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Abstract. TLA
+ and B share the common base of predicate logic,

arithmetic and set theory. However, there are still considerable differ-
ences, such as very different approaches to typing and modularization.
There is also considerable difference in the available tool support. In
this paper, we present a translation of the non-temporal part of TLA

+

to B, which makes it possible to feed TLA
+ specifications into exist-

ing tools for B. Part of this translation must include a type inference
algorithm, in order to produce typed B specifications. There are many
other tricky aspects, such as translating modules as well as let/in and
if/then/else expressions. We also present an integration of our transla-
tion into ProB. ProB thus provides a complementary tool to the explicit
state model checker TLC, with convenient animation and constraint solv-
ing for TLA

+. We also present a series of case studies, highlighting the
complementarity to TLC. In particular, we highlight the sometimes dra-
matic difference in performance when it comes to solving complicated
constraints in TLA

+.
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1 Introduction and Motivation

TLA
+ [5] and B [1] are both state-based formal methods rooted in predicate

logic, combined with arithmetic and set theory. There are, however, considerable
differences:

– TLA
+ is untyped, while B is strongly typed.

– The concepts of modularization are very different (as we will see later in the
paper).

– TLA
+ and B both support sets and functions. However, functions in TLA

+

are total, while B supports relations, partial functions, injections, bijections,
etc.

– TLA
+ has several constructs which are lacking in B, such as an if/then/else

for expressions and predicates1, a let/in construct or the choose opera-
tor. The latter enables one to define recursive functions over sets, which are
akwkard to define in B.

� Part of this research has been sponsored by the EU funded FP7 projects 214158
(DEPLOY) and 287563 (ADVANCE).

1 B only provides an if/then/else for substitutions.
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– TLA
+ allows to specify liveness properties while B is limited to invariance

properties (temporal formulas such as liveness conditions will be excluded
from our translation).

As far as tool support is concerned, TLA
+ is supported by the explicit state

model checker TLC [13], and more recently by the TLAPS prover [2]. B has
extensive proof support, e.g., in the form of the commercial product AtelierB
[3]. The animator and model checker ProB [6] can also be applied to B spec-
ifications. Both AtelierB and ProB are being used by companies, mainly in
the railway sector for safety critical control software. Some of the goals of our
translation are

– to gain a better understanding of the common core and of the differences
between TLA

+ and B,
– to obtain an animator for TLA

+,
– and to obtain a constraint solver for TLA

+.

Indeed, TLC is a very efficient model checker for TLA
+ with an efficient disk-

based algorithm and support for fairness. ProB has an LTL model checker, but
does not support fairness (yet) and is entirely RAM-based. The model checking
core of ProB is less tuned than TLA

+. However, ProB offers several features
which are absent from TLC, notably an interactive animator with various vi-
sualization options. More importantly, the ProB kernel provides for constraint
solving over predicate logic, set theory and arithmetic. ProB can also deal quite
well with large data values. This has many applications, from constraint-based
invariant or deadlock checking [4], over to test-case generation and on to im-
proved animation because the user has to provide much less concrete values
than with other tools. It also makes certain specifications “executable” which
are beyond the reach of other tools such as TLC.

We suppose that the reader is familiar with either TLA
+ or B. Indeed, we

hope that through our translation, TLA
+ constructs can be understood by B

users and vice-versa. Below, in Sect. 2 we introduce the essentials of our trans-
lation on a simple example, while in Sect. 3 we present the translation more
formally. In Sect. 4 we present case studies and experiments, and will also com-
pare the tools ProB and TLC. We conclude with more related and future work
in Sect. 5.

