
Design, Verification and Prototyping the Next
Generation of Desktop Grid Middleware�

Leila Abidi1,2, Christophe Cérin1, and Kais Klai1

1 Université de Paris 13, LIPN UMR CNRS 7030, 99, avenue Jean-Baptiste Clément,
93430 Villetaneuse, France

2 Université de Tunis, LaTICE ESSTT, 5 Avenue Taha Hussein, BP, 56, Bâb
Manara, Tunis, Tunisie

{leila.abidi,christophe.cerin,kais.klai}@lipn.univ-paris13.fr

Abstract. This paper proposes a formal framework for the design and
verification of a new Desktop Grid (DG) prototype which is currently
developed with Web 2.0 technologies and only with this technology. The
paper is an approach for developing a new generation of Desktop grid
middleware, in our case based on Redis, a key-value no-SQL Web 2.0
tool with capability for managing the Publish-Subscribe asynchronous
paradigm. We propose to revisit the Desktop Grid paradigm based only
on concepts from Web 2.0 tools. It is different from previous approaches
that have required to build software layers before the layer of the DG
middleware. We demonstrate that this corresponds to a progress in free-
ing time for modeling and verification, that is, to build safe middleware.
This work proposes (1) a modeling and a verification of a DG protocol
based on the Publish-Subscribe paradigm (2) a prototype of a new gen-
eration of DG middleware that we are developing, concurrently with the
modeling. A simulation, according to a prototype is conducted on a local
cluster and demonstrate that our system is operational, light in terms
of coding lines and used resources. Thus, it offers remarkable properties
in order to implement DGs on tablets and Smartphones, we mean on
resource constrained systems.

Keywords: Desktop grid computing, Grid middleware, Volunteer Com-
puting, Service-oriented computing, resource management, Redis, Web
2.0, Publish-Subscribe paradigm, Formal Models, Colored Petri Nets.

1 Introduction

Desktop Grid [1] systems represent an alternative to supercomputers and paral-
lel machines and they offer computing power at low cost. Desktop grids (DGs)
are made with PCs and Internet as the communication layer. DGs aim to ex-
ploiting the resources of idle machines over Internet. Indeed, Desktop Grids have
important features that explain the large number of international projects aim-
ing to better exploit this computational potential. Many Desktop Grid systems
� Experiments presented in this paper were carried out using the Paris 13 experimental

testbed.

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 74–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Design, Verification and Prototyping the Next Generation of DG Middleware 75

have been developed using a centralized model. These infrastructures run in a
dynamic environment and the number of resources may increase dynamically.

The Seti@Home [2] project is among the large amount of success stories.
While the increasing number of users of such systems demonstrates the poten-
tial of Desktop Grid, current implementations, for instance Boinc [3], United
Devices [4], Distributed.Net [5] and XtremWeb [6] still follow the client-server or
master/slave paradigm. Theoretically, the computing power that can be obtained
from these systems is constrained by the performance of the master node.

The BonjourGrid [7–9] middleware has appeared in this context. The basic
idea is to exploit, dynamically, different instances of DG middleware. The coordi-
nation is fully distributed through Publish-Subscribe mechanisms. BonjourGrid
is the first middleware of this kind, to the best of our knowledge, and it provides
a view of the architecture and of the execution of applications running inside
the middleware that match the ideas of decentralization.

In this paper, we provide graphic models based on Petri Nets to verify that
the Publish-Subscribe system (BonjourGrid is just a case study introducing our
Redis based prototype) is correct. Our research has been built around the desire
to develop the BonjourGrid protocol using colored Petri Nets as a technique for
modeling and verification and to receive a feedback about the good practices in
developing DGs in the context of Web 2.0 tools.

This paper is organized as follows. After an introduction of the context of this
work, we set in Section 2 our problem in the form of key issues that summarize
the different aspects to what we are interested. Therefore, we introduce the
principle of resource coordination (as implemented in BonjourGrid) and the
benefit in using Publish-Subscribe systems. We also introduce our motivations for
the design and the formal verification of BonjourGrid. We conclude this section
by presenting some related work. Section 3 is related to our contributions, and
describes the different steps of our work in order to provide a formal specification
of the Publish-Subscribe paradigm. We also present our views to mix our Publish-
Subscribe substrate with the core part of the BonjourGrid protocol, and finally
we present the software prototype based on Redis. Section 5 concludes the paper.

