
A UTP Semantics of pGCL

as a Homogeneous Relation

Riccardo Bresciani and Andrew Butterfield⋆

Foundations and Methods Group,
Trinity College Dublin,

Dublin, Ireland
{bresciar,butrfeld}@scss.tcd.ie

Abstract. We present an encoding of the semantics of the probabilis-
tic guarded command language (pGCL) in the Unifying Theories of
Programming (UTP) framework. Our contribution is a UTP encoding
that captures pGCL programs as predicate-transformers, on predicates
over probability distributions on before- and after-states: these predi-
cates capture the same information as the models traditionally used to
give semantics to pGCL; in addition our formulation allows us to de-
fine a generic choice construct, that covers conditional, probabilistic and
non-deterministic choice. As an example we study the Monty Hall game
in this framework.

1 Introduction

The Unifying Theories of Programming (UTP) research activity seeks to bring
models of a wide range of programming and specification languages under a
single semantic framework in order to be able to reason formally about their
integration [12,5,2,22]. A success in this area has been the development of the
Circus language [21], which is a fusion of Z and CSP, with a UTP semantics, pro-
viding specifications using a “state-rich” process algebra along with a refinement
calculus; recent extensions to Circus have included timed [23] and synchronous
[7] variants. Recent interest in aspects of the POSIX filestore case study in the
Verification Grand Challenge [6] has led us to consider integrating probability
into UTP, with a view to eventually having a probabilistic variant of Circus.

UTP is based on (state-)predicate transformers, whereas probabilistic mod-
els typically involve distributions over states, and so the best way to integrate
probability into the UTP framework is not obvious. This paper presents first
steps in constructing a theory of probabilistic programs that is expressed us-
ing predicate-transformers1. The focus here is on a UTP theory that captures
the semantics of the probabilistic guarded command language (pGCL) [15], by

⋆ The present work has emanated from research supported by Science Foundation
Ireland grant 08/RFP/CMS1277 and, in part, by Science Foundation Ireland grant
03/CE2/I303 1 to Lero – the Irish Software Engineering Research Centre.

1 So probabilistic programs are predicates too (with apologies to C.A.R. Hoare [11]).

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 191–205, 2012.
� Springer-Verlag Berlin Heidelberg 2012



192 R. Bresciani and A. Butterfield

means of predicates involving a homogeneous relation among distributions over
states.

This paper is structured as follows: we describe the background to both UTP
and pGCL (�2); discuss the motivation for and technical details of our observable
variables (�3); give the semantics of pGCL in our framework (�4); and conclude
(�5).

2 Background

2.1 UTP

UTP follows the key principle that “programs are predicates” [11]: theories in
UTP are expressed as second-order predicates over a pre-defined collection of free
observation variables, referred to as the alphabet of the theory. The predicates are
generally used to describe a relation between a before-state and an after-state,
the latter typically characterised by dashed versions of the observation variables.
For example, a program using two variables x and y might be characterised by
having the set {x,x′, y, y′} as an alphabet, and the meaning of the assignment
x := y+3 would be described by the predicate

x′ = y + 3 ∧ y′ = y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational
calculus for reasoning about programs.

In addition to observations of the values of program variables, often we need
to introduce observations of other aspects of program execution via so-called
auxiliary variables. So, for example, in order to reason about total correctness,
we need to introduce boolean observations that record the starting (ok) and
termination (ok′) of a program, resulting in the above assignment having the
following semantics:

ok ⇒ ok′ ∧ x′ = y + 3 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value
of y plus three, with y unchanged).

A problem with allowing arbitrary predicate calculus statements to give se-
mantics is that it is possible to write unhelpful predicates such as ¬ok ⇒ ok′,
which describes a “program” that must terminate when not started. In order to
avoid assertions that are either nonsense or infeasible, UTP adopts the notion
of “healthiness conditions” which are monotonic idempotent predicate trans-
formers whose fixpoints characterise sensible (healthy) predicates. Collections of
healthy predicates typically form a sub-lattice of the original predicate lattice
under the reverse implication ordering [12, Chp. 3]. Key in UTP is a general
notion of program refinement as the universal closure of reverse implication2:

S ⊑ P =̂ [P ⇒ S]

