
Model Checking as Static Analysis: Revisited

Fuyuan Zhang, Flemming Nielson, and Hanne Riis Nielson

DTU Informatics, Technical University of Denmark, DK-2800 Lyngby, Denmark
{fuzh,nielson,riis}@imm.dtu.dk

Abstract. We show that the model checking problem of the μ-calculus
can be viewed as an instance of static analysis. We propose Succinct
Fixed Point Logic (SFP) within our logical approach to static analysis
as an extension of Alternation-free Least Fixed Logic (ALFP). We gen-
eralize the notion of stratification to weak stratification and establish
a Moore Family result for the new logic as well. The semantics of the
μ-calculus is encoded as the intended model of weakly stratified clause
sequences in SFP.

1 Introduction

Both model checking [1, 5] and static analysis [7] are prominent approaches
to detecting software errors. Model Checking is a successful formal method for
verifying properties specified in modal logics with respect to transition systems.
Static analysis is also a powerful method for validating program properties which
can predict safe approximations to program behaviors.

The link between model checking and static analysis has been studied for many
years. Recent research [13] takes the point of view that model checking problems
can be reduced to static analysis and presents a flow logic approach to static
analysis which encodes the model checking problem of Action Computation Tree
Logic [14] in Alternation-free Least Fixed Point Logic (ALFP [15]). It is shown
in [21] that model checking for the alternation-free μ-calculus can be encoded
in ALFP as well. However, as is suggested in the negative result there, ALFP
is not well-suited for the encoding of the full fragment of the μ-calculus, where
nesting of the least and greatest fixed points are allowed.

Continuing these lines of work, we propose Succinct Fixed Point Logic (SFP)
as an extension of ALFP within the framework of our logical approach to static
analysis and show that the model checking problem of the μ-calculus [1, 6] can
be encoded in SFP. We first propose the notion of weak stratification which
allows a convenient specification of nested fixed points in the μ-calculus. Then,
we give the definition of the intended model of SFP clause sequences. Unlike in
ALFP, we explicitly introduce a least fixed point operator in SFP to facilitate
our development. Last, we explain our approach to the analysis of the μ-calculus
and show that the intended model of an SFP clause sequence specifying a μ-
calculus formula exactly characterizes the set of states which satisfy this μ-
calculus formula over a given Kripke structure.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 99–112, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

100 F. Zhang, F. Nielson, and H. Riis Nielson

The structure of this paper is as follows. In Section 2, we briefly introduce
Kripke structure and the syntax and semantics of the μ-calculus. Section 3 ex-
plains our logical approach to static analysis, where we first review ALFP and
then propose SFP, which is a main contribution of this paper. We show through
an example that we cannot take the greatest lower bound of the set of models
of an SFP clause sequence as the intended model, since this does not match the
fixed point semantics of the μ-calculus. Section 4 is the other main contribution
of our work, where we encode the model checking problem of the μ-calculus in
SFP. We conclude our work in Section 5.

2 Modal µ-Calculus

2.1 Kripke Structures

The definition of Kripke Structure is modified slightly in comparison with [1] to
distinguish different transitions in a system. Here, a Kripke structure over a set
P of atomic propositions is a tuple M = (S, T, L), where S is a set of states,

T is a set of transition relations, and L : S → 2P labels each state with the
set of true atomic propositions. Each element a in T is a transition relation and
a ⊆ S × S. As in [1] we also assume that the Kripke structure is total, although
this is not necessary for our development.

2.2 Syntax and Semantics of the Modal µ-Calculus

Definition 1 (Syntax of the Modal μ-calculus). Let V ar be a set of vari-
ables, and P be a set of atomic propositions. The syntax of the modal μ-calculus
is defined as follows:

φ ::= p | Q | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | μQ.φ |νQ.φ

Here p ∈ P, Q ∈ V ar and a ∈ T . The μ (resp. ν) operator is the least (resp.
greatest) fixed point operator. For μQ.φ and νQ.φ, it is required that all occur-
rences of Q in φ are under an even number of negations within φ. In this case,
φ is said to be syntactically monotone in Q. A variable is free if it is not bound
by any fixed point operator in a formula. A formula is closed if there are no free
variables in it.

A formula φ is interpreted as the set of states, on a given Kripke structure,
that make it true and this set of states is denoted by [[φ]]e, where e : V ar → 2S

is an environment. We use e[Q 	→ S] to denote the new environment updated
from e by binding the relational variable Q to the set of states S. The semantics
of μ-calculus formulas are defined as follows.