2 Context and Motivations

2.1 Key Issues in Designing DG Middleware

In this section, we introduce the different issues facing the design of a DG mid-
dleware:

– Heterogeneity and volatility of resources are the main characteristics of DG
environment that make communication, coordination, and scheduling diffi-
cult tasks. That’s why we need a powerful mechanism in the middle of our
system in order to guarantee a minimum of robustness and safety;

– The communication paradigm (for coordination, not for exchanging data)
adopted should provide a high level of asynchronism in order to promote
scalability; The question is: what is the appropriate model for controlling
and coordinating the components of a DG middleware?



76 L. Abidi, C. Cérin, and K. Klai

– The systems become so complex that we must think to verify them formally.
This will allow us to have more confidence in what we code. We promote a
co-design between specification and implementation parts, and we want to
isolate pieces of code (the generic patterns) that will be generated automat-
ically from the specification; The question is: how to specify and verify grid
middleware?

– Web 2.0 technologies are the future, hence it would be a benefit to take
advantage of them. On one hand, the Web 2.0 technologies assist to ad-
vertise desktop grid goals and attract computational resources for desktop
grid communities. On the other hand, Web 2.0 systems should handle heavy
data traffic and complex relations that need extraordinary large computa-
tional power: grid technologies. The question is: how Web 2.0 and grids
technologies may merge?

– Grid technologies may serve as building blocks for Cloud technologies. In [10],
we have explained how the DG paradigm is reused for the SlapOS system
which is a provisioning and billing system for the cloud. SlapOS1 is part of
a 2.3M euros FUI project in which we are working on the coordination of
servers. The question is to isolate problems in clouds that could be solved
with grid technologies.

2.2 Resources Coordination

Desktop grids are characterized by a dynamic environment due to the hetero-
geneity and volatility of resources, in our case PCs at home. User’s machines can
join or leave the grid at any time, without any constraint. Each machine has its
own properties such as its memory size, bandwidth, CPU/core number. . . that
makes difficult the scheduling of tasks.

Consequently, the power of DGs that resides in the participation of volun-
teers, constitutes also a weakness in terms of resources orchestration when a job
is submitted. Thus, the main problem with DGs is coordination, in particular
when we have to execute communicating applications i.e., applications that are
modeled by a task graph with precedence.

To bypass these problems, BonjourGrid counts on a distributed vision for the
coordination and the execution of applications based on existing DG middle-
ware. Moreover, the coordination mechanism is based on the Publish-Subscribe
paradigm.

2.3 The Publish-Subscribe Paradigm

The Publish-Subscribe paradigm is an asynchronous mode for communicating
between entities. Some users, namely the subscribers, or clients, or consumers,
express and record their interests under the form of subscriptions, and are noti-
fied later by another event produced by other users, namely the producers [11].

1 http://www.slapos.org/

http://www.slapos.org/


Design, Verification and Prototyping the Next Generation of DG Middleware 77

Event Service

Notify()
Subscribe()

Unsubscribe()

Storage
and management
of subscriptions

Publish

Publish

Publisher

Publisher

Publisher

Publisher

Subscribe

Un-
subscribe

Notify

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Fig. 1. The Publish-Subscribe paradigm [11]

As stated in Figure 1, subscribers record their interest by a call to the sub-
scribe() operation inside the event service management system, without knowing
the source of events. The unsubscribe() operation allows us to stop a subscription.
The notify()(or publish()) operation is called by publishers in order to generate
events that will be propagated to subscribers, and such events are managed by
the event service management system too. Each subscriber will receive a notifi-
cation for every event that is conform to its interest.

This communication mode is thus multi-point, anonymous and implicit. It is
a multi-point mode (one-to-many or many-to-many) because events are sent to
the set of clients that have declared an interest into the topic. It is an anonymous
mode because the provider does not know the identity of clients. It is an implicit
mode because the clients are determined by the subscriptions and not explicitly
by the providers.

It is also known that this asynchronous communicating mode allows spatial
decoupling (the interacting entities do not know each other), and time decoupling
(the interacting entities do not need to participate at the same time). This total
decoupling between the production and the consumption of services increases
the scalability by eliminating many sorts of explicit dependencies between par-
ticipating entities. Eliminating dependencies reduces the coordination needs and
consequently the synchronizations between entities. These advantages make the
communicating infrastructure well suited to the management of distributed sys-
tems and simplify the development of a middleware for the coordination of DGs.

