

Lecture Notes in Computer Science 7296
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ruixuan Li Jiannong Cao
Julien Bourgeois (Eds.)

Advances
in Grid and Pervasive
Computing

7th International Conference, GPC 2012
Hong Kong, China, May 11-13, 2012
Proceedings

13

Volume Editors

Ruixuan Li
Huazhong University of Science and Technology
School of Computer Science and Technology
1037 Luoyu Road, Wuhan 430074, China
E-mail: rxli@hust.edu.cn

Jiannong Cao
Hong Kong Polytechnic University
Department of Computing
Hung Hom, Kowloon, Hong Kong, China
E-mail: csjcao@comp.polyu.edu.hk

Julien Bourgeois
University of Franche-Comte, FEMTO-ST
1 cours Leprince-Ringuet, 25200 Montbéliard, France
E-mail: julien.bourgeois@femto-st.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30766-9 e-ISBN 978-3-642-30767-6
DOI 10.1007/978-3-642-30767-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012938531

CR Subject Classification (1998): F.2, C.2, H.4, D.2, D.4, C.2.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the 7th International Conference on Grid and Pervasive Computing,
GPC 2012. Established in 2006, GPC has been a major international event in
the area of grid, cloud and pervasive computing. This conference provides an
international forum for scientists, engineers, and users to exchange and share
their experiences, new ideas, and latest research results in all aspects of grid,
cloud and pervasive computing systems. The previous GPC conferences were
held in Taichung, Taiwan (2006), Paris, France (2007), Kunming, China (2008),
Geneva, Switzerland (2009), Hualien, Taiwan (2010), and Oulu, Finland (2011).

The 7th GPC conference, held during May 11–13, 2012, was organized by
the Hong Kong Polytechnic University, Hong Kong, China. The conference cov-
ers current interests in grid, cloud and pervasive computing. We received 55
submissions from 11 countries. Each manuscript was reviewed by at least three
reviewers. We are very thankful to the Technical Program Committee members
who helped with the review process. The final conference program consists of
carefully selected 9 full papers and 19 short papers.

The conference program included two outstanding keynote talks, six technical
sessions, and one tutorial. One workshop was held in conjunction with GPC 2012.
We would like to thank the Organizing Committee members, Technical Program
Committee members, reviewers, Tutorial Chairs, tutorial presenters, Workshop
Chairs, workshop organizers, Workshop Program Committee members, Publicity
Co-chairs, Publication Chair, Local Arrangements Chair, Financial Chair, Web
Chair, Steering Committee Chair and Steering Committee members for their
contributions. We are very grateful for the generous support of the Hong Kong
Polytechnic University, and their efforts in organizing the conference.

We believe the participants enjoyed the conference and scientific interactions
as well as the traditional atmosphere, beautiful sights and delicious local foods
of Hong Kong city.

May 2012 Ruixuan Li
Jiannong Cao

Julien Bourgeois

Organization

General Chairs

Jiannong Cao Hong Kong Polytechnic University, China
Mohan Kumar University of Texas at Arlington, USA

Program Chairs

Julien Bourgeois University of Franche-Comté, France
Ruixuan Li Huazhong University of Science and

Technology, China

Tutorial Chair

Shui Yu Deakin University, Australia

Workshop Chair

Zili Shao Hong Kong Polytechnic University, China

Publication Chair

Kunmei Wen Huazhong University of Science and
Technology, China

Publicity Chairs

Zhiyong Xu Suffolk University, USA
Wenbin Jiang Huazhong University of Science and

Technology, China

Financial Chair

Wilfred Lin Hong Kong Polytechnic University, China

Web Chair

Chenglin Shen Huazhong University of Science and
Technology, China

VIII Organization

Local Arrangements Chair

Wei Lou Hong Kong Polytechnic University, China

Steering Committee

Hai Jin Huazhong University of Science and
Technology, China (Chair)

Nabil Abdennadher University of Applied Sciences, Western
Switzerland

Christophe Cerin University of Paris XIII, France
Sajal K. Das The University of Texas at Arlington, USA
Jean-Luc Gaudiot University of California - Irvine, USA
Kuan-Ching Li Providence University, Taiwan
Cho-Li Wang The University of Hong Kong, China
Chao-Tung Yang Tunghai University, Taiwan

Program Committee

Jemal Abawajy Deakin University, Australia
Nabil Abdennadher University of Applied Sciences, Switzerland
Luciana Arantes LIP6, France
Junwei Cao Tsinghua University, China
Christophe Cerin Universit́lȩ de Paris XIII, France
Ruay-Shiung Chang National Dong Hwa University, Taiwan
Haibo Chen Fudan University, China
Wenguang Chen Tsinghua University, China
Yeh-Ching Chung National Tsing Hua University, Taiwan
Raphael Couturier LIFC, University of Franche-Comté, France
Eugen Dedu University of Franche-Comté, France
Qianni Deng Shanghai Jiao Tong University, China
Xiaoju Dong Shanghai Jiao Tong University, China
David H.C. Du University of Minnesota, USA
Dan Grigoras University College Cork, Ireland
Weili Han Fudan University, China
Xubin He Virginia Commonwealth University, USA
Michael Hobbs Deakin University, Australia
Hung-Chang Hsiao National Cheng Kung University, Taiwan
Chunming Hu Beihang University, China
Kuo-Chan Huang National Taichung University, Taiwan
Mohamed Jemni ESSTT, Tunisia
Hai Jiang Arkansas State University, USA
Wenbin Jiang Huazhong University of Science and

Technology, China
Yong-Kee Jun Gyeongsang National University, Korea

Organization IX

Kuan-Ching Li Providence University, Taiwan
Ming-Lu Li Shanghai Jiang Tong University, China
Tao Li Nankai University, China
Damon Shing-Min Liu National Chung Cheng University, Taiwan
Pangfeng Liu National Taiwan University, Taiwan
Pedro Medeiros New University of Lisbon, Portugal
Henning Mueller University of Applied Sciences, Western

Switzerland
Philippe Navaux Federal University of Rio Grande do Sul, Brazil
Mohamed Ould-Khaoua University of Glasgow, UK
Marcin Paprzycki IBS PAN and WSM, Poland
Jean-Louis Pazat IRISA, Rennes, France
Ronald H. Perrott Queen’s University Belfast, UK
Dana Petcu Western University of Timisoara, Romania
Wasim Raad King Fahd University of Petroleum and

Minerals, Saudi Arabia
Omer F. Rana Cardiff University, UK
Sanjay Ranka University of Florida, USA
Liria Matsumoto Sato New University of Lisbon, Portugal
Haiying Shen Clemson University, USA
Xuanhua Shi Huazhong University of Science and

Technology, China
Pradip K. Srimani Clemson University, USA
Chien-Min Wang Academia Sinica, Taiwan
Cho-Li Wang The University of Hong Kong, China
Jun Wang University of Central Florida, USA
Lingyu Wang Concordia University, Canada
Di Wu Sun Yat-sen University, China
Jan-Jan Wu Academia Sinica, Taiwan
Song Wu Huazhong University of Science and

Technology, China
Weigang Wu Sun Yat-sen University, China
Yulei Wu University of Bradford, UK
Nong Xiao National University of Defense Technology,

China
Weijun Xiao University of Minnesota, USA
Zhiyong Xu Suffolk University, USA
Jingling Xue University of New South Wales, Australia
Chao-Tung Yang Tunghai University, Taiwan
Shaowen Yao Yunnan University, China
Baoliu Ye Nanjing University, China
Zhiwen Yu Northwestern Polytechnical University, China
Zhifeng Yun Louisiana State University, USA
Sherali Zeadally University of the District of Columbia, USA
Zili Zhang Southwest University, China
Yanmin Zhu Shanghai Jiao Tong University, China

Table of Contents

Cloud Computing

From Web Cache to Cloud Cache . 1
Thepparit Banditwattanawong

pCloud: An Adaptive I/O Resource Allocation Algorithm with Revenue
Consideration over Public Clouds . 16

Jianzong Wang, Yanjun Chen, Daniel Gmach, Changsheng Xie,
Jiguang Wan, and Rui Hua

A Gossip-Based Mutual Exclusion Algorithm for Cloud
Environments . 31

JongBeom Lim, Kwang-Sik Chung, Sung-Ho Chin, and
Heon-Chang Yu

An Effective Partition Approach for Elastic Application Development
on Mobile Cloud Computing . 46

Zhuoran Qin, Jixian Zhang, and Xuejie Zhang

Memory Virtualization for MIPS Processor Based Cloud Server 54
Li Ruan, Huixiang Wang, Limin Xiao, Mingfa Zhu, and Feibo Li

Implementation of a Distributed Data Storage System with Resource
Monitoring on Cloud Computing . 64

Chao-Tung Yang, Wen-Chung Shih, and Chih-Lin Huang

Grid and Service Computing

Design, Verification and Prototyping the Next Generation of Desktop
Grid Middleware . 74

Leila Abidi, Christophe Cérin, and Kais Klai

A Request Multiplexing Method Based on Multiple Tenants in SaaS 89
Pingli Gu, Yanlei Shang, Junliang Chen, Bo Cheng, and Yan Jiang

An Adaptive Design Pattern for Genetic Algorithm-Based Composition
of Web Services in Autonomic Computing Systems Using SOA 98

Vishnuvardhan Mannava and T. Ramesh

Service-Oriented Ontology and Its Evolution . 109
Weisen Pan, Shizhan Chen, and Zhiyong Feng

XII Table of Contents

Green Computing

Energy Efficient Activity Recognition Based on Low Resolution
Accelerometer in Smart Phones . 122

Yunji Liang, Xingshe Zhou, Zhiwen Yu, Bin Guo, and Yue Yang

Energy Efficient Allocation of Virtual Machines in Cloud Computing
Environments Based on Demand Forecast . 137

Jian Cao, Yihua Wu, and Minglu Li

Energy Conservative Mobile Cloud Infrastructure . 152
Ashok Chandrasekar, Karthik Chandrasekar,
Harini Ramasatagopan, and Rafica Abdul Rahim

Power-Constrained Actuator Coordination for Agricultural Sensor
Networks . 162

Junghoon Lee, Gyung-Leen Park, Ho-Young Kwak, and Jikwang Han

Mobile and Pervasive Computing

Design and Evaluation of Mobile Applications with Full and Partial
Offloadings . 172

Jennifer Kim

A Cross-Layer Scheme to Improve TCP Performance in Wireless
Multi-hop Networks . 183

Fu-Quan Zhang and Inwhee Joe

A Fully Abstract View for Local Cause Semantics . 198
Jianxin Xue and Xiaoju Dong

Efficiency Considerations in Policy Based Management in Resource
Constrained Devices . 210

Jignesh Kakkad and Nandan Parameswaran

Agent Based Quality Management Middleware for Context-Aware
Pervasive Applications . 221

Di Zheng, Jun Wang, and Ke-rong Ben

Scheduling and Performance

A Virtual File System for Streaming Loading of Virtual Software on
Windows NT . 231

Yabing Cui, Chunming Hu, Tianyu Wo, and Hanwen Wang

TBF: A High-Efficient Query Mechanism in De-duplication Backup
System . 244

Bin Zhou, Hai Jin, Xia Xie, and PingPeng Yuan

Table of Contents XIII

Estimating Deadline-Miss Probabilities of Tasks in Large Distributed
Systems . 254

Dongping Wang, Bin Gong, and Guoling Zhao

Global Pricing in Large Scale Computational Markets 264
Lilia Chourou, Ahmed Elleuch, and Mohamed Jemni

Trust and Security

A New RBAC Based Access Control Model for Cloud Computing 279
Zhuo Tang, Juan Wei, Ahmed Sallam, Kenli Li, and Ruixuan Li

QoS Monitoring and Dynamic Trust Establishment in the Cloud 289
Ashok Chandrasekar, Karthik Chandrasekar,
Malairaja Mahadevan, and P. Varalakshmi

Multihop-Based Key Management in Hierarchical Wireless Sensor
Network . 302

Yiying Zhang, Xiangzhen Li, Yan Zhen, and Lingkang Zeng

A Bullet-Proof Verification Using Distributed Watchdogs (BPV-DW)
to Detect Black Hole Attack in Mobile Ad Hoc Networks 312

Firoz Ahmed, Seok Hoon Yoon, and Hoon Oh

Performance Analysis for Workflow Management Systems under
Role-Based Authorization Control . 323

Limin Liu, Ligang He, and Stephen A. Jarvis

The 2012 International Workshop on Mobile Cloud
and Ubiquitous Computing (Mobi-Cloud 2012)

A Medical Image File Accessing System with Virtualization Fault
Tolerance on Cloud . 338

Chao-Tung Yang, Cheng-Ta Kuo, Wen-Hung Hsu, and
Wen-Chung Shih

Enhanced Password-Based User Authentication Using Smart Phone 350
Inkyung Jeun, Mijin Kim, and Dongho Won

Development of m-TMS for Trusted Computing in Mobile Cloud 361
Hyun-Woo Kim, Eun-Ha Song, Jun-Ho Kim, Sang Oh Park, and
Young-Sik Jeong

An Efficient Cloud Storage Model for Cloud Computing
Environment . 370

HwaYoung Jeong and JongHyuk Park

Author Index . 377

From Web Cache to Cloud Cache

Thepparit Banditwattanawong

Information Science Institute of Sripathum University
Bangkok, Thailand

thepparit.ba@spu.ac.th

Abstract. To run off-premise private cloud, consumer needs budget for
public cloud data-out charge. This amount of expenditure can be con-
siderable for data-intensive organization. Deploying web cache can pre-
vent consumer from duplicated data loading out of their private cloud
up to some extent. In present existence, however, there is no cache re-
placement strategy designed specifically for cloud computing. Devising a
cache replacement strategy to truly suit cloud computing paradigm re-
quires ground-breaking design perspective. This paper presents a novel
cloud cache replacement policy that optimizes cloud data-out charge,
the overall responsiveness of data loadings and the scalability of cloud
infrastructure. The measurements demonstrate that the proposed policy
achieves superior cost-saving, delay-saving and byte-hit ratios against
the other well-known web cache replacement policies.

Keywords: Cloud computing, cache replacement policy, contempora-
neous proximity, cost-saving ratio, window size.

1 Introduction

More organizations are adopting cloud computing paradigm due to several bene-
fits such as low up-front costs, better ubiquity, increased utilization of computing
resources and reduced power consumption. These are enabled by statistical mul-
tiplexing and risk transferences of over- and under-provisionings through elastic-
ity [1]. Public cloud providers like Amazon Web Services [2], Google AppEngine
[3] and Windows Azure [4] currently offer several pricing criteria for building
off-premise private clouds [5]. Those similarly include the volume charges of
data loaded outgoing of private clouds down into consumer sites. These charges
can be tremendous expenditures to the running costs of private clouds of data-
intensive organizations. The significance of this problem can be realized through
a realistic scenario where the data is transferred through 1 Gbps Metro Ethernet
with 50% bandwidth utilization for 8 work hours a day, and 260 workdays per
annum, which is 39 TB per month, would cost $44,280 per annum based on the
Amazon’s data-transfer-out pricing data. This is a representative scenario used
throughout this paper.

Due to the fact that most of cloud services especially those of SaaS [5] are
accessible via HTTP-supported applications such as web browsers and Web OS

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 T. Banditwattanawong

[6], cloud data-out charge can be reduced by deploying a caching proxy on a
consumer premise. This avoids as many repeated data loadings as possible by
letting caching proxy reply succeeding requests for previously loaded data with
the data fetched from local cache, unless spoiled, rather than reloaded from
cloud.

Nevertheless, acquiring a caching proxy with sufficient space to cache entire
data objects from private cloud might be infeasible for consumer organizations
because, on one hand, the data-intensive consumers are supposed to export their
huge amounts of business data onto their private clouds to truly benefit from
cloud computing notion. On the other hand, the overall business data continues
to grow with orders of magnitude as modern enterprises increasingly present their
business contents in forms of videos, sounds, pictures and other forms of digital
contents like electronic publications. Therefore, caching proxy must be equipped
with a cache replacement strategy, such as LRU [7], GDSF [8] and LFU-DA [8]
that are all supported by the most widely-used web caching software Squid [9].
Cache replacement policies control the provision of enough room inside limited
cache spaces on the fly for caching missed objects.

However, there is no cache replacement policies in present existence that has
been designed specifically to minimize cloud data-out charge. Additionally, all
of the existing policies aim to maximize hit ratio, which means the frequency
of serving small data in no time [7, 10, 11] as the first priority. This notion has
been evolving with the advancement of broadband communication technologies,
which have obviously made the delays (and stability) of the loadings of the small
data objects from remote servers no longer distinguishable from those from local
caching proxies. In contrast, fetching big objects such as those of multimedia
has still kept users experiencing long delays although caching proxy has been in
place since the objects have to potentially be retrieved across the network. The
latter situation impedes SaaS’s content evolution.

The core contributions of this work include: (1) opening up a new design
perspective of cache replacement strategy that breaks new ground to suit cloud
computing environment, (2) a new performance benchmark, cost-saving ratio,
which can be used to capture the economical efficiency of cache replacement
policy, (3) a novel replacement policy based on the principle of contemporaneous
proximity and optimized for cost-saving, delay-saving and byte-hit ratios to be
particularly of use in the era of cloud computing, and (4) a set of comparative
measures of strategies in use worldwide including the proposed strategy that
gives useful hints for developing more sophisticated cache replacement policies
in cloud computing era.

The merits of the proposed policy to the communities of private cloud con-
sumers include the reduction of cloud data-out expenditure and overall speeding
up of cloud data loading as well as serving faster large data objects. To both
private cloud consumers and public cloud providers, the policy is so network
bandwidth friendly that it enables more scalable cloud infrastructure.

From Web Cache to Cloud Cache 3

2 Proposed Strategy

This section describes the design rationales and practicality analysis of the pro-
posed cache replacement policy.

2.1 Design Rationales

The proposed policy lies itself in two principles, temporal affinity and spatial
locality, which are referred to together as contemporaneous proximity [12] for
the sake of conciseness. Contemporaneous proximity refers to a time and space
property indicating that a particular reference to a certain data object is likely
to be repeated in short time (i.e. temporal affinity) and that a set of multiple
references to a certain data object tentatively leads to another reference to the
same object (i.e. spatial locality). The policy captures the manifest degrees of
contemporaneous proximity of data objects by factorizing their recencies and
frequencies of accesses.

Considering merely access recency and popularity, however, is unable to satisfy
optimal data-out charge reduction in a consistent manner. The policy therefore
mandates controlling data-out charge factor by explicitly embracing object sizes
and data-out charge rate on a per-object-size basis that altogether accumulates
data loading expenditure. It is intuitive that object whose monetary cost of
transfer is high, if still usuable, should be retained longer in cache to minimize
its cost-benefit ratio than inexpensive object.

As another important design facet, shifting into cloud computing paradigm
requires that desktop applications be transformed into SaaS model in which
requests to the applications are dispatched across the network. This paradigm
requirement causes SaaS less responsive as compared to the desktop applications
whose requests are received, processed and returned locally. As a result, using
SaaS applications encounters network delays that in overall affect organization
productivity. To relieve the effect, cache replacement policy for cloud computing
ought to parameterize data loading latency in such a way that data object with
short loading latency should be replaced before longer one. This allows higher
utilizations of slowly loaded objects to improve overall responsiveness.

Next design consideration is time remaining before the expiration of each ob-
ject. This characteristic is referred to herein as Time-To-Live (TTL). Data ob-
jects whose ages have gone nearly or beyond their expirations should be evicted
from cache to give space to newly arriving object as the almost stale ones remain
lower chances to get referenced than fresher ones.

Based on the above design rationales, the proposed policy works as follows.
Whenever available cache space becomes inadequate to store a newly loaded
object, the policy formulates a cluster of least recently referenced objects. The
number of objects in the cluster is specified by a preset ‘window size’ value. Given
the formulated cluster, the policy subsequently seeks out an object with the
lowest current profit to give preference for eviction. The profit value associated
with each object i is defined as:

4 T. Banditwattanawong

algorithm Caching

description Manipulates hits & misses and calls Cloud
input rURL: requested URL
output requested object
declare cd: cache database (hash table with URL keys)

ro: requested object, fs: free cache space
begin

if ((rURL ∈ cd) ∧ (cd.getObject(rURL) not expired)) //if cache hit occurs
ro← cd.getObject(rURL)
ro.updateFrequency()
ro.setProfit(ro.getObjectSize() x ro.getChargeRate()

x ro.getLoadingLatency() x ro.getFrequency() x ro.getTTL())
cd.updateObject(ro)

else //if cache miss occurs
Use rURL to load ro from cloud and initialize its properties
ro.setProfit(ro.getObjectSize() x ro.getChargeRate()

x ro.getLoadingLatency() x ro.getFrequency() x ro.getTTL())
fs← cd.getFreeSpace()
if(fs < ro.getObjectSize())

Cloud(ro, cd) //invoking Cloud policy here
cd.putObject(ro)

return ro
end

algorithm Cloud

description Implements Cloud replacement policy
input ro: requested object, cd: cache database (hash table with URL keys)
output -
declare rs: required cache space, ws: window size

cdq: cache database (recency-keyed min-priority queue)
coq: profit-keyed min-priority queue of evictable objects
eo: evicted object, fs: free cache space

begin
rs← ro.getObjectSize(), ws← predetermined value
cdq ← cd //building cdq from cd
if (cd.getTotalNumberOfObjects() < ws)

ws← cd.getTotalNumberOfObjects()
for 1 to ws do

coq.addObject(cdq.retrieveLeastRecentlyObject())
do

eo← coq.removeMinProfitObject()
cd.evict(eo)

while (eo.getSize() + cd.getFreeSpace()) < rs
fs← (cd.getFreeSpace() + eo.getSize()− rs)
cd.setFreeSpace(fs)

end

Fig. 1. Cloud (below) and related (top) algorithms

From Web Cache to Cloud Cache 5

si x ci x li x fi x TTLi

where si is the size of i, ci is data-out charge rate in loading i, li is latency
in loading i, fi is i ’s access frequency, and TTLi is the TTL of i. If revoked
cache space is still not sufficient for the new object, additional objects with least
profits are evicted in order. Note that cache miss on a highly profitable object
imposes more penalty in terms of technical and/or economical efficiencies than
a low profitable one.
The proposed policy is entitled ‘Cloud’ to imply its intended application do-

main. One possible algorithm solving the problem in choosing object(s) for evic-
tion according to Cloud policy is shown in Fig. 1 together with a caller algorithm.
It should be realized that in practice data-out charge rates for all objects to be
loaded from clouds are preconfigured values provided by cloud providers from
which the objects are loaded [2–4], while TTL values can be calculated from the
values of ‘Expires’ or ‘max-age’ fields available inside HTTPmessage headers [13].

2.2 Practicality

With respect to the time complexity analysis of the algorithm of Cloud illus-
trated in Fig. 1, the statements that take significant part in processing time are:
building the priority queue cdq from cd is traditionally O(NlogN) where N is
the number of data objects in a cache; the for loop takes O(NlogN) as the
window size can be set to as many as N while adding each object into coq is
O(logN); the do loop has the worst-case running time of O(NlogN) because the
number of evicted objects is bounded by N, while removing each object from
coq takes O(logN); deleting an object from the hash table cd is less significant
and thus necgleted. The other statements are all identically O(1). Therefore,
the algorithm is O(NlogN). In other words, Cloud strategy can be implemented
with an algorithm whose worst-case running time is guranteed to be practical.

3 Performance Evaluation

This section describes the simulation configuration followed by comparative per-
formance results and discussion of Cloud policy as well as another three popular
policies: LRU, GDSF and LFU-DA, which have been supported by Squid caching
proxy.

3.1 Input Data Sets

HTTP trace-driven simulation technique has been used for performance mea-
surements. Provided by IRCache project [14], raw trace files are various in sizes
and have been collected from three caching proxy servers located in Boulder
(BO), Silicon Valley (SV) and New York (NY).
Each of the raw traces contains the stream of requests to large numbers of

various HTTP domains. In order to emulate realistic HTTP accesses occuring

6 T. Banditwattanawong

on private cloud(s) of a single midsize organization where totally 50 domains are
running on the cloud(s), the traces have been preprocessed by counting up top
50 popular domains, and only the requests to these domains have been extracted
into three new trace files. As a remark, the number 50 is the approximation of
the number of domains administrated by the author’s university.
As the other part of preprocessing, unused fields have been removed and an

expiration field has been added to every record of every trace to be used to
compute TTL values. Expiration field values have been figured out based on three
following assumptions. First, an object expired right before its size changed as
appeared in a trace. Second, as long as its size was constant, an object’s lifespan
was extended to its last request appearing in a request stream. Finally, an object
appearing only once throughout a trace expired right after the only its use seen
in a trace.

Table 1. Characteristics of each of the simulated traces

Traces BO SV NY

Total requests 205,226 441,084 599,097

Requested bytes 2,401,517,003 7,113,486,583 4,712,041,132

Unique objects 70,944 248,508 158,552

Max. total bytes of unique objects 694,759,006 1,065,863,067 1,323,954,264

Table 1 summarizes the basic characteristics of the preprocessed traces. The
‘Total requests’ designates the total number of records contained in each trace
as the results of top 50 domain filterings. The ‘Requested bytes’ is the total size
of requested objects appearing in each trace. The ‘Unique objects’ represents the
number of unique URLs appearing in each trace. As some unique objects had
their sizes changed from time to time, by considering only their largest sizes,
the ‘Max. total bytes of unique objects’ indicates minimum cache sizes without
cache replacement at all (equivalent to infinite cache sizes).

3.2 Performance Metrics

The three traditional performance metrics, hit rate, byte-hit rate, delay-saving
ratio, and the newly proposed economical performance metric ‘cost-saving ratio’
have been used. For an object i,

cost-saving ratio =
∑n

i=1cisihi/
∑n

i=1cisiri

where ci is the data-out charge rate of i, si is the size of i, hi is how many times
a valid copy of i is found in a cache, and ri is the total number of requests to i.
This study has aimed for the best cost-saving ratio, delay-saving ratio and

byte-hit rate, respectively, except hit ratio as justified in Sect. 1. Whilst it is
clear why using cost-saving ratio, delay-saving ratio captures how responsive

From Web Cache to Cloud Cache 7

SaaS would be in overall as the result of a certain cache replacement policy; byte-
hit rate captures how good each particular policy foster cloud infrastructure’s
scalability by reducing as many total bytes transmitted across the network as
possible.

3.3 Cost Models

For critical business such as hospital and stock trading, it is not acceptable
to experience cloud downtimes and bottlenecks. Consumer organization of this
kind must establish continuity plan by implementing private cloud running on
more than one independent public cloud to achieve fault tolerance and load
balancing. As a consequence, if public cloud providers offer different data transfer
prices, objects of the same size loaded from different providers will have different
monetary costs.
To realize this practice, the simulations have been conducted based on two

cost models. One is uniform cost model where a single data-out charge rate
is applied to organization who rents its private cloud from single public cloud
provider. The rate of Amazon S3’s, which is $0.117997 per GB by average (for
the total amount of data transfer out between 11 to 51 TB per month in the
US region as of August 2011), has been used in this model. (The range of 11
to 51 TB per month can cover the realistic scenario demonstrated in Sect. 1.)
The other is nonuniform cost model, which employs dual charge rates to emulate
situation where organization implements its private cloud(s) rented from a pair
of independent public cloud providers. The rates used in the latter model are
those of Amazon S3’s $0.117997 per GB and Windows Azure’s $0.15 per GB (for
data transfers from North American locations as of August 2011). The simulator
has associated the dual charge rates with unique objects found throughout the
traces in an interleaving manner.

3.4 Window Sizes

Since data objects in different communities of interests manifest different degrees
of contemporaneous proximity, it is not sensible to assume that any recency- and/
or frequency-based policy performing perfectly in one environment will perform
well against any other environments or even the same environment in different
time periods. The control parameter window size is thus engaged to allow the fine
tuning of Cloud policy to be adaptive and perform fairly well in any real working
environments. In addition to the levels of contemporaneous proximity exhibiting
in each workload, the superior value of window size is affected by cache size: a
series of pre-experiments have shown that the larger the absolute cache size, the
larger the optimal window size. Table 2 presents a set of fine-tuned window sizes
(and relative ones inside the parentheses) used in the simulations against each
workload and cache size regardless of the cost models. The simulated cache sizes
are presented in percents of the maximum total bytes of unique objects belonging
to each workload. At 100% cache size, there is no replacement at all, thus all the

8 T. Banditwattanawong

policies yield the same upper-bound performance results in all metrics. The right-
most column provides absolute cache sizes in relation to those of BO workload
that can be all used in conjunction with the percent cache sizes as a guideline to
tune up optimal window sizes in other target environments.

Table 2. Optimal window sizes used in simulations of Cloud policy

Simulated cache sizes Relative

Workloads (% of Max. total bytes of unique objects) absolute

10% 20% 30% cache sizes

BO 215(1.00,1.00) 625(1.00,2.91) 675(1.00,3.14) 1.00

SV 425(1.98,1.00) 1175(1.88,2.76) 1200(1.78,2.82) 1.53

NY 700(3.26,1.00) 1550(2.48,2.21) 1575(2.33,2.25) 1.91

3.5 Empirical Results

The simulation results of Cloud and the other three policies (LRU, GDSF and
LFU-DA) are compared in this section. As for GDSF, its particular version
called GDSF-Hits (whose cost parameter is equal to 1 for all objects) has been
employed. It should also be noted that, unlike some previous works, uncacheable
requests have not been excluded from the simulated traces to reflect actual per-
formance ones can really gain from utilizing those certain replacement policies;
the caching efficiencies of all the simulated policies would otherwise be improved
in all the performance metrics but spurious.
Fig. 2 shows the economical performances rendered by using cost-saving ratio

metric. The following findings can be drawn.

– As the main achievement of this study, it can be seen that Cloud has most
economized among the other examined policies at all the investigated cache
sizes, cost models and workloads (exceptions have lain in 10% cache size
of BO workload where LFU-DA has outperformed Cloud slightly by about
0.14% of the Cloud’s for both cost models). To realize the merit of Cloud
policy implied by its superior performance, the cost-saving ratio of Cloud
at 30% cache size of NY workload in the uniform cost model, when applied
to the representative scenario in Sect. 1 can significantly save up to $10,569
per annum. Cloud could even save up to $427.26 annually, more than GDSF
when using 10% cache size based on SV workload and the uniform cost.

– The cost-saving performances of LRU and LFU-DA have been closely alike,
whereas GDSF has performed worst. This is because only GDSF chooses big
objects to be replaced at first. To facilitate economical comparisons, 0.001
margin of the cost-saving ratios can be translated as $44.28 per annum as
of the representative scenario.

From Web Cache to Cloud Cache 9

0 073

0.076

0.079

0.082

os
t

sa
vi

ng
ra

ti
o

BO trace

LRU

GDSF
0 078

0.081

0.084

0.087

os
t

sa
vi

ng
ra

ti
o

SV trace

LRU

GDSF 0.235

0.237

0.239

os
t

sa
vi

ng
ra

ti
o

NY trace

LRU

GDSF

0.070

0.073

0.076

0.079

0.082

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.075

0.078

0.081

0.084

0.087

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD 0.233

0.235

0.237

0.239

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD0.070

0.073

0.076

0.079

0.082

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.075

0.078

0.081

0.084

0.087

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.078

0.081

0.084

0.087

Co
st

sa
vi

ng
ra

ti
o

SV trace

LRU

GDSF

LFUDA

0.233

0.235

0.237

0.239

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.235

0.237

0.239

Co
st

sa
vi

ng
ra

ti
o

NY trace

LRU

GDSF

LFUDA0.073

0.076

0.079

0.082

Co
st

sa
vi

ng
ra

ti
o

BO trace

LRU

GDSF

LFUDA

0.070

0.073

0.076

0.079

0.082

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.075

0.078

0.081

0.084

0.087

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.075

0.078

0.081

0.084

0.087

10 20 30 100
Co

st
sa

vi
ng

ra
ti

o

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.233

0.235

0.237

0.239

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.233

0.235

0.237

0.239

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD
0.070

0.073

0.076

0.079

0.082

10 20 30 100

Co
st

sa
vi

ng
ra

ti
o

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD

Fig. 2. Comparisons of cost-saving ratios using uniform cost (top row) and nonuniform
cost (bottom row)

0.052

0.053

0.054

0.055

e
m

ar
gi

n
(%

)

SV trace

LRU

GDSF 0.0586

0.0589

0.0592

0.0595

e
m

ar
gi

n
(%

)

NY trace

LRU

GDSF
0.084

0.083

0.082

0.081

ve
m

ar
gi

n
(%

)

BO trace

LRU

GDSF

0.049

0.050

0.051

0.052

0.053

0.054

0.055

10 20 30 100

Re
la

ti
ve

m
ar

gi
n

(%
)

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD 0.0580

0.0583

0.0586

0.0589

0.0592

0.0595

10 20 30 100

Re
la

ti
ve

m
ar

gi
n

(%
)

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD0.087

0.086

0.085

0.084

0.083

0.082

0.081

10 20 30 100

Re
la

ti
ve

m
ar

gi
n

(%
)

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.049

0.050

0.051

0.052

0.053

0.054

0.055

10 20 30 100

Re
la

ti
ve

m
ar

gi
n

(%
)

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD 0.0580

0.0583

0.0586

0.0589

0.0592

0.0595

10 20 30 100

Re
la

ti
ve

m
ar

gi
n

(%
)

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD0.087

0.086

0.085

0.084

0.083

0.082

0.081

10 20 30 100

Re
la

ti
ve

m
ar

gi
n

(%
)

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD

Fig. 3. Comparisons of relative margins of the cost-saving ratios of the uniform cost
above the nonuniform one

– For both cost models and all the examined workloads, Cloud has produced
the outstanding steady states of cost-saving ratios across the broad range of
cache sizes when allocated beyond 20%.

– With the simulated values of data-out charge rates, the cost-saving perfor-
mance gaps between the uniform and nonuniform cost models have came out
subtle and thus magnified in Fig. 3. The relative margins are the cost-saving
ratios of uniform cost deducted by those of nonuniform ones in percents of
those of the nonuniform costs. The figure has demonstrated that the cost-
saving performances of all the policies using the uniform cost model could
be slightly better in SV and NY workloads and worse in BO workload than
those in the nonuniform cost model. Further observation on these margins
will be presented numerically at the end of this section.

With respect to delay saving, the simulation results are portrayed in Fig. 4. The
findings from the results are as follows.

– For 20% or larger cache size, Cloud has achieved the best overall responsive-
ness of data loadings among the others since Cloud has considered retaining
slowly loaded objects. This is the minor accomplishment of this work. To
translate a merit implied by Cloud policy’s superior performance, the delay-
saving ratio of Cloud at 30% cache size using BO workload with the uniform

10 T. Banditwattanawong

0.133

0.136

0.139

0.142

la
y

sa
vi

ng
ra

ti
o BO trace

LRU

GDSF

LFUDA 0.088

0.091

0.094

0.097

la
y

sa
vi

ng
ra

ti
o SV trace

LRU

GDSF

LFUDA 0.094

0.096

0.098

0.100

la
y

sa
vi

ng
ra

ti
o NY trace

LRU

GDSF

LFUDA

0.130

0.133

0.136

0.139

0.142

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.085

0.088

0.091

0.094

0.097

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0 094

0.097

ra
ti

o SV trace

LRU

0.092

0.094

0.096

0.098

0.100

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0 098

0.100

ra
ti

o NY trace

LRU0.139

0.142

ra
ti

o BO trace

LRU

0.130

0.133

0.136

0.139

0.142

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.085

0.088

0.091

0.094

0.097

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.085

0.088

0.091

0.094

0.097

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o SV trace

LRU

GDSF

LFUDA

CLOUD

0.092

0.094

0.096

0.098

0.100

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.092

0.094

0.096

0.098

0.100

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o NY trace

LRU

GDSF

LFUDA

CLOUD0.130

0.133

0.136

0.139

0.142

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o BO trace

LRU

GDSF

LFUDA

CLOUD

0.130

0.133

0.136

0.139

0.142

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.085

0.088

0.091

0.094

0.097

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.085

0.088

0.091

0.094

0.097

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o
Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.092

0.094

0.096

0.098

0.100

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.092

0.094

0.096

0.098

0.100

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD0.130

0.133

0.136

0.139

0.142

10 20 30 100

D
el

ay
sa

vi
ng

ra
ti

o

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD

Fig. 4. Comparisons of delay-saving ratios using uniform cost (top row) and nonuni-
form cost (bottom row)

0.073

0.076

0.079

0.082

By
te

hi
tr

at
e

BO trace

LRU

GDSF

LFUDA 0.078

0.081

0.084

0.087

By
te

hi
tr

at
e

SV trace

LRU

GDSF

LFUDA
0.235

0.237

0.239

By
te

hi
tr

at
e

NY trace

LRU

GDSF

LFUDA

0.070

0.073

0.076

0.079

0.082

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.075

0.078

0.081

0.084

0.087

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0 084

0.087

e

SV trace

0.233

0.235

0.237

0.239

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.239
e

NY trace
0 079

0.082

e

BO trace

0.070

0.073

0.076

0.079

0.082

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.075

0.078

0.081

0.084

0.087

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.075

0.078

0.081

0.084

0.087

10 20 30 100

By
te

hi
tr

at
e

SV trace

LRU

GDSF

LFUDA

CLOUD

0.233

0.235

0.237

0.239

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.233

0.235

0.237

0.239

10 20 30 100

By
te

hi
tr

at
e

NY trace

LRU

GDSF

LFUDA

CLOUD0.070

0.073

0.076

0.079

0.082

10 20 30 100

By
te

hi
tr

at
e

BO trace

LRU

GDSF

LFUDA

CLOUD

0.070

0.073

0.076

0.079

0.082

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.075

0.078

0.081

0.084

0.087

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.075

0.078

0.081

0.084

0.087

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.233

0.235

0.237

0.239

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.233

0.235

0.237

0.239

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD0.070

0.073

0.076

0.079

0.082

10 20 30 100

By
te

hi
tr

at
e

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD

Fig. 5. Comparisons of byte-hit rates using uniform cost (top row) and nonuniform
cost (bottom row)

cost, when applied to the representative scenario can significantly save up
to around 290 work hours per annum.

– LRU and LFU-DA have delivered similar delay-saving performances, whereas
GDSF has saved least total delays. This is because GDSF evicts bigger ob-
jects, which generally impose longer loading latencies.

– When cache sizes have been beyond 20% for both cost models and all the
examined workloads, Cloud has delivered the most steady delay-saving ra-
tios.

– The differences of delay-saving performances under the same workload be-
tween the different cost models have not been recognizable through the
ranges of studied cache sizes. Further numerical observation on these dif-
ferences will be presented at the end of this section.

Fig. 5 demonstrates the byte-hit performances with the following findings.

– Cloud has saved the largest volume of data transfers among the other poli-
cies across all the simulated cache sizes, cost models and workloads (excep-
tions have lain in 10% cache size with the BO workload where LFU-DA has
outperformed Cloud slightly by about 0.14% of the Cloud’s for both cost

From Web Cache to Cloud Cache 11

0.308

0.311

0.314

0.317

0.320

H
it

ra
te

BO trace

LRU

GDSF

LFUDA 0.198

0.200

0.202

0.204

H
it

ra
te

SV trace

LRU

GDSF

LFUDA 0.262

0.264

0.266

0.268

H
it

ra
te

NY trace

LRU

GDSF

LFUDA

0.305

0.308

0.311

0.314

0.317

0.320

10 20 30 100

H
it

ra
te

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.196

0.198

0.200

0.202

0.204

10 20 30 100

H
it

ra
te

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0 202

0.204 SV trace

0.260

0.262

0.264

0.266

0.268

10 20 30 100

H
it

ra
te

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0 266

0.268 NY trace
0 317

0.320 BO trace

0.305

0.308

0.311

0.314

0.317

0.320

10 20 30 100

H
it

ra
te

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.196

0.198

0.200

0.202

0.204

10 20 30 100

H
it

ra
te

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.196

0.198

0.200

0.202

0.204

10 20 30 100

H
it

ra
te

SV trace

LRU

GDSF

LFUDA

CLOUD

0.260

0.262

0.264

0.266

0.268

10 20 30 100

H
it

ra
te

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.260

0.262

0.264

0.266

0.268

10 20 30 100

H
it

ra
te

NY trace

LRU

GDSF

LFUDA

CLOUD0.305

0.308

0.311

0.314

0.317

0.320

10 20 30 100

H
it

ra
te

BO trace

LRU

GDSF

LFUDA

CLOUD

0.305

0.308

0.311

0.314

0.317

0.320

10 20 30 100

H
it

ra
te

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD 0.196

0.198

0.200

0.202

0.204

10 20 30 100

H
it

ra
te

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.196

0.198

0.200

0.202

0.204

10 20 30 100

H
it

ra
te

Cache size (%)

SV trace

LRU

GDSF

LFUDA

CLOUD

0.260

0.262

0.264

0.266

0.268

10 20 30 100

H
it

ra
te

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD

0.260

0.262

0.264

0.266

0.268

10 20 30 100

H
it

ra
te

Cache size (%)

NY trace

LRU

GDSF

LFUDA

CLOUD0.305

0.308

0.311

0.314

0.317

0.320

10 20 30 100

H
it

ra
te

Cache size (%)

BO trace

LRU

GDSF

LFUDA

CLOUD

Fig. 6. Comparisons of hit rates using uniform cost (top row) and nonuniform cost
(bottom row)

models). This achievement arises because Cloud policy favors large objects
to be retained in cache.

– LRU and LFU-DA have delivered similar byte-hit performances, whereas
GDSF has performed worst. This is partly because only GDSF evicts bigger
objects at first.

– For both cost models and all the examined traces, when cache sizes have
grown beyond 20%, Cloud has produced more stable byte-hit rates than the
other policies.

– The differences of byte-hit performances of the same workload between the
different cost models have not been noticeable through the ranges of in-
vestigated cache sizes. Further observation on these differences in terms of
numerical data will be presented at the end of this section.

In terms of hit rates, the performances are illustrated in Fig. 6. The below find-
ings have been reached.

– Cloud’s performance has been reasonably worst at 10% cache sizes but
quickly increased and better than LRU in most other cases and even better
than LFU-DA in some cases. This phenomenon can be generally clarified
by the fact that a strategy evicting larger objects is optimized for hit rate
[7, 10, 11], the opposite applies to Cloud strategy as it tends to retain larger
objects in cache.

– Though worst in all previous metrics, GDSF has outperformed all the other
policies in hit rate metric. This finding can be explained by the same reason
as in the above finding.

– The differences of hit rates of the same workload between the different cost
models have not been discernible via the ranges of simulated cache sizes.
Further observation on these differences will be presented in the next para-
graph.

In a big picture, the following facts have been inferred.

12 T. Banditwattanawong

– Since data transfer costs are proportional to object sizes, the cost-saving
performances have shown the same growth rates as those of the byte-hit
performances meaning that ones can save both data-out costs and network
bandwidths simultaneously of the same order of magnitude regardless of
utilized policy.

– By looking at Fig. 2, Fig. 5 and Fig. 6 together, the policies that have given
higher ratios of cost-saving or byte-hit have tended towards lower hit rates.
This behavioral trade-off reinforces the finding that strategy revoking cache
space from bigger objects for smaller ones is good at hit rate but poor at
byte-hit ratio [7, 10, 11] (and cost-saving ratio).

– Further experiment has revealed that the performance gaps of all kinds of
metrics between the uniform and nonuniform cost models will become more
noticeable over the wider range of charge rates: using the nonuniform costs
of $0.117997 and $1.17997 instead of $0.117997 and $0.15 at 20% cache
size under the NY workload, Cloud has delivered the cost-saving, delay-
saving, byte-hit and hit rates of 0.00026097, 0.00000348, -0.00000057 and
0.00000334, respectively, lower than those of the uniform cost.

– In terms of cost savings, delay savings and byte hits, Cloud with optimal
window sizes running on 20% or more cache size has delivered almost steady-
state performance for both cost models as if it was running with an infinite
cache size. Therefore, Cloud policy can be characterized by graceful degrada-
tion as it has continued to deliver the best performances over the differently
constrained cache sizes.

4 Related Work

4.1 Object Sizes, Loading Costs and Access Frequencies

A number of policies surveyed in [7]: LRU, LFU-DA, EXP1, Value-Aging, HLRU,
LFU, LFU-Aging, α-Aging, swLFU, SLFU, Generational Replacement, LRU*,
LRU-Hot, Server-assisted cache replacement, LR, RAND, LRU-C, Randomized
replacement with general value functions, including policies ARC [15], CSOPT
[16], LA2U [17], LAUD [17], SEMALRU [18] and LRU-SLFR [19] have not
parameterized object sizes. If big objects were requested frequently but often
evicted by these policies (as blind to object sizes), caching proxy would have to
frequently reload the big objects from their original servers. Therefore, object-
size uncontrollable scheme permits unnecessarily poor cost-saving ratios.
Another group of policies surveyed in [7]: GDSF, LRU-Threshold, LRU-Min,

SIZE, LOG2-SIZE, PSS, LRU-LSC, Partitioned Caching, HYPER-G, CSS, LRU-
SP, GD-Size, GD*, TSP, MIX, HYBRID, LNC-R-W3, LRV, LUV, HARMONIC,
LAT, GDSP, LRU-S, including LNC-R-W3-U [20], SE [21], R-LPV [22], Min-
SAUD [23], OPT [24], LPPB-R [25], OA [26], CSP [27] and GA-Based Cache
Replacement Policy [28] have considered object sizes in such a way that replac-
ing bigger objects first, thus not aiming for cost-saving performance. The other
policies M-Metric [7], NNPCR-2 [29] and Bolot and Hoschka’s [30] have favored
bigger objects like Cloud. In particular, M-Metric allows bigger objects to stay

From Web Cache to Cloud Cache 13

longer in cache but does not support loading cost parameter; NNPCR-2 applied
neural network to decide the evictions of small or big objects but does not embed
cost parameter; Bolot and Hoschka’s policy replaces bigger objects first but ig-
nores spatial locality by not considering access frequencies and does not support
nonuniform costs.

4.2 Access Recencies

All known policies have prioritized the recencies of object references either im-
plicitly or explicitly. By implicitly, every policy always accepts a newly loaded
missing object (i.e., the most recently used object) into cache rather than rejects
it. By explicitly, several policies such as LRU, LRU-Threshold, SIZE, LRU-Min,
EXP1, Value-Aging, HLRU, PSS, LRU-LSC and Partitioned Caching have pa-
rameterized elapsed times since the last requests to objects. Cloud policy has
explicitly regarded the recency property of objects in its model.

4.3 Object Loading Latencies

Several policies: GD-Size, GDSF, GD*, GDSP, HYBRID, LAT, LUV, MIX,
LNC-R-W3, LNC-R-W3-U, LRU-SLFR and GDSP have taken object loading
latencies into account. All of them have replaced objects with shorter latencies
first. Cloud policy also follows such a design approach.

4.4 Object Expirations

Very rare policy considers object expiration. LA2U, LAUD and LNC-R-W3-U
have replaced frequently updated objects first. The former two have not de-
scribed how update frequencies are derived. The latter has estimated update
frequencies from changes detected in HTTP’s ‘Last-Modified’ header fields; how-
ever, if frequently updated objects are seldom requested, updated ‘Last-Modified’
values will be rarely perceived by policies and update frequencies will be then
underestimated. This problem can be solved by using explicit expiration times
or TTL as in Bolot and Hoschka’s policy even though this parameter has not
yet been implemented in their empirical

5 Conclusion

This paper addresses an economical and technical perspective from which a new
cache replacement policy must be devised specifically for cloud computing era.
A simple and efficient policy, Cloud, is proposed. The Cloud’s efficiencies in
terms of cost-saving, delay-saving and byte-hit ratios except hit ratios (which
are justifiable) are found fairly outperforming all the other investigated policies
at most cache sizes.

14 T. Banditwattanawong

A concrete finding from this study is that if most recently used objects with
large sizes, costly charge rates, long loading latencies, high access frequencies,
and long lifespans last longer in cache in a profit-inside-recency-window manner,
cost-saving, delay-saving and byte-hit performances will be greatly improved.
Left as future work, to compare Cloud policy with others by using both tech-

nical and economical performance metrics based on longer traces is challenging
and requires considerable effort. Also, we have been planning to conduct a future
research to analyze static and dynamic factors as well as their interrelationship
to help determine the optimal values of window sizes for a given environment
that are dynamically and timely adjusted according to workload evolution.

Acknowledgment. This research is financially supported by Sripatum Univer-
sity. The author would like to thank Duane Wessels, National Science Founda-
tion (grants NCR-9616602 and NCR-9521745) and the National Laboratory for
Applied Network Research for the trace data used in this study.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,
Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds:
A berkeley view of cloud computing. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-28 (February 2009),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

2. Amazon.com, Inc., Amazon web services (2011), http://aws.amazon.com/s3/
3. Google Inc., Google app engine (2011),

http://code.google.com/intl/en/appengine/

4. Microsoft, Windows azure (2011), http://www.microsoft.com/windowsazure/
5. Mell, P., Grance, T.: The NIST definition of cloud computing (draft): Recom-

mendations of the national institute of standards and technology. NIST Special
Publication 800-145 (Draft) (2011),
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145

cloud-definition.pdf

6. Wright, A.: Ready for a web os? Commun. ACM 52, 16–17 (2009)
7. Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM

Comput. Surv. 35, 374–398 (2003)
8. Arlitt, M., Cherkasova, L., Dilley, J., Friedrich, R., Jin, T.: Evaluating content man-

agement techniques for web proxy caches. SIGMETRICS Perform. Eval. Rev. 27,
3–11 (2000)

9. Wessels, D.: Squid: The Definitive Guide. O’Reilly & Associates, Inc., Sebastopol
(2004)

10. Abrams, M., Standridge, C.R., Abdulla, G., Fox, E.A., Williams, S.: Removal poli-
cies in network caches for world-wide web documents. SIGCOMM Comput. Com-
mun. Rev. 26, 293–305 (1996)

11. Balamash, A., Krunz, M.: An overview of web caching replacement algorithms.
IEEE Communications Surveys and Tutorials 6(1-4), 44–56 (2004)

12. Banditwattanawong, T., Hidaka, S., Washizaki, H., Maruyama, K.: Optimization
of program loading by object class clustering. IEEJ Transactions on Electrical and
Electronic Engineering 1 (2006)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://aws.amazon.com/s3/
http://code.google.com/intl/en/appengine/
http://www.microsoft.com/windowsazure/
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

From Web Cache to Cloud Cache 15

13. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Rfc 2616, hypertext transfer protocol – http/1.1, United States (1999)

14. National Laboratory for Applied Network Research, Weekly squid http access logs,
http://www.ircache.net/

15. Megiddo, N., Modha, D.S.: Outperforming lru with an adaptive replacement cache
algorithm. Computer 37, 58–65 (2004)

16. Jeong, J., Dubois, M.: Cache replacement algorithms with nonuniform miss costs.
IEEE Transactions on Computers 55, 353–365 (2006)

17. Chen, H., Xiao, Y., Shen, X.S.: Update-based cache access and replacement in
wireless data access. IEEE Transactions on Mobile Computing 5, 1734–1748 (2006)

18. Geetha, K., Gounden, N.A., Monikandan, S.: Semalru: An implementation of mod-
ified web cache replacement algorithm. In: NaBIC, pp. 1406–1410. IEEE (2009)

19. Shin, S.-W., Kim, K.-Y., Jang, J.-S.: Lru based small latency first replacement (slfr)
algorithm for the proxy cache. In: Proceedings of the 2003 IEEE/WIC International
Conference on Web Intelligence, WI 2003, pp. 499–502. IEEE Computer Society,
Washington, DC (2003)

20. Shim, J., Scheuermann, P., Vingralek, R.: Proxy cache algorithms: Design, imple-
mentation, and performance. IEEE Transactions on Knowledge and Data Engi-
neering 11, 549–562 (1999)

21. Sarma, A.R., Govindarajan, R.: An Efficient Web Cache Replacement Policy. In:
Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI), vol. 2913, pp.
12–22. Springer, Heidelberg (2003)

22. Chand, N., Joshi, R., Misra, M.: Data profit based cache replacement in mobile
environment. In: 2006 IFIP International Conference on Wireless and Optical Com-
munications Networks, p. 5 (2006)

23. Xu, J., Hu, Q., Lee, W.-C., Lee, D.L.: Performance evaluation of an optimal cache
replacement policy for wireless data dissemination. IEEE Transactions on Knowl-
edge and Data Engineering 16, 125–139 (2004)

24. Yin, L., Cao, G., Cai, Y.: A generalized target-driven cache replacement policy for
mobile environments. In: IEEE/IPSJ International Symposium on Applications
and the Internet, p. 14 (2003)

25. Kim, K., Park, D.: Least popularity-per-byte replacement algorithm for a proxy
cache. In: Intl. Conf. on Parallel and Distributed Systems, p. 0780 (2001)

26. Li, K., Nanya, T., Qu, W.: A minimal access cost-based multimedia object re-
placement algorithm. In: International Symposium on Parallel and Distributed
Processing, p. 275 (2007)

27. Triantafillou, P., Aekaterinidis, I.: Web proxy cache replacement: Do’s, don’ts,
and expectations. In: IEEE International Symposium on Network Computing and
Applications, p. 59 (2003)

28. Chen, Y., Li, Z.-Z., Wang, Z.-W.: A ga-based cache replacement policy. In: Pro-
ceedings of 2004 International Conference on Machine Learning and Cybernetics,
vol. 1, pp. 263–266 (August 2004)

29. El Aarag, H., Romano, S.: Improvement of the neural network proxy cache re-
placement strategy. In: Proceedings of the 2009 Spring Simulation Multiconference,
SpringSim 2009, Society for Computer Simulation International, San Diego (2009)

30. Bolot, J.-C., Hoschka, P.: Performance engineering of the world wide web: applica-
tion to dimensioning and cache design. Computer Networks and ISDN Systems 28,
1397–1405 (1996)

http://www.ircache.net/

pCloud: An Adaptive I/O Resource Allocation

Algorithm with Revenue Consideration
over Public Clouds

Jianzong Wang1,2, Yanjun Chen1, Daniel Gmach3, Changsheng Xie1,2,�

Jiguang Wan1,2, and Rui Hua1

1 School of Computer Science, Huazhong University of Science and Technology
2 Wuhan National Laboratory for Optoelectronics, Wuhan, China

3 HP Labs, Palo Alto, CA, USA
cs xie@mail.hust.edu.cn

Abstract. Cloud-based services are emerging as an economical and con-
venient alternative for clients who don’t want to acquire, maintain and
operate their own IT equipment. Instead, customers purchase virtual
machines (VMs) with certain Service Level Objectives (SLOs) to ob-
tain computational resources. Existing algorithms for memory and CPU
allocation are inadequate for I/O allocation, especially in clustered stor-
age infrastructures where storage is distributed across multiple storage
nodes. This paper focuses on: (1) dynamic SLO decomposition so VMs
receive proper I/O service in each distributed storage node, and (2) effi-
cient and robust local I/O scheduling strategy. To address these issues,
we present pCloud, an adaptive I/O resource allocation algorithm that
at runtime adjusts local SLOs. The local SLOs are generated for each
VM at each storage node based on access patterns. We also adopt dual
clocks in pCloud to allow automatic switching between two scheduling
strategies. When system capacity is sufficient, pCloud interweaves re-
quests in an earliest deadline first (EDF) manner. Otherwise resources
are allocated proportionate to their normalized revenues. The results of
our experiments suggest that pCloud is adaptive to various access pat-
terns without significant manual pre-settings while maximizing profits.

Keywords: Cloud Computing, Cloud Storage, I/O Scheduling, Service-
Level Objectives, Revenue Maximization.

1 Introduction

1.1 Background

The trend towards cloud services backed up by server virtualization has granted
greater significance to workload consolidation. Generally virtualized hosts run
multiple virtual machines (VMs) that share the resources of the underlying

� Corresponding author.

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 16–30, 2012.
� Springer-Verlag Berlin Heidelberg 2012

pCloud: An Adaptive I/O Resource Allocation Algorithm 17

physical hosts. Further, servers are grouped in pools sharing a centralized storage
system to ease data exchange. The complexity of I/O resource allocation and I/O
scheduling in virtualized cloud environments presents a new set of challenges.

Basically, although each VM has the illusion that it possesses dedicated phys-
ical resources, its performance is subject to I/O competition since the aggregate
throughput of a storage node is limited. Unlike CPU and memory allocation,
I/O allocation is vulnerable to the bursty nature of workloads and fluctuations
of available capacity. Such unpredictability requires I/O allocation algorithms to
accomplish two tasks: (1) providing robust isolation and (2) achieving efficient
I/O scheduling.

To address these issues, SLOs are selected to measure the provided service
quality. Existing algorithms [4, 6–8]can be divided into algorithms that provide
proportional allocation of I/O resources and algorithms that focus on providing
latency controls based on arrival curve. The general idea of proportional alloca-
tion of I/O resources is to divide the resources at a fine granularity in proportion
to client weight, and the SLOs are assigned in terms of weight. Some variants,
for example, [6], adopt more complicated tagging mechanisms to achieve other
control such as resource reservation and usage limits. The second group of algo-
rithms focuses on providing latency control based on arrival curve[4, 7, 8]. These
regulate the arrival rates of workloads with a leaky bucket (σ, ρ), where σ stands
for maximum burst size and ρ for average throughput. In addition, individual re-
quests are guaranteed a maximum response time provided the workload satisfies
stipulated constraints on burst size and arrival rate.

1.2 Motivation Example

In cloud-based distributed storage systems, however, the per-VM requirements
should be further segmented to indicate the local demands in the participating
nodes. Take the two VMs sketched in Table 1 for example. Assuming the first
four requests of each VM arrive at t=0ms and the remaining arrive at t=500ms.
All requests should be completed within 500ms. Then the global throughput
requirements of the two VMs are 8 IOPS (I/O per second) each. VM2 sends
alternating requests to the two nodes and consequently requires 4 IOPS in ei-
ther node, which sums up to its global requirements. However, since VM1 first
requests node 1 and subsequently node 2, either node needs to complete four
requests within 500ms. That corresponds to 8 IOPS for both nodes for VM1.
Consequently, the sum of local reserved throughput is 16 IOPS, suggesting that
more capacity should be provisioned to meet the requirements.

Table 1. Example: Decomposed SLO Demands Cautious Provision

VM Requests Flow

VM1 s1 s1 s1 s1 s2 s2 s2 s2
VM2 s1 s2 s1 s2 s1 s2 s1 s2

18 J. Wang et al.

Generally, a global SLO is accomplished in shares by all contributing storage
nodes rather than completed as a whole. How to configure the sub-SLOs, namely
the SLOs provided for a VM from a per-node point of view, is quite challenging.
Some existing algorithms assign fix sub-SLOs to VMs to guarantee the perfor-
mance. However, fixed decomposition of global SLOs may lead to undesirable
outcomes: (1) a time-consuming analysis of the characteristics of workloads be-
forehand to make proper sub-SLOs, (2) low utilization since VMs are not granted
priority based on their demand, and (3) difficulties in online management such
as data migration and strategy making due to inaccurate provisioning. Hence a
more flexible approach towards SLO decomposition which allocates resources on
demand is an urgent need.

Also, as computational resources are traded like utilities such as electricity
[3, 5, 10], market-driven characteristics need to be considered in for resource
scheduling especially when I/O contention is fierce and service of the most value
shall be considered first. Existing algorithms such as [4, 6–8] use either weight
or latency alone when evaluating overall priority. However, they fail to balance
revenue against provided service quality and decide for the service provider which
service could brings in more profits.

1.3 Contributions and Paper Organization

In this paper, we propose a novel algorithm for I/O allocation, pCloud, and make
the following contributions:

– (1) pCloud on-line models the access patterns of VMs and dynamically gener-
ates local SLO specifications in distributed nodes with little communication
cost.

– (2) It achieves high utilization by scheduling in an earliest deadline first
manner and VMs can use spare capacity without being penalized.

– (3) The local scheduler employs an alternative strategy to maximize rev-
enue when the system is under provisioned where requests are scheduled in
descending order of their normalized revenues.

The remainder of the paper is organized as follows. In Section 2 we introduce the
trade-offs in I/O scheduling and propose the scheduling goal of pCloud. Section 3
presents the pCloud algorithm in detail. A detailed performance evaluation using
diverse configurations is presented in Section 4. Section 5 presents related work
and compares pCloud with existing approaches. Finally, Section 6 concludes the
work and shows some directions for future work

2 Trade-offs and Scheduling Goals

To provide robust isolation, proportional allocation algorithms arrange the re-
quests in such a cautious way that all the VMs are serviced at a certain ratio

pCloud: An Adaptive I/O Resource Allocation Algorithm 19

within an arbitrary interval. Such fairness, however, fails to recognize the urgency
of requests, and lacks flexibility and may not achieve ideal capacity utilization.
On the other hand, latency sensitive algorithms work well by scheduling urgent
requests first when the system is well provisioned while insufficient provisioning
may lead to unfairness.

Service providers intend to make the utmost utilization of their infrastructures
to maximize profits. Besides services with fixed prices, public Infrastructure-as-
a-Service (IaaS) providers like Amazon EC2 [3] have implemented new types
of market-driven services. Spare capacity is gathered and provided for Amazon
EC2 Spot Instances. The price for a spot instance depends on the availability of
unused resources. Clients bid for spot instances and higher bids get favored. Some
recent work [5, 10] proposed the dynamic resource allocation for spot markets
in clouds. A placement strategy is made based on historical records such as
market price and VM lifecycle. Revenues can be maximized by solving certain
optimization problems. Balancing revenue against cost, we can more accurately
evaluate the priority of a request from a service provider’s aspect.

Our algorithm, pCloud, aims at utilizing the full capacity while avoiding the
undesirable outcomes of priority based scheduling on latency alone. First, it
employs a leaky bucket model to shape request flows. The arrival rates of each
flow are constrained by two leaky bucket parameters: the maximum burst size
and the average throughput. Additionally, it records the maximum allowable
latency and employs EDF scheduling when there are sufficient I/O resources.

Meanwhile, given the price paid for a VM, we balance the expected revenue
against the required service. We then schedule requests according to their nor-
malized revenue, i.e., the expected revenue per unit service, to maximize revenue
when demand exceeds supply.

Further, requests from one VM can be mapped to different storage nodes. In
this case, sub-SLOs, or local SLO assignment must be dynamically configured
in order to deal with the variability of workloads. pCloud explores a generic
and adaptive approach towards SLO decomposition that helps reduce redundant
provisioning.

3 Adaptive SLO Decomposition and Scheduling
Algorithm

Figure 1 shows the proposed architecture of pCloud. The coordinator is imple-
mented in hosts where multiple VMs may work simultaneously. The I/O requests
from VMs are analyzed by the coordinator and then mapped to different storage
nodes. At the coordinator, statistics are appended to each I/O request to help
individual storage nodes learn the access patterns. The arrival sequence and the
statistics are extracted and processed in individual nodes for Access Pattern
Modeling (APM). During this phase, the APM module analyzes the statistics
and decides (1) the portion of service the local node serves for that VM histor-
ically, and (2) the request rate from that VM to the node recently. Combining
the two factors, the APM module divides the global SLO into smaller pieces

20 J. Wang et al.

Requests
Complete

Dispatch to
Storage node

Virtual
Machine

IO
Requests

Virtual
Machine

Virtual
Machine

Virtual
Machine

Access
Pattern

Modeling

Tag
Assignment

Local
Scheduler

Fig. 1. The Proposed pCloud Architecture

that reflect the reserved service in each node. After that, the tagging module
tags requests according to their sub-SLOs. Finally, requests are queued, waiting
to be selected by the Local Scheduler.

3.1 Task Characteristics

The requests from an active VM form a flow when they are mapped to a storage
node. One VM may send requests to various nodes and form one flow in each
node. In the meanwhile, each node maintains multiple flows of requests that come
from diverse VMs and always chooses among the first requests of flows to service
(so that the sequence of requests from each VM would not be violated). The sub-
SLOs of a flow are represented by a triple (σ, ρ, δ), where σ denotes maximum
burst size, ρ average throughput and δ maximum allowable latency. Within an
arbitrary interval [T1, T2], a VM issues up to (σ + ρ ∗ (T2 − T1)) requests to the
node. The number of available tokens is initially σ and increases at the rate of
ρ. Every time a request arrives, it takes one token so the number of available
tokens decreases. It is always capped at σ to ensure that the available burst size
is limited. When tokens are used up the following requests are treated as if they
arrived at a later time to avoid some VMs consuming to much resources. After
being assigned tokens, requests start queuing, waiting to be scheduled.

We define three states of a flow: idle, pending, and backlogged. Idle means the
queue length is zero. Pending suggests there are requests in the queue to be sched-
uled; however, none of them has violated its deadline requirement. If a flow has at
least one request that missed its deadline, we assume it backlogged. By checking
the status of flows, we can infer the provisioning level for proper adjustment.

3.2 Access Pattern Modeling and SLO Decomposition

Each VMi is assigned a global SLO, and the SLO specifications are attached to
the request the first time a VM is activated on new nodes. After that, we have
to decide the service each VM receives locally. Local shares should be on-line

pCloud: An Adaptive I/O Resource Allocation Algorithm 21

adaptive to meet the variability of workloads. Take a particular VM, VMi, for
example. Let (σi, ρi, δi) denote the global SLO, and (σj

i , ρ
j
i , δ

j
i) the local SLO

for VMi in node nj . δ
j
i must equal δi in terms of worst-case latency. σj

i should
remain identical to σi since a larger burst allows more flexibility in dealing with
bursty workloads. Hence our goal is to decompose global average throughput ρi
properly.

We define:
σj
i = σi, ρ

j
i = μj

i ∗ ρi, δ
j
i = δi (1)

where μj
i is the portion of global SLO that is allocated locally in nj after de-

composition.
To figure out the exact value of μj

i , we further split it into two parts: historical

share and recent behavior. Let Hj
i denotes the historical share, Rj

i recent share,

and α the contribution factor Hj
i holds. Then we can model μj

i as a linear

combination of Hj
i and Rj

i as:

μj
i = α ∗Hj

i + (1− α) ∗Rj
i (2)

If Hi and Ri are precisely calculated for all nodes, namely:∑
j

Hj
i = 1,

∑
j

Rj
i = 1 (3)

we may get from (1) (2) (3):∑
j

μj
i =

∑
j

(α ∗Hj
i + (1 − α) ∗Rj

i)

= α ∗
∑
j

Hj
i + (1 − α) ∗Rj

i = 1
(4)

and that is to say, all shares in distributed nodes just add up.
There are several reasons why we make the local share μj

i a linear combination.
Firstly, compared to machine-learning based approaches such as neural networks,
it’s light-weighted and easy to implement, and even in the worst case, α can be
configured as a parameter on a per-VM basis. Secondly, as is proven above,
since all the shares distributed to the participating nodes add up to 1, a VM
will theoretically have all of its SLO met with great flexibility. Thirdly, this
function captures both long-term trends and recent behavior, which is essential
for prediction.

In order to make corresponding nodes aware of the service one VM deserves
locally, we let the coordinator keep a running count of two integers, Ct

i and
Dt

i , which denote the total number of completed and dispatched requests from
VMi as of time t respectively. These two integers are attached to each request.
In the storage end, the local scheduler in each node nj counts the number of
requests from VMi that have completed service locally, denoted by St

i . Hence
the historical share and recent share are computed as follows:

Hj
i =

Sj
i

Ct
i

(a), Rj
i =

1

Dt
i −Dj,t−1

i

(b) (5)

22 J. Wang et al.

Intuitively, equation (5)(a) means among all Ct
i completed requests, Sj

i are com-

pleted locally. And equation (5)(b) implies that VMi has issued Dt
i − Dj,t−1

i

requests since nj received the last request from VMi, and only the latest one is
mapped to this node.

With (1), (2) and (5), we finally get:

ρji = μj
i ∗ ρi = (α ∗ Sj

i

Ct
i

+ (1− α) ∗ 1

Dt
i −Dj,t−1

i

) ∗ ρi (6)

Practically, since both Hj
i and Rj

i are scaled down by factors that are less than

1, a VM may receive insufficient allocation locally if either Hj
i or Rj

i is small.

To avoid this, we set two thresholds for μj
i . We set μj

i to the lower threshold if

μj
i is below it. And if μj

i exceeds the upper threshold, we assume that VMi is
hot spotting in one node, and thus allow it a full SLO locally for the instant.
Finally, a large burst size σj

i that equals the global one would serve as a buffer
and smoothen the transition during the establishment of a reliable historical
share. Moreover, since the difference between Dt

i and Ct
i becomes insignificant

as the base increases, it is possible to forward Ct
i only instead of both.

3.3 Normalized Revenue

We evaluate the importance of requests by comparing the predicted revenues
with operating cost. Given a SLO and the corresponding bidding price, we dis-
tinguish the requests in terms of normalized revenue, i.e., the revenue gained per
unit of service. The detailed amount of service reserved for VMi is stipulated by
the global SLO (σi, ρi, δi). We examine an arbitrary interval [t, t + δi], and the
cost of throughput is:

GlobalCost =
σi + ρi ∗ δi

δi
=

σi

δi
+ ρi (7)

and μj
i of the throughput is now allocated for this node nj and the local cost for

performing is:

LocalCost = μj
i ∗GlobalCost =

μj
i ∗ σi

δi
+ μj

i ∗ ρi (8)

Given a bidding price Revenue, we get the normalized revenue:

NormRevenue =
Revenue

LocalCost
=

price

μj
i ∗ (σi + ρi ∗ δi)

(9)

This equation suggests the principles in revenue based allocation: loosened dead-
lines, less capacity requirements and higher bidding price lead to higher priority.

pCloud: An Adaptive I/O Resource Allocation Algorithm 23

3.4 Scheduling Framework

As with most existing algorithms [8, 4, 7, 6] we have discussed, pCloud uses
tagging to mark the priority of requests. Each request receives a start tag, a
finish tag and a priority tag when they arrive. Generally, requests that fall within
the SLO constraints are assigned start tag equal to their arrival time. Otherwise
they will be assigned larger time stamps to make the adjusted flow compliant
with SLO constraints. The finish tags are the sum of the corresponding start
tags and maximum allowable latency.

Table 2. Symbols Used and Their Description

Symbol Meaning

STagr Start tag of request r

FTagr Finish tag of request r

PTagr Priority tag of request r

MinSi The minimum start tag of requests in flow flowi

The high level description of pCloud is shown in Algorithm 1. A formal de-
scription of every component is presented in Algorithm 2. The related symbols
are listed in Table 2. The functions description and process flows of different
modules in Algorithm[1,2] are introduced as below:

APM: Using the Access Pattern Modeling presented earlier, the scheduler gen-
erates the new local throughput.

UpdateToken: Before a request is assigned tags, the number of available tokens
must be checked. Using the new local throughput parameter generated in APM,
we update the number of tokens.

AdjustTags: Two goals are achieved in tag adjustment phase. First, we detect
the flows that had utilized spare capacity. This is indicated by a minimum start
tag that lags current time. If there are such flows, their minimum start tags are
adjusted to current time, preventing them from being penalized in the future.
Second, if a request arrives in an idle flow, we grant it equal chances to be
scheduled. This is done by adjusting all the priority tags with an identical shift
so that the minimum priority tags of all the flows starts from current time.

AssignTags: pCloud algorithm assigns three tags to arriving requests, start
tags, finish tags, and priority tags. Normally, start tags record the arrival time
of requests. Otherwise, it will be delayed to a later time to align with the arrival
curve when no tokens are available. The finish tag is always the sum of start
time and maximum allowable latency, indicating the deadline of a request. The
priority tag is spaced by the normalized revenue or the difference in arrival time,
whichever is larger. This prevents bursty requests from having similar priority
tags.

24 J. Wang et al.

Algorithm 1. The Algorithm of pCloud

RequestArrival:

1: APM():
2: UpdateToken();
3: AdjustTags();
4: AssignTags();

RequestScheduling:

1: if more than p percent flows are backlogged then
2: Schedule the request with minimum priority tag PTag;
3: else
4: Schedule the request with minimum finish tag FTag;
5: Let the scheduled request be request r from flowi;
6: Adjust the PTags of requests from flowi, so that the minimum PTag=now
7: end if

Algorithm 2. The Components’ Description of pCloud Algorithm

APM():

1: Perform Access Pattern Modeling and generate token parameters;

UpdateToken():

1: Let Δtoken be the time difference between current time and last bucket update;
2: tokennum+=ρi*Δtoken;
3: if tokennum > δi then
4: tokennum=δi;
5: end if

AdjustTags():

1: Let request be r from flowk at time t;
2: for all for each pending flow with MinSi > t do
3: adjust all the STags and FTags from flowi so that MinSi equals now
4: end for
5: if flowk is idle then
6: Adjust the PTags from all flows so that the minimum PTag equals now
7: end if

AssignTags():

1: Let the request from flow k arrives at time t, Δtr between this request and the last
one;

2: if flowk is idle then
3: STag=PTag=t;
4: else
5: PTagr = PTagr−1 +max{Δtr,

1
NormRevenue

};
6: if tokennum < 1 then
7: STagr = STagr−1 +

1
ρi
;

8: else
9: STagr = STagr−1 +Δtr;
10: end if
11: end if
12: FTagr = STagr + δi;
13: tokennum-=1;

pCloud: An Adaptive I/O Resource Allocation Algorithm 25

ScheduleRequest: The scheduling policy depends on the provisioning level.
If the portion of flows that are currently backlogged exceeds a threshold, we
infer that the capacity runs insufficient. The scheduler will then try to schedule
the most valuable requests according to their priority tags. EDF scheduling is
adopted otherwise.

4 Experiment and Analysis

4.1 Testbed Setup

In this section, we present the results of pCloud implemented in a distributed
storage system. We implemented pCloud in an event-driven system simulator
DiskSim[1]. The system simulator simulates the behavior of all pCloud compo-
nents at higher level. At device level, the simulator schedules requests and issues
them to DiskSim modules to obtain I/O access details. We chose a configuration
with two devices representing two storage nodes. The first is a RAID-0 array
backed by ten Seagate Cheetah disks and the second by four Cheetah disks. We
evaluated the performance with two traces, OLTP and WebSearch, both from
Umass Trace Repository[2]. The traces include anonymous I/O access records
obtained from real services. OLTP and WebSearch traces have several parallel
units running, 19 and 3, respectively. Each unit can be regarded as a process
running in a VM. To simulate the access to distributed storages, we manually
partition the processes in two groups and map them to either node 1 or node 2.
For the OLTP trace, the first unit is mapped to node 1 and the remaining 18
to node 2. For WebSearch trace, the first 2 units are dispatched to node 1, and
the remaining one accesses node 2. Since the original traces are big, we extract
a section (around 90 seconds) of the traces for better clarity.

The global arrival rates of both traces are shown in Figure 2. Both curves
are spiky and the global SLOs assigned to them are (50, 150, 300) and (70,
150, 1000). The average size of requests is 16KB for WebSearch and 6KB for
OLTP. The arrival rates of decomposed traces in the two nodes are presented
in Fig. 3(a) and (b). From the figures we can see that OLTP keeps a small
amount of requests mapped to node 1 and the share of service allocated in node

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

Time(s)

Ar
riv

al
Ra

te(
IO

PS
)

OLTP
WebSearch

Fig. 2. The Global Arrival Curves

26 J. Wang et al.

2 increases over time. For the WebSearch trace, the two flows in both nodes
have similar arrival curves while the global SLO is roughly divided in a ratio of
2:1. Using such configurations, we simulated an over provisioned environment in
node 1 and a thin provisioned one in node 2 to illustrate the properties of pCloud
in both provision levels. We also implemented FCFS(First Come First Serve)
and pClock [4], an EDF algorithm with excellent performance, as comparison
to demonstrate the strengths of our pCloud. For simplicity, we assume all the
storage nodes apply the same alpha values in APM.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

Time(s)

Ar
riv

al
Ra

te(
IO

PS
)

OLTP
WebSearch

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

200

Time(s)

Ar
riv

al
Ra

te(
IO

PS
)

OLTP
WebSearch

(a) (b)

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

200

Time(s)

Al
loc

ate
d T

hro
ug

hp
ut(

IO
PS

)

Node 1

Node 2

Aggregate

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

Time(s)

Al
loc

ate
d T

hro
ug

hp
ut(

IO
PS

)

Node 1
Node 2
Aggregate

(c) (d)

Fig. 3. Arrival rates and SLO decomposition: (a) Arrival rates in node 1; (b) Arrival
rates in node 2; (c)Local SLOs for OLTP; (d)Local SLOs for WebSearch

4.2 SLO Decomposition

First we evaluate the effectiveness of Access Pattern Modeling. We set α to 0.80,
the lower threshold 0.2 and the upper one 0.75, and Fig. 3(c) and (d) present
the sub-SLOs assigned by APM modules in each node.

Initially, the sub-SLOs in both figures are inaccurate because the historical
records are not well-established. First we analyze the results of OLTP, as shown
in Fig. 3(c). Although OLTP is assigned a higher sub-SLO in node 1 which
decreases over time and finally reaches a proper level only at the end of the trace,
the sub-SLO assigned in node 2 never fails to meet the demands in node 2. Since
t=62s, the sub-SLO assigned to OLTP in node 2 takes a leap and becomes equal
to the global SLO for OLTP, because the calculated share exceeds the threshold
and thus node 2 is assumed to be a hot node for OLTP. The aggregate SLO
assigned for OLTP exceeds the global requirements since then, but the extra
portion is limited. For the WebSearch trace as show in Fig. 3(d), the sub-SLO
curves are relatively steady because the service is divided in a ratio of 2:1 roughly,
as can be inferred from Fig. 3(a) and 3(b). In general, both the curves exhibit
the trends of real access behaviors as statistics accumulate and adapt quickly.

pCloud: An Adaptive I/O Resource Allocation Algorithm 27

We then altered the value of α , the two thresholds and the results complied
with the underlying principles: (1) The curves of sub-SLOs get smoother as alpha
increases because the bursty nature is deeper masked by a smaller factor. (2)
The SLO assignment is more cautious with higher upper threshold, because the
conditions in which a local node is granted with the full global SLO are limited.
(3) With a smaller lower threshold, fewer services are reserved in each node and
the minimum share is always the lower bound.

When α is set to 0.80, the upper threshold to 0.8 and the lower threshold to
0.2, the results are similar to this one but the over allocated parts are mostly
eliminated due to more cautious decisions. Comparing the sub-SLOs generated
by Access Pattern Modeling with the actual arrival rates, we may conclude that
APM can adaptively adjust the sub-SLO assignment in each node in accordance
with the requirements.

4.3 Latency Control

To evaluate the performance of latency control, we implemented pClock [4] and
FCFS as comparison. Since pClock requires manual settings regarding sub-SLOs,
we referred to the actual arrival rates and the results of SLO decomposition
presented previously (Fig. 3). We then assigned SLOs as presented in Table 3.
Fig. 4 show the latency observed by both traces in each node. The bidding prices
here for pCloud are (4,2);

Table 3. The Configurations of pClock

VM NODE Sub-SLO VM NODE Sub-SLO

OLTP Node 1 50,30,300 WebSearch Node 1 70,300,1000

OLTP Node 2 50,120,300 WebSearch Node 2 70,150,1000

We can observe that there is little different between the performance of the
three algorithms in over-provisioned environment. However, in thin-provisioned
environment, pCloud demonstrates the best performance among the three. This
suggests that pCloud is capable of achieving high utilization level by adopting
EDF scheduling. Moreover, pCloud achieves such utilization in an intelligent
way that global SLOs are adaptively split into smaller pieces and the demands
in each node are met.

4.4 Revenue Based Allocation

The intuition behind the scheduling strategies in under provisioned environments
is to serve the requests in descending order of their normalized revenue. We used
the same configurations for pClock as we mentioned in the previous section (Ta-
ble 3) for consistency. Further, as FCFS and pClock lack mechanisms regarding
revenue-based priority, the results of service remain unchanged with different
bidding prices.

28 J. Wang et al.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

Time(s)

L
a

te
n

cy
(m

s)

OLTP with FCFS

OLTP with pClock

OLTP with pCloud

WebSearch with FCFS

WebSearch with pClock

WebSearch with pCloud

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

Time(s)

L
a

te
n

cy
(m

s)

OLTP with FCFS
OLTP with pClock
OLTP with pCloud
WebSearch with FCFS
WebSearch with pClock
WebSearch with pCloud

(a) (b)

Fig. 4. Latency comparison:(a) Node 1(over-provisioned);(b) Node 2(thin-provisioned)

Fig. 4 shows the latencies observed by OLTP and WebSearch with three
scheduling algorithms implemented in node 2, respectively. As shown in the
figures, for pClock and FCFS, the two flows soon became backlogged after they
started and both suffered severe latencies. The system began to catch up with
the requests at t=30s where the arrival rates of both VMs had a significant drop.
At t=50s, all the backlogged requests were completed and the latencies for re-
quests were low. However, as the arrival rates of both flows rose again, latencies
fluctuated when the capacity were merely able to finish most requests in time.

When using pCloud, WebSearch never missed its deadline while OLTP ob-
served only a tiny increase in the latencies from t=20s to t=30s. Within this
backlogged period, pCloud detected that WebSearch was more profitable and
thus granted WebSearch more service. Although the continuous backlogged pe-
riod lasted for only about 10s, the difference between the performance of pCloud
and pClock is enormous. Further, we altered the bidding prices to (1, 3), (2, 2)
and (3, 2), respectively. For better clarity, we take the results of bidding prices
(1,3) and (4, 2) for example, as shown in Fig. 5. Apparently, the latencies of
requests from OLTP were reduced and WebSearch was less favored when OLTP
offered a higher bid.

We estimate the aggregate revenue as price multiplied by the percent of re-
quests that meet their deadlines. Table 4 presents the revenues for both VMs
in node 2 with the three scheduling algorithms. We omit the revenues in node
1 because that node is over provisioned and the results for all three algorithms
are almost identical. The results from Table 3 suggest that pCloud can increase

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

Time(s)

La
te

nc
y(

m
s)

OLTP with price (1,3)
WebSearch with price (1,3)
OLTP with price (4,2)
WebSearch with price (4,2)

Fig. 5. Latency Comparison of pCloud with Different Bidding Prices

pCloud: An Adaptive I/O Resource Allocation Algorithm 29

Table 4. Completion Rates and Total Revenue

Pricing Revenue Pricing Revenue

VM FCFS pClock pCloud VM FCFS pClock pCloud

(1, 3) 2.656 2.697 2.705 (3, 2) 2.996 3.257 3.323

(2, 2) 2.471 2.632 2.675 (4, 2) 3.522 3.883 3.972

revenues by up to 10%. Given that this node is under-provisioned for only a
small fraction of time(10%), such improvement is very impressive.

5 Related Works

Existing algorithms for I/O resource allocation involves several scenarios. Some
works[5, 10] analyzed the market-driven characteristics of Amazon EC2 Spot
Markets [3] from the cloud service provider’s point of view. The price and de-
mand curves of different VM types are predicted by analyzing historical records.
The predicted price and demand curves are then used to solve optimization
problems so that total revenue is maximized. PESTO [9], from a different as-
pect, models both workloads and storage systems to achieve ideal placement of
workloads and load balancing. Some algorithms, including Avatar[8], mClock[6],
pClock[4], Nested QoS[7], etc, aims at providing robust scheduling mechanisms
and dealing with storage-specific issues on a lower level. mClock[4] provides pro-
portional allocation subject to a minimum reservation for each VM. Although
VMs are isolated, the proportional allocation algorithms fail to regulate the
behavior of competition and cannot achieve full utilization. More importantly,
the local settings for each VM in the distributed version of mClock are preset
and fixed, and can’t adapt to the variability of workloads. pClock[4] and Nested
QoS[7] are latency sensitive algorithms that schedule requests based on latency
requirements. pClock achieves high utilization and VMs can use spare capacity
without being penalized. Nested QoS controls and sets several levels of SLOs
for a VM to reduce the capacity requirements of workloads. The highest level is
scheduled in an EDF manner, and requests in the lower levels are scheduled with
best effort whenever there is spare capacity. The drawback of this algorithm is
that the sequence of requests is altered so that it may result in storage-specific
issues such as inconsistency. Moreover, both of these two latency sensitive algo-
rithms are not implemented in distributed environments and overlook the market
factors in scheduling. Compared with the algorithms above, pCloud is the first
light-weighted and adaptive distributed algorithm for I/O resource allocation.

6 Conclusions and Future Works

This work presents a dynamic I/O resource allocation algorithm, pCloud over
cloud environment. The SLO of a VM is expressed as a maximum burst size, an
average throughput and a worst-case allowable latency. When a VM is assigned
a global SLO, its requests may be mapped to different storage nodes when the

30 J. Wang et al.

service is providing. A key feature of pCloud is that it dynamically decomposes
the global SLO for a VM based on Access Pattern Modeling into smaller pieces
that meet the demands in each node. pCloud also adopts auto switching between
two scheduling strategies under different provision levels. We have demonstrated
that pCloud achieves high utilization in over provisioned systems and maximizes
revenue even under thin provisioned environment. Our future works include ex-
ploring how application-level characteristics interact with SLO assignment and
how to employ similar modeling in other scenarios such as load balancing in
clouds, edibility in scheduling and mostly features latency control.

Acknowledgement. We thank the anonymous reviewers of GPC for their feed-
back on previous versions of this paper.This Project supported by the National
Basic Research Program (973) of China (No. 2011CB302303), the National Nat-
ural Science Foundation of China (No. 60933002), the Natural Science Foun-
dation of Hubei province (NO. 2010CDB01605), the HUST Fund under Grant
(Nos.2011QN053 and 2011QN032), the Fundamental Research Funds for the
Central Universities.

References

1. The disksim simulation environment (version 4.0),
http://www.pdl.cmu.edu/DiskSim/

2. Storage Performance Council (Umass Trace Repository),
http://traces.cs.umass.edu/index.php/Storage/

3. Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/
4. Gulati, A., Merchant, A., Varman, P.: pClock: an arrival curve based approach for

QoS in shared storage systems. In: International Conference on Measurement and
Modeling of Computer Systems, pp. 13–24 (2007)

5. Zhang, Q., Zhu, Q., Boutaba, R.: Dynamic resource allocation for spot markets in
cloud computing environments. In: UCC 2011 (2011)

6. Gulati, A., Merchant, A., Varman, P.: mClock: Handling throughput variability
for hypervisor IO scheduling. In: 9th USENIX Symposium on Operating Systems
Design and Implementation (October 2010)

7. Wang, H., Varman, P.: Nested QoS: providing flexible performance in shared IO
environment. In: USENIX 3rd Workshop on IO Virtualization (June 2011)

8. Zhang, J., Sivasubramaniam, A., Wang, Q., Riska, A., Riedel, E.: Storage perfor-
mance virtualilzation via throughput and latency control. ACM Transactions on
Storage, TOS (August 2006)

9. Gulati, A., Shanmuganathan, G., Ahmad, I., Waldspurger, C.A., Uysal, M.: Pesto:
online storage performance management in virtualized datacenters. In: SOCC 2011
(2011)

10. Zhang, Q., Grses, E., Boutaba, R., Xiao, J.: Dynamic resource allocation for spot
markets in clouds. In: Hot-ICE 2011 (2011)

http://www.pdl.cmu.edu/DiskSim/
http://traces.cs.umass.edu/index.php/Storage/
http://aws.amazon.com/ec2/

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 31–45, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Gossip-Based Mutual Exclusion Algorithm
for Cloud Environments∗

JongBeom Lim1, Kwang-Sik Chung2, Sung-Ho Chin3, and Heon-Chang Yu1,∗∗

1 Department of Computer Science Education, Korea University

2 Department of Computer Science, Korea National Open University
3 Software Platform Laboratory, CTO Division, LG Electronics, Seoul, Korea

{jblim,yuhc}@korea.ac.kr, kchung0825@knou.ac.kr,
sunghochin@gmail.com

Abstract. Mutual exclusion is a salient feature in distributed computing
systems whereby concurrent access of processors to a shared resource is granted
in a mutually exclusive manner. The primary aim of this study is to investigate
the use of a gossip protocol to a mutual exclusion algorithm to cope with
scalability and fault-tolerance problems which are fundamental issues for cloud
computing systems. In this paper we present a gossip-based mutual exclusion
algorithm for cloud computing systems with dynamic membership behavior.
The correctness proof of the algorithm is provided. The amortized message
complexity of our algorithm is O(n), where n is the number of nodes.
Simulation results show that our proposed algorithm is attractive regarding
dynamic membership behavior.

Keywords: Mutual Exclusion, Gossip-based Algorithm, Cloud Computing.

1 Introduction

Mutual exclusion algorithms are used in distributed systems ensuring no simultaneous
access of shared resources or data, by pieces of program code also known as critical
sections (CSs), is granted. Many researchers have suggested ways of implementing
mutual exclusion algorithms in distributed systems [1, 2, 3, 4, 5, 6, 7, 8, 9. 10]. These
studies can be categorized into three basic approaches for distributed mutual
exclusion algorithms: 1) Token-based approach, 2) Timestamp-based approach and 3)
Quorum-based approach.

In the token-based mutual exclusion algorithms [1, 2, 3, 4], executing the critical
section can be done by a process that holds the unique token that cannot be presented
more than one process at a given time. Timestamp-based mutual exclusion algorithms

∗ This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (No. 2011-0026210).

∗∗ Corresponding author.

32 J. Lim et al.

[5, 6, 7, 8] require some number of message exchanging rounds among processes to
decide which process can be in the critical section next. In the quorum-based
approach [3, 9, 10], any process wishing to execute the critical section requests
consent from a subset of processes called a quorum. Because of intersection and
minimality properties, at least one process receives more than one request for
permission for concurrent requests; the process gives a response to one of the
requesting processes to make sure only one process can execute the critical section at
any time.

More recently, a group mutual exclusion (GME) problem, an extension of the basic
mutual exclusion problem, has been proposed [11]. In the group mutual exclusion
problem, every critical section is associated with a particular type or a group.
Processes belonging to the same group can execute a critical section concurrently,
whereas processes belonging to the different groups must execute the critical section
in a mutually exclusive way.

A system that mutual exclusion algorithms can be used in is the cloud computing
system where constituent nodes can be easily added to or removed from with dynamic
behavior due to loosely-coupled environments. However, although much research for
the mutual exclusion problem in recent years mainly focuses on reducing message
complexity, little attention has been paid to the aforementioned dynamic behavior.
Most of the studies assumed that the system does not change anymore without
considering node failures and joining which are vital aspects in cloud computing
environments that should not be dismissed.

Recently, gossip-based algorithms have received much attention due to its inherent
scalable and fault-tolerant properties, which offer additional benefits in distributed
systems [12]. Correctness of a gossip-based protocol is presented in [13, 14]. In
gossip-based algorithms, each node maintains some number of neighbors called a
partial view. With this partial view, at each cycle (round), every node in the system
selects f (fanout) number of nodes at random and then communicates using one of the
following ways: 1) Push, 2) Pull, and 3) Push-pull mode. Gossip-based algorithms
guarantee message delivery to all nodes with high probability and their variation can
be found in [15, 16, 17, 18, 19]. Applications of gossip-based algorithms include
message dissemination, failure detection services, data aggregation etc.

In this paper, we take the timestamp-based approach for the basic mutual exclusion
problem based on the gossip-based algorithm. We conjecture that using the gossip-
based algorithm for the basic mutual exclusion problem is a desired approach to deal
with scalability and dynamic behavior in cloud computing systems. Having partial
view in the gossip-based algorithm is the essential key to achieve the scalability issue.
In other words, each node does not have to maintain all the nodes in the system, but
the small number of nodes.

The rest of the paper is organized as follows. We present the system model and
formally describe the mutual exclusion problem in Section 2. Section 3 provides our
gossip-based mutual exclusion algorithm with proof. Simulation results for the
algorithm and their interpretation are given in Section 4; this section also analyzes the
message complexity. Finally, Section 5 gives our conclusions.

 A Gossip-Based Mutual Exclusion Algorithm for Cloud Environments 33

2 Model and Problem Specifications

2.1 System Model

We assume that the cloud computing infrastructure consists of numerous nodes of
resources, and individual nodes process arbitrary programs to achieve a common goal.
Because of the absence of shared memory, each process or node should communicate
with other nodes only by message passing through a set of channels. In addition, we
assume that all channels are reliable and FIFO (first-in, first-out), meaning all
messages within a channel are received in the order they are sent to. And the message
delay is bounded. There is no global clock. However, it is assumed that each node
synchronizes its time by gossiping with other nodes. This approach has been justified
by [20]. Furthermore, the communication model is asynchronous. In other words, a
sender does not have to wait for acknowledgements of receivers (non-blocking).
When we consider the dynamic scenario regarding node failures, the fail-stop model
is conceived, that is, other processes can learn about whether processes are failed.

2.2 Specifications of the Problem

Mutual Exclusion is a fundamental problem in distributed systems; it is not an
exception in the cloud computing systems. With a mutual exclusion algorithm, shared
resources or data can be accessed in a consistent way, allowing only one process to
execute the critical section (CS). Because there is no shared memory, shared variables
such as semaphores cannot be used to implement a mutual exclusion algorithm. In
this regard, message passing is the only way to deal with the mutual exclusion
problem satisfying following properties:

• Safety: Two or more processes are not allowed to execute the critical section
simultaneously; only one process can execute the critical section at any given time.

• Liveness: Every request for the critical section is eventually granted in the finite
time.

• Fairness: Concurrent requests for the critical section must be granted in the order
they were sent to.

Formal descriptions of above three properties are as follows (It is noted that in order
to help more intuitive understand, the properties are expressed from a process point of
view):

 ∀i,j ∃Pi,Pj ¬∃tu [Pi ≠ Pj : i, j ∈ {1 … n } ⇒ cs(Pi, tu) ^ cs(Pj, tu)] (safety)

where cs(Pi, tu) means that process Pi is executing the critical section at time tu.

 ∀Pi,tu ∃,tv [req_cs(Pi, tu) ⇒ cs(Pi, tv) ^ tu < tv] (liveness)

where req_cs(Pi, tu) means that process Pi has requested the critical section at time tu.

34 J. Lim et al.

∀i,j ∃Pi,Pj,tu,tv ¬∃tw,tx [req_cs(Pi, tu) ^ req_cs(Pj, tv) ^ (tu < tv) ⇒ cs(Pi, tw) ^ cs(Pj, tx)

^ (tw > tx)] (fairness)

It is noted that that the safety property must be satisfied, while the other two
properties should be satisfied.

2.3 Performance Metrics

Traditionally, the following metrics have been used to measure the performance of
mutual exclusion algorithms:

• Message complexity: The number of messages required to execute the critical
section by a process.

• Synchronization delay: The time elapsed between the latest critical section exit
and the entrance of the critical section for the current request.

• Response time: The time elapsed between the request message of a process sent
out and the exit of the process from the critical section.

Furthermore, a low and high load performance, the best and the worst case
performance could be considered for mutual exclusion algorithms

3 Gossip-Based Mutual Exclusion Algorithm

In this section, we first review the basic gossip-based protocol based on [21] to
describe our gossip-based mutual exclusion algorithm. The mutual exclusion
algorithm proposed in this section can be viewed as an extension of the gossip-based
algorithm to support the mutual exclusion functionality.

3.1 Review of the Gossip-Based Algorithm

The basic gossip-based algorithm using the push-pull mode is illustrated in Figure 1.
There are two different kinds of threads in each node: active and passive. At each
cycle (round), an active thread selects a neighbor at random and sends a message. The
active thread then waits for the message from the receiver. Upon receiving
the message from the neighbor, the active thread updates local information with the
received message and its own information. A passive thread waits for messages sent
by active threads and replies to the senders. Afterwards, the passive thread updates its
local information with the received message from the sender accordingly.

The function getNeighbor() returns a random neighbor identifier from its partial
view, not from the entire set of nodes in our algorithm. It is noted that according to
the system parameter f (fanout), getNeighbor() returns f number of neighbor
identifiers. Additionally, before the gossiping is initiated, the partial view of nodes is
constructed by the middleware called peer sampling service [21], which returns a
uniform random sample from the entire set of nodes in the system.

 A Gossip-Based Mutual Exclusion Algorithm for Cloud Environments 35

3.2 Basic Idea

The simplest way to solve the mutual exclusion problem is to use the centralized
mutual exclusion algorithm. However, it violates our assumptions in two aspects. In
the centralized algorithm, the one node (i.e., coordinator) plays a special role that
others cannot do. For instance, any node wishing to execute the critical section
requests to the coordinator and the coordinator decide which node to be executing the
critical section. In our context, nodes are functionally equal to each other.

Another violation is that fairness could not always be achieved. For example, let’s
assume that one of nodes is designated as the coordinator for the critical section. In
this case, the coordinator permits a node to be executing the critical section if the
queue is empty. This signifies that the coordinator permits a node to execute the
critical section for requests in the order that the coordinator receives, not requests are
sent to. As far as the communication delay is concerned, the probability violating
fairness exists. Furthermore, when the coordinator fails, the mutual exclusion
algorithm is not functional (i.e., Single point of failure).

Hence, we take the distributed approach with the gossip-based algorithm. To let a
process decide when it can execute the critical section, we use the piggybacking
mechanism by which a node adds additional information of neighbors to the message
during gossiping. By using the piggybacking mechanism, any node wishing to
execute the critical section can eventually decide when the process can execute the
critical section without the coordinator.

In the previous researches using the distributed approach, however, they assumed
that the number of nodes is static. Few studies have focused on the dynamic behavior
such as adding and removing nodes while request operations are ongoing, which is that
we want to deal with. In the dynamic scenario, it is assumed that each node can learn
about newly added and removed nodes by the middleware before each cycle begins.

3.3 Proposed Algorithm

The gossip-based mutual exclusion algorithm is summarized in Figure 2. We explain
only our extensions to the gossip algorithm. We assume that each process has a
unique identifier and can be indexed by from 1 to n, where n is the number of
processes (nodes) in the system. Henceforth, the terms a node and a process are used
interchangeably.

do at each cycle (round)

 neighbor ൄ getNeighbor ()

 sendMessage (messageP, neighbor)

 messageQ ൄ receiveMessage (neighbor)

 updateLocalInformation (messageQ)

(a) Active thread

do forever

 messageQ ൄ receiveMessage (*)

 sendMessage (messageP, sender)

updateLocalInformation (messageQ)

(b) Passive thread

Fig. 1. Push-pull based gossip algorithm

36 J. Lim et al.

 Initial local state for process Pi

− array of request tuple RTi[j] = null, ∀j ∈ {1 … n}

− extant request ERi = null

− array of extant request tuple ERTi[j] = null, ∀j ∈ {1 … n}

 Request for CS: Process Pi executes the following for the Critical Section at a certain cycle:

1. IF (ERi is null) THEN ERi.timestamp = LCi, ERi.requester = i;

2. ELSE IF ERi.timestamp < LCi THEN RTi[i].timestamp = LCi; RTi[i].requester = i; RTi[i].wish =
true;

3. ELSE RTi[ERi.requester] = ERi, ERi.timestamp = LCi, ERi.requester = i

 During gossiping: Process Pi executes the followings during gossiping with target Pj (where j ≠ i):

1. Updating extant request:

(a) IF (ERi.timestamp < ERj.timestamp) THEN ERj = ERi;

(b) ELSE ERi = ERj;

2. Updating extant request tuple:

(a) ERTi[i] = ERi;

(b) ERTj[j] = ERj;

(c) Update each element of ERTi[k] and ERTj[k], where ∀k ∈ {1 … n}, according to timestamp

3. Updating request tuple:

(a) Update each element of RTi[k] and RTj[k], where ∀k ∈ {1 … n}, according to timestamp

4. Deciding for the critical section:

(a) IF (i == ERi.requester) THEN count the number of elements in ERTi[j],

where ∀j ∈ {1 … n} and ERTi[j].requester == i

(b) IF (count == network.size()) THEN process Pi execute the critical section

 Relinquishing the critical section: Process Pi finishes executing the critical section

1. Removing from queue:

(a) Nullify both ERi and ERTi[j], where ∀j ∈ {1 … n}

(b) Set RTi[i].timestamp = (current) LCi; RTi[i].wish = false;

2. Finding the next process for the critical section:

(a) Find the element of j that has the smallest timestamp in RTi (if exist) whose wish value is true

(b) Set ERi = RTi[j];

Fig. 2. The gossip-based mutual exclusion algorithm

Each process Pi maintains the following data structures:

• RTi[1 : n] : Request tuple array for Pi. This data structure consists of three elements
for each array: requester, timestamp and wish. This request tuple acts as a request
queue. It is noted that for the relinquish step, wish parameter is checked to select
the next process for the critical section.

