ′) where �+ denotes
one or more applications of �.

Proof. By case analysis on the rule applied. Each rule is matched by the corre-
sponding reversible rule. Auxiliary steps using rule R:fw:scp may be needed.

The Loop Lemma below ensures that every step can be reversed.

Lemma 3 (Loop Lemma). For all configurations (M, θ) and (M ′, θ′) the fol-
lowing double implication holds:

(M, θ)� (M ′, θ′) ⇔ (M ′, θ′)� (M, θ)

Proof. By case analysis on the used rule. Each rule R:fw:* is reversed by the
corresponding rule R:bk:* and viceversa. Relevant issues have been highlighted
in the description of the backward rules.

We call transition a pair of the form (M, θ) →vm (N, θ′), where (M, θ) and (N, θ′)
are two configurations. We indicate (M, θ) as the source of the transition and
(N, θ′) as the target of the transition. Two transitions are said to be coinitial if
they have the same source, cofinal if they have the same target, and composable
if the target of the first is the source of the second. A sequence of pairwise
composable transitions is called a trace. We let r and its decorated variants
range over transitions, τ and its decorated variants range over traces. If r is a
transition, we set r• as its inverse. A transition (M, θ) � (N, θ′) is said to be
forward, while a transition (M, θ) � (N, θ′) is said to be backward. Notions
of target, source and composability extend naturally to traces. We denote with
ε(M,θ) the empty trace with source (M, θ), and with τ1; τ2 the composition of
two composable traces τ1 and τ2.

A Reversible Abstract Machine and Its Space Overhead 11

In order to show that reversibility is causally consistent, we now define the
notion of concurrency in our language.

Definition 2 (Concurrent transitions)
Two coinitial transitions r1 = (M, θ) →vm (M1, θ1) and r2 = (M, θ) →vm

(M2, θ2) are said to be concurrent unless r1 and r2:

– are executed by the same thread;
– are sends or a send and an undo of a send to the same queue;
– are receives and/or undo of receives from the same queue;
– are an action of a thread and the undo of the thread creation;
– are a use of a variable and the undo of its creation;
– are a receive on a queue with one element and the undo of its send.

The definition of concurrent transitions enables the following result.

Lemma 4 (Square lemma). Given two coinitial concurrent transitions r1 =
(M, θ) →vm (M1, θ1) and r2 = (M, θ) →vm (M2, θ2), there exist two cofinal
transitions r2/r1 = (M1, θ1) →vm (N, θ3) and r1/r2 = (M2, θ2) →vm (N, θ3).

Proof. By case analysis on the form of transitions r1 and r2.

We finally define the notion of causal equivalence between traces, noted �, as the
least equivalence relation between traces closed under composition that obeys
the following rules (where r is forward):

r1; r2/r1 � r2; r1/r2 r; r• � εsource(r) r•; r � εtarget(r)

Following the same proof schema as that used in [7,12], we can now prove:

Theorem 1 (Causal consistency). Let τ1 and τ2 be coinitial traces, then τ1 �
τ2 if and only if τ1 and τ2 are cofinal.

Informally, this means that, if we consider different computations from the same
starting process, we never distinguish processes obtained by causal equivalent
computations, while we always distinguish processes obtained by computations
which are not causally equivalent, since they should have different backward
behaviors. Together, the loop lemma and the causal consistency theorem express
that our reversible machine correctly implements step wise reversibility (loop
lemma), and that it does so with the maximum amount of flexibility by not
distinguishing, as far as reversing a computation is concerned, between causally
equivalent traces (causal consistency theorem).

5 Memory Overhead

We turn now to the analysis of implementation costs. We prove two results in
this section. First, we show that the space overhead imposed by our reversible
abstract machine compared to the standard μOz machine is linear in the number
of steps of a given computation. Second, we show that this cannot be improved,
as far as the order of magnitude is concerned, since the amount of information
required to reverse certain μOz programs is indeed linear in the number of steps
in their executions.

12 M. Lienhardt et al.

size(skip) � 1 size(S1 S2) � size(S1) + size(S2)

size(let x = v in S end) � 3 + size(S)

size(if x then S1 else S2 end) � 2 + size(S1) + size(S2)

size(thread S end) � 1 + size(S)

size(let x = c in S end) � 2 + size(c) + size(S)

size(proc { x1 . . . xn } S end) � n+ 1 + size(S) size({ x x1 . . . xn }) � n+ 2

size(let x = NewPort in S end) � 3 + size(S) size({ Send x y }) � 3
size(let x = { Receive y } in S end) � 3 + size(S)

size((U,σ)) � size(U) + size(σ) size(U ‖ V) � size(U) + size(V)

size(σ ‖ σ′) � size(σ) + size(σ′) size(0) � 0 size(〈〉) � 1
size(〈S T 〉) � size(S) + size(T) size(x = w) � 3 size(ξ : c) � 2 + size(c)

size(ξ : Q) � 2 + size(Q) size(⊥) � 0 size(x) � 1
size(Q;Q′) � size(Q) + size(Q′)

Fig. 9. Size of a Simple Configuration

5.1 Overhead of the Reversible Abstract Machine

In order to measure the space overhead of our reversible abstract machine we
define a function size computing the size of a simple configuration (Figure 9)
and a function rsize computing the size of a reversible configuration (Figure 10).
Essentially the size of a term is computed as follows: we count 1 for the operator,
1 for each name it can have as argument, plus the size of subterms, if any.

Definition 3. The overhead of a reversible configuration (M, θ) is defined as:

overhead(M, θ) � rsize((M, θ)) − size(erase((M, θ)))

To show that the space overhead of our abstract machine is linear in the number
of reduction steps, we prove first that the maximal amount of information stored
in a single step (computed by function stsize defined in Figure 11) is bounded
by a constant during the execution of any fixed program:

Lemma 5. Let (U, σ) be a simple configuration. Then for all (U ′, σ′) such that
(U, σ) → (U ′, σ′) we have stsize((U ′, σ′)) ≤ stsize((U, σ)).

Proof. By case analysis on the reduction rule.

A Reversible Abstract Machine and Its Space Overhead 13

rsize(⊥) � 0 rsize(skip) � 1 rsize(H1 H2) � rsize(H1) + rsize(H2)

rsize(↑ x) � 2 rsize(↓ x(y)) � 3 rsize(∗x) � 2 rsize(∗t) � 2
rsize({ x x1 . . . xn }) � n+ 2 rsize(if(x)S) � 2 + size(S) rsize(esc) � 1

rsize((M, θ)) � rsize(M) + rsize(θ) rsize(0) � 0
rsize(M ‖ N) � rsize(M) + rsize(N) rsize(θ ‖ θ′) � rsize(θ) + rsize(θ′)

rsize(t[H]C) � 1 + rsize(H) + rsize(C) rsize(〈〉) � 1
rsize(〈esc C〉) � 1 + rsize(C) rsize(〈S C〉) � size(S) + rsize(C)

rsize(x = w) � 3 rsize(ξ : c) � 2 + size(c)

rsize(ξ : K|Kh) � 2 + rsize(K) + rsize(Kh) rsize(⊥) � 0 rsize(t :x) � 3
rsize(K;K′) � rsize(K) + rsize(K′) rsize(t :x, t′;Kh) � 4 + rsize(Kh)

Fig. 10. Size of a Reversible Configuration

stsize(S1 S2) � max(stsize(S1), stsize(S2)) stsize(skip) � 1
stsize(let x = v in S end) � max(2, stsize(S))
stsize(if x then S1 else S2 end) � 3 +max(size(S1)), size(S2))

stsize(thread S end) � max(3, stsize(S))
stsize(let x = c in S end) � max(3, stsize(c), stsize(S))
stsize(proc { x1 . . . xn } S end) � stsize(S) stsize({ x x1 . . . xn }) � n+ 3

stsize(let x = NewPort in S end) � max(3, stsize(S)) stsize({ Send x y }) � 4
stsize(let x = { Receive y } in S end) � max(7, stsize(S))

stsize((U, σ)) � max(stsize(U), stsize(σ)) stsize(0) � 0 stsize(〈〉) � 0
stsize(U ‖ V) � max(stsize(U), stsize(V)) stsize(x = w) � 0
stsize(σ ‖ σ′) � max(stsize(σ), stsize(σ′)) stsize(ξ : c) � stsize(c)

stsize(〈S T 〉) � max(stsize(S), stsize(T)) stsize(ξ : Q) � 0

Fig. 11. Maximal Overhead added by one Forward Step

We can now bound the overhead of a computation:

Lemma 6. Let (M, θ) and (N, θ′) be configurations such that (M, θ)� (N, θ′).
Then we have

overhead(N, θ′) ≤ overhead(M, θ) + stsize(erase((M, θ)))

14 M. Lienhardt et al.

Proof. By case analysis on the reduction rule.

Theorem 2. Assume (t[⊥]〈S 〈〉〉, 0) →n
vm (M, θ), where →n

vm denotes n →vm

steps. Then
overhead(M, θ) ≤ n · stsize(S)

Proof. By induction on the number of forward transitions, using Lemma 5 and
Lemma 6. There is no need to consider backward transitions, since they reduce
the overhead.

5.2 Lower Bound on the Cost of Reversing μOz Programs

In this section we show that to ensure causally consistent reversibility of μOz
programs we need a space overhead which is at least linear in the number of
execution steps. Specifically, we prove the following:

Theorem 3. The amount of information to be stored to ensure causally consistent
reversibility of μOz programs is at least linear in the number of execution steps.

Proof. Consider the following program:

let a = NewPort in
let x = true in
let y = false in
let p1 = proc {} {Send a x} { p1 } end in
let p2 = proc {} {Send a y} { p2 } end in
let p3 = proc {} let z = {Receive a} in { p3 } end end in

thread { p1 } end thread { p2 } end thread { p3 } end
end end end end end end

The program launches three threads p1, p2 and p3. The threads p1 and p2 send
messages over port a, while p3 receives them. Let us consider the set of traces
which start with the initial program configuration, and where all the sends are
performed before all the receives. Let us further restrict our attention to those
traces consisting only of sequences of sends where for each i ∈ {1, . . . , n} the
sends 2i− 1 and 2i are from different threads, for some natural number n. Call
Tn this set of traces. For a fixed n, in all the traces in Tn exactly n values true
and n values false are sent. Thus the same program state S is reached in all the
traces after all the values have been received, according to the standard (non-
reversible) abstract machine semantics, up to α-conversion of the names of the
receiving variables.

Now, all the traces in Tn above are coinitial, and they are not causally equiv-
alent since different send actions to the same queue are not concurrent. To have
a causally consistent rollback, coinitial traces which are not causally equivalent
should lead to different states (cf Theorem 1), thus the state S obtained must
be complemented with additional information c(t) to distinguish between the
different traces t ∈ Tn. Each trace t ∈ Tn is uniquely identified by the state of
the queue just before the first receive is executed by thread p3. We can encode
each pair of elements in the queue with one bit, since the only possible values

A Reversible Abstract Machine and Its Space Overhead 15

are (true, false) and (false, true). Thus, for a sequence of 2i sends we need
i bits for distinguishing the different possibilities. All the words of i bits can
be obtained, including the ones whose description is an incompressible string
according to Kolmogorov complexity theory [14], so this number of bits cannot
be improved. This is a lower bound on the size of information c(t) that has to
be stored to ensure causally consistent reversibility. The number of execution
steps of the computations described above is linear in the number of bits, since
a bounded number of steps is required to create the threads and perform two
sends and two receives.

The result above shows that space is needed for keeping track of communications.
A linear lower bound can also be proved using the number of created threads. In
fact, in a program involving many threads, one has to remember how many steps
each of them actually performed. If one chooses a program where the number of
steps performed by each thread is bounded, and the number of threads is linear
in the number of steps, a space bound which is linear in the number of steps can
be proved.

5.3 Discussion

A few remarks concerning our reversible abstract machine and our results are in
order. First, as should be clear from the abstract machine rules and the accom-
panying explanations, our reversibility machinery is based on an explicit history
mechanism, in contrast, say, to reversible operators used in [19]. This may seem a
naive choice, but our lower bound in Section 5.2 and the proof of the result there
suggest that, in presence of non-deterministic concurrency as is the case with μOz,
we have to resort to some sort of history, at least to be able to revert the effects of
communication (message sends and receives) and thread creation.

Second, we avoid the exponential blowup in space overhead that we had in [12].
The main reason for this is that in our histories we only store pointers to values
that are already present in the store, created by normal forward computation.
We can recreate in μOz the equivalent of the sample HOπ program given in the
Introduction, by creating appropriate additional closures corresponding to the
values R | R, R | R | R | R, etc. But the reversibility machinery would only add
pointers to these closures, created by normal forward computation, in thread
histories, thus avoiding the exponential overhead.

Finally, one can note that our result in Section 5.2 is fairly robust, since it
really is dependent only on the non-deterministic occurrences of non-concurrent
events such as putting messages in a port queue from different threads. Such
features are likely to be present in any physically distributed program or any
concurrent program performing I/O operations, regardless of the actual language
constructs used.

6 Related Work

Different works have dealt with designing reversible programming languages both
in the sequential and concurrent settings.

16 M. Lienhardt et al.

In the sequential setting there is no need to save causal information among
events. A framework for adding a general undo capability (and hence reversibil-
ity) to a programming language is presented in [13]. Computational history is
saved by means of undo-lists, storing previous states of the execution. In [3,19,2]
a reversible programming language, its virtual machine and compilation are
presented. The key aspect of this language is that all its constructs (includ-
ing assignments) are bijective (and hence reversible). In order to have reversible
assignments a syntactic restriction on the possible expressions is imposed. The
language is sequential and first-order, however, compared to our higher-order
concurrent one. [19] contains several references to reversible sequential languages.
A reversible abstract machine which implements the linear head reduction strat-
egy for λ-calculus is presented in [8], where it is related to the well-known Krivine
abstract machine.

In the concurrent setting, the works closer to ours are those dealing with pro-
gramming languages with transactional constructs, such as [15], which exploits a
form of undo to implement transactions (but only in a mono-processor setting),
or those dealing with explicit checkpointing mechanisms, such as [9], but which
implements an imperfect form of reversibility (e.g. rollbacks may not reach a
global checkpoint).

A general upper bound on the trade-off between space and time to simulate
irreversible computations by means of reversible ones is given in [6]. Moreover,
[6] also provides a lower bound on the extra storage space required by step-wise
reversible simulation of irreversible computations. Our lower bound on the space
overhead that the reversible mechanism requires with respect to a non-reversible
computation, is consistent with, though not reducible to, the one presented in [6].

7 Conclusion

We have presented a reversible abstract machine for a small higher-order concur-
rent programming language, μOz, which is a fragment of the Oz kernel program-
ming language. We have shown that its space overhead on a program execution,
compared to a non-reversible abstract machine for μOz directly inspired by the
Oz abstract machine, is at most linear in the number of execution steps. This
result cannot be much improved for we have also shown that reversing a μOz
program requires at least such an amount of information.

There are however a number of ways that our abstract machine can be im-
proved. Notice in particular that the information absolutely required for re-
versibility is related to potential sources of non-determinism in the execution of
μOz programs. One can thus aim to reduce the information stored pertaining to
deterministic steps, in particular trading space costs for time costs in backward
steps. This would also improve the time costs incurred by forward executions
in our abstract machine. It would also be interesting to see whether insights
on lambda-machines in [8] can be leveraged to optimize the deterministic and
sequential part of our machine.

A Reversible Abstract Machine and Its Space Overhead 17

On a different track, it would be interesting to study in more detail the costs
of implementing controlled reversibility as introduced in [11], and to see how we
can leverage the presence of explicit instructions for reversibility for different
time and space trade-offs.

References

1. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
Proc. of LICS 2005 (2005)

2. Axelsen, H.B.: Clean Translation of an Imperative Reversible Programming Lan-
guage. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer,
Heidelberg (2011)

3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible Machine Code and Its Abstract
Processor Architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

4. Bennett, C.H.: Notes on the history of reversible computation. IBM Journal of
Research and Development 32(1) (1988)

5. Brown, A.B., Patterson, D.A.: Undo for operators: Building an undoable e-mail
store. In: USENIX Annual Technical Conference, General Track. USENIX (2003)

6. Buhrman, H., Tromp, J., Vitányi, P.M.B.: Time and Space Bounds for Reversible
Simulation. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 1017–1027. Springer, Heidelberg (2001)

7. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

8. Danos, V., Regnier, L.: Reversible, irreversible and optimal lambda-machines.
Theor. Comput. Sci. 227(1-2) (1999)

9. Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally
consistent distributed state in unreliable environments. In: Proc. of POPL 2005.
ACM (2005)

10. Frank, M.P.: Introduction to reversible computing: motivation, progress, and chal-
lenges. In: 2nd Conference on Computing Frontiers. ACM (2005)

11. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.B.: Controlling Reversibility in
Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency
Theory. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

12. Lanese, I., Mezzina, C.A., Stefani, J.B.: Reversing Higher-Order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

13. Leeman, G.B.: A formal approach to undo operations in programming languages.
ACM Trans. Program. Lang. Syst. 8(1) (1986)

14. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer (2008)

15. Ringenburg, M.F., Grossman, D.: AtomCaml: first-class atomicity via rollback. In:
Proc. of ICFP 2005. ACM (2005)

16. Van Roy, P., Haridi, S.: Concepts, Techniques and Models of Computer Program-
ming. MIT Press (2004)

17. Vitányi, P.M.B.: Time, space, and energy in reversible computing. In: 2nd Confer-
ence on Computing Frontiers. ACM (2005)

18. Yokoyama, T.: Reversible computation and reversible programming languages.
Electr. Notes Theor. Comput. Sci. 253(6) (2010)

19. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Proc. of PEPM 2007. ACM (2007)

A Small Model Theorem for Rectangular Hybrid

Automata Networks

Taylor T. Johnson and Sayan Mitra

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

{johnso99,mitras}@illinois.edu

Abstract. Rectangular hybrid automata (RHA) are finite state ma-
chines with additional skewed clocks that are useful for modeling real-
time systems. This paper is concerned with the uniform verification of
safety properties of networks with arbitrarily many interacting RHAs.
Each automaton is equipped with a finite collection of pointers to other
automata that enables it to read their state. This paper presents a small
model result for such networks that reduces the verification problem for
a system with arbitrarily many processes to a system with finitely many
processes. The result is applied to verify and discover counterexamples
of inductive invariant properties for distributed protocols like Fischer’s
mutual exclusion algorithm and the Small Aircraft Transportation Sys-
tem (SATS). We have implemented a prototype tool called Passel relying
on the satisfiability modulo theories (SMT) solver Z3 to check inductive
invariants automatically.

Keywords: hybrid automata, parameterized verification, small model
theorem, uniform verification.

1 Introduction

Distributed systems are naturally modeled as a collection of interacting building-
blocks or modules . For example, distributed computing systems are built from
communicating computing processes, distributed traffic control protocols involve
the interaction of individual vehicles, and neural networks arise from the inter-
action of neurons. This paper presents a result for parameterized verification of
systems composed of such modules. For parameterized verification, a property
P and a module template Ai are given. The property must be independent of
the number and the identities of the modules, and we must verify that P holds
for any system built from arbitrarily many instances of Ai. That is,

∀ N ∈ N, A1‖A2‖ . . . ‖AN |= P, (1)

where N is not fixed and the precise meaning of the parallel composition of
operator ‖ depends on the particular modeling framework.

The rectangular hybrid automaton (RHA) modeling framework [5,29] com-
bines finite state machines with continuous variables. It has proven to be useful

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 18–34, 2012.
� IFIP International Federation for Information Processing 2012

A Small Model Theorem for Rectangular Hybrid Automata Networks 19

for modeling protocols and control logics with timers, and for approximating
more complex linear and nonlinear dynamics with piecewise constant dynamics.
Several subclasses of RHA have been identified for which safety verification is
decidable [29] and model checking tools have been developed [28,22,23].

In this paper, we consider parameterized verification of RHA networks where
modules communicate by reading one another’s state and through globally shared
variables. A RHA may read the variables of another RHA through the use of
a pointer variable tracking the identifier of that automaton. Such communica-
tion allows us to model distributed traffic control systems like the Small Air-
craft Transportation System (SATS) [1,34,38]. In SATS, aircraft communicate
by reading the valuations of discrete variables and continuous positions through
pointer variables. The pointer variables allow us to model systems where the
communication topology is dynamic. Thus, a variety of other distributed cyber-
physical systems (DCPS) can be modeled in this manner through the use of
pointer variables. For instance, in the automated highway system, a car may
only need to keep track of the positions of the cars immediately ahead and be-
hind it requiring two pointer variables, and similar scenarios arise in robotic
swarm protocols in one-dimensional lanes [30]. However, at a four-way intersec-
tion of single lane roads, an autonomous car may need to track the positions
of cars coming from every other direction, requiring three pointer variables. All
of these scenarios fit into the communication model and verification framework
developed in this paper.

To perform verification of an infinite number of such infinite-state RHA, we
develop and use a small model result for RHA networks. Small model theo-
rems are used to prove decidability of checking satisfiability of first-order logic
(FOL) formulas. The philosophy behind applying them in verification is to iden-
tify classes of systems and specifications with the small model property, which
reduces an infinite problem to a finite one. Many prefix classes of FOL were
shown to be decidable by showing that the class has the finite model property:
every satisfiable formula also has a finite model [11]. In many cases the proof of
the finite model property comes with an explicit bound on the size of the finite
structure that may satisfy (or violate) the property in question. For parameter-
ized verification, small model theorems provide a finite threshold No such that

if, for all N ≤ No, A
N Δ

= A1‖ . . . ‖AN |= P , then Equation 1 also holds.
The contributions of this paper are:

(a) A small model theorem for RHA networks that guarantees the existence
of a bound No, such that, if an instantiation of AN violating P exists for
some N > No, then ANo must also violate P . Thus, the verification problem
from Equation 1 is solved if, for all N ≤ No, no instantiation AN violates
P .

(b) The theorem is applied in a software tool called Passel that we use to auto-
matically check inductive invariants up to the bound No using the satisfia-
bility modulo theories (SMT) solver Z3 [16].

The input to Passel is a hybrid automaton specificationAi and a candidate safety
property P . Then, the bound No is computed from the syntactic description of

20 T.T. Johnson and S. Mitra

Ai and P . In addition to these hybrid protocols, we have also verified several
purely discrete algorithms (cache coherence protocols and mutual exclusion al-
gorithms like the simplified bakery algorithm) studied in [18,2]. The experiments
have indicated that it is feasible to develop automatic methods relying on our
small model result that apply both to real-time distributed systems and classic dis-
tributed algorithms. The success of our experiments in part relies on the strengths
of state-of-the-art SMT solvers like Z3, which allow for quantified formulas and
have quantifier elimination and instantiation procedures for real and integer arith-
metic [24,10].

Related Work. To the best of our knowledge, the automatic parameterized verifi-
cation problem has not been addressed previously for RHA, but there are several
works addressing parameterized verification for networks of the special subclass
of timed automata [4,3,25,14,21,13]. Parameterized verification of RHA networks
is useful to show, for instance, that for arbitrarily many aircraft participating in
a given distributed air traffic control protocol like the Small Aircraft Transporta-
tion System (SATS), no two aircraft ever collide [34,38,31]. We use a simplified
version of SATS as a case study to illustrate the concepts and results developed in
this paper. There are several partly manual works for parameterized verification
of timed and hybrid systems using theorem provers [20,34,38,35,36,32].

An overview of automatic approaches for parameterized verification of dis-
crete systems appears in [15, Ch. 15]. The parameterized verification problem is
in general undecidable, even for finite-state modules [7]. However, for restricted
classes of systems under various communications constraints, the problem has
been shown to be decidable. For instance, parameterized verification is decid-
able for safety properties of timed networks considered in [4,14]. However, each
timed automaton in the network is assumed to have either (a) a single real-
valued clock, or (b) any finite number of discrete-valued clocks [3]. If the timed
automata each have more than a single real-valued clock, then the problem is
undecidable [3]. The previous undecidability result prevents using the standard
initialized rectangular hybrid automata (IRHA)-to-timed automata conversion
algorithm [6,29] because it adds two clocks for every continuous variable evolving
with rectangular dynamics.

There are a variety of automatic and semi-automatic approaches to param-
eterized verification, but the most closely related are network invariants [40].
Finding invariants was automated with the invisible invariants approach [37,8],
which provides a heuristic method to automatically compute inductive invari-
ants, such as implemented in [9]. A small model theorem like the one presented
in this paper was introduced in [37] for a class of discrete parameterized sys-
tems with bounded data. Network invariants have previously been developed
for timed parameterized systems in [25]. Another automated approach for pa-
rameterized verification of timed systems is presented in [21]. One can view
cutoffs—an instantiation of the system that has all the behaviors of additional
compositions—like those in [26] like small model results, in that it is sufficient
to check the composition of a protocol up to the cutoff or small model bound to
verify the parameterized specification.

A Small Model Theorem for Rectangular Hybrid Automata Networks 21

2 Modeling Framework

In this section, we present the syntax for a class of assertions we call LH-
assertions , introduce a modeling framework for networks of rectangular hybrid
automata (RHA), and then show how inductive invariants for such networks can
be asserted in terms of LH-assertions. We will then develop the small model theo-

rem for LH-assertions. Let N ≥ 2 be a natural number. The set [N]
Δ
= {1, . . . , N}

is used for indexing RHA. For a set S, we define S⊥
Δ
= S ∪ {⊥}.

2.1 LH-Assertions

LH-assertions are built-up from constants, variables, arrays, and terms of sev-
eral different types. We introduce LH-assertions first because we will use LH-
assertions for specifying the syntactic description of individual RHA and RHA
networks below. Throughout, natural numbers are used for indexing arrays. The
numbers 1 and N are constants of type N and L = {L1, . . . , Lk} is a fixed
finite type. The signature of LH-assertions involves a finite number of vari-
ables of the following types: (a) Index variables : i1, . . . , ib : [N]⊥, (b) Discrete
variables : l1, . . . , lc : L, (c) Real variables : x1, . . . , xd, t1, . . . , td : R, (d) Index-
valued array variables : p̄1, . . . , p̄e : [N] → [N]⊥, (e) Discrete array variables :
l̄1, . . . , l̄f : [N] → L, and (f) Real array variables : x̄1, . . . , x̄g : [N] → R.

The grammar for constructing LH-assertions is defined as follows.

ITerm ::= 1 | N | ij | p̄k[ITerm]

DTerm ::= Lj | lk | l̄j [ITerm]

RTerm ::= xj | x̄k[ITerm]

An index term (ITerm) is either (a) one of the constants 1,N , or an index variable
ij, or (b) an index array p̄k referenced at 1, N , or ij . We use the notation ȳ[i] to
denote the valuation of the array ȳ at the value of the index variable i. Discrete
terms (DTerm) and real terms (RTerm) are defined as specified above. Here, Lj

is constant from L, lk is a discrete variable, l̄j is a discrete array, xj is a real
variable, and x̄k is a real array. Using these terms, formulas are defined next.

Atom ::= ITerm1 < ITerm2 | DTerm = Lk | a1RTerm1 + a2RTerm2 + a3 < 0

Formula ::= Atom | ¬Formula | Formula1 ∧ Formula2

Here, a1, a2, and a3 are real-valued numerical constants used to specify some real
linear arithmetic constraint, and Formula1 and Formula2 are shorter formulas that
are joined by boolean operators to obtain a longer formula. By combining the
boolean operators∧ and ¬ with the< operator, other comparison operators, such
as =, �=, ≤, >, and ≥, can be expressed in formulas for both indices and reals. For
example, p̄1[ij] = p̄2[ik] can be written as ¬(p̄1[ij] < p̄2[ik]) ∧ ¬(p̄2[ik] < p̄1[ij]).

Given a formula Formula, a sentence—a formula with no free variables—is
obtained by quantifying all the free index and real variables. An LH-assertion is a
sentence of the form ∀t1 ∈ R : ∀i1, . . . , ik ∈ [N] : ∃t2 ∈ R : ∃j1, . . . , jm ∈ [N] : ϕ,
where ϕ is a formula. We mention that t1 and t2 are only used in practice to

22 T.T. Johnson and S. Mitra

respectively model an elapse of time of length t1 and enforcing invariants for
all trajectories of lengths 0 ≤ t2 ≤ t1. We provide several example quantified
sentences and LH-assertions:

∀i, j : i �= j =⇒ (l̄[i] = l̄[j] =⇒ |x̄[j]− x̄[i]| > a), (2)

∀i, j : i = j ∨ l̄[i] = l̄[j] ∨ (x̄[j]− x̄[i]− a < 0) ∨ (x̄[i]− x̄[j]− a < 0), (3)

∀i ∃j : p̄[i] = j ∧ |x̄[i]− x̄[p̄[i]]| > a. (4)

We only use LH-assertions with t1 and t2 for checking continuous transitions as
shown in Subsection 3.1. Reading these assertions as statements about networks
of automata, the first one states that all automata with identical values of the
discrete variable l̄ have aminimum gap of a between the values of their x̄ variables.
The first assertion is an abbreviation of the second. The last assertion states every
automaton has a pointer p̄ to another automaton and that there is a minimum
separation of a between its x̄ value and the x̄ value of the automaton it points to.

Models for Sentences and Assertions. A model for an assertion provides
interpretation to the elements appearing in the assertion. Specifically, an n-model
M for an LH-assertion ψ is denoted M(n, ψ) and provides an interpretation of
each the free variables in ψ as follows:

– the constants 1 and N are assigned the values 1 and n,
– each index variable is assigned a value in the set {1, . . . , n},
– each discrete variable is assigned a value in L,
– each real variable is assigned a value in R, and
– each index, discrete, and real array is assigned respectively a {1, . . . , n}⊥-

valued, L-valued, and real-valued array of length [1, . . . , n].

For example, a 2-model for the assertion of Equation 4 is specified by the as-
signments N = 2, p̄ = 〈2, 1〉, and x̄ = 〈0, 10.0〉, assuming any choice for the
real constant a < 10. Given an assertion ψ and a model M(n, ψ), if ψ evalu-
ates to true with the interpretations of the free variables given by M(n, ψ), then
M(n, ψ) is said to satisfy ψ. If all models of ψ satisfy it, then the assertion is
said to be valid . If there exist models that satisfy ψ, then the assertion is said
to be satisfiable. Fixing a = 9.0, the above model satisfies assertion Equation 4,
but it is not valid because the 1-model p̄ = 〈1〉, x̄ = 〈10.0〉 does not satisfy it,
since |x̄[1]− x̄[1]| = 0 �> a.

2.2 Networks of Rectangular Hybrid Automata

Informally, in the context of networks of rectangular hybrid automata (RHA),
the arrays of discrete, real, and index variables respectively represent discrete,
continuous, and pointer variables of individual automata, while the ordinary
(non-array) variables represent globally shared variables1. In this section, we

1 A real-typed variable may be updated continuously and/or discretely, while variables
of other types are only updated discretely—we do not explicitly partition the sets of
real and real array variables for simplicity of presentation, but will mention it when
defining the semantics.

A Small Model Theorem for Rectangular Hybrid Automata Networks 23

introduce the syntax of a language for specifying networks of rectangular hybrid
automata, and then introduce the semantics of the language and show how the
networks can be modeled with LH-assertions.

A RHA Ai is a (possibly nondeterministic) finite state machine augmented
with skewed real-valued clocks. A RHA Network is a collection of RHA in which
the transitions of each RHA can depend on the the state of certain other RHA.
In particular, these certain other RHA are specified through the use of pointer
(index-valued) variables. In this paper, we consider RHA Networks that are
composed of arbitrarily many identical RHA. If a module contains several RHA
subsystems A1, B1, C1, . . ., the composition of these subsystems can be taken
first prior to composing the RHA network.

Syntax of Individual RHA. Syntactically, a RHA Ai for i ∈ [N] is specified
by the following components: (a) a list of variable names Vari, (b) a list of action
names Acti, (c) a list of mode names Modei, (d) an assertion Initi on Vari, (e) a
collection of precondition-effect statements—one for each element in Acti, and
(f) a collection of invariant-stop-flow statements—one for each element inModei.
For example, Figure 1 shows a complete specification for a RHA modeling the
simplified SATS air traffic control protocol.

Now we describe the syntactic structure of each of these components. Each
variable in Vari is associated with a type. The type can be (a) a finite set L,
(b) the set of indices (augmented with the special element ⊥) [N]⊥, or (c) the
set of reals . Each variable in Vari has a name of the form 〈variable name〉[i].
For example, l[i] : L, p[i] : [N]⊥, and x[i] : R, define discrete, index, and real
variables in Vari. Looking ahead, this naming convention will be consistent with
the syntax of a class of assertions called LH-assertions, that are used for defining
the RHA network. One array type variable l̄ will encode valuation of all the l[i]
variables in the network. That is, the state variables of a RHA network will be
represented by arrays of discrete, continuous, and index variables.

The initial assertion Initi is specified by a sentence involving the variables in
Vari. IN SATS for instance, Initi : l[i] = F ∧ next[i] = ⊥ ∧ last = ⊥, where
last is a global variable. For each action a ∈ Acti, the precondition—denoted by
pre(a, i)—is a sentence involving the variables in Vari with possibly additional
quantified index variables. The effect, denoted by eff(a, i), is a sentence involving
both the variables in Vari as well as their primed versions. For example, the
following are precondition-effect statements for some labels setPtr and chkGap:

pre(i, setPtr) : ∀j : l[i] = L1 ∧ (j �= i =⇒ j �= p[i]),

eff(i, setPtr) : ∃j : l′[i] = L2 ∧ x′[i] = 0 ∧ j �= i ∧ p′[i] = j,

pre(i, chkGap) : l[i] = L2 ∧ x[p[i]] > 20,

eff(i, chkGap) : l′[i] = L3 ∧ x′[i] = 0.

Note that the precondition and effect sentences may have additional quantified
index variables apart from i with the ∃ ∀ quantifier ordering.

For each modem ∈ Modei, the invariant—denoted by inv(m, i)—and the stop-
ping condition—denoted by stop(m, i)—are sentences involving the variables in

24 T.T. Johnson and S. Mitra

Vari with possibly additional quantified index variables. For each m ∈ Modei,
the flow statement associates two real constants with each real-valued, contin-
uously updated variable in Vari. For variable x[i], these constants are denoted
by lflowrate(m, i, x) and uflowrate(m, i, x). This allows for modeling the usual
rectangular dynamics flowrate(m, i, x) ∈ [a, b] for a ≤ b, where a equals the
lower rate and b equals the upper. If a = b, we say the dynamics are timed. For
example, for mode Base of SATS (see Figure 1),

inv(Base, i) : l[i] = B ∧ x[i] ≤ LB

stop(Base, i) : l[i] = B ∧ x[i] = LB

lflowrate(Base, i, x) : vmin ∧ uflowrate(Base, i, x) : vmax

so that flowrate(Base, i, x) ∈ [vmin, vmax].

2.3 Example: Simple Air Traffic Landing Protocol

We use a simplified version of the Small Aircraft Transportation System (SATS),
a distributed air traffic control protocol, as a running example for the remainder
of the paper [1,34,38,31]. SATS is a program aimed at increasing throughput at
small airports without air traffic controllers by allowing aircraft to communicate
between themselves along with a centralized communication component at the
airport used to determine a landing sequence order [1,39]. Aircraft in SATS
communicate by reading the continuous position of any aircraft immediately
ahead of it in the landing sequence, where the aircraft immediately ahead is
tracked using a pointer. The example is parameterized on the number of aircraft
involved in the landing attempt, and is naturally modeled as a RHA network.
The system models a single airport and N flying aircraft that are attempting to
land. After determining the landing sequence order from a centralized airport
management module (AMM) located at the airport—which we model using the
global shared variable last—the remainder of the protocol is decentralized and
each aircraft communicates with the aircraft immediately ahead of it (if one
exists) to determine if it is safe to attempt landing.

All aircraft begin in the Flying mode, and when an aircraft is ready to attempt
landing, it initiates the approach to the airport by making a discrete transition
to the Holding mode. The Holding mode physically represents that the aircraft is
flying in a cyclic holding pattern, and it is assumed the aircraft maintain a safe
separation in this mode. On entering Holding, an aircraft is either designated
as the first one in the landing sequence (and next[i] = ⊥), or the aircraft is
assigned the identifier of the last aircraft that began its approach to the runway
(and next [i] = last). Subsequently, an aircraft may nondeterministically transi-
tion from the Holding mode to the Base mode and is now physically approaching
the runway. The position of the ith aircraft is modeled using a single continu-
ous variable (x[i]) of real type, representing the position along a line measured
starting from the geographic location of the cyclic holding zone (that is, the
beginning of the base region). This transition is only enabled for aircraft i if
there is at least LS distance between its position x[i] and the position of the

A Small Model Theorem for Rectangular Hybrid Automata Networks 25

1 Var: l[i]:{F,H,B,R}, x[i]:R, next[i]:[N]⊥
Global Var: last:[N]⊥

3 Init: l[i] = F ∧next[i] = ⊥∧ last = ⊥
Mode: Fly, Holding, Base, Runway

5

Fly: Inv: l[i] = F
7 Flowrate: ẋ[i] = 0

9 Holding: Inv: l[i] = H
Flowrate: ẋ[i] = 0

11

Base: Inv: l[i] = B ∧ x[i] ≤ LB

13 Stop: x[i] = LB

Flowrate: ẋ[i] ∈ [vmin, vmax]
15

Runway: Inv: l[i] = R
17 Flowrate: ẋ[i] = 0

Act: FtoH, HtoB, BtoH, BtoR
20FtoH: Pre: l[i] = F

Eff: l′[i] = H ∧next′[i] = last ∧ last′ = i
22

HtoB: Pre: l[i] = H ∧ (next[i] = ⊥
24∨ l[next[i]]= B ∧ x[next[i]]≥ LS)

Eff: l′[i] = B ∧ x′[i] = 0
26

BtoH: Pre: l[i] = B

28Eff: l′[i] = H ∧ x′[i] = 0 ∧
(last
= i ⇒ next′[i] = last) ∧ last′ = i

30∧∀ j
= i (if next[j] = i then next′[j] =
⊥else next′[j] = next[j])

32

BtoR: Pre: l[i] = B ∧ x[i] ≥ LB ∧next[i]= ⊥
34Eff: l′[i] = R ∧ (last = i ⇒ last′ = ⊥)

∧∀ j
= i (if next[j] = i then next′[j] =
36⊥else next′[j] = next[j])

Fig. 1. RHA Ai for simplified SATS protocol

aircraft ahead of it, x[next [i]] (if one exists). Once in the Base mode, the aircraft
is approaching the runway and after traversing LB distance, the aircraft may
either (a) cancel the landing attempt and return to the cyclic holding pattern in
mode Holding, in which case it becomes the last aircraft in the sequence, or (b)
the aircraft may succeed in landing and set its mode to Runway.

SATS Properties. We checked the following properties for SATS with memory
and time required as indicated in Table 1. The properties specifying a safe sep-
aration are D and E. Note that we checked property D only for rectangular
dynamics (that is, Figure 1, line 14 is as written) and E only for timed dy-
namics (that is, the rectangular dynamics in Figure 1, line 14 are replaced by
ẋ[i] = 1). This is because SATS with rectangular dynamics does not satisfy E.
The properties are:

(A) ∀i ∈ [N] : l[i] = F ⇒ last �= i,
(B) ∀i, j ∈ [N] : next [j] = i ⇒ l[i] �= F ,
(C) ∀i, j ∈ [N] : l[i] = H ∧ next [j] = i ⇒ l[j] = H ,
(D) ∀i, j ∈ [N] : l[i] = B ∧ l[j] = B ∧ next [j] = i ⇒ x[i] ≥ LS + (vmax −

vmin)
LB−x[j]
vmin

, and
(E) ∀i, j ∈ [N] : i �= j ∧ l[i] = B ∧ l[j] = B ∧ next [j] = i ⇒ x[i]− x[j] ≥ LS.

2.4 Semantics of RHA Networks

Given the syntactic specification of a single RHA Ai, the semantic definition of a
RHA network, where arbitrarily many Ai’s execute in parallel, is obtained as fol-
lows. We note this is essentially N−1 parallel compositions like those considered
in [27]. For any N ∈ N, the automaton AN is the tuple 〈VN , QN , ΘN , DN , TN〉.
We define each of these components as follows.

26 T.T. Johnson and S. Mitra

VN is a set of variables, with a real array x̄1 corresponding to each real variable
x1 in the Vari list, an index array p̄1 corresponding to each index variable
p1 in the Vari list, and so on. Additionally, VN contains a set of global (non-
array) variables of assorted types, corresponding to the non-array variables
in the LH-assertions.

QN is the set of all possible valuations of the variables in VN . Elements of QN

are called states and are denoted by boldface v, v′, etc. At a state v, the
valuation of a particular array variable p̄ is denoted by v.p̄1, and v.g for some
non-array variable g in VN . The valuation of the variables in Vari at state v
is denoted by v[i]. Given a state v and a quantified sentence Sent involving
the arrays in VN and index variables, we say that v satisfies Sent iff fixing
the values of the variables in Sent yields an assertion that is valid. In that
case, we write v |= Sent.

ΘN ⊆ QN is called the set of initial states , and is the set of states that satisfy
the assertion Initi for every index i ∈ [N],

{v ∈ QN | ∀ i ∈ [N] : v[i] |= Initi}.

DN ⊆ QN ×QN is called the set of discrete transitions and is defined as follows:
(v,v′) ∈ DN iff:

∃ i ∈ [N] : ∃ a ∈ Acti : v |= pre(a, i) ∧ (v,v′) |= eff(a, i) ∧
∀ j ∈ [N] : j �= i ∧ j /∈ M =⇒ v′[j] = v[j],

where M is a (possibly empty) subset of [N] corresponding to any indices
(excluding i) of the valuations of array variables modified by the eff(a, i)
statement. For instance, in SATS (see Figure 1, line 31), if i transitions from
Base back to Hold, then if next[m] = i for any m �= i, then next′[m] = ⊥,
and M = {m}.

TN ⊆ QN × QN is called the set of trajectories . To define TN we first define
the relation flow(m,v[i], t) that returns a set of valuations v′[i], such that
for each x ∈ Vari, if x’s type is not real (or is real, but is only updated
discretely), then v′[i].x = v[i].x, but otherwise, v[i].x+ lflowrate(m, i, x)t ≤
v′[i].x ≤ v[i].x+ uflowrate(m, i, x)t. A pair (v,v′) ∈ TN iff:

∃t1 ∈ R≥0 : ∀i ∈ [N] : ∃m ∈ Modei : ∀t2 ∈ R≥0 : t2 ≤ t1∧
(flow(m,v[i], t2) |= inv(m, i) ∧ flow(m,v[i], t2) |= stop(m, i) ⇒ t2 = t1)

∧ v′[i] ∈ flow(m,v[i], t1).

Informally, a discrete transition from v to v′ models the discrete transition of a
particular RHA Ai by some action a ∈ Acti. The precondition of action a may
depend on the variables in Varj for j �= i. The effect is usually defined in terms
of the variables in Vari, but may also set variables in Varj if j is the valuation of
some index-valued variable of i. A trajectory models a transition from v to v′

that occurs over some interval of time with length t1. All the non-continuously
updated variables (discrete variables, pointers, and any real variable updated

A Small Model Theorem for Rectangular Hybrid Automata Networks 27

only discretely) remain unchanged. For each i ∈ [N] and each continuously
updated real variable x ∈ Vari, v[i].x must evolve to the valuations v′[i].x, in
exactly t1 time in some mode m ∈ Modei. All intermediate states along the
trajectory must also satisfy the invariant inv(m, i), and if an intermediate state
satisfies stop(m), then that state must be v′ (that is, the end of a trajectory).

The behavior of a network of RHA is defined as sequences of states that are
related by transitions and trajectories. An execution of AN is a sequence of states
v0,v1, . . . such that v0 ∈ ΘN , and for each index k appearing in the sequence,
if k is even then (vk,vk+1) ∈ TN , and otherwise (vk,vk+1) ∈ DN .

3 Small Model Theorem

We begin this section with the main small model result, Lemma 1, for LH-
assertions with the signature introduced in the previous section. Then we show
how inductive invariants for networks of RHAs can be encoded as LH-assertions.
Thus, for a specific inductive invariant I, Lemma 1 provides a threshold on size
of models, written n(I). If for all N ≤ n(I), I is an inductive invariant for AN ,
then I is indeed an inductive invariant for all N ∈ N. This makes it possible
to verify inductive invariants for parameterized networks of hybrid automata by
verifying I for a finite number of instances of AN .

Lemma 1. Let ψ be a LH-assertion of the form ∀t1 ∈ R ∀i1, . . . , ik ∈ [N]
∃t2 ∈ R ∃j1, . . . , jm ∈ [N] : ϕ, where ϕ is a quantifier-free formula involving
the index variables i1, . . . , ik, j1, . . . , jm, real variables t1 and t2, and global and
array variables in VN . Then, ψ is valid iff for all n ≤ N0 = (e + 1)(k + 2), ψ
is satisfied by all n-models, where e is the number of index array variables in ϕ
and k is the largest subscript of the universally quantified index variables in ψ.

Proof. We assume that all models of size n, for n ≤ (e + 1)(k + 2), satisfy ψ. It
suffices to show that ψ is valid. Suppose for the sake of contradiction that ψ is
not valid. Then there exists a model M of size n > (e + 1)(k + 2) that satisfies
¬ψ = ∃ t1, i1, . . . , ik : ∀t2, j1, . . . , jm : ¬ϕ. We will show that for any model of
size n > (e + 1)(k + 2), there exists a model of size n − 1 that contradicts the
assumption.

The n-model M assigns a real value to the variable t1 and values in {1, . . . , n}
to the index variables i1, . . . , ik (in addition to providing interpretations for
the other bounded variables and arrays). The values assigned to the universally
quantified variables t2, j1, . . . , jm in the modelM are not important, because any
value of these variables would satisfy ¬ψ. The set of values assigned to i1, . . . , ik
can contain at most k distinct values. Consider an index term with one of the
forms 1, N , or im, where im is an existentially quantified index variable in ¬ψ:
any such term can take at most k+2 distinct index values. Thus, an index array
term p̄[im] can take at most k + 2 distinct values. Since there are at most e
index arrays, the set of all possible index arrays and terms can take at most
(e + 1)(k + 2) distinct values. Therefore, there exists a value in {1, . . . , n}, say

28 T.T. Johnson and S. Mitra

u, that is not assigned to any index variable or to any of the referenced values
of the index arrays, in M .

Now, we define an (n − 1)-model M ′ by removing u from {1, . . . , n} and
shifting values appropriately. The constants n is interpreted as n− 1 in M ′. For
each index variable ij, if ij < u then we assign M ′(ij) = M(ij), and otherwise
we assign M ′(ij) = M(ij)−1. For each (index, discrete, or real) array z̄, for each
i ∈ {1, . . . , n− 1}, if i < u then we assign M ′(z̄[i]) = M(z̄[i]), and otherwise we
assign M ′(z̄[i]) = M(z̄[i+1]). Finally, it is routine to check that M ′ assigns the
same binary value to each Atom in ϕ as M , and therefore M ′ also satisfies ¬ψ.

3.1 Applying the Small Model Result to Check Inductive Invariants

For an automaton network AN , an invariant assertion is a logical sentence in-
volving the variables in VN (and possibly the global variables). In this paper we
will consider regular invariants in which (a) the indices of all the arrays are index
variables (and not constants), and (b) index variables can only be compared with
other index variables (not constants). Furthermore, we require the regular invari-
ants to have all the universal quantifiers precede the existential quantifiers. Thus,

a regular invariant is of the form ψ
Δ
= ∀ i1, . . . , ik ∈ [N] : ∃j1, . . . , jm ∈ [N] : ϕ,

where ϕ is a quantifier-free formula involving the index variables i1, . . . , ik,
j1, . . . , jm, and the global and array variables in VN .

In the case of SATS, the regular invariant specifying a safe separation of
aircraft is ∀i, j ∈ [N] : (i �= j∧l[i] = B∧l[j] = B∧next [j] = i)⇒ x[i]−x[j] ≥ LS .
That is, if there is an aircraft i attempting to land, the aircraft immediately
ahead of it is at least LS physical distance away.

In the remainder of this section, we show how inductive invariant assertions
for networks of RHA can be stated as LH-assertions. For the purposes of this
presentation we assume that there are no global variables. It can be checked in
a straightforward manner that these derivations hold for systems with global
variables. An assertion ψ is an invariant assertion for the parameterized network
AN if, for all N ∈ N,

(A) initiation: for each state v ∈ ΘN ⇒ v |= ψ,
(B) transition consecution: for each (v,v′) ∈ DN , v |= ψ ⇒ v′ |= ψ, and
(C) trajectory consecution: for each (v,v′) ∈ TN , v |= ψ ⇒ v′ |= ψ.

We derive an LH-assertion for each of the above conditions.
From the definition of the initial states, v ∈ ΘN iff ∀ i ∈ [N] : v[i] |=

Initi, where recall that Initi is a formula involving the variables in Vari. Thus,
condition A is equivalent to checking:

(∀ i ∈ [N] : Initi) ⇒ (∀ i1, . . . , ik ∈ [N] : ∃j1, . . . , jm ∈ [N] : ϕ)

Moving the quantifiers of ψ to the front, we obtain:

∀ i1, . . . , ik ∈ [N] : ∃ j1, . . . , jm ∈ [N] : (∀ i ∈ [N] : Initi ⇒ ϕ),

∀ i1, . . . , ik ∈ [N] : ∃ i, j1, . . . , jm ∈ [N] : (Initi ⇒ ϕ),

A Small Model Theorem for Rectangular Hybrid Automata Networks 29

which is in the required LH-assertion form.
From the definition of discrete transitions DN , condition B can be written:

(ψ ∧(∃h ∈ [N] : ∃a ∈ Act : pre(a, h) ∧ eff(a, h))

∧ ∀g ∈ [N] : g �= h ⇒ id(g)]) ⇒ ψ′.

Here id(g) is a shorthand for the formula
∧

x∈Varg
x′[g] = x[g] and ψ′ is the

formula obtained by replacing each variable in ψ with its primed version. Moving
the quantifier to the front and rearranging we obtain the LH-assertion:

∀h, a : ∃g :(ψ ∧ pre(a, h) ∧ eff(a, h) ∧ (g �= h ⇒ id(g)) ⇒ ψ′).

Exposing the quantifier in ψ and ψ′:

∀h, a :∃k : ((∀ i1, . . . , ik : ∃ j1, . . . , jm : ϕ) ∧ pre(a, h) ∧ eff(a, h)

∧ (g �= h ⇒ id(g)) ⇒ (∀ i′1, . . . , i
′
k : ∃ j′1, . . . , j

′
m : ϕ)).

Moving quantifiers to the front of the formula, we obtain:

∀h,a, j1, . . . , jm, i′1, . . . , i
′
k : ∃ g, i1, . . . , ik, j

′
1, . . . , j

′
m :

((ϕ ∧ pre(a, h) ∧ eff(a, h) ∧ (g �= h ⇒ id(g))) ⇒ ϕ).

As a is universally quantified over the finite set of actions Acti, it is removed by
writing the above as a finite conjunction of LH-assertions.

Finally, by the definition of trajectories TN , condition C can be written as:

ψ ∧ (∃t1 ∈ R : ∀h ∈ [N], t2 ∈ R : ∃m ∈ Loc : inv(m, h) ∧ (stop(m, h) ⇒ t2 = t1)∧
x∈Varch

x[h] + t1lflowrate(m, h, x) ≤ x′[h] ≤ x[h] + t1uflowrate(m, h, x))

⇒ ψ′, (5)

where inv and stop have all continuously updated real array variables replaced
with primed versions using a time-elapse of t2, and Varch are the continuously
updated real array variables. The conversion of Equation 5 to an LH-assertion
is essentially the same as the discrete case, but more tedious. The easiest way to
do this is first to convert to prenex normal form. In summary, these derivations
show how we can check inductive invariants as LH-assertions for networks of
RHA using the small model result introduced above.

4 Passel: Tool Implementation and Results

We developed a prototype tool called Passel—which is a large group of people
or things of indeterminate number—for verifying that properties are inductive
invariants. Passel utilizes the satisfiability modulo theories (SMT) [17] solver
Z3 [16] to prove validity of an LH-assertion by checking unsatisfiability of the

30 T.T. Johnson and S. Mitra

Table 1. Example properties and results for 2 ≤ N ≤ 100, which exceeds the threshold
from Lemma 1 for each property and example. SATS properties are shown in Subsec-
tion 2.3 and Fischer properties are shown in the last paragraph of Section 4. A check
in the “Correct” column means that a property was shown to be an inductive invari-
ant, while an “X” indicates not, and similarly for buggy versions of the protocols as
indicated in the “Buggy” column. Time is the runtime in seconds. QI is the number
of quantifier instantiations. The results in this table had both MBQI and quantifier
elimination enabled.

Example Property Correct Time (s) QI Buggy Time (s) QI
SATS A � 0.47 166 � 24.429 63

B � 0.591 373 � 0.595 197
C � 0.586 703 ✗ 1.041 113485
D � 0.757 8298 ✗ 1.256 1659

Timed SATS A � 0.349 66 � 0.34 61
B � 0.304 673 � 0.317 460
C � 0.244 373 ✗ 1.763 140512
E � 0.467 3032 ✗ 2.204 26958

Fischer a � 0.498 305 � 0.491 305
b � 0.33 204 � 0.325 204
c � 0.376 544 � 0.33 544
d � 0.396 618 ✗ 0.533 2548
e � 0.435 1306 ✗ 0.532 1202
f � 0.414 1036 ✗ 0.437 3162

negation of the assertion. Our program is written in C# and we used the man-
aged .NET API to version 3.2 of Z3. The input to Passel comes from the HyXML
format for describing hybrid automata developed for Hylink [33]. We configured
Z3 to use a variety of options, in particular, our method requires either having
model-based quantifier instantiation (MBQI) enabled or quantifier elimination
enabled, as otherwise we may receive unknown as a response from Z3 for some
satisfiability checks. Within Z3, we model array variables of processes as func-
tions mapping a subset of the integers (i.e., the set of process indices) to the type
of the variable. We did not need to use any special encoding to represent our
systems for Z3, so the queries we ask are almost exactly the same as the formu-
las appearing in Subsection 3.1. Given the finite bound N0 from Lemma 1, we
could potentially have composed the system for each instantiation 2 ≤ N ≤ N0

and used existing tools (for instance, HyTech [28] or PHAVer [22]), but the LH-
assertions specifications were more natural to state in an environment that allows
quantifiers. Additionally, our prior experience in model checking such parame-
terized systems [31] indicated that the bound allowed in practice due to memory
requirements may be less than the bound N0, and may prevent verification.

The operation of checking an inductive invariant is as follows. The user speci-
fies a set I of candidate inductive invariants. Based on the protocol specification,
we receive from Lemma 1 a bound N0 on the number of processes N for which
we must check each property. Many of the invariant properties we are interested
in are not inductive (e.g., mutual exclusion in Fischer’s protocol is not induc-

A Small Model Theorem for Rectangular Hybrid Automata Networks 31

tive, nor even k-inductive [20]), so having a set of candidate invariants allows
us to discharge each until we have a set of proven lemmas that imply the de-
sired invariant. For each candidate invariant I ∈ I, we check if I is an inductive
invariant by attempting to prove I ′ after each transition, where I ′ is I with
all variables replaced with their primed counterparts (i.e., post-states). If I is
successfully proved, we assert I as an assumption lemma and check some other
J ∈ I for J �= I until we have proved—or failed to prove—each property in I.
We emphasize that if we do not prove a property, it does not necessarily mean
that the property does not hold, only that it may not be inductive.

The main difficulty is specifying a rich enough set of properties I. We perform
satisfiability checks with model construction enable, thus if a transition or time
elapse violates the candidate property, we record it and display it to the user so
she/he may use this information to refine the candidate manually. For Fischer,
a detailed refinement is performed in [20], and we used several of these refined
properties in the set I. In addition to SATS and Fischer, we considered several
other examples2 We performed the verification on a laptop with a quad-core
Intel I7 2.0GHz processor and 8GB RAM.

The buggy version of SATS replaces the precondition l[next[i]] with l[last] and
x[next[i]] with x[last] in Figure 1, line 24, which ensures the spacing between
i and the last aircraft is large enough. However, this may not be the aircraft
immediately ahead of i, for instance, if two aircraft have moved to the base,
so the safe separation properties do not hold. The correct version of Fischer’s
mutual exclusion protocol has a constraint A < B, and the buggy version has
A ≥ B [20]. We checked the following properties for Fischer (see also Table 1):

(a) ∀i, j ∈ [N] : x[i] = x[j],
(b) ∀i ∈ [N] : q[i] = set ⇒ last[i] ≤ x[i] +A,
(c) ∀i ∈ [N] : q[i] = set ⇒ x[i] ≤ last[i],
(d) ∀i, j ∈ [N] : (q[i] = check ∧ g = i ∧ q[j] = set) ⇒ first[i] > last[j],
(e) ∀i, j ∈ [N] : q[i] = crit ⇒ (g = i ∧ q[j] = set), and
(f) ∀i, j ∈ [N] : (i = j) ⇒ (q[i] = crit ∨ q[j] = crit),

where f specifies mutual exclusion.

5 Conclusion and Future Work

In this paper, we developed a small model theorem for networks of rectangular
hybrid automata (RHA), and used the theorem to establish inductive invariant
properties for several case studies. To the best of our knowledge, this is the first
positive result on automatic parameterized verification of hybrid automata, be-
yond previous results for timed automata [4,3,25,14,21,13]. The modeling frame-
work and process of inductive invariant checking are amenable to automation,
so we implemented a prototype called Passel using the SMT solver Z3. We plan

2 Passel and case study specification files are available from:
http://www.taylortjohnson.com/research/forte2012/

http://www.taylortjohnson.com/research/forte2012/

32 T.T. Johnson and S. Mitra

to continue development of Passel, and investigate other methods of verifying
such RHA networks like automated abstraction and invariant generation. One
weakness of the current method is that the user is required to specify all the
inductive invariants that will imply the desired invariant property (for instance,
mutual exclusion in Fischer is not an inductive invariant, so one must find a
stronger property that implies mutual exclusion and is an inductive invariant;
a similar process was necessary for the SATS example). While we aid the user
in this task by providing counterexample models, she/he must still manually
perform the strengthening, so methods to automatically generate or strengthen
invariants—such as invisible invariants [37,8,9]—or k-induction [12,19] would be
interesting to investigate. It will also be interesting to investigate parameterized
verification for hybrid automata with linear or nonlinear dynamics.

Acknowledgments. This paper is based upon work supported by the National
Science Foundation under CAREER Grant No. 1054247. The authors thank the
anonymous reviewers for their suggestions that helped improve the presentation
of this paper.

References

1. Abbott, T.S., Jones, K.M., Consiglio, M.C., Williams, D.M., Adams, C.A.: Small
aircraft transportation system, higher volume operations concept: Normal opera-
tions. Tech. Rep. NASA/TM-2004-213022, NASA (August 2004)

2. Abdulla, P., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-State
Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

3. Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: Proc. of
19th Annual IEEE Symposium Logic in Computer Science, pp. 345–354 (July 2004)

4. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed
processes. Theoretical Computer Science 290(1), 241–264 (2003)

5. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

6. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems. In:
Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992.
LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

7. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

8. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized Verification with
Automatically Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

9. Balaban, I., Fang, Y., Pnueli, A., Zuck, L.: IIV: An Invisible Invariant Verifier.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 408–412.
Springer, Heidelberg (2005)

10. Bjørner, N.: Linear Quantifier Elimination as an Abstract Decision Procedure. In:
Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 316–330. Springer,
Heidelberg (2010)

A Small Model Theorem for Rectangular Hybrid Automata Networks 33

11. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer
(2001)

12. Brown, G., Pike, L.: Easy Parameterized Verification of Biphase Mark and 8N1 Pro-
tocols. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 58–72. Springer,
Heidelberg (2006)

13. Bruttomesso, R., Carioni, A., Ghilardi, S., Ranise, S.: Automated Analysis of Para-
metric Timing-Based Mutual Exclusion Algorithms. In: Goodloe, A.E., Person, S.
(eds.) NFM 2012. LNCS, vol. 7226, pp. 279–294. Springer, Heidelberg (2012)

14. Carioni, A., Ghilardi, S., Ranise, S.: MCMT in the land of parameterized timed
automata. In: Proc. of VERIFY 2010 (July 2010)

15. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

16. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54, 69–77 (2011)

18. Delzanno, G.: Automatic Verification of Parameterized Cache Coherence Protocols.
In: Emerson, E., Sistla, A. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer,
Heidelberg (2000)

19. Donaldson, A., Haller, L., Kroening, D., Rümmer, P.: Software Verification Using
k-Induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011)

20. Dutertre, B., Sorea, M.: Timed systems in sal. Tech. Rep. SRI-SDL-04-03, SRI
International (October 2004)

21. Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic Verifica-
tion of Parametric Specifications with Complex Topologies. In: Méry, D., Merz, S.
(eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010)

22. Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

23. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

24. Ge, Y., de Moura, L.: Complete Instantiation for Quantified Formulas in Satis-
fiabiliby Modulo Theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

25. Grinchtein, O., Leucker, M.: Network invariants for real-time systems. Formal As-
pects of Computing 20, 619–635 (2008)

26. Hanna, Y., Samuelson, D., Basu, S., Rajan, H.: Automating Cut-off for Multi-
parameterized Systems. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS,
vol. 6447, pp. 338–354. Springer, Heidelberg (2010)

27. Henzinger, T.A.: The theory of hybrid automata. In: IEEE Symposium on Logic
in Computer Science (LICS), p. 278. IEEE Computer Society, Washington, DC
(1996)

28. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: a model checker for hybrid sys-
tems. Journal on Software Tools for Technology Transfer 1, 110–122 (1997)

29. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? Journal of Computer and System Sciences 57, 94–124 (1998)

34 T.T. Johnson and S. Mitra

30. Johnson, T.T., Mitra, S.: Safe flocking in spite of actuator faults using directional
failure detectors. Journal of Nonlinear Systems and Applications 2(1-2), 73–95
(2011)

31. Johnson, T.T., Mitra, S.: Parameterized verification of distributed cyber-physical
systems: An aircraft landing protocol case study. In: ACM/IEEE 3rd International
Conference on Cyber-Physical Systems (April 2012)

32. Loos, S.M., Platzer, A., Nistor, L.: Adaptive Cruise Control: Hybrid, Distributed,
and Now Formally Verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS,
vol. 6664, pp. 42–56. Springer, Heidelberg (2011)

33. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification
and synthesis from simulink/stateflow models. In: Proc. of the 14th Intl. Conf. on
Hybrid Systems: Computation and Control, pp. 317–318. ACM (2011)

34. Muñoz, C., Carreño, V., Dowek, G.: Formal analysis of the operational concept for
the small aircraft transportation system. In: Butler, M., Jones, C., Romanovsky,
A., Troubitsyna, E. (eds.) Fault-Tolerant Systems, LNCS, vol. 4157, pp. 306–325.
Springer Berlin / Heidelberg (2006)

35. Platzer, A.: Quantified Differential Dynamic Logic for Distributed Hybrid Systems.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer,
Heidelberg (2010)

36. Platzer, A.: Quantified differential invariants. In: Proc. of the 14th ACM Intl. Conf.
on Hybrid Systems: Computation and Control, pp. 63–72. ACM (2011)

37. Pnueli, A., Ruah, S., Zuck, L.: Automatic Deductive Verification with Invisi-
ble Invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 82–97. Springer, Heidelberg (2001)

38. Umeno, S., Lynch, N.: Safety Verification of an Aircraft Landing Protocol: A Re-
finement Approach. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 557–572. Springer, Heidelberg (2007)

39. Viken, S., Brooks, F.: Demonstration of four operating capabilities to enable a small
aircraft transportation system. In: The 24th Digital Avionics Systems Conference,
DASC 2005, vol. 2 (October 2005)

40. Wolper, P., Lovinfosse, V.: Verifying Properties of Large Sets of Processes with
Network Invariants. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 68–80.
Springer, Heidelberg (1990)

Analysis of May-Happen-in-Parallel

in Concurrent Objects�

Elvira Albert, Antonio E. Flores-Montoya, and Samir Genaim

Complutense University of Madrid, Spain

Abstract. This paper presents a may-happen-in-parallel (MHP) anal-
ysis for OO languages based on concurrent objects. In this concurrency
model, objects are the concurrency units such that, when a method is
invoked on an object o2 from a task executing on object o1, statements
of the current task in o1 may run in parallel with those of the (asyn-
chronous) call on o2, and with those of transitively invoked methods.
The goal of the MHP analysis is to identify pairs of statements in the
program that may run in parallel in any execution. Our MHP analysis is
formalized as a method-level (local) analysis whose information can be
modularly composed to obtain application-level (global) information.

1 Introduction

The actor-based paradigm [2] on which concurrent objects are based has lately
regained attention as a promising solution to concurrency in OO languages. For
many application areas, standard mechanisms like threads and locks are too
low-level and have been shown to be error-prone and, more importantly, not
modular enough. The concurrent objects model is based on considering objects
as the concurrency units i.e., each object conceptually has a dedicated processor.
Communication is based on asynchronous method calls with standard objects
as targets. An essential feature of this paradigm is that task scheduling is coop-
erative, i.e., switching between tasks of the same object happens only at specific
scheduling points during the execution, which are explicit in the source code and
can be syntactically identified. Data-driven synchronization is possible by means
of so-called future variables [7] as follows. Consider an asynchronous method call
m on object o, written as f=o.m(). Here, the variable f is a future which allows
synchronizing with the result of executing task m. In particular, the instruction
await f? allows checking whether m has finished, and lets the current task release
the processor to allow another available task to take it.

This paper develops a may-happen-in-parallel (MHP) analysis for concurrent
objects. The goal of an MHP analysis is to identify pairs of statements that

� This work was funded in part by the Information & Communication Technologies
program of the European Commission, Future and Emerging Technologies (FET),
under the ICT-231620 HATS project, by the Spanish Ministry of Science and Inno-
vation (MICINN) under the TIN-2008-05624 and PRI-AIBDE-2011-0900 projects,
by UCM-BSCH-GR35/10-A-910502 grant and by the Madrid Regional Government
under the S2009TIC-1465 PROMETIDOS-CM project.

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 35–51, 2012.
c© IFIP International Federation for Information Processing 2012

36 E. Albert, A.E. Flores-Montoya, and S. Genaim

can execute in parallel (see, e.g., [10]). In the context of concurrent objects,
an asynchronous method invocation f=o2.m(); within a task t1 executing in an
object o1 implies that the subsequent instructions of t1 in o1 may execute in
parallel with the instructions of m within o2. However, if the asynchronous call
is synchronized with an instruction await f?, after executing such an await, it
is ensured that the execution of the call to m has terminated and hence, the
instructions after the await cannot execute in parallel with those of m. Inferring
precise MHP information is challenging because, not only does the current task
execute in parallel with m, but also with other tasks that are transitively invoked
from m. Besides, two tasks can execute in parallel even if they do not have a
transitive invocation relation. For instance, if we add an instruction f3=o3.p();

below the previous asynchronous invocation to m in t1, then instructions in p

may run in parallel with those of m. This is a form of indirect MHP relation in
which tasks run in parallel because they have a common ancestor. The challenge
is to precisely capture in the analysis all possible forms of MHP relations.

It is widely recognized that MHP is an analysis of utmost importance [10] to
understand the behaviour and verify the soundness of concurrent programs. On
one hand, it is a basic analysis to later construct different kinds of verification
and testing tools which build on it in order to infer more complex properties.
For example, in order to prove termination (or infer the cost) of a simple loop of
the form while (l !=null) {f=o.process(l .data); await f ?; l=l.next;}, assuming l is
a shared variable (i.e., field), we need to know the tasks that can run in parallel
with the body of the loop to check whether the length of the list l can be modified
during the execution of the loop by some other task when the processor is released
(at the await). For concurrent languages which are not data-race free, MHP is
fundamental in order to verify the absence of data-races. On the other hand, it
provides very useful information to automatically extract the maximal level of
parallelism for a program and improve performance. In the context of concurrent
objects, when the methods running on two different objects may run in parallel,
it can be profitable to deploy such objects on different machines in order to
improve the overall performance. As another application, the programmer can
use the results of the MHP analysis to identify bugs in the program related to
fragments of code which should not run in parallel, but where the analysis spots
possible parallel execution.

This paper proposes a novel MHP analysis for concurrent objects. The analy-
sis has two main phases: we first infer method-level MHP information by locally
analyzing each method and ignoring transitive calls. This local analysis, among
other things, collects the escape points of method calls, i.e., those program points
in which the asynchronous calls terminate but there might be transitive asyn-
chronous calls not finished. In the next step, we modularly compose the method-
level information in order to obtain application-level (global) MHP information.
The composition is achieved by constructing an MHP analysis graph which over-
approximates the parallelism –both implicit and through transitive calls– in the
application. Then, the problem of inferring if two statements x and y can run in

Analysis of May-Happen-in-Parallel in Concurrent Objects 37

parallel amounts to checking certain reachability conditions between x and y
in the MHP analysis graph. We have implemented our analysis in COSTABS
[3], a cost and termination analyzer for the ABS language. ABS [8] is an actor-
like language which has been recently proposed to model distributed concurrent
objects. The implementation has been evaluated on small applications which
are classical examples of concurrent programming and on two industrial case
studies. Results on the efficiency and accuracy of the analysis, in spite of being
still prototypical, are promising.

2 Concurrent Objects

We describe the syntax and semantics of the simple imperative language with
concurrent objects on which we develop our analysis. It is basically the subset
of the ABS language [8] relevant to the MHP analysis. Class, method, field, and
variable names are taken from a set X of valid identifiers. A program consists of
a set of classes K ⊆ X . The set Types is the set of possible types K ∪ { int}, and
the set TypesF is the set of future variable types defined as {Fut〈t〉 | t ∈ Types}.
A class declaration takes the form:

class κ1 {t1 fn1;. . . tn fnn; M1 . . . Mk}

where each “ti fn i” declares a field fn i of type ti ∈ Types, and each Mi is a
method definition. A method definition takes the form

t m(t1 w1,. . .,tn wn) {tn+1 wn+1;. . .tn+p wn+p; s}

where t ∈ Types is the type of the return value; w1, . . . , wn ∈ X are the formal
parameters of types t1, . . . , tn ∈ Types; wn+1, . . . , wn+p ∈ X are local variables
of types tn+1, . . . , tn+p ∈ Types ∪ TypesF ; and s is a sequence of instructions
which adhere to the following grammar:

e ::= null | this .f | x | n | e+ e | e ∗ e | e− e
b ::= e > e | e = e | b ∧ b | b ∨ b | !b
s ::= instr | instr; s

instr ::= x=new κ(x̄) | x=e | this .f=e | y=x.m(z̄) | return x
if b then s1 else s2 | while b do s | await y? | x=y.get

There is an implicit local variable called this that refers to the current object.
x and y represent variables of types t ∈ Types and ft ∈ TypesF respectively.
Observe that only fields of the current object this can be accessed (this, to-
gether with the semantics, make the language be data-race free [8]). We assume
the program includes a method called main without parameters, which does not
belong to any class and has no fields, from which the execution will start. Data
synchronization is by means of future variables as follows. An await y? instruc-
tion is used to synchronize with the result of executing task y=x.m(z̄) such that
the await y? is executed only when the future variable y is available (i.e., the

38 E. Albert, A.E. Flores-Montoya, and S. Genaim

(1)

(O′, l′, s′) = eval(instr,O, l, oid)
instr ∈ {x=e, this .fn=e, x=new κ(x̄), if b then s1 else s2,while b do s3}
〈O, {〈tid ,m,oid ,�, l, instr; s〉 ‖ T}〉� 〈O′, {〈tid ,m, oid ,�, l′, s′; s〉 ‖ T}〉

(2)

l(x) = oid1 �= null , l′ = l[y → tid1], l1 = buildLocals(x̄,m)), tid1is a fresh id

〈O, {〈tid ,m, oid ,�, l, y=x.m1(x̄); s〉 ‖ T}〉�
〈O, {〈tid ,m, oid ,�, l′, s〉, 〈tid1,m1, oid1,⊥, l1, body(m1)〉 ‖ T}〉

(3)
〈oid ,⊥, f〉 ∈ O,O′ = O[〈oid ,⊥, f〉/〈oid ,�, f〉], v = l(x)

〈O, {〈tid ,m, oid ,�, l, return x〉} ‖ T}〉� 〈O′, {〈tid ,m, oid ,⊥, l, ε(v)〉 ‖ T}〉

(4)

l1(y) = tid2

〈O, {〈tid1,m1, oid1,�, l1, await y?; s1〉, 〈tid2, m2, oid2,⊥, l2, ε(v)〉 ‖ T}〉�
〈O, {〈tid1,m1, oid1,�, l1, s1〉, 〈tid2,m2, oid2,⊥, l2, ε(v)〉 ‖ T}〉

(5) 〈O, {〈tid1, m1, oid1, lk, l1, await y?; s1〉 ‖ T}〉�
〈O, {〈tid1, m1, oid1, lk, l1, release; await y?; s1〉 ‖ T}〉

(6)
〈oid ,⊥, f〉 ∈ O,O′ = O[〈oid ,⊥, f〉/〈oid ,�, f〉]

〈O, {〈tid , m,oid ,�, l, release; s〉 ‖ T}〉� 〈O′, {〈tid ,m, oid ,⊥, l, s〉 ‖ T}〉

(7)
〈oid ,�, f〉 ∈ O,O′ = O[〈oid ,�, f〉/〈oid ,⊥, f〉], s �= ε(v)

〈O, {〈tid , m,oid ,⊥, l, s〉 ‖ T}〉� 〈O′, {〈tid ,m, oid ,�, l, s〉 ‖ T}〉

(8)

l1(y) = tid2, l
′
1 = l1[x → v]

〈O, {〈tid1,m1, oid1,�, l1, x=y.get; s1〉, 〈tid2,m2, oid2,⊥, l2, ε(v)〉 ‖ T}〉�
〈O, {〈tid1,m1, oid1,�, l′1, s1〉, 〈tid2,m2, oid2,⊥, l2, ε(v)〉 ‖ T}〉

Fig. 1. Summarized semantics

task is finished). In the meantime, the processor can be released and some other
pending task on this object can take it. In contrast, the instruction y.get uncon-
ditionally blocks the processor (no other task of the same object can run) until y
is available, i.e., the execution of m(z̄) on x is finished. Note that class fields and
methods parameters cannot have future types, i.e, future variables are defined
locally in each method and cannot be passed over. This is a restriction of the
approach, however, programs that pass futures over can still be analyzed with
some loss of precision by ignoring the non-local future variables.

W.l.o.g, we assume that all methods in the program have different names. As
notation, we use body(m) for the sequence of instructions defining method m,
PM for the set of method names defined in a program P , PF for the set of future
variable names defined in a program P .

2.1 Operational Semantics

A program state S is a tuple S = 〈O, T 〉 where O is a set of objects and T is
a set of tasks. Only one task can be active (running) in each object and has
the object’s lock. All other tasks are pending to be executed or finished if they

Analysis of May-Happen-in-Parallel in Concurrent Objects 39

terminated and released the lock. The set of objects O includes all available
objects. An object takes the form 〈oid , lk , f〉 where oid is a unique identifier
taken from an infinite set of identifiers O, lk ∈ {�,⊥} indicates whether the
object’s lock is free (�) or not (⊥), and f : X → O ∪ Z ∪ {null} is a partial
mapping from object fields to values. The set of tasks T represents those tasks
that are being executed. Each task takes the form 〈tid ,m, oid , lk, l, s〉 where tid
is a unique identifier of the task taken from an infinite set of identifiers T , m is
the method name executing in the task, oid identifies the object to which the
task belongs, lk ∈ {�,⊥} is a flag that indicates if the task has the object’s lock
or not, l : X → O ∪ T ∪ Z ∪ {null} is a partial mapping from local (possibly
future) variables to their values, and s is the sequence of instructions still to
be executed. Given a task tid , we assume that object(tid) returns the object
identifier oid of the corresponding task. The execution of a program starts from
the initial state S0 = 〈{〈0,⊥, f〉}, {〈0,main, 0,�, l, body(main)〉}〉 where f is an
empty mapping (since main had no fields), and l maps local references and future
variables to null and integer variables to 0.

The execution proceeds from S0 by applying non-deterministically the seman-
tic rules depicted in Fig. 1. We use the notation {t ‖ T } to represent that task t is
non-deterministically selected for execution. The operational semantics is given
in a rewriting-based style where at each step a subset of the state is rewritten
according to the rules as follows: (1) executes an instruction in a task that has
its object lock. These instructions may change the heap (global state), the local
state and the sequence of instructions that are left to execute (in the case of an
if-then-else or a while instruction). Such changes are captured in function eval .
As the instructions executed in this rule are standard, they are summarized. (2)
A method call creates a new task (the initial state is created by buildLocals) with
a fresh task identifier which is associated to the corresponding future variable. (3)
When return is executed, the return value is stored in v so that it can be obtained
by the future variables that point to that task. Besides, the lock is released and
will never be taken again by that task (the notation O[o/o′] is used to replace o
by o′ in O). Consequently, that task is finished (marked by adding the instruction
ε(v)), though it does not disappear as other tasks might need to access its return
value. (4) If the future variable we are awaiting for points to a finished task, the
await can be completed. (5) The await can be substituted by a release plus an
await. This allows us to await until rule (4) can be applied. (6) A task executes a
release and yields the lock so that any other task of the same object can take it. (7)
A non finished task can obtain its object lock if it is unlocked. (8) A y.get instruc-
tion waits for the future variable but without yielding the lock. It then retrieves
the value associated with the future variable y.

3 Definition of MHP

We first formally define the concrete property “MHP” that we want to ap-
proximate using static analysis. In what follows, we assume that instructions are

40 E. Albert, A.E. Flores-Montoya, and S. Genaim

A B C D E

1 i n t m() {
2 . . .
3 y=x . p () ;
4 z=x . q () ;
5 . . .
6 await z ? ;
7 . . .
8 await y ? ;
9 . . .

10}

11 i n t m() {
12 . . .
13 y=t h i s . r () ;
14 z=x1 . p () ;
15 z=x2 . p () ;
16 z=x3 . q () ;
17 w=z . get ;
18 . . .
19 await y ? ;
20}

21 i n t m() {
22 . . .
23 whi le b do
24 y=x . q () ;
25 await y ? ;
26 z=x . p () ;
27 . . .
28 . . .
29 . . .
30}

31 i n t m() {
32 . . .
33 i f b then
34 y=x . p () ;
35 e l s e
36 y=x . q () ;
37 . . .
38 await y ? ;
39 . . .
40}

41 i n t p () {
42 y=x . r () ;
43 . . .
44}
45 i n t q () {
46 y=x . r () ;
47 await y ? ;
48 . . .
49 . . .
50}

Fig. 2. Simple examples for different MHP behaviours

labelled such that it is possible to obtain the corresponding program point iden-
tifiers. We also assume that program points are globally different. We use pm̊
to refer to the entry program point of method m, and pṁ to all program points
after its return instruction. The set of all program points of P is denoted by PP .
We write p ∈ m to indicate that program point p belongs to method m. Given a
sequence of instructions s, we use pp(s) to refer to the program point identifier as-
sociated with its first instruction, pp(ε(v)) = pṁ and and pp(release; s) = pp(s).

Definition 1 (concrete MHP). Given a program P , its MHP is defined as
EP=∪{ES |S0 �∗ S} where for the state S=〈O, Tk〉, the set ES is ES={(pp(s1),
pp(s2)) | 〈id1,m1, o1, lk1, l1, s1〉∈Tk, 〈id2,m2, o2, lk2, l2, s2〉∈Tk, id1 �= id2}.

Observe in the above definition that, as execution is non-deterministic (and dif-
ferent MHP behaviours can actually occur using different task scheduling strate-
gies), the union of the pairs obtained from all derivations from S0 is considered.

Let us explain first the notions of direct and indirect MHP and escaped meth-
ods, which are implicit in the definition of MHP above, on the simple represen-
tative patterns in Fig. 2. There are 4 versions of m which use the methods p,
q and r. We consider a call to m with no other processes executing. Only the
parts of p and q useful for explaining the MHP behavior are shown (the code of
r is irrelevant). We implicitly assume that the last instruction of each method
is a return. The global MHP behavior of executing each main (separately) is as
follows.

(A) p is called from m, then r is called from p and q. The await instruction in
program point 6 (L6 for short) ensures that q will have finished afterwards. If
q has finished executing, its call to r has to be finished as well because there is
an await in L47. The await instruction in L8 waits until p has finished before
continuing. That means that at L9, p is not longer executing. However, the
call to r from p might be still executing. We say that r might escape from
p. Method calls that might escape need to be considered.

Analysis of May-Happen-in-Parallel in Concurrent Objects 41

(B) In example B, both q and p are called from m, but p is called twice. Any
program point of p, for example L43, might execute in parallel with q even
if they do not call each other, i.e., they have an indirect MHP relation.
Furthermore, L43 might execute in parallel with any point of m after the
method call, L15 − 17. We say that m is a common ancestor of p and q.
Two methods execute indirectly in parallel if they have a common ancestor.
Note that m is also a common ancestor of the two instances of p, so p might
execute in parallel with itself. r is called in L13. However, as r belongs to
the same object as m, it will not be able to start executing until m reaches
a release point (L19). We say that r is pending from L14 up to L19.

(C) In the third example we have a while loop. If we do not estimate the number
of iterations, we can only assume that q and p are called an arbitrary number
of times. However, as every call to q has a corresponding await, q will not
execute in parallel with itself. At L28, we might have any number of p

instances executing but none of q. Note that if any method escaped from q,
it could also be executing at L28.

(D) The last example illustrates an if statement. Either p or q is executed but
not both. At L37, p or qmight be executing but p and q cannot run in parallel
even if m is a common ancestor. Furthermore, after the await instruction
(L38) neither q or p might be executing. This information will be extracted
from the fact that both calls use the same future variable.

4 MHP Analysis

The problem of inferring EP is clearly undecidable in our setting [9], and thus
we develop a MHP analysis which statically approximates EP . The analysis is
done in two main steps, first it infers method-level MHP information. Then, in
order to obtain application-level MHP, it composes this information by building
a MHP graph whose paths provide the required global MHP information.

