

Lecture Notes in Computer Science 7321
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

John Derrick Stefania Gnesi
Diego Latella Helen Treharne (Eds.)

Integrated
Formal Methods

9th International Conference, IFM 2012
Pisa, Italy, June 18-21, 2012
Proceedings

13

Volume Editors

John Derrick
University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello Street
Sheffield S1 4DP, UK
E-mail: j.derrick@dcs.shef.ac.uk

Stefania Gnesi
Diego Latella
Consiglio Nazionale delle Ricerche
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Via Moruzzi 1
56124 Pisa, Italy
E-mail: {stefania.gnesi; diego.latella@isti.cnr.it}

Helen Treharne
University of Surrey
Department of Computing
Surrey GU2 7XH, UK
E-mail: h.treharne@surrey.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30728-7 e-ISBN 978-3-642-30729-4
DOI 10.1007/978-3-642-30729-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939244

CR Subject Classification (1998): D.2, F.3, D.3, D.2.4, F.4.1, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

iFM 2012, the 9th International Conference on Integrated Formal Methods, and
ABZ 2012, the 3rd International Conference on Abstract State Machines, Alloy,
B, VDM, and Z, were joined in a single event, iFM&ABZ 2012, to celebrate Egon
Börger’s 65th birthday and his contribution to state-based formal methods.

This colocation of iFM&ABZ 2012 was hosted by the Institute of Scienza
e Tecnologie dell’Informazione “A. Faedo” of the National Research Council
(ISTI-CNR) of Italy and took place at the Area della Ricerca del CNR in Pisa,
during June 18–21, 2012.

We would like to thank everyone in Pisa for making us feel very welcome
during our time there. It was a pleasure to run an event to honor Egon.

Professor Egon Börger was born in Bad Laer, Lower Saxony, Germany.
Between 1965 and 1971 he studied at the Sorbonne, Paris (France), Univer-
sité Catholique de Louvain and Institut Supérieur de Philosophie de Louvain
(in Louvain-la-Neuve, Belgium), and the University of Münster (Germany).
Since 1985 he has held a Chair in computer science at the University of Pisa,
Italy. In September 2010 he was elected as member of the Academia Europaea.
Throughout his work he has been a pioneer of applying logical methods in com-
puter science. Particularly notable is his contribution as one of the founders
of the Abstract State Machine (ASM) method. Egon Börger has been co-
founder and Managing Director of the Abstract State Machines Research Center
(see www.asmcenter.org).

Building on his work on ASM, he was a cofounder of the series of international
ASM workshops, which were part of this year’s conference under the ABZ ban-
ner. He contributed to the theoretical foundations of the method and initiated
its industrial applications in a variety of fields, in particular programming lan-
guages, system architecture, requirements and software (re-)engineering, control
systems, protocols and Web services. In 2007, he received the Humboldt Research
Award.

He has been coauthor of several books and over 150 research papers; he
has organized over 30 international conferences, workshops, schools in logic and
computer science.

As one can see, his influence has been broad as well as deep. It is an influence
that ones finds in all of the notations covered in the ABZ conference, as well
as in the iFM event and the various integrations and combinations of formal
methods seen therein. Neither iFM or ABZ have been here before, and it is thus
especially fitting that we held such an event in Pisa, where Egon has held a
Chair for many years.

VI Foreword

In addition to contributed papers, the conference programme included two
tutorials and three keynote speakers. The tutorials were offered by: Eric C.R.
Hehner on “Practical Predicative Programming Primer” and Joost-Pieter
Katoen, Thomas Noll, Alessandro Cimatti and Marco Bozzano on “Safety, De-
pendability and Performance Analysis of Extended AADL Models.” We are
grateful to Egon Börger, Muffy Calder and Ian J. Hayes for accepting our invi-
tation to address the conference.

Each conference, ABZ and iFM, had its own Programme Committee Chairs
and Programme Committees, and we leave it to them to describe their particu-
lar conference. We shared invited speakers, so all conference attendees had the
opportunity to hear Egon, Muffy and Ian. We also shared some technical ses-
sions so that all participants could see some of the best technical work from each
conference.

We would like to thank the Programme Committee Chairs, Diego Latella,
CNR/ ISTI, Italy and Helen Treharne, University of Surrey, UK for iFM 2012;
Steve Reeves, University of Waikato, New Zealand and Elvinia Riccobene, Uni-
versity of Milan, Italy for ABZ 2012 for their efforts in setting up two high-
quality conferences.

We also would like to thank the members of the Organizing Committee as
well as several other people whose efforts contributed to making the conference
a success and particular thanks go to the Organizing Committee Chair Maurice
ter Beek.

June 2012 John Derrick
Stefania Gnesi

Preface

This volume contains the proceedings of iFM 2012, the 9th International
Conference on Integrated Formal Methods, held during June 18–21, 2012, in Pisa,
Italy, jointly with ABZ 2012, the 3rd International Conference on Abstract State
Machines, Alloy, B, VDM, and Z, in honor of Egon Börger’s 65th birthday. The
ABZ proceedings appear as a separate LNCS volume, number 7316. The invited
talk of Egon Börger appears in both proceedings.

The iFM conference programme also included an invited talk by Muffy Calder
and the ABZ conference programme included an invited talk by Ian Hayes.

Previous iFM conferences were held in York, Dagstuhl, Turku, Canterbury,
Eindhoven, Oxford, Düsserldorf and Nancy. The iFM conference series seeks to
further research into the combination of different formal methods for modelling
and analysis. However, the work of iFM goes beyond that, covering all aspects
from language design, verification techniques, tools and the integration of formal
methods into software engineering practice.

iFM 2012 received 59 submissions, covering the spectrum of integrated formal
methods, ranging across formal and semi-formal modelling notations, semantics,
proof frameworks, refinement, verification, timed systems, tools and case studies.
Each submission was reviewed by at least three Programme Committee mem-
bers. The committee decided to accept 22 papers.

The conference was preceded by a day dedicated to tutorials on “Practical
Predicative Programming Primer” by Eric C. R. Hehner and “Safety, Depend-
ability and Performance Analysis of Extended AADL Models” by Joost-Pieter
Katoen, Thomas Noll, Alessandro Cimatti and Marco Bozzano.

We are grateful to the members of the Programme Committee and the ex-
ternal reviewers for their diligence and thoroughness. We also appreciate the
support of EasyChair for managing the reviewing process and the preparation
of the proceedings. We thank all those involved in organizing the conference and
an important note of thanks must be extended to the members of CNR who
helped locally.

June 2012 Diego Latella
Helen Treharne

Organization

General Chairs

John Derrick University of Sheffield, UK
Stefania Gnesi CNR/ISTI, Italy

Conference Chairs

Diego Latella CNR/ISTI, Italy
Helen Treharne University of Surrey, UK

Programme Committee

Marc Benveniste STMicroelectronics, France
Eerke Boiten University of Kent, UK
Jonathan P. Bowen Museophile Limited, UK
Jim Davies University of Oxford, UK
John Derrick Unversity of Sheffield, UK
Jin Song Dong National University of Singapore, Singapore
Kerstin Eder University of Bristol, UK
Alessandro Fantechi University of Florence and CNR/ISTI, Italy
John Fitzgerald Newcastle University, UK
Andy Galloway University of York, UK
Einar Broch Johnsen University of Oslo, Norway
Rajeev Joshi NASA Jet Propulsion Laboratory (JPL), USA
Michael Leuschel University of Düsseldorf, Germany
Michele Loreti University of Florence, Italy
Silvia Mazzini Intecs S.p.A, Italy
Dominique Mery LORIA and Université de Lorraine, France
Stephan Merz INRIA Nancy and LORIA, France
Alexandre Mota Centre of Informatics (CIn-UFPE), Brazil
Flemming Nielson Technical University of Denmark and MT-LAB,