– [[p]]e = { s | p ∈ L(s) }
– [[Q]]e = e(Q)
– [[¬φ]]e = S \ [[φ]]e
– [[φ1 ∨ φ2]]e = [[φ1]]e ∪ [[φ2]]e

Model Checking as Static Analysis 101

– [[φ1 ∧ φ2]]e = [[φ1]]e ∩ [[φ2]]e
– [[〈a〉φ]]e = { s | ∃s′ : (s, s′) ∈ a and s′ ∈ [[φ]]e}
– [[[a]φ]]e = { s | ∀s′ : (s, s′) ∈ a implies s′ ∈ [[φ]]e}
– [[μQ.φ]]e is the least fixpoint of the function τ(S) = [[φ]]e[Q�→S]

– [[νQ.φ]]e is the greatest fixpoint of the function τ(S) = [[φ]]e[Q�→S]

The boolean operators have the usual meanings. If (s, s′) ∈ a, we call s′ an
a-derivative of s. Due to the restricted use of negations in φ, monotonicity is
guaranteed [1] for the function τ(S) = [[φ]]e[Q�→S]. The dualities ¬[a]φ ≡ 〈a〉¬φ,
¬〈a〉φ ≡ [a]¬φ, ¬μQ.φ ≡ νQ.¬φ[¬Q/Q], and ¬νQ.φ ≡ μQ.¬φ[¬Q/Q] are useful
when transforming a formula to an equivalent form according to the semantics
of the μ-calculus. The notation φ[¬Q/Q] refers to a formula resulting from φ by
substituting all occurrences of Q in φ with ¬Q. We give another syntax of the
μ-calculus using only the μ operator as follows, which will facilitate our static
analysis approach to the analysis of the μ-calculus.

Definition 2. Let V ar be a set of variables, P be a set of atomic propositions
that is closed under negation. The syntax of the μ-calculus is defined as follows:

φ ::= p | Q | ¬Q| φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | μQ.φ | ¬μQ.φ

where no variable is quantified twice and φ is syntactically monotone in Q in the
cases of μQ.φ and ¬μQ.φ.

3 Logical Approach to Static Analysis

In our logical approach to static analysis, we specify analysis constraints in clause
sequences. Assume that we are given a fixed countable set X of variables and a
finite alphabet R of predicate symbols. We define the syntax of clause sequences
cls, together with basic values v, pre-conditions pre and clauses cl as follows:

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= R(v1, ..., vn) | true | cl1 ∧ cl2 | pre ⇒ R(v1, ..., vn) | ∀x : cl
cls ::= cl1, ..., cln

The pre-conditions, clauses and clause sequences are interpreted over a finite and
non-empty universe U . A constant c is an element of U , a variable x ∈ X ranges
over U , and the n-ary relation R ∈ R denotes a subset of Un. We use pre ⇒
R(v1, ..., vn) instead of pre ⇒ cl which is used in [15] to simplify our development,
but this does not restrict the expressiveness (merely the succinctness) of our
approach.

Occurrences of R(v1, ..., vn) and ¬R(v1, ..., vn) in pre-conditions are called pos-
itive queries and negative queries, respectively. All other occurrences of relations

102 F. Zhang, F. Nielson, and H. Riis Nielson

are definitions and often occur to the right of an implication. To deal with nega-
tions conveniently, we are often interested in some subsets of clause sequences
defined by the above grammar.

Let Int :
∏

k Relk → P(Uk) be a mapping where Relk is a finite alphabet of
k-ary predicate symbols and P(Uk) is the powerset of Uk. We define the satis-
faction relations for pre-conditions, clauses and clause sequences (ρ, σ) sat pre,
(ρ, σ) sat cl and (ρ, σ) sat cls in Table 1, where ρ ∈ Int is an interpretation
of relations which maps each k-ary predicate symbol R to a subset of Uk and σ
is an interpretation of variables. We write ρ(R) for the set of k-tuples (a1, ...ak)
from U associated with the k-ary predicate R, we use σ(x) to denote the atom
of U bound to x and σ[x 	→ a] stands for the mapping that is σ except that x is
mapped to a. We also treat a constant c as a variable by setting σ(c) = c.

Table 1. Semantics of Pre-conditions, Clauses and Clause Sequences

(ρ, σ) sat R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ ρ(R)
(ρ, σ) sat ¬R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) �∈ ρ(R)
(ρ, σ) sat pre1 ∧ pre2 iff (ρ, σ) sat pre1 and (ρ, σ) sat pre2
(ρ, σ) sat pre1 ∨ pre2 iff (ρ, σ) sat pre1 or (ρ, σ) sat pre2
(ρ, σ) sat ∀x : pre iff (ρ, σ[x �→ a]) sat pre for all a ∈ U
(ρ, σ) sat ∃x : pre iff (ρ, σ[x �→ a]) sat pre for some a ∈ U
(ρ, σ) sat R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ ρ(R)
(ρ, σ) sat true iff true
(ρ, σ) sat cl1 ∧ cl2 iff (ρ, σ) sat cl1 and (ρ, σ) sat cl2
(ρ, σ) sat pre ⇒ R(v1, ..., vn) iff (ρ, σ) sat R(v1, ..., vn) whenever (ρ, σ) sat pre
(ρ, σ) sat ∀x : cl iff (ρ, σ[x �→ a]) sat cl for all a ∈ U
(ρ, σ) sat cl1, ..., cln iff (ρ, σ) sat cli for all i where 1 ≤ i ≤ n

A clause sequence with no free variables is called closed, and in closed clause
sequences the interpretation σ is of no importance. For a fixed interpretation σ0,
when cls is closed, we have that (ρ, σ) sat cls agrees with (ρ, σ0) sat cls. We
call an interpretation ρ a solution, or a model, of cls whenever (ρ, σ0) sat cls
holds.