2 An Example Translation from TLA
+ to B

To allow B users to become familiar with TLA
+, we present a variation of the

well known HourClock example from Chapter 2 of [5]. Figure 1 shows the My-
HourClock module, which avoids the if/then/else expression of the original
at this point. The specification describes the typical behavior of a digital clock
displaying only hours. The module starts with the module clause followed by
the name of the specification. The analogous clause of a B machine is machine
or model. At the beginning of the module body, arithmetic operators such as
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module MyHourClock
extends Integers
constants c
assume c ∈ 1 . . 12
variables hr
Init

Δ
= hr = c

add 1(p)
Δ
= p + 1

Inc
Δ
= hr < 12 ∧ hr ′ = add 1(hr)

Reset
Δ
= hr = 12 ∧ hr ′ = 1

Next
Δ
= Inc ∨ Reset

Fig. 1. Module MyHourClock

+ or “..” are loaded via extends from the standard module Integers. These
operators are not built-in operators in TLA

+ and can either be defined by the
user or imported with their usual meaning as here. The declaration of constants
and variables is identical in both languages. The assume clause in TLA

+ cor-
respondes to the properties clause in B.

To understand the meaning of the other definitions in the module we need
some additional information.2 For our translation we use a configuration file,
as TLC also uses, telling us the initial state and the next-state relation of the
module. For this example we suppose Init to be the initial state predicate and
Next to be the next-state relation. Init indicates that the variable hr has the
value of the constant c in the initial state. Next is separated into two actions
by the disjunction operator. An action is a before-after predicate describing
a transition to a next-state with the aid of the prime operator(′). A primed
variable represents the variable in the next-state. The use of the additional add 1
operator may seem artificial here; its purpose is to demonstrate another aspect
of our translation.

Figure 2 shows the translated B Machine of the MyHourClock example. We
use the becomes/such/that substitution under the initialisation clause to
initialize the variables of the B machine. It assigns a value to the variable such
that the predicate in the brackets is satisfied. The TLA

+ actions Inc and Reset
are translated as separate B operations. We represent the prime operator in B by
adding a local auxiliary variable for every variable. The auxiliary variables (with
suffix “ n”) are generated in the any part of the any/where/then substitution
and get their value in the where part. If the predicate in the where part is not
satisfiable the operation can not be executed. Finally, the values of the auxiliary
variables are assigned to the corresponding global variables in the then part.

Operators such as add 1 are translated using B definitions. B definitions are a
kind of macro and help to write frequently used expressions. They are syntactic
sugar and will be resolved in the the parsing phase. Furthermore, they can
have parameters. Using B definitions avoids to replace an operator call by the

2 “What those definitions represent [. . . ] lies outside the scope of mathematics and
therefore outside the scope of TLA

+” (see p. 21 of [5]).
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machine MyHourClock
definitions add 1(p) == p + 1
constants c
properties c ∈ 1..12
variables hr
invariant hr ∈ Z

initialisation hr :(hr = c)
operations

Inc Op = any hr n
where hr < 12 ∧ hr n = add 1(hr)
then hr := hr n
end

Reset Op = any hr n
where hr = 12 ∧ hr n = 1
then hr := hr n
end

end

Fig. 2. Machine MyHourClock

definition of the operator. The arithmetic operators are translated with the use of
B’s built-in operators. Therefore, they do not appear in the definitions clause.
Finally, to obtain a correct B machine our translation has inferred and added
the types of the variables in the invariant clause.

3 The Translation from TLA
+ to B

3.1 Type System

The basis of our translation is a mapping of TLA
+ values to B values. Due to

the strict type system of B, every B value has to be associated with a type.
Below we list the translations of the TLA

+ values and the resulting restrictions:

– Numbers: In B real numbers are not supported. Thus, only integers can be
translated. They get the B type Z.

– The boolean values true and false are identical in both languages. They
get the B Type bool.

– The concepts of strings are different in both languages. In TLA
+ a string is

a sequence of characters and a single character can be accessed. However, a
string in B is atomic and has the base type string. For the translation we
currently reject strings if they are used as tuples.

– A model value is none of TLA
+’s own values but one of TLC’s. But it is

established to use TLA
+ together with TLC so we deliver a suitable trans-

lation. TLC allows to assign a model value or a set of model values to a
constant in the configuration file. The equivalent of a model value is an ele-
ment of an enumerated set in B. To make different model values comparable
to each other we put them in the same enumerated set named: enumi . How-
ever if two model values are never compared in the specification, we put
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them in different sets (such as enum1 and enum2). The B type of a model
value is the name of the enumerated set containing it.