Denmark
Luigia Petre Åbo Akademi University, Finland
David Pichardie INRIA Rennes, France
Thomas Santen European Microsoft Innovation Center,

Germany
Steve Schneider University of Surrey, UK
Kaisa Sere Åbo Akademi University, Finland
Graeme Smith University of Queensland, Australia
Kenji Taguchi National Institute of Advanced Industrial

Science and Technology, Japan

X Organization

Mirco Tribastone Ludwig-Maximilians-Universität, Germany
Marina Waldén Åbo Akademi University, Finland
Heike Wehrheim University of Paderborn, Germany
Kirsten Winter University of Queensland, Australia

Additional Reviewers

Islam Abdel Halim
Étienne André
Emilie Balland
Sebastien Bardin
Cristiano Bertolini
Lorenzo Bettini
Irene Bicchierai
Jean-Paul Bodeviex
Carl Friedrich Bolz
Pontus Boström
Jeremy W. Bryans
Laura Carnevali
Márcio Cornélio
Fredrik Degerlund
Delphine Demange
Andre Didier
Johan Dovland
Neil Evans
Marc Fontaine

Carl Gamble
Juliano Iyoda
Mohammad Mahdi

Jaghoori
Maryam Kamali
Weiqiang Kong
Linas Laibinis
Shang-Wei Lin
Alberto Lluch Lafuente
Acciai Lucia
Toby Murray
Keishi Okamoto
Richard Payne
Stefano Pepi
Ken Pierce
Steve Riddle
Petter Sandvik
Rudolf Schlatte
Alexander Schremmer

Ling Shi
Mihaela Sighireanu
Tarciana Silva
Neeraj-Kumar Singh
Songzheng Song
Dominik Steenken
Volker Stolz
Anton Tarasyuk
Maurice ter Beek
Francesco Tiezzi
Max Tschaikowski
Leonidas Tsiopoulos
Sven Walther
Daniel Wonisch
Yoriyuki Yamagata
Shaojie Zhang
Manchun Zheng
Steffen Ziegert

Sponsoring Institutions

A final note of appreciation to our sponsors:

INTECS Formal Methods Banca Nazionale del Lavoro EATCS

S.p.A. Europe S.p.A. Italian Chapter

We particularly would like to thank Formal Methods Europe (FME), since it is
due to their generous support that were able to invite Muffy Calder for a keynote
presentation.

Table of Contents

Contribution to a Rigorous Analysis of Web Application Frameworks . . . 1
Egon Börger, Antonio Cisternino, and Vincenzo Gervasi

Process Algebra for Event-Driven Runtime Verification: A Case Study
of Wireless Network Management . 21

Muffy Calder and Michele Sevegnani

Translating TLA+ to B for Validation with ProB . 24

Dominik Hansen and Michael Leuschel

Rely/Guarantee Reasoning for Teleo-reactive Programs over Multiple
Time Bands . 39

Brijesh Dongol and Ian J. Hayes

Safety and Line Capacity in Railways – An Approach in Timed CSP . . . 54
Yoshinao Isobe, Faron Moller, Hoang Nga Nguyen, and
Markus Roggenbach

Refinement-Based Development of Timed Systems 69
Jesper Berthing, Pontus Boström, Kaisa Sere,
Leonidas Tsiopoulos, and Jüri Vain

Analysing and Closing Simulation Coverage by Automatic Generation
and Verification of Formal Properties from Coverage Reports 84

Tim Blackmore, David Halliwell, Philip Barker, Kerstin Eder, and
Naresh Ramaram

Model Checking as Static Analysis: Revisited . 99
Fuyuan Zhang, Flemming Nielson, and Hanne Riis Nielson

Formal Verification of Compiler Transformations on Polychronous
Equations . 113

Van Chan Ngo, Jean-Pierre Talpin, Thierry Gautier,
Paul Le Guernic, and Löıc Besnard

Understanding Programming Bugs in ANSI-C Software Using Bounded
Model Checking Counter-Examples . 128

Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and
Arilo Dias Neto

MULE-Based Wireless Sensor Networks: Probabilistic Modeling and
Quantitative Analysis . 143

Fatemeh Kazemeyni, Einar Broch Johnsen, Olaf Owe, and
Ilangko Balasingham

XII Table of Contents

Mechanized Extraction of Topology Anti-patterns in Wireless
Networks . 158

Matthias Woehrle, Rena Bakhshi, and Mohammad Reza Mousavi

A Proof Framework for Concurrent Programs . 174
Leonard Lensink, Sjaak Smetsers, and Marko van Eekelen

A UTP Semantics of pGCL as a Homogeneous Relation 191
Riccardo Bresciani and Andrew Butterfield

Behaviour-Based Cheat Detection in Multiplayer Games with
Event-B . 206

HaiYun Tian, Phillip J. Brooke, and Anne-Gwenn Bosser

Refinement-Preserving Translation from Event-B to Register-Voice
Interactive Systems . 221

Denisa Diaconescu, Ioana Leustean, Luigia Petre, Kaisa Sere, and
Gheorghe Stefanescu

Formal Modelling and Verification of Service-Oriented Systems in
Probabilistic Event-B . 237

Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis

Partially-Supervised Plants: Embedding Control Requirements in Plant
Components . 253

Jasen Markovski, Dirk A. van Beek, and Jos Baeten

Early Fault Detection in Industry Using Models at Various Abstraction
Levels . 268

Jozef Hooman, Arjan J. Mooij, and Hans van Wezep

PE-KeY: A Partial Evaluator for Java Programs . 283
Ran Ji and Richard Bubel

Specification-Driven Unit Test Generation for Java Generic Classes 296
Francisco Rebello de Andrade, João P. Faria, Antónia Lopes, and
Ana C.R. Paiva

Specifying UML Protocol State Machines in Alloy . 312
Ana Garis, Ana C.R. Paiva, Alcino Cunha, and Daniel Riesco

Patterns for a Log-Based Strengthening of Declarative Compliance
Models . 327

Dennis M.M. Schunselaar, Fabrizio Maria Maggi, and
Natalia Sidorova

A Formal Interactive Verification Environment for the Plan Execution
Interchange Language . 343

Camilo Rocha, Héctor Cadavid, César Muñoz, and Radu Siminiceanu

Author Index . 359

Contribution to a Rigorous Analysis

of Web Application Frameworks

Egon Börger, Antonio Cisternino, and Vincenzo Gervasi

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
{boerger,cisterni,gervasi}@di.unipi.it

Abstract. We suggest an approach for accurate modeling and analysis
of web application frameworks.

1 Introduction

In software engineering the term ‘application’ traditionally refers to a specific
program or process users can invoke on a computer. The emergence of dis-
tributed systems and in particular of web applications has significantly changed
this meaning of the term. Here functionality is provided by a set of indipendent
cooperating modules with a distributed state, in web applications all offering a
unified interface to their user—to the point that the user may have no way to
distinguish whether a single application or a set of distributed web applications
is used. Also recent non-web systems, like mobile apps, follow the same paradigm
allowing the state of an application to be persistent and distributed, no longer
tied to the traditional notion of operating system process and memory.

There is still no precise general definition or model of what a web appli-
cation is. What is there is a variety of (often vague and partly incompatible)
standards, web service description languages at different levels of abstraction
(like BPEL, BPMN, workflow patterns, see [9] for a critical evaluation of the
latter two) and difficult to compare techniques, architectures and frameworks
offered for implementations of web applications, ranging from CGI (Common
Gateway Interface [23]) scripts to PHP (Personal Home Page) and ASP (Appli-
cation Server Page) applications and to frameworks such as ASP.NET [19] and
Java Server Faces (JSF [1]). All of them seem to share that a web application
consists of a dynamically changing network of systems that send and receive
through the HTTP protocol data to and from other components and provide
services of all kinds which are subject to continuous change (as services may
become temporarily or permanently unavailable), to dynamic interference with
other services (competing for resources, suffering from overload, etc.) and to all
sorts of failures and attacks.

