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Abstract. Smart phone is becoming an ideal platform for continuous and 
transparent sensing with lots of built-in sensors. Activity recognition on smart 
phones is still a challenge due to the constraints of resources, such as battery 
lifetime, computational workload.  Keeping in view the demand of low energy 
activity recognition for mobile devices, we propose an energy-efficient method 
to recognize user activities based on a single low resolution tri-axial 
accelerometer in smart phones. This paper presents a hierarchical recognition 
scheme with variable step size, which reduces the cost of time consuming 
frequency domain features for low energy consumption and adjusts the size of 
sliding window to improve the recognition accuracy. Experimental results 
demonstrate the effectiveness of the proposed algorithm with more than 85% 
recognition accuracy for 11 activities and 3.2 hours extended battery life for 
mobile phones. 

Keywords: energy efficient, hierarchical recognition, low resolution, activity 
recognition, tri-axial accelerometer. 

1 Introduction 

Activity is one of the most important contexts in pervasive computing. User activity 
has been used to evaluate the metabolic energy expenditure; to explore the activity 
patterns; and to enhance interactions in social groups [1-4]. To recognize user  
activity continuously, we need a nonintrusive, light weight, and real-time recognition 
scheme. Fortunately, the mobility, commercial built-in sensors, and nonintrusive 
detection make smart phones an ideal platform for monitoring user activities. 
However, activity recognition on smart phones is still a challenge due to constraints 
of low battery capacity and computational workload.  

The sampling rate to assess daily physical activities should be no less than 20 Hz 
[5-7]. However, the long-term sensing with the full working load of sensors is energy-
consuming. For example, the battery life of Samsung i909 reaches up to over 30 hours 
when all applications and sensors are turned off. But the battery life declines to 5.5 
hours (50 Hz) and 8 hours (20 Hz) respectively, when the accelerometer is monitored.  
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Toward the energy efficiency of activity recognition based on the single 
accelerometer in the smart phone, it is feasible to reduce the energy consumption by 
adopting a lower sampling frequency. Lower sampling frequency means less work 
time for the heavy-duty sensors. However, low sampling frequency may result in the 
loss of important sampling data, reducing the recognition rate with low resolution 
sensory data [8]. In addition, many classification algorithms are heavy weight and 
time consuming for mobile devices. In general, the size of sliding window in most 
classification algorithms is constant. The fixed-step algorithm deteriorates the 
recognition rate to some extent, which not only reduces the ability to detect short-
duration movements, but also occupies lots of resources with the consumption of 
battery power.  

To overcome above issues, we consider two factors - sampling frequency and 
computational load - in the design of the activity recognition algorithm. Specifically, 
we propose an energy-efficient method to recognize user activities based on a single 
low resolution tri-axial accelerometer in the smart phone. The hierarchical recognition 
scheme reduces the cost of the time consuming frequency domain features for lower 
computational complexity and adjusts the size of sliding window according to 
similarity to enhance the recognition accuracy. 

The rest of this paper is organized as follows: in Section 2, the related work about 
activity recognition based on accelerometer is summarized. Then Section 3 describes 
the process of data collection. Section 4 presents the details of our solution, including 
the framework of activity recognition, feature extraction, and the hierarchical 
recognition scheme. The evaluation is given in Section 5. Finally we conclude this 
paper in Section 6. 

2 Related Work 

2.1 Activity Recognition 

Numerous studies have been conducted about the activity recognition based on 
accelerometers. The work toward the activity recognition based on the accelerometer 
is divided into three types roughly.  

First, the activity recognition based on multi-accelerometer sensors is conducted 
[9-12]. Norbert et al. [9] implemented an activity recognition system by using a 
wristwatch-like device, named MotionBand. Three MontionBand devices are attached 
to the wrist, hip and ankle to collect the sensory data of user activities. Then all those 
sensory data is sent to a mobile phone by Bluetooth and is classified using the feed-
forward back-propagation neural networks. Although lots of sensors are employed to 
benefit the recognition, sensors fixed on human body are barriers for users. On one 
hand, users are confined to the laboratory environment due to constraints of wearable 
sensors, which reduces the practicability of the prototype in daily life. On the other 
hand, users are distracted from their tasks. This is contradicted with the vision of 
pervasive computing for less attention taken from users.  
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Second, single accelerometer sensor is utilized to benefit the activity recognition 
[6, 13-15]. A. M. Khan et al. [6] carried out experiments to monitor physical activities 
based on a tri-axial accelerometer. A hierarchical recognition scheme was proposed to 
recognize 15 kinds of activities. Activity recognition based on a single accelerometer 
sensor relies on the design of specialized sensors. Those specialized sensors are not 
off-the-shelf items and just research-only devices confined to the laboratory. 
Meanwhile, those specialized sensors are power-consuming due to the wireless 
communication and the high sampling frequency.  