2 Square brackets denote universal closure, i.e. [P ] asserts that P is true for all values
of its free variables.



A UTP Semantics of pGCL as a Homogeneous Relation 193

wp.abort.P ostE =̂ 0
wp.skip.P ostE =̂ PostE

wp.(x ∶= e).P ostE =̂ PostE[e/x]
wp.(prog1;prog2).P ostE =̂ wp.prog1.(wp.prog2.P ostE)

wp.(prog1◁ c▷ prog2).P ostE =̂ (wp.prog1.P ostE)∣c + (wp.prog2.P ostE)∣¬c
wp.(prog1 ⊓ prog2).P ostE =̂ min{wp.prog1.P ostE,wp.prog2.P ostE}

wp.(prog1 p⊕ prog2).P ostE =̂ p ⋅ wp.prog1.P ostE + (1 − p) ⋅ wp.prog2.P ostE

Fig. 1. wp-semantics of pGCL, adapted from [15, p. 26]
Notation: [e/x] denotes free occurrences of x replaced by e; ∣c denotes expectation
limited to states satisfying c.

Program P refines S if for all observations (free variables) S holds whenever
P does.

The UTP framework also uses Galois connections to link different languages
and theories with different alphabets [12, Chp. 4], and often these manifest them-
selves as further modes of refinement.

2.2 pGCL

pGCL extends GCL with an additional language construct, namely that of prob-
abilistic choice prog1 p⊕ prog2, denoting a statement that executes prog1 with
probability p, and prog2 with probability (1 − p) [17,15,16,19].

In [15] pGCL is given a semantics that generalises Dijkstra’s weakest pre-
condition semantics to what they term a weakest pre-expectation semantics.

An expectation is a function that assigns a weight (a non-negative real num-
ber) to program states: it is therefore a random variable. An expectation cor-
responding to a predicate can be defined as a random variable that maps a
state to 1 if it satisfies the predicate and to 0 otherwise. Arithmetic operators
and relations are extended pointwise to expectations, as is multiplication by a
scalar.

If PostE is a (post-)expectation after running program prog, then wp.prog.
PostE is the corresponding weakest3 (pre-)expectation before the program runs:
for each state it returns the minimum expected final weight.

The weakest pre-expectation semantics for pGCL is shown in Figure 1. The
key features to note in this semantics are that probabilistic choice is the obvious
weighting of its alternatives’ expectations, whereas demonic choice returns the
pointwise minimum.

Non-determinism is crucial in order to define a sensible refinement relation4:

spec ⊑ prog ≙ ∀PostE ● wp.spec.PostE ≤ wp.prog.PostE

3 One expectation is weaker than another if for all states it returns at most the same
weight — it is the ≤ relation lifted pointwise.

4 We have definition of refinement that matches that of pGCL, which we do not discuss
in this paper.



194 R. Bresciani and A. Butterfield

A program prog refines a specification spec if the minimum expected weight for
each state after prog has run is at least as much as we would get after spec has
run.

An alternative model for pGCL is one that sees a program as a function from
initial states to sets of probability distributions over the state space [10,15]

S → P(S → [0,1])

Programs with semantics of this form can be sequentially composed using Kleisli
composition (See Appendix A), which can be interpreted as lifting the semantic
domain to relations between before- and after-distributions ((S → [0,1]) ↔ (S →
[0,1])) and then using relational composition [15, Chp. 5]. It is this form that
has formed the basis for most of the prior work encoding pGCL semantics in
UTP (see Section 2.3).

2.3 Probabilistic UTP

There has already been a certain amount of work looking at encoding probability
in a UTP setting. He and Sanders have presented an approach to unification
of probabilistic choice with standard constructs [9], and this work provides an
example of how the laws of pGCL could be captured in UTP as predicates about
program equivalence and refinement. However only an axiomatic semantics was
presented, and the laws were justified via a Galois connection to an expectation-
based semantic model.

Sanders and Chen then explored an approach that decomposed demonic choice
into a combination of pure probabilistic choice and a unary operator that ac-
counted for demonic behaviour [3]. There they commented on the lack of a
satisfactory UTP theory, where probabilistic and demonic choice coexist.

A probabilistic BPEL-like language has recently been described by He [8]
that gives a UTP-style semantics for a web-based business semantics language.
This language is GCL with extra constructs to handle probabilistic choice and
compensations and coordination operators, including exception handling. The
UTP model that is developed does not relate before- and after-variables of the
same type, but instead uses predicates to encode a relationship between an initial
state and a final probability distribution over states.

What all the treatments above have in common is that the UTP predicates
relate an initial program variable state (σ) to a final probability distribution (δ′)
over states, so the relation is not homogenous. This complicates the definition of
sequential composition (which has to involve some form of Kleisli composition)
and also makes building links to homogeneous UTP theories more difficult. The
collection of theories surrounding Circus are all based on homogeneous relations
(before- and after-observations of the same type). This means that all of these
theories have uniform definitions of many common language features, such as
sequential composition. This is the main motivation for the development of a
homogeneous UTP theory of pGCL.