Central to our approach to static analysis is the establishment of an intended
model of cls. We often consider the least model of cls as a candidate, since that
is the most precise analysis result. We briefly review ALFP in Section 3.1. ALFP
restricts itself to the stratified fragment of clause sequences. The intended model
of an ALFP formula is defined by the least model characterized by Moore Family
properties. We propose Succinct Fixed Point Logic in Section 3.2. SFP restricts
itself to the weakly stratified fragment of clause sequences. The Moore Family
result of SPF is established in a slightly different way and the model of an SFP
formula is defined as the least model characterized by Moore Family properties
as well.

Model Checking as Static Analysis 103

3.1 Alternation-Free Least Fixed Point Logic

Alternation-free Least Fixed Point Logic is more expressive than Datalog [19, 20]
and has been used in a number of papers for specifying static analysis. It has
proved to be very useful for obtaining efficient implementations of static analyses
and there are a number of solvers available [17]. A clause sequence cls is called an
ALFP formula iff it is stratified. The notion of stratification is given as follows.

Definition 3. A clause sequence cls = cl1, ..., cln is stratified if there is a rank-
ing function rank : R → {0, ..., n} such that the following holds for 0 ≤ i ≤ n:

– if cli contains a definition of R then rank(R) = i;
– if cli contains a positive query of R then rank(R) ≤ i; and
– if cli contains a negative query of R then rank(R) < i.

Example 1. The following clause sequence is not in ALFP since it is ruled out
by the notion of stratification:

cls = (∀x : R1(x) ⇒ R2(x)), (∀x : ¬R2(x) ⇒ R1(x))

This is because it is not possible that we have both rank(R1) ≤ rank(R2) and
rank(R2) < rank(R1).

According to the choice of ranks we have made, we define a lexicographic order-
ing, �, for the interpretations of relations, ρ, as follows: ρ1 � ρ2 if there exists
a rank i ∈ {0, ..., r} such that (1) ρ1(R) = ρ2(R) whenever rank(R) < i, (2)
ρ1(R) ⊆ ρ2(R) whenever rank(R) = i, and (3) either i = r or ρ1(R) ⊂ ρ2(R)
for some R with rank(R) = i. We define ρ1 ⊆ ρ2 to mean ρ1(R) ⊆ ρ2(R) for all
R ∈ R.

The set of interpretations of relations constitutes a complete lattice with
respect to �. We know from [15] that the set of solutions to an ALFP for-
mula constitutes a Moore Family. Recall that a Moore Family [7] is a subset
Y of a complete lattice L = (L,�) that is closed under greatest lower bounds:
∀Y ′ ⊆ Y :

�
Y ′ ∈ Y . The Moore Family result of ALFP is given as follows:

Proposition 1. The set {ρ|(ρ, σ0) sat cls} is a Moore Family, i.e. is closed
under greatest lower bounds, whenever cls is closed and stratified; the greatest
lower bound � {ρ|(ρ, σ0) sat cls} is the least model of cls.

More generally, given ρ0 the set {ρ|(ρ, σ0) sat cls∧ρ0 ⊆ ρ} is a Moore Family
and � {ρ|(ρ, σ0) sat cls ∧ ρ0 ⊆ ρ} is the least model.

The Moore Family result of ALFP formulas ensures the existence of a unique
least model. We take the least model as the unique intended model of our analysis
constraints specified by ALFP formulas.

ALFP suffices [21] to encode the alternation-free fragment of the μ-calculus,
where nesting of least and greatest fixed points are prohibited. We give an ex-
ample in the following.

104 F. Zhang, F. Nielson, and H. Riis Nielson

Example 2. Consider a Kripke structure, given by the diagram to the left, where
S = {s1, s2, s3}, the transition relation T = {a} is represented by edges labeled
with a between states, and L labels s1 with proposition p.

�(RQ) [[μQ.[a](p ∨Q)]]
{s1, s3} {s1, s3}

We evaluate the formula μQ.[a](p ∨ Q) over the above Kripke structure using
ALFP and the semantics of the μ-calculus respectively. The results are given in
the table to the right.

In our static analysis approach, we first encode the above Kripke structure in
�0 by defining �0(Pp) = {s1} and �0(Ta) = {(s2, s1), (s2, s2), (s1, s3), (s3, s1)}.
Here, the universe is U = S. The relation Pp specifies the set of states on which
the atomic proposition p holds, and the relation Ta specifies the transition rela-
tion of the given Kripke structure. Then we specify the formula μQ.[a](p ∨ Q)
with the clause sequence cls = ∀s : ∀s′ : ¬Ta(s, s

′) ∨ Pp(s
′) ∨ RQ(s

′) ⇒ RQ(s).
The relation RQ intends to characterize [[μQ.[a](p ∨ Q)]][]. The least solution ρ
to cls subject to �0 ⊆ ρ can be calculated by Succinct Solver [15].

3.2 Succinct Fixed Point Logic

The condition of stratification in ALFP requires that the definition of a relation
R in cls only depends on relations with ranks less or equal to R. In particular, the
requirement that a relation must be defined before they can be negatively queried
is essential. This makes it inconvenient for ALFP to specify nested fixed points
in the μ-calculus, where least and greatest fixed points are mutually dependent
on each other.