The challenge we see is to discover and formulate the pattern underlying
such client-server architectures for (programming and executing concurrent dis-
tributed) web applications. We want to make their common structural aspects

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 1–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 E. Börger, A. Cisternino, and V. Gervasi

explicit by defining precise high-level (read: code, platform and framework in-
dependent) models for the main components of current web application systems
such that the major currently existing implementations can be described as re-
finements of the abstract models. The goal of such a rational reconstruction is
to make a rigorous mathematical analysis of web applications possible, includ-
ing to precisely state and analyze the similarities and differences among existing
frameworks, e.g. the similarities between PHP and ASP and the differences be-
tween PHP/ASP and JSP/ASP.NET. This has three beneficial consequences:
a) it helps web application analysts to better understand different technologies
before integrating them to make them cooperate; b) it builds a foundation for
content-based certifiability of properties one would like to guarantee for web
applications; c) it supports teachers and book authors to provide an accurate
organic birds’ perspective of a significant area of current computer technology.

For the present state of the art, given the lack of rigorous abstract models of
(at least the core components of) web application frameworks, it is still a theo-
retical challenge to analyze, evaluate and classify web application systems along
the lines of fundamental behavioral model properties which can be accurately
stated and verified and be instantiated and checked for implementations.

The modeling concepts one needs to work on the challenge become clear if
we consider the above mentioned feature all web applications have in common,
namely to be an application whose interface is presented to the user via a web
browser, whose state is split between a client and a server and where the only
interaction between client and server is through the HTTP protocol. This implies
that an attempt to abstractly model web application frameworks must define at
least the following two major client-server architecture components with their
subcomponents and the communication network supporting their interaction:

the browser with all its subcomponents: launcher, netreader, (html, script,
image) parsers, script interpreter, renderer, etc.
the server with its modules providing runtimes of various programming lan-
guages (e.g. PHP, Python [2], ASP, ASP.NET, JSF),
the asynchronous network which supports the interaction (in particular the
communication) between the components.

This calls for a modeling framework with the following features:

A notion of agents which execute each their (possibly dynamically changing)
program concurrently, possibly at different sites.
A notion of abstract state covering design and analysis at different levels
of abstraction (to cope with heterogeneous data structures of the involved
components) and the distributed character of the state of a web application.
A sufficiently general refinement method to controllably link (using valida-
tion and/or verification) the different levels of abstraction, specifically to
formulate different existing systems as instances of one general model.
A flexible mechanism to express forms of non-determinism which can be
restricted by a variety of constraints, e.g. by different degrees of transmission

Contribution to a Rigorous Analysis of Web Application Frameworks 3

reliability ranging from completely unreliable (over the internet) to safe and
secure (like for components running on one isolated single machine).
A flexible environment adaptation mechanism to uniformly describe web
application executions modulo their dependence on run-time contexts.
A smooth support for traceable model change and refinement changes due to
changing requirements in the underlying (often de facto) standards.

1.1 Concrete Goals and Results So Far

As a first step towards the goal outlined above we started to model the client-
server architecture of a browser interacting with a web server. In [17] the trans-
port and stream levels of an abstract web browser model are defined. To this
we add here models for the main components of the context level layer (Sect. 2)
which together with the web server model defined in Sect. 3 allow one to de-
scribe one complete round of the Request-Reply pattern [18,8] that character-
izes browser/server interactions (see Fig. 1).1 In Sect. 3.1 a high-level functional
Request-Reply web server view is defined which is then detailed (by refinement
steps) for the two main approaches to module execution:

the CGI-approach where the server delegates the execution of an external
process to another agent (Sect. 3.3),
the script-approach where the server itself executes script code (Sect. 3.4).

We explain how one can view existing implementations as instantiations of these
models.

We use the ASM (Abstract State Machines) method [12] as modeling frame-
work because it offers all the features listed above which are needed for our
endeavor2 and because various ASM models in the literature contribute specifi-
cally to the work undertaken here. For example both the browser and the server
model use a third group of basic components, namely ScriptInterpreters for
various Script languages, which can be specified by an ASM model adopting the
method used in [22] to define an interpreter for Java (and reused in [11,15,16]
to rigorously define the semantics of C# and the CLR). These models provide a
significant part of the infrastructure web applications typically use. For example
applets which run inside a browser, or the Tomcat application server [3], are
written in Java. Furthermore, the method developed for modeling Java/JVM
can be reused to define a model for the JavaScript interpreter (see [14] for some
details) corresponding to the ECMAScript standard ECMA-262 [4], a standard
that serves as glue to link various technologies together.

In Sect. 4 we list some verification goals we suggest to pursue on the basis of
(appropriately completed) precise abstract models of web application framework
components, i.e. to rigorously formulate and check (verify or falsify) properties
of interest for the models and/or their implementations.
1 In the Request-Reply pattern of two-way conversations the requestor (one applica-

tion) sends a request to the provider (another application) and the provider returns
a reply to the requestor.

2 See [10] for the recent definition of a simple flexible ambient ASM concept.

4 E. Börger, A. Cisternino, and V. Gervasi

The models we define and their properties we discuss come without any
completeness claim and are intended to suggest an approach we consider to be
promising for future FM research in a core area of computer technology.

2 Modeling Browser Components

Our browser models focus on those parts of the browser behaviour that are most
relevant for the deployement and execution of web applications. The models are
developed at four layers. The main components of the transport layer (express-
ing the TCP/IP communication via HTTP) and the stream layer (describing
how information coming from the network is received and interpreted) are de-
fined in [17]. In this section we add models for characteristic components of the
context layer, which deals with the user interaction with the document repre-
sented by the Document Object Model (DOM). Without loss of generality we
omit in this paper the browser layer where the behaviour of a web browser seen
as an application of the host operating system is described. In practice, most
web applications are entirely contained in a single browsing context; in fact an
important issue in the development of web standards is how to ensure for secu-
rity reasons that multiple browsing contexts in the same browser are sufficiently
isolated from each other (a security property that we leave to future work).

2.1 Browsing Context

A browsing context is an environment in which documents are shown to the
user, and where interaction with the user occurs. In web browsers, browsing
contexts are usually associated with windows or tabs, but certain deprecated
HTML structures (namely, frames) also introduce separate browsing contexts.

In our model, a browsing context is characterized primarily by five elements:

a document (i.e. a DOM as described in [17]), which is the currently active
document presented to the user;
a session history, which is a navigable stack of documents the user has visited
in this browsing context;
a window, which is a designated operating system-dependent area where the
Document is presented and where any user interaction takes place;
a renderer, which is a component that produces a user-visible graphical ren-
dering of the current Document (Section 2.2);
an event loop, which is a component that receives and processes in an ordered
way the various operating system-supplied events (such as user interaction
or timer expiration) that serve as local input to the browser (Section 2.3).

We keep the window abstract, as its behaviour can be conveniently hidden by
keeping the actual rendering abstract and by assuming that user interaction with
the window is handled by the operating system. Thus we deal with events that
have been already pre-processed by a window manager. We also omit the rather
straightforward modeling of the session history.

Contribution to a Rigorous Analysis of Web Application Frameworks 5

When STARTing a newly created Browsing Context k , DOM (k) is initial-
ized by a pre-defined implementation-dependent initial document initialDOM ;
it is usually referred to through the URL about:blank and may represent an
empty page or a “welcome page” of some sort. Two agents are equipped with
programs to execute the Renderer and the EventLoop for k .

StartBC(k) =
let a =new Agent , b =new Agent in

program(a) := Renderer(k)
program(b) := EventLoop(k)
DOM (k) := initialDOM

The Renderer and EventLoop macros are specified below.

2.2 Renderer

The Renderer produces the user interface of the current DOM in the (implicit)
given window. It is kept abstract by specifying only that it works when it is (a)
supposed to perform (at system dependent RenderingTime) and (b) allowed to
perform because no other agent has a lock on the DOM (e.g., while adding new
nodes to the DOM during the stream-level loading of an HTML page).

