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Abstract. To run off-premise private cloud, consumer needs budget for
public cloud data-out charge. This amount of expenditure can be con-
siderable for data-intensive organization. Deploying web cache can pre-
vent consumer from duplicated data loading out of their private cloud
up to some extent. In present existence, however, there is no cache re-
placement strategy designed specifically for cloud computing. Devising a
cache replacement strategy to truly suit cloud computing paradigm re-
quires ground-breaking design perspective. This paper presents a novel
cloud cache replacement policy that optimizes cloud data-out charge,
the overall responsiveness of data loadings and the scalability of cloud
infrastructure. The measurements demonstrate that the proposed policy
achieves superior cost-saving, delay-saving and byte-hit ratios against
the other well-known web cache replacement policies.

Keywords: Cloud computing, cache replacement policy, contempora-
neous proximity, cost-saving ratio, window size.

1 Introduction

More organizations are adopting cloud computing paradigm due to several bene-
fits such as low up-front costs, better ubiquity, increased utilization of computing
resources and reduced power consumption. These are enabled by statistical mul-
tiplexing and risk transferences of over- and under-provisionings through elastic-
ity [1]. Public cloud providers like Amazon Web Services [2], Google AppEngine
[3] and Windows Azure [4] currently offer several pricing criteria for building
off-premise private clouds [5]. Those similarly include the volume charges of
data loaded outgoing of private clouds down into consumer sites. These charges
can be tremendous expenditures to the running costs of private clouds of data-
intensive organizations. The significance of this problem can be realized through
a realistic scenario where the data is transferred through 1 Gbps Metro Ethernet
with 50% bandwidth utilization for 8 work hours a day, and 260 workdays per
annum, which is 39 TB per month, would cost $44,280 per annum based on the
Amazon’s data-transfer-out pricing data. This is a representative scenario used
throughout this paper.

Due to the fact that most of cloud services especially those of SaaS [5] are
accessible via HTTP-supported applications such as web browsers and Web OS
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[6], cloud data-out charge can be reduced by deploying a caching proxy on a
consumer premise. This avoids as many repeated data loadings as possible by
letting caching proxy reply succeeding requests for previously loaded data with
the data fetched from local cache, unless spoiled, rather than reloaded from
cloud.

Nevertheless, acquiring a caching proxy with sufficient space to cache entire
data objects from private cloud might be infeasible for consumer organizations
because, on one hand, the data-intensive consumers are supposed to export their
huge amounts of business data onto their private clouds to truly benefit from
cloud computing notion. On the other hand, the overall business data continues
to grow with orders of magnitude as modern enterprises increasingly present their
business contents in forms of videos, sounds, pictures and other forms of digital
contents like electronic publications. Therefore, caching proxy must be equipped
with a cache replacement strategy, such as LRU [7], GDSF [8] and LFU-DA [8]
that are all supported by the most widely-used web caching software Squid [9].
Cache replacement policies control the provision of enough room inside limited
cache spaces on the fly for caching missed objects.

However, there is no cache replacement policies in present existence that has
been designed specifically to minimize cloud data-out charge. Additionally, all
of the existing policies aim to maximize hit ratio, which means the frequency
of serving small data in no time [7, 10, 11] as the first priority. This notion has
been evolving with the advancement of broadband communication technologies,
which have obviously made the delays (and stability) of the loadings of the small
data objects from remote servers no longer distinguishable from those from local
caching proxies. In contrast, fetching big objects such as those of multimedia
has still kept users experiencing long delays although caching proxy has been in
place since the objects have to potentially be retrieved across the network. The
latter situation impedes SaaS’s content evolution.

The core contributions of this work include: (1) opening up a new design
perspective of cache replacement strategy that breaks new ground to suit cloud
computing environment, (2) a new performance benchmark, cost-saving ratio,
which can be used to capture the economical efficiency of cache replacement
policy, (3) a novel replacement policy based on the principle of contemporaneous
proximity and optimized for cost-saving, delay-saving and byte-hit ratios to be
particularly of use in the era of cloud computing, and (4) a set of comparative
measures of strategies in use worldwide including the proposed strategy that
gives useful hints for developing more sophisticated cache replacement policies
in cloud computing era.