In this section, we propose Succinct Fixed Point Logic (SFP) to encode nested
fixed points in the μ-calculus. We first define the syntax of SFP, which include
basic values v, pre-conditions pre, clauses cl, clause sequences cls and formulas
f , as follows:

Definition 4 (Syntax of Succinct Fixed Point Logic)

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= R(v1, ..., vn) | true | cl1 ∧ cl2 | pre ⇒ R(v1, ..., vn) | ∀x : cl
cls ::= cl1, ..., cln
f ::= LFP(cls)

where cls is weakly stratified.

Model Checking as Static Analysis 105

Here, we require that clause sequences are weakly stratified. The definition of
weak stratification will be given later. We introduce a least fixed point operator
LFP and f = LFP(cls) is defined as SFP formulas. This is mainly to facilitate
the definition of the intended model of weakly stratified clause sequences. Our
intention is that ρ is the intended model of cls iff ρ satisfies the formula LFP(cls).

To formalize the notion of weak stratification, we first give the definition of
Dependency Graph as follows.

Definition 5 (Dependency Graph). The dependency graph DGcls of cls =
cl1, ..., cln is a directed graph where each edge is labeled with a sign. The nodes
of DGcls are cl1,...,cln. We define a positive (resp. negative) edge from cli to clj
iff a relation defined in cli is positively (resp. negatively) queried in clj, where
1 ≤ i, j ≤ n.

We say that clj depends positively (resp. negatively) on cli iff there exists a path
in DGcls from cli to clj with even (resp. odd) number of negative edges.

Definition 6 (Weak Stratification). A clause sequence cls = cl1, ..., cln is
weakly stratified iff the following conditions hold, where 1 ≤ i, j ≤ n, i �= j and
R ∈ R:

– if R is defined in cli, then R is not defined in clj, and
– cli does not depend negatively on itself.
– if cli depends positively (resp. negatively) on clj, then cli does not depend

negatively (resp. positively) on clj.

The first condition in the above definition simply says that we use only one
clause to define each relation. The second condition imposes syntactic mono-
tonicity to the clause sequence. The last condition is actually used to facilitate
the establishment of a Moore Family result for SFP.

Example 3. The following clause sequence satisfies the condition of weak strati-
fication.

cls = (∀x : ¬R2(x) ⇒ R1(x)), (∀x : ¬R1(x) ⇒ R2(x))

Example 4. The following clause sequence is ruled out by the notion of weak
stratification. We can see that the clause (∀x : R2(x) ⇒ R1(x)) depends nega-
tively on itself.

cls = (∀x : R2(x) ⇒ R1(x)), (∀x : ¬R1(x) ⇒ R2(x))

Let’s consider the following example where we specify a μ-calculus formula of
nested fixed points with a weakly stratified clause sequence.

Example 5. Consider the μ-calculus formula φ = μQ1.(¬μQ2.(Q2 ∨ (¬Q1 ∧ p))),
which is semantically equivalent to μQ1.(νQ2.(Q2 ∧ (Q1 ∨ ¬p))) and therefore
consists of nested fixed points. The formula φ can be specified by the following
clause sequence cls.

cls = [∀s : ¬RQ2(s) ⇒ RQ1(s)], [∀s : [RQ2(s) ∨ (¬RQ1 (s) ∧ Pp(s))] ⇒ RQ2(s)]

106 F. Zhang, F. Nielson, and H. Riis Nielson

The clause sequence cls is weakly stratified. The relation Pp intends to specify the
set of states, in a given Kripke structure, on which the atomic proposition p holds.
The relation RQ1 (resp. RQ2) intends to characterize [[φ]][] (resp. [[μQ2.(Q2 ∨
(¬Q1 ∧ p))]][Q1 �→[[φ]][]]).

The next step is to define an intended model ρ of cls. In our setting, this amounts
to define the semantics of formulas f = LFP(cls). Our intention is to use ρ to
encode the fixed point semantics in the μ-calculus. Our first try is to define
it in a similar way as we do in ALFP. Let’s assume that all relations defined
in a clause cli have the same rank and that all predefined relations have rank
0. However, we show through the following example that we cannot define the
intended model ρ of cls as �{ρ|(ρ, σ0) sat cls ∧ ρ0 ⊆ ρ}, where ρ0 defines all
predefined relations, with respect to �, since it does not capture the fixed point
semantics.

Example 6. Consider the Kripke structure M = (S, T, L), given by the diagram
to the left, where S = {s1, s2}, T = {a}, a = {(s1, s2), (s2, s2)}, and L labels s2
with the proposition p. We encode the μ-calculus formula φ = μQ1.(¬μQ2.(Q2∨
(¬Q1 ∧ p))) in the same clause sequence cls = [∀s : ¬RQ2(s) ⇒ RQ1(s)], [∀s :
[RQ2(s) ∨ (¬RQ1 (s) ∧ Pp(s))] ⇒ RQ2(s)] as we do in Example 5. We evaluate φ
over M using SFP and the semantics of the μ-calculus respectively.