Nowadays, with the advent of smart phones, the sensing abilities of smart phones 
are strengthened with lots of built-in sensors. Different from most previous work, the 
daily activity recognition on smart phones uses a commercial mass-marked device 
rather than a research-only device, and employs a single device conveniently kept in 
the user’s pocket rather than multiple devices distributed across the body [7, 15]. In 
[7] J. R. Kwapisz et al. employed the accelerometer in the smart phone to recognize 6 
categories of activities. However, the power consumption of recognition scheme is 
not considered in the previous work. Smart phones are resource-limited, the power 
consumption and the computational workload pose challenges to the activity 
recognition on smart phones. The classic recognition algorithms are time-consuming 
and heavyweight for the mobile phone [7]. 

2.2 Energy Conservation 

Energy is a vital resource for mobile devices. The battery limitations pose a challenge 
to the success of the activity recognition on mobile devices. Y. Wang et al. [16] 
designed a scalable framework of energy efficient mobile sensing system (EEMSS) 
for automatic user state recognition. The core component of EEMSS is a sensor 
management scheme which defines user states and state transition rules by an XML 
configuration. The sensor management scheme allocates the minimum set of sensors 
and invokes new sensors when state transitions happen. P. Zappi et al. [17] selected 
the minimum set of sensors according to their contribution to classification accuracy 
during data training process and tested this solution by recognizing manipulative 
activities of assembly-line workers in a car production environment. X. Li et al. [18] 
applied machine learning technologies to infer the status of heavy-duty sensors for 
energy efficient context sensing. They tried to infer the status of high energy 
consuming sensors according to the outputs of light weight sensors.  The existing 
solutions extend the battery life by the collaboration of multi-sensors and the 
reduction of sensor work time. Different from the above studies, we try to recognize 
user activity by a single accelerometer. The collaboration of multi sensors is 
infeasible in our solution. 

Different from the previous work, we intend to address the energy consumption 
issue in accelerometer-based physical activity recognition. The sampling frequency 
has a dominating effect on the density of raw sampled data. To reduce the 
computational workload and the work time of sensors, the lower sampling frequency 
should be adopted to capture less raw data. On the other hand, features are important 
for the computational complexity as well. The frequency domain features, which need 
to transform the signal into frequency domain, is time consuming. Therefore, we try 
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to reduce the cost of the frequency-domain feature extraction. Additionally, 
Algorithms involved in the previous work are time-consuming. Those algorithms 
usually are performed on PC or workstation. The computational complexity is 
overwhelming for the resource-limited devices. 

3 Data Acquisition 

Human activities consist of some basic movements, such as walking, sitting, standing, 
running etc. The exploration of basic activities contributes to the far-reaching 
understanding of user activities with semantic information. We select the most 
common activities recognized in previous work as target activities. Target activities of 
our study are shown in Table 1. 

Table 1. Defination of  target activities 

Activity Type Activity 

Static Standing, Sitting, Lying(prone), Lying (supine), Driving 

Repetitive Walking, Running, Ascending stairs, Descending stairs, 
Cycling, Jumping 

 
A total of 24 subjects, 16 males and 8 females with age ranging from 22 to 35, 

were involved. All of them were recruited from the school of computer science, 
Northwestern Polytechnical University, China including students and staff in 
exchange for the use of a high-end smart phone for the duration of the experiment. 
Each subject was assigned with a smart phone, including HTC G11, Samsung i909. 
The range of the tri-axial accelerometer outputs is ± 2g. The orientations of the tri-
axial accelerometer in the smart phone (HTC) are presented in Fig. 1a. An android 
application was developed and pre-installed to record the real-time outputs of the 
accelerometer (See Fig. 1b).  