2.4 BonjourGrid

BonjourGrid is an approach for the decentralization and the self organization of
resources in DG systems [7–9]. The key idea is to exploit existing DG middleware
(Boinc, Condor, XtremWeb) and concurrently to manage multiple instances of



78 L. Abidi, C. Cérin, and K. Klai

DG middleware. The notion of meta desktop grid middleware has been intro-
duced with BonjourGrid and the Publish-Subscribe paradigm is used intensively
for the coordination of the different DG middleware.

Each user, behind a desktop machine in his office, can submit an application.
BonjourGrid deploys a master (coordinator), locally on the user machine, and
requests for participants (workers). Negotiations to select them should now take
place. Using a Publish-Subscribe infrastructure, each machine publishes its state
(idle, worker or master) when changes occur as well as information about its
local load, or its use cost, in order to provide useful metrics for the selection of
participants. Under these assumptions, the master node can select a subset of
workers nodes according to a selection criteria. The master and the set of selected
workers build the Computing Element (CE) that will execute and manage the
user application. When the execution of an application of a CE terminates, its
master becomes free, returns in the idle state, and it releases all workers who
return to the idle state. Then, the nodes can participate to others projects.

To implement this approach, BonjourGrid has been decomposed in three fun-
damental parts: a) A fully decentralized resources discovery layer, based on Bon-
jour protocol [12]; b) A CE, using a Desktop Grid (DG) middleware such as
XtremWeb, Condor or Boinc, which executes and manages the various tasks of
applications; c) A fully decentralized protocol of coordination between a) and b)
to manage and control all resources, services and CEs.

2.5 Related Work

Papers about Publish-Subscribe systems [13–15] are invitations to investigate
more deeply the BonjourGrid protocol, in particular under the point of view of
the verification of a distributed system. In this section we review the related
works about publication-subscription systems and approaches for modeling and
verifying formally such systems.

Publish-Subscribe systems concern both companies and researchers. Stan-
dards and industrial products are directly based on this paradigm, for instance
the Bonjour protocol from Apple. For researchers, most of the works concern the
problem of constructing a system as perfect as possible in terms of scalability,
efficiency and safety. But they do not focus enough on the problem of the formal
analysis of the accuracy of such systems. However, some research papers, such
as [13–15], investigate the formal verification of Publish-Subscribe systems.

The work of Abidi and al. [16] focuses on the modeling of the BonjourGrid
protocol. Authors have isolated the generic mechanisms of construction for the
Publish-Subscribe approach. Then, they have modeled and verified, based on
those mechanisms, the BonjourGrid protocol that allows the coordination of
multiple instances of desktop grid middleware. Formal modeling allowed them
to verify the adequacy of BonjourGrid with respect to the coordination of re-
sources and to have a "composition" mechanism for integrating any protocol
based on the Publish-Subscribe paradigm. All these ideas were illustrated along
the BonjourGrid case study and they constitute a methodology for building
Publish-Subscribe systems.



Design, Verification and Prototyping the Next Generation of DG Middleware 79

In this paper we continue this work, and we propose a more sophisticated for-
mal model. We remind that in [16] we did not cover all the BonjourGrid protocol
for the sake of simplicity whereas, in this paper we cover different internal details
in order to have a realistic simulation of the actual behavior of the system.

In [13, 14], the authors propose an approach for modeling and validating
systems. This approach is based on an architecture of components that react to
events. In these works, the components are specified with UML state-transition
diagrams. Formal verification is achieved through model checking (using SPIN).
But instead of using the formulas of linear temporal logic (LTL) of SPIN, the
authors have interpreted the properties as automata. According to them, this
will represent more complex properties required to validate the modeled system.

Although our modeling approach is also based on component reacting on
events, we do prefer to enjoy the advantages of temporal logic for the formal
verification, in particular by using the ASK-CTL library.

In [15], the authors describe a generic framework dedicated to modeling and
formal verification of Publish-Subscribe mechanisms. Their system is based on a
model of states machine providing management of events during the execution
of the publication-subscription protocol. The framework takes as input a set of
components and a set of properties for the Publish-Subscribe mechanism. The
matching of the two sets is subsequently validated using model checking tools.
This system is regarded primarily as a generic framework in which there is always
the risk of not providing a model and an audit tailored to each specific case for
the Publish-Subscribe mechanism. Our approach is a successful modeling and
formal verification. It is suitable for BonjourGrid while isolating the Publish-
Subscribe mechanism.