ρ1 ρ2 ρ3
RQ2 {s1, s2} ∅ {s2}
RQ1 ∅ {s1, s2} {s1}
Pp {s2} {s2} {s2}

Assume we have an initial interpretation ρ0, where ρ0(Pp) = {s2} and ρ0(RQ1) =
ρ0(RQ2) = ∅. We now consider the set of interpretations I = {ρ|(ρ, σ0) sat cls∧
ρ0 ⊆ ρ} according to the semantics in Table 1. There are at least three solutions
ρ1, ρ2 and ρ3, given in the table to the right, in the set I.

We can take at most two essentially different ranking functions rank1 and
rank2, where rank1(Pp) = 0, rank1(RQ1) = 1 and rank1(RQ2) = 2, rank2(Pp) =
0, rank2(RQ1) = 2 and rank2(RQ2) = 1. Let e = [Q1 	→ [[φ]][], Q2 	→ [[μQ2.(Q2 ∨
(¬Q1 ∧ p))]][Q1 �→[[φ]][]]]. According to the semantics of the μ-calculus, we know
that [[Q1]]e = {s1} and [[Q2]]e = {s2}. We can see that ρ3 exactly characterizes
the semantics of the μ-calculus in our example. However, due to the existence of
ρ1 and ρ2, the solution ρ3 is not the least model in I for either rank1 or rank2.

The method of establishing an intended model of cls in the above example can be
summarized as follows. First, we calculate all the models that satisfy cls. Second,
we make a choice of ranks for all those relations defined in cls. Last, we choose
the least model as the intended model of cls, according to the lexicographic

Model Checking as Static Analysis 107

ordering with respect to the choice of ranks we have made. This method applies
well when we approximate an analysis where analysis information only flows from
the lowest rank to the highest rank. Therefore, ALFP successfully characterizes
the semantics of the alternation-free μ-calculus, where information flows from
inner fixed points to outer fixed points since nesting of fixed points operators of
different types are prohibited.

In the following, we define the semantics of formulas f . We assume that cls =
cl1, ..., cln and write ρ = �0, �1, ..., �n to mean that �0 is an interpretation for
some predefined relations and �i (1 ≤ i ≤ n) is an interpretation of relations
defined in cli. We use ρ[�′i/�i] to denote a new interpretation updated from ρ by
substituting �i with �′i. Let �i and �′i be two interpretations of relations defined
in cli. We define that �i ⊆ �′i iff for all relations R defined in cli, �i(R) ⊆ �′i(R)
holds. The set of interpretations defined in cli constitute a complete lattice with
respect to ⊆. The satisfaction relation (ρ, σ) sat LFP(cl1, ..., cln) is defined in
the following.

Definition 7 (Semantics of SFP formulas). Let ρ = �0, ..., �n be an inter-
pretation and cls = cl1, ..., cln a weakly stratified clause sequence. The satisfac-
tion relation (ρ, σ) sat LFP(cl1, ..., cln) is defined inductively as follows:

– (ρ, σ) sat LFP(cln) iff �n = �{�′n | (ρ[�′n/�n], σ) sat cln}
– (ρ, σ) sat LFP(cli, ..., cln) iff

1. (ρ, σ) sat LFP(cli+1, ..., cln), and

2. �i = �{�′i | ∃�′i+1, ..., �
′
n : (ρ[�′i/�i, ..., �

′
n/�n], σ) sat cli ∧

(ρ[�′i/�i, ..., �
′
n/�n], σ) sat LFP(cli+1, ..., cln)}

TheMoore Family properties for weakly stratified clause sequence cls = cl1, ..., cln
is established as follows.

Theorem 1. Let ρ = �0, ..., �n be an interpretation, cls = cl1, ..., cln a weakly
stratified clause sequence and 1 ≤ i ≤ n. Then, we have the followings:

– The set of interpretations {�′n | (ρ[�′n/�n], σ) sat cln} is a Moore Family

– The set of interpretations {�′i | ∃�′i+1, ..., �
′
n : (ρ[�′i/�i, ..., �

′
n/�n], σ) sat cli∧

(ρ[�′i/�i, ..., �
′
n/�n], σ) sat LFP(cli+1, ..., cln)} is a Moore Family.

We define the intended model of a weakly stratified clause sequence below.

Definition 8. Assume that cls = cl1, ..., cln is a weakly stratified clause se-
quence. The model ρ is an intended model of cls iff (ρ, σ) sat LFP(cl1, ..., cln).

The Moore Family properties of SFP leads to the following theorem which guar-
antees the existence and the uniqueness of the intended model of cls.

Theorem 2. Let cls = cl1, ..., cln be a weakly stratified clause sequence. The
model ρ such that (ρ, σ) sat LFP(cl1, ..., cln) exists and is unique.

108 F. Zhang, F. Nielson, and H. Riis Nielson

Example 7. Let’s reconsider the problem in Example 6 again and show how
to find the model ρ = �0, �1, �2 to the formula LFP(cls). Let’s write cls =
cl1, cl2 where cl1 = [∀s : ¬RQ2 (s) ⇒ RQ1(s)] and cl2 = [∀s : [RQ2(s) ∨
(¬RQ1(s)∧Pp(s))] ⇒ RQ2(s)]. According to Definition 7, (ρ, σ) sat LFP(cl1, cl2)
iff (ρ, σ) sat LFP(cl2) and �1 = �{�′1 | ∃�′2 : (ρ[�′1/�1, �

′
2/�2], σ) sat cl1 ∧

(ρ[�′1/�1, �
′
2/�2], σ) sat LFP(cl2)}.