              

(a) Orientations of accelerometer           (b) Interfaces on mobile phones 

Fig. 1. Experimental interfaces on mobile phones 



126 Y. Liang et al. 

The subjects manually label their activities and set the sampling frequency in 
advance through the application as shown in Fig. 1b. The optional frequencies are: 0.5 
Hz, 2 Hz, 10 Hz, and 20 Hz. All subjects are divided into four groups equally and 
each group utilizes the same sampling frequency. They launched the application when 
they began to perform the activities, selected the setups and put phones into their front 
pant pockets. When subjects started to perform an activity, a log file whose name 
contains information about the activity type and sampling frequency was produced 
with the contents of timestamps and accelerometer outputs on each axis. When 
activities were finished, they took out the phone and stopped the application. This 
process was repeated for daily activities. We monitored the user activities during two 
weeks. To rule out the dirty data of each log file, we cut off the data at the beginning 
and the end of the log files. 

4 Activity Recognition 

4.1 The Framework of Activity Recognition 

As shown in Fig. 2, the framework of activity recognition consists of two parts: the 
offline data training and the online classification. The offline data training extracts 
features from the sampled data and constructs template for each activity respectively. 
The online classification extracts features of the sliding window, calculates the 
similarity between the target activity and templates, and selects a suitable class as the 
label of the sampled data in the sliding window.  

 

Fig. 2. The Framework of Activity Recognition 
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The offline data training consists of four steps. The data preprocessing takes charge 
of the data cleaning and the data representation. The labeling defines the class of each 
sampled data using all the target activities. The feature extraction captures 
characteristics of each activity. Principal Component Analysis (PCA) is introduced to 
select the most discriminative features. Finally, a template will be generated for each 
activity. To reduce the time consumption, the offline training is performed on the PC 
or workstation. Only those results are transplanted into the smart phone to serve as 
templates of user activities. 

For the online process, we design a light weight, hierarchical recognition algorithm 
with variable steps. First, time-domain features are utilized to classify user activities 
based on the template-based classification. However, some activities are 
indistinguishable when only the time-domain features are taken into consideration. 
Then the frequency-domain features are introduced and the size of sliding window is 
segmented. For each such small section, the decision tree algorithm is performed 
based on the combined features. 

4.2 Feature Extraction 

Features play important roles for activity recognition. As mentioned above, the 
feature extraction is performed in two phases. The time-domain features are extracted 
from samples directly. Only when those time-domain features are unable to 
discriminate user activities, the frequency-domain features are introduced. The 
following presents the related features and their number. 

• Mean of each axis (3): The acceleration signals of human activities on three axes 
are different as illustrated in Fig. 3. 

• Deviation of each axis (3): The deviation indicates the fluctuation of signal 
magnitude on each axis. 

• Mean of Total Magnitude (1): The intensity of user activity is a significantly 
important metric to discriminate activities. Based on the sampled data on each axis, 
Total Magnitude (TM) is calculated to according to Equation (1).  

                            
2 2 2TM x y z= + +     (1) 

• Deviation of Total Magnitude (1):  Like the deviation on each axis, the deviation 
of TM cues the fluctuations of TM. 

• Tilt (1): Tilt is employed to calculate the angle between the gravity and the y-axis. 
The tilt gives a cue of body posture, e.g. forwardness or backwardness. The tilt is 
evaluated based on Equation (2).  

                                     arccos
y

g
θ =     (2) 

• Linear regressive coefficients (4): To reveal the relationship among the TM and the 
magnitudes on three axes, we calculate the coefficients based on the linear 
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regression. Those coefficients enclose the contributions of each axis to the total 
magnitude. Linear regressive coefficients are calculated according to Equation (3), 
where S is the matrix of linear regressive coefficients, W represents the matrix of 
magnitudes on each axis and the Q is the matrix of total magnitudes.  

S = (WTW)-1WTQ      (3) 

 

Fig. 3. Acceleration signals of target activities on three axes 

• Wavelet coefficients: Different activities have discriminative frequency features, 
especially for repetitive activities. Meanwhile the frequency of human activities is 
low, thus we extract the low frequency features based on the wavelet analysis. 