– There is one main difference between sets in TLA
+ and B. In B all elements

of a set must have the same type, i.e., a set has the B type Pτ where τ is
the type of all its elements.

– In both languages functions are a mapping from a domain to a range. The
B type of a function is P(τ1 × τ2), where Pτ1 is the type of the domain and
Pτ2 is the type of the range.

– In TLA
+ a record is a special case of a function whose domain is a set

of strings (the field names). In B records have their own type struct(h1 :
τ1, . . . , hn : τn), where h1, . . . , hn are the names of the fields and τ1, . . . , τn
the corresponding field types.

– Likewise, tuples are based on functions in TLA
+. The domain is the interval

from 1 to n, where n is the number of components. We translate tuples as
sequences with the type P(Z × τ). Thereby all components of a tuple must
be of the same type τ .

In B only values of the same type are comparable to each other and variables as
well as constants can only have one type. To verify these rules a type checking
algorithm is required. Moreover we need a type inference algorithm to add miss-
ing type declarations to the translated B machine as shown in the example in
Sect 2. Type checking and type inference are closely related and can be handled
simultaneously.

We use an inference algorithm similar to [9], adapted to the B type system,
where we add an extra type u representing an unspecified type. At the beginning
each variable and constant have this type. The algorithm is based on the recursive
method eval(e, ε), dealing with a TLA

+ expression e and an expected type
ε. Evaluating an expression eval is applied recursively to its subexpressions.
Moreover eval tries to unify the expected type with the type of the expression and
returns the resulting type. The expected type of a subexpression is deduced from
type informations of the operator calling this subexpression. Type informations
of an operator arise from the translation. As an example the TLA

+ operator
+ is translated by the B built-in operator + and its operands are assumed to
be integers. There are polymorphic operators such as =, which only require
that both operands have the same type. In this case the expected type for both
operands is u but the resulting types of both sides have to be unified. Due
to unification, the eval method is only once applied to each (used) expression
of the TLA

+ module. Moreover, declarations in the configuration file are also
taken into account to infer the types of constants. The algorithm fails either if a
unification of two types fails or if a variable or constant still has a variable type
u (or a type constructor containing u such as Pu) at the end of algorithm.

3.2 Translation Rules

In this section we present translation rules for concepts which are different in
TLA

+ and B, or even missing in B.
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In contrast to TLA
+, B distinguishes between boolean values and predicates.

The difference is already present at the syntactical level. Logical operators such
as ∧ or ∨ cannot be applied to boolean values. Similarly, variables or constants
can not take a predicate as a value. Though, there is a way to convert from a
predicate to boolean and vice versa. A predicate can be converted to a boolean
value using the bool operator. The other way around, we can turn a boolean
value into a predicate by comparing it with true. The translation of the TLA

+

predicate
true = (true ∨ false)

demonstrates both conversions:

true = bool((true = true) ∨ (false = true))

The if/then/else construct can be used in variety of ways in TLA
+. The two

branches can consist of arbitrary expressions with or without primed variables.
There is no general way to translate this construct with the if/then/else sub-
stitution of B. In order to make a translation to B possible, we first have to
restrict both branches to the same type. In case the branches are predicates the
construct

if P then e1 else e2

can be translated using two implications as

(P ⇒ e1) ∧ (¬(P)⇒ e2)

If e1 and e2 are expressions, we cannot use this scheme. Our solution is to
create for both branches a lambda function, with respectively e1 and e2 as result
expression. Moreover we choose true as the sole dummy element of the domains.
The “trick” is to add the condition P respectively its negation ¬(P) to the
corresponding function. As a consequence, one of the functions is always empty.
As already mentioned, B functions are sets and we can apply ∪ to combine
them (the result is still a function here). To get the value of the if/then/else
construct, we just have to call the function with the value true as argument:

(λt .(t ∈ {true} ∧ P |e1) ∪ λt .(t ∈ {true} ∧ ¬P |e2)) (true)

Compared to other possible translations, ours has the advantage that the ex-
pressions e1 and e2 are guarded by P and ¬P , i.e., the translation of if x =
0 then 1 else 1/x is well-defined in B. The translation of the case construct
is based on the same principle. However, every case is treated as single branch
and only one case can be true at the same time.