A UTP Semantics of pGCL as a Homogeneous Relation 195

In this paper, we present a UTP encoding of pGCL semantics as a homogenous
relation between probability distributions over the set of possible states, relating
a before-distribution (δ) to an after-distribution (δ′).

3 Observing Distributions

In UTP we usually talk about variables and the values they map to, so a näıve
(and quite straightforward) generalization to handle probability would simply
consist of mapping variables to distributions over their values, and that would
lead our semantic model to be a mapping from variables to value-distributions:

Var → (Val → [0..1])

Although such an easy generalization may look appealing, it fails to give the
appropriate semantics. The reason for this is that many properties of interest
depend on an “entanglement” among the variables and this is not captured by
the above model.

In order to retain all of the necessary information, we have to consider distri-
butions relating entire program states to a corresponding weight, and we have
the form:

δ, δ′ ∶ (Var → Val) → [0..1]

Later on we will see how these can be related to the expectations being trans-
formed by the semantic model of pGCL already described.

This need to bundle all the information regarding program variables into
a single observation is not a major constraint. In fact in many presentations
of Circus-like languages it is often the convention to model program variable
values with a single state observation σ ∶ Var → Val , and to treat it as a finite
map, which simplifies the treatment of alphabets to a considerable degree: our
approach here towards pGCL is analogous. For the purposes of this paper, to
keep things simple and to allow us to focus on the key concepts, we shall assume
that the set of program variables is finite and fixed, and all states are total
functions on this variable set.

We now look at some mathematical preliminaries regarding distributions.
Generally speaking we can define a distribution as a function χmapping states

to real numbers5, and define its weight as:

∥χ∥ ≙ ∑
σ∈domχ

χ(σ)

We will be working with the following two sub-classes:

– a weighting distribution π has the property that for every state σ we have
π(σ) ≤ 1 — we define two particular weighting distributions, ε and ι, as the
ones mapping every state to 0 and 1 respectively. There is no limit for the
distribution weight;

5 In other words, it is a real-valued random variable — pGCL expectations are there-
fore distributions with the additional constraint of having only non-negative values.



196 R. Bresciani and A. Butterfield

– a probability distribution δ is a weighting distribution with the additional
property that ∥δ∥ ≤ 1.

We will use the term sub-distribution to refer to a probability distribution where
∥δ∥ < 1 and the term full distribution to refer to a probability distribution where
∥δ∥ = 1.

Generally speaking, it is possible to operate on distributions by lifting point-
wise operators such as addition, multiplication and multiplication by a scalar;
analogously we can lift pointwise all traditional relations and functions on real
numbers.

In the case of pointwise multiplication, it is interesting to see it as a way
of “re-weighting” a distribution: we have a particular interest in the case when
one of the operands is a weighting distribution π, as we will use this operation
to give semantics to choice constructs. We opt for a postfix notation to write
this operation, as this is an effective way of marking when pointwise multiplica-
tion happens in the operational flow: for example if we multiply the probability
distribution δ by the weighting distribution π, we will write this as δ�π�.

Given a condition (predicate on state) c, we can define the weighting distribu-
tion that maps every state where c evaluates to true to 1, and every other state
to 0. The value of each state can be seen as the boolean value of c in that state
multiplied by 1, so we overload the above notation and note this distribution as
ι�c�6. In general whenever we have the multiplication of a distribution by ι�c�,
we can use the postfix operator �c� for short, instead of using �ι�c��.

It is worth pointing out that if we multiply a probability distribution δ by
ι�c�, we obtain a distribution whose weight ∥δ�c�∥ is exactly the probability of
being in a state satisfying c.

3.1 Assignment

The challenge we now face is describing how assignment, which is very much ori-
ented towards individual variables, is given a semantics in terms of a distribution
that involves complete entanglement of those variables. In effect an assignment
statement x:=e involves a partial entanglement of variable x with the variables
mentioned in e. In general as we build up larger programs using single assign-
ment as the basic component we observe an increasing degree of entanglement,
which can often be captured as an appropriate simultaneous assignment, so we
shall work at this level here.

Given a simultaneous assignment v:= e, where underlining indicates that we
have lists of variables and expressions of the same length, we denote its effect on
an initial probability distribution δ by δ{∣e/v∣}. The postfix operator {∣e/v∣} reflects
the modifications introduced by the assignment — the intuition behind this,
roughly speaking, is that all states σ where the expression e evaluates to the
same value val = evalσ(e) are replaced by a single state σ′ = (v ↦ val ) that
maps to a probability that is the sum of the probabilities of the states it replaces.