4.1 Inference of Method-Level MHP

The method-level MHP analysis is used to infer the local effect of each method on
the global MHP property. In particular, for each method m, it infers, for each
program point p ∈ m, the status of all tasks that (might) have been invoked
(within m) so far. The status of a task can be (1) pending, which means that
it has been invoked but has not started to execute yet, i.e., it is at the entry
program point; (2) finished, which means that it has finished executing already,
i.e., it is at the exit program point; and (3) active, which means that it can be
executing at any program point (including the entry and the exit). As we explain
later, the distinction between these statuses is essential for precision.

The analysis of each method abstractly executes its code such that the (ab-
stract) state at each program point is a multiset of symbolic values that describes
the status of all tasks invoked so far. Intuitively, when a method is invoked, we

42 E. Albert, A.E. Flores-Montoya, and S. Genaim

add it to the multiset (as pending or active depending if it is a call on the same
object or on a different object); when an await y? or y.get instruction is executed,
we change the status of the corresponding method to finished; and when the ex-
ecution passes through a release point (namely await y? or return), we change
the status of all pending methods to active.

Example 1. Consider programs A and B in Fig. 2. The call to p (resp. q) at L3
(resp. L4) creates an active task that becomes finished at L8 (resp. L6). In B, the
call to r at L13 creates a pending task that becomes active at L19 and finished
after L19. p is an active task from L14 up to the end of the method. p will never
become a finished task as its associated future variable is reused in L16.

The symbolic values used to describe the status of a task, referred to as MHP
atoms, can be one of the following: (1) y:m̃, which represents an active task that
is an instance of method m; (2) y:m̂, which represents a finished task that is
an instance of method m; and (3) y:m̌, which represents a pending task that is
an instance of method m. In the three cases the task is associated to the future
variable y. In addition, since it is not always possible to relate tasks to future
variables (e.g., if they are reused), we also allow symbolic values in which y is
replaced by �, i.e., � represents any future variable.

Intuitively, an abstract state M is a multiset of MHP atoms which represents
the following information: each y:x ∈ M (resp. �:x ∈ M) represents one task
that might be available and associated to future variable y (resp. to any future
variable). The status of the task is active, pending or finished, resp., if x = m̃,
x = m̌ or x = m̂. In addition, we can have several tasks associated to the same
future variable meaning that at most one of them can be available at the same
time (since only one task can be associated to a future variable in the semantics).

Example 2. Consider programs A, B and D. The multisets {y:p̃, z:q̃}, {y:p̃, z:q̂},
{y:p̂, z:q̂}, {y:ř, z:p̃}, {y:ř, �:p̃, �:p̃, z:q̂} and {y:p̃, y:q̃} resp. describe the abstract
states at L5, L7, L9, L15, L18 and L37. An important observation is that, in the
multiset of L18, when the future variable is reused, its former association is lost
(and hence becomes �). However, multiple associations to one future variable
can be kept when they correspond to disjunctive branches, as in L37.

For a given program P , the set of all MHP atoms A = {y:x | m ∈ PM , x ∈
{m̃, m̂, m̌}, y ∈ PF ∪{�}} is a partially order set w.r.t. the partial order relation�

y:m̌ y:m̂

�:m̌ y:m̃ �:m̂

�:m̃
defined as in the diagram below (we use ≺ for strict inequality
and = for syntactic equality). The meaning of a � a′ is that
concrete scenarios described by a, are also described by a′. For
example, y:m̌ � y:m̃ because y:m̌ is included in the description
of y:m̃ since an active task can be at any program point (in-
cluding the entry program point). The set of all multisets over

A is denoted by B. We write (a, i) ∈ M to indicate that a appears exactly i > 0
times in M . In the examples, we omit i when it is 1. Given M1,M2 ∈ B, we say
that a ∈ M2 covers a′ ∈ M1 if a′ � a. Thus, M1 � M2 if all elements of M1 are
covered by different elements from M2.

Analysis of May-Happen-in-Parallel in Concurrent Objects 43

(1) τ (y=x.m(x̄),M) = M [y:x/
:x] ∪ {y:m̃} x ∈ {m̌, m̃, m̂}
(2) τ (y=this .m(x̄),M) = M [y:x/
:x] ∪ {y:m̌} x ∈ {m̌, m̃, m̂}
(3) τ (await y?,M) = τ (x=y.get,M) = M [y:z/y:m̂] z ∈ {m̌, m̃}
(4) τ (release,M) = τ (return,M) = M [y:m̌/y:m̃] ∀y
(5) τ (b,M) = M otherwise

Fig. 3. Method-level MHP transfer function: τ : s× B �→ B

Note that for two different M1,M2 ∈ B, it might be the case that M1 � M2

andM2 � M1, in such case they represent the same concrete states. This happens
because when (a,∞) ∈ M , then any (a′, i) ∈ M is redundant if a′ � a. The join
(or upper bound) ofM1 andM2, denotedM1�M2, is an operation that calculates
a multiset M3 ∈ B such that M1 � M3 and M2 � M3. It is not guaranteed that
least upper bound exists, as we show in the following example.

Example 3. Let M1 = {y:m̂, y:m̌} and M2 = {y:m̃}. Both M3 = {y:m̂, y:m̃} and
M ′

3 = {y:m̌, y:m̃} are upper bounds for M1 and M2. However, there is no other
upper bound M ′′

3 such that M ′′
3 � M3 and M ′′

3 � M ′
3. Thus, the least upper

bound of M1 and M2 does not exist.

The above example shows that there are several possible ways of computing
an upper bound M3 of two given abstract states M1 and M2. Assuming that
multisets are normalized in the sense that redundant elements are removed, the
following steps define a possible algorithm:

1. any atom in M1 (resp. M2) with ∞ multiplicity is added to M3 and removed
from M1 (resp. M2);

2. the atoms of M1 or M2 that are covered by an element of M3 with infinite
multiplicity are removed;

3. the atoms M1 ∩M2 are added to M3, and removed from M1 and M2;
4. let a ∈ M1 be an atom covered by an atom a′ ∈ M2 (a � a′). Both a and a′

are removed from M1 and M2 and a′ is added to M3. Respectively, if a
′ � a,

a is the one added to M3. Note there are several possible ways to compute
the covering as we have seen in the example above; and

5. M1 ∪M2 is added to M3.

In what follows, for the sake of simplicity, we assume that the program to be an-
alyzed has been instrumented to have a release instruction before every await y?.
This is required to simulate the auxiliary instruction release introduced in the
semantics described in Sec. 2.1 (we could simulate it implicitly in the analysis
also). The analysis of a program P is done as follows. For each method m ∈ PM ,
it starts from an abstract state ∅ ∈ B, which assumes that there are no tasks
executing (since we are looking at the locally invoked tasks), and propagates the
information to the different program points by applying the transfer function τ
defined in Fig. 3 on the code body(m). The transfer function defines the effect

44 E. Albert, A.E. Flores-Montoya, and S. Genaim

of executing each (simple) instruction on a given abstract state M ∈ B. Let
us explain the different cases of τ : Case 1 adds an active instance of m to the
abstract state; Case 2 adds a pending instance of m to the abstract state; Case
3 changes the status all active tasks that are guaranteed to be finished; Case 4
changes all pending tasks to active tasks; and Case 5 applies to the remaining
instructions which do not have any effect on the MHP information.

Example 4. Consider program B. The abstract state at L13 is ∅ since we have
not invoked any method yet. Executing L13 adds y:ř since the call is to a method
in the same object; executing L14 adds z:p̃; executing L16 renames one z:p̃ to
�:p̃ since the future variable z is reused, and adds z:q̃; executing L17 renames z:q̃
to z:q̂ since it is guaranteed that q has finished. The auxiliary release between
L18 and L19 renames y:ř to y:r̃, since the current task might suspend and thus
any pending task might become active. Finally, L19 renames y:r̃ to y:r̂.

The analysis merges abstract states at branching points (i.e., after if and at
loop entries) using the join operation �. The analysis of while loops requires
iterating the corresponding code several times until a fixpoint is reached. To
guarantee convergence in such cases we employ the following widening operator
� : B×B �→ B after some predetermined number of iterations. Briefly, assuming
that M2 is the current abstract state at the loop entry program point, and that
M1 � M2 is the abstract state at the previous iteration, then M1�M2 replaces
each element (a, i) ∈ M2 by (a,∞) if (a, j) ∈ M1 and i > j, i.e., it replaces
unstable elements by infinite number of occurrences in order to stabilize them.

Example 5. Let us demonstrate the analysis of the if and while statements on
programs C and D. (if) At L37, the information that comes from the then and
else branches is joined using �, namely {y:p̃} � {y:q̃} = {y:p̃, y:q̃}. Note that
this state describes that either q or p are running at L37, but not both (as
they share the same future variable); (while) In the first visit to L23, we have
the abstract state M0 = ∅, abstractly executing the body we reach L23 again
with M1 = {y:q̂, z:p̃} and joining it with M0 results in M1 itself. Similarly,
if we apply two more iterations we respectively get M2 = {�:q̂, �:p̃, y:q̂, z:p̃}
and M3 = {(�:q̂, 2), (�:p̃, 2), y:q̂, z:p̃}. Inspecting M2 and M3, we see that �:q̂
and �:p̃ are unstable, thus, we apply the widening operator M2�M3 obtaining
M ′

3 = {(�:q̂,∞), (�:p̃,∞), y:q̂, z:p̃}. Executing the loop body starting with the
new abstract state does not add any new MHP atoms since �:q̂ and �:p̂ already
appear an infinite number of times.

In what follows, we assume that the result of the analysis is a mapping L
P
:PP �→B

from each program point p (including entry and exit points) to an abstract state
LP (p) ∈ B that describes the status of the tasks that might be executing at p.

Example 6. The following table summarizes L
P
for some selected program points

of interest (from Fig. 2) that we will use in the next section:

Analysis of May-Happen-in-Parallel in Concurrent Objects 45

4:{y:p̃} 16:{y:ř, z:p̃, �:p̃} 25:{y:q̃, (�:q̂,∞), (�:p̃,∞)} 44 :{y:r̃}
6:{y:p̃, z:q̃} 17:{y:ř, (�:p̃, 2), z:q̃} 26:{y:q̂, (�:q̂,∞), (�:p̃,∞)} 47 :{y:r̃}
8:{y:p̃, z:q̂} 18:{y:ř, (�:p̃, 2), z:q̂} 30:{y:q̂, (�:q̂,∞), (�:p̃,∞)} 50 :{y:r̂}

10:{y:p̂, z:q̂} 20:{y:r̂, (�:p̃, 2), z:q̂} 38:{y:p̃, y:q̃}
14:{y:ř} 24:{y:q̂, (�:q̂,∞), (�:p̃,∞)} 40:{y:p̂, y:q̂}

Recall that the state associated to a program point represents the state before
the execution of the corresponding instruction. In addition, the results for the
entry points L2, L12, L22, L32, L42 and L46 are all ∅. Also note that L10, L20,
L30, L40, L44 and L50 are exit points for the corresponding methods. Those will
allow us to capture tasks that escape from the methods. Observe that L24, L26
and L30 contain redundant information because y:q̂ is redundant w.r.t. (�:q̂,∞).

4.2 The Notion of MHP Graph

We now introduce the notion of MHP graph from which it is possible to extract
precise information on which program points might globally run in parallel (ac-
cording to Def. 1). A MHP graph has different types of nodes and different types
of edges. There are nodes that represent the status of methods (active, pending
or finished) and nodes which represent the program points. Outgoing edges from
method nodes represent points of which at most one might be executing. In con-
trast, outgoing edges from program point nodes represent tasks such that any of
them might be running. The information computed by the method-level MHP
analysis is required to construct the MHP graph. When two nodes are directly
connected by i > 0 edges, we connect them with a single edge of weight i. We
start by formally constructing the MHP graph for a given program P , and then
explain the construction in detail.

Definition 2 (MHP Graph). Given a program P , and its method-level MHP
analysis result L

P
, the MHP graph of P is a directed graph G

P
= 〈V,E〉 with a

set of nodes V and a set of edges E = E1 ∪ E2 ∪ E3 defined as follows:

V = {m̃, m̂, m̌ | m ∈ PM} ∪ PP ∪ {py | p ∈ PP , y:m ∈ LP (p)}
E1 = {m̃ 0→ p | m ∈ PM , p ∈ PP , p ∈ m} ∪ {m̂ 0→ pṁ, m̌ 0→ pm̊ | m ∈ PM}
E2 = {p i→ x | p ∈ PP , (
:x, i) ∈ LP (p)}
E3 = {p 0→ py, py

1→ x | p ∈ PP , (y:x, i) ∈ LP (p)}

Let us explain the different components of G
P
. The set of nodes V consists of

several kinds of nodes:

1. Method Nodes : Each m ∈ PM contributes three nodes m̃, m̂, and m̌. These
nodes will be used to describe the program points that can be reached from
active, finished or pending tasks which are instances of m.

2. Program Point Nodes : Each p ∈ PP contributes a node p that will be used
to describe which other program points might be running in parallel with it.

46 E. Albert, A.E. Flores-Montoya, and S. Genaim

ř

r̃

r̂

60

61

0

0

0

0
p̌

p̃

p̂

41

44

0

0

0

0

q̌

q̃

q̂

45

47

50

0

0

0

0

0

m̌

m̃

m̂

11

17

19

20

0

0

0

0

0

0

17y

17z

0

0

1

1

2

19y

19z

0

0

1

1

2

20y

20z
0

0 1

1

2

47y0

1

50y
0

1

44y
0

1

1117192045475041446061

11

17 • • • • • • •
19 • • • • •
20 • • • • •
45 • ◦ ◦ ◦ ◦
47 • ◦ ◦ • •
50 • • • ◦ ◦ ◦ •
41 • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
44 • • • ◦ ◦ ◦ ◦ ◦ • •
60 • • • ◦ • ◦ ◦ • ◦ ◦
61 • • • ◦ • • ◦ • ◦ ◦

Fig. 4. The GP of example B (left) and its corresponding ẼP (right)

p̌

p̃

p̂

q̌

q̃

q̂m̌

m̃

m̂

1

6

8

10

0

0

0

0

0

0

6y

6z

0

0

1

1

8y

8z

0

0

1

1

10y

10z
0

0

1

1

p̌

p̃

p̂

q̌

q̃

q̂m̌

m̃

m̂

21

25

30

0

0

0

0

0

25y
0

1

∞

∞

30y
0

1∞

∞

p̌

p̃

p̂

q̌

q̃

q̂m̌

m̃

m̂

31

38

40

0

0

0

0

0

38y
0

1

1

40y
0

1

1

Fig. 5. Partial GP for examples: A, C and D

3. Future variable nodes : These nodes are a refinement of program point nodes
for improving precision in the presence of branching constructs. Each future
variable y that appears in L

P
(p) contributes a node py. These nodes will

be used to state that if there are several MHP atoms in L
P
(p) that are

associated to y, then at most one of them can be running.

What gives the above meaning to the nodes are the edges E = E1 ∪E2 ∪ E3:

1. Edges in E1 describe the program points at which each task can be depending
on its status. Each m contributes the edges (a) m̃ 0→ p for each p∈m, which
means that if m is active it can be in a state in which any of its program
points is executing (but only one of them); (b) m̌ 0→ pm̊, which means that
when m is pending, it is at the entry program point; and (c) m̂ 0→ pṁ, which
means that when m is finished, it is at the exit program point;

2. Edges in E2 describe which tasks might run in parallel with such program
point. For every program point p ∈ PP , if (�:x, i) ∈ L

P
(p) then p i→ x is

added to E2. This edges means, if x = m̃ for example, that up to i instances
of m might be running in parallel when reaching p;

Analysis of May-Happen-in-Parallel in Concurrent Objects 47

3. Edges in E3 enrich the information for each program point given in E2. An
edge py

1→ x is added to E3 if (y:x, i) ∈ L
P
(p). For each future variable

y that appears in L
P
(p) an edge p 0→ py is also added to E3. This allows

us to accurately handle cases in which several MHP atoms in L
P
(p) are

associated to the same future variable. Recall that in such cases at most one
of the corresponding tasks can be available (see Ex. 2).

Note that MHP graphs might have cycles due to recursion.

Example 7. Using the method-level MHP information of Ex. 6 we obtain the
MHP graphs for the four examples. Fig. 4 contains (to the left) the graph of
example B and Fig. 5 contains incomplete graphs of examples A, C and D. The
omitted parts of the graphs for A, C and D, marked with dashed lines, should
be identical to the subgraph to the right of the dashed line in the graph of B.
Besides, for readability, the graphs do not include all program points, but rather
only those that correspond to entry, get and release points.

4.3 Inference of Global MHP

Given the MHP graph G
P
, two program points p1, p2 ∈ PP may run in parallel

(i.e., it might be that (p1, p2) ∈ EP) if one of the following conditions hold:

1. there is a non-empty path in G
P
from p1 to p2 or vice-versa; or

2. there is a program point p3 ∈ PP , and non-empty paths from p3 to p1 and
from p3 to p2 that are either different in the first edge, or they share the first
edge but it has weight i > 1.

The first case corresponds to direct MHP scenarios in which, when a task is run-
ning at p1, there is another task running from which it is possible to transitively
reach p2, or vice-versa. This is the case, for example, of program points 17 and
50 in Fig. 4. The second case corresponds to indirect MHP scenarios in which
a task is running at p3 and there are two other tasks p1 and p2 executing in
parallel and both are reachable from p3. This is the case, for example, of pro-
gram points 50 and 44 that are both reachable from program point 19 in Fig. 4
through paths that start with a different edge. Observe that the first edge can
only be shared if it has weight i > 1 because it represents that there might be
more than one instance of the same type of task running. This allows us to infer
that 41 may run in parallel with itself because the edge from 17 to p̃ has weight
2 and, besides, that 41 can run in parallel with 44. Note that program points
45, 47, and 50 of method q do not satisfy any of the above conditions, which
implies, as expected, that they cannot run in parallel.

The following definition formalizes the above intuition. We write p1 � p2 ∈ G
P

to indicate that there is a path of length at least 1 from p1 to p2 in GP , and

p1
i→ x � p2 to indicate that such path starts with an edge to x with weight i.

Definition 3. Given a program P , we let ẼP = directMHP∪indirectMHP where

directMHP = {(p1, p2) | p1, p2 ∈ PP , p1 � p2 ∈ GP)}
indirectMHP = {(p1, p2) | p1, p2, p3 ∈ PP , p3

i→ x1 � p1 ∈ GP , p3
j→ x2 � p2 ∈ GP ,

x1 �= x2 ∨ (x1 = x2 ∧ i = j > 1)}

48 E. Albert, A.E. Flores-Montoya, and S. Genaim

Example 8. The table on the right side of Fig. 4 represents the ẼP obtained
from the graph on the left side. Empty cells mean that the corresponding points
cannot run in parallel. Cells marked by • indicate that the pair is in directMHP .
Cells marked with ◦ indicate that the pair is in indirectMHP . Note that the
table captures the MHP relations informally discussed in Sec. 3.

4.4 Soundness and Complexity

The following theorem states the soundness of the analysis, namely, that ẼP is
an over-approximation of EP .

Theorem 1 (Soundness). EP ⊆ ẼP .

As regards complexity, we distinguish its three phases:

1. The L
P

computation can be performed independently for each method m.
The transfer function τ only needs to be applied a constant number of times
for each program point, even for loops, due to the use of widening. It is
possible to represent multisets such that the cost of all multiset operations
is linear w.r.t. their sizes which are at most nmm · futm, where nmm is the
number of different methods that can be called from m and futm is the
number of future variables in m. Therefore, the cost of computing L

P
for a

method m is in O(ppm · nmm · futm) where ppm is the number of program
points in the method.

2. The cost of creating the graph G
P

is linear with respect to the number of
edges. The number of edges originating from a method m is in O(pp′m ·
nmm · futm) where pp′m is the number of program points of interest. A
strong feature of our analysis is that most of the program points can be
ignored in this phase without affecting correctness or precision. Only points
that correspond to await and get instructions and exit points are required
for correctness. This happens due to the definition of τ in which the abstract
states always grow (in the domain) except for those points.

3. Once the graph has been created, computing ẼP is basically a graph reach-
ability problem. Therefore, a straightforward algorithm for inferring of ẼP
is clearly in O(n3) where n is the number of nodes of the graph. However,
a major advantage of this analysis is that for most applications there is no
need to compute the complete ẼP ; rather, this information can be obtained
on demand.

5 Experimental Evaluation

We have implemented our analysis as a module of COSTABS [4], a cost ana-
lyzer of ABS programs. A standalone version of the MHP analysis can be tried
out online at: http://costa.ls.fi.upm.es/costabs/mhp. Experimental eval-
uation has been carried out using two industrial case studies: ReplicationSystem
and TradingSystem, which can be found at http://www.hats-project.eu, as

http://costa.ls.fi.upm.es/costabs/mhp
http://www.hats-project.eu

Analysis of May-Happen-in-Parallel in Concurrent Objects 49

Table 1. Statistics about the analysis execution (times are in milliseconds)

Code Ns NPP Ep ẼP PPs2 Rε TG TẼP

RepSystem 496 213 - 7724 45369 - 360 23020

TradingSystem 360 137 - 14829 18769 - 120 18120

MailServer 23 8 17 34 64 26.5% 10 < 10

BookShop 35 21 66 66 196 0% < 10 10

PeerToPeer 75 36 385 487 1296 7.87% 20 100

BBuffer 22 7 36 36 49 0% < 10 < 10

Chat 120 45 552 1219 2025 32.9% < 10 190

DistHT 51 24 83 151 573 11.8% < 10 20

well as a few typical concurrent applications: PeerToPeer, a peer to peer pro-
tocol implementation; Chat, a client-server implementation of a chat program;
MailServer, a simple model of a Mail server; BookShop, a web shop client-server
application; BBuffer, a classical bounded-buffer for communicating several pro-
ducers and consumers; and DistHT, a distributed hash-table.

Table 1 summarizes our experiments. They have been performed on an Intel
Core i5 at 2.4GHz with 3.7GB of RAM, running Linux. For each program, GP is
built and the relation ẼP is completely computed using only the program points
required for soundness. Ns is the number of nodes of G

P
and NPP is the number

of program point nodes. Ep is the number of MHP pairs obtained by running the
program using a random scheduler, i.e., one which randomly chooses the next
task to execute when the processor is released. These executions are bounded
to a maximum number of interleavings as termination in some examples is not
guaranteed. Observe that Ep does not capture all possible MHP pairs but just
gives us an idea of the level of real parallelism. It gives us a lower bound of EP
which we will use to approximate the error. ẼP is the number of pairs inferred
by the analysis. PPs2 is the square of the number of program points, i.e., the
number of pairs considered in the analysis. PPs2 − ẼP gives us the number of
pairs that are guaranteed not to happen in parallel. Rε = 100(ẼP −Ep)/PPs2

is the approximated error percentage taking Ep as reference, i.e., Rε is an upper
bound of the real error of the analysis. TG is the time (in milliseconds) taken by
the method-level analysis and in the graph construction. TẼP

is the time needed
to infer all possible pairs of program points that may happen in parallel.

Although the MHP analysis has been successfully applied to both industrial
case studies, it has not been possible to capture their runtime parallelism due
to limitations in the simulator which could not treat all parts of these appli-
cations. Thus, there is no measure of error in these cases. We argue that the
analyzer achieves high precision, with the approximated error less than 32.9%
(bear in mind that Ep is a lower bound of the real parallelism) and up to 0% in
other cases. As regards efficiency, both the method-level analysis and the graph
construction are very efficient (just 0.36 sec. for the largest case study). The
ẼP inference takes notably more time. But, as explained in Sec. 4.4, for most
applications only a subset of pairs is of interest and, besides, those pairs can be
computed on demand.

50 E. Albert, A.E. Flores-Montoya, and S. Genaim

6 Conclusions, Related and Future Work

We have proposed a novel and efficient approach to infer MHP information for
concurrent objects. The main novelty is that MHP information is obtained by
means of a local analysis whose results can be modularly composed by using
a MHP analysis graph in order to obtain global MHP relations. Concurrent
objects operate similarly to Actors [2] and Erlang processes [5]. Therefore, the
main ideas of our approach could be adapted to these languages.

When compared to the MHP analysis for X10 proposed in [10,1], we should
first note that the async-finish model simplifies the inference of escape informa-
tion, since the finish construct ensures that all methods called within its scope
terminate before the execution continues to the next instruction. Moreover, it is
important to note that our approach would achieve the same precision as their
context-sensitive motivating example (Sec. 2.2 in [10]). This is because we do
not merge calling contexts, but rather leave them explicit in the MHP graph. In
addition, by splitting the analysis in two phases we achieve: (1) a higher degree
of modularity and incrementality, since when a method is modified (or added,
deleted, etc.), we only need to re-analyze that method locally, and replace its
corresponding sub-graph in the global MHP graph accordingly; and (2) on de-
mand MHP analysis, since we do not need to compute all MHP pairs in order
to check if two given program points might run in parallel, but rather just check
the relevant conditions for those two program points only.

An MHP analysis for Ada has been presented in [13], and extended later
for Java in [14]. These works have been superseded later by [11,6]. In [6], Java
programs are abstracted to an abstract thread model which is then analyzed in
two phases. MHP graphs are used as well despite being substantially different
from ours. A main difference is that our first phase infers local information
for each method, while that of [6] infers a thread-level MHP from which it is
possible to tell which threads might globally run in parallel. In addition, unlike
our method-level analysis, it does not consider any synchronization between the
threads in the first phase, but rather in the second phase. In future work, we
plan to investigate if our analysis can be adapted to this thread abstract model.

An important application of MHP analysis is for understanding if two program
points that belong to different tasks in the same object might run in parallel (i.e.,
interleave). We refer to this information as object-level MHP. This information is
valuable because, in any static analysis that aims at approximating the objects’
states, when a suspended task resumes, the (abstract) state of the corresponding
object should be refined to consider modifications that might have been done
by other tasks that interleave with it. Our approach can be directly applied to
infer object-level MHP pairs by incorporating points-to information [15,12].

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May happen-in-parallel
analysis of x10 programs. In: PPOPP 2007, pp. 183–193. ACM (2007)

Analysis of May-Happen-in-Parallel in Concurrent Objects 51

2. Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

3. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO Programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078,
pp. 238–254. Springer, Heidelberg (2011)

4. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS:
A Cost and Termination Analyzer for ABS. In: PEPM 2012, pp. 151–154. ACM
Press (January 2012)

5. Armstrong, J., Virding, R., Wistrom, C., Williams, M.: Concurrent Programming
in Erlang. Prentice Hall (1996)

6. Barik, R.: Efficient Computation of May-Happen-in-Parallel Information for Con-
current Java Programs. In: Ayguadé, E., Baumgartner, G., Ramanujam, J.,
Sadayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 152–169. Springer,
Heidelberg (2006)

7. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

8. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

9. Lee, J.K., Palsberg, J., Majumdar, R.: Complexity results for may-happen-in-
parallel analysis (2010) (manuscript)

10. Lee, J.K., Palsberg, J.: Featherweight X10: A Core Calculus for Async-Finish Par-
allelism. In: PPoPP 2010, pp. 25–36. ACM, New York (2010)

11. Li, L., Verbrugge, C.: A Practical MHP Information Analysis for Concurrent Java
Programs. In: Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS,
vol. 3602, pp. 194–208. Springer, Heidelberg (2005)

12. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized Object Sensitivity for
Points-to and Side-effect Analyses for Java. In: ISSTA, pp. 1–11 (2002)

13. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting
all pairs of statements that happen in parallel. In: SIGSOFT FSE 1998, vol. 23(6),
pp. 24–34 (1998)

14. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for computing
MHP information for concurrent java programs. In: ESEC / SIGSOFT FSE 1999,
vol. 24(6), pp. 338–354 (1999)

15. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI 2004, pp. 131–144. ACM (2004)

Behavioural Equivalences

over
Migrating Processes with Timers

Bogdan Aman1, Gabriel Ciobanu1, and Maciej Koutny2

1 Romanian Academy, Institute of Computer Science
and “A.I.Cuza” University, 700506 Iaşi, Romania
bogdan.aman@gmail.com, gabriel@info.uaic.ro

2 School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom

maciej.koutny@newcastle.ac.uk

Abstract. The temporal evolution of mobile processes is governed by
independently operating local clocks and their migration timeouts. We
define a formalism modelling such distributed systems allowing (max-
imal) parallel execution at each location. Taking into account explicit
timing constraints based on migration and interprocess communication,
we introduce and study a number of timed behavioural equivalences,
aiming to provide theoretical underpinnings of verification methods. We
also investigate relationships between such behavioural equivalences.

Keywords: mobility, timer, process algebra, bisimulation, behaviour,
equivalence.

1 Introduction

Process calculi are a family of formalisms used to model distributed systems.
They provide algebraic laws allowing a high-level description and analysis of
concurrent processes, behavioural equivalences (e.g., bisimulations) between pro-
cesses, and automated tools for the verification of interaction, communication,
and synchronization between processes. During the past couple of decades, a
number of calculi supporting process mobility were defined and studied; in par-
ticular, π-calculus [16] and mobile ambients [5]. Various specific features were
introduced to obtain such formalisms, including explicit locations in distributed
π-calculus [14], explicit migration and timers in timed distributed π-calculus [12],
and timed mobile ambients [1]. Time is an important aspect of distributed com-
puting systems, and can play a key role in their formal description. Since time is
a complex subject, its introduction to the domain of process calculi has received
a lot of attention in, e.g., [2,3,6,15,17,21]. Papers like these assume the existence
of a global clock which is usually required in the description of complex sys-
tems. However, there are several applications and systems for which considering
a global clock would be inappropriate. This paper follows such an approach,

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 52–66, 2012.
c© IFIP International Federation for Information Processing 2012

Behavioural Equivalences over Migrating Processes with Timers 53

in which local clocks operate independently, and so processes at different loca-
tions evolve asynchronously. Overall, temporal evolution of mobile processes is
governed by independent local clocks and their migration timeouts.

The ever increasing complexity of mobile processes calls for the development
of effective techniques and tools for the automated analysis and verification of
their properties including, in particular, behavioural equivalences between sys-
tems. Bisimulation is the most common mathematical concept used to capture
behavioural equivalence between processes. The corresponding equivalence rela-
tion, called bisimilarity, is used to abstract from certain details of the systems,
and is widely accepted as a standard behavioural equivalence for different kinds
of computational processes. Several kinds of bisimulations had been defined (e.g,
strong or weak bisimulation for π-calculus [16]).

In the paper [9], we defined TiMo, a basic language for mobile systems in
which it is possible to add timers to control process mobility and interaction. Af-
ter that, in [11], a local clock was assigned to each location of a system modelled
in TiMo. Each such clock determines the timing of actions executed at the cor-
responding location. Then, starting from TiMo, we created a flexible software
platform supporting the specification of agents and their physical distribution,
allowing also a timed migration in a distributed environment [8]. We obtained
this implementation by using an advanced software technology, creating a plat-
form for mobile agents with time constraints.

In this paper, we consider TiMo as the specification language for mobile
agents with timeouts, and define various behavioural equivalences taking into
account the timers which control the execution of communication and migration
actions. We study these bisimulations over networks, and then relax them by
applying the so-called ‘up-to’ technique. In [10] we discussed the TravelShop ex-
ample, in which clients buy tickets to predefined destinations from travel agents.
One can use the bisimilarities defined in this paper to differentiate, for example,
between two travel agents using the same databases for prices, but having differ-
ent delays for providing the answer (in an urgent situation, the faster one would
be preferred). On the other hand, it is possible to define equivalence classes of
agents offering similar services with respect to the waiting time (possibly up to
an acceptable time difference).

The paper is organised as follows. We start in Section 2 with a brief presenta-
tion of TiMo, including its syntax and operational semantics, and introduce an
example to illustrate the basic features of TiMo. In Sections 3 and 4, we formally
define a number of timed bisimulations, and present some of their properties.
Section 5 discusses the ‘up-to’ technique in the context of the bisimulations
introduced in this paper. Conclusion and references end the paper.

2 TiMo

Timing constraints for migration allow one to specify what is the longest time
it takes a mobile process to move to another location. A timer denoted by Δ3
associated to a migration action goΔ3work indicates that the process moves to

54 B. Aman, G. Ciobanu, and M. Koutny

location work after at most 3 time units. It is also possible to constrain the
waiting for a communication on a channel; if a communication action does not
happen before a deadline, the process gives up and switches its operation to an
alternative. E.g., a timer Δ5 associated to an output action aΔ5!〈10〉 makes the
channel available for communication only for the period of 5 time units.

2.1 Syntax

We assume suitable data sets including a set Loc of locations and a set Chan of
communication channels. We use a set Id of process identifiers, and each id ∈ Id
has the arity mid. In what follows, we use x to denote a finite tuple of elements
(x1, . . . , xk) whenever it does not lead to a confusion.

The syntax of TiMo [11] is given in Table 1, where P are processes, L located
processes, andN networks. Moreover, for each id ∈ Id there is a unique definition
of the form:

id(u1, . . . , umid
: X id

1 , . . . , X id
mid

) = Pid , (1)

where Pid is a process expression, the ui’s are distinct variables playing the role
of parameters, and the X id

i ’s are data types. In Table 1, it is assumed that:

– a ∈ Chan is a channel;
– lt ∈ N ∪ {∞} is a deadline, where lt stands for local time;
– each vi in v is an expression built from data values and variables;
– each ui in u is a variable, and each Xi in X is a data type;
– l is a location or a location variable; and
– � is a special symbol used to state that a process is temporarily ‘stalled’

and will be re-activated after a time progress.

The only variable binding constructor is aΔlt?(u:X) thenP elseP ′ which binds the
variablesuwithinP (but not withinP ′).We use fv(P) to denote the free variables
of a process P (and similarly for networks). For a process definition as in (1), we
assume thatfv(Pid) ⊆ {u1, . . . , umid

} and so the free variables ofPid areparameter
bound. Processes are defined up to alpha-conversion, and {v/u, . . .}P is obtained
from P by replacing all free occurrences of a variable u by v, etc, possible after
alpha-convertingP in order to avoid clashes. Moreover, if v andu are tuples of the
same length then {v/u}P denotes {v1/u1, v2/u2, . . . , vk/uk}P .

Intuitively, a process aΔlt !〈v〉 then P else P ′ attempts to send a tuple of
values v over channel a for lt time units. If successful, it continues as process P ;
otherwise it continues as process P ′. Similarly, aΔlt?(u:X) then P else P ′ is a
process that attempts for lt time units to input a tuple of values of type X
and substitute them for the variables u. Mobility is implemented by a process
goΔlt l then P which moves from the current location to the location l within
lt time units. Note that since l can be a variable, and so its value is assigned
dynamically through the communication with other processes, migration actions
support a flexible scheme for the movement of processes from one location to
another. Processes are further constructed from the (terminated) process 0 and

Behavioural Equivalences over Migrating Processes with Timers 55

Table 1. TiMo syntax

Processes P ::= aΔlt !〈v〉 then P else P ′
� (output)

aΔlt?(u:X) then P else P ′
� (input)

goΔlt l then P � (move)

P | P ′
� (parallel)

0 � (termination)

id(v) (recursion)

�P (stalling)

Located processes L ::= l[[P]]

Networks N ::= L � L | N

parallel composition P |P ′. A located process l[[P]] specifies a process P running
at location l, and networks are composed out of located processes. A network N
is well-formed if the following hold:

– there are no free variables in N ;
– there are no occurrences of the special symbol � in N ;
– assuming that id is as in the recursive equation (1), for every id(v) occurring

in N or on the right hand side of any recursive equation, the expression vi is
of type corresponding toX id

i (where we use the standard rules of determining
the type of an expression).

The set of processes is denoted by P , the set of located processes by L, and the
set of networks by N .

By delaying the migration to another location, we can model in a simple way
the movement time of processes within the network which is, in general, outside
the control of a system designer.

2.2 Semantics

The first component of the operational semantics of TiMo is the structural
equivalence ≡ on networks; it is the smallest congruence such that the first three
equalities in Table 2 hold. Its role is to rearrange a network in order to apply
the action rules which are also given in Table 2. Using the first three equalities
in Table 2, one can always transform a given network N into a finite parallel
composition of located processes of the form

l1[[P1]] | . . . | ln[[Pn]]

56 B. Aman, G. Ciobanu, and M. Koutny

Table 2. TiMo operational semantics

(NComm) N | N ′ ≡ N ′ | N
(NAssoc) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)

(NSplit) l[[P | P ′]] ≡ l[[P]] | l[[P ′]]

(Move) l[[goΔlt l′ then P]]
l′@l−−→ l′[[�P]]

(Com)
v1 ∈ X1 . . . vk ∈ Xk

l[[aΔlt !〈v〉 then P else Q | aΔlt′?(u:X) then P ′ else Q′]]
a〈v〉@l−−−−→ l[[�P | �{v/u}P ′]]

(Call) l[[id(v)]]
id@l−−−→ l[[�{v/u}Pid]]

(Par)
N

λ−→ N ′

N | N ′′ λ−→ N ′ | N ′′

(Equiv)
N ≡ N ′ N ′ λ−→ N ′′ N ′′ ≡ N ′′′

N
λ−→ N ′′′

(Time)
N �−→l

N
√

l−−→ φl(N)

such that no process Pi has the parallel composition operator at its topmost
level. Each located process li[[Pi]] is called a component of N , and the parallel
composition is called a component decomposition of the network N . Note that
these notions are well defined since component decomposition is unique up to
the permutation of the components. This follows from the rule (Call) which
treats recursive definitions as function calls which take a unit of time. Another
consequence of such a treatment is that it is impossible to execute an infinite
sequence of action steps without executing any time actions.

Table 2 introduces two kinds of rules,

N
λ−→ N ′ and N

√
l−−→ N ′ .

The former is an execution of an action λ, and the latter a time step at location l.
In the rule (Time),N �→lmeans that the rules (Call) and (Com)aswell as (Move)
with Δlt = Δ0 cannot be applied to N for location l. It can be noticed that in
rule (Time) we use negative premises, i.e., an activity is performed in the absence
of other actions. This is due to the fact that sequencing the evolution

Behavioural Equivalences over Migrating Processes with Timers 57

in time units can only be defined using negative premises, as done for sequencing
processes in [4,13]. Moreover, φl(N) is obtained by taking the component decom-
position ofN and simultaneously replacing all components:

l[[aΔltω then P else Q]] by

{
l[[Q]] if lt = 0

l[[aΔlt−1ω then P else Q]] otherwise

l[[goΔlt l′ then P]] by l[[goΔlt−1l′ then P]]

whereω stands for !〈v〉 or ?(u:X).After that, all the occurrences of the symbol� in
N are erased since processes that were unfolded or interacted with other processes
or migrated need to be activated (note that the number of the symbols � to be
erased cannot exceed the number of the components of the network).

The rules of Table 2 express executions of individual actions. A complete
computational step is captured by a derivation of the form

N
Λ@l
===⇒ N ′ ,

where Λ = {λ1, . . . , λm} (m ≥ 0) is a finite multiset of actions for some location l
(i.e., actions λi of the form l′@l or a〈v〉@l or id@l) such that

N
λ1−→ N1 . . . Nm−1

λm−−→ Nm

√
l−−→ N ′ .

That means that a derivation is a condensed representation of a sequence of
individual actions followed by a clock tick, all happening at the same location.
Intuitively, we capture the cumulative effect of the concurrent execution of the
multiset of actions Λ at location l. If there is only a time progression at a

location l, we write N
∅@l
==⇒ N ′.

In terms of executing TiMo specifications on an abstract machine, one can
imagine the latter as a device transforming well-formed networks into well-
formed networks. At any stage, the machine selects one location l as the ac-
tive one. Then, it executes all interprocess communications within location l as
well as all migrations with expired (zero) timers in a maximally concurrent way.
This is followed by the execution of arbitrarily many migrations with unexpired
timers at location l. Finally, one decrements all the top-most timers in all the
network components at location l which have not yet been involved in the current
computational step.

2.3 An Example

The TravelShop example discussed in [10] is rather involved, so in this paper we
use its simplified version to illustrate the operational semantics of TiMo. In the
UrgentTravel example a client process attempts to initiate an unspecified travel
process as soon as it receives a flight offer.

The scenario involves three locations and three processes. The role of each
location is as follows: office is a location where the client process starts its work,
and agency i (for i = 1, 2) is a travel agency where the client can find out about
the price of tickets. The role of each process is as follows:

58 B. Aman, G. Ciobanu, and M. Koutny

– client resides in the office location, and is determined to pay for a flight as
soon as it receives an offer from one of two travel agencies. After sending an
email to each agency, it awaits for the quickest response to initiate the travel
process.

– agent i (for i = 1, 2) resides in the agency i location, and replies to emails
received from clients.

We use timers in order to impose deadlines on the execution of communications
and migrations. Each location has its local clock which determines the timing
of actions executed at that location. The process specifications that capture the
essential features of the above scenario are:

agent i = aΔ5!〈offer i〉 then agent i else agent i

client = dΔ6?(y) then travel(y) else 0

| goΔ2agency1 then (aΔ1?(x) then (goΔ2office then dΔ1!〈x〉) else 0)

| goΔ3agency2 then (aΔ1?(x) then (goΔ3office then dΔ1!〈x〉) else 0)

Note that in the above definitions we slightly simplified the notation and used:

- dΔt!〈x〉 instead of dΔt!〈x〉 then 0 else 0
- dΔ6?(y) instead of dΔ6?(y:1..1000)
- aΔ1?(x) instead of aΔ1?(x:1..1000).

Table 3 shows a typical execution of the following network modelling our sce-
nario:

UrgentTravel = office[[client]] | agency1[[agent1]] | agency2[[agent2]]

3 Timed Bisimulations in TiMo

In what follows, we define various behavioural equivalences for networks of lo-
cated processes. Similarly as in timed distributed π-calculus [7], we start by
extending the standard notion of strong bisimilarity to take into account timed
transitions.

Definition 1 (strong timed bisimulation)
Let R ⊆ N ×N be a binary relation on networks of processes.

1. R is a strong timed simulation (ST simulation) if

(N1, N2) ∈ R ∧ N1
ψ−→ N ′

1 implies ∃N ′
2 ∈ N : N2

ψ−→ N ′
2 ∧ (N ′

1, N
′
2) ∈ R .

where ψ is any action allowed by the operational semantics.
2. R is a strong timed bisimulation (ST bisimulation) if both R and R−1 are

strong timed simulations.
3. The strong timed bisimilarity ∼ is the union of all ST bisimulations.

Behavioural Equivalences over Migrating Processes with Timers 59

Table 3. Applying operational semantics

UrgentTravel

∅@office
=====⇒ ∅@office

=====⇒ ∅@office
=====⇒ ∅@agency1=======⇒ ∅@agency1=======⇒ ∅@agency2=======⇒

office [[dΔ4?(y) then travel (y) else 0

| goΔ0agency1 then (aΔ1?(x) then (goΔ2office then dΔ1!〈x〉) else 0)
| goΔ1agency2 then (aΔ1?(x) then (goΔ3office then dΔ1!〈x〉) else 0)]]

| agency1[[a
Δ4!〈offer 1〉 then agent1 else agent1]]

| agency2[[a
Δ5!〈offer 2〉 then agent2 else agent2]]

{agency1@office, agency2@office}@office
=========================⇒
{a〈offer1〉@agency1}@agency1===================⇒ {a〈offer2〉@agency2}@agency2===================⇒

office [[dΔ3?(y) then travel (y) else 0]]

| agency1[[agent1 | goΔ2office then dΔ1!〈offer1〉]]
| agency2[[agent2 | goΔ3office then dΔ1!〈offer2〉]]
{office@agency1}@agency1=================⇒

office [[dΔ3?(y) then travel (y) else 0 | dΔ1!〈offer1〉]]
| agency1[[a

Δ5!〈offer 1〉 then agent1 else agent1]]

| agency2[[agent2 | goΔ3office then dΔ1!〈offer2〉]]
{d〈offer1〉@office}@office
================⇒
office [[travel (offer1) | 0]]

| agency1[[a
Δ5!〈offer 1〉 then agent1 else agent1]]

| agency2[[agent2 | goΔ3office then dΔ1!〈offer2〉]]

Essentially, the above definition treats timed transitions just as any other transi-
tions, and therefore coincides with the original notion of bisimilarity for labelled
transition systems. It is easy to check that ∼ is an equivalence relation, and also
the largest strong timed bisimulation. From the point of view of the behaviour
of TiMo networks, a crucial result is that strong timed bisimularity can be
used to compare their evolutions in terms of complete computational steps of
well-formed networks.

60 B. Aman, G. Ciobanu, and M. Koutny

Theorem 1. Let N1 and N2 be two well-formed networks. Then:

N1 ∼ N2 ∧ N1
Λ@l
===⇒ N ′

1 implies ∃N ′
2 ∈ N : N2

Λ@l
===⇒ N ′

2 ∧ N ′
1 ∼ N ′

2 .

Together with the fact that, for every well-formed network N , N
Λ@l
===⇒ N ′ im-

plies that N ′ is also well-formed (see [11]), this means that the strong timed
bisimilarity is an adequate tool for comparing the behaviour of (well-formed)
networks.

The above definition of equivalence compares the evolution of whole networks,
but does not provide means for reasoning about equivalence of compositionally
defined networks. Consider, for example, two networks:

N1 = l[[aΔlt!〈1〉 then 0 else 0]] and N2 = l[[0]] .

Clearly, N1 ∼ N2 as both networks allow only the transition
∅@l
==⇒. However,

when we compose them with N = l[[aΔlt?(u : N) then 0 else 0]] then:

N1 | N �∼ N2 | N

as the first composition can execute transition
{a〈1〉@l}@l
=======⇒ whereas the second

one can only execute
∅@l
==⇒.

To be able to reason about networks in a compositional way, one may augment
(only for the purpose of dealing with equivalences) the operational semantics of
processes with two additional rules relating to communication, which intuitively
represent individual evolutions of interacting processes:

(Snd) l[[aΔlt !〈v〉 then P else Q]]
a!〈v〉@l−−−−−→ l[[�P]]

(Rcv)
v1 ∈ X1 . . . vk ∈ Xk

aΔlt?(u:X) then P else Q]]
a?〈v〉@l−−−−−→ l[[{v/u}P]]

All the previous rules remain unchanged. In particular, N �→l in the rule (Time)
still means that the rules (Call) and (Com) as well as (Move) with Δlt = Δ0
cannot be applied toN for location l; in other words the two new rules, (Snd) and
(Rcv), are not taken into account. The transitions of the extended operational

semantics will be denoted by
ψ−→e rather than

ψ−→.

Definition 2 (strong extended timed bisimulation)

Let R ⊆ N ×N be a binary relation on networks of processes.

1. R is a strong extended timed simulation (SET simulation) if

(N1, N2) ∈ R ∧ N1
ψ−→e N

′
1 implies ∃N ′

2 ∈ N : N2
ψ−→e N

′
2 ∧ (N ′

1, N
′
2) ∈ R .

where ψ is any action allowed by the extended operational semantics.

Behavioural Equivalences over Migrating Processes with Timers 61

2. R is a strong extended timed bisimulation (SET bisimulation) if both R and
R−1 are strong extended timed simulations.

3. The strong extended timed bisimilarity ∼e is the union of all SET bisimu-
lations.

The strong extended timed bisimilarity is compositional, and it implies strong
timed bisimilarity.

Theorem 2. Let N1, N
′
1, N2 and N ′

2 be well formed networks. Then:

N1 ∼e N2 and N ′
1 ∼e N ′

2 implies N1 | N ′
1 ∼e N2 | N ′

2 .

Proposition 1. Let N and N ′ be well formed networks. Then:

N ∼e N ′ implies N ∼ N ′ .

It therefore follows, in the context of Theorem 1, that strong extended timed
bisimilarity provides an adequate tool for comparing behaviours of composition-
ally defined networks considered up to certain time deadline.

4 Bounded Timed Bisimulations in TiMo

The above notion of equivalence takes into account the timed behaviour requir-
ing an exact match of transitions of two networks, for their entire evolution.
Sometimes these requirements are too strong. According to [18] where a similar
approach is presented, real-time distributed systems usually require a certain
behaviour within a given threshold of time units. That is why we will now re-
strict equivalences up-to some threshold time values specified individually for
each location l ∈ Loc, defining bounded timed equivalences.

In what follows we assume that Loc = {l1, . . . , ln}. We then introduce some
additional notations and terminology:

– T = {(t1@l1, . . . , tn@ln) | t1, . . . tn ∈ N} comprises tuples in which each loca-
tion li has an associated number of time units in which it will be observed.
We use t̂ to denote (t1@l1, . . . , tn@ln), and t̂li to denote ti.

– For every t̂ = (t1@l1, . . . , tn@ln) ∈ T and li ∈ Loc,

t̂" li = (t1@l1, . . . , ti−1@li−1, ti − 1@li, ti+1@li+1, . . . , tn@ln) .

Intuitively, t̂ " li records that one time unit has passed at location li, and
the remaining observation time has been updated accordingly.

– Any relation R ⊆ N × T×N is a timed relation over networks.
– The inverse of a timed relation R is

R−1 = {(N ′, t̂, N) | (N, t̂, N ′) ∈ R} .

– If R is a timed relation and t̂ ∈ T then the t̂-projection of R is:

Rt̂ = {(N1, N2) | (N1, t̂, N2) ∈ R} .

62 B. Aman, G. Ciobanu, and M. Koutny

Definition 3 (strong bounded timed bisimulation)

Let R ⊆ N × T×N be a timed relation over N .

1. R is a strong bounded timed simulation (SBT simulation) if⎧⎨⎩ (N1, t̂, N2) ∈ R

N1

√
l−−→ N ′

1 and t̂l > 0

⎫⎬⎭ implies ∃N ′
2 ∈ N :

⎧⎨⎩ N2

√
l−−→ N ′

2

(N ′
1, t̂" l, N ′

2) ∈ R

⎫⎬⎭
and, for each λ of the form l′@l or a〈v〉@l or id@l,⎧⎨⎩ (N1, t̂, N2) ∈ R

N1
λ−→ N ′

1 and t̂l > 0

⎫⎬⎭ implies ∃N ′
2 ∈ N :

⎧⎨⎩ N2
λ−→ N ′

2

(N ′
1, t̂, N

′
2) ∈ R

⎫⎬⎭
2. R is a strong bounded timed bisimulation (SBT bisimulation) if both R and

R−1 are strong bounded timed simulations.
3. The strong bounded timed bisimilarity # is the union of all SBT bisimula-

tions.

One can see that # is the largest SBT bisimulation. Moreover, SBT bisimulations
enjoy properties similar to those satisfied by equivalence relations.

Proposition 2. The inverse, composition and union of SBT bisimulations are
SBT bisimulations, where the composition of timed relations R and R′ comprises
all triples (N, t̂, N ′′) for which there is N ′ ∈ N satisfying (N, t̂, N ′) ∈ R and
(N ′, t, N ′′) ∈ R′.

Strong bounded timed bisimilarity is such that being equivalent up-to a certain
time bound implies equivalence up-to any smaller time bound.

Proposition 3. Let N #t̂ N
′ be two well-formed networks. Then N #t̂′ N

′, for
every t̂′ ∈ T satisfying t1 ≤ t′1, . . . , tn ≤ t′n.

Finally, we have a crucial result that strong bounded timed bisimularity can be
used to compare the complete computational steps of two networks.

Theorem 3. Let N1 and N2 be two well-formed networks. Then:{
N1 #t̂ N2

N1
Λ@l
===⇒ N ′

1 and t̂l > 0

}
implies ∃N ′

2 ∈ N :

{
N2

Λ@l
===⇒ N ′

2

N ′
1 #t̂�l N

′
2

}

Similarly as strong time bisimilarity is not preserved by network composition,
strong bounded time bisimilarity is not preserved by network composition. How-
ever, as in the previous case, one can consider two additional rules, (Snd) and
(Rcv), and obtain the extended version of #t̂.

Definition 4 (strong extended bounded timed bisimulation).

Let R ⊆ N × T×N be a timed relation over N .

Behavioural Equivalences over Migrating Processes with Timers 63

1. R is a strong extended bounded timed simulation (SEBT simulation) if⎧⎨⎩ (N1, t̂, N2) ∈ R

N1

√
l−−→e N

′
1 and t̂l > 0

⎫⎬⎭ implies ∃N ′
2 ∈ N :

⎧⎨⎩ N2

√
l−−→e N

′
2

(N ′
1, t̂" l, N ′

2) ∈ R

⎫⎬⎭
and, for each ψ of the form l′@l or a〈v〉@l or a!〈v〉@l or a?〈v〉@l or id@l,⎧⎨⎩ (N1, t̂, N2) ∈ R

N1
ψ−→e N

′
1 and t̂l > 0

⎫⎬⎭ implies ∃N ′
2 ∈ N :

⎧⎨⎩ N2
ψ−→e N

′
2

(N ′
1, t̂, N

′
2) ∈ R

⎫⎬⎭
2. R is a strong extended bounded timed bisimulation (SEBT bisimulation) if

both R and R−1 are strong extended bounded timed simulations.
3. The strong extended bounded timed bisimilarity is the union #e of all SEBT

bisimulations.

The strong extended bounded timed bisimilarity is compositional, and it implies
strong bounded timed bisimilarity.

Theorem 4. Let N1, N
′
1, N2 and N ′

2 be well formed networks and t̂ ∈ T. Then:

N1 #e
t̂
N2 and N ′

1 #e
t̂
N ′

2 implies N1 | N ′
1 #e

t̂
N2 | N ′

2 .

Proposition 4. Let N1 and N2 be well formed networks and t̂ ∈ T. Then:

N1 #e
t̂
N2 implies N1 #t̂ N2 .

It therefore follows, in the context of Theorem 3, that strong extended timed
bisimilarity provides an adequate tool for comparing behaviours of composition-
ally defined networks.

5 Relaxing Timed Bisimulations

In what follows we use the ‘up-to’ technique presented in [19] in the context of
bounded timed bisimulations. The standard proof technique to establish that N1

andN2 are bisimilar is to find a bisimulationR s.t.such that (N1, N2) ∈ R andR
is closed under transitions of the operational semantics; in particular, that the
derivatives (N ′

1, N
′
2) of (N1, N2) are also in R. Sometimes it is difficult to find

directly such a relation R. Instead, there is an useful alternative technique, the
so-called bisimulation ‘up-to’ some relation R′: for a relation R, which is not a
bisimulation, if (N1, N2) ∈ R, then one requires that the derivatives (N ′

1, N
′
2)

are in R′. Under certain conditions one can then establish that N1 and N2

are bisimilar. For such a technique, a general framework working for untimed
operational semantics was presented in [20]. We cannot make a direct use of that
framework, but we can adapt it in a straightforward manner to our setting.

We begin by introducing a notion of ‘progressing’ a timed relation towards
another timed relation.

64 B. Aman, G. Ciobanu, and M. Koutny

Definition 5 (strong progress)

Let R and R′ be two timed relations. Then R strongly progresses to R′ if⎧⎨⎩ (N1, t̂, N2) ∈ R

N1

√
l−−→ N ′

1 ∧ t̂l > 0

⎫⎬⎭ =⇒ ∃N ′
2 ∈ N :

⎧⎨⎩ N2

√
l−−→ N ′

2

(N ′
1, t̂" l, N ′

2) ∈ R′

⎫⎬⎭
and, for each λ of the form l′@l or a〈v〉@l or id@l,⎧⎨⎩ (N1, t̂, N2) ∈ R

N1
λ−→ N ′

1 ∧ t̂l > 0

⎫⎬⎭ =⇒ ∃N ′
2 ∈ N :

⎧⎨⎩ N2
λ−→ N ′

2

(N ′
1, t̂, N

′
2) ∈ R′

⎫⎬⎭
We denote this by R� R′.

The above definition is similar to that of SBT bisimulation, except that the
derivatives (N ′

1, t̂, N
′
2) and (N ′

1, t̂" l, N ′
2) must be in R′ rather than R.

Proposition 5. If R � R′ and R′ is an SBT bisimulation, then R is also an
SBT bisimulation.

Therefore, to establish that N1 #t̂ N2 it is enough to find a relation R with
(N1, t̂, N2) ∈ R which strongly progresses to a known SBT bisimulation R′. The
choice of R′ depends on the particular equivalence we are trying to establish.
One of the most common cases is when R′ = #. However, in general we may
not have a relation R′ known to be a bisimulation. Nevertheless, we may find
that R progresses to a relation R′ = F(R) for some mapping F over relations.
The idea is that if R progresses to F(R) and F satisfies certain conditions,
then R is included in #. Thus, to establish N1 #t̂ N2 we need to find such an F
whenever R contains (N1, t̂, N2).

Suitable mappings F are characterised in [20] as being strongly safe which,
in our context, means that for any timed relations R and R′, if R ⊆ R′ and
R � R′, then F(R) ⊆ F(R′) and F(R) � F(R′). More details about the
‘up-to’ techniques and safe functions can be found in [20].

6 Conclusion

This paper presents an approach in which local clocks operate independently,
and so processes at different locations evolve asynchronously. On the other hand,
processes operating at the same location evolve synchronously, and temporal
evolution of mobile processes is governed by independent local clocks and their
migration timeouts. A computational step captures the cumulative effect of the
concurrent execution of a group of actions executed at one location.

In process calculi such as distributed π-calculus, timed distributed π-calculus
and other formalisms with explicit migration operators, bisimulations are used
to compare behaviours of mobile processes evolving in distributed systems with

Behavioural Equivalences over Migrating Processes with Timers 65

explicit locations. Bisimulations are behavioural equivalences used to study the
properties of a concurrent system by verifying its bisimilarity with a system
known to enjoy those properties. Moreover, given the model of a system, bisim-
ulations can be used to consider equivalent simplified models.

In this paper, we defined behavioural equivalences between migrating process
in distributed systems in terms of local time and locations. In particular, the
strong timed bisimilarity can be used to compare the complete computational
steps of two networks. Moreover, two networks that are strong bounded timed
bisimilar up to certain deadlines t̂ remain equivalent provided that their execu-
tion is restricted to the time limit given by t̂. We also defined extended versions
of both equivalences which can support compositional reasoning.

Acknowledgement. The work of Bogdan Aman and Gabriel Ciobanu was sup-
ported by a grant from the Romanian National Authority for Scientific Research,
CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0919. In addition, the
work of Bogdan Aman was supported by POSDRU/89/1.5/S/49944.

References

1. Aman, B., Ciobanu, G.: Timed Mobile Ambients for Network Protocols. In:
Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS,
vol. 5048, pp. 234–250. Springer, Heidelberg (2008)

2. Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra: Absolute time, rel-
ative time and parametric time. Fundam. Inform. 29(1-2), 51–76 (1997)

3. Berger, M.: Towards Abstractions for Distributed Systems. Ph.D. thesis, Depart-
ment of Computing, Imperial College (2002)

4. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. In: POPL,
pp. 229–239 (1988)

5. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

6. Chen, L.: Timed Processes: Models, Axioms and Decidability. Ph.D. thesis, School
of Informatics, University of Edinburgh (1993)

7. Ciobanu, G.: Behaviour Equivalences in Timed Distributed π-Calculus. In: Wirs-
ing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Soft-Ware Intensive
Systems. LNCS, vol. 5380, pp. 190–208. Springer, Heidelberg (2008)

8. Ciobanu, G., Juravle, C.: Flexible software architecture and language for mobile
agents. Concurrency and Computation: Practice and Experience 24(6), 559–571
(2012)

9. Ciobanu, G., Koutny, M.: Modelling and Verification of Timed Interaction and
Migration. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 215–229. Springer, Heidelberg (2008)

10. Ciobanu, G., Koutny, M.: Timed Migration and Interaction with Access Permis-
sions. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 293–307.
Springer, Heidelberg (2011)

11. Ciobanu, G., Koutny, M.: Timed mobility in process algebra and petri nets. J. Log.
Algebr. Program. 80(7), 377–391 (2011)

12. Ciobanu, G., Prisacariu, C.: Timers for distributed systems. Electr. Notes Theor.
Comput. Sci. 164(3), 81–99 (2006)

66 B. Aman, G. Ciobanu, and M. Koutny

13. Groote, J.F.: Transition system specifications with negative premises. Theoretical
Computer Science 118, 263–299 (1993)

14. Hennessy, M.: A distributed π-calculus. Cambridge University Press (2007)
15. Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117(2),

221–239 (1995)
16. Milner, R.: Communicating and mobile systems - the π-calculus. Cambridge Uni-

versity Press (1999)
17. Nicollin, X., Sifakis, J.: The algebra of timed processes, atp: Theory and applica-

tion. Inf. Comput. 114(1), 131–178 (1994)
18. Posse, E., Dingel, J.: Theory and Implementation of a Real-Time Extension to

the π-Calculus. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010. LNCS,
vol. 6117, pp. 125–139. Springer, Heidelberg (2010)

19. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inf. 33(1), 69–97
(1996)

20. Sangiorgi, D., Walker, D.: The π-Calculus - a theory of mobile processes. Cambridge
University Press (2001)

21. Yi, W.: A Calculus of Real-Time Systems. Ph.D. thesis, Department of Computer
Science, Chalmers University of Technology (1991)

Checking Soundness of Business Processes
Compositionally Using Symbolic Observation

Graphs

Kais Klai1 and Jörg Desel2

1 LIPN, CNRS UMR 7030, Université Paris 13, France
2 FernUniversität in Hagen, 58084 Hagen, Germany

Abstract. The Symbolic Observation Graph (SOG) associated with a
labelled transition system and a subset of its labels is an efficient BDD-
based abstraction representing the behavior of a system. The goal of this
paper is to compose SOGs such that the resulting SOG is still small but
represents the behavior of the composed business process in an appro-
priate way. In particular, we would like to deduce the properties of a
composed business process by analysing the composition of the SOGs
associated with its components. This question was already answered for
the deadlock-freeness property in previous work. In this paper, we extend
this result to other generic properties: the so-called soundness properties.
These properties guarantee the absence of livelocks, deadlocks and other
anomalies that can be formulated without domain knowledge. Thus, we
show how the SOG can be adapted and used so that the verification of
several variants of the soundness property can be performed modularly.

1 Introduction

Behavioral correctness of a process model can be defined in various ways, de-
pending on the properties considered. For different notions of correctness, and for
different process modeling languages, there exist a variety of tools to check cor-
rectness. The most important challenge with checking correctness is its inherent
high complexity; since correctness refers to the model behavior, each straightfor-
ward algorithm requires the construction of a behavioral representation of the
model, which is often very large or even infinite. If a business process model is
obtained by composition of other models, then concurrency between the respec-
tive activities leads to the well-known state explosion problem. Our approach
to tackle the state explosion problem is to: (1) provide a behavioral model of a
single business process model which is of manageable size but contains sufficient
information about the process’ behavior such that the relevant properties can be
checked using this model, and (2) provide an efficient composition operation on
this behavioral model such that analysis of this composed model yields results
on the composed business process.

As a behavioral model we use the Symbolic Observation Graph (SOG) [7]
which is an efficient BDD-based abstraction of the behavior of a system model.

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 67–83, 2012.
c© IFIP International Federation for Information Processing 2012

68 K. Klai and J. Desel

Formally, a SOG can be viewed as a coarse representation of the state graph of a
system model. Algorithmically, this state graph does not have to be constructed
explicitly because the SOG can directly, and on the fly, be obtained from the
original model. In this paper, the example models will be WF-nets [2]. However,
since we do not restrict our work to a particular modeling language, we nev-
ertheless start with state-based representations of process models, namely with
Labeled Transition Systems (LTS). Recall that this is done only for presentation
purposes and does not mean that an LTS has to be constructed in our approach.

In business process modelling, soundness represents a relevant property which
is frequently studied. There exist various variants of soundness notions that
weaken or strengthen the original definition given in [1]. Roughly speaking,
soundness requires that every task of a business process model can actually
occur and that it is always possible to reach a legal final state. The notion of
relaxed soundness is introduced in [5]. This notion allows for potential deadlocks
and livelocks, however, each task should occur in at least one proper execution
(leading to a final state). In [13] the notion of weak soundness, allowing for
dead transition, is proposed. Finally, easy soundness [17] only requires that the
final state is reachable from the initial state. Other variants of soundness ad-
dressing problems related to multiple instantiation of the workflow model (e.g.,
k-soundness and generalized soundness [18]) or focusing on termination condi-
tions (e.g., lazy soundness [15]) are not considered in this paper.

We first translate the definition of these variants of the soundness property,
originally defined for Petri nets, to the LTS notation. Then, we show how check-
ing these properties can be done on a SOG instead of the underlying LTS.
Finally, we establish that, when the components of a composed business pro-
cess are proved to be sound, how to check using SOGs whether the composition
is sound or not. The last task is performed by considering only the collabora-
tion activities of the model components. In other words, what has been already
checked locally is not checked again after composition.

The paper is organized as follows: In Section 2, we give definitions and useful
notations. In Section 3, we describe an example of an interorganizational work-
flow to illustrate the presented concepts and to progressively apply our approach.
The Symbolic Observation Graph and the preservation results are presented in
Section 4. Composition operators are defined in Section 5 while Section 6 is ded-
icated to discussing related works and to comparing our approach with existing
ones. Section 7 concludes the paper and provides some future perspectives.

2 Preliminaries

The technique presented in this paper applies to different languages for business
process modeling that can map to Labeled Transition Systems (one prominent
example is the language of WF-nets). For the sake of simplicity and generality,
we choose to present it directly for Labeled Transition Systems.

Definition 1 (Labeled Transition System). A Labeled Transition System
(LTS for short) is a 5-tuple 〈Γ,Act ,→, I, F 〉 where

Checking Soundness of Business Processes Compositionally Using SOGs 69

– Γ is a nonempty finite set of states
– Act is a nonempty finite set of actions
– →⊆ Γ × Act × Γ is a transition relation
– I ⊆ Γ is a nonempty set of initial states
– F ⊆ Γ is a nonempty set of final states

In this paper, we restrict the set of states Γ to those that are reachable from
an initial state in I. Moreover, we assume that final states are terminal, i.e., no
final state has a successor. We distinguish observed actions, denoted by the set
Obs, from unobserved actions, denoted by UnObs (with Obs∪UnObs = Act and
Obs∩UnObs = ∅). Here, the observed actions are those belonging to the interface
(i.e., collaborative actions) while unobserved actions are those performing local
activities.

– For s, s′ ∈ Γ and a ∈ Act , we denote by s a−→s′ that (s, a, s′) ∈→ and by
s a−→ that s a−→s′′ for some state s′′.

– If σ = a1a2 · · · an is a sequence of actions, σ denotes the set of actions
occurring in σ, while |σ| denotes the length of σ. s σ−→s′ denotes that
∃s1, s2, · · · sn−1 ∈ Γ : s a1−→s1

a2−→· · · sn−1
an−→s′ and is called a path.

– For a state s, the set Enable(s) denotes the set of actions a such that s a−→.
For a set of states S, Enable(S) denotes

⋃
s∈SEnable(s).

– For s ∈ (Γ \ F), s �→ denotes that s is a dead state, i.e., Enable(s) = ∅.
– Sat(s) = {s′ | s σ−→s′ ∧ σ ⊆ UnObs} is the set of states that are reachable

from a state s by using unobserved actions only. For S ⊆ Γ , Sat(S) =⋃
s∈S Sat(s).

– s ⇒ s′ means that state s′ is reachable from state s (possibly through ob-
served actions).

– For s ∈ Γ , s �⇒ denotes that no state of Sat(s) is final or enables an observed
action, i.e., Sat(s) ∩ F = ∅ ∧ Enable(Sat(s)) ∩ Obs = ∅. Conversely, s ⇒
means that either a final state or a state enabling an observed action is
reachable from s.

– A finite path C = s1
σ−→sn is said to be a cycle if sn = s1 and |σ| ≥ 1. If

moreover σ ⊆ UnObs then C is said to be a livelock. If, in addition, s1 �⇒
then C is called a strong livelock (a terminal cycle). Otherwise it is called a
weak livelock.

If s �⇒, only a dead state or a strong livelock are reachable from s. In this paper
we assume that a strong livelock behavior is equivalent to a dead state because
these two behaviors are not distinguishable. Both will be called deadlock. In the
sequel, the set Dead(S), for a given subset of states S, denotes the set of states
s ∈ S satisfying s �⇒.

Definition 2. Let T = 〈Γ,Act ,→, I, F 〉 be an LTS. Then T is said to be:

– sound iff
• ∀s ∈ Γ ∃f ∈ F : s ⇒ f
• ∀t ∈ Act ∃s ∈ Γ : s t−→

– relaxed sound iff ∀t ∈ Act ∃s, s′ ∈ Γ ∃f ∈ F : s t−→s′ ∧ s′ ⇒ f

70 K. Klai and J. Desel

– weakly sound iff ∀s ∈ Γ ∃f ∈ F : s ⇒ f
– easily sound iff ∃i ∈ I ∃f ∈ F : i ⇒ f

The soundness property, originally defined in [1], has two requirements. The
first one is that it is always possible to reach a final state. If we assume an
appropriate notion of fairness, then this requirement implies that a final state is
eventually reached from an initial state. If we require termination without such
an assumption, all models allowing loops in their execution sequences would be
unsound, which is clearly undesirable. Relaxed soundness [5] allows for potential
deadlocks and livelocks. However, each action should occur in at least one "good"
execution path. Weak soundness [13] allows for dead transitions as long as a final
state is reachable from any state. Finally, easy soundness [17] requires that a final
state is reachable from some initial state. It is obvious that soundness implies
both relaxed and weak soundness, which are incomparable, and that each other
soundness notion implies easy soundness.

In the following, we define the synchronized product of two LTSs. The syn-
chronized product of n LTS (for n > 2) can be built by iterative multiplication.

Definition 3 (LTS Synchronized Product). Let Ti = 〈Γi,Act i,→i, Ii, Fi〉,
i = 1, 2 be two LTSs. The synchronized product of T1 and T2 is the minimal
LTS T1 × T2 = 〈Γ,Act ,→, I, F 〉 given by:

1. Γ ⊆ Γ1 × Γ2

2. Act = Act1 ∪Act2

3. → is the transition relation, defined by:
∀(s1, s2) ∈ Γ : (s1, s2) a−→(s′1, s

′
2) ⇔⎧⎨⎩

s1
a−→1s

′
1 ∧ s2

a−→2s
′
2 if a ∈ Act1 ∩ Act2

s1
a−→1s

′
1 ∧ s2 = s′2 if a ∈ Act1 \ Act2

s1 = s′1 ∧ s2
a−→2s

′
2 if a ∈ Act2 \ Act1

4. The set of states Γ contains all (and by minimality only) reachable states:
Γ = {(s1, s2) ∈ Γ1 × Γ2 | ∃(i1, i2) ∈ I1 × I2 ∃σ ∈ Act∗ : (i1, i2) σ−→(s1, s2)}

5. I = I1 × I2

6. F = (F1 × F2) ∩ Γ

Every state of the synchronized product is a pair of states, the first component
indicating the respective state of the first LTS, the second component indicating
the respective state of the second LTS. Each LTS can still do its private activ-
ities autonomously, i.e., only one component of the pair representing a state of
the composed LTS is changed by such an action. For common activities both
components of the state are changed synchronously.

3 Running Example

To introduce the problems tackled in this paper we use an example, taken from
[4], of an interorganizational workflow involving two business partners: a con-
tractor and a subcontractor. Figure 1 illustrates the WF-nets associated with

Checking Soundness of Business Processes Compositionally Using SOGs 71

these business processes. We choose WF-nets to represent these processes in-
stead of the corresponding LTSs because the LTSs are too large (38 states and
104 edges for the contractor’s LTS, 14 states and 22 edges for the subcontrac-
tor’s LTS). The collaborative tasks are represented by dashed transitions and
are the only observed actions. The main scenario of the collaboration between
these two partners is the following: First, the contractor sends an order to the
subcontractor. Then, the contractor sends a detailed specification to the subcon-
tractor and the subcontractor sends a cost statement to the contractor. Based on
the specification, the subcontractor manufactures the desired product and sends
it to the contractor. Several transitions (tasks) have been added to the original
WF-net of the contractor. They are only of local interest, e.g., between the send-
ing of an order and creation of the specification, the task called collectinput may
be executed multiple times. Internal transitions were also added to the original
WF-net of the subcontractor. Both processes are sound (hence relaxed, weakly
and easily sound). The same holds for the process model obtained by composing
these two WF-nets (obtained by merging the common transitions) and for the
corresponding LTSs.

For both models, the initial marking represents the only initial state, and the
only final marking is the one with one token in o1 (o2 respectively) and no token
elsewhere.

i1

p11

p12

p13

p14

p15

p16

p17

p18

p19

p110

p111

o1

order

collectinput

spec

product

bill NOK

prepcs

check

prepph

OK

cost

(a) WF-net of a contractor

i2

p21 p21

p23

p24
p25

p26

p27

p28

p29

o2

order procorder decide

longp

shortp

spec

discuss

cost
produce

assemble

product

(b) WF-net of a subcontractor

Fig. 1. The WF-nets of a contractor and of a subcontractor

4 Symbolic Observation Graphs

In this section, we show how Symbolic Observation Graphs [7] (SOGs) can be
used to abstract processes while allowing their analysis with respect to the var-
ious soundness notions. The construction of a SOG associated with an LTS is
guided by a subset of observed actions. The SOG is defined as a graph where
each node is a set of states linked by unobserved actions and each arc is labeled

72 K. Klai and J. Desel

by an observed action. Nodes of the SOG are called aggregates and may be repre-
sented and managed efficiently using decision diagram techniques (e.g., BDDs).
In practice, the size of a SOG is proportional to the number of observed actions
(see [7,10,9] for experimental results). Thus, by observing only the collabora-
tive actions of a business process, one can hide the internal behavior and hope
for a reduced size of the SOG when building and analysing composed business
processes, especially when the components are loosely coupled.

Definition 4 (Aggregate). Let T = 〈Γ,Act ,→, I, F 〉 be a Labeled Transition
System with Act = Obs ∪ UnObs. An aggregate is a tuple a = 〈S, d, f〉 defined
as follows:

1. S is a non-empty subset of Γ satisfying Sat(S) = S
2. d ∈ {true, false}; d = true iff Dead(S) �= ∅
3. f ∈ {true, false}; f = true iff S ∩ F �= ∅

From now on, a.S, a.d and a.f denote the corresponding attributes of an aggre-
gate a.

Definition 5 (Symbolic Observation Graph). A symbolic observation graph
associated with an LTS T = 〈Γ,Obs ∪ UnObs,→, I, F 〉 is a five-tuple
〈A,Act ′,→′, I ′, F ′〉 where:

1. A is a finite set of aggregates satisfying:
– there is an aggregate a0 ∈ A with a0.S = Sat(I)
– if, for some a ∈ A and o ∈ Obs, the set Ext(a, o) := {s′ �∈ a.S | ∃s ∈

a.S, s o−→s′} is not empty, then it is a pairwise disjoint union of non-
empty sets S1 . . . Sk, and for i = 1 . . . k, there is an aggregate ai ∈ A
with ai.S = Sat(Si)

2. Act ′ = Obs
3. →′⊆ A× Act ′ ×A is the transition relation satisfying:

– if a �= a′ then (a, o, a′) ∈→′ iff a′.S = Sat(S′) for some S′ ⊆ Ext(a, o)
– (a, o, a) ∈→′ iff Sat({s′ ∈ Γ | ∃s ∈ a.S, s o−→s′}) = a.S

4. I ′ = {a0} (where a0.S = Sat(I))
5. F ′ = {a ∈ A | a.S ∩ F �= ∅} (={a ∈ A | a.f = true})

Notice that Definition 5 does not guarantee the uniqueness of a SOG for a given
LTS. In fact, it supplies a certain flexibility for its implementation. In particular,
the SOG can be nondeterministic even if the original LTS is not. Actually, one
can take advantage of such nondeterminism to obtain smaller aggregates. Even
if the SOG obtained in this way has more aggregates than a deterministic one,
its construction might consume less time and memory.

Definition 6. Let G = 〈A,Act ′,→′, I ′, F ′〉 be a SOG over a set of observed
actions Obs, corresponding to an LTS T = 〈Γ,Act ,→, I, F 〉. Let Live(a), for
an aggregate a, be the set of non dead-states i.e., Live(a) := a.S \ Dead(a.S),
and let L(a) := {t ∈ Enable(Live(a)) | Succ(Live(a), t) ∩ Live(a) �= ∅}, where
Succ(S, t) := {s′ | ∃s ∈ S : s t−→s′}.Then G is said to be:

Checking Soundness of Business Processes Compositionally Using SOGs 73

A10

d.f

A11 d.f

A12

d.f

A13

d.f

A14d.f A15

d.f

order

spec

cost

cost

spec

product

(a) SOG of the contractor

A20

d.f

A21

d.f

A22

d.f

A23
d.f

A24

d.f

order

spec cost

product

(b) SOG of the subcontractor

Fig. 2. SOGs of the contractor and of the subcontractor

– sound iff
- ∀a ∈ A : a.d = false and ∃f ∈ F ′ : a ⇒ f and
-
⋃

a∈A Enable(a.S) = Act
– relaxed sound iff ∀t ∈ Act ∃a ∈ A ∃f ∈ F ′ : t ∈ L(a) ∧ a ⇒ f
– weakly sound iff ∀a ∈ A : a.d = false and ∃f ∈ F ′ : a ⇒ f
– easily sound iff ∃f ∈ F ′ : a0 ⇒ f

The soundness notions are extended to SOGs in order to ensure an equivalence
between the soundness of a SOG and the soundness of the underlying LTS. The
translation is immediate for all the variants except relaxed soundness. In order
to check if each action (observed or not) belongs to a proper execution sequence,
we exclude all the dead states (see Section 5.3 for an efficient computation of
Dead(a.S)) from each aggregate and check wether the obtained subset allows to
reach a final aggregate. The absence of dead actions is checked in a similar way.

Proposition 1. Let G be a SOG over an arbitrary set of observed actions Obs
corresponding to an LTS T . Then the following holds:

1. T is sound ⇔ G is sound
2. T is relaxed sound ⇔ G is relaxed sound
3. T is weakly sound ⇔ G is weakly sound
4. T is easily sound ⇔ G is easily sound

Figure 2 shows two (deterministic) SOGs associated with the WF-nets of the
contractor (Figure 2(a)) and the subcontractor (Figure 2(b)) of Figure 1. Each
aggregate a is indexed with its attributes a.d and a.f . The symbol d (resp. d)
is used when a contains (resp. does not contain) a dead state and the symbol f
(resp. f) is used when a contains (resp. does not contain) a final state. Notice
that states of the corresponding LTS are partitioned into aggregates which is not
necessary the case in general (i.e., a single state may belong to two (or more)
different aggregates).

Note that the corresponding LTSs contain 38 nodes and 104 edges, and 14
nodes and 22 edges, respectively. None of the aggregates of the contractor’s (resp.
the subcontractor’s) SOG contains a deadlock. Both are sound.

74 K. Klai and J. Desel

5 Composition of SOGs

It is well known that deadlock-freeness is not preserved by composition.
Figure 3(a) presents a WF-net which is almost the same as the WF-net of

Figure 1(a). Only the additional place cs has been added between transitions
cost and spec to order the corresponding tasks. An alternative WF-net for the
subcontractor is represented in Figure 3(b). This workflow contains three new
transitions: decide, proc1, and proc2. After an order has been received, a deci-
sion is made. Based on this decision, one of two possible procedures is executed.
In one procedure (transition proc1), the specification is processed before a cost
statement is created. In the other procedure (transition proc2), the cost state-
ment is created before the specification is processed. Although both WF-nets are
deadlock-free, the synchronization of these models by merging related transitions
is not. In fact, the composed process gets stuck as soon as the contractor sends
an order to the subcontractor who decides to process it by procedure proc1.

i1

p11

p12

p13

p14

p15

p16

p17

p18

p19

p110

cs

p111

o1

order

collectinput

spec

product

bill NOK

prepcs

check

prepph

OK

cost

(a) Alternative contractor

i2

p21 p22

p23

p24

p25

p26

p27 p28

p29

o2

order decide

proc1 proc2

spec t1 t2 cost

product

(b) Alternative subcontractor

Fig. 3. Alternative WF-nets of a contractor and a subcontractor

Instead of analysing the synchronized product of the underlying LTSs (134
nodes and 480 edges), and detecting such an incorrect behavior, we propose in
this section to compose the corresponding SOGs (see Figure 4) in such a way that
this behavior is detectable. This approach presents several advantages: First, the
verification of the composition takes into account the local verification process.
We only focus on the common activities between the processes to be composed.
The main task at this stage is to check whether, due to the composition, the
desirable properties have been violated. Second, such an approach allows to
reduce the state space explosion due to the composition. Finally, by abstracting

Checking Soundness of Business Processes Compositionally Using SOGs 75

A10

d.f

A11

d.f

A12

d.f

A13

d.f

A14

d.f

order

cost spec

product

(a) A SOG of the modified contractor

A20

d.f

A21 d.f

A22

d.f

A23

d.f

A24

d.f

A25

d.f

A26d.f
order

spec

cost

cost

spec

product

product

(b) A SOG of the modified subcontractor

Fig. 4. Two SOGs of the new contractor and of the new subcontractor

a business process with a SOG, we hide the local behavior of the process which
might represent internal organisation and private information. This allows to
respect the privacy feature of the enterprise and to avoid to expose irrelevant or
sensitive information.

5.1 Observed Behavior

In the following, we show how, using local information of two aggregates, one
can compute the attributes of the aggregate resulting from their synchronisation.
Before we define an aggregate a obtained by composition of two aggregates a1

and a2, let us define the following particular mapping (called observed behavior)
applied to states of an LTS T , and extend it progressively to aggregates. It
will be established that the observed behavior associated with an aggregate is
the necessary and sufficient local information to be retained so that soundness
properties can be checked on the composition of two process models. For this
purpose, and for the remaining part of this paper, we assume the existence of
an additional virtual observed action "term" belonging to Obs .

Definition 7 (Observed Behavior Mapping)
Let T = 〈Γ,Obs ∪ UnObs,→, I, F 〉 be an LTS. Let a be an aggregate of a SOG
associated with T . The observed behavior is progressively defined by :

1. λT : Γ → 2Obs

λT (s) =

{
(Enable(Sat(s)) ∩ Obs) ∪ {term} if F ∩ Sat(s) �= ∅
Enable(Sat(s)) ∩ Obs otherwise

2. λT : 2Γ → 2Obs

λT (S) = {λT (s) | s ∈ S}
3. λa = {X ∈ λT (a.S) |� ∃Y ∈ λT (a.S) : Y ⊂ (X \ {term})}.

