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Abstract Steel production processes are renowned for being energy and material
demanding. Moreover, due to organizational and technological restrictions in flow
production processes, the intermediate product’s internal quality features cannot
be assessed within the process chain. This lack of knowledge causes waste of
energy and material resources, unnecessary machine wear as well as reworking
and rejection costs, when defective products are passed through the entire process
chain without being labeled defective. The process control approach presented in
this paper provides the opportunity of gaining transparency on quality properties of
intermediate products. This aim is achieved by predicting intermediate product’s
quality by means of data mining techniques. This approach can be applied in a
wide field of production environments, ranging from steel and rolling mills to
automated assembly operations. Concerning this concept, the authors derive a
methodology for representing different quality properties in a way that it can be
applied in the process control. Beyond that, first results of statistical analyses on
the quality-related significance of process parameters are disclosed.
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1 Introduction

Resource and energy efficiency of interlinked manufacturing processes can be
increased in many ways: process engineering solutions or design improvements,
higher quality of raw materials as well as optimized operating parameters [1]. In
this context, based on a rolling mill case study, real-time optimization and adap-
tation of predefined operating modes on the basis of continuous inline quality
control by means of data mining techniques poses a promising approach to sus-
tainably increase the efficiency of production processes [2, 3].

Continuous quality control across all stations of the process chain is intended to
ensure processing conditions within certain tolerance limits in order to guarantee
the final product’s quality standards defined by the customer. Nevertheless, up to
now, processing by rigid and inflexible program guidelines is still common
practice in continuous flow production systems. In case of missing quality gates
due to organizational and technological restrictions, processing steps are basically
targeted to pre-fixed operation settings instead of orienting and adjusting on the
basis of actual product quality levels or states of processing.

Based on the Toyota Production System, the development of a new production
control approach is motivated by the Jidoka principle, which focuses on avoiding
waste, such as rejection and rework, as early as possible within production pro-
cesses [4]. Although these process-immanent quality checks are state of the art in
the automotive industry, they cannot be transferred to high complex and inter-
linked production systems in the steel industry one-to-one [5].

The rigidly linked sequence of production steps as well as rough environmental
conditions during processing and technological restrictions within the value chain
obstruct assessing the physical quality of intermediate products [6]. For that reason,
steel production is still characterized by final quality diagnostics measurements that
are done at the finishing stands at the end of the process chain [7]. This is a major
drawback as failures during production lead to high internal costs and waste of
resources when only the final product’s quality properties can be tested [6].

Therefore, this paper is focused on avoiding inferior product quality by real-
time Inline Quality Prediction (IQP) tools based on data mining and artificial
intelligence and its integration into a comprehensive Intelligent Manufacturing
Process Control (IMPC) approach for industrial application.

The considered case study is provided by a leading German steel producer and
is representative for the production control approach discussed in this paper. The
process chain consists of five major processing steps starting with the heating
process at the rotary hearth furnace where steel bars are heated to forming tem-
peratures. In the following facilities the bar’s profile is reduced to customer
specifications before the entire bar is separated into rods of customer defined
length (see Fig. 1). A more detailed description of the production steps as well as
preliminary work on processing and storing the collected static, process and
quality data can be found in [6, 8].
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The remainder of this paper is arranged as follows: Sect. 2 summarizes the
IT-infrastructure and schemes applied for production control in the case study.
Section 3 introduces the Intelligent Manufacturing Process Control concept as an
answer to the previously identified drawbacks. Sections 4 and 5 focus on deriving
quality criteria and statistically analyzing the impact of various process parameters
on quality properties on the basis of data collected at the first step of the rolling
mill process chain, the rotary hearth furnace. Finally, in Sect. 6 a conclusion is
given and the next steps in developing the process control concept are lined out.

2 Manufacturing Process Control Tools in Flow Production

2.1 Manufacturing Process Control IT-Infrastructure
in a Rolling Mill Case Study

IT infrastructures—in the case study considered—are characterized by a hierar-
chical organization of all required process planning, control and execution entities.
Figure 2 depicts information flows and communication interfaces of the process
control tools within the IT-structure of the case study.