The merits of the proposed policy to the communities of private cloud con-
sumers include the reduction of cloud data-out expenditure and overall speeding
up of cloud data loading as well as serving faster large data objects. To both
private cloud consumers and public cloud providers, the policy is so network
bandwidth friendly that it enables more scalable cloud infrastructure.
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2 Proposed Strategy

This section describes the design rationales and practicality analysis of the pro-
posed cache replacement policy.

2.1 Design Rationales

The proposed policy lies itself in two principles, temporal affinity and spatial
locality, which are referred to together as contemporaneous proximity [12] for
the sake of conciseness. Contemporaneous proximity refers to a time and space
property indicating that a particular reference to a certain data object is likely
to be repeated in short time (i.e. temporal affinity) and that a set of multiple
references to a certain data object tentatively leads to another reference to the
same object (i.e. spatial locality). The policy captures the manifest degrees of
contemporaneous proximity of data objects by factorizing their recencies and
frequencies of accesses.

Considering merely access recency and popularity, however, is unable to satisfy
optimal data-out charge reduction in a consistent manner. The policy therefore
mandates controlling data-out charge factor by explicitly embracing object sizes
and data-out charge rate on a per-object-size basis that altogether accumulates
data loading expenditure. It is intuitive that object whose monetary cost of
transfer is high, if still usuable, should be retained longer in cache to minimize
its cost-benefit ratio than inexpensive object.

As another important design facet, shifting into cloud computing paradigm
requires that desktop applications be transformed into SaaS model in which
requests to the applications are dispatched across the network. This paradigm
requirement causes SaaS less responsive as compared to the desktop applications
whose requests are received, processed and returned locally. As a result, using
SaaS applications encounters network delays that in overall affect organization
productivity. To relieve the effect, cache replacement policy for cloud computing
ought to parameterize data loading latency in such a way that data object with
short loading latency should be replaced before longer one. This allows higher
utilizations of slowly loaded objects to improve overall responsiveness.

Next design consideration is time remaining before the expiration of each ob-
ject. This characteristic is referred to herein as Time-To-Live (TTL). Data ob-
jects whose ages have gone nearly or beyond their expirations should be evicted
from cache to give space to newly arriving object as the almost stale ones remain
lower chances to get referenced than fresher ones.

Based on the above design rationales, the proposed policy works as follows.
Whenever available cache space becomes inadequate to store a newly loaded
object, the policy formulates a cluster of least recently referenced objects. The
number of objects in the cluster is specified by a preset ‘window size’ value. Given
the formulated cluster, the policy subsequently seeks out an object with the
lowest current profit to give preference for eviction. The profit value associated
with each object i is defined as:
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algorithm Caching

description Manipulates hits & misses and calls Cloud
input rURL: requested URL
output requested object
declare cd: cache database (hash table with URL keys)

ro: requested object, fs: free cache space
begin

if ((rURL ∈ cd) ∧ (cd.getObject(rURL) not expired)) //if cache hit occurs
ro← cd.getObject(rURL)
ro.updateFrequency()
ro.setProfit(ro.getObjectSize() x ro.getChargeRate()

x ro.getLoadingLatency() x ro.getFrequency() x ro.getTTL())
cd.updateObject(ro)

else //if cache miss occurs
Use rURL to load ro from cloud and initialize its properties
ro.setProfit(ro.getObjectSize() x ro.getChargeRate()

x ro.getLoadingLatency() x ro.getFrequency() x ro.getTTL())
fs← cd.getFreeSpace()
if(fs < ro.getObjectSize())