Informally, for each state s of an LTS T , the observed behavior of s, λT (s),
represents the set of observed actions which can be executed from s, possibly

76 K. Klai and J. Desel

via a sequence of unobserved actions. In addition, term is a member of λT (s) if
and only if a final state is reachable from s using unobserved actions only. The
observed behavior λT associated with a set of states S is a set of sets of observed
actions. This set contains the observed behavior of the states of S. Finally, the
observed behavior of an aggregate a, namely λa, is the minimal set of subsets
(w.r.t. the set inclusion relation) of λT (a.S). The inclusion relation does not
concern the term action. For instance, if there exist two states s, s′ ∈ a.S such
that λT (s) = ∅ and λT (s′) = {term}, then both sets ∅ and {term} will belong
to λa. This way we distinguish a dead state from a final state reached in a.S.

Table 1. Illustration of the observed behavior function

C1 SC1 C2 SC2

a λa a λa a λa a λa

A10 {{order}} A20 {{order}} A10 {{order}} A20 {{order}}
A11 {{spec}, {cost}} A21 {{spec}} A11 {{cost}} A21 {{spec}, {cost}}
A12 {{spec}} A22 {{cost}} A12 {{spec}} A22 {{cost}}
A13 {{cost}} A23 {{product}} A13 {{product}} A23 {{spec}}
A14 {{product}} A24 {{term}} A14 {{term}} A24 {{product}}
A15 {{term}} - - - - A25 {{product}}
- - - - - - A26 {{term}}

Table 1 illustrates the observed behavior of each aggregate of the SOGs as-
sociated with both versions of our running example. C1 and SC1 (resp. C2 and
SC2) stand for the SOGs associated with the contractor and the subcontractor
of Figure 2 (resp. Figure 4) respectively.

The observed behavior associated with an aggregate a allows us to get rid of
the attributes a.d and a.f which can be directly deduced from λa as follows:

Proposition 2. Let a be an aggregate of a SOG G (associated with an LTS T).

1. a.d = true if and only if ∅ ∈ λa

2. a.f = true if and only if ∃O ∈ λa : term ∈ O

From now on, an aggregate a is identified by its observed behavior λa. In fact,
the set of states a.S of an aggregate a has not to be stored explicitly within an
aggregate. Once the SOG is built (and the soundness properties checked), it will
not play any further role in the composition process.

When composing several processes, each SOG is computed locally by taking
into account the observed behavior of each aggregate. The obtained SOGs are
then composed leading to a new SOG. The observed behavior of each aggregate
of this SOG is deduced from those of the composed aggregates, as follows:

Definition 8. For i = 1, 2, let Gi be two SOGs corresponding to
Ti = 〈Γi,Obsi ∪ UnObsi,→i, Ii, Fi〉 and let ai = 〈λai〉 be an aggregate of Gi. The
product aggregate a = 〈λa〉 = a1 × a2 is defined by:

λa = {(x ∩ y) ∪ (x ∩ (Obs1 \Obs2)) ∪ (y ∩ (Obs2 \ Obs1)) | x ∈ λa1 , y ∈ λa2}

Checking Soundness of Business Processes Compositionally Using SOGs 77

Note first that the sets of observed actions Obs1 and Obs2 are not necessarily
identical (but they share at least the virtual action term). When we compose a1

and a2, if a1 can progress in G1 by using locally observed actions (i.e., actions
that are observed in G1 but not shared by G2), the product aggregate a should
be able to do the same. If this is not the case, then a has to have the same
behavior as a1 and a2 conjointly. In this way, the observed behavior associated
with a product aggregate is helpful to deduce whether the involved set of (pairs
of) states contains a deadlock. Moreover, once computed, the observed behavior
of a = a1 × a2 still respects Proposition 2: The product aggregate contains a
deadlock iff the corresponding observed behavior contains the empty set, and it
is a final aggregate iff term belongs to one of its observed behavior’s elements.
Typically, a composed deadlock is a dead state 〈s1, s2〉 where the shared observed
transitions that are enabled in s1 are all not enabled in s2 (or viceversa).

The following definition characterizes the composed deadlocks : the deadlocks
that are only due to the composition.

Definition 9. Let G be the SOG obtained by synchronizing two SOGs G1 and
G2. G is said to be containing a composed deadlock iff it contains an aggregate
a = a1 × a2 such that ∃(x, y) ∈ λa1 × λa2 satisfying:

1. x �= ∅∧ y �= ∅ and (x∩ y)∪ (x∩ (Obs1 \Obs2))∪ (y ∩ (Obs2 \Obs1)) = ∅, or
2. x = ∅ ∧ ∅ ⊂ y ⊆ ((Obs1 ∩ Obs2) \ {term}), or
3. ∅ ⊂ x ⊆ ((Obs1 ∩ Obs2) \ {term}) ∧ y = ∅.

5.2 Synchronous Composition

Given two (or more) LTSs that have been analysed locally and proved to be cor-
rect (w.r.t. soundness notions), we would like to reduce the verification of their
composition to the verification of the composition of the underlying SOGs. The
synchronized product of two SOGs can be defined similarly to the synchronized
product of two LTSs (Definition 3). The only difference is that we deal with ag-
gregates (carrying additional information) instead of states. In [11,8] it has been
demonstrated that the synchronized product of two SOGs associated with two
LTSs is a SOG associated with the synchronized product of these LTSs. Such an
approach presents several advantages: First, the verification of the composition
takes into account the local verification process. We only focus on the common
activities between the processes to be composed. The main task at this stage
is to check whether, due to the composition, the desirable properties have been
violated. Second, such an approach allows to reduce the state space explosion
induced by the concurrency between the activities of the composed components.
In fact, these activities are hidden in aggregates of the associated SOGs. Finally,
by abstracting a business process with a SOG, we hide the local behavior of
the process which would represent internal organisation and private informa-
tion. This allows to respect the privacy feature of the enterprise and to avoid to
expose irrelevant or sensitive information.

Figure 5(a) and Figure 5(b) illustrate the SOGs obtained by synchronizing
the SOGs of Figure 2 and Figure 4. The left synchronized SOG inherits the

78 K. Klai and J. Desel

(A10, A20)

λ = {{order}}

(A11, A21)

λ = {{spec}}

(A12, A22)

λ = {{cost}}

(A14, A23)

λ = {{product}}

(A15, A24)

λ = {{term}}

order

spec cost

product

(a) Synchronized SOG’s product

(A10, A20)

λ = {{order}}

(A11, A21)

λ = {∅, {cost}}

(A12, A23)

λ = {{spec}}

(A13, A25)

λ = {{product}}

(A14, A26)

λ = {{term}}

order

cost spec

product

(b) Alternative synchronized SOG’s product

Fig. 5. The SOG’s synchronized products

same properties of the involved processes. The right synchronized SOG con-
tains a deadlock (aggregate (A11, A21)). In fact, λA11 = {{pcost}} and λA21 =
{{pspec}, {pcost}} which lead to λ(A11,A21) = {∅, {pcost}}, and thus {A11, A21}
contains a deadlock (a composed deadlock).

Proposition 3. Let G1 and G2 be SOGs corresponding to the LTSs T1 and T2

with respect to observed actions Obs1 and Obs2 respectively.
Let G = 〈A,Obs1 ∪ Obs2,→, I, F 〉 be the synchronized product of G1 and G2.
Then the following holds:

1. if G1 and G2 are sound then G is sound iff
– ∀a ∈ A : ∅ �∈ λa ∧ ∃f ∈ F : a ⇒ f
– ∀o ∈ Obs1 ∩ Obs2 ∃a ∈ A : a o−→

2. if G1 and G2 are relaxed sound then:
G does not contain a composed deadlock ⇒ G is relaxed sound

3. if G1 and G2 are weakly sound then G is weakly sound iff
∀a ∈ A : ∅ �∈ λa ∧ ∃f ∈ F : a ⇒ f

4. if G1 and G2 are easily sound then G is easily sound iff ∃f ∈ F : a0 ⇒ f

Checking Soundness of Business Processes Compositionally Using SOGs 79

The soundness notion of a synchronized product of two SOGs involves only
the common observed actions. The enabledness of such actions can be checked
after composition as well as the deadlock attribute of the composed aggregate.
Local infomation has not to be recalculated because it can not be the reason of
soundness violation. Hence, the soundness of the synchronized SOG (except the
relaxed variant) can be be decided modularly. Concerning, the relaxed soundness,
only the absence of composed deadlock in the synchronized SOG implies the
satisfaction of this property. In fact, the existence of such a deadlock does not
allow to know whether such a property still hold or not for the composition.

Corollary 1. Let T1 and T2 be two LTSs whose synchronized product is T . Let
G1 and G2 be SOGs corresponding to T1 and T2 with respect to observed actions
Obs1 and Obs2 respectively. Let G be the synchronized product of G1 and G2.
Then the following holds:

1. If T1 and T2 are sound then T is sound iff G is sound.
2. If T1 and T2 are relaxed sound then:

G does not contain a composed deadlock ⇒ T is relaxed sound.
3. If T1 and T2 are weakly sound then T is weakly sound iff G is weakly sound.
4. If T1 and T2 are easily sound then T is easy sound iff G is easily sound.

Although in this section we deal with synchronous composition, our technique
can also be used for components of a process communicating asynchronously. As
long as the whole system is finite, the buffers ensuring the communication be-
tween the components together with the associated collaborative actions can be
isolated in order to form an intermediate component. The asynchronous composi-
tion between two components is thus transformed to a synchronous composition
of three components (see. [11,8] for details).

Table 2. Checking Soundness on RG VS SOG

Model R. G. SOG S R. S. W. S E. S.
Contractor1 38 104 6 6 yes yes yes yes
Contractor2 26 66 5 4 yes yes yes yes
Subontractor1 14 22 5 4 yes yes yes yes
Subontractor2 21 22 7 7 yes yes yes yes
Synchronous1 134 480 5 4 yes yes yes yes
Synchronous2 99 320 5 4 no yes no yes
Asynchronous1 248 889 5 4 yes yes yes yes
Asynchronous2 109 373 5 4 no yes no yes

Table 2 summarizes the application of our approach to our running examples.
We consider the contractor and subcontractor processes of Figure 1 and their
alternatives of Figure 3. Both synchronous and asynchronous compositions are
considered. For each obtained model we provide the size (the number of nodes

80 K. Klai and J. Desel

in the first column and the number of edges in the second column) of the cor-
responding reachability graph (R. G.) and of the SOG. Soundness (S), Relaxed
soundness (R. S.), weak soundness (W. S.) and easy soundness (E. S.) are also
checked.

5.3 The Observed Behavior Computation Algorithm

A direct implementation of the observed behavior of a given aggregate (following
Definition 7) implies to consider each state belonging to the aggregate separately.
This would considerably decrease the efficiency of the approach. However, since
each aggregate is encoded by a BDD, all the operations manipulating the ag-
gregates should be based on set operations. Therefore, we have implemented an
algorithm (see Algorithm 1) for the computation of the observed behavior that
is exclusively based on set operations applied to the states of a given aggregate.

The inputs of Algorithm 1 are an aggregate A, a set of observed actions Obs ,
a set of unobserved actions UnObs, and a set of final states F . It computes the
observed behavior associated with A (i.e., A.λ).

We use a map (called R) whose elements are pairs of sets of events and sets
of states (line 1). Each element (O, S) satisfies the following: each state of S
enables each transition of O. This map is progressively updated so that, at the
end of the algorithm, the set composed of its keys form the observed behavior of
the aggregagte A (line 18). The first step of the algorithm (lines 2 − 4) consists
in: (1) checking whether a final state belongs to A.S, (2) if it is the case creating
a new couple ({term}, S) where term is the termination observed action, and S
is the set of the immediate predecessors of the final states in A.S. The latter task
is performed by using the PreIm() function. The second step of the algorithm
(lines 5−9) allows to fill the map R with couples of the form ({o}, S) where o is an
observed action and S the subset of A.S enabeling o (using function Enable()).
Once the map R is filled, it is analysed in the third part of the algorithm (lines
10 − 17). The idea is to look between elements of R those having the same
enabling sets of states (the second component of each couple). For each pair
(O, S) and (O′, S) in R the first couple is updated by adding O′ to O while the
second is removed from the map. Indeed, states in S enable both actions in O
and actions in O′ and should be associated with the set O ∪ O′.

The final part of the algorithm (lines 19 − 29) is dedicated to the analysis
of the deadlock states inside the aggregate A. Recall that a dead state is either
a (non final) terminal state, or a state belonging to a strong livelock (a ter-
minal cycle). If a deadlock state is found in A.S then the empty set is added
to λ. A terminal state is found (lines 19 − 24) when the set of states enabling
some transition (observed or not) is not equal to the whole set A.S. In order
to detect strong livelocks (terminal cycles) we iterate on the PreIm() function
in order to compute all the states in A.S that possibly lead either to a state
in Enable(A.S,Obs) (i.e., a state enabling some observed action), or to a final
state. If the result is not equal to A.S then there is a terminal cycle in A and
the empty set should belong to A.λ.

Checking Soundness of Business Processes Compositionally Using SOGs 81

Algorithm 1. Computing the Observed Behavior
Require: AgregateA, Obs, UnObs, Set of stateF
Ensure: A.λ
1: Map < Set of events, Set of states > R
2: if F ∩ A.S �= ∅ then
3: insert ({term}, P reIm(F,A.S,UnObs)) in R
4: end if
5: for o ∈ Obs do
6: if Enable(A.S, o) �= ∅ then
7: insert ({o}, Enable(A.S, o)) in R
8: end if
9: end for

10: for (O, S) ∈ R do
11: for (O′, S′) ∈ R do
12: if S = S′ then
13: (O, S)← (O ∪ O′, S)
14: remove (O′, S′) from R
15: end if
16: end for
17: end for
18: λ← Set of keys of R
19: Set of statesE ← ∅
20: for t ∈ (Obs ∪UnObs) do
21: E ← E ∪Enable(S, t)
22: end for
23: if E �= S then
24: λ← λ ∪ {∅}
25: else
26: if (PreIm∗(Enable(A.S,Obs) ∪ F,UnObs) �= A.S) then
27: λ← λ ∪ {∅}
28: end if
29: end if
30: return λ

6 Related Work

The importance of dealing with business processes on the one hand and business
process composition on the other hand is reflected in the literature by several
publications (e.g., [3,14,12]). To the best of our knowledge, none of the existing
approaches combines symbolic abstraction (using BDDs) and modular verifica-
tion to check the correctness of inter-organisational processes. The originality
of our technique is to exploit the efficiency of the SOG’s implementation while
respecting the privacy of the enterprise, i.e., without exposing irrelevant or sen-
sitive information. Moreover, the SOGs are computed once and locally for each
process which reduces the state explosion problem compared to a non-modular
approach. Below we discuss some related approaches.

82 K. Klai and J. Desel

In [16] the authors present various composition alternatives and their ability
to preserve relaxed soundness [5]. The aim of this work was to analyze a list of
significant composition techniques in terms of WF-nets and to prove that the
composition of relaxed sound models is again relaxed sound. Our approach can
be applied to any kind of models (not only WF-nets) and allows to check sev-
eral kinds of soundness including relaxed soundness. In [6], the authors propose
an approach for service retrieval based on behavioral specifications. The idea
consists of reducing the problem of behavioral matching to a graph matching
problem and then adapting existing algorithms for this purpose. The complexity
of the graph matchmaking algorithm used is O(m2 ∗ n2) in the best case and
O(mn ∗ n) in the worst case where m is the number of nodes of the request
graph and n is the number of nodes of the advertised graph [6]. It is obvious
that this approach is not suitable for workflow matching and composition when
the number of advertised abstractions increases. Another approach for workflow
matchmaking was proposed in [14]. It assumes that two workflows match if they
are equivalent. To reach this end, the author introduces the notions of communi-
cation graph c-graph and usability graph (u-graph). If the u-graph of a workflow
is isomorphic to the c-graph of another workflow, then the two workflows are
considered equivalent. However, the complexity of the c-graph construction is
exponential in terms of the number of nodes [14].

7 Conclusion

We addressed the problem of checking correctness of inter-organizational busi-
ness processes compositionally. By correctness we mean soundness with various
variants. We established that and how Symbolic Observation Graphs can be
extended and efficiently used for that purpose. Moreover, we showed how our
approach can be used when the different processes communicate either syn-
chronously or asynchronously.

Our immediate future works follow three directions: First, we are implement-
ing a tool for the abstraction and the verification of inter-organizational business
processes. The verification concerns generic properties like deadlock freeness,
soundness or specific properties that are expressed by linear-time temporal log-
ics.This helps to check our techniques for concrete applications and makes them
available to the scientific community and for practical applications. Second, we
plan to extend our approach to deal with resources. Finally, our approach can
be used for developing a graph-based registry for abstract process advertisement
and discovery.

References

1. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

Checking Soundness of Business Processes Compositionally Using SOGs 83

3. van der Aalst, W.M.P.: Loosely coupled interorganizational workflows: Modeling
and analyzing workflows crossing organizational boundaries. Information and Man-
agement 37, 67–75 (2000)

4. van der Aalst, W.M.P.: Inheritance of interorganizational workflows: How to agree
to disagree without loosing control? Information Technology and Management 4,
345–389 (2003)

5. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In: Dittrich,
K.R., Geppert, A., Norrie, M. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170.
Springer, Heidelberg (2001)

6. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service
retrieval. In: ICWS 2006: Proceedings of the IEEE International Conference on
Web Services, pp. 145–152. IEEE (2006)

7. Haddad, S., Ilié, J.-M., Klai, K.: Design and Evaluation of a Symbolic and
Abstraction-Based Model Checker. In: Wang, F. (ed.) ATVA 2004. LNCS,
vol. 3299, pp. 196–210. Springer, Heidelberg (2004)

8. Klai, K., Ochi, H.: Modular verification of inter-enterprise business processes. In:
The Fourth International Conference on Information, Process, and Knowledge
Management, eKNOW 2012, pp. 155–161. IEEE (2012)

9. Klai, K., Petrucci, L.: Modular construction of the symbolic observation graph. In:
ACSD, pp. 88–97. IEEE (2008)

10. Klai, K., Poitrenaud, D.: MC-SOG: An LTL Model Checker Based on Symbolic
Observation Graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS,
vol. 5062, pp. 288–306. Springer, Heidelberg (2008)

11. Klai, K., Tata, S., Desel, J.: Symbolic abstraction and deadlock-freeness verification
of inter-enterprise processes. Data Knowl. Eng. 70(5), 467–482 (2011)

12. Lohmann, N., Wolf, K.: Petrifying operating guidelines for services. In: ACSD, pp.
80–88. IEEE (2009)

13. Martens, A.: On compatibility of web services. Petri Net Newsletter, Special Inter-
est Groups on Petri Nets and Related Systems Models, Gesellschaft fur Informatik
e.V. 65, 12–20 (2003)

14. Martens, A.: On Usability of Web Services. In: Calero, C., Daz, O., Piattini, M.
(eds.) Web Services Quality Workshop (2003)

15. Puhlmann, F., Weske, M.: Interaction Soundness for Service Orchestrations. In:
Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 302–313.
Springer, Heidelberg (2006)

16. Siegeris, J., Zimmermann, A.: Workflow Model Compositions Preserving Relaxed
Soundness. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 177–192. Springer, Heidelberg (2006)

17. van der Aalst, W.M.P., van Hee, K.M., van der Toorn, R.A.: Component-based
software architectures: a framework based on inheritance of behavior. Sci. Comput.
Program. 42(2-3), 129–171 (2002)

18. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Soundness and Separability of Work-
flow Nets in the Stepwise Refinement Approach. In: van der Aalst, W.M.P., Best,
E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)

Beyond Lassos: Complete SMT-Based Bounded Model
Checking for Timed Automata

Roland Kindermann, Tommi Junttila, and Ilkka Niemelä

Aalto University
Department of Information and Computer Science

P.O. Box 15400, FI-00076 Aalto, Finland
{Roland.Kindermann,Tommi.Junttila,Ilkka.Niemela}@aalto.fi

Abstract. Timed automata (TAs) are a common formalism for modeling timed
systems. Bounded model checking (BMC) is a verification method that searches
for runs violating a property using a SAT or SMT solver. Previous SMT-based
BMC approaches for TAs search for finite counter-examples and infinite lasso-
shaped counter-examples. This paper shows that lasso-based BMC cannot detect
counter-examples for some linear time specifications expressed, e.g., with LTL or
Büchi automata. This paper introduces a new SMT-based BMC approach that can
find a counter-example to any non-holding Büchi automaton or LTL specification
and also, in theory, prove that a specification holds. Different BMC encodings
tailored for the supported features of different SMT solvers are compared exper-
imentally to lasso-based BMC and discretization-based SAT BMC.

1 Introduction

Timed automata, see, e.g., [1–3], are a convenient formalism for describing and model
checking finite state systems augmented with real-valued clocks. There are many tools,
Uppaal [4] to name just one, for timed automata and model checking algorithms for
timed automata have been studied quite a lot during the last two decades. For verifica-
tion, Uppaal treats the discrete part of a timed automaton’s state in an explicit state fash-
ion while using a symbolic representation for the time-related part. Other approaches
use decision diagrams for the verification of timed automata [5, 6].

Bounded model checking (BMC) [7] is a symbolic model checking method that has
been shown very efficient in bug hunting (i.e., finding counter-examples to specifica-
tions) for finite-state systems during the last ten years. Being fully symbolic, it can
handle systems with high degree of non-determinism in data and input signals more
naturally than explicit-state model checking methods. The basic idea behind BMC is,
given a system, a specification, and an integer bound k, to build a propositional logic
formula such that the formula is satisfiable if and only if the system has a counter-
example of length at most k violating the specification. The bound is incremented until
a satisfiable formula is found (implying that the specification does not hold for the sys-
tem) or a completeness threshold is reached without finding any satisfiable formulas
(implying that the specification holds for the system). Infinite runs are handled in BMC
by considering finitely representable lasso-shaped infinite runs consisting of a finite
prefix followed by a finite loop. In addition to finite state systems, BMC has also been

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 84–100, 2012.
c© IFIP International Federation for Information Processing 2012

Beyond Lassos: Complete SMT-Based Bounded Model Checking for TAs 85

applied to timed automata [8–11]. When a propositional logic encoding is used (as e.g.
in [8, 11]), the infinite state space of a timed automaton has to be reduced into a finite
one; this can be achieved by using the region abstraction [1], see e.g. [8, 12] for two
different propositional logic encodings of regions. A direct benefit of using the region
abstraction is that the resulting BMC method can indeed detect whether a propositional
ω-regular specification (expressed, e.g., with propositional linear time temporal logic
LTL) holds on the system or not by considering lasso-shaped infinite runs only.

Propositional encodings of regions can be rather complicated and large for systems
with many clocks with wide ranges. The introduction of Satisfiability Modulo Theories
(SMT, see e.g. [13]) solvers with built-in support for reasoning over real and integer
arithmetics has made it possible to devise BMC approaches for timed automata without
using the region abstraction [9, 10]. In these approaches, the transition relation of the
automaton is directly expressed as a propositional logic formula augmented with linear
arithmetic constraints. In this paper we show that these previous SMT-based BMC ap-
proaches for timed automata are actually incomplete in the sense that for some timed
automata they cannot find (a representative of) any infinite run despite such runs exist.
This is basically caused by the fact that they search for lasso-shaped infinite runs (of
the automaton, not of its region abstraction) but, unlike in the context of finite state
systems, some timed automata have only non-lasso-shaped infinite runs. We propose
an alternative region-based SMT BMC encoding for timed automata; in contrast to the
propositional encoding, only the loop-detection part of the SMT encoding has to deal
with regions but the rest of the encoding remains rather simple. We prove that (i) it
can find a representative of an infinite run for any a timed automaton having an in-
finite run, and (ii) there is a completeness threshold, i.e., an integer such that there
is an infinite run representative of at most that length unless there is no infinite run.
Therefore, the encoding can be used to build an SMT-based BMC approach for model
checking propositional LTL specifications on timed automata which is capable of find-
ing counter-examples to all non-holding specifications and, in theory, also of proving
that no counter-examples exist. Due to the use of the region abstraction, the formulas in
the region-based BMC encoding are more complicated and may contain mixed integer
/ real expressions that are not supported by all current SMT solvers. We thus provide
some alternative encodings and experimentally evaluate the efficiency of these.

We experimentally compare region-based SMT BMC against a traditional lasso-
based SMT BMC encoding. We also compare our prototype implementation of SMT
BMC methods against the highly optimized SAT BMC engine NuSMV [14] using
a region-based propositional logic encoding [12]. The results show that region-based
SMT BMC performs very good and is, in fact, sometimes significantly faster as it can
find shorter counter-examples than the other methods tested.

2 Timed Automata

We first give basic definitions for timed automata (see e.g. [1–3]). For the sake of sim-
plicity, we use the very basic timed automata defined below in the theoretical parts of
the paper. However, in practice (and also in the experimental part of the paper) one
usually defines a network of timed automata that can also have (shared and local) finite

86 R. Kindermann, T. Junttila, and I. Niemelä

l0 l1 l2 l3

x > 2

y < 1x := 0 y := 0

1

0
0 1 2

y

x

(a) automaton (b) regions

Fig. 1. A timed automaton and its regions

domain non-clock variables manipulated on the edges. The symbolic bounded model
checking encodings presented later in the paper can be extended to handle both of these
features, see, e.g., [9, 10] for how to handle synchronization in a network of timed au-
tomata. Similarly, we do not define any property description language in the theoretical
part but consider the reachability problem for timed automata and the non-emptiness
problem for timed automata extended with Büchi acceptance conditions (like in [1]).
We then later study how bounded model checking can be used to solve these problems.
Concerning practical model checking, solving the reachability problem corresponds to
finding whether a timed automaton (or a network of such) can reach a bad state. Simi-
larly, bearing in mind that linear-time temporal logic (LTL) properties can be translated
into Büchi automata (see e.g. [15]), non-emptiness checking of timed Büchi automata
corresponds to checking whether a timed automaton can violate an LTL specification.
In the experimental part symbolic encodings for LTL model checking [16] are applied.

Let X be a set of real-valued clock variables. Then, a clock valuation v is a function
v : X → R≥0 and v+δ for a δ ∈ R≥0 is the valuation for which ∀x ∈ X : (v+δ)(x) =
v(x) + δ. The set of clock constraints over X , C(X), is defined by the grammar C ::=
true | x �� n | C ∧ C where x ∈ X , �� ∈ {<,≤,=,≥, >} and n ∈ N. A valuation v
satisfies a clock constraint C, denoted by v |= C, if it evaluates C to true.

A timed automaton (TA) is a tuple 〈L, linit, X,E, I〉 where

– L is a finite set of locations,
– linit ∈ L is the initial location of the automaton,
– X is a finite set of real-valued clock variables,
– E ⊆ L× C(X)× 2X × L is a set of edges, each edge 〈l, g, R, l′〉 ∈ E specifying

a guard g and a set R of clocks to be reset, and
– I : L → C(X) assigns an invariant to each location.

As an example, Fig. 1(a) shows a timed automaton (from [1]). It has four locations
l0, . . . , l3, l0 being the initial one, and two clocks, x and y. The edge 〈l0, true, {x}, l1〉
from l0 to l1 resets the clock x and the edge 〈l2, x < 1, ∅, l3〉 has the guard x < 1. The
invariants of all locations are true.

A state of a timed automaton A = 〈L, linit, X,E, I〉 is a pair 〈l, v〉, where l ∈ L is
a location in A and v is a clock valuation over X . A state 〈l, v〉 is (i) initial if l = linit

and v(x) = 0 for each x ∈ X , and (ii) valid if v |= I(l). Let 〈l, v〉 and 〈l′, w〉 be states
of A. There is a time elapse step from 〈l, v〉 to 〈l′, w〉, denoted by 〈l, v〉 e−→ 〈l′, w〉, if
(i) l = l′, (ii) w = v + δ for some δ ∈ R>0, and (iii) 〈l′, w〉 is a valid state. Intuitively,
there is a time elapse step from a state to another if the second state can be reached

Beyond Lassos: Complete SMT-Based Bounded Model Checking for TAs 87

from the first one by letting a certain amount of time pass. There is a discrete step from

〈l, v〉 to 〈l′, w〉, denoted by 〈l, v〉 d−→ 〈l′, w〉, if there is an edge 〈l, g, R, l′〉 ∈ E such
that (i) v |= g, (ii) 〈l′, w〉 is a valid, and (iii) w(x) = 0 for all x ∈ R and w(x) = v(x)
for all x ∈ X \R. That is, discrete steps can be used to change the current location as
long as the guard and the target location invariant are satisfied. A discrete step resets
some clocks and leaves the other’s values unchanged, i.e., a discrete step does not take
any time. For situations in which the type of step between two states is insignificant, we

define that 〈l, v〉 −→ 〈l′, w〉 iff 〈l, v〉 e−→ 〈l′, w〉 or 〈l, v〉 d−→ 〈l′, w〉.
A run of A is a finite or infinite sequence π = 〈l0, v0〉〈l1, v1〉 . . ., such that (i)

〈l0, v0〉 is a valid initial state, and (ii) 〈li, vi〉 −→ 〈li+1, vi+1〉 for each consecutive
pair of states in the sequence. As an example, the automaton in Fig. 1(a) has the run
〈l0, (0, 0)〉〈l0, (0.7, 0.7)〉〈l1, (0, 0.7)〉〈l2, (0, 0)〉〈l3, (0, 0)〉 where each clock valuation
{x �→ v, y �→ w} is abbreviated to (v, w). An infinite run is (i) non-zeno if the sum
of time passed in time elapse steps in it is infinite, and (ii) lasso-shaped if it can be
written as 〈l0, v0〉 . . . 〈li−1, vi−1〉

(
〈li, vi〉 . . . 〈lk, vk〉

)ω
for some 0 ≤ i ≤ k. In the con-

text of BMC we sometimes consider k the length of the lasso-shaped run, as it is the
length needed to represent the run. The automaton in Fig.1(a) has a lasso-shaped non-
zeno run 〈l0, (0, 0)〉

(
〈l0, (2.1, 2.1)〉〈l1, (0, 2.1)〉〈l2, (0, 0)〉〈l3, (0, 0)〉〈l3, (2.1, 2.1)〉

)ω
.

While it does not have any zeno runs, the automaton obtained by removing the guard
x > 2 has the lasso-shaped zeno run

(
〈l0, (0, 0)〉〈l1, (0, 0)〉〈l2, (0, 0)〉〈l3, (0, 0)〉

)ω
.

2.1 Model Checking Problems

As said earlier, we study two model checking problems for timed automata. Firstly,

Definition 1 (Reachability Problem). Given a timed automaton A and a location l,
does A have a finite run 〈l0, v0〉〈l1, v1〉 . . . 〈lk, vk〉 with lk = l?

Secondly, we define a timed Büchi automaton to be a tuple B = 〈L, linit, X,E, I, F 〉
such that (i) 〈L, linit, X,E, I〉 is a timed automaton, and (ii) F ⊆ L is the set of accept-
ing locations. States, steps, and runs are defined as for timed automata. A run of B is
accepting if it is infinite and a location l ∈ F occurs infinitely many times in it.

Definition 2 (Non-emptiness Problem). Given a timed Büchi automaton B, does it
have an accepting run?

For example, consider the timed Büchi automaton obtained from the timed automa-
ton in Fig. 1(a) by letting F = {l3}. It has a lasso-shaped, non-zeno accepting run
〈l0, (0, 0)〉〈l1, (0, 0)〉

(
〈l2, (0, 0)〉〈l3, (0, 0)〉〈l3, (3, 3)〉〈l0, (3, 3)〉〈l1, (0, 3)〉

)ω
. Both the

reachability and non-emptiness problems are PSPACE-complete [1].

2.2 The Region Abstraction

We will also need the classic concepts of regions and region automata [1] later in the
paper. Assume a timed automaton A = 〈L, linit, X,E, I〉. For each clock x ∈ X ,
let mx be the largest constant n occurring in any atom of form x �� n on the guards
and invariants of the automaton. For each v ∈ R≥0, let $v% ∈ N be the integral and

88 R. Kindermann, T. Junttila, and I. Niemelä

fract(v) ∈ [0, 1[the fractional part of v, i.e., v = $v%+fract(v). Two valuations, v and
w, over X are equivalent, denoted by v ∼ w, if all the following conditions hold:

1. For each clock x ∈ X , either $v(x)% = $w(x)% or (v(x) > mx) ∧ (w(x) > mx).
2. For all pairs of clocks x, y ∈ X with v(x) ≤ mx and v(y) ≤ my , it holds that

fract(v(x)) ≤ fract(v(y)) iff fract(w(x)) ≤ fract(w(y)).
3. For all clocks x ∈ X with v(x) ≤ mx it holds fract(v(x)) = 0 iff fract(w(x)) = 0.

A region is an equivalence class of valuations induced by the relation ∼, and the region
of a valuation v is denoted by [v]. The set of all regions is denoted by regions(A) and
it contains at most |X |! · 2|X| ·

∏
x∈X(2mx + 2) regions [1].

As an example, Fig. 1(b) graphically illustrates the regions of the timed automaton
in Fig. 1(a); the 28 regions are the thick black dots and lines as well as the gray areas.

The region automaton of a timed automaton A is the finite state automaton

AR = 〈Q, qinit, Δ〉,

where (i) Q = L× regions(A) is the set of states, (ii) qinit = 〈linit, [v0]〉 with v0(x) = 0
for all x ∈ X is the initial state, and (iii) Δ ⊆ Q×Q is the transition relation with
〈〈l, r〉, 〈l′, r′〉〉 ∈ Δ iff ∃v, v′ : 〈l, v〉 −→ 〈l′, v′〉 ∧ [v] = r ∧ [v′] = r′. A run of AR

is a finite or infinite sequence q0q1 . . . of states in Q such that (i) q0 = qinit, and (ii)
〈qi, qi+1〉 ∈ Δ for all consecutive pairs of states in the sequence.

A timed automaton A and its region automaton AR are bisimilar in the sense that

1. 〈l, v〉 −→ 〈l′, v′〉 implies 〈〈l, [v]〉, 〈l′, [v′]〉〉 ∈ Δ, and
2. 〈(l, r), (l′, r′)〉 ∈ Δ implies ∀v : ([v] = r) ⇒ ∃v′ : ([v′] = r′) ∧ 〈l, v〉 −→ 〈l′, v′〉.

Thus A and AR also have corresponding runs: (i) if A has a run 〈l0, v0〉〈l1, v1〉 . . ., then
AR has a run 〈l0, [v0]〉〈l1, [v1]〉 . . ., and (ii) if AR has a run 〈l0, r0〉〈l1, r1〉 . . ., then A
has a run 〈l0, v0〉〈l1, v1〉 . . . such that [vi] = ri for each i. Note that some runs of AR

may have both corresponding zeno runs and corresponding non-zeno runs in A. We
define that a run in AR is non-zeno if it has at least one corresponding non-zeno run
in A.

3 Bounded Model Checking for Reachability and Lassos

As explained in the introduction, the idea behind bounded model checking is to con-
struct formulas whose satisfying interpretations correspond to runs having some desired
property (e.g., reachability, Büchi acceptance) and bounded length. The bound is incre-
mented until a satisfiable formula (and thus a run with the desired property) is found or
a completeness threshold is reached (meaning that no such run exists). This section in-
troduces BMC for finite runs and lasso-shaped infinite runs of timed (Büchi) automata.
The lasso-based BMC for TAs is very similar to BMC for untimed systems and has
been previously described in [9, 10]. Lasso-based BMC is complete for untimed finite
state systems but, as will be shown, despite a previous claim not complete for TAs.

Let A = 〈L, linit, X,E, I〉 be a timed automaton (or a timed Büchi automaton
〈L, linit, X,E, I, F 〉) and let k be the “bound” i.e. the length of the runs currently con-
sidered. We first construct a quantifier-free first order formula |[A, k]|runs using linear

Beyond Lassos: Complete SMT-Based Bounded Model Checking for TAs 89

arithmetics over reals whose satisfying interpretations represent A’s runs of length k.
For each clock x ∈ X , we introduce k + 1 “timed copies” x[0], x[1], . . . , x[k] where the
variable x[i] gives the value of the clock x at the ith state in the run. If C is a clock
constraint, then C [i] is the “timed version” of C obtained by substituting each clock
x ∈ X in it by x[i]; e.g. ((x < 3) ∧ (y ≥ 2))[4] = (x[4] < 3) ∧ (y[4] ≥ 2). To repre-
sent automaton locations in the run, we use the set

{
at [0], at [1], . . . , at [k]

}
of variables

over the domain L. Similarly, to select whether a time elapse or discrete step is taken at
the ith step, we use the Boolean variables elapse [0], . . . , elapse [k−1], and for the time
taken in time elapse steps the real-valued variables δ[0], . . . , δ[k−1]. We now define the
formula for runs of length k by

|[A, k]|runs
:= |[A]|init ∧ |[A, k]|inv ∧ |[A, k]|trans

where |[A]|init
:= (at [0] = linit) ∧

∧
x∈X(x[0] = 0) ensures that the values of

{
at [0]

}
∪{

x[0] | x ∈ X
}

represent the initial state of A, |[A, k]|inv
:=

∧
0≤i≤k

∧
l∈L(at

[i] =

l) ⇒ I(l)[i] forces all the k + 1 states to be valid ones, and the formula |[A, k]|trans
:=∧

0≤i<k(elapse
[i] ⇒ φ[i]) ∧ (¬elapse [i] ⇒ ψ[i]) captures the transition relation. The

formula φ[i] := (δ[i] > 0) ∧ (at [i+1] = at [i]) ∧
∧

x∈X(x[i+1] = x[i] + δ[i]) encodes
time elapse steps, while ψ[i] does the same for discrete steps:

ψ[i] := (δ[i] = 0) ∧
∨

〈l,g,R,l′〉∈E

(
(at [i] = l) ∧ (at [i+1] = l′) ∧ g[i] ∧∧

x∈R(x
[i+1] = 0) ∧

∧
x∈X\R(x

[i+1] = x[i])
)

The automaton A has a run 〈l0, v0〉 . . . 〈lk, vk〉 iff the formula |[A, k]|runs is satisfiable
under any interpretation extending

{
at [i] �→ li, x

[i] �→ vi(x) | 0 ≤ i ≤ k, x ∈ X
}

.

BMC for Reachability. Based on the tight correspondence between the runs of A and
satisfying interpretations of |[A, k]|runs, one can use |[A, k]|runs to solve the reachability
problem. Given a timed automaton A and a location l in it, check whether the formula

|[A, l, k]|reach := |[A, k]|runs ∧
∨

0≤i≤k

(at [i] = l)

is satisfiable for some bound k ∈ {0, 1, . . .}. If |[A, l, k]|reach indeed is satisfiable,
then one can construct a run of A ending in l from the satisfying interpretation for
|[A, l, k]|reach. We return to the issue of completeness, i.e. detecting the case that l is not
reachable, later in this section.

BMC for Lasso-Shaped Infinite Runs. Assume now that B is a timed Büchi au-
tomaton 〈L, linit, X,E, I, F 〉. We can use the formula |[B, k]|runs to define a formula
|[B, k]|lasso such that the timed Büchi automatonB has an accepting infinite lasso-shaped
run 〈l0, v0〉 . . . 〈li−1, vi−1〉

(
〈li, vi〉 . . . 〈lk, vk〉

)ω
for some 1 ≤ i < k iff |[B, k]|lasso is

satisfiable under an interpretation extending
{
at [i] �→ li, x

[i] �→ vi(x) |0≤ i ≤ k,x∈X
}

.

To do this, we use an auxiliary set loop[1], . . . , loop[k] of Boolean loop variables to de-
tect loops in the finite runs represented with |[B, k]|runs. A variable loop[i] being true

90 R. Kindermann, T. Junttila, and I. Niemelä

means that the i − 1th and the kth state are the same, meaning that a lasso-shaped run
can be obtained by looping back from the kth to the ith state. Furthermore, an auxil-
iary set acc[1], . . . , acc [k] of Boolean variables is used to compute whether an accepting
location is visited at the ith or later state in the run. We define

|[B, k]|lasso
:= |[B, k]|runs ∧ |[B, k]|loop ∧ |[B, k]|accept

where |[B, k]|loop
:=

∧
1≤i≤k

(
loop[i] ⇒ (at [i−1] = at [k]) ∧

∧
x∈X(x[i−1] = x[k])

)
detects the loops in the finite runs, and |[B, k]|accept

:= (acc[k] ⇔
∨

l∈F (at
[k] = l)) ∧∧

1≤i≤k−1

(
acc[i] ⇔ acc[i+1] ∨

∨
l∈F (at

[i] = l)
)
∧
(∨

1≤i≤k(loop
[i] ∧ acc[i])

)
forces

satisfying interpretations to correspond to accepting runs only: there shall be a loop in
the run and an accepting location in the loop.

The encoding can easily be modified to accept only non-zeno runs. A lasso-shaped
run is zeno iff it does not contain any time elapse step in its looping part. Thus, non-
zenoness can be enforced by requiring the looping part to contain at least one time
elapse step. For this purpose k Boolean variables el [0], . . . , el [k−1] where el [i] being
true for a given i means that there is a time elapse step after the ith state. Looping back
to the ith state is allowed only if el [i] is true, leading to the following conjunct:

|[B, k]|lnz := (el [k−1] ⇔ elapse [k−1]) ∧
∧

1≤i≤k−2

(
el [i] ⇔ (elapse [i] ∨ el [i+1])

)
∧

∧
1≤i≤k

loop[i] ⇒ el [i−1]

Note that for a run that loops back from the last to the ith state, the step that loops back
from the last to the ith state is of the same type as the step from the i − 1th to the ith
state. Thus, it is sufficient if the step from the i−1th to the ith state is a time elapse step
in order to have a time elapse step in the looping part of the run, which is the reason
why we only require el [i−1] to hold if loop [i] holds and not el [i].

(In)completeness. We now study the completeness of the two BMC encodings given
above. As in [7, 9], by completeness we mean the ability to find a run if one exists or to
demonstrate that no runs exists if this is the case. To show completeness, a completeness
threshold is needed, i.e. an integer bound K such that a run of interest (witnessing
reachability or Büchi acceptance) exists if and only if one exists with bound K or less.

Previous Completeness Results. For finite state systems, the simple run-unfolding BMC
is complete for reachability problems and lasso-BMC is complete for non-emptiness
under Büchi acceptance conditions [7]. When considering timed automata, the reach-
ability BMC encoding given above is complete [9]. This is because (i) a location l is
reachable in an automatonA iff it is reachable in its region automatonAR due to bisimi-
larity (recall Sect. 2.2), (ii) AR has at most |L|·|X |!·2|X| ·

∏
x∈X(2mx+2) states, which

implies that l is reachable with at most Kreach = |L| · |X |! · 2|X| ·
∏

x∈X(2mx +2)− 1
steps in AR, and (iii) thus l is reachable with at most Kreach steps in A. Therefore, l is
reachable in A iff |[A, l,Kreach]|reach is satisfiable. Of course, using Kreach as a bound is
usually infeasible in practice but its existence guarantees the theoretical completeness
of the BMC approach.

Beyond Lassos: Complete SMT-Based Bounded Model Checking for TAs 91

Incompleteness for Büchi Acceptance Conditions on TAs. We now show that, despite
a previous claim in [9], lasso-based BMC is not complete for checking non-emptiness
of timed Büchi automata or, in fact, for even detecting whether a timed automaton has
at least one infinite run. Incompleteness of an encoding can best be shown by giving
an automaton for which the encoding can not find a run. For this purpose, we will use
automaton in Fig. 2(a) which, as will be demonstrated, does not have any lasso-shaped
infinite runs despite having infinite non-zeno runs. Therefore, lasso-based BMC will
fail to find any run for the automaton and is thus incomplete for (i) detecting whether
a timed automaton has at least one infinite run, (ii) deciding non-emptiness of timed
Büchi automata, and (iii) model checking propositional LTL on timed automata.

Let us now study the automaton in Fig. 2(a) a bit more closely. It has two locations,
la and lb, and two clocks, x and y. For a given infinite run in the automaton, let ta

i be the
time spent in la the ith time the run visits la and tb

i be defined analogously for lb. The
edge from la can only be traversed when x is less than one. Furthermore, x is reset when
the edge is traversed. Therefore, the time between two subsequent traversals of this edge
is strictly less than one time unit: ∀i ≥ 1 : tb

i+ta
i+1 < 1. Analogously, the time between

two subsequent traversals of the edge form lb to la is exactly one time unit: ∀i ≥ 1 : ta
i+

tb
i = 1. Combining the two formulas results in ∀i ≥ 1 : ta

i+1 < ta
i and ∀i ≥ 1 : tb

i+1 >
tb
i , i.e. in any run the time spent in la strictly decreases from any visit to the next and the

time spent in lb strictly increases. Furthermore, the difference between the two clocks
in lb equals the time spent in la on the previous visit and vice versa. Consequently, the
difference between the clocks strictly increases in la and strictly decreases in lb. Thus,
the same location is never reached twice with the same clock difference and therefore,
no run can ever visit the same state twice. Hence, the automaton does not have any
lasso-shaped run. This, however, does not mean that the automaton does not have any
infinite runs at all. A valid infinite run, e.g., stays 1

i+2 time units in location la the ith
time it is visited and 1− 1

i+2 units in location lb. Figure 2(b) shows the clock valuations
on a ten time unit long prefix of this run, while Fig. 2(c) illustrates the clock regions
visited by the run. Note that while the run is not lasso-shaped in the space of clock
valuations, it indeed is lasso-shaped in the clock regions. Also, the run is non-zeno as
the time passing is

∑∞
i=1

1
i+2 + 1− 1

i+2 = ∞.

4 Region-Based BMC

As shown above, lasso-based BMC is not complete for checking non-emptiness of
timed Büchi automata. This section introduces a region-based BMC approach that fixes
this problem. The approach is inspired by the observation that even though the automa-
ton in Fig. 2(a) does not have any lasso-shaped infinite runs, its region automaton does.
Based on this observation, our new encoding modifies the lasso-based BMC encoding
by not requiring the last state of the run to be exactly the same as a previous state but
only in the same region as a previous state. Such a run corresponds to a lasso-shaped
run in the region automaton and thus to a set of infinite runs of the TA.

Note that, in order to get runs in which time does not suddenly just stop, it is not
sufficient to require that the last state of the run is in the same region as an earlier state.
For many clock valuations, it is possible to reach a valuation in the same region by a

92 R. Kindermann, T. Junttila, and I. Niemelä

x < 1

x := 0

la

y ≤ 1
lb

x < 1 ∧ y > 0y = 1
y := 0

(a) The automaton

 0

 0.5

 1

 0 0.5 1

y

x

(b) The clock valuations of a
prefix of a run

(c) The same run in the
region abstraction

Fig. 2. A non-empty timed automaton that does not have any lasso-shaped run

sufficiently small time elapse step. Thus, it is often possible to extend a finite run with
a short time elapse step to get a run in which the last and second to last state have the
same location and clock valuations in the same region. If the only requirement to a run
was that the last state is in the same clock region as a previous state, such a run would be
accepted. While it is possible to extend such a run to a valid infinite (though zeno) run
by adding smaller and smaller time elapse steps, in practice runs of the described type
are typically not of interest as they correspond to time not progressing past a certain
point. Therefore, we exclude runs of the described type by restricting to non-zeno runs.

In order to check whether two clock valuations are in the same clock region, one
needs to split up each clock’s value into its integral an fractional parts. Therefore,
region-based BMC uses two additional variables, x[i]

int and x
[i]
fract, for each clock x ∈ X

and each state index i. The integer variable x[i]
int represents the integral part of the value

of x while the real-valued variable x
[i]
fract represents its fractional part. Given a timed

Büchi automaton B = 〈L, linit, X,E, I, F 〉, the region-based BMC encoding is

|[B, k]|region
:= |[B, k]|runs ∧ |[B, k]|accept ∧ |[B, k]|close ∧ |[B, k]|nz

where |[B, k]|runs and |[B, k]|accept are defined as in Sect. 3, |[B, k]|nz is used to ensure
non-zenoness and is defined later in this section and |[B, k]|close, detecting whether the
clock valuations in the i− 1th and kth states are in the same region, is defined as

|[B, k]|close
:=

∧
0≤i≤k

∧
x∈X

(
0 ≤ x

[i]
fract ∧ x

[i]
fract < 1 ∧ x[i] = x

[i]
int + x

[i]
fract

)
∧

∧
1≤i≤k

(
loop[i] ⇒ (at [i−1] = at [k] ∧ Si,k)

)
with Si,k :=

∧
x∈X

(
(x

[i−1]
int = x

[k]
int) ∨ (x

[i−1]
int > mx ∧ x

[k]
int > mx)

)
∧
(
x
[k]
int ≤ mx ⇒(

(x
[i−1]
fract =0 ⇔ x

[k]
fract=0) ∧

∧
y∈X\{x}(y

[k]
int ≤my ⇒ (x

[i−1]
fract ≤y

[i−1]
fract ⇔ x

[k]
fract≤y

[k]
fract))

))
.

The first line in |[B, k]|close ensures the integral+fractional decomposition of clock val-

ues. Its sub-expression x[i] = x
[i]
int + x

[i]
fract mixes integer and real variables; such

Beyond Lassos: Complete SMT-Based Bounded Model Checking for TAs 93

mixed-type expressions are supported, e.g., by the SMT solver Yices [17]. As they
are, however, not supported by all SMT solvers, an alternative encoding not requiring
them will be introduced in Sect. 5. Analogously to the lasso-based encoding, loop [i] is
a Boolean variable indicating that it is possible to loop from the last state in the run to
the ith state, or, more precisely, to a state in the same region as the ith state.

4.1 Ensuring Non-zenoness

In order to complete the encoding, a way to ensure non-zenoness of the run is needed.
In lasso-based BMC, non-zenoness can be ensured by requiring that the looping part
of the run contains at least one time elapse step. For region-based BMC, this approach
does not work. Any concrete run corresponding to a lasso-shaped region automaton run
having a time elapse step in the looping part is guaranteed to have an infinite number of
time elapse steps. The sum of the delays of these steps is, however, not guaranteed to
be diverging. Thus, we will instead ensure non-zenoness using the following theorem:

Theorem 1 (Alur and Dill [1]). An infinite run of a region automaton that has an
infinite number of time elapse steps is non-zeno iff each clock x ∈ X either infinitely
often is zero or infinitely often has a value greater than mx.1

It is straightforward to turn this theorem into a non-zenoness condition for the BMC
encoding. Due to the fact that x’s value cannot decrease unless x is reset, x is guaranteed
to exceed mx in all states of the looping part if it exceeds mx in at least one state of
the looping part and is never reset inside the looping part. Therefore it is sufficient to
require that x is either zero at least once inside the looping part or exceeds its maximum
value in the run’s last state which is guaranteed to be in its looping part.

Requiring at least one time elapse step in the looping part of the run can be done using
the formula |[B, k]|lnz as for lasso-shaped paths. Furthermore, for any clock x ∈ X , k
Boolean variables ok [i]

x are used to ensure that either x is zero at least once in the
looping part of the run or exceeds its maximum value in the last state of the run. This
results in the following definition of |[B, k]|nz:

|[B, k]|nz :=
∧
x∈X

(
ok [k]

x ⇔ (x[k]=0 ∨ x[k]>mx)
)
∧

∧
1≤i≤k−1

(
ok [i]

x ⇔ (x[i]=0 ∨ ok [i+1]
x)

)
∧

∧
1≤i≤k

(
loop[i] ⇒

∧
x∈X

ok [i]
x

)
∧ |[B, k]|lnz

By Theorem 1, any run with infinitely many time elapse steps in the region automaton
that does not satisfy the “infinitely often x = 0∨x > mx” condition for a clock x ∈ X
is zeno. Therefore, the bound required to find a run using our encoding is the length of
the shortest lasso-shaped non-zeno run in the region automaton.

4.2 Completeness

In the following the completeness of the proposed approach will be shown. More pre-
cisely, it will be shown that, given a timed Büchi automaton B = 〈L, linit, X,E, I, F 〉,

1 Note that using the slightly different definition of the region automaton in [1] any infinite run
of the region automaton is guaranteed to have an infinite number of elapse steps.

94 R. Kindermann, T. Junttila, and I. Niemelä

Kregion := (|X |+ 3) · |L| · |X |! · 2|X| ·
∏

x∈X(2mx + 2) is a completeness threshold,
meaning that our approach when used with bound Kregion can find a non-zeno run for B
if B has any non-zeno run. To do this, we prove the following theorem.

Theorem 2. Unless a given timed Büchi automaton B does not have a single accepting
non-zeno run, its region automaton BR has an accepting lasso-shaped non-zeno run of
length at most Kregion.

The theorem will be proven in two parts, each of which is stated as a lemma. The proofs
of the lemmas are given in the appendix.

Lemma 1. If B has an infinite accepting non-zeno run π = 〈l0, v0〉〈l1, v1〉 . . ., then B’s
region automaton BR has a lasso-shaped accepting non-zeno run πR

lasso.

Lemma 2. If BR has an accepting lasso-shaped non-zeno run, then BR has an accept-
ing lasso-shaped non-zeno run of length at most Kregion.

Note that the completeness threshold Kregion should first and foremost be considered a
theoretical result, as the given completeness threshold in practice even for small systems
is infeasibly high. In order to find more practical completeness thresholds, an approach
similar to the ones used for untimed systems in [18] could be used.

5 Alternative Encodings

Avoiding Mixed-Type Expressions and Unbounded Integer Variables. One chal-
lenge in the encoding introduced in Sect. 4 is that it uses mixed-type expressions that
use both integer and real variables; such are not supported by some SMT solvers. One
can, however, modify the encoding to get rid of the mixed-type expressions. To do this,
instead of the x[i] clock variables, we use x[i]

int variables for their integral parts and x
[i]
fract

variables for their fractional parts. Likewise, the difference variables for time elapse
steps δ[i] are each replaced by two variables δ

[i]
int and δ

[i]
fract for their integral and frac-

tional parts. After this, (in)equalities of form x[i] �� n for an n ∈ N, used e.g. to encode
the TA’s guards and invariants and to enforce that the initial values of the clocks are
zero, are modified to use x[i]

int and x
[i]
fract instead of x[i]. For instance, x[i] ≤ n is replaced

with x
[i]
int < n ∨ (x

[i]
int = n ∧ x

[i]
fract = 0). Expressions of the form x[i+1] = x[i] + δ[i]

have to be replaced by a case distinction to ensure that the fractional part of x[i+1]

is always less than one: each expression of form x[i+1] = x[i] + δ[i] is replaced with(
(x

[i]
fract+δ

[i]
fract < 1) ⇒ (x

[i+1]
int = x

[i]
int + δ

[i]
int∧x

[i+1]
fract = x

[i]
fract + δ

[i]
fract)

)
∧
(
(x

[i]
fract+δ

[i]
fract ≥

1) ⇒ (x
[i+1]
int = x

[i]
int + δ

[i]
int + 1∧x

[i+1]
fract = x

[i]
fract + δ

[i]
fract − 1)

)
. When all expressions us-

ing the x[i] clock variables are modified as described, the encoding does not contain any
mixed-type expressions anymore and can thus be used with a SMT solver not support-
ing them.

As the exact value of a clock x ∈ X is irrelevant once it exceeds mx, the encod-
ing can be further modified to turn the x

[i]
int and δ

[i]
int variables into bounded integer

variables without affecting the correctness of the approach: the domain of each x
[i]
int

Beyond Lassos: Complete SMT-Based Bounded Model Checking for TAs 95

is {0, . . . ,mx + 1} while δ[i]int has the domain {0, . . . ,maxx∈X mx}. A simple case dis-
tinction similar to the technique shown for x[i] + δ[i] expressions is used to set each
variable’s value to its maximum value whenever it in the unbounded case would exceed
its maximum. Restricting to bounded integers is necessary for SMT solvers that do not
support unbounded integer variables.

Alternative Non-zenoness Condition. In [19] an alternative way to ensure that all
runs of a timed Büchi automaton are non-zeno is proposed. The approach modifies the
TA using one additional clock such that accepting states only count as accepting if at
least one time unit passed since the last accepting state. While using this approach for
BMC would be feasible for Büchi acceptance conditions, it is not clear how it could be
extended to other approaches like directly encoding an LTL formula (cf. e.g. [16]) as
in such an encoding there is no notion of accepting states. Thus we propose a similar
but slightly different approach as an alternative encoding ensuring non-zenoness by
requiring that the looping part of the run is at least one time unit long. The resulting non-
zenoness condition is simpler and needs less variables than the original one proposed
in Sect. 4:

|[B, k]|nz2
:= (Σ[k−1]=δ[k−1])∧

∧
0≤i≤k−2

(Σ[i]=Σ[i+1]+δ[i])∧
∧

1≤i≤k

(loop [i] ⇒ Σ[i]≥1)

Correctness. A lasso-shaped run of the region automaton returns to a previously visited
region at the end of the looping part. If the looping part is at least one time unit long, as
required by our alternative non-zenoness-encoding, the integral part of the value of any
clock x ∈ X changes somewhere in the looping part. Unless x has exceeded mx, this
implies that a new region is reached. In this case, x has to be reset before the looping
part can return to the original region. Hence, each clock x is either reset or exceeds
mx in the looping part, i.e. infinitely often, which according to Theorem 1 implies non-
zenoness. Therefore any lasso-shaped run of the region automaton along whose looping
part at least one time unit passes is non-zeno and the alternative encoding is correct.

Note that the opposite is not true, i.e. not every lasso-shaped non-zeno run of the
region automaton has a looping part along which at least one time unit passes. This
implies that using the alternative non-zenoness-encoding sometimes results in needing
a higher bound to find a run than would be required with the original encoding.

6 Experiments

The Fischer mutual exclusion protocol and an industrial model with both handmade
and random properties were used to compare the different SMT BMC encodings and
discretization-based SAT BMC experimentally.

Setup. In the experiments, lasso-based BMC (not requiring non-zenoness, cf. Sect. 3)
was compared to region-based BMC. In addition to the basic encoding given in Sect. 4,
the two non-mixed type encodings and the alternative non-zenoness condition given in
Sect. 5 were used. The basic encoding is referred to as “mixed type, basic nz.” while the
modifications are referred to as “non-mixed” for the unlimited range integer non-mixed

96 R. Kindermann, T. Junttila, and I. Niemelä

Table 1. Execution times and maximum bound reached for the Fischer protocol (median over 11
executions, “to” means timeout)

#
pr

oc
es

se
s

¬GFproc1.crit ¬(GFproc1.crit∧ GF¬proc1.crit)

la
ss

o
B

M
C

m
ix

ed
ty

pe

no
n-

m
ix

ed

lim
ite

d
in

te
ge

r

di
sc

re
-

tiz
at

io
n

la
ss

o
B

M
C

m
ix

ed
ty

pe

no
n-

m
ix

ed

lim
ite

d
in

te
ge

r

di
sc

re
-

tiz
at

io
n

T
im

e

B
ou

nd

T
im

e

B
ou

nd

T
im

e

B
ou

nd

T
im

e

B
ou

nd

T
im

e

B
ou

nd

T
im

e

B
ou

nd

T
im

e

B
ou

nd

T
im

e

B
ou

nd

T
im

e

B
ou

nd

T
im

e

B
ou

nd

2 0.35 9 0.28 5 0.2 5 0.28 5 0.11 7 0.33 9 0.31 6 0.25 6 0.3 6 0.16 10
3 1.73 12 0.26 5 0.28 5 0.28 5 0.15 7 1.41 12 0.33 6 0.33 6 0.34 6 4.07 13
4 16.94 15 0.35 5 0.33 5 0.34 5 0.22 7 14.54 15 0.41 6 0.43 6 0.42 6 to 14
5 83.46 18 0.5 5 0.42 5 0.43 5 0.31 7 66.53 18 0.54 6 0.51 6 0.53 6 to 13
7 to 20 0.99 5 0.57 5 0.6 5 0.51 7 to 20 1.39 6 0.7 6 0.74 6 to 13

10 to 19 1.53 5 0.9 5 0.97 5 0.95 7 to 18 to 5 1.13 6 1.22 6 to 13
20 to 15 to 4 2.45 5 2.59 5 3.57 7 to 18 to 5 3.46 6 3.86 6 to 12
30 to 14 to 4 5.23 5 5.45 5 10.04 7 to 18 to 5 8.12 6 8.98 6 to 11

type encoding, “limited integer” for the limited range integer encoding and “alt. nz.” for
the alternative non-zenoness condition (cf. Sect. 5).

For comparison to the SMT-based BMC variants, discretization-based SAT BMC
was applied. That is, the real-time models were transformed into discrete time mod-
els [12] and then checked using a discrete time BMC SAT encoding [16] implemented
in NuSMV [14] 2.5.4. The used translation algorithm encodes the region abstraction and
thus is complete in the same sense as region-based SMT BMC. All BMC approaches
were used in an incremental fashion, i.e. successively increasing the bound using an
incremental SMT / SAT solver. The real-time models were encoded as symbolic timed
transition systems [12], a symbolic representation variant of timed automata. Properties
were specified as LTL formulas and encoded using [16].

In our experiments, we focused on comparing different BMC approaches. It should,
however, be noted that both benchmarks have been previously studied using different
verification methods including the model checker Uppaal [4].

All experiments were conducted on GNU/Linux computers with AMD Opteron 2435
CPUs limited to ten minutes of CPU time and 4 GB of RAM. For the SMT-based BMC
variants, Yices [17] 1.0.33 was used.

Fischer Protocol. As a first benchmark, the Fischer mutual exclusion protocol, a stan-
dard benchmark for real-time verification, and two non-holding properties (“process
one can only finitely often be in the critical section” and “process one can only finitely
often enter and exit the critical section”) were used. The protocol has been previously
studied using Uppaal [20]. Table 1 shows the time needed for finding counter-examples
and the maximum bound reached on instances of different sizes. For space restrictions,
only results for the basic non-zenoness condition are listed. However, results for the
alternative non-zenoness encoding are very similar.

For the first property the discretization-based approach scaled only slightly worse
than the non mixed-type region-based encodings. Lasso-based BMC, in contrast, scaled
significantly worse, already timing out at size 7. The reason is that the region based
BMC variants can find significantly shorter counter-examples. Similarly, the discretiza-
tion-based method may return significantly longer counter-examples, as it only allows

Beyond Lassos: Complete SMT-Based Bounded Model Checking for TAs 97

Table 2. Execution times in seconds for finding counter-examples to the non-holding properties
on the industrial benchmark (median over 11 executions, “to” means timeout, “nz.” abbreviates
“non-zenoness condition”)

Entire model Medium size submodel Small submodel

Pr
op

er
ty

la
ss

o
B

M
C

m
ix

ed
ba

si
c

nz
.

m
ix

ed
al

t.
nz

.

no
n-

m
ix

ed
ba

si
c

nz
.

no
n-

m
ix

ed
al

t.
nz

.
di

sc
re

ti-
za

tio
n

la
ss

o
B

M
C

m
ix

ed
ba

si
c

nz
.

m
ix

ed
al

t.
nz

.
no

n-
m

ix
ed

ba
si

c
nz

.
no

n-
m

ix
ed

al
t.

nz
.

di
sc

re
ti-

za
tio

n

la
ss

o
B

M
C

m
ix

ed
ba

si
c

nz
.

m
ix

ed
al

t.
nz

.
no

n-
m

ix
ed

ba
si

c
nz

.
no

n-
m

ix
ed

al
t.

nz
.

di
sc

re
ti-

za
tio

n

1 1.0 43.55 to 3.97 to to 0.55 0.85 to 0.73 to to 0.29 0.69 to 0.51 to to
2 2.19 to to 18.11 20.4 to 0.4 0.43 0.56 0.41 0.47 to 0.21 0.3 0.37 0.27 0.27 to
3 0.66 2.12 16.81 2.04 1.78 to 0.32 0.49 0.81 0.42 0.5 to 0.21 1.0 0.36 0.28 0.29 to
4 2.16 to to 21.1 19.27 to 0.32 0.47 0.59 0.45 0.52 to 0.21 0.45 0.38 0.3 0.37 to
5 1.87 to to 19.74 22.14 to 0.32 0.63 0.65 0.47 0.54 to
6 1.8 to to 20.36 30.36 to 0.33 0.58 0.59 0.44 0.49 to
7 0.47 0.66 1.11 0.73 0.8 to 0.27 0.3 0.32 0.31 0.32 to
8 0.67 1.94 4.55 1.26 1.75 to 0.33 0.47 0.47 0.43 0.44 to
9 0.57 0.63 1.07 0.71 0.77 to

10 1.32 to to 3.41 4.64 to
11 to to to 25.4 41.12 to
12 to to to 26.15 26.71 to
13 to to to 27.54 28.68 to

time elapse steps that either leave the ordering of clocks’ fractional parts unchanged
or advance to the very next region. This often makes it necessary to break up a single
time elapse step in a counter-example into multiple time elapse steps in the discretized
model. While not affecting execution times for the first property by much, the longer
counter-examples for the discretization-based approach had a huge impact on the sec-
ond, more complicated property. Another interesting result is that the mixed-type en-
coding performed significantly worse than the non-mixed type encodings, indicating
that avoiding mixed-type expressions can be beneficial even for SMT-solvers that sup-
port them.

Industrial Benchmark. As second benchmark, a model of an emergency diesel genera-
tor intended for the use in a nuclear power plant was used. The model is fairly large, hav-
ing 24 clocks and its location being defined by the valuation of 130 finite domain state
variables. Additionally, two submodels (7 clocks / 64 state variables and 6 clocks / 36
state variables) which are sufficient for verifying some of the properties were used. The
model has previously been studied using different verification methods including Up-
paal [12, 21]. Table 2 shows the execution times for non-holding properties. For space
restrictions, the results for the limited range integer encoding, which are just slightly
worse than the unlimited range integer encoding, are omitted here. The discretization-
based approach timed out for all properties on all submodels, clearly indicating that its
applicability is restricted to small models. The choice of non-zenoness condition was
irrelevant for all except one property. Unlike for the Fischer protocol, lasso-based BMC
performed significantly better for some properties while performing significantly worse
for others. A likely explanation again is the length of the counter-examples that can be
found using the respective variants.

Furthermore, random properties for the industrial model were generated using the
following LTL patterns: unconditional fairness (GFx), strong fairness (GFx ⇒ GFy),
weak fairness (FGx ⇒ GFy), “leads to” (G(x ⇒ Fy)) and Gx ⇒ Gy, a pattern that

98 R. Kindermann, T. Junttila, and I. Niemelä

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
in

 s
ec

on
ds

Number of properties

discretization
mixed, alt. nz.
mixed, basic nz.
non-mixed, alt. nz.
non-mixed, basic nz.
lasso BMC

Fig. 3. Execution time by number of properties for random properties on the industrial bench-
mark. A point (x, y) indicates that for x properties y or less time was needed (each), correspond-
ing to a plot of quantiles.

had been used by the authors of the industrial benchmark. 2000 properties of each type
were randomly selected, except for the unconditional fairness pattern for which all 371
generated properties were selected. Figure 3 shows the times required to find counter-
examples for all properties for which at least one method found a counter-example.
Again, the discretization-based approach timed out for all properties. For random prop-
erties, lasso-based BMC was clearly faster than the region-based approaches. A likely
explanation is that most random properties have very short counter-examples, meaning
that the potentially smaller bound needed by region-based BMC is outweighted by the
more complicated transition relation. Furthermore, random properties that involve only
non-timing related parts of the system tend to have exceptionally short zeno counter-
examples, further favoring lasso-based BMC which does not require non-zenoness.

7 Conclusions

In this paper, we have shown that traditional lasso-based SMT BMC is not complete
for model checking linear-time properties on timed automata, introduced region-based
SMT BMC to fix this problem, and shown its completeness. Different variations of the
approach tailored for supported features of different SMT solvers are given. The vari-
ations of region-based SMT BMC have been experimentally compared to each other,
to lasso-based SMT BMC and to discretization-based SAT BMC. The experiments in-
dicate that region-based SMT BMC outperforms discretization-based SAT BMC. For
hand-made properties, region-based SMT BMC also was more robust than lasso-based
SMT BMC. For random properties, however, lasso-based SMT BMC performed better.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

2. Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

3. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer,
Heidelberg (2004)

4. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

Beyond Lassos: Complete SMT-Based Bounded Model Checking for TAs 99

5. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient Timed Reachability
Analysis Using Clock Difference Diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV
1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

6. Beyer, D., Noack, A.: Can Decision Diagrams Overcome State Space Explosion in Real-
Time Verification? In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS,
vol. 2767, pp. 193–208. Springer, Heidelberg (2003)

7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

8. Woźna, B., Zbrzezny, A., Penczek, W.: Checking reachability properties for timed automata
via SAT. Fundamenta Informatica 55(2), 223–241 (2003)

9. Sorea, M.: Bounded model checking for timed automata. Electronic Notes in Theoretical
Computer Science 68(5) (2002)

10. Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded Model Checking for
Timed Systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp.
243–259. Springer, Heidelberg (2002)

11. Malinowski, J., Niebert, P.: SAT Based Bounded Model Checking with Partial Order Se-
mantics for Timed Automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 405–419. Springer, Heidelberg (2010)

12. Kindermann, R., Junttila, T., Niemelä, I.: Modeling for symbolic analysis of safety instru-
mented systems with clocks. In: ACSD 2011, pp. 185–194. IEEE (2011)

13. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Hand-
book of Satisfiability, pp. 825–885. IOS Press (2009)

14. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

15. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
16. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded

LTL model checking. Logical Methods in Computer Science 2(5:5), 1–64 (2006)
17. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T.,

Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)
18. Clarke, E.M., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and Complexity of

Bounded Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 85–96. Springer, Heidelberg (2004)

19. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness efficiently.
Formal Methods in System Design 26(3), 267–292 (2005)

20. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for Real-Time Systems. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)

21. Lahtinen, J., Björkman, K., Valkonen, J., Frits, J., Niemelä, I.: Analysis of an emergency
diesel generator control system by compositional model checking. VTT Working Papers
156, VTT Technical Research Centre of Finland (2010)

A Appendix: Proofs of Lemmas 1 and 2

Lemma 1. If B has an infinite accepting non-zeno run π = 〈l0, v0〉〈l1, v1〉 . . ., then B’s
region automaton BR has a lasso-shaped accepting non-zeno run πR

lasso.

Proof. Let πR = 〈l0, [v0]〉〈l1, [v1]〉 . . . be the region automaton run corresponding to π.
In the following we will construct a lasso-shaped run πR

lasso of BR from a prefix of πR.

100 R. Kindermann, T. Junttila, and I. Niemelä

Let XU ⊆ X be the set of clocks which are reset only finitely many times along π.
Then according to Theorem 1, any clock x ∈ XU exceeds mx infinitely often on πR,
which combined with the fact that x is only reset finitely often, yields that x exceeds
mx in all states after a given point in π, i.e. x ≤ mx holds only finitely often on π.
Let sR

inf be an arbitrary state occurring infinitely often in πR. Note that such a state is
guaranteed to exist due to the fact that BR has only finitely many states. Each x ∈ XU

is guaranteed to exceed mx in sR
inf, as sR

inf occurs infinitely often on πR while x ≤ mx

holds only finitely often. Let iinf the lowest number such that 〈liinf , [viinf]〉 = sR
inf. We

will turn πR into a lasso-shaped run by looping back from a later occurrence of sR
inf to

its occurrence at index iinf.
Let iend be the lowest index such that 〈liend , [viend]〉 = sR

inf and (i) every clock in X\XU

is reset, (ii) there is a time elapse step and (iii) an accepting state of B visited between
the iinfth and the iendth state of π. As each of the described events occurs infinitely often
on π, a corresponding choice of iend is possible. Now let

πR
lasso := 〈l1, [v1]〉 . . . 〈liinf−1, [viinf−1]〉(〈liinf , [viinf]〉 . . . 〈liend−1, [viend−1]〉)ω

Then πR
lasso is a lasso shaped run of BR. Furthermore, any clock x ∈ XU exceeds its

mx value infinitely often on πR
lasso, namely in 〈liinf , [viinf]〉 = sR

inf. In addition, due to
the way iend was chosen, any clock X \XU is reset infinitely often, an accepting state
visited infinitely often and a time elapse step taken infinitely often on πR

lasso. According
to Theorem 1, this implies the non-zenoness of πR

lasso, which concludes the proof of
Lemma 1. &�

Lemma 2. If BR has an accepting lasso-shaped non-zeno run, then BR has an accept-
ing lasso-shaped non-zeno run of length at most Kregion.

Proof. We will prove the lemma by construction of a lasso-shaped non-zeno run of
BR of length at most Kregion from the lasso-shaped run πR

lasso constructed in the proof
of Lemma 1. Note that we only needed certain parts of the looping part of πR

lasso for
showing non-zenoness of the run, namely one time elapse step, one reset step per clock
in X \ XU, an accepting state and sR

inf. Thus, we can replace every segment between
two such relevant steps / states by the shortest path between them without affecting the
non-zenoness of the run or the fact that it is accepting. The resulting loop consists of∣∣X \XU

∣∣ reset steps, one time elapse step, one accepting state, sR
inf and

∣∣X \XU
∣∣+ 3

shortest paths in between. Any shortest path has length of at most
∣∣BR

∣∣−2, not counting
initial and final state, where

∣∣BR
∣∣ ≤ |L| · |X |! · 2|X| ·

∏
x∈X(2mx + 2) is the number

of states in BR. Taking into account that every step consists of two states, this yields a
length of at most (

∣∣X \XU
∣∣+1)·2+2+(

∣∣X \XU
∣∣+3)·(

∣∣BR
∣∣−2) < (|X |+3)·

∣∣BR
∣∣ ≤

(|X |+ 3) · |L| · |X |! · 2|X| ·
∏

x∈X(2mx + 2) ≤ Kregion.
After modifying the looping part of our lasso-shaped run, we can replace the non-

looping part with the shortest path from the initial state of BR to any state in the looping
part. Note that in the resulting run the set of states that occur in the non-looping part
is disjunct from the set of states in the looping part. This implies that we can reduce
our upper bound to the length of the looping part by |X |+ 3 for each state in the non-
looping part and, ultimately, that Kregion is an upper bound for the length of the entire
resulting lasso-shaped run. &�

Conformance Testing of Boolean Programs

with Multiple Faults

Pavithra Prabhakar1,2,	 and Mahesh Viswanathan3

1 California Institute of Technology
2 IMDEA Software Institute

3 University of Illinois at Urbana-Champaign

Abstract. Conformance testing is the problem of constructing a com-
plete test suite of inputs based on a specification S such that any imple-
mentation I (of size less than a given bound) that is not equivalent to S
gives a different output on the test suite than S. Typically I and S are
assumed to be some type of finite automata. In this paper we consider the
problem of constructing test suites for boolean programs (or more pre-
cisely modular visibly pushdown automata) that are guaranteed to catch
all erroneous implementations that have at least R faults, and pass all
correct implementations; if the incorrect implementation has fewer than
R faults then the test suite may or may not detect it. We present a ran-
domized algorithm for the construction of such test suites, and prove the
near optimality of our test suites by proving lower bounds on the size of
test suites.

1 Introduction

Conformance testing is the problem of designing test suites based on a given
formal specification S which is typically an automaton (either finite or infinite).
In the framework of conformance testing in general, the implementation I being
tested, is assumed to have an unknown internal structure, but can be tested by
applying a sequence of inputs and observing the outputs it produces. Given an
integer bound N , the goal is to construct a test suite T such that if some I of
size less than N does not “conform” to S, then there is some input sequence in
T on which the outputs of I and S differ. Typically, the notion of conformance is
taken to be language equivalence, though weaker notions such as ioco have been
explored [13]. Such conformance tests have not only been used to test circuits and
protocols [6,10] but have also been used to model check black-box systems [12,5].

Since Moore’s seminal work [11] on this problem, many algorithms for solv-
ing conformance testing have been proposed; major results are summarized
in [6,4,9,10] 1. All of these algorithms construct test suites when the specifi-
cation and implementation are assumed to be finite state automata. Broadly, it

� This work was done while the first author was a student at the University of Illinois
at Urbana-Champaign.

1 These references are to algorithms that construct complete test suites, which is the
focus of this paper. There has also been a lot of work on constructing incomplete
test suites that catch all bugs in the limit.

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 101–117, 2012.
c© IFIP International Federation for Information Processing 2012

102 P. Prabhakar and M. Viswanathan

is understood that the running time of the algorithm and the size of the test
suite are polynomial in the size of the specification, when the implementation
is assumed to have at most as many states as the specification. When the im-
plementation can have Δ extra states, the running time and the size of the
constructed test suite have an exponential dependence on Δ. These bounds are
known to be optimal [14].

While finite state models are convenient abstractions in many situations, in
order to faithfully model software, it becomes imperative to consider models
that explicitly capture recursion. Therefore, Boolean programs, or more pre-
cisely modular VPAs [7], have been considered, and the results on conformance
testing finite state machines have been extended to such recursive models [7].
Modular VPAs are an automata model, inspired by Visibly Pushdown Automata
(VPA) [2] and Recursive State Machines (RSMs) [1], that capture sequential re-
cursive programs all of whose data variables are Boolean. Thus, they are push-
down automata whose control states have been partitioned into modules that
correspond to functions in a program. The trace of these machines explicitly
encodes recursive function calls by the name of the module being called and
the associated parameter, as well as returns from such calls. In addition, like in
typical programming languages, function calls result in the calling state being
pushed onto the call stack; the parameter of the call is not pushed onto the stack
but is rather stored in the local state of the called module. These restrictions
ensure that modular VPAs have unique minimized (in terms of the number of
control states) machines that can be constructed in polynomial time. The mini-
mization procedure is based on a congruence-based characterization of modular
VPAs, which can then be exploited to solve the conformance testing problem.
Assuming that the specification S is a minimized modular VPA and the num-
ber of control states of the implementation I is not more than that of S, there
is polynomial time algorithm that constructs a complete test suite. The input
sequences in the test suite are presented symbolically using an equation system;
when expanded to get an explicit sequence of input symbols, the size can be
exponential in the number of control states of S. This exponential dependency
cannot be avoided because the shortest path reaching a particular control state
in a pushdown system can be exponentially long. When the implementation I
has Δ additional control states, the running time of the algorithm, the symbolic
representation of the test suite, and the explicit representation of the test suite,
are exponentially dependent on Δ.

In this paper we investigate if the exponential dependence on the extra states
of the implementation can be avoided if we relax the completeness requirements
of the test suite. More precisely, we consider the problem of designing an (R,Δ)
conformance test. An (R,Δ) test for a specification S with n control states, is
a test suite T such that any implementation I that has at most n +Δ control
states and at least R faults, gives a different output from S on some input in T ;
here we say that I has at least R faults, if at least R changes to the transition
relation of I must be made in order to get a correct implementation. The notion
of (R,Δ) conformance tests was first introduced in [8], where such test suites

Conformance Testing of Boolean Programs with Multiple Faults 103

were constructed for specifications and implementations that are finite state
machines. In this paper, we continue this line of work, and extend it to the case
of recursive software.

In order to explain the challenges and contributions of our work, we recall the
main ideas used in conformance testing algorithms. In a minimized specification
machine S, any pair of control states p, q can be distinguished by a test; in the
case of finite state systems it is simply an input sequence that is applied from
p and q, and in the case of pushdown systems, it is a pair of input strings —
one that sets up a common stack for p and q, and the other on which p and
q give different outputs. Moreover, for every control state q, there is an input
string, called the access string for q, that takes the specification to q. When
the implementation does not have extra states, the idea is to check that the
implementation state reached on xq (access string for q) “behaves like” q; in
other words, this implementation state gives the same output as q on all the
distinguishing tests, and transitions out of the implementation state go to states
that behave like the target of transitions out of q. When there are Δ extra states,
the test suite must have input sequences that visit the states not reached by the
xq inputs (called “unknown” states of I), and check the transitions out of those.

If I and S are finite state machines, then these unknown states can be reached
within Δ transition steps from a “known state”. Thus, the idea is to have tests
that explore every input sequence of length at most Δ from every known state,
and check that the states reached in I behave the same way as the states reached
in S after the same input sequence. Hence, both the size of the test and the time
to generate it, depend exponentially on Δ. Moreover, if any of these “walks” of
length at most Δ from known states is omitted from the test, then the test suite
cannot guarantee to catch every incorrect implementation. When the complete-
ness requirements are relaxed (namely, to provably catch implementations with at
least R faults), two factors come into play [8]. First, one can show that a “faulty”
state can be reached in a fewer number of steps from a known state, when I has
at least R faults; here, by faulty state we mean one for which the error can be
observed when the distinguishing tests are applied. Second, many of these short
walks from known states lead to faulty states. Thus, if we were to choose (ran-
domly) a few of these short walks from every known state, then the test suite is
likely to catch every implementation with at least R faults. These observations
were used in [8] to give a randomized algorithm that outputs a small test suite
that, with high probability, is likely to be a (R,Δ) conformance test.

When I and S are recursive programs, the situation changes. Since the short-
est path reaching a particular control state in a pushdown automaton can be
exponentially long, this means that unknown states may be reached only if we
take 2n+Δ steps from a known state. Thus, a näıve application of the observa-
tions from the finite state case suggests that the dependence of the size of the
test suite on Δ would be doubly exponential. However, it was observed in [7]
that one doesn’t need to consider all input sequences of length 2n+Δ from known
states, but rather only certain “special” ones that are described succinctly us-
ing equation systems of linear size. This key observation was used to get a test

104 P. Prabhakar and M. Viswanathan

generation algorithm and test suite, whose asymptotic complexity is similar to
that for finite state systems.

For (R,Δ) conformance tests and modular VPAs, the ideas from the finite
state case do not extend easily. In [8], the proof of the existence of many short
walks from known states to faulty states, relied on the existence of large cuts
separating known states from faulty states in the implementation. Such large cuts
do not seem to exist for modular VPAs. However, using new proof techniques,
we show that when I has R faults, many paths described by equations systems
lead to faulty states. Thus, if the test generation algorithm randomly picks some
of these walks from known states then, with high probability, the resulting test
suite will be a (R,Δ) conformance test. Note that, unlike the finite state case, we
cannot show that “short walks” are sufficient. Finally, we present lower bounds
on the size of (R,Δ) conformance tests for modular VPAs. These lower bounds
demonstrate that the test suite constructed by our randomized algorithm is close
to optimal.

We conclude this introduction by discussing the practical relevance of our al-
gorithm, and (R,Δ) tests in general. Our algorithm is a randomized algorithm
that is highly likely to output a (R,Δ) test. Here the probability of error is over
random decisions made by the algorithm, not on a distribution over machines
S and I. Thus the error can be reduced to as small a number as desired by
increasing the size of the test suite. (R,Δ) tests, though guaranteed to catch
implementations with at least R faults, nonetheless, can detect errors in imple-
mentations with fewer faults. Thus, (R,Δ) tests can be seen as incomplete tests
along a dimension orthogonal to traditional metrics like coverage. Therefore,
their importance is derived not so much in the precise way we count faults in
an implementation, but rather from the fact that their incompleteness can be
mathematically characterized. Hence, (R,Δ) tests should be seen as a hierarchy
of test suites of increasing precision, to be chosen from, based on practical time
constraints imposed on the testing process by product release times.