On the top level, the production planning and control level, customer order
specifications such as material, order volume and final dimensions are transformed
to unique internal production order specifications including a predetermined work
flow sequence as well as a specific assignment of predefined rolling schedules
dependent on input and output dimensions of the material. This basic production
guideline is transmitted to the master level, in which a centralized master computer
coordinates and traces all individual intermediate products of the corresponding
production order within the value chain by their unique identification code. The
master level spreads all relevant processing information to the machine level, so
that the operator is informed of current and upcoming tasks. Machine-to-Machine
communication is not provided. After confirming the incoming production tele-
gram, the corresponding rolling program is loaded and automatically passed to the
automation level, where each processing step of the predefined rolling schedule is
executed, supervised and controlled by a Programmable Logic Controller (PLC).

Fig. 1 Process chain of rolling mill case study [6]
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Nevertheless, the operator is able to intervene and adapt rolling parameters
manually at any time according to unforeseen interruptions or failures during
processing. After finishing the intermediate product’s processing steps, the oper-
ator confirms the finished production telegram which is then automatically fed
back to the master level and transferred with new input parameters to the next
production step.

2.2 Structural Weaknesses of Process Control
Systems in Flow Production

This type of manufacturing process control strategy can be described as a non-adaptive
automated production control, which is based exclusively on predefined pass schedules
in a one-way feed-forward approach. Despite of manual interventions by the operator
due to obvious abnormalities from regular production, there is no additional supporting
entity integrated that can monitor and verify the status of processing in real-time or
even derives adequate counteractions in case of deviations to guarantee quality
specifications of the final product. In fact, no feed-back loop which, for instance,
compares target and actual processing parameters regarding the intermediate product’s
quality properties is provided.

To react on quality deviations of intermediate products in real-time, the automated
process control has to be enhanced with intelligent process control modules based on
artificial intelligence which allow real-time optimization and adaptation of pass
schedule parameters to face challenges such as resource and energy efficient pro-
duction processes [2, 9]. Therefore, an Intelligent Manufacturing Process Control
applicable in hot-rolling production processes in the steel industry has to be developed.

Fig. 2 Information flows across function levels

218 B. Konrad et al.



3 Intelligent Manufacturing Process Control in Flow
Production Systems

As lined out in the previous chapters, a new control scheme has to be developed.
With the intention of implementing the Jidoka principle in steel industry, this
approach has to incorporate features such as process data acquisition and inter-
pretation besides the fundamental aspects of order control and tracking. The
general idea of continuously monitoring and adjusting process parameters is
known as Advanced Process Control in the process industry [10, 11]. The Intel-
ligent Manufacturing Process Control (IMPC) introduced here transfers this basic
idea from process industry to other industry branches by introducing data mining
techniques to predict the quality of an intermediate product and adjust further
processing steps according to the prediction.

The data mining process on which this approach is based is the knowledge
discovery in databases (KDD) process [12]. In this context data mining is defined
as the ‘‘application of data analysis and discovery algorithms that produce a
particular number of patterns (or models) over the data’’ [13]. The KDD process is
divided in nine steps [12]:

1. Developing an understanding of the application domain
2. Creating a target data set, selecting a data set
3. Data Cleaning and preprocessing
4. Data reduction and transformation
5. Choosing the data mining task
6. Choosing the data mining algorithms
7. Data mining
8. Evaluating output of step 7
9. Consolidating discovered knowledge.

The IMPC concept presented in this section follows these steps. Steps 1 and 2
were executed while developing the IMPC, whereas the remaining steps 3 to 9 are
automated and can be found in the modules described below.