Cloud(ro, cd) //invoking Cloud policy here
cd.putObject(ro)

return ro
end

algorithm Cloud

description Implements Cloud replacement policy
input ro: requested object, cd: cache database (hash table with URL keys)
output -
declare rs: required cache space, ws: window size

cdq: cache database (recency-keyed min-priority queue)
coq: profit-keyed min-priority queue of evictable objects
eo: evicted object, fs: free cache space

begin
rs← ro.getObjectSize(), ws← predetermined value
cdq ← cd //building cdq from cd
if (cd.getTotalNumberOfObjects() < ws)

ws← cd.getTotalNumberOfObjects()
for 1 to ws do

coq.addObject(cdq.retrieveLeastRecentlyObject())
do

eo← coq.removeMinProfitObject()
cd.evict(eo)

while (eo.getSize() + cd.getFreeSpace()) < rs
fs← (cd.getFreeSpace() + eo.getSize()− rs)
cd.setFreeSpace(fs)

end

Fig. 1. Cloud (below) and related (top) algorithms
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si x ci x li x fi x TTLi

where si is the size of i, ci is data-out charge rate in loading i, li is latency
in loading i, fi is i ’s access frequency, and TTLi is the TTL of i. If revoked
cache space is still not sufficient for the new object, additional objects with least
profits are evicted in order. Note that cache miss on a highly profitable object
imposes more penalty in terms of technical and/or economical efficiencies than
a low profitable one.
The proposed policy is entitled ‘Cloud’ to imply its intended application do-

main. One possible algorithm solving the problem in choosing object(s) for evic-
tion according to Cloud policy is shown in Fig. 1 together with a caller algorithm.
It should be realized that in practice data-out charge rates for all objects to be
loaded from clouds are preconfigured values provided by cloud providers from
which the objects are loaded [2–4], while TTL values can be calculated from the
values of ‘Expires’ or ‘max-age’ fields available inside HTTPmessage headers [13].

2.2 Practicality

With respect to the time complexity analysis of the algorithm of Cloud illus-
trated in Fig. 1, the statements that take significant part in processing time are:
building the priority queue cdq from cd is traditionally O(NlogN) where N is
the number of data objects in a cache; the for loop takes O(NlogN) as the
window size can be set to as many as N while adding each object into coq is
O(logN); the do loop has the worst-case running time of O(NlogN) because the
number of evicted objects is bounded by N, while removing each object from
coq takes O(logN); deleting an object from the hash table cd is less significant
and thus necgleted. The other statements are all identically O(1). Therefore,
the algorithm is O(NlogN). In other words, Cloud strategy can be implemented
with an algorithm whose worst-case running time is guranteed to be practical.

3 Performance Evaluation

This section describes the simulation configuration followed by comparative per-
formance results and discussion of Cloud policy as well as another three popular
policies: LRU, GDSF and LFU-DA, which have been supported by Squid caching
proxy.

3.1 Input Data Sets

HTTP trace-driven simulation technique has been used for performance mea-
surements. Provided by IRCache project [14], raw trace files are various in sizes
and have been collected from three caching proxy servers located in Boulder
(BO), Silicon Valley (SV) and New York (NY).
Each of the raw traces contains the stream of requests to large numbers of

various HTTP domains. In order to emulate realistic HTTP accesses occuring
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on private cloud(s) of a single midsize organization where totally 50 domains are
running on the cloud(s), the traces have been preprocessed by counting up top
50 popular domains, and only the requests to these domains have been extracted
into three new trace files. As a remark, the number 50 is the approximation of
the number of domains administrated by the author’s university.
As the other part of preprocessing, unused fields have been removed and an

expiration field has been added to every record of every trace to be used to
compute TTL values. Expiration field values have been figured out based on three
following assumptions. First, an object expired right before its size changed as
appeared in a trace. Second, as long as its size was constant, an object’s lifespan
was extended to its last request appearing in a request stream. Finally, an object
appearing only once throughout a trace expired right after the only its use seen
in a trace.