• ERi : Extant (ongoing) request that has the highest priority of the request tuple
array. For the sake of clarity, extant request is taken apart from request tuple. This
structure includes requester and timestamp.

 A Gossip-Based Mutual Exclusion Algorithm for Cloud Environments 37

• ERTi[1 : n] : Extant request tuple array for Pi. This data structure is necessary for
the local decision to execute the critical section. The elements for each array are
same as extant request.

We describe our extensions as follows:

1. If a process Pi wants to execute the critical section, ERi is checked. When ERi is
null, set ERi.timestamp to LCi (clock for Pi) and ERi.requester to i. When ERi
contains some values, check the timestamp. If ERi.timestamp is less than LCi
(ERi.requester has higher priority than Pi), Pi puts its request to RTi[i]. Otherwise
(Pi has higher priority than that of ERi.requester), Pi puts ERi to RTi[ERi.requester]
and ERi is set for Pi.

2. During gossiping with randomly chosen target Pj from the partial view, following
four steps are performed.
(a) Updating extant request: Compare timestamp values of the two extant requests

and then update the elements of ERi or ERj one by one with the one that has a
higher priority whose wish value of its request tuple is true.

(b) Update extant request tuples with updated extant request values. After that,
update each of the elements of ERTi and ERTj according to timestamp.

(c) Update request tuples of each other (i.e., RTi and RTj) according to timestamp.
(d) Deciding for the critical section: If extant request is for Pi, Pi counts the number

of elements in ERTi[j] whose requester value is equal to i. If the count value is
the same as the total number of processes, process Pi can execute the critical
section.

3. To relinquish the critical section, Pi nullifies ERi and ERTi and set RTi[i].wish to
false and RTi[i].timestamp to LCi. Finally, Pi set ERi to RTi[j] where j’s element has
the smallest timestamp in RTi among elements that wish value is true.

3.4 Proof of the Algorithm

We formally prove the gossip-based mutual exclusion algorithm, showing the
satisfaction of the three properties: safety, fairness, and liveness.

Theorem 1. The gossip-based mutual exclusion algorithm achieves mutual exclusion.

Proof. The proof is by contradiction. Suppose two processes Pi and Pj are executing
the critical section concurrently. This means that both Pi’s ERT and Pj’s ERT are full
with their own requests at some time. Formally,

 ∀i,j ∃ Pi,Pj,tu [cs(Pi, tu) ^ cs(Pj, tu) ⇒ R1(i, tu) ^ R1(j, tu)]

where R1(i, tu) is the relation that indicates all requester element values of extant
request tuple (ERT) for Pi are i at time tu.

Suppose that Pi’s request has a higher priority than that of Pj. This implies that
when Pi’s request is in progress, Pj can execute the critical section while Pj’s ERT is
full with Pj’s request. Formally,

38 J. Lim et al.

 ∀i,j ∃ Pi,Pj,tv,tw [req_cs(Pi, tv) ^ req_cs(Pj, tw) ^ tv < tw]

Because Pj’s request has a higher timestamp value than that of Pi, Pi handles Pj’s
request by updating its RT rather than ER containing its own request. Formally,

 ∀i,tu ∃Pi ¬∃j [cs(Pi, tu) ⇒ R1(j, tu)]

This means that the process Pj does not have extant request tuple (ERT) satisfying R1
at tu. Therefore, Pj cannot execute the critical section while Pi is executing the critical
section. Formally,

 ∀i,j ∃ Pi,tu ¬∃ Pj [cs(Pi, tu) ⇒ cs(Pj, tu)]

This is a contradiction. □

Therefore, the gossip-based mutual exclusion algorithm achieves mutual exclusion.

Theorem 2. The gossip-based mutual exclusion algorithm is fair.

Proof. The proof is by contradiction. Suppose that Pi’s request has a smaller
timestamp value than that of Pj’s request and Pj is able to execute the critical section
before Pi. Formally,

 ∀i,j ∃ Pi,Pj,tu,tv,tw,tx [req_cs(Pi, tu) ^ req_cs(Pj, tv) ^ tu < tv

⇒ cs(Pi, tw) ^ cs(Pj, tx) ^ tw > tx]

Suppose that Pj’s ERT is full with its own request before Pi executes the critical section
after tv and before tw. Formally,

 ∀i,j ∃ tv, tw, tx [R2(i, tx) ^ R1(j, tx) ^ (tv < tx < tw)]

where R2(i, tx) is a relation that indicates not all requester element values of extant
request tuple (ERT) for Pi are i at time tx.

However, ERT is updated with the request that has the highest priority among
requests whose wish value is true. Because both of requests’ wish is true and
timestamp of Pi’s request has higher priority, Pi puts Pj’s request into RT, not ER.
Likewise, Pj puts its own request into RT and Pi’s request into ER. After some number
of gossip cycles, Pi’s ERT is full with its own request after tv and before tw. Formally,

 ∀i ∃ tv, tw, tx ¬∃ j [R1(i, tx) ^ R1(j, tx) ^ (tv < tx < tw)]

Subsequently, Pi executes the critical section and Pi relinquishes the critical section.
Afterwards, Pi puts Pj’s request into the ER. Since Pi’s wish value of the request tuple
is false after Pi relinquishes the critical section, Pj eventually can execute the critical
section after some number of gossip cycles. Formally,

 ∀i,j ∃ Pi,Pj,tw,tx [cs(Pi, tw) ^ cs(Pj, tx) ^ tw < tx]

This is a contradiction. □

Hence, the gossip-based mutual exclusion algorithm is fair.

 A Gossip-Based Mutual Exclusion Algorithm for Cloud Environments 39

Theorem 3. The gossip-based mutual exclusion algorithm ensures the liveness
property.
Proof. We show that req_cs(Pi, tu) implies that there exists tv such that cs(Pi, tv),
where tu < tv by induction.

Basis: There is only one request for the critical section.
If only a process Pi wants to execute the critical section, Pi simply puts its own

request to ER. After the requisite number of gossip cycles for the critical section, Pi’s
ERT is full with its own request. This means that Pi can execute the critical section in
the finite time.

Induction Step (1): There are two distinct requests for the critical section at some
time.

When we consider the induction step (1), suppose that Pi and Pj have requested the
critical section before one of the two processes gets the consent from all of the other
processes. If Pi’s request has the higher priority than that of Pj’s, Pi’s request gets
placed on ER. After the requisite number of gossip cycles, Pi can execute the critical
section. Then, ERT is gradually filled with Pj’s request no sooner than Pi relinquishes
the critical section. Lastly, Pj can execute the critical section. This means that, in this
induction step, two distinct requests are eventually granted.

Induction Step (2): There are more than two distinct requests for the critical section
at some time.

In induction step (2), two processes that have the higher priority than others can
execute and relinquish the critical section in a mutually exclusive manner like in the
induction step (1). After that, the request of a process that has the highest priority
except for the two processes will be exchanged during the gossiping using ERT data
structure. It signifies that all requests made by processes eventually be granted even if
the m number of requests have made concurrently (where m > 2). □

To summarize, when gossiping at each cycle, each node exchanges ERT; after
some number of gossip cycles, the process that has the highest priority execute the
critical section and relinquishes it in the finite time then the entry is removed from
ERT. After that, the process that has the next highest priority can execute the critical
section and relinquishes it. These steps are repeated until requests exist. Hence, every
request for the critical section is eventually granted.

4 Evaluation

In this section, we compare the theoretical results and simulation results with varied
number of nodes. We present detailed simulation results for the gossip-based mutual
exclusion algorithm using the PeerSim simulator [22]. Afterwards, we experimentally
analyze the performance results for the consecutive requests with dynamic
membership behavior by adding or removing some number of nodes during gossip
cycles. For simplicity, it is assumed that a process executing the critical section
relinquishes that before next cycle begins.

40 J. Lim et al.

4.1 Simulation Results

The simplest form of the gossip (or epidemic) protocol comes in two states:
susceptible and infected. This form of the gossip protocol is called the SI model [23].
To apply the SI model to our algorithm, any node that is in the susceptible state is
considered as the non-granted node for the request. Whereas, any node that is in the
infected state can be viewed as the granted node for the request. The logistic growth
function for the SI model is mathematically described as follows:

ሺܿሻܫ ൌ ௜బ௘೑೎ଵି௜బା௜బ௘೑೎ (1)

where I(c) is the function that returns the fraction of nodes infected, i0 is the value of
I(c) at c = 0, f is a fanout, and c is a cycle.

The theoretical results for Eq. (1) are presented in Figure 3 (i0 is set to 1/n). And
their simulation results are presented in Figure 4. When we compare these two results,
they are not exactly matched due to the nature of random uncertainty. However,
notice that, in both of the results, the requisite number of cycles grows linearly as the
total number of nodes increases exponentially.

Table 1. Simulation Settings

Scenario Parameter Value

All The number of nodes 10,000
All Fanout 1
All The size of partial view 20
All Cycles for requests 1~10
All The number of requests at a cycle 1
2 Cycles for adding 1~10
2 The number of nodes for adding at a cycle 500
3 Cycles for removing 1~10
3 The number of nodes for removing at a cycle 100

The rationale for the comparison between the theoretical and the simulation results
is: 1) Although the theoretical results imply that a fraction of infected nodes is global
information, the simulation results of our algorithm show that the fraction data
through the gossiping from one node (that has identifier 1). 2) Through experiments,
we have confirmed that the fraction data from local information and from global
information are not much different. In this regard, we can say that a local decision for
the critical section is equivalent to a global-information-based decision eventually.
And 3) even though the mathematical function provides the basis for expecting
synchronization delay for the critical section, the actual result can vary.

For extended experiments, we also consider the following three scenarios:

1. Static membership behavior for consecutive requests: the number of nodes during
gossiping is static and nodes do not fail.

 A Gossip-Based Mutual Exclusion Algorithm for Cloud Environments 41

2. Dynamic membership behavior for consecutive requests with joining: from cycle 1
to 10, some numbers of nodes are added during gossiping.

3. Dynamic membership behavior for consecutive requests with failing: from cycle 1
to 10, some numbers of nodes are removed during gossiping.

In dynamic scenarios, we assume that adding and removing nodes can be known to
whole nodes in the system by the middleware (peer sampling service). Furthermore,
during the cycle 1 through 10, requests for the critical section are made by one node at
random at each cycle (total of 10 requests). Simulation settings and parameters are
summarized in Table 1.

Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
ra

ct
io

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 1̂
10 1̂.5
10 2̂
10 2̂.5
10 3̂
10 3̂.5
10 4̂
10 4̂.5

The number of nodes

Fig. 3. Theoretical results for the SI model with varied number of nodes

Cycle

0 1 2 3 4 5 6 7 8 9 10 11

F
ra

ct
io

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

The number of nodes

10 1̂
10 1̂.5
10 2̂
10 2̂.5
10 3̂
10 3̂.5
10 4̂
10 4̂.5

Fig. 4. Simulation results for the algorithm with varied number of nodes

Figure 5 shows the simulation results for scenario 1. Despite the consecutive
requests for the critical section, we have confirmed that our proposed algorithm works
correctly satisfying safety, liveness, and fairness properties according to the
piggybacking mechanism. The requisite number of cycles for the critical section is 8
to 10 in scenario 1. The variableness of the requisite number of cycles for the critical
section (in spite of static membership behavior) is due to the nature of randomness.
Recall that requesting nodes for the critical section are also set at random. The
varying ranges with respect to the requisite number of cycles are relatively small.

42 J. Lim et al.

Cycle

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sequence of Requests

0 1 2 3 4 5 6 7 8 9 10 11R
eq

ui
re

d
nu

m
be

r o
f c

yc
le

s

0

2

4

6

8

10

12

Fig. 5. Simulation results for scenario 1

Cycle

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sequence of requests

0 1 2 3 4 5 6 7 8 9 10 11

R
eq

ui
re

d
nu

m
be

r o
f c

yc
le

s

0

2

4

6

8

10

12

14

Fig. 6. Simulation results for dynamic scenario 2

In scenario 2, however, the requisite number of cycles for the critical section for
the first request is 13 (see Figure 6) because some numbers of nodes are added during
cycle 1 through 10. This means that if we add some number of nodes at every cycle,
then a requesting node couldn’t execute the critical section; some numbers of stable
cycles (in terms of the number of nodes) are required. On the other hand, this signifies
that the algorithm works correctly since in order to execute the critical section, all
nodes (including added ones) have to agree upon the request.

When we consider failures of nodes, the situation is different because the nodes
that are supposed to grant the request might be removed. In other words, the node
requesting the critical section requires fewer number of consent. Furthermore, the
requisite number of cycles for the critical section more fluctuates than other scenarios
among the requests (see Figure 7.) because the probability that some nodes might
attempt to contact with failed nodes exists if membership management of failed nodes
is not implemented. Again, however, the results show that the algorithm satisfies the
three properties.

On the whole, except for the scenario 3, the requisite number of cycles for the
critical section is relatively stable when the number of nodes is stationary (the
variance of the requisite number of cycles is less than 2). It is apparent that
extrapolating from the results of the last scenario, membership management of partial

 A Gossip-Based Mutual Exclusion Algorithm for Cloud Environments 43

view is appealing when the number of nodes is decreasing because the variance of the
requisite number of cycles is dramatic (the maximum variance of the requisite number
of cycles is 5 in scenario 3 when the number of nodes is stationary).

If individual nodes select non-existing nodes frequently, synchronization delay
for the critical section is prolonged. Future work should therefore include membership
management of partial view for failed nodes. Furthermore, to reduce the number
of messages and the requisite number of cycles for the critical section, the combining
of our algorithm and efficient dissemination algorithm like in [19] would be of
considerable interest.

Cycle

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sequence of requests

0 1 2 3 4 5 6 7 8 9 10 11

R
eq

ui
re

d
nu

m
be

r o
f c

yc
le

s

0

2

4

6

8

10

12

14

Fig. 7. Simulation results for dynamic scenario 3

4.2 Complexity Analysis

We analyze the performance of our algorithm in terms of message complexity and
synchronization delay. We count the number of push-pull message exchange for the
proof.

Theorem 4. The message complexity of the gossip-based mutual exclusion algorithm
is ncf where n is the number of nodes, c is the requisite number of cycles for the
critical section, and f is a fanout.

Proof. For each cycle, the algorithm generates nf messages. Suppose that process Pi’s
request has the highest priority among requests. In order to execute the critical
section, Pi must get permission from all the nodes in the system. To this end, the
requisite number of cycles is c. (In this context, although c can vary according to the
number of nodes, it increases linearly as the number of nodes increases
exponentially.) If we set the f value to 1 (like in our simulations), the message
complexity of the algorithm is nc. When we set the f value to higher than 1, the
requisite number of cycles could be shortened. To generalize above arguments, the
message complexity of the algorithms is ncf. □

Theorem 5. The amortized message complexity of the gossip-based mutual exclusion
algorithm is O(n).

44 J. Lim et al.

Proof. In theorem 4, we argued that the message complexity of the algorithm is ncf.
However, in the gossip algorithm, gossiping cycles are periodic events and will
happen infinitively if the gossip algorithm is used for (for example) the failure
detection service. By amortizing the message complexity by a cycle, the message
complexity of the gossip-based mutual exclusion algorithm is nf. Furthermore,
disregarding the coefficient f (fanout), we can say that the amortized message
complexity of our algorithm is asymptotically at most n. □

Thus, the amortized message complexity of the algorithms is O(n).

Theorem 5. The synchronization delay of the gossip-based mutual exclusion
algorithm is c cycles.

Proof. For the critical section, a process Pi requires c cycles to get permission from all
nodes in the system. If Pj’s request has the highest priority after Pi relinquishes the
critical section, then Pj should wait for c’ cycles as well. Because our algorithm does
not generate relinquish messages (wish value in RTi is used instead), the
synchronization delay of the algorithms is c cycles. □

5 Conclusions

In this work, we have presented the mutual exclusion algorithm based on the gossip-
based algorithm to cope with scalability and fault tolerance issues with proof. A cloud
environment where the behavior of their constituting nodes is active and dynamic
(i.e., joining and leaving at any time) is one that our algorithm will be applied to. The
amortized message complexity of our proposed algorithm is O(n), which is worse
than previous research; however, from the requester point of view for the critical
section, the message complexity is 2c, c for the active thread, c for the passive thread
because the probability that each node being selected by other nodes at each cycle is
1/n. Nonetheless, our approach is promising and should be explored with other
algorithms and applications. For example, our gossip-based mutual exclusion
algorithm could be embedded seamlessly into other existing gossip-based algorithms.
In other words, if a gossip-based algorithm is implemented for a failure detection
service, then the mutual exclusion algorithm proposed in our work can be embedded
in the existing gossip-based algorithm. In addition, maintenance of replicated data is a
suitable application to which our algorithm can be applied where write operations
rarely occur compared to read operations. Our simulation results show that our
proposed gossip-based algorithm in dynamic and loosely-coupled environments is
scalable and fault tolerant.

References

1. Suzuki, I., Kasami, T.: A distributed mutual exclusion algorithm. ACM Trans. Comput.
Syst. 3, 344–349 (1985)

2. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Trans.
Comput. Syst. 7, 61–77 (1989)

 A Gossip-Based Mutual Exclusion Algorithm for Cloud Environments 45

3. Mizuno, M., Neilsen, M.L., Rao, R.: A token based distributed mutual exclusion algorithm
based on quorum agreements. In: 11th International Conference on Distributed Computing
Systems, pp. 361–368 (1991)

4. Neilsen, M.L., Mizuno, M.: A DAG-based algorithm for distributed mutual exclusion. In:
11th International Conference on Distributed Computing Systems, pp. 354–360 (1991)

5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21, 558–565 (1978)

6. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24, 9–17 (1981)

7. Singhal, M.: A Dynamic Information-Structure Mutual Exclusion Algorithm for
Distributed Systems. IEEE Trans. Parallel Distrib. Syst. 3, 121–125 (1992)

8. Lodha, S., Kshemkalyani, A.: A fair distributed mutual exclusion algorithm. IEEE
Transactions on Parallel and Distributed Systems 11, 537–549 (2000)

9. Maekawa, M.: A √N algorithm for mutual exclusion in decentralized systems. ACM Trans.
Comput. Syst. 3, 145–159 (1985)

10. Agrawal, D., Abbadi, A.E.: An efficient and fault-tolerant solution for distributed mutual
exclusion. ACM Trans. Comput. Syst. 9, 1–20 (1991)

11. Joung, Y.-J.: Asynchronous group mutual exclusion. Distrib. Comput. 13, 189–206 (2000)
12. Ganesh, A.J., Kermarrec, A.M., Massoulie, L.: Peer-to-peer membership management for

gossip-based protocols. IEEE Transactions on Computers 52, 139–149 (2003)
13. Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based membership

protocol. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of
Distributed Computing, pp. 292–301. ACM, Las Vegas (2005)

14. Gurevich, M., Keidar, I.: Correctness of gossip-based membership under message loss. In:
Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, pp.
151–160. ACM, Calgary (2009)

15. Ganesh, A.J., Kermarrec, A.-M., Massoulié, L.: HiScamp: self-organizing hierarchical
membership protocol. In: Proceedings of the 10th Workshop on ACM SIGOPS European
Workshop, pp. 133–139. ACM, Saint-Emilion (2002)

16. Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: Inexpensive Membership
Management for Unstructured P2P Overlays. Journal of Network and Systems
Management 13, 197–217 (2005)

17. Matos, M., Sousa, A., Pereira, J., Oliveira, R., Deliot, E., Murray, P.: CLON: Overlay
Networks and Gossip Protocols for Cloud Environments. In: Meersman, R., Dillon, T.,
Herrero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp. 549–566. Springer, Heidelberg (2009)

18. Jelasity, M., Montresor, A., Babaoglu, O.: T-Man: Gossip-based fast overlay topology
construction. Comput. Netw. 53, 2321–2339 (2009)

19. Lim, J.B., Lee, J.H., Chin, S.H., Yu, H.C.: Group-Based Gossip Multicast Protocol for
Efficient and Fault Tolerant Message Dissemination in Clouds. In: Riekki, J., Ylianttila,
M., Guo, M. (eds.) GPC 2011. LNCS, vol. 6646, pp. 13–22. Springer, Heidelberg (2011)

20. Iwanicki, K., van Steen, M., Voulgaris, S.: Gossip-Based Clock Synchronization for Large
Decentralized Systems. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan 2006. LNCS,
vol. 3996, pp. 28–42. Springer, Heidelberg (2006)

21. Jelasity, M., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: The Peer Sampling Service:
Experimental Evaluation of Unstructured Gossip-Based Implementations. In: Jacobsen,
H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 79–98. Springer, Heidelberg (2004)

22. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: IEEE Ninth
International Conference on Peer-to-Peer Computing, P2P 2009, pp. 99–100 (2009)

23. Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York (2010)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 46–53, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Effective Partition Approach for Elastic Application
Development on Mobile Cloud Computing

Zhuoran Qin1, Jixian Zhang1, and Xuejie Zhang1,2

1 Dept. of Computer Science and Technology, Yunnan University, Kunming, China
zhuoran.qin@gmail.com, denonji@163.com

2 High Performance Computing Center, Yunnan University, Kunming, China
xjzhang@ynu.edu.cn

Abstract. Mobile cloud computing is the cloud infrastructure where the
computation and storage are moved away from mobile devices. The elastic
partition in according to context-awareness could break through the resource
constrain of mobile devices. The improved (K+1) coarse partition algorithm is
used to partition the cost graph, where the vertexes are represented by the
execution cost on mobile device and offloading cost to cloud. The two factors are
represented by some contextual information including execution time, current
power, network and the probabilities which are obtained by the statistical
analysis of historical results. The levels of context-awareness could adjust the
weight of the contextual information and lead to partition again. Partition cost
module is used to store and compute the contextual information. The extensive
experiments deployed the OCR project on the proposed architecture demonstrate
a good performance in different input and network environments.

Keywords: Mobile Cloud Computing, Elastic Mobile Application, Elastic
Partition Algorithm, Context-Awareness.

1 Introduction

Mobile devices and mobile applications have enjoyed rapid development in recent
years. Compared with current PC, mobile devices still cannot run data intensive
applications, such as search, large-scale data management and mining, etc., and have
limitations in battery power, scream size, wireless communication etc.

[1]The most attractive features of cloud computing lie on the capability in powerful
computing capability and massive data storage as well as a new business model, which
deliveries the computing resources as a utility. [2, 8] Mobile cloud computing is
defined as an extension of cloud computing in which foundation hardware consists at
least partly of mobile devices. This definition recognizes the opportunity to harness
collective sensing, computational capabilities of multiple networked wireless devices
to create a distributed infrastructure that supports a wealth of new applications.

It is a complex issue that mobile applications move computing power and data
storage away from mobile phones into the cloud. First and foremost, it will face to the
partition problem. With the changes of the mobile environment, partition algorithm

 An Effective Partition Approach for Elastic Application Development 47

should achieve elastic partition in according to context-awareness. A variety of
contextual information could impact the elastic partition results, such as battery level,
connection quality, device loads, etc. [1]Zhang proposed elastic application model, a
new application model supporting applications partitioned into multiple components,
each of which can run autonomously from others. The model is effective in leveraging
cloud computing for the resource constrained mobile device. Based on elastic
application model, we proposed the elastic partition algorithm and the partition cost
module.

The rest of the paper is organized as follows. Section 2 is the discussion of related
work. Then Section 3 will present elastic partition algorithm, following that,
respectively in the next two sections, would be the description of partition cost module
and the evaluation. Fundamentally the conclusion lies in the last section.

2 Related Work

In [3], an undirected graph is used to represent a partition model. 3-tuple including
memory, CPU time and bandwidth, represents the vertexes’ weight. All the vertexes
will be partitioned by (K+1) Coarse Partition Algorithm. Although the partition
algorithm is accurate, the computing process is complicated and consumes a large
number of computing resources. In [4] Gu uses graph structure and OLIE algorithm in
order to find all possible 2-way cuts of execution graph. The migration will be
triggered, only if mobile device doesn’t have enough computing resources. In [5], the
vertex’s weight is the size of code and the edge’s weight is the number of two vertexes’
interactions. The two algorithms [4, 5] don’t consider the changes of the context,
migration cost or users’ behaviors. [6]Chun uses tree structure as the partition model.
The nodes represent time cost, which can also be used to calculate the energy
consumption. In practice, the time of display state (on/off) is random, while the display
cost generally takes a greater proportion than others. Hence, the calculation of energy
consumption is not accurate. [7, 8]Considering that mobile device has sensing abilities
and the number is large, researchers make mobile devices as a part of cloud computing.
[7]Gonzalo adopts P2P technologies, but it doesn’t implement how to split the elements
of the tasks. Hyrax [8] which is derived from Hadoop shows that the data storage and
processing can carry out on mobile device. It is hard to promote because the two
algorithms will bring a lot of security issues, and in some cases, some users have to
share their resources first.

3 Elastic Partition Algorithm

In this section, we will introduce elastic partition algorithm as figure 1 shows. Partition
granularity is one app-component which can be functions, classes, or components. [9]
Any application unit which is launched independently on mobile devices or cloud can
be called as app-component. The partition granularity can be decided by developers
under different conditions.

48 Z. Qin, J. Zhang, and X. Zhang

Fig. 1. The process of partition algorithm

At the beginning, it will acquire the status information of mobile device, such as
battery power, signal intensity, etc. After the input and status information are passed to
the partition module, the application can get into computing according to the partition
algorithm. If the context is changed over the threshold, it will partition again so as to
achieve the context-awareness. When it is partitioned again, the process could not need
to input again. So it is represented in dash line under the input module. Context refers to
the computing resources, battery power, and sensing ability, etc. inside the devices or
mobile environments, such as network connection. In [7, 10], researchers think
offloading computing often occurs with place-bound activities which are at a fixed
location, such as museum, coffee shop. In that case, network connection is more stable,
leading to fewer disconnections and faults, and the computing performance is stable
and regular. According to this characteristic, we deem that the probability, obtained by
the statistical analysis of historical partition results, is one of the most important
partitioning factors. By probabilities, it can decrease the number of computation, and
save time.

3.1 Cost Graph

2 1 2 2 2 3

1 2 3

()

1, 0 1(1, 2,3)

w power time memory PMobile

and ii

ε ε ε

ε ε ε ε

= + + ⋅

+ + = < < =
 (1)

w2 represents the execution weight in mobile devices. power2 is the current battery power
of mobile device. time2 which tightly associates with computing environments is the
execution time of app-component in mobile device. memory represents the memory cost
of every app-component which can be measured by a large number of experiments.
PMobile is the execution probability in mobile device. The parameters represent the
weight of the three factors in w2, and can be adjusted according to the levels of
context-awareness in different conditions. So does the parameters in formula 2.

 An Effective Partition Approach for Elastic Application Development 49

1 1 1 2 1 3

1 2 3

()

1, 0 1(1, 2, 3)

w power time network PCloud

and ii

λ λ λ

λ λ λ λ

= + + ⋅

+ + = < < =
 (2)

w1 represents the weight of execution in cloud. power1 is the current battery power of
mobile device. time1, composed of cloud execution time and transmission time,
represents time cost of offloading. Transmission time associates with location as we
mentioned above. At the beginning, the application will connect the cloud server,
which not only ensures the connection, but also measures the value of time1. network
represents the present status of network. PCloud is the execution probability in cloud.

Fig. 2. Cost Graph

Figure 2 is the cost graph and the weight of vertex equals Δw as formula 3 shows.

 2 1()w v w w w= Δ = − (3)

Δw= w2-w1. Δw is the weight of vertex. Offloading computing is associated with Δw and
interactions between the two vertexes, software authority, privacy, and safety
problems, etc. Only Δw ≥ 0 is out of right to decide the offloading. The weight of edges
equals interaction as formula 4 shows.

 ((,))w e v v interactioni j = (4)

interaction is the total number of interactions between vi and vj, including method
invocation and data access. Every vertex is denoted by another 2 labels in figure 2,
isNative and Location. The app-component which could not offload to cloud, such as
GPS, Photos, etc. can be labeled as true. Location represents the execution location, on
cloud or mobile device.

3.2 Optimization Problem

This type of graph partition problem is known to be NP-complete. Then our algorithm
attempts to find the optimized solution. The graph model is Graph G = (V, E).

50 Z. Qin, J. Zhang, and X. Zhang

(1 , an d)

 , \
1 1

C C M N K M NM N
K K

C C C P Ci iN Mi i

= ∅ ≤ ≤ ≠

= =
= =

∩

∪ ∪

 (5)

It partitions the app-component into K+1 groups, of which K groups will be executed in
cloud and one group will be run in mobile device. In formula 5, CN represents entire
groups running on cloud. CM is the group running on mobile device. Ci represents the
group i which is executed on cloud. P represents all the groups.

1 2(,) () ((,))CW U v w U w e U vλ λ= + (6)

U=CM or Ci (i=1, 2, … k) , Ω =all the vertexes of U, λi (i=1,2) (0<λi <1 and λ1+λ2=1) ,

and () ()w U w v
v

= ∑
∈ Ω

((,)) ((,))w e U v w e u v
v

=
∈Ω
∪ CW is the cost weight.

Formula 6 means all the vertexes’ and edges’ weight equals to CW (U, v). The sum of

all the vertexes’ weight is w(U) and the sum of all edges’ weight is w(e(U ,v)).

min (,) (,) (0<K<n)

1

if K=0 min (,)

K
Objective CW C v CW c viM i

Objective CW C vM

= + ∑
=

=
 (7)

Formula 7 is the objective function represented by Objective, expressing the general
goal which means the minimum cost. If there is no app-component in cloud, then K=0,
the objective equals to the cost in mobile device.

3.3 Improved (K+1) Coarse Partition Algorithm

Figure 3 depicts the partition results by Improved (K+1) Coarse Partition Algorithm,
which is based on (K+1) Coarse Partition Algorithm [3]. Our algorithm requests the
Heavy-Edge-and-Weight-Vertex, which is represented by CW as formula 8 shows,
whereas the original algorithm requests Heavy-Edge-and-Light-Vertex.

Fig. 3. Improved (K+1) Coarse Partition Algorithm

 An Effective Partition Approach for Elastic Application Development 51

() () ()()

()()
, , 1 2

i 1, 2 0 1 11 2

CW u v w v w e u v

andi i

λ λ

λ λ λ λ

= +

= < < + =
 (8)

Formula 8 means that merging the vertexes which are connected tightly and easy to
offload as a group. As figure 3 shows, the vertexes in dash line mean a partition group,
distinguished in red.

It can achieve dynamic partition by partition again. The figure 4 tries to
demonstrate the scenario that the context has changed after A,B,C,D,E,F run over, as a
result that the cost graph will be partitioned again with context-awareness by running
the algorithm again. The vertexes on the left side are in grey, which means the
execution of vertex is over. H and J are partitioned into a new group, instead of I and J.

Fig. 4. Partition Again

At the end of the algorithm, it will modify the parameters in partition cost module,
such as PMobile, PCloud, etc.

4 Partition Cost Module

Partition cost module is used to store and compute the context-awareness factors. We
can classify those factors into 3 classes. Fixed Value is determined by developers’ the
number of experiments. Once the values are fixed, they cannot be changed within the
context. Fixed Value includes memory, bandwidth, throughput and interaction.
throughput represents the mount of transmission between app-component. Current
Value signifies the current state value of mobile device, such as power2, power1,
networkstate, time1. networksate represents the current signal intensity. Computing
Value involves time2, network, PMobile, PCloud. network represents the current state
of network, which can be the functional value of throughput, bandwidth and network
state, e.g. network=f(throughput, bandwidth, networkstate). PMobile, PCloud
represent the probabilities of execution on cloud and mobile device respectively.
PMobile equals the execution number on mobile devices divided by the total execution
amounts. PMobile plus PCloud are equal to 1. [3]The parameters in formula 1 and 2
can be determined by different means: (1) the values can be set by the application
developer; (2) they can be chosen by end users according to the real-time scenarios;
(3) these values can be dynamically decided by the offloading systems according to
resource availabilities in the mobile device.

52 Z. Qin, J. Zhang, and X. Zhang

5 Implement and Evaluation

We test the system by using MOTO ME525. Cloud server is composed of 3 desktop
computers, which are HP Compaq 8000 Elite equipped with Ubuntu Linux 11.10 and
Hadoop 0.20.203.0. Tesseract-ocr [11] is deployed on cloud. The OCR engine will read
a binary, grey or color image and output text. [12]The program includes Page Layout
Analysis, Blob Finding, Find Text Line and Words, Recognize, etc. We use the English
project, and neglect the substitutions, deletions, insertions, lines and other problems.
The only factor to influence computing results is the number of words.

5.1 Experiment 1

Table 1 shows the execution time in different amounts of input and communication
channels. MD represents the execution time on mobile device. The time unit is second.
With the amounts of input increased, the performance will be enhanced. According to
the partition algorithm, more parts will be loaded on mobile device under the low
transmission rate, and the program will execute on Android device from 20,000 to
40,000 on GPRS.

Table 1. The execution time in different number of input and communication channels

Input 3G WiFi GPRS MD

10,000 20.45 17.31 75.74 84.46

20,000 32.77 27.18 152.68 152.68

30,000 42.84 35.65 225.37 225.37

40,000 51.39 42.72 296.89 296.89

5.2 Experiment 2

Experiment 2 will prove the efficiency when the context is changed. The
communication channels changed between 3G and WiFi, WiFi and GPRS respectively.
The data in third column is less than that of the forth column. Because of the low
transmission rate, a large number of computations will run in the device.

Table 2. The execution time on the communication channels exchange

Input MD 3G↔WiFi WiFi↔GPRS

10,000 80.46 24.02 50.52

20,000 152.68 34.29 85.67

30,000 225.37 43.85 173.91

 An Effective Partition Approach for Elastic Application Development 53

6 Conclusion and Future Work

In this paper, we proposed the elastic partition algorithm and partition cost module. The
partition algorithm achieves elastic partition according to the context-awareness. Our
algorithm not only considers the device loads and cloud features, but also the offloading
cost to the cloud, and users’ preferences which are represented by the probabilities.

The fault-tolerance and data security mechanism are under development. The
integrated scheduling and the data synchronization mechanism are desirable. Besides,
we need an effective method to count recent status, especially the probabilities, on the
condition of moving to another place which is considerably far and inexperienced.

Acknowledgements. This project is supported by the National Natural Science
Foundation of China (GrantNo:61170222).

References

1. Zhang, X., Jeong, S., Kunjithapatham, A., Gibbs, S.: Towards an Elastic Application Model
for Augmenting Computing Capabilities of Mobile Platforms. In: The 3rd International
ICST Conference on Mobile Wireless Middleware, Operating Systems, and Applications
(MobileWare), vol. 48(4), pp. 161–174 (2010)

2. Fan, X., Cao, J.: A Survey of Mobile Cloud Computing. ZTE Communications 9(1), 4–8
(2011)

3. Ou, S., Yang, K., Zhang, J.: An effective offloading middleware for pervasive services on
mobile devices. In: Pervasive and Mobile Computing, pp. 362–385 (2007)

4. Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., Milojicic, D.: Adaptive Offloading
Inference for Delivering Applications in Pervasive Computing Environments. In: Proc. of
PerCom, pp. 107–114 (2003)

5. Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.: Calling the Cloud: Enabling Mobile
Phones as Interfaces to Cloud Applications. In: Bacon, J.M., Cooper, B.F. (eds.)
Middleware 2009. LNCS, vol. 5896, pp. 83–102. Springer, Heidelberg (2009)

6. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: Elastic Execution
between Mobile Device and Cloud. In: Proc. of the 6th European Conference on Computer
Systems (EuroSys 2011), pp. 301–314 (2011)

7. Huerta-Canepa, G., Lee, D.: A virtual cloud computing provider for mobile devices. In:
Proc. of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks
and Beyond (2010)

8. Marinelli, E.E.: Hyrax: cloud computing on mobile devices using MapReduce. Master
Thesis Draft, Computer Science Dept., Carnegie Mellon University (2009)

9. Zhang, X., Schiffman, J., Gibbs, S., Kunjithapatham, A., Jeong, S.: Securing Elastic
Applications on Mobile Devices for Cloud Computing. In: ACM Cloud Computing Security
Workshop (CCSW), pp. 127–134 (2009)

10. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The Case for VM-Based Cloudlets in
Mobile Computing. In: Proc. IEEE Pervasive Computing, vol. 8(4), pp. 14–23 (2009)

11. Smith, R.: An Overview of the Tesseract OCR Engine. In: Proc. of the Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), vol. 02, pp. 629–633
(2007)

12. Smith, R., Antonova, D., Lee, D.S.: Adapting the Tesseract open source OCR engine for
multilingual OCR. In: Proc. of the International Workshop on Multilingual OCR, MOCR
2009 (2009)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 54–63, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Memory Virtualization for MIPS Processor
Based Cloud Server

Li Ruan1,2, Huixiang Wang1, Limin Xiao1,2, Mingfa Zhu1, and Feibo Li

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University,

Beijing, 100044, China
ruanli@buaa.edu.cn

Abstract. Although the Loongson 3 processor, one representative of RISC
processors based on MIPS64 instruction set, nowadays gains increasing focus
and applications in Servers, memory virtualization, a critical part of a system
virtual machine for such MIPS processor based Cloud Severs, meets challenges
such as non-virtualizable instruction set architecture, without hardware assistant
and addresses translation from guest virtual address (GVA) to host physical
address (HPA) supports. However, there are few virtualization researches on
MIPS processor based Cloud Server and practical virtual systems are much
fewer. This paper introduces a shadow TLB based memory virtualization
method. We summarize the challenges and present the key technologies such as
the memory architecture, address space construction and mapping mechanism,
the shadow TLB maintenance method, etc. Experimental results show that our
approach can provide effective memory virtualization support for MIPS
processor based Cloud Servers.

Keywords: MIPS, cloud computing, sever virtualization, memory virtualization.

1 Introduction

With the performance improvement, MIPS[1] processors gain increasingly application
to servers. Recently, the virtualization of such servers has been played great emphasis
on as a backbone technology to improve their resource utilization with the revival of
virtualization and the advent of Cloud computing. Although x86 based server
virtualization has achieved many fruits, there are comparatively few virtualization
researches on MIPS processor based Cloud Server and practical systems are much
fewer.

Loongson 3 processor is a general-purpose RISC processor based on the MIPS64
instruction set developed by the Institute of Computing Technology (ICT), Chinese
Academy of Sciences (CAS)[2]. The newest 65 nm Loongson 3A is able to run at a
clock speed near 1 GHz, with 4 CPU cores (~15W). In 2012, we developed a Server
for Cloud computing based on Loongson 3A processors (for convenience, Loongson 3
Cloud Server in short) from its hardware to system software under the support of

 Memory Virtualization for MIPS Processor Based Cloud Server 55

Chinese ElIF (Electornic Information Industry Fund). To improve the resource utility,
a system machine was implemented for the Server based on kernel virtual machine
(KVM)[3]. Our system virtual machine included three key modules: CPU
virtualization, memory virtualization and I/O virtualization. In this paper, we
summarize challenges of memory virtualization for MIPS processor (especially
Loongson 3) based Server, compare the related work, propose an address space
construction and mapping mechanism, TLB based address mapping and maintenance
methods. Experimental results demonstrate that our approach is feasible.

2 Analysis of Challenges in Memory Virtualization

As Loongson 3 processors is a typical general-purpose RISC processor based on the
MIPS64 instruction set, to implement memory virtualization for Loongson 3 Cloud
Server, there exists the following challenges to be solved:

 For Loongson 3 processors, only Loongson 2E has the QEMU support which is
not a traditional sense of the virtualization solution. i.e., Loongson 3 is without
hardware assistant support.

 As Loongson 3 is based on the MIPS architecture, virtualization support meets
many difficulties, such as not all sensitive instructions are privileged
instructions, the kernel address space mapping relationship is not flexible. As a
MIPS based server, because the MIPS processor’s kernel address space is
stationary, it brings a big problem that the host kernel can run in the stationary
address space but the guest kernel cannot. This causes a challenge of how to
design a strategy to construct the host kernel and guest kernel in different
address space.

 To make GOS own a separate continuous memory space which starts from zero,
VMM introduces a new hierarchy of address space- Guest Physical Address
(GPA) space. Thus, a three-tiered address mapping mechanism from Guest
Virtual Address (GVA), GPA to Host Physical Address (HPA) should be
established. As the traditional Memory Management Unit (MMU) can only
finish one time of mapping from virtual address to physical address, the original
MMU is ineffective to deal with such three-tiered address space and especially
dynamically maintain the mapping for GPA to HPA for each virtual machine.

3 Related Work

We briefly survey related work from two perspectives: MIPS virtualization and
memory virtualization.

In the past few years, there are fewer researches on MIPS virtualization than X86
virtualization. The representative works are Disco[4] and OKL4 [5] which proposed
virtualization solutions to MIPS. However, they had a big gap to be utilized in
practice. What’s more, they did not conduct implementation and experiments on
Loongson 3 processors. For memory virtualization, the most mature method is

56 L. Ruan et al.

shadow page table [6-8] for the X86 architecture. Effective memory virtualization
methods on MIPS architecture still lack. There are some optimization technologies
such as “balloon module” and “page sharing”. As Loongson 3 server has a TLB
hardware, so one problem is how to implement the shadow TLB. We introduced the
design and implementation of a system virtual machine for Loogson 3 Cloud Server
in [3]. However, [3] just gave a bird-eye of the whole virtual machine, details of its
memory virtualization together with its experiments was not introduced.

4 The Memory Architecture of Loongson 3

4.1 Virtual Address Space of Loongson 3 Processors

Loongson 3 processor uses a special MMU to translate the virtual address to physical
address and also provides a TLB for each core to accelerate the speed of translation. We
use M = {kernel mode, supervisor mode, user mode} to denote the set of operating
modes and S = {Kuseg, Kseg0, Kseg1, Kseg2, Kseg3} to denote the set of address
spaces of Loongson 3 processor. Table 1. shows the access right matrix of M to S.

As Table 1 and Fig.1 shows, each Loongson 3 processor has 3 modes which have
different priorities and own different address spaces. We will use 32-bit virtual
address space as an example to illustrate the address mapping space mechanism.
The 32-bit address space S is divided into 5 segments. The kernel mode can access all
of the five segments, the supervisor mode can access the kseg2 and kuseg segments
and the user mode can only access the kuseg segment. As the kseg0 and kseg1 are
unmapped, that virtual address in these two segments does not use the page table and

Table 1. The access right matrix of M to S

 S
Kuseg Kseg0 Kseg1 Kseg2 Kseg3

M Kernel mode Y Y Y Y Y
Supervisor mode Y N N Y N

User mode Y N N N N

Fig. 1. 32-bit Loongson 3 memory mapping
relationship

Fig. 2. The translation between virtual
address and physical address

 Memory Virtualization for MIPS Processor Based Cloud Server 57

TLB to translate the address to the physical address. And according to MIPS
architecture, the kernel of operating system usually runs in the kseg0 segment.

4.2 The Translation Lookaside Buffer of Loongson 3

In order to enhance the speed of the translation of the virtual address to physical
address, Loongson 3 uses two kinds of TLB: the data TLB for data mapping with 128
entries and the instruction TLB for instruction mapping with 16 entries. Fig.2 illustrates
how virtual address is translated to physical address. From the view of address
translation, the 8-bit address space identifier (ASID) extends the virtual address.
This method will reduce the TLB refreshing frequency when the context is switched.

5 Address Space Construction and Mapping Mechanism

As is discussed in the above, the kseg0 and kseg1 are unmapped. When the host OS
boots, some initial work has not been done and the page table can’t be used.
Therefore, the system must choose a directly-mapped address space to load the
kernel. As the kseg0 and kseg1 segments are unmapped and occupied by the host OS,
the GOS of the virtual machine can’t run in those segments. Therefore, we
must design a mechanism to move the guest OS's kernel and I/O registers to other
address spaces. The requirements of the address segments are defined in Table 2.

Now we analyze which address segment in S can be used as the suitable address
for the GOS's kernel and I/O registers. kseg0 and kseg1 do not satisfy the Req.1 and
Req.2 because host kernel is running in kseg0 and they are unmapped. If we use kseg0
and kseg1 as the address, after translated to the physical address, these two fragments
may conflict with the host. Although kuseg meets the Req.3 and Req.4, this segment

Table 2. Requirements of the address space
construction

Fig. 3. 32-bit Loongson 3 memory map with
memory virtualization

Req.# Description of the requirements

Req.1 Guest operating system’s kernel
running in a special mode which
priority is lower than the VMM’s
mode and higher than the user
mode.

Req.2 This special mode can access
adequate address space.

Req.3 This address space is large enough
to running the system kernel and its
I/O registers.

Req.4 This address space can be
transformed to the physical address
space which does not incur conflict
with the host.

58 L. Ruan et al.

has the lowest priority and thus Req.1 and Req.2 are not satisfied. kseg3 segment’s
priority is the highest but it does not satisfies Req.1. Fortunately, Kseg2 segment can
meet all requirements. The proof is as following: (1) kseg2 can be accessed in the
supervisor mode(Req.1 is satisfied). (2) If GOS’s kernel and I/O registers run in
kseg2, it can access other adequate address space(Req.2 is satisfied). (3) The address
of Kseg2 ranges from 0xc0000000 to 0xe0000000, totally 512MB which is enough to
be assigned to GOS’s kernel and I/O registers(Req.3 is satisfied).(4) Kseg2 can
transform the virtual address to physical address by the page table or the TLB(Req.4
is satisfied).Thus, we propose to use kseg2 segment as GOS's kernel and I/
O register’s address space(Fig.4 is satisfied).

By dividing the kseg2 into Gkseg0 for guest kernel and Gkseg1 for guest I/O
registers, our address space construction mechanism is based on the following rules:

Smips = {Kuseg, Kseg0, Kseg1, Kseg2, Kseg3};Kseg2 ={Gkseg0, Gkseg1};

Kuseg = [0x0000.000,0x8000.000);Kseg0 = [0x8000.000,0xa000.0000);

Kseg1=[0xa000.0000,0xc000.0000);GKseg0=[0xc000.0000, 0xd000.0000)；
GKseg1=[0xd000.0000, 0xe000.0000); Kseg3=[0xa000.0000,0xfff.ffff].

6 The TLB Maintenance Method

As Loongson 3 processor has a TLB support, the maintenance of TLB is the core
procedure of our virtualization methods. In the following sections, we will introduce
the architecture, workflow and exception handling mechanisms of TLBs in detail.

6.1 The Architecture and Workflow of the TLBs

Three kinds of TLBs are defined in our system. Their functions, characteristics and
relationships are as following:

1) Guest TLB(GTLB): GTLB is a structure maintained by the GOS and the basis
for generating the shadow TLB(STLB). Its responsibility is to store the mapping
relationship between GVA and GPA. When GOS runs a TLB-related instruction,
the VMM will capture a TLB instruction and modify GTLB. By this, GOS
thought that it changed the hardware TLB.

2) Shadow TLB(STLB): The STLB is the core in the memory virtualization
module. Its responsibility is to store of the mapping relationship between GVA
and HPA.

3) Host TLB(HTLB): The HTLB is a structure maintained by the host OS. Its
responsibility is to store of the mapping relationship between host virtual address
(HVA) and host physical address (HPA). With HTLB, our system virtual
machine can translate GVA to HPA.

The mapping relationships of TLBs are defined in Table 3, where the HTLB and
STLB hold one to one relationship and the relationship between the STLB and GTLB
is out of order. Fig. 4 shows an example among GTLB, STLB and HTLB.

 Memory Virtualization for MIPS Processor Based Cloud Server 59

Table 3. The mapping relationships

TLBs Mapping

< STLB, HTLB> 1:1
< STLB, GTLB > Out of order

Fig. 4. An example mapping

6.2 The Shadow TLB

As the TLB architecture shows, STLB is the main connection between the GVA and
HPA. Therefore, how to maintain the STLB is the core in Loongson 3 server’ memory
virtualization. When GOS runs, it will take the mapping relationship between GVA
and HPA maintained by the STLB out from the TLB hardware. In our virtual system,
the STLB’s workflow is defined as follows:

Step1(Initialize TLB): Before the GOS runs, entries of STLB whose valid bit (V-
bit) is 1 are written into the TLB hardware by KVM.

Step2(Capture TLB instruction): When the GOS runs, the TLB instruction of
GOS is captured by the VMM.

Step3(Store new mapping relation): The VMM modifies GTLB. Then Based on
the new mapping relationship between the GVA and GPA stored in the GTLB and the
reflection from HVA to HPA in the HTLB, VMM generates a new mapping
relationship between GVA and HPA and stores it in STLB structure.

Step4(Update new STLB entry and write STLB to hardware): VMM will set
the valid bit (V-bit) to 1 to update the new STLB entry. And finally it writes the
shadow entry into TLB hardware.

6.3 TLB Miss Exception Handler

When the GOS triggers a TLB miss exception, VMM will capture this exception and
handle it. In our system, we need to deal with 3 cases of TLB miss exception of the
virtual machine.

 Case1: Shadow TLB miss, guest TLB hit
VMM handles this case by itself. Based on the GTLB hit entry, VMM first builds a

mapping between the GVA and HPA and then refills it to the STLB.
 Case2: Shadow TLB miss, guest TLB miss, guest page table hit

VMM first informs GOS to refill the GTLB according to the guest page table so
that the GTLB instruction can be used. Secondly, combined with the HTLB, VMM
generates the relationship between GVA and HPA and filled it into the STLB.

 Case3: Shadow TLB miss, guest TLB miss, guest page table miss
In this case, as there is an error of guest of its own, memory virtualization has

nothing to do with it. To handle TLB miss exception, we must remove an existing
entry to fill in a new mapping relationship.

60 L. Ruan et al.

A Round-Robin based exception handing mechanism (Fig. 5) is proposed in our
virtual system. The TLB fill process is as following:

Step1: When GOS issues a shadow TLB miss exception, our system virtual
machine will capture this exception.

Step2: Then VMM searches a hit entry for the TLB miss virtual address from the
GTLB. If the GTLB misses, VMM refills this exception back into the GOS. If the
GTLB hits, the VMM will fill the STLB according to GTLB and HTLB.

Step3: When the exception is filled back into the GOS, guest will search guest
page table to guarantee that GTLB can be refilled.

Step4: Then guest runs a TLB instruction of writing the mapping between GVA
and GPA into GTLB. At the same time, VMM will capture the TLB instruction and
handle it. After the TLB instruction exception has been handled, VMM will repeat the
STLB’s refilling process.

7 Experiments and Results Analysis

Both the function and performance tests are performed to verify the correctness of our
memory virtualization method.

 Experimental environment

The experiment is performed on our system virtual machine which is running on a
4-core MIPS 64 R2 compatible platform (Fig. 6) for Loongson 3 Cloud Server.
Experimental environments are shown in Table 4. Our virtual machine supports three
modules: the kernel module running on the host OS, QEMU as a host process and

GOS. QEMU is modified from the standard qemu-0.14.0 by adding supports to our
system machine for Loongson 3 Cloud Server. Host OS is a modification of standard
NeoKylin OS V.2.6.36.4 kernel which supports Loongson 3A processor by adding our
virtual machine’s kernel module. GOS is a modification of standard NeoKylin OS V.

Fig. 5. STLB miss exception handler

Fig. 6. Test board of a 4-core MIPS 64 R2
compatible platform for Loongson 3 Cloud
Server

 Memory Virtualization for MIPS Processor Based Cloud Server 61

2.6.33.3 kernel which supports Loongson 3A processor by moving its kernel address
space and I/O space.

 Functional test

As our memory virtualization method is based on the 2.6.36 kernel running on a 4-
core MIPS 64 R2 compatible platform, from Fig 7 and Fig 8, we can see that the

Table 4. Experimental environment

Hardware Software

Type Configuration Type Configurations

The Type of

CPUs

Loongson 3A Release version of

Host OS

NeoKylin

The number of

CPUs

1 Kernel version of

Host OS

Modified version of V2.6.36.4

The core

number of one

CPU

4
Release version of

GOS

NeoKylin

Memory size
2GB Kernel version of

GOS

Modified version of V2.6.33.3

Chip set
AMD

RS780E/SB700

QEMU of user

space

Modified version of qemu-0.14.0

NIC RTL8193 Compiler Loongson compiler based on gcc

Disk
WESTDIGITAL

320G SATA

Benchmarking

programm

nbench 2.2.3

Fig. 7. Guest booting process
1

Fig. 8. Guest booting process
2

Fig. 9. Guest boots
successfully

62 L. Ruan et al.

system virtual machine successfully boots a Linux kernel with a simple user space init
environment. By running some small programs in the guest, we prove the correctness
of CPU virtualization and memory virtualization. In Fig. 7, there shows some memory
information about memory size and high-memory. It is provided by the VMM. Fig. 8
shows some information about the cache and memory system. As VMM provides
256M memory to the guest, the last 3 lines list out the memory usage when the guest
boots. Fig. 9 is a GOS screenshot and GOS boots up and runs well. Therefore, from
Fig.7-9, it can conclude that our memory virtualization module function well to
support the virtual machine.

 Performance test

We also had performance tests with NBench [9]. NBench is a synthetic computing
benchmark program developed in the mid-1990s by the now defunct BYTE magazine
intended to measure a computer’s CPU, FPU and Memory System speed. By
completing 10 different types of benchmarks, the NBench tests the memory
performance, the integer performance and floating point performance. The test result
was then compared with an AMD K6-233 computer which runs Linux and takes the
ratio as the performance measure.To highlight the work of memory virtualization, we
only list the memory system testing data. The performance testing are conducted in
two cases: 1-core host (Table 5) and 4-core host(Table 6).

Table 5. NBench memory test with single
core host

Test

case

Host

(s)

Guest

(s)

Performance

percentage

1 2.449 0.288

2 2.443 0.288

3 2.465 0.289

Ave. 2.452 0.288 11.75%

Table 6. NBench memory test with 4-
core host

Test
case

Host
(s)

Guest
(s)

Performance
percentage

1 2.546 0.286

2 2.505 0.288

3 2.519 0.287

Ave 2.523 0.287 11.38%

As the result listed in Table 5 and Table 6, we can see the memory system of host

Loongson 3 server score in 2.44 to 2.55, and the guest with our memory virtualization
method fraction at 0.288. The radio of the guest memory system and the host memory
system is slightly more than 11.3%. As the first goal is to implement the VM and
make it function well and no optimization has been conducted. In the performance
tests, the performance of our memory virtualization system of the virtual machine
does not meet our requirements. Now we are performing its performance optimization
work. More macro-benchmark will be tested. Also, more multi-core system evaluation
tools will be conducted further.

 Memory Virtualization for MIPS Processor Based Cloud Server 63

8 Conclusions

In this paper, by carefully summarizing the virtualization challenges of MIPS
processor (Loongson 3) based Cloud Server, we proposed a memory virtualization
method, which effectively utilized the Loongson 3 processor virtualization support
characteristics like TLB, so as to overcome the problems such as non-virtualizable
instruction set architecture, without hardware assistant and addresses translation from
guest virtual address (GVA) to host physical address (HPA) supports. The functional
and performance experimental results verified that our method functioned well.

Based on the previous work, we are now performing performance optimization
work on MIPS processor based Cloud server. We believe that our research results will
help researchers to better understand the critical issues of memory virtualization and
system virtualization for not only Loongson but also MIPS processor based Cloud
Servers. We hope that this work will also motivate virtual system designers to
implement more system virtual machine for MIPS processors based Cloud Servers.

Acknowledgments. This work was supported by the Hi-tech Research and
Development Program of China (863 Program) under Grant No. 2011AA01A205,
National Natural Science Foundation of China under Grant No. 60973008, 60973007,
61003015, the fund of the State Key Laboratory of Rail Traffic Control and Safety
(Contract No. RCS2008K001), Beijing Jiaotong University; Beijing Natural Science
Foundation (4122042). We are grateful to those students and colleagues who
participated in our Cloud Servers project from Beihang University, Institute of
Computing Technology (ICT), Chinese Academy of Sciences and Lenovo Company.

References

1. MIPS architecture, http://en.wikipedia.org/wiki/MIPS_architecture
2. Institute of Computing Technology Chinese Academy of Sciences: Loongson 3A

processor core manual (2009)
3. Wei, X., HuiXiang, W., LiMin, X., Li, R.: KVM for MIPS. In: The 2nd International

Conference on Computer and Management (accepted)
4. Edouard, B., Scott, D.: Disco: Running Commodity Operating Systems on Scalable

Multiprocessors. ACM Transactions on Computer Systems 4, 143–156 (1997)
5. Virtualization, http://en.wikipedia.org/wiki/Virtualization
6. Adams, K., Agesen, O.: A Comparison of Software and Hardware Techniques for x86

Virtualization. VMware (2010)
7. VMware Technology: Virtualization: Architectural Considerations and Other Evaluation

Criteria. VMware (2010)
8. Eyad, A., Ernie, C., et al.: Verifying shadow page table algorithms. In: Proceedings of the

2010 Conference on Formal Methods in Computer-Aided Design (FMCAD 2010), pp.
267–270. FMCAD Inc., Austin (2010)

9. http://en.wikipedia.org/wiki/NBench

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 64–73, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Implementation of a Distributed Data Storage System
with Resource Monitoring on Cloud Computing*

Chao-Tung Yang1,**, Wen-Chung Shih2, and Chih-Lin Huang1

1 Department of Computer Science, Tunghai University, Taichung, 40704, Taiwan ROC
ctyang@thu.edu.tw

2 Department of Applied Informatics and Multimedia, Asia University, Taichung, 41354
Taiwan ROC

wjshih1@gmail.com

Abstract. This paper focuses on cloud computing infrastructure, and especially
data services. The goal of this paper is to implement a high performance and
load balancing, and able-to-be-replicated system that provides data storage for
private cloud users through a virtualization system. The DaaS extends the
functionality of the Hadoop distributed system (HDFS). The proposed approach
also implements a resource monitor of machine status factors such as CPU,
memory, and network usage to help optimize the virtualization system and data
storage system. To prove and extend the usability of this design, a synchronize
app was also developed running on Android based on our distributed data
storage (DDS).

Keywords: Cloud Computing, Distributed data storage, DaaS, Distributed file
system, Resource monitor.

1 Introduction

Cloud computing is a current trend and emerging computing platform and service
mode that organizes and schedules services on the Internet. Once Internet protocols
have been defined, resources can be connected and share information between layers
[1]. The first layer is the cloud client. In the concept of cloud computing, the cloud
client does not need powerful machines because the cloud takes care of most of the
computing work or data. The cloud client may be a browser, lightweight program, or
even a mobile device. The user can summit jobs using cloud client through a specified
protocol. The second layer of the cloud is the cloud software, which may have
complete functionalities. People can use the cloud software to send e-mail, modify
photos, listen to music, and so on. The third layer is the cloud platform. The
difference between the cloud software and the cloud platform is that the cloud

* This paper was supported in part by the National Science Council, Taiwan ROC, under grant

numbers NSC 100-2218-E-029-004 and NSC 100-2622-E-029-008-CC3.
** Corresponding author.

 Implementation of a DDS System with Resource Monitoring on Cloud Computing 65

platform provides a space in which developers can build their software. Developers
do not need to focus on the systems’ health. The final layer is the cloud infrastructure.
Most of the cloud service aims to provide a mass of users, which requires high
network traffic and much computing. Tens of thousands of racks must be connected
together to fit the needs.

Cloud storage is a service that provides storage resource service through remote
storage servers based on cloud computing. Cloud storage can provide storage services
at a low cost with high reliability and security. A cloud storage system is a
cooperative storage service system with multiple devices, many application domains,
and many service forms. The development of a cloud storage system benefits from
broadband networks, Web 2.0, storage virtualization [2-4], storage networks,
application storage integrated with servers and storage devices, cluster technology,
grid computing, distributed file systems, content delivery networks, peer-to-peer
networks, data compression, and data encryption.

This paper focuses on cloud computing infrastructure, and particularly data
services. The goal of this study is to implement a system that can provide data storage
services for a private cloud used for a virtualization system and a public cloud for
DaaS [5-8]. DaaS extends the functionality of a block distributed file system using
HDFS [9-11, 45] and implements distributed data storage (DDS). The proposed
approach implements a distributed resource monitor [12-16] of machine runtime
factors such as CPU utilization, memory usage, and network flow. A block distributed
file system enables web storage that can provide cloud software to store data. This
system also requires high-performance data storage for creating redundant, scalable
object storage using clusters of standardized servers to store petabytes of accessible
data. It is not a file system or real-time data storage system, but rather a long-term
storage system for more permanent, static data that can be retrieved, leveraged, and
updated as necessary. This paper presents the details of the proposed design. To prove
and extend its usability, a cloud program (app) running on Android used the proposed
data storage services. This app can synchronize files, contact lists, messages, and
phone settings between phones or PCs. Whenever the user uploads files, they are
saved on the DaaS server. As soon as the file is modified, the app notifies the user or
automatically updates the data.

2 Background

Data grid [17-23] or distributed storage systems focus on how storage can be used
efficiently, and how users can share their resources in different regions. This type of
system requires middleware to integrate and manage the distributed resources shared
by users. Metadata are needed to record these distributed resources, and is used when
a user queries a file or a resource.

This study proposes a next generation storage service to solve this problem. The
cloud storage model provides online data storage services. The data are stored in
multiple virtual or real machines called clusters. The service is usually managed by
third-party companies who own a large data center. People pay according to their

66 C.-T. Yang, W.-C. Shih, and C.-L. Huang

usage and are not concerned with maintenance problems. Some examples include
Amazon S3 [24, 25], EdgeCast [26], Ceph [29], Sector [30, 31], and HDFS [45],
which is part of the Hadoop project in the Apache Software Foundation. HDFS is a
Hadoop distributed file system based on Google GFS’s [27, 28] approach. However,
the HDFS is not suited for virtualization because of its authentication strategy. Ceph
is a distributed network storage and file system designed to provide excellent
performance, reliability, and scalability. Sector can be regarded as a distributed
storage/file system. However, Sector is not a generic file system like NFS. Sector is
designed for read-intensive scenarios. Because Sector makes replicas of files on
different nodes within the system, reading is much more efficient than writing. This
paper only compares the proposed approach to HDFS because it is more stable than
Ceph and Sector.

Storage area network (SAN) [32] is an architecture that connects external storage
and servers. The characteristic feature of this architecture is that a device connected to
the server has direct access to the storage equipment. However, the cost of this
approach remains too high for general use. Network attached storage (NAS) [33] is
another data storage technology that can connect to the computer network directly and
provide centralized data access to a heterogeneous network.

Green computing [38-40] attempts to effectively use energy through energy-
efficient CPUs, servers, and peripherals, and reducing resource consumption. Green
computing uses virtualization technology and power management to achieve energy
saving and reduce carbon emissions. Virtualization [2-4] is one of the most effective
tools in cost-effective, energy-efficient computing. This approach divides each server
into multiple virtual machines that run different applications. This approach is so
energy friendly that companies can increase their server utilization rates.

In virtualization computing, there is often the need to move a virtual machine
(VM) from one computer to another. Therefore, both of the computers must obtain the
same image from shared storage like SAN or NAS. The most well-known packages
are iSCSI [34] and NFS [35]. Famous open source toolkits for cloud computing
include OpenNebula [36] and Ctrix XenServer [37], which use iSCSI or NFS to move
the VM. However, both of the iSCSI and NFS are centralized storage. This creates a
bottleneck in the network and often reduces system performance.

Representational State Transfer (REST) [41] is a type of software architecture for
distributed hypermedia systems such as the World Wide Web. The concept of REST
is to combine the two protocols HTTP and URL and how to apply in network
software architecture design. REST treats software as a resource and addresses the
position of resources using URL. The users can operate the resources by the methods
defined by the HTTP protocol [42, 43]. The software that the REST called is a
package contains data and methods of data processing. The HTTP defines six
operations, and people often use four of them: POST, GET, PUT, and DELETE. The
return method also consists of two parts: status code and content.

In the past, JAVA users could only use blocking I/O to build their applications.
Every read/write operation is an independent blocking thread. This approach is easy
to use and involves simple logic, but this comes at the expense of poor performance
are more threads are created. New I/O, usually called NIO [44, 45], is a collection of

 Implementation of a DDS System with Resource Monitoring on Cloud Computing 67

Java APIs that provide some features for intensive I/O operations. NIO was
announced by Sun Microsystems with the JDK 1.4 release to complement an existing
standard I/O. The NIO APIs were designed to provide access to the low-level I/O
operations of modern operating systems. To avoid busy loops, NIO usually use
“select” to dispatch operations. Each channel must register operation to the selector.
The selector monitors the availability of these operations. This programming model
can use only one thread to complete all functions, limiting the number of threads.

3 System Design and Implementation

Figure 1 shows the main components of the proposed system. This system uses web-
based virtual machine management system to control the virtual machine cluster.
Each node in the clusters has a daemon virtual machine controller. This system also
contains a block distributed file system, distributed data storage (DDS), and file
system management system. The file system management system controls the user
account authentication and the space quota. The block distributed file system provides
a web-based storage, and the DDS stores virtualization images. To monitor the whole
system’s healthy and loading, the system also uses a resource monitor to gather
information from each node. This paper takes over the file system, data storage, and
resource monitor.

3.1 Block Distributed File System

We used HDFS to build the block distributed file system. Because of the authentication
limitations of HDFS, it is unsuitable to connect to public cloud. Therefore, we designed
an interface between HDFS and outside of the cloud. Developers may input or obtain
their files through this interface. To be more efficient with HDFS, the system was
optimized to speed up the transfer rates. HDFS was not designed for the public cloud.
Thus, we developed an interface to exchange the data between private cloud and public
cloud. The interface includes FTP protocol and JAVA library. However, most of the
important commands were implemented in RFC 959.

Figure 2 shows how the proposed system supports HDFS over FTP. During an FTP
connection, two transmission channels are open:

• A channel for commands (control channel).
• A channel for data.

Both the client and server have two processes that allow these two types of
information to be managed:

• DTP (Data Transfer Process) is the process in charge of establishing the connection
and managing the data channel. The server side DTP is called SERVER-DTP, and
the client side DTP is called USER-DTP

• PI (Protocol Interpreter) interprets the protocol allowing the DTP to be controlled
using commands received over the control channel. It is different on the client and
the server.

68 C.-T. Yang, W.-C. Shih, and C.-L. Huang

Fig. 1. Cloud Infrastructure system stack Fig. 2. FTP network flow

3.2 System Architecture of Distributed Data Storage

The reason for using block DFS to develop DDS stems from the different purposes of
the users. The first scenario of the operation is virtual image placement. A user
requests a VM and the virtual machine management system then obtains an image
from the DDS. The second scenario is when a normal user uploads to or downloads
data from the DaaS. The difference between the two scenarios is the data size.
Suppose each of the images is at least 1 GB. In the second scenario, assume the data
most of the users want to store in the DaaS is a document file, music, photos, or even
high-quality pictures. With block DFS, the data are split into fixed chunks wherever
DDS does not split data. This is one of the reasons for using block and DDS in the
proposed DaaS. Equation (1) shows that if the data size Sୢ is larger than the chunk
size Sୡ , the total transfer time T୲ୡ increases, where ௧ܵ is transmit rate, ௖ܶ௟ is
connection latency time, and finally, ܵ௕is block size.

௧ܶ௖ ൌ ܵௗܵ௧ ൅ ௖ܶ௟ ൈ ܵௗܵ௕ ሺ1ሻ

In the real world, the image size is much larger than 1 GB and may be 10 GB to 50
GB. The block size might be 64 MB, using HDFS as an example. To obtain a 50 GB
image takes ௧ܶ ൅ ௖ܶ௟ ൈ 800 assuming that the transfer time is ௧ܶ and DDS only costs ௧ܶ ൅ ௖ܶ௟ . Thus, it is much cheaper than block DFS and reduces the overhead to the
data nodes.

The other reason for not simply using DDS and eliminating the block distributed
file system is because DDS does not support the append feature and it is difficult to
integrate with map-reduce. In the second scenario, the user may want to modify data
or append new data at the end of the original data. It is a difficult task to add a feature
to the DDS. We have to care for the consistence between each replica and lots of
synchronization problems. In addition, when the system is big enough, there are many
logs to be analyzed. It is unreasonable for a cloud provider to use a single machine for
this. Thus, the proposed approach uses Map-Reduce technology to help reduce the
time. As a result, the communication between the file systems to the map-reduce
system is critical. One of the reasons map-reduce can be faster than a traditional

 Implementation of a DDS System with Resource Monitoring on Cloud Computing 69

computing framework like MPI is because the scheduling is tight with data instead of
managing tasks or jobs by grid. Lots of works remain to provide the data locality to
map-reduce, and so on. The following sections introduce some special DDS
strategies.

4 Experimental and Results

4.1 Experimental Environment

The previous sections demonstrate the design principle and implementation methods.
This section presents several experiments conducted on seven machines within two
switches. Each nodes contained 2-GE NICs, but had different CPU and memory
levels. Figure 3 shows the network topology of the testbed. This experiment
compared six topologies: DDS, DDS-Green mode, DDS-Net optimize, NFS, iSCSI,
and HDFS. The DDS-Green mode means enable green strategy and set the
“leastTotalSize” to 2199023255552 bytes and set the “leastNodeSize” to
107374182400 bytes. This experiment reduced the data node to three. The DDS-Net
optimize step split the network into upload channel and replication channel. The NFS
was ver. 4 and the mount option was “rw,sync,no_subtree_check”. This experiment
used Open-iSCSI ver. 2.0-871 and Hadoop 0.20.203.0. We used Linux command
“dd” [46] to generate test data from 1KB to 32 GB. We also used dd to test the disk
write performance for each node. The first experiment compared the performance of
zero-copy IO and traditional IO to illustrate the level of speed enhancement provided
by the zero-copy IO. The second and the third experiments is compared the
performance of DDS, HDFS, iSCSI, and NFS in terms of upload and download speed.
Both of the DDS and the HDFS were set to have 3 replicas.

Fig. 3. Experiment network topology

4.2 Experimental Results

Figure 4 shows the performance enhancement using zero-copy IO. The
transferTo() API decreases the time by approximately 65% compared to the
traditional approach. This has the potential to increase performance significantly for

70 C.-T. Yang, W.-C. S

applications involving a g
another, such as storage sy
data set, and Fig. 6 depicts
Green mode reduces numbe
the upload channel and rep
on Hadoop version 0.21.0 h
nodes during the test. Bo
whereas the NFS and the
command. The iSCSI was
different modes achieved si

Fig. 4. Performance compa
traditional IO and Zero-copy I/

Fig. 6. Performance comparis

These figures show th
performance. However, if
decreases significantly, and
The DDS was the fastest on
achieved almost the same s

hih, and C.-L. Huang

great deal of copying of data from one I/O channel
ystems. Fig. 5 shows the upload performance for a sm
s a large data set. The DDS has six data nodes, the DD
er of data nodes to three, and the DDS-Net Optimize sp

plication channel and has six data nodes. The HDFS ba
has six data nodes. Both the NFS and iSCSI have only t
oth DDS and Hadoop used their own copy comman

ISCSI were mounted as a folder and used system co
the fastest in the small file upload test. DDS with th

imilar results.

arison between
/O

Fig. 5. Performance comparison betwee
DDS, HDFS and NFS on upload data wit
small

son between DDS, HDFS and NFS on upload data with large f

hat the HDFS with one replica achieved the fas
we set the number of replicas to three, the performa

d the HDFS has the worst performance in the experim
ne when the data size was up to 1GB, and the green m
speed. The iSCSI achieved impressive performance un

l to
mall
DS-
plits
ased
two
nds,
opy
hree

en
th

file

stest
ance

ment.
mode
nder

 Implementation of a DDS

512MB. In this experimen
some overhead in splitting t

The third experiment te
assumed that the systems sh
once, read-many strategy,
speed. The experiment res
20%~30% time in downl
difference for data less t
performance deteriorates. T
same speed. The HDFS is a

Fig. 7. Performance compa
DDS, HDFS and NFS on d
with small files

5 Conclusions and

This study develops a
distributed data storage m
system. The DDS approach
transfer time and split the
strategy saves power cons
public cloud, the proposed
FTP and REST-like proto
presents an Android app
proposed system can help
their output.

References

1. Cloud computing, ht
Infrastructure

2. Milojičić, D., Llorente, I
IEEE Internet Computing

System with Resource Monitoring on Cloud Computing

nt, only the HDFS split the data, suggesting that it inc
the data.
ested the download speed (Fig. 7-8). Before the test,
hould have results similar to the upload test. With its wr
HDFS should have a faster download speed than upl

sults are close to these assumptions. The HDFS redu
loading when the data exceed 1GB, but shows li
than 512MB. When the data exceed 1GB, the NF
The DDS and DDS with green mode achieved almost
a little slower and stable.

arison between
download data

Fig. 8. Performance comparison betwee
DDS, HDFS and NFS on download da
with large files

d Future Work

high-speed, load-balanced, power-saving and relia
ethod to meet the needs of a virtualization managem
h can use some special strategy like zero-copy to red
network to avoid unnecessary noise, whereas the gr

sumption and replication to increase reliability. For
approach extends the functionality of HDFS by provid

ocols for those who need cloud storage. This study a
that helps people synchronize their data. We hope
administrators or developers to cut their work and dou

ttp://en.wikipedia.org/wiki/Cloud_computin

I.M., Montero, R.S.: OpenNebula: A Cloud Management T
g 15(2) (2011)

71

curs

we
rite-
load
uces
ittle

FS’s
the

en
ata

able
ment
duce
reen

the
ding
also
the

uble

ng#

Tool.

72 C.-T. Yang, W.-C. Shih, and C.-L. Huang

3. Sempolinski, P., Thain, D.: A Comparison and Critique of Eucalyptus, OpenNebula and
Nimbus. In: 2010 IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom), December 3, pp. 417–426 (2010)

4. Cordeiro, T., Damalio, D., Pereira, N., Endo, P., Palhares, A., Gonçalves, G., Sadok, D.,
Kelner, J., Melander, B., Souza, V., Mångs, J.-E.: Open Source Cloud Computing
Platforms. In: 2010 9th International Conference on Grid and Cooperative Computing
(GCC), pp. 366–371 (2010)

5. Truong, H.L., Dustdar, S.: On analyzing and specifying concerns for data as a service. In:
IEEE Asia-Pacific on Services Computing Conference, APSCC 2009, pp. 87–94 (2009)

6. Truong, H.-L., Dustdar, S.: On Evaluating and Publishing Data Concerns for Data as a
Service. In: 2010 IEEE Asia-Pacific Services Computing Conference (APSCC), pp. 363–
370 (2010)

7. Ju, D., Liu, C., Wang, D., Liu, H., Tang, Z.: Performance Comparison of IP-Networked
Storage. Tsinghua Science & Technology 14(1), 29–40 (2009)

8. Wang, D.: Meeting Green Computing Challenges. In: International Symposium on High
Density packaging and Microsystem Integration, HDP 2007, pp. 1–4 (2007)

9. Mackey, G., Sehrish, S., Wang, J.: Improving metadata management for small files in
HDFS. In: IEEE International Conference on Cluster Computing and Workshops,
CLUSTER 2009, pp. 1–4 (2009)

10. Shafer, J., Rixner, S., Cox, A.L.: The Hadoop Distributed Filesystem: Balancing
Portability and Performance, pp. 122–133. IEEE, Houstan (2010)

11. Jiang, L., Li, B., Song, M.: THE optimization of HDFS based on small files. In: 2010 3rd
IEEE International Conference on Broadband Network and Multimedia Technology
(IC-BNMT), pp. 122–133 (2010)

12. Barlet-Ros, P., Iannaccone, G., Sanjuas-Cuxart, J., Sole-Pareta, J.: Predictive Resource
Management of Multiple Monitoring Applications. IEEE/ACM Transactions on
Networking 19(3), 788–801 (2011)

13. Cheng, G., Gong, J.: A Resource-Efficient Flow Monitoring System. IEEE
Communications Letters 11(6), 558–560 (2007)

14. An Adaptive Resource Monitoring Method for Distributed Heterogeneous Computing
Environment. In: 2009 IEEE International Symposium on Parallel and Distributed
Processing with Applications, pp. 40–44. Sch. of Comput. Sci., Northwestern Polytech.
Univ., Xi’an, China (2009)

15. Miettinen, T., Pakkala, D., Hongisto, M.: A Method for the Resource Monitoring of OSGi-
based Software Components. In: 34th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA 2008, pp. 100–107 (2008)

16. Wang, C.-C., Chen, Y.-M., Weng, C.-H., Chung, T.-Y.: An overlay resource monitor
system. In: The 8th International Conference on Advanced Communication Technology,
ICACT 2006, vol. 3, p. 5 (2006)

17. Düllmann, D., Hoschek, W., Jaen-Martinez, J., Segal, B.: Model for Replica
Synchronization and Consistency in a Data Grid. In: The IEEE International Symposium
on High Performance Distributed Computing, San Francisco, CA, USA, pp. 67–75 (2001)

18. Xu, P., Huang, X., Wu, Y., Liu, L., Zheng, W.: Campus Cloud for Data Storage and
Sharing. In: Eighth International Conference on Grid and Cooperative Computing, GCC
2009, pp. 244–249 (2009)

19. Zeng, W., Zhao, Y., Song, W.: Research on Cloud Storage Architecture and Key
Technologies. In: ICIS 2009, November 24-26. ACM (2009)

20. Zhan, Y., Sun, Y.: Cloud Storage Management Technology. In: Proceedings of the 2009
Second International Conference on Information and Computing Science, May 21-22, pp.
309–311 (2009)

 Implementation of a DDS System with Resource Monitoring on Cloud Computing 73

21. Hirofuchi, T., Nakada, H., Ogawa, H., Itoh, S., Sekiguchi, S.: A live storage migration
mechanism over wan and its performance evaluation. In: Proceedings of the 3rd
International Workshop on Virtualization Technologies in Distributed Computing,
Barcelona, Spain, June 15 (2009)

22. Bertino, E., Maurino, A., Scannapieco, M.: Guest editors’ introduction: Data quality in the
internet aera. IEEE Internet Computing 14, 11–13 (2010)

23. Carns, P., Lang, S., Ross, R., Vilayannur, M., Kunkel, J., Ludwig, T.: Small-File Access in
Parallel File Systems. In: Proceedings of the 23rd IEEE International Parallel and
Distributed Processing Symposium, pp. 1–11 (April 2009)

24. Amazon S3, http://en.wikipedia.org/wiki/Amazon_S3
25. Amazon Simple Storage Service, http://aws.amazon.com/s3/
26. EgeCast, http://www.edgecast.com/
27. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra,

T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data.
ACM Transactions on Computer Systems 26(2), Article 4 (June 2008)

28. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: SOSP 2003:
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–
43. ACM Press, New York (2003)

29. Ceph, http://ceph.newdream.net/
30. Gu, Y., Lu, L., Grossman, R., Yoo, A.: Processing Massived Sized Graphs using

Sector/Sphere. In: 3rd Workshop on Many-Task Computing on Grids and Supercomputers,
co-located with SC10, New Orleans, LA, November 15 (2010)

31. Gu, Y., Grossman, R.: Sector and Sphere: The Design and Implementation of a High
Performance Data Cloud. Theme Issue of the Philosophical Transactions of the Royal
Society A: Crossing Boundaries: Computational Science, E-Science and Global E-
Infrastructure 367(1897), 2429–2445 (2009)

32. SAN, http://en.wikipedia.org/wiki/Storage_area_network
33. NAS, http://en.wikipedia.org/wiki/Network-attached_storage
34. iSCSI, http://en.wikipedia.org/wiki/ISCSI
35. NFS, http://en.wikipedia.org/wiki/Network_File_System_

(protocol)
36. OpenNeBula, http://opennebula.org/
37. Ctrix XenServer, http://www.citrix.com/
38. Lo, C.-T.D., Qian, K.: Green Computing Methodology for Next Generation Computing

Scientists. In: 2010 IEEE 34th Annual Computer Software and Applications Conference
(COMPSAC), pp. 250–251 (2010)

39. Giroire, F., Guinand, F., Lefevre, L., Torres, J.: Energy-aware, power-aware, and Green
Computing for large distributed systems and applications. In: 2010 International
Conference on High Performance Computing and Simulation, HPCS, pp. lv – lxvii (2010)

40. Zhong, B., Feng, M., Lung, C.-H.: A Green Computing Based Architecture Comparison
and Analysis. In: 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), Green Computing and Communications
(GreenCom), pp. 386–391 (2010)

41. Richardson, L., Ruby, S.: Restful Web Services, 1st edn., O’Reilly Media (May 15, 2007)
42. RFC 2616, http://tools.ietf.org/html/rfc2616
43. Fielding, R.T., Gettys, J., Mogul, J.C., Nielsen, H.F., Masinter, L., Leach, P.J., Berners-

Lee.: RFC 2616: Hypertext Transfer Protocol – HTTP/1.1
44. NIO, http://en.wikipedia.org/wiki/New_I/O
45. Hadoop, http://hadoop.apache.org
46. dd, http://en.wikipedia.org/wiki/Dd_(Unix)

Design, Verification and Prototyping the Next
Generation of Desktop Grid Middleware�

Leila Abidi1,2, Christophe Cérin1, and Kais Klai1

1 Université de Paris 13, LIPN UMR CNRS 7030, 99, avenue Jean-Baptiste Clément,
93430 Villetaneuse, France

2 Université de Tunis, LaTICE ESSTT, 5 Avenue Taha Hussein, BP, 56, Bâb
Manara, Tunis, Tunisie

{leila.abidi,christophe.cerin,kais.klai}@lipn.univ-paris13.fr

Abstract. This paper proposes a formal framework for the design and
verification of a new Desktop Grid (DG) prototype which is currently
developed with Web 2.0 technologies and only with this technology. The
paper is an approach for developing a new generation of Desktop grid
middleware, in our case based on Redis, a key-value no-SQL Web 2.0
tool with capability for managing the Publish-Subscribe asynchronous
paradigm. We propose to revisit the Desktop Grid paradigm based only
on concepts from Web 2.0 tools. It is different from previous approaches
that have required to build software layers before the layer of the DG
middleware. We demonstrate that this corresponds to a progress in free-
ing time for modeling and verification, that is, to build safe middleware.
This work proposes (1) a modeling and a verification of a DG protocol
based on the Publish-Subscribe paradigm (2) a prototype of a new gen-
eration of DG middleware that we are developing, concurrently with the
modeling. A simulation, according to a prototype is conducted on a local
cluster and demonstrate that our system is operational, light in terms
of coding lines and used resources. Thus, it offers remarkable properties
in order to implement DGs on tablets and Smartphones, we mean on
resource constrained systems.

Keywords: Desktop grid computing, Grid middleware, Volunteer Com-
puting, Service-oriented computing, resource management, Redis, Web
2.0, Publish-Subscribe paradigm, Formal Models, Colored Petri Nets.

1 Introduction

Desktop Grid [1] systems represent an alternative to supercomputers and paral-
lel machines and they offer computing power at low cost. Desktop grids (DGs)
are made with PCs and Internet as the communication layer. DGs aim to ex-
ploiting the resources of idle machines over Internet. Indeed, Desktop Grids have
important features that explain the large number of international projects aim-
ing to better exploit this computational potential. Many Desktop Grid systems
� Experiments presented in this paper were carried out using the Paris 13 experimental

testbed.

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 74–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Design, Verification and Prototyping the Next Generation of DG Middleware 75

have been developed using a centralized model. These infrastructures run in a
dynamic environment and the number of resources may increase dynamically.

The Seti@Home [2] project is among the large amount of success stories.
While the increasing number of users of such systems demonstrates the poten-
tial of Desktop Grid, current implementations, for instance Boinc [3], United
Devices [4], Distributed.Net [5] and XtremWeb [6] still follow the client-server or
master/slave paradigm. Theoretically, the computing power that can be obtained
from these systems is constrained by the performance of the master node.

The BonjourGrid [7–9] middleware has appeared in this context. The basic
idea is to exploit, dynamically, different instances of DG middleware. The coordi-
nation is fully distributed through Publish-Subscribe mechanisms. BonjourGrid
is the first middleware of this kind, to the best of our knowledge, and it provides
a view of the architecture and of the execution of applications running inside
the middleware that match the ideas of decentralization.

In this paper, we provide graphic models based on Petri Nets to verify that
the Publish-Subscribe system (BonjourGrid is just a case study introducing our
Redis based prototype) is correct. Our research has been built around the desire
to develop the BonjourGrid protocol using colored Petri Nets as a technique for
modeling and verification and to receive a feedback about the good practices in
developing DGs in the context of Web 2.0 tools.

This paper is organized as follows. After an introduction of the context of this
work, we set in Section 2 our problem in the form of key issues that summarize
the different aspects to what we are interested. Therefore, we introduce the
principle of resource coordination (as implemented in BonjourGrid) and the
benefit in using Publish-Subscribe systems. We also introduce our motivations for
the design and the formal verification of BonjourGrid. We conclude this section
by presenting some related work. Section 3 is related to our contributions, and
describes the different steps of our work in order to provide a formal specification
of the Publish-Subscribe paradigm. We also present our views to mix our Publish-
Subscribe substrate with the core part of the BonjourGrid protocol, and finally
we present the software prototype based on Redis. Section 5 concludes the paper.

2 Context and Motivations

2.1 Key Issues in Designing DG Middleware

In this section, we introduce the different issues facing the design of a DG mid-
dleware:

– Heterogeneity and volatility of resources are the main characteristics of DG
environment that make communication, coordination, and scheduling diffi-
cult tasks. That’s why we need a powerful mechanism in the middle of our
system in order to guarantee a minimum of robustness and safety;

– The communication paradigm (for coordination, not for exchanging data)
adopted should provide a high level of asynchronism in order to promote
scalability; The question is: what is the appropriate model for controlling
and coordinating the components of a DG middleware?

76 L. Abidi, C. Cérin, and K. Klai

– The systems become so complex that we must think to verify them formally.
This will allow us to have more confidence in what we code. We promote a
co-design between specification and implementation parts, and we want to
isolate pieces of code (the generic patterns) that will be generated automat-
ically from the specification; The question is: how to specify and verify grid
middleware?

– Web 2.0 technologies are the future, hence it would be a benefit to take
advantage of them. On one hand, the Web 2.0 technologies assist to ad-
vertise desktop grid goals and attract computational resources for desktop
grid communities. On the other hand, Web 2.0 systems should handle heavy
data traffic and complex relations that need extraordinary large computa-
tional power: grid technologies. The question is: how Web 2.0 and grids
technologies may merge?

– Grid technologies may serve as building blocks for Cloud technologies. In [10],
we have explained how the DG paradigm is reused for the SlapOS system
which is a provisioning and billing system for the cloud. SlapOS1 is part of
a 2.3M euros FUI project in which we are working on the coordination of
servers. The question is to isolate problems in clouds that could be solved
with grid technologies.

2.2 Resources Coordination

Desktop grids are characterized by a dynamic environment due to the hetero-
geneity and volatility of resources, in our case PCs at home. User’s machines can
join or leave the grid at any time, without any constraint. Each machine has its
own properties such as its memory size, bandwidth, CPU/core number. . . that
makes difficult the scheduling of tasks.

Consequently, the power of DGs that resides in the participation of volun-
teers, constitutes also a weakness in terms of resources orchestration when a job
is submitted. Thus, the main problem with DGs is coordination, in particular
when we have to execute communicating applications i.e., applications that are
modeled by a task graph with precedence.

To bypass these problems, BonjourGrid counts on a distributed vision for the
coordination and the execution of applications based on existing DG middle-
ware. Moreover, the coordination mechanism is based on the Publish-Subscribe
paradigm.

2.3 The Publish-Subscribe Paradigm

The Publish-Subscribe paradigm is an asynchronous mode for communicating
between entities. Some users, namely the subscribers, or clients, or consumers,
express and record their interests under the form of subscriptions, and are noti-
fied later by another event produced by other users, namely the producers [11].

1 http://www.slapos.org/

http://www.slapos.org/

Design, Verification and Prototyping the Next Generation of DG Middleware 77

Event Service

Notify()
Subscribe()

Unsubscribe()

Storage
and management
of subscriptions

Publish

Publish

Publisher

Publisher

Publisher

Publisher

Subscribe

Un-
subscribe

Notify

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Subscriber
Notify()

Fig. 1. The Publish-Subscribe paradigm [11]

As stated in Figure 1, subscribers record their interest by a call to the sub-
scribe() operation inside the event service management system, without knowing
the source of events. The unsubscribe() operation allows us to stop a subscription.
The notify()(or publish()) operation is called by publishers in order to generate
events that will be propagated to subscribers, and such events are managed by
the event service management system too. Each subscriber will receive a notifi-
cation for every event that is conform to its interest.

This communication mode is thus multi-point, anonymous and implicit. It is
a multi-point mode (one-to-many or many-to-many) because events are sent to
the set of clients that have declared an interest into the topic. It is an anonymous
mode because the provider does not know the identity of clients. It is an implicit
mode because the clients are determined by the subscriptions and not explicitly
by the providers.

It is also known that this asynchronous communicating mode allows spatial
decoupling (the interacting entities do not know each other), and time decoupling
(the interacting entities do not need to participate at the same time). This total
decoupling between the production and the consumption of services increases
the scalability by eliminating many sorts of explicit dependencies between par-
ticipating entities. Eliminating dependencies reduces the coordination needs and
consequently the synchronizations between entities. These advantages make the
communicating infrastructure well suited to the management of distributed sys-
tems and simplify the development of a middleware for the coordination of DGs.

2.4 BonjourGrid

BonjourGrid is an approach for the decentralization and the self organization of
resources in DG systems [7–9]. The key idea is to exploit existing DG middleware
(Boinc, Condor, XtremWeb) and concurrently to manage multiple instances of

78 L. Abidi, C. Cérin, and K. Klai

DG middleware. The notion of meta desktop grid middleware has been intro-
duced with BonjourGrid and the Publish-Subscribe paradigm is used intensively
for the coordination of the different DG middleware.

Each user, behind a desktop machine in his office, can submit an application.
BonjourGrid deploys a master (coordinator), locally on the user machine, and
requests for participants (workers). Negotiations to select them should now take
place. Using a Publish-Subscribe infrastructure, each machine publishes its state
(idle, worker or master) when changes occur as well as information about its
local load, or its use cost, in order to provide useful metrics for the selection of
participants. Under these assumptions, the master node can select a subset of
workers nodes according to a selection criteria. The master and the set of selected
workers build the Computing Element (CE) that will execute and manage the
user application. When the execution of an application of a CE terminates, its
master becomes free, returns in the idle state, and it releases all workers who
return to the idle state. Then, the nodes can participate to others projects.

To implement this approach, BonjourGrid has been decomposed in three fun-
damental parts: a) A fully decentralized resources discovery layer, based on Bon-
jour protocol [12]; b) A CE, using a Desktop Grid (DG) middleware such as
XtremWeb, Condor or Boinc, which executes and manages the various tasks of
applications; c) A fully decentralized protocol of coordination between a) and b)
to manage and control all resources, services and CEs.

2.5 Related Work

Papers about Publish-Subscribe systems [13–15] are invitations to investigate
more deeply the BonjourGrid protocol, in particular under the point of view of
the verification of a distributed system. In this section we review the related
works about publication-subscription systems and approaches for modeling and
verifying formally such systems.

Publish-Subscribe systems concern both companies and researchers. Stan-
dards and industrial products are directly based on this paradigm, for instance
the Bonjour protocol from Apple. For researchers, most of the works concern the
problem of constructing a system as perfect as possible in terms of scalability,
efficiency and safety. But they do not focus enough on the problem of the formal
analysis of the accuracy of such systems. However, some research papers, such
as [13–15], investigate the formal verification of Publish-Subscribe systems.

The work of Abidi and al. [16] focuses on the modeling of the BonjourGrid
protocol. Authors have isolated the generic mechanisms of construction for the
Publish-Subscribe approach. Then, they have modeled and verified, based on
those mechanisms, the BonjourGrid protocol that allows the coordination of
multiple instances of desktop grid middleware. Formal modeling allowed them
to verify the adequacy of BonjourGrid with respect to the coordination of re-
sources and to have a "composition" mechanism for integrating any protocol
based on the Publish-Subscribe paradigm. All these ideas were illustrated along
the BonjourGrid case study and they constitute a methodology for building
Publish-Subscribe systems.

Design, Verification and Prototyping the Next Generation of DG Middleware 79

In this paper we continue this work, and we propose a more sophisticated for-
mal model. We remind that in [16] we did not cover all the BonjourGrid protocol
for the sake of simplicity whereas, in this paper we cover different internal details
in order to have a realistic simulation of the actual behavior of the system.

In [13, 14], the authors propose an approach for modeling and validating
systems. This approach is based on an architecture of components that react to
events. In these works, the components are specified with UML state-transition
diagrams. Formal verification is achieved through model checking (using SPIN).
But instead of using the formulas of linear temporal logic (LTL) of SPIN, the
authors have interpreted the properties as automata. According to them, this
will represent more complex properties required to validate the modeled system.

Although our modeling approach is also based on component reacting on
events, we do prefer to enjoy the advantages of temporal logic for the formal
verification, in particular by using the ASK-CTL library.

In [15], the authors describe a generic framework dedicated to modeling and
formal verification of Publish-Subscribe mechanisms. Their system is based on a
model of states machine providing management of events during the execution
of the publication-subscription protocol. The framework takes as input a set of
components and a set of properties for the Publish-Subscribe mechanism. The
matching of the two sets is subsequently validated using model checking tools.
This system is regarded primarily as a generic framework in which there is always
the risk of not providing a model and an audit tailored to each specific case for
the Publish-Subscribe mechanism. Our approach is a successful modeling and
formal verification. It is suitable for BonjourGrid while isolating the Publish-
Subscribe mechanism.

In [17, 18], the authors, motivated by the benefits of formal analysis, build
coordination protocol for a formal model using colored Petri Nets. To evaluate
the accuracy of their model and as a result of their protocol, they checked the
behavioral properties formally, and implemented a mechanism of CTL model
checking. Our work is built around the protocol proposed by the authors. From
our side, we also capitalize on the use of colored Petri Nets and CTL logic.

In [19], the authors present a new approach to modeling and formal veri-
fication, dedicated to software components. Their methodology is based on a
software architecture-driven and the reuse of Petri Nets models. Their contri-
bution is rather a new approach for visual composition, formal verification and
validation of software systems. The work is built primarily around software com-
ponents.

In [20], the authors present an overview of the analytical performance of col-
ored Petri Nets in particular by using the CPN Tools. They use it to collect
data during simulations, to generate different results on the performance and
to implement several cases of simulation. A simple protocol is used to illustrate
these aspects.

80 L. Abidi, C. Cérin, and K. Klai

3 Contributions

3.1 Analysis and Criticisms

Modeling may guide the development of our forthcoming prototype that will
serve for the validation of ideas and choices made during the design part.

The verification is for proving that the protocol is correct, then that any
analyzed configuration will produce the "good" answer. This goal requires the
formal verification of properties that we expect for the protocol: safety, for which
the absence of deadlock is an example, and liveness.

In [16], we have modeled the BonjourGrid protocol according to the colored
Petri Net [21] formalism and we have used the CPN Tools2 for that purpose.
CPN Tools is a fast and efficient simulator that handles both untimed and timed
nets. Full and partial state spaces can be generated and analyzed, and a standard
state space report contains information such as liveness properties. By means of
a simple query language it is possible to specify and to check system specific
properties.

The work introduced in [16] suffer from the fact that it is too specific to a
dedicated protocol. In the current work, we have a more agnostic approach: we
separate the Publish-Subscribe mechanisms and what is specific to the Bonjour-
Grid protocol. The BonjourGrid serves as a guideline, a concrete example. We
are looking for a "universal" Petri Net for the Publish-Subscribe paradigm on
top of which any protocol based on Publish-Subscribe could be built and verified.

Fig. 2. Colored Petri Net for the Publish-Subscribe protocol

2 See http://www.daimi.au.dk/CPNtools

http://www.daimi.au.dk/CPNtools

Design, Verification and Prototyping the Next Generation of DG Middleware 81

3.2 A Colored Petri Net Model for the Publish-Subscribe Paradigm

For pedagogical reason, we start by explaining the Petri Net model we obtained
for SCC in [16]. We show how the initial core idea was captured and it is essential
to understand the concept and the model.

The colored Petri Net model in Figure 2 models the Publish-Subscribe
paradigm. It introduces an "initial" state with a definite number of components
and events. Each component can be a publisher (represented by EP for Event-
Published on the figure), or a subscriber (represented by ES for EventSubscribed
on the figure) or both.

This model is compliant with the Publish-Subscribe protocol, since a com-
ponent can publish an event as many times as it wants; it can also subscribe
to an event as many times as it wants. An event can be issued by one or more
components, and one or more components can subscribe to this event.

Published events are saved in a directory that is modeled by the place "Reg-
istry". When a component subscribes to an event E, it goes to the place "Wait-
ingSubscriber". Once the event is published, the transition "Notify" can be fired.
A condition should be checked when we fire the transition "Notify": "a compo-
nent cannot subscribe to the event it published", which was modeled using the
guard [S <> P].

Hence, we have successfully achieved our first aim by defining a colored Petri
Net for which we can build representations of any protocol that is written with
the publish-subscribe paradigm in mind. In the next section, we model the Bon-
jourGrid protocol built on top of that Publish-Subscribe Petri Net model.

3.3 A Colored Petri Net Model for the BonjourGrid Protocol

Figure 3 illustrates the current methodology used to compose any Publish-
Subscribe protocol. This figure is related to the central part of the BonjourGrid
protocol and constitutes a contribution of this paper. Indeed, this paper exhibits
a major refinement of the initial specification as published in [16].

The new refinements cover different internal details of the BonjourGrid pro-
tocol around the central part. The difficulty for the designer is to have a global
view of the overall behavior of such a system where asynchronism is the essential
criterion.

In Publish-Subscribe architectures, components communicate with each other
through the exchange of events. Thus, any model of these architectures must
explicitly consider the two main actors: components and events, and the three
main services: publish, subscribe and notify.

The first actor stands for publishing an event ep from a machine c, the second
one is for subscribing an event es coming from a machine c, and the third one
is for notifying events to interested machines.

BonjourGrid modeling is focused on that aspect.
In fact, the challenge was to consider a "black box" (the Petri Net for the

Publish-Subscribe model which is represented in the center of Figure 3) that
cannot be modified and to try to specify the behavior of BonjourGrid as exter-
nal events of the black box. By doing this, we exhibit a general methodology.

82 L. Abidi, C. Cérin, and K. Klai

Fig. 3. BonjourGrid model, composed on top of a Publish-Subscribe Petri Net

The main idea is to plug the BonjourGrid protocol on top of the Publish-
Subscribe protocol. The later is mainly presented by the cycle: "publication",
"subscription" and "notification". BonjourGrid elements are plugged on inputs
and outputs of this cycle.

In BonjourGrid model we just blow up the state "Event", previously repre-
sented in Publish-Subscribe model, into two states "EventS" and "EventP" to
differentiate between events that are published and those for which components
can subscribe, in order to have more clarity.