Different from the previous work, the feature extraction is performed in two steps. At 
first the time-domain features are extracted as the basic features. As the extraction of 
frequency domain features is time consuming, thus we try to reduce the opportunity 
of utilization of the frequency-domain features with the introduction of the two-step 
feature extraction. 

4.3 Hierarchical Recognition Scheme 

In general, the size of sliding window in classical classification algorithms such as 
Decision Tree (DT), Support Vector Machine (SVM) is constant (See Fig. 4a). The 
fixed-step algorithm deteriorates the recognition rate. The dynamics of activities 
enlighten the introduction of a hierarchical recognition scheme with variable step size, 
which is suitable for both static and repetitive activities.  

The comparison of the classic classification algorithms with our proposed 
hierarchical recognition scheme is illustrated in Fig 4. As shown in Fig. 4b, differences 
of our proposed algorithm are in two aspects. Firstly, the feature extraction is completed 
in two steps, which reduces the opportunity of utilization of the time-consuming 
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frequency-domain features. Secondly, the size of sliding window is adjusted according 
to the similarity. When it is indiscriminative, the sliding window is split into small 
segments equally. Otherwise frequency-domain features are introduced to classify user 
activities based on decision tree. The hierarchical recognition scheme consists of the 
following three steps. 

 

Fig. 4. Comparison of classical classification algorithms and the hierarchical algorithm 

Similarity Measurement of Time-Domain Features: Similarity is utilized to 
demonstrate the likelihood of current inputs to the activity templates. For the sliding 
window, the time-domain features are calculated and represented with vector X. Then 
every activity template compares its characteristic parameter vector Y with the vector 
X according to Equation (4). Here, Y is the vector of time-domain features, which is 
obtained in the offline data training process. After the similarity measurement with 
each activity templates, a vector C is generated. The size of C is 1×M, where M is 
the number of predefined activities and ci∈ [0,1], 1≤i≤M. Each element ci in the 
vector C denotes the extent to which a feature vector belongs to a given class. 

                           cos( , )
|| || || ||i

X Y
c X Y

X Y
= = ⋅                           (4) 

Evaluation of Similarity Discrete Degree: Occasionally differences among those 
similarities are indiscriminative, e.g. the difference of ci and cj is tiny. Under such 
condition, it is not convincing to classify the user activity into the class with the 
highest similarity. Thus, we need to evaluate the discrete degree of the vector C.  
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A vector C is indistinguishable, if it satisfies one of the following two constraints (See 
Equation (5) and (6)).  

                                    

2( )ic c

M
δ

−
≤∑

    (5) 

According to Equation (5), the standard deviation of vector C is calculated. If the 
standard deviation of vector C is smaller than a threshold δ, C is indistinguishable, 
where δ is a constant and belongs to [0.1, 0.2]. In our experiments, δ equals to 0.15. 

For the vector C, elements are sorted in ascending order, represented with c(1), 
c(2),.., c(M) respectively. Then the differences are calculated according to dj = c(j+1) –c(j), 
1≤ j ≤M-1. In Equation (6) letter E represents the expectation. According to (6), if the 
difference of c(M) and c(M-1) is smaller than the expectation, the vector C is 
indiscriminative. 

      ( ) ( 1) ({ }) 1 1M M jc c E d j M−− ≤ ≤ ≤ −     (6) 

Based on Equation (5) and (6), we are able to judge whether the similarity vector C is 
indistinguishable. If the similarity vector C is differentiable, it means that those time-
domain features are capable of explicitly differentiating those activities. Thus, we 
should classify the current activity into the corresponding activity with the largest 
similarity in the vector C. On the contrary, if the vector C is indiscriminate, the 
frequency domain features are introduced to classify user activities. 

Table 2. Hierarchical recognition alogrithm 

Inputs: accelerometer signals 
Outputs: classification results for accelerometer signals 
1: Set the size of the sliding window with N. 
2: For each sliding window 
3:    Extract time-domain features, including the mean of magnitude on each axis etc. 
4:   Calculate the similarity vector C among the sliding window and the predefined activity 
templates based on (4). 
5:   Justify whether the vector C is discriminative based on (5) and (6). 
6:     IF vector C is discriminative 

7:      User Activity = },...,,...,max{ 1 Mi ccc  

8:     ELSE  
9:        Divide the sliding window into K small sections equally, length of  each section is  