Renderer(k) =
if renderingTime(k) and ¬locked(DOM (k)) then

GenerateUi(DOM (k), k)

2.3 Event Loop

We assume that events are communicated by the host environment (i.e., the
specific operating system and UI toolkit of the client machine where the browser
is executed) to the browser by means of an event queue. These UI events are
merged and put in sequential order with other events that are generated in the
course of the computation, e.g. DOM manipulation events (fired whenever an
operation on the DOM, caused by user actions or by Javascript operations, leads
to the execution of a Javascript handler or similar processing) or History traversal
events (fired whenever a user operates on the Back and Forward buttons offered
by most browsers to navigate through the page stack).

Here we detail the basic mechanism used in (the simplest form of) web ap-
plications to prepare a Request to be sent to the server (with the understanding
that when a Response is received, it will replace the current page in the same
browsing context). HTML forms are used to collect related data items, usually
entered by the user, and to package them in a single Request. Figure 1 shows
when the macros defined below and in [17] are invoked; lifelines represent agents
executing a rule. Remember that ASM agents can change their program dynam-
ically (e.g., when Receive becomes HTMLProc) and that operations by an
agent in the same activation, albeit shown in sequence, happen in parallel.

6 E. Börger, A. Cisternino, and V. Gervasi

Fig. 1. A diagram depicting the behaviour of our browser model for a user who opens a
new window in a browser, manually loads the first page of a web application, interacts
locally with a form, and then sends the data back to the server, receiving a new or
updated page in response

Contribution to a Rigorous Analysis of Web Application Frameworks 7

An HTML form is introduced by a <FORM> element in the page. All the
input elements3 that appear in the subtree of the DOM rooted at the <FORM>
are said to belong to that form. Among the various input elements, there is
normally a designated one (whose UI representation is often an appropriately
labeled button) tasked with the function of submitting a form. This involves
collecting all the data elements in the form, encoding them in an appropriate
format, and sending them to a destination server through various means. This
may include sending the data by email or initiating an FTP transfer, although
these possibilities are seldom, if ever, used in contemporary web applications.

It is also of interest to note that submission of a form may be initiated
from a script, by invoking the submit() method of the form object, and hence
happen indipendently from user behaviour. In the following, we will not concern
ourselves with the details of how a submit operation has been initiated, but only
with the emergence of the submit event in the event queue, whatever its origin.

We model the existence of a separate event queue for each browsing context,
which is processed by a dedicated agent created in the StartBC macro above.
When an event is extracted from the event queue that indicates that the user has
provided a new URL to load (e.g., by typing it in a browser’s address bar, or by
selecting an entry from a bookmarks list, etc.), the browsing context is navigated
to the provided URL by starting an asynchronous transfer (in the normal case,
the HTTP Request will be sent to the host mentioned in the URL, and later
processing of the Response will replace the DOM displayed in the page).

When an event is extracted from the event queue that indicates a form sub-
mission, the form and related parameters are extracted from the event, appropri-
ate encoding of the data is performed based on the action and method attributes
as specified in the <FORM> node, and finally either the data is sent out (e.g., in the
case of a mailto: action) or the browsing context is populated with the results
returned from a web server identified by the form’s action. In normal usage, that
will be the same web server hosting the web application that originally sent out
the page with the form, thus completing the loop between server and client and
realizing the well-known page-navigation paradigm of web applications4.

As for Renderer, the event loop receives a parameter, k , which identifies
the particular instance. The macro PageLoad is defined below.

EventLoop(k) =
if eventAvailable(eventQueue(k)) then

let e = headEvent(eventQueue(k)) in
dequeue e from eventQueue(k)
if isNewUrlFromUser(e) then

PageLoad(GET , url(e), 〈〉, k)
elseif isFormSubmit(e) then

3 These include elements such as <INPUT>, <SELECT>, <OPTION> etc.
4 Notice that we are not considering here AJAX applications, where a Request is sent

out directly from Javascript code, and the results are returned as raw data to the
same script, instead of being used to replace the contents of the page. The general
processing for this case is, however, similar to the one we describe here.

8 E. Börger, A. Cisternino, and V. Gervasi

let f = formElement(e), data = encodeFormData(f),
a = action(f),m = method(f), u = resolveUrl(f , a) in
match (schema(u),m) :

case (http, GET) : MutateUrl(u, data, k)
case (http, POST) : SubmitBody(u, data, k)
case (ftp, GET) : GetAction(u, data, k)
case (ftp, POST) : GetAction(u, data, k)
case (javascript, GET) : GetAction(u, data, k)
case (javascript, POST) : GetAction(u, data, k)
case (data, GET) : GetAction(u, data, k)
case (data, POST) : PostAction(u, data, k)
case (mailto, GET) : MailHead(a, data)
case (mailto, POST) : MailBody(a, data)

else
handle other events

We do not further specify here the mail-related variants MailHead and
MailBody (although it is interesting to remark that they do not need fur-
ther access to the browsing context, contrary to most other methods, since no
reply is expected from them – and thus their applicability in web applications is
close to nil). We also glide over the possibility of using a https schema, which
however implies the same processing as http, with the only additional step of
properly encrypting the communication. Given the purposes of this paper we
omit a definition of GetAction and PostAction, since they involve URL
schemas (namely: ftp, javascript and data) that have not been addressed in
the transport layer model in [17]. Thus, below we only refine MutateUrl and
SubmitBody together with PageLoad.

The macro MutateUrl consists in synthesizing a new URL from the action
and the form data (which are encoded as query parameters in the URL) and in
causing the browsing context to navigate to the new URL:

MutateUrl(u, data, k) =
let u ′ = u · ? · data in PageLoad(GET , u ′, 〈〉, k)

The macro SubmitBody differs only in the way the data is encoded in the
request, namely not as part of the URL, as above, but as body of the request:

SubmitBody(u, data, k) = PageLoad(POST , u, data, k)

The macro PageLoad starts an asynchronous Transfer—which is defined
in [17]—and (re-)initializes the browsing context and the HTMLProcessor; the
latter is also defined in [17] and will handle the Response:

PageLoad(m, u, data, k) =
Transfer(m, u, data,HTMLProc, k)
htmlParserMode(k) := Parsing
let d =new Dom in

DOM (k) := d
curNode(k) := root(d)

Contribution to a Rigorous Analysis of Web Application Frameworks 9

Notice that while for the sake of brevity we have modeled navigation to the
response provided by the server as a direct Transfer here, in reality it would
require a few additional steps, including: storing the previous document and as-
sociated data in the session history, releasing resources used in the original page
(e.g., freeing images or stopping plug-ins that were running), etc. While resource
management can be conveniently abstracted, handling of history navigation (i.e.,
the Back, Forward and Reload commands available in most browsers) is a crit-
ical component in proving robustness, safety and correctness properties of web
applications, and will be addressed in future work.

3 A High-Level WebServer Model

We define here a companion model to the browser model: a high-level model
WebServer (Sect. 3.1) with typical refinements for the underlying handler
modules, namely for file transfer (Sect. 3.2), CGI (Sect. 3.3) and scripting mod-
ules (Sect. 3.4).

To concentrate on the core issues we abstract in this section from the trans-
mission protocol phase during which the connection between client and server
is established and rely upon an abstract Send mechanism; the missing elements
to incorporate this phase can be defined as shown in detail for the browser
component models in [17].

3.1 Functional Request-Reply Web Server View

In the high-level view the server appears as dispatcher which to handle a request
finds and triggers the code (a ‘module’) the execution of which will provide a
response to the request.5 Thus a high-level web server model can be formulated
as an ASM WebServer which in a reactive manner, upon any request in its
requestQueue, will delegate to a new agent (read: a thread we call request han-
dler) to handle the Execution of the request—if the request passes the Security
check and the requestedModule is Available in and can be loaded by the server.