We represent each component in the place component by the tuple (compId,
state, coorId) where compId is the identifier of the component, state can take
the values : "idle", "worker", "coordinator" that represent the different states a
component may take, coorId is the identifier of the coordinator attached to the
component/worker; it takes the value 0 when the component is not a worker.

Firstly, a component may submit an application a, and publish a "Request-
ForParticipation" event associated to that application. the state Application is
represented by the couple (a,nb) where a is the identifier of the application and
nb is number of participant required to execute this application.

In parallel, other components (in "idle" states) may subscribe to that "Re-
questForParticipation" event. A coordination starts when subscribed machines
are notified by their corresponding events and accept to participate to the ex-
ecution of the application. All the subscribers on that event are notified by its
publication, but only the number nb required by the application can move to

Design, Verification and Prototyping the Next Generation of DG Middleware 83

"AcceptParticipation" state to assist in its execution. The place "counter" serves
to ensure that task. In this step, the state "idle" becomes "worker". Coordina-
tors who have required in their support applications a number of participants
that is not provided yet, must wait in the place "WaitForParticipant" until the
required number nb becomes available (simulated with the place "WaitForPar-
ticipant"). The execution of the application can start when the required number
nb of participants is reached. All these coordinating steps will be locked in the
place "WaitForParticipant" until the application is completed.

Once the execution is completed, we move to the step of releasing the coordi-
nator and the components that are attached. Thus, workers may subscribe to the
"FreeCoordinator" event that would allow to release them. When coordination
is finished, the coordinator component publishes the "FreeCoordinator" event
then subscribed workers are notified. They are released and the state moves
from "worker" to "idle".

By doing this, we have successfully achieved our second aim by formally mod-
eling the BonjourGrid protocol built on top of that Publish-Subscribe Petri Net.
Using CPN Tools, we then performed simulations of the net to gain more confi-
dence in our model. During this first step of the simulation, no straightforward
problems was discovered. The next step was naturally to perform an exhaustive
simulation exploring all the possible states of the system, i.e., its state space.

For the verification of the desired properties (liveness for instance), our goal
was to keep the same level of abstraction as the modeling of the CPN. For these
reasons, we did not use any temporal logic formalisms since they work at a
different level of abstraction and, thus, it can be difficult to use. We exploited
the tools provided by CPN Tools, which allow us to calculate and analyze state
spaces. With these tools, the standard queries for the verification require no
programming at all.

Fundamental properties we want to verify on that model were:

– Any event produced (published) must be received by all interested consumers
(subscribers).

– A coordinator C begins execution of its implementation if and only if there
exists at least one machine M that agree to participate with C.

– If a coordinator C publishes the event "FreeCoordinator" then all Workers
for that coordinator will eventually switch to the "idle" state.

– Any worker W can be attached to a single coordinator C.

Figure 4 provides a sample of the state space report provided by CPN Tools.
The analysis of these small configurations gives us more confidence in the

BonjourGrid system especially considering the following facts:

– We have not found any deadlock states (i.e., states that do not admit exe-
cutable transitions). The absence of such state is obviously required in our
context.

– All possible transitions are executable. Hence, our specification seems to
be correct from the perspective of event triggering: all possible events can
eventually happen.

84 L. Abidi, C. Cérin, and K. Klai

– All state spaces built are composed of a single strongly connected component.
It seems therefore impossible to be trapped in a specific or undesired system
configuration. This liveness property is indeed a crucial prerequisite for our
system.

Fig. 4. A partial view of the report of the BonjourGrid model

3.4 A Prototype Based on Redis

In parallel with the modeling and verification parts, as introduced in the pre-
vious section, we have built a prototype of a Desktop Grid middleware based
on BonjourGrid and Redis and on top of Python. Redis3 is an open source, ad-
vanced key-value store. It is often referred to as a data structure server since
keys can contain strings, hashes, lists, sets and sorted sets. Moreover, it imple-
ments a Publish-Subscribe layer. Indeed, we have an "all-in-one" tool that fulfills
our initial needs: storage of codes we have to execute, storage of input/output
data, support for Publish-Subscribe. This explains why we have declined the
opportunities to work with XMPP, Nodejs like tools, or the promising Hookbox
interface which is a Comet server and message queue that tightly integrates with
Web application frameworks.

Redis do not offer a strong support for authentication, cryptographic com-
munication or data protection but it is well targeted for our work related to
prototyping. We assume that in the future, the community developers will of-
fer such properties. However, notice that Redis supports some sort of server
redundancy to make the system fault tolerant.

Our prototype does not include yet all the components of DG middleware such
as those we find in Boinc, Condor, or XtremWeb. For instance we do not have
a component for doing result certification or we do not manage fault tolerance
issues by task duplication. Again, the prototype is currently devoted to the
understanding of the core decentralized protocol for the coordination of resources
and it would be too challenging to hope that we will solve all the problems in
one shot. We do prefer to work “step by step”.

Our prototype is organized according to the following Python classes:
3 See http://www.redis.io

http://www.redis.io

Design, Verification and Prototyping the Next Generation of DG Middleware 85

– ServerClass. There are three possibilities for servers: the main server for the
protocol itself, the data server storing input/output data for the applica-
tions and CodeServer which is the name of the server for retrieving codes of
applications; The three servers can point on the same name;

– DataManager: set-up an instance of ServerClass; In this class, we also define
functions for loading files into a Redis server, for executing a code (binary
or script);

– FormMultiprocessingTasks: it is the core of the "workflow" engine because
the method in this class "executes" the task graph; Note that we create
threads to execute, concurrently, all the tasks (descendants in the task graph)
attached to a node;

– EngineClass. It starts and instance of the FormMultiprocessingTasks class in
one thread, and wait that all nodes of the task graph are visited in another
thread;

– MachineClass: it allows to set the properties of a machine (operating system
type, amount of memory on the machine, processor type...); In this class we
have also two methods for launching a worker and a coordinator respectively;

– WorkerClass and CoordinatorClass define the behavior of a worker, or a
coordinator;

Our prototype executes series-parallel graphs (SPG). Intuitively, a SPG is built
from a sequence of compositions (parallel or series) of smaller-size SPGs. The
smallest SPG consists of two nodes connected by an edge. The first node is the
source of the SPG while the second is its sink. When composing two SPGs in
series, we merge the sink of the first SPG with the source of the second. For a
parallel composition, the two sources are merged, as well as the two sinks. In
our prototype we execute the graph depicted on Figure 5.

1

2 5 8 10

113 6 9

4 7

Fig. 5. The graph executed by our prototype. The initial state is 1, the final state is
11.

Classical workflow applications usually consists of a directed acyclic graph:
the application is made of several tasks, and there are dependencies between
these tasks. However, it turns out that many of these graphs are series-parallel
graphs. For instance, in [22], McClatchey et al. introduce a prototype scientific
workflow management system called CRISTAL, and the distributed scientific
workflow applications that they consider are SPGs. In [23], Qin and Fahringer

86 L. Abidi, C. Cérin, and K. Klai

use scientific grid workflow applications, which are all structured as SPGs: the
WIEN2k workflow performs electronic structure computations of solids; the Me-
teoAG workflow is a meteorology simulation application [24], and the GRASIL
workflow computes the spectral energy distribution of galaxies [25]. A last, the
fMRI workflow [26], which is a cognitive neuroscience application is also based
on SPGs.

The simulation implemented in the prototype4 is as follows. A series-parallel
graph with 11 vertices is defined. Each edge represents an application. The ap-
plication is the same for all edges: it is a Bash script that should be located on
/tmp and echoing a message.

The program forks and we start a coordinator as well as a worker (we use
only one worker which is created for executing one application, one by one). The
program is multi-threaded in the sense that we execute the descendants of a
node (the applications) in different threads. We manage locks so that we cannot
predict which is the order of execution of the descendants.

The coordinator is in a loop doing the work described in this paragraph. It
publishes a message to advertise that he needs a worker for executing a task
(according to some properties). Worker(s) listen on the channel dedicated to
this message, then reply by publishing a random channel name for future com-
munication between him and the coordinator. The coordinator accepts the first
response (the worker who is arriving the first) and he publishes on the random
channel name the name and the location of the application. The worker keeps
the application name and executes it.

It is important to notice that the protocol is entirely depicted by the exchange
of publication and subscribe messages and the development is guided by our
different modeling. The prototype serves for the validation of ideas and choices
made during the design and modeling parts.

Note also that in the prototype we do not manage files representing the in-
put/output data of the applications. This point is related to scheduling strategies
and we plan to include a more elaborated scheduling class in our prototype in
the future. In the context of Desktop Grid, scheduling should serve also to check
the results computed on (hostile) workers. The issue is to write scheduling algo-
rithms in terms of the Publish-Subscribe paradigm and in such a way that the
strategies could be composed with the current Petri Net.

4 Conclusion

In this paper, we have introduced the context of our work about the coordination
of resources using the Publish-Subscribe paradigm. We have also demonstrated
the usefulness of modeling and formal verification of such a specific mechanism
for the BonjourGrid system, dedicated to the management of multiple instances
of Desktop Grid middleware.

This work is a step toward the development of DG middleware based on Web
2.0 technologies. Furthermore, this effort has been consolidated in this paper
4 See http://www.lipn.fr/~cerin/ProtoRedis.tar

http://www.lipn.fr/~cerin/ProtoRedis.tar

Design, Verification and Prototyping the Next Generation of DG Middleware 87

with another facet of the problem, namely the definition of a mechanism for
composition of the basic scheme introduced in this paper with any protocol that
is written with the Publish-Subscribe paradigm in mind. Recall that BonjourGrid
is only a case study that allows us to discuss the problems and devise solutions
that we have implemented, concurrently with the design, in Redis.

We are currently working on the programming effort for introducing a Python
module for scheduling jobs and later, we will conduct experiments on large clus-
ters running Redis. Scheduling is an important issue because we want to do
result certification: the computation are done on (hostile) workers so we need
to do redundant computation. We have imagined an algorithm based on tickets
that we duplicate and managed by the Publish-Subscribe paradigm. Again, the
scheduling itself is made exclusively through a Publish-Subscribe approach which
is unconventional, but allows to build a fully distributed protocol where asyn-
chronism is maximized because of scalability requirement of systems we build
nowadays.

References

1. Kondo, D.: Preface to the special issue on volunteer computing and desktop grids.
J. Grid Comput. 7, 417–418 (2009)

2. University of California: SETI@Home (October 2011),
http://setiathome.berkeley.edu/

3. University of California: BOINC (October 2011), http://boinc.berkeley.edu/
4. Univa: United Devices (October 2011), http://www.unicluster.org/
5. DistributedNet: Distributed.Net (October 2011), http://www.distributed.net/
6. Univa: XtremWeb (October 2011), http://www.xtremweb.net/
7. Abbes, H., Cérin, C., Jemni, M.: Bonjourgrid as a decentralised job scheduler. In:

APSCC, pp. 89–94. IEEE (2008)
8. Abbes, H., Cérin, C., Jemni, M.: Bonjourgrid: Orchestration of multi-instances of

grid middlewares on institutional desktop grids. In: IPDPS, pp. 1–8. IEEE (2009)
9. Abbes, H., Cérin, C., Jemni, M.: A decentralized and fault-tolerant desktop grid

system for distributed applications. Concurrency and Computation: Practice and
Experience 22, 261–277 (2010)

10. Smets-Solanes, J.P., Cérin, C., Courteaud, R.: Slapos: A multi-purpose distributed
cloud operating system based on an erp billing model. [27] , 765–766

11. Eugster, P.T., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)

12. Cheshire, S., Steinberg, D.H.: Zero configuration networking - the definitive guide:
things that just work: covers Apple’s Bonjour APIs. O’Reilly (2005)

13. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate pub-
lish/subscribe architectures (2003)

14. Harrison, M.D., Kray, C., Sun, Z., Zhang, H.: Factoring user Experience into the
Design of Ambient and Mobile Systems. In: Gulliksen, J., Harning, M.B., van der
Veer, G.C., Wesson, J. (eds.) EIS 2007. LNCS, vol. 4940, pp. 243–259. Springer,
Heidelberg (2008)

15. Garlan, D., Khersonsky, S., Kim, I.: Model Checking Publish-Subscribe Systems.
In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 166–180.
Springer, Heidelberg (2003)

http://setiathome.berkeley.edu/
http://boinc.berkeley.edu/
http://www.unicluster.org/
http://www.distributed.net/
http://www.xtremweb.net/

88 L. Abidi, C. Cérin, and K. Klai

16. Abidi, L., Cérin, C., Evangelista, S.: A petri-net model for the publish-subscribe
paradigm and its application for the verification of the bonjourgrid middleware.
[27], 496–503

17. Kacem, N.H., Kacem, A.H., Jmaiel, M., Drira, K.: Towards modelling and analysis
of a coordination protocol for dynamic software adaptation. In: Chbeir, R., Badr,
Y., Abraham, A., Laurent, D., Köppen, M., Ferri, F., Zadeh, L.A., Ohsawa, Y.
(eds.) CSTST, pp. 499–507. ACM (2008)

18. Kacem, N.H., Kacem, A.H., Drira, K.: A formal model of a multi-step coordination
protocol for self-adaptive software using coloured petri nets. International Journal
of Computing and Information Sciences (2009)

19. Silva, L.D.D., Perkusich, A.: Formal verification of component-based software
systems. In: Isaías, P.T., Sedes, F., Augusto, J.C., Ultes-Nitsche, U. (eds.)
NDDL/VVEIS, pp. 113–124. ICEIS Press (2003)

20. Wells, L.: Performance analysis using cpn tools. In: Lenzini, L., Cruz, R.L. (eds.)
VALUETOOLS. ACM International Conference Proceeding Series, vol. 180, p. 59.
ACM (2006)

21. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems, 1st edn., July 1. Springer, Heidelberg (2009)

22. McClatchey, R., Estrella, F., Le Goff, J.M., Kovacs, Z., Baker, N.: Object databases
in a distributed scientific workflow application. In: Proceedings of the 3rd Basque
International Workshop on Information Technology (BIWIT 1997), p. 11. IEEE
Computer Society, Washington, DC (1997)

23. Qin, J., Fahringer, T.: Advanced data flow support for scientific grid workflow ap-
plications. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,
SC 2007, pp. 42:1–42:12. ACM, New York (2007)

24. Schüller, F., Qin, J., Nadeem, F., Prodan, R., Fahringer, T., Mayr, G.: Perfor-
mance, scalability and quality of the meteorological grid workflow meteoag. In:
Proceedings of the 2nd Austrian Grid Symp., Univ. Innsbruck (2006)

25. Silva, L., Granato, G.L., Bressan, A., Lacey, C.G., Baugh, C.M., Cole, S., Frenk,
C.S.: Modeling dust on galactic sed: Application to semi-analytical galaxy forma-
tion models (1999)

26. Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Jordan, T., Quigg, E., Dobson, J.:
Grid middleware services for virtual data discovery, composition, and integration.
In: 2nd Workshop on Middleware for Grid Computing, p. 57. ACM Press (2004)

27. Jacobsen, H.A., Wang, Y., Hung, P. (eds.): IEEE International Conference on
Services Computing, SCC 2011, Washington, DC, USA, July 4-9. IEEE (2011)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 89–97, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Request Multiplexing Method
Based on Multiple Tenants in SaaS*

Pingli Gu1, Yanlei Shang1, Junliang Chen1, Bo Cheng1, and Yan Jiang2

1 Key Laboratory of Networking and Switching Technology
Beijing University of Posts & Telecommunications, Beijing, China

gplqy98@gmail.com, {chjl,shangyl,chengbo}@bupt.edu.cn
2 Shandong Polytechnic University, Jinan, Shandong, China

JiangYan@gmail.com

Abstract. As one of the key characteristic of SaaS, multi-tenant aims to support
massive customers. To achieve the high economies of scale, SaaS provider hope
to minimize the overall infrastructure cost without adversely affecting the
customers or maximize the number of customers in the context of a given
infrastructure cost . To maximize the number of customers in the context of a
given infrastructure cost, that is maximize throughput of SaaS application, we
propose request multiplexing method based on multiple tenants, in this method,
we use the ideal of network coding to encode or decode information in
multiplexing request or reply. Based on our method, the simulation experiment
result shows the high throughput and better performance of SaaS application.

Keywords: Multi-tenants, request multiplexing, network coding, SaaS.

1 Introduction

With development of cloud computing, more and more software providers begin to
provide SaaS application. As one of the key characteristic of SaaS, multi-tenant aims to
support massive customers [1]. To achieve the high economies of scale, SaaS provider
hope to minimize the overall infrastructure cost without adversely affecting the
customers[2] or maximize the number of customers in the context of a given
infrastructure cost . To maximize the number of customers, SaaS providers must deal
with tenant requests as much as possible, and ensure reliability of SaaS application.
Normally, when the number of client requests is the maximum number of requests
processed by system in unit time, the SaaS application goes to the maximum
throughput. In this case, SaaS application is easy to overload. In order to prevent
overloading, [8] proposed a performance regulator based on feedback-control, and

* This work was supported by the National Grand Fundamental Research 973 Program of China

under Grant No.2011CB302506; National Natural Science Foundation of China under Grant
No. 61001118, 61132001; Project of New Generation Broadband Wireless Network under
Grant No.2010ZX03004-001; Program for New Century Excellent Talents in University (Grant
No. NCET-11-0592); Fundamental Research Funds for the Central Universities under Grant
No.2011RC0502.

90 P. Gu et al.

[5][6][7] proposed some methods about resource allocation. From these methods, we
can see that, each request is handled separately, and each request gets an answer from
system separately, independent client requests may share system resources, but the
information in client requests or in system replies is still separate, and then the
throughput of system is always limited.

Network coding [3] is a recent field in information theory. Instead of simply
forwarding data, nodes may recombine several input packets into one or several output
packets [4]. A simple example is butterfly network, as shown in Figure 1.[3]

Fig. 1. Butterfly network with network coding

Fig. 1(a) shows the capacity of each edge, and Fig. 1(b) shows such a scheme, where
“+ ” denotes modulo addition. At T1, b2 can be recovered from b1and b1+b2. Similarly,
b1can be recovered at T2. In this example, information is coded at the node 3, which is
unavoidable. For network throughput L 2≥ , network coding is in general necessary in
an optimal multicast scheme. Because of network coding, we can save bandwidth, and
throughput can be increased when network coding is allowed.

This paper aims to improve throughput of SaaS application by sharing requests and
replies on the basis of theory about network coding. In SAAS application, tenant
requests always access the same system resource, such as the same DB, the same files
and so on, for example, for DB, there are some restrictions such as connection number
and so on, because SaaS system processes these requests separately, it can only meet
limited requests. Therefore, in order to achieve better throughput, our work proposes
request multiplexing method to share requests and replies of different tenants by
encoding or decoding information, and hope to recombine several requests into one
request or reply, it means that one request may includes more information from other
requests, and system will handle all these requests in one request. In this method, we
primarily focus on two key issues, one is how to share requests, and the other is how to
separate yourself response from a share reply. To solve the two problems, we use the
ideal of network coding to encode or decode information in request or reply for
improving throughput of SaaS application. A performance analysis of the proposed
method is also presented in this paper.

The rest of the paper is organized as follows. Section 2 introduces request
multiplexing method and description for multi-tenants, and gives the algorithm

 A Request Multiplexing Method Based on Multiple Tenants in SaaS 91

description for certain request about competitive resource. In section 3, we implement
this method and compare difference in general. We conclude our work and future work
in section 4.

2 Request Multiplexing Method for Multi-tenants

2.1 Request Multiplexing Method

We consider competitive resource, for example, database, if there are two requests from
different tenants simultaneously to access database, as shown in Figure 2 (a), let T1, T2

be different tenants, let R1, R2 be requests from T1, T2 , let A1, A2 be the answer for R1,
R2 to T1, T2. Assuming the maximum number of connections of DB is 1
(we simplify Figure 2(a), and marked the maximum number of connections to the
DB, as shown in Figure 2(b)).

Fig. 2. Two-request two answer without coding

From Fig.2 (b), we can see that resource DB only can meet one request, so the other
request must be wait. At this point, system throughput is 1.

We suppose that there is a request queue, we can get requests from the request
queue, if we can make some requests into one requests, then it means that many
requests can use the only one connection together. We call this process as request
multiplexing process. When resource finished the request, it would return a reply
including all information that all tenants’ want. All these data must be organized in
some way to distinguish different tenants, and when each request get the reply, each
request can get its own information from the sharing reply. We call this process as data
encoding & decoding process. Fig. 3 (a) shows the SaaS application with request
multiplexing. In Fig. 3 (b), R1+R2 means that request R1 and R2 are merged into one
request, A1+A2 means that the sharing reply includes answer A1 for request R1 and
answer A2 for request R2, and tenant T1 and T2 both receive the reply A1+A2.

92 P. Gu et al.

Fig. 3. Two-request one-answer with coding

From Fig.3 (b), we can see that when there is only one available connection to DB,
the two requests can be treated as one request, and then they get their own information
from the sharing reply. The throughput of SaaS application is increased to 2.

In theory of network coding, nodes in network need to obtain information about
other nodes, but in request multiplexing method, each tenant needs to obtain
information about itself, so, here, we consider (inclusive) OR operation.

First, we define truth table about OR:

Let set 1 2{ , ,..., ,... }i nT T T T T= be tenants set involved in

coding, let set 1 2{ , , ..., , ... }j pX X X X X= be information set, and

let information vector corresponding to tenant Ti be

1 2(, , ..., , ...), ,1 ; ,1i j m i jT x x x x T T i n x X j m= ∈ ≤ ≤ ∈ ≤ ≤ . , it means that

tenant iT wants to get information 1 2, ,..., ,...j mx x x x . We call (())i i j jitem T x v=

as a data item, here jv is the value corresponding to jx , then coding data in sharing

reply is the set of data items. Let V denote coding data, then:

{ }

{ } { } { }{ }1 2

1 1 1 1 2 2

1 2
1 1 1

= (()) (()) ... (()) ... (())

(()) (()) ... (())

, ,..., ,...
i

i i l l n h h
m k s

j j l l n h h
j l h

T T T

V item T f v T f v T d w T e u

T f v T d w T e w

ietm ietm ietm
= = =

= ∪ ∪ ∪ ∪ ∪

= + + +

=

∪ ∪ ∪ (1)

here, itemTi means that the data item belongs to tenant Ti.
When we get coding data, according to our data item, we do OR operation on each

data item, this operation includes 2 steps: tenant OR operation and vector OR

1 0

0 1

a b

a

b

 A Request Multiplexing Method Based on Multiple Tenants in SaaS 93

operation. In tenant OR operation, if we use a tenant code to do OR operation, then we
can get all data item about this tenant. In vector OR operation, if we use vector item in
vector X , then we can get the value of this vector item. All that said, tenant can get
their own data and shield unrelated data by OR operation. First, we define the

operation iA item: as:

(()) ()(())
1 (()), (),

0 (()), 0,

i i j j i j j

j j i j j i

j j i i

A item A T x v A T x v
x v A T x v A T

x v A T A T

= =
⋅ = =⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬⋅ ≠ ≠⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

: : :
 (2)

For example:

,
() ()()

0,
j i j

i j j i j j
i j

v x x
x x v x x v

x x

=⎧ ⎫⎪ ⎪= = ⎨ ⎬≠⎪ ⎪⎩ ⎭
: :

According to formula (1) and (2), if tenant Ti wants to get the value of xj in his request,
tenant Ti can get it by OR operation:

1 2
1 1 1

1

1 1

()

(((()) (()) ... (())))

((()))

((), ..., (), ...)
()

j j i
m k s

j i j j l l n h h
j l h

t

j i i a a
a

i i i

i i i

i

x x T V

x T T f v T d w T e w

x T T x b

x x b x b
x x b
b

= = =

=

=

= + + +

=

=
=
=

: :

: :

: :

:
:

∪ ∪ ∪

∪

For example, there are some data items for multiple tenants in coding data, and tenant

1T wants to get his reply: first, we use coding 1T to get all information about 1T :

{ } { } { }{ }

{ }

1 21

1 1 2
1 1 1

1 1 2 2
1

T , , ..., , ...

= ((()) (()) ... (()))

() f v f v

iT T T
m k s

j j l l n h h
j l h

m

j j
j

ietm ietm ietm

T T f v T d w T e w

f v

= = =

=

+ + +

=

:

: ∪ ∪ ∪

∪ = （ ） , （ ） ,

Next, we get the final information:

{ }
{ }

1 1 1 1 2 2 1 1 1 1

2 2 1 1 2 2 2 2 2 2

f f f v f v f f v v
f f f v f v f f v v
....

= =
= =
: :
: :

（ ）, （ ）, （ ）=
（ ）, （ ）, （ ）=

94 P. Gu et al.

2.2 Description of Algorithm

Assuming that we can get requests from the request queue Q and the queue is a queue of
requests that access the same resource. We extract m requests every time to handle, and
keep the order of requests. It means that, when these request share one request R,
information in these requests will be executed with the order of requests. The formal
description of request multiplexing method is given below:

3 Implementation and Compare

We simulated a competitive resource, which can only handle 5 requests at the same
time, and the processing time for each request is 1 second. In 2 minutes, set
up 12 virtual users to access the resource continuous, we compare the number
of request processing and response time in both cases of requests handing with
the multi-tenant request multiplexing algorithms and requests handing without the
request multiplexing algorithm.

Test environment is: windows XP, 1G memory, pentium(R) 4, cpu 3.00GHz,
LoadRunner 9.0.

 A Request Multiplexing Method Based on Multiple Tenants in SaaS 95

Fig. 4. Process request without request multiplexing algorithm

Fig.4 is about algorithm without request multiplexing. The figure shows, in 2
minutes, 12 virtual users, handled a total of 143 requests.

Fig. 5. Process request without request multiplexing algorithm

Fig.5 is about algorithm without request multiplexing. The figure is about 12 virtual
users, average response time of 143 requests. Average response time: 11.166 seconds.
(Because one request needs 1 seconds to process, and the competitive resource only
handles 5 requests at the same time, and other requests must wait, so the test gets a
longer average response time: 11.166 seconds.)

96 P. Gu et al.

Fig. 6. Process request with request multiplexing algorithm

Fig.6 is about algorithm with request multiplexing. The figure shows, in 2 minutes,
12 virtual users, handled a total of 653 requests.

Fig. 7. Process request with request multiplexing algorithm

Fig.7 is about 12 virtual users, response time of 653 requests with request
multiplexing algorithm. Average response time: 2.296 seconds.

From our experiment, we can see that in the same context our request multiplexing
algorithm can process more requests (143:653) and get faster response time
(11.166: 2.296).

 A Request Multiplexing Method Based on Multiple Tenants in SaaS 97

4 Conclusion and Future Work

This paper discuss problem about multiple tenants requests multiplexing to maximize
the number of customers in the context of a given infrastructure cost. To improve
throughput of SaaS application, we propose request multiplexing method based on
multiple tenants, in this method, we primarily focus on two key issues, one is how to
share requests, and the other is how to separate yourself response from a share reply. To
solve the two problems, we use the ideal of network coding to encode or decode
information in request or reply. An experiment and performance analysis of the
proposed method is also presented in this paper.

Our future work will further discuss the quantitative relationship about multiplexing,
in order to achieve the best performance of SaaS application.

References

1. Zhang, Y., Wang, Z., Gao, B., Guo, C., Sun, W., Li, X.: An Effective Heuristic for On-line
Tenant Placement Problem in SaaS. In: 2010 IEEE International Conference on Web
Services (2010)

2. Wu, L., Garg, S.K., Buyya, R.: SLA-based Resource Allocation for Software as a Service
Provider (SaaS) in Cloud. In: 2011 11th IEEE ACM International Symposium on Cluster,
Cloud and Grid Computing (2011)

3. Ahlswede, R., Cai, N., Li, S.R., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory (July 2000)

4. Fragouli, C., Le Boudec, J.Y., Widmer, J.: Network Coding: An Instant Primer. ACM
SIGCOMM Computer Communication Review 36(1), 63–68 (2006)

5. Caron, E., Desprez, F., Loureiro, D., Muresan, A.: Cloud Computing Resource Management
through a Grid Middleware: A Case Study with DIET and Eucalyptus (2009)

6. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing
systems. J. Supercomput. (2010)

7. Goiri, N., Juliá, F., Nou, R., Berral, J.L., Guitart, J., Torres, J.: Energy-aware Scheduling in
Virtualized Datacenters. In: 2010 IEEE International Conference on Cluster Computing
(2010)

8. Lin, H., Sun, K., Zhao, S., Han, Y.: Feedback-Control-based Performance Regulation for
Multi-Tenant Applications. In: 15th International Conference on Parallel and Distributed
Systems (2009)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 98–108, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Adaptive Design Pattern for Genetic
Algorithm-Based Composition of Web Services
in Autonomic Computing Systems Using SOA

Vishnuvardhan Mannava1 and T. Ramesh2

1 Department of Computer Science and Engineering,
K L University, Vaddeswaram, 522502, A.P., India

vishnu@kluniversity.in
2 Department of Computer Science and Engineering,

National Institute of Technology, Warangal, 506004, A.P., India
rmesht@nitw.ac.in

Abstract. Web services composition has been an active research area over the
last few years. However, the technology is still not mature yet and several
research issues need to be addressed. In this paper, we propose Genetic
Algorithm based Design Pattern. This system provides tools for adaptive
service composition and provisioning. We introduce a composition model
where service context and exceptions are configurable to accommodate needs
of different users. This allows for reusability of a service in different contexts
and achieves a level of adaptive and contextualization without recoding and
recompiling of the overall composed services. The proposed system will
compose web services based on user request using Service oriented
Architecture (SOA). Genetic Algorithm based composition Design Pattern
satisfies properties of autonomic system. We use different Design Patterns for
designing the system like, Master slave Design Pattern and Chain of
responsibility Design Pattern. Our proposed system will satisfy all properties of
autonomic system, for monitoring we have used context based monitoring, for
decision making we use Master Slave which is based on decision making
system that will reconfigure itself and Thread per connection is used of
executing different services in different threads. A simple UML class and
Sequence diagrams are depicted.

Keywords: Web service composition, Design Pattern, Autonomic system,
Service Oriented Architecture (SOA), Web Services, Web Service Description
Language (WSDL) and Genetic Algorithm (GA).

1 Introduction

Genetic Algorithm (GA) is a problem solving method inspired by Darwin’s theory of
evolution: a problem is solved by an evolutionary process resulting in a best (fittest)
solution (survivor). In a GA application, many individuals derive, independently and
concurrently, competing solutions to a problem. These solutions are then evaluated

An Adaptive Design Pattern for Genetic Algorithm-Based Composition of Web Services 99

for fitness and individuals survive and reproduce based upon their fitness. Eventually,
the best solutions emerge after generations of evolution.

The flow of a typical GA simulation is as follows: First, a GA server creates many
individuals randomly. Each of these individuals is tested for fitness. Based on their
fitness, measured by a fitness function that quantifies the optimality of a solution, the
server selects a percentage of the individuals that are allowed to crossover with each
other, analogous to gene sharing through reproduction in biological organisms. The
crossover between two parents produces offspring, which have a chance of being
randomly mutated. A child thus produced is then placed into the population for the
next generation, in which it will be evaluated for fitness. The process of selection,
crossover, and mutation repeats until the new population is full and the new
generation repeats the behavior of the previous generation. After many generations,
the individuals are expected to become more adept at solving the problem to which
the GA is being applied.

Web service is defined as an interface which implements the business logic
through a set of operations that are accessible through standard Internet protocols. The
conceptual Web services architecture [1] is defined based upon the interactions
between three roles: service provider, service registry and service requester. The
requester search for suitable Web services in the registry which satisfy his functional
and nonfunctional requirements. The requester’s service request sometimes includes
multiple related functionalities to be satisfied by the Web service. In many cases the
Web service has a limited functionality which is not sufficient to meet the requester’s
complex functional needs. To achieve complex business goals in real world
applications, the execution of multiple Web services should be orchestrated through
service composition.

The Web service composition can be defined as the creation of new Web service
by combining the available services that realizes the complex service request. The
service composition strategies are broadly classified as Static and Dynamic
composition based on the time when the Web services are composed [2]. Static
composition takes place during design time when the architecture and the design of
the system is planned. Dynamic composition takes place at run time when the
requested service is not provided by the single provider. The effective dynamic Web
service composition is a major challenge towards the success of Web services.

Autonomic Computing is an initiative started by IBM in 2001 with an ultimate
aim to develop computer systems capable of self-management, to overcome the
rapidly growing complexity of computing systems management, and to reduce the
barrier that complexity poses to further growth. So, the system, to be autonomic, must
have the following properties:

• self-configuring: Automatic configuration of components;
• self-healing: Automatic discovery, and correction of faults;
• self-optimizing: Automatic monitoring and control of resources to ensure the

optima functioning with respect to the defined requirements;
• Self-protecting: Proactive identification and protection from arbitrary

attacks;

100 V. Mannava and T. Ramesh

Our proposed system composes the web services dynamically using SOA. We use this
Design Pattern for constructing the system/application and it has satisfied the
properties of autonomic system. Initially client will request to all service providers for
WSDL files, and then all the service providers will send WSDL files to the respective
clients. The Client will search for some matching constrains in WSDL file and it will
chooses all matched service providers WSDL files for composing. Based on rule
generated by master slave Design Pattern, client generate XML file. This pattern uses
the Genetic Algorithm for decision making; we use parallel Genetic Algorithm for
evaluating population. Each population is executed in different clients and out of all
returned results of clients; GA will pick best result as composition rule. We use Mater
slave Design Pattern for evaluating Genetic Algorithm. Based on the rule selected,
service provider will compose new web service based on XML file constrains.

2 Related Work

In this section we present some works that deal with different aspects of autonomic
systems and their design. Freddy Lecue and Nikolay Mehandjiev in their paper [1]
discuss Genetic Algorithm based optimization for web service composition. Demian
Antony D’Mello [2] exploits the analogy of different type of web service composition
techniques based on those techniques we propose this paper. In [3] is presented a
SOA based composition of web service based on user demand. [4] vishnuvardhan
mannava paper give an architecture for service invocation pattern we take this paper
for invocation of web service.

In Vishnuvardhan Mannava and T. Ramesh paper [8] [9] [10] they propose a
design pattern for Autonomic Computing System which is designed with Aspect-
oriented design patterns. They also studied about the amalgamation of the Feature-
oriented and Aspect-oriented software development methodology and its usage in
developing a self-reconfigurable adaptive system.

Based on the previous papers we propose new approach for web service composition
using Design Pattern “Genetic Algorithm based composition Design Pattern”.

3 Parallel Genetic Algorithm Based Composition Design
Pattern Template

To facilitate the organization, understanding, and application of the adaptation Design
Patterns, this paper uses a template similar in style to that used by Ramirez et al. [2].
Likewise, the Implementation and Sample Code fields are too application-specific for
the Design Patterns presented in this paper.

3.1 Pattern Name

Adaptive Design Pattern Design Pattern

3.2 Classification

Structural - Monitoring - Decision making.

An Adaptive Design Pattern for Genetic Algorithm-Based Composition of Web Services 101

3.3 Intent

In order to design the system/application for composing dynamic web services based
on client request without modifying already running service code in the main
memory. We model a new Design Pattern which is an amalgamation of different
Design Patterns like Master Slave and Chain of Responsibility.

3.4 Motivation

Main objective of Genetic Algorithm based composition Design Pattern is to compose
web services based on the user request. Our Pattern will compose web services
dynamically by using SOA based service composition techniques.

3.5 Proposed Design Pattern Structure

UML class diagram for the Constrain based composition Design Pattern can be found
in Figure 3.

This proposed system will compose a new web service dynamically based on user
requests. We use two Design Patterns for modeling this pattern they are Mater slave
and Chain of responsibility. Client will request to all service providers for the
respective WSDL files of services that they provide globally, and then all service
providers will send WSDL files of the services that they provide to the clients. A
client search for matching constrains in WSDL files depending on the user’s request,
and client chooses all matched service provider files for composing. Based on rule
generated by master slave Design Pattern client generate XML file. After that we use
parallel Genetic Algorithm concept for evaluating population and which serves as a
decision maker. Each population is executed in different client and then out of all the
obtained results from the respective clients the Genetic Algorithm (GA) will pick best
result as composition rule. We use Mater slave Design Pattern for evaluating Genetic
Algorithm. Based on generated rule the service provider will compose new web
services depending on XML file constrains. The Composition of services at the
service providers can be realized with the help of this proposed structure of
composing the web services with SOA see Figure 1.

Fig. 1. Composition of the Services with Service Oriented Architecture using web services

102 V. Mannava and T. Ramesh

3.6 Participants

(a) Client

Client class sends the WSDL file request to service providers, based on WSDL
response client run Genetic Algorithm for finding appropriate plan for composing
new service. Based on Genetic Algorithm decision client generate XML file for
service provider.

(b) Service Provider

Service provider give response to client based on constrain of user. Service provider
composes new web service based on XML file generated by client.

(c) Master

Master class run Genetic Algorithm based on the client constrain. Master will
generate populating base in constrains that are provided by the client. Master will
provide plan for composing web service after evaluating Genetic Algorithm, master
will run population in different client to reduce time of server. Based on the responses
of client master will pick one plan for composing web service.

(d) Slave

Slave will run population of Genetic Algorithm; each slave will execute on population
at a time based on the slave results master will pick plan for composing web service.

(e) Population

Every problem have many solutions in out of all possible Genetic Algorithm will pick
best as solution. All possible solution is called population in Genetic Algorithm. In
population class will generate all possible solutions for composition for web service
based on fitness function.

(f) Service repository

Service repository will store web service in it, based on client request service provider
will invoke form service repository, Composed web services also stored in service
repository.

3.7 Applicability

Use the Adaptive Design Pattern when:

• Web administrator will use this autonomic system for dynamic composition.
• An application or system can be simplified by being composed of multiple

independently developed and dynamically configurable services; or

The management of multiple services can be simplified or optimized by configuring
them using a single administrative unit.

An Adaptive Design Pattern for Genetic Algorithm-Based Composition of Web Services 103

Fig. 2. Class Diagram for Adaptive Design Pattern

104 V. Mannava and T. Ramesh

Fig. 3. Sequence Diagram for Adaptive Design Pattern

4 Case Study

In our experiments we evaluate the effectiveness of our proposed Adaptive Design
Pattern. In order to make our proposal clear we have successfully developed some
critical parts of our system i.e., we have developed the code for the Reconfiguration
modules.

The simulation results for the reconfiguration module are collected with respect to:

An Adaptive Design Pattern for Genetic Algorithm-Based Composition of Web Services 105

• Used Heap memory

• Total Started Thread Count

• Process CPU Time

• Total Compilation Time

With the help of the comparison between the efficiency of a sample application
(reconfiguration module) in our Adaptive Design Pattern architecture, which is
initially developed in normal Object Oriented Programming code using java (which
we refer it as a normal plain code without using any design patterns) and the same
application which is developed using the design patterns and Object Oriented
Programming techniques to provide the dynamic reconfiguration property with the
help of Java Components.

When we have successfully executed the application with and without applying
design patterns then we have observed the following results which are in the form of
graphs as follows:

Fig. 4. Heap memory usage of
Reconfiguration Module before applying
pattern

Fig. 5. Heap memory usage of
Reconfiguration Module after applying
pattern

Fig. 6. CPU Usage of Reconfiguration
Module before applying pattern

Fig. 7. CPU Usage of Reconfiguration
Module after applying pattern

106 V. Mannava and T. Ramesh

5 Discussion

From the Figures 4 and 5 we can evaluate that the amount of Heap Memory used by
applying aspectual design pattern is 21,354 kbytes and where as for the amount of
Heap Memory used without any design pattern is 28,634 kbytes.

Fig. 8. Thread Count of Reconfiguration
Module before applying pattern

Fig. 9. Thread Count of Reconfiguration
Module after applying pattern

Fig. 10. Loaded Class Count of
Reconfiguration Module before applying
pattern

Fig. 11. Loaded Class Count of
Reconfiguration Module after applying
pattern

From the Figures 6 and 7 we can evaluate that the amount of CPU Time used by
applying aspectual design pattern is 8.126sec and where as for the amount of CPU
Time used without any design pattern is 11.435 sec. Figures 8 and 9 we can evaluate
that the Total Started Thread Count by applying design pattern is 14 and where as for
Total Started Thread Count without any design pattern is 15. Figure 10 and 11 shows
loaded class count of self optimization module before and after applying patterns. The
Total Compilation Time for the Self optimization Module with design pattern took
1034 sec and without design pattern is 1546 sec.

An Adaptive Design Pattern for Genetic Algorithm-Based Composition of Web Services 107

6 Conclusion

Paper describes parallel Genetic Algorithm based composition Design Pattern it will
compose web service based client request. Composition of available Web services
based on the requester’s functional requirements is a challenging task. Web service is
normally a collection of logically related operations and the requester normally
requests for a single operation or multiple operations (complex service re-quest). Thus
composition must focus on generating composition plan involving abstract operations
of available Web services instead of just Web services. Proposed system will
compose web service based on the user constrain at runtime by invoking Genetic
Algorithm based composition rule. Our future goal is to implement this paper in
aspect oriented programming satisfying autonomic characteristics of autonomic
computing system.

References

1. Lecue, F., Mehandjiev, N.: Seeking Quality of Web Service Compositionin a Semantic
Dimension. IEEE Transactions on Knowledge and Data Engineering 23(6) (June 2011),
doi:10.1109/TKDE.2010.237

2. D’Mello, D.A., Ananthanarayana, V.S., Salian, S.: A Review of Dynamic Web Service
Composition Techniques. CCIS, pp. 85–97. Springer (2011)

3. Sheng, Q.Z.: Configurable Composition and Adaptive Provisioning of Web Services.
IEEE Transactions On Services Computing 2(1), 34–49 (2009)

4. Ramirez, A.J., Betty, H.C.: Design patterns for developing dynamically adaptive Systems.
In: 5th International Workshop on Software Engineering for Adaptive and Self-Managing
Systems, Cape Town, South Africa, pp. 29–67 (2010), doi:10.1145/1808984.1808990

5. Mannava, V., Ramesh, T.: A Novel Event Based Autonomic Design Pattern For
Management of Webservices. CCIS, vol. 198, pp. 142–151 (2011)

6. Prasad Vasireddy, V.S., Mannava, V., Ramesh, T.: A Novel Autonomic Design Pattern for
Invocation of Services. CCIS, vol. 196, pp. 545–551 (2011)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of Reusable
Object-Oriented Software, Hawthorne, New York (1997)

8. Mannava, V., Ramesh, T.: A Service Administration Design Pattern for Dynamically
Configuring Communication Services in Autonomic Computing Systems. In: Pan, J.-S.,
Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part I. LNCS, vol. 7196, pp. 53–63.
Springer, Heidelberg (2012)

9. Mannava, V., Ramesh, T.: An Aspectual Feature Module Based Adaptive Design
Pattern for Autonomic Computing Systems. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T.
(eds.) ACIIDS 2012, Part III. LNCS, vol. 7198, pp. 130–140. Springer, Heidelberg
(2012)

108 V. Mannava and T. Ramesh

10. Mannava, V., Ramesh, T.: A novel adaptive re-configuration compliance design pattern for
autonomic computing systems. Procedia Engineering 30, 1129–1137 (2012), doi:10.1016/
j.proeng.2012.01.972, ISSN 1877-7058, http://www.sciencedirect.com/

science/article/pii/S1877705812009824
11. Crane, S., Magee, J., Pryce, N.: Design Patterns forBinding in Distributed Systems. In:

The OOPSLA 1995 Workshop on Design Patterns for Concurrent, Parallel, and
Distributed Object-Oriented Systems, Austin, TX. ACM (1995)

12. Pree, W.: Design Patterns for Object-Oriented Software Development. Addison-Wesley,
MA (1994)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 109–121, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Service-Oriented Ontology and Its Evolution

Weisen Pan, Shizhan Chen*, and Zhiyong Feng

School of Computer Science and Technology, Tianjin University, Tianjin, China
{wspan,shizhan,zyfeng}@tju.edu.cn

Abstract. Web service was designed to solve the problem of the heterogeneous
system integration and make heterogeneous systems interoperable. However,
current Web service technologies are not sufficient to build distributed,
heterogeneous Web service infrastructure, because they are provide by different
service providers, use different conceptual model and design tools, which
hinders Web service automatic discovery and composition. With diversification
of user requirements, we need to reasonable abstraction and organization of the
Web services through a new viewpoint. Thus, an lightweight Web services
semantic description model, namely Service Ontology, is proposed in this
paper, whose intention is to make comprehensive and multi-dimension semantic
description for Web services. This paper also describes the evolution
mechanism of service ontology. The mechanisms make use of the semantic tags
to expand Service Ontology. Finally, a case study is presented in the paper that
validates the Service Ontology can fulfill the multi-granularity requirement of
the users. This paper has made the beneficial exploration in multi-dimension
modeling and automation organization of Web services.

Keywords: Web Service, Service Ontology, Tag, Service Relation, Service
Chain, Service Discovery.

1 Introduction

With incessant growing and improving of Web service, it has attracted intensive
attention from the academia and industry. Web services are based on open standards
such as HTTP (HyperText Transfer Protocol) and XML-based (Extensible Markup
Language) protocols including SOAP (Simple Object Access Protocol) and WSDL
(Web Services Description Language), their cost is low and the associated learning
curve is smaller than that of many proprietary solutions. They are hardware,
programming language, and operating system independent. This means that
applications written in different programming languages and running on different
platforms can seamlessly exchange data over intranets or the internet using Web
services. So it is the best choice to achieve Service-Oriented Architecture (SOA) [1],
Service-Oriented Computing (SOC) [2] and Software as a Service (SaaS) [3].

* Corresponding author.

110 W. Pan, S. Chen, and Z. Feng

Web services can implement a SOA. The SOA has three roles: services provider,
services registry and services requester. The service provider creates a Web service
and possibly publishes its interface and access information to the service registry. The
service registry is one of the fundamental pieces of SOA for achieving reuse. It refers
to a place in which service providers can impart information about their offered
services and potential clients can search for services. Various service registries
already exist. The first major standard to appear was UDDI (Universal Description,
Discovery and Integration), which was designed mostly with SOAP-based Web
services in mind. The service requester locates entries in the broker registry using
various find operations and then binds to the service provider in order to invoke one
of its Web services.

In fact, it becomes much more difficult to find proper services from UDDI registry.
Because UDDI lacks support semantic descriptions for Web services, which seriously
affect the automatic service discovery, matching and composition. UDDI's search
capability is syntax-based and relies solely on XML, which enables syntactic. Syntax-
based matching lends itself to application-specific software development where reuse
of Web services by other organizations is arduous. Semantic Web Technologies [4]
are suitable to transform current Web services into services supporting such
automation and reuse, it uses ontology reasoning to back up service automatic
discovery, composition and interaction. In this paper, we will use the various semantic
web technologies to achieve the semantic modeling for Web services through a new
viewpoint.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 describes Service Ontology formal specification and its hierarchical
structure in more detail. Section 4 presents the evolution mechanism of Service
Ontology. Section 5 through case study shows the Service Ontology can fulfill the
multi-granularity requirement of the users. Finally, we conclude in section 6.

2 Related Work

Semantic Web Service is enriching Web services with machine-processable
semantics. With the rapid development of Semantic Web Service, ontology played a
prominent role on it. Through the aid of semantic information by ontology can
achieve automation Web service discovery and composition. How to add semantic to
the Web services has been a question in academia for quite a long time. Thus far
many Web services semantic description model and frame have been presented such
as OWL-S, WSMO, SWSF and SAWSDL.

2.1 Works Related to Service Ontology

Ontology-based Web Language Service (OWL-S) [5] is an ontology of service
concepts expressed in OWL-DL, a decidable description logic language. It have three
main parts: the service profile for advertising and discovering services; the process
model, which gives a detailed description of a services operation; and the grounding,

 Service-Oriented Ontology and Its Evolution 111

which provides details on how to interoperate with a service, via messages. OWL-S
make possible for agents to discover, compose, invoke, and monitor services with a
high degree of automation. It is the most influential research in semantic Web service.

Web Service Modeling Ontology (WSMO) [6] provides a conceptual framework
and a formal language for semantically describing all relevant aspects of Web
services in order to facilitate the automation of discovering, combining and invoking
electronic services over the Web. It is consist of four elements: ontologies, which
provide the terminology used by other WSMO elements, Web service descriptions,
which describe the functional and behavioral aspects of a Web service, goals that
represent user desires, and mediators, which aim at automatically handling
interoperability problems between different WSMO elements.

The Semantic Web Services Framework (SWSF) [7] consists of Semantic Web
Services Language (SWSL) and the Semantic Web Services Ontology (SWSO).
SWSL describes two variants: SWSL-FOL, a full first-order logic language, and
SWSL-Rules, as rule-based language. SWSO presents a conceptual model by which
Web services can be described, and an axiomatization, or formal characterization, of
that model.

Semantic Annotations for WSDL and XML Schema (SAWSDL) [8] defines how
to add semantic annotations to various parts of a WSDL document such as input and
output message structures, interfaces and operations. To accomplish semantic
annotation, SAWSDL defines extension attributes that can be applied both to WSDL
elements and to XML Schema elements.

2.2 Comparative Analysis

The common denominator of these Service Ontology is the separation of aspects to
describe a service in terms of inputs, outputs, and operations. To describe these
aspects, Service Ontology rely on the existence of respective domain ontologies
which can be referenced in actual service descriptions.

Although the fact that all OWL-S, WSMO, and SWSF were submitted to W3C,
these comprehensive models have not become real standards. Because of the above-
mentioned Service Ontology gave up the WSDL, which is traditional Web services
description language. However, the current Web services on the Web were published
in the form of WSDL, for example, there are more than thirty thousand this form Web
services in Seekda [9].

Instead, the SAWSDL designs a solution to resolve the above-mentioned problem
by add semantic annotations to various parts of WSDL. However, the SAWSDL are
based on a hypothetical ontology, hide the truth that existing ontologies are not
enough, especially the service-oriented ontology. Therefore, it is necessary to research
of Service Ontology evolution mechanism. Also, the SAWSDL focus too much on
service functionalities and not enough on the other profile of web service, and lack a
comprehensive and deep description of the service relation and operation flow.

Aiming at the above-mentioned problems this paper put forward a lightweight Web
services semantic description model, namely Service Ontology, whose intention is to
make comprehensive and multi-dimension semantic description for Web services,

112 W. Pan, S. Chen, and Z. Feng

thus to meet the multi-dimension requirement of the users. This paper also describes
the evolution mechanism of service ontology.

3 Service Ontology

The current Web services on Web have the characteristic of diversification because
they are provide by different service providers, use different conceptual model and
design tools. Thus, the constituent of Web Services Semantic Description Model have
a greater difference. To sum up, a generic Web Services Semantic Description Model
generally includes Service Functionality, Service Structure, Service Domain, Service
Relation, Service Location, Service Time and QoS. Figure 1 show the Web services
Semantic Description Model. This paper describes the different profile of Web
services through domain ontology in order to make comprehensive and multi-
dimension semantic description for Web services.

Fig. 1. Web services semantic description model

3.1 Formal Specification

Definition 1. The Service Ontology is defined as a 7-tuple:

SO = <SF, SS, SD, SR, SL, ST, QoS >

Where the SF, SS, SD, SR, SL, ST, QoS are respectively Service Functionality,
Service Structure, Service Domain, Service Relation, Service Location, Service Time
and Quality of Service.

 Service-Oriented Ontology and Its Evolution 113

Service Functionality (SF) is the basic functionality of Web service. The operation
of Web services can be consider an application which implementing some specific
functionality.

Definition 2. Service Functionality is defined as:

SF = < Object, Action>

The functionality of a Web service is represented by a pair of its action and the Object
of the Action [10]. For example, there is a Web service – the book hotel system. It
realizes the application of hotel reservation. That is to say the object of this service is
“hotel”. Focusing on “hotel”, the service completes the operation – “book”, the
functionality of a Web service which book hotel can be specified as <Hotel, Book>.

Service Structure (SS) stores the Input, Output, Input type and Output type
structure information of Web services. The functional semantics of their operations
usually can not guarantee fulfill the requirement of the requester. Because two Web
services with the same semantic functionality usually have different structure
information, the service structure information that requester providers are different.

Definition 3. Service Structure is defined as:

SS = <Is, Os, IDTs, ODTs>
Where

 Is (Input set) is the input parameters set of Web services.
 Os (Output set) store the Output parameters set of Web services.
 IDTs (Input Data Type set) store the input data type set of Web services.
 ODTs (Output Data Type set) is the out put data type set of services.

Service Domain (SD) is the domain information of Web service. With the help of
domain experts and e-dictionary, Web services are categorized to specific domains.
Domain is coarse-grained. Lots of Web services may not be put into a specific
domain. In fact, there are intersections among domains, so one Web service may
belong to several domains. Therefore, one Web service can be put into several
classifications at the same time.

Service relation (SD) is the logic relationship among Web services. Our previous
research divides the Service relation into competition and cooperation relations [11].
There are four competition relations: exact, which means the two services can do the
same thing and replace each other, plugin, the two services (A, B) have plugin
relation if the service A can be replaced by service B, subsumes, which is the inverse
relation of plugin and also transitive, intersection, which means the two services have
a similar degree greater than the predefined threshold but is not the types above. The
competition relation can be seen as inspirational information for service discovery and
is helpful to find substitutable service quickly. Cooperation relation presents in
several modes such as precedence and subsequence. Two services (A, B) with
precedence relation mean that the output of service A can satisfy, to some extent, the
input of service B. subsequence definition in opposition to precedence. The
cooperation relation is oriented to service composition, which can get the suitable
candidate services through this relation.

114 W. Pan, S. Chen, and Z. Feng

Definition 4. Service Location description is defined as:

SL = <SP, PL>

Service Location (SL) includes providers and physical location of Web service. The
service provider is name of services offering. The Physical Location describes where
the Web services located in. For example, there is a Web service – the get book name
system, it is provider by Amazon and locate in Seattle.

Definition 5. Service Time description is defined as:

ST = <SPT, SL>

ST (Service Time) includes the Web services Publish Time and Lifecycle. Service
Publish Time (SPT) describes when a Web service is innovation. Service Lifecycle
(SL) records all the change information of Web services functionality and structure
from Web services innovation to extinction.

Quality of service (QoS) information is used for computing the quality degree of
candidate Web services. The goal of QoS is to provide preferential delivery service
for the requesters that need it by ensuring availability, accessibility and security, etc.
Due to the dynamic and unpredictable characteristics of the Web services, it is not an
easy task to provide the desired QoS for Web service users. Furthermore, different
Web service applications with different QoS requirements will compete for network
and system resources such as processing time and bandwidth. So, an QoS model for a
Web service will bring competitive advantage for service provider.

Definition 6. QoS model is defined as:

QoS = <Availability, ResponseTime, Scalability, Reliability, Cost, Security>

Where

 Availability is the percentage of time that a service is available during some
time interval.

 Response Time describes the time interval between when a service is
requested and when it is delivered.

 Scalability represents the capability of increasing the computing capacity of
service provider's computer system and system's ability to process more users
requests, operations or transactions in a given time interval [12].

 Reliability here represents the ability of a Web service to perform its required
functions under stated conditions for a specified time interval.

 Service Cost is the price that a service customer has to pay for using the
service.

 Security for Web services means providing authentication, authorization,
confidentiality, traceability, data encryption, and non-repudiation.

3.2 Hierarchical Structure

In the previous section, we describe the Service Ontology, which is composed of 7-
tuple. Each tuple can be described by ontology. So, the Service Ontology can be
organized into hierarchical structure based on ontology methodology. The Service
Ontology can basically be divided into four layers in Figure 2.

 Service-Oriented Ontology and Its Evolution 115

Fig. 2. The hierarchical structure of Service Ontology

First, the upper level contains the top ontology and ontology design patterns. An
top ontology is an ontology which describes very general concepts that are the same
across all knowledge domains. OpenCyc is a freely available subset of the top
ontology. It includes a freely available, executable Knowledge Server that includes an
inference engine and other tools for accessing, utilizing, and extending the content of
the knowledge base [13]. OpenCyc also provides ontology design patterns as best
practices for reoccurring modeling needs. So, it is the best choice for top ontology in
Service Ontology.

Second, the core ontology consists of the domain ontology which is a knowledge
representation of the domain as a set of concepts and relations. Domain ontology aims
to capture relational domain knowledge, provides agreed understanding of domain
knowledge, determines recognized vocabulary and defines vocabulary and their
relations explicitly at different levels of conceptualization. All domain ontologies in
this layer are aligned under the common roof of the top ontology. Different aspects of
a service description (functionality, structure, etc.) can be description through the
domain ontology and linked to the classes in the top ontology.

Third, semantic tags layer are composed of some semantic tags. These semantic
tags results from users add metadata in the form of unstructured keywords to Web
services. Because of user's participation, these tags with generality and semantics are
better for WSDL document to express the Web service functionality and other
description. Another advantage of tags is their ability to rapidly adapt to new changes
in terminologies and domains.

Finally, actual service layer is consists of concrete Web services that are described
by WSDL document on the Web. The actual service layer is the executable ones.

The Service Ontology is specified in OWL [14]. Each ontology basically coincides
with an OWL file that imports other OWL files. The intended meaning of each class
and relation is formally captured by axioms in the Service Ontology.

116 W. Pan, S. Chen, and Z. Feng

4 Evolution of Service Ontology

To fulfill the objective of automatic services discovery and composition, Service
Ontology makes comprehensive and multi-dimension semantic description for Web
services by domain ontology. However, at present the Web service on the web is
growing at a rapid rate. How to accomplish automatic evolution of Service Ontology
and able to meet incessant growing of Web services, it is a challenge. We first have to
get the semantic information of Web services in order to achieve automatic evolution
of Service Ontology. However, the current Web services on the Web are described
through WSDL document, which definition and description information of Web
service, like Web service name, operation, input and output. These WSDL documents
use the optional wsdl:document element as a container for human readable
documentation. The wsdl:document usually contains semantic description of Web
services by providers such as services functionality, domain, location, etc. we usually
need to extract semantic information through artificial way. It needs to spend a lot of
effort and time, is a tedious and difficult task.

The emergence of social annotation gives an excellent resolution to above-
mentioned problem. Social annotation provides a convenient way to annotate shared
content by allowing users to use any tag or keyword. While free folksonomy is widely
used in social software implementations and especially in Web services, it is generate
a large number of the semantic tags data about Web services. These semantic tags are
better for WSDL documents to express the Web services semantic information. For
example, the most of Web services have semantic tags in Seekda.

The evolution mechanism of service ontology is set up the mapping relationship
between tags and existing Service Ontology with the help of Semantic Dictionary.
The mechanisms are illustrated in Figure 3. We use WordNet [15] to calculate
semantic similarity between tags and concepts. By mapping tags into an ontology, the
new addition Web services functionality and other profile can get further

Tags

Web Serv iceUser

Annotation

Concept

Ontology
Mapping

Similarity
Computation

Induced Domain Ontology Existing Service Ontology

Relation
Filtration

 Concept Relation
Learning

Extract Concept

WordNet

Fig. 3. The evolution mechanism of service ontology

 Service-Oriented Ontology and Its Evolution 117

interpretation. In further work, we want to learn concept relation from social
annotation in order to further enrich the Induced Domain Ontology.

The core of Service Ontology evolution is establishing the mapping mechanism
from concept to tag. To present the ideas of this mechanism in this paper, we define
mapping rule from tag to concept.

Definition 7. ()ji ConceptTagMapping , , where Tag is the new addition tag. Concept

represents the concept name of existing Service Ontology. If the Mapping function
return true, it represents they are synonymous and can be mapped, and vice versa.

()
⎩
⎨
⎧

≥
<

=
nSimifTrue

nSimifFalse
ConceptTagMapping

ji

ji

ji
,

,
, (1)

Where
jiSim ,
 is the function of similarity computation between tag and concept. n

represents threshold of similarity computation. Applying the package of
JWordNetSim,

jiSim ,
 gets the semantic similarity (between 0 and 1) between tag and

concept.
Figure 4 show the mapping flow chart from tag to concept. First is the data

selection and cleaning. This process is primarily to filter out noise data that is caused
by the nonstandard user annotations. Noise data include stop word, abbreviations,
numbers, and so on. Second, tags can be divided into simple tag and compound tag
according to the different of tags performance features. The simple tag which is made
up of single word, can be used as candidate tag by delete function words and restore
stemming. The compound tag is mostly composed of verbs and nouns such as
“GetWeather”, “BookHotel”. These compound tags are typical attribute-adjective

Fig. 4. The mapping flow chart from tag to concept

118 W. Pan, S. Chen, and Z. Feng

construction. The noun can be extracted from compound tag as candidate tag, and
then delete verbs. Finally, we use WordNet to calculate semantic similarity between
candidate tag and concept, and set up the mapping relationship from tag to concept.

5 Case Study

The construction of Service Ontology provides semantic support for Service Network.
Service Network [16] is to use the idea of Semantic Web Technology and Social
Network, constructed a novel service infrastructure on the basis of service relations. It
is proposed to bridge the gap between service consumer and service provider. Look
over the Service Network development, Service Ontology construction has become
one of the main factors which restrict the development of SN. Service Ontology
solves the existing problem of interoperability by introducing comprehensive and
multi-dimension semantic description for Web services. A test version of Service
Network is publicly available at http://ikse.tju.edu.cn:8080/SN2.0. It contains more
than twenty thousand Web services. Requester can search Web services and check
their details on this platform.

Aiming at Complexity and diversification of user requirements, Service Ontology
exerts their functions through find services to meet user requirements. This paper
divides the user requirements into two categories: functional requirements and non-
functional requirements. Functional requirements are statements the Web service
should provide such as service functionality. Non-functional requirements are
constraints on the functions offered by the Web services and relate more to the quality
aspects of the Web services. Non-functional requirements are often influenced by the
nature of the Web service such as services response time, services reliability, etc.

Let us assume that a user want go to New York traveling. User hope to request a
travel schedule services which can achieve flight and hotel reservation. He want to
acquire the results of ticket and hotel reservation according to provide city name, date
and credit card number. The consults result show there are some travel schedule
services in Service Network, for example, “QueryFlight”, “GetHotel” and
“CreditCardPay”, etc. The detailed information of Web services is shown in the Table 1.

Table 1. The detailed information of Web services

Num Service Name Input Output Location Publish Time

S1 QueryFlight
CityNameSrc
CityNameDst

FlightNum China 2008

S2 GetHotel
CountryNum

CityNum
Result Europe 2004

S3 QueryHotel CityName HotelName USA 2007
S4 BookFlightTicket FlightNum OrderNum China 2007

S5 CreditCardPay
OrderNum

CardID
Password

AutoCode USA 2006

S6 BookHotel HotelName Result China 2005
S7 GetPlaneTicket FlightNum OrderNum USA 2007
S8 ReserveHotel CityName OrderNum China 2008

 Service-Oriented Ontology and Its Evolution 119

From the Table 1, we can see the user request cannot be satisfied, because there is
no single service which matches the user's intention. The traditional method are
manually composes services to satisfy the user's requirements. Service Ontology
achieves the automation of this process. The service relation mining algorithm [12]
runs in the background, it can mining the logical relation of Web services according
to the match between input and output parameters. So, the service composition
problem was transferred into find a service chain to meet the user's requirements from
Service Ontology.

This paper divides the service discovery into two stages according to the user
requirement.

The first stage is to meet the functional requirement according to user's functional
description. From example, there is a user request – get flight ticket from Beijing to
New York and book hotel in New York, user submits the request to Service Ontology
and return the service chain (Shown in Fig.5) which can meet the functional
requirement of requester.

Fig. 5. The service chain

The second stage is to meet the non-functional requirement according to Web
service input/output parameters, location, publish time and QoS etc. If the requester
input parameters are “Beijing”, “New York”, “CardID”, “Password”, and requester
stay in Beijing. From the Table 1, we can see that invoking “GetPlaneTicket” service
spend much more time than invoking “BookFlightTicket” service, because the
“BookFlightTicket” locate in china, it is more close to requester. The functional of
“ReserveHotel” is the functional combination of “QueryHotel” and “BookHotel”.
“ReserveHotel” service was published in 2011, it has more availability. After the
analysis, “QueryFlightGetPlaneTicketCreditCardPayReserveHotelCreditCa-
rdPayment” (The dotted path in Fig 5) is the most appropriate service chain for
requester.

The case study shows that Service Ontology can not only meet the functional needs
of requester, but also can satisfy the non-functional requirements such as location and
QoS. Service Ontology accomplishes the optimum composition of Web services and
satisfies the multi-granularity requirement of requester.

6 Conclusion and Future Work

As the incessant growing of Web services, it becomes much more difficult to find
interesting services and meet the diversification requirement of requester. Service

120 W. Pan, S. Chen, and Z. Feng

Ontology is proposed to solve this problem. It makes the comprehensive and multi-
dimension semantic description for Web services. The case study verifies that Service
Ontology can effectively fulfill the diversification requirement of the user.

For future work, we will further extend and refine the Service Ontology in
semantic level. To enrich the ontology, we hope to present an ontology relation
learning mechanism based on social annotation. An automatic question and answer
mechanism should be designed to acquire the accurate user's requirement.

Acknowledgment. This work was supported by the National Natural Science
Foundation of China under Grant No. 61173155, the National High Technology
Research and Development 863 Program of China under Grant No. 2007AA01Z130,
and the Innovation Foundation of Tianjin University under Grant No. 2010XG-0009.

References

1. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Upper Saddle River (2005)

2. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges. Computer 40, 38–45 (2007)

3. Turner, M., Budgen, D., Brereton, P.: Turning Software into a Service. IEEE Computer 10,
38–44 (2003)

4. Payne, T., Lassila, O.: Semantic Web Services. IEEE Intelligent Systems 19, 14–15 (2004)
5. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDemott, D., McIlraith, S., Narayanana,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web services. W3C Member Submission (November 2004),
http://www.w3.org/Submission/OWL-S/

6. Roman, D., Keller, U., Lausen, H., Bruijn, J.D., Lara, R., Stollberg, M., Polleres, A., Feier,
C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontology 1, 77–106
(2005)

7. Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Martin,
D., McIlraith, S., McGuinness, D., Su, J.W., Tabet, S.: Semantic Web Services Ontology.
W3C Member Submission (September 2005), http://www.w3.org/Submission/
SWSF-SWSO/

8. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema. W3C
Candidate Recommendation (January 2007), http://www.w3.org/TR/sawsdl/

9. Seekda, http://webservices.seekda.com
10. Dong-Hoon, S., Kyong-Ho, L., Tatsuya, S.: Automated Generation of Composite Web

Services based on Functional Semantics. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web 7, 332–343 (2009)

11. Chen, S.Z., Feng, Z.Y., Wang, H.: Service Relations and Its Application in Services-
Oriented Computing. Chinese Journal of Computers 33, 2068–2083 (2010)

12. Ran, S.: A Model for Web Services Discovery with QoS. SIGecom Exchanges 4, 1–10
(2003)

13. Matuszek, C., Cabral, J., Witbrock, M., De Oliveira, J.: An Introduction to the Syntax and
Content of Cyc. In: Proc. AAAI 2006 Spring Symposium. Formalizing and Compiling
Background Knowledge and Its Application to Knowledge Representation and Question
Answering, pp. 44–49. AAAI Press, Menlo Park (2006)

 Service-Oriented Ontology and Its Evolution 121

14. McGuinness, D.L., Harmelen, F.: OWL Web Ontology Language Overview. W3C
Recommendation (February 2004), http://www.w3.org/TR/owl-features/

15. Miller, G., Beckwith, A., Fellbaum, R.C., Gross, D., Miller, K.: Introduction to WordNet:
An on-line Lexical Database. International Journal of Lexicography, 235–244 (1993)

16. Wang, H., Feng, Z.Y., Yang, S., Chen, S.Z.: Service Network: An Infrastructure of Web
service. In: 2009 IEEE International Conference on Intelligent Computing and Intelligent
Systems, Shanghai, pp. 303–308 (2009)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 122–136, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Energy Efficient Activity Recognition Based
on Low Resolution Accelerometer in Smart Phones

Yunji Liang, Xingshe Zhou, Zhiwen Yu, Bin Guo, and Yue Yang

School of Computer Science, Northwestern Polytechnical University,
Shaanxi, Xi’an, China, 710129

lemonliang@mail.nwpu.edu.cn,
{zhouxs,zhiwenyu,guob}@nwpu.edu.cn, nwpu.yangyue@gmail.com

Abstract. Smart phone is becoming an ideal platform for continuous and
transparent sensing with lots of built-in sensors. Activity recognition on smart
phones is still a challenge due to the constraints of resources, such as battery
lifetime, computational workload. Keeping in view the demand of low energy
activity recognition for mobile devices, we propose an energy-efficient method
to recognize user activities based on a single low resolution tri-axial
accelerometer in smart phones. This paper presents a hierarchical recognition
scheme with variable step size, which reduces the cost of time consuming
frequency domain features for low energy consumption and adjusts the size of
sliding window to improve the recognition accuracy. Experimental results
demonstrate the effectiveness of the proposed algorithm with more than 85%
recognition accuracy for 11 activities and 3.2 hours extended battery life for
mobile phones.

Keywords: energy efficient, hierarchical recognition, low resolution, activity
recognition, tri-axial accelerometer.

1 Introduction

Activity is one of the most important contexts in pervasive computing. User activity
has been used to evaluate the metabolic energy expenditure; to explore the activity
patterns; and to enhance interactions in social groups [1-4]. To recognize user
activity continuously, we need a nonintrusive, light weight, and real-time recognition
scheme. Fortunately, the mobility, commercial built-in sensors, and nonintrusive
detection make smart phones an ideal platform for monitoring user activities.
However, activity recognition on smart phones is still a challenge due to constraints
of low battery capacity and computational workload.

The sampling rate to assess daily physical activities should be no less than 20 Hz
[5-7]. However, the long-term sensing with the full working load of sensors is energy-
consuming. For example, the battery life of Samsung i909 reaches up to over 30 hours
when all applications and sensors are turned off. But the battery life declines to 5.5
hours (50 Hz) and 8 hours (20 Hz) respectively, when the accelerometer is monitored.

 Energy Efficient Activity Recognition Based on Low Resolution Accelerometer 123

Toward the energy efficiency of activity recognition based on the single
accelerometer in the smart phone, it is feasible to reduce the energy consumption by
adopting a lower sampling frequency. Lower sampling frequency means less work
time for the heavy-duty sensors. However, low sampling frequency may result in the
loss of important sampling data, reducing the recognition rate with low resolution
sensory data [8]. In addition, many classification algorithms are heavy weight and
time consuming for mobile devices. In general, the size of sliding window in most
classification algorithms is constant. The fixed-step algorithm deteriorates the
recognition rate to some extent, which not only reduces the ability to detect short-
duration movements, but also occupies lots of resources with the consumption of
battery power.

To overcome above issues, we consider two factors - sampling frequency and
computational load - in the design of the activity recognition algorithm. Specifically,
we propose an energy-efficient method to recognize user activities based on a single
low resolution tri-axial accelerometer in the smart phone. The hierarchical recognition
scheme reduces the cost of the time consuming frequency domain features for lower
computational complexity and adjusts the size of sliding window according to
similarity to enhance the recognition accuracy.

The rest of this paper is organized as follows: in Section 2, the related work about
activity recognition based on accelerometer is summarized. Then Section 3 describes
the process of data collection. Section 4 presents the details of our solution, including
the framework of activity recognition, feature extraction, and the hierarchical
recognition scheme. The evaluation is given in Section 5. Finally we conclude this
paper in Section 6.

2 Related Work

2.1 Activity Recognition

Numerous studies have been conducted about the activity recognition based on
accelerometers. The work toward the activity recognition based on the accelerometer
is divided into three types roughly.

First, the activity recognition based on multi-accelerometer sensors is conducted
[9-12]. Norbert et al. [9] implemented an activity recognition system by using a
wristwatch-like device, named MotionBand. Three MontionBand devices are attached
to the wrist, hip and ankle to collect the sensory data of user activities. Then all those
sensory data is sent to a mobile phone by Bluetooth and is classified using the feed-
forward back-propagation neural networks. Although lots of sensors are employed to
benefit the recognition, sensors fixed on human body are barriers for users. On one
hand, users are confined to the laboratory environment due to constraints of wearable
sensors, which reduces the practicability of the prototype in daily life. On the other
hand, users are distracted from their tasks. This is contradicted with the vision of
pervasive computing for less attention taken from users.

124 Y. Liang et al.

Second, single accelerometer sensor is utilized to benefit the activity recognition
[6, 13-15]. A. M. Khan et al. [6] carried out experiments to monitor physical activities
based on a tri-axial accelerometer. A hierarchical recognition scheme was proposed to
recognize 15 kinds of activities. Activity recognition based on a single accelerometer
sensor relies on the design of specialized sensors. Those specialized sensors are not
off-the-shelf items and just research-only devices confined to the laboratory.
Meanwhile, those specialized sensors are power-consuming due to the wireless
communication and the high sampling frequency.

Nowadays, with the advent of smart phones, the sensing abilities of smart phones
are strengthened with lots of built-in sensors. Different from most previous work, the
daily activity recognition on smart phones uses a commercial mass-marked device
rather than a research-only device, and employs a single device conveniently kept in
the user’s pocket rather than multiple devices distributed across the body [7, 15]. In
[7] J. R. Kwapisz et al. employed the accelerometer in the smart phone to recognize 6
categories of activities. However, the power consumption of recognition scheme is
not considered in the previous work. Smart phones are resource-limited, the power
consumption and the computational workload pose challenges to the activity
recognition on smart phones. The classic recognition algorithms are time-consuming
and heavyweight for the mobile phone [7].

2.2 Energy Conservation

Energy is a vital resource for mobile devices. The battery limitations pose a challenge
to the success of the activity recognition on mobile devices. Y. Wang et al. [16]
designed a scalable framework of energy efficient mobile sensing system (EEMSS)
for automatic user state recognition. The core component of EEMSS is a sensor
management scheme which defines user states and state transition rules by an XML
configuration. The sensor management scheme allocates the minimum set of sensors
and invokes new sensors when state transitions happen. P. Zappi et al. [17] selected
the minimum set of sensors according to their contribution to classification accuracy
during data training process and tested this solution by recognizing manipulative
activities of assembly-line workers in a car production environment. X. Li et al. [18]
applied machine learning technologies to infer the status of heavy-duty sensors for
energy efficient context sensing. They tried to infer the status of high energy
consuming sensors according to the outputs of light weight sensors. The existing
solutions extend the battery life by the collaboration of multi-sensors and the
reduction of sensor work time. Different from the above studies, we try to recognize
user activity by a single accelerometer. The collaboration of multi sensors is
infeasible in our solution.

Different from the previous work, we intend to address the energy consumption
issue in accelerometer-based physical activity recognition. The sampling frequency
has a dominating effect on the density of raw sampled data. To reduce the
computational workload and the work time of sensors, the lower sampling frequency
should be adopted to capture less raw data. On the other hand, features are important
for the computational complexity as well. The frequency domain features, which need
to transform the signal into frequency domain, is time consuming. Therefore, we try

 Energy Efficient Activity Recognition Based on Low Resolution Accelerometer 125

to reduce the cost of the frequency-domain feature extraction. Additionally,
Algorithms involved in the previous work are time-consuming. Those algorithms
usually are performed on PC or workstation. The computational complexity is
overwhelming for the resource-limited devices.

3 Data Acquisition

Human activities consist of some basic movements, such as walking, sitting, standing,
running etc. The exploration of basic activities contributes to the far-reaching
understanding of user activities with semantic information. We select the most
common activities recognized in previous work as target activities. Target activities of
our study are shown in Table 1.

Table 1. Defination of target activities

Activity Type Activity

Static Standing, Sitting, Lying(prone), Lying (supine), Driving

Repetitive Walking, Running, Ascending stairs, Descending stairs,
Cycling, Jumping

A total of 24 subjects, 16 males and 8 females with age ranging from 22 to 35,

were involved. All of them were recruited from the school of computer science,
Northwestern Polytechnical University, China including students and staff in
exchange for the use of a high-end smart phone for the duration of the experiment.
Each subject was assigned with a smart phone, including HTC G11, Samsung i909.
The range of the tri-axial accelerometer outputs is ± 2g. The orientations of the tri-
axial accelerometer in the smart phone (HTC) are presented in Fig. 1a. An android
application was developed and pre-installed to record the real-time outputs of the
accelerometer (See Fig. 1b).

(a) Orientations of accelerometer (b) Interfaces on mobile phones

Fig. 1. Experimental interfaces on mobile phones

126 Y. Liang et al.

The subjects manually label their activities and set the sampling frequency in
advance through the application as shown in Fig. 1b. The optional frequencies are: 0.5
Hz, 2 Hz, 10 Hz, and 20 Hz. All subjects are divided into four groups equally and
each group utilizes the same sampling frequency. They launched the application when
they began to perform the activities, selected the setups and put phones into their front
pant pockets. When subjects started to perform an activity, a log file whose name
contains information about the activity type and sampling frequency was produced
with the contents of timestamps and accelerometer outputs on each axis. When
activities were finished, they took out the phone and stopped the application. This
process was repeated for daily activities. We monitored the user activities during two
weeks. To rule out the dirty data of each log file, we cut off the data at the beginning
and the end of the log files.

4 Activity Recognition

4.1 The Framework of Activity Recognition

As shown in Fig. 2, the framework of activity recognition consists of two parts: the
offline data training and the online classification. The offline data training extracts
features from the sampled data and constructs template for each activity respectively.
The online classification extracts features of the sliding window, calculates the
similarity between the target activity and templates, and selects a suitable class as the
label of the sampled data in the sliding window.

Fig. 2. The Framework of Activity Recognition

 Energy Efficient Activity Recognition Based on Low Resolution Accelerometer 127

The offline data training consists of four steps. The data preprocessing takes charge
of the data cleaning and the data representation. The labeling defines the class of each
sampled data using all the target activities. The feature extraction captures
characteristics of each activity. Principal Component Analysis (PCA) is introduced to
select the most discriminative features. Finally, a template will be generated for each
activity. To reduce the time consumption, the offline training is performed on the PC
or workstation. Only those results are transplanted into the smart phone to serve as
templates of user activities.

For the online process, we design a light weight, hierarchical recognition algorithm
with variable steps. First, time-domain features are utilized to classify user activities
based on the template-based classification. However, some activities are
indistinguishable when only the time-domain features are taken into consideration.
Then the frequency-domain features are introduced and the size of sliding window is
segmented. For each such small section, the decision tree algorithm is performed
based on the combined features.

4.2 Feature Extraction

Features play important roles for activity recognition. As mentioned above, the
feature extraction is performed in two phases. The time-domain features are extracted
from samples directly. Only when those time-domain features are unable to
discriminate user activities, the frequency-domain features are introduced. The
following presents the related features and their number.

• Mean of each axis (3): The acceleration signals of human activities on three axes
are different as illustrated in Fig. 3.

• Deviation of each axis (3): The deviation indicates the fluctuation of signal
magnitude on each axis.

• Mean of Total Magnitude (1): The intensity of user activity is a significantly
important metric to discriminate activities. Based on the sampled data on each axis,
Total Magnitude (TM) is calculated to according to Equation (1).

2 2 2TM x y z= + + (1)

• Deviation of Total Magnitude (1): Like the deviation on each axis, the deviation
of TM cues the fluctuations of TM.

• Tilt (1): Tilt is employed to calculate the angle between the gravity and the y-axis.
The tilt gives a cue of body posture, e.g. forwardness or backwardness. The tilt is
evaluated based on Equation (2).

 arccos
y

g
θ = (2)

• Linear regressive coefficients (4): To reveal the relationship among the TM and the
magnitudes on three axes, we calculate the coefficients based on the linear

128 Y. Liang et al.

regression. Those coefficients enclose the contributions of each axis to the total
magnitude. Linear regressive coefficients are calculated according to Equation (3),
where S is the matrix of linear regressive coefficients, W represents the matrix of
magnitudes on each axis and the Q is the matrix of total magnitudes.

S = (WTW)-1WTQ (3)

Fig. 3. Acceleration signals of target activities on three axes

• Wavelet coefficients: Different activities have discriminative frequency features,
especially for repetitive activities. Meanwhile the frequency of human activities is
low, thus we extract the low frequency features based on the wavelet analysis.

Different from the previous work, the feature extraction is performed in two steps. At
first the time-domain features are extracted as the basic features. As the extraction of
frequency domain features is time consuming, thus we try to reduce the opportunity
of utilization of the frequency-domain features with the introduction of the two-step
feature extraction.

4.3 Hierarchical Recognition Scheme

In general, the size of sliding window in classical classification algorithms such as
Decision Tree (DT), Support Vector Machine (SVM) is constant (See Fig. 4a). The
fixed-step algorithm deteriorates the recognition rate. The dynamics of activities
enlighten the introduction of a hierarchical recognition scheme with variable step size,
which is suitable for both static and repetitive activities.

The comparison of the classic classification algorithms with our proposed
hierarchical recognition scheme is illustrated in Fig 4. As shown in Fig. 4b, differences
of our proposed algorithm are in two aspects. Firstly, the feature extraction is completed
in two steps, which reduces the opportunity of utilization of the time-consuming

 Energy Efficient Activity Recognition Based on Low Resolution Accelerometer 129

frequency-domain features. Secondly, the size of sliding window is adjusted according
to the similarity. When it is indiscriminative, the sliding window is split into small
segments equally. Otherwise frequency-domain features are introduced to classify user
activities based on decision tree. The hierarchical recognition scheme consists of the
following three steps.

Fig. 4. Comparison of classical classification algorithms and the hierarchical algorithm

Similarity Measurement of Time-Domain Features: Similarity is utilized to
demonstrate the likelihood of current inputs to the activity templates. For the sliding
window, the time-domain features are calculated and represented with vector X. Then
every activity template compares its characteristic parameter vector Y with the vector
X according to Equation (4). Here, Y is the vector of time-domain features, which is
obtained in the offline data training process. After the similarity measurement with
each activity templates, a vector C is generated. The size of C is 1×M, where M is
the number of predefined activities and ci∈ [0,1], 1≤i≤M. Each element ci in the
vector C denotes the extent to which a feature vector belongs to a given class.

 cos(,)
|| || || ||i

X Y
c X Y

X Y
= = ⋅ (4)

Evaluation of Similarity Discrete Degree: Occasionally differences among those
similarities are indiscriminative, e.g. the difference of ci and cj is tiny. Under such
condition, it is not convincing to classify the user activity into the class with the
highest similarity. Thus, we need to evaluate the discrete degree of the vector C.

130 Y. Liang et al.

A vector C is indistinguishable, if it satisfies one of the following two constraints (See
Equation (5) and (6)).

2()ic c

M
δ

−
≤∑

 (5)

According to Equation (5), the standard deviation of vector C is calculated. If the
standard deviation of vector C is smaller than a threshold δ, C is indistinguishable,
where δ is a constant and belongs to [0.1, 0.2]. In our experiments, δ equals to 0.15.

For the vector C, elements are sorted in ascending order, represented with c(1),
c(2),.., c(M) respectively. Then the differences are calculated according to dj = c(j+1) –c(j),
1≤ j ≤M-1. In Equation (6) letter E represents the expectation. According to (6), if the
difference of c(M) and c(M-1) is smaller than the expectation, the vector C is
indiscriminative.

 () (1) ({ }) 1 1M M jc c E d j M−− ≤ ≤ ≤ − (6)

Based on Equation (5) and (6), we are able to judge whether the similarity vector C is
indistinguishable. If the similarity vector C is differentiable, it means that those time-
domain features are capable of explicitly differentiating those activities. Thus, we
should classify the current activity into the corresponding activity with the largest
similarity in the vector C. On the contrary, if the vector C is indiscriminate, the
frequency domain features are introduced to classify user activities.

Table 2. Hierarchical recognition alogrithm

Inputs: accelerometer signals
Outputs: classification results for accelerometer signals
1: Set the size of the sliding window with N.
2: For each sliding window
3: Extract time-domain features, including the mean of magnitude on each axis etc.
4: Calculate the similarity vector C among the sliding window and the predefined activity
templates based on (4).
5: Justify whether the vector C is discriminative based on (5) and (6).
6: IF vector C is discriminative

7: User Activity = },...,,...,max{ 1 Mi ccc

8: ELSE
9: Divide the sliding window into K small sections equally, length of each section is

L = N/K;
10: For each small section
11: Obtain low-frequency wavelet coefficients and time-domain features;
12: Based on those combined features, classify those data using the decision tree

 algorithm.
13: End For
14: End IF
15: End For

 Energy Efficient Activity Recognition Based on Low Resolution Accelerometer 131

Hierarchical Recognition Algorithm: For the recognition algorithms with fixed
step size, it is crucial for the recognition rate to select a reasonable step length. If the
step length is long, it is prone to the ignorance of short-duration activities; if the step
length is short, it leads to lots of redundant computational workload. Thus, we
propose a fine-grain recognition algorithm with variable step size, which adjusts the
size of sliding window according to similarities to enhance the recognition accuracy.
The details of the proposed algorithm are presented in Table 2. For combined features
decision tree (C4.5) algorithm is utilized as it provides a good balance between
accuracy and computational complexity [8, 19].

As elaborated above, the hierarchical algorithm extracts fewer features and those
features are calculated in different phases, which benefit the decline of the
computational load. Furthermore, the size of sliding window is adjusted according to
the similarities, which contributes to the recognition of short-duration activities with
the increase of recognition rate.

5 Experiment and Evaluation

To evaluate the proposed algorithm on mobile devices, we perform person-
independent experiment in terms of recognition accuracy, power consumption and
computational load.

5.1 Activity Recognition Rate

Our hierarchical recognition algorithm includes two phases. We analyze the
proportion of the two phases where inputs are classified and the recognition rate of
the hierarchical scheme. The 5-folder cross-validation is used to evaluate the
hierarchical recognition scheme with 2 Hz sampling frequency.

First, the average recognition rate reaches up to 89.1% (See Table 3). The
recognition rate demonstrates the activity recognition based on the low resolution
accelerometer with low sampling frequencies is feasible. Although activity
recognition with low resolution sensory data is inconsistent with the previous work
[5, 6], it is reasonable due to features of user activities including the repeatability, the
symmetry and the normality. Regardless of static activities and repetitive activities,
the features are repeated periodically.

Second, majority of target activities are recognized in the first phase based on time-
domain features, especially for static activities. This demonstrates that those selected
time-domain features are very useful to discriminate user activities. And this benefits
the decrease of computational load. On one hand, opportunities of the time-
consuming frequency-domain feature extraction and the heavyweight decision tree
algorithm are minimized, which contributes to the reduction of computational
workload. On the other hand, the introduction of classification based on combined
features benefits the improvements of recognition rates, during which complex
activities such as Ascending and Descending are discriminated based on frequency
domain features.

132 Y. Liang et al.

Table 3. Activity Recognition Rates

Activity

Percentage of Records Correctly Recognized

Time Domain
Features (%)

Frequency Domain
Features (%)

Total (%)

Standing 98.98 1.02 98

Sitting 100 0 100

Lying (prone) 100 0 100

Lying (supine) 99.28 0.72 100

Walking 0 100 80

Jumping 0 100 82

Running 56.76 43.24 86

Ascending 0 100 88

Descending 0 100 82

Cycling 97.50 2.50 84

Driving 37.69 62.31 80

Average 53.66 46.34 89.1

5.2 Power Consumption

To test the battery life under different sampling frequencies, we measured the time
spans and the recognition accuracy with changes of sampling frequencies when 90%
of battery power is consumed (Fig. 5).

Fig. 5. Time Span and Recognition rate with changes of sampling frequencies

 Energy Efficient Activity Recognition Based on Low Resolution Accelerometer 133

It is obvious that the battery life declines with the increase of sampling frequencies.
For a resource-constraint device, the high sampling frequency leads to the rapid
depletion of power. Also, it demonstrates that the recognition rates increase with the
growth of the sampling frequencies. Although those sampled data indicate more
features of user activities and benefits the increase of the recognition rate, it promotes
the rapid increase of the power consumption. Additionally, the hierarchical
recognition scheme (HR) and decision tree (DT) are compared in terms of time span
and the recognition accuracy. As shown in Fig. 5, although the decision tree
outperforms the proposed algorithm in recognition accuracy, the battery life is longer
in our solution.

To reduce the power consumption and achieve better recognition accuracy, we
adopt a reasonable sampling frequency. It is a tradeoff between the power
consumption and the recognition rate. Compared with the battery life of 20Hz, the
battery life of 2 Hz is lengthened by 3.2 hours and the average recognition rate of the
proposed algorithm is over 85%. Thus, it is considered that the 2 Hz is a suitable
frequency for the user activity recognition based on the tri-axial accelerometer.

5.3 Computational Load

We aim to provide a model to evaluate the computational workload of the proposed
algorithm using the time complexity and compare our proposed recognition algorithm
with decision tree in term of time complexity.

As elaborated in the previous section, the proposed algorithm consists of two steps:
the recognition based on time-domain features and the recognition based on combined
features, denoted with P1 and P2 respectively. As the time domain features extraction
and the template-based similarity measurement are contained in the P1, the time
consumption of P1, T(P1) is constant. By contrast, the time consumption of P2, T(P2) is
variable due to the variability of the frequency domain features and the classification
process.

To evaluate the time complexity of the recognition scheme, the probabilities of
user activities are taken into consideration. The probability set φ of user activities is

presented by ={ },0 11 2 i n ip , p ,..., p ,...p pφ ≤ ≤ , where n is the type of user

activities, pi is the probability of the ith activity, and all the elements in φ satisfy

1
n

i
i

p =∑ . Due to the repeatability of user daily activities, the probability of each

activity is calculated by the statistical method.
Meanwhile, the percentages of the two recognition stages, which mean how many

sampled data of a particular activity are correctly discriminated by each phase, are
important factors to evaluate the time complexity as well. Here, the percentages of the
two phases for a specified activity are denoted with ui and vi respectively. As shown in
Table 3, the percentages of the two phases verify for different activities. The time
complexity of the ith activity is measured according to Equation (7), where Ti(P2) is
the time consumption in the second step for the ith activity.

134 Y. Liang et al.

1 1 2() (() ())

0 1

0 1

1

i i i i

i

i

i i

t u T P v T P T P

u

v

u v

= × + × +
≤ ≤
≤ ≤
+ =

 (7)

Average Time Complexity (ATC) is presented in Equation (8), where n is the types of
target activities. As pi in Equation (8) is measured by analyzing the daily activities
with statistical method, ui, vi are demonstrated in Table 3, and T(P1) is constant due to
the fixed time consumptions of the time domain feature extraction and that of the
similarity measurement in phase one. Thus, Ti(P2) is the only variable in Equation (8).

 1 2
1 1

(() ())
n n

i i i i i
i i

ATC p t p T P v T P
= =

= = × + ×∑ ∑ (8)

To evaluate the accuracy of Equation (8), we extract 500 sample data from each
activity and construct a new test set to calculate the time consumption. To simplify
the computation, here we use the mean of Ti(P2) as a substitution of Ti(P2). As the
size of target activity set is 11, n = 11. For this test set, the pi is same for each activity
and equals to 1/11. And the pair of <ui,vi> for every activity is presented in Table 3.
Thus, the value of ATC is 4.81 ms.

We measured the execution time of the hierarchical recognition scheme. Compared
with the ATC, the execution time is approximate to the theoretical value as shown in
Fig. 6. Meanwhile, our experimental results demonstrate that our proposed

Fig. 6. Comparison of the theoretical value and the measured value

 Energy Efficient Activity Recognition Based on Low Resolution Accelerometer 135

hierarchical recognition scheme outperforms the decision tree. As shown in Fig. 6, the
average execution time of DT is longer than that of the HR, which confirms that HR
benefits the decline of the time complexity and the computational complexity.

6 Conclusion

With the popularity of the smart phone, it is becoming an ideal platform for activity
recognition based on the built-in accelerometer sensor. The constraints of mobile
phones such as power consumption, computational load raise a challenge to the
activity recognition. In this paper, we presented an approach for activity recognition
with a hierarchical scheme for low resolution accelerometer data on the mobile phone.
To achieve the goal of energy efficient activity recognition on the cell phone, we
propose a hierarchical scheme with variable step size. To evaluate the validation of
the method, total 24 healthy subjects are recruited to perform the 11 activities in their
daily life. The average recognition rate of the proposed algorithm is over 85%, and
the battery lifetime is extended by 3.2 hours. The experimental results demonstrate
that the proposed hierarchical scheme not only reduces the power consumption with
low resolution sensor data, but also classifies activities with good recognition rate.

Acknowledgments. This work was partially supported by the National Basic
Research Program of China (No. 2012CB316400), the National Natural Science
Foundation of China (No. 60903125, 61103063), the Program for New Century
Excellent Talents in University (No. NCET-09-0079), Microsoft and the Doctorate
Foundation of Northwestern Polytechnical University.

References

1. Kawahara, Y., Ryu, N., Asami, T.: Monitoring Daily Energy Expenditure Using a 3-Axis
Accelerometer with a Low-Power Microprocessor. International Journal on Human-
Computer Interaction 1(5), 145–154 (2009)

2. Kim, E., Helal, S., Cook, D.: Human Activity Recognition and Pattern Discovery. IEEE
Pervasive Computing 9(1), 48–53 (2010)

3. Gu, T., Wang, L., Wu, Z., Tao, X., Lu, J.: A Pattern Mining Approach to Sensor-Based
Human Activity Recognition. IEEE Transactions on Knowledge and Data
Engineering 23(9), 1359–1372 (2011)

4. Nijholt, A., Zwiers, J., Peciva, J.: Mixed reality participants in smart meeting rooms and
smart home environments. Personal and Ubiquitous Computing 13(1), 85–94 (2009)

5. Bouten, C., Koekkoek, K., Verduin, M., Kodde, R., Janssen, J.D.: A triaxial accelerometer
and portable data processing unit for the assessment of daily physical activity. IEEE
Transactions on Biomedical Engineering 44(3), 136–147 (1997)

6. Khan, A.M., Lee, Y., Lee, S.Y., Kim, T.: A triaxial accelerometer-based physical-activity
recognition via augmented-signal features and a hierarchical recognizer. IEEE
Transactions on Information Technology in Biomedicine 14(5), 1166–1172 (2010)

7. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity Recognition using Cell phone
Accelerometers. ACM SIGKDD Explorations 12(2), 74–82 (2010)

136 Y. Liang et al.

8. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity Recognition and
Monitoring Using Multiple Sensors on Different Body Positions. In: Proc. of International
Workshop on Wearable and Implantable Body Sensor Networks, pp. 113–116 (2006)

9. Győrbíró, N., Fábián, Á., Hományi, G.: An Activity Recognition System for Mobile
Phones. Mobile Networks and Applications 14(1), 82–91 (2009)

10. Mannini, A., Sabatini, A.M.: Machine Learning Methods for classifying Human physical
activity from on-body accelerometers. Sensor 10(2), 1154–1175 (2010)

11. Krishnan, N.C., Juillard, C., Colbry, D.: Recognition of hand movements using wearable
accelerometers. Journal of Ambient Intelligence and Smart Environments 1, 143–155
(2009)

12. Ruch, N., Rumo, M., Mader, U.: Recognition of activities in children by two uniaxial
accelerometers in free-living conditions. European Journal of Applied Physiology 111(8),
1917–1927 (2011)

13. Lee, M., Khan, A.M., Kim, J., Cho, Y., Kim, T.: A Single Tri-axial Accelerometer-based
Real-time Personal Life Log System Capable of Activity Classification and Exercise
Information Generation. In: Proc. of 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pp. 1390–1393 (2010)

14. He, Z., Liu, Z., Jin, L., Zhen, L., Huang, J.: Light weightness Feature – A Novel Feature
for single Tri-axial accelerometer based Activity Recognition. In: Proc. of 19th
International Conference on Pattern Recognition, pp. 1–4 (2008)

15. Ravi, N., Dander, N., Mysore, P., Littman, M.L.: Activity Recognition from
Accelerometer Data. In: Proc. of the 20th National Conference on Artificial Intelligence
and the 17th Innovative Applications of Artificial Intelligence Conference, pp. 1541–1546
(2005)

16. Wang, Y., Lin, J., Annavaram, M., Quinn, J.A., Jason, H., Bhaskar, K., Sadeh, N.: A
Framework of Energy Efficient Mobile Sensing for Automatic User State Recognition. In:
Proc. of the 7th ACM International Conference on Mobile Systems, Applications, and
Services, pp. 179–192 (2009)

17. Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Tröster, G.:
Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic
Sensor Selection. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 17–33.
Springer, Heidelberg (2008)

18. Li, X., Cao, H., Chen, E., Tian, J.: Learning to Infer the Status of Heavy-Duty Sensors for
Energy Efficient Context-Sensing. ACM Transactions on Intelligent Systems and
Technology (unpublished)

19. Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In:
Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer,
Heidelberg (2004)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 137–151, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Energy Efficient Allocation of Virtual Machines in Cloud
Computing Environments Based on Demand Forecast

Jian Cao, Yihua Wu, and Minglu Li

Shanghai Key Laboratory of Scalable Computing and Systems, Department of Computer
Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

{cao-jian,li-ml}@cs.sjtu.edu.cn,
darwink@sjtu.edu.cn

Abstract. In cloud computing environments, demands from different users are
often handled on virtual machines (VMs) which are deployed over plenty of
hosts. Huge amount of electrical power is consumed by these hosts and
auxiliary infrastructures that support them. However, demands are usually time-
variant and of some seasonal pattern. It is possible to reduce power
consumption by forecasting varying demands periodically and allocating VMs
accordingly. In this paper, we propose a power-saving approach based on
demand forecast for allocation of VMs. First of all, we forecast demands of next
period with Holt-Winters’ exponential smoothing method. Second, a modified
knapsack algorithm is used to find the appropriate allocation between VMs and
hosts. Third, a self-optimizing module updates the values of parameters in Holt-
Winters’ model and determines the reasonable forecast frequency. We carried
out a set of experiments whose results indicate that our approach can reduce the
frequency of switching on/off hosts. In comparison with other approaches, this
method leads to considerable power saving for cloud computing environments.

Keywords: cloud computing, power consumption, demand forecast, allocation
of virtual machines, modified knapsack algorithm, self-optimization.

1 Introduction

Cloud computing emerges as an efficient approach to meet the growing computational
requirements of commercial projects and scientific research ones in a cost-effective
way. IaaS (Infrastructure as a Service), the delivery of the computing infrastructure as
a fully outsourced service, accelerates the development of cloud computing. In recent
years, increasing demands for computational resources have led to significant growth
in the number of cloud computing servers, along with an estimated doubling in the
energy used by these servers and the power and cooling infrastructures that support
them [1]. High power consumption gives rise to a large amount of operational cost
which can accumulate more than the construction cost of servers and infrastructures
in a short period of time. As a result, power management is important to cost control
for cloud computing environments.

138 J. Cao, Y. Wu, and M. Li

The adoption of virtualization brings about the problem of how to allocate VMs
among hosts reasonably. On the one hand, more hosts are added to current
environment when computing resources cannot meet with the requirements of all
VMs. Service providers of cloud computing have to guarantee Quality of Service
(QoS) according to Service Level Agreement (SLA), which results in switching on
more hosts to deal with resource demands when needed. On the other hand, shutting
down some hosts on which all deployed VMs are idle is a way to conserve power
consumption. But energy is consumed while a host is being powered up or down and
not performing any useful work. The frequent switching on/off hosts which usually
needs two to three minutes also leads to the delay of task execution. One way to avoid
this situation is to keep idle hosts in standby mode, which consumes much less power
than switching on/off frequently. Therefore if we know that the amount of demand
will increase in a very short period, we can keep some idle hosts waiting for the future
demand rather than switching them off now and switching them on when needed.