(δ{∣e/v∣})(σ′) ≙ Σ
{σ ∣ σ′=σ � {v↦evalσ(e)}} δ(σ)

6 If we see c as a predicate, then ι�c� is the corresponding expectation.



A UTP Semantics of pGCL as a Homogeneous Relation 197

abort =̂ true

skip =̂ δ′ = δ
x ∶= e =̂ δ′ = δ{∣e/x∣}
A;B =̂ ∃δm ●A(δ, δm) ∧B(δm, δ′)

A◁ c▷B =̂ ∃δA, δB ●A(δ�c�, δA) ∧B(δ�¬c�, δB) ∧ δ
′ = δA + δB

A p⊕B =̂ ∃δA, δB ●A(p ⋅ δ, δA) ∧B((1 − p) ⋅ δ, δB) ∧ δ
′ = δA + δB

Fig. 2. UTP Semantics for the deterministic constructs of pGCL

Here we treat the state as a map, where � denotes map override; this operator
essentially implements the concept of “push-forward” used in measure theory,
and is therefore a linear operator.

Assignment preserves the overall weight of a probability distribution if e can
be evaluated in every state, and if not the assignment returns a sub-distribution,
where the “missing” weight accounts for the assignment failing on some states
(this failure prevents a program from proceeding and causes non-termination).

These are the most significant elements and constructs that characterise our
framework: this has been a presentation from a fairly high level, and it should
have provided the reader with a working knowledge of the framework; a formal
and rigorous definition of the elements presented so far is beyond the scope of
this paper and can be found in [1], along with some soundness proofs.

4 UTP Semantics of pGCL

We are going to express the semantics of pGCL in UTP using predicates based
on a homogeneous relation among probability distributions: we will see programs
as distribution-transformers, as they change a before-distribution δ into an after-
distribution δ′.

This semantics can be related to the relational semantics and the wp-semantics
of pGCL. [1]

4.1 Deterministic Constructs

The semantic definitions for all deterministic constructs of pGCL are listed in
Figure 2 and we will now proceed to discuss each one.

The failing program abort is represented by the predicate true, which cap-
tures the fact that it is maximally unpredictable. Program skip makes no
changes and immediately terminates.

Assignment x ∶= e remaps the distribution as has already been discussed in
the previous section 3.1.

Sequential composition A;B is characterised by the existence of a “mid-point”
distribution that is the outcome of the first program, and is then fed into the
second.

We characterise conditional choice A ◁ c ▷ B by using the condition (and
its negation) to filter the left- and right-hand programs appropriately, and we



198 R. Bresciani and A. Butterfield

simply sum the (now effectively disjoint) distributions. Probabilistic choice A p⊕
B simply uses the probability and its complement to scale the distributions for
merge — this definition preserves all usual properties. In effect the predicate is
only satisfied by any combination of left and right distributions that is pointwise
larger than the minimum of both.

It is possible to build an isomorphism to relate the semantics of determinis-
tic constructs described so far to the semantics proposed by Kozen [13,14] for
probabilistic programs.

4.2 Non-deterministic Choice

We are now going to address non-determinism. According to the relational se-
mantics of pGCL from [10,15], which sees programs as relations from a state σ
to a probability distribution, we have that7

(A ⊓B).σ = ∪p∈[0..1](A p⊕B).σ

If a demonic choice is performed on a state, the set of resulting distributions
is that containing all possible distributions resulting from a probabilistic choice
with probability p varying in the range [0..1].

Seeing this, one could (reasonably?) expect the following definition for non-
deterministic choice in our framework:

A ⊓B
?
= ∃p ●A p⊕B

However this definition does not work. In particular, with the above definition,
we can prove the following (which is most definitely not a law of pGCL) :

(A ⊓B); (C p⊕D) = (C p⊕D); (A ⊓B) (!?)

It describes a demonic choice that is both history-aware, and prescient, and this
latter ability to look into the future is undesirable, and infeasible.

The key point to note is that the first statement is talking about the possible
resulting distributions starting from one single state, whereas this last definition
considers all possible starting states. As a result the set of after-distributions that
satisfy this definition of demonic choice (for a given before-distribution) is strictly
smaller then the set of after-distributions satisfying the first statement. We can
easily see this by considering that if we take the Kleisli lifting of (A ⊓B).σ for
σ ranging over the whole state space. We obtain some after-distributions which
are the result of composing programs where p is not constrained to be constant
over all states, and these cases are ruled out in the proposed definition by the
single quantification of p valid for all states.