We succinctly describe checking various kinds of Property (here access se-
curity, module availability and loadability) by functions (here checkSecurity,
findModule loadModule) whose values are

either three-digit-values v in an interval [n00,n99], for some n ∈ [0, 9] as
defined for each Property of interest in [5, Sect.4.1] to indicate that the
Property holds or fails to hold (in the latter case of PropertyFailure(v) the
value v also indicates the reason for the failure), or
some different value, like a found requested module, which implicitly also
indicates that the checked Property holds, e.g. that the requested module is
available or could be successfully loaded.

5 The ASM model for the Virtual Provider (VP) defined in [7] has a similar structure:
it receives requests, forwards them to appropriate providers and collects the replies
from the providers to return them to the original requestor.

10 E. Börger, A. Cisternino, and V. Gervasi

Since in case PropertyFailure(v) is true the function value v is assumed to in-
dicate the reason for the failure, the value appears in the failureReport the
WebServer will Send to the client. The function failureReport abstracts from
the details of formatting the response message out of the parameters.

The requestedModule depends on the server env ironment, the resourceName
that appears as part of the request and the header(request). For a loaded module
StartHandler creates a new thread and puts it into its init ial state from where
the thread will start its program, namely to Execute the module. A loaded
module is of one of finitely many kinds. For the fundamental CGI and scripting
module types we will detail in Sect. 3.3,3.4 what it means to Execute such a
module.

To reflect the functional client/server request/reply view StartHandler

appears as atomic action of the WebServer which goes together with deleting
the request from the requestQueue. At the transmission protocol level the latter
action becomes closing the connection. The atomicity reflects the fact that once
a request has been handled, the server is ready to handle the next request.6

WebServer =
let request = head(requestQueue)
if request �= undef then // react if there is some request

let env = env(server , request)
let s = checkSecurity(request , env)
if SecurityFailure(s)
then Send(failureReport(request , s))
else

let requestedModule =
findModule(env , resourceName(request), header(request))

if ResourceAvailabilityFailure(requestedModule) then
Send(failureReport(request , requestedModule))

else
let module = loadModule(requestedModule, env)
if ModuleLoadabilityFailure(module)
then Send(failureReport(request ,module))
else StartHandler(module, request , env)

Close(request)
where

SecurityFailure(s) iff s = 403
ResourceAvailabilityFailure(m) iff m = 503
ModuleLoadabilityFailure(module) iff module = 500
StartHandler(module, request , env) =

let a = new (Agent) // launch a request handler thread
program(a) := Exec(module)(request , env)
mode(a) := init

Close(request) = Delete(request , requestQueue)

6 The ASM model supports this view due to the reactive character of ASMs.

Contribution to a Rigorous Analysis of Web Application Frameworks 11

3.2 Refinement for File Transfer Execution

To start with a simple case we illustrate how the machine Exec(module) can be
detailed to a machine ExecFileTransfer(module) which handles file transfer
modules, the earliest form of server module. Such a module simply buffers the
requested file in an output buffer if the file is present at the location determined
by the path from the root(env) to the resourceName(request). We use a machine
TransferDataFromTo which abstracts from the details of the (not at all
atomic, but durative) transfer action of the requested file data to the output.
The function requestOutput(request) abstractly represents the appropriate socket
through which the response data are sent from the server to the requesting
browser.7

We leave it open what the scheduler does with the request handler when
the latter is Deactivated once the file transfer isFinished , i.e. when it has
been detected (here via TransferDataFromTo) that no more data are to be
expected for the transfer.

ExecFileTransfer(module)(request , env) =
let file = makePath(root(env), resourceName(request))
if mode(self) = init then

if UndefinedFile(file) then
Send(failureReport(request ,ErrorCode(UndefinedFile)))
Deactivate(self) // request handler termination

else
Send(successReport(request ,OkResponseCode))
mode(self) := transferData // Start to transfer the file

if mode(self) = transferData then
TransferDataFromTo(file, requestOutput(request))

if isFinished(file) then Deactivate(self)
where

ErrorCode(UndefinedFile) = 404
OkResponseCode = 200
Deactivate(self) = (mode(self) := final)

3.3 Refinement for Common Gateway Module Execution

A Common Gateway Interface (CGI) [23] module allows the request handler
to pass requests from a client web browser to an (agent which executes an)
external application and to return application output to the web browser. There
are two main forms of CGI modules, the historically first one (called CGI) and
an optimized one called FastCGI [13]. They differ in the way they introduce
agents for external process execution: CGI creates one agent for each request,
whereas FastCGI creates one agent and re-uses it for subsequent requests to the
same application (though with different parameters).

7 Again this can be made precise as shown in detail for the browser model in [17].

12 E. Börger, A. Cisternino, and V. Gervasi

CGI Module. A CGI module sends an error message if the executable for
the requested process is not defined at the indicated location. Otherwise the
requested process execution (by an independent newly created agent a, not by
the request handler)8 is triggered for the appropriate requestVariables (also called
environment variables containing the request data), like Auth(entication)-Type,
Query-String, Path-Info, RemoteAddr (of the requesting browser) and Remote-
Host (of the browser’s machine), etc.(see [23, Sect.5]) and a positive response is
sent to the requesting client. Once the new agent a has been Connected the
request handler

accepts any further requestInput stream (read: data stream coming from the
browser) as input for the execution of the process by a, namely via the stdin
stream of the module, and
transmits any output which (via a’s processing the executable) becomes avail-
able on the module’s stdout stream to the requestOutput stream (from where
it will be sent to the requesting browser)—as long as there are data on the
requestInput resp. on the stdout stream.

Thus to Connect a to (the agent self executing) the CGI module a channel
is established between the inputStream(a) and the module’s stdin stream resp.
between the outputStream(a) and the module’s stdout stream9.

It is usually assumed that the executable program(a) agent a gets equipped
with eventually disconnects a (from the request handler self) so that the predi-
cate Connected(a, self) becomes false. Then Exec(module) terminates wherefor
the request handler is Deactivated. Nevertheless the agent a even after having
been disconnected may continue the execution of the associated executable and
may not terminate at all, but such a further execution would be unrelated to the
computation of the request handler and from the WebServer’s point of view
yields a garbage process. Even more, no guarantee is given that program(a) does
disconnect a. In these cases the operating system has to close the connection
and/or to kill the process by descheduling its executing agent (e.g. via a time-
out). The CGI standard [23] leaves this issue open, but is has to be investigated
if one wants to provide some behavioral guarantees for the execution of CGI
modules.

Exec(module)(request , env) =
let executable = makePath(root(env), resourceName(request), env)
if mode(self) = init then

8 Therefore each request triggers a fresh instance of the associated external application
program to be executed. This is a possible source for exceeding the workload capacity
of the machine where the server runs.

9 In ASM terms inputStream(a) is a monitored and outputStream(a) an output loca-
tion for the executable, whereas for the module stdin is an output location (whereby
the request handler self passes input to a for the processing of the executable) and
stdout a monitored location (whereby the request handler self receives from a output
produced through processing the executable.)

Contribution to a Rigorous Analysis of Web Application Frameworks 13

if UndefinedProcess(executable) then
Send(failureReport(request ,ErrorCode(UndefinedProcess)))
Deactivate(self)

else
let a = new (Agent) // launch a new process instance
program(a) := executable(processEnv(env , requestVariables(request))))
Connect(a, self)
Send(request ,OkResponseCode)
mode(self) := transferData

if mode(self) = transferData then
if DataAvailable(stdout)

TransferDataFromTo(stdout , requestOutput(request))
if verb(request) = POST and DataAvailable(requestInput(request))

then TransferDataFromTo(requestInput(request), stdin)
if isDisconnected(a) then Deactivate(self)
where

ErrorCode(UndefinedProcess) = 404
OkResponseCode = 200
isDisconnected(a) = not Connected(a, self)

Remark. The server env ironment is needed as argument to compute the path in-
formation in makePath. This is particularly important for the optimized FastCGI
version we describe now.