Table 1. Characteristics of each of the simulated traces

Traces BO SV NY

Total requests 205,226 441,084 599,097

Requested bytes 2,401,517,003 7,113,486,583 4,712,041,132

Unique objects 70,944 248,508 158,552

Max. total bytes of unique objects 694,759,006 1,065,863,067 1,323,954,264

Table 1 summarizes the basic characteristics of the preprocessed traces. The
‘Total requests’ designates the total number of records contained in each trace
as the results of top 50 domain filterings. The ‘Requested bytes’ is the total size
of requested objects appearing in each trace. The ‘Unique objects’ represents the
number of unique URLs appearing in each trace. As some unique objects had
their sizes changed from time to time, by considering only their largest sizes,
the ‘Max. total bytes of unique objects’ indicates minimum cache sizes without
cache replacement at all (equivalent to infinite cache sizes).

3.2 Performance Metrics

The three traditional performance metrics, hit rate, byte-hit rate, delay-saving
ratio, and the newly proposed economical performance metric ‘cost-saving ratio’
have been used. For an object i,

cost-saving ratio =
∑n

i=1cisihi/
∑n

i=1cisiri

where ci is the data-out charge rate of i, si is the size of i, hi is how many times
a valid copy of i is found in a cache, and ri is the total number of requests to i.
This study has aimed for the best cost-saving ratio, delay-saving ratio and

byte-hit rate, respectively, except hit ratio as justified in Sect. 1. Whilst it is
clear why using cost-saving ratio, delay-saving ratio captures how responsive
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SaaS would be in overall as the result of a certain cache replacement policy; byte-
hit rate captures how good each particular policy foster cloud infrastructure’s
scalability by reducing as many total bytes transmitted across the network as
possible.

3.3 Cost Models

For critical business such as hospital and stock trading, it is not acceptable
to experience cloud downtimes and bottlenecks. Consumer organization of this
kind must establish continuity plan by implementing private cloud running on
more than one independent public cloud to achieve fault tolerance and load
balancing. As a consequence, if public cloud providers offer different data transfer
prices, objects of the same size loaded from different providers will have different
monetary costs.
To realize this practice, the simulations have been conducted based on two

cost models. One is uniform cost model where a single data-out charge rate
is applied to organization who rents its private cloud from single public cloud
provider. The rate of Amazon S3’s, which is $0.117997 per GB by average (for
the total amount of data transfer out between 11 to 51 TB per month in the
US region as of August 2011), has been used in this model. (The range of 11
to 51 TB per month can cover the realistic scenario demonstrated in Sect. 1.)
The other is nonuniform cost model, which employs dual charge rates to emulate
situation where organization implements its private cloud(s) rented from a pair
of independent public cloud providers. The rates used in the latter model are
those of Amazon S3’s $0.117997 per GB and Windows Azure’s $0.15 per GB (for
data transfers from North American locations as of August 2011). The simulator
has associated the dual charge rates with unique objects found throughout the
traces in an interleaving manner.

3.4 Window Sizes

Since data objects in different communities of interests manifest different degrees
of contemporaneous proximity, it is not sensible to assume that any recency- and/
or frequency-based policy performing perfectly in one environment will perform
well against any other environments or even the same environment in different
time periods. The control parameter window size is thus engaged to allow the fine
tuning of Cloud policy to be adaptive and perform fairly well in any real working
environments. In addition to the levels of contemporaneous proximity exhibiting
in each workload, the superior value of window size is affected by cache size: a
series of pre-experiments have shown that the larger the absolute cache size, the
larger the optimal window size. Table 2 presents a set of fine-tuned window sizes
(and relative ones inside the parentheses) used in the simulations against each
workload and cache size regardless of the cost models. The simulated cache sizes
are presented in percents of the maximum total bytes of unique objects belonging
to each workload. At 100% cache size, there is no replacement at all, thus all the
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policies yield the same upper-bound performance results in all metrics. The right-
most column provides absolute cache sizes in relation to those of BO workload
that can be all used in conjunction with the percent cache sizes as a guideline to
tune up optimal window sizes in other target environments.