The LET d
Δ
= f IN e construct allows to define a “local” operator d which

can only be used in the expression e. This operator is treated as an ordinary
operator and translated with the aid of a B definition; conserving the scope
of the operator. In TLA

+ operators within different LET/IN constructs could
have the same name. We avoid name clashes by adding suffixes to multiply used
names.
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In TLA
+ the choose operator is used to choose an arbitrary value of a set.

The operator works in a deterministic way and chooses always the same value for
a given set. It is often combined with a recursive function such as determining
the sum of a set. In B there is no way to express the general functionality of the
choose operator3 and recursive functions are still not (well) supported by B
tools. Hence, we developed a way to handle frequently used operators which are
based on the choose operator or on recursive functions. The principle is inspired
by the way TLC overrides operators by its Java implementation: we create a
new TLA

+ standard module (see Figure 3.2) with some useful operators, and
during the translation these operators will be overridden by B built-in operators.

module TLA2B

extends Integers, Sequences
MinOfSet(S)

Δ
= choose p ∈ S : ∀n ∈ S : p ≤ n

MaxOfSet(S)
Δ
= choose p ∈ S : ∀ n ∈ S : p ≥ n

SetProduct(p)
Δ
=

let prod [S ∈ subset Int ]
Δ
=

if S = {} then 1
else let q

Δ
= choose pr ∈ S : true

in q ∗ prod [S \ {q}]
in prod [p]

SetSummation(p)
Δ
=

let sum[S ∈ subset Int ]
Δ
=

if S = {} then 0
else let q

Δ
= choose pr ∈ S : true

in q + sum[S \ {q}]
in sum[p]

PermutedSequences(S)
Δ
=

let perms[ss ∈ subset S ]
Δ
=

if ss = {} then {〈〉}
else let ps

Δ
= [x ∈ ss �→

{Append(sq , x) : sq ∈ perms[ss \ {x}]}]
in union {ps[x ] : x ∈ ss}

in perms[S ]

The concepts of modularization are different in TLA
+ and B. In B a machine

is a closed system. Indeed, a machine can be included by another machine but
variables can only be modified by its operations. As a result, a single machine of
a compound system can be verified individually. A TLA

+ module does not need
to satisfy this property. Hence, we translate a compound of TLA

+ modules as
a single B machine:

– A module extending another module will be treated as a single module
containing declarations and definitions (including local definitions of the

3 Even though the operator does appear inside mathematical constructions of [1].
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extended module) of both modules. Otherwise, there are no further differ-
ences in comparison to a translation of a single module.

– The statement

I
Δ
= INSTANCE M WITH vM ← v , cM ← c

allows the specifier to use the definitions of the module M. Thereby, all
variables and constants of M have to be overridden by variables and constants
(or constant expressions) of the module instantiating M. A definition dM of
Module M can be accessed via I !dM . Also multiple instantiations of the
same module are possible. We translate every definition dM of M as an
ordinary definition by only renaming it to I dM and by overriding variables
and constants as described in the statement.