2 Modular Visibly Pushdown Automata (MVPA)

Boolean programs are essentially programs in any imperative language in which
all the variables have a boolean type. In particular, they do not have dynamic
memory, and parameters are passed to functions by call-by-value. Formally, they
define a Modular Visibly Pushdown Automata, which we present next.

Modular Visibly Pushdown Automata. Let M be a finite set of modules and
m0 ∈ M be the initial module. For each m ∈ M , let Pm be a nonempty finite set
of parameters and let Pm0 = {p0}. A call c is a pair (m, p) where m ∈ M\{m0}
and p ∈ Pm, and denotes the action of calling a module m with parameter p
(we won’t allow initial module to be called except at the beginning, and hence
(m0, p0) will not be a call). Let Σcall denote the set of all calls. Let Σint be
a finite set of internal actions, and let Σret = {r} be the alphabet of returns,
containing the unique symbol r. We will assume that the sets Σcall, Σint and Σret

Conformance Testing of Boolean Programs with Multiple Faults 105

are mutually disjoint. Let Σ̂ = (Σcall, Σint, Σret) and let Σ = Σcall∪Σint∪Σret.
We call 〈M, {Pm}m∈M ,m0, Σ̂〉 a signature.

A modular visibly pushdown automaton (MVPA) A over the signature 〈M,
{Pm}m∈M , m0, Σ̂〉 is a tuple ({Qm, {qpm}p∈Pm , δm}m∈M , F) where for each m ∈
M :

– Qm is a finite set of states. We assume that for m �= m′, Qm ∩Q′
m = ∅. Let

Q = ∪m∈MQm denote the set of all states.
– For each parameter p ∈ Pm, qpm ∈ Qm is a state associated with p; we will

call this the entry associated with the call (m, p). (Note that we do not insist
that qpm is different from qp

′
m, when p �= p′.)

– δm : Qm × (Σcall ∪Σint ∪Q) → Q such that:
• Call transitions:
for every q ∈ Qm, (n, p) ∈ Σcall, δm(q, (n, p)) = qpn;

• Internal transitions:
for every q ∈ Qm, a ∈ Σint, δm(q, a) ∈ Qm;

• Return transitions:
for every q ∈ Qm and q′ ∈ Qm′ , δm(q, q′) ∈ Qm′ ;

The transition function δ : Q× (Σcall ∪Σint ∪Q) is such that δ restricted to
Qm × (Σcall ∪Σint ∪Q) is δm.

– F ⊆ Qm0 is the set of final states.

Notation.We write q
a−→A q′ to denote δ(q, a) = q′ for a ∈ (Σcall∪Σint∪Q). We

drop the subscript A when it is clear from the context. Unless stated otherwise,
we will always assume the signature to be Sig = 〈M, {Pm}m∈M ,m0, Σ̂〉.
We consider MVPA with deterministic transitions, since the non-deterministic
version is equivalent in expressiveness to the deterministic version [7].

A MVPA reads words that are well-matched. A word u is a well matched word
if the number of occurrences of the call symbols in it is equal to the number of
occurrences of return symbols in it, and the number of occurrences of the call
symbols in any prefix of u is greater than or equal to the number of occurrences
of return symbols in the prefix. The set of all well-matched words over Σ̂ is
denoted by WM(Σ̂). From now on, we will use u, u′, ui to denote words and
w,w′, wi to denote well-matched words.

A MVPA operates by reading a well-matched word, and modifying its state
and stack accordingly. It starts in the initial state, qp0

m0
, with an empty stack. It

reads a symbol of the word and takes one of the transitions out of the current
state which matches the symbol. When the automaton reads the symbol r, it
takes a return transition. It changes its state to the target state of the transition.
When an internal transition is taken, the stack remains unchanged. If it takes a
call transition, then it pushes the current state onto the stack. A return transition
can be taken only if the transition label and the top of the stack match, in which
case the top element of the stack is popped.

Formally, the semantics of MVPA is defined in terms of a graph over config-
urations. A configuration is a pair (q, σ) ∈ Q×Q∗, where q denotes the current
state of the MVPA and σ denotes its stack contents. We assume that the last
symbol of σ is the top of the stack. Let Conf denote the set of all configurations

106 P. Prabhakar and M. Viswanathan

along with a special configuration c0. The semantics of a MVPA A is given by
a graph (V,E) where the set of vertices V is given by the set of configurations
Conf and the set of edges E ⊆ V ×V is the smallest set satisfying the following:

– (Initial) The edge c0
(m0,p0)−→ qp0

m0
is in E.

– (Internal) If (q, σ) ∈ V , a ∈ Σint and δ(q, a) = q′, then the edge (q, σ)
a−→

(q′, σ) is in E.

– (Call) If (q, σ) ∈ V and (m, p) ∈ Σcall, then (q, σ)
(m,p)−→ (qpm, σq) is in E.

– (Return) If (q, σq′) ∈ V and δ(q, q′) = q′′, then (q, σq′) r−→ (q′′, σ) is in E.

A run of A on a word u = a1 · · · an is a path in the configuration graph on u,

that is, a path π = c0c1 · · · cn such that ci
ai+1−→ ci+1 for all 0 ≤ i < n. Note that

such a path is unique. We say that A reaches the state q on u, if there exists a
run π = c0 · · · cn of A on u such that cn = (q, σ) for some stack configuration σ.
π is an accepting run of A on u if the last configuration cn of π is (q, σ) for some
final state q ∈ F . A word u is accepted by A if there is an accepting run of A
on u. The language of A, L(A), is defined as the set of words u ∈ Σ∗ accepted
by A.

Remark 1. We note that a MVPA accepts only well-matched words since the
start state qp0

m0
and the final states are all in Qm0 , and every return transition

returns to the module of the corresponding call transition.

Example 1. Figure 1 shows an MVPA with two modules m0 and m, with Pm0 =
{p0} and Pm = {p}. Here Σint = {a, b}, qp0

m0
= q0, q

p
m = q1 and F = q0. There

are internal transitions within the module and return transitions from module
m to module m0 on states of m0. There are call transitions from every state
to q1 on (m, p). The language of the MVPA in Figure 1 is the set of all well
matched words without nested calls such that any non-empty sequence between
a call and the following return consists of an alternating sequence of as and bs
starting with an a.

Later we will need the notion of a partial homomorphism and homomorphism,
which we define below:

Definition 1. Given MVPA A = ({Qm, {qpm}p∈Pm , δm}m∈M , F) and A′ =
({Q′

m, {q′pm}p∈Pm , δ′m}m∈M , F ′) over the signature Sig with Q = ∪m∈MQm

and Q′ = ∪m∈MQ′
m, a function h : Q′′ → Q, where Q′′ is a subset of Q′

containing q′p0

m0
, is called a partial homomorphism from A′ to A if:

B1 h(q′p0

m0
) = qp0

m0
.

B2 For every q′ ∈ Q′′, q′ ∈ F ′ iff h(q′) ∈ F .
B3 For every q′ ∈ Q′′ and a ∈ Σcall ∪ Σint ∪ Q′′, if δ′(q′, a) ∈ Q′′, then

h(δ′(q′, a)) = δ(h(q′), a′), where a′ = a if a ∈ Σcall ∪ Σint and a′ = h(a)
otherwise.

Conformance Testing of Boolean Programs with Multiple Faults 107

(m0, p0)

(m, p)
a

q

q1 q2

q3

a, b

q

a, b

q0

q0

b,
q1
, q

2
, q

3

a, b, q1, q2, q3

a
, q
1 , q

2 , q
3

q0, qq

b

q0

Fig. 1. Example MVPA: There are call transitions from every state to q1 on (m,p)
which is omitted from the figure

In addition, if the following condition is satisfied, then we call h a homomorphism.

B4 For every q′ ∈ Q′′ and a ∈ Σcall ∪Σint ∪Q′′, δ′(q′, a) ∈ Q′′.

Proposition 1. If there is a homomorphism from A′ to A, then A′ and A are
equivalent, that is, L(A′) = L(A).

Next we state a result from [7] on the minimization ofMVPA. Since the size of the
MVPA, which is the total number of bits required to describe it, is polynomial in
the number of states of the automaton, we will consider the size of the automaton
to be the number of states.

Theorem 1 ([7]). Given a MVPA A over Sig, there exists a unique minimal
MVPA Amin over Sig such that L(Amin) = L(A).

The construction of the automaton Amin is based on the following congruence
relation. For each m ∈ M , the equivalence relation ∼m on Pm ×WM(Σ̂) which
depends on L = L(A) (and not on A) is defined as follows: (p1, w1) ∼m (p2, w2)
iff ∀u, v ∈ Σ∗, u(m, p1)w1v ∈ L ⇔ u(m, p2)w2v ∈ L. The states of Amin in the
module m are the equivalence classes of ∼m, and a state [(p, w)] can be reached
by the string (m0, p0)(m, p)w. From the definition of ∼m, it is clear that given
two distinct states [(p1, w1)] and [(p2, w2)] of module m, there exist u, v ∈ Σ∗

such that exactly one of u(m, p1)w1v and u(m, p2)w2v is in L. We call (u, v) a
distinguishing pair and (m, p1)w1 an access string. We will need these notions
later, hence we will define these next.

108 P. Prabhakar and M. Viswanathan

Informally an access string is a word which can be used to reach a certain
state from an entry state of its module. An access string for a state q of module
m is a string of the form (m, p)w, where p ∈ Pm and w ∈ WM(Σ̂), such that
(m0, p0)(m, p)w reaches q. We call a state accessible if there is an access string x
such that (m0, p0)x reaches it. A complete set of access strings is a set containing
an access string for every accessible state of the automaton. Given a MVPA
A and an access string x, we denote the state reached in A on (m0, p0)x by
stateA(x).

For distinct states q1, q2 in module m of A, a pair of strings (u, v) is a distin-
guishing test for {q1, q2} if for all access strings (m, p1)w1 and (m, p2)w2 of q1
and q2 respectively, exactly one of u(m, p1)w1v and u(m, p2)w2v is in L(A). We
also say that (u, v) distinguishes q1 and q2. D is a complete set of distinguishing
tests if for every module m and distinct states q1, q2 in module m of A, there
is a distinguishing test (u, v) ∈ D for {q1, q2}. Observe that a complete set of
distinguishing tests always exists for a minimal MVPA.

For the MVPA in Figure 1, an access string for q2 is (m, p)a, and an access
string for q is a(m, p)br. A distinguishing test for the states q1, q2 is u = (m0, p0)
and v = ar, since for any access string x for q1, uxv belongs to the language
of the MVPA and for any access string y for q2, uyv does not belong to the
language.

Let A be a minimal MVPA with n states and {x1, · · · , xn} be a complete
set of access strings for A (every state of a minimal MVPA is accessible). Let
Ω = Σ ∪ {xi}ni=1. We recall the following facts about distinguishing tests from
[7].

Lemma 1 ([7]). A complete set of distinguishing tests D for A can be con-
structed in time O(n5). Further, D can be represented as

(
n
2

)
strings in Ω∗, each

of length O(n2).

3 Conformance Testing

In this section we define the problem of conformance testing MVPA and prove
some preliminary lemmas.

By “conformance”, we mean language equivalence. Given a specification ma-
chine S and a “black-box” implementation machine I that are both deterministic
complete modular MVPA over signature Sig , we want to test if I is equivalent
to S, i.e., whether L(I) = L(S). We make the following assumptions:

1. S is minimized and has n states;
2. I has at most N = n+Δ states;

Note that assumption 1 is not a restriction since the details of S are known and
hence can be minimized. Assumption 2 is necessary to guarantee that every state
of the implementation is explored. Hence, whenever we refer to a specification
machine we assume it is minimized. Also, all the automata we refer to from now
on are MVPA.

Conformance Testing of Boolean Programs with Multiple Faults 109

A sample is a set of well-matched words. Let the length of a sample be the
sum of the lengths of the words in the test. A sample T distinguishes I from S, if
there is a word w ∈ T such that w is accepted by exactly one of S and I. Given
a specification machine S with n states, a Δ-conformance test is a sample T of
well-matched words that distinguishes every incorrect implementation machine
I, that is, I such that L(S) �= L(I), with at most n+Δ states from S. Given S
and Δ, a conformance testing algorithm outputs a Δ-conformance test.

Let us fix a “black box” implementation machine I with at most n+Δ states
and a specification machine S with n states such that I is not equivalent to
S. We first focus on the problem of finding a sample T which distinguishes I
from S. Let Q be the accessible states of I, and Q̂ the accessible states of S.
Let D be a complete set of distinguishing tests for S. Let (uq̂1 q̂2 , vq̂1 q̂2) ∈ D be
a distinguishing test for {q̂1, q̂2} and Dq̂1 =

⋃
q̂2
{(uq̂1q̂2 , vq̂1 q̂2)}.

We find a sample T such that if T does not distinguish an implementation
from S then there exists a homomorphism from the implementation to S. If T
does not distinguish I from S, then Proposition 1 would imply that L(I) = L(S),
contradicting the assumption on I and S.

We find a set of access strings for the states of I. We then check that the
states reached by these strings in I and S are indistinguishable with respect to
the distinguishing tests. In order to verify that the transitions in I are correct,
we check that the states reached by taking the transitions in both I and S are
indistinguishable, that is, to verify that a transition from a state q on a symbol
a in I is correct, we check that the states reached in I and S on reading ya are
indistinguishable, where y is an access string for q in I, and so on.

Let Y be an arbitrary set of access strings for I, and let Q′ = {stateI(y) | y ∈
Y }. For each q ∈ Q′, fix an access string yq ∈ Y for q. Let us define a function

hY : Q′ → Q̂ as follows. hY (q) = stateS(yq). We give a characterization of when
hY is a partial homomorphism and when hY is a homomorphism by describing
a set of tests.

Definition 2. A set of access strings Y is called safe if it contains {ε}∪{(m, p)
|m ∈ M\{m0}, p ∈ Pm} as a subset and satisfies the following conditions:

C1 For each y ∈ Y , (m0, p0)y ∈ L(I) iff (m0, p0)y ∈ L(S).
C2 For each y ∈ Y , for each (u, v) ∈ DstateS(y), uyv ∈ L(I) iff uyv ∈ L(S).
C3 For each y ∈ Y and a ∈ Σint, for each (u, v) ∈ DstateS(ya), uyav ∈ L(I) iff

uyav ∈ L(S).
C4 For each y1, y2 ∈ Y , and for each (u, v) ∈ DstateS(y2y1r), uy2y1rv ∈ L(I) iff

uy2y1rv ∈ L(S).

Informally, a safe set of access strings corresponds to a set of states such that the
transitions out of these states do not contain any “bad” transitions. Condition
C1 verifies that an access string reaches a final state of I iff it reaches a final state
of S. Condition C2 ensures that, the states reached by a string of the set in the
specification and implementation behave similarly. Condition C3 ensures that a
transition labelled by an internal symbol is not “bad”, that is, the states reached
in I and S after reading the symbol a from states reached by the same access

110 P. Prabhakar and M. Viswanathan

string exhibit similar behavior. Similarly C4 ensures that the return transitions
are not “bad”. The next lemma states that if Y is a safe set then it defines a
partial homomorphism.

Lemma 2. If Y is safe then hY is a partial homomorphism.

Corollary 1. If Y is a safe and complete set of access strings for I, then hY

is a homomorphism.

If we are given a complete set of access strings Y for I which contains {ε} ∪
{(m, p) |m ∈ M\{m0}, p ∈ Pm}, then we can use the above characterization
to obtain a sample TY which distinguishes I from S. TY is the union of the
following sets:

– T0 = {(m0, p0)y | y ∈ Y }.
– T1 = {uyv | y ∈ Y, (u, v) ∈ DstateS(y)}.
– T2 = {uyav | y ∈ Y, (u, v) ∈ DstateS(ya)}.
– T3 = {uy′yrv | y, y′ ∈ Y, (u, v) ∈ DstateS(y′y)}.

However, we cannot compute the set of access strings directly, since we do not
have knowledge about the internal structure of I. We use the following result
from [7]. Let us fix a complete set of access strings {x1, · · · , xn} for S which
contains {ε} ∪ {(m, p) |m ∈ M\{m0}, p ∈ Pm}. Let us denote by xq̂ the access

string for the state q̂ ∈ Q̂ in the above set.

Lemma 3 ([7]). For each q̂ ∈ Q̂ and (u, v) ∈ Dq̂, let uxq̂v ∈ L(I) iff uxq̂v ∈
L(S). Then there exist access strings for the states of I, y1, · · · , yN , where yi =
xi for 1 ≤ i ≤ n and for each n < i ≤ N , yi = yja or yi = yjykr for some
a ∈ Σint and j, k < i.

The premise of the above lemma ensures that distinct xi access distinct states
of I. The above lemma states that a complete set of access strings of I can be
represented as a system of N − n equations of the form yi = yja or yi = yjykr.
Since I is given as a “black box”, in order to obtain a sample distinguishing I
from S, we need to consider all the (N |Σ|+N2)N−n systems of equations. We
denote the set of all systems of equations as Γ .

Definition 3. Given a complete set of access strings X for the specification S,
we denote by Γ (X,Δ), the set of all systems of equations of the form yi = ua
or yi = uvr for 1 ≤ i ≤ N − n where each of u, v is either an element of X
or is yj for some j < i. Given an element γ ∈ Γ (X,Δ), we denote by Yγ , the
set of access strings generated by γ, that is, the elements of X and the word
assignments for yi, 1 ≤ i ≤ N − n which satisfy the equations in γ.

Next we present the algorithm given in Algorithm 1.1, which takes as input
the specification S, a complete set of access strings X = {x1, · · · , xn} for S, a
complete set of distinguishing tests D for S and the “black box” implementation

Conformance Testing of Boolean Programs with Multiple Faults 111

Algorithm 1.1

1 Input: (S, X,D, I)
2 Output: Sample T
3 T ← ∅
4 for every γ ∈ Γ (X,Δ) do
5 T ← T ∪ TYγ

6 end for

Algorithm 1.2

1 Input: (S, X,D, I)
2 Output: Sample T
3 T ← ∅
4 for l = 1, · · · ,m do
5 γ ← Rand(Γ (X,Δ))
6 T ← T ∪ TYγ

7 end for

I, and outputs a sample T which distinguishes I from S if I is an incorrect
implementation.

Observe that if I is equivalent to S, then no sample can distinguish the two.
On the other hand, it I and S are not equivalent, then the output of Algorithm
1.1, namely T , distinguishes I from S. In fact T distinguishes any I which is
not equivalent to S, hence the algorithm outputs a Δ-conformance test.

Theorem 2 ([7]). The length of the Δ-conformance test output by Algorithm
1.1 is O((a2Δ + b)(n + Δ)dz((n + Δ)d)Δ), where a is the maximum length of
the strings in X which is O(2n), b the maximum length of |u| + |v| for any
pair (u, v) ∈ D which is O(2n), z = maxq̂∈Q̂ |Dq̂| which is O(n), and d =

(n+Δ+ |Σint|).

For the sake of illustration, we will give a conformance test for the example in
Figure 1 for the case with no extra states. That is, let the specification S be the
MVPA of Figure 1. Note that it is a minimal MVPA (we will exhibit a complete
set of distinguishing tests). We give a conformance test which distinguishes ev-
ery MVPA with at most 5 states which is not equivalent to S. First let us fix
access strings for every state of S. Let xq0 = ε, xq = (m, p)br, xq1 = (m, p),
xq2 = (m, p)a and xq3 = (m, p)b. Here ys is an access string for state s, that
is, (m0, p0)ys reaches state s. Next let us define a complete set of distinguishing
tests. ((m0, p0), ε) is a distinguishing pair for {q0, q}. ((m0, p0), ar) is a distin-
guishing pair for {q1, q2} and {q1, q3}, and ((m0, p0), r) is a distinguishing pair
for {q2, q3}. Since Δ = 0, Γ is a singleton set {γ} and the corresponding set
Yγ = {xq0 , xq, xq1 , xq2 , xq3}. The test T is simply TYγ which is the union of the
following sets: (The substrings in bold font correspond to the part of the string
which comes from the set Y .)

– T0 = {(m0, p0), (m0, p0)(m,p)br, (m0, p0)(m,p),
(m0, p0)(m,p)a, (m0, p0)(m,p)b}.

– T1 = {(m0, p0), (m0, p0)(m,p)br, (m0, p0)(m,p)ar,
(m0, p0)(m,p)aar, (m0, p0)(m,p)bar, (m0, p0)(m,p)ar,
(m0, p0)(m,p)br}.

– T2 = {(m0, p0)a, (m0, p0)b, (m0, p0)(m,p)bra,
(m0, p0)(m,p)brb, (m0, p0)(m,p)aar,
(m0, p0)(m,p)ar, (m0, p0)(m,p)bar, (m0, p0)(m,p)br,
(m0, p0)(m,p)aaar, (m0, p0)(m,p)aar,

112 P. Prabhakar and M. Viswanathan

(m0, p0)(m,p)abar, (m0, p0)(m,p)baar,
(m0, p0)(m,p)bar, (m0, p0)(m,p)bbar,
(m0, p0)(m,p)bbr}.

– T3 has more than 25 strings, hence in interest of space, we will explain how
some of the elements of T3 are constructed. Choose any two strings from Y ,
say xq1 and xq2 . The state reached on xq1xq2r = (m, p)(m, p)ar is q3. Add
the strings uxq1xq2rv for every (u, v) which distinguishes q3 from the other
states in the module m, namely, T3 contains (m0, p0)(m,p)(m,p)arar and
(m0, p0)(m,p)(m,p)arr.

4 (R,Δ)-Conformance Testing

In this section, we consider a relaxed version of the conformance testing problem
in which a test is required to distinguish only those implementations which
are at a certain distance from the specification. We define the distance of an
implementation from a specification to be the number of transitions that need to
be changed in the implementation so as to make it equivalent to the specification.
The formal definition is given below:

Definition 4. A MVPA I is at distance R from S if the smallest set D ⊆
Q′× (Σcall ∪Σint ∪Q′) such that there exists a MVPA J = ({Q′′

m, {q′′pm}p∈Pm ,
δ′′m}m∈M , F ′′) over Sig satisfying the following conditions has size R.

– For each m, Q′′
m = Q′

m.
– F ′′ = F ′.
– δ′′ and δ′ differ only on the set D.

Given a specification MVPA S of size n, an (R,Δ)-conformance test is a sample
T of well-matched words which distinguishes I from S, for every I of size at
most n + Δ which is at distance at least R from S. The test may or may not
distinguish implementations whose distance from S is less than R. An (R,Δ)-
conformance testing algorithm is an algorithm that takes S, R and Δ as input
and outputs an (R,Δ)-conformance test for S. Note that a (1, Δ)-conformance
test is the same as a Δ-conformance test.

Next we present a randomized algorithm that outputs an (R,Δ)-test with
high probability. We first present a randomized algorithm which distinguishes
a particular “black box” implementation I from a specification S. We use the
notation i ← Rand(I) to denote that i is chosen uniformly at random from the
set I.

The randomized algorithm is based on the intuition that if R is large, then
there is a large number of equations, that is, a large subset of Γ , such that
the sample corresponding to the access strings generated by these equations
distinguishes a particular I from S. Hence if we choose a sample randomly
from Γ , then we catch a buggy implementation with some positive probability.
In order to obtain a constant probability, the above step is repeated a certain
number of times to boost the probability. The algorithm is given in Algorithm
1.2.

Conformance Testing of Boolean Programs with Multiple Faults 113

For analyzing the algorithm, we need the following lemma relating the distance
R between S and I to the number of transitions out of a safe set of states. Let
E[Q′′] denote the set of edges going out of Q′′, that is, an edge (q, a) is in E[Q′′]
if q ∈ Q′′, a ∈ Σint ∪Q′′ and δ(q, a) �∈ Q′′.

Lemma 4. Let I be at distance at least R from S. Let Y ⊇ X be a set of access
strings for I which is safe. Let Q′′ be the states of I accessed by Y . Then the
size of the set E[Q′′] is at least R.

Note that when L(I) = L(S), no test can distinguish them. So it remains to
analyse the probability that the sample output by the algorithm distinguishes
I from S, under the assumption that I is at distance at least R from S. Let
d = n+Δ+ |Σint|.

Lemma 5. Let I be at distance greater than or equal to R > 0 from S. Let
uxv ∈ L(I) iff uxv ∈ L(S), for every x ∈ X and (u, v) ∈ DstateS(x). Probability
that for a γ chosen uniformly at random from Γ , Yγ is an unsafe set, is at least
(R
(n+Δ)d)

Δ.

Let P = (R
(n+Δ)d)

Δ, where d = (n + Δ + |Σint|). The next theorem gives the

probability that Algorithm 1.2 distinguishes I from S.

Theorem 3. Let I be at distance at least R from S. For any ε > 0, the output
of Algorithm 1.2 distinguishes I from S with probability at least 1 − ε after
k = 1

P log(1ε) iterations. The length of the sample output by the algorithm is

O((a2Δ+ b)(n+Δ)dz((n+Δ)d
R)Δ), where a is the maximum length of the strings

in X which is O(2n), b the maximum length of |u|+ |v| for any pair (u, v) ∈ D
which is O(2n), z = maxq̂∈Q̂ |Dq̂| which is O(n).

Note that given any I, the output of the algorithm distinguishes I from S
with high probability. However, it does not guarantee that the output of the
algorithm distinguishes every I from S with high probability. Next we modify
the algorithm by increasing the number of iterations k so that the output of
the algorithm distinguishes every I from S or in other words is a conformance
test. Note that in the case of a deterministic conformance testing algorithm the
two are the same, that is, if the output of the algorithm distinguishes I from S
where I is unknown, then it is a conformance test, i.e., it distinguishes every I
from S.

Let α be the number of faulty implementations, that is, I with at most n+Δ
states at distance at least R from S. α is upper bounded by (n+Δ)(n+Δ)d, total
number of implementation machines with at most n+Δ states. Set k = 1

P log(αε).
Then the output of the algorithm distinguishes a particular I with probability
1− ε/α. So the probability that the output of the algorithm distinguishes every
I is at least 1− ε.

Theorem 4. For any ε > 0, the output of Algorithm 1.2 is an (R,Δ)-conformance
test with probability at least 1− ε, when k = 1

P log(αε). The length of the (R,Δ)-
conformance test output by the algorithm is O((a2Δ + b)(n + Δ)2d2z log(n +

114 P. Prabhakar and M. Viswanathan

Δ)((n+Δ)d
R)Δ), where a is the maximum length of the strings in X which is

O(2n), b the maximum length of |u|+ |v| for any pair (u, v) ∈ D which is O(2n),
z = maxq̂∈Q̂ |Dq̂| which is O(n).

5 Lower Bounds for Conformance Testing

We will first define the specification and implementation machines involved in
the proof of the lower bound that we wish to establish, and prove some properties
about these automata.

5.1 Specification MVPA

Given an n > 1 and Σint containing a, we define an (n + 4) state MVPA
S(n,Σint) over the signature 〈M, {Pm}m∈M ,m0, Σ̂〉, where M = {m0,m1},
Pm0 = {p0}, Pm1 = {p1}, and Σ̂ = {(m0, p0), (m1, p1), r} ∪ Σint. Figure 2 gives
a diagram of S(n,Σint), all transitions not shown are assumed to go to a fail
state in the corresponding module. When n and Σint is clear from the context,
we refer to S(n,Σint) as just S.

f

qn−1

a

a

a

a

q2

q1

m1

(m0, p0)

s

s

(m
1 , p

1)

q1

q2

q3

qn−1

qn

Fig. 2. Specification MVPA S(n,Σint)

f

qn

a
qn−1

a

a

a

qt+1

X1,1

p1,1 p1,2 p1,l−1 p1,l

X1,lX1,2

q2

q1

s

qn−1

qn−1

pr,l−1 pr,lpr,2pr,1qt+r

(m0, p0)

s

(m
1 , p

1)

q1

Xr,1 Xr,2 Xr,l

Fig. 3. Implementation MVPA I(X)

S = ({Qm, {qpm}p∈Pm , δm}m∈M , F) whereQm0 = {s, f, d} andQm1 = {q1, · · · ,
qn, d

′}. From the start state s, there is a transition on call (m1, p1) to q1 in the

Conformance Testing of Boolean Programs with Multiple Faults 115

module m1, and a return transition from qn in module m1 to the only accepting
state f in module m0. All the other transition on s and f go to the state d (for
dead state). Inside module m1, there is a return transition (qi, qi, qi+1) ∈ δret for
every 1 ≤ i < n. Note that all call transitions on (m1, p1) go to q1. The rest of
the transitions in module m1 go to the dead state d′. From now on we will refer
to (m1, p1) as c.

Proposition 2. L(S(n,Σint)) = {(m0, p0)cwiar | 1 ≤ i < n} ∪ {(m0, p0)cwnr},
where wi is defined inductively as:

– w1 = ε, and
– wi = wi−1cwi−1r, for i > 1.

5.2 Lower Bound for the (R,Δ)-Conformance Test

In this section, we define the implementation machines and prove the lower
bound on the length of the conformance test.

We define a class of implementation machines with n+4+Δ states which are
at distance R from S(n,Σint). Hence these machines take as parameters n, Δ,
R and Σint. Let us fix these parameters for this section. Let us also assume that
Δ = lR, where l ∈ N. We define a template for the implementation machine,
which when initialized by appropriate values gives us a class of MVPAs. Let
X = {Xi,j}i∈[R],j∈[l] be a set of variables, which are labels of the transitions in
the implementation machines we define.

We now define I(X). I(X) has the same signature as S and has all the states
of S. In addition, in the module m1, it has Δ extra states. All the transitions
consisting of states common to S and I are the same except for those going to
the dead states. For each state qt+i where t = n− (R+1) and i ∈ [R], there is a
sequence of l states pi,1, pi,2, · · · , pi,l such that there is a transition from qt+i to
pi,1 labelled Xi,1 and for each j ∈ [l− 1], there is a transition from pi,j to pi,j+1

on Xi,j+1. Finally there is a transition from pi,l to qn on qn−1. This automaton
is shown in Figure 3.

A valuation V for X assigns to every Xi,j in X , a symbol from the alphabet
of the automaton. A valuation V is valid if it satisfies the following constraints:

– If j is even, then V (Xi,j) = pi,j−1 for every i.
– If j is odd, then there is some a ∈ Σint such that for every i, V (Xi,j) = a,

or there is some k ≥ 1 such that n− kR ∈ {$n−1
2 %, · · · , n− 1} such that for

every i, V (Xi,j) = n− kR+ (i− 1), or there is an ĵ < j such that for every
i, V (Xi,j) = pi,ĵ . Also Xi,1 �∈ {a, qt+i}.

By I(V) we mean the implementation machine with the variables in X replaced
by the corresponding symbol from the alphabet. We will assume from now on
that V is valid.

Next we will prove some properties about I.

Proposition 3. I(V) is at distance at least R from S.

116 P. Prabhakar and M. Viswanathan

Language of I(V). Language of I(V) consists of the words from the language of
S and R new words u1, · · · , uR defined as follows. Let w1, · · · , wn be the unique
well-matched words which reach qi from q1 given in Proposition 2. Then for
every i ∈ [R] and j ∈ [l], we define a word ui,j inductively as follows.

– Case j = 1:

• If V (Xi,j) ∈ Σint, then ui,j = wiV (Xi,j).

• If V (Xi,j) = qk, then ui,j = wkcwir.

– Case j > 1:

• If V (Xi,j) ∈ Σint, then ui,j = ui,j−1V (Xi,j).

• If V (Xi,j) = qk, then ui,j = wkcui,j−1r.

• If V (Xi,j) = pi,ĵ for some ĵ < j, then ui,j = ui,ĵcui,j−1r.

Now we set ui to be (m0, p0)cwn−1cui,lrr.

Proposition 4. L(I(V)) is a union of L(S) and {u1, · · · , uR}.

Proposition 5. If V1 and V2 are two different valid valuations, then L(I(V1))∩
L(I(V2)) = L(S). Also no string in L(I(V1))\L(S) is a prefix of a string in
L(I(V2))\L(S).

Proposition 6. |ui| ≥ 2n−R+ Δ
2R−5.

Proposition 7. The number of distinct valid valuations is at least

� Δ
2R �−1∏
i=1

($n− 1

2R
%+ |Σint|+ i)

Using the above facts, we obtain the following theorem:

Theorem 5. For every n, Δ, Σint and R < n, there is a specification MVPA S
of size n such that any (R,Δ)-conformance test has at least

∏� Δ
2R �−1

i=1 ($n−5
2R % +

|Σint| + i) strings each of length at least 2n−R+ Δ
2R−9. Hence the length of the

(R,Δ)-conformance test is at least

2n−R+ Δ
2R−9

� Δ
2R �−1∏
i=1

($n− 5

2R
%+ |Σint|+ i).

Discussion. The lower bound as given by Theorem 5 on the size of the (R,Δ)-

conformance test is Ω((2n+
Δ
R−R)(n

R + |Σint| + Δ
R)

Δ
R) and the upper bound as

given by Theorem 4 is O((2n+Δ)(n+Δ+|Σint|
R)Δ). Note that when R is O(1), the

upper and the lower bounds match.

Conformance Testing of Boolean Programs with Multiple Faults 117

6 Conclusions

We investigated the problem of constructing (R,Δ) conformance tests for modu-
lar VPAs. We presented a randomized algorithm for constructing such tests, that
outputs a test suite which is an (R,Δ) conformance test with high probability.
We also presented lower bound proofs that demonstrate that our algorithm is
close to optimal. One interesting open problem is to tighten the gap between the
lower bound and the upper bound. Another line research would be to explore
the connections between (R,Δ) tests and learning [3] and model checking [12,5].

References

1. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of Recursive State Machines. ACM Transactions on Programming Lan-
guages and Systems 27(4), 786–818 (2005)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
ACM Symposium on Theory of Computation, pp. 202–211 (2004)

3. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
Correspondence Between Conformance Testing and Regular Inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

4. Friedman, A., Menon, P.: Fault Detection in Digital Circuits. Prentice Hall (1971)
5. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Logic Journal of
the IGPL 14(5), 729–744 (2006)

6. Kohavi, Z.: Switching and Finite Automata Theory. McGraw Hill (1978)
7. Kumar, V., Madhusudan, P., Viswanathan, M.: Minimization, Learning, and Con-
formance Testing of Boolean Programs. In: Baier, C., Hermanns, H. (eds.) CON-
CUR 2006. LNCS, vol. 4137, pp. 203–217. Springer, Heidelberg (2006)

8. Kumar, V., Viswanathan, M.: Conformance testing in the presence of multiple
faults. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pp. 1136–1145 (2005)

9. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines;
A survey. Proceedings of the IEEE 84, 1090–1126 (1996)

10. Linn, R., Üyar, M. (eds.): Conformance Testing methodologies and architechtures
for OSI protocols. IEEE Computer Society Press (1995)

11. Moore, E.F.: Gedanken-experiments on sequential machines. Automata Studies,
Annals of Mathematics Studies 34, 129–153 (1956)

12. Peled, D., Vardi, M., Yannakakis, M.: Black Box Checking. Journal of Automata,
Languages, and Combinatorics 7(2), 225–246 (2002)

13. Tretmans, J.: A formal approach to conformance testing. In: Protocol Test Systems.
IFIP Transactions, vol. C-19, pp. 257–276 (1994)

14. Vasilevskii, M.P.: Fault diagnosis of automata. Kibernetika 4, 98–108 (1973)

Knowledge-Based Distributed Conflict

Resolution for Multiparty Interactions
and Priorities�

Saddek Bensalem, Marius Bozga, Jean Quilbeuf, and Joseph Sifakis

UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France

Abstract. Distributed decentralized implementation of systems of com-
municating processes raises non-trivial problems. Correct execution of
multiparty interactions, subject to priority rules, requires sophisticated
mechanisms for runtime conflict detection and resolution. We propose a
method for detection of false conflicts which combines partial observation
of the system’s state and apriori knowledge extracted from invariants. We
propose heuristics for determining optimal sets of observations leading
to implementations with particular guarantees. We provide preliminary
experimental results on an implementation of the method in the BIP
framework.

Keywords: Distributed System, Priorities, Knowledge, Partial Obser-
vation, Multiparty Interactions.

1 Introduction

Systems of communicating processes are a very common model for concurrent
systems. Processes have their own data space and can interact by executing inter-
actions, which are atomic synchronization operations involving a simultaneous
state change of the set of the processes involved. The meaning of interactions can
be specified compositionally by using operational semantics. Specifications are
given in the form of rules. The premises include facts about the capabilities of
individual processes to execute an action. The conclusion describes interactions,
that is, transitions of the system obtained as the composition of actions executed
by individual processes. In addition to interactions, operational semantics rules
can be used to express priorities between interactions. These are parameterized
by a priority order between interactions. They express the fact that some in-
teraction may be executed only if interactions of higher priority are disabled.
Priorities are instrumental for specifying scheduling policies [1].

The distributed implementation of systems of communicating processes raises
several non trivial problems. It should be consistent with the operational se-
mantics of multiparty interaction which assumes knowledge of the global system

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
no. 248776 (PRO3D) and no 257414 (ASCENS) and from ARTEMIS JU grant agree-
ment ARTEMIS-2009-1-100230 (SMECY).

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 118–134, 2012.
c© IFIP International Federation for Information Processing 2012

Knowledge-Based Distributed Conflict Resolution 119

states. Furthermore, multiparty interactions should be replaced in distributed
implementations by protocols based on asynchronous message passing.

The BIP component framework [2] allows the construction of composite
components from a set of atomic components by using layered parameterized
composition of two types of operators: 1) operators parameterized by a set of
interactions which are sets of ports of the atomic components that must syn-
chronize; 2) operators parameterized by priorities between interactions. We pro-
posed a distributed implementation method involving a set of transformations
from the initial global state model with multiparty interactions to a distributed
model that can be directly implemented [3,4]. This method has been extended
to handle priorities [5]. The target model consists of components representing
processes and interactions representing asynchronous message passing. Correct
coordination is achieved through additional components implementing conflict
resolution protocols that resolve two types of potential conflicts:

1. The first type of conflicts is symmetric conflicts between interactions. Such
conflicts arise when two interactions a and b involve a common component.
Since execution of interactions is atomic, execution of interaction a requires
ensuring that b will not take place concurrently. Thus execution of a requires
permission from some conflict resolution protocol.

2. The second type of conflicts is asymmetric conflicts between interactions
related by priorities. Execution of interaction a dominated by interaction
b is allowed only if some conflict resolution protocol ensures that b is not
enabled.

Conflict resolution protocols are solicited for all potential statically computed
conflicts according to a structural analysis of a BIP composite component. This
may lead to huge implementation overhead for systems with large numbers of
potentially conflicting interactions. Is it possible to reduce this overhead based
on a priori knowledge of the system’s dynamics and decide that some potential
conflicts are not real conflicts?

We denote by a#b the fact that there is a potential conflict between inter-
actions a and b. A false conflict state for interaction a is a state where a is
enabled and all other interactions b such that a#b are disabled. In such a state,
interaction a can be executed independently without arbitration by the con-
flict resolution protocol. States where a is in a false conflict are characterized
by the predicate FCa = ENa ∧

∧
a#b ¬ENb where ENx is the state predicate

characterizing all the states from which interaction x can be executed.
The aim of the paper is to study whether partial knowledge of the system’s

state is sufficient for deciding when a potential conflict is a false conflict. In
that case, execution of interactions can directly take place, without arbitration
and thus, reduce communication with the conflict resolution protocol for a more
efficient implementation. The concept of knowledge [6] has been extensively stud-
ied for distributed systems in particular with respect to their ability to execute
actions [7]. Distributed Knowledge [8] allows a set of components to “know”
that an interaction is in a false conflict. We assume that each interaction a ob-
serves the states of a set of components La. The knowledge predicate denoted

120 S. Bensalem et al.

KLaFCa characterizes the states where observing only components in La is suf-
ficient to ensure that FCa holds. In other words, it characterizes states where
the distributed knowledge of the set of components La allows detection of false
conflicts for a. We propose conditions for basic and complete implementation,
respectively. In a basic implementation, it is possible to detect for each state at
least one amongst the false conflicts of the global state model. In a complete
implementation all false conflicts of the global state model are detected.

An interesting problem is to minimize the number of observed components,
while achieving either basic or complete detection of false conflicts. To this end,
we propose heuristics based on simulated annealing strategy [9].

A predicate ϕ is known to be true for a partial state observed on compo-
nents L, that is KLϕ, if it holds in all reachable global states extending this
partial state. However, computing the reachable states of a model is not always
tractable. Therefore, we use invariants that over-approximate the set of reach-
able states. Depending on the invariant used, we obtain different results for the
minimization heuristics and different performance for the implementation.

The paper is structured as follows: Section 2 provides a formal definition of
the BIP global state semantics. In Section 3, we propose a definition of knowl-
edge in the BIP context and we use it to formalize false conflict detection, and
detection levels. We provide in Section 4, heuristics based on a simulated an-
nealing strategy to minimize the number of observed components while ensuring
a given detection level. In Section 5, we apply false conflict detection to imple-
mentation of priorities. We show results about both heuristics from Section 4
and an actual distributed implementation based on [3,4] that uses false conflicts
to implement priority resolution. Finally, we present related work in Section 6,
concluding remarks and future work in Section 7.

2 The BIP Framework

In this section, we present BIP[2], a component framework for building systems
from a set of atomic components by using two types of composition operators:
Interaction and Priority.

Atomic Components. An atomic component B is a labelled transition system
represented by a tuple (Q,P, T) where Q is a set of control locations or states,
P is a set of communication ports and T ⊆ Q× P ×Q is a set of transitions.

Interactions. In order to compose a set of n atomic components {Bi = (Qi, Pi,
Ti)}ni=1, we assume that their respective sets of control locations and ports are
pairwise disjoint; i.e., for any two i �= j in {1..n}, we require that Qi ∩ Qj = ∅
and Pi ∩ Pj = ∅. We define the global set P

def
=

⋃n
i=1 Pi of ports. An inter-

action a is a set of ports such that a contains at most one port from each
atomic component. We denote a = {pi}i∈I with I ⊆ {1..n} and pi ∈ Pi. If a
is an interaction, we denote by support(a) the set of atomic components that
participate in a. This notation is extended to sets of interactions γ, that is,

support(γ)
def
=
⋃

a∈γ support(a).

Knowledge-Based Distributed Conflict Resolution 121

Priorities. Given a set γ of interactions, we define a priority as a strict partial
order π ⊆ γ×γ. We write aπb for (a, b) ∈ π, to express the fact that a has lower
priority than b.

Composite Components. A composite component πγ(B1, . . . , Bn) (or simply
component) is defined by a set of atomic components {Bi = (Qi, Pi, Ti)}ni=1

composed by a set of interactions γ and a priority π ⊆ γ × γ. If π is the empty
relation, then we may omit π and simply write γ(B1, · · · , Bn). A global state q
of πγ(B1, · · · , Bn) is defined by a tuple of control locations q = (q1, · · · , qn). The
behavior of πγ(B1, · · · , Bn) is a labelled transition system (Q, γ,→πγ), where
Q =

⊗n
i=1 Qi and →γ ,→πγ are the least set of transitions satisfying the rules:

a = {pi}i∈I ∈ γ
∀i ∈ I. (qi, pi, q

′
i) ∈ Ti

∀i �∈ I. qi = q′i
(q1, . . . , qn)

a→γ (q′1, . . . , q
′
n)

[inter]

q
a→γ q′

∀a′ ∈ γ. aπa′ =⇒ q
a′
�γ

q
a→πγ q′

[prio]

Intuitively, transitions →γ defined by rule [inter] express the behaviour of the
component without considering priorities. A component can execute an interac-
tion a ∈ γ iff for each port pi ∈ a, the corresponding atomic component Bi can
execute a transition labelled by pi. If this happens, a is said to be enabled. Ex-
ecution of a modifies atomically the state of all interacting atomic components
whereas all others stay unchanged. The behavior of the component is defined
by transitions →πγ defined by rule [prio]. This rule restricts execution to in-
teractions which are maximal with respect to the priority order. An enabled
interaction a can execute only if no other one a′ with higher priority is enabled.

M S

off up

onup

onMoff M

off
upg

rb

on

onMoff M

upg

rb
off M

onM

rb
upg

lst

dwn

onS

off S

srv

ack
req

off S
onS

ack

req

rb π req
rb π ack

π

γ = {rb,
upg, on,
off , req,
ack}

γ

off

on

Fig. 1. An example of BIP component. Initial state is (off, dwn).

Example 1. A BIP component is depicted in Figure 1 using a graphical notation.
It consists of two atomic components named M and S. Component S is a server,
that may receive requests (req) and acknowledge them (ack). Component M is
a manager that may perform upgrades (upg) and needs to reboot (rb) the server
for the upgrade to be done. Interactions are represented using lines connecting
the interacting ports. There are 4 unary interactions and 2 binary interactions.
The component goes up through the interaction on and down through off , which
are both binary interactions. Priorities rb π req and rb π ack are used to prevent
a reboot whenever a request or an acknowledgement are possible.

122 S. Bensalem et al.

Invariants and Reachable States. Let B = πγ(B1, · · · , Bn) be a component.
We say that the state q is reachable from a fixed, initial state q0 if there exist a
sequence of interactions a1, · · · , ak ∈ γ and states q1, · · · , qk such that q0

a1→πγ

q1
a2→πγ · · · ak→πγ qk = q. We denote by R(B) the set of reachable states of B.
An invariant of B is a state predicate I(q) satisfied by all its reachable states,

that is the characteristic set of I contains the set of the reachable states. For a
control location qi ∈ Qi, we define the predicate at(qi) which is true (or equal to
1) when the atomic component Bi is at control location qi. We are interested in
two types of invariants that can be generated automatically [10], respectively:

– A boolean invariant is a conjunction of boolean constraints of the form∨
j∈J at(qj). For the example of Figure 1, at(onup) ∨ at(on) ∨ at(dwn) is

a boolean invariant. It characterizes a set of control locations such that at
each global state, at least one location of the set is active. Such constraints
are obtained using methods described in [10].

– A linear invariant is a conjunction of linear constraints of the form∑
j∈J kjat(qj) = k0, where each kj and k0 are integer constants. For the

example of Figure 1, at(onup) + at(on) + at(dwn) = 1 is a linear invariant.
Linear invariants are obtained using algebraic methods as described in [11].

The two above categories of invariants are particularly useful for several reasons.
First, they provide good approximations for the enabling/disabling conditions
of interactions. This has been empirically demonstrated by the successful ap-
plication of such invariants for checking deadlock-freedom of component-based
systems in BIP [10,12]. Second, the methods for computing these invariants are
tractable and scale for large systems. Their computation is based on the (inter-
action) structure of the system and can be done incrementally [13]. In particular,
it does not involve fixpoints and avoids state space exploration.

3 Knowledge-Based Detection of False Conflicts

We propose a knowledge-based method for detecting false conflicts, that is states
where an interaction is enabled and all conflicting interactions are disabled.
The enabled interaction can be safely executed without any arbitration. In this
section, we consider a component B = πγ(B1, . . . , Bn) and an invariant I of B.

3.1 Knowledge and Indistinguishability

The knowledge of a set of atomic components L ⊆ {B1, · · · , Bn} is the set of
the facts that are true by observing the states of these components. The subset
L induces an equivalence relation on the global states satisfying I.

Definition 1 (Indistinguishability Equivalence for L). Given L, we define
the indistinguishability equivalence ∼L on global states satisfying I as q ∼L q′

iff ∀Bj ∈ L. qj = q′j.

Knowledge-Based Distributed Conflict Resolution 123

L

P
L

I

L

KL¬P
L

I

L

KLP
L

I

Fig. 2. Knowledge-based approximation of P for observation L, using invariant I

Intuitively, two states are indistinguishable for L if their restrictions to the
states of atomic components of L are identical. The equivalence classes of this
relation correspond to sets of global states that can be distinguished by knowing
only local states of atomic components satisfying L. Given an invariant I and
an arbitrary state predicate P =⇒ I, we define the predicate “L knows P” as
KLP (q) = I(q) ∧ (∀q′ I(q′) ∧ q′ ∼L q =⇒ P (q′)).

Figure 2 illustrates KLP with respect to P and I. Each global state within
I is a point characterized by two coordinates: the projections of this state on
the states of L and the states of its complement L = {B1, . . . Bn} \ L. On the
left, the gray region represents the characteristic set of P . In the middle, the
gray region represents the characteristic set of “L knows P” that is the set of
the global states where observation of their projection on the state space of L
suffices to assert “P is true”. On the right, the gray region represents the set
of the states where “L knows not P” that is the set of the global states where
observation on L suffices to assert “P is false”.

3.2 Conflict-Free Semantics

For an interaction a, we denote by ENa the predicate that characterizes the set of

global states of I where a is enabled. Formally, if a = {pi}i∈I we define ENa
def
=∧

pi∈aEN i
pi

∧ I. By EN i
pi

we denoted the local enabling condition of the port

pi in atomic component Bi = (Qi, Pi, Ti) that is EN i
pi

def
=
∨

(qi,pi,−)∈Ti
at(qi).

As pointed out in the introduction, we denote by # a conflict relation between
interactions. False conflicts for a correspond to the states where the predicate
FCa = ENa ∧

∧
a#b ¬ENb holds, that is states where a is enabled and all inter-

actions conflicting with a are disabled. We consider executions of the component
where only non-conflicting interactions are allowed.

Definition 2 (Conflict-Free Semantics). Given a component B = πγ(B1,
. . . , Bn) and a conflict relation # , we define the conflict-free semantics of B
as a transition system (Q, γ,→FC), where →FC is the least set of transitions
satisfying:

a ∈ γ FCa(q) q
a→πγ q′

q
a→FC q′

124 S. Bensalem et al.

The conflict-free semantics →FC is clearly included in the original semantics
→πγ of the component. The interest of this semantics is that it captures the set
of executions that can be realized without any conflict resolution mechanism.
Note that if we consider the priority conflict relation (i.e. we take # = π), then

FCa(q) is true only when q
a→πγ and q

b
�πγ for all b with higher priority than

a. Thus in this particular case →FC=→πγ . The above semantic rule assumes
knowledge of the global state.

3.3 Observational Conflict-Free Semantics

We now propose to restrict the execution semantics presented above by using
only a partial observation of the global state. We allow for each interaction a
to “observe” a set of atomic components La including the atomic components
involved in a.

Definition 3 (Observation). Given an interaction a, an observation is a set
of atomic components La such that support(a) ⊆ La.

Knowledge defines a natural way to describe the false conflicts that can be
detected based on an observation. That is, KLaFCa characterizes the set of the
states where the observation La detects that a is in false conflict.

Proposition 1 (Monotoncity). The predicate KLaFCa is monotonic with re-
spect to La, i.e. L

′
a ⊆ La implies KL′

a
FCa =⇒ KLaFCa.

Proof. First, remark that if L′
a ⊆ La, then {q′|q′ ∼La q} ⊆ {q′|q′ ∼L′

a
q}.

Then, KL′
a
FCa(q) implies that ∀q′, q′ ∼L′

a
q, FCa(q

′) and by the above remark
∀q′, q′ ∼La q, FCa(q

′), that is, KLaFCa(q). &�
Notice that observing the whole system, that is for La = {B1, . . . Bn}, then it is
possible to detect all false conflicts, i.e. K{B1,...Bn}FCa = FCa.

We define a new semantics that allows only interactions detected to be in
a false conflict. In such a semantics, observation is used to decide whether a
conflict-free move is allowed or not.

Definition 4 (Observational Conflict-Free Semantics). Given a compo-
nent B = πγ(B1, · · · , Bn), a conflict relation #, and a set of observations
{La}a∈γ, we define observational conflict-free semantics of B as a transition
system (Q, γ,�), where � is the least set of transitions satisfying:

a ∈ γ KLaFCa(q) q
a→πγ q′

q
a� q′

Again, we clearly have� included in →πγ . However, depending on the observed
atomic components, this semantics may not completely implement →FC . We de-
fine two criteria characterizing different levels of false conflict detection, namely
basic and complete.

Knowledge-Based Distributed Conflict Resolution 125

Definition 5 (Detection Level). A set of observations {La}a∈γ is basic iff∨
a∈γ KLa FCa =

∨
a∈γ FCa. A set of observations is complete iff for each

interaction a ∈ γ: KLaFCa = FCa

Theorem 1 below, relates the detection levels and observational conflict-free se-
mantics. Baseness ensures that observational conflicts-free semantics does not
introduce deadlocks. Completeness ensures that observational conflict-free se-
mantics corresponds exactly to the conflict-free semantics. This is particularly
interesting for the case of priority conflict where the conflict-free semantics is
the same as the original semantics of the component.

Theorem 1. Let πγ(B1, · · · , Bn) be a component, # a conflict relation and
{La}a∈γ a set of observations. Then, �⊆→FC and:

1. If {La}a∈γ is basic, then q ∈ Q is a deadlock for � only if q is a deadlock
for →FC .

2. If {La}a∈γ is complete, then �=→FC .

Proof. Since KLaFCa =⇒ K{B1,··· ,Bn}FCa (proposition 1) we have �⊆→FC .
1. By contraposition, let q ∈ Q be a deadlock-free state for →FC , i.e. such

that ∃a ∈ γ, FCa(q). Baseness ensures that
∨

a∈γ KLaFCa holds and thus ∃b ∈ γ

such that KLb
FCb(q). Thus q

b� and q is a deadlock-free state for �.

2. Assume that q
a→FC q′. Then FCa(q) and completeness ensuresKLaFCa(q).

Thus q
a� q′. &�

These results characterize to what extent conflict-free semantics, can be captured
through partial observation. They can be used in a distributed implementation
where the process responsible for executing interaction a can only see the states
of atomic components in La. However, adding observation increases communica-
tion between processes, which may slow down execution. Therefore, we propose
in the next section heuristics to minimize the number of observed atomic com-
ponents, yet ensuring the required detection level.

4 Heuristics for Minimizing Observation

Given a BIP component and a conflict relation, we want to minimize the number
of observed atomic components while ensuring either baseness or completeness.
For practical reasons, we consider that a single process may coordinate the exe-
cution of several interactions. We call such a process an engine. All interactions
managed by the same engine share a common set of observed atomic compo-
nents. We consider that the mapping of interactions γ into engines is defined by
an arbitrary, fixed partition of γ as

⋃
1≤j≤m γj . An engine Ej is used to execute

interactions in γj while observing a set of atomic components Lj . With these
notations, minimizing observation means minimizing the sum

∑m
j=1 |Lj |.

We propose a solution to the minimizing observation problem based on simu-
lated annealing [9]. A pseudo-code for the heuristic is shown in Algorithm 1. This

126 S. Bensalem et al.

Algorithm 1. Pseudo-code of Simulated Annealing
Input: An initial solution init, a cost function, an alter function.
Output: A solution with a minimized cost.
1: sol:=init
2: T :=Tmax

3: while T > Tmin do
4: sol′ := alter(sol)
5: Δ := cost(sol′) - cost(sol)

6: if Δ < 0 or random() < e
−Δ
T then

7: sol:=sol′

8: end if
9: T := 0.99 × T
10: end while
11: return sol

heuristic allows on to search for optimal solutions to arbitrary cost optimization
problems. The search through the solution space is controlled by a temperature
parameter T . At every iteration, temperature decreases slowly (line 9) and the
current solution moves into a new, nearby solution still ensuring either baseness
or completeness (line 4). If the new solution is better (i.e. observes fewer com-
ponents), then it becomes the current solution. Otherwise, it may be accepted
with a probability that decreases when (1) the temperature decreases or (2) the
extra cost of the new solution increases (line 6). The idea is to temporarily al-
low a bad solution whose neighbors may be better than the current one. By the
end of the process, the temperature is low, which prevents bad solutions from
being accepted. Now, we provide initial solutions init as well as alter and cost

functions that are used to ensure either completeness or baseness.

Ensuring Completeness. According to Definition 5, checking for complete-
ness is performed interaction by interaction, Therefore, minimizing observation
can be carried out independently for each engine. Given the set of interactions
γj we are seeking for a minimal set of atomic components Lj , whose observation
ensures complete detection of false conflicts for all interactions in γj .

Algorithm 2. Function alter for ensuring complete detection of false conflicts
Input: A BIP component B, a subset of interactions γj , a conflict relation # and a solution Lj.
Output: A solution L′

j that is a neighbor of Lj .

1: L′
j :=Lj

2: choose Bi in L′
j \ support(γj)

3: L′
j :=L′

j \{Bi} //perturbation

4: while not complete(L′
j , γj) do

5: choose Bi in {B1, . . . , Bn} \ L′
j

6: L′
j:=L′

j ∪ {Bi} //completion
7: end while
8: choose B′

i in L′
j \ support(γj)

9: while complete(L′
j \ {B′

i}, γj) do

10: L′
j :=L′

j \ {B′
i} //reduction

11: choose B′
i in L′

j \ support(γj)
12: end while
13: return L′

j

Knowledge-Based Distributed Conflict Resolution 127

The initial solution is obtained by taking the set of atomic components invol-
ved in interactions conflicting with those of γj , that is initj =

⋃
a∈γj

(support(a)

∪
⋃

a#b support(b)). At each iteration of the simulated annealing, a new solution
is computed using the alter function shown in Algorithm 2. First, one atomic
component is removed from the solution (perturbation), possibly breaking com-
pleteness. Then, new atomic components are added randomly until the solution
ensures complete detection again (completion). Finally, atomic components are
removed randomly (reduction).

After completion and during reduction steps, completeness is ensured by
checking the condition complete(Lj , γj) ≡

∧
a∈γj

(
FCa = KLjFCa

)
. On ter-

mination, this ensures that the solution returned by the heuristic is complete.
The cost of the solution is obtained by counting the number of atomic com-

ponents additionally observed by each engine. That is, for an engine Ej the cost
of solution Lj is cost(Lj) = |Lj \ support(γj)|.
Ensuring Baseness. Baseness is achieved if for every state which contains false
conflicts, at least one engine detects one of them. Baseness is a global property
that can be ensured by cooperation between engines. On one hand, allowing an
engine Ej to observe additional atomic components may extend the set of false
conflicts detected by Ej . On the other hand, reducing observation of Ej , while
restricting the set of false conflicts detected, might not necessarily break the
baseness. Therefore, the solution L1, · · · , Lm to the minimizing observation en-
suring baseness cannot be built independently for each engine. Given a partition
γ1, · · · , γm of the interactions, we build a tuple of sets of atomic components
L = (L1, · · · , Lm) ensuring baseness.

Algorithm 3. Function alter for ensuring basic detection of false conflicts
Input: A BIP component B, a partition of interactions γ =

⋃
1≤j≤m γj , a conflict relation # and

a solution L = (L1, . . . , Lm),
Output: A solution L′ that is a neighbor of L.
1: L′:=L
2: choose k in �1,m� and Bi in L′

k \ support(γk)
3: L′

k:=L′
k \{Bi} //perturbation

4: while not basic(L′, {γ1, . . . , γm}) do
5: choose k in �1,m� and Bi in {B1, . . . , Bn} \ L′

k
6: L′

k:=L′
k ∪ {Bi} //completion

7: end while
8: choose k in �1,m� and B′

i in L′
k \ support(γk)

9: while basic((L′
1, . . . , L

′
k \ {B′

i}, . . . , L′
m), {γ1, . . . , γm}) do

10: L′
k:=L′

k \ {B′
i} //reduction

11: choose k in �1,m� and B′
i in L′

k \ support(γk)
12: end while
13: return L′

The initial solution assumes that each engine Ej observes all atomic com-
ponents involved in interactions conflicting with those of γj , that is init =
(init1, . . . , initm). As for completeness, the alter function for baseness pre-
sented in Algorithm 3 computes a new solution based on the same three steps
(perturbation,completion,reduction) being performed on a tuple of sets of ob-
served atomic components, instead of a single set.

128 S. Bensalem et al.

After completion and during reduction steps, baseness is ensured by the condi-

tion basic (L, {γ1, . . . , γm}) ≡
(∨

a∈γ FCa =
∨m

j=1

∨
a∈γj

KLjFCa

)
. This guar-

antees that the returned solution is basic.
Here the cost of the solution is the sum of the number of additional atomic

components observed by each engine. Thus, we define the cost function as
cost(L) =

∑m
j=1 |Lj \ support(γj)|.

5 Implementation and Experiments

In this section, we provide experiments related to detection of false priority
conflicts. We apply our simulated annealing heuristics to compute minimal basic
or complete solutions for two examples. Then we provide performance gains for
the corresponding distributed implementations.

5.1 Dining Philosophers

We consider a variation of the dining philosophers problem, denoted by PhiloN
where N is the number of philosophers. A fragment of this composite component
is presented in Figure 3. In this component, an “eat” interaction eat i involves
a philosopher and the two adjacent forks. After eating, philosopher Pi cleans
the forks one by one (cleanleft i then cleanright i). We consider that each eat i
interaction has higher priority than any cleanleft j or cleanright j interaction. We
evaluate two different partitions. In Partition 1, there is one engine Ei for every
eati interaction and one engine Ci for every pair cleanright i−1, cleanleft i. Only
the latter deals with low priority interactions and therefore may need to observe
additional atomic components. Partition 2 is coarser. One engine Ei manages
all interactions involving philosopher P2i or P2i+1, for 0 ≤ i <)N/2*. Thus, for
N philosophers, there are)N/2* engines.

Computing complete solutions is done independently for each engine. Table 1
shows results of engine C0 for Partition 1 and engine E0 for Partition 2. The total

thinking

eating
eat

cleaning
clnl

clnr

clnl clnr

eatPi

free

used

cln eat

eat

cln

Fi

free

used

cln eat

eat

cln

Fi+1

eatieati−1

Ei

eati+1

cleanlefti cleanrighticleanrighti−1 cleanlefti+1

Ci Ci+1

Fig. 3. Fragment of the dining philosopher component. Braces illustrates Partition 1.

Knowledge-Based Distributed Conflict Resolution 129

Table 1. Minimal observation for completeness

Eng. Comp./Part. Size true BI LI optimal

C0

Philo3 / 1 6 3 3 1 1
Philo4 / 1 8 5 5 2 2
Philo5 / 1 10 7 7 3 3
Philo10 / 1 20 17 17 8 8
Philo20 / 1 40 37 37 18 18
Philo100 / 1 200 197 197 108 98

E0

Philo3 / 2 6 1 1 0 0
Philo4 / 2 8 3 3 1 1
Philo5 / 2 10 5 5 2 2
Philo10 / 2 20 15 15 7 7
Philo20 / 2 40 35 35 18 17
Philo100 / 2 200 195 195 106 97

Table 2. Minimal observation for
baseness

Comp./Part. Size true BI LI

Philo3 / 1 6 9 9 0
Philo4 / 1 8 20 20 4
Philo5 / 1 10 35 35 6
Philo10 / 1 20 170 170 23

Philo3 / 2 6 4 4 0
Philo4 / 2 8 6 6 1
Philo5 / 2 10 17 17 3
Philo10 / 2 20 75 75 14

number of atomic components in the composite component is indicated in Col-
umn Size. Columns true, BI and LI provide the cost of the solutions obtained
when using respectively true, the boolean invariant and the linear invariant as
invariant I. The column optimal indicates the cost of an optimal solution.

∀i ∈ {0, 1, 2} (at(Fi.free) ∨ at(Fi.used)) (1)

∧ ∀i ∈ {0, 1, 2} (at(Pi.thinking) ∨ at(Pi.eating) ∨ at(Pi.cleaning)) (2)

∧ (at(P1.eating) ∨ at(P0.eating) ∨ at(P0.cleaning) ∨ at(F1.free)) (3)

∧ (at(P2.eating) ∨ at(P1.eating) ∨ at(P1.cleaning) ∨ at(F2.free)) (4)

∧ (at(P0.thinking) ∨ at(F0.used) ∨ at(P0.cleaning) ∨ at(P2.thinking)) (5)

∧ (at(P0.thinking) ∨ at(F1.used) ∨ at(P1.cleaning) ∨ at(P1.thinking)) (6)

∧ (at(P2.cleaning) ∨ at(F0.free) ∨ at(P2.eating) ∨ at(P0.eating)) (7)

∧ (at(F1.free) ∨ at(F2.free) ∨ at(F0.free)

∨at(P1.eating) ∨ at(P2.eating) ∨ at(P0.eating)) (8)

∧ (at(F2.used) ∨ at(P2.cleaning) ∨ at(P1.thinking) ∨ at(P2.thinking)) (9)

∧ (at(F2.used) ∨ at(P2.cleaning) ∨ at(P1.thinking) ∨ at(F0.free) ∨ at(P0.eating)) (10)

∧ (at(F1.free) ∨ at(P1.eating) ∨ at(F0.used) ∨ at(P0.cleaning) ∨ at(P2.thinking)) (11)

∧ (at(P0.thinking) ∨ at(F2.free) ∨ at(F1.used) ∨ at(P2.eating) ∨ at(P1.cleaning)) (12)

Fig. 4. Boolean invariant for the Dining Philosophers example with N = 3

Here, the linear invariant gives better results than the boolean invariant, which
does not give enough information about the system to reduce observation com-
paratively to the true invariant. For N = 3, we provide the boolean and linear
invariants respectively in Figures 4 and 5. In this case, the linear constraint (15)
in linear invariant ensures that interaction cleanleft0 and interaction eat1 can-
not be enabled concurrently, otherwise, control locations P0.eating and F1.free
would be active and the sum in constraint (15) would be equal to 2. Thus, the

130 S. Bensalem et al.

(at(P0.thinking) + at(P0.eating) + at(P0.cleaning) = 1) (13)

∧ ∀i ∈ {0, 1, 2} (at(Fi.free) + at(Fi.used) = 1) (14)

∧ (at(P1.eating) + at(P0.eating) + at(P0.cleaning) + at(F1.free) = 1) (15)

∧ (at(P1.thinking) + at(P0.thinking) + at(F1.used) + at(P1.cleaning) = 2) (16)

∧ (at(P2.eating) + at(P0.thinking) + at(F1.used) + at(P1.cleaning) + at(F2.free) = 1) (17)

∧ (at(P2.cleaning) + 2 ∗ at(P0.eating) + at(P0.cleaning) − at(F1.used)

−at(P1.cleaning) + at(F2.used) − at(F0.used) = 0) (18)

∧ (at(P2.thinking) − at(P0.eating) + at(F0.used) = 1) (19)

Fig. 5. Linear invariant for the Dining Philosophers example with N = 3

priority cleanleft0 π eat1 never forbids execution of cleanleft0. A related boolean
constraint, that is constraint (3) of boolean invariant guarantees that at least
one of these locations is active. However, this constraint is not strong enough to
discard the case where two of them are active.

The results for computing basic solutions are presented in Table 2. The col-
umn Size contains the total number of atomic components in the composite
component. The columns true, BI and LI contains respectively the cost of the
solutions obtained when using respectively true, the boolean invariant and the
linear invariant. For Philo3, baseness is achieved when each engine observes only
the components involved in the interactions it handles (i.e. no additional atomic
component), therefore the cost is 0.

Performance Evaluation. We used the tool-chain described in [3,4] to gen-
erate automatically distributed code from the component. The generated code
consists of a set of C++ programs communicating through Unix sockets. We gen-
erate one program for each atomic component, one program for each engine and
one program for conflict resolution between engines (CRP). We executed these
programs in a distributed setting (on a UltraSparcT1 with 24 parallel threads)
during 60 seconds and counted the number of “eat” interactions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5 6 7 8 9 10

N
um

be
r

of
 "

ea
t"

 in
te

ra
ct

io
ns

 d
ur

in
g

60
s

Number of philosophers

No priority
Invariant = True

Linear invariant - basic detection
Linear invariant - complete detection

Fig. 6. Performance for different detection
levels, using Partition 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5 6 7 8 9 10

N
um

be
r

of
 "

ea
t"

 in
te

ra
ct

io
ns

 d
ur

in
g

60
s

Number of philosophers

No priority
Invariant = True

Linear invariant - basic detection
Linear invariant - complete detection

Fig. 7. Performance for different detection
levels, using Partition 2

Knowledge-Based Distributed Conflict Resolution 131

Performance for Partition 1 (resp. Partition 2) is depicted in Figure 6 (resp.
7). We do not show performance for the boolean invariant because it falls back to
observing all components, as for the true invariant. Since Partition 2 is coarser
than Partition 1, it allows less parallelism as shown by comparing performance
of execution without priority. Priority limits the number of executions as it en-
forces a particular scheduling policy and reduces parallelism. For both partitions,
the fastest prioritized implementation is the complete one obtained by using the
linear invariant. When we observe all involved atomic components (i.e. the in-
variant is true), performance is worse because the lack of knowledge about the
reachable states entails more synchronization overhead. Finally, basic solutions
are slow because, while restricting the communication, they also restrict the
parallelism.

5.2 Jukebox

The second example is a jukebox depicted in Figure 8. It represents a system,
where a set of readers R1 . . . R4 access data located on disks D1, D2, D3. Readers
may need to access any disk. Access to disks is managed by jukeboxes J1, J2 that
can load any disk to make it available to the connected readers. Interactions
loadi,k and unloadi,k allows to load and unload the disk Di in the jukebox Jk.
Each reader Rj is connected to a jukebox through the readj interaction. Once
a jukebox has loaded a disk, it can either take part in a “read” or “unload”
interaction. Each jukebox repeatedly loads all 3 disks in a random order.

If unload interactions are always chosen immediately after a disk is loaded,
then readers may never be able to read data. Therefore, we add the priority
unloadi,k π readj , for all i, j, k. This ensures that “read” interactions will take
place before corresponding disks are unloaded. Furthermore, we assume that
readers connected to J1 need more often disk 1 and that readers connected to
J2 need more often disk 2. Therefore, loading these disks in the correspond-
ing jukeboxes is assigned higher priority: loadi,1 π load1,1 for i ∈ {2, 3} and
loadi,2 π load2,2 for i ∈ {1, 3}.

Table 3. Minimal observation cost to ensure baseness or completeness

Interaction true BI(basic) BI(complete) LI(basic) LI(complete)

unloadi,k 5 3(k = 1) or 5(k = 2) 5 2 2
loadi,k 1 0 1 0 1

We use a partition assigning one engine per interaction. Results of the sim-
ulated annealing heuristic are presented in Table 3. Engines handling a “read”
interaction do not need to observe additional atomic components since there is
no interaction with higher priority. The boolean invariant allows removing some
observed atomic components, in the basic solution. As for PhiloN components,
the linear invariant is stronger than the boolean invariant. Therefore, the same
level of detection is achieved with less observed atomic components.

132 S. Bensalem et al.

D1

load unload

D2

load unload

D3

load unload

J1
load unload

data

read

R1
read

R2

J2
load unload

data

read

R3
read

R4

Fig. 8. Jukebox composite
component

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

No priority

True
BI basic

BI com
plete

LI basic

LI com
plete

N
um

be
r

of
 "

re
ad

"
in

te
ra

ct
io

ns
 d

ur
in

g
60

s
Fig. 9. Performance of the jukebox component for
unprioritized and prioritized executions with differ-
ent invariants/detection levels

Performance Evaluation. We generate C++ code, as for the previous ex-
ample. We count the number of “read” interactions that take place during 60
seconds of execution, for different settings. In Figure 9, we provide results for a
version of the component without priorities, as well as results for the prioritized
component for the trivial invariant true, the boolean invariant (BI) or the linear
invariant (LI). For boolean and linear invariants, we provide performance for
both complete and basic implementations.

Notice that adding priority increases the number of “read” interactions exe-
cuted in 60 seconds. This is due to the fact that a disk is unloaded only if no read
is possible, that is only when unload is necessary to progress. Solutions obtained
for the boolean invariant require more observation than the ones obtained for
the linear invariant, therefore corresponding implementations are slower. More
interesting, the best performance is obtained for basic solutions. In that partic-
ular case, fewer atomic components are observed which allows more parallelism
in the composite component. This parallelism compensates the fact that the
detection of false conflicts is not complete.

6 Related Work

Distributed resource conflict resolution boils down to solving the committee co-
ordination problem [14], where a set of professors organize themselves in different
committees, a meeting requires the presence of all professors to take place and
two committees that have a professor in common cannot meet simultaneously.
Different solutions have been provided, using managers [14,15,16], a circulating
token [17], or a randomized algorithm without managers [18]. Solutions using
managers typically rely on a conflict resolution protocol, such as a solution to
the dining philosophers problem [19].

Similarly, implementation of priorities needs resolution of asymmetric con-
flicts. This can be achieved by direct observation as in [20] or [5] where managers

Knowledge-Based Distributed Conflict Resolution 133

observe higher priority interactions to ensure their disabledness. Knowledge is
often used to drive action execution in distributed systems. Halpern and Moses
[8] defined a logic to reason about the knowledge of system processes. Knowledge
is used to control distributed discrete event systems [21] and build distributed
controllers for executing multiparty interactions with priorities [22].

In most papers, computing knowledge requires exact computation of reachable
states [21,22,8]. Our method overcomes this difficulty by using invariants which
are over-approximations of the reachability set. Another common assumption
is that the partial state observed by a manager is limited to a neighborhood
determined by the architecture of the system [22]. We propose a framework
where observation can be adjusted for achieving a certain detection level.

7 Conclusion

Implementing multiparty interactions scheduled by using priorities requires ef-
ficient conflict resolution techniques. Most implementations do not distinguish
between real and false conflicts to reduce overhead due to conflict resolution.

Dynamic knowledge-based computation of false conflicts based on invariants
allows more efficient implementations. We provided simple criteria to define the
correctness of the obtained implementation. Baseness ensures preservation of
deadlock-freedom and completeness ensures equivalence with the fully-observed
model. Finally, the proposed heuristics allow minimization of the number of
components to observe and enhanced performance. Heuristics have been applied
to non-trivial examples, where the optimal is known, and gave satisfactory re-
sults. These have been used for distributed implementation. Experiments show
significant performance improvement. However, depending on the model, best
performance is achieved either for basic or complete observation.

Future work includes several directions. First, we plan to study in depth how
choices of detection levels affect performance of the obtained implementation. We
can also consider intermediate levels between basic and complete observation.
Such intermediate levels could, for instance, ensure complete detection of false
conflicts for some interactions and avoid introduction of deadlocks for the others.

Another improvement is to use static analysis techniques in order to take into
account parallelism. These techniques allow automatically computing a partition
of the interactions that does not reduce the degree of parallelism by grouping
possibly concurrent interactions. The allowed degree of parallelism can also be
used to measure the utility of an additional observation, i.e. how observing an
additional component can increase parallelism in the obtained implementation.

References

1. Gößler, G., Sifakis, J.: Priority Systems. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 314–329. Springer,
Heidelberg (2004)

134 S. Bensalem et al.

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Software Engineering and Formal Methods (SEFM), pp. 3–12 (2006)

3. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level
component-based models to distributed implementations. In: EMSOFT (2010)

4. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework for
automated distributed implementation of component-based models. Distributed
Computing, 1–27, http://dx.doi.org/10.1007/s00446-012-0168-6

5. Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Automated distributed implementation
of component-based models with priorities. In: EMSOFT, pp. 59–68 (2011)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press (1995)

7. Halpern, J.Y., Fagin, R.: Modelling knowledge and action in distributed systems.
Distributed Computing 3, 159–179 (1988)

8. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37, 549–587 (1990)

9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

10. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional Verification for
Component-Based Systems and Application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008)

11. Krckeberg, F., Jaxy, M.: Mathematical Methods for Calculating Invariants in Petri
Nets. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 104–131. Springer,
Heidelberg (1987)

12. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-Finder: A Tool for Compo-
sitional Deadlock Detection and Verification. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

13. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremental
component-based construction and verification using invariants. In: Formal Meth-
ods in Computer-Aided Design (FMCAD), pp. 256–257 (October 2010)

14. Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston (1988)

15. Bagrodia, R.: Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Transactions on Software Engineering (TSE) 15(9),
1053–1065 (1989)

16. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing
multiparty synchronization. Concurrency and Computation: Practice and Experi-
ence 16(12), 1173–1206 (2004)

17. Kumar, D.: An implementation of n-party synchronization using tokens. In:
ICDCS, pp. 320–327 (1990)

18. Joung, Y.J., Smolka, S.A.: Strong interaction fairness via randomization. IEEE
Trans. Parallel Distrib. Syst. 9(2), 137–149 (1998)

19. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems (TOPLAS) 6(4), 632–646 (1984)

20. Ben-Hafaiedh, I., Graf, S., Quinton, S.: Building distributed controllers for systems
with priorities. Journal of Logic and Algebraic Programming 80, 194–218 (2011)

21. Ricker, S., Rudie, K.: Know means no: Incorporating knowledge into discrete-event
control systems. IEEE Transactions on Automatic Control 45(9), 1656–1668 (2000)

22. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for Knowledge
Based Controlling of Distributed Systems. In: Bouajjani, A., Chin, W.-N. (eds.)
ATVA 2010. LNCS, vol. 6252, pp. 52–66. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/s00446-012-0168-6

Modelling Probabilistic Wireless Networks

(Extended Abstract)

Andrea Cerone and Matthew Hennessy

Department of Statistics and Computer Science
Trinity College Dublin

{ceronea,Matthew.Hennessy}@scss.tcd.ie

Abstract. We propose a process calculus to model distributed wireless
networks. The calculus focuses on high-level behaviour, emphasising local
broadcast communication and probabilistic behaviour.
Our formulation of such systems emphasises their interfaces, through

which their behaviour can be observed and tested, although this com-
plicates their contextual analysis. Nevertheless we propose a novel op-
erator with which networks can be decomposed into components. Using
this operator we define probabilistic generalisations of the well-known
may-testing and must-testing preorders.
We define an extensional probabilistic labelled transition system in

which actions represent particular interactions networks support via their
interfaces. We show that novel variations on probabilistic simulations
support compositional reasoning for these networks which are sound with
respect to the testing preorders. Finally, and rather surprisingly, we show
that these simulations turn out not to be complete.

1 Introduction

There is growing interest in the development of formal methods for the analysis
of wireless systems, and a number of process calculi have been suggested for
describing and analysing their behaviour, [10,11,13]. Our proposal focuses on
descriptions at a high-level of abstraction, where for example network nodes use
protocols at the MAC level [7] to implement reliable communication between
nodes; thus we are abstracting from collision prone behaviour. For us a wireless
system will take the form M = Γ �M where Γ describes the network topology,
a connected undirected graph of station nodes; some nodes will contain running
code, while others will be in the system interface, Int(M), through which the
system may be tested, or indeed composed with peers to form larger systems.
The running code at individual stations is described in the component M , using
essentially a broadcast version of CCS, [12,15].

However the range of a broadcast from a given station node is determined
by the underlying connectivity graph Γ . Further, we allow the code at stations
to behave probabilistically. We also assume that a fixed number of communi-
cation channels are available to stations to broadcast to their neighbours; it is
well-known that multiple access techniques such as TDMA and FDMA [17] can

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 135–151, 2012.
c© IFIP International Federation for Information Processing 2012

136 A. Cerone and M. Hennessy

m

o1

o2

m

n

o1

o2

M = ΓM �m�. . .�) N = ΓN �m�. . .� | n�. . .�

Fig. 1. Example networks

be used to implement such virtual channels. In the literature other calculi for
modelling wireless systems have been proposed; in particular, our calculus has
been inspired by [10,11,8,13]. Recently, there has been also a growing interest in
modeling networks with probabilistic behaviour [9,5,6].

Two example systems in our calculus are given in Figure 1; here and hence-
forth we use shading to denote nodes running code in a network, with the re-
maining being in the interface. Our goal is to develop behavioural theories for
such systems, and associated proof technologies.

Using standard process-calculi techniques we can give an intensional semantics
to the set of such (well-formed) networks Nets thereby endowing it with the
structure of a probabilistic labelled transition system [16], a pLTS; see Section 3.
This is a significant step towards our goal as in [3] behavioural testing preorders
have been defined for arbitrary pLTSs, and forms of (probabilistic) simulations
have been shown to be both sound and complete with respect to them. However
significant problems arise when trying to adapt this approach to Nets.

In [3] a total binary operator | is assumed to exist for arbitrary systems; a
system S is tested by running the combined system S |T and observing the effect
on the testing system T ; indeed all standard process calculi come equipped with
such an operator. However there is no definitive manner in which arbitrary pairs
of wireless systems from Nets can be combined, so as to maintain consistency.
For example both S and T might expect to run their own code at a particular
station they have in common; or in the combined system natural well-formedness
conditions might be violated. Our intention with such an operator is to imple-
ment black-box testing of S by T ; so for example T should have no access to, or
indeed knowledge of, the internal stations in S. Instead interaction between T
and the system S will be restricted to what we will call the interface of S.

With this in mind, in Section 4 we propose a novel asymmetric combinator for
(well-formed) wireless networks, S ‖> T ; this in turn leads to formulations of the
standard testing pre-orders to Nets, S1 �

may
S2 and S1 �

must
S2. The asymmetry

is necessary; in Theorem 2 we show that if any reasonable symmetric combinator
were used then the resulting pre-orders would be degenerate.

Modelling Probabilistic Wireless Networks 137

We then give, in Section 5, an extensional pLTS in which the probabilistic
simulations are sound with respect to S1 �

may
S2. Here the extensional actions

are defined in terms of behaviour, broadcasts and reception of values, which can
be detected at the interface of systems, Int(S). However again this is not simply a
straightforward application of the simulations from [3]. A problem arises because
in certain situations the broadcast of a message to a set of interface nodes, as
might happen in M of Figure 1 from m to the pair {o1, o2}, can be simulated
by a multicast of copies of the message through a series of nodes. In N from
Figure 1 this might happen by a broadcast from m, with reaches the interface
node o1 and the internal node n, followed by a broadcast by n to the second
interface node o2.

We also provide a variation on simulations, in the same extensional pLTS,
which are sound with respect to S1 �

must
S2. Again results in [3] can not be

relied upon. Instead we define a novel notion of deadlock simulation for this
purpose.

We already know that our notion of simulations are not complete for wireless
systems; an example is given at the end of Section 5. Nevertheless we believe
that they are powerful enough to treat non-trivial case studies. In Section 6 we
provide one example which shows the way in which they can be used. In future
we intend to evaluate more fully our proposed methodology.

In this extended abstract we omit all proofs, and some technical definitions
are also elided. Full details are available in the accompanying technical report
[1], together with some more illustrative examples.