In [17, 18], the authors, motivated by the benefits of formal analysis, build
coordination protocol for a formal model using colored Petri Nets. To evaluate
the accuracy of their model and as a result of their protocol, they checked the
behavioral properties formally, and implemented a mechanism of CTL model
checking. Our work is built around the protocol proposed by the authors. From
our side, we also capitalize on the use of colored Petri Nets and CTL logic.

In [19], the authors present a new approach to modeling and formal veri-
fication, dedicated to software components. Their methodology is based on a
software architecture-driven and the reuse of Petri Nets models. Their contri-
bution is rather a new approach for visual composition, formal verification and
validation of software systems. The work is built primarily around software com-
ponents.

In [20], the authors present an overview of the analytical performance of col-
ored Petri Nets in particular by using the CPN Tools. They use it to collect
data during simulations, to generate different results on the performance and
to implement several cases of simulation. A simple protocol is used to illustrate
these aspects.



80 L. Abidi, C. Cérin, and K. Klai

3 Contributions

3.1 Analysis and Criticisms

Modeling may guide the development of our forthcoming prototype that will
serve for the validation of ideas and choices made during the design part.

The verification is for proving that the protocol is correct, then that any
analyzed configuration will produce the "good" answer. This goal requires the
formal verification of properties that we expect for the protocol: safety, for which
the absence of deadlock is an example, and liveness.

In [16], we have modeled the BonjourGrid protocol according to the colored
Petri Net [21] formalism and we have used the CPN Tools2 for that purpose.
CPN Tools is a fast and efficient simulator that handles both untimed and timed
nets. Full and partial state spaces can be generated and analyzed, and a standard
state space report contains information such as liveness properties. By means of
a simple query language it is possible to specify and to check system specific
properties.

The work introduced in [16] suffer from the fact that it is too specific to a
dedicated protocol. In the current work, we have a more agnostic approach: we
separate the Publish-Subscribe mechanisms and what is specific to the Bonjour-
Grid protocol. The BonjourGrid serves as a guideline, a concrete example. We
are looking for a "universal" Petri Net for the Publish-Subscribe paradigm on
top of which any protocol based on Publish-Subscribe could be built and verified.

Fig. 2. Colored Petri Net for the Publish-Subscribe protocol

2 See http://www.daimi.au.dk/CPNtools

http://www.daimi.au.dk/CPNtools


Design, Verification and Prototyping the Next Generation of DG Middleware 81

3.2 A Colored Petri Net Model for the Publish-Subscribe Paradigm

For pedagogical reason, we start by explaining the Petri Net model we obtained
for SCC in [16]. We show how the initial core idea was captured and it is essential
to understand the concept and the model.

The colored Petri Net model in Figure 2 models the Publish-Subscribe
paradigm. It introduces an "initial" state with a definite number of components
and events. Each component can be a publisher (represented by EP for Event-
Published on the figure), or a subscriber (represented by ES for EventSubscribed
on the figure) or both.

This model is compliant with the Publish-Subscribe protocol, since a com-
ponent can publish an event as many times as it wants; it can also subscribe
to an event as many times as it wants. An event can be issued by one or more
components, and one or more components can subscribe to this event.

Published events are saved in a directory that is modeled by the place "Reg-
istry". When a component subscribes to an event E, it goes to the place "Wait-
ingSubscriber". Once the event is published, the transition "Notify" can be fired.
A condition should be checked when we fire the transition "Notify": "a compo-
nent cannot subscribe to the event it published", which was modeled using the
guard [S <> P ].

Hence, we have successfully achieved our first aim by defining a colored Petri
Net for which we can build representations of any protocol that is written with
the publish-subscribe paradigm in mind. In the next section, we model the Bon-
jourGrid protocol built on top of that Publish-Subscribe Petri Net model.

3.3 A Colored Petri Net Model for the BonjourGrid Protocol

Figure 3 illustrates the current methodology used to compose any Publish-
Subscribe protocol. This figure is related to the central part of the BonjourGrid
protocol and constitutes a contribution of this paper. Indeed, this paper exhibits
a major refinement of the initial specification as published in [16].

The new refinements cover different internal details of the BonjourGrid pro-
tocol around the central part. The difficulty for the designer is to have a global
view of the overall behavior of such a system where asynchronism is the essential
criterion.