In Sect. 2 we translated a TLA
+ action from Fig. 1 to a B operation in Fig. 2,

but we did not exactly define what TLA
+ actions are and how they are ex-

tracted. An action is defined to be “an ordinary mathematical formula, except
that it contains primed as well as unprimed variables”(see p. 16 of [5]). Following
this definition we could handle the whole next state relation as a single action.
However, this is not advisable, amongst others because of poor user feedback for
animation, proof and model checking. Consequently we separate actions with the
aid of the disjunction operator. If a disjunction of two actions occurs in a sub-
definition of the next state relation, we also will treat them as separate actions
unless the subdefinition has no parameter. Parameters indicate that a subdef-
inition can be used in different variations and multiple times; the translation
should not dissolve this structure of a module. In this case the subdefinition is
translated with a B definition. The mechanism splitting the next-state relation
into separate actions is similar to what TLC does when it pre-processes TLA

+

specifications, except that TLC resolves definitions regardless if they have pa-
rameters.

A special translation is possible if an action contains an existential quantifier:

act
Δ
= ∃x ∈ S : P(x )

The bounded variables of the quantification are handled as parameters of the
resulting B operation:

act op(x ) = any . . .where x ∈ S ∧ P(x ) then . . . end

The advantage is that a user can choose a possible value for the parameter x
during the animation process (values for x satisfying P(x ) are generated by
ProB).

4 Implementation and Experiments

The translator is implemented in Java and is called TLA2B. The frontend of
TLA2B is based on SANY (cf., Chapter 12 of [5]) for parsing the module and
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performing a semantic analysis. Likewise, SANY serves as the frontend of the
modelchecker TLC. Moreover, we reuse the configuration file parser of TLC.
But the semantic analysis of the configuration file ist different: TLC requires a
value for every constant of the corresponding module. In our case, a constant
only has to be given a value if the type of the constant cannot be inferred from
the module. Otherwise, values of constants can be chosen at a later point in time
(ProB infers values for a constant satisfying possible restrictions of the assume
clause). TLA2B can handle the clauses specification (temporal description of
the specification), invariant (an invariant holding in every state) and overriding
of constants and definitions beside the already mentioned init (initial state) and
next (next state relation). Before inferring and checking types, we conduct a
further analysis phase discarding the unused definitions of a module. As an
example, temporal definitions are excluded from the translation. The remaining
part of the TLA2B consists of implementations of the algorithms described in
Sections 2 and 3. Finally, TLA2B creates a B machine file (.mch) containing the
translated B machine.

TLA2B has been integrated into ProB as of version 1.3.5: opening a TLA
+

module ProB invokes TLA2B to translate the module. As can bee seen in Fig. 3,
the TLA

+ module is displayed in the editor while ProB runs the translated B
machine in the background. The editor offers syntax highlighting and gives an
easy way to modify the module.

Fig. 3. ProB animator for the SimpleAllocator specification
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The following examples show some fields of application of TLA2B in combina-
tionwithProB.4 It is not our intention to present a complete comparisonbetween
ProB andTLC. The experiments were all run on a systemwith Intel Core2 Duo 2
GHz processor, runningWindows Vista 32 Bit, TLC2 2.03 andProB 1.3.5-beta1.

Note that both ProB and TLC support symmetry, but in different ways. In
TLC symmetries are provided by the user (e.g., in a configuration file) and are
not checked, ProB identifies symmetries over given sets automatically.

SimpleAllocator. As the first example we use the resource allocator case study
from [8]. The purpose of the system is to manage a set of resources that are
shared among a number of client processes. The first abstract specification of
the system is the SimpleAllocator. TLA2B translates the module without the
need for any modification (the TLA

+ module and the translated B machine
are shown in Appendix A). Clients and resources are specified as sets of model
values and allow TLC as well as ProB to use symmetry. Table 1 summarises the
running times of model checking for TLC and ProB. Without symmetry TLC

is superior to ProB, but for larger set sizes ProB’s symmetry outperforms
TLC. It seems that TLC’s symmetry reduction cannot deal well with larger
base set sizes and a lot of symmetrical states exist (incidentally, a situation
where symmetry reduction could be particularly useful). This is actually to be
expected, given the description of the symmetry reduction algorithm in [5]: when
a state is addedTLC checks for every permutation of it whether it already exists.
This is expensive when there are many such permutations.