In this paper, we propose an approach to make this decision with the help of
demand forecast. Our approach can allocate VMs to hosts in accordance with time-
variant demand of seasonal pattern. We define demand as the number of requests for
VMs from each user. The result of our work is verified by experiments performed on
the basis of CloudSim [2], a simulation framework for cloud computing
environments.

The remainder of this paper is organized as follows. Section 2 presents the related
works. Section 3 describes the system model behind our implementation and
experiments. Section 4 introduces the design of algorithm in details. Experimental
results are presented in section 5. Section 6 concludes the paper and discusses about
the possible directions for future work.

2 Related Work

In recent years, extensive efforts have been put into the research of the VM allocation
in cloud computing environments. Walsh et al. [3-4] proposed an approach based on
utility function to dynamically manage data centers with different hosts. The utility
function is designed for two levels. The service level is used to calculate resource
demands of application and the resource level is used to allocate resources among
applications. Walsh laid emphasis on the increase of resource utilization, while our
focus is on the reduction of power consumption.

Beloglazov and Buyya [5] proposed an approach using Best Fit Decreasing
algorithm to allocate VMs among hosts. VMs are sorted in descending order by
current utilization and allocated to a host that provides the least increase of power
consumption. The advantage of this approach is the stable utilization of resources
while the disadvantage is that threshold policy may results in unnecessary migration
of VMs and switching on/off hosts.

Bobroff et al. [6] put forward a dynamic management algorithm to reduce required
active physical resources without violating the SLA agreement. The resource demand
of VMs is predicted and sorted in descending order. Furthermore, the first-fit bin-
packing heuristic is used to minimize the active hosts at each interval. However, this

 Energy Efficient Allocation of Virtual Machines in Cloud Computing Environments 139

algorithm only takes CPU into account, which is not enough for real application. This
approach is similar to our proposed one, but it doesn’t count the wasted energy due to
the unnecessary switching on and off. More often than not, it is more energy efficient
to keep hosts standby than switch them off and on in a very short period.

Khanna et al. [7] proposed a method to determine a VM configuration while
minimizing the number of hosts needed. The placement of VMs is triggered to revise
by events such as change of CPU utilization and memory availability. The strength of
this method is that the authors take into account VM migration costs in terms of the
additional CPU cycles and memory needed to stop a VM. But the placement
algorithm in [7] does not consider power saving by switching off unneeded hosts.

Steinder et al. [8] presents a system that manages heterogeneous workloads to their
performance goals by dynamic reallocation of VMs. The VMs are migrated as needed
between host machines as new tasks arrive. While the placement approach in [8]
consolidates workloads, it does not save power by switching off unneeded machines,
and does not consider the cost of the control incurred during migration of the VMs.

The authors of [9] solved the problem of placing application instances on a given
set of server machines to adjust the amount of resources available to applications in
response to varying resource demands. Though this problem is similar to the
allocation of VMs in cloud computing environments, they do not consider the
physical machines in standby mode to reduce power consumption.

3 A System Model for VMs Allocation

In cloud computing environments, it is allowed to launch VMs with a variety of
operating systems, load them with users’ own custom application, manage network’s
access permissions and finish computing tasks as required. These diverse applications
result in unpredictable demands. In general, service providers start, terminate and
monitor hosts to present on-demand service, but the following issues cannot be
avoided: firstly, some hosts have to be switched on or off frequently; secondly,
unbalanced distribution of load exists among different hosts.

Without loss of generality, suppose there are ݉ users ሼ ଵܷ, ଶܷ, ڮ , ܷ௠ሽ ,
corresponding to ݉ types of VMs ሼ ଵܸ, ଶܸ, ڮ , ௠ܸሽ. The demand from ௜ܷ can only be
handled by ௜ܸ and ௜ܸ can be launched on various hosts depending on its resource
requirements. An allocation algorithm should be applied to map VMs to hosts on
condition that information of needed VMs to satisfy demands from users is gathered.

Figure 1 is the system architecture to implement our solution. As shown in Figure 1,
the cloud computing environment is made up of many heterogeneous hosts. It is
assumed that each user’s demand corresponds to one VM which can be allocated to any
host as long as this host can provide enough computing resources to run this VM.

The key components in this architecture are demand analyzer, scheduler and self-
optimizing module. Demand analyzer is responsible for collecting, analyzing and
predicting users’ demands. It relies on a prediction model to forecast future load
change. In order to make the prediction model work, its parameters’ values should be
estimated based on analysis of historical data. Demand analyzer provides scheduler
with the forecasted resource demands as input for allocation process of VMs. In

140 J. Cao, Y. Wu, and M. Li

addition to allocate VMs to some hosts, scheduler also determines which hosts to be
shut down and which ones to be kept standby. The tasks of self-optimizing module
are to estimate and update the values for the parameters in prediction and to select the
reasonable forecast frequency which has a big influence on the results of our method.

Fig. 1. System architecture for VM allocation

In this system, Holt-Winters’ additive model is selected for demand prediction. A
modified knapsack algorithm is embedded in the scheduler. And self-optimizing
module makes use of hill climbing method to determine optimized values for
parameters and forecast frequency automatically.

4 Algorithms

4.1 Problem Statement

In this paper, we take two kinds of resources into consideration: computing cores and
memory. The formal representation of this problem is as below:

For VMs: ሼ ଵܸ, ଶܸ, ڮ , ௠ܸሽ, ݉ is total number of types. ௜ܸ : ൛ݒ௜ଵ, ,௜ଶݒ ڮ , ௜݌ ,௜௣೔ൟݒ is total number of VMs for type ݅.
For hosts: ሼ݄ଵ, ݄ଶ, ڮ , ݄௡ሽ, ݊ is total number of hosts.

 Energy Efficient Allocation of Virtual Machines in Cloud Computing Environments 141

݇׊ ௖௢௥௘ሺ݇ሻݕݐ݅ܿܽ݌ܽܿ ∈ ሼ1,2, ڮ , ݊ሽ represents available cores of host ݇. ܿܽݕݐ݅ܿܽ݌௠௘௠௢௥௬ሺ݇ሻ ݇׊ ∈ ሼ1,2, ڮ , ݊ሽ represents available memory of host ݇.
For each VM: ܿ݁ݎ݋௜௝ሺ݇ሻ ൌ ቄܿ௜௝0 ௜௝ሺ݇ሻݕݎ݋݉݁݉ ௞݄ ݊݋ ݀݁ݕ݋݈݌݁݀ ݐ݋݊ ݏ݅ ௜௝ݒ ݂݅ ௞݄ ݊݋ ݀݁ݕ݋݈݌݁݀ ݏ݅ ௜௝ݒ ݂݅ ൌ ቄ݉௜௝0 ௞݄ ݊݋ ݀݁ݕ݋݈݌݁݀ ݐ݋݊ ݏ݅ ௜௝ݒ ݂݅ ௞݄ ݊݋ ݀݁ݕ݋݈݌݁݀ ݏ݅ ௜௝ݒ ݂݅

Where ܿ௜௝ represents the required number of cores for some VM, ݉௜௝ represents the
required amount of memory for some VM.

Then the problem becomes:

For ݅׊ ∈ ሼ1,2, ڮ , ݉ሽ ݌௜ ൌ ݐ௜ሺݐݏܽܿ݁ݎ݋ܨ ൅ ݇׊ :ሻ, we should keepݐ∆ ∈ ሼ1,2, ڮ , ݊ሽ, ෍ ෍ ௜௝ሺ݇ሻ݁ݎ݋ܿ ൑௡
௝ୀଵ

௠
௜ୀଵ ௖௢௥௘ሺ݇ሻݕݐ݅ܿܽ݌ܽܿ

෍ ෍ ௜௝ሺ݇ሻݕݎ݋݉݁݉ ൑௡
௝ୀଵ

௠
௜ୀଵ ௠௘௠௢௥௬ሺ݇ሻݕݐ݅ܿܽ݌ܽܿ

Where for each type of VM, the actual number of VMs to be deployed on hosts
should be equal to the forecasted value ݐݏܽܿ݁ݎ݋ܨ௜ሺݐ ൅ ሻݐ∆ . On the other hand, ∑ ∑ ௜௝ሺ݇ሻ௡௝ୀଵ௠௜ୀଵ݁ݎ݋ܿ or ∑ ∑ ௜௝ሺ݇ሻ௡௝ୀଵ௠௜ୀଵݕݎ݋݉݁݉ , total resources required for all the
VMs deployed on a certain host should be less than or equal to the available resources
on that host.

For example, ሼ ଵܸ, ଶܸ, ଷܸሽ (i.e. ݉ = 3) stands for three different types of VMs.
According to the prediction, the number of VMs for each type is 120, 42 and 12
respectively. ሼ݄ଵ, ݄ଶ, ڮ , ݄ଵ଼ሽ (i.e. ݊ = 18) stands for the set of hosts. Each host has
limited resources, for instance, ܿܽݕݐ݅ܿܽ݌௖௢௥௘ሺ10ሻ ൌ 24 represents the number of
available cores of the 10th host is 24. ܿܽݕݐ݅ܿܽ݌௠௘௠௢௥௬ሺ10ሻ ൌ 65536 represents the
amount of available memory of the 10th host is 65536MB. Then the problem
becomes how to allocate 120 VMs of type 1, 42 VMs of type 2 and 12 VMs of type 3
to 18 hosts according to the resource limitations of each host and the resource
requirements of each VM.

The details of demand forecast, self-optimizing module, etc. will be discussed in
the following part.

4.2 Demand Forecast

In our proposed approach, demand actually refers to the number of requests for VMs.
In order to let allocation of VMs to hosts keep pace with dynamic demands from
different users, demand forecast is an effective way to deal with such issue. It can be
observed from real applications that the following two assumptions are reasonable for
the analysis of demands in cloud computing environments: First, demands from the
same user are similar. Second, a certain type of demand follows some seasonal

142 J. Cao, Y. Wu, and M. Li

pattern. For example, daily load curve, 10:00-11:00 and 14:00-15:00 are two peaks,
while 02:00-03:00 is a valley.

On the basis of these assumptions, we make use of Holt-Winters’ exponential
smoothing method [10-12] which has ability to adapt to changes in trends and
seasonal patterns. The equations of additive model for Holt-Winters are defined as
[11]:

:݈݁ݒ݈݁ ௛ܮ ൌ ௛ݕሺߙ െ ܵ௛ି௖ሻ ൅ ሺ1 െ ௛ିଵܮሻሺߙ ൅ ௛ܶିଵሻ (1)

:݀݊݁ݎݐ ௛ܶ ൌ ௛ܮሺߚ െ ௛ିଵሻܮ ൅ ሺ1 െ ሻߚ ௛ܶିଵ (2)

:݈ܽ݊݋ݏܽ݁ݏ ܵ௛ ൌ ௛ݕሺߛ െ ௛ሻܮ ൅ ሺ1 െ ሻܵ௛ି௖ (3)ߛ

 forecast: F୦ା୩ ൌ L୦ ൅ kT୦ ൅ S୦ା୩ିୡ (4)

Where ܿ is the length of the seasonal cycle, for 0 ൑ ߙ ൑ 1, 0 ൑ ߚ ൑ 1, 0 ൑ ߛ ൑ 1.
We can choose the best values of ߚ ,ߙ and ߛ through trial-and-error process with
mean absolute percentage error (MAPE) [10-13] or mean absolute scaled error
(MASE) [14] as evaluation criteria. On the other hand, initial values of the level, trend
and seasonality are usually determined by two complete seasonal cycles. Equations
are listed as below [11]:

௖ܮ ൌ ଵ௖ ∑ ௜௖௜ୀଵݕ (5)

 ௖ܶ ൌ ଵ௖ ቂ௬೎శభି௬భ௖ ൅ ௬೎శమି௬మ௖ ൅ ڮ ൅ ௬మ೎ି௬೎௖ ቃ (6)

 ௜ܵ ൌ ௜ݕ െ ,௖ܮ ݅ ൌ 1,2, ڮ , ܿ (7)

Holt-Winters’ exponential smoothing method assumes the time series is composed by
a linear trend and a seasonal cycle. It constructs three statistically correlated series
(smoothed, seasonal and trend) and projects forward the identified trend and
seasonality. Obviously, the seasonal component is prerequisite for this method to
model different demands. Furthermore, how to stop this method from being unduly
influenced by demands that are unusually high or low (i.e. outliers) is another issue to
deal with. In a word, Holt-Winters’ exponential smoothing method can only be used
to model time-varying demands or user behaviors of some seasonal pattern.

4.3 Modified Knapsack Algorithm for VMs Allocation

The knapsack problem is a problem in combinatorial optimization: Given a set of
items, each with a cost and a value, determine the number of each item to include in a
collection so that the total cost is less than or equal to a given limit and the total value
is as large as possible [15-16]. The VM allocation is a problem for the admission of
new requests for virtual machines provisioning and the placement of virtual machines
on hosts. Its optimization goal is to produce more benefits with reduction of cost, for
example, charge for running instances. Hence, these two problems are similar with

 Energy Efficient Allocation of Virtual Machines in Cloud Computing Environments 143

each other and we can use knowledge of knapsack problem to deal with VM
allocation.

Our algorithm is made up of bounded and multi dimensional knapsack problems.
In our algorithm, we regard each host as a knapsack and each VM as an item. The
capacity of knapsack consists of available cores and memory for each host. As
mentioned in the problem statement, each item has two different kinds of cost (i.e.
cores and memory) and a value. We describe cost by using resource requirements of
each VM. On the other hand, value is expressed in terms of Amazon’s Elastic Cloud
pricing [17]. It is assumed that there are three kinds of items corresponding to three
types of VMs: small, large and extra large. Values for them are $0.12, $0.48 and
$0.96 per hour respectively. Our aim is to find how to allocate VMs among hosts with
the largest value under the conditions of limited capacity.

Table 1. Modified Knapsack Algorithm Pseudo Code

Steps of Pseudo Code

1. Forecast demand;
2. Get predicted amount of VMs for each type;
3. for each host in hosts
4. Get capacity of host;
5. Initialize array of VM selection;
6. Initialize array of state transition;
7. iterate over each type of VM
8. if both limit are observed
9. Calculate new value by using state transition;

10. if new value > current max value
11. if bounded conditions are met
12. Update current max value;
13. Record results into VM selection;
14. End if;
15. End if;
16. End if;
17. End iterate;
18. Update bounded conditions for next host;
19. End for;

The equation of state transition is needed to solve knapsack problem with dynamic

programming. Here we take 2-dimension knapsack problem as our basic model. The
knapsack (i.e. host) will have to bear two kinds of cost when choosing any item (i.e.
VM). The 1st kind of cost is the number of cores. The 2nd kind of cost is the amount
of memory.

144 J. Cao, Y. Wu, and M. Li

Then the equation of state transition is:

ሿݓሿሾݑሾܿሺ݅ሻሿሾݎ ൌ ݔܽ݉ ൜ ሾܿሺ݅ݎ െ 1ሻሿሾݑሿሾݓሿݎሾܿሺ݅ െ 1ሻሿሾݑ െ ݇ כ ݓሾ݅ሿሿሾݔ െ ݇ כ ሾ݅ሿሿݕ ൅ ሾ݅ሿൠ (8)ݒ

Where 0 ൑ ݇ כ ሾ݅ሿݔ ൑ ܷ and 0 ൑ ݇ כ ሾ݅ሿݕ ൑ ܹ
For this equation: ݅: The ݅௧௛ category for item ݑ: Sum for 1st kind of cost ݓ: Sum for 2nd kind of cost ݔሾ݅ሿ: The 1st kind of cost for item of ݅௧௛ category ݕሾ݅ሿ: The 2nd kind of cost for item of ݅௧௛ category ݒሾ݅ሿ: The value for item of ݅௧௛ category ܿሺ݅ሻ: The first ݅ categories of items ݎሾܿሺ݅ሻሿሾݑሿሾݓሿ: The largest value by choosing the first ݅ categories of items when

the sum for 1st kind of cost is ݑ and the sum for 2nd kind of cost is ݓ. ܷ: The maximum for 1st kind of cost (i.e. capacity of knapsack) ܹ: The maximum for 2nd kind of cost (i.e. capacity of knapsack)

From the equation of state transition, we know that there are multiple choices (i.e. 0
pieces, 1 piece, 2 pieces...) for each item. No matter which choice is made, conditions 0 ൑ ݇ כ ሾ݅ሿݔ ൑ ܷ and 0 ൑ ݇ כ ሾ݅ሿݕ ൑ ܹ should be met to ensure the destination host
has enough resources to deal with demands. For item ݅, we assign ݏሾ݅ሿ to represent
the range of ݇ and it is:

 0 ൑ ሾ݅ሿݏ ൑ ቔ݉݅݊ ቀ ௎௫ሾ௜ሿ , ௐ௬ሾ௜ሿቁቕ (9)

As a result, the time complexity of our algorithm is Οሺ݉ܽݔሺܷ, ܹሻ ∑ ሾ݅ሿሻ. The betterݏ
solution in dynamic programming for knapsack problem is to use monotone optimal
policy, which is beyond the scope of this paper.

4.4 Self-optimizing Module

The self-optimizing module has two tasks: (1) updating values of parameters in
forecasting model; (2) determining reasonable forecast period.

For the first task, initial values of parameters ߚ ,ߙ and ߛ in forecasting model are
chosen by MAPE or MASE as evaluation criteria. We take 0.1 as the minimum step
to iterate from 0 to 1 for each parameter. The group of ߚ ,ߙ and ߛ with the smallest
forecast error is the initial values of parameters for future forecast. Along with the
varying demands, MAPE or MASE for current parameters becomes larger and larger,
which means the accuracy of forecast declines. Therefore, our self-optimizing
approach is to set a threshold for forecast error. Given that forecast error exceeds the
threshold, parameters are needed to update with the recent several complete cycles of
data through trial-and-error process.

 Energy Efficient Allocation of Virtual Machines in Cloud Computing Environments 145

Fig. 2. Process of self-optimization for forecast period

For the second task, self-optimization of forecast period makes use of hill climbing
method. Based on our experimental results, there is a sharp increase in the curve of
power consumption for different periods and the most reasonable forecast period is
close to the start point of this sharp increase. The first step is to select initial period
randomly. The second step is to use neighborhood function to get a set of new periods in
certain range and evaluate their effect on power consumption. These two steps will be
repeated until a platform of low power consumption appears which means the start point

146 J. Cao, Y. Wu, and M. Li

of the sharp increase is found. The third step is to evaluate periods on this platform with
number of iterations for knapsack as criterion. Small forecast period leads to more
iteration that is needed to work out allocation of VMs to hosts. For example, we make
two assumptions: (1) the minimum step of period is 0.5 hour; (2) the most reasonable
period is 2 hours. The initial random period in the first step is 6 hours. The set of new
periods generated by the neighborhood function in second step is 6, 3, 1.5, 1 and 0.5
(the latter is half of the former). Based on the evaluation result, period of 1.5 hours
becomes the start point of the sharp increase, while period of 3 hours is the end point.
The set of periods to evaluate in the third step is 3, 2.5, 2 and 1.5. In the end, the
forecast period with low power consumption and small number of iterations is found.
The self-optimizing process of this example is illustrated in Figure 2.

5 Experiments

5.1 Experimental Setup

Our experiments are performed on CloudSim which is a new, generalized, and
extensible simulation framework that allows seamless modeling, simulation, and
experimentation of emerging cloud computing infrastructures and application services
[2]. By using CloudSim, researchers and industry-based developers can test the
performance of a newly developed application service in a controlled and easy to set-
up environment [2].

To simulate our algorithm and collect the results, we need to set up the
configuration of hosts and VMs.

Host Configuration. To simulate computing and storage abilities of hosts, we take
IBM System X3850 X5 as our sample host. Configuration of X3850 is collected from
IBM website: 4 CPUs (each with 6 cores), 32GB DDR3 1066Mhz memory [18].
Power parameters are listed in Table 2.

Table 2. Host Power Parameters [18]

Host
Power
Rating

Peak
Power

Standby
Power

Start
Duration

Idle
Duration

IBM
System
X3850

1975W*2 2765W*2 98.75W*2 2min 20min

VM Configuration. Experiments are conducted with three types of VMs.
Configurations of our VMs are determined with reference to standard instance types
of Amazon EC2 which are well suited for most applications. The detailed
configurations are listed in Table 3.

 Energy Efficient Allocation of Virtual Machines in Cloud Computing Environments 147

Table 3. Virtual Machine Types[19]

Virtual Machine
Type

Core(s) Memory Storage

Small 1 1.7GB 160GB
Large 4 7.5GB 850GB

Extra Large 8 15GB 1690GB

5.2 Demand Collection

According to our assumption, three types of time-varying resource demands are
collected and predicted. The first one is collected from statistics of visit requests
published by Shanghai Education Website. The second one is provided by R2Group
as example of their tool for website statistics. The third one is from sample.org. All of
them include data of three continuous days (72 hours). A complete cycle is set to 24
hours, from 0:00AM-24:00PM, considering seasonal patterns of collected data. The
first two complete cycles will help us calculate initial values of level, trend,
seasonality and parameters ߙ ߚ , ߛ , in the equations. The third cycle is used to
evaluate the accuracy of our forecasting model.

5.3 Performance of Forecast

Due to similar process of forecast for different types of demands, we just take data
from Shanghai Education Website as an example for performance evaluation. Figure
3 illustrates the comparison of actual and forecasted demands. The parameters ߚ ,ߙ
and ߛ in forecasting model are set to real value between 0.1 and 1. The exact values
of parameters are listed below in Table 4.

Fig. 3. Comparison of actual and forecasted demands

148 J. Cao, Y. Wu, and M. Li

Table 4. Values of Model Parameters

Forecast ߚ ߙ ߛ MAPE
forecast1 0.1 0.2 0.3 0.0434
forecast2 0.9 0.2 0.1 0.0562
forecast3 0.5 0.1 0.4 0.0824

As illustrated in Figure 3, Holt-Winters’ exponential smoothing method with
appropriate parameters has good accuracy of forecast. Here parameters’ values are
determined by comparing the values of MAPE. The lower the value of MAPE, the
better accuracy the forecast has. Based on current collected data, we set parameters’
values as ߙ ൌ ߚ ,0.1 ൌ 0.2 and ߛ ൌ 0.3.

In our experiment, we make predictions for three types of demands which
correspond to three types of VMs. These VMs are treated as items to go through the
allocation process. The accuracy of forecast for different demands influences the
performance of our algorithm (i.e. sum of power consumption) by changing allocation
of VMs to hosts.

5.4 Performance of Algorithm

In this part, we evaluate the performance of our algorithm by comparing it with the
others: one is without forecast, WF for short and the other is with constant number of
hosts which are never shut down, CN for short. It is assumed that the arrival time of
demand fits normal distribution of (0, 25) and the execution time of demand fits
normal distribution of (30, 144).

The evaluation criteria of our experiment are the total power consumption during a
certain period. Here we take 10 hosts as example for CN. As shown in Figure 4, our
algorithm with forecast remains lower power consumption than WF for the complete
cycle of 24 hours. The major features of WF are: (1) on-demand service; (2) shut

Fig. 4. Performance of different methods with interval of 1 hour

 Energy Efficient Allocation of Virtual Machines in Cloud Computing Environments 149

down hosts immediately. Due to no forecasted demand for reference, WF cannot keep
hosts standby in advance and wait for future demands in a reasonable period of time.
A lot of power is consumed by switching on/off hosts frequently. On the other hand,
for every period in CN, a constant set of hosts are kept in active mode (full power
state) or standby mode (low power state), which means they will never be shut down.
Other hosts work in the same way as the ones in WF. According to our experimental
results in Figure 4, WF consumes 29.625 kW·h in total, while our algorithm only
consumes 10.734 kW·h, which saves energy by up to 60%.

Figure 5 shows the results with interval of 0.5, 1, 1.5 and 2 hours for comparison
among our algorithm, WF and CN with 5, 10 and 15 hosts respectively. Based on
actual demand from same users, our algorithm keeps its advantage over WF and CN
in power consumption for different intervals. In addition, CN with different number
of hosts has lower power consumption than WF for any interval, which indicates that
it can save energy to keep reasonable set of hosts in standby mode for each period.
This lays the experimental basis for our algorithm. On the other hand, the
performance of all algorithms becomes worse with change of period from smaller
ones to larger ones, for example, from 1 hour to 1.5 hours. This is because of the
extension of period, which results in ignoring many changes during longer interval.
Therefore, we design the self-optimizing module to find the reasonable forecast
period which is important to the performance of our algorithm.

Fig. 5. Sum of power consumption with different intervals

We can conclude from Figure 5 that there is a sharp increase in the curve of power
consumption for our algorithm. Self-optimizing module can help us find the most
reasonable forecast period. The initial random period is 2 hours. The set of new
periods generated by the neighborhood function is 2, 1 and 0.5. Based on our
evaluation results of power consumption, the start point and end point of this sharp
increase is 1 and 2 respectively. Then the set of periods to evaluate in the third step is
2, 1.5 and 1. Based on Figure 5 and Figure 6, we can see that the most reasonable
forecast period with lower power consumption and less iteration is 1 hour.

150 J. Cao, Y. Wu, and M. Li

Fig. 6. Number of iterations with different intervals

6 Conclusions and Future Work

Along with the fast development of cloud computing, the number of servers grows
rapidly. Apart from the construction cost of the equipment, how to control the
operational cost becomes a major concern for every company. One possible way for
operational cost control is to reduce power consumption of each host. This paper
proposes an approach based on demand forecast to conserve energy. Our approach
can predict users’ demands of different seasonal patterns effectively and use modified
knapsack algorithm to adjust physical locations of VMs. On the basis of forecasted
resource demands and reasonable allocation of VMs, the frequency of switching
on/off hosts can be reduced, which leads to a decrease in the total amount of energy
and has practical value for cloud computing environments.

It is verified that our approach has good accuracy for demand forecast and an
advantage in power consumption over other approaches. For the future work, we
propose to take into account other kinds of resources in the allocation of VMs, such as
disk storage and network bandwidth. The other research interest is to study the
influence of VMs’ live migration on power consumption, which may be another way
to save energy.

Acknowledgements. This work is partially supported by China NSFC (Granted
Number 61073021), Science and Technology Commission of Shanghai Municipality
(Granted Number 10511501503, 10DZ1200200, 11511500102). The work described
in this paper was also partially supported by Morgan Stanley. Morgan Stanley
and Shanghai Jiao Tong University Innovation Center of Computing in Financial
Services have entered into Collaboration Agreement No.CIP-A20110324-2.

 Energy Efficient Allocation of Virtual Machines in Cloud Computing Environments 151

References

1. U.S. Environmental Protection Agency:Report to Congress on Server and Data Center
Energy Efficiency. Public Law, 109–431 (2007)

2. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: A
Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation
of Resource Provisioning Algorithms. Software: Practice and Experience 41(1), 23–50
(2011)

3. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility Functions in Autonomic
Systems. In: 1st IEEE International Conference on Autonomic Computing, pp. 70–77.
IEEE Press, New York (2004)

4. Tesauro, G., Das, R., Walsh, W.E., Kephart, J.O.: Utility-Function-Driven Resource
Allocation in Autonomic Systems. In: 2nd IEEE International Conference on Autonomic
Computing, pp. 342–343. IEEE Press, New York (2005)

5. Beloglazov, A., Buyya, R.: Energy Efficient Allocation of Virtual Machines in Cloud Data
Centers. In: 10th IEEE/ACM International Conference on Cluster, Cloud, and Grid
Computing, pp. 577–578. IEEE Press, New York (2010)

6. Bobroff, N., Kochut, A., Beaty, K.: Dynamic Placement of Virtual Machines for Managing
SLA Violations. In: 10th IFIP/IEEE International Symposium on Integrated Network
Management, pp. 119–128. IEEE Press, New York (2007)

7. Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application performance management
invirtualized server environments. In: Network Operations and Management Symposium,
pp. 373–381. IEEE Press, New York (2006)

8. Steinder, M., Whalley, I., Carrera, D., Gaweda, I., Chess, D.: Server virtualization in
autonomic management of heterogeneous workloads. In: 10th IFIP/IEEE International
Symposium on Integrated Network Management, pp. 139–148. IEEE Press, New York
(2007)

9. Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Steinder, M., Sviridenko, M., Tantawi,
A.: Dynamic placement for clustered web applications. In: 15th International Conference
on World Wide Web, pp. 593–604. ACM (2006)

10. Time series Forecasting using Holt-Winters Exponential Smoothing, http://www.
it.iitb.ac.in/~praj/acads/.../04329008_ExponentialSmoothing.
pdf

11. Holt-Winters’ Exponential Smoothing with Seasonality, http://www.cec.uchile.
cl/~fbadilla/Helios/referencias/08HoltWintersSeason.pdf

12. Goodwin, P.: The Holt-Winters Approach to Exponential Smoothing: 50 Years Old and
Going Strong. Foresight, 30–33 (2010)

13. Mean Absolute Percentage Error, http://en.wikipedia.org/wiki/Mean_
absolute_percentage_error

14. Mean Absolute Scaled Error, http://en.wikipedia.org/wiki/Mean_
absolute_scaled_error

15. Knapsack Problem, http://en.wikipedia.org/wiki/Knapsack_problem
16. Chu, P.C., Beasley, J.E.: A Genetic Algorithm for the Multidimensional Knapsack

Problem. Journal of Heuristics, 63–86 (1998)
17. Amazon EC2 Pricing, http://aws.amazon.com/ec2/pricing/
18. IBM System x3850 X5 Specifications, http://www-03.ibm.com/systems/x/

hardware/enterprise/x3850x5/specs.html
19. Amazon EC2 Instance Types, http://aws.amazon.com/ec2/instance-

types/

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 152–161, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Energy Conservative Mobile Cloud Infrastructure

Ashok Chandrasekar1, Karthik Chandrasekar1, Harini Ramasatagopan1,
and Rafica Abdul Rahim2

1 Department of Information Technology, Madras Institute of Technology, Anna University,
Chennai, India

2 Department of Electronics and Communication, College of Engineering, Anna University,
Chennai, India

{ashoksekar07,karthidec1,hariniramasatagopan,
rafica.ar}@gmail.com

Abstract. Mobile cloud computing enables the users to improve productivity,
share data and collaborate with the other mobile users. Mobile users are able to
share resources and applications without a high level capital expenditure on
hardware and software resources. Though this new phenomenon is welcomed,
people are sceptical about its effectiveness in the real world. Mobile resources if
utilised properly will be a boon as it may pave way for their ubiquitous access.
Energy efficient infrastructure is very much needed in mobile cloud as energy is
the main limitation for mobile users. In this paper an energy conservative
mobile cloud infrastructure is proposed. Mobile nodes are classified on the
helper factor algorithm, which is based on battery consumption, memory
storage, network bandwidth and time delay. Mobile node’s ability to contribute
its resource to other mobile nodes in its circle is determined. The concept of
peer data sharing among mobile devices to enable reusability of data in its own
circle is also proposed. Local server cache has been implemented effectively to
retrieve the recently used files quickly.

Keywords: Mobile cloud, File sharing, Cloud computing, Hadoop, Peer to
Peer, Energy conservative computing.

1 Introduction

Smartphone users are in huge rise and most of the applications employed in smart
phones are basically for single users. Many of the computational resources and data are
largely underutilized in today’s mobile applications. It is possible to use a networked
collection of smart phones in a more efficient way. Each smart phone has some amount
of storage, computation power, sensing abilities, multimedia data, and energy. Each of
these capabilities is available only currently and is utilized by the smart phone user.
These resources can be well utilized if these capabilities are somehow offered to the
other users. It will be effective if we have a mobile-cloud infrastructure that enables the
smart phone applications that are distributed both in terms of data and computation. In
this paper, an energy conservative mobile cloud infrastructure is proposed. Multimedia

 Energy Conservative Mobile Cloud Infrastructure 153

file sharing has become one of the indispensable tasks of smart phone users. A
multimedia file cannot be transferred just like that, the file needs to be compressed,
annotated, and then sent over the network, draining the battery in the process. These
uploads and downloads are also a burden for wireless network [6] service providers who
must handle these large uploads and also for other mobile users who experience the
resulting network performance degradation.

2 Related Work

Hadoop based framework exists for mobile cloud computing and it is called hyrax[1].
A more scalable way to support multimedia sharing from mobile devices is to host
files on phones and distribute queries and summarization tasks across many nodes. It
eliminates the need for each user to upload large files and to retrieve files from remote
services. Instead, large transfers could be performed directly within local networks.
Search queries could include times and locations of interest and incorporate local
sensor readings such as heading and movement to estimate video quality and
relevance. Distributed data processing is provided via hadoop’s MapReduce
implementation, which divides the ‘job’ submitted by the user into independent
‘tasks’ and distributes these tasks to slave nodes, taking the physical location of input
data into consideration.

In this method [11], a peer can use its idle bandwidth to help in the download of
the other and can later get back a return help during its own download. This kind of
collaborative download is a novel idea. Hence helper nodes based on collaborative
mechanism is used in this system.

The Hummingbird [4] is a custom-developed mobile RF device designed to support
awareness and collaboration between a set of users that are in the physical vicinity of
each other. The Hummingbird is designed to supply awareness to users in any
environment without relying on an underlying infrastructure and to augment forms of
traditional, office communication media such as instant messaging and email.

3 Proposed Solution

3.1 Energy Conservative Method

As mentioned above, hundreds of smart phones are found in the same location. At
times user mobile’s battery percentage may go below the minimum threshold and if
he needs to upload or download a relatively larger multimedia file, if this device starts
the operation by itself, there is every possibility this task may terminate any time
without completing the task. This is because, the device needs to contact remote
server every time, which consumes considerable amount of battery power. It will be
very useful if some other user in the close proximity helps this needy user (wanter).
This is based on the concept that mobile device requires relatively less power to get or
send data from a nearby device than the remote one. Suppose user A (wanter) needs
to download some files from a remote server but his device has low battery, then it
may drain its battery fully in the middle of some critical task. According to the
proposed solution, a local server is present which has the complete information of all
the smart phone devices present in that local circle. Local server will maintain a log

154 A. Chandrasekar et al.

which has details about the entire download that has been performed by smart phones
in this circle. Helper node is any mobile device in that circle which has adequate
resources to help a needy user. Every mobile device should have a helper factor
greater than helper threshold, only then node will be considered as a helper. Based on
the helper factor, helper classifier selects all the mobile devices which satisfy this
helper threshold condition. Amount of download to be performed by a single helper
node depends on the total file size needed by the wanter node and the number of
helper nodes. If the number of helpers in the circle is high, the job done by an
individual helper node will be reduced. These helpers if they have agreed to mobile
cloud will now perform their job of downloading pieces of data individually and these
pieces will be joined together as a single required file with the help of modified
version of hyrax, an adapted form of hadoop for mobile cloud. Pieces of data can be
downloaded individually by different nodes from a remote server and then these files
can be compiled to a single file [5]. This kind of file sharing concepts was pioneered
by torrent and Gnutella.

3.2 Helper Classifier

Helper classifier is a component which is present in the local server, which calculates
the helper factor for all the mobile devices in the circle, based on which the helpers
are selected and classified.

Fig. 1. Energy conservative Mobile cloud infrastructure

 Energy Conservative Mobile Cloud Infrastructure 155

Helper Factor. Helper factor is based on many parameters such as battery life,
network bandwidth, CPU utilisation and memory usage of individual mobile devices.

 fH = DCMB +−− 24
(1)

The above equation is used to calculate the Helper factor Hf of individual mobile
nodes. This helper factor provides a steady and really efficient formula to select the
appropriate mobile devices as helpers. B indicates the battery percentage remaining in
the mobile devices; M indicates the percentage of memory used in the mobile device;
C indicates percentage of CPU utilization of the mobile device; D indicates available
network bandwidth. The values 4 and 2 in (1) represent the priorities assigned to
various factors. These priorities can be changed. After several experiments, these
values are found out to be optimal.

3.3 Helper Classification Method

The Hf is calculated for all mobile devices in a circle pertaining to single local server
and the threshold values are fixed for various categories after a thorough analysis. For
a mobile device to be in category 1, Hf value should be greater than 2 and B value
should be greater than 70. For a mobile device to be in category 2, the Hf should fall
within the range 1-2 and B>65 and it belongs to the category 3 if its Hf value is less
than 1. The Hf value is computed as mentioned and based on the above ranges it is
classified. This classification is necessary to accurately determine the amount of
resource it could spend on its peers. A device in the category 1 has the highest priority
of being selected by the helper classifier as helper node. Category 2 devices have
slightly lesser priority than category 1 .Devices which fall under category 3 are not
eligible for being selected as helper. Helper classifier will classify all the mobile
devices in anyone of the category and this classification will happen dynamically after
a particular time interval. Now that classification is done, the amount of work to be
done by individual nodes should be fixed. The multimedia file to be downloaded by
wanter node is identified and number of nodes in category 1 is counted. These
threshold values are arbitrarily fixed for experimental purposes. The battery
percentage for category 1 and category 2 are chosen as 70 and 65 after experimenting
with several values. The most optimal and fair one for the helpers is chosen at the
end. Three scenarios are possible. They are

• Category 1 nodes are sufficient.
• Category 1 nodes are insufficient.
• Category 2 nodes are insufficient.

3.4 Peer to Peer Transfer

As mentioned above, all the mobile devices in a circle is connected to a local server.
This server has a component named history keeper which has the history of all the
files uploaded or downloaded by mobile devices in that circle. So any mobile device

156 A. Chandrasekar et al.

in the circle before downloading any file, checks the history keeper, if the same file
has been downloaded by any other node in this circle. If it has been downloaded by
any other node, instead of reaching remote server, it can download the file directly
from its peer, provided the node that downloaded the file is currently present in the
same circle. There is also a possibility that the node which downloaded the same file
could have migrated to the other circle, as migration is very common among mobile
devices. If the node is found to remain in the same circle and only if it falls under
category 1 or category 2 then peer transfer will happen. If the node has migrated, peer
sharing cannot be done.

Fig. 2. Energy conservative Mobile cloud components

3.5 Limit Factor

The size of the file to be transferred is identified. Helper classifier dynamically
classifies the helper nodes and number of devices falling in different categories is
identified. Maximum Limit (ML) is fixed so that single mobile device resources are
not used too much. After various results analysis Maximum Limit (ML) is assumed to
be 20 Mb for every mobile device. This means a device will be considered for this job
only when its limit factor (Lm) is less than Maximum Limit. Limit factor greater than
Maximum Limit (ML) indicates that node has serviced enough for its peer group and
will no more be considered by helper classifier for peer service.

 Energy Conservative Mobile Cloud Infrastructure 157

3.6 Caching

The local server also has a cache attached to it, which contains the most recently
accessed files in it. So if any mobile device’s request matches any of the files in the
cache, then files can be transferred directly from the cache without computing any
helper factor for any mobile nodes.

3.7 Node Migration

Since we are dealing with mobile devices, migration of mobile nodes is usual
happening and its adverse effects have to be handled properly. There are many
possibilities for handling migration of nodes.

Less Than 30 Percent Transfer. When a job is assigned to a node and it started
transfer and if less than 30 percent of the job is completed by that mobile device and
now mobile device needs to migrate, even then local server can just transfer this job
to some other mobile device to do it from start as this little amount of resource
wastage might not create big impact.

More Than 30 Percent of Transfer. When more than 30 percent of job is completed
by the mobile device and then if the device needs to migrate, then just ignoring the
job performed by the node will decrease the performance, as the resources will be
considerably wasted. So now when the node moves out of the circle it can submit the
job completed so far to the local server. Local server now finds a new eligible helper
node and hands over this partially completed job with all the necessary information.
The new node is expected to complete the remaining job. Submitting the job to the
local server and re-assigning the partially completed job to some other helper node
involves overhead and hence it is done only when substantial amount of job is
completed. After much analysis, the value is assumed as 30 %, which is found to be
optimal in most of the cases. In few cases server cannot find capable helper node to
transfer the partially completed job, and in that case, other possibilities should be
taken into consideration. Node migration is an indispensable topic as we are dealing
with mobile devices.

3.8 Centralized Server

A centralized server is maintained which has the control over all the local servers of
various circles. This centralised server is necessary because, a device might have
serviced till its maximum limit (ML) for its peer in one circle and it could have been
migrated to the other circle. Now it has migrated to a new circle and there is
possibility that this node might fall under category 1 once again and if there is no
connection between local servers, the migrated user will again need to help its peer in
the new circle. This may not be to the liking of a mobile node because it has serviced
till its maximum limit and even then its resource is being used over and over.
Therefore centralized server will maintain a log consisting of all the histories of
serviced nodes obtained from all the local servers. So this log is checked by each local
server before assigning job to any new helper node. Thus we can avoid a single
node’s resource getting exhausted.

158 A. Chandrasekar et al.

4 Implementation and Evaluation

The proposed work seems to work very efficiently, but there are many real time
complexities which makes it very hard for real time implementation.

We performed simple data transmission among mobile devices and between local
server and mobile devices ignoring the concept of migration of mobile nodes and the
presence of centralized server. Only when the complete work modification of hyrax is
done, we will be able to implement the complete system. Because of the difficulties
involved in bringing out the real world working model, we performed this small part
of implementation whose results are analysed thoroughly and it is found that the
results obtained bolsters our proposed work.

The network used consists of few android running smart phones connected to a
local server. Since Android does not support peer-to-peer networking [2], the phones
communicate with each other through WLAN using wireless router. The Name Node
and Job Tracker processes run on a desktop machine that is connected behind this
router via Ethernet. The Data Node and Task Tracker processes run on mobile nodes.
All the mobile nodes have internet connection in them.

From the above setup, we were able to transfer data between mobile devices and
between local server and mobile device. Remote data transfer is performed by
connecting mobile devices to internet and by performing random downloads and
uploads of files of various sizes. From the obtained values we were able to find the
average data transfer time for set of files of various sizes. Using battery finder
application we were able to find out the exact percentage of battery consumed for
each and every transfer.

Fig 3 shows the battery consumption for data transfer by mobile devices (plotted
in Y axis) for a set of files of various sizes (plotted in X axis). Any data transfer
operation involves some amount of battery consumption. Since battery consumption

Fig. 3. Battery consumption results analysis

 Energy Conservative Mobile Cloud Infrastructure 159

is one of the first and foremost factors to be considered in mobile cloud, amount of
battery consumption for various file sizes are found out. It is very much clear that
Remote server – Peer transfer is highly battery consuming process. Peer to Peer
transfer consumes next higher amount of battery resource though it is very small
when compared to remote server- peer transfer. Most optimal transfer is between local
server and mobile device. It indicates if we have bigger cache in local server, more
possibility of hitting data in local server and hence very less consumption of battery is
required to get the files from cache. Similarly if the required file is found among
peers, battery is consumed to at least a certain extent when compared to the remote
server transfer.

Fig. 4. Data transfer time results analysis

Fig 4 shows average data transfer time in seconds (plotted in Y axis) for set of

files of various sizes (plotted in X axis). Data transfer time is very important factor to
be considered as it directly affects the battery consumption of mobile devices. Time
delay depends on various parameters such as bandwidth, network congestion, distance
of the sender and the receiver.

From our experiment we found data transfer time was so high in the case of
transfer between remote server and mobile device. Mobile device to mobile device
transfer comes out as next higher time consuming data transfer although it is very less
when compared to remote server transmission. So if the data transfer happens within
particular circle, transfer rate will be very faster when compared to remote server
involved transmissions.

160 A. Chandrasekar et al.

4.1 Assumptions

• Mobile device users have firm control over their privacy. They can be sure
that their protected data will not be accessed by any other external agents.

• Interoperability exists between various mobile devices and various local
servers irrespective of their hardware specifications, provided, they have
common software.

• The proposed technique works in same manner even after the introduction of
very large number of mobile nodes.

• All mobile nodes are running android operating systems.

• Wireless network performance will be same as wired in the case of
connection between local server and mobile nodes.

5 Conclusion

This paper makes the following unique contributions.

• Energy conservative method is proposed to complete a large task for a
mobile device with low battery with the help of other mobile devices.

• A helper classification method is designed to find out the available mobile
nodes which could help the needy peer.

• A dynamic mechanism to handle migration of mobile nodes is devised. This
makes use of a centralized server and helps in avoiding monopolization of a
single mobile node’s resource.

• Simple evaluation is done through by which the efficiency of the proposed
work is verified.

This method is mainly for usage in places where large crowd gathers. Since dedicated
local server is used as master, scalability will not be a big problem as local server is
capable of handling the requests of those relatively small numbers of nodes present in
a single location. Similarly centralized server just performs the job of synchronising
the logs of all local servers and hence it may not suffer from scalability issues. Full
implementation of this work involves many real time complexities. The evaluation
presented here is based on partial implementation of the system.

6 Future Work

Security is a must for a peer sharing system like this, since there is a higher possibility
of attacks. Effective handling of monitoring data should be done as this monitoring
information sent by mobile node to local server should not become a separate
overhead. Hence our future works will be related to bringing all our above mentioned
works closer to the real world implementation and making modifications for the same.

 Energy Conservative Mobile Cloud Infrastructure 161

References

1. Marinelli, E.E.: Hyrax: Cloud Computing on Mobile Devices using Map Reduce. In:
CMU-CS-09-16(September 2009)

2. Litke, A., Skoutas, D., Varvarigou, T.: Mobile Grid Computing: Changes and Challenges
of Resource Management in a Mobile Grid Environment (2004)

3. Palmer, N., Kemp, R., Kielmann, T., Bal, H.: Ibis for Mobility: Solving Challenges of
Mobile Computing Using Grid Techniques. In: HotMobile 2009, Santa Cruz, CA, USA,
February 23-24 (2009)

4. Holmquist, L.E., Falk, J., Wigström, J.: Supporting Group Collaboration with Inter-
Personal Awareness Devices. Journal of Personal Technologies 3(1-2) (1999)

5. Michalakis, N., Kalofonos, D.N.: Designing an NFS-based Mobile Distributed File System
for Ephemeral Sharing in Proximity Network (2004)

6. Borthakur, D.: The Hadoop Distributed File System: Architecture and Design. In: The
Apache Software Foundation (2007)

7. Zheng, P., Ni, L.: Smart Phone and Next Generation Mobile Computing. Morgan
Kaufmann (2006)

8. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C., Meder,
S., Nefedova, V., Quesnal, D., Tuecke, S.: Data Management and Transfer in High
Performance Computational Grid Environments. Parallel Computing Journal 28(5) (May
2002)

9. Graf, M.: Grid collaboration in the mobile environment. In: IBM. Speech at the
Collaboration @ work Workshop (June 25, 2003)

10. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In: Proceedings of
the ACM Symposium on Principles of Distributed Computing (1996)

11. Kozuch, M., Satyanarayanan, M., Bressoud, T., Helfrich, C., Sinnamohideen, S.: Seamless
Mobile Computing on Fixed Infrastructure. IEEE Computer 37(7) (July 2004)

12. Garbacki, P., Iosup, A., Epema, D., van Steen, M.: 2Fast: Collaborative downloads in P2P
networks in P2P (2006)

13. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The Case for VM-based Cloudlets
in Mobile Computing. In: Pervasive Computing. IEEE (2009)

14. Lo, C.-H., Peng, W.-C., Chen, C.-W., Lin, T.-Y., Lin, C.-S.: Carweb:A traffic data
collection platform. In: Mobile Data Management (April 2008)

15. Lindemann, C., Waldhorst, O.P.: A distributed search service for peer-topeer file sharing
in mobile applications (2002)

16. Song, S., Yu, H.C.: The Scheduling method considerring the Using Patteern of the
Mobilee device in Mobiile Grid. Journal of Korea Associatiion of Computer Education
(2008)

17. Megdalena, B., Paul, C.: Characterizing Mobility and Network Usage in a Corporate
Wireless Local-Area Network. In: MOBISYS (2003)

18. Birje, M.N., Manvi, S.S.: Monitoring and Status Representation of Devices in Wireless
Grids. In: Bellavista, P., Chang, R.-S., Chao, H.-C., Lin, S.-F., Sloot, P.M.A. (eds.) GPC
2010. LNCS, vol. 6104, pp. 341–352. Springer, Heidelberg (2010)

19. R-GMA: Relational Grid Monitoring Architecture (December 2003), http://rgma.
org/ (visit May 20, 2010)

20. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and Grid computing 3600-degree
compared. In: Grid Computing Environments Workshop (2008)

21. Comito, C., Falcone, D., Talia, D., Trunfio, P.: Energy Efficient Task Allocation over
Mobile Networks. In: Proc. of the International Conference on Cloud and Green
Computing (CGC 2011), Sydney, Australia, pp. 380–387. IEEE Computer Society Press
(December 2011)

Power-Constrained Actuator Coordination

for Agricultural Sensor Networks�

Junghoon Lee1, Gyung-Leen Park1,��, Ho-Young Kwak2, and Jikwang Han3

1 Dept. of Computer Science and Statistics
2 Dept. of Computer Engineering

Jeju National University, Republic of Korea
3 Jinwoo Soft Innovation

{jhlee,glpark,kwak}@jejunu.ac.kr, hmurdoc@jinwoosi.co.kr

Abstract. Upon the ubiquitous sensor network capable of deciding con-
trol actions by a sophisticated inference engine, this paper designs an
actuator controller which coordinates the actuator operations over the
multiple farms. Basically, not beginning tasks as soon as they get trig-
gered, local schedulers determine the operation plan according to genetic
algorithms, for the sake of reducing peak power consumption for the given
scheduling window. For global scheduling, each local scheduler retrieves
the current load information maintained in the coordinator, runs its own
schedule, and finally sends to the coordinator. The fitness function gives
penalty to the allocation which assigns much power to the heavily loaded
time slots. The procedure reduces the peak load by up to 22.8 % for the
given task set. Moreover, all schedules are not necessarily run with tight
concurrency control. Our simulation shows that 40 % of schedulers can
run in parallel just with negligible performance loss.

Keywords: wireless sensor network, actuator schedule, farm group, peak
power reduction, demand response.

1 Introduction

Modern automation systems in agriculture are desirably empowered by sensor
and actuator technologies, which provide fundamental building blocks for ubiq-
uitous sensor networks, or USN in short [1]. The sensors capture the event over
the farm area and report to the sensor stream processor, while the actuators
manipulate the target device according to the control logic. For the correct op-
eration of USN, the better accuracy of sensors is essential. Next comes a reliable
communication mechanism as well as a data analysis engine with sufficient com-
puting capacity. Necessarily, USN can handle a great volume of sensor data,

� This research was supported by the MKE (The Ministry of Knowledge Economy),
through the project of Region technical renovation, Republic of Korea.

�� Corresponding author.

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 162–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Power-Constrained Actuator Coordination for Agricultural Sensor Networks 163

detect events, and compute the real-time control action [2]. This infrastructure
can host a lot of control strategies defined by a given system goal, exploiting
from simple on-off logic to sophisticated artificial intelligence mechanisms [3].
Such distributed intelligence over the sensor network is indispensable for envi-
ronmental monitoring, farming, irrigation, and the like.

The sensor network eventually decides the control actions, making a set of
actuators run [4]. Some control actions are regularly executed, for example, in
hourly or daily basis, while others on-demand basis. The actuator devices include
heaters and air conditioners for greenhouses, sprinklers for crop area, ventilators
for cattle sheds, and so on. Moreover, an irrigation system deals with heavy
water gates, requiring much electric power [5]. Accordingly, the operation of
an agricultural device inevitably imposes much power consumption. If many
operations, possibly from multiple farms, concentrate on a specific time interval,
the power load can put significant pressure on the power system. As a result,
the integration of power management to the control action decision is of great
necessity for agricultural USN. It must coordinate the operation of multiple
actuators by creating an efficient schedule which can reduce the peak power load
for a farm group, not just a single farm.

In this regard, this paper first presents an actuator node capable of reliably
fulfilling the control action decided in the computing domain. Then, a power
management scheme is designed for a farm group to integrate smart electricity
consumption to control action scheduling. We are mainly targeting at a small
scale farm group consisting of less than 20 farms. Local schedulers can have
its own scheduling mechanism, while the genetic algorithm is one of the most
promizing schemes, as it cannot only directly control the scheduling time, but
also obtain a schedule of acceptable quality, even if not optimal. The global co-
ordinator synchronizes each local schedule according to the given system goal.
In power consumption, concentrated power load can jeopardize the safe opera-
tion of the power distribution network and possibly force to purchase expensive
energy. Hence, our scheduling scheme aims at reducing or reshaping the peak
load. The coordinator and local schedulers interacts via two-way communication
primitives over the appropriate network.

This paper is organized as follows: After issuing the problem in Section 1,
Section 2 introduces background of this paper. Section 3 designs an actuator
coordination scheme for a farm group. Section 4 discusses the performance mea-
surement result and Section 5 finally concludes this paper with a brief introduc-
tion of future work.

2 Background and Related Work

Through the research and technical project on Development of convergence tech-
niques for agriculture, fisheries, and livestock industries based on ubiquitous sen-
sor networks, our project team has developed an intelligent USN framework [6]. It
provides an efficient and seamless runtime environment for a variety of monitor-
and-control applications on agricultural sensor networks. It is important to sys-
tematically cope with the sensor data stream as well as provide interoperability

164 J. Lee et al.

between the low-level sensor data and application clients. Here, integrative mid-
dleware promotes the interaction between the application layer and the underlying
sensor network, making it possible to analyze a great volume of sensor data. Then,
the real-time data distributer selectively attaches an agent-based event handler so
as to forward a specific event to the application handler, which is registered in the
directory service. After all, each stream is activated and relinquished by the stream
manager.

Basically, according to the required reliability level, the USN design chooses
appropriate sensors, required actuators, and communication protocols. In farms,
it is necessary to continuously monitor the environmental change in temperature,
humidity, lightness, CO2 and NH2 levels in addition to the biosensors which cap-
ture the livestock disease. Our system develops a sensor board capable of coping
with the heterogeneity of different sensors as well as providing stable power. Sen-
sors and actuators are installed in fixed locations [7]. A control unit is embedded
in actuator boards to control the overall board operation autonomously, even in
the place where neither network connection nor remote control is available. It
improves reliability and uniformly carries out diverse control actions. After all,
the actuator board consists of a connector part to the interface board, a control
signal level converter, a signal isolator to separate lower power DC signal from
high power AC signal, and an AC-DC power converter to provide power to the
whole remote control module.

In the mean time, smart power consumption draws much attention in many ar-
eas including agricultural farms, as most equipments consumes quite much energy
for their operations.The smart grid brings intelligence in power consumptionman-
agement based on sophisticated information technologies and ubiquitous commu-
nication infrastructures [8]. The demand response technique can support device
operation planning to achieve various system goals such as cost saving, peak load
reduction, renewable energy integration, and the like. However, this scheduling re-
quires tremendous computing time in each scheduling unit such as homes, build-
ings, and farms. Accordingly, genetic algorithms are practical solutions, as they
can yield an acceptable quality schedule within a reasonable time bound [9]. Our
previous work has proposed a genetic scheduler, which begins the evolution pro-
cedure with better initial population by an extremely lightweight heuristic [10]. In
addition to the local peak reduction, group-level coordination can further reduce
the peak load in a farm group.

3 Power Management for a Farm Group

3.1 System and Task Models

A group of farms, possibly 10 to 20, can jointly produce crops, buy seeds or
fertilizers, and undertake marketing. It will be also possible for them to purchase
the power from the power vendor as a single unit as shown in Figure 1. A power
provider can offer a discounted rate plan for massive purchase. The contract
generally limits the maximum power consumption at each time instant. If the
total power consumption exceeds the contracted amount during a specific time

Power-Constrained Actuator Coordination for Agricultural Sensor Networks 165

external load change

local

scheduler
controller

devices

local

scheduler
controller

devices

Cooperative

Coordinator

price signal

Fig. 1. Power management architecture

unit, expensive dispatchable energy must be additionally bought. Basically, a
single farm is a scheduling unit for power scheduling. As each smart farm has its
own local scheduling policy, it is necessary to globally coordinate the respective
schedules. It is impossible to schedule all device operations from all local units in
a single coordinator, as its computation time gets too much beyond the practical
bound. Hence, the peak reduction in each local grid is the first step for global
peak reduction, and then, it is necessary to reduce the effect of peak resonance
which happens when the respective peaks concentrate on same time slots.

A serious of control actions are decided after detecting specific events by the
stream inference engine, creating an action set along with the regular device
operations [7]. For their scheduling in a single scheduling unit, each control ac-
tion is specified by a processing task model. Here, a task, Ti, is represented by
< Ai, Ui, Di >, which denotes activation time, operation length, and deadline,
respectively. Scheduling assumes that the power consumption behavior is known
in priori by means of a consumption profile, which is aligned to a fixed size time
slot. For more details on this task model, refer to [11]. A local schedule is gener-
ated by any computing device such as PC within a farm or a high-performance
remote server residing in the Internet domain. After all, a power consumption
schedule is generated in the form of M ×N time table, where M is the number
of time slots and N is the number of tasks. For a schedule, the power controller
connects or disconnects the power line to each electric device [10]. The operation
status can be changed only at each slot boundary.

3.2 Group-Level Coordination

For the local scheduling strategy, our design exploits the genetic algorithm,
defining a fixed-length string of an integer-valued vector for chromosome

166 J. Lee et al.

representation. Each value element indicates an allocation map for a task. For
example, suppose that a feasible schedule for 3 tasks from T0 to T2 is (21, 32,
10) as shown in Figure 2. The vector element, or the allocation map, for T0 is 21
and its binary equivalent is 10101. Additionally, let A0, U0, and D0 be 1, 3, and
5, respectively. Then, the profile entry for T1 is copied to the slots from 1 to 5,
skipping zero entries marked in the map. It will make the first row as (3, 0, 2, 0,
3) from Slot 0. The dotted box is the valid scheduling range for T0. It starts from
A0 and ends at D0. For each complete allocation, the fitness function calculates
per-slot power load and the largest will be the peak load of the schedule. It must
be mentioned that the purpose of power scheduling is to reduce the power load
of such a peaking slot. In this example, peak load takes place at Slot 1 and its
value is 7.

With this encoding, the iteration consists of selection and reproduction. As
for the initial population, we select feasible schedules randomly. The selection
procedure picks parents by their fitness values. The Roulette Wheel selection
gives more chances to chromosomes having better fitness values for mating. The
fitness function simply calculates per-slot load and selects the maximum value.
It can be easily modified to reflect other criteria and parameters. Reproduction,
or crossover, randomly selects a pair of two crossover points and swaps the
substrings from each parent. If a new chromosome is the same as the one included
in the population, it will be replaced by another different one. Here, information
on price signal change and external load status can be parameterized in the
fitness function. Each local schedule reduces the local peak and the flattened
load also reduces the global peak.

i i i<A , U , D >
T 0

T

T

1

2

<0, 2, 4>

<0, 2, 3>

Profile
3 2 3

2 4

2 3

0 1 2 3 4 5

0 3 0 2 0 3

2 4 0 0 0 0

2 0 3 0 0 0

For a vector (21, 32, 10) = (10101, 11000, 1010)

4 7 3 2 0 3

<1, 3, 5>

Per−slot load

Fig. 2. Encoded allocation table

The global coordination begins with the assumption that the time slots in
each scheduling unit are synchronized over the multiple farms. Nowadays, the
GPS (Global Positioning System) technology allows such time synchronization
quite easily [12]. A single global coordinator is responsible for managing a farm
group. From the viewpoint of the global coordinator, it is necessary to avoid the
peak resonance, where peaking slots of multiple local schedules meet at the same
time slot or slots. For global reduction, the coordinator maintains the operation
schedules for each grid unit as a long-term allocation time table. A local sched-
uler retrieves the current load for time slots belonging to a specific scheduling

Power-Constrained Actuator Coordination for Agricultural Sensor Networks 167

window before starting its local scheduling procedure. Then, the fitness function
is modified, adding the current global load for each slot. As a result, we can give
penalty to the allocation which assigns task operations to the heavily loaded
slots during genetic iterations. After the completion of a unit schedule, the local
scheduler reports its result back to the coordinator.

In this scheduling model, each scheduler retrieves and updates the global load
information. Hence, a set of retrieval requests can arrive at the coordinator simul-
taneously, and thus access conflicts for the shared data can take place between
them. We cannot expect any global coordination without a concurrency control
mechanism. However, tight concurrency control can prolong the scheduling time,
as each local scheduler must run one by one, waiting for its all predecessors to
complete. This situation may be serious for the real-time control reaction. Ac-
tually, even if some schedulers decide their local schedules independently, mak-
ing peak resonance among them, the last one or two schedulers can sufficiently
avoid peaking slots up to the previous unit allocation. We assert that every local
scheduler doesn’t have to run sequentially and thus partial synchronization is
promising for both scheduling overhead and accuracy.

4 Performance Measurement

For the performance evaluation of the proposed actuation coordinator, we have
implemented the power consumption scheduler using Microsoft Visual C++. For
a task, the operation length and the slack exponentially distribute with the aver-
age of 3.0 and 2.0, respectively. For each time slot, the power amount ranges from
1 to 10. Our experiment assumes that the scheduling window size is 20. The slot
length can be assumed to be 5 minutes. The power scale is not explicitly specified,
as it depends on the electric device types included in the target scheduling unit.
For the parameters regarding to genetic algorithms, the number of iterations is
1,000, the population size is 80, and the initial population is chosen randomly.
We mainly measure the effect of global coordination by comparing the peak load
for independent and coordinated scheduling. In independent scheduling, each
scheduling unit just runs the genetic scheduler without considering the current
group-wide power load. For coordinated scheduling, the shared load information
is tightly synchronized.

The first experiment measures the effect of the number of scheduling units to
peak load. In this experiment, the number of tasks in each unit is set to 5. Figure
3(a) plots the peak load for independent and coordinated scheduling. According
to the increase in the number of units, the number of tasks in the farm group also
increases. Hence, the peak load gets larger for both curves. When there are just
3 units, the effect of global coordination is not so significant, showing just 7.1 %
peak load reduction. The performance gap increases with more units, but remains
stable when there are 13 or more units. Beyond this point, which has already
sufficient number of total tasks, independent scheduling implicitly distributes
the power load even without any manual regulation due to the randomness in
slot assignment. The experiment also discovers that local power consumption

168 J. Lee et al.

 0

 50

 100

 150

 200

 4 6 8 10 12 14 16 18 20

P
ea

k
lo

ad

Number of units

"Independent"
"Coordinated"

 0

 50

 100

 150

 200

 250

 3 4 5 6 7 8 9 10

P
ea

k
lo

ad

Number of tasks per unit

"Independent"
"Coordinated"

(a) Effect of the number of units (b) Effect of the number of tasks

 0

 50

 100

 150

 200

 200 400 600 800 1000 1200 1400 1600

P
ea

k
lo

ad

Number of iterations

"Independent"
"Coordinated"

 0

 50

 100

 150

 200

 20 40 60 80 100 120

P
ea

k
lo

ad

Population size

"Independent"
"Coordinated"

(c) Effect of iterations (d) Effect of population size

Fig. 3. Power load reduction by complete synchronization

schedule can reduce the global peak. Anyway, the maximum peak load reduction
reaches 15.1 % in this experiment.

Next, Figure 3(b) plots the peak load according to the number of tasks in each
scheduling unit. The experiment sets the number of units to 10, while changing
the number of tasks from 3 to 10. Coordinated scheduling achieves the peak
load reduction of 22.8 % for the 3 task case. When there are fewer tasks for a
relatively large number of units, the peak resonance is highly likely to happen. At
this point, we can better benefit from coordinated scheduling. For the remaining
interval, the performance gap lies in the range of 7.7 % to 15.9 %. The peak
reduction in each local scheduling unit also reduces the global peak load for the
sufficient number of tasks as in the previous experiment. The number of tasks
in a unit has more effect to the peak load than the number of units.

Figure 3(c) and Figure 3(d) measure the effect of genetic algorithm-specific
metrics. For the number of iterations from 200 to 1,600 with the population
size fixed to 80, coordinated scheduling stably shows smaller peak load by up
to 15 %. Actually, the improvement by genetic iterations remains below 1.0 %
for coordinated scheduling and 8.4 % for independent scheduling, after 800 iter-
ations. The performance gap between two scheduling schemes largely increases

Power-Constrained Actuator Coordination for Agricultural Sensor Networks 169

according to the increase in the number of iterations, but lies in the range from
9.0 % to 15.2 %. In addition, a larger population size generally leads to further
reduction as shown in Figure 3(d). The population size significantly affects the
execution time of genetic iterations which include a number of sorting steps.
Even though both scheduling schemes reduce the peak load with larger popu-
lation size by up to 7.6 % and 10.7 %, the peak load gap between them is not
so significantly influenced. For the population size of 40, coordinated scheduling
outperforms independent scheduling by 17.3 %.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

P
ea

k
ra

tio

Coordination degree

"5units"
"10units"
"15units"
"20units"

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

P
ea

k
ra

tio

Coordination degree

"5tasks"
"10tasks"
"15tasks"

(a) Effect of the number of units (b) Effect of the number of tasks

 90

 95

 100

 105

 110

 115

 120

 0 0.2 0.4 0.6 0.8 1

P
ea

k
lo

ad

Coordination degree

"200Iterations"
"500Iterations"

"1000Iterations"

 90

 95

 100

 105

 110

 115

 120

 125

 130

 0 0.2 0.4 0.6 0.8 1

P
ea

k
lo

ad

Coordination degree

"PopulationSize=40"
"PopulationSize=80"

"PopulationSize=120"

(a) Effect of iterations (b) Effect of population size

Fig. 4. Power load reduction by partial synchronization

The second experiment set focuses on the partial synchronization where some
local allocations decide their schedules using incorrect current load distribution.
The experiment pessimistically assumes that all units simultaneously want to
schedule their device operations and send retrieval requests for the current load
distribution. We define the coordination degree to represent how many units go
without synchronization. If the degree is 0, all local schedules are decided one
by one through the regular tight concurrency control. This case corresponds to
coordinated scheduling. On the contrary, if the degree is 1, all schedulers allocate
task operations independently. This case coincides with independent scheduling.

170 J. Lee et al.

For 10 tasks, the coordination degree of 0.8 makes 8 units schedule independently
while only 2 units begin its scheduling procedure after 8 units are done.

To begin with, in Figure 4(a) and Figure 4(b), the y-axis denotes the peak
ratio, which is the normalized peak to the maximum peak load. The maximum
peak takes place when the coordination degree is 1.0. Figure 4(a) plots the
effect of the coordination degree when the number of units is 5, 10, 15, and
20, respectively, with the number of tasks set to 5. In most cases, the peak
ratio rapidly approaches to 1.0 after the degree is 0.8. Before 0.8, the maximum
performance loss, or the peak load increase from coordinated scheduling, remains
just below 1.5 % for the 5 task case. As contrast, for the case of 10 tasks, this
is true just until 0.4. Next, Figure 4(b) plots the peak ratio for the case of 5,
10, and 15 tasks with the number of units fixed to 10. This figure shows the
similar pattern to Figure 4(a), but the performance loss before 0.8 is 5 %. For
other cases, the improvement is not so significant, but up to 40 % schedules can
proceed in parallel just with less than 0.1 % performance loss.

In Figure 4(c), we have set the number of iterations to 200, 500, and 1,000.
Here, as this experiment has the same number of units and the same number
of tasks, the peak load is shown in the y-axis instead of peak ratio. There is
a trade-off between execution time and accuracy. With more iterations, we can
improve the accuracy, but the scheduling time will increase. It will be worse
for coordinated scheduling. The case of smaller number of iterations is more
affected by the coordination degree. However, below 0.4, the peak load increase
is less than 1.7 % for all cases. The result is the same for the population size. As
shown in Figure 4(d), small population size is more affected by the coordination
degree. After all, even though the effect of coordination degree to peak load is
dependent on the characteristics of each task set, 0.4 will be the safe bound. If
further computation speed is required, we can extend the parallel execution with
the coordination degree of 0.8, tolerating small performance loss.

5 Conclusions

Benefiting from the robust actuator management mechanism, we have designed a
global coordination scheme to integrate power consumption scheduling in control
action planning. Not just deciding how to respond to external events, our scheme
generates an efficient actuator control schedule capable of reducing the peak load
in a farm group. Each local scheduler calculates the action time table by a genetic
algorithm implementation after retrieving current global power load and updat-
ing its fitness function to avoid peak resonance. The global coordinator interacts
with local schedulers in smart farms belonging to a farm group via the Internet,
managing the global power load information. The performance measurement by
a prototype implementation shows that the proposed scheme reduces the peak
load by up to 22.8 % for the given task set. Moreover, all schedules are not nec-
essarily run with tight concurrency control. Judging from the experiment, 40 %
of schedulers can run in parallel just with negligible performance loss.

Power-Constrained Actuator Coordination for Agricultural Sensor Networks 171

As future work, we are planning to design a hierarchical power management
scheme to extend the number of farm groups. It will include how to organize the
farm group taking into account the characteristics of each scheduling unit.

References

1. Revenaz, A., Ruggeri, M., Martelli, M.: Wireless Communication Protocol for Agri-
cultural Machines Synchronization and Fleet Management. In: International Sym-
posium on Industrial Electronics, pp. 3498–3504 (2010)

2. Sigrimis, N., Antsaklis, P., Groumpos, P.: Advances in Control of Agriculture and
the Environment. IEEE Control Systems 21, 8–12 (2001)

3. Esposito, F., Basile, T.M.A., Di Mauro, N., Ferilli, S.: A Relational Approach
to Sensor Network Data Mining. In: Soro, A., Vargiu, E., Armano, G., Paddeu,
G. (eds.) Information Retrieval and Mining in Distributed Environments. SCI,
vol. 324, pp. 163–181. Springer, Heidelberg (2010)

4. Culler, D., Estrin, D., Srivastava, M.: Overview of Sensor Networks. IEEE Com-
puter 37, 41–49 (2004)

5. Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, J.: A Review of Wireless Sensor
Technologies and Applications in Agriculture and Food Industry: State of the Art
and Current Trends. Sensors 9, 4728–4750 (2009)

6. Lee, J., Park, G., Kim, H., Kim, C., Kwak, H., Lee, S., Lee, S.: Intelligent Man-
agement Message Routing in Ubiquitous Sensor Networks. In: J ↪edrzejowicz, P.,
Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 537–545.
Springer, Heidelberg (2011)

7. Lee, J., Kim, H.-J., Park, G.-L., Kwak, H.-Y., Kim, C.M.: Intelligent Ubiquitous
Sensor Network for Agricultural and Livestock Farms. In: Xiang, Y., Cuzzocrea, A.,
Hobbs, M., Zhou, W. (eds.) ICA3PP 2011, Part II. LNCS, vol. 7017, pp. 196–204.
Springer, Heidelberg (2011)

8. Ipakchi, A., Albuyeh, F.: Grid of the Future. IEEE Power & Energy Magazine,
52–62 (2009)

9. Katsigiannis, Y., Georgilakis, P., Karapidakis, E.: Multiobjective Genetic Algo-
rithm Solution to the Optimum Economic and Environmental Performance Prob-
lem of Small Autonomous Hybrid Power Systems with Renewables. IET Renewable
Power Generation, 404–419 (2010)

10. Lee, J., Kim, H., Park, G., Jeon, H.: Genetic Algorithm-based Charging Task
Scheduler for Electric Vehicles in Smart Transportation. Accepted at Asian Con-
ference on Intelligent Information and Database Systems (2012)

11. Derin, O., Ferrante, A.: Scheduling Energy Consumption with Local Renewable
Micro-generation and Dynamic Electricity Prices. In: First Workshop on Green
and Smart Embedded System Technology: Infrastructures, Methods, and Tools
(2010)

12. Skog, I., Handel, P.: Time Synchronization Errors in Loosely Coupled GPS-Aided
Inertial Navigation Systems. IEEE Transactions on Intelligent Transportation Sys-
tems 12, 1014–1023 (2011)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 172–182, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Design and Evaluation of Mobile Applications
with Full and Partial Offloadings

Jennifer Kim

Department of Electrical Engineering and Computer Science,
University of California – Irvine,

Irvine, CA 92697, USA
Jenniyk2@uci.edu

Abstract. Mobile devices are widely accepted as a convergence machine
providing both software functionality and cell phone capability. However, they
have limited resources such as memory, processing power, and battery.
Consequently, complex applications could not be deployed on the devices. An
effective solution is to offload some functionality to more powerful servers and
to run then on the servers, to yield improved performance and low resource
consumption. In this paper, we propose a systematic process for designing
mobile applications with full and partial offloading. And, we present schemes to
quantitatively evaluate the resulting architecture. Using the proposed
architecture design and evaluation methods, mobile applications with loading
can be more systematically developed.

Keywords: Mobile App, Offloading Architecture, Quality Evaluation, Metrics.

1 Introduction

Mobile devices are emerging as a convenient client computing device for personal
and enterprise computing. However, mobile devices have a limitation on their
resources such as processing power, battery life, and memory mainly due to the small
form-factor [1]. Consequently, complex applications consuming a large amount of
resource could not be deployed on the devices.

To overcome the limitation, a scheme to offload some computation load to more
powerful server is suggested [2][3]. Part of a functionality of an application is
offloaded to a remote server in order for the mobile device to share the workload with
a more powerful server. Mobile applications with offloading provide several benefits
over stand-alone applications; reducing resource consumption on mobile devices,
utilizing computing power on the server, and others [4][5].

To fully take advantage of offloading, the functionality of mobile applications has
to be carefully analyzed and their architecture based on offloading principle should be
well engineered [6]. Software architecture design can effectively remedy the resource
limitation problem of mobile devices [7]. Current works are largely limited on these

 Design and Evaluation of Mobile Applications with Full and Partial Offloadings 173

aspects [8]. Moreover, there is a demand for evaluating the key quality attributes of
offloaded architectures in formal manner. Two commonly known quality attributes
for mobile applications architecture are response time and energy consumption.
Moreover, practical methods to design mobile apps with partial offloading are yet to
come. In this paper, we present a process to design mobile apps with offloading, and
schemes to evaluate the resulting architecture with metrics.

2 Related Works

Kumar’s work focuses on using computation offloading on mobile devices to save
energy, thus keeping the computation cost low [9]. They consider two scenarios, one
for running computation on the mobile device only, and the other for running the
computation on the cloud server. The latter has every computation run on the cloud
server. This work provides metrics for measuring data transfer time and processing
time, not covering several other performance-related factors. Moreover, it covers full
loading only. Yang’s work proposes system architecture for offloading at runtime
[10]. The architecture consists of a monitoring engine and an offloading decision
engine. When receiving an offloading request, the system searches adequate services
and compose them. A decision on the offloading is made at runtime, rather than
addressing offloading-related design issues. Other related works such as [11][12][13]
mainly focus on full offloading and provide limited evaluation schemes and process
to design offloading architecture. Our work is to elaborate technical insights of both
full and partial offloading, present a systematic process for applying offloading, and a
metric-based evaluation scheme for mobile architectures with offloading.

3 Full and Partial Offloading

A standalone mobile application runs the whole functionality on a mobile device.
Applications with high complexity or a large amount of dataset could not be deployed
and run on the mobile device. Moreover, these applications consume a high amount of
resource. Offloading can be an effective approach to remedying these problems.

With full offloading architecture, the whole application and its dataset are
offloaded to a server as shown in Figure 1 (a). After offloading, the mobile device
does not involve in computation, but waits results from the server.

Fig. 1. Full Offloading vs. Partial Offloading

Application

Dataset

(Full)
Application

(Full)
Dataset

on Mobile Device on Server

Network

(Part of)
Application

(Part of)
Dataset

(Part of)
Application

(Part of)
Dataset

on Mobile Device on Server

Network

(a) Full Offloading (b) Partial Offloading

174 J. Kim

With partial offloading architecture, a part of the application and dataset
manipulated by this part are offloaded as shown in Figure 1 (b). After offloading, the
mobile device participates in some computation which involves interactions with
users, while the server performs the rest of the computation which demands high
processing power and resources. When properly designed, this architecture yields
parallelism between two parties and hence a higher performance. An overhead with
partial offloading is the state synchronization of replicated datasets between client and
server.

4 Process to Design Mobile Applications with Offloading

4.1 Step 1. Identifying Remotable Functionality

This step is to identify which part of the whole functionality can be offloaded. To do
this, we define a term remotable function;

A remotable function is a function which is originally intended to run on a mobile
device but could run on a remote server to yield an enhanced quality of service such
as increased performance, reduced energy consumption, and higher throughput.

We give general characteristics of remotable function, to guide the identification of
remotable functionality;
• A function requiring intensive computation, i.e. needing a high processing power
• A function requiring high volumes of resources such as secondary storage
• A function manipulating a large amount of dataset which is located or acquirable on a server

And, general characteristics for non-remotable functions are;

• A function manipulating a large amount of dataset which is originally located on a mobile
device. This type of function requires a large amount of network traffic due to the dataset.
For example, an image processing function manipulating complex images stored on a mobile
device is not remotable. In some cases, the gained benefit by offloading may not be
justifiable due to the network cost.

• A function interacting with end users intensively. If this type of function is offloaded, it
generates a large amount of network communication overhead since each user interaction has
to be delivered to its server.

In addition to criteria, we define two factors to consider; Inter-Function Dependency
and Data Synchronization Overhead.
• Inter-Function Dependency) As shown in Figure 2, Fi is a non-remotable function running on

a mobile device. And, assume that Fj is determined to be remotable running on a remote
server. In procedural programming, inter-function dependency occurs when a function calls
another function. In object-oriented programming, inter-function dependency occurs when an
object invokes a public method of another object. If Fi depends on Fj as shown in the figure,
every invocation of Fj by Fi has to be made over the network resulting in network overhead.
If the degree of this dependency is high, the amount of network overhead gets increased.
Hence, we need to compare the cost of this network overhead to the cost benefit gained by
offloading Fj when deciding the remotability of Fj.

 Design and Evaluation of Mobile Applications with Full and Partial Offloadings 175

Fig. 2. Considering Inter-Function Dependency

• Data Synchronization Overhead) Whenever a client program on a mobile device or a server
program on a server manipulates and modifies the state of an object in the data shared by
both sides, that change has to be notified to and synchronized with the corresponding object
on the other side. That is, the state consistency of objects in shared data has to be ensured.
Figure 3 illustrates the need for maintaining consistency of the shared objects. Fi runs on a
mobile device, Fj runs on a server, and each side maintains a dataset manipulated. Since both
Fi and Fj collaborate to deliver the whole application functionality, there can be some objects
which are manipulated by both functions. This replicated dataset is represented as DatasetR
in the figure, whereas DatasetM and DatasetS are datasets manipulated exclusively by the
mobile device and the server respectively. Whenever Fi manipulates objects in DatasetR, it
has to notify Fj and update the states of corresponding objects on the server side, and vice
versa. This synchronization entails additional network overhead. If there is a heavy frequency
in updating objects in DatasetR, the synchronization cost would be high. This is not ideal
since the synchronization cost could be greater than the cost benefit gained by partial
offloading.

Fig. 3. Considering Dataset Synchronization Cost

4.2 Step 2. Partition Application and Datasets

This step is to partition the whole functionality and the whole dataset into mobile
device part and server part using the results produced in step 1. We define terms used
to illustrate the partitioned results;
• R_FnSet is the set of remotable functions.
• NR_FnSet is the set of non-remotable functions.

By observing what data objects are manipulated by each functional set, we can
identify three datasets.

• DataSetM which is manipulated exclusively by NR_FnSet,

on Mobile Device on ServerNetwork

Fi
(offloaded)

Fj
int Fi (char) {

…
b = Fj (a);
…

}

on Mobile Device on Server

Network

Fi
(offloaded)

Fj

DatasetM
∪

DatasetR

DatasetS
∪

DatasetR

Synchronization
Path

176 J. Kim

• DataSetS which is manipulated exclusively by R_FnSet, and
• DataSetR which is manipulated by both sets.

Practical methods to identify manipulation relationships between datasets and
functionality are found in conventional software modeling methods. The
configuration with resulting functionality sets and datasets are shown in Figure 4

Fig. 4. Results of Partitioning Applications and Datasets

4.3 Step 3. Deploy Partitioned Applications and Datasets

This step is to implement the target application with the result of partitioning, and to
deploy the functional units and dataset units. The actual units used for deployment
can vary according to the programming language, deployment platform, or
middleware used for the implementation.

4.4 Step 4. Run and Synchronize States

This step is to run the both client and server applications and synchronize the states of
replicated dataset. At runtime, a client application will get executed first by end users,
and server application will get invoked by the client application. When a state of an
object in DataSetR is updated, its corresponding object will be synchronized.

5 Evaluating Response Time and Energy Consumption Rates

We first define variables and terms used for the evaluation.
• SpeedM is the speed of the mobile device, i.e. processing power. It is largely determined by

hardware components of the device including CPU clock speed, Cache, and Bus size.
• SpeedS is the speed of a server. Both SpeedM and SpeedS are measured in instructions per

second. Typically, SpeedS is considerably faster than SpeedM .
• WholeFnSet is the set of all functions in a mobile application. It can be measured in different

ways; Lines of Code (LOC), Function Point (FP), or Number of Instructions to be carried out
by processors. To be able to directly compute the time/effort that a processor takes to run
mobile applications, we elect to use the unit, Number of Instructions. In practice, the number
of instructions to run for a given program can be computed by analyzing the source program
and using historical baseline data of ratios between high-level language constructs and the
number of instructions.

• DataSet is the dataset manipulated by WholeFnSet.

on Mobile Device on Server

Network

NR_FnSet R_FnSet

DataSetM∪
DataSetR

DataSetS∪
DataSetR

 Design and Evaluation of Mobile Applications with Full and Partial Offloadings 177

• BW is the bandwidth of the network between a mobile device and a server. The unit is the
number of bytes transmittable in a second.

• ECcom is the amount of energy consumption made during running a program for one second
on a mobile system, in watts. That is, this represents the rate of energy consumption on the
mobile system.

• ECidle is the amount of energy consumption made during one second of idle time on a mobile
system, in watts.

• ECtransmit is the amount of energy consumption made while transmitting or receiving data for
one second, in watts.

• A generic function size(x) returns the size of the given x. If x is a program, it returns the size
(i.e. complexity) of the program, in number of instructions. If x is a dataset, it returns the size
of the dataset, in number of bytes.

5.1 Evaluating Standalone Mobile Applications

For standalone mobile applications, there are size(WholeFnSet) instructions, the
mobile device can handle SpeedM instructions per second, and it has an energy
consumption rate of ECcom. Then, the response time, i.e. the time to run the
application, is computed as; ݁ݖ݅ݏሺܹ݄ݐ݁ܵ݊ܨ݈݁݋ሻܵܯ݀݁݁݌

And, the amount of energy consumed to run the application is computed as; ݁ݖ݅ݏሺܹ݄ݐ݁ܵ݊ܨ݈݁݋ሻܵܯ݀݁݁݌ ൈ ௖௢௠ܥܧ

5.2 Evaluating Mobile Application with Full Offloading

The whole application has size(WholeFnSet) instructions to be run, the server can
handle SpeedS instructions per second, and it has an energy consumption rate ECidle
for idle time and an ECtransmit for transmission time. With this architecture, the whole
functionality is offloaded, and the network bandwidth between two sides is BW. Then,
the response time to run the application is the sum of the computation time on the
server and the time to transfer the required dataset; ݁ݖ݅ݏሺܹ݄ݐ݁ܵ݊ܨ݈݁݋ሻܵܵ݀݁݁݌ ൅ ܹܤሻݐ݁ܵܽݐܽܦሺ݁ݖ݅ݏ

The first part in the metric represents the computation time on the server, and the
second part represents the transfer time for the dataset. Now, the amount of energy
consumed to run the application is computed as; ݁ݖ݅ݏሺܹ݄ݐ݁ܵ݊ܨ݈݁݋ሻܵܵ݀݁݁݌ ൈ ܥܧ௜ௗ௟௘ ൅ ሻݐ݁ܵ݊ܨ_ሺܴ݁ݖ݅ݏ ൅ ܹܤሻݐ݁ݏܽݐܽܦሺ݁ݖ݅ݏ ൈ ௧௥௔௡௦௠௜௧ܥܧ

The first part in the metric represents the energy consumed while the server
performs the offloaded computation and mobile device is idle. And the second part
represents the time to transfer the program and the dataset between two parties.

178 J. Kim

Applications which require minimal interaction with end users, intensive
computation, and relatively small amount of dataset manipulated can benefit from this
architecture.

5.3 Evaluating Mobile Application with Partial Offloading

When an application is partially offloaded, a set of non-remotable functions (i.e.
NR_FnSet) runs on a mobile device and the set of remotable functions (i.e. R_FnSet)
is offloaded to a server. That is, the whole functionality WholeFnSet is partitioned
into NR_FnSet and R_FnSet.

• size(NR_FnSet) is the complexity of the application which runs on a mobile device when the
whole functionality is partially offloaded to a server side.

• size(R_FnSet) is the complexity of the application which runs on a server.

Considering datasets, DataSet is partitioned into three parts. Hence, we have;

• size(DataSetM) is the size of the dataset manipulated only on the mobile device.
• size(DataSetS) is the size of the dataset manipulated only on the server side.
• size(DataSetR) is the size of replicated dataset.

Now, we consider the cost for synchronizing the dataset DataSetR, and this
synchronization will incur some network communication overhead. When computing
the cost, we need to consider the frequencies of updating objects in the dataset. This is
because the cost to update an object twice and the cost to update the same object for
200 times will be considerably different. Hence, we need to estimate the average
frequency of updating the dataset.

Let DataSetR consist of data objects, Obj1, Obj2, …, Objn, and Freqi be the number
of updates for ith object Obji. Hence, the average number of updates for the entire
DataSetR is computed as the following. ݏ݁ݐܽ݀݌ܷ݉ݑܰ݃ݒܣ ൌ

෌ ሺ೙೔సభ ி௥௘௤೔ሻ ௡ , where n= # of objects in Dataset.

If all the objects in the set are updated only once, then AvgNumUpdates will be 1. If
objects have multiple updates, then AvgNumUpdates will be greater than 1. Hence,
AvgNumUpdates specifies how many times the entire set DataSetR is updated during a
session. Now, we compute the time for the synchronization as; ܵ݁݉݅ܶܿ݊ݕ ൌ ௦௜௭௘ሺ஽௔௧௔ௌ௘௧ೃሻכ஺௩௚ே௨௠௎௣ௗ௔௧௘௦ ஻ௐ

Now, we compute the response time for an application with partial offloading as the
following; ݔܽܯ ሺ௦௜௭௘ሺேோ_ி௡ௌ௘௧ሻௌ௣௘௘ௗெ , ௦௜௭௘ሺோ_ி௡ௌ௘௧ሻௌ௣௘௘ௗௌ ሻ ൅ ሺ௦௜௭௘ሺோ_ி௡ௌ௘௧ሻା௦௜௭௘ሺ஽௔௧௔ௌ௘௧ೞሻା௦௜௭௘ሺ஽௔௧௔ௌ௘௧ೃሻሻ஻ௐ ൅ܵ݁݉݅ܶܿ݊ݕ

 Design and Evaluation of Mobile Applications with Full and Partial Offloadings 179

The first term in the Max function is the computation time for a client application
running on a mobile device, and the second term is the computation time for a server
program. Since these two programs can potentially run in parallel, we need to take a
longer computation time of the two to compute the response time for the entire
application. The second part of the equation is the time to transfer datasets which are
offloaded to a server. The third part of the equation is the time to synchronize the
replicated dataset. Now for computing the energy consumption, we need to consider
two cases as illustrated in Figure 5.

Fig. 5. Two Cases for Computing Energy Consumption

As in the figure, the energy consumption for running applications for case 1 is
simply the consumption needed to run the client program; ݃݊݅݊݊ݑܴݎ݋ܨݕ݃ݎ݁݊ܧ ൌ ܯ݀݁݁݌ሻܵݐ݁ܵ݊ܨ_ሺܴܰ݁ݖ݅ݏ ൈ ௖௢௠ܥܧ

The energy consumption for running applications for case 2 is the summation of two
energy consumptions; the energy consumed for running the client program and the
energy consumed for being idle between the time the client program finishes running
and the time the server program finished running. ݃݊݅݊݊ݑܴݎ݋ܨݕ݃ݎ݁݊ܧ ൌ ܯ݀݁݁݌ሻܵݐ݁ܵ݊ܨ_ሺܴܰ݁ݖ݅ݏ ൈ ௖௢௠൅ܥܧ ൬݁ݖ݅ݏሺܴ_ݐ݁ܵ݊ܨሻܵܵ݀݁݁݌ െ ܯ݀݁݁݌ሻܵݐ݁ܵ݊ܨ_ሺܴܰ݁ݖ݅ݏ ൰ ൈ ௜ௗ௟௘ܥܧ

The total amount of energy consumption will be the sum of three factors; (1) energy
consumed for running programs, (2) energy consumed for offloading datasets, and (3)
energy consumed for synchronization. ݃݊݅݊݊ݑܴݎ݋ܨݕ݃ݎ݁݊ܧ ൅ ௦௜௭௘ሺோ_ி௡ௌ௘௧ሻା௦௜௭௘ሺ஽௔௧௔ௌ௘௧ೄሻା௦௜௭௘ሺ஽௔௧௔ௌ௘௧ೃሻ஻ௐ ൈ ௧௥௔௡௦௠௜௧ܥܧ ൅ܵ݁݉݅ܶܿ݊ݕ ൈ . ௧௥௔௡௦௠௜௧ܥܧ
6 Experiments and Evaluation

To understand how the proposed evaluation methods can be applied in practice, we
run a number of experiments with different settings for characteristics of mobile

Time

Client
Program

Server
Program

Case 2) Server program runs longer.

Energy Consumed
for Running

Energy Consumed
for Idling

Time

Client
Program

Server
Program

Case 1) Client program runs longer.

Energy Consumed
for Running

180 J. Kim

device, server, and mobile application. We developed and used a software tool which
accepts parameters for each experiment in the set, initializes the experiment
environment, initiates executions of client and server programs, monitors the
measured values, and finally computes given metric values.

6.1 Experiment Settings and Results

To compare three different architectures for a given mobile application, we use fixed
values for some parameters in order to minimize the experiment set. We choose
parameters which have less impacts on architectural design; SpeedM, SpeedS,
DatasetRUpdated, UpdateFreq, BW, ECcom,ECidle, and ECtransmit. We use
variable values for the rest of the parameters which have higher impacts on
architectural design; AppSize, AppSizeM, AppSizeS, Dataset, DatasetM, DatasetS, and
DatasetR. For each parameter, we adopt to use two values to reduce the experiment
set while not compromising the purpose of the experiments much. From the seven
parameters, assigning with high or low values will result in the experiment set of
which size is 27, i.e. 128 experiment cases. Some of these experiment cases are
neither significant for architecture evaluation nor practical to be applied. Reducing
such cases, we now have 15 experiment cases. Now, we assign values for each
experiment case. The values for the parameters are derived by referring to
specifications of various mobile devices, industry reports, and research papers. Using
the experiment cases defined, we run the experiments and the results are summarized
in Table 1.

Table 1. Results of Experiments

 Performance Energy Consumption

Standalone Full Off Partial Off Standalone Full Off Partial Off

Exp.01 75.00 30.47 14.69 67.50 39.14 52.05

Exp.02 75.00 30.47 9.89 67.50 39.14 45.81

Exp.03 75.00 30.47 24.43 67.50 39.14 64.72

Exp.04 75.00 30.47 23.19 67.50 39.14 63.11

Exp.05 75.00 12.47 7.33 67.50 15.74 42.49

Exp.06 75.00 30.47 14.64 67.50 39.14 30.93

Exp.07 75.00 30.47 10.21 67.50 39.14 25.17

Exp.08 75.00 30.47 24.64 67.50 39.14 43.93

Exp.09 75.00 30.47 23.41 67.50 39.14 42.33

Exp.10 75.00 12.47 7.54 67.50 15.74 21.70

Exp.11 15.00 30.09 14.35 13.50 39.03 23.14

Exp.12 15.00 30.09 9.91 13.50 39.03 17.37

Exp.13 15.00 30.09 24.35 13.50 39.03 36.14

Exp.14 15.00 30.09 23.11 13.50 39.03 34.53

Exp.15 15.00 12.09 7.25 13.50 15.63 7.16

 Design and Evaluation of Mobile Applications with Full and Partial Offloadings 181

6.2 Interpretations

Partial offloading results in the best performance as shown in Figure 6. The
standalone architecture yields the shortest response time in cases 13, and 14, which
has a small size(Application), and a large size(DataSet). This is because when
size(Application) is so small to begin with, there’s no need to offload. Also, if the
size(Dataset) is too large, it would take a lot of overhead to transmit Dataset.
Although full offloading is shown to perform better than the standalone architecture,
it doesn’t have as drastic of an improvement compared to the architecture using
partial offloading.

Fig. 6. Performance Analysis Results

For the energy consumption, we can see that the distribution is more diverse as
shown in Figure 6. For the experiments with high size(Application), full offloading
had the lowest energy consumption majority of the time. When the application size is
small, using the standalone architecture appeared to be the most efficient. When the
application size is large, full offloading seems to be an energy saving choice for the
most part. The architecture with partial offloading is shown to be energy conserving
when size(R_FnSet) is low, and size(DataSetM) is large.

7 Conclusion

Mobile applications with complex functionality and datasets can take advantage of
architectural design, to remedy the resource constrains of mobile devices. Well-
designed architecture for mobile applications will yield systems with high
performance and low energy consumption. In this paper, we provided technical
insights of full offloading and partial offloading architectures. And, we proposed a
systematic process for applying offloading, and also defined a set of metrics to
evaluate the resulting architecture. By utilizing the proposed process and metrics,
mobile applications with high complexity and a requirement of high performance can
be effectively developed and deployed on mobile devices.

182 J. Kim

References

[1] König-Ries, B., Jena, F.: Challenges in Mobile Application Development. IT-
Information Technology 52(2), 69–71 (2009)

[2] Chen, G., Kang, B., Kandemir, M.: Studying Energy Trade Offs in Offloading
Computation/Compilation in Java-Enabled Mobile Devices. Proceedings of IDDD
Transaction on Distributed a Systems 15(9), 795–809 (2004)

[3] Chen, X., Lyu, M.: Performance and Effectiveness Analysis of Check pointing in Mobile
Environments. In: Proceeding of 22nd IEEE International Symposium on Reliable
Distributed System (2003)

[4] Abukamil, A., Helal, A.: Energy Management for Mobile Devices through Computation
Outsourcing within Pervasive Smart Spaces. IEEE Transactions on Mobile Computing
(2007) (submitted)

[5] Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley (2010)

[6] Chun, B., Maniatis, P.: Dynamically partitioning applications between weak devices and
clouds. In: Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &
Services: Social Networks and Beyond, San Francisco, CA, USA (2010)

[7] Crk, I., Gniady, C.: Understanding Energy Consumption of Sensor Enabled Applications
on Mobile Phones. In: IEEE Annual International Conference of the IEEE, Minneapolis,
MN (2009)

[8] Rao, K., Reddy, K., Rafi, S.K., Rao, T.: Effectiveness Analysis of Offloading Systems
Operating in Mobile Wireless Environment. International Journal of Engineering
Science and Technology 2(7), 3078–3086 (2010)

[9] Kumar, K., Lu, Y.: Cloud Computing for Mobile Users:Can Offloading Computation
Save Energy? IEEE Computer (March 2010)

[10] Yang, K., Ou, S., Chen, H.H.: On Effective Offloading Services for Resource-
Constrained Mobile Devices Running Heavier Mobile Internet Applications. IEEE
Communications Magazine 46(1) (2008)

[11] Mahadevan, S.: Performance Analysis of offloading application-layer tasks to network
processors. Master’s Thesis, University of Massachusetts at Amherst (September 2007)

[12] Huerta-Canepa, G., Lee, D.: An Adaptable Application Offloading Scheme Based on
Application Behavior. In: 22nd International Conference on Advanced Information
Networking and Applications, Japan, Okinawa (March 2008)

[13] Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R., Bahl,
P.: MAUI: Making smartphones last longer with code offloaded. In: ACM MobiSys
2010, San Francisco, CA, USA (June 2010)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 183–197, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Cross-Layer Scheme to Improve TCP Performance
in Wireless Multi-hop Networks

Fu-Quan Zhang1,2 and Inwhee Joe1,*

1 Division of Computer Science and Engineering, Hanyang University,
Seoul, 133-791 South Korea

2 Division of Computer Software, Dong Seoul University, Gyeonggi-do,
Seongnam-si, 461-714 South Korea

iwjoe@hanyang.ac.kr

Abstract. TCP optimization problem in wireless multi-hop networks can be
solved effectively by utilizing feedback from various layers. Since hop-count
and round trip time are the critical factors that seriously affect TCP
performance on end-to-end connection, we derive analytically the relation
between these factors and TCP mechanism. The analytical result is facilitated to
propose a cross-layer TCP congestion control scheme. The behavior of resulting
scheme is analytically tractable. We show that our simple strategy significantly
improves TCP performance in different topologies and flow patterns, in terms
of throughput and delay.

Keywords: cross-layer, hop-count, round trip time, TCP, wireless multi-hop
networks.

1 Introduction

During recent years wireless multi-hop networks, such as ad hoc and mesh networks,
have attracted considerable research interest thanks to their easy deployment,
maintenance and application variety. TCP seems to be the natural choice for users of
these networks that want to communicate reliably with each other.

The suitability of TCP is coming under close scrutiny from the research
community. Studies have shown that TCP performs poorly in wireless multi-hop
networks [1]-[7].

This is because TCP over multi-hop wireless channel exhibits several different
features [4] [8]. First, given a specific network topology and flow patterns, there
exists an optimal window size, at which TCP achieves highest throughput. Further
increasing the window size does not lead to further spatial channel reuse, but results
in increased link layer contention and perceived packet losses. Second, the standard
TCP protocol does not operate around optimal TCP window size, and typically grows
its average window much larger than optimal value. The larger congestion window

* Corresponding author.

184 F.-Q. Zhang and I. Joe

allows TCP to push more packets beyond the capacity of the path. In contrast to
wireline links, dropping probability increases gradually in wireless MAC layer when
the network is overloaded [9]-[11]. Consequently, TCP experiences throughput
decrease due to reduced spatial channel reuse. That is, contention-induced packet loss
exhibits a load-sensitive feature: as the offered TCP packets exceed the optimal TCP
window size and increase further, link drop probability increases accordingly.

This phenomenon underscores the importance of setting appropriate congestion
window to mitigate this problem. Some studies [2][6][7][12] have shown that TCP
with a small congestion window tends to outperform TCP with a large congestion
window in 802.11 multi-hop networks. These studies implies that there is a limit on
the maximum sending rate of a TCP source, and in turn implies a limit on the
maximum size of the congestion window.

However, how to properly increase congestion window and make TCP
dynamically work around the optimal TCP window size remains an open problem in
current research. As we will show later in the paper, this problem is a cross layer
problem which needs to be addressed by considering factors of multiple layers.

In this paper, we analyze some critical factors from different layers, such as Hop-
count of network layer and Round Triple Time of transport layer, which seriously
affect the TCP performance on end-to-end connection. A relation between these
factors and TCP mechanism is analytical derived firstly. Then a cross-layer solution is
proposed based on the relation.

Extensive simulations were carried out under different topologies and flow
patterns. The result shows that our scheme significantly improves TCP performance
in the chain, grid topology and mobile scenario respectively, in terms of improving
throughput with shorter delay.

The remainder of this paper is organized as follows. Section 2 presents the
background of this paper and related previous works. Section 3 describes our scheme
based on tractable analysis and the cross-layer solution. Section 3.1 discusses the
impact of TCP window mechanism. Section 3.2 presents the assumptions and impact
of loss event rate that we make for analysis. Section 3.3 proposes our scheme based
on analysis result. Section 3.4 describes our cross-layer solution. Section 4 describes
simulation study and simulation result. Section 5 makes the conclusion.

2 Background and Related Work

TCP and IEEE 802.11 MAC standard have been widely adopted in wireless networks.
However, TCP was not primarily designed and optimized to work in wireless
networks.

