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Abstract Logistics systems have to cope with different challenges like unfore-
seeable machine failures leading to an increase of dynamics and complexity.
Accordingly, a system’s robustness (i.e. the ability to resist against a number of
endangering environmental influences and the ability to restore its operational
reliability after being damaged) might be decreased. Thus, this paper aims to
answer the following research question: How do selected exemplarily heuristics
(Minimum Queue-length Estimation, Minimum Cumulative Processing, Simple
Rule-based, Holonic, Ant Pheromone, and Neural Net) contribute to a real world
Hamburg Harbour Car Terminal’s robustness? Thereby, the research focus in this
investigation is on throughput time. As a main result it could be shown that all
selected heuristics could contribute to a positive development of the system’s
robustness in case of machine failures. Thus, from a practical view potentials for
the improvement of real-world scenarios might be assumed.
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1 Introduction

Robustness of logistics systems—i.e. the quality to remain effective for all plausible
futures [1]—is widely accepted as one performance measure to value sustainable
returns in a perturbed business environment [1–3]. Evidence from different indus-
tries emphasizes this need for robust systems that are exposed to many potential
threats such as equipment failures or supplier discontinuities. Moreover, recent
events have shown even higher risks arising from disruptions [4, 5]. Thus, it is
desirable to maintain or increase a system’s performance by increasing its
robustness.

One approach to increase a logistics system’s robustness is the concept of
complex adaptive logistics systems (CALS), since [6] mention a high robustness as
one key feature of CALS. Thereby, the higher robustness is achieved by the CALS
concept through an autonomous reaction to complex and changing environments
whereas a company strives for being successful in highly competitive and fast
changing markets [6]. However, since the effects of the CALS concept on
robustness has been investigated most prominently from a theoretical perspective,
the corresponding research question of this paper is: How does the CALS approach
contribute to the robustness of a real-world scenario? Hence, the paper implements
one design option of a CALS according to [7] in a Hamburg harbour car terminal
to investigate the effects on the system’s robustness. In order to estimate the
performance of the design option, five autonomously-controlled benchmark con-
trol heuristics are applied. The following goals are subject of the investigation:

The descriptive goals are to describe logistics systems as CALS, to introduce
the relevant key performance indicator (KPI) throughput time, to describe the
five heuristics and the CALS design option and finally to sketch the scenario.
The analytical goals depict the timely effects of the five heuristics and the
CALS design option towards robustness. This includes the effects on the average
total throughput time (indicator 1) as well as the effects on the duration the
system needs to restore the former system state after an incident (indicator 2).
The pragmatic goal is to identify the most efficient approach related to the
indicators mentioned above. In order to achieve these goals, the paper proceeds
as follows: Sect. 1 starts with an introduction to the research field. In Sect. 2,
system robustness as a challenge of CALS is introduced followed by a
description of logistics systems as CALS. In Sect. 3, the underlying scenario
including potential incidents is introduced comprehending the heuristics and the
CALS design option. In Sect. 4, the results are presented, interpreted and crit-
ically discussed in a logistics context. Section 5 exhibits the conclusion and
hints for further research.
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2 Robustness in Complex Adaptive Logistics Systems

2.1 The Need for Robustness in Logistics Systems

The trend of logistics companies to become global players [8] leads to the pro-
gressive development of logistics systems from linear chains to international
networks [9]. In consequence, they are part of global acting International Supply
Networks, which are confronted with higher complexity (through number of
actors) and dynamics (through the rate of change) [10]. Thus, logistics companies
have to differentiate from competitors and simultaneously to cope with the
increasing complexity and dynamics in a successful manner. In other words, they
have to establish robust structures and processes. But what does robustness mean
in the context of logistics systems?

The term robustness can be explained from different perspectives: According to
Wycisk et al., robustness is the ability of the system to restore itself after being
damaged [6]. Meepetchdee & Shah call a system robust if it is able to cope with
complexity and dynamics in a way that an optimal target fulfilment can be
achieved [11]. This paper focuses on the overall target achievement as well as on
the restoring ability of the system as the research variables, since the robustness
shall be understand as the optimization of logistics processes in terms of quality,
time, and cost through optimal target fulfilment and restoring ability. However, the
question occurs: How can this robustness be increased?

2.2 Logistics Systems as Complex Adaptive Logistics Systems

One approach being discussed for the achievement of higher robustness in logistics
systems is the concept of Autonomous Control (AC) [12–14]. AC originates from
the concept of self-organization and is enabled by the combination of software
applications, sensor networks and new communication technologies (e.g. RFID).
AC aims for an increased robustness of the overall logistics system through the
improved ability to cope with complexity and dynamics [15]. However, how
exactly can AC contribute to robustness?