Table 2. Optimal window sizes used in simulations of Cloud policy

Simulated cache sizes Relative

Workloads (% of Max. total bytes of unique objects) absolute

10% 20% 30% cache sizes

BO 215(1.00,1.00) 625(1.00,2.91) 675(1.00,3.14) 1.00

SV 425(1.98,1.00) 1175(1.88,2.76) 1200(1.78,2.82) 1.53

NY 700(3.26,1.00) 1550(2.48,2.21) 1575(2.33,2.25) 1.91

3.5 Empirical Results

The simulation results of Cloud and the other three policies (LRU, GDSF and
LFU-DA) are compared in this section. As for GDSF, its particular version
called GDSF-Hits (whose cost parameter is equal to 1 for all objects) has been
employed. It should also be noted that, unlike some previous works, uncacheable
requests have not been excluded from the simulated traces to reflect actual per-
formance ones can really gain from utilizing those certain replacement policies;
the caching efficiencies of all the simulated policies would otherwise be improved
in all the performance metrics but spurious.
Fig. 2 shows the economical performances rendered by using cost-saving ratio

metric. The following findings can be drawn.

– As the main achievement of this study, it can be seen that Cloud has most
economized among the other examined policies at all the investigated cache
sizes, cost models and workloads (exceptions have lain in 10% cache size
of BO workload where LFU-DA has outperformed Cloud slightly by about
0.14% of the Cloud’s for both cost models). To realize the merit of Cloud
policy implied by its superior performance, the cost-saving ratio of Cloud
at 30% cache size of NY workload in the uniform cost model, when applied
to the representative scenario in Sect. 1 can significantly save up to $10,569
per annum. Cloud could even save up to $427.26 annually, more than GDSF
when using 10% cache size based on SV workload and the uniform cost.

– The cost-saving performances of LRU and LFU-DA have been closely alike,
whereas GDSF has performed worst. This is because only GDSF chooses big
objects to be replaced at first. To facilitate economical comparisons, 0.001
margin of the cost-saving ratios can be translated as $44.28 per annum as
of the representative scenario.
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Fig. 2. Comparisons of cost-saving ratios using uniform cost (top row) and nonuniform
cost (bottom row)
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Fig. 3. Comparisons of relative margins of the cost-saving ratios of the uniform cost
above the nonuniform one

– For both cost models and all the examined workloads, Cloud has produced
the outstanding steady states of cost-saving ratios across the broad range of
cache sizes when allocated beyond 20%.

– With the simulated values of data-out charge rates, the cost-saving perfor-
mance gaps between the uniform and nonuniform cost models have came out
subtle and thus magnified in Fig. 3. The relative margins are the cost-saving
ratios of uniform cost deducted by those of nonuniform ones in percents of
those of the nonuniform costs. The figure has demonstrated that the cost-
saving performances of all the policies using the uniform cost model could
be slightly better in SV and NY workloads and worse in BO workload than
those in the nonuniform cost model. Further observation on these margins
will be presented numerically at the end of this section.

With respect to delay saving, the simulation results are portrayed in Fig. 4. The
findings from the results are as follows.

– For 20% or larger cache size, Cloud has achieved the best overall responsive-
ness of data loadings among the others since Cloud has considered retaining
slowly loaded objects. This is the minor accomplishment of this work. To
translate a merit implied by Cloud policy’s superior performance, the delay-
saving ratio of Cloud at 30% cache size using BO workload with the uniform
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Fig. 4. Comparisons of delay-saving ratios using uniform cost (top row) and nonuni-
form cost (bottom row)
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Fig. 5. Comparisons of byte-hit rates using uniform cost (top row) and nonuniform
cost (bottom row)

cost, when applied to the representative scenario can significantly save up
to around 290 work hours per annum.

– LRU and LFU-DA have delivered similar delay-saving performances, whereas
GDSF has saved least total delays. This is because GDSF evicts bigger ob-
jects, which generally impose longer loading latencies.

– When cache sizes have been beyond 20% for both cost models and all the
examined workloads, Cloud has delivered the most steady delay-saving ra-
tios.