L = N/K; 
10:              For each small section 
11:              Obtain low-frequency wavelet coefficients and time-domain features; 
12:               Based on those combined features, classify those data using the decision tree 

    algorithm. 
13:           End For 
14:     End IF 
15:  End For 
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Hierarchical Recognition Algorithm: For the recognition algorithms with fixed  
step size, it is crucial for the recognition rate to select a reasonable step length. If the 
step length is long, it is prone to the ignorance of short-duration activities; if the step 
length is short, it leads to lots of redundant computational workload. Thus, we 
propose a fine-grain recognition algorithm with variable step size, which adjusts the 
size of sliding window according to similarities to enhance the recognition accuracy. 
The details of the proposed algorithm are presented in Table 2. For combined features 
decision tree (C4.5) algorithm is utilized as it provides a good balance between 
accuracy and computational complexity [8, 19]. 

As elaborated above, the hierarchical algorithm extracts fewer features and those 
features are calculated in different phases, which benefit the decline of the 
computational load. Furthermore, the size of sliding window is adjusted according to 
the similarities, which contributes to the recognition of short-duration activities with 
the increase of recognition rate. 

5 Experiment and Evaluation 

To evaluate the proposed algorithm on mobile devices, we perform person-
independent experiment in terms of recognition accuracy, power consumption and 
computational load.  

5.1 Activity Recognition Rate 

Our hierarchical recognition algorithm includes two phases. We analyze the 
proportion of the two phases where inputs are classified and the recognition rate of 
the hierarchical scheme. The 5-folder cross-validation is used to evaluate the 
hierarchical recognition scheme with 2 Hz sampling frequency.  

First, the average recognition rate reaches up to 89.1% (See Table 3). The 
recognition rate demonstrates the activity recognition based on the low resolution 
accelerometer with low sampling frequencies is feasible. Although activity 
recognition with low resolution sensory data is inconsistent with the previous work  
[5, 6], it is reasonable due to features of user activities including the repeatability, the 
symmetry and the normality. Regardless of static activities and repetitive activities, 
the features are repeated periodically. 

Second, majority of target activities are recognized in the first phase based on time-
domain features, especially for static activities. This demonstrates that those selected 
time-domain features are very useful to discriminate user activities. And this benefits 
the decrease of computational load. On one hand, opportunities of the time-
consuming frequency-domain feature extraction and the heavyweight decision tree 
algorithm are minimized, which contributes to the reduction of computational 
workload. On the other hand, the introduction of classification based on combined 
features benefits the improvements of recognition rates, during which complex 
activities such as Ascending and Descending are discriminated based on frequency 
domain features.  
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Table 3. Activity Recognition Rates 

 
Activity 

Percentage of Records Correctly Recognized 

Time Domain 
Features (%) 

Frequency Domain 
Features (%) 

Total (%) 

Standing 98.98 1.02 98 

Sitting 100 0 100 

Lying (prone) 100 0 100 

Lying (supine) 99.28 0.72 100 

Walking 0 100 80 

Jumping 0 100 82 

Running 56.76 43.24 86 

Ascending 0 100 88 

Descending 0 100 82 

Cycling 97.50 2.50 84 

Driving 37.69 62.31 80 

Average 53.66 46.34 89.1 

5.2 Power Consumption 

To test the battery life under different sampling frequencies, we measured the time 
spans and the recognition accuracy with changes of sampling frequencies when 90% 
of battery power is consumed (Fig. 5). 

 

Fig. 5. Time Span and Recognition rate with changes of sampling frequencies 
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It is obvious that the battery life declines with the increase of sampling frequencies. 
For a resource-constraint device, the high sampling frequency leads to the rapid 
depletion of power. Also, it demonstrates that the recognition rates increase with the 
growth of the sampling frequencies. Although those sampled data indicate more 
features of user activities and benefits the increase of the recognition rate, it promotes 
the rapid increase of the power consumption. Additionally, the hierarchical 
recognition scheme (HR) and decision tree (DT) are compared in terms of time span 
and the recognition accuracy. As shown in Fig. 5, although the decision tree 
outperforms the proposed algorithm in recognition accuracy, the battery life is longer 
in our solution. 