In Publish-Subscribe architectures, components communicate with each other
through the exchange of events. Thus, any model of these architectures must
explicitly consider the two main actors: components and events, and the three
main services: publish, subscribe and notify.

The first actor stands for publishing an event ep from a machine c, the second
one is for subscribing an event es coming from a machine c, and the third one
is for notifying events to interested machines.

BonjourGrid modeling is focused on that aspect.
In fact, the challenge was to consider a "black box" (the Petri Net for the

Publish-Subscribe model which is represented in the center of Figure 3) that
cannot be modified and to try to specify the behavior of BonjourGrid as exter-
nal events of the black box. By doing this, we exhibit a general methodology.



82 L. Abidi, C. Cérin, and K. Klai

Fig. 3. BonjourGrid model, composed on top of a Publish-Subscribe Petri Net

The main idea is to plug the BonjourGrid protocol on top of the Publish-
Subscribe protocol. The later is mainly presented by the cycle: "publication",
"subscription" and "notification". BonjourGrid elements are plugged on inputs
and outputs of this cycle.

In BonjourGrid model we just blow up the state "Event", previously repre-
sented in Publish-Subscribe model, into two states "EventS" and "EventP" to
differentiate between events that are published and those for which components
can subscribe, in order to have more clarity.

We represent each component in the place component by the tuple (compId,
state, coorId) where compId is the identifier of the component, state can take
the values : "idle", "worker", "coordinator" that represent the different states a
component may take, coorId is the identifier of the coordinator attached to the
component/worker; it takes the value 0 when the component is not a worker.

Firstly, a component may submit an application a, and publish a "Request-
ForParticipation" event associated to that application. the state Application is
represented by the couple (a,nb) where a is the identifier of the application and
nb is number of participant required to execute this application.

In parallel, other components (in "idle" states) may subscribe to that "Re-
questForParticipation" event. A coordination starts when subscribed machines
are notified by their corresponding events and accept to participate to the ex-
ecution of the application. All the subscribers on that event are notified by its
publication, but only the number nb required by the application can move to



Design, Verification and Prototyping the Next Generation of DG Middleware 83

"AcceptParticipation" state to assist in its execution. The place "counter" serves
to ensure that task. In this step, the state "idle" becomes "worker". Coordina-
tors who have required in their support applications a number of participants
that is not provided yet, must wait in the place "WaitForParticipant" until the
required number nb becomes available (simulated with the place "WaitForPar-
ticipant"). The execution of the application can start when the required number
nb of participants is reached. All these coordinating steps will be locked in the
place "WaitForParticipant" until the application is completed.

Once the execution is completed, we move to the step of releasing the coordi-
nator and the components that are attached. Thus, workers may subscribe to the
"FreeCoordinator" event that would allow to release them. When coordination
is finished, the coordinator component publishes the "FreeCoordinator" event
then subscribed workers are notified. They are released and the state moves
from "worker" to "idle".

By doing this, we have successfully achieved our second aim by formally mod-
eling the BonjourGrid protocol built on top of that Publish-Subscribe Petri Net.
Using CPN Tools, we then performed simulations of the net to gain more confi-
dence in our model. During this first step of the simulation, no straightforward
problems was discovered. The next step was naturally to perform an exhaustive
simulation exploring all the possible states of the system, i.e., its state space.

For the verification of the desired properties (liveness for instance), our goal
was to keep the same level of abstraction as the modeling of the CPN. For these
reasons, we did not use any temporal logic formalisms since they work at a
different level of abstraction and, thus, it can be difficult to use. We exploited
the tools provided by CPN Tools, which allow us to calculate and analyze state
spaces. With these tools, the standard queries for the verification require no
programming at all.

Fundamental properties we want to verify on that model were:

– Any event produced (published) must be received by all interested consumers
(subscribers).

– A coordinator C begins execution of its implementation if and only if there
exists at least one machine M that agree to participate with C.

– If a coordinator C publishes the event "FreeCoordinator" then all Workers
for that coordinator will eventually switch to the "idle" state.

– Any worker W can be attached to a single coordinator C.

Figure 4 provides a sample of the state space report provided by CPN Tools.
The analysis of these small configurations gives us more confidence in the

BonjourGrid system especially considering the following facts:

– We have not found any deadlock states (i.e., states that do not admit exe-
cutable transitions). The absence of such state is obviously required in our
context.