We first calculate the set of interpretations such that (ρ, σ) sat LFP(cl2). To
this end, we first list all the interpretations such that (ρ, σ) sat cl2 in Table 2.
In this case, relations Pp and RQ1 are predefined relations for the clause cl2.

Table 2. (ρ, σ) sat cl2

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12
RQ2 {s2}{s1, s2}{s2}{s1, s2} ∅ {s1 {s2} {s1, s2} ∅ {s1} {s2} {s1, s2}
RQ1 ∅ ∅ {s1} {s1} {s2} {s2} {s2} {s2} {s1, s2} {s1, s2} {s1, s2} {s1, s2}
Pp {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2}

The next step is to select those interpretations which satisfy LFP(cl2) from
Table 2. From all those interpretations which coincide on predefined relations,
we choose the one with the best analysis result for RQ2 . Let’s take ρ1 and ρ2 as an
example. The models ρ1 and ρ2 coincide on their interpretations for Pp and RQ1 .
However, ρ1(RQ2) = �{ρ1(RQ2), ρ2(RQ2)}. Therefore, (ρ1, σ) sat LFP(cl2).
The result of our selection are {ρ1, ρ3, ρ5, ρ9}. These are the interpretations which
satisfy LFP(cl2).

We now select those interpretations which satisfy cl1 from {ρ1, ρ3, ρ5, ρ9} and
see that only ρ3 and ρ9 do. The last step is to select from ρ3 and ρ9 the one
which satisfies LFP(cl1, cl2). Since ρ3(RQ1) = �{ρ3(RQ1), ρ9(RQ1)}, we know
that (ρ3, σ) sat LFP(cl1, cl2). Notice that ρ3 exactly characterized the fixed
point semantics here.

4 Model Checking as Static Analysis

Here, we use Definition 2 to give the syntax of the μ-calculus. Given a μ-calculus
formula φ, for each variable Q in φ, a relation RQ is defined. We specify our
analysis with a pair 〈clsφ, preφ〉, where clsφ is a weakly stratified clause sequence
and preφ is a pre-condition.

Assume that ρ = �0, ..., �n such that (ρ, σ) sat LFP(clsφ), where �0 is an
initial interpretation which encodes a given Kripke structure and defines relations
RQ1 , ..., RQn , where Q1, ..., Qn are all the free variables in φ. The intention of
our development is that s′ ∈ [[φ]]e[Q1 �→S1,...,Qn �→Sn] iff (ρ, σ[s 	→ s′]) sat preφ,
and that when φ takes the form μQ.φ, we have that [[μQ.φ]]e[Q1 �→S1,...,Qn �→Sn]

equals ρ(RQ).
We encode a Kripke structure M = (S, T, L) into SFP by defining the corre-

sponding relations in �0 as follows. Assume that the universe is U = S,

Model Checking as Static Analysis 109

Table 3. μ-calculus in Succinct Fixed Point Logic

p �−→ 〈true, Pp(s)〉
Q �−→ 〈true, RQ(s)〉
¬Q �−→ 〈true, ¬RQ(s)〉
φ1 ∨ φ2 �−→ 〈(clsφ1 , clsφ2), preφ1 ∨ preφ2〉

whenever φ1 �−→ 〈clsφ1 , preφ1〉 and φ2 �−→ 〈clsφ2 , preφ2〉
φ1 ∧ φ2 �−→ 〈(clsφ1 , clsφ2), preφ1 ∧ preφ2〉

whenever φ1 �−→ 〈clsφ1 , preφ1〉 and φ2 �−→ 〈clsφ2 , preφ2〉
〈a〉φ �−→ 〈clsφ, ∃s′ : Ta(s, s

′) ∧ preφ[s
′/s]〉

whenever φ �−→ 〈clsφ, preφ〉
[a]φ �−→ 〈clsφ, ∀s′ : ¬Ta(s, s

′) ∨ preφ[s
′/s]〉

whenever φ �−→ 〈clsφ, preφ〉
μQ.φ �−→ 〈([∀s : preφ ⇒ RQ(s)], clsφ), RQ(s)〉

whenever φ �−→ 〈clsφ, preφ〉
¬μQ.φ �−→ 〈clsμQ.φ, ¬RQ(s)〉

whenever μQ.φ �−→ 〈clsμQ.φ, preμQ.φ〉

– for each atomic proposition p we define a predicate Pp such that s ∈ �0(Pp)
if and only if p ∈ L(s),

– for each element a in T , we define a binary relation Ta such that (s, t) ∈
�0(Ta) if and only if (s, t) ∈ a.

The mapping rules for φ 	−→ 〈clsφ, preφ〉 is given in Table 3. The clause sequence
clsφ is used to define all the relations RQ where Q is a bounded variable in φ.
We use preφ[s

′/s] to denote a pre-condition resulting from preφ by substituting
the free variable s in preφ with s′.