To reduce the power consumption and achieve better recognition accuracy, we 
adopt a reasonable sampling frequency. It is a tradeoff between the power 
consumption and the recognition rate. Compared with the battery life of 20Hz, the 
battery life of 2 Hz is lengthened by 3.2 hours and the average recognition rate of the 
proposed algorithm is over 85%. Thus, it is considered that the 2 Hz is a suitable 
frequency for the user activity recognition based on the tri-axial accelerometer. 

5.3 Computational Load 

We aim to provide a model to evaluate the computational workload of the proposed 
algorithm using the time complexity and compare our proposed recognition algorithm 
with decision tree in term of time complexity. 

As elaborated in the previous section, the proposed algorithm consists of two steps: 
the recognition based on time-domain features and the recognition based on combined 
features, denoted with P1 and P2 respectively. As the time domain features extraction 
and the template-based similarity measurement are contained in the P1, the time 
consumption of P1, T(P1) is constant. By contrast, the time consumption of P2, T(P2) is 
variable due to the variability of the frequency domain features and the classification 
process. 

To evaluate the time complexity of the recognition scheme, the probabilities of 
user activities are taken into consideration. The probability set φ of user activities is 

presented by ={ },0 11 2 i n ip , p ,..., p ,...p pφ ≤ ≤ , where n is the type of user 

activities, pi is the probability of the ith activity, and all the elements in φ  satisfy  

1
n

i
i

p =∑ . Due to the repeatability of user daily activities, the probability of each 

activity is calculated by the statistical method.  
Meanwhile, the percentages of the two recognition stages, which mean how many 

sampled data of a particular activity are correctly discriminated by each phase, are 
important factors to evaluate the time complexity as well. Here, the percentages of the 
two phases for a specified activity are denoted with ui and vi respectively. As shown in 
Table 3, the percentages of the two phases verify for different activities. The time 
complexity of the ith activity is measured according to Equation (7), where Ti(P2) is 
the time consumption in the second step for the ith activity. 
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Average Time Complexity (ATC) is presented in Equation (8), where n is the types of 
target activities. As pi in Equation (8) is measured by analyzing the daily activities 
with statistical method, ui, vi are demonstrated in Table 3, and T(P1) is constant due to 
the fixed time consumptions of the time domain feature extraction and that of the 
similarity measurement in phase one. Thus, Ti(P2) is the only variable in Equation (8). 

  1 2
1 1

( ( ) ( ))
n n

i i i i i
i i

ATC p t p T P v T P
= =

= = × + ×∑ ∑    (8) 

To evaluate the accuracy of Equation (8), we extract 500 sample data from each 
activity and construct a new test set to calculate the time consumption. To simplify 
the computation, here we use the mean of Ti(P2) as  a substitution of Ti(P2). As the 
size of target activity set is 11, n = 11. For this test set, the pi is same for each activity 
and equals to 1/11. And the pair of <ui,vi> for every activity is presented in Table 3. 
Thus, the value of ATC is 4.81 ms. 

We measured the execution time of the hierarchical recognition scheme. Compared 
with the ATC, the execution time is approximate to the theoretical value as shown in 
Fig. 6. Meanwhile, our experimental results demonstrate that our proposed 
 

 

Fig. 6. Comparison of the theoretical value and the measured value 
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hierarchical recognition scheme outperforms the decision tree. As shown in Fig. 6, the 
average execution time of DT is longer than that of the HR, which confirms that HR 
benefits the decline of the time complexity and the computational complexity. 

6 Conclusion 

With the popularity of the smart phone, it is becoming an ideal platform for activity 
recognition based on the built-in accelerometer sensor. The constraints of mobile 
phones such as power consumption, computational load raise a challenge to the 
activity recognition. In this paper, we presented an approach for activity recognition 
with a hierarchical scheme for low resolution accelerometer data on the mobile phone. 
To achieve the goal of energy efficient activity recognition on the cell phone, we 
propose a hierarchical scheme with variable step size. To evaluate the validation of 
the method, total 24 healthy subjects are recruited to perform the 11 activities in their 
daily life. The average recognition rate of the proposed algorithm is over 85%, and 
the battery lifetime is extended by 3.2 hours. The experimental results demonstrate 
that the proposed hierarchical scheme not only reduces the power consumption with 
low resolution sensor data, but also classifies activities with good recognition rate.  
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