Current research has already originated some findings regarding this question:
Hülsmann et al. demonstrated that AC enlarges the robustness of logistics systems
through a higher capacity for information processing [16]. Moreover, the contri-
bution of AC to the robustness of logistics systems was researched through the
analysis of AC’s constitutional characteristics on the flexibility and stability and
therewith on the adaptivity of the overall system [17]. While research was done on
the effects of AC on the robustness of logistics systems, there is a lack of an
empirical evaluation and findings. Thus, an approach to establish AC in a real-
world scenario is required in order to research effects on robustness.
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Wycisk et al. propose their CALS concept to realise a higher degree of AC in a
logistics system [6]. They define logistics systems as Complex Adaptive Systems
(CAS), since they identified various common properties between supply chains
and CAS like heterogeneous agents or interaction. Thereby, they observed a higher
adaptivity, positive emergence, and flexibility as CALS characteristics. In turn
they also detected a vulnerability of CALS to all no-linear extreme dynamics
respectively so called bullwhip-effects [6]. CAS in turn exhibit a certain degree of
AC and thus can serve as an enabler of AC in a logistics system. As one major
outcome of CALS is a higher system robustness [6], this concept shall be applied
to the underlying scenario. However, based on the implications stated above the
question occurs: How can the concept of CALS contribute to the robustness of a
logistics system?

For the evaluation the throughput time will be the indicator 1, since it was
shown that the throughput time rises with increasing the complexity level of
logistics systems [13]. Thus, it constitutes an indicator of the logistics system’s
ability to cope with complexity and dynamics. Indicator 2 holds which AC
heuristic features the best performance in restoring the system after a system
breakdown. This constitutes an adequate indicator, since robustness beside others
describes the system’s ability to restore itself after a breakdown (see above). For
answering these questions, control heuristics and a CALS design option for a real-
world scenario are introduced next.

3 A Real-World Scenario for Investigating Effects
of Autonomous Control Heuristics on Robustness

3.1 The Hamburg Harbour Car Terminal

In order to investigate the research question, an appropriate scenario is required that
can adequately represent a CALS. The real-world car terminal is chosen, since it can
be modelled as a CALS as it exhibits clearly distinguishable logistics objects (cars)
[18] that can be equipped with CALS characteristics which are e.g. autonomy or
interaction [6]. Hence, by implementing a CALS design option the model becomes
a real CALS. Consequently, the car terminal can be utilized to estimate effects on
the system’s robustness through the CALS concept.

In addition to the suitability the terminal is readily described and has a flexible
production sequence, a large amount of available real-world data and various
changes and flexibilities in the car-flow process [19]. In a nutshell: the scenario
exhibits a high degree of complexity and dynamics, system breakdowns can be
modelled properly and it is adequately representable in a model. Hence, a sub-
sequent simulation and thus concrete effects of different AC heuristics and the
CALS design option on the scenario’s robustness can be identified and investigated.
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3.2 The Simulation Environment

The simulation model of this paper builds from a prior simulation developed by
Windt et al. (2010b), since it is already operational and correctly represents the
real world in the harbour context. The model contains information about e.g.
number of cars per year, various routings of car flows in and out of parking, or
various ways available to speed as many cars through the Terminal as possible.
The information was decomposed into the ‘boxes’ shown in Fig. 1. Then, the
means and standard deviations were calculated for the time each of 46,574 cars
took to travel on the roads, to go through the required treatment queues and
stations and then through the various subsequent stations, as required.

Cars arrive at the incoming parking area (I) (in Fig. 1). They are tagged with a
parking order and then driven to a parking area (P1, P2, …, P9).1 At DP1 one of
several heuristics (we describe these below) is applied to determine which treat-
ment-station queue to drive the car to. If incoming cars lack a parking tag they are
immediately driven to the next decision point (DP1). Next, they are temporarily
stored in the TPA parking area, or are driven directly to the queue of some
treatment station (T1 to T7 in Fig. 1)—if a treatment order is shown. Otherwise,
they are driven directly to the exit (O). Available treatment stations are (1) gas-
oline station; (2) diesel station; (3) de-waxing; (4) car-body repair; (5) car wash;
(6) paint shop; and (7) final inspection. Each car entering the Terminal comes with
pre-defined orders, which can be divided into treatment and parking orders.
Treatment orders call for from one up to six treatment steps; some of the treatment
steps have sequence constraints (e.g., removal of transport protection (de-waxing)
needs to come before washing and painting). After all treatments are finished cars
are driven to the exit O (and are out of the simulation).