The developed IMPC approach consists of different functional modules for
distinct purposes. The core modules are (1) Data Acquisition and Storage (DAS),
(2) Data Monitoring (DM), (3) Inline Quality Prediction (IQP) and (4) Process
Parameter Optimization (PPO). Modules (2–4) represent the different process
control stages and form the IMPC. While DAS is a prerequisite for implementing
the IMPC, the IMPC itself can be realized to two different extents. Firstly, including
the PPO-module, which allows an online optimization of process parameters
depending on the current state of the production process in order to compensate
previous process deviations. And secondly, just including the DM and IQP-module
in terms of a decision support system. This type of process control relies on gen-
erating real-time quality estimates for the intermediate product. If inferior quality is
predicted, the production process is halted. In contrast to the previous option, the
decision on further actions to be taken to improve the products quality is not made
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by the IMPC, but relies on expert knowledge. This modular design of the entire
process control approach allows an on demand integration in existing process
control infrastructures. Due to the early stage of the research project, the paper’s
scope is limited to this approach and therefore to the first three modules.

3.1 Data Acquisition and Storage

The extent to which the DAS module has to be introduced into a production
system is determined by the complexity of production that has to be supervised.
Obviously, complexity in this context reflects the number of distinct influencing
parameters. These can range from environmental factors, e.g., temperatures,
humidity, noise or vibrations caused by other machinery, to machine states like
applied torque, engine speed or execution time for a predefined task. This short
overview illustrates that a general concept for DAS cannot be given, as it rather
depends on the actual process the entire IMPC concept is applied to.

In case of the rolling mill case study, processing parameters as well as machine
states of all major processing stations are relevant. Examples for these are zone
temperatures, material temperatures and time spent in each zone at the rotary hearth
furnace, or rolling speed and forces, material temperatures at each forming step and
grooves used at each of the rolls. A comprehensive description of relevant factors as
well as information on the actual implementation of the DAS is given in [5, 6].

3.2 Intelligent Manufacturing Process Control

The IMPC concept as implemented in the case study can be interpreted as a
separate building block in a company’s process control landscape (see Fig. 3). The
IMPC does not affect the process of production planning, i.e., it generates no
advice on optimized production sequences. Instead, the focus is on analyzing
processing states in real-time aiming at forecasting the intermediate product’s
quality properties. This knowledge is used for either deriving recommendations on
whether the product should be processed any further or for optimizing the next
processing step’s parameters so that the required product quality can be obtained.

In both cases the IMPC requires information on the current processing
parameters which are gained from the DAS module. Moreover, information on
historic processing data, merged in a quality prediction model has to be available
for assessing the intermediate product’s quality correctly. When it comes to
optimizing processing parameters, even more knowledge is demanded. In this case
it is mandatory to have a material forming simulation, i.e., a finite element method
(FEM) simulation, at hand which verifies the impact of altered processing
parameters on the product. Figure 4 summarizes the required knowledge and
infoData Monitoring and Inline Quality Prediction. Based on the real-time
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processing of data available from the DAS module, the DM module generates all
statistics and information demanded by the IQP module. These tasks also include
all necessary pre-processing steps on the data gathered: e.g., depending on the type
of data missing values are replaced either by a default value or average values in
the case of time-series data. Additionally, for time series data statistics such as
maximum and minimum values, standard deviation and the maximum gradient are
computed. These characteristics are used for a first evaluation of the current

Fig. 4 Intelligent manufacturing process control model (IMPC)

Fig. 3 Integration of artificial intelligence in operational process control
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processing step before an in-depth analysis is conducted. All results in the DM
module are then fed into the IQP module.

The IQP module translates all available information irrespective of its actual
meaning into a quality assessment. This is done by means of data mining, i.e.,
supervised learning models [5, 14]. These models are trained on labeled historic
datasets so that these algorithms can judge on the currently processed quality based
on actual processing parameters. Additionally, the results of the final quality
checks at the process chain’s end are merged into the continuously growing
database. By this, the prediction accuracy of the data mining models can be
increased continuously.

The result of the IQP module can then be applied to decision rules, specifying
whether an intermediate product is ejected from the process or processed further
depending on the quality prediction and its position in the process chain. In a
second step, the IMPC can be extended by the implementation of the PPO module,
which also makes recourse on the quality estimates generated in the IQP module.