Table 1. SimpleAllocator: Runtimes of Model Checking (times in seconds)

Clients Resources TLC TLC ProB ProB
(no symmetry) (symmetry) (no symmetry) (symmetry)

3 2 <1 <1 <2 <1

4 3 28 2 678 8

5 3 450 29 - 28

6 3 >4200 573 - 90

Login. To specifically test this aspect of symmetry reduction, we have written
the TLA specification Login which simply allows users to login and logout and
deadlocks if all users have logged in. Here, for 9 Users, TLC without symmetry
reduction takes 1 second to find the deadlock, but did not terminate within 105
minutes with symmetry enabled. ProB takes 0.73 seconds without symmetry,
and 0.04 using hash symmetry reduction [7]. For 21 users, TLC requires 141
seconds to find the deadlock without symmetry, and with symmetry an error
message is generated.5 ProB with hash symmetry takes 0.29 seconds to find

4 The source code of the examples are available in the technical report at:
http://www.stups.uni-duesseldorf.de/w/Special:Publication/

HansenLeuschelTLA2012 .
5 “Attempted to construct a set with too many elements (>1000000)”. This error
message already appears with 15 Users.

http://www.stups.uni-duesseldorf.de/w/Special:Publication/HansenLeuschelTLA2012
http://www.stups.uni-duesseldorf.de/w/Special:Publication/HansenLeuschelTLA2012
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the deadlock for 21 users. The constraint-based deadlock checking algorithm [4]
finds a deadlock in less than 0.01 seconds for 21 users.

SchedulingAllocator. This is an advanced version of the SimpleAllocator from
[8]. However, this time a small modification is required to be able to validate
the specification using our tool. Indeed, the SchedulingAllocator contains the
definition PermSeqs(S ) that is based on a recursive function and computes
the set of permutation sequences of the set S. To translate this to the B built-
in operator, we have to override PermSeqs with the PermutedSequences

definition provided by our TLA2B module. For this, we simply have to create
a new module MCSchedulingAllocator extending the SchedulingAllo-

cator as well as the TLA2B module and then add the override statement
PermSeqs <- PermutedSequences to the configuration file. The results of model
checking are comparable to the SimpleAllocator specification, and can be found
in Table 2.

Table 2. McSchedulingAllocator: Running times of Model Checking (times in seconds)

Clients Resources TLC ProB
(symmetry) (symmetry)

3 2 1 2

4 3 70 165

5 3 >3600 1579

Producer-Consumer. Another example is the specification of a multi-threaded
program by Charpentier taken from http://www.cs.unh.edu/%7Echarpov/Teaching/TLA/.
The specification describes a system of threads working on a buffer. In case of a
critical ratio between consumer and producer threads, the system can deadlock.
After translation ProB reproduces the various deadlocks by model checking. For
example, for 11 producers and 10 consumers a deadlock can be reached after 431
steps. Using the AtelierB provers we have also managed to prove the invariant of
that model, i.e., that the buffer capacity is never exceeded and that the waitSet
only contains valid participants. This required 8 interactive proofs and 5 automatic
ones.

Constraint Solving: GraphIso and N-Queens. One of the distinguishing
features of ProB is its ability to solve complicated high-level constraints. For
example, to find an isomorphism between two graphs (of out-degree exactly one
and with nine vertices) , ProB requires less than a second to find all solutions,
while TLC requires over two hours to find the first solution.

As another example, consider the well-known N-Queens puzzle. We have ex-
perimented with two encodings of the puzzle: one6 where we use the model
checker to search for all valid placements of N queens on an N×N chessboard
and a more declarative encoding where we directly write a predicate describing

6 The specification was written by S. Merz and is included in the TLA
+ Tools

Distribution.
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all valid solutions (i.e., all solutions are generated in single set-builder rather
than through an iterative algorithm). As can be seen in Table 3, the model
checking approach can only deal with very small values of N. In contrast, ProB
can handle values of N up to 13 for the declarative version of N-Queens. Fur-
thermore, when one is interested in only one solution, ProB can, e.g., find a
solution for N=50 in less than a second. (Restricting to single solutions does not
make much of a performance difference for TLC, however.)