2 Background

Recall that a probability distribution Δ over a set S is a function Δ : S → [0, 1]
such that

∑
s∈S Δ(s) = 1. Given a set S, we use D(S) to denote the set of

probability distributions over S.

Definition 1. A probabilistic labelled transition system (pLTS) is a 4-tuple
〈S,Actτ ,→, ω〉, where

(i) S is a set of states,
(ii) Actτ is a set of transition labels with a distinguished label τ ,
(iii) the relation → is a subset of S × Actτ ×D(S),
(iv) ω : S �→ { true , false } is a (success) predicate over the states S.

As usual, we will write s
μ−→ Δ in lieu of (s, α,Δ) ∈ −→. It is finitary if S is

finite and for every s ∈ S, the set {Δ | s μ−→Δ for some μ ∈ Actτ } is finite. &�

This definition of pLTS is slightly different from that provided in [3], for we have
introduced a success predicate ω over states, which will be used when testing
processes.

We use standard notation, borrowed from [3], for distributions and operations
on them. We use Δ, Θ to range over probability distributions;)Δ* represents the

138 A. Cerone and M. Hennessy

support of Δ, that is all states such that Δ(s) > 0 while s denotes the one point
distribution for an s ∈ S. We will also have a minor need for sub-distributions,
with Dsub(S) representing the sub-distributions over S; for Δ ∈ Dsub(S), the
quantity

∑
s∈S Δ(s), called the size of the sub-distribution, may be strictly less

then 1.

Definition 2 (Lifted Relations). Let R ⊆ S × Dsub(S) be a relation from
states to subdistributions. Then R ⊆ Dsub(S)×Dsub(S) is the smallest relation
which satisfies

– sRΔ implies s R Δ
– If I is a finite index set and Δi R Θi for each i ∈ I then (

∑
i∈I pi ·

Δi) R (
∑

i∈I pi ·Θi) whenever
∑

i∈I pi ≤ 1. &�

Lifting of relations can also be defined for full distributions, by simply requiring∑
i∈I pi = 1 in the last constraint of the definition above.

In a pLTS 〈S,Actτ ,→, ω〉, each transition relation
μ−→ ⊆ S × D(S) can be

lifted to (
μ−→) ⊆ D(S) × D(S). With an abuse of notation, the latter is still

denoted as
μ−→.

Lifted transition relations allow us to reason about the behaviour of pLTSs
in terms of sequences of transitions. We also need to formalise internal com-
putations, indefinite sequences of τ actions. We employ the infinitary version
Δ =⇒ Δ′ from [3], in which states from the support of Δ may at any point
decide to stop performing τ actions; in general Δ′ may turn out to be a sub-
distribution, rather than a distribution; this is because part of a distribution
may never stop performing τ -actions. A minor variation, Δ =⇒+ Δ′, insists that
states must continue performing τ actions so long as they are able; intuitively
Δ =⇒+ Δ′ may be viewed as a probabilistic version of a maximal computation
from Δ. The formal definitions are relegated to the appendix; note the presence
of the success predicate ω in a pLTS means that our formulation is a slight
generalisation from that in [3].

3 Networks and Their Computations

As explained in the Introduction a wireless system is represented by a pair Γ�M
where Γ is an undirected graph representing the connectivity in the underlying
network between the wireless stations and M the code running in the individual
stations. The language for code is given in Figure 2 and uses standard syntax
from process calculi. Basically a system consists of a collection of named nodes
at each of which there is some running code, n�s�. The set of nodes appearing
in a system M is denoted by nodes(M).

The process calculus operators c!〈v〉 .p, c?(x) .p will represent the broadcast
and reception of values respectively; the latter is a binding operator for the
variable x, and the standard notions of free occurrences of a variable as well as
closed system terms arise. As usual, given a list of variables x̃ and a list of closed
values ṽ of the same length, we use the notation p{ṽ/x̃} to denote process p where

Modelling Probabilistic Wireless Networks 139

M, N ::= Systems
n�s� Nodes
M |N Composition
0 Identity

p, q ::= (probabilistic) Processes
s
p p⊕ q probabilistic choice

s, t ::= States
c!〈e〉 .p broadcast
c?(x) .p receive
ω. 0 test
s+ t choice
if b then s else t branch
τ.p internal activities
A(x̃) calls
0 terminate

Fig. 2. Syntax

the free occurrences of a variable x appearing in x̃ is replaced with the respective
closed value v appearing in ṽ. We also assume a set of process definitions of the
form A(x̃) ⇐ p, meaning that the definition A(ṽ) can be unfolded in p{ṽ/x̃}.

The effect of a broadcasts is determined by the underlying network Γ . For
example if a value is broadcast from the station n then it can only be received
at stations m connected to n in Γ ; that is those m such that (n,m) ∈ ΓE where
ΓE is the set of edges of Γ . For this, and similar concepts, we tend to use more
graphic notation such as Γ - n ↔ m.

We only consider the sublanguage of well-formed terms, in which each node
name has at most one occurrence, and we use sSys to denote the set of all well-
formed terms which are closed, meaning that they have no free occurrences of
a free variables. Nodes appearing in nodes(M) in a network Γ � M are called
internal, in contrast with nodes in ΓV \ nodes(M) which are called external.
The set ΓV \ nodes(M) is also called the interface of the network, denoted as
Int(Γ �M). A network Γ �M is well-formed if:

(i) M ∈ sSys
(ii) nodes(M) ⊆ ΓV , where ΓV denotes the set of nodes in Γ
(iii) whenever k ∈ Int(Γ � M), there exists some m ∈ nodes(M) such that

Γ - k ↔ m
(iv) whenever k1, k2 ∈ Int(Γ �M), Γ - k1 �↔ k2.

Most of these conditions are natural; in particular, requirements (iii) and (iv)
establish that internal nodes (that is, nodes running code) in a network have

140 A. Cerone and M. Hennessy

knowledge of the nodes in the external environment to which they are con-
nected, but they have no information about how these nodes are interconnected.
Requirement (iv) is also necessary for the soundness of our proof methodologies.
We use Nets to denote the set of well-formed networks, in the sequel ranged
over by M, N , We will also use some obvious notation, such as nodes(M)
to denote the set of nodes running code in M.

Example 1. Consider M = ΓM � M described in Figure 1, where M denotes
the code m�τ.(c!〈v〉 . 0 0.81⊕ 0)�. Intuitively in this network, the station m, after
performing some internal computation can broadcast a value v along channel c
with probability 0.81. This message can be detected by the interface nodes o1
and o2.

Consider now network N = ΓN � N , in the same figure, where N denotes
m�τ.(c!〈v〉 0.9⊕ 0)� | n�P �, and P ⇐ c?(x) .(c!〈x〉 0.9⊕ 0) + c?(x) .P . Here station
m broadcasts the value v along channel c with probability 0.9; this message can
be detected by the interface node o1 and the internal station n. Station n, upon
receiving the message, decides to forward it with probability 0.9; since the nodes
in the range of n are m and o2, these are the nodes which will detect the value
broadcast by n. Therefore, the probability of the original broadcast performed
by station m reaching both the interface nodes o1 and o2 is 0.81, the same as
in the network M.1 Note also that node n can non-deterministically decide to
ignore broadcasts along channel c which can be received either by node m or
by the interface node o2. This ensures that the network N has a computation
in which its behaviour is not affected by the external nodes o1, o2. Informally
speaking, the network N is more reliable than the network M, when the latter
is viewed optimistically. &�

Judgements in the formal intensional semantics of networks take the form Γ �

M
μ−→Δ, where Δ is a distribution over sSys and μ can take one of the forms:

n.τ internal computation at node n, c.n?v reception from node n of value v or
n.c!v, transmission from node n.

The rules for inferring judgements are given in Figure 3 and they rely on
a pre-semantics for the states s from Figure 4. These in turn take the form

s
μ−→ p, where s is a closed state, p is a process and μ is one of the forms

c!v, c?v, τ or ω. The deductive rules for inferring these judgements are given in
Figure 4 and should be self-explanatory. The main rules in Figure 3 also use
some standard notation from [3] for interpreting processes p from Figure 2 as
distributions over states, �p�; this has the obvious definition, namely �s� = s and
�p1 p⊕ p2� = p · �p1� + (1 − p) · �p2�.

Rule (b-broad) models the evolution of a node n which broadcasts value v
along channel c. Here the term n�Δ� represents a distribution over sSys, ob-
tained by extending the function n�·� in the standard way to distributions. This
technique is also used in subsequent rules, for example extending the operator |
from one on system terms to distributions over system terms.

1 Also, the probability of message v being only by node o1 in network N is 0.9 and
0.81 in network M.

Modelling Probabilistic Wireless Networks 141

(b-broad)

s
c!v−→ p

Γ � n�s�
c.n!v−→ n�Δ�

�p� = Δ

(b-rec)

s
c?v−→ p

Γ � n�s�
c.m?v−→ n�Δ�

�p� = Δ,Γ � n ↔ m

(b-deaf)

s
c?v−→�

Γ � n�s�
c.m?v−→ n�s�

Γ � m ↔ n

(b-disc)

Γ � n�s�
c.m?v−→ n�s�

Γ � n �↔ m

(b- 0)

0
c.m?v−→ 0

(b-τ)

s
τ−→ p

Γ � n�s�
n.τ−→ n�Δ�

�p� = Δ

(b-τ.prop)

Γ �M
n.τ−→Δ

Γ �M |N n.τ−→Δ |N
(b-prop)

Γ �M
c.m?v−→ Δ, Γ �N

c.m?v−→ Θ

Γ �M |N c.m?v−→ Δ |Θ

(b-sync)

Γ �M
c.m!v−→ Δ, Γ �N

c.m?v−→ Θ

Γ �M |N c.m!v−→ Δ | Θ

Fig. 3. Intensional semantics of networks

Rules (b-rec), (b-deaf) and (b-disc) express how a node n reacts when a
message is broadcast by a sender node m; if the former is in the range of trans-
mission of the sender, and it is waiting to receive a value along the same channel
used by the sender to broadcast, then it will receive the message correctly. In
all the other cases the behaviour of node n is not affected by the broadcast
performed by m.

The rules (b-τ) and (b-τ.prop) model internal activities performed by some
node of a system term. Finally, rules (b-sync) and (b-prop) describe how com-
munication between nodes of a network is handled; these rules have been defined
to model broadcast communication. See [1] for more discussion and some sanity

checks on the rules. For example one can show that if Γ � M
μ−→ Δ can be

inferred from the rules then every N in the support of Δ has exactly the same
set of node station names as M .

4 Testing Networks

As discussed in the Introduction, in order to test networks we need to be able
to compose the network to be tested, say M, with the network performing the
test, say N . A natural definition would be to define

(ΓM �M) � (ΓN �N) = (ΓM ∪ ΓN)� (M |N) (1)

where the combined connectivity graph ΓM ∪ ΓN is obtained set theoretically,
by the point-wise union of the individual node sets and edge sets. However in

142 A. Cerone and M. Hennessy

(s-Snd)

c!〈e〉 .p c!v−→ p
val(e) = v

(s-ω)

ω.0
ω−→ 0

(s-Rcv)

c?(x) .p
c?v−→ p{v/x}

(s-τ)

τ.p
τ−→ p

(s-Suml)

s
α−→ p

s+ t
α−→ p

(s-SumR)

t
α−→ p

s+ t
α−→ p

(s-then)

s
α−→ p

if b then s else t
α−→ p

val(b) = true

(s-else)

t
α−→ p

if b then s else t
α−→ p

val(b) = false

(s-Unfold)

A(x̃)⇐ p

A〈ẽ〉 τ−→ p{ẽ/x̃}

Fig. 4. Pre-semantics of states

general this will lead to ill-defined networks. Therefore we have to be satisfied
by partial composition operators; moreover we should only use a composition
operators which reflect in some way the practical manner in which the tester N
can realistically interact with the testee M.

Definition 3 (Network Extension). The operator ‖> is the partial operator
between pairs of networks defined by letting (ΓM � M) ‖> (ΓN � N) = (ΓM ∪
ΓN)� (M |N) if nodes(M) ∩ (ΓN)V = ∅, undefined otherwise. &�
This operator is associative but in general not symmetric. In M ‖> N the system
N is only allowed to place code at interface of M. In particular it has no access
to the internal nodes of M; on the other hand M can place no code at any node
in N . These restrictions are natural if we view N as testing M in a black-box
manner.

Proposition 1 (Interface Preservation). If Int(M) = Int(N), and L is a
network such that both M ‖> L and N ‖> L are defined then Int(M ‖> L) =
Int(N ‖> L). &�
The operator ‖> is also a universal constructor for (well-formed) networks:

Proposition 2. Every well-formed network Γ�M such that M is different from
0 can be written2 in the form Γ �M = (Γ ′ �M ′) ‖> (Γ ′′ � n�s�). &�
2 Modulo a simple structural equivalence.

Modelling Probabilistic Wireless Networks 143

m

n

o1

o2

m

o1

o2

M = ΓM �m�c!〈v〉 . 0� | n�c!〈v〉 . 0� N = ΓN �m�c!〈v〉�

Fig. 5. Broadcast vs. Multicast

We test network M by considering maximal computations of the composite
systems M ‖> T , where T is a system designed to elicit certain behaviour from
M. This composite testing harness should run in isolation from its environment,
for example by ignoring possible broadcasts either M or T might receive at
their interfaces. So we define a reduction relation � for networks, by letting

(Γ �M) � Δ whenever (Γ �M)
m.τ−→Δ or Γ �M

c.m!v−→ Δ.
We also define a success predicate ω(·) for networks by letting ω(M) = true

whenever M = Γ � (n�s� | M) for some state s such that s
ω−→. Thus we have

defined a particular pLTS, as in Definition 1, with a unique transition action
τ−→, which we take to be �; such simple pLTSs we refer to as testing structures,

TSs.

Definition 4 (Tabulating Results). The value of a sub-distribution in a TS
is given by the function V : Dsub(S) → [0, 1], defined by V(Δ) =

∑
{Δ(s) |

ω(s) = true }. Then the set of possible results from a state s is given by R(s) =
{ V(Δ′) | Δ =⇒+ Δ′ }. Recall from page 138 that s =⇒+ Δ′ represents a (prob-
abilistic) maximal computation from s. &�

Definition 5 (Testing Networks). We write
(i) M �

may
N if for every system T such that both M ‖> T and N ‖> T

are well-defined, and every outcome p ∈ R(M ‖> T) there exists p′ ∈
R(N ‖> T) such that p ≤ p′.

(ii) M �
must

N if for every T such that both M ‖> T and N ‖> T are well-
defined and for every p′ ∈ R(M ‖> T) there exists p ∈ R(N ‖> T) such that
p ≤ p′. &�

Example 2 (Broadcast vs Multicast). Consider the networks M and N in Fig-
ure 5. Intuitively in N the value v is (simultaneously) broadcast to both nodes
o1 and o2 while in M there is a multicast. More specifically o1 receives v from
mode m while in an independent broadcast o2 receives it from n.

This difference in behaviour can be detected by testing network

T = ΓT � o1�c?(x) .c!〈0〉 . 0� | o2�c?(x) .c?(y) .if y = 0 then 0 else ω�

144 A. Cerone and M. Hennessy

assuming v is different than 0; here we assume ΓT is the simple network which
connects o1 with o2. Both M ‖> T and N ‖> T are well-formed and note that
they are both non-probabilistic.

Because N simultaneously broadcasts to o1 and o2 the second value received
by o2 is always 0 and therefore the test never succeeds; V(N ‖> T) = {0}. On
the other-hand there is a possibility for the test succeeding when applied to M,
1 ∈ V(M ‖> T). This is because in M node m might first transmit v to o1 after
which n transmits 0 to o2; now node n might transmit the value v to o2 and
assuming it is different than 0 we reach a success state. It follows thatM ��

may
N .

One might also think it possible to use the difference between broadcast and
multicast to design a test which N passes and M does not. However this is not
possible, and in Example 3 we show that N �

may
M; that is multicast can be

implemented by broadcast. &�

Theorem 1 (Compositionality). Suppose Int(M1) = Int(M2). Then
M1 �

may
M2 implies M1 ‖> N �

may
M1 ‖> N , whenever the composite networks

are well-defined. The same result holds for �
must

. &�

The testing preorders over networks can be defined using any (partial) binary
constructor ‖ over networks, although we would only want to use constructors
which are in some sense reasonable, which we define as follows.

Let us say that the partial constructor is a merge operator if whenever it
is defined the result coincides with the definition in (1) above. We say it is
invariant under renaming, if whenever M ‖ N is well-defined then so is Mσ ‖
N , where σ is an aribitrary renaming of nodes which leaves both Int(M) and
nodes(N) unchanged, and whose range does not intersect nodes(N); intuitively
this means that the well-definedness of the composite M ‖ N is not affected by
a re-organisation of the internal nodes of M. Then we say ‖ is reasonable if it is
a merge operator, it preserves interfaces, and is invariant under renaming; note
that ‖> is reasonable. Let us denote the resulting testing pre-orders by �alt

may
, �alt

must

respectively.

Theorem 2. If the constructor ‖ is reasonable and symmetric then the resulting
testing preorders are degenerate; that is M1 �alt

may
M2 and M1 �alt

must
M2, for all

networks M1, M2 such that Int(M1) = Int(M2). &�

5 Proof Techniques for the Testing Preorders

Motivated by [3], our intention is to define simulations over a pLTS to provide
reasonable proof techniques for inferring M �may N and M �must N . The pLTS
induced by the intensional semantics in Figure 3 is much too coarse for this
purpose. Instead we need to define extensional actions, which capture more
closely the manner in which the behaviour of wireless systems can be detected
at their interfaces. The following remarks are relevant.

(i) A node m which receives a value v has no information about the name of
the node, internal or external, which is responsible for the broadcast; it can
only check the content of the value.

Modelling Probabilistic Wireless Networks 145

(b-Tau)

Γ �M
m.τ−→Δ

Γ �M
τ−→ Γ �Δ

�p� = Δ

ω(Γ � M) = false

(b-In)

Γ �M
c.m?v−→ Δ

Γ �M
c.m?v−→ Γ �Δ

m ∈ Int(Γ � M)

ω(Γ � M) = false

(b-Shh)

Γ �M
c.m!v−→ Δ

Γ �M
τ−→ Γ �Δ

{m ∈ Int(ΓM � M) | Γ � m ↔ n } = ∅

ω(Γ � M) = false

(b-Out)

Γ �M
c.m!v−→ Δ

Γ � n�s�
c!v�η−→ Γ �Δ

η := { m ∈ Int(ΓM � M) | Γ � m ↔ n }

η
= ∅

ω(Γ � M) = false

Fig. 6. Extensional semantics of networks

(ii) On the other hand, the set of nodes in the interface of a network M which
are affected by a broadcast performed by a node m ∈ nodes(M) is relevant;
these are the only nodes at the external environment which can detect the
broadcast.

(iii) As a consequence, if a broadcast originated by a node in M does not affect
any node in its interface, then this activity cannot be observed by the
external environment of M.

(iv) The effect on a networkM by external activity can be captured adequately
by broadcasts fired from nodes in the interface of M.

(v) Since we are not interested in the behaviour of a network after it has
reached a successful configuration, we require that extensional transitions
can be performed only by non-successful network.

These observations motivate the definition of external actions in Figure 6. Note
that these actions endow a network with the structure of a pLTS; we say that
a network is finitary if so is the pLTS it generates via the transitions defined in
Figure 6. Henceforth in this Section we always assume that a network is finitary.
The extension to weak actions is also non-standard:

Definition 6 (Weak Extensional Action). Let Δ,Θ be network sub-
distributions over Nets. We say that

(i) Δ
τ

=⇒Θ if Δ=⇒ Θ in the pLTS induced by the extensional transitions of
Figure 6.

(ii) Δ
c.m?v
=⇒ Θ if M τ

=⇒ c.m?v−→ τ
=⇒Θ

(iii) Δ
c!v�η
=⇒ Θ if either Δ

τ
=⇒ c!v�η−→ τ

=⇒Θ or Δ
c!v�η1
=⇒ c!v�η2

=⇒ Θ, where η1, η2 are
two non-empty sets of nodes which constitute a partition of η. &�

The non-standard (iii) is motivated in Example 3.
These weak actions endow the set of networks Nets with the structure of

another pLTS, called the extensional pLTS and denoted by pLTSNets. It is in
this pLTS that we give our definitions of simulations.

146 A. Cerone and M. Hennessy

The first one is based on the simulation preorder from [3]; for reasons best
explained there it is defined as a relation from states to distributions, rather
than the more standard states to states.

Definition 7 (Simulation Preorder). In pLTSNets we let �
sim

denote the
largest relation in Nets×D(Nets) such that if s �

sim
Θ then:

– if ω(s) = true, then Θ
τ

=⇒ Θ′ such that for every t ∈)Θ′*, ω(t) = true

– otherwise, whenever s
μ

=⇒Δ′, for μ ∈ Actτ , then there is a Θ′ ∈ D(S) with

Θ
μ

=⇒Θ′ and Δ′ �
sim

Θ′. &�

Our second proof technique is a variation on the failure simulation preorder of
[3]. Unlike in that more general framework we have no need of acceptance sets.
Instead it is sufficient to consider the ability of systems to deadlock. See [4]
for details. We say that a network M is deadlocked, denoted M �→ whenever

ω(M) = false and M τ−→� ,Mc!v�η−→� for any c, v, η. A sub-distribution Δ over
Dsub(Nets) is deadlocked if any network in its support is deadlocked.

For reasons explained in [3] it is more straightforward to express this form of
simulation as a relation from sub-distributions to sub-distributions.

Definition 8 (Deadlock Simulations). In pLTSNets we let 0
DS

denote the
largest relation in Dsub(Nets)×Dsub(Nets) such that if Δ 0

DS
Θ then:

– whenever Δ
μ

=⇒
∑

i∈I(pi ·Δ′
i), where I is an index set such that

∑
i∈I pi ≤ 1,

then there are Θ′
i ∈ Dsub(Nets) such that Θ

μ−→
∑

i∈I(pi · Θ′
i) and, for any

i ∈ I, Δ′
i 0DS

Θ′
i

– whenever Δ=⇒−→� then Θ =⇒−→� . &�

Theorem 3 (Proof Methods for the Testing Preorders). Let M,N be
two networks such that Int(M) = Int(N). Then

– if M �
sim

N then M �
may

N
– if M 0

DS
N then M �

must
N . &�

Thus in order to relate two wireless systems it is sufficient to exhibit an appro-
priate simulation relation.

Example 3. Consider again the networks M and N in Figure 5. It is easy to

show that both of them can perform the weak extensional action
c!v�{o1,o2}

=⇒ .
However, the inference of this action is different for the individual networks;
while in network N it is implied by the execution of a single broadcast action,
detected by both nodes o1 and o2 simultaneously, in M this is implied by a

sequence of weak extensional actions M c!v�{o1}
=⇒ c!v�{o2}

=⇒ .
It is therefore possible to exhibit a simulation betweenN andM, thus showing

that N �
sim

M; By Theorem 3 it follows that N �
may

M. Similarly, it is possible

to prove that M 0
DS

N , and therefore M �
must

N .
Now suppose that we employed a standard definition of weak extensional

actions, and that the simulation preorder had been defined according to this

Modelling Probabilistic Wireless Networks 147

Nc = ΓNc �m1�Pm� |m2�Pm�

m1o1 n1 n2 m2 o2

Fig. 7. The network Nc

notion. In this case it would not be possible to exhibit a simulation between N
and M, and thus it would not be possible to prove that N �

may
M. The same

applies for the �
must

testing preorder and deadlock simulations. &�

Although simulations provide a sound proof technique for �
may

and �
must

, in
general they are not complete. For example one can show, referring to Example 1,
that M �

may
N but M ��

sim
N . It remains to be seen if our notions of simulation

can be further adapted so as to provide complete proof methodologies.

6 An Application: Probabilistic Routing

M = ΓM �m�P �

mo1 o2

Sequential routing means that a network can only
route one message per time; if a message is re-
ceived by the network while another one is being
routed, then it is ignored. A simple specification
(or model) network M that can be used for such
routing in networks is depicted on the left, where
P ⇐ c?(x) .c!〈x〉 .P . It is trivial to see that, when-
ever node m in M receives a message from o1, it

will be forwarded to nodes o1 and o2; that is, the message has been routed from
the external node o1 to the external node o2. The model also routes messages
from o2 to o1 in a symmetric fashion. We provide a possible implementation of
this specification as a probabilistic (and nondeterministic) network N such that
M �may N ; this means that N will include all the possible behaviour of M, such
as the sequential routing between the interface nodes o1, o2, but may also have
additional behaviour.

In fact we design an entire class of networks N with this property. Each will
have the structure N = Nc ‖> C, where Nc is the network depicted in Figure 7.
This acts as a connector between the interface nodes o1, o2 and the internal router
which it accesses via the nodes n1, n2; here Pm ⇐ c?(x) .c!〈x〉 .Pm + c?(x) .Pm.

The network C = ΓC �C, on the other hand, is defined parametrically. It can
be any network that satisfies the following requirements:

1. n1, n2 ∈ nodes(ΓC � C). For the sake of simplicity, we also assume that
nodes(ΓC � C) = (ΓC)V = {n1, · · · , nk} for some k > 2.

2. The connectivity graph ΓC contains a single connected component.

148 A. Cerone and M. Hennessy

3. Every node ni, i = 1, · · · , k is associated with a channel ci and a probability
distribution Λi : {1, · · · , k} → [0, 1]. The latter are defined so that)Λi* =
{j | ΓC - ni ↔ nj}, for any i = 1, · · · , k. That is, if node ni is connected to
node nj, then Λi(j) > 0.

4. C =
∏

i∈I ni�Pi�, where

Pi = c?(x) .

⎡⎣ k⊕
j=1

Λi(j) · cj !〈x〉 .Pi

⎤⎦+ c?(x) .Pi +

+ ci?(x) .

⎡⎣ k⊕
j=1

Λi(j) · cj !〈x〉 .Pi

⎤⎦+ ci?(x) .c!〈x〉 .Pi, i = 1, 2

Pi = ci?(x) .(

k⊕
j=1

Λi(j) · cj !〈x〉 .Pi), i > 2

Here the derived construct
⊕

i∈I pi ·Pi is interpreted in the obvious manner
as a probability distribution.

Let us explain, informally, one of the possible behaviours of a typical networkN .

n1

n3

n4

n2

The connectivity of one possible C, with
only two extra nodes n3, n4, is given on
the left. Upon receiving a message along
channel c from the external node o1, node
m1 will forward it to the node n1; here
note that the external node o1 also de-
tects the broadcast. Node n1 forwards the
message again to one of its neighbours nj

with a strictly positive probability. Here
nj is selected as the next hop in the rout-
ing path by forwarding the message along
channel cj . In fact, node cj is the only
one which can detect messages broadcast
along such a channel.

This procedure is iterated until the message v is forwarded to node n2, at least
with some probability, which in turn will forward it to node m2; a final broadcast
from the latter node will cause the message to be detected by the external node
o2. Since the connectivity graph of C has a single connected component, it is
possible to show that, upon being received by node n1, a message v eventually
is delivered to node n2 almost surely, i.e. with probability 1.

This informal line of reasoning can be used to provide a simulation between the
networks M and N ; we can construct a simulation in the extensional pLTSNets

containing the pair (M,N), for any N whose internal component C satisfies the
four constraints given above; thus for any such Nc we have M �may N . The
details may be found in [1]

We finish with three remarks about this example. First note that it is necessary
to employ our non-standard definition of weak output actions, for a broadcast

Modelling Probabilistic Wireless Networks 149

of network M to the nodes o1, o2 can only be simulated by N via a sequence
of two broadcasts. The first, fired by node m1, can be detected only by o1; the
second one, fired by node m2, can be detected only by node o2, and this only in
a probabilistic limit, for which we require the infinitary version of probabilistic
weak actions. Secondly note that the network N implements sequential routing
because the nodes m1,m2 in N can non-deterministically decide to ignore a
broadcast performed by o1, o2 respectively. Finally note that this example em-
phasises the fact that our formalism can in principle be employed to examine
practical routing algorithms. Routing protocols in which the next-hop in a rout-
ing path is determined via a probability distribution, as in our example, are of
practical significance; see for example, [2].

7 Conclusions

To the best of our knowledge, we believe that our work is the first to apply testing
theories to wireless systems, and in particular probabilistic wireless systems.
One major strand of research into calculi based on broadcast communications
starts with CBS from [15]; here behaviour is defined in terms of various forms
of bisimulations. Later developments include local broadcast communication in
the Extended CBS of [13] and the use of connectivity graphs in the CBS# of
[14].

In [11] a different attempt to formalize wireless networks is made. The au-
thors develop a calculus CWS, where the concepts of node names and location
are differentiated; thus, a process is associated both with a node name and a
location. Also, every process has a positive real value associated to it, denoting
the radius of transmission. The network topology is determined by a metric on
locations and a transmision radius. It is worth mentioning that in this calculus
the communication between nodes consists of two phases, one to start it and one
to end it. The authors also model the possibility of a message whose transmission
has started to be corrupted by another transmission, thus modeling collisions.

In [10], a descrete timed calculus for wireless systems (TCWS) is presented; in
this case, the authors address the problem of representing collisions in wireless
networks, suggesting that formal tools for dealing with interferences in wireless
networks can aid in the development of MAC level protocols. The topology of
the wireless networks here is described by associating every node a semantic
tag representing its set of neighbours. The authors propose a compositional
theory for wireless networks based on the notion of reduction barbed congruence;
further, they develop a sound proof methodology based on bisimulations over an
extensional lts. It is of considerable interest that, despite their targeting at low-
level collision prone behaviour, the set of extensional actions they propose (and
the activities that can be detected by the external environment) is very similar
to those we have suggested.

150 A. Cerone and M. Hennessy

References

1. Cerone, A., Hennessy, M.: A simple probabilistic broadcast language. Technical
Report, Trinity College Dublin, CS-TR-2012-02 (2012),
http://www.scss.tcd.ie/~ceronea/works/simpleProbabilisticNetworks.pdf

2. Curran, E., Dowling, J.: Sample: Statistical network link modelling in an on-
demand probabilistic routing protocol for ad hoc networks. In: WONS, pp. 200–205.
IEEE Computer Society (2005)

3. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing Finitary Proba-
bilistic Processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 274–288. Springer, Heidelberg (2009),
http://www.scss.tcd.ie/Matthew.Hennessy/onlinepubs.html

4. Ene, C., Muntean, T.: Testing theories for broadcasting processes. Sci. Ann. Cuza
Univ. 11, 214–230 (2002)

5. Ghassemi, F., Fokkink, W., Movaghar, A.: Verification of mobile ad hoc networks:
An algebraic approach. Theor. Comput. Sci. 412(28), 3262–3282 (2011)

6. Godskesen, J.C.: Observables for Mobile and Wireless Broadcasting Systems. In:
Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 1–15.
Springer, Heidelberg (2010)

7. Jurdak, R., Lopes, C.V., Baldi, P.: A survey, classification and comparative analysis
of medium access control protocols for ad hoc networks. IEEE Communications
Surveys and Tutorials 6(1-4), 2–16 (2004)

8. Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless sys-
tems. Theor. Comput. Sci. 411(19), 1928–1948 (2010)

9. Lanotte, R., Merro, M.: Semantic Analysis of Gossip Protocols for Wireless Sen-
sor Networks. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency
Theory. LNCS, vol. 6901, pp. 156–170. Springer, Heidelberg (2011)

10. Merro, M., Sibilio, E.: A Timed Calculus for Wireless Systems. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 228–243. Springer, Heidelberg
(2010)

11. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electr. Notes
Theor. Comput. Sci. 158, 331–353 (2006)

12. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

13. Nanz, S., Hankin, C.: Static analysis of routing protocols for ad-hoc networks,
March 25 (2004)

14. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
TCS: Theoretical Computer Science 367 (2006)

15. Prasad, K.V.S.: A calculus of broadcasting systems. Science of Computer Program-
ming 25(2-3), 285–327 (1995)

16. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
J. of Computing 2, 250–273 (1995)

17. Tanenbaum, A.S.: Computer networks. PTR Prentice-Hall

http://www.scss.tcd.ie/~ceronea/works/simpleProbabilisticNetworks.pdf
http://www.scss.tcd.ie/Matthew.Hennessy/onlinepubs.html

Modelling Probabilistic Wireless Networks 151

Appendix: Some Definitions

Definition 9 (Hyper-Derivations). In a pLTS a hyper-derivation consists
of a collection of sub-distributions Δ,Δ→

k , Δ×
k , for k ≥ 0, with the following

properties:
Δ = Δ→

0 + Δ×
0

Δ→
0

τ−→ Δ→
1 + Δ×

1
...

Δ→
k

τ−→ Δ→
k+1 + Δ×

k+1
...

If ω(s) = false for each s ∈)Δ→
k * and k ≥ 0 we call Δ′ =

∑∞
k=0 Δ

×
k a hyper-

derivative of Δ, and write Δ=⇒Δ′. &�

In maximal computations, we require the computation to proceed as long as
some internal activity can be performed. To this end, we say that Δ =⇒+ Δ′ if

– Δ=⇒Δ′,
– for every s ∈)Δ×

k *, s
τ−→ implies ω(s) = true. &�

This is a mild generalisation of the notion of extreme derivative from [3]. Note
that the last constraint models exactly the requirement of performing some in-
ternal activity whenever it is possible; In other words extreme derivatives corre-
spond to a probabilistic version of maximal computations.

Noninterference via Symbolic Execution�

Dimiter Milushev, Wim Beck, and Dave Clarke

IBBT-DistriNet, KU Leuven, Heverlee, Belgium

Abstract. Noninterference is a high-level security property that guar-
antees the absence of illicit information flow at runtime. Noninterference
can be enforced statically using information flow type systems; however,
these are criticized for being overly conservative and rejecting secure pro-
grams. More precision can be achieved by using program logics, but such
an approach lacks its own verification tools. In this work we propose a
novel, alternative approach: utilizing symbolic execution in combination
with ideas from program logics in an attempt to increase the precision
of analyses and automate noninterference testing. Dealing with policies
incorporating declassification is also explored. The feasibility of the pro-
posal is illustrated using a prototype tool based on the KLEE symbolic
execution engine.

Keywords: Noninterference, declassification, symbolic execution,
testing.

1 Introduction

Noninterference is a high-level security property, prohibiting information leaks
through the executions of a program. The typical program model for expressing
noninterference assumes the following: public and secret inputs are given to a
program; public and secret outputs are observable as a result of the program
runs. In this context, noninterference is a policy stipulating that public outputs
of a program should be functionally dependent on public inputs only, and not
on secret inputs. The policy has been substantially studied in the language-
based security community [16] and typically relies on information flow type sys-
tems [15,21,22]; however, these are criticized for being conservative and rejecting
many secure programs.

An alternative approach proposes the use of program logics for expressing non-
interference. Such an approach was introduced by Darvas, Hähnle and Sands [8],
who used dynamic logic to verify noninterference for sequential Java programs.
One key observation they made is that noninterference (which is not a prop-
erty and hence not directly expressible in program logics) on some program P
is reducible to a property on the sequential composition P ;P ′ of the program
with itself. More precisely, noninterference can be characterized as the following

� This research is partly funded by the EU project FP7-231620 HATS: Highly Adapt-
able and Trustworthy Software using Formal Models (http://www.hats-project.
eu).

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 152–168, 2012.
c© IFIP International Federation for Information Processing 2012

Noninterference via Symbolic Execution 153

quadruple: {l = l′}P ;P ′{l = l′}. Here, P ′ is the same program as P with all
variables renamed, l are the low variables of P and l′ are the low variables of
P ′. Barthe, Argenio and Rezk [4] based their characterization of noninterfer-
ence in Hoare and temporal logics on similar ideas; they also coined the term
self-composition for the construct P ;P ′. The program logics approaches provide
more precision in specifications, but do not have their own verification tools; in
addition, it is not clear how to reuse existing tools and techniques.

Terauchi and Aiken [20] note that self-composition is impractical. They point
out that for the purpose of verification of noninterference, some nontrivial,
partial-correctness condition that holds between P and P ′ has to be found; and
finding it is impractical. They also argue that in order to be useful for practical
verification, self-composition needs to take into account the structure of a self-
composed program and the resulting symmetry and redundancy. They propose
a type-directed transformation for a simple imperative language to deal with the
problems they identify.

Symbolic execution has already been used for verification of secure infor-
mation flow [8]. The approach offers high precision but unfortunately requires
considerable user interaction and verification expertise, needed for adding loop
invariants, establishing induction hypotheses, instantiating and unwinding loops
etc. Due to this fact, similar approaches are often criticized as being of limited
practical significance for developers. In this work we attempt to remedy such
limitations and propose the use of symbolic execution as a basis for a nonin-
terference testing tool. This is advantageous because it is automatic and gives
developers an efficient, practical way of testing for noninterference bugs. The
proposed approach is essentially an under-approximation of the problem and
this has two important consequences: on the positive side, it is automatic and
precise; on the other hand, it usually cannot discover all bugs. Nevertheless,
combined with the observation that typically most bugs are shallow, the ap-
proach gives developers a powerful tool, without requiring them to understand
and write complex specifications.

More concretely, the advocated approach is based on utilizing symbolic execu-
tion in combination with a form of self-composition in an attempt to automate
noninterference testing. We start off with Terauchi and Aiken’s transformation
and accommodate additional language features, such as dealing with procedures
and dynamically allocated data structures. The approach essentially interleaves
two copies of a program and then uses dynamic symbolic execution to try to
extract all possible paths in the program. Conditions on two disjoint program
stores are generated in order to express the desired security policy via assert
statements. The resultant program is analyzed by the symbolic execution en-
gine: if a bug is found, the program is not secure and the developer is informed
about it; the proposed approach typically cannot guarantee that a program is
secure. On secure programs, a tool based on this approach will often run in-
definitely without producing any error message. On insecure programs it will
typically run indefinitely but still discover security bugs and thus would indeed

154 D. Milushev, W. Beck, and D. Clarke

be useful. On concrete programs, our prototype tool has been able to discover
instances of all the known patterns of insecurity we have found in the literature.

The contributions of the work are: first, a proposal to use symbolic execution
in order to automatically specify and check a notion of plain noninterference and
one incorporating declassification; second, an illustration of what is needed to
transfer the ideas to a programming language having procedures and dynamic
memory allocation (heap); finally, a prototype tool based on the KLEE symbolic
execution tool [6] illustrating the feasibility of the approach. The rest of the work
is structured as follows. Section 2 provides some background. Sections 3 presents
the proposed approach. Section 4 presents our prototypical tool and experimental
results. Finally, Sections 5 and 6 are left for the related work and conclusion.

2 Background

2.1 Noninterference

Intuitively, noninterference stipulates that public outputs of a program should
be functionally dependent on public inputs only, and not on secret inputs. Define
a store m to be a mapping from program variables from some set Var to values
from set V . The notation m|X is a restriction of the store to variables from
domainX ; (m, P) denotes the final store after execution of program P with initial
store m and (m, P) = ⊥ signifies that the program diverges (does not terminate
or terminates in an (unobservable) exceptional state). Finally, ≈p signifies the
pointwise extension of equality to stores. The definition of termination insensitive
information flow can be formulated as follows:

Definition 1. (Secure information flow [20]) A program P with high security
variables H = {h1, . . . , hi} and low security variables L = {l1, . . . , lj} is secure
iff for all possible stores m1 and m2 such that m1|L ≈p m2|L, we have that

((m1, P) �= ⊥ ∧ (m2, P) �= ⊥) =⇒ (m1, P)|L ≈p (m2, P)|L.

There is an obvious way to show that a program P is not secure by Definition 1,
namely by finding two stores mi and mj such that mi|L ≈p mj |L, (mi, P) �= ⊥ ∧
(mj , P) �= ⊥, and (mi, P)|L �≈p (mj , P)|L.

Program 1.1, also referred to as P1, illustrates implicit information flow. Let
H = {i, j}, L = {l}. Observing the value of variable l discloses whether the
average of the two secret values is greater than 1000.

1 int average(int h1, int h2) {
2 return (h1+h2)/2; }
3 int main() {
4 int l, i, j;
5 if (average(i, j) > 1000) l = 1; else l = 0; }

Program 1.1. Implicit information flow

Noninterference via Symbolic Execution 155

The implicit flow can be detected using Definition 1. Let m1 and m2 be such that
m1(i) = 1000, m1(j) = 900, m1(l) = 0, m2(i) = 800 m2(j) = 1400 and m2(l) = 0. We
have that m1|L ≈p m2|L, (m1, P1) �= ⊥∧ (m2, P1) �= ⊥, but at the end of execution
(m1, P1)(l) = 0 and (m2, P2)(l) = 1; thus (m1, P1)|L �≈p (m2, P1)|L implies that P1

is insecure.

2.2 Declassification

Most useful computing systems have to release sensitive information as a part of
their functionality (e.g. password checking, shopping for digital content, online
games). Thus noninterference is often too strict for realistic systems; the usual
solution is weakening the policy with declassification, a mechanism for releasing
sensitive information. An important problem of declassification is to guarantee
precisely what is being leaked and to ensure that the mechanism cannot be
abused into leaking more [18].

More formally, consider programP on stores m1 and m2. Recall that≈p signifies
the pointwise extension of equality to stores and m|L is a restriction of the store
to variables from domain L. Let ψ be the predicate defined as m1|L ≈p m2|L.
Noninterference can be given as the following quadruple {ψ}(m1, P); (m2, P){ψ}.
If ψdecl is a predicate on high variables, specifying what is to be declassified
by P , then noninterference with declassification can be expressed as follows:
{ψ ∧ ψdecl}(m1, P); (m2, P){ψ} [3].

For instance, in Program 1.1 the policy might be that it is admissible to reveal
some fact about the average (i.e. whether (average(i, j) > 1000) holds) but not
more than that. Then, in addition to the usual noninterference condition, ψdecl

will be instantiated with ((average(i1, j1) > 1000) ⇔ (average(i2, j2) > 1000))
(note that ik is shortcut for mk(i) for k ∈ {1, 2}).

Other dimensions of declassification are about who controls information re-
lease, where in the system does declassification occur and finally when can in-
formation be declassified [18]. In this work, we focus on the what dimension.

2.3 Symbolic Execution

Symbolic execution [13] is a program analysis technique used to investigate the
possible execution traces of a program. The idea is to replace program inputs
with input symbols and thus instead of executing the program with concrete
values, to execute it with symbolic expressions over the input symbols. When the
program encounters a conditional branch statement, execution is forked because
there are no concrete values to evaluate the condition: whether any or both of
these branches are reachable is checked by a constraint solver. Loops can be
seen as conditional statements encountered multiple times and they are lazily
unrolled, possibly an infinite number of times. The conjunction of all conditions
encountered on the branches of a single path is called a path condition.

Symbolic execution is a general approach that can be used to check or prove
a range of properties of programs. Properties can be expressed using assert
statements.

156 D. Milushev, W. Beck, and D. Clarke

Dynamic symbolic execution, also called concolic execution [19] or DART [11],
is a variant of the technique interleaving concrete and symbolic execution.
The idea is simple: first, gather the constraints for some path by monitoring
program execution with some arbitrary, concrete inputs; then, systematically
explore new execution paths by negating parts of the initial path condition.
In this work we are going to use KLEE [6], an automatic symbolic execution
tool built on top of the LLVM compiler infrastructure; the tool is used for both
illustrations of the purposed approach and as a basis of our prototype tool.

3 Approach

3.1 Overview

The approach proposed in this paper starts with partitioning the program input
variables into public and secret, and respectively annotating them. This is the
only obligation on behalf of the developer, the rest is automatic. Then the vari-
ables are made symbolic and a type-directed transformation adopted from the
work of Terauchi and Aiken [20] is applied to the program. The transformation
is a variant of the self-compositional approach. It (the transformation) provides
the method used for interleaving the candidate program with itself, which is
needed to express noninterference as a property. We develop certain extensions
of the transformation in order to deal with aspects of procedures and dynami-
cally allocated data structures; the latter require reasoning about the heap and
a modified definition of noninterference. After the transformation is complete
assertions specifying the noninterference policy are placed. Then the symbolic
execution tool is used as a program analysis tool for noninterference. If it is able
to fully analyze all possible paths in the transformed program (paths have to be
finite), a tool based on the approach can decide whether the program is secure
or not. Otherwise the tool may either eventually return an error(s) or simply
keep running without returning any error. In the latter cases the proposed ap-
proach is useful even if it cannot cover the whole state space, as it will still
discover bugs in the covered part; moreover, the approach offers precision, i.e.
lack of false-positives. Because of the nature of typical bugs (being shallow), this
strategy often turns out to be very helpful.

3.2 Transformation of a Basic Language

We start off by illustrating how to transform a program for a minimal language
including variable declarations and assignments, while loops and if statements.
To illustrate we work with a basic subset of C and also use KLEE notation.
Nevertheless, it should be noted that the proposed approach is generic and can
be applied to many other language and symbolic execution tool combinations.
Some annotations necessary to direct the transformation are identified using
special comments “//#”and given next:

high. The subsequent line has one or many secret variables.
assume. The possible variables’ values are limited by adding invariants.

Noninterference via Symbolic Execution 157

The first step is to partition the variables and make them symbolic. Only high
variables are denoted. The step is illustrated in Program 1.2.

1 int l;
2 klee make symbolic(&l, sizeof(int), ”int l”);
3 //# high
4 int h;
5 klee make symbolic(&h, sizeof(int), ”int h”);
6 l = h + 5;

Program 1.2. Trivial noninterference example - labeled

The second step is to determine security types of expressions statically in the
usual way: in essence, if an expression depends directly or indirectly on a high
variable, it must be high.

The third step is to perform the necessary program transformations given in
Figure 1. The rules used here are essentially Terauchi and Aiken’s transforma-
tion [20] ported to a basic subset of C. The transformation is needed and used
in the process of interleaving two copies of the candidate program. Note that
the concrete rule applied for an if or while statement depends on whether the
guard has high or low security type. If the guard is high the whole statements are
composed sequentially, otherwise the bodies of the statements are interleaved.

c atomic

c → c; c′
c1 → c†1 c2 → c†2

c1 ; c2 → c†1 ; c
†
2

b has low security type c1 → c†1 c2 → c†2
if b then c1 else c2 → if b then c†1 else c†2

b has low security type c → c†

while b do c → while b do c†
b has high security type

while b do c → while b do c;while b′ do c′

b has high security type

if b then c1 else c2 → if b then c1 else c2 ; if b′ then c′1 else c′2

Fig. 1. Type-directed transformation [20]

The fourth and final stage of the transformation is to specify noninterference
conditions. These are pre and post conditions derived from the program logic
approach and guaranteeing that the program is secure. They assume that the low
variables of the two copies are the same (and possibly some extra declassification
conditions) and have to assert that the same holds at the end of the run. To
illustrate the transformation approach, consider the annotated Program 1.3:

1 int k; int l;
2 //# high
3 int h;
4 while (k < l) {l = k; k = k+1;}
5 if (l > h) l = 1; else l = 0;

Program 1.3. Annotated program illustration

It is transformed into Program 1.4.

158 D. Milushev, W. Beck, and D. Clarke

1 int k0; int k1;
2 klee make symbolic(&k0, sizeof(int), ”int k0”);
3 klee make symbolic(&k1, sizeof(int), ”int k1”);
4 int l0; int l1;
5 klee make symbolic(&l0, sizeof(int), ”int l0”);
6 klee make symbolic(&l1, sizeof(int), ”int l1”);
7 klee assume(k0 == k1); klee assume(l0 == l1);
8 int h0; int h1;
9 klee make symbolic(&h0, sizeof(int), ”int h0”);

10 klee make symbolic(&h1, sizeof(int), ”int h1”);
11 while (k0 < l0) {l0 = k0; l1 = k1; k0 = k0+1; k1 = k1+1;}
12 if (l0 > h0) l0 = 1; else l0 = 0;
13 if (l1 > h1) l1 = 1; else l1 = 0;
14 klee assert(k0 == k1); klee assert(l0 == l1);

Program 1.4. Transformed program illustration

3.3 Procedures

Whereas Terauchi and Aiken develop their transformation for a very basic lan-
guage, we need to deal with extra language features. One of these features is
procedures: the rationale for transforming them is the same as for simple imper-
ative programs. The transformation results in a new procedure with two copies
of the parameters; if the original procedure has a non-void return type then two
potentially different results of the same type are returned and thus have to be
placed in a fresh struct.

In different cases variant(s) of the if and while rules from Fig. 1 have to be
used. This depends on whether the procedure is called with arguments having
high or low security types (or both) and is based on a respective data flow
analysis. Consider Program 1.5 as an instance of a procedure to be transformed:

1 int checkPass(int input, int secret){
2 int access;
3 if (input == secret){access = 1; return access;}
4 else {access = 0; return access;} }

Program 1.5. Procedure with non-void return type

The transformed procedure should return a struct of two integers, but that means
the original return statements have to be replaced with appropriate goto state-
ments; these are used to make a transition to the second “copy” and ensure that
a properly populated data structure is returned. The resulting transformation,
assuming secret is passed a high value (thus second version of if rule used), is:

1 struct intRet∗ checkPass2(int input0, int secret0, int input1, int secret1){
2 int access0; int access1;
3 struct intRet∗ intR = malloc(sizeof(struct intRet));
4 if (input0 == secret0) {access0 = 1; goto second;}
5 else {access0 = 0; goto second;}
6 second: if (input1 == secret1) {access1 = 1; goto done;}
7 else { access1 = 0; goto done;}
8 done: intR−>ret0 = access0; intR−>ret1 = access1;
9 return intR; }

Program 1.6. Transformed procedure with non-void return type

Noninterference via Symbolic Execution 159

Next, we illustrate how to transform the int result = checkPass(guess , pass) pro-
cedure call (assuming the program consists of the call and variable assignments):

1 int result0; int result1; klee assume(result0 == result1);
2 int pass0; int pass1;
3 int guess0; int guess1; klee assume(guess0 == guess1);
4 struct intRet∗ r = checkPass2(guess0, pass0, guess1, pass1);
5 result0 = r−>ret0; result1 = r−>ret1;
6 klee assert(result0 == result1);
7 klee assert(guess0 == guess1);

Note that r is a “return” struct with two integer fields and variables have to be
symbolic.

3.4 Dynamically Allocated Data Structures and Noninterference

It has already been suggested that different parts of a struct can be high or low.
In order to model this and use symbolic execution to check programs allocating
memory on the heap, we need to model the heap and change the noninterference
definition respectively.

Let F be a set of fields, L a set of locations and V = Z ∪ L ∪ {null} be a
set of values. A heap h will be modeled, following prior work [5], as a partial
function h : L ⇀ S; here S = F ⇀ V is another partial function that models
structs; the set of all heaps is Heap. Now (m, h, P) denotes the final state after
executing program P with store m and heap h. We write (m, h, P) = (mf , hf)
to mean that the state evaluates to store mf and heap hf . Let β be a partial
bijection on memory locations, used to model the low observer’s uncertainty [2].
Let v, v′ ∈ V , L and H be the low and high elements respectively of a typical
security lattice. Value indistinguishability [5] can be defined as follows:

v ∼β,H v′ null ∼β,L null
v ∈ Z

v ∼β,L v

l, l′ ∈ L β(l) = l′

l ∼β,L l′
.

Intuitively, two heaps h1 and h2 are indistinguishable if there is a bijection that
relates each struct s1 in heap h1 to its counterpart s2 in heap h2; the structs have
the same fields (because they are of the same type) and moreover the values of
corresponding fields are indistinguishable. This is formally defined as follows: two
heaps h1, h2 are indistinguishable w.r.t. bijection β denoted h1 ∼β h2 whenever:
(1) dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2); (2) for all s ∈ dom(β) we have
that dom(h1(s)) = dom(h2(β(s))) (for every struct in h1 its corresponding by
β struct in h2 has the same fields) and (3) for all fields f ∈ dom(h1(s)) with
security level L we have that h1(s)(f) ∼β,L h2(β(s))(f), i.e. all field values of
β-corresponding structs are L-indistinguishable. Similarly all fields with security
level H in corresponding structs have field values that are H-indistinguishable.

Definition 2. (Secure information flow [5]) A program P is secure iff for all
possible stores m, m′ ∈ Var → V and heaps h, h′, hf , h′f ∈ Heap, and partial
bijection β such that (m, h, P) �= ⊥ and (m′, h′, P) �= ⊥, and (m, h, P) = (mf , hf)
and (m′, h′, P) = (m′f , h

′
f), and m ∼β m′ and h ∼β h′ imply mf ∼β′ m′f and hf ∼β′,L

h′f for some partial bijection β′ ⊇ β.

160 D. Milushev, W. Beck, and D. Clarke

The condition β′ ⊇ β actually models the fact that new data structures may
be dynamically created at runtime and thus the bijection may become larger.
An illustration of the use of the new definition follows. The main function of a
simplistic e-banking program is given in Program 1.7.

1 int main() {
2 struct bank∗ bank = createBank(); struct account∗ account = createAccount(bank);
3 //# high
4 int amount = 100;
5 addToBalance(account, amount); }

Program 1.7. Banking program - main

Each procedure call on line 2 declares and creates a struct. Each transformed
procedure creates a pair of structs “packed” in another struct (see Section 3.3).
The public fields of the struct are assumed equal. The result of the transforma-
tion is Program 1.8. The whole program, including procedure transformations,
is available as Program 1.14 in Appendix A.

1 int main() {
2 struct bankRet∗ bankr = createBank2();
3 klee assume(bankr−>bank0−>count == bankr−>bank1−>count);
4
5 struct accountRet∗ accr = createAccount2(bankr−>bank0, bankr−>bank1);
6 klee assume(accr−>account0−>wealthy == accr−>account1−>wealthy);
7 klee assume(accr−>account0−>id == accr−>account1−>id);
8
9 int amount0; int amount1;

10 klee make symbolic(&amount0, sizeof(int), ”int amount0”);
11 klee make symbolic(&amount1, sizeof(int), ”int amount1”);
12
13 addToBalance2(accr−>account0, amount0, accr−>account1, amount1);
14
15 klee assert(bankr−>bank0−>count == bankr−>bank1−>count);
16 klee assert(accr−>account0−>wealthy == accr−>account1−>wealthy);
17 klee assert(accr−>account0−>id == accr−>account1−>id); }

Program 1.8. Banking program - main transformation

In summary, whenever a new struct is allocated on the heap, the respective trans-
formation allocates two structs and makes the appropriate assumptions about
the low fields of the struct. At the end of execution, the respective assertions
about the low structs have to hold. It should be noted that at this stage and
particularly in the implementation of our tool, the bijection compares only the
scalar values of the heap structure. The more general case, allowing cycles in the
heap, is left for future work.

4 Tool and Experimental Results

This section presents a prototypical tool and some experimental results, demon-
strating the potential of the proposed approach.

Noninterference via Symbolic Execution 161

4.1 Tool Introduction

The proof-of-concept tool that we have built to validate our ideas is written
in Perl and is based on KLEE: an automatic symbolic execution tool for high-
coverage test generation built on top of the LLVM compiler infrastructure [6].
The tool works with a subset of C, including control flow statements and as-
signments to scalar variables, procedures and structs, where the fields have to
be accessed in the standard way and no pointer arithmetic is allowed. Integer
variables with addition and comparison operators are allowed as expressions.

Our tool takes as input a C program with specially annotated high variables,
performs some program transformations, adds assertions as necessary and passes
the resulting program to KLEE. Based on KLEE’s output, the tool can possibly
decide whether the tested program is secure or not and inform the developer or
keep running indefinitely. In the latter case it cannot cover all paths, nevertheless
it might still find a counterexample in the covered part and that would mean
that the program is not secure. An optional parameter specifies when to time-out
and stop searching. Whenever an error (assertion failure implying interference)
is found, the ktest-tool tool (a part of the KLEE suite of tools) can be used
to inspect and analyze the state that caused it. Additional data on the broken
assertions is easily obtainable.

The tool can handle all the sample patterns of explicit and implicit informa-
tion flow we could find in the literature. Furthermore it can handle patterns of
information release. Because the transformations are based on semantic meth-
ods, the approach is more precise than information flow type systems resulting
in the lack of false positives. On the other hand, the approach suffers from tra-
ditional weaknesses of symbolic execution, such as problems with scalability for
large numbers of paths, dependence on the power of the constraint solver and
difficult interaction with the environment. Moreover, the approach will benefit
from further development of test input generation methods for programs with
pointers. Despite the mentioned weaknesses, the tool is a very useful noninter-
ference bug finder, as demonstrated in the rest of this section.

4.2 Implicit Flow, Explicit Flow or No Flow

Consider Program 1.9: it would be rejected as insecure by a typical information
flow type system.

1 int l;
2 //# high
3 int h, j;
4 if ((j + h) > 999) {l = −1;}
5 l = h;
6 l = l − h;

Program 1.9. Secure program rejected by flow-sensitive type systems

If we were to consider the program until and including the if statement, there
would be an implicit flow; the program until and including the following

162 D. Milushev, W. Beck, and D. Clarke

statement (l = h) would have both implicit and explicit flows. But Program 1.9
is secure: closer inspection shows that the leaks “neutralize” each other. The
results are confirmed by our tool:

Program impexno.c secure.

4.3 While-Loop Insecure Program [8]

Consider Program 1.10, taken from prior work.

1 int l;
2 //# high
3 int h, j;
4 while (h>0) {h−−;l = h;}

Program 1.10. While-loop insecure program

In order to prove the insecurity of this program, the theorem proving approach
using the tool KeY takes 164 steps [8]; user interaction is needed for a number of
steps, such as: establishing the induction hypothesis, instantiation and unwind-
ing of the loop etc. Our tool detects the problem as expected and within 0.2s
(see Table 1 for detailed statistics):

Program while.c insecure. Flow in low variable l detected.

The tool is configured to stop after finding an error, but this is optional. More
importantly, the developer has to only mark the high variable, which shields away
the typical complexity imposed by alternative approaches (e.g. verification ones).
The developer does not need to be a verification expert or to think about loop-
invariants, unwinding, assertions, etc. but nevertheless has a powerful testing
tool at her disposal.

4.4 e-Banking Example

The e-banking program of Section 3.4 is presented next. The interesting, security-
related code is in procedure addToBalance2 :

1 if (amount >= 10000) account−>wealthy = true; else account−>wealthy = false;

Program 1.11. Security-related part of e-Banking example

Whenever the balance gets higher than 10000, flag wealthy is set. The field
wealthy of the struct account is public and leaks information about the balance.
The latter is confirmed by our tool, producing the following output:

Program ebank.c insecure. Flow in low field account->wealthy.

Noninterference via Symbolic Execution 163

4.5 Average Example

Recall that Program 1.1 computes the average of two high variables. Precondi-
tions on the values of variables, such as //#assume (i > 0 & j > 0), can be
specified. As already discussed, the program is not secure and the tool terminates
with the appropriate error:

Program avg.c insecure. Flow in low variable l.

It should be noted that our tool is precise in the sense that the errors are re-
producible. The values that broke the assertions can be inspected using KLEE’s
ktest-tool in order to analyze the problem. The values generated by the ktest-tool
are: l0 = 0, l1 = 0, i0 = 506, i1 = 1609415267, j0 = 507, j1 = 485081005.

4.6 Password Examples

Next consider the simple password check in Program 1.12.

1 int access, input;
2 //# high
3 int pass;
4 //# declassify (input == pass)
5 if (input == pass) access = 1; else access = 0;

Program 1.12. Password check

Password checking programs leak information as a part of their functionality.
This can be seen if we consider the program without line 4; even when a given
guess is wrong, guessing reveals that the password is or is not equal to the guess.
This trivial leak is detected as expected:

Program passw.c insecure. Flow in low variable access.

As a result of the declassify statement though, the extra condition ((input0 ==
pass0) == (input1 == pass1)) is added to the the assumptions; this is of
course transparent to developers. In this case, our tool verifies that Program 4.6
is secure:

Program passwDecl.c secure.

Finally, we consider the following program, illustrating the use of procedures:

1 int checkPass(int input, int secret){
2 int access;
3 if (input == secret){ access = 1; return access;}
4 else { access = 0; return access;} }
5 int main(){
6 int pass; int guess; int result;
7 //# declassify (guess == pass)
8 result = checkPass (guess, pass);}

Program 1.13. Password example with procedures

The program is secure, as expected.

164 D. Milushev, W. Beck, and D. Clarke

4.7 Statistics

Statistics of the discussed examples are presented in Table 1. Each of the con-
sidered programs is characterized by the respective number of instructions, ex-
plored paths and generated test cases (given by KLEE). Finally the output of
the time program is given; real time is the elapsed time between start and finish,
whereas user gives the CPU time spent in user mode and sys gives the CPU
time in kernel mode. Typically user and sys time tell us how much CPU time
the process used. The highest time by this criterion is below 0.25s. It should be
noted that the presented examples include ones whose verification would require
a considerable effort if a special purpose type system would have to be devel-
oped (for each slightly different definition of security) or a theorem prover would
have to be used. Because instruction cycles are cheap nowadays, a tool based
on the proposed approach has a high potential of being very useful in everyday
development work.

The considered examples are not particularly large, but we have tried embed-
ding them deeper in realistic programs and the results appear to be promising.
It should be noted that the definitions considered here (and in the larger part
of the security literature) are of termination insensitive notions of security.

Table 1. Statistics for presented programs

Program Instructions Paths Generated Tests Time
real user sys

1.9 118 4 4 0.199s 0.062s 0.023s

1.10 57 5 5 0.134s 0.050s 0.024s

1.7 430 4 3 0.095s 0.046s 0.024s

1.1 156 4 3 0.268s 0.212s 0.030s

1.12 (insecure) 76 4 3 0.099s 0.053s 0.024s

1.12 (secure) 76 2 2 0.089s 0.051s 0.021s

1.13 153 2 2 0.108s 0.055s 0.025s

5 Related Work

To the best of our knowledge, we are the first to propose the use of symbolic ex-
ecution for testing noninterference, boasting the advantages of precision and full
automation not available in typical verification approaches. Nevertheless, many
of the ideas presented here appear in the substantial literature on verification of
noninterference. Proposed solutions traditionally rely on information flow type
systems [16], a syntactic approach which offers an overapproximation and thus
tends to be too conservative in practice; moreover, a new type system has to
be developed every time a slight modification of the needed notion of security
is needed (e.g. to allow a specific notion of declassification). On the other hand,
many attempts to address noninterference have a semantic flavor [9,12]; such
approaches are attractive because they suggest methods to transform the prob-
lem so as to benefit from state-of-the-art verification techniques and tools. These

Noninterference via Symbolic Execution 165

approaches gave rise to further work on program-logics based characterizations
of noninterference [8,4]: both these rely on the idea of reducing noninterference
of a program to a property of the sequential composition of the program with
itself. Reasoning about such constructs is facilitated by Terauchi and Aiken’s
type-directed transformation [20], which takes advantage of the structure of a
self-composed program and the resulting symmetry and redundancy.

In the most relevant related work Backes et al. [1] use techniques similar to
ours to compute all information leaks in a program and to quantify the leaks
using information-theoretic means. Information leaks in their work are charac-
terized by an equivalence relation on secrets and can be expressed as a logical
assertion on program variables; this is similar to our approach. They start with
a relation expressing noninterference and gradually refine it, when counterexam-
ples are found. Their quantitative analysis is based on computing the number
and sizes of equivalence classes. The proposed approach computes an overap-
proximation of the information leaked by a program (and then checks if such a
relation is reachable from the start state) unlike our approach, based on a finer
relation (we rely on an underapproximation, only reachable states are consid-
ered). Another related and important difference is that our approach does not
require a set of experiments to start with, due to the nature of symbolic execu-
tion. This is an advantage because it makes the approach more automatic. There
are also differences between the approaches on other levels. First, we address a
slightly different problem: testing a program for conformance with a base-line
information flow policy, possibly augmented with a notion of information release,
giving direct feedback to developers and being fully automatic; second, we use
symbolic execution, whereas their approach uses off-the-shelf model checkers;
finally, we explore qualitative policies only.

Declassification is also a well-studied topic (see [18] for an overview). The
idea to use equivalence relations to characterize partial information flow was
originally proposed by Cohen [7] and further developed in the literature [23,10]. A
number of related articles explore the use of equivalence relations to characterize
information release using flow-sensitive type systems [14,17]. Declassification is
similarly handled in work using the KeY tool [8], but again the difference is that
symbolic execution there is used for verification.

6 Conclusion

We have presented a novel, automatic approach to testing noninterference: the
only responsibility of the developer is to identify the secrets in a candidate
program and appropriately annotate them. The program is then automatically
transformed and assertions are added as needed. Next, dynamic symbolic execu-
tion is used to try to break the assertions. Because typically bugs are shallow, the
approach has a high potential to be very useful for testing; a major advantage of
the approach is precision: any assert violation indicates a concrete, reproducible
security bug. Moreover, there is no need to write complex invariants or be an
expert in verification to assist the tool in any way and this can be seen as a
major advantage for developers.

166 D. Milushev, W. Beck, and D. Clarke

To illustrate the usefulness of the proposed approach, we have built a pro-
totypical tool based on the symbolic execution tool KLEE. Our tool takes as
input an annotated program from a “well-behaved” subset of C, performs the
necessary program transformations and passes the resulting program to KLEE.
Then, based on KLEE’s output the tool informs whether a bug could be found.
We have successfully tested the tool on a number of programs known from the
literature and exhibiting patterns of insecurity.

Acknowledgements. We would like to thank Dries Vanoverberghe for very
insightful and valuable comments on a late draft of the paper and Tatyana
Doktorova for many helpful suggestions on the presentation. We also thank the
reviewers for their constructive feedback.

References

1. Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy, pp. 141–153. IEEE Computer Society, Washington, DC (2009)

2. Banerjee, A., Naumann, D.A.: Stack-based access control and secure information
flow. Journal of Functional Programming 15, 131–177 (2005)

3. Banerjee, A., Naumann, D.A., Rosenberg, S.: Towards a logical account of declas-
sification. In: Proceedings of the 2007 Workshop on Programming Languages and
Analysis for Security, PLAS 2007, pp. 61–66. ACM, New York (2007)

4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the 17th IEEE workshop on Computer Security Foundations,
pp. 100–114. IEEE Computer Society, Washington, DC (2004)

5. Barthe, G., Rezk, T.: Non-interference for a JVM-like language. In: TLDI 2005,
pp. 103–112. ACM, New York (2005)

6. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI 2008, pp. 209–224.
USENIX Association, Berkeley, CA (2008)

7. Cohen, E.S.: Information transmission in sequential programs. In: DeMillo, R.A.,
Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Foundations of Secure Computation,
pp. 297–335. Academic Press (1978)

8. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure
information flow. Technical Report S-412 96, Chalmers University of Technology
and Göteborg University (2004)

9. Focardi, R., Gorrieri, R.: A taxonomy of security properties for process algebras.
Journal of Computer Security 3(1), 5–34 (1995)

10. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In: Proc. of the 31st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2004), pp. 186–197. ACM Press, NY (2004)

11. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2005, pp. 213–223. ACM, New York (2005)

12. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Science
of Computer Programming 37, 113–138 (2000)

Noninterference via Symbolic Execution 167

13. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19, 385–394 (1976)

14. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification and
qualified robustness. Journal of Computer Security 14(2), 157–196 (2006)

15. Pottier, F., Simonet, V.: Information flow inference for ML. SIGPLAN Not. 37,
319–330 (2002)

16. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

17. Sabelfeld, A., Myers, A.C.: A Model for Delimited Information Release. In: Fu-
tatsugi, K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233,
pp. 174–191. Springer, Heidelberg (2004)

18. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: Proceed-
ings of the 18th IEEE Workshop on Computer Security Foundations, pp. 255–269.
IEEE Computer Society, Washington, DC (2005)

19. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. SIG-
SOFT Software Engineering Notes 30, 263–272 (2005)

20. Terauchi, T., Aiken, A.: Secure Information Flow as a Safety Problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005)

21. Volpano, D.M., Smith, G.: A Type-Based Approach to Program Security. In:
Bidoit, M., Dauchet, M. (eds.) CAAP/FASE/TAPSOFT 1997. LNCS, vol. 1214,
pp. 607–621. Springer, Heidelberg (1997)

22. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings 16th IEEE Computer Security Foundations Workshop,
pp. 29–43 (July 2003)

23. Zdancewic, S., Myers, A.C.: Robust declassification. In: Proceedings of the 14th
IEEE Workshop on Computer Security Foundations, CSFW 2001, pp. 15–23. IEEE
Computer Society, Washington, DC (2001)

168 D. Milushev, W. Beck, and D. Clarke

A Sample Transformation

1 struct account {
2 struct account∗ next; int balance;
3 int wealthy; int id;};
4
5 struct bank {
6 struct account∗ head;
7 int count;};
8
9 struct bankRet {

10 struct bank∗ bank0;
11 struct bank∗ bank1;};
12
13 struct bankRet∗ createBank2(){
14 struct bank∗ bank0 = malloc(sizeof(struct bank));
15 struct bank∗ bank1 = malloc(sizeof(struct bank));
16 bank0−>head = 0; bank1−>head = 0;
17 bank0−>count = 0; bank1−>count = 0;
18 struct bankRet∗ bankr = malloc(sizeof(struct bankRet));
19 bankr−>bank0 = bank0; bankr−>bank1 = bank1;
20 return bankr; };
21
22 struct accountRet {
23 struct account∗ account0; struct account∗ account1; };
24
25 struct accountRet∗ createAccount2(struct bank∗ bank0,struct bank∗ bank1) {
26 bank0−>count++; bank1−>count++;
27 struct account∗ account0 = malloc(sizeof(struct account));
28 struct account∗ account1 = malloc(sizeof(struct account));
29 account0−>next = bank0−>head; account1−>next = bank1−>head;
30 account0−>id = bank0−>count; account1−>id = bank1−>count;
31 account0−>balance = 0; account1−>balance = 0;
32 account0−>wealthy = false; account1−>wealthy = false;
33 bank0−>head = account0; bank1−>head = account1;
34 struct accountRet∗ accr = malloc(sizeof(struct accountRet));
35 accr−>account0 = account0; accr−>account1 = account1;
36 return accr; }
37
38 int getBal(struct account∗ acct)
39 { return acct−>balance;}
40
41 struct intRet{
42 int r1; int r2; };
43
44 struct intRet∗ getBal2(struct account∗ acct1,struct account∗ acct2)
45 {
46 struct intRet∗ intR = malloc(sizeof(struct intRet));
47 intR−>r1=acct1−>balance; intR−>r2=acct2−>balance;
48 return intR;}
49
50 void addToBalance2 (struct account∗ account0, int amount0,
51 struct account∗ account1, int amount1) {
52 if (amount0 >= 10000) account0−>wealthy = true;
53 else account0−>wealthy = false;
54 if (amount1 >= 10000) account1−>wealthy = true;
55 else
56 account1−>wealthy = false;
57 account0−>balance += amount0;
58 account1−>balance += amount1;}
59 int main() {
60 //Body of Program 1.8 goes here
61 }

Program 1.14. Transformation and noninterference specification of Program 1.7

Defining Distances for All Process Semantics�

David Romero Hernández and David de Frutos Escrig

Dpto. Sistemas Informáticos y Computación
Facultad CC. Matemáticas, Universidad Complutense de Madrid, Spain

dromeroh@pdi.ucm.es, defrutos@sip.ucm.es

Abstract. Recently several authors have proposed some notions of dis-
tance between processes that try to quantify “how far away” is a process
to be related with some other with respect to a certain semantics. These
proposals are usually based on the simulation game, and therefore are
mainly defined for simulation semantics or other semantics more or less
close to these. These distances have a local character since only one of the
successors of each state is taken into account in their computation. Here,
we present an alternative proposal exploiting the fact that processes are
trees. We define the distance between two of them as the cost of the
transformations that we need to apply to get two processes related by
the corresponding semantics. Our new distances can be uniformly defined
for all the semantics in the ltbt-spectrum.

1 Introduction and Motivation

We are thirsty, but we hate those boring machines that only offer a few products.
But we are very happy with the machine at our institution that offers a wide
variety of beverages. So, each day we can go to the machine with our selected
chosen item and get our bottle. But if some day the machine is out of that, then
we have to choose another drink, and that day we are not so happy. . . Certainly,
if it is only a single kind of drink that is missing we will probably stay very happy,
but if something happens and the machine today offers only a single beverage,
then we will be probably not so happy. . .

We have a collection of items in some numbered “collector desk”. We look
for a product by reminding its assigned number. But today, for some reason,
somebody has interchanged two items and then if we look for one of them we
will find the other, and we will have to make our job using it, obviously not so
well as if we had found the desired item. But if one day the desk collapses and
somebody has to put the items in the places without knowing their places, and
he is wrong in all the cases, then for sure we will fail when looking for any of
the items.

There is a lottery in the club and everybody expects that all the balls corre-
sponding to the sold tickets will be in the bag. But for some reason the set of
balls does not exactly corresponds with that of sold tickets. Certainly, the raffle
� Partially supported by the Spanish projects TESIS (TIN2009-14312-C02-01), DE-

SAFIOS10 (TIN2009-14599-C03-01) and PROMETIDOS S2009 / TIC-1465.

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 169–185, 2012.
c© IFIP International Federation for Information Processing 2012

170 D. Romero Hernández and D. de Frutos Escrig

is not fair, but how much unfair? An obvious reply will take into account the
number of tickets that were not presented in the bag.

All these are simple “real life” situations, that we can easily model by means
of a process with some kind of choice (either internal or external), where the
number of choices in the initial model is large. This corresponds to the ideal
situation, but if something is wrong, the choice is not the same and this would
produce a process that does not fully satisfy our expectations. Then, we want
to measure how far away we are from the desired behavior.

At the technical level, we want to define adequate distances between processes
which measure, in a reasonable way, the gap between any behavior and the
corresponding “expected” one. Of course, if we are talking about behaviors, then
the first thing to fix is the reference semantics. There are plenty of proposals for
process semantics, which have been presented in several versions of the linear-
time branching-time (ltbt) spectrum [14, 5].

In the last few years we can find in the literature several proposals for dis-
tances between processes associated to a certain range of process semantics, but
in all the cases far from being applicable to the whole spectrum [1]. Most of
them, if not all, base their definitions on the (bi)simulation game that character-
izes (bi)simulations between processes [11, 3, 2]. Although these are branching
semantics, their co-inductive characterizations provide a (partially) local way to
compare processes by considering, one by one, all the possible transitions from
the compared states. The rules of these games state that any a-transition should
be replicable by another a-transition of the other process; otherwise, we would
have found a proof of non-bisimilarity (or that of non existence of a simulation)
of the two compared processes.

Starting from them, the modified distance games allow the defender to reply
an a-move by means of another b-move, where we could have a �= b. Then he
should pay to the attacker as the provided distance between these two actions,
d(b, a), states. Obviously, the attacker tries to maximize his profit by making his
appropriate moves, while the defender tries to minimize them with his moves.
Finally, the value of this game provides the (bi)simulation distance between the
two compared processes w.r.t. the provided distance between actions, d.

Certainly, we could agree about the naturalness of these approaches, which in
fact are proved to be correct, in the sense that the distance between two processes
is 0, if and only if, they are (bi)similar. But, if we apply these distances to the
formalizations of our three examples above, considering the discrete distance
between processes (given by d(a, a) = 0 and d(a, b) = 1 if a �= b) and taking pn

as the corresponding “ideal” behavior, where n is the desired number of choices,
pn−1 the slightly “incorrect” approximation, and p1 the poor approximation with
a single choice, we obtain d(pn, pn−1) = 1, probably as expected, but a bit
surprisingly, we also have d(pn, p1) = 1. In our opinion, it would be much more
informative to get instead d(pn, p1) = n − 1, in such a way that if we consider
the general approximation pk of the ideal process pn, which offers exactly k of
the actions, then we have d(pn, pk) = n − k, and also d(pk, p1) = k − 1.

Defining Distances for All Process Semantics 171

Why these known distances between processes fail to notice the quantity of
choices that are lost? This is simple: just because the “local” character of the dis-
tance game. It certainly observes any of the lost actions, but this only happens at
different plays of the game, each of them producing a profit d(ai, a1) = 1 to the
attacker, so that the “final” profit (the value of the game, that generates d(pn, pk))
is always 1, when k < n, whatever the number of lost choices, n − k was.

Even if we definitely advocate for a distance which will get d(pn, pk) = n− k,
and in fact we will provide such a distance, we could still look for “justifications”
of the distance produced by the game approaches: if we only study the compu-
tations of the processes “one by one” (certainly step by step, in order to get the
characterizations of the branched semantics, instead of just the trace semantics)
then we will never realize that several choices were lost at the same time (we
only notice that “each one of them” was lost, but this is not enough).

What is the problem? (and then, how can we solve it?). Simulations define
branched behaviors that are roughly trees which consider all computations of
each process together [15]. These trees can be seen as “global” values (or full
behaviors) of the process. Equality (resp. containment) of trees is defined (in
a coalgebraic way) by bisimulation (resp. simulation), and then (in a partially
local way) by the bisimulation (resp. simulation) game. We could say that this
is the “magic” of (bi)simulation, but when we introduce distances between ac-
tions and we try to lift them up to the branched behaviors by means of the
distance game, then we find that the obtained values are not able to capture
the branched structure, because the value of the game is obtained by the mini-
max algorithm, which chooses the critical path generated by the application of
the optimal strategies of both players, but is not able to “add” the differences
observed at different branches. Indeed, we are using max instead of add when
computing the value of the distance games, and then we cannot capture the
“global” distances as required by the situations in our introductory examples.

As a matter of fact, the reason why the plain (bi)simulation game is able to
capture a branched semantics is because we are interested in checking equality.
This can be done by a boolean function which only considers boolean values,
e.g. 0 for equal and 1 for unequal. Then, any move that the defender cannot
match produces some 1, so the application of max would produce the value 1.
But in this discrete domain, max can also be used to compute addition, which in
fact coincides with disjunction. Instead, as soon as we have a more informative
domain for the values of distances, then max and add become two different
operations. It is clear that the first is only able to transmit a partial information
about the branched behaviors, while addition collects all the “local” differences
to compute a much more reasonable concept of global distance.

Once we have our mechanism to compute our global bisimulation distance, we
will see that a quite simple customization, gives us a nice notion of distance for
each of the semantics in the ltbt-spectrum. Roughly we just need to combine the
preorder defining each of the other semantics in the ltbt-spectrum—see Fig.1—
(or equivalently, the inequalities that are included in their axiomatizations), with
the rules which produce the values of our bisimulation distance, .

172 D. Romero Hernández and D. de Frutos Escrig

(tree semantics)

�
bisimulation semantics (B)

�
2-nested simulation semantics (2-S)

�
ready simulation semantics (RS)

�
possible worlds semantics (PW)

�
ready trace semantics (RT)

����
����

failure trace semantics (FT) readiness semantics (R)
����

����
failures semantics (F)

�
completed trace semantics (CT)

�
trace semantics (T)

�
���

possible-futures semantics (PF)

	
	

	
	

	

�
�

�
�

�
�

���
simulation semantics (S)

����������

Fig. 1. The ltbt-spectrum

2 Preliminaries

All the semantics from the ltbt-spectrum [14, 5, 6] that we consider can be
defined over arbitrary (possibly infinite) processes whose operational semantics
is defined by means of a labelled transition system (lts) P = (Proc, Act,→). We
will use the classical notation p

a→ p′ to represent the transitions of processes.
Moreover, it is also useful to have a syntactic notation for representing finite
processes. We will use BCCSP [14, 5].

Definition 1. Given a set of actions Act, the set BCCSP(Act) of processes is
that defined by the BNF-grammar: p ::= 0 | ap | p + q. The very well known
operational semantics of BCCSP [14, 5] is defined by:

(1)
ap

a→ p
(2) p

a→ p′

p + q
a→ p′

(3) q
a→ q′

p + q
a→ q′

In order to simplify the presentation, we start by considering a classic (symmet-
ric) distance between actions d : Act×Act → N with d(a, b) = d(b, a) ∀a, b ∈ Act.
Let us recall that any distance has besides to satisfy the following two properties:
d(a, b) = 0 ⇔ a = b, d(a, c) + d(c, b) ≤ d(a, b) ∀a, b, c ∈ Act. Later, in Sect.6,
we will discuss when an asymmetric quasi-distance could be used instead, and
which is the intuitive meaning of the distances between processes that can be
obtained using them.

We can represent any process as a tree (finite or infinite). Then a first approach
to the definition of a distance measuring how far away is a process p of being
equivalent to some other q, would study the differences between the trees which
represent both processes, seeing what we have to change in order to turn them
into two equivalent processes. Let us start by considering ordered trees, where
we have a set of ordered sons for each node of the tree. We can present these
trees as terms

∑n
i=1 aipi, where n = 0 produces the empty tree 0.

Defining Distances for All Process Semantics 173

Definition 2. We say that an ordered tree p is at most at distance d from an-
other tree q, w.r.t. the symmetric distance between actions d, and then we write
dd(p, q) ≤ d, if and only if:

• d ≥ 0 and p = q = 0, or
• p =

∑n
i=1 aipi, q =

∑n
i=1 biqi, and d =

∑n
i=1 di +

∑n
i=1 d(ai, bi) with

dd(pi, qi) ≤ di ∀i = 1 . . . n.

It is clear that this definition only produces (finite) distances between trees which
have exactly the same structure. For instance, for the processes p = a + b and
q = c + d we obtain dd(p, q) ≤ d(a, c) + d(b, d). However, if we want to compare
r = a and s = b+ c, we will get no finite value d for which dd(r, s) ≤ d, and then
we could say that dd(r, s) = ∞.

Moreover, when comparing two infinite trees we will only obtain a finite dis-
tance if the number of disagreements between them is finite. Certainly, this will
be the expected result if we simply add the cost of all these mismatches. But it is
important to notice that the simple approach here proposed will never been able
to compute distances between infinite trees with infinitely many mismatches.
Therefore, in the following we will restrict ourselves to the case of finite pro-
cesses, leaving the case of infinite processes for our conclusions.

It is also true that in this simple scenario when we compare two trees with
the same structure, we could directly obtain the distance between them. But
we preferred to introduce this indirect presentation using bounds, because this
will be later needed when considering more complicated scenarios. Certainly, the
order between the summands is important in ordered trees. As a consequence,
if we consider p′ = b + a and d(a, b) = 1, we obtain dd(p, p′) ≤ 2, and definitely
not dd(p, p′) ≤ 0.