FastCGI Module. Concerning the execution of external processes a FastCGI
module has the same function as a CGI module. There are two behavioral dif-
ferences:

A FastCGI module creates a new agent for the execution of a process only
upon the first invocation of the latter by the request handler. An agent a
which has been created to process an executable is kept alive once this pro-
cessing isFinished so that the agent can become active again for the next
invocation of that executable—with the new values for the requestVariables.
To Connect(a, self) now means to link its (local variables for) input resp.
output locations, denoted below by in(a), out(a), to corresponding locations
of the (request handler self executing the) module from where resp. to which
the data transfer from requestInput resp. to requestOutput is operated. In
particular in(a) is used to pass the parameters requestVariables(request) of
the process to initialize the executable.
It is assumed that the program program(a) agent a gets equipped with even-
tually sets a location EndOfRequest for the current request to false, namely
by updating this location during the TransferDataFromCgi action. This
makes the request handler terminate.

14 E. Börger, A. Cisternino, and V. Gervasi

Thus the CGI structure is refined to the FastCGI module structure as follows:

Exec(module)(request , env) =
let executable = makePath(root(env), resourceName(request), env)
if mode(self) = init then

if UndefinedProcess(executable) then
Send(failureReport(request ,ErrorCode(UndefinedProcess)))
Deactivate(self)

else
if thereisno a ∈ Agent with

program(a) = executable(processEnv(env))
then

let a = new (Agent)
program(a) := executable(processEnv(env))

mode(self) := connect
if mode(self) = connect then

let a = ιx (x ∈ Agent and
program(a) = executable(processEnv(env)))

Connect(a, self)
Initialize(program(a))
mode(self) := transferData

if mode(self) = transferData then
let reqin = requestInput(request), reqout = requestOutput(request)
if DataAvailable(out(a))

TransferDataFromCgi(out(a), reqout ,EndOfRequest(request))
if verb(request) = POST and DataAvailable(reqin) then

TransferDataToCgi(reqin, in(a))
if EndOfRequest(request) then Deactivate(self)

where
ErrorCode(UndefinedProcess) = 404
Initialize(program(a)) =

PassParams(requestVariables(request), in(a))
EndOfRequest(request) := false

TransferDataToCgi implies an encapsulation of the to be transmitted con-
tent into messages which carry either data or control information; inversely
TransferDataFromCgi implies a decoding of this encapsulation.

3.4 Refinement for Scripting Module Execution

Scripting modules like ASP, PHP, JSP all provide dynamic web page facilities
by allowing the server to run (directly through its request handler) dynamically
provided code. We define here a scheme which makes the common structure of
such scripting modules explicit.

As for CGI modules first the file for the to be executed code is searched at the
place indicated by the resourceName of the request , starting at the root of the

Contribution to a Rigorous Analysis of Web Application Frameworks 15

server env ironment. If the file is defined, the code is executed not by an indepen-
dent agent as for CGI modules, but directly by the request handler which uses
as program the ScriptInterpreter. For the state management accross differ-
ent server invocations by a series of requests from the same client the uniquely
determined sessionID (associated to the request under the given env ironment)
and the corresponding session and application (if any) have to be computed.
The computation of session and application comprises that a new session resp.
application is created in case none is defined yet in the server env ironment for
the sessionID resp. applicationName of the request .10 Furthermore the syntax
conversion of the script file from quotation to full script code (denoted here by a
machine QuoteToScript which is refined below for ASP, PHP and JSP) has
to be performed and the corresponding host objects have to be created to be
passed as parameters to the ScriptInterpreter call.

The functions involved to ComputeSession and to ComputeApplication,
which allow the server to track state information between different requests of a
same client, depend on the module, namely sessionID , makeSession (and there-
fore session), applicationName, makeApplication (and therefore application).
Similarly for the functions involved to ComputeInterpreterObjects. We
express this using the amb notation as defined in [10].

Exec(module)(request , env) =
let script = makePath(root(env), resourceName(request))
amb module in // NB: use of module sensitive functions

if mode(self) = init then
if script = ErrorCode(UndefinedScript) then

Send(failureReport(request ,ErrorCode(UndefinedScript)))
Deactivate(self)

else
let id = sessionID(request , env)

ComputeSession(id , request , env)
let applName = applicationName(resourceName(request))

ComputeApplication(applName, request , env)
scriptCode(request)← QuoteToScript(script , env)11

mode(self) := compInterprObjs
if mode(self) = compInterprObjs then

ComputeInterpreterObjects(request , id , applName)
program(self) :=

ScriptInterpreter(scriptCode(request), InterpreterObjects))
where

ErrorCode(UndefinedScript) = 404
ComputeSession(id , request , env) =

10 Typical refinements of the sessionID function also contain specific security policies
we necessarily have to abstract from in this high-level description.

11 The definition of ASMs with return value supporting the notation l ← M (x) is taken
from [12, Def.4.1.7.].

16 E. Börger, A. Cisternino, and V. Gervasi

if session(id) = undef then
session(id) := makeSession(request , env , id)

ComputeApplication(applName, request , env) =
if application(applName) = undef then

application(applName) := makeApplication(request , env , applName)
ComputeInterpreterObjects(request , id , applName) =

reqObj (request) := makeRequestHostObj (request)
responseObj (request) := makeResponseHostObj (request)
sessionObj (request) := makeSessionHostObj (session(id))
applObj (request) := makeApplicationHostObj (application(applName))
serverObj (request) := makeServerHostObj (request , env)

InterpreterObjects =
[reqObj (request), responseObj (request),

sessionObj (request), applObj (request), serverObj (request)]

ASP/PHP/JSP Module. ASP, PHP and JSP modules are instances of the
scripting module scheme described above. In fact their Exec(module) is defined
as for the scripting scheme but each with a specific way to produce dynamic
webpages, in particular with a specific computation of QuoteToScript, as we
are going to describe below.

Also the following auxiliary functions and the called ScriptInterpreter

are specific (as indicated by an index ASP, PHP, JSP) though not furthermore
detailed here:

The make . . .HostObj functions are specialized to make . . .HostObjindex func-
tions for each index ∈ {ASP ,PHP , JSP}.
ScriptInterpreter becomes ScriptInterpreterindex for any index out
of ASP, PHP, JSP.

See [14] for explanations how to construct an ASM model of the JavaScript
interpreter as described in [4].

A PHP module acts as a filter: it takes input from a file or stream con-
taining text or special PHP instructions and via their ScriptInterpreterPHP

interpretation outputs another data stream for display.
ASP modules choose the appropriate interpreter for the computed scriptCode

(so-called active scripting). Examples of the type of script code are JavaScript,
Visual Basic and Perl.

Thus for ASP the definition of ScriptInterpreterASP has the following
form:

ScriptInterpreterASP (scriptCode, InterprObjs) =
let scriptType = type(scriptCode)
ScriptInterpreterscriptType(scriptCode, InterprObjs)

The value of scriptCode(request) is defined as the result computed by a ma-
chine QuoteToScript for a script argument. For the original version of PHP,
to mention one early example, this machine simply computed a syntax transfor-
mation transform(script). Later versions introduced some optimization. At the

Contribution to a Rigorous Analysis of Web Application Frameworks 17

first invocation of QuoteToScript(script)—i.e. when the syntactical transfor-
mation of (the code text recorded at) script has not yet been compiled—or upon
later invocations for a script (with code text) changed since the last compila-
tion of transform(script), due to some code text replacement stored at script
that is out of the control of the web werver, the target bytecode is compiled
and timeStamped, using a compiler which can be specified using the techniques
explained for Java2JVM compilation in [22]. At later invocations of the same
script the already available compiled(transform(script)) bytecode is taken as
scriptCode instead of recompiling again. Since the value of the code text located
at script is not controlled by the web server, the function timeStamp(script)
appears in this model as a monitored function.

scriptCode(request)← QuoteToScript(script , env)
where

QuoteToScript(script) =
let s = transform(script)
if compiled(s) = undef or

timeStamp(lastCompiled(script)) ≤ timeStamp(script)
then

compiled(s) := compile(s)
result:= compile(s)
timeStamp(lastCompiled(script)) := now
type(compile(s)) := typeOf (script , env)

else result:= compiled(s)

For ASP and PHP the QuoteToScript machine describes an optional opti-
mization12 that cannot be observed from outside. For ASP the machine has the
additional update for the type of the computed result (namely the scriptCode)
that uses a syntax function typeOf which typically yields a directive, e.g.