Process Parameter Optimization. The PPO module is the final step in
implementing the IMPC model. As described above, it aims at adjusting param-
eters of upcoming process steps in such a way that identified quality deviations
caused by previous processing steps are compensated in the remainder of the
process chain. To accomplish this, the PPO module needs comprehensive access to
information on process parameters and especially on FEM simulation results to
validate the impact of altered parameters on product quality properties. This
module is obviously the most challenging one in the IMPC concept. It relies on
completely implemented DM and IQP modules. Due to the early state of the
research project, the PPO module is still a theoretical concept and not jet defined
on a detailed level. Consequently, the remainder of the paper focusses on the
IMPC model consisting of the DM and IQP modules.

4 Quality-Levels and Decision-Rules in Rolling Mills

4.1 Quality-Levels for Intermediate Products

The most important prerequisite for the IMPC concept is the definition of quality
in the context of intermediate products. Final products, i.e., steel rods in the case of
the rolling mill case-study, are assessed according to various distinct quality
parameters. The intermediate product’s quality, i.e., the quality of the steel bar,
which is predicted by the IMPC is not assessed physically at any point in the
process chain. In this special case the intermediate product’s quality cannot be
related to the final product’s quality one by one as each intermediate product (each
steel bar) results in a variable number of steel rods depending on the profile
specified in the customer’s order. Hence, the intermediate product’s quality has to
be composed of the quality of the different final products.
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Due to these facts, intermediate product quality is determined according to
following sum function to aggregate the final products’ quality properties to one
embracing quality label for the training of the quality prediction models:

Qb ¼ 1� 1
Rb

XRb

r¼1

XP

p¼1

wp �
kp;r;b

kp;max

� �
; 8b 2 B;where ð1Þ

Qb 2 0; 1½ �; quality level of bar b

wp 2 0; 1½ �;
XP

p¼1

wp ¼ 1;weight of quality property p

kp;r;b 2 1; kp;max

� �
; value of quality property p of rod r in bar b

b 2 1; . . .;Bf g; steel bar b in set of allbars B

r 2 1; . . .;Rbf g; steel rod r in set of all rods resulting from bar b

p 2 1; . . .;Pf g; quality property p in set of all properties

B;Rb;P 2 N

Qb represents the quality level of a certain steel bar (see Formula 1). It does not
represent the actual physical quality according to some specified criterion such as
‘‘type of error’’, but allows an aggregated estimate on the overall quality of each bar.
The quality level is composed of various different quality properties (kp;r;b) that are
normalized on a 0–1 interval by dividing each value by its maximum value (kp;max).
The quality level represents the weighted average of these distinct quality properties.

Thus, a quality level of 1 implies that the current bar does not show any quality
deviations at all. On the other hand, a quality level of 0 emphasizes that all rods
from this bar obtained the maximum error value. Hence, all values between zero
and one have to be interpreted more carefully. The aggregation of various quality
properties from different products to one single label leads to an information loss
so that it cannot be judged whether one single rod has a quality level of almost zero
or all rods show a slightly minor quality.

When it comes to predicting the intermediate product’s quality, this loss of infor-
mation can be neglected, because the resulting decision in the IMPC on whether the
steel bar should be processed further or ejected is the same in both cases: assuming that
one rod out of a bar is defective it is advantageous to completely process the bar and to
discard the defective bar. On the other hand, if all rods have a slightly minor quality the
customer might accept the rods despite of the quality deviations or the rods can be
assigned to a different customer order which requires lower quality properties.
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4.2 Application of Quality-Levels in the IMPC Concept

The quality level of a certain intermediate product is assessed by the IMPC at each
processing step. In order to meet customer requirements, the quality level has to
meet the defined target at the end of the process chain. Moreover, quality
assessments are becoming more precise, with increasing processing information on
the intermediate product. Consequently, the tolerated quality deviations at the end
of the process chain will be the smallest.

The IMPC accounts for these characteristics, as it applies a threshold method
for deriving recommendations for the decision on ejecting the intermediate product
or not. The threshold at the beginning of the process chain is rather low as on the
one hand quality level predictions might be somewhat fuzzy and on the other hand
the quality level can be influenced positively to a significant degree in the
remainder of the processes. Thus, the threshold increases with the number of
processing steps completed. At the last process step the difference between
threshold and Qb = 1 corresponds to quality deviations accepted by the customer
and the remaining fuzziness of the quality prediction model (see Fig. 5).