In Table 3, the choice of the ordering of clauses in clsφ is essential in our
approach. Assume that clsφ = cl1, ..., cln. We define only one relation in each
clause cli (1 ≤ i ≤ n). Assume that we are given a μ-calculus formula φ. We
call a subformula of φ a μ-subformula iff its main connective is μ. Assume that
μQi.ϕ1 and μQj .ϕ2 are two μ-subformulas in φ and we define RQi (resp. RQj)
in cli (resp. clj), our intention is to ensure that i < j if μQj .ϕ2 is a subformula
of μQi.ϕ1. Therefore, in the case of μQ.φ 	−→ 〈clsφ, preφ〉, for example, we
have that clsμQ.φ = ([∀s : preφ ⇒ RQ(s)], clsφ) instead of clsμQ.φ = (clsφ, [∀s :
preφ ⇒ RQ(s)]).

We first explain the case of μQ.φ. Here, Q is a bounded variable. Under the
assumption that φ 	−→ 〈clsφ, preφ〉 holds, we define clsμQ.φ as ([∀s : preφ ⇒
RQ(s)], clsφ). The clause [∀s : preφ ⇒ RQ(s)] defines the relation RQ and the
clause sequence clsφ defines all those relations RQ′s where Q′ is a bounded
variable in φ. We define preμQ.φ as RQ(s).

For atomic proposition p, we simply define clsp as true since there are no
bounded variables in p. We make use of the predefined predicate Pp and define
prep as Pp(s). For a variable Q, we also define clsQ as true since the Q is a free
variable here. We define preQ as RQ(s). For ¬Q, we define cls¬Q as true and
define pre¬Q as ¬RQ(s).

110 F. Zhang, F. Nielson, and H. Riis Nielson

For φ1 ∨ φ2, we assume that φ1 	−→ 〈clsφ1 , preφ1〉 and φ2 	−→ 〈clsφ2 , preφ2〉.
This means that for each subformula μQ.φ in φ1 (resp. φ2), the relation RQ

is defined in clsφ1 (resp. clsφ2) and that preφ1 and preφ2 are also defined as
expected. We define clsφ1∨φ2 as (clsφ1 , clsφ2). This ensures that for each bounded
variableQ in φ1∨φ2, RQ is defined in (clsφ1 , clsφ2). It’s natural to define preφ1∨φ2

as preφ1 ∨ preφ2 . The case for φ1 ∧ φ2 follows the same pattern.
For 〈a〉φ, we assume that φ 	−→ 〈clsφ, preφ〉. We simply define that cls〈a〉φ =

clsφ and this suffices to guarantee that for each bounded variable Q in 〈a〉φ, the
relation RQ is defined in cls〈a〉φ. We define pre〈a〉φ as ∃s′ : Ta(s, s

′)∧ preφ[s
′/s].

This means for any state s if preφ[s
′/s] holds on any of the a-derivative s′ of s,

then pre〈a〉φ holds on state s. This matches the semantics for 〈a〉φ.
For [a]φ, we also assume that φ 	−→ 〈clsφ, preφ〉. For a similar reason as

in the case for 〈a〉φ, we define that cls[a]φ = clsφ. We define pre[a]φ by ∀s′ :
¬Ta(s, s

′) ∨ preφ[s
′/s]. This means for any state s if preφ[s

′/s] holds on all of
the a-derivative s′ of s, then pre[a]φ holds on state s.

For ¬μQ.φ, we assume that μQ.φ 	−→ 〈clsμQ.φ, preμQ.φ〉. We define that
cls¬μQ.φ = clsμQ.φ. We simply define pre¬μQ.φ as ¬RQ(s).

We have the following lemma which ensures that our specification of the μ-
calculus formulas is within SFP.

Lemma 1. Given a closed μ-calculus formula φ, assume that φ 	−→ 〈clsφ, preφ〉
holds according to Table 3, the clause sequence clsφ is closed and weakly stratified.

The following theorem shows that the pre-condition preφ in our mapping φ 	−→
〈clsφ, preφ〉 correctly characterizes the semantics of φ.

Theorem 3. Let φ be a μ-calculus formula with Q1, ..., Qn being all the free vari-
ables in it. Assume that φ 	−→ 〈clsφ, preφ〉. Let ρ = �0, ..., �n be an interpretation
such that (ρ, σ) sat LFP(clsφ), where �0(RQ1) = S1, ..., �0(RQn) = Sn and �0
defines Pp and Ta. Then, s

′ ∈ [[φ]]e[Q1 �→S1,...,Qn �→Sn] iff (ρ, σ[s 	→ s′]) sat preφ.

We focus on closed μ-calculus formulas of the form μQ.φ. This is not a restriction
since [[φ]] = [[μQ.φ]] when Q is not a free variable in φ. From Theorem 3, we have
the following corollaries saying that the model of SFP formulas for the analysis of
the μ-calculus coincides with the solution for the corresponding model checking
problem.

Corollary 1. Let μQ.φ be a closed μ-calculus formula. Assume that μQ.φ 	−→
〈clμQ.φ, preμQ.φ〉 holds. Let ρ = �0, ..., �n be an interpretation such that
(ρ, σ) satLFP(clsμQ.φ), where �0 defines Pp and Ta. Then, we have that [[μQ.φ]] =
ρ(RQ).