– All possible transitions are executable. Hence, our specification seems to
be correct from the perspective of event triggering: all possible events can
eventually happen.



84 L. Abidi, C. Cérin, and K. Klai

– All state spaces built are composed of a single strongly connected component.
It seems therefore impossible to be trapped in a specific or undesired system
configuration. This liveness property is indeed a crucial prerequisite for our
system.

Fig. 4. A partial view of the report of the BonjourGrid model

3.4 A Prototype Based on Redis

In parallel with the modeling and verification parts, as introduced in the pre-
vious section, we have built a prototype of a Desktop Grid middleware based
on BonjourGrid and Redis and on top of Python. Redis3 is an open source, ad-
vanced key-value store. It is often referred to as a data structure server since
keys can contain strings, hashes, lists, sets and sorted sets. Moreover, it imple-
ments a Publish-Subscribe layer. Indeed, we have an "all-in-one" tool that fulfills
our initial needs: storage of codes we have to execute, storage of input/output
data, support for Publish-Subscribe. This explains why we have declined the
opportunities to work with XMPP, Nodejs like tools, or the promising Hookbox
interface which is a Comet server and message queue that tightly integrates with
Web application frameworks.

Redis do not offer a strong support for authentication, cryptographic com-
munication or data protection but it is well targeted for our work related to
prototyping. We assume that in the future, the community developers will of-
fer such properties. However, notice that Redis supports some sort of server
redundancy to make the system fault tolerant.

Our prototype does not include yet all the components of DG middleware such
as those we find in Boinc, Condor, or XtremWeb. For instance we do not have
a component for doing result certification or we do not manage fault tolerance
issues by task duplication. Again, the prototype is currently devoted to the
understanding of the core decentralized protocol for the coordination of resources
and it would be too challenging to hope that we will solve all the problems in
one shot. We do prefer to work “step by step”.

Our prototype is organized according to the following Python classes:
3 See http://www.redis.io

http://www.redis.io


Design, Verification and Prototyping the Next Generation of DG Middleware 85

– ServerClass. There are three possibilities for servers: the main server for the
protocol itself, the data server storing input/output data for the applica-
tions and CodeServer which is the name of the server for retrieving codes of
applications; The three servers can point on the same name;

– DataManager: set-up an instance of ServerClass; In this class, we also define
functions for loading files into a Redis server, for executing a code (binary
or script);

– FormMultiprocessingTasks: it is the core of the "workflow" engine because
the method in this class "executes" the task graph; Note that we create
threads to execute, concurrently, all the tasks (descendants in the task graph)
attached to a node;

– EngineClass. It starts and instance of the FormMultiprocessingTasks class in
one thread, and wait that all nodes of the task graph are visited in another
thread;

– MachineClass: it allows to set the properties of a machine (operating system
type, amount of memory on the machine, processor type...); In this class we
have also two methods for launching a worker and a coordinator respectively;

– WorkerClass and CoordinatorClass define the behavior of a worker, or a
coordinator;

Our prototype executes series-parallel graphs (SPG). Intuitively, a SPG is built
from a sequence of compositions (parallel or series) of smaller-size SPGs. The
smallest SPG consists of two nodes connected by an edge. The first node is the
source of the SPG while the second is its sink. When composing two SPGs in
series, we merge the sink of the first SPG with the source of the second. For a
parallel composition, the two sources are merged, as well as the two sinks. In
our prototype we execute the graph depicted on Figure 5.

1

2 5 8 10

113 6 9

4 7

Fig. 5. The graph executed by our prototype. The initial state is 1, the final state is
11.

Classical workflow applications usually consists of a directed acyclic graph:
the application is made of several tasks, and there are dependencies between
these tasks. However, it turns out that many of these graphs are series-parallel
graphs. For instance, in [22], McClatchey et al. introduce a prototype scientific
workflow management system called CRISTAL, and the distributed scientific
workflow applications that they consider are SPGs. In [23], Qin and Fahringer



86 L. Abidi, C. Cérin, and K. Klai

use scientific grid workflow applications, which are all structured as SPGs: the
WIEN2k workflow performs electronic structure computations of solids; the Me-
teoAG workflow is a meteorology simulation application [24], and the GRASIL
workflow computes the spectral energy distribution of galaxies [25]. A last, the
fMRI workflow [26], which is a cognitive neuroscience application is also based
on SPGs.