The quality level thresholds at all processes have to be determined by means of
expert knowledge as well as data mining and multivariate statistics. Analyzing the
quality related significance of each process’s parameters reveals its impact on the
quality level of the final product. The following chapter presents the analysis
conducted on the rotary hearth furnace’s process parameters.

5 Fundamental Process Parameter Studies and First Results

This chapter focusses on statistical analyses conducted on the effects of process
parameters of the rotary hearth furnace. The analyses are performed on a sample of
about 800 steel bars of one certain material and size.

Fig. 5 Required quality thresholds at different production steps
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5.1 Correlation Analyses on Process Parameters
of Rotary Hearth Furnace

The DAS module at the furnace gathers information on four parameters: the
temperature in the furnace and the temperature at the bottom, top and core of each
steel bar. Each of these parameters represents time series data, as they are collected
with a frequency of up to 100 Hz [8], while the bar is in the furnace. For analyzing
the effect and significance of these factors regarding the quality level, the time
series data is preprocessed in order to determine characteristics that describe each
of the four value series. For each time series of each steel bar passing the furnace
the maximum, minimum and average temperatures are computed as well as
standard deviation and largest gradient.

Analyzing the correlation coefficients (see Table 1) shows that the standard
deviation and the maximum gradient have the biggest impact on the quality level and
influence it negatively in all analyses. This result shows that not the temperatures
themselves but their variance and the speed of temperature changes during heating
are the most important determinants of quality levels. Process parameters having a
significance level B0.05 have a statistically significant effect on the quality level.

5.2 Regression Analyses on Process Parameters
of Rotary Hearth Furnace

On the sample set regression analyses are conducted in order to judge on the size of each
parameter’s impact and its significance for the prediction of quality levels. As the
residuals of the linear regression are not distributed normally a logistic regression is
carried out on the sample set [15, 16]. The required binning of the dependent variable,
i.e., the quality level, is performed according to expert knowledge leading to two classes

Table 1 Correlation coefficients of quality level and characteristic parameters

Min. Max. Max. Std. Dev. Max. Grad.

Furnace temperature
Qual. level -0.045 0.065 0.032 -0.099 -0.093
Significance 0.106 0.037 0.189 0.003 0.005
Temperature at top of steel bar
Qual. Level -0.094 0.025 0.081 -0.146 -0.115
Significance 0.005 0.247 0.012 0.000 0.001
Temperature at top in core bar
Qual. Level -0.048 0.069 0.103 -0.124 -0.119
Significance 0.094 0.027 0.002 0.000 0.000
Temperature at bottom of steel bar
Qual. Level -0.093 0.067 0.101 -0.145 -0.119
Significance 0.005 0.031 0.003 0.000 0.000
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of quality levels, those in [0; 0.75] labeled 0 for insufficient quality and those in [0.75; 1]
labeled 1 for good quality. Instead of a comprehensive regression on all parameters, four
separate analyses are performed as the process parameters analyzed are interdependent.
The results of the regression models are shown in Table 2. The significances state, that
the standard deviation is the major determinant of the quality level in most cases.
Moreover, it has the strongest influence on quality levels of all significant parameters.
That the steel bar’s core is the only case in which the standard deviation of temperatures
has no significant effect on the quality level can be explained with the heating process
itself. The temperatures at the core are increasing markedly slower and more steadily, as
the surrounding material attenuates the temperature differences. The same reasoning
can be applied for the maximum gradient’s values. Instead of the standard deviation the
average temperature influences the quality most in this sce-nario.