The solution is therefore to take a weighting distribution π, use it with its
complementary distribution π̄ = ι−π) to weight the distributions resulting from
the left- and right-hand side respectively, and existentially quantify it:

A ⊓B ≙ ∃π, δA, δB ●A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB

7 Here we are using the point notation for function application, as in [15].



A UTP Semantics of pGCL as a Homogeneous Relation 199

In this way π can range over the set of weighting distributions, and the set of
after-distributions satisfying this second definition coincides with the set obtain-
able via the Kleisli lifting mentioned above.

A few more comments: usually we talk about demonic non-determinism when
we are expecting the worst-case behaviour, to model something that behaves
“as bad as it can” for any desired outcome, nevertheless our definition of non-
deterministic choice per se mandates no such behaviour: depending on the con-
text where it is used (e.g. in a framework where refinement is defined in a similar
way as for pGCL), this behaviour shows up but it is not intrinsic to the definition
— from this perspective we have a similar situation as in the relational model
of [10,15].

We can see that non-determinism yields a many-to-many relation: a program
can be seen as a relation that associates probability before-distributions with
non-disjoint sets of probability after-distributions.

The non-deterministic choice operator is idempotent according to our defi-
nition, in accordance with the pGCL semantics we take as a guide. Although
some definitions of demonic choice in the literature have this property, there are
others where this property does not hold: for example if on both sides we have
the same program containing a probabilistic choice and this choice is resolved in-
dependently on each side before the non-deterministic choice is performed, then
idempotency does not hold. Nonetheless idempotency does hold if the proba-
bilistic choice is triggered after the non-deterministic choice is made — this
is the behaviour that we can find in our framework and in pGCL,where non-
deterministic choice is history-aware, but lacks prescience [9, p.187].

We can reproduce prescient non-deterministic behaviour if we run the program
twice with probabilistic choice on local variables, and then merge the outputs
by means of a non-deterministic choice: this is a behaviour that has nothing to
do with idempotency — we keep the actions of one program separate from the
other’s, so we are actually dealing with two different program instances that
share the same specification.

We are now going to treat the well-known Monty Hall game as an example,
which contains all of the main constructs of pGCL and shows the interaction
between demonic and probabilistic choice.

The Monty Hall Game. In the Monty Hall game a player is challenged to
guess which of the three doors in front of him hides a car. After having chosen a
door among the three possible options, Monty Hall will open one of the remaining
two doors: Monty Hall knows where the car is, so he is going to open one of the
other two; the player is given the chance to change his guess at this point.

It is known from the literature that the player will maximize the probability
of finding the car if now he changes the door he has chosen (the probability will
be 2/3) — this is Bertrand’s box paradox (1889).

In fact the player can lose only if his first choice was the i-th door, which is
hiding the car (and this happens with probability 1/3), so after Monty Hall has
opened the k-th door, that is one of the two hiding a goat, the switching strategy
leads the player’s final choice to be the j-th door, which is hiding a goat.



200 R. Bresciani and A. Butterfield

Nevertheless this is a winning strategy with probability 2/3, as the chances of
winning equal the chances of choosing a door hiding a goat, when all doors are
closed. In fact choosing the j-th door forces Monty Hall to open the k-th door,
and switching makes the player choose the i-th door.

The following is a short program, which uses the program constructs defined
above to implement the game — in Figure 3 we give the definition for each
variable, function and instruction that we are using:

P ≙ setup;player;host;guess

The variables a, b, c have values in the set {1,2,3}, therefore the state space is:

S = {σ ∣ σ = v ↦ val }

where v = (a, b, c) and val ∈ {1,2,3} × {1,2,3} × {1,2,3}.
The initial distribution is a parameter of the problem: we assume its weight

is 1, but make no further assumptions on the individual weight of each state.
The first instruction is made of three assignments8, combined via non-

deterministic choice:

a ∶= i = δ′ = δ{∣i/a∣}

setup = ∃π1, π2, π3 ● δ
′ = δ�π1�{∣1/a∣} + δ�π2�{∣2/a∣} + δ�π3�{∣3/a∣}

∧ π3 = ι − π1 − π2

The second instruction is also made of three assignments, but this time they are
combined via a uniform probabilistic choice:

b ∶= i = δ′ = δ{∣i/b∣}

player = δ′ = 1/3 ⋅ δ{∣1/b∣} + 1/3 ⋅ δ{∣2/b∣} + 1/3 ⋅ δ{∣3/b∣}

a ≙ the position of the car S(x, y) ≙ min({1,2,3} ∖ {x, y})

b ≙ the player’s guess Hm(x) ≙ min({1,2,3} ∖ {x})

c ≙ Monty Hall’s hint HM(x) ≙ max({1,2,3} ∖ {x})

setup ≙ a ∶= 1 ⊓ (a ∶= 2 ⊓ a ∶= 3) [1]

player ≙ b ∶= 1 1
3
⊕ (b ∶= 2 1

2
⊕ b ∶= 3) [2]

host ≙ c ∶= S(a, b) ◁ (a ≠ b) ▷ (c ∶= Hm(a) ⊓ c ∶= HM(a)) [3]

guess ≙ b ∶= S(b, c) [4]