– The differences of delay-saving performances under the same workload be-
tween the different cost models have not been recognizable through the
ranges of studied cache sizes. Further numerical observation on these dif-
ferences will be presented at the end of this section.

Fig. 5 demonstrates the byte-hit performances with the following findings.

– Cloud has saved the largest volume of data transfers among the other poli-
cies across all the simulated cache sizes, cost models and workloads (excep-
tions have lain in 10% cache size with the BO workload where LFU-DA has
outperformed Cloud slightly by about 0.14% of the Cloud’s for both cost
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Fig. 6. Comparisons of hit rates using uniform cost (top row) and nonuniform cost
(bottom row)

models). This achievement arises because Cloud policy favors large objects
to be retained in cache.

– LRU and LFU-DA have delivered similar byte-hit performances, whereas
GDSF has performed worst. This is partly because only GDSF evicts bigger
objects at first.

– For both cost models and all the examined traces, when cache sizes have
grown beyond 20%, Cloud has produced more stable byte-hit rates than the
other policies.

– The differences of byte-hit performances of the same workload between the
different cost models have not been noticeable through the ranges of in-
vestigated cache sizes. Further observation on these differences in terms of
numerical data will be presented at the end of this section.

In terms of hit rates, the performances are illustrated in Fig. 6. The below find-
ings have been reached.

– Cloud’s performance has been reasonably worst at 10% cache sizes but
quickly increased and better than LRU in most other cases and even better
than LFU-DA in some cases. This phenomenon can be generally clarified
by the fact that a strategy evicting larger objects is optimized for hit rate
[7, 10, 11], the opposite applies to Cloud strategy as it tends to retain larger
objects in cache.

– Though worst in all previous metrics, GDSF has outperformed all the other
policies in hit rate metric. This finding can be explained by the same reason
as in the above finding.

– The differences of hit rates of the same workload between the different cost
models have not been discernible via the ranges of simulated cache sizes.
Further observation on these differences will be presented in the next para-
graph.

In a big picture, the following facts have been inferred.
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– Since data transfer costs are proportional to object sizes, the cost-saving
performances have shown the same growth rates as those of the byte-hit
performances meaning that ones can save both data-out costs and network
bandwidths simultaneously of the same order of magnitude regardless of
utilized policy.

– By looking at Fig. 2, Fig. 5 and Fig. 6 together, the policies that have given
higher ratios of cost-saving or byte-hit have tended towards lower hit rates.
This behavioral trade-off reinforces the finding that strategy revoking cache
space from bigger objects for smaller ones is good at hit rate but poor at
byte-hit ratio [7, 10, 11] (and cost-saving ratio).

– Further experiment has revealed that the performance gaps of all kinds of
metrics between the uniform and nonuniform cost models will become more
noticeable over the wider range of charge rates: using the nonuniform costs
of $0.117997 and $1.17997 instead of $0.117997 and $0.15 at 20% cache
size under the NY workload, Cloud has delivered the cost-saving, delay-
saving, byte-hit and hit rates of 0.00026097, 0.00000348, -0.00000057 and
0.00000334, respectively, lower than those of the uniform cost.

– In terms of cost savings, delay savings and byte hits, Cloud with optimal
window sizes running on 20% or more cache size has delivered almost steady-
state performance for both cost models as if it was running with an infinite
cache size. Therefore, Cloud policy can be characterized by graceful degrada-
tion as it has continued to deliver the best performances over the differently
constrained cache sizes.