5 Conclusion

Early works [9–12] have taken the view that static analysis problems can be
reduced to model checking. In the other research direction, we have generalized
the work in [13, 21] by showing that the model checking problem of the μ-calculus

Model Checking as Static Analysis 111

can also be reduced to static analysis as well. We first propose Succinct Fixed
Point Logic as a specification language which allows convenient specifications of
nest fixed points in the μ-calculus and then present a mapping which can encode
the full fragment of the μ-calculus to SFP. We show that μ-calculus formulas of
nested fixed points can be characterized as the intended model of SFP clause
sequences.

A number of previous papers (surveyed in [8, 18]) have developed a uniform
approach to static analysis using ALFP as the specification language. On top
of the many theoretical results established for this approach also a number of
solvers have been developed [17] to calculate the least model of ALFP. ALFP
can be encoded in SFP by showing that the least model of an ALFP formula can
be characterized as the model of a corresponding SFP formula. This encoding is
conceptually obvious and we didn’t give it here.

The link between model checking and logic programming has been investi-
gated in [22–26], where model checkers based on logic programming have been
implemented. In our future work, we are interested in developing an efficient
solver to calculate the model for SFP formulas so that a model checker for the
μ-calculus is also implicitly implemented.

Acknowledgements. The research presented in this paper has been supported
by MT-LAB, a VKR Centre of Excellence for the Modelling of Information
Technology.

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

2. Emerson, E.A., Lei, C.-L.: Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus (Extended Abstract). In: LICS 1986, pp. 267–278 (1986)

3. Cleaveland, R., Steffen, B.: A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus. Formal Methods in System Design 2(2), 121–
147 (1993)

4. Andersen, H.R.: Model Checking and Boolean Graphs. Theor. Comput. Sci. 126(1),
3–30 (1994)

5. Baier, C., Katoen, J.-P.: Principles of model checking, pp. I-XVII, 1-975. MIT
Press (2008)

6. Kozen, D.: Results on the Propositional mu-Calculus. Theor. Comput. Sci. 27,
333–354 (1983)

7. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis (2. corr.
print), pp. I-XXI, 1-452. Springer (2005)

8. Nielson, H.R., Nielson, F.: Flow Logic: A Multi-paradigmatic Approach to Static
Analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)

9. Steffen, B.: Data Flow Analysis as Model Checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg (1991)

10. Steffen, B.: Generating Data Flow Analysis Algorithms from Modal Specifications.
Sci. Comput. Program. 21(2), 115–139 (1993)

112 F. Zhang, F. Nielson, and H. Riis Nielson

11. Schmidt, D.A., Steffen, B.: Program Analysis as Model Checking of Abstract In-
terpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998)

12. Schmidt, D.A.: Data Flow Analysis is Model Checking of Abstract Interpretations.
In: POPL 1998, pp. 38–48 (1998)

13. Nielson, F., Nielson, H.R.: Model Checking Is Static Analysis of Modal Logic. In:
Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 191–205. Springer, Heidelberg
(2010)

14. De Nicola, R., Vaandrager, F.W.: Action Versus State Based Logics for Transition
Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

15. Nielson, F., Seidl, H., Nielson, H.R.: A Succinct Solver for ALFP. Nord. J. Com-
put. 9(4), 335–372 (2002)

16. Nielson, F.: Two-Level Semantics and Abstract Interpretation. Theor. Comput.
Sci. 69(2), 117–242 (1989)

17. Filipiuk, P., Nielson, H.R., Nielson, F.: Explicit Versus Symbolic Algorithms for
Solving ALFP Constraints. Electr. Notes Theor. Comput. Sci. 267(2), 15–28 (2010)

18. Nielson, H.R., Nielson, F., Pilegaard, H.: Flow Logic for Process Calculi. ACM
Comput. Surv. 44(1), 3 (2012)

19. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge. In:
Foundations of Deductive Databases and Logic Programming, pp. 89–148 (1988)

20. Chandra, A.K., Harel, D.: Computable Queries for Relational Data Bases. J. Com-
put. Syst. Sci. 21(2), 156–178 (1980)

21. Zhang, F., Nielson, F., Nielson, H.R.: Fixpoints vs. Moore Families. Student Re-
search Forum at SOFSEM 2012 (2012)

22. Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift,
T., Warren, D.S.: Efficient Model Checking Using Tabled Resolution. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg
(1997)

23. Ramakrishnan, C.R.: A Model Checker for Value-Passing Mu-Calculus Using Logic
Programming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 1–
13. Springer, Heidelberg (2001)

24. Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Dong, Y., Du, X., Roy-
choudhury, A., Venkatakrishnan, V.N.: XMC: A Logic-Programming-Based Verifi-
cation Toolset. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 576–580. Springer, Heidelberg (2000)

25. Delzanno, G., Podelski, A.: Model Checking in CLP. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

26. Delzanno, G., Podelski, A.: Constraint-based deductive model checking.
STTT 3(3), 250–270 (2001)

	Model Checking as Static Analysis: Revisited
	Introduction
	Modal -Calculus
	Kripke Structures
	Syntax and Semantics of the Modal -Calculus

	Logical Approach to Static Analysis
	Alternation-Free Least Fixed Point Logic
	Succinct Fixed Point Logic

	Model Checking as Static Analysis
	Conclusion
	References