The simulation implemented in the prototype4 is as follows. A series-parallel
graph with 11 vertices is defined. Each edge represents an application. The ap-
plication is the same for all edges: it is a Bash script that should be located on
/tmp and echoing a message.

The program forks and we start a coordinator as well as a worker (we use
only one worker which is created for executing one application, one by one). The
program is multi-threaded in the sense that we execute the descendants of a
node (the applications) in different threads. We manage locks so that we cannot
predict which is the order of execution of the descendants.

The coordinator is in a loop doing the work described in this paragraph. It
publishes a message to advertise that he needs a worker for executing a task
(according to some properties). Worker(s) listen on the channel dedicated to
this message, then reply by publishing a random channel name for future com-
munication between him and the coordinator. The coordinator accepts the first
response (the worker who is arriving the first) and he publishes on the random
channel name the name and the location of the application. The worker keeps
the application name and executes it.

It is important to notice that the protocol is entirely depicted by the exchange
of publication and subscribe messages and the development is guided by our
different modeling. The prototype serves for the validation of ideas and choices
made during the design and modeling parts.

Note also that in the prototype we do not manage files representing the in-
put/output data of the applications. This point is related to scheduling strategies
and we plan to include a more elaborated scheduling class in our prototype in
the future. In the context of Desktop Grid, scheduling should serve also to check
the results computed on (hostile) workers. The issue is to write scheduling algo-
rithms in terms of the Publish-Subscribe paradigm and in such a way that the
strategies could be composed with the current Petri Net.

4 Conclusion

In this paper, we have introduced the context of our work about the coordination
of resources using the Publish-Subscribe paradigm. We have also demonstrated
the usefulness of modeling and formal verification of such a specific mechanism
for the BonjourGrid system, dedicated to the management of multiple instances
of Desktop Grid middleware.

This work is a step toward the development of DG middleware based on Web
2.0 technologies. Furthermore, this effort has been consolidated in this paper
4 See http://www.lipn.fr/~cerin/ProtoRedis.tar

http://www.lipn.fr/~cerin/ProtoRedis.tar


Design, Verification and Prototyping the Next Generation of DG Middleware 87

with another facet of the problem, namely the definition of a mechanism for
composition of the basic scheme introduced in this paper with any protocol that
is written with the Publish-Subscribe paradigm in mind. Recall that BonjourGrid
is only a case study that allows us to discuss the problems and devise solutions
that we have implemented, concurrently with the design, in Redis.

We are currently working on the programming effort for introducing a Python
module for scheduling jobs and later, we will conduct experiments on large clus-
ters running Redis. Scheduling is an important issue because we want to do
result certification: the computation are done on (hostile) workers so we need
to do redundant computation. We have imagined an algorithm based on tickets
that we duplicate and managed by the Publish-Subscribe paradigm. Again, the
scheduling itself is made exclusively through a Publish-Subscribe approach which
is unconventional, but allows to build a fully distributed protocol where asyn-
chronism is maximized because of scalability requirement of systems we build
nowadays.

References

1. Kondo, D.: Preface to the special issue on volunteer computing and desktop grids.
J. Grid Comput. 7, 417–418 (2009)

2. University of California: SETI@Home (October 2011),
http://setiathome.berkeley.edu/

3. University of California: BOINC (October 2011), http://boinc.berkeley.edu/
4. Univa: United Devices (October 2011), http://www.unicluster.org/
5. DistributedNet: Distributed.Net (October 2011), http://www.distributed.net/
6. Univa: XtremWeb (October 2011), http://www.xtremweb.net/
7. Abbes, H., Cérin, C., Jemni, M.: Bonjourgrid as a decentralised job scheduler. In:

APSCC, pp. 89–94. IEEE (2008)
8. Abbes, H., Cérin, C., Jemni, M.: Bonjourgrid: Orchestration of multi-instances of

grid middlewares on institutional desktop grids. In: IPDPS, pp. 1–8. IEEE (2009)
9. Abbes, H., Cérin, C., Jemni, M.: A decentralized and fault-tolerant desktop grid

system for distributed applications. Concurrency and Computation: Practice and
Experience 22, 261–277 (2010)

10. Smets-Solanes, J.P., Cérin, C., Courteaud, R.: Slapos: A multi-purpose distributed
cloud operating system based on an erp billing model. [27] , 765–766