But trees representing processes are unordered: each node has attached a set
of subtrees, and this even implies that no identical sons are allowed. In fact,
this corresponds to considering processes “up-to” bisimulation. Then, in order to
define a reasonable and well behaved notion of (bound of the) distance between
processes, we apply a push-out of the definition above and that of bisimulation.
So we get a rewriting procedure where we try to change any of the two compared
processes into the other: Either changing one of the actions in a tree by other,
but then we need to pay for it, as stated by the function d; or we simply apply
for free to any subtree of them any of the bisimulation axioms:

(B1) x + y
 y + x (B2) x + x
 x

(B3) (x + y) + z
 x + (y + z) (B4) z + 0
 z

Obviously, this procedure is non-deterministic and different possible applications
lead us to several (different) “distances”, and this is why we need to talk about
“bounds” of the distance between p and q.

174 D. Romero Hernández and D. de Frutos Escrig

Definition 3. We say that an unordered tree p is at most at distance d from
another tree q, w.r.t. the symmetric distance between actions d, and then we
write dd(p, q) ≤ d, if and only if:

• (C1) p = ap′, q = bp′, and d ≥ d(a, b), or
• (C2) p = p′ + r, q = q′ + r, and d ≥ dd(p

′, q′), or
• (C3) p = ap′, q = aq′, and d ≥ dd(p

′, q′), or
• (C4) d ≥ 0 and q can be obtained from p by application of (B1)-(B4), or
• (C5) There exist r, d′ and d′′ s.t. d′ ≥ dd(p, r), d′′ ≥ dd(r, q) and d ≥ d′+d′′.

(C1) corresponds to a single application of Def.1 producing a single change at
the root of p. (C2) and (C3) allow the contextual application of (C1) at any
place, thus generating the possibility to change any action a in p by any other
action b, paying d(a, b) for it. (C4) introduces the possibility of transforming any
process p into another bisimilar q, for free. Finally, (C5) tells us that by adding
the costs of the steps of any transformation that produces q from p, we obtain
an upper bound of the distance between p and q.

We could obtain “the” distance between two trees by considering the minimal
value d for which we have dd(p, q) ≤ d. But unfortunately this corresponds to
a global study of the set of derivations that produces the bounds. We prefer
to avoid the explicit consideration of those “exact” distances, since it seems not
possible to introduce the computation of these minimal values in our approach
in a manageable way.

Moreover, it is easy to see that these distances would correspond to the short-
est path in the graph whose nodes are processes, and the valued arcs correspond
to the cost of the basic allowed transformations between them induced by rules
(C1)− (C4); (C5) states somehow the Bellman’s optimality principle. As a con-
sequence we do not need “all the strength” of rule (C5) which allows us to
compose a path by concatenating two arbitrary paths, but it certainly includes
the (needed) case in which the first path is a single step. However, by including
this general rule we obtain a more symmetric definition, where those single steps
do not need any separate treatment.

Now, by applying (B1) we obtain dd(a + b, b + a) ≤ 0. Moreover, we can
compare trees that have not the same structure. For instance, we can transform
for free r = a into r′ = a + a, and then we obtain dd(r

′, s) ≤ d(a, b) + d(a, c),
from where we conclude dd(r, s) ≤ d(a, b)+d(a, c). Although it could be the case
that we could obtain other “lower bounds” of this distance, as we will discuss
later in Sect.3 (page 179).

Next, we present another equivalent definition of our bisimulation distance
between processes. We consider processes up-to bisimulation, and following the
coinductive approach, we will consider a collection of “distance relations” {Gm |
m ∈ N}, that are those generated by the SOS-rules below:

(1) p Gn p (2) p Gnq
ap Gn+d(b,a) bq

(3) p Gn p′

p + q Gn p′ + q
(4) p Gn q q Gn′r

p Gn+n′ r

Defining Distances for All Process Semantics 175

Proposition 1. For all n ∈ N, we have p Gn q if and only if dd(p, q) ≤ n.

Proof. It is clear the correspondence between the rules defining both collections
of relations. We will only remark that (C4) corresponds to working up-to bisim-
ilarity, while rule (2) covers both (C1) and (C3) at the same time. ��

Remark 1. It would be possible to mix these rules in several ways, even reducing
its total number. But we prefer this presentation, where basic transformations
are shown in isolation. This definitely simplifies the rule-induction proofs in the
following.

3 Simulation Distance

Starting from the bisimulation distance presented above, next we introduce the
simulation distance. We start by recalling the definition of simulation.

Definition 4. A simulation is a relation S between processes such that whenever
we have pSq, for every a ∈ Act, if p

a→ p′ then, there exists some q′, such that
q

a→ q′ and p′Sq′. We say that process p is simulated by process q, or that q
simulates p, written p S q, if there exists a simulation S such that pSq.

We want to define by means of rules the relations that indicate how far away is
a process p of being simulated by another q. Of course, when q simulates p, the
simulation distance between them (in this direction) will be 0. When this is not
the case, we will need to change the tree that represents q, to get a process that
simulates p, paying for each modification.

Definition 5. Given two processes p and q, we say that the simulation distance
from q to p is at most m ∈ N, w.r.t. the symmetric distance between actions d,
and then we write dS

d
(p, q) ≤ m, if we can derive p GS

m q applying the following
rules:

(1) p S q
p GS

n q
(2) p GS

n q

ap GS
n+d(b,a)

bq
(3) p GS

n p′

p + q GS
n p′ + q

(4) p GS
n q q GS

n′ r

p GS
n+n′ r

In other words, we can say that the simulation distance is obtained by computing
the bisimulation distance up to the similarity relation. This can also be expressed
in a transformational way: we look for the “minimal changes” that we need to
make in q to get a process q′ which simulates p.

Remark 2. Note that in this case we do not need to explicitly say that we work
up-to bisimilarity, since when q ∼ q′, we also have q′ S q, and then by applying
(1) we can transmute q into q′ for free, whenever this is needed.

176 D. Romero Hernández and D. de Frutos Escrig

Next we present a very simple example to illustrate how our definition works.

Example 1. We consider the lexicographic distance between actions induced by
the lexicographic order, so we have d(a, b) = 1, d(a, c) = 2, and so on. Let us
consider the processes p = a(b + c) and q = ab + ad. Then, it is easy to see that
p �S q and q �S p. Let us start seeing how far away we are of having q S p.
It is clear that q S p′, where p′ is obtained from p by turning c into d, so that
we define p′ = a(b + d). Therefore, we have dS

d
(p, q) ≤ d(c, d) = 1. Next we see

in detail how we can derive q GS
1 p applying the rules in Def.5:

q �S p′
q GS

0 p′ (1)

d GS
d(c,d) c

b + d G
S
1 b + c

(3)

p′ GS
1+d(a,a)

p
(2)

q GS
1 p

(4)

If we consider the opposite distance, which measures at which extent we have
(not) p S q, the shortest way to obtain some q′ with p S q′ is to duplicate (for
free) the subtree below a, and then we change one of the b actions into c, paying
for it d(b, c). So we obtain q′ = a(b+c)+ad, which produces dd(q, p) ≤ d(b, c) = 1.
This can be inferred applying our rules as follows:

p �S q
′

p GS
0 q′ (1)

c G
S
1 b

b + c GS
1 b + b

(3)

b + c GS
1 b

(B2)

a(b + c) GS
1+d(a,a)

ab
(2)

q′ GS
1+d(a,a)

q
(3)

p GS
1 q

(4)

Next we compare the definitions of simulation distance based on the simulation
game with ours.

Definition 6. (Simulation game) Given two LTSs, L1 and L2, we call configu-
rations the pairs (p, q), with p ∈ L1 and q ∈ L2. The simulation game is played
by two players: the attacker A and the defender D. The initial configuration of
the game deciding if p0 s q0, is just the pair (p0, q0). A round of the game,
when the current configuration is (p, q), proceeds as follows:

1. A chooses a transition in L1: p
a→ p′.

2. D must execute the same action at the other side of the board (L2): q
a→ q′.

3. The game proceeds in the same way from the new configuration (p′, q′).

The winner of the game is defined by the following rules: (1) Any infinite game
is a win for D. (2) D also wins if A cannot make any new move. (3) A wins
when he makes a move, that D cannot reply with a transition from L2.

Theorem 1. p S q (resp. p �S q) if and only if D (resp. A) has a winning
strategy for the simulation game starting at (p,q).

The simulation game can be turned into a (classical) simulation distance game by
allowing to reply any a-move by some b-move with b �= a, but then the defender

Defining Distances for All Process Semantics 177

should pay d(b, a) to the attacker for the mismatch. The value of the game
provides the “classical” simulation distance between p and q [1]. We can obtain
a coinductive characterization, which also provides a more general definition
covering also infinite processes, as follows:

Definition 7. A family of relations between processes (Sn)n∈N is a classical
simulation distance family (csdf), w.r.t. the symmetric distance between actions
d, when for each (p, q) ∈ Sn we have the diagram:

p Sn q

=⇒
p′ Sn−d(b,a) q′

∀ a ∃b

We say that p and q are at most at classical simulation distance n, and then we
write dS

d
(p, q) ≤ n, iff there is some csdf (Sn)n∈N such that pSnq.

Example 2. Using the distance relation d at Example 1, if we apply our Def.5,
we get dS

d
(a + d, b + e) ≤ 2, but we cannot obtain dS

d
(a + d, b + e) ≤ 1. Instead,

we can get a csdf taking S1 = {(a + d, b + e)} and S0 = {(0,0)}, because
a + d

a→ 0 can be replied by b + e
b→ 0 with cost 1. If we consider the discrete

distance d defined by d(a, b) = 1 ⇔ a �= b, then we obtain dd(
∑n

i=1 ai, a0) ≤ n,
but dd(

∑n
i=1 ai, a0) �≤ n− 1, while using the classical simulation game approach

we can take S1 = {(
∑n

i=1 ai, a0) | n ∈ N} and S0 = {0,0}, because any move∑
ai

ai→ 0 can be replied by a0
a0→ 0 with cost 1.

Even if we consider that our “global simulation distance”, defined at Def.5, is the
most adequate way to turn the simulation relation into a quantitative distance
between processes, next we will show the flexibility of our approach showing that
a simple variation of the system of rules defining it produces a characterization
of the “classical” operational simulation distance, defined at Def.7. We only need
to change rule (3), taking instead the new rule (3′), thus obtaining the revised
system:

(1) p S q
p HS

n q
(2) p HS

n q

ap HS
n+d(b,a)

bq
(3′) p HS

n p′ q HS
n′ q′

p + q HS
max{n,n′} p′ + q′

(4) p HS
n q q HS

n′r

p HS
n+n′ r

We will see that the use of max in this rule produces that only the cost of the
simulation of the computation that is “harder to simulate” is taken into account
when generating the relations HS

n . As a consequence, the family (HS
n)n∈N is a

csdf that accurately generates the classical simulation distance:

Theorem 2. 1. (HS
n)n∈N is a csdf.

2. If (Sn)n∈N is a csdf then Sn ⊆ HS
n .

Proof. • 1| We prove that (HS
n)n∈N satisfies the definition of csdf, by rule

induction on the definition of HS
n :

178 D. Romero Hernández and D. de Frutos Escrig

(1) : p HS
n q

(
df⇐ p S q)

p′ HS
n q′ (

(1)⇐ p′ S q′)
∀a ∃ b=a

(2) : ap HS
n+d(b,a)

bq (3′) : p + q HS
n p′ + q′

p HS
n+d(b,a)−d(b,a)

q p′′ HS
n−d(b,a)

p′′′

⇓ ⇑pHS
n p′ ∧ qHS

n′q′ with n≥n′

p HS
n q p HS

n p′

p′′ HS
n−d(b,a)

p′′′

a b ba

a b (by i.h.)

(4) : p HS
n+n′ r p HS

n q q HS
n′ r

(⇐ i.h.(4))
p′HS

n+n′−(d(c,b)+d(b,a))
r′ p′HS

n−d(b,a)
q′ q′HS

n′−d(c,b)
r′

⇓d(c,a)≤d(c,b)+d(b,c)

p′ HS
n+n′−d(c,a)

r′

a c a b b c

• 2| We use complete induction on the depth of p:
0 Sn q ⇒ 0 s q ⇒ 0 HS

n q

Let p = ap′a + r and q = bq′b + q′′ such that

p = ap′a + r Sn q = bq′b + q′′

=⇒
pa Sn−d(b,a) q′b

∀ a ∃ b

Then we have:

p′a Sn−d(b,a) q′b ⇒ p′a HS
n−d(b,a) q′b ⇒ ap′a HS

n bq′b .

This happens for all the summands of p, which means that up-to idempotence
of +, we can assume that p =

∑
aip

′
ai

and q =
∑

biq
′
bi

+ r, where for all i ∈ I

we have aip
′
ai

HS
n biq

′
bi

; and finally we conclude p HS
n q, by applying repeatedly

the rule (3), and (1) to get 0HS
n r. ��

It is interesting to note that we have not used the transitivity rule (4) at all in
the previous proof, which means that we can obtain the following corollary:

Corollary 1. If we define HS′
n as HS

n , but removing the transitivity rule (4),
we have that HS′

n is equivalent to HS
n .

Defining Distances for All Process Semantics 179

Proof. From the fact that HS
n is a csdf we immediately obtain that HS′

n is too.
But since in the proof of Th.2 we do not use the transitivity rule (4), we have
also proved there that for any csdf (Sn)n∈N we have Sn ⊆ HS′

n . Then we have
HS

n ⊆ HS′
n and from their definitions we immediately obtain HS′

n ⊆ HS
n , from

where we can conclude that HS
n is equivalent to HS′

n . ��

Note however, that when we consider the sum between branches in rule (3)
instead of the maximum, as done in Def.5, we need indeed the transitivity rule,
because in this case it cannot be “derived” from the rest of the rules. The following
example shows the necessity of this rule.

Example 3. Consider the processes p = a and q = b+ c, if we want to simulate q
by p, we need to change action a into both b and c. However, it is possible that
it would be better to transform first a into some a′, and then this a′ into b and c.
Without the transitivity rule we cannot generate this elaborated transformation,
and then we would not get the “desired” global simulation distance. Instead, when
we consider the classical simulation distance, by the triangular inequality, it is
not useful to transform first a into some a′ and then a′ into b, because that will
be always worse than transforming directly a into b.

This example also illustrates the possible interest of such an elaborated procedure
in order to efficiently simulate several branches of the simulated process by a
common branch of the simulating one. The cost of the transformation of a into
a′ is shared by the two branches, and then we only pay once for it. Note that
the use (for free) of idempotence allows this double use of a common branch.

4 Bisimulation Distance

Using the bisimulation game, we can define a “classical” bisimulation distance as
done in [7]. It measures how far away are two processes of being bisimilar.

Theorem 3 ([10, 12]). p ∼ q (resp. p �∼ q) if and only if D (resp. A) has a
winning strategy for the bisimulation game starting at (p, q).

Definition 8. A family (Rn)n∈N is a classical bisimulation distance family
(cbdf), w.r.t. the symmetric distance relation between actions d, when it sat-
isfies

p Rn q p Rn q

=⇒ ∧ ⇐=

p′ Rn−d(b,a) q′ p′ Rn−d(a,b) q′

∀ a ∃b ∀ b∃a

We say that p and q are at most at classical bisimulation distance n, and then
we write dB

d
(p, q) ≤ n, iff there is some cbdf (Rn)n∈N such that pRnq.

From the symmetric definition of bisimulation we immediately obtain that our
classical bisimulation distance is also symmetric.

180 D. Romero Hernández and D. de Frutos Escrig

Proposition 2. For any two processes p, q and any n ∈ N, we have dB
d

(p, q) ≤ n

if and only if dB
d

(q, p) ≤ n.

Following the same ideas that we used in Sect.3, we can obtain a rule system
that produces the biggest relations HB

n that state that the related processes are
at most at distance n to be bisimilar.

Definition 9. We consider the family of relations (HB
n)n∈N which are generated

by applying the following rules, modulo bisimulation:

(1)
p HB

n p
(2) p HB

n q

ap HB
n+d(b,a)

bq
(3′) p HB

n p′ q HB
n′ q′

p + q HB
max{n,n′} p′ + q′

(4) p HB
n q q HB

n′ r

p HB
n+n′ r

It is nice to observe the close similarity between the rules defining this classical
bisimulation distance and our previous bisimulation distance in Sect.2: in fact,
if we change the max operator in (3′) by addition, then it is easy to check that
the obtained definition is equivalent to our original one.

Remark 3. It is clear that we can remove the “up-to” bisimulation at the defi-
nition above if we explicitly introduce the bisimilarity relation in the definition,
by replacing rule (1) by the following rule:

(1′) p ∼ q
p HB

n q

However, we prefer our first presentation in order to stress the fact that the
system of rules that defines the classical simulation distance is obtained from
the one above simply adding the similarity relation to produce pairs that are
“0-far” away.

We can prove the relationship between the family HB
n defined above and the

“classical” bisimulation distance relations defined at Def.8, exactly as we made
for the simulation case.

Theorem 4. 1. (HB
n)n∈N is a cbdf.

2. If (Rn)n∈N is a cbdf then Rn ⊆ HB
n .

Once again, we do not use rule (4) at the proof above, which allows to derive
the following corollary, that is analogous to Cor.1 in Sect.3.

Corollary 2. If we define HB′
n as HB

n in Def.9, but removing the transitivity
rule (4), then we obtain the same family of relations, that is HB′

n = HB
n , ∀n ∈ N.

5 Distances for All the Semantics in the ltbt-Spectrum

Inspired by the connection between the bisimulation and the simulation dis-
tances, next we define a general notion of distance between processes. It can
be instantiated by any of the different semantics in the ltbt-spectrum. These
distances will measure how far away is any process q of being greater than p

Defining Distances for All Process Semantics 181

with respect to each of the semantic preorders defining the semantics in Fig.1.
Roughly speaking, to obtain these distances, we compute the cost of changing
some actions in both p and q in order to obtain two new processes p′ and q′

which are related under the considered semantics.
We could try to base our general definitions on the “classical” simulation

distance. It is defined in a similar way as the “classical” bisimulation distance.
The only difference between those two definitions was the use of S at rule (1).
This immediately suggests us to define the semantic distances, corresponding to
any semantics defined by an order L, by means of the following system of rules:

(1) p L q
p HL

n q
(2) p HL

n q

ap HL
n+d(b,a)

bq
(3) p HL

n p′ q HL
n′ q′

p + q HL
max{n,n′} p′ + q′

(4) p HL
n q q HL

n′ r

p HL
n+n′ r

However, when checking some simple examples we see that this “local” approach
(based on max) does not produce a “reasonable” distance for some of the most
popular semantics in the ltbt-spectrum. Next, we consider the case of ready
simulation (RS).

Example 4. Let us consider the processes p = b + c and q = d + f . As distance
relation d between actions, we consider again the lexicographic distance. We can
check that the definition above produces

b H
RS
2 d c H

RS
3 f

b + c HRS
max{2,3} d + f

(3)

p HRS
3 q

(df)

We infer p HRS
3 q, that is the result of the necessary change in the branch which

needs the most expensive change. However, this is, by no means, consistent with
the definition of ready simulation: In order to have p RS q, we need that the
two processes have the same initial offer. Therefore, we would need to transform
the offer {d, f} into {b, c}. We would need changes whose aggregated cost would
be (at least) 4—see Example 5—, and not just 3.

Note that this problem does not appear in the simulation case, because the
definition of simulation does not contain any “global” factor. But, most of the
rest of the semantics, take somehow into account some “global” information
that could only be obtained by combining the information taken from several
separated computations. This is the case of ready sets at readiness semantics, or
even the case of failures defining the failure semantics.

Certainly, we also had p HB
3 q for the (classical) bisimulation distance, and then

we should also expect p HL
3 q for any semantics coarser than bisimulation. But

as we discussed at the end of our introduction, plain bisimilarity is able to check
the equality of the offers of two processes even if working in a local way. However,
once we need to compare two unequal offers, this local procedure proves to be
quite limited. Therefore, we need to recover our first proposal at Sect.2 that
measures the distance between processes by adding the cost of all the changes
that we have to do at all the branches of the tree that represents a process. We
already saw that it provides two reasonable “global” notions of simulation and

182 D. Romero Hernández and D. de Frutos Escrig

bisimulation distances. Based on it, we obtain our general definition of “global”
semantic distance between processes:

Definition 10. Given a semantics L, defined by a preorder L, we say that a
process q is at global distance at most m ∈ N of being better than some other
p, w.r.t. the semantics L and the distance between actions d, and then we write
gdL

d
(p, q) ≤ n, if we can infer p GL

n q, by applying the following rules:

(1) p L q
p GL

n q
(2) p GL

n q

ap GL
n+d(b,a)

bq
(3) p GL

n p′

p + q GL
n p′ + q

(4) p GL
n q q GL

n′ r

p GL
n+n′ r

Example 5. It is easy to check that for the processes in Example 4 and the ready
simulation semantics RS, we obtain now the desired distance gdRS

d
(p, q) ≤ 4,

since we can infer applying the rules for L = RS that:

b GRS
1 c

b + c GRS
1 c + c

(3)

c + c �RS c

c + c G
RS
0 c

(1)

c GRS
1 d

d �RS d + d

d GRS
0 d + d

(1)

c G
RS
1+0 d + d

(4)

c + c GRS
0+1 d + d

(4)

b + c GRS
1+1 d + d

(4)
d GRS

2 f

d + d GRS
2 d + f

(3)

b + c GRS
2+2 d + f

(4)

p GRS
4 q

(df)

Remark 4. As a matter of fact, we have only used rule (1) in the partial case of
“idempotence”. This means that the computed (bound of the) distance will also
be valid for the bisimulation semantics and in fact for any other semantics in
the spectrum. Of course, if we consider a coarser semantics, it could be the case
that we could obtain a smaller distance by applying (1) in some other way. For
instance, for the simulation semantics (S) we will easily obtain gdS

d(p,q)
≤ 2.

Generally, we immediately obtain the following result that asserts that our family
of distances reflects exactly the hierarchy in the ltbt-spectrum.

Proposition 3. Whenever we have two semantics L1 and L2 and the first is
finer than the latter (L1 ⊆ L2), then we have gdL1

d
(p, q) ≤ n ⇒ gdL2

d
(p, q) ≤

n, for all processes p, q and any value n ∈ N.

6 Generalizations, Applications and Some Conclusions

In the developments above we have preferred to consider symmetric distances
between actions because in particular we wanted to apply all the notions and
technical definitions to the case of bisimulation, that is an equivalence relation
and therefore symmetric. However, the rest of the semantics are typically defined
by means of a preorder, instead of by an equivalence relation. This is why the
consideration of asymmetric quasi-distances opens a new and quite interesting
space for developments and applications of our theory.

Let us consider the case of the simulation semantics: when we have p S q,
this reflects that q has all the capabilities of p and possibly some others. The

Defining Distances for All Process Semantics 183

simulation distances presented above reflect how many changes we need to make
in q in order to get a process that really simulates p. But it could be the case that
q instead of directly offering the same actions offered by p, offers some others
that we consider that “do perfectly the work”. This situation is formally covered
simply by replacing the symmetric distance between actions by an asymmetric
quasi-distance, defined as follows:

Definition 11. An asymmetric quasi-distance in a set of actions Act is a func-
tion d : Act × Act → N which satisfies d(a, a) = 0 ∀a ∈ Act, and the triangular
inequality d(a, b) + d(b, c) ≥ d(a, c) ∀a, b, c ∈ Act. We will say that d(a, b) ex-
presses “how far away” is action a of covering the expectation to have a b.

Remark 5. Now we can have d(b, a) = 0 even if b �= a, and this would reflect the
fact that b totally “simulates” a. Then we could replace without “cost” any occur-
rence of an action a in the simulated process p using the action b. Of course, now
we can have d(a, b) �= d(b, a), because the cost of replacing a by b could be very
different from that of replacing b by a. Finally, any asymmetric quasi-distance in-
duces a symmetric quasi-distance, simply taking d(a, b) = max{d(a, b), d(b, a)}.
This becomes a distance if we impose that a �= b ⇒ d(a, b) �= 0.

Example 6. If we consider a simple vending machine that returns no change, and
a product costs 1e, then from the machine point of view a payment of 2e for
it, could be perfectly assumed. Instead, if the situation is the other way around
and we pay 1e for a product whose cost is 2e, then the company loses 1e. This
would be reflected by the asymmetric quasi-distance defined by d(1e,2e) = 0
and d(2e,1e) = 1. Using it we obtain that the process where we pay 2e instead
of 1e is at distance 0 of simulating the specification, while when we pay 1e when
a 2e cost is specified, we would be at distance 1 of satisfying the specification.

Using the fact that all the semantics in the (extended) ltbt-spectrum are con-
nected to some constrained simulation, we could justify the consideration of the
corresponding “biased” distances. Instead, it seems not possible to define a rea-
sonable bisimulation distance really based on an asymmetric quasi-distance. Of
course, we could always do the task using the induced distance d, but in this
way we are “loosing” the asymmetric information in the original distance d.

We have defined our distances with natural values just to simplify the pre-
sentation, but there is no problem at all on using any other totally ordered set,
such as R

+. Moreover, if we use fixed values for the weight of any discordance
along a computation (or at any place of the trees when considering “global” dis-
tances) then the distance between two (infinite) processes would become infinite
as soon as the number of discordances between them is also infinite. This would
be certainly a problem, for instance, when comparing cyclic programs where any
discordance will appear again at any iteration of the compared processes. Of
course, the solution to this problem would consist (as proposed, e.g. in [4, 13])
on defining weighted distances. For them the weight of any disagreement at the
n-th step of a computation (or at the n-th level of the unfolded processes) will
decrease fast enough (for instance, the classical weights used at the literature
are those defined by the exponential sequence 1

2n).

184 D. Romero Hernández and D. de Frutos Escrig

It is true, however, that we have not discussed how to obtain in a precise
way the (bounds for the) distances between two infinite processes, when they
“disagree” at infinitely many places. This could be done by using either finite
approximations or recursion-induction rules, for the case of finite state processes.
But certainly the details need a careful work.

A simpler extension solves the problem of unexpected termination. If we con-
sider for instance our Def.3, we could extend it by adding a fixed payment f , for
unexpected termination, taking d(p,0) ≤ f and d(0, p) ≤ f , ∀p �= 0. Instead,
we could pay for each of the lost actions a quantity qa, taking d(a0,0) ≤ qa

and d(0, a0) ≤ qa ∀a ∈ Act. Of course, this second possibility would produce
infinite distances if the terminated process was infinite, but weights can be also
introduced here if we want to follow this approach.

We consider that starting from the basic (but quite flexible) definitions intro-
duced in this paper we are plenty of more elaborated possibilities, which could
be developed by adapting the ideas in our general theory to them. Next, we
give a list of interesting directions that we expect to explore in the near future.
First, we are working in a definition of approximated testing, where we indicate
“at which extent” a process passes a test. Using this notion we can quantify the
testing procedure by formalizing the quite frequent situation in practice where
the specification states the ideal behavior of the desired implementations, but
some small disagreements are tolerated by the quality standards. A dual ap-
plication of our distances would also provide for free a nice quantification of
the notion of robustness : given some specification p we would say that a given
implementation q is n-robust w.r.t. some semantics L when any “n-wrong” be-
havior of q, that is, any q′ such that dLx (q′, q) ≤ n, satisfies dLx (p, q′) = 0. We can
combine our approximated correctness and the quantified robustness proposed
above, to define a notion of approximated robustness, where we also allow some
small disagreement between p and the n-wrong behaviors of q.

Another generalization would use “contextually defined” distances between
actions, that take into account the fact that several occurrences of the same
action in a specification could play totally different roles. In such a case, we
could specify at each state of the specification which is the distance between
actions that we should use locally at each place. The distances between pure
trees, where the application of the idempotence law is not allowed, will also
capture redundancy, and then when investigating fault tolerance the previously
discussed ideas on approximated robustness could be used to define approximated
fault tolerance.

Finally, we could also allow negative values at the distances between actions,
that would state that whenever we have d(a, b) = −n then using b to simulate
a we would be “improving” the quality of the system. This could amortize some
other steps where we have the opposite situation. A typical application would ap-
pear when comparing two transmission protocols, and is clearly related with the
previous work by Vogler and Lüttgen in [9], where “faster than” preorders where
studied, and those by Kiehn and Arun-Kumar [8] on amortized bisimulation.

Defining Distances for All Process Semantics 185

References

[1] Černý, P., Henzinger, T.A., Radhakrishna, A.: Quantitative Simulation Games.
In: Manna, Z., Peled, D. (eds.) Time for Verification. LNCS, vol. 6200, pp. 42–60.
Springer, Heidelberg (2010)

[2] Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation Distances. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer,
Heidelberg (2010)

[3] Chen, X., Deng, Y.: Game Characterizations of Process Equivalences. In: Rama-
lingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 107–121. Springer, Heidelberg
(2008)

[4] de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics.
IEEE Trans. Software Eng. 35(2), 258–273 (2009)

[5] de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification
of process semantics: equational semantics. ENTCS 249, 243–267 (2009)

[6] de Frutos Escrig, D., Gregorio Rodríguez, C., Palomino, M.: On the Unification
of Process Semantics: Observational Semantics. In: Nielsen, M., Kučera, A., Mil-
tersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS,
vol. 5404, pp. 279–290. Springer, Heidelberg (2009)

[7] Fahrenberg, U., Legay, A., Thrane, C.R.: The quantitative linear-time–branching-
time spectrum. In: Chakraborty, S., Kumar, A. (eds.) FSTTCS. LIPIcs, vol. 13,
pp. 103–114. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

[8] Kiehn, A., Arun-Kumar, S.: Amortised Bisimulations. In: Wang, F. (ed.) FORTE
2005. LNCS, vol. 3731, pp. 320–334. Springer, Heidelberg (2005)

[9] Lüttgen, G., Vogler, W.: Safe Reasoning with Logic LTS. In: Nielsen, M., Kučera,
A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009.
LNCS, vol. 5404, pp. 376–387. Springer, Heidelberg (2009)

[10] Nielsen, M., Clausen, C.: Bisimulation, Games, and Logic. In: Karhumäki, J.,
Rozenberg, G., Maurer, H.A. (eds.) Results and Trends in Theoretical Computer
Science. LNCS, vol. 812, pp. 289–306. Springer, Heidelberg (1994)

[11] Stirling, C.: Modal and Temporal Logics for Processes. In: Moller, F., Birtwistle,
G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 149–237. Springer, Heidel-
berg (1996)

[12] Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal
of the IGPL 7(1), 103–124 (1999)

[13] Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted
transition systems. J. Log. Algebr. Program. 79(7), 689–703 (2010)

[14] van Glabbeek, R.: The linear time-branching time spectrum I: the semantics of
concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, ch. 1, pp. 3–99. Elsevier (2001)

[15] Winskel, G.: Synchronisation Trees. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154,
pp. 695–711. Springer, Heidelberg (1983)

Secure Multi-Execution
through Static Program Transformation

Gilles Barthe1, Juan Manuel Crespo1, Dominique Devriese2,
Frank Piessens2, and Exequiel Rivas1

1 IMDEA Software Institute, Madrid, Spain
2 IBBT-DistriNet Research Group, KU Leuven, Belgium

Abstract. Secure multi-execution (SME) is a dynamic technique to ensure
secure information flow. In a nutshell, SME enforces security by running one
execution of the program per security level, and by reinterpreting input/output
operations w.r.t. their associated security level. SME is sound, in the sense that
the execution of a program under SME is non-interfering, and precise, in the
sense that for programs that are non-interfering in the usual sense, the semantics
of a program under SME coincides with its standard semantics. A further virtue
of SME is that its core idea is language-independent; it can be applied to a broad
range of languages. A downside of SME is the fact that existing implementation
techniques require modifications to the runtime environment, e.g. the browser for
Web applications. In this article, we develop an alternative approach where the ef-
fect of SME is achieved through program transformation, without modifications
to the runtime, thus supporting server-side deployment on the web. We show on
an exemplary language with input/output and dynamic code evaluation (modeled
after JavaScript’s eval) that our transformation is sound and precise. The crux of
the proof is a simulation between the execution of the transformed program and
the SME execution of the original program. This proof has been machine-checked
using the Agda proof assistant. We also report on prototype implementations for
a small fragment of Python and a substantial subset of JavaScript.

1 Introduction

Information flow policies are confidentiality and integrity policies that constrain the
propagation of data in programs. For instance, such policies can limit how public out-
puts can depend on confidential inputs, or how high integrity outputs can be influenced
by low integrity inputs. A baseline confidentiality policy for information flow security
is non-interference: given a labeling of input and output channels as either confidential
(high, or H) or public (low, or L), a (deterministic) program is non-interferent if there
are no two executions with the same public inputs (but possibly different confidential
inputs) that lead to different public outputs. This definition of non-interference gener-
alizes from two security levels H and L to an arbitrary partially ordered set of security
levels.

Enforcing non-interference and other information flow policies is a challenging prob-
lem. Ideally, enforcement mechanisms should achieve potentially conflicting goals, in-
cluding: i. soundness: no illicit flows should arise during execution; ii. precision: the

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 186–202, 2012.
c© IFIP International Federation for Information Processing 2012

Secure Multi-Execution through Static Program Transformation 187

execution of secure programs should not be prevented or altered; iii. practicality: the
cost of the mechanism should be acceptable. Costs can be incurred at development
time (for instance additional code annotations), at deployment time (for instance mod-
ifications to standard runtime environments) or at run time (for instance performance
cost). Despite substantial attention from the research community for several decades,
enforcement mechanisms achieving these goals simultaneously have remained elusive.

There are two main classes of enforcement mechanisms for information flow poli-
cies. Static mechanisms include security type systems [31,17,24], and verification-based
approaches [5]. These techniques are sound, and do not incur run time or deployment
time costs. However, type-based approaches are not precise, and reject many secure pro-
grams. In contrast, verification-based approaches may offer perfect precision (modulo
completeness of the underlying program logic). However, both type-based and
verification-based approaches have a substantial development time cost as they require
annotations in the code. Moreover some language idioms, such as dynamic code eval-
uation, are not readily amenable to static information flow analysis.

Dynamic techniques, which have received renewed interest in recent years, include
run-time monitors [16,29,3,10], and more recently secure multi-execution (SME) [14,8].
The cited techniques are sound, and can be more precise than some static techniques.
For instance, run-time monitors reject fewer programs than type-based methods[29];
they also require less annotation effort. However, run-time monitors still may reject or
alter the behavior of some secure programs. In contrast, SME offers perfect precision
(at the cost of potentially modifying the behaviour of insecure programs); it is also
practical for developers, since there is no need for security annotations of the code.
However, SME is not easy to deploy, as all existing implementations of SME require
modifications to the underlying computing infrastructure (OS [8], browser [6,2], vir-
tual machine [14], trusted libraries [18]). Specifically, it is hard to deploy SME for
distributed and heterogeneous infrastructures, such as the web.

The key contribution of this paper is a new implementation technique for SME based
on static program transformation that eliminates the need to modify the computing in-
frastructure, while retaining its appealing theoretical properties.

A Motivating Example: JavaScript Advertising

JavaScript code is used in web applications to perform client-side computations. In
many scenarios, the fact that scripts run with the same privileges as the website loading
the script leads to security problems. One important example are advertisements; these
are commonly implemented as scripts and in the absence of security countermeasures,
such scripts can leak any information present in the web page that they are part of.

JavaScript advertisements are a challenging application area for information flow
security, as they may need some access to the surrounding web page (to be able to
provide context-sensitive advertising), and as they can use all of JavaScript’s features,
including dynamic code evaluation, e.g. in the form of JavaScript’s eval function,
which Richards et al.[25] have shown to be widely used on the web. The following
code snippet shows a very simple context-sensitive advertisement in JavaScript:

188 G. Barthe et al.

1 var keywords = document.getElementById("keywords").textContent;
2 var img = document.getElementById("adimage");
3 img.src = ’http://ads.com/SelectAd.php?keywords=’+keywords

Line 1 looks up some keywords in the surrounding web page; these keywords will be
used by the ad provider to provide a personalized, context-sensitive advertisement. Line
2 locates the element in the document in which the advertisement should be loaded,
and finally line 3 generates a request to the advertisement provider site to generate an
advertisement (in the form of an image) related to the keywords sent in the request.

Obviously, a malicious advertisement can easily leak any information in the sur-
rounding page to the ad provider or to any third party. Here is a simple malicious ad
that leaks the contents of a password field to the ad provider:

1 // Malicious: steal a password instead of keywords
2 var password = document.getElementById("password").textContent;
3 var img = document.getElementById("adimage");
4 img.src = ’http://ads.com/SelectAd.php?keywords=’+password

Information flow security enforcement can mitigate this threat: if one labels the key-
words as public information and the password as confidential information, then (treat-
ing the network as a public output) enforcing non-interference will permit the non-
malicious ad, but block the malicious one.

The example ad script above loads an image from a third-party server. Instead of
loading an image, it could also load a script from the server that can then render
the ad and further interact with the user (e.g. make the advertisement react to mouse
events). In the example below, we illustrate the essence of this technique using the
XMLHttpRequest API and JavaScript eval.

1 var keywords = document.getElementById("keywords").textContent;
2 var xmlhttp = new XMLHttpRequest();
3 xmlhttp.open(’GET’, ’http://ads.com/getAd.php?keywords=’+keywords, false);
4 xmlhttp.send(null);
5 eval(xmlhttp.responseText)

Lines 2-4 send the keywords to the ad provider, and expect a (personalized) script in
response. Line 5 then evaluates the script that was received – and this script could of
course be malicious too and try to leak information. Dealing with dynamic generation
or loading of new code and its on the fly evaluation further complicates the enforcement
of information flow security policies. In particular, since the code to be executed is not
available offline, static techniques do not apply.

The enforcement mechanism we develop in this paper will provide effective pro-
tection against these security problems of malicious scripts. We propose a program

Secure Multi-Execution through Static Program Transformation 189

transformation that transforms any script into a script that (1) is guaranteed to be non-
interferent, and (2) behaves identically to the original script if that script was non-
interferent to begin with.

Summary of Contributions

In summary, the main contributions of this paper are:

– We show that standard SME [14] is sound and precise for a language including
dynamic code evaluation.

– We propose a program transformation for sequential programs that simulates the
effect of SME, and provide a machine-checked correctness proof.

– We report on two prototype implementations of this program transformation.
– We define a variant of the transformation that targets a concurrent programming

language, and prove it correct.

The paper is organized as follows: Section 2 introduces our programming language
and defines non-interference. Section 3, 4, 5 and 6 each cover one of the contributions
above. Related work is discussed in Section 7.

2 Setting

Syntax. Following [14], a program P is simply a command to be executed by the sys-
tem. The syntax of commands is defined as follows:

c ::= x := e | input x from ic | output e to oc | c; c
| if b then c else c |while b do c | skip | eval(e)

Most commands are standard, with the exception of input x from ic, that assigns
the next input from the input channel ic to x, and output e to oc, that outputs the
value of the expression e to the output channel oc—we assume that input and output
channels are disjoint. The main extension w.r.t. [14] is the instruction eval(e), which
takes an integer encoding e of a program (in a real language this would be the usual
string encoding), decodes it and evaluates it.

Example 1. The command below models a program that exhibits both of the attacks
presented in the introduction: the script sends private information (the password) across
a public channel (the network) to the ad provider and then receives a (possibly mali-
cious) script which is executed with the same privilege.

input keys from LKeys;
input pass from HPass;
output keys+ pass to LReq;
input res from LReq′;
eval(res)

190 G. Barthe et al.

Semantics. For simplicity, we assume that expressions are side-effect free, and that
they are used with their correct types—e.g. guards of branching statements and loops
are boolean expressions. The semantics of expressions is defined as a mapping from
memories to values or bottom, where a memory is a (well-typed) mapping from vari-
ables to values. Formally, we let �e� m be the evaluation of e in memory m.

The operational behavior of programs is modelled as a transition relation� between
configurations. Formally, a configuration is a 5-tuple 〈c,m, p, I, O〉, where c is a com-
mand, m is a memory, I and O are program inputs and outputs, i.e. mappings from
input and output channels respectively to lists of values, and p is an input pointer, i.e.
a mapping from input channels to natural numbers, that points to the next input to be
consumed. A configuration is initial if it is of the form 〈c,m0, p0, I, O0〉, where m0

maps every variable to a default value, e.g. 0 for integer variables, p0 maps every input
channel to 0, and O0 maps every output channel to the empty list.

Fig. 1 provides an excerpt of the transition rules that define the operational seman-
tics.The rules make use of an operation decode that turns an integer into a command,
and of primitive operations for reading and writing from a channel (we use the notation
l1 ++l2 for appending two lists):

read(I, ic, p) = I(ic)(p(ic)) write(O, oc, v) = O[oc �→ O(oc) ++[v]]

We say that an execution of the program P with input I terminates with input pointer p
and program outputO, and write 〈P, I〉�∗ 〈p,O〉, iff 〈P,m0, p0, I, O0〉�∗ 〈skip,m,
p, I, O〉 for some memory m.

〈input x from ic,m, p, I, O〉 � 〈skip,m[x �→ read(I, ic, p)], p[ic �→ p(ic) + 1], I, O〉

〈output e to oc,m, p, I, O〉 � 〈skip,m, p, I,write(O, oc, �e�m)〉
〈c1,m, p, I, O〉 � 〈c′1,m′, p′, I, O′〉

〈c1; c2,m, p, I, O〉 � 〈c′1; c2,m′, p′, I, O′〉

〈skip; c2,m, p, I, O〉 � 〈c2,m, p, I, O〉

〈while b do c,m, p, I, O〉 � 〈c;while b do c,m, p, I, O〉 �b�m

〈while b do c,m, p, I, O〉 � 〈skip,m, p, I, O〉 ¬�b�m

〈eval(e),m, p, I, O〉 � 〈decode(�e�m),m, p, I, O〉

Fig. 1. Operational semantics (excerpt)

Security. The notion of program security is defined relative to a partially ordered set
(L,≤) of security levels, and mappings σin and σout from input and output channels to
security levels. The mappings induce equivalence relations on inputs, outputs, and input
pointers; informally, two inputs, outputs, and input pointers are equal w.r.t. a security
level l if they cannot be distinguished by an adversary that has access to channels of
level l and lower. Formally, two program inputs I and I ′ are equal up to l (written
I =l I

′) iff I(i) = I ′(i) for all input channels i such that σin(i) ≤ l. Likewise, two
program outputs O and O′ are equal up to l (written O =l O

′) iff O(o) = O′(o) for all

Secure Multi-Execution through Static Program Transformation 191

output channels o such that σout(o) ≤ l. Finally, two input pointers p and p′ are equal
up to l (written p =l p

′) iff p(i) = p′(i) for all input channels i such that σin(i) ≤ l.

Definition 1 (Non-interference). A program P is non-interferent with respect to an
execution relation ⇒∗ (mapping programs and inputs to input pointers and outputs) if
for all security levels l ∈ L, for all l-equal inputs I and I ′, i.e. I =l I

′, we have that
(P, I) ⇒∗ (pf , Of) if and only if (P, I ′) ⇒∗ (p′f , O

′
f) and pf =l p

′
f and Of =l O

′
f .

Note that this definition is termination-sensitive: it does not allow termination to de-
pend on information at non-minimal levels. The definition of non-interferent program
is obtained by instantiating ⇒∗ to�∗. Example 1 is clearly not non-interferent.

3 Secure Multi-Execution: The Operational Approach

We extend the theoretical results of [14] and show that SME remains sound and precise
in the presence of dynamic code evaluation.

SME by Example. The central insight of SME is that non-interference can be enforced
by executing programs once per security level. In order to guarantee non-interference,
the execution at security level l only performs inputs and outputs to channels at level l;
moreover, inputs from channels with security levels l′ such that l′ �≤ l are replaced by
default values and inputs from channels of security levels l′ such that l′ < l are delayed
until the execution corresponding to security level l′ reads from them—the result is then
available to be reused at security level l.

The precision of SME intuitively follows from the fact that for non-interferent pro-
grams, the behavior of the program visible at a level l is by definition not influenced by
changes to information at levels not lower than l. Therefore, the execution at any level l
will still produce the same behavior at level l as the standard execution of the program,
since it receives the same input on all levels lower than l.

Figure 2 illustrates the effect of SME on the malicious script from Section 1 and the
two-points lattice of security levels {L,H}, with L ≤ H . We treat reading the content
of the password textbox as input at security level H and setting the URL of the image
as output at level L. Hence, the SME execution of the program at level L will receive a
default value rather than the real content of the password textbox. Subsequently, the
execution at level L will compute as URL of the image a value that does not contain any
information about the real user password. On the contrary, the execution of the script
at security level H does receive the real input, and further computations at level H will
be performed based on the password; however, the execution does not output to low
channels.

Operational Semantics of SME. Secure multi-execution is described formally through
an operational semantics, and is parametrized by a lattice of security levels L, and map-
pings σin and σout associating input and output channels to security levels respectively.

The operational semantics combines a local semantics, and a global semantics. The
initial configuration includes a local configuration per security level; each local con-
figuration runs independently of the other, except for input/output operations, where

192 G. Barthe et al.

Execution at L security level.

1 // Malicious: steal a password instead of keywords
2 var password = document.getElementById("password").textContent undefined;
3 var img = document.getElementById("adimage");
4 img.src = ’http://ads.com/SelectAd.php?keywords=’+password

Execution at H security level.

1 // Malicious: steal a password instead of keywords
2 var password = document.getElementById("password").textContent
3 var img = document.getElementById("adimage");
4 img.src = ’http://ads.com/SelectAd.php?keywords=’+password

Fig. 2. Secure Multi-Execution of malicious JavaScript program from Section 1

synchronization is needed. The global semantics capture the synchronization enforced
by SME, and are defined relative to a scheduler select that, given a set of local config-
urations, picks the next one to execute. In their work, Devriese and Piessens [14] focus
on a scheduler selectlowprio which picks the local configuration corresponding to the
lowest security level; other schedulers are considered in [19].

The local semantics are defined as a relation between pairs of local configurations
and global states. Local configurations are of the form 〈c,m, p〉l, where c is a command,
m is a memory and p is a local input pointer and l is the security level associated to the
local configuration. Global states consist of a global input pointer r, a program input I
and a program output O. The global input pointer r tracks actual input consumption.
I.e. for an input channel ic, r(ic) equals p(ic) where p is the local input pointer of the
execution at level σin(ic). For details about the semantics, we refer the reader to the
original SME paper [14]. The only novelty is the rule in the local semantics for eval:

�e�m = v decode(v) = c

〈eval(e),m, p〉l, r, I, O=� 〈c,m, p〉l, r, I, O

The global semantics are defined as a relation between configurations. The latter are
of the form 〈L,wq, r, I, O〉, where r, I, O form the global state, L is a set of local
configurations, and wq is a queue that maps input channels and message numbers to
local configurations waiting for that message to be input. Again, the details are in [14].

We say that a set of local configurations C with input I terminates with final input
pointer rf and program output Of , and write 〈C, I〉=�∗〈rf , Of 〉, if

〈C,wq0, r0, I, O0〉=�∗〈[], wqf , rf , I, Of 〉

for some final waiting queue wqf and where r0 is the global input pointer mapping all
input channels to position 0.

Secure Multi-Execution through Static Program Transformation 193

The secure multi-execution of a program P is defined using the global semantics;
specifically, we introduce for every program P and security level l the local configura-
tion Pl = 〈P,m0, p0〉l, where m0 is the default memory—as defined in Section 2—and
p0 maps all input channels to 0. Then, we introduce the set of local configurations
Plcinit = [Pl1 , . . . , Plk] where l1 . . . lk is an enumeration of the security levels. Then,
we say that the secure multi-execution of the program P with input I terminates with
final input pointer rf and final program output Of , and write 〈P, I〉=�∗〈rf , Of 〉 iff
〈Plcinit, I〉=�∗〈rf , Of 〉.

Soundness and Precision. SME provides strong security and operational guarantees.

Theorem 1 (Soundness of SME). For a totally ordered L, any program P is non-
interferent under SME, using the selectlowprio scheduler.

The selectlowprio scheduler requires a total ordering on security levels. If L is not to-
tally ordered, then it can be extended to a total order in order to apply SME with
the selectlowprio scheduler. In that case execution of P under SME is termination-
insensitively non-interferent, but termination information may leak between non-com-
parable levels of L [19].

Theorem 2 (Precision of SME). Let P be a non-interferent program. Then, for all
program input I , input pointer pf and program output, Of , 〈P, I〉�∗ 〈pf , Of 〉 implies
〈P, I〉=�∗〈pf , Of 〉.

The proofs follow along the lines of [14]; additional cases for eval follow by a direct
argument.

4 Secure Multi-Execution by Program Transformation

The instrumented semantics of Section 3 provides a direct, operational interpretation
of the effect of secure multi-execution on programs. In this section, we explore an al-
ternative approach in which a program P of the source language is transformed into a
program P ′ whose behavior matches the behavior of P under SME execution. Our re-
sults show that one can achieve soundness and precision without modifying the runtime
environment.

Informally, one defines for each program P and security level l a transformed pro-
gram Tr(P, l) and defines Tr(P) as the sequential composition of the commands
Tr(P, l), where l ranges over security levels from low to high. This mimicks execution
under the SME semantics with the selectlowprio scheduler. We assume that this sequen-
tial composition is done in the same order as the order in which the selectlowprio sched-
uler selects executions. For a totally ordered L, this order is fixed, but non-comparable
levels can be scheduled in different ways.

SME requires the buffering of inputs so that these inputs can be reused by executions
running at higher security levels. We implement these buffers as global lists (listic) and
the global input pointer as well as local input pointers are represented as global integer
variables (countic and countic,l respectively).

194 G. Barthe et al.

For commands that do not perform input/output operations, the command Tr(P, l)
executes P “locally”. Specifically, for each variable x of the source program, we intro-
duce variables xl, where l ranges over security levels; informally, xl is the local copy
of x for the execution corresponding to security level l. Then, we ensure that Tr(P, l)
reads and writes only from/to variables indexed by l. For instance, the transformation
of an assignment is defined by the clause:

Tr(x := e, l) = xl := [e]l

where [e]l is obtained by replacing occurrences of each variable (say x) by its l-indexed
variant (say xl). The definition of the transformation extends recursively to sequences,
branching statements, and loops. In the case of dynamic code evaluation,Tr(eval(e), l)
should informally compute the value of e locally at level l, decode the resulting value
into a command c, compute c′ = Tr(c, l), encode c′ into an integer n′, and return
eval(n′). Hence, Tr(eval(e), l) should intuitively be of the form:

n := [e]l; c := decode(n); c′ := Tr(c, l);n′ := encode(c′); eval(n′)

The code snippet is ill-typed and ill-defined in our exemplary language. In a full-fledged
language such as JavaScript, one can make the above snippet meaningful, by imple-
menting encoding and decoding functions from strings and abstract syntax trees, and
the transformation given by the rules of Fig. 3. For the purpose of this section, we gloss
over the details of such implementations and assume the existence for each security
level l of a unary operator transl from integers to integers, and define

Tr(eval(e), l) = eval(transl([e]l))

Moreover, we assume that transl is correct, i.e. for every integer value k,

decode(transl(k)) = Tr(decode(k), l)

The most interesting cases of the transformation are for input and output commands.
For the latter, Tr(P, l) is defined by case analysis on the security level of the output
channel: a command output e to oc is transformed into output [e]l to oc if oc has
security level l, and into a skip statement otherwise. Similarly, for input statements, we
define the transformation by case analysis on the security level l′ of the input channel—
as in the definition of SME. If l′ �≤ l, then the input statement is transformed into an
assignment of a default value. If l = l′, then the transformed command performs the
input statement and updates the list of available inputs and the counter representing the
number of messages already read from this channel. Finally, if l′ < l, the transformed
command reuses a buffered input value and updates the corresponding counter. Exe-
cuting the programs Tr(P, l) sequentially in the order from low to high in an initial
memory in which every count variable has value 0 and every list variable is associated
with the empty list, will simulate SME execution under the selectlowprio scheduler.

Tr(P) = � {Tr(P, l) | l ∈ L}

Secure Multi-Execution through Static Program Transformation 195

Example 2. We apply the transformation to Example 1. The sequential program ob-
tained is shown in Fig. 4.

Formally, we can prove the following theorems.

Theorem 3. For every program P and program input I:

1. if 〈Tr(P), I〉�∗ 〈p,O〉 then 〈P, I〉=�∗〈p,O〉;
2. if P is non-interferent and 〈P, I〉=�∗〈p,O〉 then 〈Tr(P)〉�∗ 〈p,O〉.

We have developed a mechanized proof using Agda, a proof assistant based on the
Curry-Howard isomorphism. We refer the reader to the extended version of this pa-
per [4].

The following is an easy corollary of Theorem 3.

Corollary 1. Statically enforced sequential SME is sound and precise.

Proof. Soundness follows from Theorem 3, first part and Theorem 1. Precision follows
from Theorem 3, second part and Theorem 2. &�

5 Implementation

In order to validate our approach, we have developed two prototype implementations.
Our first implementation considers a restricted fragment of Python; the fragment essen-
tially corresponds to our exemplary language, with I/O functions input and print
added as built-in functions. It does not support any of Python’s more advanced features,
but was useful to provide a baseline implementation.

Our second implementation supports a fragment of JavaScript including eval().
Both implementations were tested for security and for precision by means of small test
scenarios.

We briefly comment on some aspects of the implementations.

Aliasing. The soundness of our transformation relies on applying specific rules for I/O
operations. In richer languages such as Python or JavaScript, aliasing becomes a ma-
jor problem as one cannot statically determine where such operations will be called.
To avoid this issue, and to be able to identify I/O operations, we proceed in two steps:
first, we wrap primitive I/O functions upfront, i.e. the wrapped function will behave
according to the security level associated to the context in which is called. Second,
programs are only given access to these wrapped functions. This is achieved using
Google Caja [23], which guarantees that the translated program only gets access to
properly wrapped APIs. Google Caja will rewrite (“cajole”) a program in such a way
that it can be guaranteed capability secure, i.e. the modified program will only be able
to call API functions which it is passed a reference to and otherwise be isolated from
other code.

196 G. Barthe et al.

Tr(x := e, l) = xl := [e]l

Tr(output e to oc, l) =

{
output [e]l to oc if σout(oc) = l

skip otherwise

Tr(input x from ic, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xl := dv if σin(ic)
≤ l

input x from ic;
listic := listic ++[xl]; if σin(ic) = l
countic := countic + 1

xl := listic[countic,l];
countic,l := countic,l + 1} if σin(ic) < l

Tr(c1; c2, l) = Tr(c1, l);Tr(c2, l)

Tr(if b then c1 else c2, l) = if [b]l then Tr(c1, l) else Tr(c2, l)

Tr(while b do c, l) = while [b]l do Tr(c, l)

Tr(skip, l) = skip

Tr(eval(e), l) = eval(transl([e]l))

Fig. 3. Syntactic program transformation

input keysL from LKeys;
listLK := listLK ++[keysL];
countLK := countLK + 1;
passL := dv;
output keysL + passL to LReq;
input resL from LReq′;
listLR′ := listLR′ ++[resL];
countLR′ := countLR′ + 1;
eval(transL(resL));
keysH := listLK [countLK,H];
countLK,H := countLK,H + 1;
input passH from HPass;
listHP := listHP ++[passH];
countHP := countHP + 1;
resH := listLR′ [countLR′,H];
countLR′,H := countLR′,H + 1;
eval(transH(resH))

Fig. 4. Static transformation applied to malicious ad.

Dynamic Code Evaluation. Our prototype supports an eval function (JavaScript’s
well-known dynamic code evaluation primitive). Since Google Caja does not support
dynamic code evaluation, we have developed our own ad hoc solution. Our eval takes
as input a string of code, and sends it to a remote Caja cajoling service; the trans-
formed code is then executed with the same wrapped APIs as the calling code. This
proof-of-concept implementation is admittedly inefficient but arguably secure (assum-
ing the calls to Google’s cajoling service are reliable) and supports the entire subset of
JavaScript that Google Caja supports.

Secure Multi-Execution through Static Program Transformation 197

Document Object Model (DOM) The Document Object Model (DOM) APIs that a
browser exposes to scripts is structured as a tree corresponding to the HTML structure
of the document. The DOM tree can be inspected and modified from within JavaScript.
Our prototype supports a limited, read-only, version of the DOM. In particular, it al-
lows the hosting page to assign security levels to parts of the document. The scripts can
access the hosting document according to this policy and perform synchronous XML-
HttpRequests. Our coverage of the DOM is sufficient for our examples.

Many DOM APIs allow web applications to register callback functions, which will
be executed when certain (network, user or other) events occur; Bielova et al. [6] discuss
how events and callbacks can be supported under secure multi-execution. Extending our
transformation to address events and callbacks, and provide support for the full DOM
is a significant engineering challenge, which we regard as future work.

6 Transformation to a Concurrent Language

The transformation defined earlier simulates SME with the selectlowprio scheduler.
Kashyap et al. [19] have shown that other scheduling strategies can be useful too. In
this section, we present a variant of our transformation towards a language that sup-
ports concurrency in order to enable the use of more scheduling strategies.

This revised transformation still takes programs in the sequential subset of the lan-
guage as input. The concurrency features are only used in the output of the transforma-
tion.

Target language. We extend our command language with the following syntax:

c ::= . . . |await b then c
P ::= ‖ (id, c)∗

Intuitively, the command await b then c executes c atomically, provided b holds, and
blocks otherwise. Then, a program is simply a set of threads; for convenience, we as-
sume that each thread is tagged with a unique identifier. In what follows, we write
atomic c as a shorthand for await true then c.

The operational behavior of programs is modelled as a transition between config-
urations. A configuration is a 5-tuple consisting of a program P , a waiting queue wq
mapping guards to commands, an input pointer p, a program input I and a program
output O. Figure 5 presents the semantics of the language. The thread-local semantics
is similar to our sequential language; note however that we introduce another rule for
sequence in order to propagate the emission of signals induced by await commands.
The rules for the latter are standard; if the guard holds, then the body of the command
is executed atomically. Otherwise, the command blocks and emits a signal, namely the
guard in which its blocked. Upon the emission of a signal, the global semantics then
inserts the blocked thread associated with the guard into the waiting queue. Further
changes in global state trigger the re-evaluation of guards, and threads associated with
guards that become true are moved back to the ready list.

198 G. Barthe et al.

We say that an execution of the program P with input I terminates with input
pointer p and program output O, and write 〈P, I〉 �∗ 〈p,O〉, if there exists some
memory m such that

〈P,wq0,m0, p0, I, O0〉�∗ 〈[], wq0,m, p, I, O〉

〈c1,m, p, I, O〉 b� 〈c′1,m, p, I, O〉
〈c1; c2,m, p, I, O〉 b� 〈c′1; c2,m, p, I, O〉

〈c,m, p, I, O〉 �∗ 〈skip,m′
, p

′
, I, O

′〉
〈await b then c,m, p, I, O〉 � 〈skip,m′, p′, I, O′〉 �b�m

〈await b then c,m, p, I, O〉 b� 〈await b then c,m, p, I, O〉
¬�b�m

(a) Thread-local semantics (excerpts)

select(P) = (id, skip)

〈P,wq,m, p, I, O〉 � 〈P\{(id, skip)}, wq,m, p, I, O〉

select(P) = (id, c) 〈c,m, p, I, O〉 b� 〈c,m, p, I, O〉
〈P,wq,m, p, I, O〉 � 〈P\{(id, c)}, wq ∪ {(b, (id, c))},m, p, I, O〉

select(P) = (id, c) 〈c,m, p, I, O〉 � 〈c′,m′, p′, I, O′〉
P ′ = P\{(id, c)} ∪ {(id, c′)} ∪ {(id∗, c∗)|(b, (id∗, c∗)) ∈ wq ∧ �b�m′}

wq′ = {(b, (id∗, c∗))|(b, (id∗, c∗)) ∈ wq ∧ ¬�b�m′}
〈P,wq,m, p, I, O〉 � 〈P ′, wq′,m′, p′, I, O′〉

(b) Global semantics

Fig. 5. Extended semantics

The Transformation. Adapting our transformation to target the concurrent case requires
only two changes. First, input will now perform synchronization:

Trcon(input x from ic, l) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xl := dv if σin(ic)
≤ l

atomic (input xl from ic;
listic := listic ++[xl]; countic := countic + 1) if σin(ic) = l

await countic,l < countic then
(xl := listic [countic,l]; countic,l := countic,l + 1) if σin(ic) < l

Second, instead of defining the overall transformation as a sequential composition, we
define it as a parallel one, i.e. Trcon(P) =‖ {(l,Trcon(P, l)) | l ∈ L}.

Example 3. Consider our running example, the malicious ad. Applying the transforma-
tions to the example w.r.t. security levels L and H yields the two programs shown in
Fig. 6a and Fig. 6b respectively.

The revised transformation again yields executions equivalent to secure multi-execu-
tion, now for any scheduling strategy. The proof relies on a simulation result and hinges
on the assumption that (informally) schedulers pick the same threads to execute.

Secure Multi-Execution through Static Program Transformation 199

atomic {
input keysL from LKeys;
listLK := listLK ++[keysL];
countLK := countLK + 1};

passL := dv;
output keysL + passL to LReq;
atomic {

input resL from LReq′;
listLR′ := listLR′ ++[resL];
countLR′ := countLR′ + 1};

eval(transL(resL));

(a) Security level L.

await countLK,H < countLK then {
keysH := listLK [countLK,H];
countLK,H := countLK,H + 1};

atomic {
input passH from HPass;
listHP := listHP ++[passH];
countHP := countHP + 1};

await countLR′ ,H < countLR′ then {
resH := listLR′ [countLR′ ,H];
countLR′ ,H := countLR′ ,H + 1};

eval(transH(resH));

(b) Security level H .

Fig. 6. Static transformation applied to malicious ad.

Theorem 4. For every program P , and program input I:

1. if 〈Trcon(P), I〉�∗ 〈p,O〉 then 〈P, I〉=�∗〈p,O〉;
2. if 〈P, I〉=�∗〈p,O〉 then 〈Trcon(P), I〉�∗ 〈p,O〉.

For the proof, we refer to the extended version of this paper [4].

7 Related Work

The work reported on in this paper is related to information flow security, a research
area that has received significant attention for many decades. We point the reader to two
broad surveys, and then zoom in to recent research that is closely related to our work.
Sabelfeld and Myers [28] give an excellent survey on static techniques for information
flow enforcement. Le Guernic’s PhD thesis [16] surveys dynamic techniques.

Dynamic Techniques for Information Flow Security. Several recent works propose run
time monitors for information flow security, often with a particular focus on JavaScript,
or on the Web context. These include monitoring algorithms that can handle DOM-like
structures [27], dynamic code evaluation [1] and timeouts [26]. Austin and Flanagan [3]
develop alternative, more permissive techniques. These run time monitoring based tech-
niques are likely more efficient than the technique proposed in this paper, but they lack
the precision of secure multi-execution: such monitors will block the execution of some
non-interferent programs.

The idea underlying secure multi-execution was developed independently by several
researchers. Capizzi et al. [8] propose shadow executions: they propose to run two ex-
ecutions of processes for the H (secret) and L (public) security level to provide strong
confidentiality guarantees. Cristiá and Mata [12] independently formalize and proto-
type a similar system for secure multi-execution at operating system level. Devriese
and Piessens [14] were the first to prove the strong soundness and precision guaran-
tees that SME offers. They also report on a JavaScript implementation that requires a

200 G. Barthe et al.

modified virtual machine. In a somewhat related line of work, Cavadini[9] proposes a
technique based on program slicing to obtain secure fragments of insecure programs.

Several authors have improved on these initial results. Kashyap et al. [19], generalize
the technique of secure multi-execution to a family of techniques that they call the
scheduling approach to non-interference, and they analyze how the scheduling strategy
can impact the security properties offered. Jaskelioff and Russo [18] propose a monadic
library to realize secure multi-execution in Haskell. Bielova et al. [6] propose a variant
of secure multi-execution suitable for reactive systems such as browsers. Finally, Austin
and Flanagan [2] develop a more efficient implementation technique.

Finally, some other authors have considered program transformations for informa-
tion flow security. Chudnov and Naumann [10] propose an inlined information flow
monitor, and Birgisson et al. [7] propose a transformation towards a capability secure
target language. Both approaches share the advantage of not requiring modifications to
the operating system or virtual machine, but as with other classical run time monitors,
they lack the precision of SME based approaches. In a sense, the approach proposed
in this paper combines the advantages of these existing program-transformation based
approaches with the advantages of SME (at the same performance cost as SME).

Other Security Techniques for JavaScript. A motivating example for the technique pro-
posed in this paper is providing security for JavaScript script inclusion. Many authors
have proposed alternative security mechanisms. Chugh et al.[11] develop a novel multi-
stage static technique for enforcing information flow security in JavaScript.

Most authors focus on isolation or sandboxing rather than information flow secu-
rity: how can scripts be included in web pages without giving them full access to the
surrounding page and the browser APIs. Several practical systems have been proposed,
including ADSafe [13], Caja [23] and Facebook JavaScript [15]. Maffeis et al. [21]
formalize the key mechanisms underlying these systems and prove they can be used to
create secure sandboxes. They also discuss several other existing proposals; we point
the reader to their paper for a more extensive discussion of work in this area.

The capability security approach is of particular relevance to this paper, as we build
on the isolation provided by a capability secure language to develop our prototype im-
plementation for JavaScript. Maffeis et al. [22] formalize capability safety, and prove
a Caja-like subset of JavaScript capability safe. Taly et al. [30] propose an approach to
verify if APIs offered to sandboxed code are secure.

Ter Louw et al. propose AdJail [20], targeted at sandboxing advertisements by iso-
lating them in a separate iframe, and by providing a stub in the original web page that
communicates in a controlled way with the sandboxed advertisement.

8 Conclusion

Secure multi-execution is an appealing approach to enforce information flow policies: it
is sound and precise, and can be applied to a variety of programming languages. In this
paper, we have shown that the effect of SME can be achieved through program trans-
formation, and without the need to modify the underlying computing infrastructure.

Secure Multi-Execution through Static Program Transformation 201

Acknowledgments. This research is partially funded by the Research Fund K.U.Leuven,
by the IWT-SBO project SPION, and by the EU-funded FP7-projects HATS and Web-
Sand. Dominique Devriese holds a Ph. D. fellowship of the Research Foundation - Flan-
ders (FWO).

The authors are grateful to the anonymous reviewers for their useful and detailed
comments on the paper.

References

1. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for dynamic
languages. In: CSF, pp. 43–59 (2009)

2. Austin, T., Flanagan, C.: Multiple facets for dynamic information flow. In: POPL (2012)
3. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In: PLAS (2010)
4. Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-execution

through static program transformation: extended version. Technical Report CW620, Depart-
ment of Computer Science, Katholieke Universiteit Leuven (2012)

5. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In:
CSFW, pp. 100–114 (2004)

6. Bielova, N., Devriese, D., Massacci, F., Piessens, F.: Reactive non-interference for a browser
model. In: NSS (2011)

7. Birgisson, A., Russo, A., Sabelfeld, A.: Capabilities for information flow. In: PLAS (2011)
8. Capizzi, R., Longo, A., Venkatakrishnan, V.N., Prasad Sistla, A.: Preventing information

leaks through shadow executions. In: ACSAC (2008)
9. Cavadini, S.: Secure slices of insecure programs. In: ASIACCS, pp. 112–122 (2008)

10. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: CSF, pp. 200–214
(2010)

11. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for Javascript. In:
PLDI (2009)

12. Cristiá, M., Mata, P.: Runtime enforcement of noninterference by duplicating processes and
their memories. In: WSEGI 2009 (2009)

13. Crockford, D.: Adsafe (December 2009), http://www.adsafe.org/
14. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: IEEE Sym-

posium on Security and Privacy, pp. 109–124 (2010)
15. Facebook. Fbjs (2011), http://developers.facebook.com/docs/fbjs/
16. Le Guernic, G.: Confidentiality Enforcement Using Dynamic Information Flow Analyses.

PhD thesis, Kansas State University (2007)
17. Heintze, N., Riecke, J.G.: The SLam calculus: programming with secrecy and integrity. In:

Proc. ACM Symp. on Principles of Programming Languages, pp. 365–377 (January 1998)
18. Jaskelioff, M., Russo, A.: Secure multi-execution in haskell. In: PSI (2011)
19. Kashyap, V., Wiedermann, B., Hardekopf, B.: Timing- and termination-sensitive secure in-

formation flow: Exploring a new approach. In: Proceedings of the 2011 IEEE Symposium
on Security and Privacy, SP 2011, pp. 413–428. IEEE Computer Society, Washington, DC
(2011)

20. Louw, M.T., Ganesh, K.T., Venkatakrishnan, V.N.: Adjail: Practical enforcement of confi-
dentiality and integrity policies on web advertisements. In: USENIX Security Symposium,
pp. 371–388 (2010)

21. Maffeis, S., Mitchell, J.C., Taly, A.: Isolating JavaScript with Filters, Rewriting, and Wrap-
pers. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 505–522.
Springer, Heidelberg (2009)

http://www.adsafe.org/
http://developers.facebook.com/docs/fbjs/

202 G. Barthe et al.

22. Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted web appli-
cations. In: IEEE Symposium on Security and Privacy, pp. 125–140 (2010)

23. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: Safe active content in
sanitized javascript (January 2008),
http://google-caja.googlecode.com/files/caja-spec-2008-01-15
.pdf

24. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: Proc. ACM Symp.
on Principles of Programming Languages, pp. 228–241 (January 1999)

25. Richards, G., Hammer, C., Burg, B., Vitek, J.: The Eval That Men Do. In: Mezini, M. (ed.)
ECOOP 2011. LNCS, vol. 6813, pp. 52–78. Springer, Heidelberg (2011)

26. Russo, A., Sabelfeld, A.: Securing timeout instructions in web applications. In: CSF, pp.
92–106 (2009)

27. Russo, A., Sabelfeld, A., Chudnov, A.: Tracking Information Flow in Dynamic Tree Struc-
tures. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 86–103. Springer,
Heidelberg (2009)

28. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. JSAC 21, 5–19
(2003)

29. Sabelfeld, A., Russo, A.: From Dynamic to Static and Back: Riding the Roller Coaster of
Information-Flow Control Research. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI
2009. LNCS, vol. 5947, pp. 352–365. Springer, Heidelberg (2010)

30. Taly, A., Erlingsson, U., Miller, M.S., Mitchell, J.C., Nagra, J.: Automated analysis of
security-critical javascript apis. In: IEEE Symposium on Security and Privacy (2011)

31. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis. Journal of
Computer Security 4(2/3), 167–188 (1996)

http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf

Synchronous Interface Theories

and Time Triggered Scheduling

Benôıt Delahaye1,	, Uli Fahrenberg2, Thomas A. Henzinger3,
Axel Legay2,1, and Dejan Ničković4,		

1 Aalborg University, Denmark
2 Irisa/INRIA Rennes, France

3 IST Austria, Klosterneuburg, Austria
4 Austrian Institute of Technology, Vienna, Austria

Abstract. We propose synchronous interfaces, a new interface theory
for discrete-time systems. We use an application to time-triggered
scheduling to drive the design choices for our formalism; in particular,
additionally to deriving useful mathematical properties, we focus on pro-
viding a syntax which is adapted to natural high-level system modeling.
As a result, we develop an interface model that relies on a guarded-
command based language and is equipped with shared variables and
explicit discrete-time clocks. We define all standard interface operations:
compatibility checking, composition, refinement, and shared refinement.
Apart from the synchronous interface model, the contribution of this
paper is the establishment of a formal relation between interface theo-
ries and real-time scheduling, where we demonstrate a fully automatic
framework for the incremental computation of time-triggered schedules.

1 Introduction

Interface models and theories were developed with the aim to provide a theo-
retical foundation for compositional design. Interface models describe both in-
put assumptions on a component and its output guarantees and they support
incremental design and independent implementability, two central concepts in
component-based design. Interface theories [1,7,13,16,18,21,23,30] and related
approaches [9,29] have been subject of active research in the past years, and
today provide a strong and stable foundation for component-based design. How-
ever, although the theoretical foundations of interface theories can be now consid-
ered to be quite solid, the practical applicability of the framework has remained
rather limited. One of the reasons is the fact that little attention has been given

� Research partially supported by the Danish-Chinese Center for Cyber Physical Sys-
tems (Grant No.61061130541) and VKR Center of Excellence MT-LAB.

�� The research leading to these results has received funding from ARTEMIS Joint Un-
dertaking under grant agreement number 269335 and from national fundings (Federal
Ministry for Transport, Innovation and Technology and Austrian Research Promo-
tion Agency).

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 203–218, 2012.
c© IFIP International Federation for Information Processing 2012

204 B. Delahaye et al.

to adapt the modeling languages to the actual engineering needs in the target
application domains.

In this paper, we propose synchronous interfaces (SI), a new interface the-
ory motivated by an application to time-triggered scheduling and thus provid-
ing features that make our model closer to real-life needs of the engineers. In
time-triggered communication scheduling, one allocates message transmissions
to shared communication channels in a way that respects application-imposed
and real-time constraints. The time-triggered scheduling problem can be nat-
urally specified within an interface theory framework, by modeling scheduling
constraints as interface guarantees, and considering the environment to be the
scheduler. Even though our model has been developed with an eye to time-
triggered scheduling, the application domain of the theory is much broader.

Incorrect scheduling of communication messages leads to violation of real-time
and contention-freedom constraints, thus resulting in timing incompatibilities.
This is in contrast to the standard interface theories that are untimed and are
focused on reasoning about value incompatibilities. Continuous-time extensions
of interface theories [15,20] were developed to tackle this problem. While those
are of clear interest and can solve interesting problems [14], they suffer from
the complexity of handling continuous time in an explicit manner that is often
unnecessary in practical application areas. We believe that discrete time provides
the right level of abstraction for many application areas, and demonstrate it with
the time-triggered scheduling application.

We base the syntax of SI on the model of reactive modules, a high-level and
general-purpose modeling language that provides a syntax close to procedu-
ral guarded-command languages. In addition, we extend our model with shared
variables that allow simple specification of contention freedom constraints, and
explicit discrete-time clocks that facilitate modeling timing constraints.

Semantically, a SI is a set of concurrent processes whose behavior is evolving
in discrete time. We equip our theory with operations that support incremental
design and independent implementability: (1) well-formedness check that com-
putes the set of environment choices for which the interface meets its guarantees;
(2) composition that allows to combine two interfaces and compute the assump-
tions under which they interact in a compatible way and (3) refinement and
shared refinement that are used to compare behaviors of different interfaces.

The second contribution of this paper is the incremental computation of time-
triggered schedules, that is resolved as an incremental design problem with SI.
We model scheduling constraints as SI guarantees and consider the environment
to be the (unknown) scheduler. We apply well-formedness checking to restrict
the environment to those schedules that satisfy the scheduling constraints. The
composition operator allows to solve scheduling problems incrementally, by de-
composing them into subproblems whose restricted environments are combined
into a full schedule (using the well-formedness check again).

Related Work. Compositional scheduling for hierarchical real-time systems has
been extensively studied in [22,32] and other papers by the same authors, but
in a setting which in a sense is complementary to ours. The focus of that work

Synchronous Interface Theories and Time Triggered Scheduling 205

is on computing bounds on resource use under some (simple) schedulers, and
on inferring resource bounds for complex systems in a compositional manner,
whereas we focus on schedulability, i.e., computation of schedules under given
task dependencies and resource bounds. Incremental time-triggered scheduling
was also studied in [33], using an approach that computes schedules with an
SMT solver, but may miss a feasible schedule.

Another area of related work, similar in spirit but different in methods, is
the recent application of timed-automata based formalisms to schedulability
problems. In [2], simple job-shop scheduling problems are solved using timed
automata, and in [11,31], priced timed automata and games are used for schedu-
lability under resource constraints. Another work in this area is [24], which is
using timed automata extended with tasks for solving scheduling problems un-
der uncertainty. Other approaches to solve worst-case scheduling problems are
reported in [12,28,34]. A synchronous relational interface theory was proposed
in [35], but without the notion of shared variables. Interface theories with shared
variables were also proposed in [13] and [16,17]. However, unlike in SI, the infor-
mation about ownership of the shared variables by individual components within
a composed system is not preserved, thus not making them suitable to express
time-triggered scheduling problems.

Other examples of component-design based methodologies include the BIP
toolset [5,6] and its timed extension [3]. However, while BIP proposes features
that are definitively beyond the scope of our work (generation of code, compil-
ers, invariant-based verification), the approach does not permit to reason easily
on shared variables, and does not provide (shared) refinement or pruning opera-
tors. Observe that several BIP-based approaches [8,25] capable of restraining the
behaviors of a distributed system by avoiding deadlocks have the potential to
solve scheduling problems. However, a detailed study of (incremental) scheduling
problems has not been considered in the mentioned papers, hence it is not clear
whether TTEthernet scheduling would easily translate into the BIP framework.

2 Synchronous Interfaces

A synchronous interface comes equipped with a finite set X of typed variables
which is partitioned into sets X = extX∪ ctrX∪ sharedX of external, controlled,
and shared variables. External variables, also called input variables in interface
theories [19], are controlled by the environment. At each round, the environment
sets the values of external variables; the interface can read, but not modify them.
Controlled, or output variables, are controlled by the interface: in each round,
the interface assigns new values to all controlled variables. We further partition
ctrX = intfX∪privX into interface and private variables. Interface variables can
be seen by other SI, while private variables are local; hence private variables
do not influence the communication behavior of a SI, and we can safely ignore
them. We let obsX = X \ privX denote the set of observable variables. We use
unprimed symbols, such as x, to denote a latched value, and primed symbols,
such as x′, to denote an updated value of the variable x. We naturally extend this

206 B. Delahaye et al.

notation to sets of variables. The function type(x) returns the type of variable
x. In particular, clock variables have the type C.

We follow the approach in [13] and introduce shared variables in the model, to
facilitate communication using shared resources. We let the environment ensure
the mutual exclusion property. Contrary to [13], we keep additional information
on which individual component in the system owns the shared variable at each
step of computation. In every computation step, the environment gives write
access to a shared variable to at most one interface active in the system. We
will define interface semantics following a game-oriented approach, hence this
assumption is not a restriction.

Definition 1. A guarded command γ from variables X to Y consists of a guard
pγ and an action Actγ . The guard pγ is a predicate over X, and Actγ is either
a discrete action: an expression αγ from X to Y , or a wait action, using the
keyword wait.

We use γ[pγ \p′γ] for the operation that consists in replacing the predicate pγ by
the predicate p′γ . Controlled and shared variables are collected into atoms, which
additionally contain guarded commands which specify rules for initializing and
updating variables.

In interface theories, non-determinism reflects the fact that, given all the avail-
able information at a given step of the execution of an interface, several behaviors
are possible for its next step. We let the environment resolve non-deterministic
choices; this is implemented by assuming that for each x ∈ sharedX, there exists
a non-empty set isCtrx = {isCtrAx } of external variables, one for each atom A
potentially controlling x. A variable isCtrAx indicates whether atom A can safely
write x at a given step of computation.

Definition 2. An X-atom A consists of a declaration and a body of guarded
commands. We distinguish between atoms defined on controlled variables ctr(A)
and those defined on shared variables shared(A).
– The atom declaration for ctr(A) consists of sets ctrXA ⊆ ctrX, readXA ⊆ X,

and waitXA ⊆ X\ctrXA of controlled, read, and awaited variables. The
atom body for ctr(A) consists of a set Init(A) of initial discrete guarded
commands from waitX′

A to ctrX′
A and a set Update(A) of update guarded

commands from readXA ∪ waitX′
A to ctrX′

A.
– The atom declaration for shared(A) consists of sets sharedXA ⊆ sharedX,

readXA ⊆ X, and waitXA ⊆ X\sharedXA of shared, read, and awaited
variables, with isCtrAx ∈ waitXA for all x ∈ sharedXA. The atom body for
shared(A) consists of a set Init(A) of initial discrete guarded commands from
waitX′

A to sharedX′
A and a set Update(A) of update guarded commands from

readXA ∪ waitX′
A to sharedX′

A.

We denote by PInit(A) = {pγ | γ ∈ Init(A)} and PUpdate(A) = {pγ | γ ∈
Update(A)} the sets of predicates declared in initial and in update guarded
commands of A. We say that a variable y awaits x, denoted y +A x, if y ∈
ctrXA ∪ sharedXA and x ∈ waitXA.

Synchronous Interface Theories and Time Triggered Scheduling 207

1 module Mex

2 external r : B, b : N, c : N

3 isCtrbx : B, isCtrcx : B;
4 shared x : N;

5 atom b reads b, x awaits r, isCtrbx
6 init

7 [] ¬isCtrbx
′ →;

8 update

9 [] isCtrbx
′ ∧ ¬r′ → x′ := x + b;

10 [] isCtrbx
′ ∧ r′ → x′ := 0;

11 [] ¬isCtrbx
′ →;

12 atom c reads c, x awaits r, isCtrcx
13 init
14 [] ¬isCtrcx

′ →;
15 update
16 [] isCtrcx

′ ∧ ¬r′ → x′ := x+ c;
17 [] isCtrcx

′ ∧ r′ → x′ := 0;
18 [] ¬isCtrcx

′ →;

Fig. 1. An example of a SI

Definition 3. A synchronous interface (SI) M consists of a declaration XM

and a body AM , where XM is a finite set of variables, and AM = ctr(AM) ∪
shared(AM) is a finite set of XM -atoms for which

⋃
A∈ctr(AM) ctrXA = ctrXM

and
⋃

A∈shared(AM) sharedXA = sharedXM , ctrXA1 ∩ ctrXA2 = ∅ for all atoms

A1, A2 ∈ ctr(AM) with A1 �= A2, and such that the transitive closure +M=
(
⋃

A∈AM
+A)

+ is asymmetric.

These conditions ensure that the atoms in M control exactly the variables in
ctrXM ∪ sharedXM , that each variable in ctrXM is controlled by exactly one
atom in AM , and that the await dependencies between variables in AM are
acyclic. A linear order A1, . . . , An of the atoms in AM is consistent if for all
1 ≤ i < j ≤ n, the awaited variables in Ai are disjoint from the control variables
in Aj . The asymmetry of +M guarantees the existence of a consistent order of
atoms in AM . We denote by PM =

⋃
A∈AM

PInit(A) ∪
⋃

A∈AM
PUpdate(A) the

set of all predicates declared in the guarded commands of M . Remark that in
our examples, we name atoms by the set of variables they control. This is only
possible when all atoms have disjoint sets of controlled variables.