With the use of IEEE 802.11MAC protocol, when a node successfully obtains the
channel and performs its transmission, any other node that is within the node’s
transmission range or the node’s sensing range should not perform any transmission
and must defer their transmissions for a later time. Although this conservative
transmission policy can reduce the chance of packet collisions, it prevents concurrent
transmissions within a neighborhood area. Therefore, the available bandwidth is
underutilized. Moreover, contention allows an aggressive sender to capture the
channel which reduces the chance of transmissions of the other senders in the vicinity.

A Cross-Layer Scheme to Improve TCP Performance in Wireless Multi-hop Networks 185

Since 802.11 MAC cannot perfectly handle signal interference of general multi-
hop topologies. Transmission interference of a TCP flow mainly comes from TCP
data packets’ self interference along the forward path. Moreover, a TCP window
mechanism tends to drives wireless networks to be crowded with more packets, where
a higher spatial density of packets in an area leads to a higher chance of signal
interference and collision in a wireless medium. TCP pushes more packets to go
beyond a certain limit, which drives excessive link-layer retransmission and
eventually leads to more MAC contention loss [3][13].

Heavy contention is usually caused from using an inappropriately large congestion
window. As we will show later in section 3, the reason for contention problems is that
TCP does not operate its congestion window at an appropriate level.

TCP-Vegas [15] is the representative scheme that uses rate-based technique to
control the congestion window size. Vegas could proactively avoid possible
congestion by ensuring that the number of outstanding segments in the network is
small. In this way, Vegas could prevent packet losses due to the aggressive growth
of the congestion window. However, Vegas suffers from inaccuracies in the
calculation of the estimated bandwidth after a route change event.

Recent studies have shown that the maximum congestion window size should be
kept small and should be maintained at a level proportional to some fraction of the
hop count on the path [4][6][14]

The representative scheme is Congestion Window Limit (CWL) [6]. It mitigates
the congestion window overshoot problem by restricting the maximum congestion
window size. CWL adjusts the maximum congestion window size dynamically
according round-trip hop count so that the sending rate will not exceed the maximum
spatial reuse of the channel. By this, the contention problems are reduced. However,
CWL make hard constraint on the maximum window size. Moreover, it is unclear that
the window limit will hold always.

Let’s make a brief overview of unresolved problems of the TCP congestion control
mechanisms now.

• Given a specific network topology and flow patterns, how to make TCP
dynamically work around its optimal TCP window size.

• Before going to reach the optimal window size, at what kind of rate to grow TCP
window size is good for different multi-hop topologies.

• How to decrease the fluctuation of the offered load on the networks which caused
by the burst traffic of slow-start.

• How to reduce contention-induced packet loss which may lead to buffer overflow
at intermediate routers.

3 Mechanism Analysis and TCP-CEV Scheme

3.1 Impact of TCP Window Mechanism

Below we firstly give an overview of TCP congestion control mechanisms required
for the further analysis of TCP problems and development of our scheme. For more
details of TCP, please see reference [16].

186 F.-Q. Zhang and I. Joe

Slow-Start. It is used at the beginning of a transfer or a loss event occurs. The initial
size of the congestion window (CWND) is set to one maximum segment size. For
every arrival of non-duplicated acknowledgment, CWND increases by one. Slow-start
is essentially a mechanism that estimates the available bandwidth by progressively
probing for more bandwidth. During this phase, CWND increases exponentially at
every round-trip time (RTT) until a packet loss event occurs or CWND reaches the
slow-start threshold.

Congestion Avoidance. After CWND reaches threshold, TCP enters the congestion
avoidance phase. During this phase, CWND linearly increases by one maximum
segment size for each RTT until a packet loss event occurs.

During slow-start phase, if receiver acknowledges each received data packet and
no congestion occurs, then congestion window size is at the end of the ith RTTs.
Here, we assume that CWND needs amount of m RTTs to reach threshold from 1.

The problem with slow-start is that CWND always doubles itself at the end of
every next RTT. For example, at the end of the m-2 RTTs, CWND is one fourth of
the threshold. At the end of the m-1 RTTs, congestion window size is equal to a half
of threshold. It will reach the value of threshold at the next RTT.

If threshold is set to default or the available bandwidth is over-estimated, this
acceleration at the end could cause congestion, and then some intermediate routers
must queue the packets, and it's possible for that router to run out of space. Finally,
the capacity of the network can be reached at some point, and then an intermediate
router will start discarding packets.

The network overload caused by TCP congestion eventually leads to the hidden
terminal problem and the MAC contention loss occurs after several retransmission
attempts at the link layer. The packet loss at the link layer is perceived as a routing
failure by routing protocol. Being confused with the routing failure, routing agent
enters routing maintenance and rediscovery phase. The maintenance traffic becomes
an extra network load at the very critical moment of network congestion. TCP
connection is interrupted and then times out. Since there is no external packet entering
the network during this period, the network overload is reduced and the routing and
MAC functions are recovered. However, after the timeout, TCP restarts and soon
leads to network overload again. Thus, the process repeats.

The well-known TCP-friendly equation [17] is a mathematical model to
characterize the steady-state TCP behavior. It describes the average TCP transmission
rate which captures the TCP throughput over a network path with certain loss rate and
round-trip time. The average TCP transmission rate controlled by the TCP window
over a long period of time is

)321()
8

3
3(

3

2 2pp
p

t
p

R

s
T

RTO ++
=

(1)

T is the transmission rate of TCP, s is the packet size, R is the RTT (round trip time),
p is the packet loss rate in stable state. tRTO is the retransmission timeout value.

A Cross-Layer Scheme to Improve TCP Performance in Wireless Multi-hop Networks 187

When the p is small enough, equation (1) can be simplified as

3
2 P

R

s
T =

(2)

Equation (2) gives the upper bound of transmission rate.

3.2 Impact of Loss Event Rates

Fig.1 shows a multi-hop link topology, S0 is the sender, R0 is receiver, Si,Di,1,2,…n-1

are the intermediate nodes, Pi is the packet loss rate of ith hop， the loss rate P0 of

connection 0 is

 ∏ =
−−= n

i iPP
10)1(1 (3)

Fig. 1. Multi-hop link topology

If it is assumed that each hop has the same packet loss rate and the value of P is
small enough, then

 nppP n ≈−−=)1(10 (4)

3.3 TCP CEV Scheme

To the multi-hop link, by the equation (2) and (4), the relative value between one-hop
and the whole connection 0 is

i

i T
nR

R
T ∗∗= 1

0
0

 (5)

Where Ri is RTT of the ith hop, R0 is RTT of connection 0, n is hop-count number.T0
is transmission rate used by connection 0, Ti is the transmission rate of the ith hop.

188 F.-Q. Zhang and I. Joe

This means when hop-count and RTT change, the TCP transmission rate should
change in accordance with the equation 5.

If it is assumed that each hop has same RTT, then 0

i

R
R

 is equal to
n

1 . Effect of

0

i

R
R was simulated in Paper [18]. Result shows that the assumption is reasonable to the

fixed-distance placement nodes. For detailed information, please refer to [18]. It may
be unreasonable to a random mobile scenario, however, TCP itself can provide the
RTT ratio, so it is easy to implement in the TCP mechanism. The relative value
between the ith hop and connection 0 is

iT

nn
T ∗∗= 11

0
 (6)

The existing TCP window mechanism is too aggressive because it tries to send
packets to the network as much as possible without considering the effect of hop-
count and RTT. For this reason, TCP performance is seriously influenced.

To fix this problem, we point out that TCP should Change Expected Value (TCP-
CEV) and expect a reasonable throughput by giving an appropriate change scheme.
This scheme dynamic controls the increase degree of congestion window when hop-
count and RTT change.

For this purposes, we modified following TCP congestion control mechanism.
The slow-start algorithm progressively probes the network to determine its

available capacity. During this phase, the exponential increase of congestion window
for every useful received acknowledgment in standard TCP NewReno is

 1+= CWNDCWND (7)

The additive increase of congestion window for every useful received
acknowledgment in the Congestion-Avoidance phase of TCP NewReno is

CWND

CWNDCWND
1+=

(8)

It takes a full window to increment the window size by one.
We proposed CEV scheme (is short for TCP-CEV), which dynamically controls

the CWND increment ratio by equation 6.
The exponential increase of congestion window for CEV is given as

 1
11 ∗∗+=
nn

CWNDCWND Scheme (1-a)

The initial CWND value is 1 MSS bytes, CWND doubles itself at the end of the first
RTT. From the second RTT on, the window size still increases exponentially, but at a
reduced rate. This exponential increase rate of CWND is nn

11 ∗ at the end of every
RTT. During this period, this rate is dynamic response for different multi-hop

topology. Congestion window size is
1)

11
1(2 −∗+ i

nn at the end of the ith RTTs. The

aggressiveness of the congestion window’s growth during the slow-start period is
reduced, thus reducing packet losses and dampening traffic burst. Paper [18] just
modified the slow-start mechanism alone and got a good performance.

A Cross-Layer Scheme to Improve TCP Performance in Wireless Multi-hop Networks 189

The additive increase of congestion window for CEV in the Congestion-Avoidance
phase is given as

CWNDnn

CWNDCWND
111 ∗∗+=

 Scheme (1-b)

Every arrival non-duplicated acknowledgment increases CWND by CWNDnn

111 ∗∗ . If

CWND is smaller than initial value, just let it be same as the initial value. During this
phase, congestion window linearly increases at every round-trip time.

CEV uses the same multiplicative decrease mechanism as NewReno.
To one hop connection, our scheme is same as NewReno and appears to approach

its optimal. This is because the MAC layer transmission self-interference problem
does not exist in one hop. Therefore, a large congestion does not have the same
negative effect on TCP performance as in longer chains. [6].

3.4 Cross-Layer Solution of CEV

Since cross-layer mechanism can effective solve TCP optimization problem in
wireless networks [19], the option of utilizing feedback from various layers have
attracted significant attentions in recent years.

As we have shown in previous sections, improving the TCP performance is truly a
cross-layer solution which needs to be addressed by considering factors from multiple
layers. Our cross-layer solution only requires a feedback from network layer to
transport layer. This feedback is the hop count value between source and destination.

4 Simulation and Comparisons

To evaluate the effectiveness of our proposal, we performed extensive simulations in
NS. Each simulation is carried out under different topologies and traffic pattern to
obtain the stable average value.

4.1 Simulation Parameters

The simulation parameters are listed in Table 1.

Table 1. simulation parameters

Parameters Name Parameters Value

Examined Protocol NewReno, CWL,
Vegas, CEV

Routing protocol AODV
MAC layer IEEE 802.11

Propagation model Two-ray Ground
Reflection

Transmission range 250 m
Carrier sensing

range
550m

Interference range 550m

190 F.-Q. Zhang and I. Joe

4.2 Chain Topology

This section simulated our scheme in chain topologies with different hops as shown in
Fig.2. Each node with 200 meters equidistance.

In investigating throughput, Figure 3 and 4 demonstrate the effect of hop count on
all protocols. Increasing hop count deteriorates all of them due to the increasing
possibility of MAC contention loss which explains the decrease of throughput as can
be observed from both of the figures. As hop count increases, more packet loss at the
link layer caused by MAC contention is perceived as a routing failure by routing
protocol. Being confused with the routing failure, routing agent enters routing
maintenance and rediscovery phase. While the route requests are propagating the
network in search for a new route, buffers will get full and packets are dropped. As a
result, TCP connection is interrupted and then times out.

Fig. 2. n-hops chain topology

Moreover, heavy MAC contention is usually caused from using an inappropriately
large congestion window. For this reason, the NewReno underperforms other
protocols in most cases.

The performance of Vegas, CWL and CEV is broadly similar in terms of
throughput in 1 flow, as shown in figure 3. Note that CWL make hard constraint on
the maximum window size. It is difficult to hold always for different network
topology and flow patterns. However, the hard constraint on the maximum window
size helps to reduce contention problems. This makes CWL outperform the NewReno.

Because Vegas gauges expected throughput before increasing its congestion
window size, Vegas can improve the TCP throughput. However, there are
inaccuracies in the calculated expected throughput after a route change event. If
bandwidth is over estimated , then network may be overloaded. On the other hand, it
under utilize the available bandwidth. To some extent, the bandwidth calculation is
affected by the multiplicity of flows. For this reason, Vegas performs well in 1 flow,
but not well in 2 flows.

In the case of 2 flows throughput, our scheme almost outperforms all the others.
The throughput of Vegas is comparable to that of CWL. In contrast to NewReno,
CEV has revealed dramatic improvements in throughput (8-98%). CEV increases
throughput up to 48% and 46% when compares to CWL and Vegas respectively.

A Cross-Layer Scheme to Improve TCP Performance in Wireless Multi-hop Networks 191

Fig. 3. Throughput in N-hops chain topology (1 flow)

Fig. 4. Throughput in N-hops chain topology (2 flows)

Meanwhile, figure 5 and 6 show the effect of hop count on end-to-end delay. As
indicated by both figures, while the path becomes more longer, the delay of all
protocols undergoes increase.

This is because the time spent to receive, decode, and retransmit a packet and it is
proportional to the number of hops between source and destination.

Moreover, with a smaller number of hops, each packet experiences fewer
retransmissions at each intermediate hop. As the hop count increases and network is
overload, there is more probability of contention and link failures. The number of
nodes contending for channel access at same time becomes higher, thus the time spent
by a packet waiting in a queue for transmission will be longer, which depends on the
congestion level of wireless channels. When the network is highly loaded, this time is
the dominant part of the end-to-end delay.

Since this delay is primarily caused by network overloaded and MAC contention.
Moreover, MAC contention may increase with the increase of hop count. In contrast

192 F.-Q. Zhang and I. Joe

to other protocols, CEV always take the hop count into consideration of its congestion
window operation. This makes CEV keeps an appropriate level to forward data
packets. As a result, CEV has shortest delay in most cases.

Since bandwidth calculation is more likely to approach available bandwidth in
single flow. The delay of Vegas is comparable to that of CEV in 1 flow, and the delay
of 2 flows in Vegas is longer than CEV.

The hard constraint of maximum window size helps CWL to reduce contention
problems. However, as shown in figure 5 and 6, the hard constraint may apply only to
a few instances. For example in short chains where the self-interference problem by
TCP’s data is less severe due to the small number of contending nodes[13].

In contrast to NewReno, our scheme has revealed dramatic improvements in
reducing end-to-end delay (30–45% in 1flow and 26-46% in 2 flows). In the case of 2
flows, CEV also reduces end-to-end delay up to 42% and 35% when compared to
CWL and Vegas respectively.

Fig. 5. End-to-end in N-hops chain topology (1 flow)

Fig. 6. End-to-end in N-hops chain topology (2 flows)

A Cross-Layer Scheme to Improve TCP Performance in Wireless Multi-hop Networks 193

The next two figures, figure 7 and figure 8 show the congestion window behavior
of all the protocols in 1 flow and 2 flows respectively, for the case of 7-hop chain
topology. The standard NewReno is far from the ideal AIMD pattern of congestion
control in all cases.

In contrast to NewReno, the hard constraint on the maximum window size makes
CWL strictly operate its congestion under its limit. However, since the hard constraint
on the maximum window size is set by considering a specific flow. It is inapplicable
to a multiplicity of flows.

Vegas takes bandwidth estimation to enhance TCP performance. Since any route
change will lead to incorrect bandwidth estimates. In contrast to single flow, route
change is more frequently in multiplicity of flows. Thus, the congestion window of
Vegas is unstable.

Fig. 7. Congestion window over time (1 flow)

Fig. 8. Congestion window over time (2 flows)

194 F.-Q. Zhang and I. Joe

The modified slow-start algorithm of CEV could avoid the typical sharp increase in
congestion window during the slow-start phase by setting a reasonable increase rate.
In this way, the contention caused by network overloaded and the route rediscovery
due to congestion losses misinterpreted are reduced. As shown in figure 7 and 8, CEV
can operate its congestion window with a more regular AIMD pattern. Moreover,
according to the different flows, CEV can also maintain its congestion window at a
proportional level, which was observed in [4][14].

4.3 More Complex Topology and Flow Patterns

In order to further verify the performance, we expand our study to scenarios of more
complex topologies and TCP flow patterns, including grid topologies and mobile
scenario.

Grid Topology

Grid topologies consist of nodes that are evenly deployed in a two-dimensional
simulation area. This configuration has much more alternative path than the chain
topology. We used a small scale (7x7 square) and a large scale (11x4 rectangle) grid
topology, 200 meter distance between horizontal or vertical adjacent nodes. The
sources are randomly selected from the left side and the destinations are selected
randomly from the right side. We run 2, 4, 6 and 8 TCP flows respectively.

Figure 9 and 10 show 7x7 and 11x4 grid topology results respectively. Since
NewReno always trend to inject packets overload the capacity of the path, this makes
it underperform three other protocols in throughput.

As expected, CEV performs well. The main reason is that a reasonable increasing
windows size avoids the sender injecting packets overload the capacity of the path. It
reduces the wireless MAC layer’s dropping probability.

Fig. 9. 7x7 grid topology

A Cross-Layer Scheme to Improve TCP Performance in Wireless Multi-hop Networks 195

Fig. 10. 11x4 grid topology

Mobile Scenarios

We also run extensive simulations with mobile scenarios, in which 50 wireless mobile
nodes are roaming in a 1500 x 300 meters flat space. The mobile model is the random
way point. The minimum speed is 0m/s and the maximum speed is 10 m/s without
pause time. We run 1, 2, 4, 8 and 12 TCP flows respectively. In each of these cases,
flows are randomly created.

Fig. 11. Throughput in the mobile scenarios

As the flow increases, there is going to be more crowded in the network. However,
CEV outperforms three other protocols and improve throughput, as shown in Fig. 11.
This is because the link failure due to congestion over multiple hops is more frequent
and persistent than those due to node mobility during the entire connection lifetime.

196 F.-Q. Zhang and I. Joe

5 Conclusion

We have presented a simple but analytical traceable TCP Mechanism. It makes use of
RTT and hop-count information to improve the throughput by changing the packet
transmission rate.

There contributions of this paper are as follows:

• We analyze the factors impact on the TCP performance.
• Behavior of the CEV is analytically tractable.
• CEV significantly improves TCP performance in the chain, grid topologies and

mobile scenarios, respectively,
• CEV makes TCP dynamically work around the optimal TCP window size in

different network topology.

Acknowledgements. This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government, Ministry of Education,
Science and Technology (2011-0015681, 2011-0004974).

References

1. Gerla, M., Tang, K., Bagrodia, R.: Tcp performance in wireless multihop networks. In:
Proc. IEEE International Workshop on Mobile Computing Systems and Applications
(WMCSA 1999), New Orleans, Louisiana, USA (February 1999)

2. Fu, Z., Meng, X., Lu, S.: How bad tcp can perform in mobile ad hoc networks. In: Proc.
IEEE International Symposium on Computers and Communications (ISCC 2002),
Taormina, Italy (July 2002)

3. Fu, Z., et al.: The Impact of Multihop Wireless Channel on TCP Performance. IEEE
Transactions on Mobile Computing 4(2), 209–221 (2005)

4. Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., Gerla, M.: The impact of multihop wireless
channel on tcp throughput and loss. In: Proc. IEEE Infocom 2003, San Francisco,
California, USA (April 2003)

5. Haitao, W., Lihua, S.: Performance of TCP in ad hoc network and its improvement
polices. Journal of Northwest University 34(5), 442–445 (2004)

6. Chen, K., Xue, Y., Nahrstedt, K.: On setting TCP’s congestion window limit in mobile ad
hoc networks. In: Proc. IEEE ICC 2003, Anchorage, Alaska (May 2003)

7. Xu, K., Bae, S., Lee, S., Gerla, M.: Tcp behavior across multihop wireless networks and
the wired internet. In: Proc. ACM Workshop on Wireless Mobile Multimedia (WoWMoM
2002), Atlanta, Georgia, USA (September 2002)

8. Li, J., Blake, C., De Couto, D.S.J., Lee, H., Morris, R.: Capacity of ad hoc wireless
networks. In: Proc. ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom 2001), Rome, Italy (July 2001)

9. Xu, S., Saadawi, T.: Does the IEEE 802.11 MAC protocol work well in multihop wireless
ad hoc networks? IEEE Communications Magazine, 130–137 (June 2001)

10. Hamadani, E., Rakocevic, V.: TCP Contention Control: A Cross Layer Approach to
Improve TCP Performance in Multihop Ad Hoc Networks. In: Boavida, F., Monteiro, E.,
Mascolo, S., Koucheryavy, Y. (eds.) WWIC 2007. LNCS, vol. 4517, pp. 1–16. Springer,
Heidelberg (2007)

A Cross-Layer Scheme to Improve TCP Performance in Wireless Multi-hop Networks 197

11. Ng, P.C., Liew, S.C.: Re-Routing Instability in IEEE 802.11 Multi-Hop Ad-Hoc
Networks. In: 29th Annual IEEE International Conference on Local Computer Networks
(2004)

12. Chen, K., Nahrstedt, K.: Limitations of equation-based congestion control in mobile ad
hoc networks. In: Proc. IEEE WWAN, Tokyo, Japan (March 2003)

13. Chen, K., Xue, Y., Shah, S.: Understanding bandwidth-delay product in mobile ad hoc
networks. Special issue on Protocol Engineering for Wired and Wireless Networks,
Elsevier Computer Communications (2004)

14. Zhai, H., Chen, X., Fang, Y.: Alleviating Intra-flow and inter-flow contentions for reliable
service in mobile ad hoc networks. In: IEEE MILCOM (2004)

15. Brakmo, L., O’Malley, S., Peterson, L.: TCP Vegas: New techniques for congestion
detection and avoidance. In: Proceedings of the SIGCOMM 1994 Symposium, pp. 24–35
(1994)

16. http://www.ietf.org/rfc/rfc2581.txt
17. Padhye, J., Firoiu, V., Towsley, D., Krusoe, J.: Modeling TCP throughput: A simple model

and its empirical validation. In: Proc. ACM SIGCOMM 1998, Vancouver, CA, pp. 303–
314 (September 1998)

18. Quan, Z.F., Kai, M.L., Park, Y.-J.: Reasonable TCP’s Congestion Window Change Rate to
Improve the TCP Performance in 802.11 Wireless Networks. In: Proceedings of the 2008
Third International Conference on Convergence and Hybrid Information Technology, pp.
808–812 (2008)

19. Srivastava, V., Motani, M.: Cross-Layer Design: A Survey and the Road Ahead. IEEE
Communications Magazine, 112–119 (December 2005)

A Fully Abstract View

for Local Cause Semantics

Jianxin Xue and Xiaoju Dong

BASICS Lab, Department of Computer Science
MOE-MS Key Laboratory for Intelligent Computing and Intelligent Systems

Shanghai Jiao Tong University, Shanghai, China
Jason−xjx@sjtu.edu.cn, dong-xj@cs.sjtu.edu.cn

Abstract. Recent technological trends have pushed concurrency and
mobile computing to the mainstream. Too many semantics have been
proposed to picture the behavior of concurrent systems, and their re-
lationship has been a hot topic in concurrency. We aim in this paper
to bridge two important concurrent semantics, the true concurrency
semantics and the interleaving semantics, based on the local cause se-
mantics, in the framework of mobile computing. We enrich the polyadic
π-calculus with the local cause semantics, and present a fully abstract,
finiteness-respecting encoding from the local cause polyadic π-calculus to
the polyadic π-calculus. Therefore, the local cause bisimulation is reduced
to the observation bisimulation. Moreover, a new decidable approach is
proposed for the local cause bisimulation on finite processes.

1 Introduction

Technological trends on grid computing and cloud computing have pushed con-
currency to the mainstream. Some concurrency semantics has been applied to
these fields. However, there are too many semantics in concurrency, for example,
the interleaving semantics [Mil89, MPW92] and the true concurrency seman-
tics [DP99, BCH+08]. The former can get the properties of composition and
substitutivity easily, and the latter can describe the causality and distribution
properly. But they can not occupy all these virtues. Investigating the relationship
between various concurrency semantics can help making use of them adequately
in concrete scenarios of grid computing and cloud computing. Therefore, our
main goal is to bridge the gap of the interleaving semantics and the true concur-
rency semantics. And another one is to deduce from their relationship some new
properties for the true concurrency semantics, for example, new decidable ap-
proaches on decidable fragments. As we know, it is impossible to develop a finite
axiomatic system for any reasonable true concurrency semantics congruence on
finite processes without auxiliary operators [Mol90].

This paper takes the local cause semantics [Kie94], a spatial-sensitive true
concurrency semantics, as the testbed. The local cause semantics observes the
dependency of actions by local causes and describes the local cause behavior
equivalence on processes. And we follow the approach to encoding the local

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 198–209, 2012.
� Springer-Verlag Berlin Heidelberg 2012

A Fully Abstract View for Local Cause Semantics 199

cause mechanism into the polyadic π-calculus [Mil93], which is an interleaving
framework and a classic mobile computing model. The reason for taking the
polyadic π-calculus into account is that the rapid growing of the smart phones
and tablets pushes the mobile calculus to be a hot topic.

This paper makes the following contributions:

- The polyadic π-calculus enriched with the local cause semantics, which is
introduced for CCS [Kie94], is proposed. We investigate the relationship
between the interleaving semantics and the local cause semantics based on
the observation bisimulation and the local cause bisimulation in a unified
framework, and general results is showed.

- A fully abstract encoding is proposed from the local cause polyadic π-calculus
to the polyadic π-calculus on the basis of finite wire processes which models
the local cause mechanism. The local cause bisimulation/congruence is re-
duced to the observation bisimulation/congruence. Moreover, this encoding
respects process finiteness, that is, finite local cause processes are mapped
onto finite standard processes.

- A new approach is presented to proving the local cause bisimulation on finite
processes. In other words, the local cause bisimulation on finite local cause
processes can be inferred from the proof system [Zhu09] for the observation
bisimulation on finite processes.

The rest of the paper is organized as follows. Section 2 recalls the polyadic π-
calculus. And the polyadic π-calculus is enriched with the local cause semantics
in Section 3. Section 4 presents an encoding from the local cause polyadic π-
calculus to the polyadic π-calculus, and proves its properties. Section 5 applies
the result to decidable results of the local cause bisimulation. Section 6 discusses
related work and concludes. For the limit of the space, detailed proofs are omitted
and can be found in the full version [XD12].

2 Polyadic π-Calculus

The polyadic π-calculus adopted here is slightly different from the original one
[Mil93] in the name dichotomy between names and name variables. For the
discussion why the distinction is important can be consult [FL10, FZ11]. All
processes of the polyadic π-calculus can be assumed well-sorted [Mil93], and the
following conventions are adopted if without extra notations.

– The letters a, b, c, d, e, f, g range over the infinite set N of names.
– The letters u, v, w, x, y, z range over the infinite set Nv of name variables.
– The letters m,n, o range over N∪Nv.

We often write ñ to stand for the tuple of names or name variables with length
|ñ|. The set T of the polyadic π-terms is inductively generated by the following
grammar:

T := 0 | π.T | T+T | T |T | (c)T | [m=n]T | [m �=n]T |!T
π := n(x̃) | n〈m̃〉.T | τ

200 J. Xue and X. Dong

a(x̃).T
a(˜b)−−→ T{˜b/x̃} a〈˜b〉.T a〈˜b〉−−→ T τ.T

τ−→ T

S
λ−→ S′

S | T λ−→ S′ | T
ln(λ)∩gn(T)=∅ S

a(˜b)−−→ S′ T
(˜b′)a〈˜b〉−−−−−→ T ′

S | T τ−→ (˜b′)(S′ | T ′)
{˜b′}∩gn(S)=∅

T
(˜b′)a〈˜b〉−−−−−→ T ′

(c)T
(˜b′c)a〈˜b〉−−−−−→ T ′

c
=a,c∈{˜b}−{˜b′} T
λ−→ T ′

(c)T
λ−→ (c)T ′

c
∈n(λ)

S
λ−→ S′

S + T
λ−→ S′

T
λ−→ T ′

[a=a]T
λ−→ T ′

T
λ−→ T ′

[a
=b]T
λ−→ T ′

T |!T λ−→ T ′

!T
λ−→ T ′

Fig. 1. Semantics rules of the polyadic π-calculus

The nil process 0 can not do anything in any environment and is always omitted.
The binder π of the prefix term π.T is either an input prefix n(x̃), an output
prefix n〈m̃〉 or a silent τ prefix. In n(x̃).T the variables are bound. A name
variable is free if it is not bound. The function fv()/bv() returns free/bound
name variables respectively. The terms T+T and T |T are respectively a choice
and a concurrent composition. The conditional operator [m=n] is a match and
[m �=n] a mismatch. The replication term !T introduces infinite behavior. The
restriction term (c)T is in localization form, where c is a local name. A name is
global if it is not local. The function gn()/ln() respectively returns global/local
names. Both local names and bound variables are subject to α-conversion. A
term is open if it contains free variables; it is closed otherwise. And a closed
term is also called a process. The set P of the polyadic π-processes is ranged
over by O,P,Q. The set L of observable actions is defined as {a(̃b), a〈̃b〉, (b̃′)a〈̃b〉 |
a, b̃, b̃′ ∈ N}, where a(̃b), a〈̃b〉, (b̃′)a〈̃b〉 denotes respectively an input action, an
output action and a bound output action, and ranged over by �. The set of

actions Act
def
= L∪{τ} is ranged over by λ. The semantics rules are given in

Fig. 1 and the symmetric ones are omitted.

We write
̂λ−→ for ≡ if λ=τ and for

λ−→ otherwise. The notation =⇒ denotes the

reflexive and transitive closure of
τ−→. The notation

̂λ
==⇒ stands for ==⇒

̂λ−→==⇒.
Now we define Milner and Park’s bisimulation equality [Mil89].

Definition 1 (Weak bisimulation). A symmetry relation R:P×P is a weak

bisimulation if PRQ
λ−→ Q′ then P

̂λ
==⇒ P ′RQ′ for some P ′ and every λ∈Act.

The weak bisimilarity ≈ is the largest weak bisimulation.

Two techniques on the weak bisimulation, weak bisimulation up-to context and
X-property (also called Bisimulation Lemma), should be recalled.

Definition 2 (Weak bisimulation up-to context, [San94]). A symmetric

relation R:P×P is a weak bisimulation up-to context if PRQ
λ−→ Q′′ then Q′′ =

(c̃)(R | Q′), P
̂λ

==⇒ (c̃)(R | P ′) and P ′RQ′ for some static context (c̃)(R | ·) ,
processes P ′, Q′, and every λ∈Act.

A Fully Abstract View for Local Cause Semantics 201

Lemma 1 ([San94]). If R is a weak bisimulation up-to context, then R ⊆≈.

Lemma 2 (X-property,[DNMV90]). If P==⇒≈Q and Q==⇒≈P , then P≈Q.

3 Local Cause Polyadic π-Calculus

We adapt for the polyadic π-calculus the local cause semantics introduced for
CCS [Kie94], where the processes are extended with local causes capturing the
spatial-dependency of actions. The set Tlc of local cause terms is defined by the
following grammar:

A := l:A | A|A | (c)A | T.

All notations, conventions and terminologies introduced on standard terms are
extended to the enriched language and will not be repeated, except that the set
Plc of processes of the local cause polyadic π-calculus is ranged over A, B. The
mixed denotation of terms and processes does not matter because we focus on
processes only. We comment more on the local cause prefix term l:A. The label
l representing an executed action is an atomic local cause and taken from the
countable set Nlc, where Nlc∩N=∅ and Nlc∩Nv=∅. Local cause prefixes can
not be executed but they can be observed with a visible transition. Local cause
sequences, denoted by L,K, consist of ordered atomic local causes. The function
cau() returns atomic local causes of local cause sequences, terms and processes.

The semantic rules of local cause processes are defined by the enriched labeled
transition system in Fig. 2. When every observable action is executed, a globally
unique local cause (l) is generated dynamically to bind this action. The execution
of this action depends on the executions of the actions observed at the atomic
local causes of the set (cau(L)). The notation A{ε/l} means substituting the
local cause l of A by the empty cause which is not bound by any observable
actions. Silent τ actions do not generate local causes. Just as CCS [Mil89] to the
polyadic π-calculus, CCS enriched with local causes (CCSlc for short) is a special
case of the local cause polyadic π-calculus. Its detailed syntax and semantics can
be found in [Kie94]. We use examples of CCSlc instead of the local cause polyadic
π-calculus for the convenience, and it is showed to be reasonable in Section 5.
There are many local cause processes like l:l:P , which are legal syntactically and
out of our foci. We are mainly interested in the reachable subset Pr of the local
cause processes, which can be obtained by evolving from standard processes.
The local cause processes discussed in this paper are the ones of the reachable
subset if without notations.

Definition 3 (Reachable set). Let −→lc
def
=

⋃ �−−−−−→
cau(L);l

∪ =⇒. Pr is the least

set of processes satisfying (1) P⊆Pr and (2) if P∈Pr and P−→lcP
′ then P ′∈Pr.

We write
�

=====⇒
cau(L);l

for ==⇒ �−−−−−→
cau(L);l

==⇒. Based on the local cause transition sys-

tem, the local cause bisimulation can be defined.

202 J. Xue and X. Dong

a(x̃).T
a(˜b)−−→
∅;l

l : T{˜b/x̃} a〈˜b〉.T a〈˜b〉−−→
∅;l

l : T τ.T
τ−→ T

T
�−→
∅;l

T ′

[a=a]T
�−→
∅;l

T ′

T
�−→
∅;l

T ′

[a
=b]T
�−→
∅;l

T ′

T |!T �−→
∅;l

T ′

!T
�−→
∅;l

T ′
T |!T τ−→ T ′

!T
τ−→ T ′

A
(˜b′)a〈˜b〉−−−−−→
cau(L);l

A′

(c)A
(˜b′c)a〈˜b〉−−−−−→
cau(L);l

A′
c
=a, c∈{˜b}−{˜b′}

A
�−−−−−→

cau(L);l
A′

(c)A
�−−−−−→

cau(L);l
(c)A′

c
∈n()

A
�−−−−−→

cau(L);l
A′

k : A
�−−−−−−→

cau(k:L);l
k : A′

l
=k

A1
�−−−−−→

cau(L);l
A′

1

A1 | A2
�−−−−−→

cau(L);l
A′

1 | A2

ln()∩gn(A2)=∅

Com:

A1
(˜b′)a〈˜b〉−−−−−→
cau(L);l

A′
1 A2

a(˜b)−−−−−−→
cau(K);k

A′
2

A1 | A2
τ−→ (˜b′)(A′

1{ε/l} | A′
2{ε/k})

{˜b′}∩gn(A2)=∅

A1
τ−→ A′

1

A1 | A2
τ−→ A′

1 | A2

A
τ−→ A′

(c)A
τ−→ (c)A′

A
τ−→ A′

l : A
τ−→ l : A′

Fig. 2. Semantics rules of the local cause polyadic π-calculus

Definition 4 (Local cause bisimulation). A symmetric relation R:Plc×Plc

is a local cause bisimulation if the following statements are valid.

1. If ARB
τ−→ B′ then A ==⇒ A′RB′ for some B′.

2. If ARB
�−−−−−→

cau(L);l
B′ then A

�
=====⇒
cau(L);l

A′RB′ for some A′.

The local cause bisimilarity ≈lc is the largest local cause bisimulation.

4 Encoding the Local Cause Polyadic π-Calculus into the
Polyadic π-Calculus

An encoding is presented from the local cause polyadic π-calculus to the polyadic
one, and its properties, such as finiteness-respecting, full abstraction, are proved.

4.1 Intuitive Example

The intuition underlying the encoding is as follows: local causes picturing the
dependency of executed actions are encoded into a finite wire process of the form
l�L, which means that the action binding l can not be executed until the actions
binding atomic local causes in L have been executed. As an example, the local
cause process A=k:h:a.c can perform the following transitions:

k:h:a.c
a−−−−−→

{k,h};l1
k:h:l1:c

c−−−−−−−→
{k,h,l1};l2

k:h:l1:l2:0.

A Fully Abstract View for Local Cause Semantics 203

These transitions show that the action a (respectively, b) binds the local cause
l1 (respectively, l2) and it can execute only after the executions of the actions
binding the local causes k and h (respectively, k,h and l1).

Its encoding has the following transitions:

�k:h:a.c�
(b1)a〈b1〉−−−−−−→ (l1)b1〈l1〉−−−−−−→ l1.(k | h) | �k:h:l1:c�

c(b2)−−−→ (l2)b2〈l2〉−−−−−−→ l1.(k | h) | l2.(k | h | l1) | 0.

The actions (b1)a〈b1〉 and c(b2) are respectively correspondent to the action a
and c of the pre-image. l1, which is extruded by the action (l1)b1〈l1〉, means
that it is bound by the action a in the pre-image; Similarly, l2 is bound by the
action c. l1.(k | h) and l2.(k | h | l1) are both stances of the finite wire process.
The former simulates that the action a cannot be executed before the actions
binding k, h are executed, and the latter simulates that the action c cannot be
performed before the ones binding k, h, l1 are performed.

The purpose of the extra actions (l1)b1〈l1〉 and (l2)b2〈l2〉 is to model properly
the communications those who do not generate local causes, and an example is
illustrated as follows:

�k1:h1:a.c� | �k2:h2:a.d�
τ−→

(bl1l2)(bl1.l1 � k1:h1 | bl2.l2 � k2:h2 | �k1:h1:l1:c� | �k2:h2:l2:d�)
def
= A

The prefixes guarding the finite wire processes ensure that the local causes l1
and l2 can not be extruded such that A ∼ �k1:h1:c� | �k2:h2:d�.

4.2 Encoding

Two preliminary steps are needed before the encoding is formally presented.
Firstly, we use directly the local causes as names, which are called local cause
names. The local cause names are not included in the set of names. The set
N of names is extended to N∪Nlc abbreviated as N+. And their syntax and
semantics are the same as those of names. Secondly, a crucial finite wire process,
which models the spatial-dependency of actions, is defined as follows

l � L
def
= l(z).

∏
k∈cau(L)

k〈z〉, where l∈Nlc−cau(L).

A finite wire process contains two information: the local cause (l) generated and
bound dynamically while an action is executed, and the local causes (cau(L))
generated by the executions of the dependent actions of the current one. When
L is empty, it denotes that the action observed at l does not depend on the
executions of other actions. To model the communication actions which do not
generate local causes, the finite wire process is adapted to be guarded by an
extra prefix:

n〈l〉.l � L def
= n〈l〉.l(z).

∏
k∈cau(L)

k〈z〉.

204 J. Xue and X. Dong

�0�L
def
= 0 �T+T ′�L def

= �T �L+�T ′�L

�τ.T �L
def
= τ.�T �L �[n=m]T �L

def
= [n=m]�T �L

�!T �L
def
= !�T �L �[n
=m]T �L

def
= [n
=m]�T �L

�n(x̃).T �L
def
= n(x̃, y).(l)(y〈l〉.l � L | �T �Ll), l∈Nlc−cau(L), y∈Nv−fv(T)

�n〈m̃〉.T �L
def
= (b)n〈m̃, b〉.(l)(b〈l〉.l � L | �T �Ll), l∈Nlc−cau(L), b∈N−gn(T)

�l : A�L
def
= �A�Ll, l∈Nlc−cau(L), cau(A)∩cau(L)=∅

�A | B�L
def
= �A�L | �B�L, cau(A)∩cau(L)=∅, cau(B)∩cau(L)=∅

�(c)A�L
def
= (c)�A�L, cau(A)∩cau(L)=∅

Fig. 3. Encoding from the local cause polyadic π to the polyadic π

So the encoding can perform communication actions without setting free new
local cause names. The encoding �A�L from the local cause polyadic π-calculus
to the polyadic π-calculus is presented in Fig. 3.

4.3 Property

The encoding has some important properties. The first one is about the process
finiteness. Intuitively, there is no replication operator in the guarded finite wire
processes, so that the encoding can respect process finiteness. In other words,
finite local cause processes are mapped onto finite standard processes.

Lemma 3 (Finiteness-respecting). If A is a finite process of the local cause
polyadic π-calculus, then �A�L is a finite polyadic π-process.

A new local cause is generated dynamically while an observable action is per-
formed, moreover it is unique globally. The dynamic generative process is re-
flected in the encoding as the local cause substitution.

Lemma 4. If A
�

======⇒
cau(K);l1

A1, then there exists A2, l2 such that A
�

======⇒
cau(K);l2

A2

and �A1�L ∼ �A2�L{l1/l2}.

The encoding is homomorphic but on input prefix and output prefix. An n-
adic input prefix is encoded into an n+1-adic input prefix, and the same to
output prefixes. The n-adic input actions, n-adic output actions and τ actions
are respectively correspondent to the n+1-adic input actions, n+1-adic output
actions and τ actions on strong transitions. And the correspondent results can
be extended to weak transitions routinely.

Lemma 5 (Operational Correspondence). There is a precisely operational
correspondence between the actions performed A and �A�L.

Now we can establish the full abstraction of the encoding. Unlike the involved
proofs heavily depending on the cancelation lemmas in [San94] and [BS98], the
soundness and completeness of the encoding can be proved more succinctly,
because there are moderately finite local cause names in finite wire processes.

A Fully Abstract View for Local Cause Semantics 205

Theorem 1 (Soundness). If A ≈lc B then �A�L ≈ �B�L.

Proof. It is sufficient to prove the the relation R def
= {(�A�L, �B�L) | A ≈lc B}

is a weak bisimulation up-to context.

Theorem 2 (Completeness). If �A�L ≈ �B�L, then A ≈lc B.

Proof. We can prove that the relation R def
= {(A,B) | �A�L ≈ �B�L} is a local

cause bisimulation by combining Lemma 2, Lemma 4 with Lemma 5.

Corollary 1 (Full abstraction). A ≈lc B iff �A� ≈ �B�.

Proof. Follows by Theorem 1 and Theorem 2.

We construct in this section a fully abstract encoding from the local cause
polyadic π-calculus to the standard polyadic π-calculus. The local cause bisimu-
lation between local cause processes is reduced to the original observation bisim-
ulation between standard processes. And the finiteness-respecting property will
play an important role in the next section.

5 Application

The full abstraction bridges the local cause bisimulation and the observation
bisimulation. It has many potential applications [XD12]. For example, we can
show the congruence properties of the local cause bisimulation like in [San94],
and prove the local cause congruence in an axiomatic system for the observation
congruence, which is not achieve in [San94, BS98]. Due to the space limitation,
this section only applies it to the decidable result of the local cause bisimulation.

Algorithms for the decidable fragments is an important issue for process cal-
culi. An important virtue of this encoding is that it respects process finiteness.
The key effect of finiteness-respecting is that the local cause bisimulation on
finite processes can be checked in some proof system of the observation bisimu-
lation on finite processes. It is validated by the local cause bisimulation of CCSlc

and the observation bisimulation of the monadic π-calculus.
For CCSlc, Kiehn developed a proof system for the restriction-free fragment

of finite processes with the help of the left merge (|′) and the communication
merge (|c), which furnish CCSlc with a expansion-like law [Kie93]. However, it
is impossible to develop a finite axiomatic system or proof system for the local
cause bisimulation without auxiliary operators, because there is no expansion
law that is the fundamental for the axiomatization in the interleaving semantics
[Mol90]. For the monadic π-calculus distinguishing names and name variables,
a proof system, denoted by PS, is proposed for the observation bisimulation on
finite π-terms [Zhu09]. The observation bisimulation on finite π-processes can be
proved in PS with purely equational reasoning.

Proposition 1 ([Zhu09]). Let P and Q be finite monadic π-processes. Then
P ≈ Q iff PS � τ.P = τ.Q.

206 J. Xue and X. Dong

Projecting Lemma 3 and Corollary 1 onto CCSlc and the monadic π-calculus,
the following properties can be achieved.

Corollary 2. Let p be a CCSlc-process, then �p� is a monadic π-process. More-
over, if p is finite then �p� is finite.

Corollary 3. Let p, q be CCSlc-processes. Then p ≈lc q iff �p� ≈ �q�.

With Corollary 2 and Corollary 3, the local cause bisimulation on finite CCSlc-
processes is reduced to the observation bisimulation on finite monadic π-processes.
Therefore, the local cause bisimulation on finite CCSlc-processes can be proved
in PS with purely equational reasoning through the encoding.

Proposition 2. p ≈lc q iff PS � τ.�p� = τ.�q� for finite CCSlc-processes p, q.

We show in this section a new proof system for the local cause bisimulation on
finite CCSlc-processes. It is only a special case and can be strengthened for the
local cause polyadic π-calculus. The crucial step is to develop a proof system for
the observation bisimulation on finite processes of the polyadic π-calculus. Two
ways can be taken into consideration. The first one is to encode the polyadic
π-calculus into the monadic π-calculus. Milner has introduced the following ab-
breviations [Mil93]

a(x1, . . . , xn).T
def
= a(x).x(x1).x(xn),

a(x1, . . . , xn).T
def
= a(c).c(x1).c(xn).

But the translation of the polyadic π-calculus to the monadic π-calculus is not
sound with respect to the observation bisimulation. For instance a(x1, x2)|b(y1, y2)
is equivalent to a(x1, x2).b(y1, y2)+b(y1, y2).a(x1, x2) in the polyadic π-calculus,
but their translations in the monadic π-calculus are not equivalent. We also fail
in attempts to propose a fully abstract encoding from the polyadic π-calculus
to the monadic one. The second way is to present a proof system directly. And
they are left as future work.

6 Conclusion

This paper bridges the true concurrency semantics and the interleaving semantics
by analyzing the local cause semantics in the interleaving framework. The local
cause bisimulation is reduced to the observation bisimulation of the polyadic π-
calculus. A complete proof system, which does not depend on auxiliary operators,
is proposed for the local cause bisimulation on finite CCSlc-processes.

The approach to analyzing true concurrency semantics in the interleaving
framework is originated by Sangiorgi [San94] to study the locality semantics
[BCHK92], and also applied by Boreale and Sangiorgi [BS98] to investigate the
causality semantics [DP92, Kie94]. Full abstractions are established from the
locality semantics and the causality semantics to the interleaving semantics re-
spectively. And the location bisimulation and the causality bisimulation are both

A Fully Abstract View for Local Cause Semantics 207

reduced to the observation bisimulation. However, the common drawback of their
encoding schemes is that the replication operators are introduced in the wire
processes, which model the locality mechanism and the causality mechanism.
Finite processes are in general mapped onto processes which can do infinitely
many actions. It prevents us from proving the location bisimulation and causal-
ity bisimulation on finite processes by some proof system for the observation
bisimulation on finite processes.

The reasons why the replication operators are introduced in their encoding
schemes are different. In [San94], the locality mechanism is modeled as a wire
process of the form !v.u. Location names u and v are respectively the images
of an access path and an execution location. There are only two information in
a wire process (an access path and an execution location), which are not suffi-
cient because we must model the dependency of actions. Moreover, the bound on
the locality-dependent actions is not decidable, because the constant definition
performs actions with infinite access path. The infiniteness of modeling locality
mechanism is caused by the preceding two reasons. And in [BS98], it is caused
by another two reasons. Communication actions introduce causalities, and the
bound of interaction is undecidable. Although the causality mechanism is mod-
eled as a wire process of the form !k.

∏
k′∈K !k′ which takes sufficient causality

information: the current marking k generated by the observable action, and all
its causalities (k′s). To model interactions precisely, the replication operators
are required.

By comparison, the local cause mechanism is closer to the causality mechanism
than to the locality mechanism. The key difference between the former two is
that interactions exchange causalities in the causality mechanism, but do not
introduce local causes in the local cause mechanism. We can therefore model the
local cause mechanism with the finite wire process.

There are some future directions in which the work could be extended.
By the full abstraction, the congruence properties of the local cause bisimu-

lation will be investigated like in [San94]. And other applications remain to be
discovered. An algorithm and a automated tool for supporting the fully abstract
encoding scheme should be a continuation.

To strengthen the result, as stated in Section 5, it is a crucial step to develop
a proof system or an axiomatic system for the observation bisimulation on the
polyadic π-processes. We are inclined to that there is no fully abstract encoding
from the polyadic π-calculus to the monadic one with respect to the observation
bisimulation, and prefer to developing a proof system directly.

We have set about to extend the encoding scheme to improve the result of
[San94], so that a similar proof system is proposed for the location bisimulation.
And we also plan to extending this approach to other true concurrency semantics
[DP99, BCH+08], and investigate its scalability and limitations.

We want to enrich the high order π-calculus [San92] with the local cause
semantics to model the spartial-sensitive mobile cloud computing, a converging
field of mobile computing and cloud computing. And whether or not the approach

208 J. Xue and X. Dong

to analyzing the local cause semantics is valid in the framework of the high order
π-calculus still remains to be checked.

Acknowledgments. This work has been supported by NSFC (61033002,
61011140074, 61100053) and the Natural Science Foundation of Shanghai, China
(10ZR1416800). The authors are grateful to Prof. Yuxi Fu, Dr. Huan Long and
Dr. Xiaojuan Cai for their suggestions and discussions on this topic. They also
would like to thank the anonymous referees for their comments and suggestions.

References

[BCH+08] Boudol, G., Castellani, I., Hennessy, M., Nielsen, M., Winskel, G.: Twenty
Years on: Reflections on the CEDISYS Project. Combining True Concur-
rency with Process Algebra. In: Degano, P., De Nicola, R., Meseguer, J.
(eds.) Montanari Festschrift. LNCS, vol. 5065, pp. 757–777. Springer, Hei-
delberg (2008)

[BCHK92] Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: A Theory of Processes
with Localities. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630,
pp. 108–122. Springer, Heidelberg (1992)

[BS98] Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the
π-calculus. Acta Inf. 35(5), 353–400 (1998)

[DNMV90] De Nicola, R., Mantanari, U., Vaandrager, F.: Back and Forth Bisim-
ulations. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS,
vol. 458, pp. 152–165. Springer, Heidelberg (1990)

[DP92] Degano, P., Priami, C.: Proved Trees. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 629–640. Springer, Heidelberg (1992)

[DP99] Degano, P., Priami, C.: Non-interleaving semantics for mobile processes.
Theoretical Computer Science 216, 237–270 (1999)

[FL10] Fu, Y., Lu, H.: On the expressiveness of interaction. Theoretical Computer
Science 411, 1387–1451 (2010)

[FZ11] Fu, Y., Zhu, H.: The name-passing calculus (2011) (submitted)

[Kie93] Kiehn, A.: Proof Systems for Cause Based Equivalences. In: Borzyszkowski,
A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 547–556.
Springer, Heidelberg (1993)

[Kie94] Kiehn, A.: Comparing locality and causality based equivalences. Acta In-
formatica 31(8), 697–718 (1994)

[Mil89] Milner, R.: Communication and Concurrency. Prentice Hall (1989)

[Mil93] Milner, R.: The polyadic π-calculus: a tutorial. In: Proceedings of the
1991 Marktoberdorf Summer School on Logic and Algebra of Specifica-
tion. NATO ASI, Series F, Springer (1993)

[Mol90] Moller, F.: The nonexistence of finite axiomatisations for ccs congruences.
In: LICS 1990, pp. 142–153 (1990)

[MPW92] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Infor-
mation and Computation 100, 1–40, (Part I), 41–77 (Part II) (1992)

[San92] Sangiorgi, D.: Expressing Mobility in Process Algebras: First Order and
Higher Order Paradigm. PhD thesis, Department of Computer Science,
University of Edinburgh (1992)

A Fully Abstract View for Local Cause Semantics 209

[San94] Sangiorgi, D.: Locality and True-Concurrency in Calculi for Mobile Pro-
cesses. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789,
pp. 405–424. Springer, Heidelberg (1994)

[XD12] Xue, J., Dong, X.: A fully abstract view for local cause semantics (2012)
full version, http://basics.sjtu.edu.cn/~jianxin/

[Zhu09] Zhu, H.: Model Independent Theory of Mobile Calculi. PhD thesis, Shang-
hai Jiao Tong University (2009)

http://basics.sjtu.edu.cn/~jianxin/

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 210–220, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Efficiency Considerations in Policy Based Management
in Resource Constrained Devices

Jignesh Kakkad and Nandan Parameswaran

School of Computer Science and Engineering, The University of New South Wales
Sydney, NSW 2052, Australia

{jmka292,paramesh}@cse.unsw.edu.au

Abstract. Policies are being widely used in a variety of applications such as
healthcare, disaster management and mobile networking. In this paper, we show
how policies can be used to manage the resources effectively and in a user
friendly way. Further, we advocate that while an agent is required to obey a
given policy requirement, there are situations where the agent may consider the
possibility of violating the policy (policy deviation) such as in an emergency or
during a disaster. Our simulation results show that sometimes policy violations
can be beneficial to the community of (application) agents and such violations
must be managed carefully.

Keywords: Policy, Mobile Agent, Resource Management, Policy Violation.

1 Introduction

Management involves the process of controlling entities in an organization and it
often involves stipulating policies and enforcing them. Policies can be represented in
their simplest form by a set of rules which define the behavior of objects involved in a
system situated in a given environment and they have been used effectively to achieve
flexibility in complex distributed systems [2], [3], [9], [10], [11]. There exist a
number of policy languages such as Rei, Ponder2 [4] and XACML in which policies
can be written. In this paper, we investigate use of policies for resource management,
and propose a measure of policy violation by relating it to the overall performance of
the agent community.

The rest of the paper is organized as follows. In Section 2, we discuss policies with
an example. Section 3 discusses policy based resource management in a mobile device.
In Section 4, we present policy violation. In Section 5, we discuss measuring policy
performance. Sections 6 and 7 present related work and conclusion, respectively.

2 Policy

Currently, mobile phone users are subjected to policies proposed by various agencies
such as telecom operators (Service provider), phone manufacturers, service providers

Efficiency Considerations in Policy Based Management in Resource Constrained Devices 211

(through their terms and conditions, for example, from Service provider) and
government agencies. An example of polices is as follows:

Apart from mobile usage policies, there are terms and conditions (T&C) imposed by
Service providers as well.

3 Policy Based Resource Management in a Mobile Device

Fig. 1 shows a simple architecture for policy based resource management consisting
of a set of application agents and a set of resources. Access to resources are managed
by a resource monitoring agent (MA). The monitoring agent maintains a set of policy
rules and the history of the states of the resources. A request from an agent consists of
an action a to be performed on behalf of the agent. When an application agent puts in
a request, the monitoring agent evaluates the request using the states of available
resources and policy rules and forwards the request to the resource operator.
The resource operator executes the action a and the resulting new states of the
involved resources are stored for future use. (More resources may be added if the
action is modeled with more details of resources.)

Fig. 1. An architecture for policy based resource management in a mobile phone

The monitoring agent has two sub parts: the Policy Manager which is responsible
for the overall execution of the requested action; and the Deviation Manager which
manages the agent request when the execution of these requests may result in the
violation of policy conditions (discussed in the next section).

Rule 1
if (current offer = “pre-paid cap+” &&
recharge amount == $30) then

 current balance += current Data;
 current limit += 400MB;

Rule 2
if (current offer = “Telstra long life” &&
recharge amount == $20) then
 current expiry += 60 days;

212 J. Kakkad and N. Par

3.1 Policy Model

A policy in a multiagent sy
the agents in the world.
resources change from one
resources as the world state

3.2 Option Graph

We model the world as a s
from one state ݏ௜ to anot
transition function δ . Let S
perform, and Λ be the set of

We let η to denote a n
where an agent chooses no
That is, a null action does n

Fig. 2. Option graph and Optio
arrows) define the policy.

An option graph is a dire
the states of the world and
occur when actions are per
of the options available at e

In the option graph abov
time progresses. Time mov
t=0, the world is at state s0,

a) The first option ha
case, the agent is
state sj.

b) The second option
will affect the state

rameswaran

stem dictates how a set of resources must be operated
As the agents perform operations on the resources,

e state si to sj. (We often refer to the aggregate state of
e.)

ynchronous finite state machine (fsm) where the fsm g
ther ݏ௝ at the time when a clock occurs as defined by
S be the set of states, Γ be the set of actions an agent
f external events. Then, δ: S ܺ (Γ ∪ Λ) → S

null action, which we will use to characterize a situat
ot to do any action. Thus, η ∈ Γ , and δ (ݏ௜ , η) =
not change the state of the world.

on graph for three agents with policy. Options (dashed and do

ected acyclic graph where the nodes of the graph repres
d edges denote transitions from one state to another wh
formed (See Fig. 2). Above is the graphical representat

each instant of time.
ve, we have shown how the (state of the) world change
ves discretely by one unit at a time, starting from t=0.
, and there are three options:

as an action that the agent may execute intentionally. In
responsible for making the world transit from state s

n has an external event that can spontaneously occur wh
e of the world making it transit from si to sj.

 by
the
the

goes
the
can
.
tion

 .௜ݏ =

otted

sent
hich
tion

s as
 At

this
si to

hich

Efficiency Considerations in Policy Based Management in Resource Constrained Devices 213

c) The third option is a null action which represents the situation where if the
agent chooses to avoid executing any action time t=0, then the world does
not change its state at time t=1.

Apart from the states enumerated in the option diagram, there exist other states that
are known as error states which we have not shown. The world may enter into the
error states when actions from Γ are not successfully completed, when agents perform
actions that are not in Γ, or if the agent performs an action from Γ when an event
from Λ has already started occurring. In this paper, we assume that the agent does
not choose to perform an action β ∈ Γ action if there occurs an event λ ∈ Λ that can
take the world to a next state valid state s ∈ S. Thus, in our model, an external event
gets a higher priority to affect the world than the agent actions.

Option Graph for multiple agents

Fig. 2 also shows an option graph for three agents A1, A2, and A3 where each agent
Ai has its own option graph. The states in the option graph of A1, for example, are
defined by the resources owned exclusively by A1 and the resources it shares with the
other agents A2, and A3. Thus, the three agents can all work concurrently as long as
they do not operate on the shared resource. Operation on shared resources require
specific policies for accessing and using them, but to keep our discussion simple, we
will assume that the underlying action execution mechanism permits only one agent
to operate on any resource at any time. A consequence of this assumption is that
when an agent Ai changes the state of a shared resource, it may affect the next states
of other agents that are currently operating on non-shared resources. (We will
elaborate on this later in the next section.)

3.3 Policy Graph

A policy graph is a sub-graph of an option graph. The option graph in Fig. 2 defines
a policy (let us call it) P. The policy defines the permitted options at any given state
for an agent according to the policy. The options shown as dashed or dotted arrow at
each state signifies the fact that these options are permitted by the policy. The options
shown as a black arrow are not permitted by the policy and yet may be possible to
execute by an agent. An agent can decide to choose any available option depending
on what next state it wants. A policy obeying agent is the one that always chooses an
option that is permitted by the policy (dashed line). If an agent chooses an option that
is not permitted by the policy, then the agent is said to have violated the policy.
(Dotted lines show options permitted by the policy, but not selected by the agent.)

Obeying policy and shared resources

When an agent operates on a shared resource, in can in general affect the next states
of other agents. A standard solution to this problem is to permit only agent Ai at a
time to “lock” the resource and start using it, while other agents wait for their turn.
In a policy based model, we abstract out the details of how a shared resource is used,

214 J. Kakkad and N. Parameswaran

and merely state that at any state the policy defines the future states that are known to
all agents in the community, and when an agent selects an option, it also inherits the
consequences of selecting that option. However, when an option not sanctioned by the
policy is selected, it may affect the other agents’ current state thus affecting their next
options.

Fig. 2 shows the traces of three agents moving from time t = 0 towards their future
goal states (goals states are not shown in the figure). When an agent executes an
action, there are two cases that are considered. Let agent A1 select and execute an
action β1 and agent A2 select and execute an action β2. (The actions may or may not
have been permitted by the policy.)

Case 1: The execution of the action β1 by agent A1 will not affect the execution of
the action β2 by the agent A2. In this scenario, both the agents can execute their
selected actions without interfering with each other.

Case 2: The execution of the action β1 by agent A1 will affect the execution of
the action β2 by the agent A2. In this scenario (as we explained earlier), if the agents
A1 and A2 both follow the policy (that is, chose the options marked dashed), then the
execution of the actions β1 and β2 is said not have interfered with each other
(according to the way the policy is defined). However, if the agents chose to violate
the policy then noninterference may not be guaranteed.

3.4 Policy Semantics

We can formalize the notion of policy using the policy graph. As an example,
consider Rule 1 above. Let us define the world state as a 4-tuple <o,c,d,b>, where
o = currentOffer, c = reachargeAmount, and d = currentData, and b = currentBalance.
Let the current state be si where si= <“prepaidCap+”,0, 0, 0>. Then upon executing
action “pay $30”, the state si changes to si+1 where si+1 = <”prepaidCap+”, $30.00,
400MB,400MB>. Thus, in the option diagram, we insert the following transition at si:

si
௣௔௬ $ଷ଴ሱۛ ۛۛ ሮۛ si+1 , where si and si+1 are defined as above.

Complex Policies

Policies can be simple such as the ones shown above, or more complex as shown
below:

Rule

Let A be the application agent that manages the email account and let the policies it
needs to follow are as shown below:

a. Notify the service provider if the Email/SMS Bill email address changes;
b. Contact the service provider if the Email/SMS Bill has not been received;

and
c. Keep the email/sms account secure to protect the privacy of your credit

information contained in the Email/SMS Bill.

Efficiency Considerations in Policy Based Management in Resource Constrained Devices 215

Translating such complex policies poses challenges in the sense that we need to
model the underlying domain adequately. The policy rule (a) above can be depicted
by a policy (sub) graph with the following characteristics:

Every node of the policy graph has a Λ type option in addition to any other
options. The event on the Λ type option is “address changed”. If the previous
transition was due to the “address changed” event, then there is a next Γ type option
with the label “notify (new-address)”.

An agent that obeys the above policy should perform the following behavior: If
the previous transition was due to the Λ type event “address changed”, then the agent
chooses the Γ type option action “notify (new-address)”. The policy semantics for
the rule (b) can similarly be given as follows: Each node in the policy graph will have
at least one Γ type option included: “contact service provider”. Let the current node be
si. If none of the last k transitions were triggered by the occurrence of the Λ type
event “arrival of Email/SMS bill”, then the agent chooses the Γ type option “contact
service provider”, and executes the action.

The policy graph for (c) requires that as soon as the agent receives an email/sms
account, then the agent will choose the option of performing an operation on the
confidential account details (such an encrypting them, etc.), and all the future states
will contain the encrypted form of the confidential account details. Further, each
future state may have a Γ or Λ type action that may for example decrypt the account
details thus threatening the confidential nature of the account details.

4 Policy Violation

Policy violation occurs when agents choose options not sanctioned by policies. It
may be permitted in a world that is inhabited by a single agent. However, in a world
where multiple agents coexist, policy violations result in unpredictable future states of
the world. In certain situations, however, it may become necessary for an agent to
violate the policy in order to maximize its chances of achieving its goals. In such
cases, policy violations (that is, deviation from policy based behavior) must be
performed carefully and managed. Deviation Manager (DM) in Fig. 1 above monitors
such violations and decides whether at any time policy violation may be permitted.

Dependent agents and Degree of violation

In a generalized scenario, each agent depends on other agents to achieve its goals, the
degree of dependency varying according to agents and situations. While there are no
simple ways to predict the consequences of a violation, an estimate of the
consequences is still necessary to manage the deviations which we discuss in the
following section.

5 Measuring Policy Performance

To measure the performance of a policy, we consider a community of agents and
consider its option graph. The edges in the option graph have a numerical weight

216 J. Kakkad and N. Parameswaran

which indicates the score an agent gets if it chooses that option in its next move.
Thus, the total score up to the current moment t is the sum of all the weights wi of the
options that were chosen by the agent so far; that is,
ݏ ݁ݎ݋ܿݏ ൌ ∑ ௜௧௜ୀ଴ݓ .

In the simulation below, we consider three agents, and the state consisting of three
resources: <r1,r2,r3>. A policy is implemented by choosing a DAG that is a sub-graph
of the option graph restricting the number of options at any state in the option graph
to not more than some maximum value (5 in our simulation). The maximum number
of steps along the time axis is limited to tmax where tmax = 50.

Table 1 shows our initial measurement with the points scored by each agent for
each policy P1, P2 and P3. Typically, an agent will continue to choose the next highest
score option until it reaches the state where the number of options is 0; that is, from
this state the agent cannot proceed further as no more future states exist. As the agent
chooses an option and executes the corresponding action, resources are consumed in
the action execution, and thus the resources to go to another state.

Table 1. Points scored by each agent

Policy Agent’s score
All resources are shared No resources are shared

P1 519 1151

P2 779 1443
P3 280 479

When no resources are shared, agents do not worry about the policies, and they

choose any option that gives them the highest score. However, when resources are
shared, agents need to follow the policy if they do not want to affect each other’s
behaviors. Thus, we see that in Table 1, the scores for individual agents are highest
when they ignore other agents, but they are lower when the agents are required to
follow the policies (in this example). While following a policy, each agent can only
choose the option with the highest score from the options permitted by the policy.
Incidentally, among the three policies we used, policy P2 appears to be a better policy
for this small community since it helps the community achieve the highest score.

Fig. 3 shows the agent community behavior that is, the average score of each agent
over the period of time when each agent follows the policy P1.

Efficiency Considerations in P

Fig. 3. (a) and (b): Communit

Fig. 3 also shows the co
above figure, we see that w
score is different from the
shows the difference in the

Fig. 4. Ef

The difference between
permit a policy violation or
the monitoring agent (Fig.
available resource go throug
violate the policy comes
difference) of the policy v
difference is more than the
policy violation, else the M

The threshold value is a
parameter is configurable a
provider in their policy. If

Policy Based Management in Resource Constrained Devices

ty behavior when all agents follow policy(a) and violate policy

ommunity behavior when agents violate the policy. Fr
when the agents violate the policy, the overall commun
 score where the agents do not violate the policy. Fig
behavior when agents follow and agents violate the poli

ffect of Policy violation on agent community

these two graphs plays a vital role in deciding whethe
r not. Based on this, we propose a management policy
1) since all requests from the application agents to use
gh the monitoring agent. When a request from any agen
to the MA, the MA computes the consequence (sc

violation at the current state from Fig. 4. If the sc
specified threshold value, then MA rejects the request

A approves the violation.
an important parameter to decide in policy violations. T
and can be set by either the mobile phone user or serv
f a value of the threshold is high, the MA is said to

217

y(b)

rom
nity
g. 4
icy.

er to
y for
any

nt to
core
core
 for

This
vice
o be

218 J. Kakkad and N. Parameswaran

lenient. On the other hand, if the value of the threshold is too low, the MA is said to
be strict. Following is an example of a policy violation management rule:

Fig. 5. Community behavior when threshold value is 15

Fig. 5 shows the behavior of the community when we consider the management
policy rule above to manage policy violation and Table 2 shows the performance of
the agent community for a different threshold value. From the table below, we
observe that policy violation is not always a “bad thing” after all. Sometimes, the
community seems to perform better when agents are permitted to violate policies.
This indicates that the current policy is not a “good” policy.

Table 2. Points gained for different threshold values

Threshold value Agent community points
0 529
2 535
5 541

10 561
15 583

6 Related Work

Policies can be expressed more formally in languages such as Ponder2 [4] and Rei.
Twidle et al [7] have proposed a new approach to monitor the behavior of a dynamic
system. The normal event-condition-action (ECA) rules are not able to monitor the
behavior of the system. These rules direct a system to behave according to a given
situation.

Al Sum et al [6] have proposed a framework for dynamic policy based
management of the resources in a mobile device. Their proposed framework manages
sensitive resources such as network resources which can cost money or system
resource such as mobile phone battery which can affect phone performance. A
policy based solution in an educational application has been proposed by D Goel et al
in [1]. They propose a solution to access various resources such as class rooms using
a set of policy rules. Information such as current location, time and role of the user

Rule: if (current request = “Policy
violation”) then
 if (get_actual_effect(current step)
 > Threshold) then
do (“reject a request for policy
violation”); else do (“permit the
request for policy violation”);

Efficiency Considerations in Policy Based Management in Resource Constrained Devices 219

are used to grant access to use any class room. People use online social networking
websites such as Facebook, Twitter, etc. to keep in touch with their family and
friends. A number of solutions have been proposed to manage the information using
policies [2] [3].

In pervasive computing scenarios, it is important for the administrator to monitor
policy deviation. In [7] example of health care system, the authors have mentioned
about deviation manager which keeps monitoring the request against policy. It grants
the access to treat any patient based on policy rules and role of the user who is
requesting the access. Ahmed AlSum et al [6] suggest a dynamic policy approach
for monitoring all resources in a mobile device. Samir Al-Khayatt et al [5] propose a
solution for detecting policy violation. As per their suggested approach, they use an
automated tool to monitor the internet usage by all employees in the office which
detects violations whenever they occur.

7 Conclusion

We have in this paper given option graph based semantics for policies, and sketched
out a scheme for measuring the performance of policies in a multi agent framework
where the application programs on a mobile device are viewed as resource hungry
autonomous agents. Using this formulation, we have shown how two policies can be
compared in terms of their performance metrics. We also have discussed the
significance of policy violations, and shown how the consequences of violations can
be quantified. Based on this violation metric, we argued that it is not always bad to
violate policies, and we proposed how policy management violation rules can be
written where a resource monitoring agent MA can decide at any time whether to
allow an application program to violate a policy.

References

[1] Goel, D., Kher, E., Joag, S., Mujumdar, V., Griss, M., Dey, A.K.: Context-Aware
Authentication Framework. In: First International ICST Conference on Mobile
Computing, Applications, and Services. Springer Pub. Co., San Diego (2010)

[2] Shehab, M., Cheek, G., Touati, H., Squicciarini, A.C., Pau-Chen, C.: User Centric Policy
Management in Online Social Networks. In: 2010 IEEE International Symposium on
Policies for Distributed Systems and Networks (POLICY), pp. 9–13 (2010)

[3] Kodeswaran, P., Viegas, E.: A Policy Based Infrastructure for Social Data Access with
Privacy Guarantees. In: 2010 IEEE International Symposium on Policies for Distributed
Systems and Networks (POLICY), pp. 14–17 (2010)

[4] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995,
pp. 18–38. Springer, Heidelberg (2001)

[5] Al-Khayatt, S., Neale, R.: Automated detection of Internet usage policy violation. In:
ACS/IEEE International Conference on Computer Systems and Applications, pp. 507–
510 (2001)

220 J. Kakkad and N. Parameswaran

[6] AlSum, A., Abdel-Hamid, A., Abdel-Aziem, M.: Application-specific dynamic policy
rules (ASDPR) for J2ME. In: IEEE/ACS International Conference on Computer Systems
and Applications, AICCSA 2009, pp. 512–516 (2009)

[7] Twidle, K., Marinovic, S., Dulay, N.: Teleo-Reactive Policies in Ponder2. In: 2010 IEEE
International Symposium on Policies for Distributed Systems and Networks (POLICY),
pp. 57–60 (2010)

[8] Finnis, J., Saigal, N., Iamnitchi, A., Ligatti, J.: A location-based policy-specification
language for mobile devices. Pervasive and Mobile Computing (2010)

[9] Talaei-Khoei, A., Bleistein, S., Ray, P., Parameswaran, N.: P-CARD: Policy-Based
Contextual Awareness Realization for Disasters. In: 2010 43rd Hawaii International
Conference on System Sciences (HICSS), pp. 1–10 (2011)

[10] Wang, F., Turner, K.J.: Towards personalised home care systems. In: Proceedings of the
1st International Conference on Pervasive Technologies Related to Assistive
Environments, pp. 1–7. ACM, Athens (2008)

[11] Talaei-Khoei, A., Bleistein, S., Ray, P., Parameswaran, N.: P-CARD: Policy-Based
Contextual Awareness Realization for Disasters. In: 2010 43rd Hawaii International
Conference on System Sciences (HICSS), p. 110 (2010)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 221–230, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Agent Based Quality Management Middleware
for Context-Aware Pervasive Applications*

Di Zheng1, Jun Wang2, and Ke-rong Ben1

1 Department of Computer Science, Naval University of Engineering,
Wuhan, Hubei, China 430033

2 Key Research Lab, Wuhan Air force Radar Institute,
Wuhan, Hubei, China 430019

Abstract. With the rapid development of the information technology, it is
inevitable that the distributed mobile computing will evolve to the pervasive
computing gradually whose final goal is fusing the information space composed
of computers with the physical space in which the people are working and
living in. To achieve this goal, one of the problems is how to continuously
monitor/capture and interpret the environment related information efficiently to
assure high context awareness. Many attentions have been paid to the research
of the context-aware pervasive applications. However, most of them just use the
raw context directly or take the Quality of Context (QoC) into account in just
one or two aspect. Therefore, we propose a agent based quality management
middleware to support QoC management through various layers. By the agents,
we can configure different strategies to refinery raw context, discard duplicate
and inconsistent context so as to protect and provide QoS-enriched context
information of users to context-aware applications and services.

Keywords: QoC, middleware, Context-aware, Pervasive, Agent.

1 Introduction

With the technical evolution of wireless networks, mobile and sensor technology,
the vision of pervasive computing is becoming a reality. The paradigm for pervasive
computing aims at enabling people to contact anyone at anytime and anywhere in a
convenient way. So, context-awareness has become one of the core technologies in
pervasive computing environment gradually and been considered as the indispensable
function for pervasive applications[1]. For recent years, many research efforts have
been done for gathering, processing, providing, and using context information [2]. In
contrast, existing pervasive systems rarely pay attention to the Quality of Context
information (QoC) used for making context-aware decisions and for executing
context-aware applications. Buchholz et al. [3] has been the first ones to define QoC
“as any information describing the quality of information that is used as context”.

* This work was funded by National Natural Science Foundation of China (2011, No.61100041).

222 D. Zheng, J. Wang, and K.-r. Ben

Furthermore, context information can be characterized by certain well-defined QoC
aspects, such as accuracy, precision, completeness, security, and up-to-dateness [4].

Despite its importance few works [4~8] have proposed different QoC measuring
methods. Moreover, these studies evaluate quality only on some aspects, i.e. they do
not consider complex and comprehensive applications. Comparatively, pervasive
environments have a wider range of applications such as performing collaborative
work. Hence, complex data structures are used to gather data from sources ranging
from the simple sensors to user interfaces and applications in mobile devices.

In our previous works, we have put forward a middleware for the context-aware
component-based applications so as to make these applications can be adapted more
easily than traditional applications by simply adding and deleting components
[9,10,11].

Based on this middleware, we use the agents to support the configuration of different
quality factors. Furthermore the strategies used by these agents can help us evaluate raw
context, discard duplicate and inconsistent context so as to protect and provide QoS-
enriched context information of users to context-aware applications and services.

2 Middleware Based QoS Management

2.1 Architecture of the Context-Aware Middleware

As our previous architecture depicted in figure 1 and figure 2 [9,10,11], the core
provides the fundamental platform-independent services for the management of the
component/service based applications such as component deployment, service
discovery, service combination and so on.

Fig. 1. Architecture of Context-aware Middleware

 Agent Based Quality Management Middleware 223

Context Manager is responsible for sensing and capturing context information and
changes, providing access to context information (pull) and notifying context changes
(push) to the Adaptation Manager. The Context Manager is also responsible for
storing user needs and preferences on application services.

Adaptation Manager is responsible for reasoning on the impact of context changes
on the application(s), and for planning and selecting the application variant or the
device configuration that best fits the current context. As part of reasoning, the
Adaptation Manager needs to assess the utility of these variants in the current context.
The Adaptation Manager produces dynamically a model of the application variant that
best fits the context.

Deployment manager is responsible for coordinating the initial instantiation of an
application and the reconfiguration of an application or a device. When reconfiguring
an application, the configurator proceeds according to the configuration template for
the variant selected by the Adaptation Manager

2.2 Agent Based Quality Management of Context

As depicted info figure 2, we divide the entire context –aware process into five layers
including sensor layer, retriever layer, deal layer, distribution layer and application
layer. Different from existing methods, we pay attention to the quality management of
context through all these layers.

Firstly, in the sensor layer, we set agents supporting different threshold to
implement auto context discarding. The agents can be configured with one or more
threshold, by this way we can reduce the number of the raw contexts.

Secondly, in the retriever layer, we use the context quality index to describe the
quality of the contexts. All these factors are decided by user’s demand and they may
be different at all in various applications. Furthermore, we use the agents to complete
the computation of these factors. Therefore, we can produce customize quality plan
with different demands. The refined contexts from this layer will provide input for the
higher layer.

Fig. 2. Agent based Quality Management of Context

224 D. Zheng, J. Wang, and K.-r. Ben

Then in the deal layer, we expand existing context dealing process with the
duplicate context discarding and inconsistent context discarding to provide more
accurate and more efficient contexts for the applications. All the algorithms are
configured in the duplicate and inconsistent dealing agent.

At last, in the distribution layer and application layer, we expand traditional
context-aware component/service adaptation/deployment algorithms with the help of
the incoming contexts. This process is also helped by the distribution agent.

2.3 Ontology Based Quality Index

As depicted in figure3, we use quality threshold agent to complete the raw context
discarding. For example, we can configure the agent as follows:

1. The sensor with lower than 50% accuracy will be ignored for several time.
2. The sensor with lower than 50% completeness will be ignored for several time.
3. The sensor with lower than 20% certainty will be ignored for several time.
These rules are used in the environments existing lots of sensors and they can help us
discarding useless context information. The entire procession is adaptive and it
depends on the information computed by the quality factor agent.

Fig. 3. Quality Threshold Agent

As depicted in figure 4, we use quality factor agent with different indicators to
represent the quality of the context such as security, precision, resolution and so on.
Users can produce different quality configuration plans with different indicators as
they wish. Furthermore, they can define their own index by combing different
indicators.

 Agent Based Quality Management Middleware 225

Fig. 4. Quality Factor Agent

We use different functions to define the indicators such as security, precision,
resolution, freshness, certainty and completeness. For example, we use certainty as
the probability of the accuracy of the context. As we all know, the context comes
from different kinds of sources and some of them more sensitive and useful than the
others. So when we have similar contexts from different sensors, we should choose
the right context with the help of certainty. We define certainty as follows:

1
()

1
: () 0()

() :
1

NumberofAnsweredRequest
CO CxtObj

NumberofRequest
if F CxtObj and CxtObj nullC CxtObj

NumberofAnsweredRequest
CO CxtObj otherwise

NumberofRequest

+⎧ ×⎪ +⎪⎪ ≠ ≠= ⎨
⎪ ×

+⎪
⎪⎩

We use NumberofRequest to represent the number of the requests as well as the
NumberofAnsweredRequest representing the number of the answer requests. The ratio
of them will describe the communication of the context with the help of the indicator
Completeness. If the ratio is much lower than 1, then it shows there are many
unknown problems between the interaction of the sensors and the middleware. So we
can say the certainty of the context source is not good.

2.4 Detection and Discarding of Duplicate Context

As depicted in figure 5, we configure the duplicate/Inconsistency deal agent with
different algorithms. Firstly the agent gets the identifier of the newly arrived context
and checks whether there is any context in the existing data representing the same
entity or not. If we do not find any context having the same identifier, we will check
the name/value pairs further. In our system, every context has context ID, context
name/value pairs. So we define duplicate contexts as the contexts have the same
identifier, or the same name/value pairs.

If there are some contexts having the same identifier or the same name/value pairs,
we will check the sources of context. If they have different sources then some errors
may occur and we should check the gathering of the contexts. If these two context
objects are from the same source then we check the time when these context objects
are generated. If they have the same timestamp then it means that they are the exact

226 D. Zheng, J. Wang, and K.-r. Ben

Fig. 5. Duplicate/Inconsistency deal agent

duplicate of each other and anyone of them can be discarded as well as keeping the
other one. If they have the different timestamps it means that these are the duplicate
contexts and will be discarded.

After duplicate context dealing we need inconsistent context dealing including
matching of name/value pairs and quality-aware tuple. Consistency constraints on
contexts can be generic (e.g., “nobody could be in two different rooms at the same
time”) or application specific (e.g., “any goods in the warehouse should have a check-
in record before its check-out record”).

After detecting inconsistent contexts we should use the algorithms as follows to
discard the conflicted contexts.

Algorithm 1. Discarding all inconsistent context instances
INPUT: New arrived context

1. get the new instance of context in the queue of matching patterns _pat que

2. To all the patterns 1 2, ,... npat pat pat

3. In the pat’s trigger tgr

4. if exists 1ins in 1_pat que , 2ins in 2_pat que , ..., and nins in

_ npat que and tgr satisfy the constraint of 1ins ， 2ins ，…， nins

5. then
6. if the constraint of tgr is satisfied
7. then
8. We get inconsistency
9. delete all the inconsistent context instances
10. add the remaining instances to the repository
11. end if
12. end if

 Agent Based Quality Management Middleware 227

Algorithm 1 is deleting all the inconsistent context instances. However, the
occurrence of many conflicts is due to the entrance of the new incoming context
instance. So we get algorithm 2, discarding the newest context instance. However, in
some examples the newest context may be the right one, so we get algorithm 3 to
discard the inconsistent context by the help of the field of certainty. In algorithm 3,
we need compare the certainty of all the context instances and this may add the
overall exhaustion of the algorithm. Therefore, to different kinds of contexts, we pay
attention to the frequency of the contexts for the context having higher frequency may
be right. So in algorithm 4, we compare the relativity of different contexts and discard
the ones having the lower relativity.

2.5 QoC-Aware Component/Service Selection

As depicted in figure6, we can define context-aware criteria that link the two sides of
context and service nonfunctional constraints in the distribution agent. Context-aware
criteria consist of a number of criteria that are initialized from the meta data of the
correct service category. For example, we can use one of the QoC criteria such as
precision, freshness, certainty, completeness and so on. We can also use two or more
criteria to complete the selection. All the selection is managed by the autonomic
manager according to the configuration of users.

All the procession is controlled by the Autonomic Management Module. When
deployed, every service will have several context configuration constraints which imply
the services pay more attention to which contexts. We can also set the thresholds for the
constraints. If a service’s contexts are under thresholds, then the service cannot be
selected.

Initially, the Autonomic manager of our context-aware middleware discovers the
service providers that match the userÊs requirements by given service discover
methods. Then the Autonomic manager compares QoC of different services by using
the methods choose by users and selects one of the suitable providers and creates a
binding to it. During service execution, when the Autonomic manager detects broken

Fig. 6. Distribution agent

228 D. Zheng, J. Wang, and K.-r. Ben

service bindings (e.g. the bound service provider becomes unavailable), it will repair
them by discovering and binding to an alternative provider.

Besides the initial binding configuration and repair facilities, the Autonomic
manager can be configured to continually optimize service selection during runtime.
Furthermore, a service provider that was optimal in a certain context may be
automatically replaced by a different service provider, which becomes the optimal
choice in a new execution context. The context filter can be specified to trigger the
dependency optimization each time a new service provider with the required
specification becomes available. And we will take more complex replacement
methods into account in the future researches.

3 Performance Results

We are deploying the proposed framework in a university building in order to provide
context-aware services to the users, such as context-based access control and context-
aware control of heating and lighting, among others. Afterwards, the gathered
information was transmitted to a server running a CIS (Intel Core Duo 2.8GHz, 4 GB,
Windows vista 32bits, SQL Server 2008). The sensing was carried out during 24
hours, with intervals of 5 seconds. To simplify the experiments we do not use the
quality threshold agent. And we add a varying interference to the raw information to
simulate the inconsistency. At the same time, we set several sensor pairs to produce
duplicate context. The evaluation consisted of (i) a study of performance verifying the
time overhead added by the quality support in the framework and (ii) the compare of
the different discarding algorithms.

As depicted in figure 7, the curve with minimum time represents traditional context
dealing. This time is composed of the time of sensing, transferring, reasoning and
distribution. The second curve above the bottom represents the dealing with replicate
context discarding and the process may exhaust more time. And the third curve above
the bottom represents the dealing with replicate context discarding and inconsistent
context dealing. We use all inconsistent contexts discarding algorithm and we can
find it may exhaust more time. The fourth curve above the bottom represents the
dealing with replicate context discarding, inconsistent context dealing and quality

Fig. 7. The Overhead of the QoC-aware Context Dealing

 Agent Based Quality Management Middleware 229

factors computing. We can see the QoC dealing may exhaust more time and the time
is lower than 30 percent of the normal dealing time of the context. In fact, comparing
to the effect of the QoC, this degree of extra time may be accepted.

Furthermore we use different quality factors to help the inconsistent context
discarding. We use up-to-dateness, relativity and certainty especially. Therefore, we
use algorithm 1 representing no context discarding, algorithm 2 representing
discarding all inconsistent context, algorithm 3 representing discarding newest
context, algorithm 4 representing keeping most certainty context and algorithm 5
representing keeping most relative context.

Fig. 8. (a) Analysis of the true probability (b) Analysis of the dealing time

4 Conclusions

With the rapid development of the information technology, it is inevitable that the
distributed mobile computing will evolve to the pervasive computing gradually whose
final goal is fusing the information space composed of computers with the physical
space in which the people are working and living in. To achieve this goal, one of the
problems is how to continuously monitor/capture and interpret the environment
related information efficiently. Sensing context information and making it available to
the people, involved in coordinating a collaborative task, is a preliminary phase in
making a system adaptable to the prevailing situation in pervasive environments.

Many attentions have been paid to the research of the context-aware pervasive
applications. However, the diversity of the sources of context information, the
characteristics of pervasive environments, and the nature of collaborative tasks pose a
stern challenge to the efficient management of context information by sensing a lot of
redundant and conflicting information. Most of existing research just use the raw
context directly or take just some aspects of the Quality of Context (QoC) into
account. In this paper, we have proposed an agent based context-aware framework
that support QoC management. By using these agents we can evaluate raw context,
discard duplicate and inconsistent context so as to protect and provide QoS-enriched
context information of users to context-aware applications and services. In future
work, we will complete more experiments to discuss more aspects of the framework.

230 D. Zheng, J. Wang, and K.-r. Ben

References

1. Dey, K.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7
(2001)

2. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Hanover, NH,
USA, Tech. Rep. (2000)

3. Buchholz, T., Küpper, A., Schiffers, M.: Quality of context: What it is and why we need it.
In: HPOVUA 2003, Geneva (2003)

4. Kim, Y., Lee, K.: A quality measurement method of context information in ubiquitous
environments. In: CHIT 2006, pp. 576–581. IEEE Computer Society, Washington, DC
(2006)

5. Nixon, P., Razzaque, M.A., Dobson, S.: Categorization and modelling of quality in context
information. In: Proceedings of the IJCAI 2005 (2005)

6. Preuveneers, D., Berbers, Y.: Quality Extensions and Uncertainty Handling for Context
Ontologies. In: Shvaiko, P., Euzenat, J., Léger, A., McGuinness, D.L., Wache, H. (eds.)
Proceedings of C&O 2006, Riva del Garda, Italy, pp. 62–64 (August 2006),
http://www.cs.kuleuven.be/davy/publications/cando06.pdf

7. Sheikh, K., Wegdam, M., van Sinderen, M.: Quality-of-context and its use for protecting
privacy in context aware systems. JSW 3(3), 83–93 (2008)

8. Manzoor, A., Truong, H.-L., Dustdar, S.: On the Evaluation of Quality of Context. In:
Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds.) EuroSSC 2008.
LNCS, vol. 5279, pp. 140–153. Springer, Heidelberg (2008)

9. Zheng, D., Jia, Y., Zhou, P., Han, W.-H.: Context-Aware Middleware Support for
Component Based Applications in Pervasive Computing. In: Xu, M., Zhan, Y.-W., Cao, J.,
Liu, Y. (eds.) APPT 2007. LNCS, vol. 4847, pp. 161–171. Springer, Heidelberg (2007)

10. Zheng, D., Yan, H., Wang, J.: Research of the Middleware based Quality Management for
Context-aware Pervasive Applications. In: 2011 International Conference on Computer
and Management (May 2011)

11. Zheng, D., Yan, H., Wang, J.: Research of the QoC-aware Service Selection for
Middleware based Pervasive Applications. In: The 2nd International Conference on
Biomedical Engineering and Computer Science (2011)

12. Zheng, D., Yan, H., Wang, J.: Research of the Middleware based Quality Management for
Context-aware Pervasive Applications. In: 2011 International Conference on Computer
and Management (May 2011)

13. Zheng, D., Yan, H., Wang, J.: Research of the QoC-aware Service Selection for
Middleware based Pervasive Applications. In: The 2nd International Conference on
Biomedical Engineering and Computer Science (April 2011)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 231–243, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Virtual File System for Streaming Loading
of Virtual Software on Windows NT

Yabing Cui, Chunming Hu, Tianyu Wo, and Hanwen Wang

School of Computer Science and Engineering,
Beihang University, 100191, China

{cuiyb,hucm,woty,wanghw}@act.buaa.edu.cn

Abstract. With the cloud computing and virtualization technology popularizing
and developing, the Software as a Service (SaaS), has become an innovative
software delivery model. In this environment, if the virtual software runs in
traditional way, that is to start up after completely downloaded, it will be time-
consuming and greatly influence the users’ experience. However, the streaming
execution mode will enable the virtual software to start up while downloading.
According to this conception, we design and implement a virtual file system for
streaming delivery of software. The experimental results show that the first
startup times of virtualized software have reduced by 20% to 60% and the
users’ experience has been improved effectively.

1 Introduction

In recent years, with the cloud computing and virtualization technology popularizing
and developing, the Software as a Service (SaaS)[1], sometimes referred to as "on-
demand software", largely enabled by the Internet, has become an innovative software
delivery model. In contrast to traditional "on-premises" software that is deployed at
the customer’s premise, SaaS Software is run at a SaaS hosting provider and can be
accessed over a network by the software user.

SaaS offers a set of advantages for software customers: SaaS simplifies the
software access, reduces the Total Cost of Ownership (TCO) and opens up new
payment models and revenue streams. Users will no longer need to build and maintain
large data centers and hosting a big amount of middleware to run applications. Instead
of licensing, maintenance and operational costs that occur in the traditional on-
premise model a SaaS user pays only for the usage of the software for example in a
pay-per-usage model. SaaS also provides a more stable and reliable computer
experience for the end user. It is centralized, and an administrator installs, trains and
maintains the applications over time.

The vSaaS system[2][3][4], illustrated in Figure 1, is a virtualization-based SaaS
enabling architecture we implemented for cloud computing. In this system, virtualized
applications are encapsulated and stored in vSaaS provider. When a user needs to run
some software, the system will download the required data form vSaaS provider to
local machine. The whole process is transparent to the user, just like the software has
been installed.

232 Y. Cui et al.

Fig. 1. User and Provider of vSaaS

Traditionally, an application can’t be started and run without error unless it has
been entirely stored on local disk. This means that the whole software must be
downloaded before it can be run. So it is with virtualized software. Downloading the
entire program delays its execution. In other words, application load time (the amount
of time from when the application is selected to download to when the application can
be executed) is longer than necessary.

To minimize the application load time, the software should be executable while
downloading. Software streaming enables the overlapping of transmission (download)
and execution of software. According to this conception, we design and implement a
virtual file system for streaming delivery of virtual software. This system runs under
the virtual execution layer of iVIC vSaaS, provides support for SaaS delivery model
very well.

The rest of this paper is structured as follows. At first, we introduce key
technologies related to our system in Section 2. Then, the design and implementation
of the virtual file system is described in Section 3. In Section 4 we present some
experiments to evaluate the function and performance of the system. Related work is
detailed in Section 5. Finally, we conclude the paper and introduce the future work in
Section 6.

2 Key Technologies

2.1 Application-Level On-Demand Streaming Loading

There are two prerequisites to achieve on-demand streaming loading on application
level: encapsulation and interception.

Encapsulation is to encapsulate all data and files that are needed when an
application runs inside one file, include executable files, configuration files, register
data, and so on. Without encapsulation, we can implement streaming loading just on
file-level, but can’t application-level.

Virtual CD-ROM/hard disk image file is a well-designed encapsulation format, but
it can’t support streaming loading. Though we can enable it by create log files to
maintain data blocks, it will lead to new problems on data synchronization and file

 A Virtual File System for Streaming Loading of Virtual Software on Windows NT 233

management. So, to design a new format which itself support streaming loading
alongside encapsulation must be a more effective way.

Interception is to intercept file access, data loading and other related operations in
order to get data or information that is not downloaded through network in a timely
manner. By intercepting the request before it reaches its intended target, we can
extend or replace functionality provided by the original target of the request.

In user mode, we can achieve interception by API hook, but it will hook a large
number of APIs, and a global hook will hurt system performance and cause conflicts
with other applications. So, we choose file system in kernel mode. As all file
operations form upper layer are sent to the file system, we can receive all operations
directly. At the same time, we can parse the encapsulation file by the file system,
which can respond rapidly to file information queries and other operations.

Fig. 2. Schematic Diagram of Streaming Loading

Virtual file system processes file operation requests and judges whether the
required data has been downloaded to the local. If true, reads data directly, otherwise
downloads data immediately, as illustrated in Figure 2.

2.2 Network File System Driver Development on Windows NT

As we all know, Windows operating system is closed source. This means that the
development of its patch program - driver is more difficult than that in user mode. We
should not only consider the underlying calls, but also be responsible for the needs of
the upper. Because source is closed, and the development document is very brief,
many data structures only can be clarified through reverse engineering.

File system driver runs based on CD-ROM/hard disk driver (include virtual CD-
ROM/hard disk driver). It is responsible for all file operations, such as opening,
closing, and locking a file, and calls the CD-ROM/hard disk driver to read or write
data. Compared with other drivers, file system driver is particularly complex, for its
dispatch functions are very complicated and difficult to develop.

234 Y. Cui et al.

Fig. 3. Windows NT Driver Hierarchy Diagram

There are no well defined network functions can be called directly in kernel mode.
We can only achieve network communications by calling TDI driver or even lower-
level driver with self-constructed IRP (I/O Request Packet). Furthermore, in kernel
mode there are only some underlying protocols (IP, TCP, and UDP), higher-level
communication protocols must be completed by the developers themselves.

3 Design and Implementation

From the perspective of file system, it is an important part of operating system that is
responsible for computer file data storage, retrieve, update and management on
storage devices. File system consists of three parts: files to be managed, data
structures for management and software to implement management.

Fig. 4. Virtual File System Architecture Diagram

 A Virtual File System for Streaming Loading of Virtual Software on Windows NT 235

From the point view of software virtualization, if we want to implement streaming
loading on application level, we should first encapsulate the application, and then
deliver it in software repository. When client machine starts up some applications,
virtual file system will receive requests. It checks the local cache, if the request data
or information has been downloaded, returns directly, otherwise, gets related data
through network, and makes the program run successfully.

Based on the above two viewpoints, we divide our virtual file system into three
modules: virtual application encapsulator, virtual file system driver and software
repository, as shown in Figure 4.

3.1 Virtual Application Encapsulator

Virtual application encapsulator is a key component which packages an application
for virtualization and streaming. It should be run in a separate virtual machine or
physical machine. Virtualized resources include executable files, specific DLL files,
related data such as user profile information, and configuration repositories like
registry hives and INI files. The process of encapsulation does not change the
application itself.

Fig. 5. Encapsulation Format

236 Y. Cui et al.

Figure 5 shows the encapsulation file format designed for streaming. It contains
four data structures: HEADER, BITMAP, DATA and DIRECTORY. Each section is
started by the same Common Header, not only can be used for distinguishing the type
of that section, but also have benefits to future extensions.

The members bitmap_offset, file_offset and root_directory_recod in HEADER
section hold the offsets of other sections BITMAP, DATA and DIRECTORY
respectively. The members size and block_size represent the total size of DATA
section and the block size for streaming loading; the member bitmap_len represents
the bit length of BITMAP section.

BITMAP data, which is one of the most important metadata to support streaming
loading, is used for marking whether a block has been already downloaded to the
local. Blocks that have been downloaded will be marked as COMPLETED.

DIRECTORY section is used for maintaining the directory structure of all files that
are encapsulated. It contains lots of directory entries. If an entry represents a file, the
member size simply indicates the size of the file; if an entry represents a folder, the
size indicates the number of sub-entries. When traversing in this folder, if the name
does not match, we can achieve rapid traverse by skipping sub-entries.

The actual data of encapsulated files is stored in DATA section. The offset and
length of each file are stored in the corresponding directory entry in DIRECTORY
section. All the file data is arranged in a line, and is logically divided into continuous
blocks. A block is a basic unit for streaming loading, the size of which is the
block_size in HEADER section.

Fig. 6. Blocks of DATA Section

3.2 Virtual File System Driver

The virtual file system driver which is support virtual process directly is run in
Windows NT client machine. Its main features are on-demand streaming loading and
avoiding re-download by caching.

When a virtual application is to be started or loaded, virtual file system receives
requests, and repeats the following steps:

1) Check whether the corresponding encapsulation file has been downloaded in
local cache directory. If no, continue with step 2; if yes, jump to step 4.

2) Check whether there is corresponding encapsulation file in the software
repository. If yes, continue with step 3; if no, return error message.

3) Create encapsulation file in cache directory, download file header through
network, and save it in the cache file.

4) Check whether the required data has been downloaded and saved. If yes, read
data, fill buffer, and return; if no, continue to step 5.

 A Virtual File System for Streaming Loading of Virtual Software on Windows NT 237

Fig. 7. Data Flow of Virtual File System Driver

5) Get required data through network, save it in the cache file, set corresponding
BITMAP flag to COMPLETED, fill buffer correctly, and return.

According to different functions, the virtual file system driver is divided into three
layers which are described as follows.

File System Interface Layer

This layer is responsible for parsing and forwarding IRPs, maintaining information of
devices, and managing system resources.

All file operations, such as open, close, query, lock and map, are sent to interface
layer by I/O manager. Interface layer checks parameters for validity, calls appropriate
functions of parsing layer to process IRPs, and if some IRPs can’t be completed
successfully, fail it or forward it.

Encapsulation File Parsing Layer

The main function of this layer is to parse encapsulation file, and return required data
or information in correct format according to the parameters passed by interface layer.

There are two important data structures in this layer: FCB (File Control Block) and
CCB (Context Control Block). Because this layer is the critical layer related to the
overhead caused by file system virtualization, the optimization by the two structures
is essential for improving the speed of whole system.

FCB is stored in the form of circular linked list, and used for caching information
related to virtual files, such as resource, time, size, offset, and sharing control flag.
The main purpose is to provide the system with control data, manage file sharing
access, and speed up information delivery speed.

When a file needs to be opened, system will check FCB list first. If there is no
corresponding FCB, then the system tries to create a new one; otherwise the system
will check the sharing control information and determine whether it can open the file.

238 Y. Cui et al.

If the file is opened successfully, the reference count of FCB will be increased. Then,
when some information is needed, it will be read form FCB directly. When the file is
being closed, the reference count of FCB must be decreased. If the reference count
equals 0, which means the file has not been used, so the system should remove the
corresponding FCB from linked list and free up space.

CCB is used for caching context-sensitive information, such as file handle, data
offset, and search pattern. Sometimes, some operations can’t be completed in one
time, for example, enumerating folders, which requires that certain information is
stored in the CCB. These operations are context-sensitive; the corresponding CCB is
created when the file handle is opened, stored in the file’s object, and released when
the file handle is closed.

Encapsulation File Download Layer

This layer is the actual implementation of streaming loading that get required data
from software repository in streams according to parsing layer’s demand.

This layer is optimized for speed by SCB (Stream Control Block). The parameters
sent from parsing layer are in the form of <File, Offset, Length> which represents
reading Length bytes of data from Offset in File. Download layer check first whether
there is a SCB corresponding to File in the SCB list. If none, the system tries to create
a new one; if finding or creating FCB successfully, the system will get BITMAP by
SCB, and check the corresponding flag bits in BITMAP. If all the bits are
COMPLETED, reads data and returns; otherwise downloads data immediately
through network and modify the BITMAP.