< %@Language = “JScript ′′% >

or a default value.
The type of the scriptCode depends on the script and on the env ironment;

for example the env ironment typically defines a default type for the case that
nothing else is specified.

For JSP no syntax translation is required (formally the transform func-
tion is the identity function) because scriptCode is a class file (Servlet which
comes with a certain number of fixed interfaces like doPost(), doGet(), etc.)
so that the operations are performed by a JVM. This permits to embed pre-
defined actions (implemented by Java code which can also be included from
some predefined file via appropriate JSP directives) into static content. Here the
machine QuoteToScript is mandatory because different invocations of the
same scriptCode can communicate with each other via the values of static class
variables.
12 It is an ASM refinement of the non-optimized original PHP version.

18 E. Börger, A. Cisternino, and V. Gervasi

JSF/ASP.NET Modules. It seems that a detailed high-level description of
Exec(module) for the modules as offered by the Java Server Faces (JSF [1]) and
Active Server Pages (ASP.NET [19]) frameworks can be obtained as a refinement
of the ASM defined above for the execution of scripting modules. As mentioned
above PHP, ASP and JSP use a character based approach in which the script
outputs characters (either explicitly through the Response object or implicitly
by using the special notation converted by QuoteToScript). The JSF and
ASP.NET frameworks use their virtual-machine based environment (JVM resp.
CLR) to provide more flexible ways for the ScriptInterpreter to write on
the response stream (e.g. in ASP.NET based on the Windows environment)
and to define a server-side event and state management model that relieves the
programmer from having to explicitly deal with the state of a web page made up
by several components. The programming model offered by these environments
provides a sort of DOM tree where each node upon being visited is asked for the
data to be sent as part of the response so that the programmer has the impression
of manipulating objects rather than generating text of a Web page. For example,
a request handled by the ASP.NET module triggers a complex lifecycle13 which
allows the programmer to manipulate a tree of components each of which has its
own state, in part stored inside the web page (in the form of a hidden field) and
in part put by the application into the session state. We are currently working on
modeling these features as refinements of the ASM model for scripting module
execution.

4 The Challenge of Accurate Analysis

Once sufficiently rich rigorous abstract web application models have been de-
fined they can be used to accurately define properties of interest one would like
to prove or falsify for the models via proofs or counterexamples which are pre-
served by correct refinements for existing implementations. This is by no means
an easy task. For an illustrative example we can refer to [22] where in terms of
rigorous models for Java, the JVM and a compiler Java2JVM the mere math-
ematically precise formulation of the compiler correctness property stated in
Theorem 14.1.1. (p.177-178) needs 10 pages, the entire section 14.1.14 A for-
mulation in terms of some logic language understood by a theorem prover (e.g.
in the language of KIV which has been used for various mechanical verifica-
tions of properties of ASMs [20,21] or in Event-B [6]) is still harder and will be
considerably longer, as characteristic for formalizations.

We list here some properties of web applications we suggest to precisely
formulate and prove or disprove in terms of abstract web application models.

A first group consists of correctness properties for the crucial session and
state management:

Session management refers to the ability of an application to maintain the
status of the interaction with a particular browser. A typical property is that

13 See http://msdn.microsoft.com/en-us/library/ms178472.aspx.
14 In comparison the proof occupies 24 pages, the rest of chapter 14.

Contribution to a Rigorous Analysis of Web Application Frameworks 19

session state is not corrupted by user actions like hitting the Back/Forward
buttons or navigating away from the page and then coming back.
State management is about the virtual state of the application, which is usu-
ally distributed among multiple components on both client and server side,
with parts of the state ‘embedded’ into the local state of several programs,
and often also replicated entirely or partially. Typical desirable properties
are that at significant time instants replicated parts of the state

• are consistent, that is they are allowed to be out-of-sync at times and
consistence is considered up to appropriate abstraction functions,
• are equivalent between the client-side and the server-side of the state,
• can be reconstructed, e.g. when the client can change and its state must

be persisted to another client (for example from desktop to mobile).

A second group concerns robustness e.g. upon loss of a session or client and
server state going out-of-sync, security and liveness.

A third group consists of what we consider to be the most challenging prop-
erties which are also of greatest interest to the users, namely application cor-
rectness properties. These properties are about the dependence of the intended
application-focussed behavior of web applications on the programming and exe-
cution infrastructure—on the used browser, web server, net infrastructure (e.g.
firewall, router, DNS), connection, plug-ins, etc. Such components are based on
their own (not necessarily compatible) standards and therefore may influence
the desired application behavior in unexpected ways. This makes their rigorous
high-level description mandatory for a precise analysis. An outstanding class of
such application-group-specific properties is about application integration where
common services are offered on an application-independent basis (e.g. authenti-
cation or electronic payment services). We see such investigations as a first step
towards defining objective content-based criteria for the reliability of web appli-
cation software and for building reliable web applications, read: web applications
whose properties of interest can be certifiably guaranteed—by theorem proving
or model checking or testing or combinations of these activities—to hold under
precisely formulated boundary conditions.

Acknowledgement. This paper is published in the two Proceedings volumes
of the joint iFM2012 and ABZ2012 Conference held in Pisa (Springer LNCS
7321 and 7316).

References

1. Java Server Faces, http://www.jcp.org/en/jsr/detail?id=314

2. Python, http://www.python.org/

3. Tomcat, http://tomcat.apache.org/

4. ECMAScript language specification. Standard ECMA-262, Edition 5.1 (June
2011), http://www.ecma-international.org/publications/standards/Ecma-

262.htm

http://www.jcp.org/en/jsr/detail?id=314
http://www.python.org/
http://tomcat.apache.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

20 E. Börger, A. Cisternino, and V. Gervasi

5. HTTP1.1 part 2 message semantics, http://www.ietf.org (cosulted February
2012)

6. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

7. Altenhofen, M., Börger, E., Friesen, A., Lemcke, J.: A high-level specification for
virtual providers. IJBPIM 1(4), 267–278 (2006)

8. Barros, A., Börger, E.: A Compositional Framework for Service Interaction Pat-
terns and Interaction Flows. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 5–35. Springer, Heidelberg (2005)

9. Börger, E.: Approaches to modeling business processes. A critical analysis of
BPMN, workflow patterns and YAWL. JSSM, 1–14 (2011), doi:10.1007/s10270-
011-0214-z

10. Börger, E., Cisternino, A., Gervasi, V.: Ambient Abstract State Machines with
applications. JCSS 78(3), 939–959 (2012)

11. Börger, E., Fruja, G., Gervasi, V., Stärk, R.: A high-level modular definition of the
semantics of C#. Theoretical Computer Science 336(2-3), 235–284 (2005)

12. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer (2003)

13. Brown, M.R.: Fast CGI specification (April 1996), http://www.fastcgi.com/
14. Dittamo, C., Gervasi, V., Börger, E., Cisternino, A.: A formal specification of the

semantics of ECMAScript. In: VSTTE 2010, Edinburgh, Poster session (2010)
15. Fruja, N.G.: Towards proving type safety of .NET CIL. SCP 72(3), 176–219 (2008)
16. Fruja, N.G., Börger, E.: Modeling the.NET CLR Exception Handling Mechanism

for a Mathematical Analysis. Journal of Object Technology 5(3), 5–34 (2006)
17. Gervasi, V.: An ASM model of concurrency in a web browser. In: Proceedings ABZ