Example 1. Consider the SI Mex given in Figure 1. Mex consists of two external
integer variables b, c, three external Boolean variables r, isCtrbx, isCtr

c
x, and a

shared integer variable x. Intuitively, Mex models a simple additive controller
that works as follows. The shared variable x is either incremented or reset at
each time step in which the module controls x. Mex controls x whenever (isCtrbx∨
isCtrcx = t). In this case, if r = t, then x is reset. Else, if atom b (resp. c) controls
x (isCtrbx = t), then x is incremented by the value of b (resp. c). If none of these
atoms assign a value to the variable, then the environment will do.

3 Semantics

The intuition about the semantics of a SI is as follows: in each round, the en-
vironment assigns arbitrary values of correct type to external variables. Then,
the atoms are executed in a (abitrary) static consistent order. As we do not
assume that modules are input-enabled, there may be valuations of the external

208 B. Delahaye et al.

variables for which one or several atoms cannot be executed. Such configurations
result in deadlock states. A given valuation of the variables is reachable if there
exists a succession of rounds of the atom ending in this valuation.

Formally, the semantics of a SI is given by a labeled transition system (LTS).
Given a SIM with set of variablesXM , we denote by V [XM] the set of valuations
on variables in XM . A state s of an interface M is a valuation in V [XM]. We
write ΣM = ΣXM for the set of states of M . Given a state s ∈ ΣM and Y ⊆ XM ,
we denote by s[Y] the projection of the state s to the valuations of variables in Y .
Note that we will define the semantics in a way which keeps enough information
about the syntax to be able to go back from semantics to syntax; this is important
for several of the operations which we define in the next section, as these are
defined only at the semantics level.

Given a state s of an interface M , we denote by safesvM (s) the predicate
that indicates whether the state is safe with respect to shared variables in M ;

formally, safesvM (s) = t iff ∀x ∈ sharedXM ,
∧

A,A′∈M,A
=A′ s[isCtr
A
x]∧s[isCtrA

′
x] =

f. Intuitively, a state s of M is safe if and only if, for all shared variables x, there
is at most one atom that controls x.

Definition 4. Let X, Y , and Z ⊆ Y be sets of variables and γ a guarded com-
mand from X to Y . We define the semantics [[γ]] ⊆ ΣX ×ΣY of γ as follows:
– If γ is of the form pγ → αγ , where αγ : V [X] → V [Z], then (s, t) ∈ [[γ]] iff (1)

s |= pγ ; (2) ∀z ∈ Z, t[z] = αγ(s)[z]; (3) ∀y ∈ Y \Z such that type(y) �= C,
t[y] = s[y] and (4) ∀y ∈ Y \Z such that type(y) = C, t[y]. = s[y] + 1

– If γ is of the form pγ → wait, then (s, t) ∈ [[γ]] iff (1) s |= pγ, (2) ∀y ∈ Y
such that type(y) = C, t[y] = s[y] + 1, (3) ∀y ∈ Y such that type(y) �= C,
t[y] = s[y], and (4) t |= pγ.

Let A be an atom from X to Y and let ΓA be either Init(A) or Update(A), i.e.,
a finite set of guarded commands. Then, ΓA defines a relation [[ΓA]] ⊆ ΣX ×ΣY

such that (s, t) ∈ [[ΓA]] iff (s, t) ∈ [[γ]] for some γ ∈ ΓA.

The semantics of SI is a LTS whose states represent valuations of variables, and
whose transitions correspond to complete rounds of updates for all atoms Ai in
a static consistent order A1, . . . An.

Definition 5. The semantics of a SI M is the LTS [[M]] = (SM , S0
M ,→M , LM)

with SM = V [XM] ∪ {sinit}, S0
M = {sinit}, LM ⊆ PAM

M the set of all functions
l : AM → PM for which l(A) ∈ PA for all A ∈ AM , and →M defined as follows:
– (sinit, l, t) ∈ →M iff safesvM (t) and there exist γ1, . . . , γn such that for all

1 ≤ i ≤ n, γi ∈ Init(Ai), l(Ai) = pγi and there exists s0 ∈ V [XM] such that
t = [[Init(An)]] ◦ · · · ◦ [[Init(A1)]](s

0).
– (s, l, t) ∈ →M iff safesvM (s), safesvM (t), and there exist γ1, . . . , γn such that

for all 1 ≤ i ≤ n, γi ∈ Update(Ai), l(Ai) = pγi and t = [[Update(An)]] ◦ · · · ◦
[[Update(A1)]](s).

Note that we label each transition by the predicates of the guarded commands
that are effectively executed during the round, hence we preserve full syntactic
information about the interface in its semantics. In the following, we may omit
this labelling in our notations when we do not need the information.

Synchronous Interface Theories and Time Triggered Scheduling 209

module M module GS(M)
external a : N; external a : N;
interface b, c : N; interface b, c : N;

atom b awaits a atom c awaits b atom b awaits a atom c awaits b
initupdate initupdate initupdate initupdate

[] a′ ≤ 5 → b′ := 1; [] b′ ≤ 1 → c′ := 1; [] a′ ≤ 5 → b′ := 1; [] b′ ≤ 1 → c′ := 1;
[] a′ ≥ 2 → b′ := 2; [] false → b′ := 2;

Fig. 2. An example of guard strengthening. Left: M , right: GS(M)

A trajectory of a SI M is a finite sequence of states s0, s1, . . . , sn in [[M]]
such that: (1) s0 = sinit; (2) (si, si+1) ∈ →M for all 0 ≤ i < n; and (3) no
deadlock states are reachable from sn. The sequence s1[obsXM], . . . , sn[obsXM]
of observable valuations is called a trace of M ; the trace language L(M) of M is
the set of traces of M . In our optimistic approach, computing environments that
cannot result in deadlock states amounts to projecting L(M) onto the external
variables. Note that we can compute these environments if the interface has a
finite representation of its trace language, i.e. if [[M]] has a finite state space. We
say that M is well-formed if L(M) �= ∅.

4 Operations

We now describe some operations on SI which will allow us to use SI as an inter-
face theory. Note that we will also use some of these operations for incremental
scheduling in Section 5; but notably shared refinement is not used in incremental
scheduling, yet a necessary ingredient in any interface theory.

Guard Strengthening. Given a well-formed interface M , we are interested in
computing an equivalent module (in terms of infinite executions) in which no
deadlock states are reachable. This guard strengthening GS(M) is computed by
strengthening the guards of M in such a way that deadlocks are forbidden. An
illustration of guard strengthening is given in Figure 2.

Semantically, the construction relies on a notion of recursively pruning dead-
lock states together with states which inevitably lead to them: Let M be a SI
and let [[M]] = (SM , S0

M ,→M , LM) be its associated LTS. Define the function
SuccX : SM × V [X] → 2SM by

SuccX(q, v) = {q′ | (q, q′) ∈ →M and q′[X] = v} .

This function gives all successors of q in [[M]] which for variables in X match
the valuation v. Next we define a mapping Pred which outputs the controllable
predecessors of a subset B ⊆ SM :

Pred(B) = {s | ∀v ∈ V [extXM] :

SuccextXM (s, v) �= ∅ ⇒ SuccextXM (s, v) ∩B �= ∅}.

210 B. Delahaye et al.

Denote by Pred∗ the closure of Pred, let B = {s ∈ SM | ∀t ∈ SM : (s, t) �∈ →M}
be the deadlock states and B∗ = Pred∗(B). Intuitively, these are states from
which the environment cannot prevent M from reaching a deadlock.

The pruning of [[M]] is then given by the LTS ρ([[M]]) = (SM \B∗, S0
M \B∗,→′

M

, LM), where→′
M= {(s, l, s′) ∈ →M | s′ /∈ B∗}. Intuitively, pruning [[M]] removes

all bad states and transitions leading to them, which reduces the state-space of
M without affecting its language. Note that if M is not well-formed, then ρ([[M]])
has no initial states; we then say that the pruning of M is empty.

For guard strengthening at the syntactic level, matching the pruning of the
semantics, we proceed as follows: for each initial set of guarded commands Init(A)
of an atom A in AM and γ ∈ Init(A), the predicate pγ ∈ γ is replaced by

p̃γ =
∨

(sinit,t∈SM\B∗,(s,l,t)∈→M ,l(A)=pγ)

∧
(x∈XM [waitXA]) x

′ = t[x].

Similarly, for each update set of guarded commandsUpdate(A) and γ∈Update(A),
the predicate pγ ∈ γ is replaced by

p̃γ =
∨

(s,t∈SM\B∗,(s,l,t)∈→M ,l(A)=pγ)∧
(x∈XM [waitXA]) x

′ = t[x] ∧
∧

(x∈XM [readXA]) x = s[x].

Intuitively, this method amounts to an enumeration, for every guarded command,
of possible valuations of read and awaited variables that cannot reach a bad state.
Replacing original predicates with associated enumerations prevents exactly bad
behaviors. It follows, by construction, that [[GS(M)]] ≡ ρ([[M]]), hence also that
M is well-formed if and only if [[GS(M)]] is not empty. As the trace language
L(M) by definition only includes traces which cannot be extended to a deadlock
state, we also have L(M) = L(GS(M)).

Parallel Composition. We introduce a synchronous parallel composition op-
eration which combines two compatible SI. We say that SI M and N are com-
posable if (1) the interface variables of M and N are disjoint; and (2) the await
dependencies between the observable variables of M and N are acyclic, that
is the transitive closure (+M ∪ +N)+ is asymmetric. Observe that the sets of
shared variables may overlap, and that private variables are not taken into con-
sideration here: these are not visible from the outside, hence in case of private
variables with the same name, we consider that they are different and belong to
different name spaces.

We say that two composable SI are compatible if there exists an environment
in which they can be composed without reaching deadlock states. Informally, the
synchronous composition P of M and N consists in the union of their atoms,
where some controlled variables in M can constrain external variables in N , and
vice-versa. An execution of P thus consists in an update of all the remaining
external variables, followed by an update of the controlled and shared variables
of M and N .

Definition 6. Let M and N be two composable SI. Define an intermediate mod-
ule P by privXP = privXM ∪ privXN , intfXP = intfXM ∪ intfXN , extXP =

Synchronous Interface Theories and Time Triggered Scheduling 211

extXM ∪ extXN\intfXP , sharedXP = sharedXM ∪ sharedXN , and finally, AP =
AM ∪AN . M and N are compatible if P is well-formed, in which case we define
M ‖ N = GS(P).

The below theorem shows that parallel composition is associative, hence allowing
incremental composition. The theorem follows directly from the fact that pruning
does not affect the trace language.

Theorem 1. For composable SI M1, M2, and M3, L(M1 ‖ (M2 ‖ M3)) =
L((M1 ‖ M2) ‖ M3).

Refinement. Refinement of SI allows comparing interfaces. Informally, if N
refines M , then N works in at least all the environments where M works,
and all the behaviors of N defined in these environments are also behaviors
of M . Hence refinement for SI is similar to alternating simulation for I/O au-
tomata [4]. For valuations v ∈ V [extXM], we define the set ctrM (v) of shared
variables that are controlled by M according to v by ctrM (v) = {x ∈ sharedXM |
(
∨

A∈M v[isCtrAx]) = t}, and we let noctrM (v) = extXM ∪ (sharedXM \ ctrM (v)).

Definition 7. Let M and N be SI and [[M]] = (SM , S0
M ,→M , LM), [[N]] =

(SN , S0
N ,→N , LN). We say that N refines M, written as N ≤ M , if extXM ⊆

extXN , intfXN ⊆ obsXM , sharedXN = sharedXM , and there exists a relation
R ⊆ SN × SM such that (sinit, tinit) ∈ R and for all (s, t) ∈ R, we have
– (s, t) �= (sinit, tinit) implies that s[extXM ∪ intfXN ∪ sharedXM] = t[extXM ∪

intfXN ∪ sharedXM]
– for all v ∈ V [extXM] and v′ ∈ V [sharedXM \ ctrM (v)] it holds that if

Succnoctr(v)(t, v ∪ v′) �= ∅, then also Succnoctr(v)(s, v ∪ v′) �= ∅, and then
for all s′ ∈ Succnoctr(v)(s, v ∪ v′), there exists t′ ∈ Succnoctr(v)(t, v ∪ v′) such
that s′Rt′.

The relation between refinement and trace languages is as follows: for a SI M ,
let adm(M) = {w ∈ extX∗

M | ∃w′ ∈ L(M).w′↓extXM
= w} be the set of all

admissible external valuations ; here w′↓extXM
denotes the projection of w′ to

external variables, hence we are collecting all traces of valuations of external
variables which do not block execution of M . Then:

Theorem 2. For SI N , M with N ≤ M we have {w ∈ L(N) | w↓extXM ∈
adm(M)} ⊆ L(M).

The next theorem shows that SI theory supports independent implementability:
Refinement is compatible with parallel composition in the sense that components
may be refined individually.

Theorem 3. Given SI M1,M
′
1, M2, M

′
2 with M1 and M2 compatible, if M ′

1 ≤
M1 and M ′

2 ≤ M2, then M ′
1 is compatible with M ′

2 and M ′
1 ‖ M ′

2 ≤ M1 ‖ M2.

212 B. Delahaye et al.

Shared Refinement. We finish this section by mentioning that there is also a
notion of shared refinement for SI which supports component reuse in different
parts of a design. The shared refinement of two SI M1 and M2 is the SI M =
M1 ∧M2 which is the product of the state spaces in LTSs of M1 and M2, with
appropriate transitions ensuring that M1 and M2 evolve synchronously along the
same transitions. Hence M accepts inputs that satisfy any of the assumptions
from M1 and M2, and it provides outputs that satisfy both guarantees ofM1 and
M2. In particular, M can be used to implement two different aspects of a single
component. Moreover, M is the smallest such SI in the sense of the theorem
below.

Theorem 4. Given two SI M1 and M2, we have that: (1) M1 ∧M2 ≤ M1; (2)
M1 ∧M2 ≤ M2; and (3) for all SI M ′ such that M ′ ≤ M1 and M ′ ≤ M2, also
M ′ ≤ M1 ∧M2.

5 Incremental TTEthernet Scheduling with SI

In this final section we present a methodology for solving scheduling problems
using the synchronous interface theory developed in this paper. We concentrate
on the particular application of TTEthernet scheduling [26], but our framework
is sufficiently general that it also allows application to other scheduling and
job-shop problems.

A specification of a TTEthernet network consists of a physical topology, a
set of frames and a set of time-triggered scheduling constraints. The physical
topology is an undirected graph consisting of a set of vertices, corresponding
to communicating devices (end-systems or switches), and edges, representing bi-
directional communication links, called data-flow links, between devices. A frame
specifies a message that is sent over the network, and is represented by a tree that
defines the route for the message delivery from a sender device to a set of receiver
devices. Every edge in the tree represents the frame on a particular data-flow
link, and is characterized by its period (relative deadline for the frame arrival
from the sender to its receiver), length (value denoting frame delivery duration
on the data-flow link) and offset (actual time slot at which the frame is sent from
a sender to a receiver device). Like in [33], we assume, without loss of generality,
that the frame period Period is the same for all frames on all data-flow links in the
specification. Finally, time-triggered scheduling constraints are defined over the
offset values of frames on data-flow links. To simplify presentation, we consider
only two most common types of TT scheduling constraints: (1) contention free
(CF) constraints that impose to any reasonable schedule to forbid simultaneous
presence of two frames on the same data-flow link; and (2) path-dependent (PD)
constraints that impose correct flow of a frame through data-flow links, ensuring
that a device cannot send a frame before receiving it.

In a TTEthernet network specification, the only non-fixed values are the
offset parameters of frames in data-flow links. A schedule that satisfies

Synchronous Interface Theories and Time Triggered Scheduling 213

A D

C

EB

(a)

A

C

D

lenAC
1 = 1

offAC
1

lenCD
1 = 2

offCD
1

(b)

E

B

C

D

offDE
2

lenCE
2 = 2

lenBC
2 = 3

offBC
2

offCD
2

lenCD
2 = 1

(c)

CF: offCD
1 ≥ offCD

2 + lenCD
2 ∨

offCD
2 ≥ offCD

1 + lenCD
1

offCD
1 ≥ offAC

1 + lenAC
1

PD: offCE
2 ≥ offBC

2 + lenBC
2

offCD
2 ≥ offBC

2 + lenBC
2

(d)

f2

0

f1

1 2 3 4 5

CE

BC

CD

AC

f2

f2

f1

(e)

f1

f2

0

f2

f1

1 2 3 4 5

CE

BC

CD

AC

f2

(f)

Fig. 3. Specification of a TTEthernet network: (a) network topology N ; (b), (c) speci-
fication of frame routes f1 and f2; (d) constraints on offset values; (e) feasible schedule;
(f) infeasible schedule

the specification corresponds to an assignment of concrete values to offset pa-
rameters which satisfies all the constraints. The TT scheduling problem consists
in computing such a schedule from a specification.

We introduce our methodology by way of an example below, but in essence,
it proceeds as follows:

1. Introduce a SI Clock which keeps track of time within a period.
2. Model each frame as a SI, including transmission length, path dependency,

and shared resources.
3. Use parallel composition and well-formedness check to incrementally reject

all non-feasible offset values.
4. If any feasible offset values remain after the preceding step, then any of these

constitutes a feasible schedule. Otherwise the problem is unschedulable.

Figure 3 depicts an example of a time-triggered scheduling problem for a par-
ticular TTEthernet network specification. The input to the scheduling problem
consists of the network topology N (Figure 3(a)) and two frames f1, f2 (Fig-
ures 3(b) and (c)). The contention-freedom and path-dependency constraints in-
duced by the frames are depicted in Figure 3(d). Solving the scheduling problem
specified in Figure 3 consists in computing the feasible schedules that satisfy all
the requirements of the specification. Figures 3(e) and (f) depict two schedules,
one that satisfies and another that violates the specification.

214 B. Delahaye et al.

module Clock
interface clkP : C;
atom clkP reads clkP

init
[] t → clkP

′ := 0;
update

[] (clkP ≥ P − 1) → clkP
′ := 0;

[] clkP < P − 1 → wait;

Fig. 4. SI Clock

To solve the example scheduling problem, we
first introduce a SI Clock as depicted in Figure 4
which measures the relative time within every pe-
riod using an explicit clock variable clkP . This
clock is visible to all other interfaces in the sys-
tem. Then we model the two frames f1 and f2 as
two independent interfaces M1 and M2; this will
allow to solve the problem incrementally. The ap-

plication of the well-formedness check operator on the composition Clock‖Mi

computes the set of all feasible partial schedules that are consistent with the
scheduling (path-dependency) constraints of the frame fi. We then use the par-
allel composition of Clock with M1 and M2 to combine compatible partial sched-
ules for f1 and f2, effectively removing all schedules that violate the contention-
freedom constraint.

1 module M1

2 external soffAC
1 : [0, P), soffCD

1 : [0, P), clkP : C;
isCtr1xCD

: B;

3 interface offAC
1 : [0, P), offCD

1 : [0, P)

4 interface clkAC
1 : C; clkCD

1 : C;
5 shared xCD : B;

6 atom offAC
1 , offCD

1 awaits soffAC
1 , soffCD

1
7 init

8 [] soffCD
1

′ ≥ soffAC
1

′
+ lenAC

1 →
offAC

1
′
:= soff

1AC
′, offCD

1
′
:= soffCD

1
′
;

9 update
10 [] t →;

11 atom clkAC
1 awaits offAC

1 , clkP
12 init

13 [] offAC
1

′
= 0 → clkAC

1
′
:= 0;

14 [] offAC
1

′
= 0 → clkAC
1

′
:= ⊥;

15 update

16 [] clkAC
1

′
< lenAC

1 ∧ clkP
′ < P − 1 → wait;

17 [] clkAC
1

′
= lenAC

1 ∧ clkP
′ < P → clkAC

1
′
:= ⊥;

18 atom clkCD
1 awaits offCD

1 , clkP
19 init

20 [] offCD
1

′
= 0 → clkCD
1

′
:= ⊥;

21 update

22 [] clkCD
1

′
< lenCD

1 ∧ clkP
′ < P − 1 → wait;

23 [] clkCD
1

′
= lenCD

1 ∧ clkP
′ < P → clkCD

1 := ⊥;

24 atom xCD awaits clkCD
1 , isCtr1xCD

25 initupdate

26 [] isCtr1xCD
∧ clkCD

1
′ ∈ [0, lenCD

1) → xCD
′ := t;

27 [] ¬isCtr1xCD
∧ clkCD

1
′
∈ [0, lenCD

1) →
offAC

1 : 0

clkP : 4
clkAC

1 : ⊥

offCD
1 : 4

clkCD
1 : 0

isCtr1xCD
: 0

xCD : ∗

offAC
1 : 0

xCD : ∗
isCtr1xCD

: ∗
clkCD

1 : ⊥

clkP : 4

offAC
1 : 0

clkP : 0

xCD : ∗
isCtr1xCD

: ∗
clkCD

1 : ⊥
clkAC

1 : 0

clkAC
1 : ⊥

offAC
1 : 0

clkP : 1
clkAC

1 : ⊥
clkCD

1 : ⊥
isCtr1xCD

: ∗
xCD : ∗

offAC
1 : 0

clkAC
1 : ⊥

clkCD
1 : 0

isCtr1xCD
: 0

xCD : ∗

offAC
1 : 0

clkP : 3
clkAC

1 : ⊥
clkCD

1 : 1
isCtr1xCD

: 0

offAC
1 : 0

clkP : 3
clkAC

1 : ⊥
clkCD

1 : 1
isCtr1xCD

: 1
xCD : 1 xCD : ∗

offAC
1 : 0

clkP : 0

xCD : ∗
isCtr1xCD

: ∗
clkCD

1 : ⊥
clkAC

1 : 0

offAC
1 : 0

clkP : 1
clkAC

1 : ⊥
clkCD

1 : ⊥
isCtr1xCD

: ∗
xCD : ∗

offAC
1 : 0

clkP : 2
clkAC

1 : ⊥

offCD
1 : 4

clkCD
1 : ⊥

offAC
1 : 0

clkP : 3
clkAC

1 : ⊥
clkCD

1 : ⊥

isCtr1xCD
: ∗

xCD : ∗

isCtr1xCD
: ∗

xCD : ∗

offCD
1 : 4

offCD
1 : 4

offCD
1 : 4

offAC
1 : 0

clkP : 4
clkAC

1 : ⊥

offCD
1 : 4

clkCD
1 : 0

isCtr1xCD
: 1

xCD : 1

sinit

offCD
1 : 2

offCD
1 : 2

clkP : 2

offAC
1 : 0

clkP : 2

isCtr1xCD
: 1

xCD : 1

clkAC
1 : ⊥

clkCD
1 : 0

offCD
1 : 2 offCD

1 : 2

offCD
1 : 2 offCD

1 : 2

offCD
1 : 2

Fig. 5. Synchronous interface M1: (a) syntax; (b) part of its pruned semantics

Synchronous Interface Theories and Time Triggered Scheduling 215

We now encode the frame f1 as a SI M1, shown in Figure 5. The environment
(scheduler) owns the variables soffAC

1 and soffCD
1 (line 2), that are used to pro-

pose in the initial state the offset values for the message of frame f1 on the data
flow AC and CD, respectively. The interface M1 checks in line 8 whether the
proposed values satisfy the path-dependency constraint, and accordingly rejects
the offsets, or accepts them and copies them into the controlled variables offAC

1

and offCD
1 . The atom depicted in lines 6− 10 controls a local clock clkAC

1 , that
measures the time length of the message transmitted on the data flow link AC
by the frame f1. The clock clkAC

1 is reset when the corresponding offset value is
reached, and the atom ensures that the transmission of the message is finished
before the end of the period P . The atom that controls the local clock clkCD

1 ,
depicted in lines 18−23, does the same monitoring of the message transmitted by
f1 on the data flow link CD. Finally, the last atom controls the shared variable
xCD, that models the shared resource (data flow link) CD. It ensures that when
the frame f1 is given access to the data flow link CD (via the external variable
isCtr1xCD

), it is not preempted before the message transmission is done.
In order to compute the partial feasible schedules for f1, one needs to ap-

ply the well-formedness check on Clock‖M1, which amounts to generating the
pruned semantics graph of this composition (also shown (in parts) in Figure 5).

offCD
2

clkCD
2

offBC
2

clkBC
2

isCtr2xCD
isCtr1xCD

clkCD
1

offCD
1

xCD

clkP

offAC
1

clkAC
1

offCE
2

clkCE
2

offCD
2

clkCD
2

isCtr2xCD
xCD

clkP

offBC
2

clkBC
2

offCD
1

clkCD
1

isCtr1xCD

offAC
1

clkAC
1

xCD

clkP

3

0

1

3
⊥
3

⊥1
1 0

1

⊥ 0
1 0

0 3
⊥
3

⊥2
1 0

2

1⊥
1 1 0

0 3 3
0⊥

1 0

3

⊥ ⊥ 0
1 0 1

si ti (si, ti)

offCE
2

clkCE
2

0

0

0

0

1

2

3

4

⊥ 0

1⊥

⊥

⊥

0 ⊥
∗ ∗

1

1
1 1

1 1

∗ ∗

∗ ∗

0

(a)

0 1

0 1

0 1
⊥

∗ ∗

0 1
⊥

∗ ∗

1

2

3

4

⊥ 0
1 1

1⊥
1 1

⊥

⊥

0 ⊥
∗ ∗
0

0
0 ⊥
∗ ∗

3 3
⊥

0 ⊥
∗ ∗

⊥

0
0 ⊥
∗ ∗

3 3
⊥

0
0 ⊥
∗ ∗

3 3
⊥

0
0 ⊥
∗ ∗

3 3
⊥

0

1

2

3

4

(b)

0

∗ ∗

3
1
3

⊥
∗
⊥

1 0

4

⊥ ⊥

(c)

s1

s2

s3

s4

s5 s10

s9

s8

s7

s6 t1

t2

t3

t4

t5

0
∗ ∗
0

3
⊥
3

⊥
∗

⊥ 0

3
⊥
3

1

1⊥
∗ ∗∗

0 3
⊥
3

⊥2
0

2

0⊥
1 1 0

00 2

0
⊥

02
⊥

2

0 3 3
0⊥

0

3

1 0
1? 1

2
⊥

0
∗ ∗
0

⊥⊥
∗

⊥ 0

(s1, t1)

(s2, t2)

(s3, t3)

(s4, t4)

(s5, t5)

(s6, t1)

(s7, t2)

(s8, t3)

(s9, t4)

sinit tinit (sinit, tinit)

.

2

2

2

2

30103302010

Fig. 6. Parallel composition of M1 and M2: fragments of (a) ρ([[Clock‖M1]]); (b)
ρ([[Clock‖M2]]) and (c) ρ(ρ([[Clock‖M1]])‖ρ([[Clock‖M2]]))

216 B. Delahaye et al.

The well-formedness checking results in pruning all states that lead to a deadlock,
i.e., it removes all states where the offsets that are proposed by the environment
result in a violation of a scheduling constraint. The partial feasible schedules are
encoded as the valuations of offAC

1 and offCD
1 in the remaining initial states.

The encoding of the scheduling problem for f2 into a synchronous interface
M2, and the corresponding computation of the partial feasible schedules for f2 is
done in a similar way. Given the pruned transition systems ρ([[Clock‖M1]]) and
ρ([[Clock‖M2]]), the parallel composition combines the two systems and removes
the joint behaviors that are not compatible. In our example, it amounts to remove
all the behaviors in which the mutual exclusion property on the access to the
shared variable xCD is violated, thus falsifying the contention-freedom scheduling
constraint. The pruned transition system of the composition encodes exactly all
feasible schedules of the original problem. Figure 6 depicts two fragments of the
transition systems for Clock‖M1 and Clock‖M2 and of the pruned semantics of
their composition.

6 Conclusion and Further Work

We present in this paper a simple yet powerful model for synchronous interfaces.
Contrary to most other interface models one finds in the literature, the modeling
language we use is inspired by a specific application domain, resulting in a model
that resembles a high-level programming language. At the same time, we allow
explicit use of time and of shared variables that are treated in a flexible way,
resulting in a rich model which satisfies most common engineering needs. We
develop our model into an interface theory, allowing for high-level reasoning and
component-based design using (shared) refinement, composition and pruning.
We propose to use our interface theory as an elegant solution for incremental
computation of time-triggered schedules.

In the future, we plan to implement the SI framework and apply it to different
scheduling problems. We also believe that the state-based type of analysis on SI
makes our approach a good candidate for development of efficient and flexible
heuristics, by assigning value functions to states and restricting the search space
to the assigned values. Finally, we plan to extend our approach in order to incor-
porate deeper information about the platform on which the system is running,
like in the spirit of recent works [10,27] done in the context of the untimed BIP
and UPPAAL frameworks.

References

1. Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

2. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling with timed automata.
TCS 354(2), 272–300 (2006)

3. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In: EMSOFT, pp. 229–238. ACM (2010)

Synchronous Interface Theories and Time Triggered Scheduling 217

4. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement
Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

5. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE Soft-
ware 28(3), 41–48 (2011)

6. Basu, A., Mounier, L., Poulhiès, M., Pulou, J., Sifakis, J.: Using BIP for modeling
and verification of networked systems – a case study on TinyOS-based networks.
In: NCA, pp. 257–260. IEEE Computer Society (2007)

7. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On Weak Modal Compati-
bility, Refinement, and the MIO Workbench. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

8. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for Knowledge
Based Controlling of Distributed Systems. In: Bouajjani, A., Chin, W.-N. (eds.)
ATVA 2010. LNCS, vol. 6252, pp. 52–66. Springer, Heidelberg (2010)

9. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple Viewpoint Contract-Based Specification and Design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

10. Bourgos, P., Basu, A., Bozga, M., Bensalem, S., Sifakis, J., Huang, K.: Rigorous
system level modeling and analysis of mixed HW/SW systems. In: MEMOCODE,
pp. 11–20. IEEE (2011)

11. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in
Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

12. Burns, A.: Preemptive priority based scheduling: An appropriate engineering ap-
proach. In: PRTS, pp. 225–248 (1994)

13. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and
Bidirectional Component Interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002)

14. David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: ECDAR: An Envi-
ronment for Compositional Design and Analysis of Real Time Systems. In: Boua-
jjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365–370. Springer,
Heidelberg (2010)

15. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: HSCC, pp. 91–
100. ACM (2010)

16. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
Interfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005)

17. de Alfaro, L., Faella, M.: An Accelerated Algorithm for 3-Color Parity Games with
an Application to Timed Games. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)

18. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE,
pp. 109–120 (2001)

19. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

20. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed Interfaces. In: Sangiovanni-
Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122.
Springer, Heidelberg (2002)

218 B. Delahaye et al.

21. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: EMSOFT, pp. 79–88. ACM (2008)

22. Easwaran, A., Shin, I., Sokolsky, O., Lee, I.: Incremental schedulability analysis of
hierarchical real-time components. In: EMSOFT, pp. 272–281. ACM (2006)

23. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-Guarantee Verification
for Interface Automata. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 116–131. Springer, Heidelberg (2008)

24. Fersman, E., Krčál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, de-
cidability and undecidability. I&C 205(8), 1149–1172 (2007)

25. Graf, S., Peled, D., Quinton, S.: Monitoring Distributed Systems Using Knowledge.
In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722,
pp. 183–197. Springer, Heidelberg (2011)

26. Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K.: The time-triggered eth-
ernet (TTE) design. In: ISORC, pp. 22–33. IEEE Computer Society (2005)

27. Mikučionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou, A., Palm, S.U.,
Pedersen, J.S., Hougaard, P.: Schedulability Analysis Using Uppaal: Herschel-
Planck Case Study. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS,
vol. 6416, pp. 175–190. Springer, Heidelberg (2010)

28. Palm, S.: Herschel-Planck ACC ASW: sizing, timing and schedulability analysis.
Tech. rep., Terma A/S (2006)

29. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of com-
ponents. In: SEFM, pp. 377–381. IEEE Computer Society (2008)

30. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
Modal interfaces: unifying interface automata and modal specifications. In: EM-
SOFT, pp. 87–96. ACM (2009)

31. Rasmussen, J.I., Larsen, K.G., Subramani, K.: On using priced timed automata to
achieve optimal scheduling. FMSD 29(1), 97–114 (2006)

32. Shin, I., Lee, I.: Compositional real-time scheduling framework. In: RTSS, pp. 57–
67. IEEE Computer Society (2004)

33. Steiner, W.: An evaluation of SMT-based schedule synthesis for time-triggered
multi-hop networks. In: RTSS, pp. 375–384 (2010)

34. Terma A/S. Software timing and sizing budgets. Tech. rep., Terma A/S, Issue 9
35. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-

tional interfaces. ACM Trans. Program. Lang. Syst. 33(4), 14 (2011)

TransDPOR: A Novel Dynamic Partial-Order

Reduction Technique for Testing Actor
Programs

Samira Tasharofi1, Rajesh K. Karmani1, Steven Lauterburg2,
Axel Legay3, Darko Marinov1, and Gul Agha1

1 Department of Computer Science, University of Illinois, Urbana, IL 61801, USA
{tasharo1,rkumar8,marinov,agha}@illinois.edu
2 Salisbury University, Salisbury, MD 21801, USA

stlauterburg@salisbury.edu
3 INRIA, Campus de Beaulieu, France

alegay@irisa.fr

Abstract. To detect hard-to-find concurrency bugs, testing tools try
to systematically explore all possible interleavings of the transitions in
a concurrent program. Unfortunately, because of the nondeterminism
in concurrent programs, exhaustively exploring all interleavings is time-
consuming and often computationally intractable. Speeding up such tools
requires pruning the state space explored. Partial-order reduction (POR)
techniques can substantially prune the number of explored interleavings.
These techniques require defining a dependency relation on transitions
in the program, and exploit independency among certain transitions to
prune the state space.
We observe that actor systems, a prevalent class of programs where

computation entities communicate by exchanging messages, exhibit a de-
pendency relation among co-enabled transitions with an interesting prop-
erty: transitivity. This paper introduces a novel dynamic POR technique,
TransDPOR, that exploits the transitivity of the dependency relation in
actor systems. Empirical results show that leveraging transitivity speeds
up exploration by up to two orders of magnitude compared to existing
POR techniques.

1 Introduction

Concurrent programs are becoming increasingly important as multicore and net-
worked computing systems become the norm. A model of concurrent program-
ming that has been gaining popularity is the actor model [1]. The actor model is
used in many systems such as ActorFoundry, Asynchronous Agents, Charm++,
E, Erlang, and Scala.1 Actor programs consist of computing entities called ac-
tors (each with its own local state and thread of control) that communicate by
exchanging messages asynchronously. An actor configuration consists of the lo-
cal state of the actors and a set of pending messages. In response to receiving

1 For a more extensive list of actor systems, refer to [14].

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 219–234, 2012.
c© IFIP International Federation for Information Processing 2012

220 S. Tasharofi et al.

a message, an actor can update its local state, send messages, or create new
actors. At each step in the computation of an actor system [2], an actor from
the system is scheduled to process one of its pending messages. Assuming that
this processing terminates, the actor system transitions to a new configuration.

Concurrent systems, such as actor systems, present a significant challenge for
the testing and verification community. Such systems can exhibit exponentially
many different interleavings of concurrent transitions. In the case of actors, the
execution of an actor program can have different results from an exponentially
large number of potential interleavings of messages. The nondeterminism in actor
systems stems from the fact that multiple messages sent to the same actor may
be processed in different orders, thus resulting in different configurations, and
only some specific interleavings/configurations may reveal bugs.

A näıve exploration that would explore all the interleavings to reach all pos-
sible system configurations does not scale. Partial-order reduction (POR) tech-
niques [5, 6, 8, 9, 11, 20, 22, 24–27, 29] can be applied to help mitigate the re-
sulting state-space explosion by exploring a representative subset of all possible
interleavings. POR techniques have been widely used for testing and verifica-
tion of concurrent protocols and software, including in tools such as SPIN [13],
VeriSoft [8], and Java PathFinder [28].

To prune state-space exploration, POR techniques explore a subset of the set
of enabled transitions in each configuration. This subset should be selected such
that by exploring only the transitions in the subset, all the properties of interest
are guaranteed to be preserved. For example, in one of the popular POR tech-
niques, this subset is defined as a persistent set [9]. POR techniques require the
definition of a dependency relation between transitions in the system and then
exploit the independency between certain transitions to compute this subset.
A valid dependency relation is a reflexive and symmetric (but not necessarily
transitive) binary relation on the transitions.

Traditionally, dependencies among transitions, such as in persistent sets [9]
proposed by Godefroid, were computed via static analysis. More recently, Flana-
gan and Godefroid introduced a POR algorithm, called dynamic POR (DPOR),
that relies on dynamic analysis for computing dependencies [6]. More precisely,
this algorithm maintains for each configuration a backtrack set and updates the
backtrack sets during the execution of a test program. Flanagan and Godefroid
proved that the computed backtrack sets are persistent sets [6]. They show that
DPOR can significantly improve on POR techniques based on static analysis by
computing smaller persistent sets. Note that DPOR is stateless, i.e., it does not
store states/configurations across different executions.

In this paper, we leverage the fact that actors do not share their states, and
we define a dependency relation between the transitions that is transitive on the
transitions enabled in the same configuration (called co-enabled transitions).
We present a new stateless dynamic POR algorithm, called TransDPOR which
extends DPOR to take advantage of the transitive dependency relations in ac-
tor systems. We show that TransDPOR in some cases explores fewer config-
urations/transitions than DPOR, but it never explores more. TransDPOR is

TransDPOR: A Novel Dynamic Partial-Order Reduction Technique 221

complete like DPOR, i.e., when the state space is acyclic, TransDPOR can reach
every deadlock or local safety violation in the system (space limitations do not
allow us to provide a proof of these properties in this version of the paper).

We implemented TransDPOR in Basset [17], a tool for the systematic testing
of actor programs written in the Scala programming language [12] or the Actor-
Foundry library for Java [21]. TransDPOR code is publicly available with Bas-
set at http://mir.cs.illinois.edu/basset. We compare TransDPOR and
DPOR (we previously adapted the original DPOR algorithm to work for actor
systems [18]) on eight programs without bugs and three programs with bugs.
The experimental results show that TransDPOR reduces the number of tran-
sitions executed during state space exploration by 2.39x on average and up to
163.80x over DPOR. When we combine TransDPOR and DPOR with sleep sets
(a traditional POR technique) [7], we find that TransDPOR can find bugs up to
2.56x faster than DPOR.

2 Illustrative Example

To illustrate how TransDPOR works, we use the simple actor program shown
in Figure 1. It has four actors: one master (which is the entry point of the
program), one registry server, and two workers. The registry keeps track of the
actors registered in the system. The master first registers itself by sending its
ID to the registry. It then creates two workers and sends them each a message
with the registry’s ID. After receiving the message, each worker sends its ID to
the registry. In the comments for send statements, we labeled each of the five
messages: worker1 and worker2 receive messages w1 and w2 respectively, and
the registry eventually receives three messages—r0, r1, and r2. In this example,
the nondeterminism is the order in which the registry receives these three mes-
sages and thus assigns the values for its three local variables. For example, the
program could have a bug if it assumes that r0 is received before r1 and r2.

We observe that without any assumption one would have to explore up to 5!
permutations of the messages exchanged between actors. We will see that this
number reduces considerably by using DPOR algorithms that consider a basic
property in the actor model. In the actor model, actors have no shared states
but only communicate by exchanging messages. Since processing a message in
one actor cannot change the states of other actors, only the transitions that
process the messages sent to the same actor are dependent. Hence, when exploring
actor systems, to reach all local safety violations and deadlocks, it suffices to
explore different interleavings of processing messages in each actor, i.e., it is not
necessary to explore interleavings of processing messages across different actors.
For example, if ma and mb respectively stand for processing message ma in
actor a and message mb in actor b, it suffices to explore only one of interleavings
ma.mb or mb.ma.

Figure 1 shows the state spaces that DPOR and TransDPOR explore for our
example program. Each node represents a configuration, and each edge shows a
transition labeled with the message being processed.

http://mir.cs.illinois.edu/basset

222 S. Tasharofi et al.

0

1

2

3

r0

w1

w2

4

5

6

7

r1

r2

r2

r1

w1
w2

10

13

r2

14

r1

11

12

r1

r2

8

r0

21

r0

16

r1

26

17

18

19

20

r2

r2

r1

22

23

24

25

r2

r2

r0

27

28

29

30

r0

r1

r1

r0

9

w2

w2

15

r0

r0

r2

w2

r2

r0

r1

r1 r2

r0

r2

w2

r2

r1

r1

r2

r0

r0r1

r2

r2

r1 r2

r2

r0

r0

r1

r1

r0

w1

w1

r0

r0

r1

w1

r1

r0

r2

r1
r2

r0

r1

w1

Pruned by TransDPOR

backtrack sets:
DPOR={r0,w1,w2}
TransDPOR=
{r0,w1}

backtrack sets:
DPOR={r0,w2,r1}
TransDPOR=
{r0,w2}

master:
1:registry:=create(Registry);
2:send(registry,id);/∗r0∗/
3:worker1:=create(Worker);
4:worker2:=create(Worker);
5:send(worker1,registry);/∗w1∗/
6:send(worker2,registry);/∗w2∗/

registry:
1:id0:=receive();
2:id1:=receive();
3:id2:=receive();

worker1:
1:r:=receive();
2:send(r,id);/∗r1∗/

worker2:
1:r:=receive();
2:send(r,id);/∗r2∗/

Fig. 1. The registry example and the state space explored by DPOR and TransDPOR

Let us first focus on DPOR. Specifically, this algorithm first executes an actor
program to obtain an execution path and for each configuration keeps a backtrack
set of all messages to be explored from that configuration. These sets start empty
but grow as DPOR discovers dependencies among transitions. In our example,
DPOR first executes the path r0.w1.w2.r1.r2. Then, the algorithm observes that
r1 and r2 are sent to the same registry actor, which makes them dependent.
DPOR thus adds r2 to the backtrack set of configuration 3. Moreover, because
r1 and r2 are dependent with r0 but not enabled in the initial configuration,
DPOR adds the messages that can produce r1 and r2—namely, w1 and w2—to
the backtrack set of the configuration 0 so that different interleavings of those
messages with r0 can be explored. After the first path, DPOR backtracks in
a depth-first manner to configuration 3 and executes r0.w1.w2.r2.r1. It then
backtracks to configuration 0 and explores w1 and w2 from that configuration.
Observe that some redundant paths such as r0.w2.w1.r2.r1 have been removed
from the exploration. In the end, DPOR explores 24 paths. Recall that DPOR is
stateless, i.e., it does not store the history of previous explored paths and every
time it backtracks to a configuration it chooses a message from backtrack set
and runs the program nondeterministically.

While the above pruning is already an improvement over full exploration, it
does not fully exploit the semantics of the actor model. More precisely, one can
observe that adding w1 to the backtrack set of the initial configuration would be
enough to explore all possible permutations of the messages processed in each

TransDPOR: A Novel Dynamic Partial-Order Reduction Technique 223

actor, i.e., all paths of the subtree that starts with w2 are redundant. Intuitively
this is because only registry can receive more than one message and different
permutations of the three messages sent to the registry have been explored in
the previous paths. The same holds for the backtrack set of configuration 8 where
the subtree that starts with r1 is redundant.

Our new POR algorithm TransDPOR detects these redundant paths and as
a result explores only 10 paths in this example (those not included in dotted
boxes in Figure 1). The main idea in TransDPOR is to add (at most) one new
message to the backtrack set for a configuration. After the newly added mes-
sage is explored, only if it is necessary TransDPOR adds more messages to the
backtrack set. TransDPOR implements this idea by attaching a boolean flag,
freeze flag, to each configuration. It only adds a message to the backtrack set
of a particular configuration if the freeze flag of that configuration is not set.
While initially this flag is not set in any configuration, TransDPOR sets this
flag when it adds a message to the backtrack set of a configuration. It resets the
flag when it backtracks to a configuration and explores a new message from that
configuration.

In the example, when TransDPOR adds w1 to the backtrack set of config-
uration 0, it sets the freeze flag and that prevents the addition of w2 to the
backtrack set of configuration 0. The same situation happens for the backtrack
set of configuration 8. That leads to smaller backtrack sets than DPOR for the
two configurations 0 and 8. This reduction is allowed due to the transitivity
of the dependency relation between the transitions that may be co-enabled in
a configuration, and we show that this reduction does not miss any bug that
DPOR can find. An example of adding all messages can be seen in configuration
15 (all three messages r0, r1, and r2 are added to the backtrack set of the config-
uration). In this configuration, after exploring r0, both r1 and r2 are dependent
with r0, but TransDPOR only adds r1 to the backtrack set of configuration 15.
The freeze flag prevents the addition of r2 to the backtrack set at the same time.
Due to the transitivity of the dependency relation, r1 and r2 are also dependent.
Thus, after exploring r1 from configuration 15, the freeze flag is reset and r2 is
added to the backtrack set of configuration 15. The algorithm will end up adding
all three messages r0, r1, and r2 to the backtrack set of configuration 15 and will
not miss any permutation of these three messages.

3 Actor Semantics

While the above example relied on an intuitive understanding of actors, we now
define the semantics of actor programs precisely. Formally, we view actor pro-
grams as state-transition systems. A (global) state of an actor program, termed
a configuration, in notation κ = 〈α, μ〉, consists of a map α : A → L, where A are
actor identifiers and L are possible local states, and a set of pending messages
μ ⊆ M, where M is the set of all possible messages in the system. We use K to
denote the set of all configurations in a system and pending(κ) to denote the
set of pending messages for κ ∈ K. Each message is a tuple of receiver actor,

224 S. Tasharofi et al.

content, and unique message identifier. Conceptually, the messages in μ can be
partitioned according to their receiver actor, i.e., μ is a union of disjoint message
sets, one for every actor in the system.

At each step in execution, an actor processes a message from its message set:
the actor removes the message from its set and potentially updates its local state,
sends messages to other actors or itself, and creates new actors. The processing
can be viewed as a single, atomic macro-step [2] because actors do not share
state [14]. The actor model allows constraints that enable or disable processing
of some message by an actor depending on its local state. Formally, for an actor
a, its constraint ca ⊆ L × M is a predicate on the local state of the actor and
the set of messages.

Definition 1. The transition tm for a message m is a partial function tm :
K ⇀ K. For a given 〈α, μ〉 ∈ K, let the receiver of m be actor a with the local
state s and constraint ca; the transition tm is enabled if tm(〈α, μ〉) is defined
(i.e., α(a) = s and m ∈ μ) and 〈s,m〉 ∈ ca. If tm is enabled, it can be executed
and produces a new configuration, updating the local state of the actor from s to
s′, sending messages outs(tm), and creating new actors with their initial local
state news(tm):

〈α, μ〉 tm→ 〈α[a �→ s′] ∪ news(tm), μ\{m} ∪ outs(tm)〉

We denote msg(tm) = m and actor(tm) = a. We denote with out(tm) and
new(tm) the sets of all new messages and actors, respectively, that the transition
tm can create for any local state s. Observe that as is usual in actor semantics, we
assume that the behavior of an actor in response to a message is deterministic.
Moreover, we assume that all transitions terminate–this is a standard assumption
in testing programs. Thus, the execution of a transition t in a configuration κ
leads to a unique successor κ′ (up to the choice of fresh identifiers for new actors
and messages).

4 Definitions for Partial-Order Reduction

We introduce several terms and definitions required for presenting our TransD-
POR algorithm, following the DPOR presentation style of Flanagan and Gode-
froid [6]. Then we present an important property of the actor model that will
be used to improve DPOR. Let τ be the set of all transitions in the system
and τ∗ be the set of all transition sequences. We write κ

ω⇒ κ′ to denote that
the execution of finite sequence ω ∈ τ∗ leads from κ to κ′. A configuration in
which no transition is enabled is called a deadlock or terminating configuration.
A transition sequence S of an actor system is a (finite) sequence of transitions
t1.t2 . . . tn where there exist configurations κ0, . . . , κn such that κ0 is the initial

configuration and κ0
t1→ κ1

t2→ . . .
tn→ κn. A transition sequence that ends in a

deadlock or terminating configuration is called an execution path of the system.
We define an actor system as a transition system AG = 〈K, Δ, κ0〉, where

Δ = {〈κ, κ′〉 | ∃t ∈ τ : κ
t→ κ′} and κ0 is the initial configuration. We first recap

TransDPOR: A Novel Dynamic Partial-Order Reduction Technique 225

the general definition for a valid dependency relation between transitions [6],
then we show how to adapt it to the actor model.

Definition 2. Let t1 and t2 be two transitions of an actor system. We say that
t1 and t2 are independent if for all configurations κ in the state space AG of the
system:

– if t1 is enabled in κ and κ
t1→ κ′, then t2 is enabled in κ iff t2 is enabled in

κ′ (i.e., independent transitions cannot disable or enable each other); and
– if t1 and t2 are enabled in κ, there is a unique configuration κ′ such that

κ
t1,t2⇒ κ′ and κ

t2,t1⇒ κ′ (i.e., enabled independent transitions must commute).

The reflexive and symmetric binary relation D is a valid dependency relation on
τ iff D = {(t1, t2)|t1, t2are not independent transitions}. The pair of transitions
(t1, t2) are said to be dependent iff they belong to a valid dependency relation.

We observe that for actor programs, a transition tm cannot be enabled until the
receiver actor for m is created and the message m is sent (m becomes pending).
Second, once a message m is sent to an actor a, only transitions of the actor a
can enable or disable the transition tm that processes the message m. In other
words, the constraint ca does not depend on the global state but only on the
local state of a and the message m. Therefore, we can easily show that two
transitions t1 and t2 are independent if actor(t1) �= actor(t2), msg(t1) �∈ out(t2),
and actor(t1) �∈ new(t2). Based on these observations, we can cast Definition 2
in the actor programs setting to obtain the following proposition.

Proposition 1. Two transitions t1, t2 ∈ τ are dependent iff one of the following
conditions holds:

– actor(t1) = actor(t2); or
– msg(t1) ∈ out(t2) or msg(t2) ∈ out(t1); or
– actor(t1) ∈ new(t2) or actor(t2) ∈ new(t1).

Based on Proposition 1, one can extract an important property of our model,
which will be used to improve over DPOR. We say that two transitions t1 and
t2 may be co-enabled if there may exist some configuration in which both t1 and
t2 are enabled. For a shorthand, we introduce a binary relation on transitions
called race relation; we say that a pair of transitions 〈t1, t2〉 are in race if they
are dependent and may be co-enabled. A key observation is that if 〈t1, t2〉 are
in race, then actor(t1) = actor(t2). Indeed, while our definition of dependency
allows two other cases (msg(t1) ∈ out(t2) or actor(t1) ∈ new(t2)), the transitions
that satisfy those two other cases can never be co-enabled (because those cases
require that the message or actor for t1 be created after the execution of t2). As
a result, the following proposition holds.

Proposition 2. The race relation is reflexive, symmetric, and transitive.

Given a transition sequence, two adjacent transitions that are independent can be
permuted without changing the behavior of the transition sequence. To formalize
the set of equivalent transition sequences, we recap the happens-before relation
presented in [6].

226 S. Tasharofi et al.

Definition 3. The happens-before relation →S for a transition sequence S =
t1 . . . tn is the smallest relation on {1, . . . , n} such that (1) if i ≤ j and ti is
dependent with tj, then i →S j; and (2) →S is transitively closed.

Since happens-before relation is a partial order [6], we introduce the following
equivalence relation:

Definition 4. Two transition sequences S1 and S2 are equivalent iff they have
the same set of transitions, and they are linearizations of the same happens-before
relation.

We use [S] to denote the set of transition sequences that are equivalent to S.

5 TransDPOR: A New DPOR Algorithm

Figure 2 presents our TransDPOR algorithm, which explores the state space
of an actor system dynamically in a depth-first manner. The underlined parts
are the differences between TransDPOR and the original DPOR [6] adapted for
actors. The input to the algorithm is a transition sequence S (Line 1). Notation-
wise, for a sequence S = t1 . . . tn: dom(S) is the set {1, . . . , n}; Si for i ∈ dom(S)
is transition ti; pre(S, i) for i ∈ dom(S) is the configuration in which ti is ex-
ecuted; and last(S) is the configuration reached after executing S. We denote
with next(κ,m) the transition that processes message m in the configuration κ.
Following [6], we also use a variant of the happens-before relation to determine
if some messages are sent as the result of executing other transitions:

Definition 5. In a transition sequence S, the relation i→Sm holds for i ∈
dom(S) and message m iff either (1) m ∈ out(Si) or (2) ∃j ∈ dom(S) such
that i →S j and m ∈ out(Sj).

Like DPOR, TransDPOR maintains a backtrack set backtrack(κ), which keeps
the messages to be explored from each configuration κ in the input sequence S.
The main difference is that, in addition, TransDPOR also uses a boolean flag
freeze(κ). As explained in Section 2, this flag can prevent adding some messages
to backtrack(κ), and hence it reduces the size of backtrack(κ). As we shall see,
because of the transitivity of the race relation, TransDPOR can use this flag to
improve over DPOR.

TransDPOR starts by finding the current configuration κ for the input se-
quence S (Line 2). For every message m in pending(κ) (Line 3), it considers
the transition next(κ,m) for processing that message. It finds the last transi-
tion i in the sequence S which is in the race with next(κ,m), i.e., actor(Si) =
actor(next(κ,m)) and i �→S m. If the freeze flag is set in pre(S, i), the algorithm
does not update the backtrack set for pre(S, i) (Line 4′); this line does not exist in
DPOR and is a major difference between TransDPOR and DPOR. Effectively,
this step prevents additional messages in backtrack(pre(S, i)) until the previ-
ously added message is explored by the algorithm. Due to the transitivity of our
race relation, we prove that the messages not added right away are added later if

TransDPOR: A Novel Dynamic Partial-Order Reduction Technique 227

0 : Initially: Explore(∅);

1 : Explore(S) {
2 : let κ = last(S);
3 : for all messages m ∈ pending(κ) {
4 : if ∃i = max({i ∈ dom(S) | Si is dependent and

may be co-enabled with next(κ,m) and i
→S m}) {
4′ : if (¬freeze(pre(S , i))) {
5 : let E = {m′ ∈ enabled(pre(S, i)) | m′= m or ∃j ∈ dom(S) | j > i and

m′ = msg(Sj) and j →S m and
j = min({j ∈ dom(S) | j > i and j →S m})};

6 : if (E \ backtrack(pre(S, i))
= φ) {
add any m′∈ E to backtrack(pre(S, i));
freeze(pre(S , i)) := true;

}
7 : /* else add all m in enabled(pre(S, i)) to backtrack(pre(S, i)) */;

7′ : }
8 : }
9 : }

10 : if (∃m ∈ enabled(κ)) {
11 : backtrack(κ) := {m};
12 : let done = ∅;
13 : while (∃m ∈ (backtrack(κ) \ done)) {
14 : add m to done;
14′ : freeze(κ) := false;

15 : Explore(S.next(κ,m));
16 : }
17 : }
18 : }

Fig. 2. The TransDPOR algorithm (The differences with DPOR are underlined)

necessary to explore them from κ. However, as TransDPOR does not add them
right away, it may terminate faster than DPOR. If freeze(pre(S , i)) is not set, the
algorithm next finds the message that should be added to backtrack(pre(S, i)) by
computing the set E (Line 5) from the messages whose transitions are enabled in
pre(S, i). If m is enabled in pre(S, i) it is added to E (m′ = m); otherwise a mes-
sage m′ is added to E if its transition is the first transition after Si that happens
before m (in this case, m is produced as a result of executing other transitions
after Si). Note that our approach for computing E differs from DPOR in that it
finds the minimum index j > i such that j happens before m, while DPOR finds
all j > i such that j happens before m. As a result of this change, E in our case
has at most one element. After computing E, if it contains a message that is not
already in backtrack(pre(S, i)), the message is added to backtrack(pre(S, i)),
and the freeze flag is set (Line 6). In DPOR, if E is not empty, it can have more
than one message, and the algorithm nondeterministically chooses one message
to add to backtrack(pre(S, i)) (hence “add any”).

If E is empty, thenm is in pending(pre(S, i)) but tm is not enabled in pre(S, i).
Intuitively, because of the transitivity of race relation, every enabled message
in pre(S, i) that can enable tm would be in race with Si (all of them belong
to the same actor) and would be added to backtrack(pre(S, i)) either in the
next iteration of the for loop or in the recursive calls to Explore. Therefore,
TransDPOR does not add anything to backtrack(pre(S, i)) at this point (Line 7

228 S. Tasharofi et al.

is effectively deleted). In contrast, in DPOR, if E is empty, the algorithm adds
all messages from E to backtrack(pre(S, i)).

After Lines 3-9 update the backtrack set of configurations seen previously in
the sequence S, Lines 10-17 process the messages from the current configuration
κ. The algorithm nondeterministically chooses an enabled message from κ (Line
10) to initialize backtrack(κ) (Line 11). It then processes all messages from the
backtrack set that have not been explored before (Line 13). Every time the
algorithm backtracks to κ and explores a new message, it adds that message to
the done set and resets the freeze flag (Line 14′). The algorithm finally recursively
calls itself with the transition sequence extended with the next(κ,m).

In our example in Section 2, once TransDPOR adds w1 to backtrack(κ0),
it sets freeze(κ0), which prevents from adding w2 to backtrack(κ0). After the
algorithm explores w1 from κ0, it resets freeze(κ0), but because none of the
messages in paths that start with w1 from κ0 is in the race with w1, no message
is added to the backtrack(κ0) (w2 is not added). Similarly, in κ8, adding w2

to backtrack(κ8) prevents from adding r1. After exploring w2 from κ8, because
none of the messages r0, r1, and r2 are in the race with w2, no message is
added to backtrack(κ8) (r1 is not added). On the other hand, consider κ15.
After exploring r0, both r1 and r2 are in the race with r0. Because of the freeze
flag, the algorithm only adds r1 to backtrack(κ15). After exploring r1 from κ15,
because of transitivity of race relation, r2 is also in the race with r1 and it is
eventually added to backtrack(κ15).

When the loop terminates, the exploration from κ is finished, and the al-
gorithm backtracks to the previous configuration. Note that the algorithm is
stateless, i.e., it does not store states/configurations across different execution
paths. However, it may store configurations for the current path on a stack,
depending on the implementation strategy.

It is trivial to show that TransDPOR never explores more execution paths
than DPOR. As a result of the changes that we have made in Lines 4′ and 7
of the algorithm, in each call to Explore(S), we add either fewer or the same
number of messages to the backtrack set of each configuration κ.

Theorem 1 states that by starting from a fix initial configuration if AG is
acyclic, TransDPOR will explore at least one execution path from each set of
equivalent execution paths in AG, i.e., it can detect any deadlock and local safety
violation in the program [8].

Theorem 1. In a program P, by starting from an initial configuration, let AG

be the acyclic state-space graph and AR be the reduced state space explored by
TransDPOR. If ΩG and ΩR denote the set of execution paths of P in AG and
AR respectively, then ∀ω ∈ ΩG, ∃ω′ ∈ ΩR such that ω′ ∈ [ω].

6 Implementation and Evaluation

To compare TransDPOR and DPOR, we implemented TransDPOR in the Basset
tool [17]. Basset provides an extensible environment for testing Java-based actor

TransDPOR: A Novel Dynamic Partial-Order Reduction Technique 229

programs written in the Scala Actors library [12] or ActorFoundry [21]. We use
vector clocks [16] to track the happens-before relation at runtime as shown in [24].

We use eight different subject programs in our evaluation. Each actor pro-
gram was either originally implemented in ActorFoundry or ported to it for
this evaluation. fibonacci computes the nth element in the Fibonacci sequence.
In this case, we show the result for n = 5. quicksort is a distributed sorting
implementation using a standard divide-and-conquer strategy to carry out the
computation. pi is a porting of a publicly available [23] MPI example, which
computes an approximation of π by distributing the task among a set of worker
actors. The results shown here are for a configuration with five worker actors.
pipesort is a modified version of the sorting algorithm used in the dCUTE
study [24]. chameneos is an implementation of the chameneos-redux benchmark
from the Great Language Shootout (http://shootout.alioth.debian.org).
leader is an implementation of a leader election algorithm previously used in
the dCUTE study [24]. shortpath is an implementation of the Chandy-Misra
shortest path algorithm [4]. This subject appears twice in the results: once for a
graph with 4 nodes (shortpath4) and once for a graph with 5 nodes (shortpath5),
where the two graphs are dissimilar. regsim is a server registration simulation.
The numbers with the name of subjects, if available, represent the values of pro-
gram parameters. We performed all experiments using Sun’s JVM 1.6.0 20-b02
on a 2.93GHz Intel Core(TM)i7 running Ubuntu release 10.04.

Our recent work [18] shows that the effectiveness of DPOR techniques is highly
sensitive to the order in which messages are explored. However, one cannot easily
determine before the exploration which order will work the best. For that reason,
we present results for three ordering heuristics, ECA, LCA, and FIFO. FIFO
sorts the messages based on the time they are sent in the ascending order. ECA

Table 1. Comparison of TransDPOR and DPOR

DPOR TransDPOR Speedup

of # of time mem # of # of time mem # of # of time mem
Heur. Subject Paths Trans [sec] [MB] Paths Trans [sec] [MB] Paths Trans [sec] [MB]

FIFO 40 203 5 176 40 203 4 176 1.00x 1.00x 1.25x 1.00x
ECA fib5 327 1650 28 455 203 1051 18 377 1.61x 1.57x 1.56x 1.21x
LCA 16 91 3 173 16 91 3 159 1.00x 1.00x 1.00x 1.09x

FIFO 368 1586 26 343 368 1586 26 463 1.00x 1.00x 1.00x 0.74x
ECA quicksort6 3822 16766 264 381 1519 6992 115 751 2.52x 2.40x 2.30x 0.51x
LCA 32 156 4 197 32 156 4 179 1.00x 1.00x 1.00x 1.10x

FIFO 120 931 16 265 120 931 16 374 1.00x 1.00x 1.00x 0.71x
ECA pi5 120 931 16 263 120 931 16 374 1.00x 1.00x 1.00x 0.70x
LCA 19845 156070 2509 451 312 2452 40 376 63.61x 63.65x 62.73x 1.20x

FIFO 1791 8562 101 375 755 3541 45 375 2.37x 2.42x 2.24x 1.00x
ECA pipesort4 288 1293 17 374 288 1293 18 450 1.00x 1.00x 0.94x 0.83x
LCA 5970 32385 361 375 2221 11999 136 451 2.69x 2.70x 2.65x 0.83x

FIFO 3240 19459 233 376 600 3673 44 376 5.40x 5.30x 5.30x 1.00x
ECA chameneos2 19683 118197 1360 550 1728 10554 123 374 11.39x 11.20x 11.06x 1.47x
LCA 216 1231 16 375 216 1231 16 453 1.00x 1.00x 1.00x 0.83x

FIFO 18098 107780 26872 336 14984 86889 37516 341 1.21x 1.24x 0.72x 0.99x
ECA leader4 11957 68373 1207 240 11909 68125 1312 266 1.00x 1.00x 0.92x 0.90x
LCA 39238 236330 4301 634 27287 163030 3120 525 1.44x 1.45x 1.38x 1.21x

FIFO 238 910 12 261 238 910 12 261 1.00x 1.00x 1.00x 1.00x
ECA shortpath4 392 1464 20 262 392 1464 19 260x 1.00x 1.00x 1.05x 1.01x
LCA 640 2158 27 260 370 1337 17 264 1.73x 1.61x 1.59x 0.98x

FIFO 528 2443 32 454 528 2443 33 372 1.00x 1.00x 0.97x 1.22x
ECA shortpath5 2658 8476 104 368 1170 3737 49 261 2.27x 2.27x 2.12x 1.41x
LCA 1865 7076 93 375 1272 4704 61 375 1.47x 1.50x 1.52x 1.00x

FIFO 211750 590835 14440 989 1320 3607 64 76 160.42x 163.80x 225.63x 13.01x
ECA regsim 208034 591454 14782 989 1950 5434 93 79 106.68x 108.84x 158.95x 12.52x
LCA 720 1962 34 64 720 1962 36 66 1.00x 1.00x 0.94x 0.97x

Max 160.42x 163.80x 225.63x 13.01x
Average 2.39x 2.39x 2.38x 1.18x

http://shootout.alioth.debian.org

230 S. Tasharofi et al.

sorts messages according to the creation time of the receiving actor in ascending
order; messages for the earliest created actor are considered first. LCA is similar
to ECA but sorts the actors in descending order of their creation time.

To illustrate the speedup that can be achieved using TransDPOR, we per-
formed a set of nine experiments which compare explorations performed using
DPOR with explorations performed using TransDPOR. Table 1 shows the re-
sults for these experiments. For each subject and DPOR technique, we show the
number of paths executed in their entirety while exploring the specified sub-
jects, the total number of transitions executed (across all execution paths), the
total exploration time in seconds, and memory usage in MB. Since the length of
paths might be different in a program, and the time is dependent on the platform
and noise in the system, we focus on the number of explored transitions as the
primary metric for comparison.

The experiments suggest that TransDPOR can explore up to over two orders
of magnitude fewer transitions than DPOR. In all the experiments TransDPOR
has a speedup for at least one heuristic, and it is never the case that the use
of TransDPOR results in more executed transitions than DPOR. Although the
speedup in transitions executed can at times be small (e.g., only 1.24x or less
for leader), it can be also quite significant. For chameneos, the speedup is over
11x, and for regsim, it is over 163x. The regsim experiment using DPOR did not
complete in 4 hours for either FIFO or ECA.

Combining with Sleep Sets: Sleep sets is a POR technique based on the
history of exploration [7]. Specifically, sleep sets record the transitions that have
already been explored from a particular configuration, and avoid exploring them
in successor configurations until some condition is met. Sleep sets can further
prune the number of transitions and configurations that are explored [8]. In the
case where the state space is acyclic (which is the assumption in this paper),
sleep sets can be combined with dynamic POR in exactly the same way as static
POR [6]. We implemented a variant of TransDPOR that is combined with sleep
sets and compared it with the combination of DPOR with sleep sets.

In addition to the eight programs used in our initial experiment, we added
three more programs. These programs have such a large state space that the
exploration times out without sleep sets. diningphil is an implementation of
the dining philosopher protocol in ActorFoundry. minesweeper is a simulation of
the minesweeper game written using the Scala Actors library. le-erlang is an
implementation of a fault-tolerant leader election algorithm for Erlang that had
been running on Ericsson switches. Some bugs were found in the program by
Arts et al. [3] in in the presence of node failures. We re-implemented the buggy
program in ActorFoundry in order to test it using our tool.

The results are presented in Table 2. For le-erlang, our tool was able to find
all the previously known bugs in the algorithm (in the presence of node failures).
We also tested the algorithm for four processes and without a failure-recovery
scenario. To our surprise, our tool detected a new bug, which allows the program
to reach a state in which no leader is elected. We contacted the developers and
they confirmed the new bug.

TransDPOR: A Novel Dynamic Partial-Order Reduction Technique 231

Table 2. Comparison of TransDPOR+Sleep sets and DPOR+Sleep sets

DPOR+ S TransDPOR+ S Speedup

of # of time mem # of # of time mem # of # of time mem
Heur. Subject Paths Trans [sec] [MB] Paths Trans [sec] [MB] Paths Trans [sec] [MB]

FIFO 16 101 3 173 16 101 3 173 1.00x 1.00x 1.00x 1.00x
ECA fib5 16 139 4 159 16 139 4 173 1.00x 1.00x 1.00x 0.92x
LCA 16 91 3 174 16 91 3 174 1.00x 1.00x 1.00x 1.00x

FIFO 32 179 5 181 32 179 5 181 1.00x 1.00x 1.00x 1.00x
ECA quicksort6 32 272 7 269 32 272 7 270.00x 1.00x 1.00x 1.00x 1.00x
LCA 32 156 5 194 32 156 5 193 1.00x 1.00x 1.00x 1.01x

FIFO 120 931 17 264 120 931 17 376 1.00x 1.00x 1.00x 0.70x
ECA pi5 120 931 17 266 120 931 17.00 263.00 1.00x 1.00x 1.00x 1.01x
LCA 120 1236 22 377 120 990 18 456 1.00x 1.25x 1.22x 0.83x

FIFO 288 1448 20 378 288 1422 20 377 1.00x 1.02x 1.00x 1.00x
ECA pipesort4 288 1293 19 376 288 1293 18 376 1.00x 1.00x 1.06x 1.00x
LCA 288 1944 27 376 288 1935 27 376 1.00x 1.00x 1.00x 1.00x

FIFO 216 1681 23 378 216 1453 20 377 1.00x 1.16x 1.15x 1.00x
ECA chameneos2 216 1826 24 374 216 1530 21 376 1.00x 1.19x 1.14x 0.99x
LCA 216 1231 17 376 216 1231 17 375 1.00x 1.00x 1.00x 1.00x

FIFO 492 3125 43 454 492 3097 43 372 1.00x 1.01x 1.00x 1.22x
ECA leader4 492 3267 45 376 492 3218 42 377 1.00x 1.02x 1.07x 1.00x
LCA 492 3311 46 680 492 3311 46 377 1.00x 1.00x 1.00x 1.80x

FIFO 126 473 8 261 126 473 8 262 1.00x 1.00x 1.00x 1.00x
ECA shortpath4 126 489 8 260 126 489 8 260 1.00x 1.00x 1.00x 1.00x
LCA 126 522 9 262 126 502 8 262 1.00x 1.04x 1.13x 1.00x

FIFO 296 1408 22 375 296 1408 22 375 1.00x 1.00x 1.00x 1.00x
ECA shortpath5 296 1031 16 264 296 997 17 265 1.00x 1.03x 0.94x 1.00x
LCA 296 1228 20 376 296 1218 19 451 1.00x 1.01x 1.05x 0.83x

FIFO 720 3453 37 376 720 2019 22 377 1.00x 1.71x 1.68x 1.00x
ECA regsim 720 4054 47 375 720 2152 26 452 1.00x 1.88x 1.81x 0.83x
LCA 720 1962 22 264 720 1962 22 375 1.00x 1.00x 1.00x 0.70x

FIFO 1296 8636 141 427 1296 5537 92 417 1.00x 1.56x 1.53x 1.02x
ECA regsim-2-level 1296 14990 267 558 1296 7486 129 560 1.00x 2.00x 2.07x 1.00x
LCA 1296 6481 115 381 1296 6295 111 381 1.00x 1.03x 1.04x 1.00x

FIFO 31 1375 38 524 31 1375 37 524 1.00x 1.00x 1.03x 1.00x
ECA diningphil 31 2082 55 348 31 1662 44 366 1.00x 1.25x 1.25x 0.95x
LCA 31 1333 38 374 29 1147 33 407 1.07x 1.16x 1.15x 0.92x

Max 1.07x 2.00x 2.07x 1.80x
Average 1.00x 1.13x 1.13x 0.98x

Buggy programs (Exploration stops at first bug instance.)

FIFO 1 15 2 112 1 15 2 112 1.00x 1.00x 1.00x 1.00x
ECA diningphil 16 915 29 340 16 767 22 342 1.00x 1.19x 1.32x 0.99x
LCA (deadlock) 1 15 2 112 1 15 2 112 1.00x 1.00x 1.00x 1.00x

FIFO 1 29 3 163 1 29 2 163 1.00x 1.00x 1.50x 1.00x
ECA minesweeper 2710 15577 484 717 2710 15381 499 744 1.00x 1.01x 0.97x 0.96x
LCA (deadlock) 6993 69350 1950 1041 6993 55430 1651 893 1.00x 1.25x 1.18x 1.17x

FIFO 457 1976 41 462 452 1944 27 427 1.01x 1.02x 1.52x 1.08x
ECA le-erlang3-failure 30 174 4 241 30 174 4 236 1.00x 1.00x 1.00x 1.02x
LCA (safety) 233738 759109 14401 2020 93640 296229 3557 1557 2.50x 2.56x 4.05x 1.30x

FIFO 2209 11006 169 605 2191 10146 155 586 1.01x 1.08x 1.09x 1.03x
ECA le-erlang4 1 27 2 112 1 27 2 112 1.00x 1.00x 1.00x 1.00x
LCA (no leader, new) 198713 698759 14405 2011 88505 277440 3924 1383 2.25x 2.52x 3.67x 1.45x

Max 2.50x 2.56x 4.05x 1.45x
Average 1.16x 1.22x 1.40x 1.08x

The combination with sleep sets reduces the improvement as sleep sets already
prune many redundant transitions; however TransDPOR is always equal to or
better than DPOR in terms of paths and transitions. For seven experiments,
TransDPOR provides the speedup of over 1.20x for at least one heuristic. Note
that it is not obvious from the program what may be a good heuristic, and
the results table suggests the same. For example, ECA is the best heuristic for
le-erlang, and FIFO is the best for minesweeper. Moreover, different components
of a single application, such as the regsim-2-level, may have different good
heuristics for exploration.

Overall, the results suggest that our algorithm combined with sleep sets out-
performs the combination of DPOR and sleep sets. We achieved speedup as high
as 2x for the regsim benchmark as shown in Table 2. TransDPOR is also very
efficient when exploring programs with bugs. We consistently find the bug faster
than DPOR. Even in the presence of sleep sets, we were able to find the bugs
up to 2.56x faster than DPOR.

232 S. Tasharofi et al.

7 Related Work

One of the earliest POR approaches is based on computing persistent (or stub-
born) sets [8, 9, 27] and the related technique of ample sets [22]. Persistent sets
can be computed statically or dynamically. Using static analysis for computing
persistent sets [8] suffers from conservative approximation, resulting in coarse
persistent sets. Therefore, dynamic POR (DPOR) techniques [6], which com-
pute the persistent sets on the fly, have been proposed to yield more accurate
persistent sets. Another variation of persistent (or stubborn) is weak persistent
sets [9, 27], which can generate smaller sets and lead to better reduction. This
reduction needs additional knowledge about the transitions that enable and dis-
able each other, which may not be easy to compute during the exploration.

Sen and Agha proposed a DPOR technique for testing multi-threaded pro-
grams [25], as well as for testing distributed message-passing programs [24]. Both
papers present an operational definition of the set of transitions to be explored
from a state, and the presented algorithms are conceptually similar to that in [6].
Kastenberg and Rensink proposed a new DPOR which is based on probe sets for
handling dynamic creation and destroying of processes and objects [15]. Probe
sets relies on abstract enabling and disabling relations among actions, rather
than associated sets of concurrent processes. The authors show that their tech-
nique leads to a better reduction in comparison to persistent sets.

Recently a new partial-order reduction technique called cartesian POR was
proposed, which is based on cartesian semantics [11] and stateful exploration.
The authors provide an operational definition, and present a dynamic algorithm
that overcomes the acyclic state space restriction in stateless approaches. The
technique is shown to improve over optimal persistent sets for some examples.
The cartesian approach trades space for time since the approach requires storing
program states precisely.

Lei and Carver [19] propose a technique that explores only one interleaving
from each partial order. However their technique assumes FIFO channels and re-
quires a non-trivial amount of memory for storing interleavings that are yet to be
explored. Message Passing Interface (MPI) [10] is a popular environment for writ-
ing message-passing programs. MPI programs are more constrained than actor
programs. Specifically, MPI processes assume FIFO channels and usually have
matched sends and receives. Vakkalanka et al. [26] proposed a stateless DPOR
technique for MPI programs, called POE, which exploits these constraints. POE
can produce only one interleaving for large MPI programs that do not have an
MPI wild-card receive.

8 Conclusions and Future Work

We have proposed a new stateless DPOR technique called TransDPOR for
message-passing (actor) systems. We exploit the transitivity of a dependency
relation between co-enabled transitions in actor systems to achieve faster explo-
ration than the existing DPOR based on persistent sets. Experimental results

TransDPOR: A Novel Dynamic Partial-Order Reduction Technique 233

suggest that TransDPOR can substantially reduce the number of transitions ex-
ecuted during state space exploration by up to 163.80x compared to DPOR, and
it can detect bugs up to 2.56x faster than DPOR. TransDPOR code is available
with Basset at http://mir.cs.illinois.edu/basset.

Although we applied our algorithm for message-passing systems, we believe
that the technique discussed in this paper may be applicable to shared-memory
multi-threaded programs if a dependency relation between the co-enabled tran-
sition is defined so that it is transitive. However, the detailed discussion in this
regard is outside the scope of this paper. We also plan to explore the possibility
of combining our algorithm with stateful exploration.

Acknowledgments. We would like to thank Yaniv Eytani, Bobak Hadidi, Vilas
Jagannath, Timo Latvala, and P. Madhusudan for discussions and other assis-
tance during the course of this project, and Nicholas Chen, Stas Negara, Milos
Gligoric, Mohsen Vakilian, and the participants of the software engineering sem-
inar at UIUC for comments on a draft of this paper. This material is based
upon work partially supported by US Department of Energy under Grant No.
DOE DE-FG02-06ER25752 and the National Science Foundation under Grant
Nos. CCF-0916893, CNS-0851957, CCF-0746856, and CNS-0509321, and by the
AFRL and the AFOSR under agreement number FA8750-11-2-0084.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Agha, G., Mason, I.A., Smith, S., Talcott, C.: A foundation for actor computation.
Journal of Functional Programming 7(01), 1–72 (1997)

3. Arts, T., Claessen, K., Svensson, H.E.: Semi-formal Development of a Fault-
Tolerant Leader Election Protocol in Erlang. In: Grabowski, J., Nielsen, B. (eds.)
FATES 2004. LNCS, vol. 3395, pp. 140–154. Springer, Heidelberg (2005)

4. Chandy, K.M., Misra, J.: Distributed computation on graphs: Shortest path algo-
rithms. ACM (1982)

5. Esparza, J.: Model checking using net unfoldings. Science of Computer Program-
ming 23(2-3), 151–195 (1994)

6. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL, pp. 110–121 (2005)

7. Godefroid, P.: Using Partial Orders to Improve Automatic Verification Methods.
In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 176–185. Springer,
Heidelberg (1992)

8. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032, p. 142. Springer, Heidelberg (1996)

9. Godefroid, P., Pirottin, D.: Refining Dependencies Improves Partial-Order Verifi-
cation Methods. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 438–449.
Springer, Heidelberg (1993)

10. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI: The Complete Reference. The MPI-2 Extensions, vol. 2 (1998)

http://mir.cs.illinois.edu/basset

234 S. Tasharofi et al.

11. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian Partial-Order Reduction.
In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007)

12. Haller, P., Odersky, M.: Actors That Unify Threads and Events. In: Murphy, A.L.,
Ryan, M. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 171–190. Springer,
Heidelberg (2007)

13. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

14. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform: A
comparative analysis. In: PPPJava, pp. 11–20 (2009)

15. Kastenberg, H., Rensink, A.: Dynamic Partial Order Reduction Using Probe Sets.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 233–
247. Springer, Heidelberg (2008)

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM (1978)

17. Lauterburg, S., Dotta, M., Marinov, D., Agha, G.: A framework for state-space
exploration of Java-based actor programs. In: ASE, pp. 468–479 (2009)

18. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Evaluating Ordering
Heuristics for Dynamic Partial-Order Reduction Techniques. In: Rosenblum, D.S.,
Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 308–322. Springer, Heidelberg
(2010)

19. Lei, Y., Carver, R.H.: Reachability testing of concurrent programs. IEEE Trans-
actions on Software Engineering 32, 382–403 (2006)

20. McMillan, K.: Using Unfoldings to Avoid the State Explosion Problem in the Veri-
fication of Asynchronous Circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV
1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

21. Open Systems Laboratory, University of Illinois at Urbana-Champaign. The Actor
Foundry: A Java-based Actor Programming Environment (September 1998)

22. Peled, D.: All from One, One for All: On Model Checking Using Representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Hei-
delberg (1993)

23. Pi code, http://www-unix.mcs.anl.gov/mpi/usingmpi/examples/simplempi/

main.htm

24. Sen, K., Agha, G.: Automated Systematic Testing of Open Distributed Programss.
In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 339–356. Springer,
Heidelberg (2006)

25. Sen, K., Agha, G.: A Race-Detection and Flipping Algorithm for Automated Test-
ing of Multi-threaded Programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006.
LNCS, vol. 4383, pp. 166–182. Springer, Heidelberg (2007)

26. Vakkalanka, S.S., Gopalakrishnan, G., Kirby, R.M.: Dynamic Verification of MPI
Programs with Reductions in Presence of Split Operations and Relaxed Orderings.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 66–79. Springer,
Heidelberg (2008)

27. Valmari, A.: Stubborn sets for reduced state space generation. In: ATPN, pp. 491–
515 (1991)

28. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

29. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole Partial Order Reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382–396.
Springer, Heidelberg (2008)

http://www-unix.mcs.anl.gov/mpi/usingmpi/examples/simplempi/main.htm
http://www-unix.mcs.anl.gov/mpi/usingmpi/examples/simplempi/main.htm

Verification of Ad Hoc Networks
with Node and Communication Failures

Giorgio Delzanno1, Arnaud Sangnier2, and Gianluigi Zavattaro3

1 University of Genova, Italy
2 LIAFA, Univ. Paris Diderot, Sorbonne Paris Cité, CNRS, France

3 University of Bologna, INRIA - FOCUS Research Team, Italy

Abstract. We investigate the impact of node and communication fail-
ures on the decidability and complexity of parametric verification of a
formal model of ad hoc networks. We start by considering three possible
types of node failures: intermittence, restart, and crash. Then we move
to three cases of communication failures: nondeterministic message loss,
message loss due to conflicting emissions, and detectable conflicts. Inter-
estingly, we prove that the considered decision problem (reachability of a
control state) is decidable for node intermittence and message loss (either
nondeterministic or due to conflicts) while it turns out to be undecidable
for node restart/crash, and conflict detection.

1 Introduction

Broadcast communication is often used in networks in which individual nodes
have no precise information about the underlying connection topology (e.g. ad
hoc wireless networks). As shown in [13,10,11,16,17,4], this type of communi-
cation can naturally be specified in models in which a network configuration is
represented as a graph and in which individual nodes run an instance of a given
protocol specification. A protocol typically specifies a sequence of control states
in which a node can either send a message (emitter role), wait for a message
(receiver role), or perform an update of its internal state. Broadcast commu-
nication can be represented here as a simultaneous update of the state of the
emitter node and of the state of its neighbors. This semantics of broadcast is
often termed selective in contrast with broadcast messages that simultaneously
reach all nodes of a network.