Fig. 3. Variables, functions and instructions for the program implementing the Monty
Hall game

8 We use the notation {∣e/x∣} for the assignment x:=e, which leaves all other variables
unchanged.



A UTP Semantics of pGCL as a Homogeneous Relation 201

We have an if-statement in the third instruction, so we have:

c ∶= S(a, b) = δ
′

= δ{∣S(a,b)/c∣}

c ∶= Hm(a) = δ′ = δ{∣Hm(a)/c∣}

c ∶= HM(a) = δ′ = δ{∣HM (a)/c∣}

c ∶= Hm(a) ⊓ c ∶= HM(a) = ∃πH ● δ
′ = δ�πH�{∣Hm(a)/c∣} + δ�π̄H�{∣HM (a)/c∣}

host = ∃πH ● δ
′

= δ�a ≠ b�{∣S(a,b)/c∣}+

+ δ�a = b��πH�{∣Hm(a)/c∣} + δ�a = b��ι − πH�{∣HM (a)/c∣}

Finally the fourth instruction gives

b ∶= S(b, c) = δ′ = δ{∣S(b,c)/b∣}

If we compose sequentially the four instructions (and jump to conclusions, full
details are available in [1] ), we obtain the following expression for the final
probability distribution, which describes the program output:

δ′ =∑
i≠j

1/3 ⋅ δ�πi�{∣i/a∣}{∣j/b∣}�a ≠ b�{∣S(a,b)/c∣}{∣S(b,c)/b∣}

+∑ 1/3 ⋅ δ�πi�{∣i/a∣}{∣i/b∣}�a = b��πhost�{∣H(a)/c∣}{∣S(b,c)/b∣}

where i, j range over {1,2,3} and πhost ranges over {πH, π̄H} — and H will be
Hm or HM depending on πhost.

To evaluate the probability of winning, which is the probability of a = b, we
have to evaluate ∥δ′�a = b�∥; if we recall that ι�a = b� represents the expectation
of the predicate a = b, we can see that we are computing its expected value.

In the above expression we can distinguish two kinds of terms, and if we work
on each one under the winning condition we obtain:

δ�πi�{∣i/a∣}{∣j/b∣}�a ≠ b�{∣S(a,b)/c∣}{∣S(b,c)/b∣}�a = b� = δ�πi�{∣i,j/a,b∣}{∣S(a,b),a/c,b∣}

δ�πi�{∣i/a∣}{∣i/b∣}�a = b��πhost�{∣H(a)/c∣}{∣S(b,c)/b∣}�a = b� = ε

The terms of the second kind will give no contribution to the overall weight of
δ′�a = b� (and in fact they account for the case when the player’s first guess was
the right one), whereas all others contribute with 1/3 ⋅ ∥δ�πi�{∣i,j/a,b∣}{∣S(a,b),a/c,b∣}∥
(and of course these account for the case when the player had first chosen a door
hiding a goat).

As both remapping operations use expressions defined everywhere, and thanks
to the fact that in this condition the remap operators preserves the weight of a
distribution, we have that:

∥δ�πi�{∣i,j/a,b∣}{∣S(a,b),a/c,b∣}∥ = ∥δ�πi�∥

Therefore we have:

∥δ′�a = b�∥ = ∥2 ⋅ (1/3 ⋅ δ�π1� + 1/3 ⋅ δ�π2� + 1/3 ⋅ δ�π3�)∥ = 2/3 ⋅ ∥δ∥



202 R. Bresciani and A. Butterfield

We have assumed that the weight of the initial distribution is 1, so the weight
of all winning states is 2/3 — it is now clear why we did not need to make any
other assumption, as this is all that matters, as all the variables undergo at least
an assignment during the run of the program. 2/3 is also the expected value for
each of the initial states, so the pre-expectation assigning this weight to every
state corresponds to the post-expectation of the predicate ι�a = b�.

4.3 Generic Choice

Now that we have given an appropriate definition of non-deterministic choice, it
is worth to remark in passing that we can see how all choice constructs follow a
common pattern.