3.3 Software Repository

Software repository is essentially software delivery server, and in principle can be
built by any protocols supporting streaming. Here we adopt the HTTP protocol, using
IIS or Apache to set up software repository. Speed optimization can be considered by
using different protocols in the future.

4 Experiments

To evaluate the functionality and performance of the virtual file system, we conduct
series of experiments. Our experiments are based on two PC machines, each with 1
Intel Core2 2.83GHZ CPU, 2GB RAM and 1Gb/s network card. We set up software
repository by Microsoft IIS on server machine and install Windows XP SP2 operating
system on client machine.

4.1 Function Evaluation

We first prepared 12 programs to test dozens of file operation APIs, such as
CreateFile, CloseFile, SetFilePointer, FindFirstFile and FindNextFile. After verifying

 A Virtual File System for Streaming Loading of Virtual Software on Windows NT 239

Fig. 8. Directory in Virtual Drive

the returned results are all correct, we launch software running experiments in DOS
Command Line and File Explorer.

Figure 8 shows the directory structure of the folder "Eclipse" in the virtual drive
"F:". As soon as the command "eclipse.exe" is inputted, startup screen appears
quickly, which indicates that the underlying driver has downloaded related data
timely while the data is being required. Compared with starting up after total
downloaded mode, the users’ experience has been improved effectively.

4.2 Function Evaluation

To evaluate the performance of the virtual file system, we select 4 typical software
as sample programs whose size, function and type are all different: Msn Messager
(24MB), Photoshop (43MB), Eclipse (94MB), Adobe Reader (143MB).

At first, we assess the impact of different block sizes on streaming starting. In the
Figure 9, taking Adobe Reader as an example, horizontal axis represents the changes
in the block size, left vertical axis represents the software start-up time, and right
vertical axis represents initial launch bytes percentage of total software.

We can see that the software start-up time declines rapidly at first, with the block
size changes from small to large, and then rises slowly. The smaller the block size is
set, the more frequently access to network will be taken, resulting in the cost of time;
but if the block size is set too large, much data unrelated to startup will be
downloaded. We can imagine that if the block size is equal to the total size of the
whole software, the streaming loading mode will degenerate into full download mode,
that is to say the software can’t be started until all the data has been downloaded,
which is intolerable for large-scale software.

240 Y. Cui et al.

Adobe Reader

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32 64 128 256

Block Size (KB)

T
im

e(
m

s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
at

a
P

er
ce

nt
ag

e(
%

)

Start-up Time

Downloaded Data

Percentage

Fig. 9. Software Start-up Times at Different Block Size

The following experiments are carried out with the block size of 16KB. We
measured the startup time of the four software referred above in streaming loading
mode, and compared with full download mode. As shown in Figure 10, ts represents
streaming startup time, ta represents full download startup time, the startup time of
Adobe Reader is significantly reduced by 67.6%, but Photoshop is only reduced by
20.4%, that is because Photoshop itself starts up a little slower, the change in the data
loading time affects the entire startup time relatively small.

Fig. 10. Start-up Times in Streaming Loading Mode

 A Virtual File System for Streaming Loading of Virtual Software on Windows NT 241

The introduction of virtualization will bring performance overhead and increase
execution latency. As shown in Figure 11, td represents original launch time and tc
represents virtualized launch time, we can see that the delta of td and tc is at 0.1s level,
which is acceptable in the real user scenarios.

Fig. 11. Performance Cost of Virtualization

Through the above analysis, the virtual file system for streaming loading reduces
the startup time of virtual software effectively and makes virtual process run more
smoothly. The experiment also shows that network latency is still a bottleneck
restricting programs from starting up quickly. In the future, further optimizations for
download speed can be conducted.

5 Related Work

App-V[6] (Microsoft Application Virtualization, formerly Microsoft SoftGrid) is an
application virtualization and application streaming solution from Microsoft. App-V
allows applications to be deployed in real-time to any client from a virtual application
server. It removes the need for local installation of the applications. Instead, only the
App-v client needs to be installed on the client machines. All application data is
permanently stored on the virtual application server. Whichever software is needed is
either streamed or locally cached from the application server on demand and run
locally. But the sequencer of App-V has not been further optimized for packaging
operation, and because of the reliance on many Windows components, App-V is
difficult to be deployed and is not suitable for migration of personal computing
environment.

242 Y. Cui et al.

Symantec Workspace Streaming[7] (SWS, formerly AppStream) is an application
streaming solution that enables on-demand application provisioning, offline cache,
license recovery and instant application upgrades. Workspace Streaming increases
end user productivity with controlled, guaranteed access to any Windows based
applications from any location at any time, including remote and mobile users. But
Workspace Streaming only achieves streaming loading on file-level; it doesn’t need to
package files, let alone virtual file system; data loading process is coupled tightly with
software execution environment, difficult to be designed, maintained and optimized.

VMware ThinApp[9] (formerly Thinstall[8]) is an application virtualization and
portable application creator suite by VMware that can package conventional
applications so that they become portable applications. ThinApp is able to execute
applications without them being installed in the traditional sense by virtualizing
resources such as environment variables, files and Windows Registry keys. The
virtual environment presented to the client is a merged view of the underlying
physical and virtual resources, thereby allowing the virtualization layer to fool the
application into thinking that it is running as if it were fully installed. Because every
executable file packaged by ThinApp contains a lightweight virtual machine and
many useless files and data, lots of storage space and computing resource are wasted.
Moreover, ThinApp is a compact solution and doesn’t provide any support for
software delivery and streaming loading.

6 Conclusion and Future Work

In this paper, we present a virtual file system for streaming loading of virtual software
on Windows NT, and describe the design and implementation of the system. We have
deployed the system in iVIC vSaaS environment and performed a set of experiments.
The results show that the system is well designed to achieve the goal that enables
virtual software to start up while downloading, avoids full download before virtual
software can be run, accelerates the launch process, smoothes the running process,
and improves the users’ experience significantly.

As the network latency is still the bottleneck causing the system time-consuming,
our on-going work is focusing on adding prefetch function in the driver or attaching
push function to software repository, accelerating data loading and delivering,
increasing the throughput of the system, and further improving the users’ experience.

Acknowledgments. This work is partially supported by grants from China 973
Fundamental R&D Program (No. 2011CB302602) and Natural Science Foundation of
China (No. 91018004, 90818028). We would like to thank the anonymous reviewers
for their thoughtful comments and suggestions.

References

1. Troni, F., Silver, M.A.: Use Processes and Tools to Reduce TCO for PCs, Update, Gartner
Group (2005-2006)

2. Ma, D.: The Business Model of "Software As A Service". In: 2007 IEEE International
Conference on Services Computing (SCC 2007), pp. 701–70 (July 2007)

 A Virtual File System for Streaming Loading of Virtual Software on Windows NT 243

3. Huai, J., Li, Q., Hu, C.: CIVIC: A Hypervisor Based Virtual Computing Environment. In:
Proceedings of the 2007 International Conference on Parallel Processing Workshops
(September 2007)

4. Zhong, L., Wo, T., Li, J., Li, B.: A Virtualization-based SaaS Enabling Architecture for
Cloud Computing. In: ICAS 2010 (March 2010)

5. Zhong, L., Wo, T., Li, J., Li, B.: vSaaS: A Virtual Software as a Service Architecture for
Cloud Computing Environment. e-Science (December 2009)

6. App-V (November 3, 2010), http://www.microsoft.com/windows/
enterprise/products/mdop/app-v.aspx

7. Symantec Workspace Streaming, http://www.symantec.com/en/hk/business/
workspace-streaming

8. Thinstall, Application virtualization: A technical overview of the thinstall application
virtualization platform, http://www.creekpointe.com/helpdesk/pdf/
Thinstall_ApplicVirtualization.pdf

9. VMware ThinApp for Application Virtualization, http://www.vmware.com/
products/thinapp/overview.html

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 244–253, 2012.
© Springer-Verlag Berlin Heidelberg 2012

TBF: A High-Efficient Query Mechanism
in De-duplication Backup System

Bin Zhou1,2, Hai Jin1, Xia Xie1, and PingPeng Yuan1

1 Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn
2 School of Computer Science and Technology

South-Central University for Nationalities, Wuhan, China

Abstract. For the big data, the fingerprints of the data chunks are very huge and
cannot be stored in the memory completely. Accordingly, a new query
mechanism namely Two-stage Bloom Filter mechanism is proposed. First, each
bit of the second grade bloom filter represents the chunks having the identical
fingerprints which reducing the rate of false positives. Second, a two-
dimensional list is created corresponding to the two grade bloom filter to gather
the absolute addresses of the data chunks with the identical fingerprints. Finally,
we suggest a new hash function class with the strong global random
characteristic. Two-stage Bloom Filter decreases the number of accessing disks,
improves the speed of detecting the redundant data chunks, and reduces the rate
of false positive. Our experiments indicate that Two-stage Bloom Filter reduces
about 30~40% storage accessing of false positive with the same length of the
first grade Bloom Filter.

Keywords: Two-stage Bloom Filter, Standard Bloom Filter, De-duplication,
False positive, Fingerprint.

1 Introduction

In the information explosion era, a great deal of information and data will be
generated every day. According to the International Data Corporation (IDC)
statistics, the amount of data of the whole world was just 180EB in 2006, and this
figure increased to 1800EB in 2011. Recent IDC reports predict that this figure will
arrive to 8000EB (almost 8ZB) in 2015. It sounds good to store all the data. The fact
is that IT budget becomes seriously critical. The growing rate of the annual input is
just 3 percent [1]. A wide gap comes into being between the demand of the
information storage and the affordability.

How should we respond to and make use of the massive information? Recently,
data de-duplication, a hot emerging technology, has received a broad attention from
both academia and industry. Its basic thought is to divide the file data into different

 TBF: A High-Efficient Query Mechanism in De-duplication Backup System 245

chunks and the same chunks in the saving system only save one copy, while the
others, referenced to by a pointer are pointing to the array position of the chunks. To
the storage system for big data, the number of the chunks is very huge especially in
the case of fine-grain. It is a key to improve the performance of the system by judging
whether a new data chunk can be stored in the storage system as quickly as possible.

The information retrieval comes in many forms, such as dynamic array, database,
RB/B/B+/B* tree and hash table. The hash retrieval is famous for its O(1)
performance. It seems to be a good solution to adopt hash table to save the meta-data
index information [2-3], because the overhead for querying the hash table is a
constant theoretically. In fact, when the data scale becomes big, it is unable to save
the index information completely in the memory and we need to carry on an IO
operation to access the disk in the query, which is a consuming process. The key is
how to avoid the IO operation to accelerate the query speed of data fingerprint.

In this paper, the contributions of our work are as follows: First, we introduce the
bloom filter into our de-duplication storage system. Because of the shortcoming of the
false positive rate in the original bloom filter, we present a new mechanism named
Two-stage Bloom Filter (TBF). Second, a two-dimensional list is created
corresponding to the two grade bloom filter. Finally, since the fingerprints made by
the MD5 algorithm have the characteristics of being random, a new hash function
class with the strong global random character comes out. Comparing with the existing
algorithms of detecting the redundant data chunks, TBF decreases the number of
accessing disks, improves the speed of detecting the redundant data chunks, and
reduces the rate of false positives. All these measures improve the overall
performance of system.

The following paper reads as follows. Section 2 introduces related works. Section 3
describes the organization of de-duplication storage system and section 4 studies two-
stage bloom filter mechanism in detail. In section 5, various experiments are
performed to measure the improvement of the rate of false positives based on the
TBF. At last, section 6 draws the conclusion.

2 Related Works

It is a serious concern to find out more redundancy data in the data de-duplication
system. For the data quantitative is huge, we can not compare the chunks directly, but
make use of hash algorithm (MD5 or SHA-1) to compute a hash value (data
fingerprint) of each chunk and deposit this fingerprint to a data structure. We compute
its data fingerprint first when the new chunk coming, and then we compare it with the
existing ones. If this fingerprint has been in the set, an index is stored; otherwise, the
new chunk and fingerprint all should be stored in the system.

It is great to meet the system performance by using the fingerprints that produced
by the MD5 algorithms when the data quantity is not big. However, it will generate
many other factors to affect the performance of the system while the data quantity
becomes huge.

The most important factor affecting the system performance is the lack of the
memory. It should compare all the saved fingerprints to make sure that a chunk has
been existed, and an I/O operation to query the fingerprints is already inevitable when

246 B. Zhou et al.

the contents of hash table exceed far beyond the memory. This operation consumes so
much time that it will affect the overall performance of system greatly.

To tackle these problems, Lillibridge et al. [4] adopted different methods, such as
sampling, sparse index and chunk locality. Thewl et al. [5] introduced the B+ tree into
the data de-duplication system. Bhagwat et al. [6] then proposed to divide the chunk
indices into two levels.

In some intuitive sense, the shorter the chunk, the higher the opportunity of
discovering the redundancy data, as while as the whole metadata is also bigger.
Bobbarjung et al. [3] tried to minimize the length of the chunk as 1KB or so, as while
as making a set of chunks as a unit to deal with. Kruus et al. [7] proposed a kind of
two-stage chunking algorithm that re-chunked transitional and non-duplicated big
CDC chunks into small CDC chunks. It could discover more redundancy chunks
comparing with the basic CDC algorithm and obviously enlarged the amount of
metadata. However, a new kind of algorithm was proposed [8] according to the
chunks appearing frequency to decide whether it further divided the CDC chunks, and
it could decline the amount of metadata to a certain degree and improved the
performance of de-duplication.

Zhu et al. [2] introduced the bloom filter into document backup system, which also
made use of the bloom filter to create a summary vector in the memory while backing
up the data that could query the memory vector directly and knew whether the data
chunks had already been in, while searching the data fingerprints.

However, some literature [9-11] also introduced the bloom filter, the efficient
memory data structure into the redundancy data detection and reduced the number of
the IO operations to judge whether the chunk had been in the storage system, but all
of them had seldom deeply studied the problem of the false positive.

For keeping a low rate of false positive, the availability of RAM space of the
machine decides the length of the bloom filter. For the big datasets, the RAM space is
not sufficient. Debnath et al. [12] advocated the flash memory to serve as suitable
medium for storing bloom filters and Bender et al. [13] suggested the Cascade Filter
and Guo et al.[14] proposed dynamic Bloom filters to overcome this shortcoming,
respectively.

In our system, we present the solution of the two-stage bloom filter mechanism
making use of the second grade bloom filter on the base of the algorithm of the
standard bloom filter. It reduces the number of IO operation directly to improve the
throughput by decreasing the false positive rate as far as possible.

3 Data Fingerprint Query Based on the TBF

In our system, the large-scale data is the object. Under the assumption that we need to
store the data about 2n TB, each chunk is about 23 KB and it will have about 2n-3*109

unique chunks. If the index of each chunk is 16 Bytes, it needs about 2n+1 GB space to
store them. The storage space increases exponentially when n increases. Not all these
indices can be stored in the memory and the frequent disk IO operations are
unavoidable. Supposed that the average time of one IO accessing is about 4ms, it can

 TBF: A High-Efficient Query Mechanism in De-duplication Backup System 247

retrieve 250 chunks per second, which means that the throughput of the system is
about 2MB/s. This is not acceptable.

To avoid accessing the disks and keep the query time within the limit, it is the
prerequisite to simplify the index data and keep them in the memory fully.

3.1 Standard Bloom Filter (SBF) Algorithm

The original bloom filter composed of a large bit vector BV and k hash functions is an
efficient and simplified memory data structure, which could realize the efficient
query. Compared with the traditional tree query algorithm and hash query algorithm,
the space that the bloom filter needs shows no correlation with the size of the element
needed by query, but it only shows a correlation with the numbers of the functions
mapping the element to the bit vector, which will economize storage space greatly.

In the initial state, the bloom filter is a vector whose length is m, with the initial
value of 0. The set S includes n elements (data fingerprint) {x1, x2 …, xn}, there are k
independent hash functions hi(x) in the Bloom Filter, which map the each fingerprint
to (0, 1…, m-1), respectively. The value of hi(xj) (1≤i≤k) will be calculated if a data
fingerprint xj is inserted into the set S. If the hash value is s, the counterpoint array
position should be set to 1.

By applying k hash functions on the y data fingerprint respectively, it can be
concluded that the fingerprint is not in the set if there is one or more 0s in the
corresponding array positions. However, it can not be concluded that the data
fingerprint belongs to the set if the bits at all these k array positions are set to 1, as
false positive may appear at this time [15], which can be stated as the formula:

kmkn

kkn

e
m

FP)1(
1

11 /−−≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=

(1)

In the formula, m is the length of the vector BV, namely the length of bloom filter;
while n is the number of the set elements, that is the number of chunks and k is the
number of hash functions.

It is known from the above analysis that for the given n and m, they need more
hash functions, that is to say, to increase the value of k, to ensure the enough low
probability of the false positive, which will directly lead to the low performance of
adding and querying operations for the data fingerprints.

3.2 Principle of TBF Algorithm

The rate of false positive can not be decreased by the increasing value of k
continuously. For k, the FP has a minimum value as FPmin=0.6185m/n [15]. In order to
minimize the value of FP, we enlarge the value of m/n at this time. It sets up larger
bloom filter for the given element amount n, at the price of enlarging the memory
occupation.

Inspired by the multidimensional bloom filter suggested by Guo et al. [16], we
consider adopting TBF mechanism by two bloom filters in series to reduce the rate of
false positive.

248 B. Zhou et al.

Because each hash function of the SBF is independent and has no contact with each
other the values of the hash function for the different elements produce collision easily.
However, SBF takes no measure to deal with the above-mentioned situation. For
example, when the same value of the different hash function for the other element
generated after the array position had been set, it just did nothing but simply queried.

Fig.1 shows us the principle of the TBF mechanism. All values of the hash
functions for per element are incorporated into one value, namely the whole
characteristic of the element. Moreover, the second grade bloom filter will show the
characteristic of the value. Therefore, the integrated information leads to the falling
rate of the collision produced by the single hash function value reducing the rate of the
false positive for the overall system.

Given the set of the data fingerprints is S={x1, x2 …, xn}, the TBF is composed of
two bloom filters in series. The length of the first filter is m, which represents the
values of the fingerprints generated by the set of the k hash functions:

elementi_addrj=h1j(xi) {0, 1…, m-1}(1≤i≤n, 1≤j≤k)
elementi_addrj represents the jth hash value for the ith element.
The length of the second filter is n’, which represents the integrated information of

k hash functions for each element. The hash function is shown as below:

h2i(x)=elementi_addr1⊕elementi_addr2⊕elementi_addr3⊕…⊕elementi_addrk;
(1≤i≤n’) (2)

The second bloom filter address comprises of the value of XOR operation, which
represents the integrity of the hash values of each element of the first bloom filter.

The initial values of the two grade Bloom Filters are set to 0.

Fig. 1. Principle of the TBF Fig. 2. Absolute addresses list for initial data chunks

When a new partitioned data chunk inserted, its fingerprint is hashed k times, and
the corresponding places in the first grade Bloom Filter are set to 1. Then the value of
the XOR according to the formula (2) is got, and the corresponding place in the
second Bloom Filter is set to 1. This place of the second grade Bloom Filter has two
meanings. The first is that it represents the values of the k hash functions that are
independent in the first grade Bloom Filter as an entirety. The second is that this place

 TBF: A High-Efficient Query Mechanism in De-duplication Backup System 249

corresponds to the data chunks, which have the same fingerprint. It can link the
absolute addresses of the data chunks having the same fingerprint together. Once the
hash collision occurs, the content of the data chunk is got in time of need directly,
resolving the defects that it cannot get the initial content from the map value of the
hash function.

It needs to judge whether the chunk has been in the storage system when the
sequent partitioned chunks come. If the false positive occurs through the query of the
first grade Bloom Filter, we go directly to the query of the second grade Bloom Filter.
If the correspond place of the second Bloom Filter is set to 0, it can tell that the data
chunk has not been stored and there is no need to make a comparison with the original
chunk content bit by bit. Thus, it decreases the false positive rate, reduces the times of
IO operations and improves the throughput and performance of the system.

We build a two-dimension link list to save absolute address of the data chunks
shown in Fig.2. The length of the list is the same as that of the second grade bloom
filter, and the initial values are null. Each array position of the second grade bloom
filter corresponds to a series of absolute addresses. The system will record the
absolute address of a new data chunk when the data chunk is inserted as well as the
value of the corresponding array position of the second grade bloom filter is set to 1.

3.3 Performance Analysis for TBF

Theorem. The rate of false positive for TBF algorithm is less than that of the SBF
algorithm.

In this paper, we prove the following: Let the rate of false positive for standard
bloom filter algorithm be FP1, the length of bloom filter is m, the number of elements
is n, and the number of hash functions is k. The rate of false positive for the second
grade is FP2, and the length of the second bloom filter is m’, and the number of
elements is n’, and the number of hash functions is k’. The rate of false positive for
the TBF algorithm is FP.

FP1= ()kmkne /1 −− (3)

For just one hash function is set in the second grade bloom filter, namely k’=1, the
rate of the false positive for the second grade is as follows:

FP2=
() ''/''1

kmnke−− = ()'/'1 mne−− (4)

The two bloom filters are in series, so the overall rate of false positive is:

FP=FP1*FP2=
()kmkne /1 −− * ()'/'1 mne−− (5)

Because n’<m’, then ()'/'1 mne−− <1, so FP<FP1.

250 B. Zhou et al.

4 Experiments

A prototype system is designed. We test the improvement of performance by adopting
the TBF mechanism that helps to avoid the disk bottleneck, and to analyze the
impacts of different number of hash functions and different lengths of the bloom
filters.

4.1 Experiment Setup

Our experiment is performed on two nodes configured with 2-way quad-core Xeon
E5405 2GHz CPUs and 8GB DDR RAM. The cache capacity for each core is
6144KB. The data files (chunks) are stored on RAID 0 with two disks (Seagate
Barracuda 7200RPM, 1TB each). Each node has an Intel 80003ES2LAN gigabit
network interface card (NIC) and is connected via switched gigabit Ethernet. One
node is the server and the other is the mirror.

4.2 Hash Functions Class

The most crucial factor is to decrease the collisions of hash functions in TBF, and
then the hash functions should have the outstanding global distributing characteristics.

In the hash functions of H3 defined by Carter et al. [17-18], each H3 hash function
is corresponding to a 0, 1 function matrix. It has the unusual global distribution, but
consuming excessive CPU resource.

Considering the rate of collision for the data fingerprints is less by MD5 algorithm,
new hash functions should be created on the base of fingerprints.

Fig. 3. The first grade index hash Fig. 4. The second grade index hash

The First Grade Index Hash. The length of fingerprint created by MD5 is 128 bits,
and let length of the first grade bloom filter be 2n bits, shown in Fig.3. We get the first
7 bits of the fingerprint to gain p1, whose value range is from 0 to 127. Then p1
points to the array position of the fingerprint, and n bits should be got. This value of n
bits is the hash value, who will point to the absolute address of the first bloom filter.

The Second Grade Index Hash. The second grade index hash is an improvement
upon the first grade index hash. It gets the content of the first 7 bits p1 as a pointer to
point to the array position of the fingerprint, and then gets the content of the next 7
bits p2 as the second grade pointer pointing to the next array position. At last, the n
bits should be got as the pointer p. In addition, p is the value of the hash function and
it will point to the array position of the first grade bloom filter, shown in Fig.4.

 TBF: A High-Efficient Query Mechanism in De-duplication Backup System 251

Furthermore, both the first and the second grade index hash have a shortcoming
that when it gets the pointer p1 or p2, namely the content of the 7 bits of the
fingerprint, the state will follow: 128-p1<n or 128-p2<n. It should link the head and
tail of the fingerprints to form a loop.

4.3 Improvement of Performance for TBF

In these experiments, we mainly study the influence of the selection of the various
number of hash functions to the throughput and the number of storage accessing of
the false positive. In the experiments, the data is about 1TB, and the number of the
data chunks, namely n, is 114,845,208.

Fig. 5. Number of storage accessing of the false positive

Fig. 6. Throughput

For 1TB data, the total number of false positive storage accessing is no more than
250,000 after the filtering by the first grade Bloom Filter. While the memory space
occupied by the second grade Bloom Filter is negligible. Fig.5 illustrates that TBF
reduces about 30~40% storage accessing of false positive with the same length of the
first grade Bloom Filter. In addition, it indicates that the performance-to-price is the
optimal while the k is 8 and the length of the first Bloom Filter is 384MB. TBF has a
limited capability to decrease the rate of the accessing of the false positive when
increasing the numbers of the function or the length of the first grade Bloom Filter.

Fig.6 shows that the throughput achieves 195MB/s when k is 8 and the length of
the first grade Bloom Filter is 384MB by adopting TBL. The throughput will decrease
if k is increased. However when the length of first grade Bloom Filter increases, it is
not obvious to observe the increase of the throughput.

252 B. Zhou et al.

When k≈(m/n)*ln2, the performance-to-price is optimized from Fig. 5 and Fig .6
which is in coincidence with the result of [18].

5 Conclusions

It is a key problem in the de-duplication backup system to judge whether a new
partitioned data segment has been in the storage system as quickly as possible. In this
paper, a new mechanism TBF is proposed.

The false positive existed in the comparison algorithm of the traditional data
fingerprints. The result was decided by the accessing of the disk through IO
operations in most cases. However, introducing the TBF mechanism is not simply to
add a new bloom filter on the SBF. The second grade bloom filter represents the
entirety of the first bloom filter that each bit of the second grade bloom filter
representing the chunks that have the identical fingerprints. It also introduces a two-
dimensional list, which gathers the absolute addresses of the data chunks having the
same fingerprints in a list. By this characteristic, the fingerprints need not to be stored
completely. It can judge whether the new input data chunk has been stored by
traversing the list when meeting the identical fingerprints. A new hash function class
based on the MD5 finds its way to solve the problem of collisions for the fingerprints.

The experiments reveal that if the system stores the fingerprints directly. Owing to
the large number of the fingerprints, they cannot be stored in the memory and then
frequent accessing of the back storage system is unavoidable in the query process. By
adopting the TBF mechanism, it saves nearly 65% of the memory space when the m/n
is 24 although in the price of a second bloom filter space and an absolute address list
space. Moreover, the back storage system is avoided being accessed and greatly
reduces the operation expenses.

Furthermore, comparing with the initial bloom filter, the TBF algorithm represents
the multiple separate hash functions of the data fingerprints as an entirety to achieve
smaller rate of false positive. Its mechanism has the following merit standing out
obviously: FP is about 30~40% of FP1, which is about 60~70% of disk IO accessing
operations being reduced when the value of m’/n’ is 2.

The above measures reduce the query time and an additional space cost has little
effect on the system.

References

1. The International Data Corporation website, http://www.idc.com
2. Zhu, B., Li, K., Patterson, H.: Avoiding the Disk Bottleneck in the Data Domain

Deduplication File System. In: Proceedings of 6th USENIX Conference on File and
Storage Technologies, pp. 1–14. USENIX Association, San Jose (2008)

3. Bobbarjung, D.R., Jaqannathan, S., Dubnicki, C.: Improving Duplicate Elimination in
Storage Systems. ACM Transactions on Storage 2, 424–448 (2006)

4. Lillibridge, M.: Sparse Indexing, Large Scale, Inline Deduplication Using Sampling and
Locality. In: Proceedings of 7th USENIX Conference on File and Storage Technologies,
pp. 111–123. USENIX Association, San Francisco (2009)

 TBF: A High-Efficient Query Mechanism in De-duplication Backup System 253

5. Thewl, T.T., Thein, N.L.: An Efficient Indexing Mechanism for Data Deduplication. In:
Proceedings of 2009 International Conference on the Current Trends in Information
Technology, pp. 1–5. IEEE Press, Dubai (2009)

6. Bhagwat, D., Eshghi, K., Long, D.D.E., Lillibridge, M.: Extreme Binning: Scalable,
Parallel Deduplication for Chunk-based File Backup. In: Proceedings of 17th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 1–9. IEEE Press, London (2009)

7. Kruus, E., Ungureanu, C., Dubnicki, C.: Bimodal Content Defined Chunking for Backup
Streams. In: Proceedings of 8th USENIX Conference on File and Storage Technologies,
pp. 239–252. USENIX Association, Berkeley (2010)

8. Lu, G.L., Jin, Y., Du, D.H.C.: Frequency Based Chunking for Data De-Duplication. In:
Proceedings of 18th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pp. 287–296. IEEE Press,
Miami (2010)

9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data.
In: Proceedings of 7th USENIX Symposium on Operating Systems Design and
Implementation, pp. 205–218. USENIX Association, Berkeley (2006)

10. Jain, N., Dahlin, M., Tewari, R.: TAPER: Tiered Approach for Eliminating Redundancy in
Replica Synchronization. In: Proceedings of 4th USENIX Conference on File And Storage
Technologies, pp. 281–294. USENIX Association, Berkeley (2005)

11. Bhattacherjee, S., Naranq, A., Garq, V.K.: High Throughput Data Redundancy Removal
Algorithm with Scalable Performance. In: Proceedings of 6th International Conference on
High Performance and Embedded Architectures and Compilers, pp. 87–96. ACM, New
York (2011)

12. Debnath, B., Sengupta, S., Li, J., Lilja, D.J., Du, D.: BloomFlash: Bloom Filter on Flash-
Based Storage. In: Proceedings of 31th International Conference on Distributed
Computing Systems, pp. 635–644. IEEE Computer Society, Washington (2011)

13. Bender, M.A., Farach-Colton, M., Johnson, R., Kuszmaul, B.C., Medjedovic, D., Montes,
P., Shetty, P., Spillane, R.P., Zadok, E.: Don’t Thrash: How to Cache Your Hash on Flash.
In: Proceedings of 3rd USENIX Conference on Hot Topics in Storage and File Systems, p.
1. USENIX Association, Berkeley (2011)

14. Guo, D., Wu, J., Chen, H.H., Yuan, Y., Luo, X.S.: The Dynamic Bloom Filters. IEEE
Transactions on Knowledge and Data Engineering 22, 120–133 (2010)

15. Song, H.Y., Dharmapurikar, S., Turner, J., Lockwood, J.: Fast Hash Table Lookup Using
Extended Bloom Filter: An Aid to Network Processing. In: Proceedings of the 2005
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pp. 181–192. ACM, New York (2005)

16. Guo, D., Chen, H.H., Luo, X.S.: Theory and Network Application of Dynamic Bloom
Filters. In: Proceedings of 25th Annual Joint Conference of the IEEE Computer and
Communications Societies, pp. 1–12. IEEE Press, Spain (2006)

17. Ahmadi, M., Wong, S.: Modified Collision Packet Classification Using Counting Bloom
Filter in Tuple Space. In: Proceedings of 25th IASTED International Conference on
Parallel and Distributed Computing and Networks, pp. 70–76. ACTA Press, Anaheim
(2007)

18. Ahmadi, M., Wong, S.: A Memory-optimized Bloom Filter Using an Additional Hashing
Function. In: Proceedings of Global Telecommunications Conference, pp. 1–5. IEEE
Press, New Orleans (2008)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 254–263, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Estimating Deadline-Miss Probabilities
of Tasks in Large Distributed Systems

Dongping Wang1, Bin Gong1, and Guoling Zhao2

1 Department of Computer Science and Technology, ShanDong University, Jinan, China
wdp2006@gmail.com, gb@sdu.edu.cn

2 Shandong College of Electronic Technology, Jinan, China
zhaogl@sdcet.cn

Abstract. In the past decade, large distributed systems with unreliable hosts
including P2P systems and volunteer computing systems have become
common. The volatility nature of resources makes it a challenge to schedule
tasks with soft deadline in such systems. In this paper we examine one of the
critical problems, estimating deadline-miss probabilities of tasks running on
unreliable hosts. Through analysis of trace data gathered from an actual
volunteer computing system, we get a general property about host's period
available fraction, based on which we propose an efficient method of estimating
deadline-miss probability. To evaluate the accuracy of this method, we conduct
trace-driven simulations whose results show that average absolute difference
between estimated probability and real ratio is smaller than 2%. To compare our
method with two other methods, we simulate a scheduler which distributes task
based on estimated probability. Results show that our method performs better.

Keywords: availability prediction, resource failures, stochastic scheduling,
volunteer computing.

1 Introduction

In the past ten years, the advance of internet and computing technology has led to
rapid development of large distributed computing systems composed of huge amount
unreliable hosts. As an important part of such systems, volunteer computing systems
have attracted more and more attention. Actually, volunteer computing projects such
as SETI@home [1] and Folding@home [2] have sustained a computing ability of
about tens or hundreds of TeraFLOPS for several years [3].

Although volunteer computing projects have pooled powerful computing ability,
their applications are currently restricted to coarse grained, embarrassingly parallel
applications of which the main performance metric is throughput. So, one of the main
research goals in this area is to support other types of applications such as application
with deadline, application with synchronization requirement, etc. [4, 5, 13]

We focus on scheduling applications with soft deadline in volunteer computing
environment and deal with deadline ranging from several hours to a day. In this paper,
we examine the problem of estimating deadline-miss probability of tasks running on

 Estimating Deadline-Miss Probabilities of Tasks in Large Distributed Systems 255

unreliable hosts. The accuracy of estimated probability substantially affects resource
utilization efficiency.

We make a simplifying assumption that a task will be checkpointed when a
resource failure occurs during its execution so that it can recover at the start of next
available interval without loss of computation, which is used in [13]. Then, the period
available fraction of a host determines whether a task assigned to it will miss deadline
or not. Since pull-style is used in task assignment of volunteer computing system, a
host only requests task at available state. So, the problem of estimating deadline-miss
probability of task can be transformed into that of estimating available fraction of
period starting with available state. For simplicity, we denote period starting with
available state as PAS and denote period starting with unavailable state as PUS.

Through analysis of trace data from SETI@home, we get a general property about
host’s period available fraction and propose a method of estimating task’s deadline-
miss probability. In particular, our main contributions are as follows:

• We get a general property about host’s available fraction during PAS: when the
available fraction of a host during a particular PAS is sorted in increasing order
along with available fractions of the host during randomly-chosen previous PASs
using an unstable sorting algorithm, it will be at each position of the result with
approximately equal probability.

• We propose an efficient method of estimating task’s deadline-miss probability. The
accuracy of this method is testified in trace-driven simulations. To the best of our
knowledge, an estimating method with such accuracy does not exist.

• We simulate a scheduler for the application of low latency batches [13] and
compare our method with other two methods in the scheduler. As a result, our
method performs better than the other two.

The remainder of this paper is organized as follows. Related works about availability
prediction are reviewed in section 2. The analysis of trace data is described in section 3.
In section 4, we propose our method and evaluate its accuracy with simulations. In
section 5, we simulate a scheduler for the application of low latency batches and
compare our method with the other two methods. Conclusions are given in the last
section.

2 Related Works

There have been many works about analysis of availability trace data and modeling
availability [6-9, 16]. These works modeled either lengths of available durations or
available fraction with probability distributions. Different from these works, this work
cares about period available fraction during PAS. John Brevik et al. [10] examine the
problem of determining lower bounds at a desired level of confidence for quantiles for
the population of availability duration.

Availability prediction in [11, 12, 17] share a common feature: The availability
history of a worker is represented as a binary string in which each binary number
corresponds to the availability state of an interval such as one hour, and availability
prediction is transformed into predicting binary numbers from a binary string. In [12],
availability predictor for each host is implemented as a Naïve Bayes classifier and

256 D. Wang, B. Gong, and G. Zhao

other features are also used to strengthen the classifier. As having been noted in [11],
such methods do not work well for those hosts with less regular availability patterns.

In [13], the authors propose algorithms for computing batches of medium grained
tasks with deadlines in pull-style volunteer computing environments. In their
algorithm, a method for predicting task deadline-meet probability is mentioned. Their
method is based on statistical property about host’s period available fraction. One
difference between their method and our method is that their method does not
distinguish PAS and PUS. Moreover, this method is partly based on regular usage
pattern (mainly daily usage pattern).

3 Analysis of Trace Data

The trace data used in this section and following sections is SETI@home trace data
[6] provided in FTA [14]. It is collected using BOINC [15] server for SETI@home
from April 1, 2007 to January 1, 2009. It embraces CPU availability trace data from
about 230,000 hosts over Internet. Each trace event corresponds to an interval, having
the CPU availability state, start time and end time.

To know the relationship between a host’s period available fraction during a
particular PAS and those period available fractions during randomly-chosen previous
PASs, we conduct simulations with trace data as follows. Each simulation repeats the
following experiment 10000 times. Randomly choose a host with a point chosen at
available state during its lifetime, and randomly choose n PASs before the point. The
host’s period available fraction during the period starting with the chosen point is
denoted as f and those period available fractions of the host during chosen PASs are
denoted as f1, f2…, fn. Sort these n+1 values in increasing order with an unstable
sorting algorithm and record the position of f in the result. After all experiments of a
simulation are completed, ratios of each position are computed.

Some details about the experiment should be noted. First, the host should be
ensured to have enough availability history at the chosen point. We have tried 7 days
and 10 days in simulations. Second, randomly-chosen PASs before the point may
overlap. Last, the lengths of all periods in a simulation are equal and should be an
acceptable length of task deadline. We have tried four different lengths in simulations,
4 hours, 6 hours, 8 hours and 12 hours.

Fig. 1 shows results of simulations in which a host at least has 7 days availability
history at the chosen point. In this figure, rows show results of simulations with
different n (the number of randomly-chosen PASs before the point); columns
represent results of simulations with different period length. As can be seen from this
figure, ratio of each position (ranging from 1 to 20) approximates to 0.05 when n is
19, ratio of each position (ranging from 1 to 50) approximates to 0.02 when n is 49
and ratio of each position (ranging from 1 to 100) approximates to 0.01 when n is 99.
For those simulations in which a host at least has 10 days availability history at the
chosen point, similar results are observed. So we can conclude a property for period
availability fraction during PAS.

When it is sorted in increasing order along with period available fractions during
randomly-chosen previous PASs using an unstable sorting algorithm, the period
available fraction of a host during a particular PAS will be at each position of the
result with approximately equal probability.

 Estimating Deadline-Miss Probabilities of Tasks in Large Distributed Systems 257

According to this property, if there are n randomly-chosen previous PASs, the
sorting result will have (n+1) positions and the approximate probability will be
1/(n+1).

0 5 10 15 20

0

0.02

0.04

0.06

0.08

Period of 4hours

n
=

 1
9

0 5 10 15 20

Period of 6hours
0 5 10 15 20

Period of 8hours
0 5 10 15 20

0

0.02

0.04

0.06

0.08

Period of 12hours

R
at

io

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

n
=

 4
9

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

R
at

io

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

n
=

 9
9

Position
0 20 40 60 80 100

Position
0 20 40 60 80 100

Position
0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

Position

R
at

io

Fig. 1. Ratio of each position (at least 7 days availability history)

4 Estimating Deadline-Miss Probability

In this section, we deal with the problem of estimating deadline-miss probability of a
task on a given host. Particularly, we propose an efficient method (called Random
History Method) based on the general property which is shown in section 3.

The problem can be phrased as follows. Suppose a host receives a task at time R.
The deadline of the task is time R+D. The time needed to finish the task on the host is
C. During the execution of the task, it will be stopped at the end of an available
duration and be continued at the start of the next available duration. The task
recovering cost is omitted. What is the probability that the task will miss its deadline
on the host?

4.1 Random History Method

Lemma 1: For given length of period D, let x be the period available fraction of the
host during a particular PAS, (x1, x2, …, xn) be period available fractions of the host
during randomly-chosen previous PASs, and (x(1), x(2), …, x(n)) be the permutation of
(x1, x2, …, xn) in increasing order. Then, for 1≤s≤n, the probability that x is less than
x(s) is not more than s/(n+1), i.e., Pr(x<x(s))≤ s/(n+1).

258 D. Wang, B. Gong, and G. Zhao

Proof. Assume α be the result of the sorting in increasing order for x1, x2, …, xn, x with
unstable sorting algorithm. Let Y be the random variable denoting the position of x in
α. If x is in the ith position of α, Y=i.

From the assumptions and the general property of period available fraction during
PAS shown in section 3, we get

Pr(Y=i)≈1/(n+1), 1≤i≤n+1.

If x<x(s), then Y<s+1. So we get

Pr(x<x(s))≤ Pr(Y<s+1) ≈s/(n+1). □

According to lemma 1, we propose an efficient estimating method, which we term
Random History Method. When n is 100, the method can be described as follows:

• Step 1: Randomly choose 100 PASs in the past of the host. Length of each period
is D. Compute available fractions of these periods, denoted as x1, x2, …, x100.

• Step 2: Compare the minimum necessary period available fraction needed to finish
the task, C/D, with those available fractions of randomly-chosen PASs (i.e., x1, x2,
…, x100), and obtain three values, k, maxl and minr. k denotes the number of
available fractions which are less than C/D, maxl denotes the maximum value of
available fractions which are less than C/D, and minr denotes the minimum value
of available fractions which are not less than C/D. If k is zero, we set maxl to zero.
If k is 100, we set minr to infinite. Then we give deadline-miss probability
estimation with the following equation:

()
/

101 101 *est

k C D m axl
P

m inr m axl

−= +
−

 (1)

The value of n affects the accuracy of estimations in this method. Bigger n leads to
more accurate estimations. However, bigger n causes bigger computation cost. So, a
reasonable value of n should take both factors into consideration. 100 is one of the
good choices for n.

To evaluate the accuracy of this method, we conduct simulations with trace data
introduced in section 3. Each simulation has one million predictions. Each prediction
involves randomly selecting a host with a time selected within its lifetime as the
predicting point. If the host is in unavailable state at the predicting point, the
predicting point is adjusted to the start of next available duration. We record
estimated deadline-miss probability and real situation (miss deadline or meet
deadline) every time a prediction is finished. After all predictions of a simulation are
finished, we calculate real deadline-miss ratio for each value of estimated probability.
To ensure as many prediction times as possible in calculating real ratio, we only
consider discrete probability value such as 0.01, 0.02, …, 0.99, and treat others as
their smaller neighbor. For example, 0.023, 0.027 are all treated as 0.02.

 Estimating Deadline-Miss Probabilities of Tasks in Large Distributed Systems 259

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ea

l D
ea

dl
in

e-
m

is
s

R
at

io
C = 5(hours)

0 0.2 0.4 0.6 0.8 1

C = 6(hours)
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C = 7(hours)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

4

T
im

es

Estimated Deadline-miss Probability
0 0.2 0.4 0.6 0.8 1

Estimated Deadline-miss Probability
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6
x 10

4

Estimated Deadline-miss Probability

Fig. 2. Accuracy of prediction simulations for D = 8 hours

Fig. 2 shows the results for prediction simulations of D=8 hours. The first row
compares estimated probability and real ratio, and the second row shows the times
that specific estimated probability occurs in results, based on which real ratio is
calculated. For each simulation, we calculate an average absolute difference between
estimated probability and real ratio as follows: divide the sum of absolute difference
between estimated probability and real ratio at picked 99 points by 99. For all
simulations, average absolute difference is smaller than 2%.

4.2 Other Methods

We also examine two other methods. The first one uses Naïve Bayes Classifier
[18] as its predictive model to predict period available fraction of a host, which we
term the Classifer Method. The second one is the method of estimating deadline-meet
probability proposed in [13], which we term the Diurnal Pattern Method.

Our implementation of the Classifier Method is partly based on the experience
shown in [12] and uses similar features. To compute values of hist features [12],
training data should be transformed into a binary (01) string, each binary of which
corresponds to one hour. To determine the threshold used in transforming training
data into binary string and the form of discrete classes, we design two groups of
simulations. Details about the first group of simulations are listed as follows. Period
length is 4 hours. Five threshold values are examined, 0.6, 0.7, 0.8, 0.9, 1.0. Two
kinds of form of classes are examined. The first form uses four binary digits and each
digit corresponds to one hour. So this form has 16 classes, such as 0000, 0001, 0010,
etc. The second form has 4 classes (denoted as 1, 2, 3, 4), which divide the space of
[0, 1] into four parts, [0, 0.25], (0.25, 0.50], (0.50, 0.75], (0.75, 1.0]. We term this
form 4-level form. Similarly, we define 7-level form, 10-level form, etc. Each
simulation computes 100,000 predictions. Fig. 3a shows success ratios of these

260 D. Wang, B. Gong, and G. Zhao

simulations. First, the success ratios are almost equal for different thresholds. If not
specifically mentioned, the threshold used in subsequent simulations is 0.8. Second,
4-level form results in higher success ratio than the form of four binary digits.
Because these two forms have approximately equal capability in expressing the
fraction, we prefer 4-level form out of these two forms. We conduct another group of
simulations to compare the following four forms, 4-level form, 7-level form, 10-level
form and 20-level form. Four period lengths are tested, 2 hours, 4 hours, 6 hours and
8 hours. Results are shown in Fig. 3b. As can be seen in the figure, form with more
levels leads to lower success ratio of predictions. However, the classes of a form with
more levels are more accurate.

four binary digits form 4-level form
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

io
 o

f p
re

di
ct

io
ns

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

io
 o

f p
re

di
ct

io
ns

Period length (hours)

4-level form

7-level form

10-level form

20-level form

threshold-0.6

threshold-0.7

threshold-0.8

threshold-0.9

threshold-1.0

(a) (b)

Fig. 3. Results of simulations for determining threshold and classes form

5 Simulations of Scheduling Low Latency Batches

In this section, we simulate a scheduler for low latency batches which is based on the
scheduling algorithm of [13]. Each batch has many tasks with same deadline and
same computation amount. When it reaches one batch’s deadline, another batch is
submitted until all batches are completed. At any time, there is at most one batch
being scheduled. When it receives a task request from a host, the scheduler estimates
the probability that a task of current batch will miss its deadline on the host and
determine whether assign a task to the host based on the probability. When the
scheduler decides to assign a task to a host, a task with highest cumulate deadline-
miss probability is chosen and the cumulate deadline-miss probability of the task is
updated accordingly. Initial cumulate deadline-miss probability of each task is 1.0.
We record the number of tasks missing deadline for each batch. Parameters for
simulations are listed in Table 1. For each combination of D and C, we simulate three
cases with different first batch submission time and compute the ratio of tasks
meeting deadline for each batch. From the trace data, we randomly choose 42,365

 Estimating Deadline-Miss Probabilities of Tasks in Large Distributed Systems 261

hosts for these simulations. In these simulations, an average of two task requests will
be received for each task before batch distribution deadlines. To control these hosts
for providing stable speed of task requests, the scheduler uses the Poisson method
proposed in [13]. After a host gets a task, it will execute the task until the completion
of the task or the end of the host’s lifetime.

Table 1. Parameters for scheduling simulations

Batches number 256

Tasks per batch 4096

Batch deadline (D)

Computation time per task (C)

D=4 hours, C=1 hour;

D=4 hours, C=2 hours;

D=6 hours, C=3 hours

First batch submission time (S0) Dec 1, 2007;Mar 1, 2008;Jun 1, 2008

Other batch submission time (Si) Si+1=Si+D

0.8 0.85 0.9 0.95 1

0

20

40

60

80

100

D=4, C=1

D
iu

rn
al

 P
at

te
rn

M
et

ho
d

0.8 0.85 0.9 0.95 1

D=4, C=2
0.8 0.85 0.9 0.95 1

0

20

40

60

80

100

D=6, C=3

0

20

40

60

80

100

R
an

do
m

 H
is

to
ry

M
et

ho
d

0

20

40

60

80

100

P
er

ce
nt

 o
f B

at
ch

es

0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

C
la

ss
ifi

er
 M

et
ho

d

0.8 0.85 0.9 0.95 1

Fraction of Tasks Finished Before Deadline
0.8 0.85 0.9 0.95 1

0

20

40

60

80

100

Fig. 4. Simulation results of scheduling low latency batches

The three methods introduced in last section are used in the scheduler for
estimating deadline-miss probability. Details are noted here. For the Random History
Method, a task request will be rejected when the estimated deadline-miss probability
is bigger than 0.5. The Classifier Method uses classes of 10-level form. When a task
request comes, this method predicts the available fraction class for the host and gives
deadline-meet probability with A/(A+B), where A denotes the predicted class of the
host and B denotes the least class necessary for finishing the task before deadline. The
task request is rejected when A<B. For the Diurnal Pattern Method, the availability

262 D. Wang, B. Gong, and G. Zhao

history used for predicting is ten days. In other words, we only consider ten previous
tasks for each prediction. Other details about this method can be obtained from [13].

Results of these simulations are shown in Fig. 4, in which rows correspond to
different estimating methods and columns correspond to different combinations of D
and C. As can be seen from the figure, the Random History Method is the most
efficient one among these three methods.

6 Conclusion

Finishing tasks in time is critical important for computing applications with soft
deadline in large-scale systems with unreliable hosts. Duplicating tasks based on task
deadline-miss probability estimations is an approach to control the ratio of tasks
missing deadline. In this paper, we analyze the property of period available fraction
from trace data and propose a method of estimating deadline-miss probability, called
the Random History Method. Results of trace driven simulations testify the accuracy
of this method. Moreover, we simulate a scheduler for low latency batches to compare
the performance of our method with that of the other two methods.

The assumption used in this paper, the recovering cost of a task after a resource
failure is negligible, may not be proper in some cases. So, one of our future work is to
take the recovering cost into consideration in estimating method. Another plan for
future work is to enhance the performance of our method with deterministic pattern of
host’s period available fraction.

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: an
experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

2. Larson, S.M., Snow, C.D., Shirts, M.R., Pande, V.S.: Folding@home and Genome@home:
Using distributed computing to tackle previously intractable problems in computational
biology. In: Modern Methods in Computational Biology, Horizon, Marseille (2003)

3. Anderson, D.P., Fedak, G.: The Computational and Storage Potential of Volunteer
Computing. In: CCGRID 2006: Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid, pp. 73–80. IEEE Computer Society, Washington, DC
(2006)

4. Yi, S., Jeannot, E., Kondo, D., Anderson, D.P.: Towards Real-Time, Volunteer Distributed
Computing. In: CCGRID 2011: Proceedings of the 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 154–163 (2011)

5. Bouguerra, M.-S., Kondo, D., Trystram, D.: On the Scheduling of Checkpoints in Desktop
Grids. In: CCGRID 2011: Proceedings of the 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pp. 305–313 (2011)

6. Javadi, B., Kondo, D., Vincent, J.-M., Anderson, D.P.: Mining for Statistical Availability
Models in Large-Scale Distributed Systems: An Empirical Study of SETI@home. In:
MASCOTS 2009: Proceedings of the 17th Annual Meeting of the IEEE/ACM
International Symposium on Modelling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 1–10 (2009)

 Estimating Deadline-Miss Probabilities of Tasks in Large Distributed Systems 263

7. Nurmi, D., Brevik, J., Wolski, R.: Modeling Machine Availability in Enterprise and Wide-
Area Distributed Computing Environments. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-
Par 2005. LNCS, vol. 3648, pp. 432–441. Springer, Heidelberg (2005)

8. Wolski, R., Nurmi, D., Brevik, J.: An Analysis of Availability Distributions in Condor. In:
IPDPS 2007: Proceedings of the 21th International Parallel and Distributed Processing
Symposium, pp. 1–6. IEEE (2007)

9. Kondo, D., Andrzejak, A., Anderson, D.P.: On correlated availability in Internet-
distributed systems. In: GRID 2008: Proceedings of the 9th IEEE/ACM International
Conference on Grid Computing, pp. 276–283 (2008)

10. Brevik, J., Nurmi, D., Wolski, R.: Automatic Methods for Predicting Machine Availability
in Desktop Grid and Peer-to-peer Systems. In: CCGrid 2004: Proceedings of the 4th
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 190–199.
IEEE Computer Society (2004)

11. Mickens, J.W., Noble, B.D.: Exploiting Availability Prediction in Distributed Systems. In:
NSDI 2006: Proceedings of the 3rd Symposium on Networked Systems Design and
Implementation, pp. 73–86. USENIX (2006)

12. Andrzejak, A., Kondo, D., Anderson, D.P.: Ensuring Collective Availability in Volatile
Resource Pools Via Forecasting. In: De Turck, F., Kellerer, W., Kormentzas, G. (eds.)
DSOM 2008. LNCS, vol. 5273, pp. 149–161. Springer, Heidelberg (2008)

13. Heien, E.M., Anderson, D.P., Hagihara, K.: Computing Low Latency Batches with
Unreliable Workers in Volunteer Computing Environments. J. Grid Comput. 7(4), 501–
518 (2009)

14. Kondo, D., Javadi, B., Iosup, A., Epema, D.H.J.: The Failure Trace Archive: Enabling
Comparative Analysis of Failures in Diverse Distributed Systems. In: CCGRID 2010:
Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 398–407. IEEE (2010)

15. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: GRID
2004: Proceedings of the fifth IEEE/ACM International Workshop on Grid Computing, pp.
4–10 (2004)

16. Douceur, J.R.: Is remote host availability governed by a universal law? SIGMETRICS
Performance Evaluation Review 31(3), 25–29 (2003)

17. Lázaro, D., Kondo, D., Marquès, J.M.: Long-term availability prediction for groups of
volunteer resources. J. Parallel Distrib. Comput. (2011), doi:10.1016/j.jpdc.2011.10.007

18. John, G., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proc.
11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann
(1995)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 264–278, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Global Pricing in Large Scale Computational Markets

Lilia Chourou1, Ahmed Elleuch2, and Mohamed Jemni1

1 LaTICE Laboratory, Higher School of Sciences and Techniques of Tunis,
University of Tunis, Tunis, Tunisia

lilia.gherir@planet.tn, Mohamed.jemni@fst.rnu.tn
2 CRISTAL Laboratory, National School of Computer Sciences,

University of Manouba, Manouba, Tunisia
Ahmed.Elleuch@ensi.rnu.tn

Abstract. Scale up the number of computing resources is a challenging issue
when building a global computational system. For this purpose, we present an
approach that adopts the commodity market model as an economic incentive
model and ensures the balance between supply and demand. We show how this
model may be adapted and applied to a large scale computational infrastructure.
To achieve a competitive equilibrium, prices are adjusted according to a
tâtonnement like process. However, this process, like several other pricing
algorithms proposed in the literature, does not fulfill the scalability requirement:
all prices of all commodities are computed by only one auctioneer. In the
present work, a fully distributed pricing algorithm is proposed based on an
existing partially distributed version. While in this last version, the price of each
commodity is computed by only one auctioneer, in our algorithm, a variable
number of auctioneers is used. To each auctioneer is associated a limited
number of consumers and suppliers with low communication delay. Our
algorithm is then scalable with respect to the number of suppliers and
consumers. To evaluate our algorithm, we have performed a simulation study.
For different number of auctioneers per commodity, the experimental results
show that our algorithm converges as well as the partially distributed version.
Moreover, by splitting the search space among auctioneers, our algorithm
accelerates the convergence.

Keywords: pricing, competitive equilibrium, scalability, global computational
system.

1 Introduction

One major problem facing high-throughput applications is the need for large-scale
computational resources. Global computing systems are a cost-effective alternative to
parallel computers. They are able to provide a great number of idle resources donated by
volunteers and accessible via the Internet. However, the number of available resources
still needs to be expanded. For this purpose, we have to apply an economic incentive
model that would allow increasing the number of suppliers and consumers by
embedding a strategy for welfare. The economic model would also be used to resolve

 Global Pricing in Large Scale Computational Markets 265

the load balancing problem. In this paper, we have adopted the commodity market
model where transactions are governed by markets able to find a general equilibrium
between the global supply and demand. These quantities are balanced through a
dynamic adjustment of prices. However, existing pricing algorithms are not suited for
large scale computational markets. To overcome this drawback, we propose a scalable
pricing algorithm. Our algorithm uses a partially distributed solution proposed by Cheng
and Wellman [6] which is founded on the principle of the centralized tâtonnement
process of L. Walras [12]. In [6], the price of each commodity is computed by only one
auctioneer, there is one-to-one correspondence between markets and commodities.
However, this distributed solution is not suited when there is a massive number of
suppliers and consumers. Our solution uses a variable number of auctioneers per
commodity. To each auctioneer is associated a limited number of consumers and
suppliers with low communication delay. The auctioneers of the same commodity
collaborate together to find its equilibrium price. The scalability of the pricing algorithm
is a fundamental property ensured by our algorithm.

To evaluate the effectiveness of our algorithm, two modelling and simulation case
studies have been carried out. In the first one, the behaviour of the actors is modelled
by utility functions commonly used in micro-economics and in several works
implementing market mechanisms. These functions fulfill the convexity of the
preferences and the gross substitutability assumptions needed to ensure the
convergence of the tâtonnement process. For this first case study, the simulation
results show that our distributed algorithm converges. Furthermore, it accelerates
remarkably the convergence to a general equilibrium. In the second case study, the
convexity of preferences is relaxed and the behaviour of the actors is modelled by
more realistic utility functions. As the preferences are not convex, the demand
functions are discontinuous. Consequently, if the equilibrium price does not exist, our
pricing algorithm is able only to determine the two nearest prices leading to a change
of the sign of the excess demand. The simulations results show that these prices will
have very close values. Consequently we may consider these prices as equilibrium
prices. Like in the first case study, the simulation results show that our distributed
algorithm converges as well.

The remainder of this paper is organized as follows. Section 2 introduces the
adopted economic model. The hypotheses to assure the existence and uniqueness of
the equilibrium price are also introduced in this section. Section 3 describes the most
representative pricing algorithms and shows their limits in a large-scale system.
Section 4 outlines the proposed computational market model that supports our
scalable pricing algorithm. This algorithm is then presented in section 5. Section 6
provides an empirical evaluation of the proposed algorithm. Finally, section 7
presents the conclusions and future work.

2 Concepts, Hypotheses and Choice of an Economic Model

Buyya et al. proposed an architecture called GRACE (Grid Architecture for
Computational Economy) supporting different economic models for the management
of resources in a grid [4] [5]. Among these models, we have the commodity market
model, the auction model and the bargaining model. All these economic models are
price oriented. We are particularly interested in the commodity market model.

266 L. Chourou, A. Elleuch, and M. Jemni

In contrast with the other models, this model takes into consideration global supply
and demand. It continuously looks for bringing them back into equilibrium. The
equilibrium price satisfies both the suppliers and the consumers. This model
represents an incentive model to build large scale computational markets.

To find equilibrium between supply and demand according to such a model, the
economy must fulfill some hypotheses typically not satisfied by conventional markets
[8]. For computational markets, these hypotheses should be established in an artificial
way. More precisely, the following conditions of pure and perfect competition have to
be met:

• The atomicity of the market: the market must include a big number of suppliers
and of consumers. A supplier or a consumer is then unable alone to have an
influence on the market. For the target large-scale computational systems, this
condition is well satisfied.

• The homogeneity of goods: all goods having the same characteristics are
considered identical. Hence, software or hardware resources with different quality
of service must be differentiated as not equivalent goods.

• Independent decision making: providers and consumers are free from any
restrictions with regard to their transactions. Besides, there is no collusion between
providers or consumers. For a large-scale computational market, the basic
resources are commodity systems owned and used by a great number of
independent actors.

• No barriers to entry or departure to and from the market: suppliers and consumers
are not constrained to technical, financial, regulatory or legal barrier which can
hinder their entrance or exit from the market. It is also possible to pass from a
production to another one. This assumption can be enforced through the use of the
Internet as a marketplace. Indeed, the Internet is a worldwide network that allows a
pervasive access as a utility. Besides, the production of software as a service may
be shifted easily according to the demand.

• Perfect knowledge: every actor must be able to have global and complete
information to take the best decisions that maximize his welfare. These
requirements must be guaranteed by the information service in a computational
market.

• Perfect fluidity of production factors: this term means the complete mobility of
suppliers. Thanks to the ubiquity of the Internet, computing resources can be
deployed in any place.

• The absence of transport costs: no costs are incurred in making transaction. In a
computational market, goods are dematerialized and remotely accessible with no
transport cost. All goods are computational services.

Different commodities correspond to different markets. These goods can be
substituted one for the other. The price of a good has then an influence on the prices
of other goods. A partial equilibrium is a state in which the equilibrium is established
with respect to a specific market, and so a specific type of goods, assuming that the
prices of all other goods remain unchanged. A general equilibrium is reached when all
markets are cleared simultaneously. To prove the existence of Walras’s equilibrium,
K. Arrow and G. Debreu have showed that the hypotheses of pure and perfect

 Global Pricing in Large Scale Computational Markets 267

competition are not sufficient. They added other conditions about consumer’s
preferences and his endowment [3]:

• every consumer has a non-null initial endowment,
• his preferences must be convex (so the demand function is continuous).

Under these conditions, K. Arrow and G. Debreu showed also that any general
equilibrium in pure and perfect competition leads to a Pareto efficient allocation.
Besides, K. Arrow et al. [2] provide a proof of general equilibrium stability when all
goods are gross substitutes. This property is verified if an increase in the price of a
good increases the demand for another good.

The basic pricing approach is Walras’s theory of the general equilibrium [12]. A
market maker, also called central auctioneer or coordinator, gathers information to
find the clearing prices. L. Walras was the first who proposed such price adjustment
process called the tâtonnement process. For each good, the auctioneer announces, at
first, an arbitrary price. If this price does not clear the difference between demand and
supply, i.e. the excess demand, the price is decreased (respectively, increased) when
the offer is greater (respectively, lower) than demand to encourage the demand
(respectively, the offer). Due to the interdependence between markets, the new
computed clearing price of a good is obtained according to the current estimated
clearing price of the other goods. So, when a clearing price of one market changes,
the clearing prices of the other markets may also change. By successive adjustments,
the equilibrium would be progressively determined for all markets. When the excess
demand is cleared for all goods at the same time, all prices are fixed and allocation of
goods can be performed. However, this price adjustment process has two major
drawbacks. First, even if the consumer preferences are convex and the gross
substitutability assumption is fulfilled, the tâtonnement process can exhibit a slow
convergence to equilibrium [15]. Second, the pricing algorithm is not scalable. Indeed
it uses only a central auctioneer that iteratively, and for each good, submits a new
price, gathers consequent supply and demand quantities and adjusts the price. If we
consider a large number of suppliers and consumers, in a large-scale computing
system, the communication between all suppliers and consumers on one hand, and the
auctioneer on the other hand, will be a bottleneck.

3 Related Work

The WALRAS algorithm proposed by Cheng and Wellman [6] is based on the
tâtonnement process of Walras. However, they associate to each market one
auctioneer. Another important feature of the WALRAS algorithm is that the
announcement of offers and demands is asynchronous. Suppliers and consumers are
not necessarily negotiating the same goods at the same time using the same price
information. Cheng and Wellman show under the hypothesis of convex preferences
and gross substitutability between goods, that the pricing process generated by their
algorithm converges to a unique equilibrium. However, when each good is considered
separately, the price adjustment process remains centralized and is performed by a
dedicated auctioneer. The auctioneer is then overloaded if the number of suppliers and
consumers is massive. In [13], C. Weng et al. proposed to associate one auctioneer to

268 L. Chourou, A. Elleuch, and M. Jemni

a group of resources which their prices are strongly correlated. They use the
tâtonnement process to reach equilibrium. The authors show experimentally that their
group pricing algorithm converges faster than the WALRAS algorithm. Besides, the
authors propose to organize the resources of the grid into autonomous administrative
domains. Each domain is governed by an agent responsible for gathering information
associated to its domain and submitting the excess demand information to the
auctioneer. The organisation into domains addresses the scalability problem but it
resolves only the aggregation of the excess demand, the price adjustment process is
still centralized.

Wolski et al. proposed the system "First bank of G" [14]. They use an adaptation of
Smale’s method [10] that aims to determine a trajectory for prices to find the
equilibrium prices. To address the scalability problem due to the periodical interrogation
of the suppliers and consumers, Wolski et al. propose to approximate each excess
demand function by a polynomial used when the prices get closer to equilibrium.
Wolski et al. consider complementary resources (like CPUs and disk storage). So the
gross substitute property is not verified and then the uniqueness of equilibrium is not
guaranteed. Besides, this system is still based on a centralised approach which is not
scalable. In [16], a macroeconomic model is built for adjusting the unreasonable prices
of dependent resources. However, this model supposes that the dependencies between
resources, the aggregated demand and offer are known in advance.

Stuer et al. propose a pricing algorithm of substitutable resources [11]. They limit
themselves to two categories of substitutable resources: slow and high speed CPUs. A
consumer determines for each CPU category a factor of preference according to its
speedup, its price and a weight given by him to this category. This factor is then used
to fix demand. The Smale method is also used and adapted to substitutable goods
context. The simulations show that the proposed algorithm converges. But the
scalability problem was not addressed and the pricing algorithm remains centralized.

In [17], X. Zhao and al. propose a distributed resource pricing mechanism. It
allows each provider to adjust his resource prices according to a future demand
prediction. The chains of Markov are used to predict future demands. The strategy of
providers is to balance the resource load and to maximize its profits. The proposed
pricing model is scalable, but this approach provides incentives for providers more
than the consumers. The convergence of the price-adjusting mechanism toward a
general equilibrium is not guaranteed. A hierarchical approach is used in the
distributed pricing algorithm called COTREE (COMBINATORIC TREE) [1]. The
different actors in the system, called agents, are organized according to a logical tree.
These agents are classified into two categories: the suppliers and the consumers
considered as leafs of the tree, and the auctioneers. Each auctioneer is responsible for
the aggregation of requests of their children (suppliers, consumers and possibly
auctioneers). The simulation results show that COTREE requires significantly less
messages to exchange. Besides, the pricing algorithm is scalable, but a failure of tree
root is fatal.

Our algorithm uses the work of Cheng and Wellman [6] which is based on the
basic concepts of general equilibrium theory. The proposed asynchronous bidding
protocol is retained. To resolve the scalability problem, we consider a variable
number of auctioneers for each market. The demand is aggregated, like in the
COTREE system, according to a distributed model rather than a hierarchical model.

 Global Pricing in Large Scale Computational Markets 269

Each auctioneer builds then a demand function which is used to determine the
equilibrium. To avoid a frequent polling that would slow down the pricing process,
we approximate, like in [14], each demand function by a polynomial. Besides, to
accelerate the price convergence, the search space is divided among the auctioneers.

4 The Distributed Computational Market Model

As we have described, in a commodity market model, pricing is achieved by a central
auctioneer. To resolve the scalability problem, for each commodity, we use a variable
number of auctioneers called super-peers. A proximity relationship between a super-
peer and its peers must exist to reduce the communication delays. The set of super-
peers that belong to the same region l is denoted SPl (Rl ≤≤1). The total number of
good types is denoted K, and R is the total number of grid regions. The set of super-
peers related to the same market, and so to the same type of good g, is denoted SPg.
These super-peers belong to the same pricing system and agree on sharing their
pricing information. l

gsp is the super-peer in the region l associated with the good g.

To a super-peer is associated a limited number of suppliers and consumers that we
call peers. The set of peers associated to the super-peer l

gsp is denoted
l
gPE . A partial

equilibrium is reached when a super-peer l
gsp finds a clearing price of a good g, then

it announces this price to all the other super-peers that belong to SPg. To speed up the
price adjustment, the searching space is divided into contiguous subspaces explored
separately and in parallel by the super-peers of SPg. Each super-peer collects and
aggregates the preference information, for an announced price, from its peers and also
from super-peers associated to the same good and located in other regions. The
general equilibrium is reached when prices no longer change, so each super-peer
needs also to continuously receive, from the other super-peers of his region, the
current clearing prices of the other goods. Using the same approach as in the
WALRAS system, asynchronous communication is used between peers and super-
peers. At any point of time, a peer uses the last received prices and a super-peer uses
the last received preference information. The detailed algorithm of the price
adjustment is described in section 5. To guarantee that pricing algorithm converges to
a unique equilibrium price vector, we need to fulfill the hypothesis of gross
substitutes. Complementary commodities, like CPUs and disk storage used in [14],
are then not suitable. In [11], the retained approach is to build markets with
substitutable commodities by clustering computing nodes into a finite set of resource
categories such as high or low speed nodes. Instead of trading computing nodes, we
propose to build substitutable commodities at higher level of abstraction. These
commodities are services as defined in service oriented architecture. The
determination of all the services is an important issue in a real global computing
system. However, in this paper, we are mainly concerned by the elaboration and the
evaluation of the pricing algorithm. Nevertheless, to illustrate the approach of
substitutable services and to evaluate the pricing algorithm for such computational
commodities, we have developed a limited case study where goods are services

270 L. Chourou, A. Elleuch, and M. Jemni

remotely accessible and useful for matrix computation. A commodity is defined by
the type of matrix operation and the matrix size. The substitutability between these
goods is described in section 6.

5 The Pricing

Our algorithm uses the work of Cheng and Wellman [6] where the competitive
equilibrium is computed via a distributed tâtonnement process (the WALRAS
algorithm). While in this process, only one auctioneer is used per type of good g, in our
algorithm a set of super-peers SPg is deployed. To ensure the convergence in the same
way as the proof given in [6], the behavior of each set of super-peers SPg must be
equivalent to a single super-peer per type of good g. Note that when the size of SPg is
equal to one for all types of goods, our algorithm corresponds to the WALRAS
algorithm.

5.1 Super-Peer Algorithm

A super-peer is directly involved in the pricing of only a single good. The pricing
algorithm applies the principle of the tâtonnement process of Walras. Whereas,
according to this process and for each adjusted price, the auctioneer requests from
consumers (respectively, producers) to provide their demand (respectively, supply). In
our solution, a super-peer submits different potential prices and then receives the
corresponding proposed quantities, i.e. preference information. It aggregates this
information, received from all peers of its region, and builds an approximated local
excess demand1 function. This approximation is used to avoid a frequent polling that
would slow down the pricing process. A super-peer receives also from the other
super-peers, associated to the same good, their approximated local excess demand
function and then builds the global excess demand function which is used to search
the equilibrium price. A global demand))t(p(global_d l

g
l
g

 calculated by a super-peer

g
l
g SPsp ∈ for a price)t(pl

g
 at an instant t, is the sum of the local accumulated

demand))t(p(local_d l
g

l
g

 of his associated peers and the not local accumulated

demands))t(p(local_d
~ l

g
'l

g
 for every super-peer 'l

gsp (
g

'l
g SPsp ∈ \{ l

gsp }). The

expressions (1) and (2) represent the global excess demand:

∑∑
≠
∈∈

+=

l'l
SP'l

l
g

'l
g

l
g

l
g

PEpe

l
g

l
g

g
l
gi

))t(p(local_d
~

))t(p(local_d))t(p(global_d (1)

or

∑∑
≠
∈

−−
∈

+−=

l'l
SP'l

l
g

'l
g

i
g

*
g

l
g

PEpe

l
g,i

l
g

l
g

g
l
gi

))t(p(local_d
~

))t(st(p),t(p(d))t(p(global_d (2)

1 The term demand will be used indifferently to refer to the supply or the demand.

 Global Pricing in Large Scale Computational Markets 271

where l
g,id is the excess demand announced by a peer pei to the super-peer l

gsp .

Note that l
g,id depends on the price)(tpl

g
 of the good g and also on the partial

equilibrium prices))t(st(p i
g

*
g −− − of the other goods, noted by (-g). Each of them is

updated since a delay period)t(si
g− before t. If the price l

gp computed by a super-

peer l
gsp)SPsp(g

l
g ∈ is a clearing price, it will be announced to all peers

l
gi PEpe ∈ and all super-peers in SPg. Consequently, they stop their price search

process and adopt the price l
gp . A partial equilibrium for the good g is then reached.

This price l
gp is also announced to the super-peers, of the other goods, in SPl. A

general equilibrium is reached when prices of all goods do not change anymore. So
before reaching a general equilibrium, several partial equilibrium prices are computed
for each good. Indeed, while a super-peer adjusts the price of a good, the prices of the
other goods may change. The demand of a peer changes during time since it depends
on prices of all goods and these prices also change from a partial equilibrium to
another one. Like in the WALRAS system and without compromising the
convergence of the pricing algorithm [6], a peer does not need to have the most recent
price of every good; instead, it uses the last received value. Similarly, a super-peer
uses the last preference information received from each peer. Variable communication
delays are tolerated. Peers and super-peers exchange data asynchronously.

To speed up the search of a partial equilibrium price of a good g, the search space
is divided into intervals. These intervals are explored in parallel by separate super-
peers. The maximum price is limited according to the endowment of the consumers.
Every super-peer l

gsp limits its search to an interval
lI . A price is calculated

according to the previous price and to the global excess demand which is multiplied
by a step-size. A super-peer l

gsp calculates its price l
gp

as following:

l
g

l
g

l
g

l
g global_d.pp λ+=

(3)

As in [9], the determination of the step-size l
gλ is like a binary search. l

gλ is divided

by 2 if the global excess demand changes sign and its absolute value does not
decrease significantly (it means that the equilibrium price was exceeded). Otherwise
and if l

gλ is not greater than 1/2 then it is multiplied by 2. Figure 1 describes the

pricing algorithm applied by a super-peer l
gsp .

5.2 Peer Algorithm

The peers keep a price vector of dimension K where each element of this vector is the
last received equilibrium price of a specific good. When all prices of this vector are
clearing prices then the exchanges can take place.

272 L. Chourou, A. Elleuch, and M. Jemni

1) Allocate to super-peer l
gsp an interval of search

lI

2) Part_found = False
3) Start a thread that repeatedly receives from local

peers l
gPE∈ their preferences and sends new local

excess demand to super-peers }{ l
gg sp\SP∈

4) Start a thread that repeatedly receives from the
super-peers }{ l

gg sp\SP∈ their local excess demand

5) Start a thread that repeatedly receives from super-
peers }{ l

gg sp\SP∈ a partial equilibrium price of g,

assigns it to Part_price and True to Part_found
6) Start a thread that repeatedly receives from super-

peers

}{ l
g

l sp\SP∈ partial equilib. prices of other goods

7) Set l
gλ to a positive number

8) Repeat
9) Set l

gp to a randomly value in
lI

10) Submit the vector of potential prices of g
11) Investigate_interval = False
12) while Not(Investigate_interval or Part_found)
13) Binary_search (l

gλ)

14) if ()() l
l
g

l
g

l
g

l
g Ipglobal_d.p ∈+ λ

15) ()l
g

l
g

l
g

l
g

l
g pglobal_d.pp λ+=

16) if ε≺)(_ l
g

l
g pglobald

17)

Investigate_Interval = True
18) Part_found = True
19) Part_price=

l
gp

20) Send Part_price to all super-peers
}{ l

gg sp\SP∈

21) Else Investigate_interval = True
22) if Not Part_found
23) Wait the reception of partial equilibrium

 price 'l
gp from any g

'l
g SPsp ∈ \{

l
gsp }

24) Send Part_price to all super-peers }{ l
g

l sp\SP∈

25) Send Part_price to all peers ∈
l
gPE

26) Part_found = False
27) Until equilib. price vector does not change any more
28) Send to local peers ∈ l

gPE :«general equilibrium reached»

Fig. 1. Pricing algorithm for a super peer
gSPl ∈ of the region r

 Global Pricing in Large Scale Computational Markets 273

Besides and for a good g, each peer receives periodically a potential prices vector
from a super-peer

gSPl ∈ of his region. Consequently, a peer pei calculates for each

price)(tpl
g

 (in the potential prices vector) a new demand l
g,id defined by:

 gi
i

gg
l
g

l
gi

i
gg

l
g

l
gi etstptpxtstptpd ,

*
,

*
,)))((),(()))((),((−−=− −−−−

(4)

if pei is a consumer else,

)))((),(()))((),((*

,
*

, tstptpytstptpd i
gg

l
g

l
gi

i
gg

l
g

l
gi −−−− −−=−

(5)

if pei is a supplier. l

gix ,
(respectively l

giy ,
) is the optimal demand for the good g

requested (respectively produced) by the peer pei given the potential price)(tpl
g

. The

value of l
gix ,

(respectively l
giy ,

) is determined by a maximization program resolution

as described in the section 6. The demand depends also on the price of the other goods
-g. For the peer pei, gie , is the initial endowment of the good g.

Figure 2 describes algorithm of a peer i located in the region l.

1) Start a thread which repeatedly receives (for
any good g) a potential price vector from any
super-peer

lSP
2) Start a thread which repeatedly receives from

super-peers lSP the partial equilibrium prices
3) While the message «general equilibrium» is not

received
4) Updates for each good g the demands l

gid , for all

prices in the potential price vector of g An-
nounce the demands l

gid , to the super peer
l
gsp

5) Consume or produce

Fig. 2. Algorithm of a peer i in the region r

6 Simulations and Results

In order to evaluate our pricing algorithm, we have carried out two modelling and
simulation case studies. In the first one, consumer preferences are represented by
commonly used utility functions that fulfill the hypotheses of convexity and gross
substitutability needed to ensure convergence. In the second case study, the convexity
of preferences is not preserved. Nevertheless, the results of the simulations show that
this last condition may be relaxed and the pricing algorithm still converges. In the two
cases, a limited computational market is modeled where commodities correspond to a
representative set of computing services needed for matrix computation. As we will

274 L. Chourou, A. Elleuch, and M. Jemni

show later, these services are substitutable commodities and the degrees of
substitutability can be used to express the utility functions.

6.1 Substitutable Commodities for Matrix Computation

In this case study, the considered commodities are a limited number of representative
services for matrix computing. We consider only square matrices, their sizes are: NxN
and 2Nx2N. The possible matrix operations are addition and multiplication. We
assume that all commodities work at the same speed V. As simulations are very time
consuming, we consider only four commodities denoted P1, P2, P3 and P4. Each of
them is defined by the type of operation and the matrix size as described in table 1.
We consider only one computation speed V but our model can easily be extended to
more than one speed resulting in more commodities. The features of a commodity can
be defined according to an SLA (Service Level Agreement) specification. As we are
looking to evaluate the pricing algorithm, the problem of fixing the set of
commodities is not an issue for the present work but it is an important work once the
commodity market model is deployed in a real global computing system.

Table 1. The considered commodities

Commodity Operation Matrix Size
P1 Addition N×N
P2 Multiplication N×N
P3 Addition 2N×2N
P4 Multiplication 2N×2N

Table 2. The normalized memory size storage and the allocation time

 Commodity Memory size Allocation time Mem. Size*Allocation time
P1 3 1 3
P2 3 2N-1≈2N 6N
P3 12 4 48
P4 12 16N-4≈16N 192N

Table 3. Substitution matrix in terms of memory space

i\j P1 P2 P3 P4
P1 1 1/2N 1/16 1/64N
P2 2N 1 N/8 1/32
P3 16 8/N 1 1/4N
P4 64N 32 4N 1

Recall that one of the hypotheses of convergence for the adopted tâtonnement

process is the gross substitution between commodities. According to the matrix size,
table 2 gives the memory size (normalized to N2) and the allocation time (normalized

 Global Pricing in Large Scale Computational Markets 275

to N2/V) needed for each good. It is then easy to deduce the matrix of substitution,

described by table 3, where each element jim , (with1≤i,j≤4) represents the quantity

of the good j needed to substitute the good i in term of the memory space. In this
matrix, we have assumed that 1 is negligible compared to N.

6.2 The First Case Study: Convex Preferences

The preferences of a consumer pei are represented by a CES (Constant Elasticity of
Substitution) utility function. This function is commonly used in several works
implementing market mechanisms [6] [7] [16]. The form of this function is given by
the following expression:

ρ
ρα

/1

1
,))(.()(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

K

g
gigi txtutility

 (6)

where
gα is a weight associated with the commodity g and ρ is a generic parameter.

ρ represents the elasticity of substitution which measures the ease to substitute one

good for another. In CES function, the elasticity of substitution is constant. To ensure

the convexity of preferences, the range of ρ must be restricted to the interval] [1,∞− .

As in WALRAS algorithm [6], we set ρ to 0.5. We fix each gα coefficient to the

substitutability’s degree of the commodity g (as described in table 3).
A peer pei has an initial endowment, in particular, the currency is considered as

being a good and every consumer has an initial monetary budget which will be
periodically refreshed. The initial endowment of the peer pei for the good g is

denoted gie , . This quantity can be sold or exchanged on the market (so a consumer

may also be a supplier). In this exchange economy, the value of the initial endowment
of a peer is its wealth. The wealth of a peer pei at the instant t is defined by:

∑

=

=
K

g
g,igi e*)t(pe*)t(p

1

 (7)

Each consumer aims to determine an optimum demand which maximizes, under a
budgetary constraint, the quantity of computing to be performed. So a consumer pei
must resolve the following maximization problem:

)(max tutilityi
 under constraint

g,i

K

g
gg,i

K

g
g e*)t(p)t(x*)t(p ∑∑

==

≤
11

(8)

where xi,g (Kg ≤≤1) is the demand announced by the consumer pei for the

commodity g. We have implemented a discrete event simulator that simulates the
computational market model and the pricing algorithm proposed in the previous
sections. Fifty computational economies and fifty trials have been generated each
with four commodities, sixteen consumers and sixteen suppliers. The suppliers

276 L. Chourou, A. Elleuch, and M. Jemni

(respectively, consumers) were given randomly-generated memory size that limits the
feasible production (respectively, currency endowments, so each consumer have only
currency as good). These economies are used to average each point in the following
comparison charts. Vertical lines at the top of a bar indicate the minimum and the
maximum values for the fifty trials. To simulate the asynchronous behavior of peers,
we assume that the number of new demands, some bids for a subset of commodities,
follows a random draw 2 . When a peer does not submit a new demand for a
commodity, the super-peer considers its demand from the last iteration. Each super-
peer, upon receiving the demands, computes the clearing price. Then it notifies its
peers (the bidders) the new price. Peers do not possess the same state of price
information on which they compute their next demands. Our developed simulator
follows iteratively this process on each super-peer until the equilibrium prices are
reached. For each iteration (called a cycle), a random number of super-peers compute
new clearing prices.

The simulations results show that our distributed algorithm converges to a unique
equilibrium for each generated economy. Moreover, we have varied the number of
super-peers per commodity and have measured the number of cycles and the number
of explored prices to achieve the general equilibrium (i.e. prices computed as
described by the line 20 of figure 1). Since the super-peers work in parallel, at each
cycle the number of considered prices is taken as the maximal value among all super-
peers. Figure 3 gives the average number of cycles and the average number of
computed prices to reach the general equilibrium, for different numbers of super-
peers associated with the same commodity. Recall that the WALRAS algorithm
corresponds to the case where only one super-peer is used per commodity. It should
be noted that increasing the number of super-peers does not result in a worse number
of cycles. Moreover, a significant improvement of the average number and the
maximal number of cycles is observed. Hence, the asynchrony of the bidding process
– implying that new partial equilibrium prices are computed according to not fully
updated information – is not emphasized by using more than one super-peer per
commodity. Besides, both average and maximal number of computed prices decreases
significantly when the number of super-peers is increased. Indeed, a parallel search is
performed and the search space assigned to each super-peer is reduced by increasing
the number of super-peers per commodity.

6.3 The Second Case Study: Linear Preferences

Let us consider the simple case where preferences of consumers are represented, at
the time t, by a linear utility function as described by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

K

g
g,igi)t(x.)t(utility

1
α (9)

2 Like in WALRAS, our simulator chooses with equal probability from the set {0, 1, 2}. So

each peer submits an average of one demand per cycle.

 Global Pricing in Large Scale Computational Markets 277

(a) (b)

Like in the first case, each consumer aims to determine an optimum demand under the
budgetary constraint as described by the expression (8). As the preferences are not
convex, the demand functions are discontinuous. Consequently, if the equilibrium
price does not exist, our pricing algorithm is able only to determine the two nearest
prices leading to a change of the sign of the excess demand. If these two prices have
close enough values, we may consider these prices as equilibrium prices. A general
equilibrium is reached when prices of goods do not change anymore or oscillate
between two close values. For all simulations, we calculate the difference between
oscillating prices and we found that these gaps are negligible compared to the
corresponding prices. Like in the first case study, the simulation results show that our
distributed algorithm converges well, as it is shown in figure 4. These results suggest
that for linear preferences the pricing algorithm converges well to equilibrium and
behaves as in the case of convex preferences.

0

20

40

60

80

100

120

1 4 16

Number of Cycles

Number of super-peers per commodity

0

1000

2000

3000

4000

5000

6000

7000

1 4 16

Number of Prices

Number of super-peers per commodity

Fig. 3. Convex preferences case: (a) Average number of cycles. (b) Number of estimated
prices.

0

20

40

60

80

100

120

1 4 16

Number of Cycles

Number of super-peers per commodity

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 16

Number of Prices

Number of super-peers per commodity

Fig. 4. Linear preferences case: (a) Average number of cycles. (b) Maximal number of
estimated prices according to the number of super peers by good.

7 Conclusion and Perspectives

In this paper, we have shown how the commodity market model may be applied to
build large scale computational systems. A distributed pricing algorithm is proposed
for achieving a competitive equilibrium. Prices are adjusted according to a
tâtonnement like process. The search space is divided into intervals, explored by
separate coordinated auctioneers, to speed up the convergence of the pricing
algorithm. Although the convergence guarantee depends on several conditions, in

(a) (b)

278 L. Chourou, A. Elleuch, and M. Jemni

particular the preference convexity assumption, we have found empirically that our
algorithm converges even if the preferences are linear. As a future work, we intend to
include the trust granted to each announced offer or demand in the pricing process. A
reputation mechanism will be used to evaluate the trust level of each bidding peer.

References

1. Andersson, A., Ygge, F.: Managing large scale computational markets, Research Report
4/98, Department of Computer Science and Business Administration, University of
Karlskrona/Ronneby, Sweden

2. Arrow, K., Block, H.D., Hurwicz, L.: On the stability of competitive equilibrium 2.
Econometrica 27, 82–109 (1959)

3. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy.
Econometrica 22, 265–290 (1954)

4. Buyya, R., Giddy, J., Abramson, D.: A Case for Economy Grid Architecture for Service-
oriented Grid Computing. In: IPDPS 2001: Proceedings of the 10th Heterogeneous
Computing Workshop (HCW 2001), San Francisco, California, USA, pp. 83–88 (April
2001)

5. Buyya, R., Stockinger, H., Giddy, J., Abramson, D.: Economic models for management of
resources in peer-to-peer and grid computing. In: SPIE International Symposium on the
Convergence of Information Technologies and Communications (ITCom 2001), August
20-24, Denver, Colorado (2001)

6. Cheng, J.Q., Wellman, M.P.: The WALRAS algorithm : a convergent distributed
implementation of general equilibrium outcomes. Kluwer Academic Publishers (1998)

7. Gomes, E.R., Kowalczyk, R.: Learning in market-based resource allocation. In: 6th
IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007),
pp. 475–482 (2007)

8. Knight, F.H.: Risk, uncertainty, and profit. Hart, Schaffner, and Marx Prize Essays,
vol. 31. Houghton Mifflin, Boston (1921)

9. Sandholm, T., Ygge, F.: Constructing speculative demand functions in equilibrium
markets. WUCS-99-26 (1999)

10. Smale, S.: Price adjustment and global Newton methods. Frontiers of Quantitative
Economics. IIIA, 191–205 (1975)

11. Stuer, G., Vanmechelen, K., Broeckhove, J.: A commodity market algorithm for pricing
substitutable grid resources. Future Generation Computer Systems 23(5), 688–701 (2007)

12. Walras, L.: Elements of pure economics. Allen and Unwin Originally published (1874)
English translation by William Jaffé (1954)

13. Weng, C., Lu, X., Deng, Q.: A Distributed Approach for Resource Pricing in Grid
Environments. In: Li, M., Sun, X.-H., Deng, Q.-n., Ni, J. (eds.) GCC 2003. LNCS,
vol. 3033, pp. 620–627. Springer, Heidelberg (2004)

14. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource allocation
strategies for the computational grid. International Journal of High Performance
Computing Applications 15(3), 258–281 (2001)

15. Ygge, F.: Market-oriented programming and its application to power load management,
Ph.D. thesis, Department of Computer Science, Lund University (1998)

16. Yuan, L., Zeng, G., Wang, W.: A Grid resource price-adjusting strategy based on price
influence model. In: Proceedings of Fifth International Conference on Grid and
Cooperative Computing (GCC 2006), pp. 311–318 (2006)

17. Zhao, X., Xu, L., Wang, B.: A Dynamic price model with demand prediction and task
classification in grid. In: Proceedings of the Sixth International Conference on Grid and
Cooperative Computing Table of Contents, pp. 775–782 (2007)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 279–288, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A New RBAC Based Access Control Model
for Cloud Computing

Zhuo Tang1, Juan Wei1, Ahmed Sallam1, Kenli Li1, and Ruixuan Li2

1 College of Information Science and Engineering, Hunan University,
Changsha 410082, China
hust_tz@126.com

2 School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, Hubei, China

Abstract. Access Control is an important component of Cloud Computing;
specially, User access control management; however, Access Control in Cloud
environment is different from traditional access environment and using general
access control model can’t cover all entities within Cloud Computing, noting
that Cloud environment includes different entities such as data owner, end user,
and service provider. In this paper, we propose a new access control based on
Role-based access control (RBAC) model. This model includes two kind of
roles, user role (UR) and owner role (OR); such that, Users get credential from
owners to communicate with service provider and to get access permissions of
resources. We also discuss the aspects of user access control management, such
as authentication, privilege management, and deprovisioning. Moreover, we use
administrative scope to update hierarchy when there is a role added or revoked
to simplify the user access control management. By applying the model in
Cloud environment the results shows that it can reduce the security problems to
two classes in the RT [← , ∩] role-based trust-management language with a
test-paper system.

Keywords: Cloud computing, access control, user access control management,
security analysis.

1 Introduction

Over the passed few decades, many access control models have been proposed to
specify the different access control policies. These models primarily include DAC,
MAC and RBAC. In DAC [1] the creator controls all the objects and the object owner
has rights to give the access permissions to others; however, it is difficult to control
the permission hierarchy. MAC [2] on the other side cannot implement distributed
management. A better alternative is the RBAC [3] that is a widely used access control
mechanism, which associates permissions and roles; such that, users get the
corresponding permissions by playing roles in RBAC.

In the RBAC family which was proposed by Sandhu in 1996 [7], users’ privileges
are attached to their roles, where the users can acquire when needed. A role is a

280 Z. Tang et al.

permission set for a special work station. When the users’ privileges need to be
changed, we have to revoke the user role or re-distributing the roles.

James B.D. Joshi et al. [4, 5] extended RBAC theory. In many practical scenarios,
users may be restricted to assumed roles only at predefined time periods. GTRBAC
allow expressing the role hierarchies and separating of duty (SoD) constraints [6] for
specifying fine-grained temporal semantics.

Li et al. [8] proposed the notion of security analysis and studied security analysis in
the context of RT[←,∩], a role-based trust-management language. They showed that
a security analysis instance in RT[←,∩] involving only semi-static queries can be
solved efficiently. The work by Koch [9] analyzes the safety in RBAC with the
RBAC state and state-change rules posed as graph formalism.

Li and Tripunitara [10] performed security analysis on two restricted versions of
administrative RBAC. These are known as AATU and AAR. They proposed two
reduction algorithms and studied complexity results for various analysis problems
such as safety, availability and containment.

Jason Crampton et al. [11] and Koch et Al. [12] have introduced the administrative
scope in a role hierarchy and develop a family of models for role hierarchy
administration. The administrative role could update the role hierarchy dynamically
when some roles added or deleted. Youngmin Jung Et al. [13] have proposed an
adaptive security model for Cloud Computing environment. The model based on the
improved RBAC model and adapts a role switching model. Weichao Wang et al [14]
have discussed the outsourced data security. But this paper only considered the data
update, and they did not consider the entities update.

2 CARBAC: The RBAC for Cloud Computing Environment
2.1 Models and Definitions

RBAC is a very useful access control model, despite its benefits it is fundamentally
limited by its subject-centric nature. The CARBAC model proposed in this section
addresses these situations by incorporating support for environmental state and object
state in access control policies. Because the resources stored in Cloud Computing
servers are very huge, we have to divide resources to data blocks. Our model focuses
on the access control in the SaaS delivery model [15] where applications are delivered
as a service to end users. In the following we list a set of important definitions.

User Role (UR): A user role in our model is similar to RBAC role. The user is an
individual within an organization gets his/her access permission through the role
assigned to him.

Owner Role (OR): It is the set of permissions that data owner has to give credential to
users and update Cloud resources. Data owner processing users’ request through OR.

Request: User’s access request is denoted as Req=(UR,OR, request index, data
block,op), where “request index” is to label user’s access request., “data block” is to
label the data block the user requests. And “op” is the operation that the user will
apply on resources.

 A New RBAC Based Access Control Model for Cloud Computing 281

Role hierarchies are almost inevitably included whenever roles are discussed in the
literature [16, 17]. In the following, we define role hierarchies and describe their
semantics.

We define a partial order set ,R< ≤> and R is the set of roles. We denote x

covers y as y x≤ , and if there is an edge between the role x and the role y, x is called

the parent role of y. And the role x can inherit the permission of role y .

We use the administrative scope definition introduced in Jason Crampton et al.
[12]. When a role is added to or deleted from the hierarchy, the administrative role
will dynamically change the administrative scope. The model can be seen from
figure1. UR and OR can update the role hierarchy by themselves. User role hierarchy
and owner role hierarchy has its administrator. The administrator of owner role
hierarchy administrates the relationship between OR and UR while OR has the
responsibility to manage users’ information and the credential of user. Roles assigned
to user with the following constraints:

1) Only one role can be assigned to one user in one session, and one user cannot be
signed to two roles at the same time.

2) Every user has a tag to note the role he/she assigned to.

2.2 User Access Control Management

This paper discusses the user access control management in universal cloud
computing environment which includes authentication, privilege management, and
deprovisioning. The authentication control is among end users, data owner, and
service provider. The privilege management is for some special users.

Authorization and Authentication

In an access session S, as Figure 2 shows, the process can be divided into two parts:
<UR, OR, Req> and <UR,SP, P>, in which UR is the set of user roles, OR is the set
of data owner roles, SP is the service provider, P is the set of permissions, and Req
represents the set of user’s access requests where Req=(UR,OR, request index, data
block,op).

The authorization procedure works as follows.

1. UR sends a data access request to OR. UR OR→ : {UR, OR, Req}.The request
includes the index number of data block that the user wants to access.
2. When data owner receives the request; it will check the integrity and lateness of the
message, Then OR needs to check whether UR has the right to access the data blocks
which it request to access. If UR passes the check, the OR will send a reply to UR.
OR UR→ : {OR, UR, Req, Cred}.Where the Cred is a Credential to the service.
3. UR will send the packet {UR, SP, request index, Cred} to the service provider.,
then the service provider firstly authenticate Cred, and that the Cred is generated by
OR, because the Cred is encrypted by a secret key which is only known by OR and
SP; moreover, The Cred has the information of data user and date owner. Next, S will
send the permission to UR. So UR gets the access rights to the data blocks.

282 Z. Tang et al.

USERS UR SP

OR

owners

constraints

Role
hierarchy

Role
hierarchy

roles

user

S

PA

Uesr
assignment

owner
assignment

UA RA

Permission
assignment

Fig. 1. An access control based RBAC for cloud computing Fig. 2. Authorize Process

The request sent by the end user who has the privilege to send access requests to
the data owner is noted as ReqP, and it has the following form.
ReqP=(UR,OR, ID, request index, data block, op).

Deprovisioning and Insertion

When a new role node is added to the system or a role is deleted from the role
hierarchy, we use the administrative scope model to update the role hierarchy; this
procedure includes operations on roles and edges. These operations can be denoted as
AddRole(a ,r, ,r rΔ ∇), DeleteRole(a ,r), AddEdge(a ,c,p), DeleteEdge(a ,c,p)

respectively., where a is an administrative role, r is the new role, rΔ is the
immediate child role of role r , r∇ is the immediate preceding role of role r , c is
the child role, and p is the parent role. Mentioning that, OR give credential to UR

according to the first come first served with high priority first principles.
Suppose a new role is inserted to the hierarchy. When it wants to access data

blocks, first it needs to get access authorization, so it gains access rights in the same
way as described in section 3.1. And the service provider and the data owner do not
change to adapt to the update. On the other side, if a user role is removed from the
hierarchy, besides the UR hierarchy update, the OR also needs to update its Credential
management. It labels the data block which the UR was accessing to note that the UR
does not have further access to that data block. If a user needs to access the data block
again, it is necessary to gain new access rights from the data owner and service

 A New RBAC Based Access Control Model for Cloud Computing 283

provider and if a user needs to change the accessed data block, it sends access request
to the data owner, the data owner delete its access rights of the last block and sends a
new Credential to the UR. Also note that, the data block which the user does not
access is also labeled.

2.3 Instances

In a typical Cloud Computing environment, suppose there are three users: Alice, Bob
and Carol. Alice and Bob are assigned to the same role E., see UR and OR hierarchies
in Figure 3. Alice requests to access the data block DB1, Bob requests to access the
data block DB2 and Carol request to access the data block DB3. Following the
proposed model.

(1) Alice sends access request to the owner role OR1 through role E, consider that
Alice has higher priority than Bob and Bob cannot get edit permission from E. this
request can formally be written as following:

 Alice → OR1: {E, OR1, Req} (1)

Req = { UR=E,OR=OR1 , request index=1, data block=DB1,permission=edit}
Alice is the first time for Alice to send request, the request index is “1”. And

permission =edit means that the access rights Alice needs to gain is to edit the data
block.

(2) The role OR1 authenticates the message and replies with the Credential. At the
same time, it label the data block in service.

 OR1 → E: {OR1, E, Req, Cred} (2)

Req={UR=E,OR=OR1 , request index=1, data block=DB1,permission=edit} and
Cred is a Credential for Alice.

(3)When E receives the message, it first checks the freshness of the message and
then sends it to the service provider, and waits to receive the access permission.

 E → SP: {E, SP, request index, Cred} (3)

The SP receives the request, and checks whether the Cred matches role E. then it
sends the Edit permission to role E; consequently, user Alice gets the edit permission
to DB1.

When the role PE is deleted, its administrator will send a notification to the data
owner OR. The notification contains the ID of the role PE and data block. Next, OR
labels the data block to show that the role’s rights have been revoked and the
notification of the information is as following:

M → OR: {PE, OR, ID, data index}.

When the user wants to access the same data block again, it will need to send an
access request to OR.

284 Z. Tang et al.

node legend

DIR
M
PE
QE
E

HR
OR
OR1
OR2
DB1
DB2

Director
Manager
Production Engineer
Quality manager
Engineer
Human Resources
Data Owner
Data Owner 1
Data Owner 2
Data Block 1
Data Block2

(a) Legend (b) User role hierarchy (c) Owner role hierarchy

Fig. 3. Application of access control model for Cloud Computing

3 The Security Analysis

In a multi-users environment, access control is usually used to control and protect
resources. When an access control policy is made, some security problems should be
considered, for example, in the given authorization status and policy description,
whether a subject can access the object safely? Security analysis techniques answer
two questions: whether an undesirable state is reachable and whether every reachable
state satisfies some safety or availability properties.

In Li et al. [8], a version of security analysis is defined in the context of trust
management, and Li et al [10], introduced solutions to two classes of security analysis
problems, which are assignment and trusted users (AATU) and assignment and
revocation (AAR).

3.1 Reduction for AATU

Given an AATU security instance in Cloud Computing < , ,UA PA RAγ =< > ,

1 2q u u= ¬ , _ ,can assign Tϕ =< > , { , }Π ∈ ∃ ∀ > . The can_assign relation determines

who can assign users to roles and which preconditions the users should satisfy, where
can_assign = {<DA, GT, {Expertss}>, <SA, true, {GU, DA}>}. DA means the
department administrator, GT is a general teacher, SA standards the school
administrator, and GU is general users. DA, GT, SA, and GU are all end users in the
Cloud. Let q reduction results take the form of , ,T T Tqγ ϕ< > . Tq is

. { }Sys Experts Alice¬ .