Already at this level of abstraction, verification of ad hoc network protocols
turns out to be a very difficult task. A formal account of this problem is given
in [3,4], where the control state reachability problem is proved to be undecidable
for selective broadcast communication. The control state reachability problem
consists in verifying the existence of an initial network configuration (with un-
known size and topology) that may evolve into a configuration in which at least
one node is in a given control state. If such a control state represents a protocol
error, then this problem naturally expresses (the complement of) a safety veri-
fication task in a setting in which nodes have no information a priori about the
size and connection topology of the underlying network. The analysis in [3,4]

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 235–250, 2012.
c© IFIP International Federation for Information Processing 2012

236 G. Delzanno, A. Sangnier, and G. Zavattaro

works under the assumption that the underlying network and communication
model are both reliable. This is a quite strong assumption since ad hoc networks
have several sources of unreliability: from node failures to conflicts caused by
interferences among different transmissions.

In this paper we study the impact of node and communication failures on
the control state reachability problem for ad hoc network protocols. We start
our analysis by introducing node failures in a model of selective broadcast. For
this purpose, we consider an intermittent semantics in which a node can be
(de)activated at any time. As a first result, we show that control state reach-
ability becomes decidable under the intermittent semantics. Decidability seems
strictly related to the assumption that nodes cannot directly take decisions that
depend on the current activation state (e.g. change state when the node is turned
on). We then consider two restricted types of node failure, i.e., node crash (a
node can only be deactivated) and node restart (when it is activated, it restarts
in a special restart state). We show that for these two semantics, the verification
task becomes undecidable.

We consider then different types of communication failures. We first consider
a semantics in which a broadcast is not guaranteed to reach all neighbors of the
emitter nodes (message loss). Control state reachability is again decidable in this
case. We then introduce a semantics for selective broadcast specifically designed
to capture possible conflicts during a transmission. Basically, a transmission of
a broadcast message is split into two different phases: a starting and an ending
phase. During the starting phase, receivers connected to the emitter move to a
transient state. While being in the transient state, a reception from another node
generates a conflict. In the ending phase an emitter always moves to the next
state whereas connected receivers move to their next state only when no con-
flicts have been detected. Time-out can be modeled here by allowing receivers to
abandon a transmission at any time. In our model we also allow several emitters
to simultaneously start a transmission. Decidability holds only when receivers
ignore corrupted messages by remaining in their original state. Moreover, for the
verification task in the decidable variants we show that it is possible to resort to
the polynomial time reachability algorithm for a model of ad hoc networks with
nondeterministic mobility presented in [2].

Related Work. Formal models of broadcast communication have been consid-
ered in several works in the literature such as [14,16,17,6,5,8,10,11,12]. Perfect
synchronous semantics for broadcast communication in mobile and ad hoc net-
works have been proposed in [14,16,17,5]. Verification problems for broadcast
protocols have been studied in the different context of hardware protocols [6]. In
all the above mentioned works a transmission is modelled as an atomic step in
which the emitter node and the connected receiver nodes simultaneously update
their current state. Decidability of reachability problems like those we consider
here (coverability) is considered only in the case of synchronous broadcast for
fully connected networks [6].

Delays in between the instant in which the emitter starts a transmission and
the instant in which the transmission ends have been considered in a timed

Verification of Ad Hoc Networks 237

semantics [10,11] in which every message has an associated non-zero transmission
time, or in form of non-atomic transitions (start and end phase are kept distinct)
as in [12]. In all these approaches a broadcast communication is split into several
phases to model scenarios in which different transmission periods of different
emitters overlap. Following [12] in the present paper we consider an untimed
semantics for explicitly representing conflicts. Differently from other models, our
semantics allows multiple nodes to start a communication in the same instant,
a model that seems closer to real scenarios.

In [3,4] we have studied decision problems for verification of models of ad hoc
networks with seective broadcast communication with perfect semantics and no
conflicts. In this paper we lift our studies to unreliable networks and consider
semantics for broadcast communication with conflicts. Communication failures
(e.g. message loss and insertion) are commonly considered when facing verifi-
cation problems for communication protocols as in the case of unreliable FIFO
channels [1]. Differently from works like [1], we evaluate here the impact of com-
munication failures in a communication model with broadcast communication
restricted to neighbour nodes and in which reachability is formulated for an
initial configuration with arbitrary size and topology.

2 Ad Hoc Networks

Definition 1. A Q-graph is a labeled undirected graph γ = 〈V, E, L〉, where V
is a finite set of nodes, E ⊆ V × V is a symmetric relation representing a finite
set of edges, and L is a labeling function from V to a set of labels Q (in our
setting they represent control states).

We use L(γ) to represent all the labels present in γ (i.e. the image of the function
L). The nodes belonging to an edge are called the endpoints of the edge. For an
edge 〈u, v〉 in E, we use the notation u ∼γ v and say that the vertices u and v
are adjacent to each other in the graph γ. We omit γ, and simply write u ∼ v,
when it is made clear by the context.

A configuration is a Q-graph and we assume that each node of the graph is
a process that runs a common predefined protocol defined by a communicating
automaton with a finite set Q of control states. Communication is achieved
via selective broadcast: the effect of a broadcast is local to the vicinity of the
sender. The initial configuration is any graph in which all the nodes are labeled
by an initial control state. Note that even if Q is finite, there are infinitely many
possible configurations (the number of Q-graphs). We next formalize the above
intuition.

Definition 2. A process is a tuple P = 〈Q, Σ, R, Q0〉, where Q is a finite set of
control states, Σ is a finite alphabet, R ⊆ Q × ({τ} ∪ {!!a, ??a | a ∈ Σ}) × Q is
the transition relation, and Q0 ⊆ Q is a set of initial control states.

The label τ represents the capability of performing an internal action, and the
label !!a (??a) represents the capability of broadcasting (receiving) a message

238 G. Delzanno, A. Sangnier, and G. Zavattaro

a ∈ Σ. For q ∈ Q and a ∈ Σ, we define the set Ra(q) = {q′ ∈ Q | 〈q, ??a, q′〉 ∈ R}
which contains states that can be reached from the state q when receiving the
message a.

The network semantics associated to a process P = 〈Q, Σ, R, Q0〉 is given
by the transition system AHN (P) = 〈C,⇒, C0〉, where C is the set of Q-graphs
(network configurations), C0 is the set of Q0-graphs (initial configurations), and
⇒⊆ C×C is the transition relation defined as follows: for γ = 〈V, E, L〉, we have
γ ⇒ γ′ iff γ′ = 〈V, E, L′〉 and one of the following conditions holds:

Local: ∃v ∈ V s.t. (L(v), τ, L′(v)) ∈ R, and L(u) = L′(u) for all u in V \ {v};
Broadcast: ∃v ∈ V s.t. (L(v), !!a, L′(v)) ∈ R and for every u ∈ V \ {v}, we

have:
– if u ∼ v and Ra(L(u)) �= ∅ (u can receive a), then L′(u) ∈ Ra(L(u)),
– L(u) = L′(u), otherwise.

An execution in AHN (P) is a sequence γ0γ1 . . . such that γ0 ∈ C0 and γi ⇒ γi+1

for i ≥ 0. We use ⇒∗ to denote the reflexive and transitive closure of ⇒.
Observe that a broadcast message a sent by v is delivered only to the subset

of neighbors interested in it; such a neighbor u has then to update its state
with a new state taken from Ra(L(u)). All the other nodes (including neighbors
not interested in a) simply ignore the message. Also notice that the topology is
static, i.e., the set of nodes and edges remain unchanged during an execution.

As an example of an ad hoc network and of its semantics, consider a pro-
cess consisting of the following rules: (A, τ, C), (C, !!m, D), (B, ??m, C), and
(A, ??m, C). As shown in Figure 1, starting from a configuration with only A
and B nodes, an A node first moves to C and then sends m to his/her neighbors.
In turn, they forward the message m to their neighbors, and so on.

A A B

B A B

⇒
C A B

B A B

⇓
D C B

C A B

∗⇐
D D D

D D D

Fig. 1. Example of normal execution

The network semantics formalized by the transition system ⇒ assumes fixed
topology. Formally, if γ ⇒ γ′ then γ = 〈V, E, L〉 and γ′ = 〈V, E, L′〉 share
the same nodes and edges and can differ only in the labeling function. In [3]
we have formalized also nondeterministic mobility as follows. Given a process

Verification of Ad Hoc Networks 239

P = 〈Q, Σ, R, Q0〉 the mobile network semantics is given by the transition system
MAHN (P) = 〈C,�, C0〉, where C and C0 are as in the definition of AHN (P) and
�⊆ C×C is the transition relation defined as follows: for γ = 〈V, E, L〉, we have
γ � γ′ iff γ′ = 〈V, E′, L′〉 and one of the following conditions holds:

State Transition: γ ⇒ γ′;
Mobility: E′ ⊆ V × V and L′ = L.

Observe that all the transitions of the original AHN (P) transition system are
included by the state transition rule, while the mobility rule adds transitions
that modify the edges arbitrarily while preserving the labeling function.

2.1 Safety Analysis: The Control State Reachability Problem

Following [3,4] we consider decision problems related to verification of safety
properties. We remark that in our formulation the size and topology of the initial
configurations is not fixed a priori. The problem that we consider is control state
reachability (cover) defined as follows:

Input: A process P = 〈Q, Σ, R, Q0〉 with AHN (P) = 〈C,⇒, C0〉 and a control
state q ∈ Q.

Output: Yes, if ∃γ ∈ C0 and γ′ ∈ C s.t. γ ⇒∗ γ′ and q ∈ L(γ′); no, otherwise.

If q represents an error state, cover amounts at checking whether there exists
an initial configuration (among the infinitely many possible ones) from which a
configuration containing a node in the error state is reachable.

In [3], we prove the following result.

Theorem 1. cover is undecidable.

In the following we will also consider cover for the mobile network seman-
tics: in that case the transitions γ � γ′ will be taken into account instead of
γ ⇒ γ′. In [3] we have proved that cover turns out to be decidable with spon-
taneous (i.e. non-deterministic) mobility. Indeed, in this setting the topology of
the network cannot be exploited to build structures that could be applied to
model an unbounded storage. In a more recent work [2], we have characterized
its complexity.

Theorem 2. cover for mobile ad hoc networks is Ptime-complete.

We will also study different semantics for ad hoc networks and we will consider
cover for these semantics. However, sometimes the labelled graphs representing
the configurations will have more information in their labels than only the control
state of the process, for these cases, cover will correspond to the reachability
of a configuration in which there exists a node whose label contains the desired
control state.

240 G. Delzanno, A. Sangnier, and G. Zavattaro

3 Node Failures

3.1 Intermittent Nodes

We start our analysis from a semantic variant that models intermittent nodes.
We modify the network semantics by using a flag, which is set to A [resp. to D]
to denote an active [resp. deactivated] node.

Definition 3. Given a process P = 〈Q, Σ, R, Q0〉, an i-configuration is a (Q ×
{A, D})-graph and an initial i-configuration is a (Q0 × {A, D})-graph.

We use Cint [resp. Cint
0] to denote the set of i-configurations [resp. initial i-

configurations] associated to a process definition P . Given a process P = 〈Q, Σ,
R, Q0〉, the semantics of the corresponding ad hoc network with intermittent
nodes is given by the transition system AHN i(P) = 〈Cint, ���, Cint

0 〉 where the
transition relation ���⊆ Cint × Cint is defined as follows: for γ = 〈V, E, L〉, we
have γ ��� γ′ iff γ′ = 〈V, E, L′〉 and one of the following conditions holds:

Local: ∃v ∈ V s.t. L(v) = 〈q, A〉, L′(v) = 〈q′, A〉, (q, τ, q′) ∈ R, and L(u) = L′(u)
for all u in V \ {v};

Broadcast: ∃v ∈ V s.t. L(v) = 〈q, A〉, (q, !!a, q′) ∈ R, L′(v) = 〈q′, A〉, and for
every u in V \ {v}:
– if u ∼ v and L(u) = 〈q′′, A〉 and Ra(q′′) �= ∅, then L′(u) = 〈q′′′, A〉 with

q′′′ ∈ Ra(u);
– L(u) = L′(u), otherwise.

Intermittence: ∃v ∈ V s.t. L(v) = 〈q, A〉 [resp. L(v) = 〈q, D〉], L′(v) = 〈q, D〉
[resp. L(v) = 〈q, A〉] , and L(u) = L′(u) for all u in V \ {v}.

Note that the transition relation is defined as in the previous section with only
two differences: the transitions already present in the previous definition now
apply only to active nodes (i.e. those with the flag A); additional transitions
allow one node to move from the active to the passive state, and vice versa. We
denote by ���∗ the reflexive and transitive closure of ���.

An example of ad hoc network protocol and of its semantics under node inter-
mittence, consider the following protocol: (A, !!m, D), (C, !!m, D), (B, ??m, C),
and (A, ??m, C). As shown in Figure 2, the top-left node is initially deactivated.
It then activates, sends a message, and only active neighbors react, and so on.

We now prove that cover is Ptime-complete also for ad hoc networks with in-
termittent nodes. This result follows from a the correspondence between AHN i(P)
and MAHN (P) formalized by the following proposition.

Proposition 1. Consider a process definition P and a control state q. A con-
figuration γ s.t. q ∈ L(γ) is reachable from an initial configuration in AHN i(P)
if and only if a configuration γ′ s.t. q ∈ L(γ′) is reachable from an initial con-
figuration in MAHN (P).

Proof. We start from the only if part. Consider the initial state γ0 = 〈V, E, L0〉
and the execution γ0 ���∗ γ in AHN i(P) with q ∈ L(γ). A similar execu-
tion can be reproduced also in MAHN (P). Consider the initial configuration

Verification of Ad Hoc Networks 241

A, D A, A B, D

B, D A, A B, D

���
A,A A, A B, D

B, D A, A B, D

↓

D, A C, A B, D

B, D A, A B, D

���
D, A D, A B, D

B, D C, A B, D

Fig. 2. Example of execution with intermittent nodes

γ′
0 = 〈V, E, L′

0〉 with, for every v ∈ V , L′
0(v) = qv assuming L0(v) = 〈qv, A〉

or L0(v) = 〈qv, D〉. Consider now the following execution γ′
0 �∗ γ′ constructed

from the above execution γ0 ���∗ γ as follows. All the Local and Broadcast
transitions are faithfully reproduced, while the Intermittence transitions are
mimicked by a Mobility transition: in case of deactivation of one node the Mo-
bility transition disconnects such node from its neighbors, while in case of node
activation the Mobility transition restores the previously removed edges. It is
easy to see that q ∈ L(γ′).

We now move to the if part. Consider the initial state γ′
0 = 〈V ′, E′, L′

0〉
and the execution γ′

0 �∗ γ′ in MAHN (P) with q ∈ L(γ′). A similar execu-
tion can be reproduced also in AHN i(P). Consider the initial configuration
γ0 = 〈V ′, E, L0〉 with E = V ′ × V ′ (i.e. γ0 is a complete graph) and, for ev-
ery v ∈ V ′, L0(v) = 〈qv, A〉 assuming L′

0(v) = qv. Consider now the following
execution γ0 ���∗ γ constructed from the above execution γ′

0 �∗ γ′ as follows.
All the Local transitions are faithfully reproduced; the Broadcast transitions
are reproduced by a protocol that first deactivates the nodes that are not neigh-
bors of the emitter in the corresponding mobile network execution, then the
broadcast actions is mimicked, and then the previously deactivated nodes are
re-activated; the Mobility transitions are not reproduced. It is easy to see that
q ∈ L(γ). ��

As a simple corollary of the above Proposition and Theorem 2 we obtain the
following.

Theorem 3. cover for ad hoc networks with intermittent nodes is Ptime-
complete.

3.2 Node Crash and Restart

We now consider two variants of the semantics with intermittence. In the first
one, modelling node crash, nodes can only be deactivated. In the second one,
modelling node restart, nodes can also be reactivated but then they restart from
a given special state.

242 G. Delzanno, A. Sangnier, and G. Zavattaro

Given process P , its transition system with node crash denoted by AHN cr(P),
is defined as the transition system AHN i(P) where the Intermittence transi-
tions are replaced by the following Crash transitions:
Crash: ∃v ∈ V s.t. L(v) = 〈q, A〉, L′(v) = 〈q, D〉, and L(u) = L′(u) for all u in

V \ {v}.
Note that with this semantics, nodes that have been turned off (or deactivated)
cannot be activated again.

The variant with restart requires the indication of the restart state in the
process. So a process P = 〈Q, Σ, R, Q0, qr〉 now includes a restart state qr ∈
Q. The transition system AHN r(P) with node restart for P , is defined as the
transition system AHN i(〈Q, Σ, R, Q0〉) where the Intermittence transitions
are replaced by the following Restart transitions:
Restart: ∃v ∈ V s.t. L(v) = 〈q, A〉 [resp. L(v) = 〈q, D〉], L′(v) = 〈q, D〉 [resp.

L′(v) = 〈qr, A〉] and L(u) = L′(u) for all u in V \ {v}.
In this case, besides the transitions turning off nodes, there are also transitions
that turn on one node by changing its internal state to the restart state qr. The
following theorem then holds.
Theorem 4. cover with node crash [resp. with node restart] is undecidable.

Proof. The proof is by reduction from the undecidability of cover for ad hoc
networks (Theorem 1). We first consider the model with node crash. Let P be
a process. It is trivial to see that a computation leading to a configuration that
exposes the control state q in AHN (P) has a corresponding computation in
AHN cr(P) (in which no Crash transition is performed).

Consider now a computation in AHN cr(P) leading to a configuration that
exposes the control state q. It is not restrictive to assume that the state q is
exposed by a node that did not crash during the computation (we can always
consider the last step in q before the node crashes). Consider now a computation
in AHN (P) that performs the same Local and Broadcast transitions (but not
the Crash transitions). It is easy to see that the nodes that did not crash during
the computation in AHN cr(P) are in the same state also in the computation of
AHN (P). Hence also the latter computation leads to a configuration exposing
the control state q.

The undecidability can be proved as in [3] where we present how to translate
a two counter machine (a Turing powerful formalism) into a protocol P for ad
hoc network without failures. Such protocol P should be slightly modified as
follows to work also under intermittence. Let P = 〈Q, Σ, R, Q0〉; the modified
protocol is defined as P ′ = 〈Q′, Σ′, R′, {q0}, q0〉 where q0 /∈ Q and R′ is obtained
from R by adding the following rules: (q0, !!init, q′0) and (q′0, τ, q) for all q ∈ Q0

and (q, ??init, qerr) for all q ∈ Q and this assuming that q′0, qerr ∈ Q′ \ Q. The
idea of this encoding is that the unique initial state and the restart state are
the same, but when a node comes back to the initial state while simulating the
protocol P , if it goes to q′0 it sends all his neighbors (which are in state belonging
to Q) into the deadlock state qerr. This ensures that if a node is turned off and is
reactivated, it cannot play a role in the simulation of the protocol P by P ′. ��

Verification of Ad Hoc Networks 243

4 Communication Failures

4.1 Message Loss

The first type of failures corresponds to nondeterministic message loss: when a
message is broadcasted, some of the receivers could not receive it.

A processP is defined as usual. The corresponding transition system AHN l(P)
is defined as AHN (P) where the Broadcast transitions are replaced by the fol-
lowing Message loss transitions:

Message Loss: ∃v ∈ V s.t. (L(v), !!a, L′(v)) ∈ R and for every u ∈ V \ {v}
– if u ∼ v and Ra(L(u)) �= ∅ (reception of a in u is enabled), then L′(u) ∈

Ra(L(u)) or L′(u) = L(u),
– L(u) = L′(u), otherwise.

The main difference with the transition system AHN (P) is that during the
performance of a broadcast, some of the potential receivers could remain in
their internal state. This is similar to what happens in the model with inter-
mittent nodes when one is deactivated. Starting from this observation it is easy
to show that there exists a computation leading to a configuration that exposes
the control state q in AHN l(P) iff there exists a corresponding computation in
AHN i(P). From this consideration, we deduce the following theorem.

Theorem 5. cover for ad hoc networks with message loss is Ptime-complete.

Proof. Consider a process definition P . As in Theorem 3 we show that there
exists an execution in AHN l(P) leading to a configuration exposing the con-
trol state q if and only if there exists an execution in AHN i(P) leading to a
configuration exposing q.

Consider an execution leading to a configuration that exposes the control state
q in AHN l(P). It has the following corresponding execution in AHN i(P): it is
sufficient to mimic Broadcast transitions by executing before the broadcast a
sequence of Intermittence transitions that switch off the nodes that do not
receive the message, and by performing after the broadcast the Intermittence
transitions on the same nodes.

Consider now an execution in AHN i(P) leading to a configuration that ex-
poses the control state q. This execution can be mimicked in AHN l(P) simply
by assuming that the nodes that are deactivated during a specific phase of the
execution in AHN i(P), lose the messages that are broadcasted in that phase in
the corresponding execution in AHN l(P). ��

4.2 Conflict

The second type of failures we consider corresponds to transmission conflicts.
Here we consider conflicts due to the contemporaneous emission of messages: if
a node has (at least two) neighbors that contemporaneously broadcast a mes-
sage, then such a node is unable to correctly receive the emitted messages. The
modeling of this phenomenon requires a significant modification of the formal
semantics. First of all we need to introduce a notion of internal state.

244 G. Delzanno, A. Sangnier, and G. Zavattaro

Internal State. The internal state of a node is characterized by the current state
according to the process behavior, and by two additional flags indicating whether
the node is currently emitting or receiving a message. Formally, given a process
P = 〈Q, Σ, R, Q0〉 we define the set of states S =

{
[q, x, y] | q ∈ Q, x ∈ {⊥} ∪

Σ, y ∈ {⊥, rcv, cnfl}
}
. The field denoted with x represents whether the node

is or is not in a transmission state (⊥ means no transmission, while a ∈ Σ
denotes transmission of message a). The field y represents whether the node
is not receiving (⊥) or it is currently receiving correctly a message (rcv) or
the reception has been damaged due to a conflict (cnfl). The initial states are
defined as follows: S0 = {[q,⊥,⊥] | q ∈ Q0}. Notice that nodes in their initial
state are neither receiving nor emitting.

The use of triples simplifies the definition of the semantics. In the figures we
also use a more compact notation without distinction between transmission and
reception state, e.g., [q,⊥,⊥] is simplified as q, [q, a,⊥] as [q, a], [q,⊥, rcv] as
[q, rcv], etc.

Network Semantics. The semantics of a process P = 〈Q, Σ, R, Q0〉 with conflicts
is given by the transition system AHN co(P) = 〈Cco,⇒, Cco

0 〉 where Cco is the set
of S-graphs and the set of initial configurations Cco

0 is the set of S0-graphs.
Before giving the formal definition of the transition relation⇒ ⊆ Cco × Cco, we

define the function emitter which associates to a S-graph γ = 〈V, E, L〉 and to a
node u ∈ V , the set emitter(γ, u) = {v | u ∼ v and L(v) = [q, a, y] for some a ∈
Σ and y ∈ {⊥, rcv, cnfl}} of nodes adjacent to u in γ which are in a transmission
state.

Given a configuration γ = 〈V, E, L〉, we have that γ ⇒ γ′ iff γ′ = 〈V, E, L′〉
and one of the following conditions holds:

Local/Time-Out: ∃v ∈ V s.t. L(v) = [q,⊥, y], y ∈ {⊥, cnfl, rcv}, (q, τ, q′) ∈
R, L′(v) = [q′,⊥,⊥], and L(u) = L′(u) for all u ∈ V \ {v};

Start Broadcast: ∃v1, . . . , vl ∈ V s.t. ∪j∈{1...l}emitter(γ, vj) = ∅, L(vi) =
[qi,⊥,⊥], (qi, !!ai, q

′
i) ∈ R, L′(vi) = [q′i, ai,⊥] ∀i ∈ {1 . . . l} and the following

conditions hold:
– ∀u ∈ V \{v1, . . . , vl} s.t. u ∼ vi for some i ∈ {1 . . . l} and L(u) = [r,⊥, y]

with y ∈ {rcv,⊥} we have:
• if y = rcv then L′(u) = [r,⊥, cnfl];
• if y = ⊥ and u �∼ vj ∀j ∈ {1 . . . l} \ {i} then L′(u) = [r,⊥, rcv];
• if y = ⊥ and u ∼ vj for some j ∈ {1 . . . l} \ {i} then L′(u) =

[r,⊥, cnfl];
– L(u) = L′(u) otherwise;

End Broadcast: ∃ v ∈ V s.t. L(v) = [q, a,⊥], L′(v) = [q,⊥,⊥] and we have:
– ∀u ∈ V s,t. u ∼ v and L(u) = [r,⊥, y], with y ∈ {rcv, cnfl}, and

emitter(γ, u) = {v} we have:
• if y = rcv and ∃ r′ s.t. (r, ??a, r′) ∈ R then L′(u) = [r′,⊥,⊥];
• if y = rcv and � ∃ r′ s.t. (r, ??a, r′) ∈ R or y = cnfl then L′(u) =

[r,⊥,⊥];
– L(u) = L′(u) otherwise.

Verification of Ad Hoc Networks 245

The local rule models internal and time-out steps (a node non-deterministically
decides to abandon a transmission). In the start rule we select a set of node
that have the capability of sending a broadcast and check that no other node
in their vicinity is currently transmitting. The selected emitters simultaneously
start transmitting. Receiving nodes connected to a single emitter move to the
rcv state, and to the cnfl state in case of connection with more than one emitter
(e.g. a selected node and an emitter that started transmitting in a previous step).
In the ending rule an emitter moves to its next state. A receiver connected to
such a node moves to the next state only if it is still in the rcv state (no conflicts
occurred in between the start and end phases).

As an example of ad hoc networks and of its semantics in the model with
conflicts, consider the process (S, !!m, T), (R, ??m, Q), and the execution in Fig-
ure 3. In the initial configuration we have three senders in state S (a, b, c from
left to right), and three receivers in state R (d, e, f from left to right). Nodes
a and b can simultaneously start transmitting m, since no other node is cur-
rently transmitting in their vicinity. Node d simultaneously moves to a conflict
state (it is connected to both emitters), while node e moves to a reception state.
When c starts transmitting m (again there are no other emitters in its vicinity),
node e is forced to enter a conflict state, whereas node f goes to a reception
state. When a stops transmitting, d goes back to the original state (a conflict
occurred). If now c stops transmitting, f receives the message and moves to its
next state Q (no conflicts occurred). Finally when b stops transmitting, e goes
back to the original state (a conflict occurred). Other possible executions are
obtained, e.g., by selecting only one of the nodes a, b for starting a transmission
(the other node has to remain silent since it is connected to an active emitter)
and by nondeterministically allowing receiver nodes to abandon a transmission.

Theorem 6. cover for ad hoc networks with conflicts is Ptime-complete.

Proof. Consider a process P . Following our usual proof technique, we show that
there exists an execution in AHN co(P) leading to a configuration exposing the
control state q if and only if there exists an execution in AHN i(P) leading to a
configuration exposing q.

It is easy to see that a computation leading to a configuration that exposes the
control state q in AHN co(P) has a corresponding computation in AHN i(P): the
Local transitions are faithfully reproduced, the Start broadcast transitions are
not mimicked, and the End broadcast transitions are simulated via a protocol
that first turns off the nodes that do not receive the message or that detect a
conflict, then executes the broadcast, and then turns on the samenodes.

It is more complex to show that a computation in AHN i(P) that leads to a
configuration that exposes the control state q can be reproduced in AHN co(P).

We first assume, without loss of generality, that in the process P there is at
least one state with an outgoing broadcast transition which is reachable from
an initial state q0 ∈ Q0 doing only internal steps. If this is not the case, there
is no communication in the system and the analysis of cover can be trivially
done by checking whether the target state q is reachable from an initial state in
the automaton defining the process behavior doing only internal steps. Consider

246 G. Delzanno, A. Sangnier, and G. Zavattaro

S

a

S

b

S

c

R

d

R

e

R

f

⇒
T, m

a

T, m

b

S

c

R,cnfl

d

R,rcv

e

R

f

⇒
T, m

a

T, m

b

T, m

c

R, cnfl

d

R, cnfl

e

R, rcv

f�

T

a

T

b

T

c

R

d

R

e

Q

f

⇔
T

a

T, m

b

T

c

R

d

R, cnfl

e

Q

f

⇔
T

a

T, m

b

T, m

c

R

d

R, cnfl

e

R, rcv

f

Fig. 3. Example of execution with conflicts

now the computation in AHN i(P) that leads to a configuration that exposes the
control state q. Let γ0 be the initial configuration in the considered computation,
and let loss(u) be the number of messages that the node u loses during the
computation when it was turned off.

We now show the existence of an initial configuration in AHN co(P) able to
reproduce such computation. This initial configuration contains γ0 plus a set of
additional nodes used to generate conflicts.

Namely, we connect to each node u of the initial configuration loss(u) addi-
tional nodes Noise(u): each node in Noise(u) is connected only with its corre-
sponding node u.

Each node u simulates the behavior of the corresponding node in the com-
putation in AHN i(P). The nodes in Noise(u) are initially in the state q0. The
simulation of the transitions in the computation in AHN i(P) is as follows. First
of all, for every node u we consider local transitions for nodes in Noise(u) in state
q0 leading them to a state ready to perform a broadcast. Then the transitions
are simulated as follows.

– Local transitions are faithfully reproduced.
– Intermittence transitions are not mimicked.
– To simulate Broadcast transitions performed by one node, say v, we pro-

ceed as follows: we partition the potential receivers in two groups, (i) those
that actually receive the message and (ii) those that do not receive it as
they are turned off. For each node u in group (ii) we take an attacker node
n ∈ Noise(u) ready to start a transmission and let n perform a Start broad-
cast transition. Simultaneously node u moves to the rcv-state. Node v per-
forms then a broadcast (it executes both the Start and the End broadcast
transitions). Since u and v are connected, u detects a conflicting transmission
and moves to the cnfl-state. Finally, node n ends the transmission.

Note that the nodes corresponding to (i) receive the broadcast messages,
while those corresponding to (ii) do not receive it, due to the conflict gener-
ated by the interferring transmissions generated by the attacker node n.

Verification of Ad Hoc Networks 247

By assumption on the cardinality of Nodes(u), therefore an attack can be ex-
ecuted every time node u is switched off in the computation with intermittent
semantics. ��

4.3 Conflict Detection

We now define a variant of the semantics in order to capture the notion of conflict
detection. In fact, even though a node that receives overlapping signal emissions
is unable to reconstruct the emitted messages, it can infer that (at least) two
neighbors have contemporaneously emitted their messages. This can be consid-
ered in our model of ad hoc networks by adding conflict detection transitions to
the processes. Such transitions can be executed by nodes at the end of a receive
phase during which more than one neighbor has performed a broadcast. For-
mally, we slightly modify the definition of the Internal State and of the Network
Semantics of the previous section.

Internal State. The new definition of P is as usual with the unique difference
that we can have transitions of the form (q, ρ, q′) in R, representing conflict de-
tection (where ρ is a new symbol).

Network Semantics. Given a process P , the transition system AHN cd(P) charac-
terizing the semantics with conflict detection is defined as AHN co(P) except that
the End broadcast transitions are replaced by the following End broadcast
II transitions:

End Broadcast II: ∃v ∈ V s.t. L(v) = [q, a,⊥], L′(v) = [q,⊥,⊥] and we have:
– ∀u ∈ V s.t. u ∼ v, L(u) = [r,⊥, y], with y ∈ {rcv, cnfl}, and emitter

(γ, u) = {v}:
• if y = rcv and ∃r′ s.t. (r, ??a, r′) ∈ R then L′(u) = [r′,⊥,⊥];
• if y = cnfl and ∃r′ s.t. (r, ρ, r′) ∈ R then L′(u) = [r′,⊥,⊥];
• if y = rcv and � ∃r′ s.t. (r, ??a, r′) ∈ R, or y = cnfl and � ∃r′ s.t.

(r, ρ, r′) ∈ R, then L′(u) = [r,⊥,⊥];
– L(u) = L′(u) otherwise.

As an example of ad hoc networks and of its semantics with conflict detection,
consider the process (S, !!m, T), (R, ??m, Q), (R, ρ, Er), and the execution in Fig-
ure 4. It consists of the same steps as those in Figure 3 up to ending phases of
broadcast messages. Receiver that detect a conflict move here to the special Er
states. Note that in the step from the fourth to the fifth configuration only the
node in the leftmost down corner detects a conflict. The other receiver R is con-
nected to two different emitters, so it will apply the detection only in the next
step.

Theorem 7. cover for ad hoc networks with conflict detection is undecidable.

Proof. The proof is by reduction from the undecidability of cover for ad hoc
networks with node restart (Theorem 4). Consider a process P = 〈Q, Σ, R, Q0, qr〉

248 G. Delzanno, A. Sangnier, and G. Zavattaro

S S S

R R R

⇒d

T, m T, m S

R, cnfl R, rcv R

⇒d

T, m T, m T, m

R,cnfl R, cnfl R, rcv

�d

T T T

Er Er Q

⇔d

T T, m T

Er R,cnfl Q

⇔d

T T, m T, m

Er R, cnfl R, rcv

Fig. 4. Example of execution with conflict detections (indicated as ⇒d)

for ad hoc networks with node restart (qr being the restart state). Consider now
the process P ′ = 〈Q ∪ {qi}, Σ, R′, Q0〉, for ad hoc networks with conflict detec-
tion, defined as P with the following additional transitions: for each node q ∈ Q
we have a transition labeled with ρ leading to the additional state qi, from
which there is only one outgoing transition labeled with τ leading to the restart
state qr.

We first show that given a computation in AHN r(P) leading to a configura-
tion that exposes the control state q, there exists a corresponding computation
in AHN cd(P ′). As in Theorem 6 we make the nonrestrictive assumption that in
the process P there is at least one state with an outgoing broadcast transition
which is reachable from an initial state q0 ∈ Q0 doing only internal steps. Let
γ be the initial configuration of the considered computation in AHN r(P). For
each node u in γ we denote with restart(u) the number of restarts performed by
u during the computation. We now show the existence of an initial configuration
γ′ of AHN cd(P ′) from which the computation is simulated. The configuration
γ′ is as γ with the difference that each node u has exactly restart(n) × 2 addi-
tional neighbors that are used to generate conflicts. These additional nodes are
connected only to the corresponding node u. The simulation of the computation
proceeds as follows. At the beginning the additional nodes in state q0 perform
the local transitions leading them to a state ready to perform a broadcast. Then
the simulation starts.

– Local transitions are reproduced faithfully.
– A transition that deactivates the node u is simulated via the following proto-

col: two of the additional nodes connected to u perform a Start broadcast
transition and then execute the End broadcast II. Due to the emission
conflict, the node u moves to the internal state qi.

– A transition that activates the node u is reproduced by an internal transition
from the state qi of u to the restart state qr.

– Finally, Broadcast transitions are mimicked by performing in sequence a
Start and an End broadcast II transition.

We now show that a computation in AHN cd(P ′) leading to a configuration
that exposes the control state q has a corresponding computation in AHN r(P).

Verification of Ad Hoc Networks 249

In the simulated computation the Local transitions are reproduced faithfully,
the Start broadcast transitions are not mimicked, while End broadcast II
transitions are simulated by the following protocol.

Assume that the node that completes its signal emission in the End broad-
cast II transition is u, and let a be the emitted message. The neighbors of u
able to receive a can be partitioned in three groups:

(i) those that correctly receive message a,
(ii) those that perform a conflict detection transition during the execution
of the End broadcast II transition,
and (iii) those that do not change their internal state because they are still
under the effect of another signal emission.

The simulation of the transition in AHN r(P) proceeds as follows. The nodes,
corresponding to those in (ii) and (iii), that are not currently crashed perform
a Crash transition, then the Broadcast transition is executed. Notice that at
the end of this protocol the nodes in (ii) are in the intermediary state qi in
the computation in AHN cd(P ′), while they are crashed in the corresponding
computation in AHN r(P). The Local transitions that move the nodes form the
state qi to qr are reproduced in AHN r(P) by Restart transitions. ��

5 Conclusion

In this paper we have compared different types of semantics for modelling un-
reliability in protocols based on broadcast communication. The comparison is
based on the study of decidability and undecidability of the coverability problem
(reachability of a network with at least a node in an error state for an initial
configuration of unknown size and shape). Coverability is commonly used to
formulate violations of properties like mutual exclusion (and more in general to
locally reason on errors generated by a fixed set of processes independently from
the global configuration). Coverability turns out to be undecidable for models
in which individual nodes have special transitions to the detect the occurrence
of a failure (e.g. crash with restart, conflict detection). Removing this feature
from the model completely change the corresponding expressive power, often
making coverability decidable. Decidability results are obtained by means of re-
duction to coverability in a model with spontaneous movement, for which we
have given a PTIME algorithm in [2]. Among possible future directions we plan
to investigate the impact of node and communication failures in richer models
of broadcast communication that could be used to model for instance routing
strategy or time division protocols.

References

1. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

2. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: Reachability Problems in
Mobile Ad Hoc Networks. Technical report available on arXiv

250 G. Delzanno, A. Sangnier, and G. Zavattaro

3. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized Verification of Ad Hoc
Networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 313–327. Springer, Heidelberg (2010)

4. Delzanno, G., Sangnier, A., Zavattaro, G.: On the Power of Cliques in the Param-
eterized Verification of Ad Hoc Networks. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 441–455. Springer, Heidelberg (2011)

5. Ene, C., Muntean, T.: A broadcast based calculus for Communicating Systems. In:
IPDPS 2001, p. 149 (2001)

6. Esparza, J., Finkel, A., Mayr, R.: On the verification of Broadcast Protocols. In:
LICS 1999, pp. 352–359 (1999)

7. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and Verification of the LMAC
Protocol for Wireless Sensor Networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

8. Godskesen, J.C.: A Calculus for Mobile Ad Hoc Networks. In: Murphy, A.L., Ryan,
M. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Hei-
delberg (2007)

9. Ladner, R.E.: The circuit value problem is logspace complete for P. SIGACT News,
18–20 (1977)

10. Merro, M.: An observational theory for Mobile Ad Hoc Networks. Inf. Com-
put. 207(2), 194–208 (2009)

11. Merro, M., Sibilio, E.: A Timed Calculus for Wireless Systems. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 228–243. Springer, Heidelberg
(2010)

12. Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless sys-
tems. TCS 411(19), 1928–1948 (2010)

13. Nanz, S., Hankin, C.: A Framework for security analysis of mobile wireless net-
works. TCS 367(1-2), 203–227 (2006)

14. Prasad, K.V.S.: A Calculus of Broadcasting Systems. SCP 25(2-3), 285–327 (1995)
15. Saksena, M., Wibling, O., Jonsson, B.: Graph Grammar Modeling and Verification

of Ad Hoc Routing Protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)

16. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A Process Calculus for Mo-
bile Ad Hoc Networks. In: Wang, A.H., Zavattaro, G. (eds.) COORDINATION
2008. LNCS, vol. 5052, pp. 296–314. Springer, Heidelberg (2008)

17. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: Query-Based Model Checking of
Ad Hoc Network Protocols. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 603–619. Springer, Heidelberg (2009)

Verification of Timed Erlang Programs

Using McErlang�

Clara Benac Earle and Lars-Åke Fredlund

Babel group, DLSIIS, Facultad de Informática, Universidad Politécnica de Madrid
{cbenac,lfredlund}@fi.upm.es

Abstract. There is a large number of works that apply model checking
to timed specifications, however, there are far fewer attempts at model
checking concurrent programs for which correct timed behaviour is cru-
cial. In this work we explore the formal verification of timed programs
written in the Erlang concurrent programming language, in its full com-
plexity, using the McErlang model checker.
We have extended the McErlang model checker with a timed seman-

tics, similar to the timed semantics Lamport has developed for TLA and
TLC, but with a few notable differences. In the paper we present the
resulting semantics, its implementation in McErlang, and evaluate it us-
ing a number of examples. Among the examples is a process supervision
component for controlling the processes in an Erlang application, which
provides fault-tolerance.

1 Introduction

Timed semantics for concurrent formalisms is by now a very well-studied field.
In the field of real-time semantics a very successful technique for specifying and
verifying systems are the timed automata [1]. Similarly there exist numerous
discrete-timed specification formalisms, or timed formalisms for which a discrete
time domain has been extensively studied, e.g., in process algebra for Timed
CSP [2], TCCS [3], TPCCS [4], LOTOS [5], to mention but a few.

Uppaal [6] is the currently most well-known model checker for real-time sys-
tems. It provides an integrated tool environment for modeling, validation and
verification of real-time systems modeled as networks of timed automata, ex-
tended with data types (bounded integers, arrays etc.).

While tools and specification formalisms like Uppaal are quite successful at
real-time verification, there is still a need to reason about timed behaviour in
other specification and programming languages, using dedicated model checkers.
However, many of these model checkers do not implement tailored real-time ver-
ification algorithms like Uppaal. Rather, they are used to check timed behaviour
by discretizing time, and by using normal model checking algorithms for the LTL

� This work has been partially supported by the following projects: DESAFIOS10
(TIN2009-14599-C03-00), PROMETIDOS (P2009/TIC-1465), pSAFECER (GA
269265) and nSAFECER (GA 295373).

H. Giese and G. Rosu (Eds.): FMOODS/FORTE 2012, LNCS 7273, pp. 251–267, 2012.
c© IFIP International Federation for Information Processing 2012

252 C. Benac Earle and L.-Å. Fredlund

and CTL logics. The SPIN [7] model checker is perhaps the most well-known
explicit-state model checker that follows this approach.

In recent years the approach of checking timed behaviour using “untimed”
model checkers has received renewed attention, with the publication of Lamport’s
article [8] on real-time model checking using the TLC model checker. Other
recent works along the same lines include [9] and [10].

In this work we address the verification of timed programs written in the
Erlang functional concurrent programming language using the McErlang model
checker [11]. The approach taken is similar to Lamport’s approach to real-time
model checking in [8], and also inspired by the timed automata framework, but
with a few notable differences. As in Lamport’s work, the transitional semantics
is defined over a global system state. In contrast to that article there is no explicit
clock tick (the minimum observable “time quanta”), rather the tick is derived
from the time constraints for the processes in the system, and the granularity
of the tick can even vary through the lifetime of the verified system. Moreover,
there is no explicit clock process which is responsible for the progress of time.
As demonstrated, such processes can be programmed, and if desired, included
in a verification.

In related work for Erlang, Guo et.al. [12], verify untimed Erlang programs
by translating Erlang into the μCRL process algebra. However, the translation
addresses only the high-level concurrency libraries of Erlang. In [13], Guo and
Derrick consider the verification of timed Erlang/OTP components by means
of translating Erlang into μCRL, however without considering the problem of
generating finite models (state graphs).

In Sect. 2 and 3 we provide a brief introduction to the Erlang programming
language and the McErlang model checker. Then, in Sect. 4, we provide an
intuition for the timed semantics for Erlang, and Sect. 5 defines a high-level
formal semantics. In Sect. 6 we evaluate the efficiency of the timed semantics;
Sect. 7 summarizes the results.

2 Erlang

Erlang [14,15] is a functional concurrent programming language created by the
Ericsson company in the 1980s. Ericsson is still maintaining the main Erlang
implementation, but it is available as open source since 1998. The chief strength
of the language is that it provides excellent support for concurrency, distribution
and fault tolerance on top of a dynamically typed and strictly evaluated func-
tional programming language. Concurrency is achieved by lightweight processes
communicating through asynchronous message passing. Although Erlang is not
a new language, it has experienced considerable growth in users in recent years.
This is due in most part to its focus on message passing instead of variable
sharing as the main communication mechanism, which enables programmers to
write robust and clean code for modern multiprocessor and distributed systems.

Today Erlang is used by Ericsson and many other companies (T-Mobile (UK),
and many smaller start-up companies such as e.g. LambdaStream in Spain and

Verification of Timed Erlang Programs Using McErlang 253

Klarna in Sweden) to develop industrial applications, often implementing crucial
internet server-side applications. Examples include a high-speed ATM switch de-
veloped at Ericsson with over a million lines of Erlang code which had to meet
very challenging requirements on software reliability and overall system avail-
ability [16,17], parts of Facebook chat, Apache CouchDB – a distributed, fault-
tolerant and schema-free document-oriented database accessible via a RESTful
HTTP/JSON API, etc.

Handling a large number of processes easily turns into an unmanageable task,
and therefore Erlang programmers mostly work with higher-level language com-
ponents. The OTP component library is the most used, it offers design patterns
such as: a generic server component (for client-server communication), a finite
state machine component, generic TCP/IP communication, and a supervisor
component for easy structuring of fault-tolerant systems.

2.1 Handling Time in Erlang

As Erlang is relatively well known, we will just describe the main language
features which concern timing, i.e., the receive statement and timestamps.

The Receive Statement. The basic mechanism for handling time dependent
behaviour in Erlang is the timeout clause of a receive statement:

receive

Pat1 when Guard1 -> Expr1;

...

PatN when GuardN -> ExprN

after Deadline -> TimeoutExpr

end

The intuitive semantics of the receive statement is as follows. If a message
matches a pattern PatI, and the guard GuardI (which may contain variables
bound by the match) evaluates to true (and moreover no earlier pattern Patj

matches, or the guard GuardJ does not evaluate to true), the message is re-
moved from the mailbox and evaluation continues with expression ExprI under
the matching binding.

Concretely, the oldest message in the process mailbox is first matched against
the clauses according to the above procedure. If no pattern and guard match
this message, the same sequence of tests continues with the second oldest mes-
sage, and so on. If no message matches, the process waits for the reception of a
matching message for at least Deadline milliseconds, until it times out and starts
executing the expression TimeoutExpr.

A zero deadline corresponds to the case when, if no matching message is in
the mailbox, the timeout can happen at once. The special atom infinity may
also be used as a time deadline, signifying waiting forever without timing out.

Timestamps. The API call now() returns the time elapsed since 00:00 GMT,
January 1, 1970 as a tuple {MegaSeconds,Seconds,MicroSeconds}.

254 C. Benac Earle and L.-Å. Fredlund

3 McErlang

McErlang [11,18] is an explicit-state model checker for programs written in Er-
lang. Similarly to most explicit state model checkers, McErlang checks concur-
rent programs against specifications in full linear temporal logic (LTL) using
on-the-fly state space exploration algorithms.

The main idea behind the design of McErlang is to re-use as much of the
normal Erlang language implementation as possible, but adding a model check-
ing capability. To achieve this, the tool replaces the part of the Erlang runtime
system which implements concurrency and message passing, while still using the
runtime system for the evaluation of the sequential part of the input programs.
McErlang has built-in support for some Erlang OTP component behaviours that
are used in almost all serious Erlang programs such as the supervisor component
(for implementing fault-tolerant applications) and the generic server component
(implementing a client–server component). The presence of such high-level com-
ponents in the model checker significantly reduces the gap between original pro-
gram and the verifiable model, compared to other model checkers.

McErlang has been used in several complex case studies: in the model checking
of a Video-on-Demand-server [19], in the verification of agent based RoboCup
teams [20], and for the verification of an industrial Erlang process supervision
component [21]. The timed extension of McErlang described in this paper is
available at GitHub [22].

4 A Timed Extension

In the following subsections we first provide an intuition for the untimed Erlang
semantics in McErlang, then introduce the timed extension and timestamps.

4.1 An Untimed Semantics

Previously, there was only an untimed semantics implemented in McErlang. In
the untimed semantics, if a receive statement cannot be executed because there
is no matching message in the process mailbox, the timeout is enabled (unless the
deadline is infinity). However, another process can send a receivable message to
the process and thus disable the timeout. This corresponds to treating timeouts
as nondeterministic choices. As an example, consider code below.

P1 = spawn(fun () -> receive Msg -> ok

after 1000 -> bad

end

end),

spawn(fun () -> P1!hello end).

Two processes are spawned, the first (P1) waiting to receive a message, and
timing out after one second (1000 milliseconds) if no message can be received,
and the second process sending the message hello to the first.

Verification of Timed Erlang Programs Using McErlang 255

The state graph of the above program as generated by McErlang is depicted
in Fig. 1 below. Note that only side effects are depicted; as the receive statement
is not considered a side effect it is not shown. We colour the states where the
hello message was received light grey, whereas states where a timeout occurred
first are grey, and the arrow of the timeout transition is bold. Clearly there is a
race condition in the program: if the message hello is sent first from P1 to the
second process a timeout never happens. Alternatively the timeout can happen
first; in this case the message is sent anyway but is never received.

Non-timed Actions Are Infinitely Fast. A semantics option, implemented
in McErlang, provides a semantics where non-timeout actions are infinitely fast
compared to timeouts, i.e., always giving precedence to non-timeout actions.
In practice this turns out to be a useful abstraction in many scenarios where
the actions of the verified program can be safely assumed to be infinitely fast
compared to timed (external) actions.

The state graph for the above program, when this option is enabled, is shown
in Fig. 2. Since a timeout is infinitely slow compared to other actions, the timeout
never happens since it is disabled by the reception of the hello message.

Fig. 1. State graph with no precedence Fig. 2. State graph with precedence

4.2 Adding Explicit Time

The main changes needed in McErlang to implement a timed semantics are to
record the current time in the state representation of a running program, and
to modify the behaviour of the receive statement in the model checker so that
when handling timeouts, the current time is taken into account.

To keep compatibility with normal Erlang code we let the current time be a
tuple {MegaSeconds,Seconds,MicroSeconds}, and its initial value is {0,0,0}.

Clearly the presence of a non-infinity timeout clause in a receive statement
specifies a minimum waiting period until a timeout happens. In the Erlang doc-
umentation there is of course no guarantee for exactly when, after a timer has
elapsed, the corresponding timeout happens (as it depends on the operating sys-
tem, the hardware, etc). However, in this work, as is usual for timed calculi,
we also want to be able to specify a maximum waiting period until a timeout
happens (a notion sometimes called urgency in timed calculi).

To specify the urgency of a state the function mce_erl:urgent(MaximumWait) is
provided. The parameter MaximumWait specifies the maximum number of millisec-
onds the process can remain in the current state, if it has transitions enabled.

256 C. Benac Earle and L.-Å. Fredlund

Moreover we reinterpret the notion of an infinitely fast computation (i.e.,
where normal actions are infinitely fast compared to timeouts) as one where
every state has an associated implicit call to mce_erl:urgent(0) signifying that
no time can pass if the state has a transition enabled.

For instance, we can add the line mce_erl:urgent(1500) to the running pro-
gram example (see Fig. 3) to force a timeout to happen before some moment in
time. The first process will now wait between 1 and 1.5 seconds for a message
to arrive before timing out. Since we have not specified when the second process
sends a message both possibilities (timeout or no timeout) remain possible. Its
state graph is depicted in Fig. 4; each state is labelled by the current time value
in milliseconds.

P1 =

spawn

(fun () ->

mce_erl:urgent (1500),

receive Msg -> ok

after 1000 -> bad

end

end),

spawn(fun () -> P1!hello end).

Fig. 3. Program 2 Fig. 4. State graph with urgency and
a clock

It may be surprising to see that time does not progress in Fig. 4 after the
timeout, and that the timeout occurs exactly at the earliest possible moment.
This is because the semantics discretizes the progress of time: time makes a
discrete jump between two consecutive time values. So what are the consecutive
time values? In normal discrete-time semantics there is often an implicit clock,
with a tick value which defines the minimum distance between two time values:

t0 = 0 t1 = 1 ∗ tick t2 = 2 ∗ tick · · ·

where the ti’s are the time values at different states. In our semantics, in contrast,
there is no implicit clock process nor a hard-wired tick clock value increment.
Rather, each timeout clause in a receive statement represents a clock tick.

However, we can easily implement an explicit clock process, which constantly
increments the time value with a tick increment as seen in Fig. 5. Note that
if we add an unbounded clock process to the program in Fig. 3, then its state
graph becomes infinite. To obtain a finite state graph for now (in Sect. 5.1 we
overcome this restriction) the bounded clock in Fig. 6 is used instead.

The state graph of program 2, where we add a clock process with a 500ms tick
and a duration of 2500ms with the call spawn(fun () ->clock(500,2500) end),
is shown in Fig. 7. The timeout transitions in the graph are either timeouts
by a process (corresponding to bold arrows as usual) or timeouts by the clock
process. In the graph we can see that the timeout behaviour (the bold transition)

Verification of Timed Erlang Programs Using McErlang 257

clock(Tick) ->

mce_erl:urgent(0),

receive

after Tick -> clock(Tick)

end.

Fig. 5. An unbounded clock

clock(Tick ,0) -> ok;

clock(Tick ,N) when N>0 ->

mce_erl:urgent(0),

receive

after Tick ->

clock(Tick ,N-Tick)

end.

Fig. 6. A bounded clock

Fig. 7. State graph with an explicit bounded clock process

is enabled after 500ms, and stays enabled until after 1500ms. Note also the white
state labelled with 1500 (ms); since the timeout transition with value 0 is urgent,
the clock process cannot make a transition which increases time.

4.3 Supporting Timestamps

Clocks have an important role to play in decidable real-time calculi, recording the
moment an event takes place, relative to other clocks and the general progress
of time. In Erlang the function now() returns the time elapsed since 00:00 GMT,
January 1, 1970 as a tuple {MegaSeconds,Seconds,MicroSeconds}. Most Erlang
programs that handle time simply call now, store the result somewhere, and later
compare the old value with the current time. This programming discipline is
reminiscent of the use of clocks in timed automata formalisms.

The discussion on how to obtain finite models with time is deferred to Sect. 5.1;
however, a crucial requirement is that only a finite number of values returned

258 C. Benac Earle and L.-Å. Fredlund

from calls to now() are “alive” (i.e., accessible from some program variable) in
any state. It would be possible to tailor a static analysis to track calls to now(),
and the flow of the resulting values. Instead we provide the programmer with
a new API to obtain time stamps, and to directly manipulate the lifetime of
timestamps. Direct calls to now() are forbidden. In general adapting a program
to use this new API is trivial; an example is provided below, and Sect. 6.2
contains a further discussion.

The new API located in the module mce_erl_time has the following functions:

now() – returns the current time
nowRef() – stores the current time in a clock reference
was(Ref) – returns the time stored in a clock reference
forget(Ref) – explicitly destroys an old clock reference

There are a number of restrictions on the use of this API. First, times obtained
from calls to now() may never be remembered by the program, but only used in
comparisons against previously recorded clocks. Moreover, for the soundness of
model checking it is forbidden to compare a clock (or the current time) against
an absolute time value, only relative comparisons are permitted, e.g., checking
how much time has passed since some system event occurred. That is, it is not
allowed to check whether now() returns some concrete date and time.

To illustrate the clock API we show below the coding of a fragment of the
lamp example [23] of real-time calculi. A lamp is initially off, and when a but-
ton is pressed shines with low intensity. If a button is pressed again within 5
milliseconds, the lamp shines with bright intensity, otherwise if the new but-
ton press arrives later, the lamp is switched off. In the code fragment below we
show the lamp controller, which receives button presses from a user, and op-
erates the lamp hardware by sending messages to PhysicalLamp. The function
compareTimeStamps_ge(T1,T2) returns true if T1 is a later or identical timestamp
as T2; addTimeStamps(T1,T2) computes a new time stamp which is the sum of
its argument time stamps, and milliSecondsToTimeStamp(N) computes the time
stamp corresponding to N milliseconds.

lamp(PhysicalLamp) ->

receive

press ->

PressTime = mce_erl_time :nowRef(),

PhysicalLamp !low ,

receive

press ->

case compareTimeStamps_ge

(mce_erl_time :now(),

addTimeStamps (milliSecondsToTimeStamp(5),

mce_erl_time :was(PressTime))) of

true ->

PhysicalLamp !off ,

mce_erl_time :forget(PressTime), ...;

false ->

PhysicalLamp !bright ,

Verification of Timed Erlang Programs Using McErlang 259

mce_erl_time :forget(PressTime), ...

end

end

end.

5 A Semi-formal Timed Semantics

In the following we describe how a timed semantics can be obtained by modifying
an untimed semantics. We assume the presence of a non-hierarchical “global”
structured operational semantics for Erlang states, which is the basis of the
implementation of the McErlang model checker (unpublished work). For a non-
global state, hierarchical, semantics of Erlang programs see [24,25].

In the untimed “global” semantics, an Erlang state s is, informally, a tuple
〈Nodes ,Ether 〉 consisting of a set of nodes (Nodes) and a datastructure (Ether)
storing the messages in transit between nodes. To obtain a timed Erlang state
we add the current time Time ≡ 〈MegaSeconds , Seconds,MicroSeconds〉
and a set of clocks, i.e., tuples 〈ClockId ,Time〉 created by call-
ing nowRef(), to the tuple: 〈Nodes ,Ether ,Time,Clocks〉. A node
〈Processes ,Dictionary ,Registry,Links ,Monitors〉 is a collection of processes, a
node global variable store, a process registry (for associating symbolic names to
processes), and process links and monitors (for handling fault tolerance). Finally
a process 〈Pid ,Dictionary ,Mailbox ,Expr〉 has a mailbox, a process dictionary
(an imperative memory), a unique process identifier, and the currently executing
expression Expr . The contents of a typical Erlang system state is depicted
symbolically in Fig. 8. Solid lines depict inter-node message passing, dashed
lines intra-node message passing.

An Erlang untimed action is, informally, a side effect (e.g., a message sent be-
tween two processes, registering a symbolic name for a process, etc) or a process
internal action. To the untimed actions we add the timed actions corresponding
to timeouts, which cause time to progress, and actions corresponding to creating
and modifying clocks. We let α range over the actions.

Given that we can compute the untimed transition relation written s
α−→ s′,

which is defined as an structural operational semantics, we obtain the timed
transition relation s

α−−−→
pret

s′ by copying the transition rules from the untimed

semantics except the rules for timeouts, and by adding a few transition rules
concerning timeouts and clock handling to the timed semantics.

For timeout handling we add two rules:

p ∈ processes(s) p.expr ≡ receive clauses after deadline -> e end

deadline �= infinity absdeadline = s.time + deadline
p′ = p where p′.expr = absreceive clauses after absdeadline -> e end

s −−−→
pret

s[p′/p]

260 C. Benac Earle and L.-Å. Fredlund

Fig. 8. An Erlang multi-node system

p ∈ processes(s) p.expr ≡ absreceive clauses after absdeadline -> e end

¬receivable(p)
s′ = s where s′.time = absdeadline p′ = p where p′.expr = e

s
timeout(absdeadline)−−−−−−−−−−−−−→

pret
s′[p′/p]

The first side effect free rule simply replaces a time relative deadline with an ab-
solute deadline; to clarify the semantics we introduce the new synthetic keyword
absreceive for such time absolute receive statements.

In the second rule, in a state s, if there is a process p which is executing a
receive statement, and which cannot receive a message, then there is a transi-
tion labelled by the action timeout(deadline) to a new state where the current
time has increased, and where the currently executing expression of p has been
replaced. Similar transition rules are added for handling clocks.

Finally we constrain the resulting transition relation to enforce global urgency
constraints on the progress of time, using the following high-level Erlang function
which first calculates the transitions for a state using the function transitions,
and then returns a reduced set of transitions compatible with the notion of
urgency introduced in Sect. 4.2.

timeRestrict (State) ->

Now = State#state.time ,

Transitions = transitions (State),

timeRestrict (Transitions ,Now ,[],infinity ,[]).

timeRestrict ([],_,Untimed ,_,Timed) -> Untimed++ Timed;

timeRestrict (Transitions ,Now ,Untimed ,MostUrgent ,Timed) ->

[Transition |Rest] = Transitions ,

MinWait = calculate_minwait (Transition),

MaxWait = calculate_maxwait (Transition),

if

MinWait == infinity orelse MinWait > MostUrgent ->

timeRestrict (Rest ,Now ,Untimed ,MostUrgent ,Timed);

MaxWait == infinity andalso MinWait ==Now ->

NewNonTimed = [Transition |NonTimed],

Verification of Timed Erlang Programs Using McErlang 261

timeRestrict (Rest ,Now ,NewNonTimed ,MostUrgent ,Timed);

MinWait =< MaxWait < MostUrgent ->

NewTimed = [Transition |restrict (MaxWait ,TimerEntries)],

timeRestrict (Rest ,Now ,NonTimed ,MaxWait ,Newtimed);

MinWait =< MostUrgent =< MaxWait ->

NewTimed = [Transition |TimerEntries],

timeRestrict (Rest ,Now ,NonTimed ,MostUrgent ,NewTimed)

end.

restrict(MaxWait ,[]) -> [];

restrict(MaxWait ,[Transition |Rest]) ->

MinWait = calculate_minwait (Transition),

if

MinWait =< MaxWait -> [Transition |restrict(MaxWait ,Rest)];

MinWait > MaxWait -> restrict(MaxWait ,Rest)

end.

The timeRestrict function is called with the following arguments: a list of tran-
sitions which is reduced, the current system time (Now), a list of untimed tran-
sitions (Untimed), the time when the most urgent transition seen so far must be
taken (MostUrgent), and a list of transitions which are enabled to be executed
sometime before the MostUrgent deadline. The function first classifies a timed
transition: informally the minimum waiting period is the timeout value in a re-
ceive statement, whereas the maximum waiting period is the urgency (specified
using a call to mce_erl:urgent). Having infinity as the wait limit signifies that
the process will wait forever.

5.1 Finite Models

To obtain finite models, i.e., finite state graphs, for timed programs, we note
that the actions of a timed program normally depends only on the passage time,
not on the absolute value of the time parameter of the system state. Similarly,
in the specification logic we make statements only about the relative value of
clocks and the system time parameter. Thus, for any given system state there
is typically an infinite number of equivalent states, which differ only in that
the time system parameter is distinct, but the relative values of clocks and the
system time parameter is the same for all these “equivalent” states.

Thus, to obtain finite models, the obvious strategy is to normalize system
states, and to generate the state space modulo such normalization. During state
space generation, before adding a new node to the state graph, we should check
whether its normalization (another state) is already in the graph. If it is, we do
not need to consider the new state further. If it is not, we add the normalized
state to the state graph, and continue exploring the behaviour of the new state.
In [8] this procedure is referred to as model checking under symmetry.

It turns out to be trivial to add such a normalization to McErlang. The un-
timed McErlang tool already provided an “abstraction” feature, whereby a user-
defined state abstraction function can be used to transform a state before storing

262 C. Benac Earle and L.-Å. Fredlund

it in the state table; exactly what is needed to implement time normalization.
The normalization procedure modifies a state according to the following:

– The system time parameter is reset to {0,0,0}

– The values of clocks (created using nowRef()) are decreased by the old time
– Timeouts in (absolute) receive statements are decreased by the old time (but

greater or equal to the new time)

As an example, the state graph for the program in Fig. 3, with the unbounded
clock in Fig. 5, and using the above normalization, is depicted in Fig. 9. Note that
states are no longer labeled by the current time, as the normalization collapses
many states with distinct times into a single state.

Fig. 9. State graph for the program in Fig. 4 with an explicit unbounded clock process,
and finite model abstraction

Note that normalization does not guarantee finite state spaces. A program
may for instance create an unbounded number of clock references, leading to an
infinite state graph.

6 Experiments

To evaluate the resulting semantics and its implementation we below provide
some initial benchmark results, and report on the challenges in obtaining a ver-
ifiable timed model from a crucial Erlang software component used in industry.

6.1 Efficiency

We evaluate the efficiency of the resulting implementation by checking Fischer’s
mutual exclusion algorithm [26]. Fig. 10 contains an implementation of the al-
gorithm in Erlang. The global node dictionary extension of McErlang is used
to implement reading and writing to the shared variable; see the functions read

Verification of Timed Erlang Programs Using McErlang 263

and write. The entering of the critical region of a process Id is indicated by
a synthetic probe action mce_erl:probe({enter,Id}). The latest(Tick,Wait,F)

function calls the function parameter F at most Wait milliseconds later; the time
interval is partitioned into slices of maximum size Tick (the slices could be smaller
if other clocks are defined).

We check mutual exclusion in a range of experiments characterized by the pa-
rameters of the start(N,Tick,D,T) function: N is the number of processes, Tick is
the time tick, D is the maximum time to wait until writing to the shared variable,
and T is the minimum time to wait until reading from the shared variable. Note
that in this experiment we do not assume that internal actions are infinitely fast
compared to timers.

Table 1. Execution times for Fischer’s algorithm

N Tick D T Time (secs.) Number of states

4 1 1 2 0.1s 2034
5 1 1 2 0.7s 13738
6 1 1 2 7.6s 89051
7 1 1 2 50.3s 580080
5 1 2 3 4.4s 81452
5 1 3 4 12.7s 268793
5 1 4 5 36.7s 704901
5 1 5 6 73.7s 1522179

As seen in Table 1 the size of the state space is exponential in the number
of processes (N). In the last four rows the effect of an increase in the values
of the timers is indicated. To verify the correctness of the algorithm a simple
monitor checks that enter and exit probe actions strictly alternate. As expected,
if writing is slower than reading, e.g., D > T, the algorithm works correctly and
otherwise a counterexample is quickly found. Overall, the size of state spaces
and the execution times are reasonable.

6.2 Expressive Power

As a final example we consider the verification of the nos supervisor library [21];
this is a crucial software component used in several industrial projects at the
LambdaStream company [27].

A supervisor is a process in charge of starting, stopping and monitoring a
set of children (processes). Basically whenever a child process terminates the
supervisor should restart it, i.e., spawn a new process executing the task of the
terminated child. A supervisor typically supervises not only process workers, but
also other supervisors, defining a hierarchical structure as shown in Fig. 11.

264 C. Benac Earle and L.-Å. Fredlund

start(N,Tick ,D,T) ->

write(0),

lists:foreach

(fun (Id) -> spawn(fun () -> idle(Id ,Tick ,D,T) end) end ,

lists:seq(1,N)).

idle(Id,Tick ,D,T) ->

case read() of

0 -> set(Id ,Tick ,D,T);

_ -> idle(Id ,Tick ,D,T)

end.

set(Id ,Tick ,D,T) ->

latest(Tick ,D,fun () -> setting(Id,Tick ,D,T) end).

setting(Id ,Tick ,D,T) ->

write(Id),

sleep(T),

testing(Id ,Tick ,D,T).

testing(Id ,Tick ,D,T) ->

case read() of

Id -> mutex(Id,Tick ,D,T);

_ -> idle(Id ,Tick ,D,T)

end.

mutex(Id,Tick ,D,T) ->

mce_erl:probe({enter ,Id}),

write(0),

mce_erl:probe({exit ,Id}),

idle(Id ,Tick ,D,T).

read() ->

case mcerlang:nget(id) of

N when is_integer(N),N>=0 -> N

end.

write(V) ->

mcerlang:nput(id,V).

%% Support code

sleep(Milliseconds) ->

receive after Milliseconds -> ok end.

latest(_Tick ,0,F) ->

mce_erl:urgent (0), F();

latest(Tick ,Wait ,F) ->

mce_erl:urgent (0),

mce_erl:choice

([fun () -> mce_erl:urgent (0), F() end ,

fun () ->

mce_erl:urgent (0),

receive after Tick -> latest(Tick ,Wait -Tick ,Fun) end

end]).

Fig. 10. Fischer’s mutual exclusion algorithm in Erlang

Verification of Timed Erlang Programs Using McErlang 265

Supervisor1

Worker1 Supervisor2

Worker3 Supervisor3

Worker4 Worker5

Worker2

Fig. 11. A supervision tree

The nos supervisor is implemented in around 760 lines of Erlang code. To
enable untimed verification of part of its functionality in [21] we had to modify
the functions below:

%% Check if restarting a child again is admissible

add_restart (# child_spec {restart_intensity = infinity }) -> [];

add_restart (Spec =# child_spec {state = ChildState }) ->

{MaxR ,MaxT ,Final} = Spec#child_spec .restart_intensity ,

Restarts = ChildState #child_state .restarts ,

check_restarts (MaxR , Final ,

filter_restarts (MaxT , [now() | Restarts])).

%% Remove restarts older than MaxT

filter_restarts (MaxT , [H | Restarts]) ->

F = fun(Restart) -> difference (Restart , H) < MaxT end ,

[H | lists:takewhile (F, Restarts)].

check_restarts (MaxR , Final , Restarts) ->

case length(Restarts) > MaxR of

true -> Final;

false -> Restarts

end.

These functions define the restarting policies of the supervisor. The function
add_restart is called when a child process should be restarted due to having
terminated abnormally. However, a constraint on restarting is that the child
process may not have been restarted more than MaxR times within MaxT seconds.
If this constraint is violated, the supervisor terminates all child processes and
then itself.

Correctness properties are specified as safety monitors that inspect the actions
of a the supervisor and processes interacting with the supervisor; see [21] for
details. Using untimed McErlang we were not able to verify time dependent
properties for the supervisor component, but had to resort to expressing the
timing checks as a nondeterministic choice.

Using timed McErlang there is no need to change any of the 760 lines of
code, although a few lines of code had to be added to delete the time clocks

266 C. Benac Earle and L.-Å. Fredlund

created using nowRef(). Of course we still need to create verification scenarios
that explore the behaviour of the supervisor in detail, i.e., programming child
process terminating abnormally and being restarted in narrow time intervals.

7 Conclusions

We have implemented a timed semantics for the Erlang programming language
in the McErlang model checker, and have demonstrated that the resulting tool
is capable of verifying timed systems. Compared to other similar semantics our
semantics has a few interesting characteristics such as e.g. the absence of a
dedicated time tick.

Currently the timed implementation is undergoing a study as to its suitabil-
ity as a workbench for analysing Timed Rebeca programs. Earlier work [28]
has implemented a translation from Timed Rebeca to Erlang, and has used un-
timed McErlang to simulate and test the resulting programs against correctness
properties specified as safety monitors. In recent work, the new timed McErlang
model checker, and the language extensions to specify urgency and clocks, are
being used to verify Timed Rebeca programs.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
2. Ouaknine, J.: Discrete analysis of continuous behaviour in real-time concurrent
systems. PhD thesis, Oxford University (2001)

3. Moller, F., Tofts, C.M.N.: Behavioural Abstraction in TCCS. In: Kuich, W. (ed.)
ICALP 1992. LNCS, vol. 623, pp. 559–570. Springer, Heidelberg (1992)

4. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and
probabitilies. In: IEEE Real-Time Systems Symposium, pp. 278–287 (1990)

5. Léonard, L., Leduc, G.: A formal definition of time in LOTOS. Formal Asp. Com-
put. 10(3), 248–266 (1998)

6. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2) (1997)
7. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23, 279–295 (1997)

8. Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul,
W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg
(2005)

9. Wang, H., MacCaull, W.: Verifying real-time systems using explicit-time descrip-
tion methods. In: Andova, S., McIver, A., D’Argenio, P.R., Cuijpers, P.J.L.,
Markovski, J., Morgan, C., Núñez, M. (eds.) QFM. EPTCS, vol. 13 (2009)

10. van den Berg, L., Strooper, P.A., Winter, K.: Introducing Time in an Industrial
Application of Model-Checking. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS,
vol. 4916, pp. 56–67. Springer, Heidelberg (2008)

11. Fredlund, L.Å., Svensson, H.: McErlang: a model checker for a distributed func-
tional programming language. In: Proceeding of the 12th ACM SIGPLAN Int.
Conf. on Functional Programming (ICFP). ACM, Freiburg (2007)

12. Guo, Q., Derrick, J., Hoch, C.: Verifying Erlang Telecommunication Systems with
the Process Algebra μCRL. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih,
K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 201–217. Springer, Heidelberg (2008)

Verification of Timed Erlang Programs Using McErlang 267

13. Guo, Q., Derrick, J.: Verification of timed Erlang/OTP components using the
process algebra mucrl. In: Proceedings of the 2007 ACM SIGPLAN Workshop on
Erlang, Freiburg, Germany, October 5, pp. 55–64 (2007)

14. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang. Prentice-Hall (1996)

15. Cesarini, F., Thompson, S.: Erlang Programming – A Concurrent Approach to
Software Development. O’Reilly Media (2009)

16. Blau, S., Rooth, J., Axell, J., Hellstrand, F., Buhrgard, M., Westin, T., Wicklund,
G.: AXD 301: A new generation ATM switching system. Computer Networks 31(6),
559–582 (1999)

17. Wiger, U., Ask, G., Boortz, K.: World-class product certification using Erlang.
SIGPLAN Not. 37, 25–34 (2002)

18. McErlang: web page (April 2012), https://babel.ls.fi.upm.es/trac/McErlang/
19. Fredlund, L.-̊a., Sánchez Penas, J.J.: Model Checking a Video–on–Demand Server

Using McErlang. In: Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.)
EUROCAST 2007. LNCS, vol. 4739, pp. 539–546. Springer, Heidelberg (2007)

20. Benac Earle, C., Fredlund, L.-Å., Iglesias, J.A., Ledezma, A.: Verifying Robocup
Teams. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348,
pp. 34–48. Springer, Heidelberg (2009)

21. Castro, D., Guĺıas, V.M., Benac Earle, C., Fredlund, L.Å., Rivas, S.: A case study
on verifying a supervisor component using McErlang. ENTCS 271, 23–40 (2011)

22. (April 2012), https://github.com/fredlund/McErlang-DTime
23. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,

M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

24. Fredlund, L.Å.: A Framework for Reasoning about Erlang Code. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden (2001)

25. Svensson, H., Fredlund, L.Å.: A more accurate semantics for distributed Erlang.
In: Proc. of the SIGPLAN Workshop on Erlang. ACM, New York (2007)

26. Gafni, E., Mitzenmacher, M.: Analysis of timing-based mutual exclusion with ran-
dom times. In: Proceedings of the Eighteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pp. 13–21. ACM Press (1999)

27. LambdaStream, S.L.: web page (April 2012), http://www.lambdastream.com/
28. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sir-

jani, M.: Modelling and simulation of asynchronous real-time systems using Timed
Rebeca. In: FOCLASA. EPTCS, vol. 58, pp. 1–19 (2011)

https://babel.ls.fi.upm.es/trac/McErlang/
https://github.com/fredlund/McErlang-DTime
http://www.lambdastream.com/

Author Index

Agha, Gul 219
Albert, Elvira 35
Aman, Bogdan 52

Barthe, Gilles 186
Beck, Wim 152
Benac Earle, Clara 251
Bensalem, Saddek 118
Bozga, Marius 118

Cerone, Andrea 135
Ciobanu, Gabriel 52
Clarke, Dave 152
Crespo, Juan Manuel 186

de Frutos Escrig, David 169
Delahaye, Benôıt 203
Delzanno, Giorgio 235
Desel, Jörg 67
Devriese, Dominique 186

Fahrenberg, Uli 203
Flores-Montoya, Antonio E. 35
Fredlund, Lars-Åke 251

Genaim, Samir 35

Hennessy, Matthew 135
Henzinger, Thomas A. 203

Johnson, Taylor T. 18
Junttila, Tommi 84

Karmani, Rajesh K. 219
Kindermann, Roland 84

Klai, Kais 67
Koutny, Maciej 52

Lanese, Ivan 1
Lauterburg, Steven 219
Legay, Axel 203, 219
Lienhardt, Michael 1

Marinov, Darko 219
Mezzina, Claudio Antares 1
Milushev, Dimiter 152
Mitra, Sayan 18

Ničković, Dejan 203
Niemelä, Ilkka 84

Piessens, Frank 186
Prabhakar, Pavithra 101

Quilbeuf, Jean 118

Rivas, Exequiel 186
Romero Hernández, David 169

Sangnier, Arnaud 235
Sifakis, Joseph 118
Stefani, Jean-Bernard 1

Tasharofi, Samira 219

Viswanathan, Mahesh 101

Zavattaro, Gianluigi 235

	Title
	Foreword
	Preface
	Organization
	Table of Contents
	A Reversible Abstract Machine and Its Space Overhead
	Introduction
	The Oz Language
	A Reversible Abstract Machine for Oz
	Properties of the Reversible Abstract Machine
	Memory Overhead
	Overhead of the Reversible Abstract Machine
	Lower Bound on the Cost of Reversing Oz Programs
	Discussion

	Related Work
	Conclusion
	References

	A Small Model Theorem for Rectangular Hybrid Automata Networks
	Introduction
	Modeling Framework
	LH-Assertions
	Networks of Rectangular Hybrid Automata
	Example: Simple Air Traffic Landing Protocol
	Semantics of RHA Networks

	Small Model Theorem
	Applying the Small Model Result to Check Inductive Invariants

	Passel: Tool Implementation and Results
	Conclusion and Future Work
	References

	Analysis of May-Happen-in-Parallel in Concurrent Objects
	Introduction
	Concurrent Objects
	Operational Semantics

	Definition of MHP
	MHP Analysis
	Inference of Method-Level MHP
	The Notion of MHP Graph
	Inference of Global MHP
	Soundness and Complexity

	Experimental Evaluation
	Conclusions, Related and Future Work
	References

	Behavioural Equivalences over Migrating Processes with Timers
	Introduction
	 TiMo
	Syntax
	Semantics
	An Example

	Timed Bisimulations in TiMo
	Bounded Timed Bisimulations in TiMo
	Relaxing Timed Bisimulations
	Conclusion
	References

	Checking Soundness of Business Processes Compositionally Using Symbolic Observation Graphs
	Introduction
	Preliminaries
	Running Example
	Symbolic Observation Graphs
	Composition of SOGs
	Observed Behavior
	Synchronous Composition
	The Observed Behavior Computation Algorithm

	Related Work
	Conclusion
	References

	Beyond Lassos: Complete SMT-Based Bounded Model Checking for Timed Automata
	Introduction
	Timed Automata
	Model Checking Problems
	The Region Abstraction

	Bounded Model Checking for Reachability and Lassos
	Region-Based BMC
	Ensuring Non-zenoness
	Completeness

	Alternative Encodings
	Experiments
	Conclusions
	References

	Conformance Testing of Boolean Programs with Multiple Faults
	Introduction
	Modular Visibly Pushdown Automata (MVPA)
	Conformance Testing
	(R,)-Conformance Testing
	Lower Bounds for Conformance Testing
	Specification MVPA
	Lower Bound for the (R,)-Conformance Test

	Conclusions
	References

	Knowledge-Based Distributed Conflict Resolution for Multiparty Interactions and Priorities
	Introduction
	The BIP Framework
	Knowledge-Based Detection of False Conflicts
	Knowledge and Indistinguishability
	Conflict-Free Semantics
	Observational Conflict-Free Semantics

	Heuristics for Minimizing Observation
	Implementation and Experiments
	Dining Philosophers
	Jukebox

	Related Work
	Conclusion
	References

	Modelling Probabilistic Wireless Networks
	Introduction
	Background
	Networks and Their Computations
	Testing Networks
	Proof Techniques for the Testing Preorders
	An Application: Probabilistic Routing
	Conclusions
	References

	Noninterference via Symbolic Execution
	Introduction
	Background
	Noninterference
	Declassification
	Symbolic Execution

	Approach
	Overview
	Transformation of a Basic Language
	Procedures
	Dynamically Allocated Data Structures and Noninterference

	Tool and Experimental Results
	Tool Introduction
	Implicit Flow, Explicit Flow or No Flow
	While-Loop Insecure Program DarvasRep
	e-Banking Example
	Average Example
	Password Examples
	Statistics

	Related Work
	Conclusion
	References

	Defining Distances for All Process Semantics
	Introduction and Motivation
	Preliminaries
	Simulation Distance
	Bisimulation Distance
	Distances for All the Semantics in the ltbt-Spectrum
	Generalizations, Applications and Some Conclusions
	Conclusion
	References

	Beyond Lassos: Complete SMT-Based Bounded Model Checking for Timed Automata
	Introduction
	Timed Automata
	Model Checking Problems
	The Region Abstraction

	Bounded Model Checking for Reachability and Lassos
	Region-BasedBMC
	Ensuring Non-zenoness
	Completeness

	Alternative Encodings
	Experiments
	Conclusions
	References

	Conformance Testing of Boolean Programs with Multiple Faults
	Introduction
	Modular Visibly Pushdown Automata (MVPA)
	ConformanceTesting
	(R,Δ)-Conformance Testing
	Lower Bounds for Conformance Testing
	Specification MVPA
	Lower Bound for the (R,Δ)-Conformance Test

	Conclusions
	References

	Knowledge-Based Distributed Conflict Resolution for Multiparty Interactions and Priorities
	Introduction
	The BIP Framework
	Knowledge-Based Detection of False Conflicts
	Knowledge and Indistinguishability
	Conflict-Free Semantics
	Observational Conflict-Free Semantics

	Heuristics for Minimizing Observation
	Implementation and Experiments
	Dining Philosophers
	Jukebox

	Related Work
	Conclusion
	References

	Modelling Probabilistic Wireless Networks
	Introduction
	Background
	Networks and Their Computations
	TestingNetworks
	Proof Techniques for the Testing Preorders
	An Application: Probabilistic Routing
	Conclusions
	References

	Noninterference via Symbolic Execution
	Introduction
	Background
	Noninterference
	Declassification
	Symbolic Execution

	Approach
	Overview
	Transformation of a Basic Language
	Procedures
	Dynamically Allocated Data Structures and Noninterference

	ToolandExperimentalResults
	Tool Introduction
	Implicit Flow, Explicit Flow or No Flow
	While-Loop Insecure Program [8]
	e-Banking Example
	Average Example
	Password Examples
	Statistics

	Related Work
	Conclusion
	References

	Defining Distances for All Process Semantics
	Introduction and Motivation
	Preliminaries
	Simulation Distance
	Bisimulation Distance
	Distances for All the Semantics in the ltbt-Spectrum
	Generalizations, Applications and Some Conclusions
	References

	Secure Multi-Execution through Static Program Transformation
	Introduction
	Setting
	Secure Multi-Execution: The Operational Approach
	Secure Multi-Execution by Program Transformation
	Implementation
	Transformation to a Concurrent Language
	Related Work
	Conclusion
	References

	Synchronous Interface Theories and Time Triggered Scheduling
	Introduction
	Synchronous Interfaces
	Semantics
	Operations
	Incremental TTEthernet Scheduling with SI
	Conclusion and Further Work
	References

	TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing Actor Programs
	Introduction
	Illustrative Example
	ActorSemantics
	Definitions for Partial-Order Reduction
	TransDPOR: A New DPOR Algorithm
	Implementation and Evaluation
	Related Work
	Conclusions and Future Work
	References

	Verification of Ad Hoc Networks with Node and Communication Failures
	Introduction
	Ad Hoc Networks
	Safety Analysis: The Control State Reachability Problem

	Node Failures
	Intermittent Nodes
	Node Crash and Restart

	Communication Failures
	Message Loss
	Conflict
	Conflict Detection

	Conclusion
	References

	Verification of Timed Erlang Programs Using McErlang
	Introduction
	Erlang
	Handling Time in Erlang

	McErlang
	ATimedExtension
	An Untimed Semantics
	Adding Explicit Time
	Supporting Timestamps

	A Semi-formal Timed Semantics
	Finite Models

	Experiments
	Efficiency
	Expressive Power

	Conclusions
	References

	Author Index