The reason is that all choice constructs can be seen as a specific instance of a
generic choice construct:

choice(A,B,X) ≙ ∃π, δA, δB ● π ∈X ∧A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB

where X ⊆Dw and Dw is the set of all weighting distributions.
We can express all our choice constructs with appropriate choices of X :

– for X = {ι�c�} we have conditional choice: A◁ c▷B = choice(A,B,{ι�c�})

– for X = {p ⋅ ι} we have probabilistic choice: A p⊕B = choice(A,B,{p ⋅ ι})

– for X =Dw we have non-deterministic choice: A ⊓B = choice(A,B,Dw)

Moreover we can see the disjunction of two programs as another kind of choice,
where X = {ε, ι}: A ∨B = choice(A,B,{ε, ι})

Our generic choice operator allows us to define a framework with only one
choice construct, where all of the usual choice operators can be seen as syntactic
sugar of a particular class of generic choices; moreover we can also use this
generic construct to create new kinds of choices, other than the more traditional
ones—the reader can refer to [1] for some examples; the potential of this generic
choice operator has still to be fully explored.

4.4 The Linkage between Other Semantic Models and Ours

The relational demonic semantics for pGCL [15, p139] is given as a function
from a state to a probabilistically closed set9 of distributions: S → CS. Kleisli
lifting (See Appendix A) of that model results in a function between such sets of
distributions, so p ∶ S → CS is lifted to p∗ ∶ CS → CS. From this lifted semantics,
we can extract the corresponding UTP relation (R) on distributions as follows:

R = {(δ, δ′) ∣ δ′ ∈ p∗{δ} }

Things are slightly more complicated if we want to relate the wp-semantics from
[15] to our semantic model. The way to do this is to observe that an expectation

9 Here denoted by CS.



A UTP Semantics of pGCL as a Homogeneous Relation 203

is a random variable (with non-negative real values), and as such it can be
represented as a distribution χ in our framework. Then if χ′ represents a post-
expectation and A is a program, we can define the corresponding pre-expectation
χ by computing the expected final weight of each state before A is run:

χ(σ) =min({∥χ′ ⋅ δ′∥ ∣ A(ησ, δ
′)})

Here ησ represents a point distribution, which is a distribution where all states
other than σ map to zero, while σ maps to 1:

ησ ≙ ε � {σ ↦ 1}

So, A(ησ, δ
′) is true for all δ′ that can result from running A given a point dis-

tribution about σ. For each such δ′ we scale with the post-expectation, and take
the minimum over those. It shall be noted that this set of δ′ so obtained is a
singleton set for all deterministic constructs. We extract of the pointwise mini-
mum from that set if not a singleton, as in this case we have non-determinism,
and so we have to mirror the pointwise minimum used in Figure 1.

5 Conclusion and Future Work

We have provided an encoding of the semantics of pGCL in UTP, as a homo-
geneous relation on the alphabet {δ, δ′}, where the before and after variables
are distributions over program states. The key is that our semantics models
probabilistic programs as predicate transformers, so allowing us to claim that
“probabilistic programs are predicates too”. We have shown that we can deal
with variables by name, despite their being entangled in the semantic domain,
and that the laws of pGCL are provable from our semantics. In addition we
have formulated our semantics in such a way as to be able to view all choices as
instances of a generic choice construct, and even to be able to allow disjunction
back in as a form of choice.

We have shown the linkage between our semantic model and the two models
that feature in [10,15]: this will lead to a formalization of the healthiness condi-
tions, which characterise the predicates in our framework, and which we expect
to be substantially the same, modulo an appropriate generalization, as in pGCL.

A further step forward to be taken is to explore the role of auxiliary variables
such as ok and ok′ that capture a behaviour such as termination: non-termination
leads to probability sub-distributions, similar to what happens in pGCL, so we
could manage without, but their introduction — together with other auxiliary
variables such as wait and wait′ — may prove of help in moving towards the
encoding of reactive systems in this framework.

This is important, as the long term focus of this work is on a probabilistic
variant of Circus, which requires semantic models for probabilistic process alge-
bras like pCSP [18,4] or ptsc [20]. These will then have to be integrated with
our pGCL semantics in much the same way that the theory of Reactive Designs
in UTP is the basis for the semantics of Circus-like languages.



204 R. Bresciani and A. Butterfield

Acknowledgements. We wish to thank (some of) the anonymous referees who
have reviewed previous versions of this paper for their insightful comments and
suggestions.