We use the principal Sys to represent Cloud Computing RBAC system. The RT
[← , ∩] role Sys.ur represents the user role r in Cloud Computing, and the RT [← ,
∩] role Sys.p represents the cloud computing RBAC system permission p. Each

(),u ur UA∈ is translated into the RT [← , ∩] statement Sys.ur ←u, and Each
1 2r r≤

means that a member of 1r is also a member of 2r .

 A New RBAC Based Access Control Model for Cloud Computing 285

According to Figure 4, the following RT statements in Tγ result from UA:

 Sys.Students ←Alice Sys.GT ←Bob Sys.DA ←Carol

the following statements in Tγ result from PA:

 Sys.View ←Sys.DA Sys.Edit ←Sys.GT

and the following statements in
Tγ result from RA:

 Sys.GU ←Sys.Students Sys.GU ←Sys.GT Sys.GT ←Sys.Experts

 Sys.DA ←Sys.SA Sys.Access ←Sys.Students

In Figure 3, GT stand for General Teachers, GU stand for General Users, DA
represents Department Administrator, and SA represents the School Administrator.
Roles are shown in solid boxes, permissions in dashed boxes, and users in ovals. A
line segment represents a role–role relationship, the assignment of permission to a
role, or the assignment of a user to a role. The following statements in Tγ result from
can_assign; such that, the first two statements reflect the ability of a member of
Department Administrator to assign users to Students and General Teachers with no
prediction, then the remaining statements will reflect the ability of a member of
School Administrator to assign users to Experts provided that they are already
members of Department Administrator and General Teachers.

 Sys.Students ←Sys.DA.Sdtudents Sys.GT ←Sys.DA.GT
 Sys.NewRole1 ←Sys.DA ∩ Sys.GT Sys.NewRole2 ←Sys.Experts
 Sys.Experts ←Sys.NewRole1 ∩ NewRole2

,T G Sγ =< > , where G is the [10] set of growth-restricted roles and S is the [10] set

of shrink-restricted roles. Statements defining roles in G can’t be added, and
statements defining roles in S cannot be removed. Now, it is easy to see that the
security analysis instance , , ,T T Tqγ ϕ< ∃ > is false, as Alice is not a member of the

Experts.

3.2 Reduction for AAR

In Cloud Systems, we use five special principles: Sys, RSys, ASys, HSys, BSys. The
Sys roles simulate RBAC permissions, the roles of RSys contain all the initial roles
memberships in UA, ASys roles represent every user that exercises the user-role
assignment operation, Hsys.r maintains the history of the user role r. And BSys is
similar to ASys, but it is used to construct the HSys roles.

An example of a state-change rule in AAR is _ , _can assign can revokeϕ =< > ,

where can_assign is the same as in AATU and RRrevokecan 2_ ×⊆ determines who

can remove users from roles. can_revoke consists of two tuples <DA, {GT, Experts}>
and <SA, {GU, DA}>.

286 Z. Tang et al.

RA = {(Experts, GT),(GT,GU),(students, GU),(SA,DA)}
PA = {(Edit, GT),(Access, GU),(View, DA)}
UA = {(Alice, GT),(Bob, Students),(Carol, DA)}

Fig. 4. An example RBAC state for cloud computing

Let γ be the same as in AATU and q is Experts Alice¬ . The output of AAR is

, ,T T Tqγ ϕ< > . Tq is . { }Sys Expert Alice¬ .

The following RT statements in Tγ result from UA:

 HSys.Students ←Alice RSys.Students ←Alice HSys.GT ←Bob
 RSys.GT ←Bob HSys.DA ←Carol RSys.DA ←Carol
 Sys.Students ←RSys.Students Sys.GT ←RSys.GT Sys.DA ←RSys.DA,

 the following statements in Tγ result from RA:

 Sys.GT ←Sys.Experts HSys.GT ←HSys.Experts Sys.GU ←Sys.Students
 HSys.GU ←HSys.Student Sys.GU ←Sys.GT HSys.GU ←HSys.GT
 Sys.DA ←Sys.SA HSys.DA ←HSys.SA,

 the following statements in Tγ result from PA:

Sys.Edit ←Sys.GU Sys.Access ←Sys.Students Sys.View ←Sys.Administrator,

and the following statements in Tγ result from can_assign:

 HSys.GU ←BSys.GU Sys.GU ←ASys.GU HSys.DA ←BSys.DA
 Sys.DA ←ASys.DA Sys. NewRole1 ←HSys.GU ∩ HSys.DA
 HSys.Experts ←BSys.Experts ∩ Sys. NewRole1
 Sys.Experts ASys.Experts Sys.NewRole1

,T G Sϕ =< > ,where G is the set of growth-restricted roles and S is the set of

shrink-restricted roles. Moreover, there exists a state 1
Tγ that is reachable from Tγ

and has the following statements in addition to the ones in Tγ .

 BSys.D ←Alice ASys.Experts ←Alice

← ∩

 A New RBAC Based Access Control Model for Cloud Computing 287

We can now infer that in
1
Tγ , HSys.DA ← Alice and, therefore, HSys.NewRole1

← Alice, and Sys.Experts ← Alice. Thus the security analysis instance

1 , , ,T T Tqγ ϕ< ∃ > is true.

If we consider instead, the query 1
Tq , which is .Sys Experts Alice¬ , then as RSys.GT

is a shrink-unrestricted role, there exists a state
2

Tγ that is reachable from Tγ in

which the statement RSys.GT ←Alice is absent. Therefore, we would conclude that
Sys.Experts does not include Alice. So the analysis instance

1, , ,T T Tqϕ γ< ∀ > is false.

We need to consider if only GT has edit right to a test paper and if David has right
to access the Testpaper.

Given a state γ ,state-change rule

φ={<Students,Access, Test paper>,<GT, Edit and Access, Test paper>}

is authorized to user assigned to GT has right to access and edit the Testpaper. And
users assigned to SA has right to assign Students, GT, Experts, DA, or SA to users.
For the query { }q David Access= ¬ and

1φγ γ→ , the instance , , ,qγ φ< ∃ > asks

whether there exists a reachable state 1γ such that end user David can access the

Testpaper. It is clear that the instance is true. For the query { }q Edit David= ¬ , and

1φγ γ→ , the instance , , ,qγ φ< ∃ > asks whether there exists a reachable state 1γ
such that end user David can edit the Testpaper. It is clear that the instance is false.

4 Conclusion

In this paper we introduce a new access control model for Cloud Computing based on
RBAC Where both the user and the data owner have a corresponding role hierarchy.
Each role hierarchy has administrative roles, so that it can be updated dynamically if a
new role is inserted or deleted from the role hierarchy; moreover, the role hierarchy
can update roles relationship by administrator scope. We discuss the authentication,
privilege management, and deprovisioning of the user access control.

We also analyze the security of the access control system in a test-paper Cloud
Computing system and reduced the security problem to two classes of AAU and AAR
using the RT[← , ∩] role-based trust-management language. The results indicate
that our proposed model can satisfy the security needs in Cloud Systems.

Acknowledgments. This work is supported by the National Postdoctor Science
Foundation of China (20100480936).

288 Z. Tang et al.

References

1. Osborn, S., Sandhu, R., Munawer, Q.: Configuring Role-Based Access Control toEnforce
Mandatory and Discretionary Access Control Policies. ACM Transactions on Information
and System Security 3(2), 85–106 (2000)

2. Jiang, Y., Lin, C., Yin, H., Tan, Z.: Security Analysis of Maindatory Access Control
Model, Systems, Man and Cybernetics 6, 5013–5018 (2004)

3. Ferraiolo, D., Kuhn, R.: Role-based access controls. In: 15th NIST-NISC National
Computer Security Conference, October 13-16, pp. 554–563. Baltimore, MD (1992)

4. Joshi, J.B.D., Bertino, E., Ghafoor, A.: A Generalized Temporal Role-Based Access
Control Model. reference IEEECS (accepted December 9, 2003. Published online
November 18, 2004)

5. Joshi, J.B.D., Bertino, E., Ghafoor, A.: Temporal hierarchies and inheritance semantics for
gtrbac. In: SACMAT 2002: Proceedings of the Seventh ACM Symposium on Access
Control Models and Technologies, pp. 74–83. ACM, New York (2002)

6. Li, N., Tripunitara, M.V., Bizri, Z.: On mutually exclusive roles and separation of duty.
ACM Transactions on Information and System Security 10(2) (May 2007)

7. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role Based Access Control
Models. Computer 29(2) (February 1996)

8. Li, N., Mitchell, J.C., Winsborough, W.H.: Beyond proof-of-compliance: Security analysis
in trust management. Journal of the ACM 52(3), 474–514 (2005)

9. Koch, M., Mancini, L.V., Parisi-Presicce, F.: Decidability of Safety in Graph-Based
Models for Access Control. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS
2002. LNCS, vol. 2502, pp. 229–243. Springer, Heidelberg (2002)

10. Li, N., Tripunitara, M.V.: Security Analysis in Role-Based Access Control. ACM
Transactions on Information and System Security 9(4), 391–420 (2006)

11. Crampton, J., Loizou, G.: Administrative Scope: A Foundation for Role-Based
Administrative Models. ACM Transactions on Information and System Security 6(2),
201–231 (2003)

12. Koch, M., Mancini, L.V., Parisi-Presicce, F.: Administrative scope in the graph-based
framework. In: Proceedings of the Ninth ACM Symposium on Access Control Models and
Technologies (SACMAT 2004), pp. 97–104 (2004)

13. Jung, Y., Chung, M.: Adaptive Security Management Model in the Cloud Computing
Environment. In: 2010 the 12th International Conference on Advanced Communication
Technology (ICACT), vol. 2, pp. 1664–1669 (2010)

14. Wang, W., Li, Z., Owens, R., Bhargava, B.: Secure and Efficient Access to Outsourced
Data. In: CCSW 2009, Chicago, Illinois, USA, November 13 (2009)

15. Mather, T., Kumaraswamy, S., Latif, S.: Cloud Security and Privacy, pp. 18–19. O’Reilly
Media, Inc. (2009)

16. Ferraiolo, D., Kuhn, R.: Role-based access controls. In: 15th NISTNCSC National
Computer Security Conference, Baltimore, MD, October 13-16, pp. 554–563 (1992)

17. Nyanchama, M., Osborn, S.: Access rights administration in role-based security systems.
In: Biskup, J., Morgernstern, M., Landwehr, C. (eds.) Database Security VIII: Status and
Prospects. North-Holland (1995)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 289–301, 2012.
© Springer-Verlag Berlin Heidelberg 2012

QoS Monitoring and Dynamic Trust Establishment
in the Cloud

Ashok Chandrasekar, Karthik Chandrasekar, Malairaja Mahadevan,
and P. Varalakshmi

Department of Information Technology, Madras Institute of Technology, Anna University,
Chennai, India

{ashoksekar07,karthidec1,raja90mit,varanip}@gmail.com

Abstract. In the current cloud computing scenario, the need for establishing an
SLA is essential. There is an even stronger necessity for monitoring whether the
QoS mentioned in the SLA is met by the service provider. The next big issue is
the trust on the service provider. Even though the providers pledge to meet the
agreed upon QoS, there is a desideratum for a trust model which will give a
quantitative measure of the trust to the requester before choosing a service
provider. In this paper, we portray a novel approach which will monitor the
QoS, negating the drawbacks associated with the existing techniques. The
amount of monitoring data sent over the network is reduced by employing a
derived and state monitoring approach. Based on the monitoring results, trust is
established dynamically by making use of the Markov Chain model. The
proposed approach is implemented using a web based system which will
elucidate its use in real time. We believe that our dynamic trust establishment
technique will be munificent in supporting the way trust management will be
viewed in future.

Keywords: Dynamic Trust, QoS Monitoring, Cloud monitoring, Markov Chain.

1 Introduction

Trust plays a key role in the emerging cloud computing paradigm. It is one of the less
trodden areas of cloud computing, making it a bit vulnerable in that aspect. Service
providers and requesters in cloud formulate a Service Level Agreement(SLA) for
every service provided and a QoS is established, to which the provider must conform
throughout without any lapses as shown in Fig. 1. Now the real issue arises. How a
requester can trust a provider? Based on what aspect can the trust be established? Is
there a quantitative measure on how much can a provider be trusted? A major part of
these questions still remain unanswered. Our paper concentrates mainly on addressing
all the above issues in the best possible manner. For a provider to be trusted, there
should be enough feedback on the services offered by it before and how it has
managed to meet the QoS requirements. This shows that for trust to be established
there is a need for QoS monitoring. QoS monitoring involves extracting the QoS

290 A. Chandrasekar et al.

parameters from the SLA agreed upon by the service provider and the requester.
Monitoring information about the parameters needs to be retrieved and checked for
conformity with the QoS. This monitoring is done discretely at regular intervals or
continuous monitoring is employed. When a violation on any of the QoS parameters
is detected, it has to be properly recorded and informed to the requester. The work
presented here throws enough insight into how the two aspects involved in trust
establishment can be effectively done. Words service requester and user are used
interchangeably in the upcoming sections of the paper.

Fig. 1. Conceptual view of the interaction between service provider and requester

The rest of the paper is organized as follows: Section 2 overviews the issues and
challenges involved in QoS monitoring and trust establishment. It also overviews other
related initiatives. Our proposed solution for QoS monitoring and dynamic trust
establishment is presented in Section 3. Design details, implementation and results are
showcased in Section 4. Works related to the proposed system are analysed in Section 5.
Finally some conclusions are arrived at and put together in Section 6.

2 Issues in Trust Establishment

Qos Monitoring Issues. The first issue involved in trust establishment is monitoring
the QoS in a regular basis, to verify whether it is in compliance with the SLA. The
real problem here is that monitoring the QoS involves monitoring all the parameters at
the provider side and sending this information over the network to the QoS Monitor.
Sending this monitoring data consumes some bandwidth. As QoS needs to be
monitored in a continual basis, it involves sending quite a lot of monitoring data
continuously over the network making it a bandwidth intensive task.

Trusting the Third Party. The Third Party which performs this task of QoS
monitoring should be a trusted entity. It should not be in any way inclined towards

 QoS Monitoring and Dynamic Trust Establishment in the Cloud 291

either the service provider or the requester. At present, the Qos Monitor is just
assumed to be a Trusted Third Party [2].

Establishing Trust over a Provider. Current trust models rely mainly on the
feedback from the provider’s earlier services and tends to be static in most occasions.
Trust once established is difficult to modify even if the provider has not been good of
late. This provides an opportunity for the provider to maintain enough trust even
without living up to its reputation. This problem has to be accepted.

3 Proposed Solution

The first part of the solution involves monitoring the QoS by making use of an
effective monitoring technique which reduces the amount of monitoring data sent
over the network. The second part deals with developing a dynamic trust model by
employing the concept of Markov chains. Outline of the proposed architecture is
shown in Fig. 2.

3.1 QoS Monitor

QoS Monitor is the component which monitors the QoS parameters continuously.
There will be a Monitoring Agent deployed at the provider’s end. This agent is
responsible for getting the monitoring information. Monitoring information involves
all the QoS parameters mentioned in the SLA. These parameters are extracted from
the SLA and maintained separately along with their threshold vales(values which
should be met by the provider). These parameter details are alone extracted by the
Monitoring Agent and sent to the QoS Monitor. This process consumes a considerable
bandwidth as the information are sent very frequently. So we propose the concept of
state monitoring and derived monitoring.

State Monitoring. The main constraint in monitoring QoS is sending the monitoring
data over the network. So our agenda is to reduce the information sent over the
network, at the same time ensuring an accurate and efficient monitoring. State
monitoring gives exactly that kind of efficiency and accuracy. It involves sending
only the state data of each parameter. State data is a single bit value representing
whether the parameter meets the criterion or not. We use a 1 for criterion met and a 0
for failure to meet the specified QoS value. This reduces the transfer of monitoring
data to sending a few bits. Only one bit is sent for every parameter, which will
definitely lead to a much lesser data being transferred. It is the duty of the Monitoring
Agent to check whether the value of the parameter under study is lesser or greater
than the threshold and sending a 0 or 1 based on the result. But this alone cannot be
used to monitor all the parameters, because on most of the parameters we need the
exact value, so that we can have a realistic notion about the extent to which the QoS is
satisfied or missed.

Derived Monitoring. There will be a few parameters which can be derived from the
value of other parameters. Say for example, the amount of memory remaining can be

292 A. Chandrasekar et al.

derived from the amount of used memory. It is not necessary to send both these
parameters, as one can be derived from another. The next way of deriving involves
sending only the difference in value with the previous value of the same parameter
sent. This reduces the data sent because a lot of values remain same over a short time
interval leading to a zero difference.

These two techniques can be combined based on our needs to build an effective
and efficient monitoring scheme.

3.2 Dynamic Trust Model Based on Markov Chain

Trust is calculated dynamically based on the way the provider services its requests.
After the monitoring information reaches the QoS Monitor from the Monitoring
Agent, it is compared with the QoS parameters and trust is established based on its
deviation from the actual values. This is done as follows.

Fig. 2. Overall Architecture of the System

Cost Calculation. Each QoS parameter is unique and they are not equally significant.
In the sense that failure to meet one parameter may not have the same effect as the
failure to meet some other parameter. So we cannot have them affect the trust in the
same way. We adhere to this difference in significance by assigning a different weight
wi for each parameter based on its importance and cost c is calculated based on that.

i

n

i
i dwc ∑

=

=
1

where iw is the weight of the ith QoS parameter, id is the difference between the

actual monitored value and the expected value of the ith QoS parameter and n is the
total number of QoS parameters.

Markov Chain Based on Cost. Cost c is calculated as per the aforementioned
formula for the cost function. This cost is calculated periodically and based on this
cost, a Markov Chain is formulated with the following states: Steady state, Unsteady
state and Failure state. Transition between the states can be visualised in the Fig. 3

 QoS Monitoring and Dynamic Trust Establishment in the Cloud 293

which shows the Markov Chain state diagram, Based on cost c, it can be categorized
into any one of the states mentioned above. The demarcation is fixed based on the
level of compliance to the QoS. When in steady state, cost function will be such that
the QoS is met without any problem. Unsteady state means the QoS parameters are
partially unmet. Failure state means the failure to afford the service as agreed. It is the
Denial of Service as a whole.

Trust Calculation. A base trust of 50% is fixed at the beginning for any untrusted
provider. This gives the new providers a chance to attract customers. If we start from
zero trust, then the probability of them getting a service request is less. Now with the
Markov state chain and base trust setup, we can go for calculating trust. The first step
in trust computation involves formulating the transition matrix which shows the
transition probability from one state to another.

S tea d y U n s tea d y F a ilu re

p p pss su s fS te a d y

P U n s tea d y p p pu s u u u f
F a ilu re

p p pfs fu ff

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

The above matrix is the transition matrix which shows the probability of transition
from one state to another. Steady, unsteady and failure are the various states into

which the cost value can fall. ijp is the probability that the chain will from state i to

state j.

This model can be extended into an Absorption Markov Chain with a new state
introduced called Ideal State, which will be the absorption state. An absorption state is
a state in the Markov chain which when reached, it is not possible to move to any
other state from it. There is no ‘out transition’ from an absorption state. A Markov
chain with such a state is known as Absorption Markov chain [6]. We have introduced
a new absorption state(Ideal) into the chain to denote the maximum trust. This means
that, a provider which has reached an ideal state will never falter. Even though it is
almost impossible for any provider to reach the Ideal state, it is employed here for
having a comparison with a maximum quantity. After the inclusion of the new
absorption state, the state diagram becomes the one as mentioned in Fig. 3.

Fig. 3. State diagram showing the states and transition

294 A. Chandrasekar et al.

The transition matrix becomes as follows:

s te a d y u n s te a d y fa i lu re id ea l

p p p pss su s f s i
s te a d y

p p p pu s u u u f u iu n s te a d y
P

fa ilu re p p p pfs fu ff f iid e a l

p p p pis iu if ii

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The base probability of state transition from one state to another is formulated based
on the Markov Chain. The transition matrix formulated is as follows:

0

1 2 1 2 0

1 3 1 3 1 3 0

0 1 2 1 2 0

0 0 0 1

steady unsteady failure ideal

steady

unsteady
P

fa ilure

ideal

ξ ξ−

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The above matrix shows the base probability of transition among states. ξ is used to

represent an infinitesimally small probability of the chain moving from steady state
to ideal state. It is almost impossible in real world for the chain to move to ideal state,
which explains the use of it. From this base probability, the probability with which a
state will move to another state after two time intervals can be calculated just like the
dot product of two vectors. In general, for a Markov chain with r states it is,

2

1

r

i j ik k j
k

p p p
=

= ∑

For example, the probability of a chain in steady state moving to an unsteady state
after two time intervals is computed as follows:

2
su ss su su uu sf fu si iup p p p p p p p p= + + +

This can be used to calculate the expected probability after any time interval which
are denoted by Pi (expected probability at ith time interval). This is used to calculate
the expected probability transition matrix at n time intervals. From this expected
transition matrix, we can predict the state in which the chain will be after n time
intervals.

()n nu u P=

where u is the probability vector which contains the probability that the chain will
start with that particular state. This state is important unless it is a regular Markov
Chain where the state at which the chain starts does not affect the prediction or the
present state. In the proposed system we take this u vector as (1, 0, 0, 0) since
the chain will start with the steady state on all occasions. This can be used in the
calculation for predicting the state at nth time interval.

 QoS Monitoring and Dynamic Trust Establishment in the Cloud 295

() ()

() ()

1 0 0 0

n n n n

ss su sf si

n

n n n n
p p p p

ss su sf si

n n n n
p p p p

us uu uf uin
u

n n n n
p p p p

fs fu ff fi

n n n n
p p p p

is iu if ii

u p p p p

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The above matrix shows that at nth time interval, the chain has n
p

s s
 probability of

being in steady state, n
p

su
 probability of being in unsteady state, n

p
s f

 probability of

being in failure state and n
p

s i
 probability of being in ideal state.

Our trust computation uses this prediction and compares it with the state it is
currently in and it is calculated repeatedly at each time interval. There are two cases
possible.

Case 1 – The actual state at the nth time interval is the predicted state(the state with
the highest probability in the prediction matrix):In this case, if the actual state is
steady state, then trust value is calculated as follows:

()()1 10current previous predictedT T P= + − ×

where previousT is the value of trust calculated during last time interval. At beginning

when there is no trust established previousT takes the base value of 50. currentT is the

current calculated trust value of the provider. predictedP is the probability with which

the actual state is predicted. We have subtracted the predicted probability from 1,
because 1 is the maximum possible probability. After subtraction, it gives a value less
than 1. To show a considerable change in the trust value, we have multiplied it
with 10.

If the actual state is unsteady state or failure state, then trust value is calculated
using,

()()1 10current previous predictedT T P= − − ×

Here the state is unsteady or failure, which means that the provider has not met the
QoS. Obviously this calls for a decrease in trust, so we subtract from the previous
calculated trust.

Case 2 – The actual state at the nth time interval is not the predicted state(actual
state is some other state with lower probability): If the actual state is steady state,

()()1 10current previous predictedT T P= + − ×

296 A. Chandrasekar et al.

In this case we have a surprise. We don’t expect the provider to meet the QoS or in
other words be in steady state, yet she delivers. This calls for a better increase in trust.
But we have not made any change to the formula used in Case 1 steady state. This is
because, unpredicted state will have a lower Ppredicted value. So when subtracted from
1, it increases the trust to a greater extent than before.

If the actual state is unsteady state,

()()1 10current previous predictedT T P= − − ×

If the actual state is failure state,

()2(1) 10current previous predictedT T P= − − ×

Here we have multiplied with the factor 2 to impose a higher penalty for failing
unexpectedly.

By the aforementioned formulae, it is clear that the dynamic trust calculation takes
into account, the predicted conformity and failure and also the unpredicted conformity
and failure of the provider. Appropriate importance has been given to each of those
happenings. For instance, an unpredicted failure is always more difficult to digest
than a predicted one. Trust value thus calculated over a consistent time period can
never exceed 100. It is the upper bound. When there is a positive trust after reaching
100, trust value is not altered, it is maintained at 100. The number of time intervals
the provider stayed at the trust value of 100 is maintained separately and it is taken
into account. This is considered to be the surplus trust provided to the provider, which
makes sure that the provider is not punished for a single QoS violation after servicing
consistently. When there is a failure calling for a reduction in trust, it will not be
directly subtracted from the current trust of 100. In turn it is done by decrementing the
same from the surplus. This surplus also called as tolerance level gets incremented by
one, every time the provider hits or stays at 100. Thus the proposed approach makes
possible a dynamic, poised, consistent, reliable and efficient trust establishment
scheme.

3.3 Establishing Trust over the Third Party

The third party which handles the entire operation of monitoring the QoS and trust
establishment, should be a trusted entity. If not, the whole purpose of the trust
establishment process will be meaningless. In the present scenario, the third party
which monitors the QoS is assumed to be a trusted one. This assumption is a rather
presumptuous one. To establish trust over the third party, [2] hints at the concept of
anonymity to anonymize the identity of both the provider and the user using an
intermediate Anonymization system. But this intermediary system could itself be
compromised. So we provide another solution to this problem, which ensures that the
third party can be trusted based on it and also the third party can trust the providers
and users that they are indeed the actual persons they claim to be. To achieve this, we
propose mutual authentication using X.509 certificates [18] which is the most widely
used to prevent masquerading. The third party has to authenticate itself with both the

 QoS Monitoring and Dynamic Trust Establishment in the Cloud 297

user and the provider and the vice versa. The provider and user can also confirm their
identity to the third party. This overcomes the issue of masquerading.

The second security threat involved is deploying the Monitoring Agent at the
provider end. There is a possibility of the provider altering the code of the Monitoring
Agent and make it send some other values to the QoS monitor instead of the actual
monitored data. This can be overcome by using safe code interpretation, a feature
which makes Java a much safer language. But there is a possibility of valid byte code
modification, which can be solved by going for other mobile agent security
techniques [21].

4 Implementation and Evaluation

The proposed system is implemented by using Xen [9] as the hypervisor with
Eucalyptus [8] on top of it on systems which run CentOS 5.6. This constitutes our
cloud platform. Hardware specifications of the nodes in the cloud: Intel Core2 Duo
T6400 2.00GHz, 4GB RAM, 320GB storage and a LAN which services at 64Mbps.
The VM runs Ubuntu 64bit OS. The QoS monitoring and Trust computation project
encompasses several modules of which the monitoring agent which runs at the
provider end is implemented using Java. Monitoring data is collected using XenMon
[11], which can be used to gain insight into the VM instance’s resource usage and
requirements, that is provided to the user. Monitoring tools like Ganglia [20] or
MonALISA [21] can also be used in place of XenMon to provide interoperability. A
simple SLA format is used which is created when the user’s service or instance gets
launched. It is then parsed to get the parameter values, which are read from the files
into a Java program which compares it with the actual monitoring data sent by the
monitoring agent and calculates trust periodically using the aforementioned
algorithm. A web interface is provided to both the provider and the user, which uses
an Apache web server for deploying the web system, MySQL as the backend database
to store the monitoring data, trust values and other intermediate results for further
analysis and the web application is developed with JSP and Servlets. Implementation
includes the following modules:

4.1 Web Interface

An interface is provided to both the user and the service provider by the Trusted Third
Party.

4.2 QoS Monitor

QoS Monitor uses a Monitoring Agent to capture the monitoring data from each VM
and send it over the network by employing state and derived monitoring to all the
parameters that apply. Not all parameters can be monitored using them, since there
may be a loss of accuracy in information leading to an inaccurate trust calculation.
Fig. 4 shows the difference in the amount of monitoring data sent with the default

298 A. Chandrasekar et al.

scheme and the proposed monitoring scheme. The monitoring data includes the QoS
offered by the provider, which is collected from over 400 different VM instances
provided to 400 different users in the cloud and sent over the network. First, the
default monitoring approach is employed and data is collected over a period of 8
hours. The same instances are monitored with our proposed QoS Monitor over the
same period of time and the amount of data sent are recorded, which clearly shows
the decrease in amount of data sent from 1632 MB using the default approach to 1254
MB. This is about 23.16% lesser than the default scheme. In real time, where there
will be hundreds of thousands of users, amount of data will be humungous. In such a
scenario, the proposed system will be indispensable.

Fig. 4. Monitoring data Analysis

4.3 Trust Calculator

Trust calculator is implemented using Java. It gets the monitoring information sent by
the Monitoring Agent. Threshold values of each parameter got from the SLA is
compared with the information from the Monitoring Agent and cost is calculated.

Fig. 5. a) Cost Variation b) Variation of Tolerance level

Fig. 5a shows the cost computed over a period of time and the classification based
on threshold into one of the various states. Threshold value is calculated based on the
weights assigned to each parameter. Here threshold values of -10 and 0 are used for
classification into failure and unsteady states respectively. Based on the classified

 QoS Monitoring and Dynamic Trust Establishment in the Cloud 299

state and the predicted state, trust is calculated. When a provider services in a
consistent way and reaches a trust of 100, the surplus or tolerance level gets
incremented. This tolerance level is the level till which a provider can stay at a trust
value of 100. Fig. 5b shows the variation of the tolerance level with time.

4.4 Impact of Various Factors on Trust

Trust is affected mainly by the actual service or state and the expectation probability
of the states. Fig. 6a shows the variation of trust with respect to the expectation and
the actual state. The expectation can be high, medium or low as there are only 3
states. The expected occurrence of a state and unexpected occurrence of the same
state affects trust in a different way. This is evident in Fig. 6a. Trust thus calculated is
reported to the user in a detailed fashion with statistics formulated from continuously
monitored data. This report is made available to the user on request or at the end of
the service contract with the provider. Fig. 6b shows a snapshot of this detailed report
generated for a user.

5 Related Work

Monitoring is very essential in the present cloud computing environment. There are a
lot of software systems which provide monitoring functionality but most of them are
self monitoring [7, 12, 14-17], which involves monitoring how their own resources
are faring. Of late a few techniques for QoS monitoring has been proposed. QoS-
MONaaS [2] is one such system which provides QoS Monitoring which relies on “as
a Service” paradigm, so that it could be used seamlessly by any user to monitor the
QoS. It provides the design and implementation of a QoS monitoring module, which
works on top of the SRT-15 project [10]. It monitors the QoS parameters and sends a
mail to the user whenever there is a violation.

Fault tolerance in mobile cloud using Markov model based monitoring [3]
provides a markov model based fault prediction which helps in effective fault
tolerance in mobile cloud. In this paper, the authors explain the volatility of mobile
devices and resources in mobile cloud which makes fault tolerance difficult and
indispensable. They have evaluated their model and accuracy of their fault prediction
scheme.

Qos-MONaaS uses an approach similar to the proposed system for deriving
parameters from SLA and monitoring the QoS. But it does not deal with any of the
security threats involved and it does not elaborate on how the QoS is actually
monitored. None of the existing monitoring techniques deal with the reduction of
monitoring data which could become overwhelming at times.

Till now, there is no standard and established trust mechanism which dynamically
evaluates the provider based on the services offered. With the extensive development
in cloud computing, the need for a solid trust model is ever increasing. In recent
times, a few trust models based on recommendation of previous users [5,19] and time
delay in the offered services have been developed. Our trust model in comparison to

300 A. Chandrasekar et al.

steady

failure

low exp medium
exp

high exp

State

Tr
u

st
 v

al
u

e

Expectation

steady unsteady failure

Fig. 6. a) Variation of trust with expectation and actual state b) Trust Report

the existing models is much more practical and fair to both the provider and the user.
This is because it uses realistic expectations or predictions and the comparison that
comes out of this becomes a fair one, rather than a much optimistic one as seen in
other models.

6 Conclusions

QoS Monitoring component of the third party makes use of the state and derived
monitoring techniques. But these two techniques does not apply for all the resources
that are monitored. In most of the cases we need to send the exact data like in most
other systems. To reduce the amount of monitoring data sent to further extent, we can
make use of any compression technique that will suit our requirements. Obviously
this involves an overhead due to the time delay involved during compression and
decompression. So we opted out of using compression in our system. Making the
Monitoring Agent safe from alteration does not mean that there is no other way to
alter the monitored values sent to the third party. Man in the Middle and other attacks
on the network are possible which can view this data or alter it and send it to the third
party. This can be prevented by using secure means of transfer by employing
SSL/TLS or HTTPS as transfer protocol. Trust establishment component takes the
present level of service of the provider as the input and calculates trust dynamically.
The trust value that a provider has achieved at the end of the previous service
becomes the base trust when it starts to service the next user. By this the provider will
be driven to perform better, so as to increase its number of customers and to position
itself better in the market for the long run. Out of competition all the other providers
will try and deliver better service, to retain their customers and to increase their
clientele. This whole process leads to better service to the users and better value for
their money which ultimately leads to customer satisfaction.

 QoS Monitoring and Dynamic Trust Establishment in the Cloud 301

References

1. Khan, K.M., Malluhi, Q.: Establishing Trust in Cloud Computing. IT Professional, 20–27
(September 2010)

2. Romano, L., De Mari, D., Jerzak, Z., Fetzer, C.: A Novel Approach to QoS Monitoring in
the Cloud. In: First International Conference on Data Compression, Communications and
Processing (2011)

3. Park, J., Yu, H., Chung, K., Lee, E.: Markov Chain based Monitoring Service for Fault
Tolerance in Mobile Cloud Computing. In: Workshops of International Conference on
Advanced Information Networking and Applications (2011)

4. Lund, M., Solhaug, B., Stlen, K.: Evolution in Relation to Risk and Trust Management.
Computer, 49–55 (May 2010)

5. Guo, Q., Sun, D., Chang, G., Sun, L., Wang, X.: Modeling and evaluation of trust in cloud
computing environments. In: 3rd International Conference on Advanced Computer Control
(2011)

6. Markov-Chains, http://www.cs.virginia.edu/~gfx/courses/2006/Data
Driven/bib/texsyn/Chapter11.pdf

7. Manvi, S.S., Birge, M.N.: Device Resource Status Monitoring System in Wireless Grids.
In: ACEEE Intl. ACT (2009)

8. Eucalyptus, http://www.eucalyptus.com/
9. Xen- hypervisor, http://xen.org/

10. The SRT-15 project, http://www.srt-15.eu/
11. Gupta, D., Gardner, R., Cherkasova, L.: XenMon: QoS Monitoring and Performance

Profiling Tool, http://www.hpl.hp.com/techreports/2005/HPL-2005-
187.pdf

12. Wang, M., Holub, V., Parsons, T., Murphy, J., OSullivan, P.: Scalable Runtime
Correlation Engine for Monitoring in a Cloud Computing Environment. In: 17th IEEE
International Conference and Workshops on Engineering of Computer-Based Systems
(2010)

13. Patel, P., Ranabahu, A., Sheth, A.: Service Level Agreement in Cloud Computing. In:
UKPEW (2009)

14. Kung, H.T., Lin, C.-K., Vlah, D.: CloudSense: Continuous Fine-Grain Cloud Monitoring
with Compressive Sensing. In: USENIX HotCloud (2011)

15. Huang, H., Wang, L.: P&P: a Combined Push-Pull Model for Resource Monitoring in
Cloud Computing Environment. In: IEEE 3rd International Conference on Cloud
Computing (2010)

16. Liu, F., Xu, Z., Wang, Q.: Grid Computing Monitoring Based on Agent. In: 1st
International Symposium on Pervasive Computing and Applications (2006)

17. Meng, S., Liu, L., Wang, T.: State Monitoring in Cloud Datacenters. IEEE Transactions on
Knowledge and Data Engineering 23(9) (September 2011)

18. Stallings, W.: X.509 Authentication Service, 4th edn. Cryptography and Network Security,
ch. 14, pp. 419–428 (2005)

19. Abawajy, J.: Establishing Trust in Hybrid Cloud Computing Environment. In: TrustCom
(2011)

20. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Computing 30, 817–840 (2004)

21. Legrand, I., Voicu, R., Cirstoiu, C., Grigoras, C., Betev, L., Costan, A.: Monitoring and
Control of Large Systems with MonALISA. Queue- Data 7(6) (July 2009)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 302–311, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Multihop-Based Key Management
in Hierarchical Wireless Sensor Network

Yiying Zhang1,3,*, Xiangzhen Li2, Yan Zhen2, and Lingkang Zeng2

1 State Grid Information & Telecommunication Company Ltd., Beijing, 100761, China
2 State Grid Electric Power Research Institute, Nanjing 210003, China

3 Beijing University of Posts and Telecommunications, Beijing, 100876, China
winzyy@163.com, {xzli,zhenyan,lkzeng}@sgcc.com.cn

Abstract. The vulnerable environment and open communication channel make
it very necessary to protect wireless sensor networks (WSNs). The key
management is the most important way to protect the communication in WSNs.
In this paper, we design a Multihop-based Key Management (MKM) which can
efficiently enhance the security and survivability in the hierarchical WSNs.
Different from previous works, we present the key system as well as the cluster
formation. The MKM generates and distributes keys based on hop counts,
which not only localizes the key things but also has no overhead. The MKM
provides the session keys among sensors and the cluster key between the cluster
head and its member nodes. The different hops make the different keys. The
MKM can protect the network from the compromised nodes by reducing the
high probability of the common keys. The security analysis can effectively
prevent several attacks.

Keywords: Key management, wireless sensor network, security, multi-hop.

1 Introduction

The wireless sensor networks (WSNs) are wildly used with thousands of tiny sensors,
such as in smart grid, smart city, internet of things (IoTs). However, due to limitations
of wireless sensor networks in the computation, energy, storage and open wireless
communication etc., WSNs are vulnerable to various attacks, and the security in
WSNs is required [1, 2, 3, 4, 5, 6]. Since it is impossible and impracticable to utilize
the single key to encrypt/decrypt message in the networks, the solutions, which trend
to deploy keys in whole network, may cause the leak of key materials. Once the key
things fall into the adversaries, the sensors are compromised, which threatens entire
network.

Therefore, it is necessary to organize the sensors into clusters and localize the key
things. In [2, 3], the authors presented RPKH and LDK schemes to provide the local
key management. The RKPH and LDK utilize different nodes including the normal

* Corresponding author.

 Multihop-Based Key Management in Hierarchical Wireless Sensor Network 303

nodes and anchor nodes to generate keys by different transmission range. However, it
also consumes large amount of energy, when the two kinds of nodes transfer
messages and discovery common keys. Meanwhile, the adversary can eavesdrop on
the key materials during nodes exchanging packets.

In this paper, we present a Multihop-based Key Management (MKM) in the
hierarchical wireless sensor network [8]. Different from the previous works, we build
our solution in normal network without any special nodes (e.g. high energy or high
capability nodes), which makes it more practicable to deploy. In MKM, we generate
the key system with the hierarchical architecture formation, which makes the scheme
effective because of no overhead. When the clusters form, the cluster head gets the
hop counts from cluster head to the member nodes with ACK packets and then uses
the hop-count and nonces to generate the key system. Nodes in different distance have
different keys.

In MKM, the nodes near the cluster head have more keys, which makes the nodes
transfer messages on one-way routing. Meanwhile, with the cluster head reselection,
the key system will be refreshed, because the new cluster head causes the hops
changes and then the key should be reassigned. Moreover, the cluster head can use the
cluster key to communicate with member nodes.

Considering about the security and the life time of WSNs, we will rekey to refresh
the cluster and the keys. During the rekey phase, the cluster will elect new cluster
head which calculate the new distance from CH to member nodes and then generate
the new key system based on the old one.

Compared to previous works [2, 3, 5] in WSNs, our solution has the following
scientific research contributions: 1) MKM utilizes the hierarchical architecture to
localize the key things, which prevents the compromised nodes threat the entire
network. 2) Without any overhead, MKM counts the hop count in the cluster
formation, which can effectively reduce energy consumption. 3) MKM employs the
normal wireless sensor network but not special nodes, which makes it more
practicable.

The rest of this paper is organized as follow: Section 2 presents related work.
Section 3 shows the system model. Section 4 will describe the key management in
detail, and section 5 evaluates MKM using security analysis. Finally, we end the
paper with a conclusion as well as the further work.

2 Related Work

Some literatures are researched in [2, 3, 5, 13, 14], these papers designed some
schemes for local key management.

In [3], a location dependent key management (LDK) has been presented, which
employs the heterogeneous sensors to build a clustered sensor network. In LDK,
the sensors are static and considered the anchor nodes as the management nodes. The
anchor nodes use the different location information to generate sets of keys. The
adjacent nodes subjected to the same anchor node can establish secure communication
links by exchanging all key materials to discover the common keys. Neighbouring

304 Y. Zhang et al.

nodes can establish secure communication link by determining the common keys via
exchanging their key materials. LDK significantly reduces the number of keys stored
on each node without any pre-deployment knowledge of nodes. It also can increase
the direct connectivity ratio among nodes.

However, the LDK makes nodes exchange all their key materials when determining
the communicating key, which consumes more energy and increase attack chances. The
transmitted message takes too many bytes. Therefore, it consumes lots of
communicating energy and is not efficient for WSNs either.

In [2, 5], there are two similar key management schemes, the RPKH and ARPKH.
The RPKH is based on random key distribution in the heterogeneous sensor networks,
which used separate keys in different clusters and take into consideration distance of
sensors from theirs cluster head.

The ARPKH, an improved version of RPKH, considers a multiple shared keys
between pair-wise nodes on connectivity. When a key that used for establishing the
secure link between two nodes is revealed, the link has been expired and then
the connectivity is broken. ARPKH will change the alternative shared keys to replace
the revealed key and establishes a new secure link between two nodes again.

Chan et al. [14] proposed q-composite random key pre-distribution scheme which
needs q common keys (q > 1) to establish secure communication links between nodes.
By increasing the value of parameter q, they can achieve high security level, because
an adversary needs to know all q keys for attack. The drawback of this scheme is that
if an adversary has compromised nodes in large scale, entire keys can be exposed.

In wireless sensor networks, nodes need to communicate with neighboring nodes
only. Therefore, it can be more efficient to let nodes which are close together have
common keys while between nodes which are far off have disjointed keys. Thus, W.
Du et al [13] proposed a scheme that uses pre-deployment knowledge of expected
location of nodes. Through allocating keys among adjacent nodes by using the pre-
deployment knowledge, the memory requirement on a node can be decreased and the
security impact of compromised nodes can be limited around the location.

3 System Model

3.1 Network Model

Given the WSN with n sensors as a graph G which consists of m clusters, that is,

mCCCG ∪∪ ...21= and jiCC ji ≠= ,φ∩ , where Ci is a cluster with the cluster

head(CH or CHi) and member nodes. In a cluster, the CH collects and aggregates
packets from its member nodes, and then forwards them to the base station (BS).
Normally, a member sensor can transfer packets to CH through several hops. Note
that there are some nodes in the range overlap of many cluster, they only choose one
cluster to join. Each sensor has a unique ID. If a node is compromised, all of the
information in this node will be compromised including the key materials [7].

 Multihop-Based Key Management in Hierarchical Wireless Sensor Network 305

Fig. 1. The considered hierarchical WSN with 5 clusters

3.2 Notations

In Table 1, we list some notations used in this paper.

Table 1. Notations

Notation Explains

KI The initial key shared by all nodes

CHID ID of the cluster head

ni The ith nonce in the set of nonces N

jvID ID of member node vj

f() The one-way function

TTL Time To Live

Ci The ith cluster in the WSN
i
jk The ith key for the member node vj

4 Multihop-Based Key Management

In this section, we introduce the Multihop-based key management (MKM) in detail.
Before the deployment of the sensor network, each sensor is pre-distributed an initial
key KI for the security in deployment phase, the initial key provides the
communication during the formation phase [7].

306 Y. Zhang et al.

4.1 The Cluster Head Election

As mentioned above, considering the energy efficiency and management facilitation
of WSN, we adopt the hierarchical architecture for our network [9, 10, 11]. Firstly, a
node itself decides whether it becomes a candidate CH or not according to the cluster
head election algorithm as shown in equation (1):

⎪⎩

⎪
⎨

⎧
=

∈−×+
−

Gnpi
prp

p

otherwise

nT

)],1)(([
)]/1(mod[1

,0

)(
ηη

 (1)

Where T(n) indicates a probability function; p is the percentage; and r denotes the
current round number and its default value is 1; η represents the left energy
percentage; i is the sum of rounds that a node is idle, and it is reset to 0 when it is
elected as CH. G is the set of nodes that have not been CHs in the 1/p rounds recently.

The node will announce the candidate information to other nodes according to the
result of equation (1). And other nodes which maybe accept several election campaign
messages, and they will choose one to join it as follow.

4.2 The Cluster Formation

Once a node becomes a cluster head, it will send a beacon message to other sensors to
form a cluster. Each sensor may receive several different beacon messages from
different candidate cluster heads, but it only can join one cluster.

When the CH broadcasts a beacon message encrypted by KI contains ID of CH,
TTL (time to live) and a set of nonces named N, the random numbers. And the nonces
will be different with different TTL, that is, if the TTL= 3, then the sensor will get four
(TTL+1) nonces, such as N={ n1, n2, n3, n4}. We generate more nonces (e.g. TTL+1)
for the connectivity, especially the common keys. Where TTL is to limit the cluster
size, e.g. TTL=3, and it will be decrease for each forwarding until it becomes 0 and
the beacon message will be dropped.

Therefore, depending on the cluster size (TTL), other nodes can receive different
sets of beacon messages from different CHs as the equation (2) in different distance
(hop ranges) .

IKTTLCH TTLnnIDCH },...,{:* 11 +→ (2)

4.3 The Initial Key Generation

Assume CHvCv jij ≠∈ , , we call vj as member node. When member node vj receives

a beacon message and wants to join the cluster Ci, it counts the TTL and sends the
ACK including the

jvID and the
jvTTL back to its interest cluster, and then the cluster

head knows the hops from
jvID to CH. Beacon messages are orderly transmitted at

 Multihop-Based Key Management in Hierarchical Wireless Sensor Network 307

different distance levels. And then, the member node vj decrypts the beacon messages
and obtains IDCH and then set of nounces Ni.

And then, vj calculates the candidate keys i
jk based on the received nonces as

follows:

),(iI
i
j nkfk = (3)

Where f() denotes a one-way hash function. And the initial key generation process is
as shown in fig.2.

Fig. 2. The initial key generation process

After the calculations, nodes erase KI. Consequently, vj stores the key things as
follows in table 2:

Table 2. Keys table of member nodes in different hop ranges (TTL=3)

Keys for 1st hop Keys for 2nd hop Keys for 3rd hop

1
jk , 2

jk , 3
jk , 4

jk 2
jk , 3

jk , 4
jk 3

jk , 4
jk

1
jk , 2

jk , 3
jk , 4

jk 2
jk , 3

jk , 4
jk 3

jk , 4
jk

… … …

1
jk , 2

jk , 3
jk , 4

jk 2
jk , 3

jk , 4
jk 3

jk , 4
jk

According to the table 2, we can find that the nodes can communicate with its
neighbour nodes for the common keys. The specific algorithm of hop count and key
information acquirement is as algorithm 1:

308 Y. Zhang et al.

Table 2. Hop count and key information acquirement algrithm (TTL=3)

Algorithm 1 Hop count and key information acquirement

1. CH broadcasts beacon messages with different nounces:

IKTTLCH TTLnnIDCH },...,{:* 11 +→

2.
Ijj Kvvj TTLIDCHv },{:→
,

Key pool generation for vj by

),(iI
i
j Nkfk =

3. Erease KI.
4. CH obtains the hop count: 1+−=

jvCHhops TTLTTLN

5. According to the Nhops, nonces N, and oneway function f(), the

cluster head can get the jvID ’s key information.

6. end.

4.4 The Common Key Discovery

For communication, member node should establish secure link with its neighbouring
nodes, which needs the common keys between them. According to those candidate
keys, member nodes in the same distance receive the same beacon messages and they
can also generate the same keys. Moreover, the nodes in the adjacent areas also have
some duplicate candidate keys.

If a node can receive
iKiiCH TTLNID },,{ , it also can receive

iKjjCH TTLNID },,{ ,

where TTLi>TTLj (i<j). Since the distance range of hops j covers the distance range of
hops i, the node near cluster head has more keys than the one far away from cluster
head.

Therefore, each member node vj generates a list which just stores the
keys .Moreover, since the packets from members will be collected by the cluster head,
the cluster head should have the ability to decrypt these messages. During this
process, the member nodes should report its keys, which will increase the
transmission. Because the nonces are sent by the cluster head, it also knows the
function, and then it can calculate the keys of members as mentioned in algorithm 1.

Due to the keys are generated by hop count, which means the nodes can be
connected in the same cluster. And the path key between vi and vj is calculated as
follow:

),()(
iI

jiabs
ij Nkfk −=

(4)

The equation (4) makes it possible for any two nodes in the cluster to communicate
with each other. Actually, there is another way to make every two nodes
communicate, that is, the last but one nonce is same in a cluster and the key which
they generate is same too (the last nonce is used to the cluster key).

The cluster key is the key which is used for communication between the CH and
its members also for generating new key in next round. Since there are TTL+1

 Multihop-Based Key

nonces, according to the alg
every sensor.

4.5 The Rekey Process

For prolonging the lifetime
head. On the other hand, th
when CH receives a certain
length of key), the keys
abover, we should recluste
happens inside the cluster, w

During the reselection
cluster head has been select
the cluster head and recalcu

As shown in fig 5, in
relative position but also ho
as well as the key things dif

5 Security Analys

Compared to previous wo
addressed challenging runti
dynamic key management.

During cluster formation
the CH and member node

y Management in Hierarchical Wireless Sensor Network

gorithm 1, the last nonce in the set N will be transferred

of the whole network, it is necessary to change the clu
he key should be rekeyed for the security [12], otherw
n amount of encrypted messages (more than 22k/3, k is
 will be no longer safe. According to the requireme
er after a certain phase. Assume the process of reclu
which can reduce the energy consumpution.
of CH, we can rekey as the initial phase. When the n
ted according to the equation (1), it will announce itsel

ulate the distance from its members.

Fig. 5. The reselection of CH

this situation, the new cluster head changes not only
op counts from CH to members, which make the noun
fferent.

is

orks, the salient advantage of our solution is that
ime security issues using localizing key things and desig

n phase, the cluster head can calculate the hop count fr
s, and then the member nodes can generate keys by

309

d to

ster
wise,

the
ents

uster

new
f as

the
nces

we
gn a

rom
the

310 Y. Zhang et al.

nonces and hops. According to the different hop count, the cluster is divided into
several security belts as shown in fig 2, the nodes in different belts have different
keys. Because the keys are generated by the set of nonces, the adjacent nodes have
some common keys, which makes it possible to communicate with each other.

The nodes near CH have more keys than the nodes far away from CH, which means
that the far nodes just can submit message to the CH. And then the messages just can be
decrypted by near nodes. The one-way security model prevents the eavesdrop attack,
selective-forwarding attack and hello flood attack as shown in Table 3.

Table 3. Analysis in local key management

Attacks Types RPKH LDK MKM

Selective-Forwarding × × √

Sink-Hole attack × √ √

Sybil attack √ √ √

Worm-Hole √ √ √

HELLO Flood √ √ √

DoS × × √

To communicate with members, the cluster head utilize the last key as the cluster
key which is shared with all the sensors (including the CH) in the cluster. The cluster
also can be used to rekey during the next round cluster. Furthermore, the key system
forms during the cluster formation, which almost does not consume any energy
overhead.

6 Conclusion and Future Work

In this paper, we propose a Multihop-based key management (MKM) protocol to
enhance network security and survivability. Unlike previous works, we employ the
hierarchical architecture but not fixed-node-network. In contrast to other clustered
architectural security solutions, the salient advantage of this work is that we addressed
challenging security issues by localizing key things. Also we present a rekey
mechanism with low energy consumption. In the future, we will focus on how to
enhance security in scalable WSN.

Acknowledgements. This work was supported by the foundation: Important National
Science & Technology Specific Projects of China: Research, development, and
application validation of sensor network for smart grid security monitoring,
transmission efficiency, measurement and user interaction (2010ZX03006-005-02);
the National Basic Research Program of China (973 Program): Basic theory and
practice research of Internet of Things (2011CB302900); the Doctoral Start-up Fund
of Liaoling Province (20101074).

 Multihop-Based Key Management in Hierarchical Wireless Sensor Network 311

References

[1] Zhou, Y.: Securing Wireless sensor networks: A Survey. IEEE Communications Surveys
& Tutorials (3rd Quarter, 2008)

[2] Banihashemian, S., Ghaemi Bafghi, A.: A new key management scheme in
heterogeneous wireless sensor networks. In: Proceeding ICACT 2010, Korea (2010)

[3] Anjum, F.: Location dependent key management in sensor networks using without using
deployment knowledge. In: Proceedings of WiSe 2006 (2006)

[4] Du, X., Xiao, Y., Guizani, M., Chen, H.-H.: An effective key management scheme for
heterogeneous sensor networks. Ad Hoc Networks 5(1), 24–34 (2007)

[5] Banihashemian, S., Bafghi, A.G.: Alternative shared key replacement in heterogeneous
wireless sensor networks. In: Proceeding IEEE Computer Society (2010)

[6] Luk, M., Mezzour, G., Perrig, A., Gligor, V.: MiniSec: A Secure Sensor Network
Communication Architecture. In: IPSN 2007 (April 2007)

[7] Zhu, S., Setia, S., Jaodia, S.: LEAP+: Efficient Security Mechanisms for Large-Scale
Distributed Sensor Networks. ACM Transactions on Sensor Networks 2(4), 500–528
(2006)

[8] Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor
networks. Computer Communications 30, 2826–2841 (2007)

[9] Bandyopadhyay, S., Coyle, E.J.: An Energy Efficient Hierarchical Clustering Algorithm
for Wireless Sensor Networks. In: Proceeding of IEEE INFOCOM 2003, San Francisco
(April 2003)

[10] Handy, M.J., Haase, M., Timmermann, D.: Low energy adaptive clustering hierarchy
with deterministic cluster-head selection. In: Mobile and Wireless Communications
Networks, pp. 368–372. IEEE Communications Society, Stockholm (2002)

[11] Manjeshwar, A., Grawal, D.P.: TEEN: A protocol for enhanced effciency in wireless
sensor networks. In: PDPS 2001, pp. 2009–2015. IEEE Computer Society, San Francisco
(2001)

[12] Abdalla, M., Bellare, M.: Increasing the Lifetime of a Key: A Comparative Analysis of
the Security of Re-keying Techniques. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976, pp. 546–559. Springer, Heidelberg (2000)

[13] Du, W., Deng, J., Han, Y., Chen, S., Varshney, P.: A key management scheme for
wireless sensor networks using deployment knowledge. In: INFOCOM 2004: Twenty-
third AnnualJoint Conference of the IEEE Computer and Communications Societies,
vol. 1. IEEE (2004)

[14] Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks.
In: Proceedings of Symposium on Security and Privacy, pp. 197–213. IEEE (2003)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 312–322, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Bullet-Proof Verification Using Distributed
Watchdogs (BPV-DW) to Detect Black Hole Attack

in Mobile Ad Hoc Networks*

Firoz Ahmed, Seok Hoon Yoon, and Hoon Oh**

School of Electrical Engineering, University of Ulsan, P.O. Box 18, Ulsan 680-749,
South Korea

jewelraaz@yahoo.com, {seokhoonyoon,hoonoh}@ulsan.ac.kr

Abstract. In mobile ad hoc networks, a malicious node can respond with a false
Route Reply (RREP) message to the source, when it receives a Route Request
(RREQ). Then, it can absorb data packets destined for destination. We propose
a Bullet-Proof Verification using Distributed Watchdogs (BPV-DW) in which a
detection node uses an encrypted verification message whose hop-by-hop
delivery is watched by multiple watchdogs. In this approach, firstly, every node
examines suspicious nodes by collecting a message or inspecting the data
transmission behaviors of its neighbors. Secondly, upon receiving RREP from
any suspicious node, a node verifies whether the suspicious node is a black hole
node or not. This two-step approach not only pins down the black hole nodes,
but also reduces control overhead significantly. We prove by resorting to
simulation that the BPV-DW is highly dependable against the black hole attack.

Keywords: Black hole attack, MANET, encryption, distributed watchdog,
AODV.

1 Introduction

In mobile ad hoc networks (MANETs), every mobile node (MN) acts as a router and
an MN can join or leave the network without permission from a management entity.
Thus MANETs are vulnerable to various kinds of attacks such as black hole attack
[1], worm hole attack [2]and so on. We address the problem to detect the black hole
attack when AODV [3] is employed for routing in MANETs.

In AODV, a malicious node may respond with an RREP that includes a high
sequence number so that it can absorb data packets on the way to the destination. This
type of attack is called black hole attack. There are two type of black hole attacks: A
single black hole attack in which an attacking node acts alone and a colluding black
hole attack in which an attacking node collaborates with another one.

* ULSAN Metropolitan City and the MEST (Ministry of Education, Science and Technology).
** Corresponding author.

 BPV-DW to Detect Black Hole Attack 313

The single black hole attack has been tackled in various ways. Some focused on
verifying the correctness of the obtained path through the downstream node of the
RREP initiator [1], [4]. [5] Uses a watchdog mechanism such that a node watches the
misbehavior of its downstream node. However, these approaches may not work
appropriately if two black hole nodes cooperate with each other. Meanwhile, only a
few methods have been proposed to tackle the colluding black hole attack. In SNV
[6], an RREP initiator is required to issue a sequence number request (SREQ)
message to the destination which is supposed to respond with SREP including its
sequence number to the source. Then, the source node compares the sequence
numbers in RREP and SREP. However, it always issue control message to destination
and a node that detects an anomaly of malicious node always floods the network with
an alarm message which is supposed to be delivered to a source.

The approaches discussed above suffer from high overhead by using flooding or
additional messages as well as the failure to address colluding attack. We propose a
new approach Bullet-Proof Verification using Distributed Watchdogs (BPV-DW).
Our method uses an encrypted verification message whose hop-by-hop delivery is
observed by multiple watchdogs. Thus, the malicious behaviors of a node on the path
such as the fabrication, dropping or absorption of the message can be detected
effectively.

Simulation results show that the BPV-DW can reduce control overhead and
improve the reliability of a black hole detection considerably compared to SNV.
Furthermore, the packet delivery rate of BPV-DW reached 0.81 even in the presence
of five malicious nodes; that of AODV went down to 0.03. The BPV-DW can be
equally applied to DSR [7].

2 Background

2.1 Network Model

The network consists of a number of mobile nodes with a limited transmission range
where a mobile node can join or leave the network freely. Every node can act as a
router and can communicate with any other node in the same network directly or via
multiple wireless hops. A number of black hole nodes with a malicious intention can
intrude the network. A routing protocol is used to establish a path between any two
parties that want to communicate. We assume that the routing protocol implemented
in this network is the AODV protocol.

2.2 Problem Identification

The watchdog mechanism [5] does not work effectively if multiple malicious nodes
collaborate in order to deceive the watchdog such that one malicious node forwards
the receiving packet to another malicious one on purpose. Another recently proposed
method is the sequence number verification (SNV) [6] method in which source

314 F. Ahmed, S.H. Yoon, and H. Oh

always verifies the sequence number contained in RREP by receiving a current
sequence number from destination. Accordingly, the SNV method works under the
rule, “every RREP initiator sends a message to destination to ask for the destination to
report its current sequence number to the source.” However, this method has some
shortcomings in two ways:

─ It can make a false decision such that either a normal node is determined to be
malicious or a malicious node is to be normal; and

─ It incurs high network overhead because the source that is multi-hop away from
RREP-initiator always verifies the correctness of destination sequence number and
a node that detects an anomaly of malicious node always floods the network with
an alarm message which is supposed to be delivered to a source.

For convenience of discussion, we borrow some definitions given in the paper [8].
When a detection method is used to determine whether a node is malicious or not, it
produces one of the following four decisions.

─ TN (True Negative): The detection algorithm determines a normal node to be
normal, thereby producing no alarm message

─ FP (False Positive): The detection algorithm determines a normal node to be
malicious, thereby producing an alarm message

─ FN (False Negative): The detection algorithm determines a malicious node to be
normal, thereby producing no alarm message

─ TP (True Positive): The detection algorithm determines a malicious node to be
malicious, thereby producing an alarm message

(a) FP decision case 1 (b) FP decision case 2

X Alarm Message

50

50 50 50

50 50 10 10

S 421 3 D

Modified sequence
number

50
50

Sequence Number
(c) FN decision for a single black hole attack (d) FN decision for a colluding black hole attack

Fig. 1. Shortcomings of the SNV approach

 BPV-DW to Detect Black Hole Attack 315

1. It can make an FP decision frequently in relatively high mobility networks:
A. A node may determine a normal RREP originator to be malicious if it is
disconnected from the RREP originator immediately after it has received RREP,
resulting in the initiation of an alarm message erroneously (see Fig. 1-(a)).

B. A node may determine a normal RREP originator to be malicious if the
RREP originator fails to send SREQ to its downstream node due to a link breakage
as shown in Fig. 1-(b).

2. Even though a node detects a malicious node correctly, resulting in a TP decision,
the alarm message can be lost easily by collision or link breakage since it has to go
through multiple wireless hops. Thus, source may not notice the existence of a
malicious node. So, this TP decision will turn to an FN eventually (see Fig. 1-(c)).

3. Consider the colluding attack as illustrated in Fig. 1-(d), If there does not exist a
third node that connects commonly to the two colluding malicious nodes, the
modification of sequence number cannot be detected, leading to an FN decision.

Problem 1-A and 1-B can be resolved if the upstream node of an RREP originator
initiates a verification message and if the RREP originator sends error message to
detection node. In problem (2), if the upstream node of a RREP originator is a verifier
instead of source node it can be resolved easily. In case of problem (3), if we can
prevent a node from modifying the test message and if the detection does not receive
the test message with in the estimated time it would not take any action. In this case,
the source will always try to consider other RREPs that it receives in order to
establish a path. We propose a new method to detect a black hole based on the
problems identified above.

3 BPV-DW Method

3.1 Local Decision Process

Even though any malicious node joins a network, if a node forwards data packets to a
reliable node, the network will work safely. A node determines whether another node
is reliable or not using the watchdog mechanism traditionally such that every node
observes the communication behaviors of its neighbors by overhearing data packets
transmitted by its neighbors. One simple way that decides the reliability of a node is
to know whether or not the node has ever sent data packet to any reliable node. It
starts with the fact “I am reliable.” A node is said to be reliable if it has forwarded
data packet(s) to some reliable node. Therefore, if a node has received data packet
from its neighbor before, the neighbor is reliable. A node is said to be suspicious if it
has never forwarded data packet to any node. So, initially nodes are suspicious to
each other. Even though a node has never received data packet from one of its
neighbors, it cannot say that the neighbor is suspicious, since the neighbor may have
forwarded data packet to other reliable nodes.

However, suppose that a node knows that its neighbor has forwarded data packet to
a third node, but the node does not know whether the third node is reliable or not.
Whenever this situation occurs, if the node initiates any costly inspection algorithm, it

316 F. Ahmed, S.H. Yoon, and H. Oh

may cause too high overhead since those situations occur frequently. In this case, such
a neighbor is said to be non-decidable. If a node determines its neighbor to be non-
decidable, the node collects further data to inspect the receiver of the packets
transmitted by the non-decidable node and examines whether or not the non-decidable
node can turn to a reliable node based on the data. If the non-decidable node has
forwarded packets to some nodes other than the node to which it forwarded the packet
that I sent, it may turn to a reliable node. However, if a black hole node absorbs
packets conditionally, the correctness of this initial decision will decrease. After the
initial decision by the watchdog mechanism, if a node is still suspicious, it is verified
by a global verification mechanism as the second step.

For a local decision, each node collects data by overhearing the packets that its
neighbors transmit and maintains a data collection table (DCT) with those data as
follows.

DCTi = (j, Fromj, Throughj, Suspeciousj), j ∈ i.N, where

─ i.N is a collection of node i’s neighbors;
─ Fromj indicates whether or not node i has received a packet from node j ever;
─ Throughj indicates whether or not node i has routed a packet via node j ever; and
─ Suspiciousj indicates whether or not node j is suspicious based on the combination

of Fromj and Throughj fields.

The values of Fromj, Throughj, and Suspiciousj are given true (1), false (0), non-
decidable (x).

Table 1. An example of DCT5

j Fromj Troughj Suspiciousj
1 1 1 0
2 1 0 0
3 0 0 1
4 0 1 x

Fig. 2. An example topology to define DCT

Fig. 2 shows an example of a small network topology and a data collection table
for the network. Node 5 observes the data forwarding behaviors of its neighbors 1, 2,
3, and 4 and records them in its data collection table, DCT5 as shown in Table 1. Node
5 has received data packet from node 1 and node 2 (From1 = 1, From2 = 1). Node 5
can determine that node 1 and node 2 are reliable (Suspecious1 = 0, Suspecious2 = 0).
However, node 5 did not receive any data from node 3 and node 4. Since node 3 did
not forward my data packet to anyone, it is determined to be suspicious (Suspecious3
= 1). Although node 5 has routed data packet through node 4, it cannot know whether
or not node 4 has forwarded to a reliable node. Thus, node 4 is not decidable
(Suspecious4 = x): It may collude with some other node for a black hole attack.

 BPV-DW to Detect Black Hole Attack 317

We employ a supplementary mechanism to further reduce the number of initiations
for a global verification process. If multiple different sessions or paths go through the
non-decidable node, multiple nodes may forward data packets to the non-decidable
node. A decision node can count the number of different downstream nodes to which
the non-decidable node has forwarded data packets by using the watchdog
mechanism, as cntDiffDownNodes. If the cntDiffDownNodes is equal to and greater
than DiffDownNodes, the non-decidable node turns to a reliable node. We can say that
the correctness of the change of the decision will depend on the value of
DiffDownNodes.

(a) Another path, but same downstream node (b) Another path, but different downstream node

Fig. 3. Data forwarding behavior of a non-decidable node

Fig. 3 shows two different data forwarding behaviors of a non-decidable node. In
Fig. 3-(a) and (b), node x cannot decide the status of node y from its own forwarding.
However, node y is more likely to be suspicious if it forwards the data packet of
another session to the identical node z as in Fig. 3-(a) (cntDiffDownNodes = 1). If
node y forwards data packet to another downstream node as in Fig. 3-(b)
(cntDiffDownNodes = 2), the probability that node y is reliable may increase.

3.2 Global Verification Process

If a source or an intermediate node receives RREP from a reliable node, it takes the
exactly the same process as AODV. That is, the source starts sending data packets
while the intermediate node forwards the RREP toward the source. If a node receives
RREP from a suspicious node, it becomes a detection node that initiates a verification
process to check if the suspicious node is malicious.

Fig. 4. Verification process

318 F. Ahmed, S.H. Yoon, and H. Oh

Detection node extracts destination sequence number from the RREP and stores it
in its cache. It then generates a Test Request message, TREQ = (detection node
address, destination node address, timestamp) where the timestamp indicates a
current time. The detection node encrypts TREQ using public key cryptosystem,
being a bullet-proof message and sends it along the path specified in the RREP
towards destination. A node that receives the TREQ relays it to next node. No node
can alter the bullet-proof TREQ. If the destination receives the TREQ, it decrypts the
message and creates a Test Reply message, TREP = (detection node address,
destination node address, timestamp, dsn) where dsn indicate current destination
sequence number. The destination encrypts the TREP and sends it along the reverse
path to the detection node. Upon receiving the TREP, the detection node decrypts it.
If the detection node finds that the dsn in TREP is smaller than that in RREP, it
judges the suspicious node is black hole and drops the RREP. If the suspicious node is
determined to be a reliable node, the detection node starts sending data packets to the
destination if the detection node is source; otherwise, it forwards the RREP towards
the source node.

Fig. 4 illustrates a verification process. When a suspicious node M1 responds with
RREP, detection node x sends the encrypted TREQ to destination D along the path
specified in RREP. Upon receiving the TREQ, Node D responds with the encrypted
TREP along the reverse path towards x. M1 and M2 cannot alter the contents of the
encrypted RREP. Detection node x judges whether M1 and is reliable or not by
comparing the sequence numbers in RREP and TREP.

In the verification process, even though a malicious node is prohibited from
modifying the TREQ or TREP, it may drop the messages to hinder the verification
process. Thus, we can consider two approaches to cope with such a behavior. One
simple mechanism is to associate a timer with each verification process. If detection
node does not receive TREP until the timer expires, it refuses to forward the RREP to
its upstream node. Then, the source will consider other paths contained in some other
RREPs that it has received. The second is a distributed watchdog mechanism.

3.3 Distributed Watchdog Mechanism

In this method, when the TREQ and TREP packet is forwarded every node in the
network acts as a watchdog. A node is required to take one of the following
responsive actions depending on its role when it receives TREQ or TREP:

(a) A detection node sends a THANK message to the forwarder of TREP;
(b) A destination node responds with TREP, upon receiving TREQ;
(c) An intermediate node forwards TREQ or TREP toward the destination or

detection node; and
(d) If it fails to send the corresponding message, it broadcasts TERR.

If a node detects that some node does not obey the rules, it is immediately determined
to be malicious. The purpose of these rules is to detect whether or not some node
drops a test message since a malicious node can drop the test messages on purpose.

 BPV-DW to Detect Black Hole Attack 319

Note that the malicious node cannot modify the messages which are encrypted. When
a certain node determines a node to be malicious, it does not have to inform the
detection node. It simple generate a alarm message against the malicious node

4 Performance Evaluation

4.1 Simulation Environment and Performance Metrics

Using the NS-2 [9] simulator, BPV-DW was evaluated against the SNV approach.
The used simulation parameters are given in Table 2. The simulation for each
scenario and metric was performed five times, taking the average value. We use two
metrics, packet delivery ratio (PDR) and control overhead (CO) for comparative
evaluation.

Table 2. Simulation parameters

Parameter Value Parameter Value
Mobility model Random waypoint Number of sessions 15

Number of nodes 50 Simulation time 300 sec.
Terrain range 1000 * 1000 m2 Packet size 512 bytes

Maximum speeds 0, 5, 10, 15, 20, 25m/s Packet transmission rate 4 packets/s
Pause time 30s Number of malicious nodes 1, 2, 3, 4, 5

 PDR ൌ ∑ ௡௉௔௖௞௘௧௦ோ௘௖௘௜௩௘ௗ ሺ௜.ௗሻ೔ ∈ ೄ∑ ௡௉௔௖௞௘௧௦ௌ௘௡௧ ሺ௜.௦ሻ೔ ∈ ೄ , CO ൌ ෍ ݄݁ݐ ݎܾ݁݉ݑ݊ ݂݋ ݉ᇱݏ ௠∈ெ݀݁ݐݐ݅݉ݏ݊ܽݎݐ

where S is a set of sessions created during simulation, and nPacketsReceived(i.d) and
nPacketsSent(i.s) are the number of packets received at destination d and sent from
source s for session i, respectively. M is all types of control message and the number
of m's transmitted include the messages initiated or relayed by the nodes in the
network.

Furthermore, we use two more metrics to evaluate the reliability of two
approaches, a true positive rate (TPR) and a false positive rate (FPR).

 TPR ൌ ܰܨܲܶ ൅ ܶܲ and ܴܲܨ ൌ ܰܶܲܨ ൅ ܲܨ

TPR indicates the ratio of the number of alarm messages generated for the attacks to
the total number of black hole attacks, and FPR indicates the ratio of the number of
counts that a normal node is determined to be malicious to the total number of counts
that a decision is made for normal nodes.

320 F. Ahmed, S.H. Yoon, and H. Oh

Fig. 5. Packet delivery rate versus Number of
black hole nodes

Fig. 6. Control overhead versus Number of
black hole nodes

Fig.5 shows the packet delivery rate by varying the number of malicious nodes from
0 to 5. The packet delivery rate of all schemes performs well in case of no black hole
node. A significant result is that the packet delivery rate of AODV dramatically drops
from 88 percent to 21 percent in the presence of one black hole node and it becomes
worse as the number of black hole nodes increase while BPV-DW shows a very stable
outcome. BPV-DW has better performance than SNV because it can detect the black
hole node more efficiently than SNV. Contrary to our expectation, Fig. 6 shows the
control overhead of AODV sharply decreases as the number of malicious nodes
increases while that of BPV-DW is not sensitive to the number of black hole nodes.
Since the presence of a black hole node often hinders the normal operation of the
protocol, the protocol in the network with a black hole node generates less control
overhead than that in the network without a black hole node. However, SNV produces
more overhead than BPV-DW; the reason is as explained in section 2.2.

Fig. 7. Packet delivery rate versus Maximum
speed

Fig. 8. Control overhead versus Maximum
speed

In Fig. 7 and Fig. 8, we present packet delivery ratio and control overhead (CO) as
a function of a maximum speed with one black hole node. As shown in Fig. 7, the
packet delivery rate of all schemes decreases when the node mobility increases. On
the other hand, the packet delivery rate of BPV-DW is over 68 percent even with

 BPV-DW to Detect Black Hole Attack 321

30m/s, whereas AODV with one black hole node went down to 15 percent. The
packet delivery rate of SNV is less than that of BPV-DW because SNV cannot judge
black hole attack effectively. Fig. 8 shows that CO(BPV-DW w/ BH) < CO(AODV
w/o BH), the BPV-DW uses additional control messages, increasing control
overhead; however, since control messages are unicast and conditional, the increase in
overhead is not that serious. While the black hole node may limit the flooding of the
RREQ partially, with the AODV in the network without a black hole node, the source
floods the network with the RREQ without any hindrance. However, CO(BPV-DW
w/ BH) < CO(SNV w/ BH), the reason is as explained in section 2.2.

Fig. 9. True positive rate versus Maximum
speed

Fig. 10. False positive rate versus Maximum
speed

Fig. 9 and Fig. 10 compare the true and false positive rate between BPV-DW and
SNV when maximum speed varies from 0 to 25 m/s and 10% of the total nodes are
black hole nodes. As shown in Fig.9, the true positive rate of SNV is lower than that
of BPV-DW. This is due to the fact that in SNV scheme, only source node decides
that a node is malicious. Therefore, if a certain node detects anomaly of a black hole
node it broadcasts alarm message that is supposed to be delivered to the source. If the
alarm message fails to reach the source, the scheme cannot detect black hole node.
From the Fig. 10 we can observe that the false positive rate in both schemes increases
when the nodes move more rapidly because links are broken frequently in a high
mobility network. We also observe that the false positive rate of SNV is higher than
that of BPV-DW. This is due to the fact that in SNV, if the RREP originator is
disconnected from its immediate upstream node or it fails to send SREQ to its
downstream node due to a link breakage, the upstream node determines that the
RREP originator is black hole.

5 Concluding Remarks

The proposed BPV-DW method takes two steps: Identifying a suspicious node and
verifying the suspicious node. The message for verification is encrypted so that it can
be directly sent to the destination along the path reported from the suspicious node.

322 F. Ahmed, S.H. Yoon, and H. Oh

In this verification process, the nodes on the path are required to follow the specified
rules and any third nodes can watch out the behaviors against the rules. We showed
by simulation that the BPV-DW not only reduces control overhead but also it
identifies a malicious node effectively.

References

1. Deng, H., Li, W., Agarwal, D.P.: Routing security in ad hoc networks. IEEE
Communications Magazine 40, 70–75 (2002)

2. Hu, Y.-C., Perrig, A., Johnson, D.B.: Packet Leashes: A Defense against Wormhole
Attacks in Wireless Ad Hoc Networks. In: Proc. of IEEE INFOCOM (2002)

3. Perkins, C.E., Royer, E.M., Das, S.: Ad-hoc On demand Distance Vector (AODV) Routing
Protocol. RFC 3561 (2003)

4. Lee, S., Han, B., Shin, M.: Robust Routing in Wireless Ad Hoc Networks. In: International
Conference on Parallel Processing Workshops, pp. 18–21 (2002)

5. Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile ad hoc
networks. In: MOBICOM, pp. 255–265 (2000)

6. Zhang, X., Sekiya, Y., Wakahara, Y.: Proposal of a method to detect black hole attack in
MANET. In: International Symposium on Autonomous Decentralized Systems, pp. 1–6
(2009)

7. Johnson David, B., Maltz David, A.: Dynamic source routing in ad hoc wireless networks.
Mobile Computing 353, 153–181 (1996)

8. Prathapani, A., Santhanam, L., Agrawal, D.P.: Detection of black hole attack in a wireless
mesh network using intelligent honeypot agents. The Journal of Supercomputing (JoS),
1–28 (2011)

9. NS-2, http://www.isi.edu/nsnam/ns/

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 323–337, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Performance Analysis for Workflow Management
Systems under Role-Based Authorization Control

Limin Liu1, Ligang He2, and Stephen A. Jarvis2

1 Department of Optical and Electronic Engineering, Mechanical Engineering College,
Shijiazhuang, China

2 Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

Abstract. Role-Based Access Control (RBAC) remains one of the most
popular authorization control mechanisms. Workflow is a business flow
composed of several related tasks. These tasks are interrelated and
context-dependent during their execution. Under many circumstances
execution context introduces uncertainty in authorization decisions for
tasks. This paper investigates the role-based authorization model with the
runtime context constraints and dynamic cardinality constraints. The
Generalized Stochastic Petri-net is used to model the authorization process.
Moreover, due to the state explosion problem in the Petri-net formalism,
the proposed modeling method combines the Queuing theory to analyze
both system-oriented and user-oriented performance. Given the
workflow information, its running context and the authorization policies, this
work can be used to predict the performance of these workflows running
in the system. The prediction information can give insight in how to
adjust authorization policies to strike a better balance between security
and performance.

Keywords: Workflow, Role, Authorization, Cardinality, Performance.

1 Introduction

Workflow is a business flow which has a certain target and composed of several related
tasks (activities). These tasks are mutually dependent and are executed at a certain
fashion. In order to guarantee each task to utilize the system resources under reasonable
authorization, there should be an appropriate authorization mechanism in the workflow
management system. The access control and authorization mechanism of workflow
must not only guarantee that every task of the workflow be executed by the authorized
subject, but also evolve with the execution of workflow. When the data is flowing
among the tasks of workflow, the task on execution is changing and the privilege of the
task is also changing. The privilege changing of tasks is related with the context
environment of the data process and the implementation of the workflow authorization
depends on the procedure context too.

324 L. Liu, L. He, and S.A. Jarvis

In recent years the research of access control and authorization focuses on the model
of Role Based Access Control 96 (RBAC 96) which is presented by Sandhu and Coyne,
et al [1]. The RBAC model is an access control pattern that the subject’s access
privilege is determined by the given privilege of the role assigned to the subject. The
RBAC model arouses researchers’ interest more and more because of its flexible
authorization mechanism, powerful management function and perfect safety policy.
The researchers attach great importance to authorization constraints of the RBAC
model too [2]. These studies become a motivation of the development of the RBAC
model and a series of researching achievements about constraints are presented [5] [6].

The RBAC model has evolved to the RBAC2 model which is called constrained
RBAC model [2] [3]. Authorization constraints specify the mandatory rules that must be
observed when access permissions are assigned to roles, roles are assigned to users or a
user activates a role at some time. These rules are established in order to satisfy the safety
control principle and business needs. In recent years, the research about constraints has
becoming an important research point related to the RBAC model. These researches
extend the basic constraints and some new constraint types such as relationship constraint,
prerequisite constraint and cardinality constraint etc. are presented.

Cardinality constraints can be divided into: (1)Static cardinality constraint: This
constraint restricts the number of users of a role and the static cardinality constraint N
means the maximum members of the users of a role at any time. For example, there is
only one person as a chairman role in an organization. (2)Dynamic cardinality constraint:
This constraint restricts the number of simultaneous active sessions of a role. This kind of
constraint has more influence on system performance, so this paper will study the system
performance under dynamic cardinality constraint.

In this paper, the application of the role-based authorization model under context and
dynamic cardinality constraint to workflow system is studied. The queuing theory is
utilized to analysis and to predict the system performance. The remainder of this paper is
organized as follows: related work is discussed in Section 2; Section 3 presents the
role-based authorization model under constraints and utilizes the Petrinet to express the
authorization process; Section 4 presents the performance analysis of workflow
management system under the model and discusses different parameters’ affect on the
workflow’s performance; the paper concludes and presents future works in Section 5.

2 Related Works

The role-based authorization model and its utilization in workflow authorization has been
extensively studied and well documented in related literature [4][6][8]. But the context
among tasks in a workflow and the corresponding role-based authorization constraint is
not considered in these works. [9] has studied the TBAC (Task Based Access Control)
model which was an authorization model based on tasks of a workflow instance. This
model has considered the context constraints among workflow tasks, but the role
organizations, role logics, the roles’ relationship with system resources and the model’s
effect on workflow performance were not included in their studies. Botha and Eloff et al.
have studied the issue of Separation of duty (SoD) in workflow environment and

 Performance Analysis for Workflow Management Systems under RBAC 325

presented four types of needs for SoD: conflicting roles, conflicting permissions,
conflicting users and conflicting tasks [4]. Binding of duty (BoD) is another type of
authorization constraints. [13][14] introduced various constraints of the RBAC model, but
they did not present the concrete scenarios of these constraints. [17] studied the
relationship constraints and prerequisite constraints and also used the Petrinet to study
SoD and BoD in workflow under role-based authorization mechanism. They presented
the model implementation explicitly and used CTMC to study the workflow performance.
The task context and cardinality constraint’s implementation in a role-based authorization
system was not included in their study and they did not give these constraints’ effect on
system performance too.

3 Role-Based Workflow Authorization Model

3.1 The Role Hierarchy in a System

As depicted in Fig.1, the relationship among the roles in a system or organization is a
membership one as an inverted tree. If there are different membership relationships
like a net because of different business interactions, the net membership can be
transformed into tree membership according to the business interaction. The
authorization service of the system can keep a role data structure according to
membership relationship between roles. In a real system under role-based
authorization mechanism, the authorization service will traverse the role tree-type
data structure and find a spare role to assign it to the task T if a role and its father roles
can be assigned to the task T. In principle, the role and all its father roles up to root node
can be assigned to task T. The traversing order from the role to root node is the priority
level to assign a role to task T and this level is the reverse of the tree-like membership
order from the top of the tree.

R1

R2 R3

R6R5R4 Rm

Fig. 1. The role hierarchy in a system

3.2 Authorization under Role Cardinality and Context Constraint

Suppose that the requested role of a task is R and the active cardinality constraint of the
role R is n. The authorization rule to the task under R’s cardinality constraint is modeled
by PN as in Fig.2.The diagram in the dotted block is the temporal constraint expression
of roles [17]. Suppose the active cardinality of role R is n. The number of the tokens in

326 L. Liu, L. He, and S.A. Jarvis

place R-C stands for the remaining available number of the role R and the maximum
number is n. When Task requests the authorization of R and the active task sessions of
R are fewer than n, Task can obtain the authorization successfully. The place RT, RT
and the transitions between them construct the temporal constraints of the role’s
availability. The transition AoR is the assignment action of the role R to the task. This
transition needs three input tokens: one from the place Task which stands for the
existence of an input task; one from the place R-C when there are remaining available
active role R; one from place RT which stands for the temporal availability of the role.
The arc between the place RT and the transition AoR is bidirectional and the transition
AoR will not consume the token in the place RT. After the execution of transition AoR,
there will be a token in the place (T, Role), so the system can take the next (Role, Res)
authorization step. The token in place Res stands for the required resource and the
transition AoE stands for the assignment of resource step. After the execution of AoE,
there will be a token in place (T, Res), the execution of the task can be initiated. After
the execution of transition TC, there will be a token deposited into place R-C. Thus the
assignment of a role to a task and the execution of the task constitute a closed loop.

(Task)R-C

RT RT

(Res)

AoR

(T,Role)

AoE

(T,Res)

TC

Fig. 2. Task-role assignment under active cardinality constraint

When the active sessions of R reach the maximum numbers of its cardinality limit or
R is temporally unavailable, there should be a place or a state which indicates its
unavailability in order to wait for the completion of one of the active tasks of R or
apply for the authorization of father roles of R according to the organizational role
inheritance relationship if the authorization policy permits. The figure showing the
generation of the RoleBusy place is depicted as Fig.3.

 Performance Analysis for Workflow Management Systems under RBAC 327

The diagram in the dotted block is the added part which indicates the generating
process of the RoleBusy state. The other part of the figure is same as Fig.2.

(TX)R-C
RT RT

(TX’)

n

RoleBusy

TBT

CBT

ARC

Fig. 3. Task-role assignment under active cardinality constraint with RoleBusy state

The place (Tx’) can be identical to place (Tx) when a task can apply for the
authorization of R and its father roles. Otherwise (Tx’) can be a place indicating
the arrival of another task which has task context constraint with the task indicating by
the place (Tx). Task context constraint will be discussed in the following section. The
place ARC is the anti-place of R-C and the tokens in it stand for the number of active
sessions of R. Transitions TBT and CBT are transitions indicating R’s temporal
availability and the number of R’s active session respectively. The arcs between
RT and TBT, ARC and CBT are bidirectional ones. The arc function of the arc between
ARC and CBT is n, which is the active cardinality of R. Both transitions are triggered by
the token in (Tx’). Thus when R is temporally unavailability or the active sessions of R
have reached its cardinality, there will be a token in place RoleBusy if there is a task
requesting token in (Tx’).

3.3 Authorization under Task Context Constraint

Because workflow is a business flow which has certain target and composed of several
related tasks (activities), there are SoD, BoD and task context constraint between the
roles assigned to the tasks of a workflow instance in terms of role authorization. SoD
and BoD have been extensively studied and well documented in related literatures
[2, 3, 4, 5, and 11], so the task context constraint is mainly studied in this paper.

328 L. Liu, L. He, and S.A. Jarvis

From the view of role hierarchy, the context constraint of roles between tasks can be
classified into the following two modes:

1) Ta ⎯→⎯L Tb: the rank of the role assigned to Ta is lower than the one assigned to
Tb.

2) Ta ⎯→⎯H Tb: the rank of the role assigned to Ta is higher than the one assigned to
Tb.

The implementation of the role hierarchy depicted in Fig.1 in an authorization service
can be an appropriate data structure such as adjacency multilist.

The Authorization Process of Ta ⎯→⎯L Tb . The context constraint of task Tb to Ta is

modeled in Petrinet and the authorization process of Ta ⎯→⎯L Tb is illustrated as in
Fig.4.

In the figure, the rank of the role requested by task Tb is higher than that of its
antecedent task Ta. Rf1-Rfn are the father roles of R which is the role assigned to the task
Ta. Rf1-Rfn are sorted from low to high rank in order to observe the least privilege
principle. The transition in the Fig.4 is illustrated as bold solid line.

Add a place (Ta, R) in the Petrinet and deposit a token to it when role R is assigned to
task Ta by the authorization service successfully. This place is also an input place of the
authorization to the descendant task Tb, so the context constraint authorization
constraint between task Ta and Tb can be guaranteed.

The execution of transition CBT and TBT deposits a token in place RoleBusy. The
token in this place means that the current role is busy and can not be assigned to
new-coming task. At this time, the neighbor higher rank role of the current one will be
checked if can be assigned to the new-coming task. The Fig.3 is used as part of the
Fig.4.

(Ta , R)

Rf1-C
Rf1T TR f 1

(Tb)

nf1

RoleBusy

TBT

CBT

ARCf1

Rf2-C
Rf2T TR f 2

nf2

RoleBusy

TBT

CBT

ARCf2

Fig. 4. Task-role assignment under task context constraint

 Performance Analysis for Workflow Management Systems under RBAC 329

The arcs from place ARC(fi) to the transition CBT are bi-directional ones. The arc
expressions of these arcs are nfi which is the active cardinality value of the roles Rf1-Rfn

respectively.
The tokens in place (Ta, R) and Tb are the triggers of the task-role assignment under

task context constraint.
The inputs of the transition Role Assignment of Rf1 need tokens from four places: (Ta,

R), Tb, Rf1-C and Rf1T. The inputs of the transition Role Assignment of Rf2 need tokens
from four places: (Ta, R), Rf2-C, Rf2T and Rolebusy of Rf1. Similarly, the inputs of the
transition Role Assignment of Rfi needs token from four places: (Ta, R), Rolebusy of Rfi-1,
Rfi-C and RfiT respectively. With this method, the role assignment can observe the task
context constraint and the least privilege principle.

The Authorization Process of Ta ⎯→⎯H Tb . Suppose R is the role assigned to task
Ta. When the rank of the role requested by task Tb is lower than that of its antecedent
task Ta and is not claimed explicitly, the descendants of role R should be traversed from
the role hierarchical data structure and the role authorization of task Tb should be
conducted from low to high ranks of these descendants in order to observe the least

privilege principle. The authorization process of Ta ⎯→⎯H Tb is same as that of

Ta ⎯→⎯L Tb except that the Rf1-Rfn in Fig.4 are substituted by Rs1-Rsn which are the
descendants of role R sorted from low to high ranks.

4 Performance Analysis of Workflow Management System
under Constraints

4.1 System Parameters

Suppose the parameters of the workflow management system under analyzed are as the
following list.

Workflow instance set (N elements): SWF: {WF1,…,WFN}, there are N types of
workflow instance in the system, WFi is the ith workflow instance;

Role set (M elements): SR: {R1,…,RM}, there are M roles in the workflow
management system;

Roles active cardinality set (M elements): SCR: {CR1,…, CRM}, CRi is the active
cardinality value of Ri ;

The portion of every workflow instance type in the system: {α1,…,αN } and
α1+…+αN=1;

The Poisson arrival parameter set of every workflow instance type: {λWF1,...,λWFN },
λWFi is the Poisson arrival parameter of the ith workflow instance;

Task set (L elements): ST: {T1,…,TL}, there are L types of tasks supported by system
resources and authorization service. The tasks of this set constitute the N types of
workflow instance;

The role’s mean service time parameter set of each task: Vμ: {μ1, μ2,…, μL};
The mapping matrix of task set ST and workflow instance set SWF can be constructed

as:

330 L. Liu, L. He, and S.A. Jarvis

CN×L: { cij }
In the matrix, cij stands for mean numbers of the task Tj appearing in the workflow

instance WFi and cij=φ, the value of φ is 0 or positive integer.

4.2 System Analysis under Role Cardinality Constraints

System performance is related with processing time of role and the service time of
resource. In order to know which role is requested by which task, the mapping matrix
DM×L between tasks and requested roles is constructed and the value of the element dij in
the matrix is:

dij=ξ, ξ is the probability that role Ri is assigned to task Tj successfully before its
execution and 0 ≤ ξ ≤ 1.

The Calculation of dij . The calculation of dij can be divided into two different cases:

1) Non-context constraint’s authorization

Tasks that have no context constraint’s authorization should have an explicit role
authorization request. This request is derived from the workflow’s business procedure.
The authorization request can be obtained from the authorization request file of the
workflow instance (a XACML file, for example).

The value of dij is one when the task Tj has the explicit role authorization request of
Ri and zero when it has not a role authorization request of Ri.

2) Context constraint’s authorization

The case of context constraint’s authorization of a task is presented by the Fig.4. In
this case, the value of dij must be obtained from the calculation of authorization
probability of each dependant roles. Take the Fig.4 as the example, the model presented
by Fig.4 is a General Stochastic Petri-net model, and since the time associated with
each transition is exponentially distributed, the underlying stochastic process is a
Continuous Time Markov Chain[18]. We can construct the Tangible Reachability
Graph (TRG) of the Petri-net model and also can construct the CTMC from the
TRG[17]. After the CTMC is constructed, we can calculate the infinitesimal generator
(which is a two dimensional matrix, denoted by Q) of the CTMC.

Suppose there are M states in the CTMC. pi is the probability that the CMTC
stays in state si. If we denote the row vector P= [p1, p2, ..., pi,... , pM], then the following
linear equation system holds, where Q is the infinitesimal generator of the constructed
GPSN model. P can be obtained by solving the equation system:

PQ =0.

 ∑
=

M

i

pi
1

=1 (1)

The nodes in the TRG are defines by the row vector:

Ns=[(Ta,R), Tb, Rf1, 1fR , Rf2, 2fR ,…, Rfn, fnR]

 Performance Analysis for Workflow Management Systems under RBAC 331

In this vector, Rfi=Rfi-C∩Rfi-T which means the availability of role Rfi; fiR is

RoleBusy of Rfi which means the unavailability of role Rfi.
We suppose that the role authorization of Tb will stay at the queue of all father roles

of R and wait for the first spare role if all R’s father roles are busy. Though the first
spare probability of all father roles of R can be calculated based on the whole workflow
instances accomplished by the workflow management system, we take the uniform
distribution of the father roles’ spare probability in order to simplify the problem.

The following Ns state lists are the states that can lead to the successfully role
authorizations of Tb:

 Ns Value List Probability

S1=(1,1,1,0,X,X,…,X,X) p1
S2=(1,1,0,1,1,0,…,X,X) p2

 …
Sn=(1,1,0,1,0,1,…,1,0) pn

S =(1,1,0,1,0,1,…,0,1) pbs

S1-Sn are the states that can lead to the successfully role authorizations of Tb to Rf1- Rfn
respectively and S is the state that all roles are busy. p1- pn and pbs are the probability of
these states.

The values of p1-pn and pbs can be obtained by the Eq.1. If Tj is a context constraint’s
authorization task as Tb and Ri is the ith father role of R, the value of dij can be expressed
as following:
ξ = pi+ pbs /n

The Queuing Model of Tasks Requesting a Role under Cardinality Constraint.
Suppose the arrival process of the workflow instances supported by workflow
management system under studied is Poisson process. The arrival rate of all instances is
λ, and then the arrival rate of instance WFi is

λWFi＝αi×λ;

αi is the proportion of the number of instance WFi to all workflow instances and we
have

∑
=

N

i
iWF

1

λ ＝λ

The arrival rate λTj of every task supported by the workflow system can be calculated by
the following equation:

(λT1 λT2…λTL) = (λWF1 λWF2 … λWFN) ×CN×L

λTj＝)c(ij
1

iWF ×∑
=

N

i

λ

Since all workflow instances’ arrival rate are Poisson processes and each task in these
instance only has a different parameter: λT, we can suppose that the arrival rate of the

332 L. Liu, L. He, and S.A. Jarvis

Ri’s requesting tasks is a Poisson process. And we can obtain the total arrival rate
parameter of these tasks using the former formula:

Suppose λRi is the arrival rate of the tasks which request role Ri. The value of λRi can
be calculated by the Eq.2:

λRi＝
Tj

L

j
ijd λ*

1
∑

=

 (2)

The mean service time of Ri to a certain task of different instances from a same
workflow is exponential distributed. But the tasks requesting Ri come from different
workflows or different transitions of a same workflow instance, so the mean service
time of Ri to requesting tasks does not observe the exponential distribution but the
independent and general distribution[20][21]. Through computing [16], the mean
service time

iη
1 of Ri to its client is:

iη
1
＝

∑∑

∑∑

= =

= =
N

j

L

h
WFjihjh

N

j

L

h h

WFjihjh

dc

dc

1 1

1 1

**

**

λ

μ
λ

 (3)

iη is the service rate of Ri. For each role in the system, we can know both the arrival

rate of requesting tasks and the role’s service rate using the Eq.2 and Eq.3 respectively.
We also know the role’s cardinality value which can be used as the number of servers.
The role and the requesting tasks constitute an M/G/C queuing system. C is the number
of servers in the queuing system and its value is the role’s cardinality value.

4.3 System Performance Analysis

Performance Analysis Based on a Certain Role

1) The effect of role cardinality value CR on system performance

Three factors decide if a system will be a limitless waiting queue. These factors are: 1)
the value of the role’s cardinality, 2) the arrival rate of the requesting tasks and 3) the
service rate of the role. λRi is the number of clients who need the process of Ri during
unit time. CR(Ri)×ηi is the number of clients who can be processed by Ri during unit
time. In order to keep the workflow system stable, the processing speed of the role must
be greater than the arrival rate of clients (tasks).:

λRi /(CR(Ri)×ηi)<1 and CR(Ri)>λRi/ηi

If the CR value of a role is determined, the arrival rate of tasks which request the role
can be adjusted in order to avoid the limitless waiting queue.

2) Performance analysis

According to the theories of queuing system and stochastic service system [21] [22]
[23] [24], the mean waiting time Wqi of a task which request Ri in the queue is [20] [26]
[27]:

 Performance Analysis for Workflow Management Systems under RBAC 333

Wqi=
A

CR CRi
Rii λ×

Where A=)
!**)*(

*

!*
(1

1

0 i
CRi

iRii

CRi
Rii

CR

k
k

i

k
Ri

CRCRi

CR

k

i

−

−

= −
+∑ ηλη

λ
η

λ × 2)*(RiiiCR λη − × 1−CRi
iη × !iCR

By Little’s law, we have:

Wi=Wqi+1/ηi (4)

Where Wi is the sum of the task’s mean waiting time and Ri’s mean service time and
also is the mean processing time of the task under the authorization of Ri.

By the Eq.4, we can obtain the mean task processing times of all the roles in a system
at their stable states. All the roles’ mean task processing time can constitute a vector
VW:

VW: (W1, W2, …, WM)

Performance Analysis of the Whole System

1) The delay time of a workflow instance

As stated in section 4.1, a workflow instance is possibly a business logic composed of
different control structures of tasks. The delay time of a workflow instance should be
analyzed based on these structures. These control structures can be divided into four
basic structures: sequential, concurrent, selective and loop structures. The meaning of
basic structure is that the components of the structure are not nested ones but only tasks.
The tasks in a control structure can be denoted by the following two vectors:

CA:（ca1,ca2,…,caL）
CT:（ct1,ct2,…,ctL）

The value of cai is 0 or 1 which means whether the task Ti from T1-TL is in the structure.
The value of cti is 0 or positive integer which means the appearance numbers of the task
Ti from T1-TL in the control structure.

· Sequential structure

The tasks in this structure are several ones from T1-TL and they execute sequentially. So
the total delay time DTs of this structure is the sum of the delay time of all the tasks:

DTs=))*(*(
11

j

M

j
ji

L

i
i Wdct ∑∑

==

· Concurrent structure

The tasks in this structure are several ones from T1-TL and they execute concurrently.
So the total delay time DTp of this structure is the maximum of the delay time of all the
tasks:

334 L. Liu, L. He, and S.A. Jarvis

DTp=Max（ca1 *)*(
1

1 j

M

i
i Wd∑

=

, ca2 *)*(
1

2 j

M

i
i Wd∑

=

,…, caL *)*(
1

j

M

i
iL Wd∑

=

）

· Selective structure

The tasks in this structure are several ones from T1-TL and only one of them executes in
the system. The executing probability of T1-TL is denoted as p1,p2,…,pL respectively
and p1+p2+,…,pL=1, then the total delay time DTo of this structure is:

DTo= p1*(ca1*)*(
1

1 j

M

i
i Wd∑

=

)+ p2*(ca2*)*(
1

2 j

M

i
i Wd∑

=

)+,…,+ pL*(caL*)*(
1

j

M

i
iL Wd∑

=

)

=))*(**(
11
∑∑

==

M

j
jji

L

i
ii Wdcap

· Loop structures

The loop structures can be transformed into sequential structure by means of
calculating the executing times of corresponding tasks in the loop structure. So the total
delay time DTL of loop structure is delay time of the sequential structure which is
transformed from the loop structure.