3.3 Implemented Incidents in the Car Terminal

In order to investigate effects of the CALS concept on the robustness of the chosen
scenario, some kind of disturbances need to be added. Therewith, effects on
throughput time as well as information about restoring capability of the system can
be created. There are numerous sources for supply chain (SC) deficiencies that
have prominently been investigated in recent research [20–23]. Several categories
of SC risks were elaborated [24, 25] and extended lists of risk drivers were
identified [20, 26].

1 For this baseline simulation accuracy (docking) test and application of the NN model, we
ignore all parking waiting times except parking queues directly affecting the car-flows through
specific treatment stations, since none of the heuristics involve any parking waits before cars get
to DP1.
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This paper focuses on internal machine failures, since the model and the real
world data offers most adequate information for these issues. In that context, the
question of whether the system’s robustness can be increased can be investigated:
Firstly, the effects on logistics processes in terms of throughput time can be
analysed (indicator 1). Secondly, the capability of the system to restore itself after
an incident (i.e. a machine failure) can be estimated (indicator 2). Thus, the paper
answers the research question by investigating how the different heuristics react to
these incidents and keep the whole scenario effective as well as how the heuristics
are able to restore the former system state after being exposed to an unforeseen
incident.

If a machine breakdowns occurs, the respective machine cannot perform the
required treatment for one time of its expected treatment time. Breakdowns are put
into the scenario once at a particular date and for three machines in a way that each
car is affected. Thus, a visible effect over the whole simulation time can be created
and different effects of capacity bottlenecks on the scenario can be investigated for
the applied heuristics as well as for the baseline scenario.

3.4 The Applied Car-flow Routing-Heuristics and a CALS
Design Option

Ideally, each car-routing decision should attempt to minimise car-flow time. Thus
it is possible that for any given car, the waiting time before entering into any
particular station is constantly changing because of the routing effects of the
queue-waits and station-processing speeds, say, of the 10 cars ahead of it in the
various queues. To navigate the cars through the terminal, five AC heuristics—
beside the Standard Method (i.e. the real-world situation in the terminal)—are
applied in the simulation: The ‘Minimum Queue-length Estimation Heuristic’,
‘Minimum Cumulative Processing Heuristic’, ‘Simple Rule-based Heuristic’, ‘Ant
Pheromone Heuristic,’ and the ‘Holonic Heuristic’. These five heuristics are used
as benchmarks in order to estimate the performance of the CALS design option
‘Neural Net’2 towards the system’s robustness. This selection of the five bench-
mark heuristics is based on a literature search covering the current state of AC
methods applied to logistics [18].

The Standard’s Method is a pre-determined ordering of how cars are sent
through the treatment stations, as follows: (1) incoming delivery; (2) gas or diesel
refuelling; (3) de-waxing; (4) car-body repair; (5) car wash; (6) painting; (7) final
inspection; (8) outgoing delivery [18].

2 The Design Option ‘Neural Net’ is selected, since it is the first CALS design option of a bunch
of consecutive design options, that require all the preceding design options [7].
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The Minimum Queue Length Estimation Heuristic gives top priority to the
station with the fewest number of cars in its queue [27]. If all queues have equal
length, a random selection is made.

The Minimum Cumulative Processing Heuristic sends the car to the station that
shows the lowest ‘QP time’, where QP = (station processing time 9 (car in sta-
tion ? number of cars in station queue)). This ignores driving times and possible
overnight times [18].

The Simple Rule-based Heuristic compares estimated waiting times at station-
queue points based on the processing time of the previous ten cars. This Heuristic
proceeds as follows: (1) When a car leaves a station it transfers information about its
processing time to a central location where it is collected and stored; (2) the
information from the most recent ten cars is averaged; (3) the next car is sent to the
treatment-station queue showing the quickest total treatment time (driving ? queue
waiting ? treatment) based on the averaged times of the previous ten cars [28].

The Ant Pheromone Heuristic starts from how ants gather food: Cars following
this heuristic leave virtual (pheromone) marks at each station when they leave. The
more marks a station accumulates over a specific number of hours, the more likely
it is that a subsequent car is sent to this station [29].

The Holonic Heuristic sends a car to the treatment station offering the shortest
total time (based on driving ? station-queue waiting ? treatment times) gets the
car. If several stations have the same queue length (delay), the car showing a
quicker final release time is chosen. Whereas the Simple Rule Heuristic focuses on
the average time of the previous ten cars, the Holonic Heuristic focuses on which
next station is available the quickest (with soonest release time used to break ties)
[30, 31].