11. Eugster, P.T., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)

12. Cheshire, S., Steinberg, D.H.: Zero configuration networking - the definitive guide:
things that just work: covers Apple’s Bonjour APIs. O’Reilly (2005)

13. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate pub-
lish/subscribe architectures (2003)

14. Harrison, M.D., Kray, C., Sun, Z., Zhang, H.: Factoring user Experience into the
Design of Ambient and Mobile Systems. In: Gulliksen, J., Harning, M.B., van der
Veer, G.C., Wesson, J. (eds.) EIS 2007. LNCS, vol. 4940, pp. 243–259. Springer,
Heidelberg (2008)

15. Garlan, D., Khersonsky, S., Kim, I.: Model Checking Publish-Subscribe Systems.
In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 166–180.
Springer, Heidelberg (2003)

http://setiathome.berkeley.edu/ 
http://boinc.berkeley.edu/ 
http://www.unicluster.org/ 
http://www.distributed.net/
http://www.xtremweb.net/


88 L. Abidi, C. Cérin, and K. Klai

16. Abidi, L., Cérin, C., Evangelista, S.: A petri-net model for the publish-subscribe
paradigm and its application for the verification of the bonjourgrid middleware.
[27], 496–503

17. Kacem, N.H., Kacem, A.H., Jmaiel, M., Drira, K.: Towards modelling and analysis
of a coordination protocol for dynamic software adaptation. In: Chbeir, R., Badr,
Y., Abraham, A., Laurent, D., Köppen, M., Ferri, F., Zadeh, L.A., Ohsawa, Y.
(eds.) CSTST, pp. 499–507. ACM (2008)

18. Kacem, N.H., Kacem, A.H., Drira, K.: A formal model of a multi-step coordination
protocol for self-adaptive software using coloured petri nets. International Journal
of Computing and Information Sciences (2009)

19. Silva, L.D.D., Perkusich, A.: Formal verification of component-based software
systems. In: Isaías, P.T., Sedes, F., Augusto, J.C., Ultes-Nitsche, U. (eds.)
NDDL/VVEIS, pp. 113–124. ICEIS Press (2003)

20. Wells, L.: Performance analysis using cpn tools. In: Lenzini, L., Cruz, R.L. (eds.)
VALUETOOLS. ACM International Conference Proceeding Series, vol. 180, p. 59.
ACM (2006)

21. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems, 1st edn., July 1. Springer, Heidelberg (2009)

22. McClatchey, R., Estrella, F., Le Goff, J.M., Kovacs, Z., Baker, N.: Object databases
in a distributed scientific workflow application. In: Proceedings of the 3rd Basque
International Workshop on Information Technology (BIWIT 1997), p. 11. IEEE
Computer Society, Washington, DC (1997)

23. Qin, J., Fahringer, T.: Advanced data flow support for scientific grid workflow ap-
plications. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,
SC 2007, pp. 42:1–42:12. ACM, New York (2007)

24. Schüller, F., Qin, J., Nadeem, F., Prodan, R., Fahringer, T., Mayr, G.: Perfor-
mance, scalability and quality of the meteorological grid workflow meteoag. In:
Proceedings of the 2nd Austrian Grid Symp., Univ. Innsbruck (2006)

25. Silva, L., Granato, G.L., Bressan, A., Lacey, C.G., Baugh, C.M., Cole, S., Frenk,
C.S.: Modeling dust on galactic sed: Application to semi-analytical galaxy forma-
tion models (1999)

26. Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Jordan, T., Quigg, E., Dobson, J.:
Grid middleware services for virtual data discovery, composition, and integration.
In: 2nd Workshop on Middleware for Grid Computing, p. 57. ACM Press (2004)

27. Jacobsen, H.A., Wang, Y., Hung, P. (eds.): IEEE International Conference on
Services Computing, SCC 2011, Washington, DC, USA, July 4-9. IEEE (2011)


	Design, Verification and Prototyping the Next 
Generation of Desktop Grid Middleware
	Introduction
	Context and Motivations
	Key Issues in Designing DG Middleware
	Resources Coordination
	The Publish-Subscribe Paradigm
	BonjourGrid
	Related Work

	Contributions
	Analysis and Criticisms
	A Colored Petri Net Model for the Publish-Subscribe Paradigm
	A Colored Petri Net Model for the BonjourGrid Protocol
	A Prototype Based on Redis

	Conclusion
	References