References

1. Bresciani, R., Butterfield, A.: Towards a UTP-style framework to deal with proba-
bilities. Technical Report TCD-CS-2011-09, FMG, Trinity College Dublin, Ireland
(August 2011)

2. Butterfield, A. (ed.): UTP 2008. LNCS, vol. 5713, pp. 22–41. Springer, Heidelberg
(2010)

3. Chen, Y., Sanders, J.W.: Unifying Probability with Nondeterminism. In: Caval-
canti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 467–482. Springer,
Heidelberg (2009)

4. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising test-
ing preorders for finite probabilistic processes. Logical Methods in Computer Sci-
ence 4(4) (2008)

5. Dunne, S., Stoddart, B. (eds.): UTP 2006. LNCS, vol. 4010, pp. 236–256. Springer,
Heidelberg (2006)

6. Freitas, L., Woodcock, J., Butterfield, A.: Posix and the verification grand chal-
lenge: A roadmap. In: 13th IEEE International Conference on Engineering of Com-
plex Computer Systems, ICECCS 2008, March 31-April 3, pp. 153–162 (2008)

7. Gancarski, P., Butterfield, A.: The Denotational Semantics of slotted-Circus. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 451–466.
Springer, Heidelberg (2009)

8. He, J.: A probabilistic BPEL-like language. In: Qin [22], pp. 74–100
9. He, J., Sanders, J.W.: Unifying probability. In: Dunne and Stoddart [5], pp. 173–

199
10. He, J., Seidel, K., McIver, A.: Probabilistic models for the guarded command lan-

guage. Science of Computer Programming 28(2-3), 171–192 (1997); Formal Speci-
fications: Foundations, Methods, Tools and Applications

11. Hoare, C.A.R.: Programs are predicates. In: Proceedings of a Discussion Meeting of
the Royal Society of London on Mathematical Logic and Programming Languages,
pp. 141–155. Prentice-Hall, Upper Saddle River (1985)

12. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science (1998)

13. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

14. Kozen, D.: A probabilistic pdl. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
15. McIver, A., Morgan, C.: Abstraction, Refinement And Proof For Probabilistic Sys-

tems (Monographs in Computer Science). Springer, Heidelberg (2004)
16. McIver, A., Morgan, C.: Abstraction and refinement in probabilistic systems. SIG-

METRICS Performance Evaluation Review 32(4), 41–47 (2005)
17. Morgan, C., McIver, A.: A probabilistic temporal calculus based on expectations.

Technical Report PRG-TR-13-97, Oxford University Computing Laboratory (1997)
18. Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability

for CSP. Formal Asp. Comput. 8(6), 617–647 (1996)
19. Ndukwu, U., McIver, A.: An expectation transformer approach to predicate ab-

straction and data independence for probabilistic programs. CoRR (2010)



A UTP Semantics of pGCL as a Homogeneous Relation 205

20. Ndukwu, U., Sanders, J.W.: Reasoning about a distributed probabilistic system.
In: Downey, R., Manyem, P. (eds.) Fifteenth Computing: The Australasian Theory
Symposium (CATS 2009). CRPIT, vol. 94, pp. 35–42. ACS, Wellington (2009)

21. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput. 21(1-2), 3–32 (2009)

22. Qin, S. (ed.): UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010)
23. Sherif, A., Kleinberg, R.D.: Towards a Time Model for Circus. In: George, C.W.,

Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg
(2002)

A Keisli Composition

Assume a semantic model of the form S → FS where F is a type constructor (functor).
The question that naturally arises is how to compose such functions, i.e., given p ∶ S →
FT and q ∶ T → FU , how do we compose these to get (p; q) ∶ S → FU? The standard
solution for this is Kleisli lifting and composition which involves two functions with
the following signatures:

ηS ∶ S → FS ∗ ∶ (S → FT ) → (FS → FT )

that obey the following laws:

η
∗

S = idFS p∗ ○ ηS = p (q
∗

○ p)
∗

= q
∗

○ p
∗

The intuition behind these is best understood in a diagram:

FS FT FU

S T U

ηS
p

ηT
q

p∗ q∗

ηU

The Kleisli composition of p and q is given by q∗ ○ p, where ○ denotes regular function
composition.

In this paper FS = P(S → [0,1]).


	A UTP Semantics of pGCLas a Homogeneous Relation
	Introduction
	Background
	UTP
	
	Probabilistic UTP

	Observing Distributions
	Assignment

	UTP Semantics of pGCL
	Deterministic Constructs
	Non-deterministic Choice
	Generic Choice
	The Linkage between Other Semantic Models and Ours

	Conclusion and Future Work
	References