Every workflow instance is a business logic composed of the task control structures
listed above. When there are nested control structures, the delay time of the workflow
instance should be calculated from innermost to outermost structures. The delay time of
the neighbor inner control structure should be a same item as a task in the delay time
calculation of neighbor outer control structure. For example, as in Fig.5:

T1 T4T2 T6

T5

T3

Fig. 5. A workflow instance composed of nested control structures

Suppose a workflow instance is composed of nested control structures as depicted in
Fig.5. In order to simplification, the places in the Petrinet are omitted and only the tasks
as transitions are retained. T3,T4 and T5 are concurrent tasks and they constitute a
concurrent control structure: SL. This structure is the neighbor inner control one of the
outer sequential structure which is composed of T1,T2, SL and T6. First the delay time
DTSL of the SL should be calculated:

DTSL= Max（)*(
1

3 j

M

i
i Wd∑

=

,)*(
1

4 j

M

i
i Wd∑

=

,…,)*(
1

5 j

M

i
i Wd∑

=

）

Then the total delay time DTWF of the workflow instance can be calculated:

 Performance Analysis for Workflow Management Systems under RBAC 335

DTWF =
)*(

1
1 j

M

i
i Wd∑

=

+)*(
1

2 j

M

i
i Wd∑

=

+DTSL +)*(
1

6 j

M

i
i Wd∑

=

Using the method stated above, the processing time of a workflow instance with
mixture of arbitrary control structures can be obtained.
2) The mean response time of the system

The mean response time MRTWFi of a workflow instance WFi is the sum of WFi’s
waiting time and executing time. The sum of waiting time and executing time is the
mean delay time. So the mean response time of a workflow instance WFi is:

MRTWFi= DTWFi

The value of DTWFi can be obtained by the method introduced above.
With the mean response time of a workflow instance and other system parameters,

the mean response time of the whole workflow management system is:

MRTWFMS=)*(
1

WFi

N

i
i DT∑

=
α

3) The occupation rate of roles under active cardinality constraint
The total number of active task sessions supported by the workflow management

system under all roles’ active cardinality constraint is:

ATSnum=∑
=

M

i
iCR

1

According to queuing theory and the Little’s law, the occupation rate ρi of a role Ri is:
ρi=λRi /CRi*Wi

Where λRi is the arrival rate of the tasks requesting Ri, CRi is the active cardinality
constraint of Ri and Wi is the mean task processing time (service time) of Ri.

With ρi, the occupation rate of all roles of the system is:

ρ=∑
=

M

i
i

1

ρ /M=∑
=

M

i ii

Ri

MWCR1 **

λ

With the result of ρ, we can adjust the parameters of the workflow system or the
cardinality values of roles to maximum the system performance.

5 Conclusions and Future Works

In this paper, we take the workflow management system under role authorization as the
studying object and emphasis on the study of system performance under task context
and role cardinality constraints. We employ Petrinet to model the authorization
procedure with role cardinality constraint and task dependence. The queuing theory is
used to analysis the workflow instance delay time, mean response time, role occupation
rate and other performance metrics of the workflow management system with multiple

336 L. Liu, L. He, and S.A. Jarvis

kinds of workflow instances and tasks. Based on the context dependence among tasks
in a workflow instance, our future works will focus on the study of uncertain
authorization model of roles under task context and its performance analysis. We will
employ the probability, fuzzy and queuing theories to analysis and predict the more
generic and complicated workflow management under role authorization.

References

1. Sandhu, R.S., Coyne, E.J., Feistein, H.L., Youman, C.E.: Role-Based Access Control
Models. IEEE Computer 29(2), 38–47 (1996)

2. Ahn, G., Sandhu, R.: Role-Based Authorization Constraints Specification. ACM Trans.
Information and System Security 3(4), 207–226 (2000)

3. Ahn, G., Sandhu, R.: The RSL99 Language for Role-based Separation of Duty Constraints.
In: Proceedings of the Fourth ACM Workshop on Role-based Access Control, Fairfax,
Virginia, United States, October 28-29, pp. 43–54 (1999)

4. Botha, R., Eloff, J.: Separation of Duties for Access Control Enforcement in Workflow
Environments. IBM Systems Journal 40(3), 666–682 (2001)

5. Joshi, J., Bertino, E., Latif, U., Ghafoor, A.: A Generalized Temporal Role-Based Access
Control Model. IEEE Transactions on Knowledge and Data Engineering 17(1), 4–23 (2005)

6. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC- A Workflow Security Model
Incorporating Controlled Overriding of Constraints. International Journal of Cooperative
Information Systems 12(4), 455–486 (2003)

7. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: a Temporal Role-based Access Control
Model. In: Proceedings of the Fifth ACM Workshop on Role-based Access Control, Berlin,
Germany, July 26-28, pp. 21–30 (2000)

8. Wang, Q., Li, N.: Satisfiability and Resiliency in Workflow Authorization Systems. ACM
Transactions on Information and System Security (TISSEC) 13(4), 1–35 (2010)

9. Thomas, R.K., Sandhu, R.S.: Task-based Authorization Controls (TBAC): A Family of
Models for Active and Enterprise-oriented Authorization Management. In: IFIP TC11
WG113 11th International Conference on Database Security XI Status and Prospects,
vol. 11, pp. 166–181. Chapman & Hall, Ltd

10. Bertino, E., Ferrari, E.: An authorization Model for Supporting the Specification and
Enforcement of Role-based Authorization in Workflow Management Systems. ACM
Transactions on Information and System Security 2(1), 65–104 (1999)

11. Castano, S., Casati, F., Fugini, M.: Managing Workflow Authorization Constraints through
Active Database Technology. Information Systems Frontiers 3(3), 319–338 (2001)

12. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

13. Ray, I., Li, N., France, R., Kim, D.K.: Using UML to Visualize Role-based Access Control
Constraints. In: Proceedings of the 9th ACM Symposium on Access Control Models and
Technologies, Yorktown Heights, New York, USA, June 02-04, pp. 115–124 (2004)

14. Tan, K., Crampton, J., Gunter, C.: The Consistency of Task-based Authorization Constraints
in Workflow Systems. In: Proceedings of 17th IEEE Computer Security Foundations
Workshop, pp. 155–169 (2004)

15. Liu, S., Fan, Y.S.: Workflow Model Performance Analysis Concerning Instance Dwelling
Times Distribution. In: 2009 IEEE International Symposium on Parallel and Distributed
Processing with Applications, ISPA, pp. 601–605 (2009)

 Performance Analysis for Workflow Management Systems under RBAC 337

16. Li, J.Q., Fan, Y.S., Zhou, M.C.: Performance Modeling and Analysis of Workflow. IEEE
Transactions on System, Man, and Cybernetics A 34, 229–242 (2004)

17. He, L., Calleja, M., Hayes, M., Jarvis, S.A.: Performance Prediction for Running Workflows
under Role-based Authorization Mechanisms. In: IEEE International Symposium on
Parallel and Distributed Processing, pp. 1–8 (2009)

18. Manolache, S.: Schedulability Analysis of Real-Time Systems with Stochastic Task
Execution Times. Ph.D Thesis, Department of Computer and Information Science, IDA,
Linkoping University

19. Gallager, R.G.: Discrete Stochastic Process. Kluwer Academic Publishers Group (1996)
20. Adan, I., Resing, J.: Queueing Theory. Eindhoven University of Technology (2002)
21. Bunday, B.D.: An introduction to queueing theory. Arnold, London (1996)
22. Gross, D., Harris, C.M.: Fundamentals of Queueing Theory. Wiley, Chichester (1985)
23. Robertazzi, T.G.: Computer Networks and Systems – Queueing Theory and Performance

Evaluation. Springer, New York (1994)
24. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains –

Modeling and Performance Evaluation with Computer Science Applications. John Wiley
and Sons, New York (1998)

25. Li, N., Tripunitara, M.V., Bizri, Z.: On Mutually Exclusive Roles and Separation-of-duty.
ACM Transactions on Information and System Security (TISSEC) 10(2), 5-es (2007)

26. van Hoorn, M.H., Tijms, H.C.: Approximations for the Waiting Time Distribution of the
M/G/C queue. Performance Evaluation 2(1), 22–28 (1982)

27. Boxma, O.J., Cohen, J.W., Huffels, N.: Approximations of the Mean Waiting Time in an
M/G/C Queuing System. Operations Research 27, 1115–1127 (1980)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 338–349, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Medical Image File Accessing System
with Virtualization Fault Tolerance on Cloud*

Chao-Tung Yang1,**, Cheng-Ta Kuo1, Wen-Hung Hsu1, and Wen-Chung Shih2

1 Department of Computer Science, Tunghai University, Taichung, 40704, Taiwan ROC
ctyang@thu.edu.tw, {superada0923,aspecteric}@gmail.com

2 Department of Applied Informatics and Multimedia, Asia University, Taichung, 41354,
Taiwan ROC

wjshih@asia.edu.tw

Abstract. In recent years, Cloud Computing and Virtualization has become one
of the most popular computer science fields. Cloud Computing is enabled by
the existing parallel and distributed technology, which provides computing,
storage and software services to users. This paper focuses on the cloud storage
virtualization technology to achieve high-availability services. We have
designed and implemented a medical imaging system with a distributed file
system. The technology of Distributed Replicated Block Device has been
utilized to mirror an entire disk image. The experimental results show that the
high reliability data storage clustering and fault tolerance capabilities can be
achieved.

Keywords: Medical Image, PACS, Virtual Machine, DRBD, Fault Tolerance.

1 Introduction

More and more long-term costs control an onsite medical imaging archive. In 2005, the
typical U.S. provider estimated that 50 MB of storage were required for an average
study. According to the U.S. diagnostic imaging archive storage demand forecasts, it
attempting to arrive at an estimate of the total storage volume required to store medical
image data. The first assumption that one has to make is to consider only the primary
copies of images, that is, to assume that there is no data duplication taking place for the
sake of redundancy (e.g. RAID) or disaster recovery planning [1-4].

It is worth noting that while storage cost per Terabyte is declining, the overall cost
to manage storage is growing. The common misperception is that storage is
inexpensive, but the reality is that storage volumes continue to grow faster than
hardware price declines. Using of cloud computing promises to reduce costs, high

* This work was supported in part by the National Science Council, Taiwan ROC, under grant

numbers NSC 100-2218-E-029-001, NSC 100-2218-E-029-004, and NSC 100-2622-E-029-
008-CC3.

** Corresponding author.

A Medical Image File Accessing System with Virtualization Fault Tolerance on Cloud 339

scalability, availability and disaster recoverability, can we solve the long-term face
the problem of medical image archive [5-9].

Build cloud computing in this large-scale parallel computing cluster is growing
with thousands of processors [3-5, 9-14]. In such a large number of compute nodes,
faults are becoming common place. Current virtualization fault tolerance response
plan, focusing on recovery failure, usually relies on a checkpoint/restart mechanism.
However, in today's systems, node failures can often be predicted by detecting the
deterioration of health conditions [15-25].

For over a decade, the majority of all hospital and private radiology practices have
transformed from film-based image management systems to a fully digital (filmless
and paperless) environment but subtly dissimilar (in concept only) to convert from a
paper medical chart to an HER. Film and film libraries have given ways to modern
picture archiving and communication systems (PACS). And they offer highly
redundant archives that tightly integrate with historical patient metadata derived from
the radiology information system. These systems may be not only more efficient than
film and paper but also more secure as they incorporate with safeguards to limit
access and sophisticate auditing systems to track the scanned data. However, although
radiologists are in favor of efficient access to the comprehensive imaging records of
our patients within our facilities, we ostensibly have no reliable methods to discover
or obtain access to similar records which might be stored elsewhere [6-8].

According to our research, there were few Medical Image implementations on
cloud environment. However, a familiar research presented the benefits of Medical
Images on cloud were: Scalability, Cost effective and Replication [9]. In the same
study, they also presented a HPACS system but lacked of management interface.

We build a HDFS as a platform for Medical Image File Access System (MIFAS),
and to do fault-tolerant for HDFS. Instead of a reactive scheme for Virtualization
Fault Tolerance (VFT), we are promoting a one where processes automatically
migrate from “unhealthy” nodes to healthy ones. Our approach relies on operating
system virtualization techniques exemplified by Xen. It leverages virtualization
techniques combined with health monitoring and load-based migration. We exploit
Xen’s live migration mechanism for a guest operating system (OS) to migrate a
Namenode from a health-deteriorating node to a healthy one without stopping the
Namenode task during most of the migration.

Our VFT daemon orchestrates the tasks of health monitoring, load determination
and initiation of guest OS migration. The results showed that the actual cost of
relocation hidden cost of live migration has been seamless transfer can be done.
Furthermore, migration overhead is shown to be independent of the number of nodes
in our experiments indicating the potential for scalability of our approach. Overall,
our enhancements make VFT a valuable asset for long running HDFS task,
particularly as a complementary scheme to reactive VFT using full checkpoint/restart
schemes. In the context of OS virtualization, we believe that this is the first
comprehensive study of fault tolerance where live migration is actually triggered by
health monitoring.

340 C.-T. Yang et al.

2 Background

2.1 Medical Technologies

PACS is an acronym that stands for Picture Archiving and Communication System.
PACS has revolutionized the field of radiology, which now consists of all digital,
computer-generated images as opposed to the analog film of yesteryear. Analog film
took up space and time for filing and retrieval and storage, and was prone to being
lost or misfiled. PACS saves time and money, and reduces the liability caused by
filing errors and lost films. A PACS consists of four major components: imaging
modalities such as CT and MRI, a secure network for transmitting patient
information, workstations for interpreting and reviewing images, and archives for
storing and retrieving images and reports. Combined with available and emerging
Web technology, PACS can deliver timely and efficient access to images,
interpretations, and related data. PACS breaks down the physical and time barriers
associated with traditional film-based image retrieval, distribution, and display. PACS
is primarily responsible for the inception of virtual radiology, as images can now be
viewed from across town, or even from around the world. PACS also acts as a digital
filing system to store patients' images in an organized way that enables records to be
retrieved with ease as needed for future reference.

DICOM is short for Digital Imaging and Communications in Medicine, a standard
in the field of medical informatics for exchanging digital information between
medical imaging equipment and other systems, ensuring interoperability. The
standard specifies a set of protocols for devices communicating over a network the
syntax and semantics of commands and associated information that can be exchanged
using these protocols a set of media storage services and devices claiming
conformance to the standard, as well as a file format and a medical directory structure
to facilitate access to the images and related information stored on media that share
information. The standard was developed jointly by the American College of
Radiology (ACR) and National Electrical Manufacturers Association (NEMA) as an
extension of an earlier standard for exchanging medical imaging data that did not
include provisions for networking or offline media formats [26].

2.2 Virtualization

Virtualization is simply the logical separation of requests for some services from the
physical resources where the service is actually provided. In practical terms,
virtualization allows applications, operating systems, or system services in a logically
distinct system environment to run independently of a specific physical computer
system. Obviously, all of these must run on a certain computer system at any given
time, but virtualization provides a level of logical abstraction that liberates
applications, system services, and even the operating system that supports them from
being tied to a specific piece of hardware. Virtualization, focusing on logical
operating environments, makes applications, services, and instances of an operating
system portable across different physical computer systems. Virtualization can

A Medical Image File Accessing System with Virtualization Fault Tolerance on Cloud 341

execute applications under many operating systems, manage IT more efficiently, and
allot computing resources with other computers [2].

Virtualization has hardware imitate much hardware through a Virtual Machine
Monitor, and each virtual machine functions as a complete individual unit. A virtual
machine is composed of memories, CPUs, unique complete hardware equipment, and
so on. It can run any operating system as Guest OS without affecting other virtual
machines. In general, most virtualization strategies fall into one of two major
categories:

Full virtualization also called native virtualization is similar to emulation. As in
emulation, unmodified operating systems and applications run within a virtual
machine. Full virtualization differs from emulation because operating systems and
applications run on the same architecture as the underlying physical machine. This
allows a full-virtualization system to run many instructions directly on raw hardware.
The hypervisor in this case monitors access to the underlying hardware and gives each
guest operating system the illusion of having its own copy.

For Para-virtualization, the hypervisor exports a modified version of the underlying
physical hardware. The exported virtual machine has the same architecture, which is
not necessarily the case in emulation. Instead, targeted modifications make it simpler
and faster to support multiple guest operating systems. For example, the guest
operating system might be modified to use a special hyper called application binary
interface (ABI) instead of using certain architectural features. This means that only
small changes are typically necessary in the guest operating systems, but any changes
make it difficult to support closed-source operating systems that are only distributed
in binary form, such as Microsoft Windows. As in full virtualization, applications are
still in run without modifications.

2.3 Related Work

HDFS servers (i.e., Data nodes) and traditional streaming media servers are both used
to support client applications that have access patterns characterized by long
sequential reads and writes. As such, both systems are architected to favor high
storage bandwidth over low access latency [34].

Recently “Cloud” became a hot word in this field. S. Sagayaraj [9] proposes that
Apache Hadoop is a framework for running applications on large clusters built of
commodity hardware. The Hadoop framework transparently provides both reliability
and data motion. Hadoop implements a computational paradigm named Map/Reduce,
where the application is divided into many small fragments of work. Each fragment of
work may be executed or re-executed on any node in the cluster. So, by just replacing
the PACS Server with Hadoop Framework can lead to good, scalable and cost
effective tool for the Imaging solution for Health Care System. In the same study,
they also presented a HPACS system but lacked of management interface.

It is complex for kind of performance issues, but J. Shafer, et al. [13] proposed
“The Hadoop distributed file system: Balancing portability and performance” had a
good view in this field. The poor performance of HDFS can be attributed to
challenges in maintaining portability, including disk scheduling under concurrent

342 C.-T. Yang et al.

workloads, file system allocation, and file system page cache overhead. HDFS
performance under concurrent workloads can be significantly improved through the
use of application-level I/O scheduling while preserving portability. Further
improvements by reducing fragmentation and cache overhead are also possible, at the
expense of reducing portability. However, maintaining Hadoop portability whenever
possible will simplify development and benefit users by reducing installation
complexity, thus encouraging the spread of this parallel computing paradigm.

In our previous reproaches [35-40] use co-allocation to solve the data transfer
problem in grid environment. It is the foundation of this paper. But it is for grid not
implement on cloud, so in this paper we have a significant change from previous
works, because we implement it on the cloud environment and use virtualization fault
tolerance techniques.

3 System Design and Implementation

3.1 DRBD

This paper applied DRBD (“Distributed Replicated Block Device”) with Heartbeat to
be a good fault-tolerance solution technology [27]. DRBD is a software-based,
shared-nothing, replicated storage solution mirroring the content of block devices
(hard disks, partitions, logical volumes, etc.) between servers. DRBD technology, a
block-device component, forms a high-availability (HA) cluster. This is done by
mirroring a whole block device through a specified network. DRBD technology can
be understood as a RAID-1 network.

DRBD’s core functionality implements a Linux kernel module. DRBD also
constitutes a driver for a virtual-block device, so DRBD is situated “right near the
bottom” of a system’s I/O stack. DRBD is extremely flexible and versatile; a
replication solution is suitable for adding high availability to any other applications.
Heartbeat [28] is a daemon that provides cluster infrastructure (communication and
membership) services to its clients. This allows clients to know of the presence (or
disappearance!) of peer processes on other machines and to easily exchange messages
with them [30].

3.2 Virtualization Fault Tolerance Design

Virtualization technology [1, 5, 18, 29-32] implements a cluster-based server to
overcome these problems. Cluster nodes can develop through some virtualization
platforms (Xen, KVM, VMWare, etc.) with an efficient virtual-machine manager. It
incorporates a provisioning model to dynamically deploy new virtual cluster nodes
when user demand increases, and consolidates virtual nodes when demand decreases.
This approach, called Virtualization Fault Tolerance (VFT), is designed for
management virtual machines with an efficient mechanism to reach high availability
under limited resources. Apart from this, this paper investigates fault tolerance on
virtualization machines and raising reliability. To provide continuous availability for
applications in the event of server failures, a detection methodology is necessary.

A Medical Image File Accessing System with Virtualization Fault Tolerance on Cloud 343

Virtualization Fault Tolerance (VFT) has three main phases: virtual-machine
migration policy, information gathering, and maintaining constant service availability
(Fig. 1). However, the physical host number must be bigger than three to achieve VFT
methodology. Information Gathering presents a detection mechanism to retrieve all
Hosts and checks whether Hosts are alive or not, using a “ping” command every five
minutes by running Linux schedule through “crontab”.

Maintaining constant service availability: assuming VM m is under a Heartbeat
plus with DRBD mechanism, and then Host n becomes an unavailable physical
machine. Once the Host n is shut down, if VM m is secondary node, then it moves to
an on-line Host and boot automatically. If VM m is a primary node then the
secondary node replaces the VM m to primary node immediately. Next pre-primary
node boots on available host(s) and become secondary. In OpenNebula, command
onevm is to submit, control and monitor virtual machines (Fig. 2). This helps control
dead VM to deploy on other available physical hosts.

This flow is one of the scheduled programs and deployed on the front end. It is
reasonable to enhance this function on OpenNebula’s front end, because it controls all
VM operations. One example can explain a single-failure event triggered in a VFT
approach (Fig. 3). First, Host A is shut down by unexpected matters; a few minutes
later, the front end detected it and also triggered VFT. Next, the secondary node VM
2 becomes primary and hands over all services from pre-primary (FAIL-OVER).
Finally, VM 1 boots on Host C automatically and becomes the secondary node
(FAIL-BACK).

Fig. 1. Virtualization Fault Tolerance Flow

3.3 System Architecture

MIFAS was developed on cloud environment, Detailed System Components, such as
Figure 4. The distribution file system was built on HDFS of Hadoop environment.
This Hadoop platform could be described as PaaS (Platform as a Service). We

344 C.-T. Yang et al.

extended a SaaS (Software as Service) based on PaaS. As the shown illustration, the
top level of MIFAS was web-based interface. And now we do more things between
Pass and IaaS, in order to achieve the Hadoop HA.

IaaS: in our previous work, we used OpenNebula to manage our VMs [22]. We can
migrate the physical servers into OpenNebula environment. And it is also a key
feature to develop the VFT approach on virtualization.

PaaS: HDFS was a well-known could platform in this field, so we will save the
introduction of HDFS in this section. But, as we mentioned the VFT approach in
section 3.1, the Hadoop Namenode was also under HA control by our VFT approach.

SaaS: in this layer we called Middleware. It is the core of MIFAS. From the top
level a web-based system was provided a GUI interface that users or administrators
could manage patient’s data on it also including the quick view of medical images.
NanoDICOM [41] was a component that made by PHP, it could convert DICOM file
into JPEG without complex process.

 Fig. 2. Deploy Namenode HA on Virtualization Fig. 3. How to Trigger VFT

We applied it while uploading DICOM files, therefore the system would convert it
into JPEG format automatically. In another hand, consider to the gap between Hadoop
and general platform, we provided a good solution for it which is Hadoop-over-ftp
[42] and CurlFTP [43]. Both of these components are open source based software.
The Hadoop-over-ftp could convert HDFS as FTP service, and then CurlFTP could
mount the FTP service as a local level storage. Thus, we could provide kind of
solution for the enterprise or those people whom are not familiar with Hadoop as a
remote storage. In generally, we split entire system into two different levels, one is the
DICOM viewer and patient management, and the other is storage level.

This Middleware also collected necessary information such as bandwidth between
server and server, the server utilization rate, and network efficiency. The information
provided entirety MIFAS Co-allocation Distribution Files System to determine the
best solution of downloading allocation jobs.

Information Service: To obtained analysis in the status of host. The Middleware of
MIFAS had a mechanism to fetch the information of hosts called Information Service.

A Medical Image File Accessing System with Virtualization Fault Tolerance on Cloud 345

In this research, we installed the Ganglia [44] in each member of Hadoop node to get
the real-time state from all members. Therefore, we could get the best strategy of
transmission data from Information Service which is one of the components of
MIFAS Middleware.

Co-allocation: Co-allocation mechanism could conquest the parallel downloading
from Datanodes. Besides, it also sped up downloading and solved network faults
problems. Due to user using MIFAS to access Medical Images, the co-allocation will
be enabled automatically. In order to reached parallel downloading approaches, the
system will split those file in to different parts and obtain data from different Cloud
depend on Cloud health status. Therefore, we can get the best downloading strategy.
In our earlier research [35-37] was also provided our co-allocation mechanism.

Replication Location Service: In this research, we built three groups of HDFS in
different locations, and each HDFS owned an amount of Datanodes. The Replication
Location Service means that the Service would automatically make duplication from
private cloud to one another when medical images uploaded to MIFAS.

Fig. 4. System Components of MIFAS on cloud

4 Experimental and Results

In our MIFAS environment, there are three HDFS nodes (THU1, THU2 and CSMU).
For each Namenode are done in two VMs configuration, and use the DRBD with
heartbeat sync to do this part of the configuration, were configured for each
Namenode four Datanodes. Figure 5 show the details and the environment.

At this part we do stress testing with JMeter. We set 10 Threads, and Loop count 5
times more physical machines and virtual machine on the environment were to
download 1MB, 10MB and 50MB file sizes, etc., the resulting throughput and the
ability to download data. The result of Figure 6 shows that the smaller of file size will
enable greater throughput, and physical machines and VMs will be more obvious
differences. Figure 7 shows we download a small file, VMs transmission performance
will be better than physical machines.

346 C.-T. Yang et al.

In this experiment, we download the same files from each PACS and MIFAS. The
purpose of this experiment is to compare of PACS and MIFAS Networking
Performance. Figure 8 shows the results, a smaller download file, MIFAS better
transmission capacity, whereas in downloading large files, PACS has better
transmission performance.

In this system, we used three HDFS nodes to access data. When a HDFS node
which network disconnection, through the co-allocation mechanism, Information
service will note that the current network node there is a problem. When users access
to data, system will make the current surviving HDFS nodes to do distribution of the
current file transfer request to the user. In Figure 9, we interrupt the THU2 HDFS and
CSMU HDSF network, and then the system will transfer data THU1 HDFS as the
main node.

Fig. 5. The Experimental environment

Fig. 6. Compare of Physical Host and Virtual
Machine Throughput

Fig. 7. Compare of Physical Host and VM
Networking Performance

A Medical Image File Accessing System with Virtualization Fault Tolerance on Cloud 347

Fig. 8. Compare of PACS and MIFAS Networking Performance

Fig. 9. Network Fault Tolerance

5 Conclusions

At present the computer node failure can usually be detected through the monitoring
mechanism for system health. Compared to passive solutions, the recovery has
occurred in response to failure, we are actively promoting the virtualization fault
tolerance (VFT). Systems that exhibit truly continuous availability are comparatively
rare and higher priced, and most have carefully implemented specialty designs that
eliminate any single point of failure and allow online hardware, network, operating
system, middleware, and application upgrades, patches, and replacements. Zero
downtime system design means that modeling and simulation indicates mean time
between failures significantly exceeds the period of time between planned
maintenance, upgrade events, or system lifetime. We use VFT mechanism to build a
high availability of HDFS. Combining virtualization techniques, load balancing,
health monitoring and live migration, to be able to run virtual machines from
hardware failure on one machine and restart on another machine without losing any
state.

348 C.-T. Yang et al.

References

1. Prepare for Disasters & Tackle Terabytes When Evaluating Medical Image Archiving,
http://www.frost.com/

2. Teng, C.C., Mitchell, J., Walker, C., Swan, A., Davila, C., Howard, D., Needham, T.: A
medical image archive solution in the cloud. In: IEEE International Conference on
Software Engineering and Service Sciences, ICSESS 2010, pp. 431–434 (2010)

3. Silva, L.A.B., Costa, C., Oliveira, J.L.: A PACS archive architecture supported on cloud
services. International Journal of Computer Assisted Radiology and Surgery, 1–10 (2011)

4. Macedo, D.D.J.D., Wangenheim, A.V., Dantas, M.A.R., Perantunes, H.G.W.: An
architecture for DICOM medical images storage and retrieval adopting distributed file
systems. Int. J. High Perform. Syst. Archit. 2, 99–106 (2009)

5. Yang, C.T., Chen, L.T., Chou, W.L., Wang, K.C.: Implementation of a Medical Image File
Accessing System on Cloud Computing. In: 2010 IEEE 13th International Conference on
Computational Science and Engineering, CSE, pp. 321–326 (2010)

6. Faggioni, L., Neri, E., Castellana, C., Caramella, D., Bartolozzi, C.: The future of PACS in
healthcare enterprises. European Journal of Radiology (2010)

7. Bellon, E., Feron, M., Deprez, T., Reynders, R., de Bosch, B.V.: Trends in PACS
architecture. European Journal of Radiology 78, 199–204 (2010)

8. Sutton, L.N.: PACS and diagnostic imaging service delivery–A UK perspective. European
Journal of Radiology 78, 243–249 (2011)

9. Ganapathy, G., Sagayaraj, S.: Circumventing Picture Archiving and Communication
Systems Server with Hadoop Framework in Health Care Services. Journal of Social
Sciences 6, 310–314 (2010)

10. National Institute of Standards and Technology (NIST), http://www.nist.gov/
11. Venner, J.: Pro Hadoop, 1st edn (2009)
12. Grossman, R.L., Gu, Y., Sabala, M., Zhang, W.: Compute and storage clouds using wide

area high performance networks. Future Generation Computer Systems 25, 179–183
(2009)

13. Shafer, J., Rixner, S., Cox, A.L.: The Hadoop distributed filesystem: Balancing portability
and performance. In: 2010 IEEE International Symposium on Performance Analysis of
Systems & Software, ISPASS, pp. 122–133 (2010)

14. Liu, J., Bing, L., Meina, S.: The optimization of HDFS based on small files. In: 2010 3rd
IEEE International Conference on Broadband Network and Multimedia Technology, IC-
BNMT, pp. 912–915 (2010)

15. van Hagen, W.: Professional Xen Virtualization: Wrox, 1st edn. (January 29, 2008)
16. Walters, J.P., Chaudhary, V., Cha, M., Guercio Jr., S., Gallo, S.: A Comparison of

Virtualization Technologies for HPC. In: 22nd International Conference on Advanced
Information Networking and Applications, AINA 2008, pp. 861–868 (2008)

17. Zhu, J., Jiang, Z., Xiao, Z., Li, X.: Optimizing the Performance of Virtual Machine
Synchronization for Fault Tolerance. IEEE Transactions on Computers, 1–1 (2010)

18. Bressoud, T.C., Schneider, F.B.: Hypervisor-Based Fault-Tolerance. SIGOPS Oper. Syst.
Rev. 29, 1–11 (1995)

19. Walters, J., Chaudhary, V.: A fault-tolerant strategy for virtualized HPC clusters. The
Journal of Super Computing 50, 209–239 (2009)

20. Clinical Data Update System (CDUS), http://www.cdus.org
21. Rafael, M.V., Montero, R.S., Llorente, I.M.: Elastic management of cluster-based services

in the cloud. Presetend at the Proceedings of the 1st Workshop on Automated Control for
Data Centers and Clouds, Barcelona, Spain (2009)

22. Yang, C.T., Cheng, H.Y., Chou, W.L., Kuo, C.T.: A Dynamic Resource Allocation Model
for Virtual Machine Managemant on Cloud. In: Symposium on Cloud and Service
Computing (2011)

A Medical Image File Accessing System with Virtualization Fault Tolerance on Cloud 349

23. Varghese, B., McKee, G., Alexandrov, V.: Implementing intelligent cores using processor
virtualization for fault tolerance. Procedia Computer Science 1, 2197–2205 (2010)

24. Villa, O., Krishnamoorthy, S., Nieplocha, J., Brown, D.M.J.: Scalable transparent
checkpoint-restart of global address space applications on virtual machines over
infiniband. Presetend at the Proceedings of the 6th ACM Conference on Computing
Frontiers, Ischia, Italy (2009)

25. Simons, J.E., Buell, J.: Virtualizing high performance computing. SIGOPS Oper. Syst.
Rev. 44, 136–145 (2010)

26. DICOM, http://medical.nema.org/
27. Yang, C.-T., Tseng, C.-H., Chou, K.-Y., Tsaur, S.-C., Hsu, C.-H., Chen, S.-C.: A Xen-

Based Paravirtualization System toward Efficient High Performance Computing
Environments. In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp.
126–135. Springer, Heidelberg (2010)

28. VMware, http://www.vmware.com/
29. Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance for

HPC with Xen virtualization. Presetend at the Proceedings of the 21st Annual International
Conference on Super Computing, Seattle, Washington (2007)

30. Open Nebula, http://www.opennebula.org
31. Apache Hadoop Project, http://hadoop.apache.org/hdfs/
32. DRBD Official Site, http://www.drbd.org
33. Pla, P.: Drbd in a heartbeat. Linux J. 2006, 3 (2006)
34. Reddy, A.L.N., Wyllie, J.: Disk scheduling in a multimedia I/O system. Presetend at the

Proceedings of the First ACM International Conference on Multimedia, Anaheim,
California, United States (1993)

35. Yang, C.T., Wang, S.Y., Lin, C.H., Lee, M.H., Wu, T.Y.: Cyber Transformer: A Toolkit
for Files Transfer with Replica Management in Data Grid Environments. Presetend at the
Proceedings of the Second Workshop on Grid Technologies and Applications, WoGTA
(2005)

36. Yang, C.T., Wang, S.Y., Fu, C.P.: A Dynamic Adjustment Strategy for File
Transformation in Data Grids. In: Li, K., Jesshope, C., Jin, H., Gaudiot, J.-L. (eds.) NPC
2007. LNCS, vol. 4672, pp. 61–70. Springer, Heidelberg (2007)

37. Yang, C.T., Chi, Y.C., Han, T.F., Hsu, C.H.: Redundant Parallel File Transfer with
Anticipative Recursively-Adjusting Scheme in Data Grids. In: Jin, H., Rana, O.F., Pan, Y.,
Prasanna, V.K. (eds.) ICA3PP 2007. LNCS, vol. 4494, pp. 242–253. Springer, Heidelberg
(2007)

38. Yang, C.T., Yang, I.H., Wang, S.Y., Hsu, C.H., Li, K.C.: A Recursively-Adjusting Co-
allocation scheme with a Cyber-Transformer in Data Grids. Future Generation Computer
Systems 25, 695–703 (2009)

39. Yang, C.T., Yang, I.H., Li, K.C., Wang, S.Y.: Improvements on dynamic adjustment
mechanism in co-allocation data grid environments. J. Supercomput. 40, 269–280 (2007)

40. Yang, C.T., Wang, S.Y., Chu, W.: Implementation of a dynamic adjustment strategy for
parallel file transfer in co-allocation data grids. The Journal of Supercomputing 54, 180–
205 (2009)

41. Nanodicom, http://www.nanodicom.org/
42. Hadoop-over-ftp, http://www.hadoop.iponweb.net/Home/hdfs-over-ftp
43. Curlftp, http://curlftpfs.sourceforge.net/
44. Ganglia, http://ganglia.sourceforge.net/

Enhanced Password-Based User Authentication

Using Smart Phone�

Inkyung Jeun, Mijin Kim, and Dongho Won��

Sungkyunkwan University,
300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746 Korea

{ikjeun,mjkim,dhwon}@security.re.kr

Abstract. Today, an internet environment has become a single society
in which all of the services required for daily living are implemented
online. To reliably use such an internet environment for our daily living,
safe user identification and authentication are required. Of course, there
are many ways to perform authentication online. However, thus far, in
many e-services include cloud services, passwords are mainly used for user
authentications. Although there are many safer authentication methods
than a password, which has the risk of personal information leakage and
is a relatively poor authentication method, passwords are frequently used
due to their high user convenience and ease of implementation. In this
article, to resolve the weaknesses of the current password environment,
we suggest a new user authentication method that can offer both safety
and convenience combined with the recent mobile internet environment.
For this purpose, in this article, a smart phone is used as the storage
space for the user password. A user can conveniently use passwords in
the wireless e-service as well as the wired e-service.

1 Introduction

Smart phones represented by Steve Jobs in Apple inc. have recently been gaining
a global attention. They are intelligent terminals combining the functions of
mobile phones with features such as internet communication and information
search. The representative aspect that distinguishes smart phones from other
mobile phones is that users can install applications (”apps” hereinafter) in it[1].
The smart phones aren’t just means of communication, but they provide us
functions like a PC. As a result, the mobile cloud envirinment is established
in our world. We can see and modify our document on the PC as well as our
smart phone using the mobile cloud services. So, the internet is changing from a
simple means of information exchange to a cyber society. We call this e-society.
The convenience that we can connect to the internet anytime and anywhere also
increased the use of Social network service(SNS) like Facebook or Twitter, so

� This research was supported by the KCC(Korea Communications Commission),
Korea, under the RnD program supervised by the KCA(Korea Communications
Agency)”(KCA-2012-12-912-06-003).

�� Corresponding author.

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 350–360, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enhanced Password-Based User Authentication Using Smart Phone 351

the world has established an e-society.E-society in a cyber space has some good
points, as it facilitates communication among users and can serve as a vital source
of information in the event of a disaster or emergency, as was recently seen during
the Japanese earthquakes. Nevertheless, the more the e-society is becoming a
giant and the e-services which are members of e-services have being increased,
the more threats are also increasing. Among them, one of the leading threats
is the problem of a personal information exposure. When the use of e-services
increases, the threats of a personal information exposure also increase. There
have been many cases reported related to the distribution of false information
using stolen ID, or causing damages to others by misrepresenting celebrities.

SNS Profiles have also become a channel for ID theft by hackers. The user
information contained in an SNS Profile (e.g. address, place of birth, school,
phone number, date of birth, color of vehicle and name of pet) can help hackers
find questions and answers for ID tracking. Hackers can use the information
contained in an SNS Profile to answer the ID search question, and abuse the
account by identifying ID[2]. This is possible because users use multiple SNSs
with a single ID, allowing the ID linkability of multiple SNSs.

In order to avoid these risks, each e-services are using variety user authenti-
cation method like a password as well as a digital certificate, one time password
(OTP), bio information. Nevertheless, the most e-services still use a password as a
user authentication method for reasons of user-friendliness and ease of implemen-
tation. But, the problems of password are steadily being pointed. The password
can be guessed, forgotten, written down and stolen, eavesdropped or deliberately
being told to other people. Most users tend to use a simple password even though
they know the importance of his/her password for the inconvenience of memory.
Also even if they use a secure password, the password can be exposed to others
by key logging program of malicious hackers. In addition, despite the increase of
smart phone users, the use of wired and wireless environments for e-services has
not been lined. That is, even if the same e-service, user authentications are per-
formed separately in wired and wireless environment, and especially smart phone
users tend to use weak password for user authentication, because the input is in-
convenient compared to the input of keyboard in PC. And sometimes they use
automatic login function in smart phone, which can increase the risk of password
exposure.

Against this backdrop, this paper proposed a way to safely and conveniently
enjoy e-services by using smart phones. The content of this paper are follows.
Chaper 2 featured the problem of password for an user authenticationm and
chapter 3 proposed the enhanced password-based user authentication protocol
using smart phone. Chapter 4 analyzed our proposed model and chapter 6 pro-
vided conclusions.

2 Problems of Password for an User Authentication

Our world is being tied into the huge e-society as the off-line based services such
as an e-health service, e-business and e-banking are available through on-line in-
ternet. Recently, as many people use the excellent wireless devices such as smart

352 I. Jeun, M. Kim, and D. Won

phones, e-society that we can access to e-services at anytime and anywhere is
being built. To use this e-service safety, the trusty worth user authentication
method is our priorities. In an e-society environment, the proper authentication
method should be provided considering the risk level of each services. The au-
thentication methods are divided into various types such as user holding, user
itself and user knows.

The most widely used means of authentication among various authentication
methods is clearly a password. This is easier to implement, as well as easy to
use, so it is used in the most e-services. However, the vulnerability of passwords
has been raised in the past until now. Passwords can be exposed to hackers
by key logging programs, as well as hackers can find out the passwords if we
use a short and simple password. Thus, the e-services take place some financial
transactions such as e-banking, e-payment use multi-factor authentication. For
that, the password is used in conjunction with digital certificate, OPT, etc.
methods for user authentication

The specific issues if we use a password as an authentication method are as
follows.

(1) Difficulty of memory
The more we use e-services, the more the passwords we should remember in-
crease. We should use different passwords in all services due to the possibility of
the risk of exposing the password, but it’s impossible to set up the different pass-
words according to the e-services. Secure passwords have a long length including
letters, number, as well as special characters, but this also limits to remember.
As a result, it’s very difficult to configure easy-to-remember passwords for users.
So most users use the weak and same password in all e-services, and besides they
write their password on the post-it or the notebook. A recent study by the secu-
rity firm Trustwave indicated that the most common password is Password1, a
variation on the historically common default password, Password[3]. As we can
see in this study, most users tend to use easy password.

(2) Key logging
Recently, the key logging tools that installed on a PC and can expose an input
password via keyboard are exploited. The services that require high security
technology such as e-banking service installed and used some anti-hacking soft-
ware to prevent key logging attack, but it is impossible that all e-services use that
software. So, we can say that the risks of exposing a password exist anywhere.

(3) Phishing Attack
Hackers can seizure the input password as they built a fake web-site instead of
actual web-site. Phishing attack is to be used in order to seize your financial
information to earn the money, but simply it can be used means to steal user’s
password and some personal information.

(4) Non-Repudiation
Password user can deny their act on the internet. In other words, if a user access
the SNS and write some wrong comments, the user can repudiate his acts and

Enhanced Password-Based User Authentication Using Smart Phone 353

say that it is performed by others due to the password theft. In this case, the
service provider is hard to prove it.

Despite these many problems, the password is used widely and easy to use,
so it is very necessary to strengthen it’s safety. Accordingly, this paper proposed
an enhanced user authentication scheme using smart phone considering recent e-
society environment. To this, we proposed password-based authentication model,
one of the most commonly used means for user authentication and suggested
using of smart phone as a storage of password. So we hope it can be classified
as a multi-factor authentication, and it can increase security level of password.

3 Enhanced Password-Based User Authentication
Scheme Using SmartPhone

In this section, we proposed the enhanced authentication method that will min-
imize the changes of the password-based authentication mechanism which is the
most used in the current e-services. Our proposed method can solve the problems
of password such as the difficulties of memory, the risk of personal information
exposure due to use of weak password, etc. E-services that need a high level au-
thentication method such as e-banking service use an additional authentication
information for user authentication like PKI certificate or bio information.[4]
But, these methods are impractical in general e-society services like SNS be-
cause they require excessive costs for an additional implementation. Another
high level authentication method is OTP. Google web-site uses OTP to who
wants to use stronger user authentication.[5] It is two-factor and strong authen-
tication method based on one time password. Instead of authenticating with a
simple and weak password, each user carries a OPT generator (”token”) to gen-
erate passwords that are valid only one time. To generate one time password,
the user has to enter his personal PIN into the OPT token. And the one-time
password which is generated in the token is used for user authentication on the
e-services. So OPT authentication is two factor authentication method using the
OTP token and a PIN (”something you have and something you know”). This
is obviously more secure than just simple password, because an attacker should
know the PIN as well as the token device. This can be quite expensive and it
is very inconvenient to the users. To solve this problem, the mobile-OTP was
developed using a smart phone instead of a token device.[7] But, Mobile-OTP
also needs an additional implementation cost to recognize and process the OTP.

In this paper, we proposed the password-based user authentication mechanism
similar with current e-services. The e-service providers don’t need any additional
implementation, and they can just process the password. And the user can use
their own password without difficulty of memory using smart phone and mobile
application. Also, the security level of the password would be increased.

3.1 Terms and Abbreviations

– ESP(E-Service Provider) : It is e-service which is configure the e-society like
as e-banking, e-payment, cloud service provider, etc.

354 I. Jeun, M. Kim, and D. Won

– Password token : The data element containing the personal information of
a user, including password, ID, etc. It will be saved in smart phone safety,
and sent to e-service provider for an user authentication if necessary.

– SmartID App : It is application installed in the smart phone of users, and
it saves, manages, and transfers the password token.

– ID(Identity) : It is identifier for user identification in ESP, and it is generated
by users.

– salt : It consists of random bits, creating one of the inputs to a one-way hash
function with password.

– SS(Shared Secret) : It is shared secret between ESP and user’s smart phone,
and used as encryption key when they transfer confidence information be-
tween them.

3.2 Symbols and Notions

– T (s, r, a) : For s ∈ {ESP,USER, SmartID App}, r ∈ {ESP,USER} and
a, it means transfer a from s to r.

– S(i, a) : For i ∈ {ESP,USER} and a, it means to save a to i.
– E(a) : For a ∈ {SmartID App}, it means to execute a by user on the smart

phone.
– ENCKEY (p) : It means to encrypt p using encryption key KEY .
– DECKEY (p) : It mean to decrypt p using encryption key KEY .
– PKEY (PublicKey) : It means a public key for encryption in the public

encryption algorithm, PKEYESP is a public key of ESP .
– SKEY (SecretKey) : It means a secret key for decryption in the public

encryption algorithm, SKEYESP is a secret key of ESP .
– PWESP : It is a password for user authentication in ESP , input strings by

user.
– PWAPP : It is a password for user authentication when the app starts, input

strings by user’s smart phone.
– HPWESP : It is a hashed password value saved in ESP .
– KDFi(PW) : It means a Password-based key derivation function. It gener-

ates SS based on the input PW . On here, i means a key length.
– a ‖ b : It is a concatenation of a and b.
– TKESP : It means a password token include PWESP , ID used in ESP .
– TKG(PWESP , ID) : It is a function to generation TKESP using PWESP ,

ID.
– P (a, b) : For a, b, If a = b, then it proceed to the next stage of the protocol,

but if a �= b, then the protocol is stopped.

3.3 Assumptions

Before describe the details, the assumptions of this paper are as follows.

1. Users should pre-install SmartID App on their smart phone to use the pass-
word token in the e-services. This app has a roll like a password wallet, so

Enhanced Password-Based User Authentication Using Smart Phone 355

the SmartID App should be developed and installed via safety method.[8]
Also, before the SmartID App is run in a user’s smart phone, the user of the
app should be authenticated using a password. This password is set when
the SmartID App is installed first on the smart phone

2. SmarID App should store ESP lists which can use the SmartID App for
user authentication and the public keys of each ESPs. Users can select the
ESP name that the user wants to access now on SmartID App, and if there
are changes in the status of ESP lists supporting SmartID App, the status
should be updated through an application upgrade method on the smart
phone. The public key of ESP is used to transfer the secret key which is
needed between SmarID App and ESP server.

3.4 Service Protocol

This mechanism uses the current authentication method used in e-service but
the users use their smart phone instead of key board to input the password.
That is, users can use the e-services same as the past, but they just select and
transfer the password token in smart phone instead of entering the password
via the keyboard in PC. From now on, we call this authentication method as
SmarID App-based method. The process of SmartID App-based method consists
of three major steps for user authentication. First process is an user registration
to ESP and the password stored ESP as well as smart phone. And the second
process is an user authentication process using password token which is store in
smart phone. Last process is an user management process which is used when
the user lost or change his smart phone.

Now, the detailed protocols of our SmartID App -based authentication method
are as follows.

Step1. User Registration Protocol

The process for user registration to ESP is similar with a general ESP regis-
tration process, but the password that used for an user authentication in ESP
is stored in the smart phone as well as ESP server as a password token type.
The password that stored in the user’s smart phone is used when the user try to
access an e-service instead of entering the password on PC. The password token
selected by user in his smart phone would be transferred from the smart phone
to the ESP for user authentication. The detailed protocol is as follows.

1. User applies for membership in ESP that the user intends to use. The user
should enter his ID, password and his smart phone number to ESP after ESP
performed an identity proofing of the user. The detailed identity proofing
method is not mentioned here.
(1) T (USER,ESP, (ID, PW,PhoneNum))

2. ESP server sends an authentication code which is randomly generated to the
smart phone for the smart phone authentication. After the user confirms this

356 I. Jeun, M. Kim, and D. Won

authentication code, he inputs this authentication code to ESP, and then the
ESP can confirm the reality of smart phone number. User runs SmartID App
in his smart phone, and input the password for app operation. This password
is set when the SmartID App is installed in the smart phone by a user.
(2) (ESP, SmartID App, authenticationcode)
(3) T (USER,ESP, authenticationcode)
(4) E(SmartID App)
(5) T (USER, SmarID App, PWApp)

3. The User selects the ESP name in the SmartID App, and input the ID used
on his smart phone. At this time, SmartID App generates the shared secret
key(SS) which is needed for secret communication between ESP andSmar-
tID App. SS is made with PWapp by key derivation function and its length
is 128 bits. SS is sent from SmartID App to ESP after encrypt using the
public key of ESP (PKEYESP) which is stored in SmartID App with ESP
name.
(6) SS = KDF128(PWApp)
(7) T (USER, SmartID App, (NameofESP, ID))
(8) T (SmartID App,ESP, (ID,ECNPKEYESP (SS))

4. ESP decrypts the encrypted secret key which is sent from SmartID App
using his private key(SKEYESP). And he sent the hashed password which
is matching with ID to SmartID App after encrypt the hashed password
using SS.
(9) SS = DECSKEYESP (ECNPKEYESP (SS))
(10) T (ESP, SmartID APP,ENCSS(Hash(PWESP ‖ salt)))

5. SmartID App will store the encryption value of the hashed password with
ID and this is called password token. SmartID App will store the password
token with an icon to distinguish the token from others.
(11)TKESP = TKG(ENCSS(Hash(PWESP ‖ salt)), ID)
(12) S(SmartID App, (TKESP))

6. ESP should save the user’s registration information such as ID, the smart
phone number and hashed password. PW is stored in ESP server after hash-
ing using one-way hash function. For a password hash, the salt is used with
the password. This makes the hash value of password to strong from some
dictionary attack to stole the password.
(13) (ID, PhoneNum,Hash(PWESP ‖ salt))

Step2. User Authentication Protocol

To use ESP in the PC e-service environment, the user just inputs the ID without
the password, and the password is sent from the user’s smart phone after the
user select the ESP icon in the SmartID App. The detailed protocol is as follows.

Enhanced Password-Based User Authentication Using Smart Phone 357

1. The user inputs the ID on the ESP via PC. Then ESP sends SMS to the
smart phone to request the password which is used to access the ESP site
for user authentication.
(1) T (USER,ESP, (ID))
(2) T (ESP, SmartID App, (PasswordRequestSMS))

2. The user runs the SmartID App after reading the SMS from ESP in his smart
phone, and he inputs the password(PWAPP) to run the SmartID App. The
password token(TKESP) list is showed as icon type, the user selects the ESP
name.
(3) E(StartID/App)
(4) T (USER, SmartID/App, PWApp)

3. SmartID App generates the shared secret key(SS) based on the user’s input
password(PWAPP). This secret key is used to decrypt the encrypted hashed
password and the length of it should be longer that 128 bits. In here, we
assume the length of the secret key is 128 bits. The user can select the pass-
word token SmartID App to send a password to ESP. The hashed password
which is included in the password token is sent to ESP after encrypted using
SS and the SS is sent after encrypted by a ESP’ public key.
(5) SS = KDF128(PWAPP)
(6) SELECT (TKESP)
(7) T (SmartID/App,ESP, (ENCPKEYESP (SS), TKESP))

4. ESP decrypts the SS using his private key and encrypts the hashed password
using SS. And then ESP confirms whether the decrypted hashed password
is same with the stored hashed password in ESP. If the two values are same,
the user’s login to ESP is allowed.
(8) SS = DECSKEYESP (ECNPKEYESP (SS))
(9) P (Hash(PWESP ‖ salt), DECSS(ENCSS(Hash(PWESP ‖ salt))))

As we can see this protocol, ESP just uses the password same with the past
e-services. But the password is sent from the user’s smart phone instead
of keyboard input. In other words, ESP improves the password-based user
authentication method with a minimal cost using a smart phone, which is
widely used recently. Also the user don’t need to remember his password to
access ESP, and he can use the ESP just run SmartID App and click the
password token in SmartID App. The password stored in the smart phone
is hashed and encrypted, so the risk of exposure can be minimized. The
password which is used to encrypt the hashed password is not save anywhere,
and just entered by a user when he run a SmartID App. So the possibility
of exposure is close to zero.

Step3. Management Protocol of Smart Phone Number

If the user wants to change the smart phone number, he should login to the ESP
specified in Step.2 and then he can changed the smart phone number. At that

358 I. Jeun, M. Kim, and D. Won

time, the protocol of Step.1 is run again, and the new TKESP is generated and
saved in the new smart phone.

But, if the user lost or stole the smart phone, the user must lock the login
function by smart phone in ESP. For this, ESP should build the emergency login
function in it. For this function, ESP can use to confirm the smart phone number
after the user input the ID and password in ESP.

4 Analysis

In this section, well look our proposed SmartID App-based user authentication
scheme which is proposed to solve the problem of password-based authentication
problems and further it will increase the level of trust of the password-based user
authentication method.

1. SmartID App-based-authentication method reduces the user’s inconvenience,
possibility of key logging, and phishing attack and provides user’s non-
repudiation.

– Users Inconvenience : To use the normal password, the user should re-
member and input the password whenever the user access to the ESP,
but in this method, there is no need to input of password. The user
authentication is completed when the user select the password token
which is saved in smart phone and generated during registration process
of users. Only thing that the user should memory is just the password
of SmartID App. In other words, the user can access all e-serivces after
login SmartID App.

– Key Logging : The password can be exposed by a malicious key logging
tools during the user input the password in his PC even though the
password is very safety consist of long and complex characters. This
problem occurs when the user enters his password via a keyboard. But
in our proposed method, there is no process that the user inputs his
password, so it is safe from the key logging attacks.

– Phishing Attack : Phishing attack occurs when the hackers built a fake
site to know the user’s password and he user input his password on that
fake site. At this case, the hacker can hijack the password, and it can
be used on the real site illegally. But on our proposed method, the fake
site can’t send SMS to the user’s smart phone because it doesn’t know
the user’s smart phone number. And the user doesn’t need to input
his password on the site. So the phishing attack to seize a password is
impossible.

– Non-repudiation : To use our proposed method, the user should have a
smart phone before access to e-services. In other words, the user who
access to the e-service must have had his smart phone, so he can’t repu-
diate his action except the smart phone is stolen or lost.

Enhanced Password-Based User Authentication Using Smart Phone 359

2. SmartID App based-authentication method improves the security level of
password-based user authentication method.

Our proposed method uses the password token instead of a normal pass-
word from the smart phone to ESP, so it provides two-factor authentication
function. In other words, if the user doesn’t have a smart phone, he cant use
ESP, because the password is stored in the smart phone as a form of token.
Thus, it’s security level is enhanced to the multi-factor authentication capa-
bilities such as OPT.

3. SmartID App based-authentication method is interoperable with the wire-
less and wired e-service environment.

E-services such as SNS, etc. are operated on the wireless network using
smart phone as well as wired network using PC. So, many ESPs are providing
the wireless services in the form of app and mobile web browsing services. In
the case of wireless services using smart phone, the using of ID and password
is very inconvenient due to the constrained mobile phone environment. So,
some apps use the auto login function where their ID and PW are store in
smart phone and then used in log-in, but if the smart phone is been rooting
or hacking that information could be exposed to the other person. But, in
the our proposed method, the ID and password are stored in the smart phone
as a form of token, so the password token is used on the wireless serivce as
itself and it can avoid the risk of lost.

As a results, SmartID App based-authentication method can be used for an user
authentication in the wireless e-services as well as wired e-services.

5 Conclusion

This paper proposed SmartID App based password as a model to improve the
safety of e-Society. Many services is opreated in wireless as well as wired envi-
ronment. For user authentication using mobile phone like as smart phone, users
tend to use easy password due to dufficulty of memory. So the security level
of password can be low. But our proposed method store the password to the
smart phone. So the password can be used on the PC and mobile internet using
smart phone. As a result, it is expected that users will be able to conveniently
use e-services using their smart phone. The password is not any more weak
authentication method using the SmartID App by this paper.

References

1. Ballagas, R., et al.: The smart phone: a ubiquitous input device. IEEE Pervasive
Computing (2006)

2. ENISA, Security Issued and Recommendations for Online Social Networks, ENISA
Position Papter No.1

3. The daily caller, Ten ways your smartphone is vulnerable to hackers (March 2012)

360 I. Jeun, M. Kim, and D. Won

4. Housley, R., et al.: Internet X.509 Public Key Infrastructure Certificate and Certifi-
cate Revocation List (CRL) Profile (April 2002)

5. Google, http://support.google.com
6. Zhang, L., et al.: A Dynamic Password Identity Authentication System Based on

Mobile Phone Token. Communications Technology (2009)
7. Cheng, F.: A Secure Mobile OTP Token. In: Cai, Y., Magedanz, T., Li, M., Xia, J.,

Giannelli, C. (eds.) Mobilware 2010. LNICST, vol. 48, pp. 3–16. Springer, Heidelberg
(2010)

8. Jeun, I., Lee, K., Won, D.: Enhanced Code-Signing Scheme for Smartphone Appli-
cations. In: Kim, T.-H., Adeli, H., Slezak, D., Sandnes, F.E., Song, X., Chung, K.-I.,
Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 353–360. Springer, Heidelberg
(2011)

9. Mulliner, C.R.: Security of Smart Phone, Master’s Thesis of University of California
(June 2006)

http://support.google.com

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 361–369, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Development of m-TMS for Trusted Computing
in Mobile Cloud

Hyun-Woo Kim1, Eun-Ha Song1, Jun-Ho Kim1, Sang Oh Park2,
and Young-Sik Jeong1,*

1 Department of Computer Engineering, Wonkwang University,
Iksan, S. Korea

khw0121@gmail.com, {ehsong,ysjeong}@wku.ac.kr,
fate1204@naver.com

2 School of Computer Science and Engineering, Chung-Ang
University, Seoul, S. Korea
sj1st@cs.cau.ac.kr

Abstract. In this rapidly changing IT society, computer system security is very
crucial. This system security applies not only to individuals’ computer systems
but also to cloud environments. “Cloud” concerns operations on the web;
therefore it is exposed to a lot of risks and security of its spaces where data are
stored is vulnerable. Accordingly, in order to reduce factors of threat to
security, the TCG (Trusted Computing Group) proposed a highly reliable
platform based on a semiconductor-chip, TPM(Trusted Platform Module).
Therefore, this paper proposes a m-TMS (Mobile Trusted Monitoring System)
that monitors trusted state of a computing environment on which TPM chip-
based TPB (Trusted Platform Board) is mounted and the current status of its
system resources in a mobile device environment resulting from the
development of network service technology. m-TMS is provided to users so that
system resources of CPU, RAM, and process, the objects of monitoring in a
computer system, may be monitored. Moreover, converting and detouring of
single entities like PC or target addresses, which are attack pattern methods that
pose a threat to computer system security, are combined. Branch instruction
trace function is monitored using a BiT (Branch Instruction Trace) Profiling
tool through which processes attacked or those suspected of being attacked may
be traced, enabling users to actively respond.

Keywords: TPM, TPB, Mobile Cloud, System Behavior Monitoring, BiT
Profiling.

1 Introduction

System security is an essential element whose importance is proportional to the
development of IT society. Vulnerability of software-based security in existing

* Corresponding author.

362 H.-W. Kim et al.

system security mechanisms has grown due to varying hacking attacks. As a result,
TC technology has emerged in order to complement weakness of system security
through hardware-based security in addition to soft-ware based security. TC
technology is to provide reliability so that computers may consistently behave in
intended ways. Nonetheless, there is no technology to monitor TCG’s TPM-based
computer system security on a real-time basis in a mobile device environment [1-3].

Fig. 1. Relationship of m-TMS for IaaS

Accordingly, this paper proposes easy, fast, and intuitional monitoring functions for
notification of abnormal conditions and trust evaluation. This study develops m-TMS
that evaluates and monitors system conditions in a mobile-device environment and
may operate in any environment where network services are provided in order to
provide high reliability on a client level. Mobile device-based m-TMS monitoring
supports the following technologies in a cloud environment regarding trusted state of
TPM-chip mounted TPB. In other words, users may properly respond through single
monitoring of targeted computer systems, multiple monitoring of targeted multiple
computers, and branch instruction trace function through a BiT Profiling tool [4-6].

Single monitoring provides monitoring of the current status of resources such as
CPU, memory, process, user, and virtual memory and trusted state of a targeted
computer system and monitoring of branch instruction trace function through the BiT
Profiling technique. For multiple monitoring, the IP of targeted computer system is
added. All functions of single monitoring may be applied to the added IP and the
location where the monitored computer system operates is notified. Under multiple
monitoring, a constraint of providing single monitoring to users is overcome and
multiple computer systems may be rapidly monitored, raising time efficiency.

The idea on the BiT originated from the fact that malicious execution traces may
identified on an instruction level despite increase in the variety of methods to attack
systems from outside and that instruction level behaviors under program
implementation are influenced by system module operation. In other words, BiT may
early detect the location of logical errors through branch instruction trace of the
program, enabling the user to actively cope with them.

 Development of m-TMS for Trusted Computing in Mobile Cloud 363

The services provided by this cloud computing includes SaaS (Software as a
Service) that provides applied software, PaaS (Platform as a Service) that provides
software development environment, and IaaS (Infrastructure as a Service) that
provides hardware resources of a computing system. IaaS is a service that provides
storage devices through cloud platform or computer capabilities through the Internet
and highly focuses on security. This service is provided through the web and therefore
in case reliability of security in computer storage devices and computer capabilities is
lowered, its user’s all information may be exposed. In this study, the user monitors on
a realtime basis trusted state of IaaS that uses a TPB-mounted computer system
through m-TMS and therefore may deal with malicious behaviors, thereby increasing
system stability.

2 Related Works

2.1 TPM

The TCG is a not-for-profit organization formed in 2003 to develop, define, and
promote open standards using reliability computing and security technologies based
on hardware across multiple platforms or peripheral devices. The TCG that is
proceeding with entire standardization of trust computing defines TPM as a method to
guarantee software-based reliability. A TPM provides storage domains that can
protect data, keys, certificates, etc. and encryption engines such as RAS (named after
its inventors, Ron Rivest, Adi Shamir, and Leonard Adleman) and Secure Hash
Algorithm 1 (SHA-1). When each TPM chip is manufactured, unique keys—
endorsement key (EK) and storage root key (SRK) are granted and they are kept
within the chip, not disclosed. By utilizing such trait of TPM, weakness of software-
based security methods may be complemented [8-9].

2.2 BiT Profiling

The idea of BiT originated from the fact that malicious execution traces may
identified on an instruction level despite increase in the variety of methods to attack
systems from outside and that instruction level behaviors under program
implementation are influenced by system module operation. The BiT measures
runtime behaviors at the processor instruction level, thereby resolving performance
decrease in software-based security that can only cope with already known attack
patterns or methods and are incapable of adequate defense against new types of
attacks. Unlike existing security methods through approaches to find memory
execution traces of control flow attacks, the BiT even performs profiling of control
data such as execution paths and branch targets and combine converting and
detouring of single entities such as PC or target addresses, making it fairly hard to
initiate damage to these without modification [10].

The BiT monitors instruction trace and for processing selects a conditional branch
in relation to each indirect branch instruction. Different standards for each indirect

364 H.-W. Kim et al.

branch are defined for security purposes. The BPC(Branch Program Counter) is a
linear address for indirect branch instructions, TPC(Target Program Counter) and
EP(Execution Path) refer to consecutive results (true or false) of conditional branches
that lead to indirect branches indexed by BPC values. A program includes multiple
indirect branches (multiple BPCs). These indirect branches follow different execution
paths according to program execution. Therefore, inclusion of multiple TPCs in each
BPC is possible and multiple conditional branches (EP) result from indirect branch
targets. The hierarchical structure is shown in Figure 2.

Fig. 2. BiT Architecture

2.3 IssS of Cloud Computing

Cloud computing is a service in which a user borrows computing resources as a lot as
necessary through the Internet. It includes SaaS that provides software as a service,
PaaS that provides software development environment as a service, and IaaS in which
users rent virtual server instances from cloud data centers as a lot as necessary. IaaS
does not sell hardware to server users but provides them with hardware computing
capabilities only. Iaas has made it possible to transcend the limit of storage devices and
capabilities. Nonetheless, IaaS is vulnerable in terms of security from server managers’
perspectives. Accordingly, this study intends to combine a computer system that
operates based on TPM-mounted TPB with m-TMS that monitors the current status of
the system’s resources and its reliability. A representative IaaS is Amazon Web
Services’ Simple storage Service and Elastic Compute Cloud (S3 & EC2).

3 Description of TPB

TPB is a hardware board for extension of TPM functions including the design of the
hardware board and TPB interface. First, the hardware board specifies the hardware
components, extended components of TPM, and digital circuit. The TPB interface
specifies the hardware interface, extended interface, device driver design, and API
design. There are many technologies in TPB including: safe high capacity storage,
boot code for expansion of system BIOS, high performance encryption co-processor,
and additional services for trusted computing. The high performance encryption co-
processor supports a damper area for key storage, high speed operation for the
encryption data algorithm, and hash function.

 Development of m-TMS for Trusted Computing in Mobile Cloud 365

For improving trustworthiness with TPM, it researched three different issues: (1)
program behavior verification, (2) the trustworthy computing platform, and (3)
hardware technologies for the trustworthy platform board. The goal of program
behavior verification is to develop a program counter (PC) encoding compiler and
monitoring system for system behavior. The PC encoding compiler is the trusted
compiler for hardening the control flow of the program and is the visual monitoring
system for system behavior. The purpose of the trustworthy computing platform is
improving the existing virtualization technology and hardening the operating system
with respect to the TPM chip for trusted computing. The goal is to monitor the safety
of booting, operating system and application programs. A trustworthy platform board
is a good complement to hardware support technology for verifying the reliability,
that is, it improves the primitive functions of TPM.

The trustworthy computing platform has the following two aims for enhancing the
system reliability: (1) improving the existing virtualization technology and hardening
the operating system with respect to the TPM chip for trusted computing, and (2)
monitoring the safety of booting, operating system and application programs. The
trusted boot loader supports the root of trust for measurement and extends trusted
areas of the kernel on a computing platform based on hardware. Environments for
reliable execution of applications can include local attestation and trusted areas of the
kernel for applications. Local attestation is a storage technology of databases for
integration of program code and verification. This platform uses encryption of the
whole disk and provides disk access authority to authentication users only. It also
specifies the design of the TPB software stack, TPB service class, and TPB device
driver library API specification. As shown in Figure 3, we make a comparison
between the software layer hierarchy of TPM and TPB [6].

Fig. 3. Software Hierarchy of TPM and TPB

4 Design of m-TMS

m-TMS consists of three sides: TPB, TM-Interface, and Mobile-Device, and Figure 4
shows its whole structure chart.

366 H.-W. Kim et al.

On the TPB-side, computer system resources of the monitored target are regularly
investigated and data on the most recent status of the resources are sent to XML
Converter. XML Converter converts the data received from the system into XML data
on BiT, integrate, peripheral central resource (PCR), process, CPU, memory, and user.

The TM-Interface-side plays the role of a mediator that connects the TPB-side and
the Mobile-Device-side. The Mobile-Device-side receives data on the current status
of resources and trusted state of the TPB-side and provides monitoring through its
mobile devices to users.

The Mobile-Device-side is composed of four internal components: User Interface
that receives input of selected monitoring from users; Activity Update to regularly
bring data on the selected monitoring and make analysis to reflect them to Activity;
Handler to inform the analyzed data to Activity Viewer; and Activity Viewer that
receives notification of data update through Handler and provides visualized
information on the monitoring to users. The Mobile Device selects desired monitoring
through User Interface regarding the relevant monitored computer system. Activity
Viewer visualizes the information on the monitoring selected by User Interface.
Activity Update brings data on the current status of computer system resources
through the TM-Interface-side in relation to the selected monitoring and analyzes
them in line with the Activity form. Handler notifies Activity Viewer that such data
collected and analyzed have been updated, and Viewer is continuously updated in
such a way.

Fig. 4. m-TMS Architecture

 Development of m-TMS for Trusted Computing in Mobile Cloud 367

In particular, in the case of multiple monitoring, multiple IPs are input and
HttpURLConnection examines whether the relevant servers are operating. The
conditions of the servers are received and when they are not operating, messages are
delivered to the user. If a server is operating, the IP is added to the list and the
location is received from the server and the physical location of the computer system
is provided to the user; monitoring is made based on the IP. The added IP is shared
among all Activities and all single monitoring functions are provided to them.

5 Implementation of m-TMS

5.1 Single Monitoring

Figure 5 displays a screen that visualizes single monitoring by m-TMS and execution
of each Activity.

m-TMS consists of 8 different Activities: Activity(1) that visually shows trusted
state of monitored computer system targets—RAM, CPU, user, process, and virtual
memory through the pentagon graph; Activity(2) about trusted state Log of the
process, Activity(3) that provides memory information, Activity(4) that divides
trusted state of the current process into trusted, distrusted, and unknown and provides
monitoring of each; Activity(5) that visualizes branch instruction trace through the
BiT Profiling tool; Activity(6) that provides monitoring of PCR values of TPM;
Activity(7) that provides comparative monitoring of basic information about CPU and
utilization rates of each core through bar and line graphs; and Activity(8) that
provides information about user IDs, user group identifiers (GIDs), and resource
utilization amount of each user in connection with information about sessions
employed by users.

Fig. 5. Single Monitoring of m-TMS

368 H.-W. Kim et al.

5.2 Multiple Monitoring

For multiple monitoring by m-TMS, the relevant server’s IP is added. Activity (1) in
Figure 6 concerns the operation screen when multiple IPs are added. An IP is added to
the relevant Activity by pressing Add button, and the computer system server of the
input IP determines whether execution is made and then brings the address of the
system. Latitude and longitude of the address through Geocoder provided by Android
are calculated and the derived value is synchronized with MapView, enabling
monitoring of the location. Under Activity (2) in Figure 6, the IP may be selected
from the list on the left side and the utilization amount of relevant system CPU and
RAM resources may be identified by such selection. The locations of all systems
under monitoring may be pinpointed through the All View mode.

When the IP is added by menu change through Save button in Multi Activity, the
same monitoring function in Figure 5 is provided. Activity (3) in Figure 6 shows the
IP added by Multi Activity on the right side, supporting monitoring and visualization
of CPU utilization rate, RAM occupancy rate, virtual memory occupancy rate,
process, and user through the pentagon graph. When each Activity monitors two or
more IPs, a button with which a selection may be made is dynamically generated on
the Menu button. When an IP desired by the user is selected from the IP list, the
relevant computer system’s resources and its trusted state are monitored.

Fig. 6. Multiple Monitoring of m-TMS

6 Conclusions

In order to provide a higher-level of reliability than existing software security
methods, m-TMS embodied in this study provides real-time monitoring of
information and resources of a computer system on which TPM chip-based TPB is
mounted and visualizes information and trusted state of the computer system
regarding multiple IPs, not a single IP. m-TMS provides monitoring to users by
visualizing the current status of resources and trusted state of IaaS in a cloud
computing system, enabling them to cope with errors in the computer system.

 Development of m-TMS for Trusted Computing in Mobile Cloud 369

Meanwhile, BiT Profiling technique provides monitoring of branch instruction
tracing. Each BPC, TPC, and EP are the result of each branch instruction tracing, and
visualized information on the early locations of suspected logical errors is provided to
a user through markings in red and graphs; Accordingly, the user can actively
respond. Moreover, trusted state of IaaS through the TPB-mounted computer system
in a cloud environment may be monitored through mobile devices, thereby enhancing
security stability.

Future research will concern m-TMS’s functions other than monitoring—functions
to respond to attacks and logging functions to notify users of possible locations of
logical errors caused by attacks, the possibility of attack on each process, and
occurrence of problems with trusted state

Acknowledgments. This work was supported by the IT R&D Program of MKE/KEIT
[KI002090, Development of Technology Base for Trustworthy Computing] and
[10033915, Adaptive Fusion Technology for Large-scale Sensor node based
Intelligent Surveillance Systems].

References

1. Trusted Computing Group Web Site,
http://www.trustedcomputinggroup.org

2. TCG Specification Architecture Overview Specification Revision 1.4, Trusted Computing
Group (TCG) (2007)

3. Common Criteria, Trusted Computing Group (TCG) Personal Computer (PC) Specific
Trusted Building Block (TBB) Protection Profile and TCG PC Specific TBB With
Maintenance Protection Profile (2004)

4. Lin, H., Lee, G.: Micro-Architecture Support for Integrity Measurement on Dynamic
Instruction Trace. Journal of Information Security 1(1), 1–10 (2010)

5. IBM, Integrity Measurement Architecture (IMA),
http://domino.research.ibm.com/comm/researchpeople.nsf/
pages/sailer.ima.html

6. Jeong, Y.-S., Park, J.H.: Visual Trustworthy Monitoring System (v-TMS) for Behavior of
Trusted Computing. Journal of Internet Technology 11(6), 731–741 (2010)

7. Suh, G., O’Donnell, C., Sachdev, I., Devadas, S.: Design and Implementation of the
AEGIS Single-Chip Secure Processor Using Physical Random Functions. Technical
Report, MIT CSAIL CSG Technical Memo 483 (2004)

8. Alves, T., Felton, D.: Trustzone: Integrated Hardware and Software Security. ARM white
paper (2004)

9. Halfhill, T.: ARM Dons Armor: TrustZone Security Extensions Strengthen ARMv6
Architecture. Microprocessor Report (2003)

10. Crandall, J., Chong, F.: Minos: Control Data Attack Prevention Orthogonal To Memory
Model. In: Proc. the 37th Int’l. Symp. on Micro Architecture (2004)

R. Li, J. Cao, and J. Bourgeois (Eds.): GPC 2012, LNCS 7296, pp. 370–376, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Efficient Cloud Storage Model
for Cloud Computing Environment

HwaYoung Jeong1 and JongHyuk Park2,*

1 Humanitas College of Kyunghee University, Hoegi-dong, Seoul, 130-701, Korea
2 Department of Computer Science and Engineering, Seoul National University of Science

and Technology
hyjeong@khu.ac.kr, parkjonghyuk1@hotmail.com

Abstract. Cloud computing is a new trend of information technology and
computing system. In the traditional computing infrastructure, operating system
software, applications and data are typically stored and managed on an
individual user's computer. Cloud-computing has a different form from
traditional way. All kinds of service and software are stored, accessed, and used
via third party servers connected to the internet. If cloud computing was used,
data and information can be easily shared and managed by user and service
provider. Furthermore the user can do their works without application or
software. When the user wants work using the software or application, the user
just access cloud computing system via the internet. On the other hand, cloud
computing has large data and information. Therefore the efficient method for
large data/information management for cloud computing is necessary. In this
paper, we proposed a cloud storage model for cloud computing environment.
The model is to consider the relation between the cloud structures; service
provider, application, and user.

Keywords: Cloud computing, Cloud storage, Data center, Service oriented
system.

1 Introduction

A new business model is currently being adopted which is changing the way that
Information Technology (IT) resources and services are deployed and used. In this
model, the acquisition of resources and services occurs whenever and wherever
needed, and the amount charged is related to the amount of resources and services that
are actually used. This model of IT sold as a service has been called cloud computing.
One of its main selling arguments is the possibility of substantial reductions on the
total cost of ownership of IT infrastructures [1]. The latter term denotes the
infrastructure as a “Cloud” from which businesses and users are able to access
applications from anywhere in the world on demand. Thus, the computing world is

* Corresponding author.

 An Efficient Cloud Storage Model for Cloud Computing Environment 371

rapidly transforming towards developing software for millions to consume as a
service, rather than to run on their individual computers. At present, it is common to
access content across the Internet independently without reference to the underlying
hosting infrastructure. This infrastructure consists of data centers that are monitored
and maintained around the clock by content providers. Cloud computing is an
extension of this paradigm wherein the capabilities of business applications are
exposed as sophisticated services that can be accessed over a network [2].

With rapid development of cloud computing, more and more enterprises will
outsource their sensitive data for sharing in a cloud. To keep the shared data legal
against untrusted cloud service providers, a natural way is to store only the encrypted
data in a cloud. The key problems of this approach include establishing access control
for the encrypted data, and revoking the access rights from users when they are no
longer authorized to access the encrypted data. Compared with traditional storage,
cloud storage is not just hardware, but network equipment, storage equipment,
servers, applications, public access interface, the access network and the client
program and other parts of the system. Cloud storage is provided storage services,
storage services through the network data stored in local storage service provider
(SSP) to provide online storage space. Need to store the service users no longer need
to build their own data centers, storage services only apply to the SSP, thus avoiding
the duplication storage platform, saving the expensive hardware and software
infrastructure investments.

Current cloud storage infrastructures are focused on providing users with easy
interfaces and high performance services. However, there are some classes of storage
services for which the current cloud model may not fit well [3].

In this paper, we propose a cloud storage model that is to consider the relation
between cloud service provider, application and user. This model includes the service
connection with application, platform, and infrastructure. The remainder of the paper
is structured as follows. Section 2 presents related work with cloud computing.
Section 3 describes the proposed cloud storage model for cloud computing
considering their relation, application, platform, and infrastructure. Section 4
concludes with a discussion on this research.

2 Related Work

2.1 Cloud Computing Environment

Cloud computing has been referred to as an architecture, a platform, an operating
system, and a service, and in some senses, it is all of these. A basic definition of cloud
computing is using the Internet to perform tasks on computers. It is an approach to
computing in which resources and information are provided through services over the
Internet, in which the network of services is collectively known as “the cloud” [4].
The transient nature of cloud computing is also reflected in the various business
models used to sell the service. They include [5]:

372 H. Jeong and J. Park

 Cloud software as a service (SaaS), where the customer uses applications
provided by the seller. One example that has been in use for some time is
web-based e-mail. In this respect, the customer uses the network, servers,
operating systems, storage facilities, and possibly individual applications
provided by the seller.

 Cloud platform as a service (PaaS), by which the seller provides the
infrastructure (network, servers, operating systems, storage facilities) to
enable a customer to use their own applications that they create by using
any programming languages and tools supported by the seller. The seller
will not necessarily offer its own or a single infrastructure to provide the
service. It may act as an ‘aggregator’ by which the seller uses a number
of third parties to provide separate applications and sets of hardware, but
the buyer is given the impression that that the service they are paying for
is one consolidated infrastructure.

 Cloud infrastructure as a service (IaaS) (sometimes called a ‘hosted’
service), where the seller provides the infrastructure (network, servers,
operating systems, storage facilities) to enable the customer to use and
run software of their choice, which can include operating systems and
applications.

These services define a layered system structure for cloud computing as shown in
Fig. 1.

Fig. 1. Cloud computing: everything is a service

At the Infrastructure layer, processing, storage, networks, and other fundamental
computing resources are defined as standardized services over the network. Cloud
providers’ clients can deploy and run operating systems and software for their

 An Efficient Cloud Storage Model for Cloud Computing Environment 373

underlying infrastructures. The middle layer, i.e. PaaS provides abstractions and
services for developing, testing, deploying, hosting, and maintaining applications in
the integrated development environment. The application layer provides a complete
application set of SaaS [6].

2.2 Cloud Storage

Cloud storage is typically where a business stores and retrieves data from a data
storage facility via the Internet. Storing data in this way offers near unlimited storage
and can provide significant cost savings as there is no need for the business to buy,
run, upgrade or maintain data storage systems with unused spare capacity [6].

Fig. 2. A simple structure of cloud storage

With cloud storage to accelerate growth showing a surprising trend, more
traditional dual-controller storage controller or, when capacity and performance
expansion, it is often only a simple increase in the number of back-end disk when the
disk to a certain number of when the front-end controller, the backplane can not
follow the expansion, the formation of a performance bottleneck. Traditional storage
architecture is characterized by: usually with a single powerful, comprehensive,
complete and have personalized slightly expensive computing resources. But the
overall structure is not easy to adopt new technologies or external, and when
the whole system to a certain extent, the need to carefully match the calculation of the
current system resources, not very easy to achieve the overall expansion of the entire
system. Cloud storage in the cloud computing, and developed an extension of the
concept of a new concept, refers to the application through the cluster, grid or
distributed file systems and other functions, the network in a large variety of different
types of storage devices together through the application of software work together to
provide outside access to data storage and business functions of a system. Cloud
storage is applied through the cluster, grid or distributed file systems and other
functions, the network in a large variety of different types of storage devices through
the application of software work together, a common external data storage and access
capabilities of a business data storage and management as the core of the cloud
computing system [3].

In this structure, data may be transferred between many computers across a
number of continents during the time a person or legal entity decides to use a cloud
computing service. As a result, there are at least three possibilities in relation to the
data: there might be multiple copies of the data on each storage device it is stored
upon as it is moved around the globe, or the data might be securely erased as it is

374 H. Jeong and J. Park

moved from one computer infrastructure to another, leaving no trace; alternatively,
residual copies of data might be created that a user has an obligation to delete. Copies
of data might not only be stored in an unknown number of computers across the
globe, but there might be an unknown number of copies of the same digital document
in different iterations across different jurisdictions. This could affect the identification
of relevant data for criminal proceedings [5]. Rajkumar et al. [2] proposed cloud
service framework with cloud storage as shown in Fig 3.

Fig. 3. Framework of cloud service with cloud storage

3 Cloud Storage Model for Cloud Computing

Most of the cloud computing infrastructure is transmitted through a reliable data
center services and create different levels on the server virtualization technology. It
can be any place to provide network infrastructure to use these services. “Cloud”
usually presents the computing needs of all users a single access point. Cloud storage
is the core software applications combined with the storage device, through the
application software to achieve the storage service to store the changes. Compared
with traditional storage, cloud storage is not just hardware, but network equipment,
storage equipment, servers, applications, public access interface, the access network,
and client and other components of the complex system [3]. Wang [3] proposed cloud
storage system architecture model as four layers; Storage layer, Basic management,
Application interface layer and Access layer.

 Storage layer: Storage layer is the most basic part of the cloud storage.
Cloud storage is often a huge number of storage devices and the
distribution of many different regions, each other through wide area
network, Internet. Cloud storage system offers a variety of external

 An Efficient Cloud Storage Model for Cloud Computing Environment 375

storage services, services of data stored in a unified cloud storage system
to form a huge data pool.

 Basic management layer: Cloud-based storage management is the core
part is stored in the cloud part of the most difficult to achieve.

 Application interface layer: Cloud storage application interface layer is
the most flexible part. Different operating units can cloud the actual
storage type of business; develop a different application service interface
provided by different applications.

 Access layer: Any authorized user via a standard application interface to
log public cloud storage system, enjoy cloud storage service.

Through this structure, we propose a cloud storage model for their environment. The
model typically consists of three parts; Storage and management layer, Application
layer, and Access layer. These parts also was related cloud computing conceptual
structure; SaaS, PaaS, and IaaS. Fig 4 shows our storage model.

Fig. 4. Proposed cloud storage model by three layers

Application layer consists of 5 factors; Internet Access, Service Distribution, Web
Service, Composition Specification, and Interface Management. Application layer has
2 factors; User Authentication and Rights Management. The most important factor of
these is Storage layer. It has 12 factors; Virtualization, Devices Resources, Network
Resources, Memory Resources, Data Resources, CPU Resources, Storage Resources,
Clustering, Data Recovery, Data Compression, Data Backup, and Data Encryption.
The Storage layer deal with the process to manage, service, handling, interface
between the cloud service and data/information. Therefore this layer influence to
hardware resources, Network, and Storage resources in IaaS of cloud computing
structure.

376 H. Jeong and J. Park

4 Conclusion

Cloud computing is a new paradigm of information and service oriented technology
for today’s and nearly future perspective. Cloud storage is not just storage but more
applications. In the cloud computing environment, cloud storage deals with the
process to control and manage all kind of data and information with hardware, service
(software), and platform resources. Therefore, in order to support cloud service to
user efficiently, to identify and organize the cloud storage model can be very
important work.

In this paper, we propose an efficient cloud storage model for cloud computing
environment. Basically, cloud computing has three factors in the structure; SaaS,
PaaS, and IaaS. In order to support the process with data and information storage, the
storage model has to consider the relation between their factors and storage model.
The proposed model connects their factors in cloud computing structure. And our
model consists of three layers; Storage layer, Application layer, and Access layer.
Storage layer connect to IaaS in cloud computing structure, Application layer connect
to SaaS, and Access layer connect to PaaS. Through this model, we can shows the
relation and behavior between the factor in cloud computing structure which is IaaS,
SaaS, and PaaS, and the each of storage layer.

References

1. Maciel Jr., P.D., Brasileiro, F., Santos, R.A., Candeia, D., Lopes, R., Carvalho, M., Miceli,
R., Andrade, N., Mowbray, M.: Business-driven short-term management of a hybrid IT
infrastructure. J. Parallel Distrib. Comput. 72, 106–119 (2012)

2. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation Computer Systems 25, 599–616 (2009)

3. Wang, D.: An Efficient Cloud Storage Model for Heterogeneous Cloud Infrastructures.
Procedia Engineering 23, 510–515 (2011)

4. Andriole, K.P., Khorasani, R.: Cloud Computing: What Is It and Could It Be Useful?, Bits
and Bytes. American College of Radiology (2010), doi:10.1016/j.jacr.2010.01.009

5. Mason, S., George, E.: Digital evidence and ’cloud’ computing. Computer Law & Security
Review 27, 524–528 (2011)

6. Joint, A., Baker, E., Eccles, E.: Hey, you, get off of that cloud? Computer Law & Security
Review 25, 270–274 (2009)

Author Index

Abidi, Leila 74
Ahmed, Firoz 312

Banditwattanawong, Thepparit 1
Ben, Ke-rong 221

Cao, Jian 137
Cérin, Christophe 74
Chandrasekar, Ashok 152, 289
Chandrasekar, Karthik 152, 289
Chen, Junliang 89
Chen, Shizhan 109
Chen, Yanjun 16
Cheng, Bo 89
Chin, Sung-Ho 31
Chourou, Lilia 264
Chung, Kwang-Sik 31
Cui, Yabing 231

Dong, Xiaoju 198

Elleuch, Ahmed 264

Feng, Zhiyong 109

Gmach, Daniel 16
Gong, Bin 254
Gu, Pingli 89
Guo, Bin 122

Han, Jikwang 162
He, Ligang 323
Hsu, Wen-Hung 338
Hu, Chunming 231
Hua, Rui 16
Huang, Chih-Lin 64

Jarvis, Stephen A. 323
Jemni, Mohamed 264
Jeong, HwaYoung 370
Jeong, Young-Sik 361
Jeun, Inkyung 350
Jiang, Yan 89

Jin, Hai 244
Joe, Inwhee 183

Kakkad, Jignesh 210
Kim, Hyun-Woo 361
Kim, Jennifer 172
Kim, Jun-Ho 361
Kim, Mijin 350
Klai, Kais 74
Kuo, Cheng-Ta 338
Kwak, Ho-Young 162

Lee, Junghoon 162
Li, Feibo 54
Li, Kenli 279
Li, Minglu 137
Li, Ruixuan 279
Li, Xiangzhen 302
Liang, Yunji 122
Lim, JongBeom 31
Liu, Limin 323

Mahadevan, Malairaja 289
Mannava, Vishnuvardhan 98

Oh, Hoon 312

Pan, Weisen 109
Parameswaran, Nandan 210
Park, Gyung-Leen 162
Park, JongHyuk 370
Park, Sang Oh 361

Qin, Zhuoran 46

Rahim, Rafica Abdul 152
Ramasatagopan, Harini 152
Ramesh, T. 98
Ruan, Li 54

Sallam, Ahmed 279
Shang, Yanlei 89
Shih, Wen-Chung 64, 338
Song, Eun-Ha 361

Tang, Zhuo 279

378 Author Index

Varalakshmi, P. 289

Wan, Jiguang 16
Wang, Dongping 254

Wang, Hanwen 231
Wang, Huixiang 54

Wang, Jianzong 16
Wang, Jun 221

Wei, Juan 279
Wo, Tianyu 231
Won, Dongho 350

Wu, Yihua 137

Xiao, Limin 54

Xie, Changsheng 16
Xie, Xia 244

Xue, Jianxin 198

Yang, Chao-Tung 64, 338
Yang, Yue 122
Yoon, Seok Hoon 312
Yu, Heon-Chang 31
Yu, Zhiwen 122
Yuan, PingPeng 244

Zeng, Lingkang 302
Zhang, Fu-Quan 183
Zhang, Jixian 46
Zhang, Xuejie 46
Zhang, Yiying 302
Zhao, Guoling 254
Zhen, Yan 302
Zheng, Di 221
Zhou, Bin 244
Zhou, Xingshe 122
Zhu, Mingfa 54

	Title Page

	Preface
	Organization
	Table of Contents
	From Web Cache to Cloud Cache
	Introduction
	ProposedStrategy
	Design Rationales
	Practicality

	Performance Evaluation
	Input Data Sets
	Performance Metrics
	Cost Models
	Window Sizes
	Empirical Results

	Related Work
	Object Sizes, Loading Costs and Access Frequencies
	Access Recencies
	Object Loading Latencies
	Object Expirations

	Conclusion
	References

	pCloud: An Adaptive I/O Resource Allocation Algorithm with Revenue Considerationover Public Clouds
	Introduction
	Background
	Motivation Example
	Contributions and Paper Organization

	Trade-offs and Scheduling Goals
	Adaptive SLO Decomposition and Scheduling Algorithm
	Task Characteristics
	Access Pattern Modeling and SLO Decomposition
	Normalized Revenue
	Scheduling Framework

	Experiment and Analysis
	Testbed Setup
	SLO Decomposition
	Latency Control
	Revenue Based Allocation

	Related Works
	Conclusions and Future Works
	References

	A Gossip-Based Mutual Exclusion Algorithm
for Cloud Environments
	Introduction
	Model and Problem Specifications
	System Model
	Specifications of the Problem
	Performance Metrics

	Gossip-Based Mutual Exclusion Algorithm
	Review of the Gossip-Based Algorithm
	Basic Idea
	Proposed Algorithm
	Proof of the Algorithm

	Evaluation
	Simulation Results
	Complexity Analysis

	Conclusions
	References

	An Effective Partition Approach for Elastic Application
Development on Mobile Cloud Computing
	Introduction
	Related Work
	Elastic Partition Algorithm
	Cost Graph
	Optimization Problem
	Improved (K+1) Coarse Partition Algorithm

	Partition Cost Module
	Implement and Evaluation
	Experiment 1
	Experiment 2

	Conclusion and Future Work
	References

	Memory Virtualization for MIPS Processor
Based Cloud Server
	Introduction
	Analysis of Challenges in Memory Virtualization
	Related Work
	The Memory Architecture of Loongson 3
	Virtual Address Space of Loongson 3 Processors
	The Translation Lookaside Buffer of Loongson 3

	Address Space Construction and Mapping Mechanism
	The TLB Maintenance Method
	The Architecture and Workflow of the TLBs
	The Shadow TLB
	TLB Miss Exception Handler

	Experiments and Results Analysis
	Conclusions
	References

	Implementation of a Distributed Data Storage System
with Resource Monitoring on Cloud Computing
	Introduction
	Background
	System Design and Implementation
	Block Distributed File System
	System Architecture of Distributed Data Storage

	Experimental and Results
	Experimental Environment
	Experimental Results

	Conclusions and Future Work

	References

	Design, Verification and Prototyping the Next
Generation of Desktop Grid Middleware
	Introduction
	Context and Motivations
	Key Issues in Designing DG Middleware
	Resources Coordination
	The Publish-Subscribe Paradigm
	BonjourGrid
	Related Work

	Contributions
	Analysis and Criticisms
	A Colored Petri Net Model for the Publish-Subscribe Paradigm
	A Colored Petri Net Model for the BonjourGrid Protocol
	A Prototype Based on Redis

	Conclusion
	References

	A Request Multiplexing Method
Based on Multiple Tenants in SaaS
	Introduction
	Request Multiplexing Method for Multi-tenants
	Request Multiplexing Method
	Description of Algorithm

	Implementation and Compare
	Conclusion and Future Work
	References

	An Adaptive Design Pattern for Genetic Algorithm-Based Composition of Web Servicesin Autonomic Computing Systems Using SOA
	Introduction
	Related Work
	Parallel Genetic Algorithm Based Composition Design
Pattern Template
	Pattern Name
	Classification
	Intent
	Motivation
	Proposed Design Pattern Structure
	Participants
	Applicability

	Case Study
	Discussion
	Conclusion
	References

	Service-Oriented Ontology and Its Evolution
	Introduction
	Related Work
	Works Related to Service Ontology
	Comparative Analysis

	Service Ontology
	Formal Specification
	Hierarchical Structure

	Evolution of Service Ontology
	Case Study
	Conclusion and Future Work
	References

	Energy Efficient Activity Recognition Basedon Low Resolution Accelerometer in Smart Phones
	Introduction
	Related Work
	Activity Recognition
	Energy Conservation

	Data Acquisition
	Activity Recognition
	The Framework of Activity Recognition
	Feature Extraction
	Hierarchical Recognition Scheme

	Experiment and Evaluation
	Activity Recognition Rate
	Power Consumption
	Computational Load

	Conclusion
	References

	Energy Efficient Allocation of Virtual Machines in CloudComputing Environments Based on Demand Forecast
	Introduction
	Related Work
	A System Model for VMs Allocation
	Algorithms
	Problem Statement
	Demand Forecast
	Modified Knapsack Algorithm for VMs Allocation
	Self-optimizing Module

	Experiments
	Experimental Setup
	Demand Collection
	Performance of Forecast
	Performance of Algorithm

	Conclusions and Future Work
	References

	Energy Conservative Mobile Cloud Infrastructure
	Introduction
	Related Work
	Proposed Solution
	Energy Conservative Method
	Helper Classifier
	Helper Classification Method
	Peer to Peer Transfer
	Limit Factor
	Caching
	Node Migration
	Centralized Server

	Implementation and Evaluation
	Assumptions

	Conclusion
	Future Work
	References

	Power-Constrained Actuator Coordination
for Agricultural Sensor Networks
	Introduction
	Background and Related Work
	Power Management for a Farm Group
	System and Task Models
	Group-Level Coordination

	Performance Measurement
	Conclusions
	References

	Design and Evaluation of Mobile Applications
with Full and Partial Offloadings
	Introduction
	Related Works
	Full and Partial Offloading
	Process to Design Mobile Applications with Offloading
	Step 1. Identifying Remotable Functionality
	Step 2. Partition Application and Datasets
	Step 3. Deploy Partitioned Applications and Datasets
	Step 4. Run and Synchronize States

	Evaluating Response Time and Energy Consumption Rates
	Evaluating Standalone Mobile Applications
	Evaluating Mobile Application with Full Offloading
	Evaluating Mobile Application with Partial Offloading

	Experiments and Evaluation
	Experiment Settings and Results
	Interpretations

	Conclusion
	References

	A Cross-Layer Scheme to Improve TCP Performance
in Wireless Multi-hop Networks
	Introduction
	Background and Related Work
	Mechanism Analysis and TCP-CEV Scheme
	Impact of TCP Window Mechanism
	Impact of Loss Event Rates
	TCP CEV Scheme
	Cross-Layer Solution of CEV

	Simulation and Comparisons
	Simulation Parameters
	Chain Topology
	More Complex Topology and Flow Patterns

	Conclusion
	References

	A Fully Abstract View
for Local Cause Semantics
	Introduction
	Polyadic π -
 Calculus
	Local Cause Polyadic $\
pi$- Calculus
	Encoding the Local Cause Polyadic π-Calculus into the Polyadic $\pi
$-Calculus
	Intuitive Example
	Encoding
	Property

	Application
	Conclusion
	References

	Efficiency Considerations in Policy Based Management
in Resource Constrained Devices
	Introduction
	Policy
	Policy Based Resource Management in a Mobile Device
	Policy Model
	Option Graph
	Policy Graph
	Policy Semantics

	Policy Violation
	Measuring Policy Performance
	Related Work
	Conclusion
	References

	Agent Based Quality Management Middleware
for Context-Aware Pervasive Applications
	Introduction
	Middleware Based QoS Management
	Architecture of the Context-Aware Middleware
	Agent Based Quality Management of Context
	Ontology Based Quality Index
	Detection and Discarding of Duplicate Context
	QoC-Aware Component/Service Selection

	Performance Results
	Conclusions
	References

	A Virtual File System for Streaming Loading
of Virtual Software on Windows NT
	Introduction
	Key Technologies
	Application-Level On-Demand Streaming Loading
	Network File System Driver Development on Windows NT

	Design and Implementation
	Virtual Application Encapsulator
	Virtual File System Driver
	Software Repository

	Experiments
	Function Evaluation
	Function Evaluation

	Related Work
	Conclusion and Future Work
	References

	TBF: A High-Efficient Query Mechanism
in De-duplication Backup System
	Introduction
	Related Works
	Data Fingerprint Query Based on the TBF
	Standard Bloom Filter (SBF) Algorithm
	Principle of TBF Algorithm
	Performance Analysis for TBF

	Experiments
	Experiment Setup
	Hash Functions Class
	Improvement of Performance for TBF

	Conclusions
	References

	Estimating Deadline-Miss Probabilities
of Tasks in Large Distributed Systems
	Introduction
	Related Works
	Analysis of Trace Data
	Estimating Deadline-Miss Probability
	Random History Method
	Other Methods

	Simulations of Scheduling Low Latency Batches
	Conclusion
	References

	Global Pricing in Large Scale Computational Markets
	Introduction
	Concepts, Hypotheses and Choice of an Economic Model
	Related Work
	The Distributed Computational Market Model
	The Pricing
	Super-Peer Algorithm
	Peer Algorithm

	Simulations and Results
	Substitutable Commodities for Matrix Computation
	The First Case Study: Convex Preferences
	The Second Case Study: Linear Preferences

	Conclusion and Perspectives
	References

	A New RBAC Based Access Control Model
for Cloud Computing
	Introduction
	CARBAC: The RBAC for Cloud Computing Environment
	Models and Definitions
	User Access Control Management
	Instances

	The Security Analysis
	Reduction for AATU
	Reduction for AAR

	Conclusion
	References

	QoS Monitoring and Dynamic Trust Establishment
in the Cloud
	Introduction
	Issues in Trust Establishment
	Proposed Solution
	QoS Monitor
	Dynamic Trust Model Based on Markov Chain
	Establishing Trust over the Third Party

	Implementation and Evaluation
	Web Interface
	QoS Monitor
	Trust Calculator
	Impact of Various Factors on Trust

	Related Work
	Conclusions
	References

	Multihop-Based Key Management
in Hierarchical Wireless Sensor Network
	Introduction
	Related Work
	System Model
	Network Model
	Notations

	Multihop-Based Key Management
	The Cluster Head Election
	The Cluster Formation
	The Initial Key Generation
	The Common Key Discovery
	The Rekey Process

	Security Analysis

	Conclusion and Future Work
	References

	A Bullet-Proof Verification Using Distributed
Watchdogs (BPV-DW) to Detect Black Hole Attackin Mobile Ad Hoc Networks
	Introduction
	Background
	Network Model
	Problem Identification

	BPV-DW Method
	Local Decision Process
	Global Verification Process
	Distributed Watchdog Mechanism

	Performance Evaluation
	Simulation Environment and Performance Metrics

	Concluding Remarks
	References

	Performance Analysis for Workflow Management
Systems under Role-Based Authorization Control
	Introduction
	Related Works
	Role-Based Workflow Authorization Model
	The Role Hierarchy in a System
	Authorization under Role Cardinality and Context Constraint
	Authorization under Task Context Constraint

	Performance Analysis of Workflow Management System
under Constraints
	System Parameters
	System Analysis under Role Cardinality Constraints
	System Performance Analysis

	Conclusions and Future Works
	References

	A Medical Image File Accessing System
with Virtualization Fault Tolerance on Cloud
	Introduction
	Background
	Medical Technologies
	Virtualization
	Related Work

	System Design and Implementation
	DRBD
	Virtualization Fault Tolerance Design
	System Architecture

	Experimental and Results
	Conclusions
	References

	Enhanced Password-Based User Authentication
Using Smart Phone
	Introduction
	Problems of Password for an User Authentication
	Enhanced Password-Based User Authentication Scheme Using SmartPhone
	Terms and Abbreviations
	Symbols and Notions
	Assumptions
	Service Protocol

	Analysis
	Conclusion
	References

	Development of m-TMS for Trusted Computingin Mobile Cloud
	Introduction
	Related Works
	TPM
	BiT Profiling
	IssS of Cloud Computing

	Description of TPB
	Design of m-TMS
	Implementation of m-TMS
	Single Monitoring
	Multiple Monitoring

	Conclusions
	References

	An Efficient Cloud Storage Model
for Cloud Computing Environment
	Introduction
	Related Work
	Cloud Computing Environment
	Cloud Storage

	Cloud Storage Model for Cloud Computing
	Conclusion
	References

	Author Index