The CALS design option3 ‘Neural Net’ [7] sends the car to the next station
based on six internal rules and according weightings. These rules define the
optimal next station based on current information (e.g. utilization) as well as on
information available from the last 50 cars that went through the station. Thus, the
neural net not only considers the current state but also considers past developments
and can thus identify potential problems in the system.

To benchmark the effects of the introduced heuristics with the CALS design
option on the system’s robustness, Sect. 4 presents the obtained results in terms of
throughput times in the standard scenario and the scenario with machine failures as
well as the effects on the time the system needs to restore after these incidents. These
indicators were chosen for the evaluation since ‘time’ constitutes one main success
factor for car terminals caused by the importance of customer orientation (delivery
times are perceived as one major quality indicator) [32]. However, also other
indicators (e.g. utilization) might be feasible for the evaluation of suchlike scenarios
and remain still subject to further investigations in the underlying scenario.

3 For an overview of further design options of CALS beside the Neural Net see [7].
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4 Evaluation of the Performance Indicators

4.1 Results of the Simulation Runs

The simulation was implemented and executed in the simulation software Tecnomatix
Plant Simulation (v.9) from the Siemens AG. Based on the simulations, the succeeding
results in Table 1 for the total average throughput times in the standard scenario
(column 2) and the total average throughput times in the scenario with machine
breakdowns (column 3) were obtained. Additionally, in order to check for the fit
between the model and the real world, the p-Values for every heuristic based on a t test
between the Standard Method and each particular heuristic was accomplished for both
scenarios.

Table 1 demonstrates that every heuristic except the Ant Pheromone Heuristic
reduces the total average throughput time in the standard scenario. The Ant Pher-
omone Heuristic increases the total average throughput time by 6.53 % whereas the
reductions are in the interval between -4.02 % (Holonic) and -12.73 % (Neural
Net). In the scenario with machine failures (column 3), all heuristics reduce
throughput time. Thereby, the reductions of the single heuristics are different. They
range between the standard scenario and the scenario with machine failures from
*4 % (Simple Rule-Based: -8.32 to -12.73 %) up to *22 % (Ant Pheromone:
+6.53 to -15.64 %). The t test additionally presents a fit between the model and the
real world (all p Values \ 0.001).

Figure 1 contains the days during (Feb 29th to Mar 3rd) and right after (Mar 4th
onwards) machine disturbances and the average buffer level of the heuristics in
comparison to the buffer level of the Design Option ‘Neural Net’ in the standard
scenario. This depicts the time the different heuristics require to restore the former
system state (see Standard Method representing stable system state) (Fig. 2).

The figure displays relatively high buffer levels of the heuristics (between 25
and 30 % from Feb 29th to Mar 3rd) in comparison to the average utilization in a
stable system state (*4 %). Contrariwise, the figure shows low fill levels after all
machines are restored on March 4th.

Table 1 Average throughput times in scenario without machine failures

Heuristic D [%] Standard
scenario

D [%] Machine
failures

p-Valuea

(t test)

Standard method Reference method
Ant pheromone +6.53 -15.64 P \ 0.001
Holonic -4.02 -19.85 P \ 0.001
Minimum buffer -8.71 -21.54 P \ 0.001
Neural net -12.73 -24.32 P \ 0.001
Queue-length Estimation -6.22 -18.39 P \ 0.001
Simple rule-based -8.32 -12.73 P \ 0.001

a Since the sample size exceeds 46,000 cars, we assume normal distributions and thus the t test is
applicable
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4.2 Discussion of the Results

In order to evaluate the final results of the real world scenario simulation it has to
be discussed how the heuristics effect the two indicators outlined in the research
question. Thus, it has to be revealed how the average total throughput times
(indicator 1) as well as the time for restoring the system after a machine failure
(indicator 2) are influenced.

With regard to the average total throughput time (indicator 1) it can be stated
that in the standard scenario all heuristics beside one (Ant Pheromone) could
improve the throughput times. Thus, it is implied that through the implementation
of suchlike heuristics cars can better navigate through the terminal. This finally
leads to a better achievement of logistics goals like throughput time as well as due
date reliability—as cars are routed faster through the terminal more due dates can
be matched. This ultimately leads to a higher robustness in the standard scenario,
since the whole system has more reserves due to a higher efficiency and is thus
enabled to react more flexible to unexpected incidents finally increasing
robustness.