Table 3. Finding all solutions for N-Queens (times in seconds)

N Solutions N-Queens (imperative) N-Queens (declarative)
TLC ProB TLC ProB

4 2 1 <2 <1 <1

5 10 >3600 >3600 <1 <1

6 4 - - 1 <1

7 40 - - 16 <1

8 92 - - 375 <1

9 352 - - 2970 <1

10 724 - - - <1

11 2,680 - - - <1

12 14,200 - - - 9

13 73,712 - - - 41

We have also successfully animated several other existing models from the lit-
erature, but several specifications are rejected by TLA2B due to type conflicts or
unsupported concepts such as real numbers. In summary, the ProB constraint
solving capabilities open up the way to animate and validate new kinds of specifi-
cations, which are outside the reach ofTLC.TLC on the other hand is extremely
valuablewhen it comes to explicit statemodel checking for large state spaces. How-
ever, ProB’s symmetry reduction techniques seem to scale better than TLC’s.

5 More Related Work, Discussion and Conclusion

The paper by Mokhtari and Merz [10] presents an animator and model checker
for an executable subset of TLA

+. The article clearly outlines the needs for an
animator for TLA

+; unfortunately the tool seems to be no longer to be available.
Mosbahi et al. [11] describe an approach of a translation from B to TLA

+.
In contrast to our translation they have to deal with concepts which are miss-
ing in TLA

+ such as partial functions. Moreover their main intention is to let
TLC verify liveness properties on the translated TLA

+ specification, to over-
come the restriction of the B-Method to invariance properties. Otherwise, [12]
presents a LTL model checker, implemented inside ProB, that can verify live-
ness properties. So far, this model checker does not support fairness conditions,
but an extension would give us the possibility to enlarge TLA2B to support the
temporal part of TLA

+.
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In terms of features, we also plan to provide for TLA
+ the graphical visu-

alization features of ProB already available for B, Z and Event-B. More work
on translating various constructs effectively to B, such as the choose operator
or recursive functions, is planned. Another important avenue of further work
lies in improving our translation to B. In particular, we aim to generate various
B style substitutions such as assignments or if/then/else constructs, rather
than generic any substitutions. This makes the B translation more readable,
but would also lead to noticeable performance improvements with ProB. E.g.,
in our experiments, this would lead, to a further 20 % runtime improvement for
the SimpleAllocator example and up to a factor 2 for other examples.

We would also like to better exploit the symmetry reduction provided by
ProB. While the SimpleAllocator, SchedulingAllocator and Login example
worked well, the symmetry in the Producer-Consumer example could only be
exploited by manually tweaking the B translation. We would like to automate
this as much as possible, as it can lead to a considerable performance boost
(after tweaking ProB with symmetry requires about a minute to find the 413
step counter example for the Producer-Consumer example; TLC requires more
than three and a half hours to to find a deadlock7). We are also interested in
the correctness of our translation. A formal correctness proof is probably not
feasible, but we hope to be able to extensively validate our translation, e.g., by
exporting the state space computed by ProB to TLC and use TLC to check
that it conforms to the original specification.

In conclusion, we have presented a translation from TLA
+ to B, which makes

use of a type inference algorithm and effectively translates a large subset of
TLA

+ to B. The complicated aspects of the translation are linked to the different
modularization concepts, as well as to various operators which are missing in
B. The translation also identifies operations and parameters within the TLA

+

specification formula, in order to make the translation more readable as well
as to enable effective application of B tools. In particular, by integrating our
translation into the ProB validation tool, we obtain a new tool for TLA

+

specifications which is complementary to TLC, providing convenient animation,
expression evaluation, constraint solving and improved symmetry reduction. As
our experiments show, TLC remains more effective for brute-force explicit state
model checking, at least for those specifications which do not require solving
complicated constraints. As such it is very useful that both these tools can be
applied to TLA