4 Related Work

4.1 Object Sizes, Loading Costs and Access Frequencies

A number of policies surveyed in [7]: LRU, LFU-DA, EXP1, Value-Aging, HLRU,
LFU, LFU-Aging, α-Aging, swLFU, SLFU, Generational Replacement, LRU*,
LRU-Hot, Server-assisted cache replacement, LR, RAND, LRU-C, Randomized
replacement with general value functions, including policies ARC [15], CSOPT
[16], LA2U [17], LAUD [17], SEMALRU [18] and LRU-SLFR [19] have not
parameterized object sizes. If big objects were requested frequently but often
evicted by these policies (as blind to object sizes), caching proxy would have to
frequently reload the big objects from their original servers. Therefore, object-
size uncontrollable scheme permits unnecessarily poor cost-saving ratios.
Another group of policies surveyed in [7]: GDSF, LRU-Threshold, LRU-Min,

SIZE, LOG2-SIZE, PSS, LRU-LSC, Partitioned Caching, HYPER-G, CSS, LRU-
SP, GD-Size, GD*, TSP, MIX, HYBRID, LNC-R-W3, LRV, LUV, HARMONIC,
LAT, GDSP, LRU-S, including LNC-R-W3-U [20], SE [21], R-LPV [22], Min-
SAUD [23], OPT [24], LPPB-R [25], OA [26], CSP [27] and GA-Based Cache
Replacement Policy [28] have considered object sizes in such a way that replac-
ing bigger objects first, thus not aiming for cost-saving performance. The other
policies M-Metric [7], NNPCR-2 [29] and Bolot and Hoschka’s [30] have favored
bigger objects like Cloud. In particular, M-Metric allows bigger objects to stay
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longer in cache but does not support loading cost parameter; NNPCR-2 applied
neural network to decide the evictions of small or big objects but does not embed
cost parameter; Bolot and Hoschka’s policy replaces bigger objects first but ig-
nores spatial locality by not considering access frequencies and does not support
nonuniform costs.

4.2 Access Recencies

All known policies have prioritized the recencies of object references either im-
plicitly or explicitly. By implicitly, every policy always accepts a newly loaded
missing object (i.e., the most recently used object) into cache rather than rejects
it. By explicitly, several policies such as LRU, LRU-Threshold, SIZE, LRU-Min,
EXP1, Value-Aging, HLRU, PSS, LRU-LSC and Partitioned Caching have pa-
rameterized elapsed times since the last requests to objects. Cloud policy has
explicitly regarded the recency property of objects in its model.

4.3 Object Loading Latencies

Several policies: GD-Size, GDSF, GD*, GDSP, HYBRID, LAT, LUV, MIX,
LNC-R-W3, LNC-R-W3-U, LRU-SLFR and GDSP have taken object loading
latencies into account. All of them have replaced objects with shorter latencies
first. Cloud policy also follows such a design approach.

4.4 Object Expirations

Very rare policy considers object expiration. LA2U, LAUD and LNC-R-W3-U
have replaced frequently updated objects first. The former two have not de-
scribed how update frequencies are derived. The latter has estimated update
frequencies from changes detected in HTTP’s ‘Last-Modified’ header fields; how-
ever, if frequently updated objects are seldom requested, updated ‘Last-Modified’
values will be rarely perceived by policies and update frequencies will be then
underestimated. This problem can be solved by using explicit expiration times
or TTL as in Bolot and Hoschka’s policy even though this parameter has not
yet been implemented in their empirical

5 Conclusion

This paper addresses an economical and technical perspective from which a new
cache replacement policy must be devised specifically for cloud computing era.
A simple and efficient policy, Cloud, is proposed. The Cloud’s efficiencies in
terms of cost-saving, delay-saving and byte-hit ratios except hit ratios (which
are justifiable) are found fairly outperforming all the other investigated policies
at most cache sizes.
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A concrete finding from this study is that if most recently used objects with
large sizes, costly charge rates, long loading latencies, high access frequencies,
and long lifespans last longer in cache in a profit-inside-recency-window manner,
cost-saving, delay-saving and byte-hit performances will be greatly improved.
Left as future work, to compare Cloud policy with others by using both tech-

nical and economical performance metrics based on longer traces is challenging
and requires considerable effort. Also, we have been planning to conduct a future
research to analyze static and dynamic factors as well as their interrelationship
to help determine the optimal values of window sizes for a given environment
that are dynamically and timely adjusted according to workload evolution.
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