For the machine failure scenario it can be observed that all heuristics generate a
decreased throughput time in comparison to the reference heuristics. Thus, for all

Fig. 1 Schematic representation of the model

Fig. 2 System restore time after machine failures
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heuristics a logistics target achievement and therewith a higher robustness of the
overall system through the heuristics’ implementation can be assumed. From a
practitioners point of view it can be stated that implementing suchlike heuristics
can mitigate the negative effects of machine failures like jams and therewith
potentially more missed due dates, which might happen in real-world working
processes.

However, comparing the AC heuristics with the CALS design option shows that
the design option features the highest performance, since it improves the throughput
time in the standard scenario (-12.73 %) as well as the throughput time in case of
machine failures (-24.32 %) with the best overall value. Consequently, following
the assumption that an increased logistics target achievement leads to higher system
robustness and having the result described above it can be stated that designing the
underlying scenario as a CALS leads to the highest robustness for the overall
system.

However, it has to be addressed that the improvements of single heuristics from
the standard scenario to the machine failure scenario are highly volatile. Although a
clear improvement trend can be observed, it has to be considered that also small
scenario changes (e.g. more or less machine failures in combination with the number
of cars) can create huge differences in the results like it can be seen in the case. This
results from the AC characteristic emergence leading to non-predictability of the
overall system [6]. Thus, it also has to be mentioned that the results are not
assignable to every real world scenario—other scenarios might lead to completely
different results for the heuristics.

According to the duration the system needs to restore itself after an incident
(indicator 2) it could first be observed, that all heuristics were able to restore the
system within one day after the machine failure. However, differences occurred
regarding the time needed for the restoring. In comparison to the first indicator the
CALS design option does not constitute the best solution approach. Thus, it can be
mentioned that from a practical perspective all heuristics provide the restoring
ability for the system after a breakdown. However, since the neural net does not
deliver the best results here the question remains how to improve the neural net in
order to improve also the restoring ability of this CALS design option. In this
specific investigation a recommendation for the overall scenario considering both
indicators cannot be given for one specific heuristic—the final decision has to be
made based on the individual goal settings (which goals are the most important
ones) or rather based on practical experiences (e.g. probabilities for machine
failures in specific real world scenarios).

Finally, this leads to the conclusion that in sum all heuristics are able to increase
the system’s robustness in the scenario with machine failures, since they exhibit a
lower total average throughput time than the Standard Method (keep system
effective) and are able to restore the system after a failure. Thus, this case indicates
that having the right circumstances in a real-world scenario (e.g. high complexity
and dynamics, lots of options and entities) the selected AC heuristics can improve
the system’s robustness. Additionally, the CALS design option ‘Neural Net’ fea-
tures in both scenarios the best throughput time. On the other hand, the time to
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restore is not as short as with the other heuristics. This shows that the CALS design
option might feature additional potential to improve a system’s robustness but in
contrast to other heuristics the design option needs more time to restore the system.
Thus, the total performance of the Neural Net in contrast to the other heuristics has
to be evaluated in more detail and both indicators have to be weighed against each
other depending on their economic impact as well as on the particular context.

5 Conclusion

This paper intended to give an idea about how the CALS approach contributes to the
robustness of a real-world scenario in comparison to existing control heuristics.
The main outcome is that in a scenario with high complexity and dynamics and in
combination with machine failures all selected heuristics and the CALS design option
can contribute to a positive development of the system’s robustness. Additionally,
from a practitioners perspective one can see that in real-world scenarios there is
potential for improvements in system flows and AC heuristics can be one way to
realize this potential.

However, this research features some limitations. First, it does not cover all
relevant logistics KPIs—which are partially conflicting like low work in progress
and high utilization [32]. Then, the introduced heuristics are complicated to apply
in a real-world scenario. The reason is, that AC heuristics as well as the introduced
design option ‘Neural Net’ demand for a complicated set of technological and
computer components (e.g. sensor networks, communication interfaces), which
also have to meet the organizational and structural requirements of the given
institution [33]. Moreover, these components are in sum expensive, what can lead
to financial risks resulting from the implementation [34]. Since a testing of the
system’s outcome is nearly impossible—due to the characteristics of AC like
emergence [35]—it might be hard to convince investors of an acceptable return of
their investment into the required technologies. Finally, people might avoid
suchlike concepts due to their loss of control that comes along with the system’s
self-organization.

Further research should focus on the given limitations. Hence, additional
logistics KPIs could be included in further research as well as a transfer of the
gained insights to other simulation scenarios. Moreover, since the research also
shows only very little differences between the particular heuristics the investiga-
tion horizon and the input parameters should be adapted in order to generate more
detailed findings for the different approaches.
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