The results for the minimum temperatures are the most striking ones in this analysis.
The regression coefficients show that lower minimum temperatures, i.e., starting
temperatures in the heating process, add to final quality. This effect is marginal yet

Table 2 Regression
coefficients and significances
from logistic regression

Regression
coefficients

Significance

Furnace temperature
Min. -0.006 0.052
Max. Grad. 0.039 0.367
Avg. -0.005 0.173
Std. Dev. -0.023 0.008
Max. Grad. 0.291 0.365
Constant -34.972 0.536
Temperature at top of steel bar
Min. -0.012 0.000
Max. Grad. -0.090 0.154
Avg. 0.002 0.438
Std. Dev. -0.030 0.000
Max. Grad. 2.324 0.018
Constant 118.763 0.116
Temperature in core of steel bar
Min. -0.007 0.104
Max. Grad. -0.053 0.039
Avg. 0.011 0.000
Std. Dev. -0.012 0.183
Max. Grad. -0.076 0.940
Constant 60.616 0.025
Temperature at bottom of steel bar
Min. -0.012 0.000
Max. Grad. -0.049 0.195
Avg. 0.009 0.001
Std. Dev. -0.028 0.004
Max Grad. 1.872 0.151
Constant 61.134 0.149
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mostly significant. This result can be explained by the sample for minimum temper-
atures which is not representative as it is skewed towards lower minimal temperatures.
Actually it is expected, that higher minimum temperatures lead to higher quality. This
can also be reasoned using standard deviation, as an increased minimum temperature
will lead to a lower standard deviation in a continuous heating process as the difference
between minimum and maximum temperatures decreases.

5.3 Conclusion on Statistical Tests

The correlation analysis shows that especially the standard deviation of temper-
atures is critical for producing good quality as it is highly significant and besides
this has the highest negative correlation coefficients. The same is true for the
maximum gradient. The regression analyses conducted confirm the relevance of
the standard deviation, whereas the maximum gradient is found to be insignificant.
This can be explained by the correlation of these two parameters. The relevance of
average bar temperatures at all three locations in the regression model can be
proven by the same facts. Developing the learning algorithm for quality predic-
tions these factors with high significances have to be considered in the model.

The results presented of the logistic regression are in fact quite similar to those
results generated by the linear regression analysis regarding input parameter sig-
nificances and relative impact of each parameter. Even though these models
include twenty parameters computed from only four separate time series gathered
at the very first step in the process chain, the coefficient of determination
(Nagelkerkes-R2) indicates that the bar’s models account for 7–9 % and the fur-
nace’s model for 4 % of the overall variability. The remaining 92 % have to be
accounted for by models of the remaining processes.

This result directly influences the decision on the quality threshold of the rotary
hearth furnace. Knowing all prediction models’ coefficients of determination sheds
a light on the distribution of quality thresholds. The higher the percentage of
variation accounted for at a certain point in the process, the higher this process’s
quality level threshold has got to be. Thus, the quality threshold at the furnace will
be rather low, compared to the remaining ones, which is a result that has been
expected by the process experts, who assume the heating process not to be the
most critical one. Nevertheless, a smooth heating-up process, avoiding high
temperature changes, will have a positive effect on the product’s quality.

6 Summary and Future Work

This paper proposes a production control concept based on data mining tech-
niques. This concept offers the chance to reduce waste of energy and material
resources as well as reworking and rejection costs resulting from producing, if
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inferior quality is not identified in the process. The proposed IMPC concept
identifies those products by assessing their quality based on a prediction model. At
each processing step a certain quality threshold has to be attained in order to
permit further processing. To select quality relevant parameters for prediction, first
statistical analyses were conducted on the data gathered at the first process step
which show that the standard deviation of the temperature value series data
recorded in the furnace and at three points of the steel bar has the most significant
effect on quality levels. Moreover, the statistical models account for 7–9 % of
variability, which is a satisfactory result due to the models’ complexity and
coinciding with experts’ expectations.

The statistical analyses have to be conducted for all remaining steps in the
process chain. Based on the results of these, the relevant parameters for the IQP
module of the IMPC concept have to be identified. Thresholds for each process
will be derived from both models’ coefficients of determination and expert
knowledge. Given this information local quality prediction model will be trained
for each process. Once this is done, the IMPC can be applied in practice and helps
to reduce waste due to processing products of inferior quality.
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