+ specifications. The translation itself is also human readable,
and we hope that the paper also provides a bridge between the TLA

+ and B
communities.
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7 When trying to use symmetry, the same error message occurs as in the Login example.
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A A More Complicated Translation: SimpleAllocator

The configuration file for the model below is as follows:
init Init next Next constants Clients = {c1, c2, c3}Resources = {r1, r2}

module SimpleAllocator

extends FiniteSets, TLC
constants Clients, Resources
assume IsFiniteSet(Resources)
variables unsat , alloc
TypeInvariant

Δ
= ∧ unsat ∈ [Clients → subset Resources]

∧ alloc ∈ [Clients → subset Resources]
available

Δ
= Resources \ (union {alloc[c] : c ∈ Clients})

http://www.atelierb.eu/
http://hal.inria.fr/inria-00107809
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Init
Δ
= ∧ unsat = [c ∈ Clients �→ {}] ∧ alloc = [c ∈ Clients �→ {}]

Request(c, S)
Δ
= ∧ unsat [c] = {} ∧ alloc[c] = {}

∧ S = {} ∧ unsat ′ = [unsat except ! [c] = S ] ∧ unchanged alloc
Allocate(c, S)

Δ
= ∧ S = {} ∧ S ⊆ available ∩ unsat [c]

∧ alloc′ = [alloc except ! [c] = @ ∪ S ] ∧ unsat ′ = [unsat except ! [c] = @ \S ]
Return(c, S)

Δ
= ∧ S = {} ∧ S ⊆ alloc[c]

∧ alloc′ = [alloc except ! [c] = @ \S ] ∧ unchanged unsat
Next

Δ
= ∃ c ∈ Clients, S ∈ subset Resources :

Request(c, S) ∨Allocate(c, S) ∨ Return(c, S)

MACHINE SimpleAllocator
SETS enum1 = {r1, r2}; enum2 = {c1, c2, c3}
CONSTANTS Clients, Resources
PROPERTIES Clients = enum2 ∧ Resources = enum1

∧ ∃seq .(seq ∈ seq(Resources) ∧ ∀s.(s ∈ Resources ⇒
∃n.(n ∈ 1 .. size(seq ) ∧ seq (n) = s)))

DEFINITIONS
TypeInvariant == unsat ∈ Clients → P(Resources)

∧ alloc ∈ Clients → P(Resources);
available == Resources - union(t |∃c.(c ∈ Clients ∧ t = alloc(c)));
Init == unsat = λc.(c ∈ Clients| {}) ∧ alloc = λc.(c ∈ Clients| {});
Request(c,S) == unsat(c) = {} ∧ alloc(c) = {}

∧ (S = {} ∧ unsat n = unsat � {c �→ S});
Allocate(c,S) == S = {} ∧ S ⊆ available ∩ unsat(c)

∧ alloc n = alloc � {c �→ (alloc(c) ∪ S)}
∧ unsat n = unsat � {c �→ (unsat(c) - S)};

Return(c,S) == S = {} ∧ S ⊆ alloc(c) ∧ alloc n = alloc � {c �→ (alloc(c) - S)};
ResourceMutex == ∀c1,c2.(c1 ∈ Clients ∧ c2 ∈ Clients ⇒

(c1 = c2 ⇒ alloc(c1) ∧ alloc(c2) = {}));
VARIABLES unsat, alloc
INVARIANT unsat ∈ P(enum2×P(enum1))
∧ alloc ∈ P(enum2×P(enum1)) ∧ TypeInvariant ∧ ResourceMutex

INITIALISATION unsat, alloc ∈ (Init)
OPERATIONS
Request Op(c, S) = ANY unsat n

WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Request(c, S)
THEN unsat := unsat n END;

Allocate Op(c, S) = ANY unsat n, alloc n
WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Allocate(c, S)
THEN unsat, alloc := unsat n, alloc n END;

Return Op(c, S) = ANY alloc n
WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Return(c, S)
THEN alloc := alloc n END;

END
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