2012. LNCS. Springer, Heidelberg (2012)
18. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building and

Deploying Messaging Solutions. Addison-Wesley Longman Publishing (2003)
19. Microsoft. ASP.NET, http://www.asp.net
20. Schellhorn, G., Ahrendt, W.: The WAM case study: Verifying compiler correctness

for Prolog with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction – A
Basis for Applications, vol. III, pp. 165–194 (1998)

21. Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex Challenge: Ma-
chine Checked Proofs for an Electronic Purse. In: Misra, J., Nipkow, T., Karakostas,
G. (eds.) FM 2006. LNCS, vol. 4085, pp. 16–31. Springer, Heidelberg (2006)

22. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer (2001)

23. W3C. CGI: Common Gateway Interface, http://www.w3.org/CGI/

http://www.ietf.org
http://www.fastcgi.com/
http://www.asp.net
http://www.w3.org/CGI/

Process Algebra for Event-Driven Runtime

Verification: A Case Study of Wireless
Network Management

Muffy Calder� and Michele Sevegnani

School of Computing Science, University of Glasgow, UK

Abstract. Runtime verification is analysis based on information ex-
tracted from a running system. Traditionally this involves reasoning
about system states, for example using trace predicates. We have been
investigating runtime verification for event-driven systems and in that
context we propose a higher level of abstraction can be useful, namely
reasoning at the level of user-perceived system events. And when con-
sidering events, then the natural formalism for verification is a form of
process algebra.

We employ a universal process algebra that encapsulates both dy-
namic and spatial behaviour, based on Robin Milner’s bigraphs [1]. Our
models are an extension of his bigraphical reactive systems. These consist
of a set of bigraphs that describe spatial and communication relation-
ships, and a set of bigraphical reaction rules that define how bigraphs can
evolve over time. We have extended the basic formalism to bigraphical
reactive systems with sharing [2], to allow for spatial locations that can
overlap.

In this talk we present a case study involving wireless home network
management and the automatic generation of bigraphical models, and
their analysis, in real-time. Wireless home networking is chosen as our
case study because it is notoriously difficult to install and manage, espe-
cially for non-expert users. The Homework network management system
[4] has been designed to provide user-oriented support in home wireless
local area network (WLAN) environments. The Homework user interface
includes drag and drop, comic-strip style interaction for users, and the
information plane uses a stream database to record (raw and derived)
events. Events include network behaviours such as detecting that a new
machine has joined the network, resulting in new links and granting a
DCHP lease, and user-intiated behaviours such as enforcing or dropping
a policy. Policies forbid or allow access control; for example, a policy
might block UDP and TCP traffic from a given site. All network and
policy events (simple and derived) are recorded as a stream of tuples in
the stream database. This part of the management system is illustrated
in the left hand side of Figure 1.

On the right hand side of Figure 1 we depict our addtion to the Home-
work system: additional runtime verification components, and feedback

� This work is supported by the Engineering and Physical Sciences Research Council,
under grant EP/F064225/1.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 21–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

22 M. Calder and M. Sevegnani

Run-time formal model
generation and verification

Homework information plane

Fig. 1. Run-time model generation, analysis and feedback

from the verification to the network and users. In this talk we focus first
on the bigraphical representations of networks topologies, the encodings
of events that modify topologies as bigraph reaction rules, and the en-
codings of access control policy enforcements and revokations as bigraph
reaction rules, and second on how the two components are deployed at
run-time and their interplay. Both components are part of a larger bi-
graph evaluation and rewriting toolkit [3].

Briefly, the Bigraph encoder component encodes events (network topol-
ogy or policy) as bigraphical reaction rules, in real-time, as they are
stored in the stream database. The Bigraph analysis component has two
roles. First, it generates the bigraphical representation of the current
configuration of the WLAN, according to the sequences of reaction rules
received from the Bigraph encoder. Namely, a sequence of bigraphs is
generated. A simple example bigraph of a WLAN with one router (R),
one machine (M1), and their respective wireless signals (S), is given in
Figure 2.

Second, it analyses the current configuration by checking predicates
encoded as instances of bigraph matching. These predicates encapsulate
properties required for correct encoding of topology or policy events,
as well as system properties, including detecting configurations that vi-
olate user-invoked access control policies. Example predicates include:
“Machine 01:23:45:67:89:ab is in the range of the router’s signal”, “Host
Laptop has access to the Internet”, and “TCP traffic is blocked for ma-
chine with IP address 192.168.0.3”. The results are logged and fed back
to the system, or to the user, when a verification fails. An explanation
of the failure, or a counter-example can be displayed to a user, using the
graphical bigraph notation. An indication of failure is also sent to the
network, if appropriate, e.g. to deny activation of a policy, and/or simply
stored in a logfile.

Process Algebra for Event-Driven Runtime Verification 23

Fig. 2. Simple WLAN on the left and bigraph model on the right

The encoding and analysis components have been implemented on the
router itself, and we give some empirical evidence of runtime verification
from experiments using actual and synthetic network data.

References

1. Milner, R.: The space and motion of communicating agents. Cambridge University
Press (2009)

2. Sevegnani, M., Calder, M.: Stochastic bigraphs with sharing. Glasgow University
Computing Science Technical Report TR-2010-310 (2010)

3. Bigrapher, http://www.dcs.gla.ac.uk/~michele/bigrapher.html
4. Sventek, J., Koliousis, A., Sharma, O., Dulay, N., Pediaditakis, D., Sloman, M.,

Rodden, T., Lodge, T., Bedwell, B., Glover, K.: An Information Plane Architecture
Supporting Home Network Management. In: Proceedings of the 12th IFIP/IEEE
International Symposium on Integrated Network Management (2011)

http://www.dcs.gla.ac.uk/~michele/bigrapher.html

Translating TLA
+ to B for Validation with ProB

Dominik Hansen and Michael Leuschel

Institut für Informatik, Universität Düsseldorf�

Universitätsstr. 1, D-40225 Düsseldorf
dominik.hansen@uni-duesseldorf.de, leuschel@cs.uni-duesseldorf.de

Abstract. TLA
+ and B share the common base of predicate logic,

arithmetic and set theory. However, there are still considerable differ-
ences, such as very different approaches to typing and modularization.
There is also considerable difference in the available tool support. In
this paper, we present a translation of the non-temporal part of TLA

+

to B, which makes it possible to feed TLA
+ specifications into exist-

ing tools for B. Part of this translation must include a type inference
algorithm, in order to produce typed B specifications. There are many
other tricky aspects, such as translating modules as well as let/in and
if/then/else expressions. We also present an integration of our transla-
tion into ProB. ProB thus provides a complementary tool to the explicit
state model checker TLC, with convenient animation and constraint solv-
ing for TLA

+. We also present a series of case studies, highlighting the
complementarity to TLC. In particular, we highlight the sometimes dra-
matic difference in performance when it comes to solving complicated
constraints in TLA

+.

Keywords: TLA,B-Method, Tool Support,Model Checking, Animation.

1 Introduction and Motivation

TLA
+ [5] and B [1] are both state-based formal methods rooted in predicate

logic, combined with arithmetic and set theory. There are, however, considerable
differences:

– TLA
+ is untyped, while B is strongly typed.

– The concepts of modularization are very different (as we will see later in the
paper).

– TLA
+ and B both support sets and functions. However, functions in TLA

+

are total, while B supports relations, partial functions, injections, bijections,
etc.

– TLA
+ has several constructs which are lacking in B, such as an if/then/else

for expressions and predicates1, a let/in construct or the choose opera-
tor. The latter enables one to define recursive functions over sets, which are
akwkard to define in B.

� Part of this research has been sponsored by the EU funded FP7 projects 214158
(DEPLOY) and 287563 (ADVANCE).

1 B only provides an if/then/else for substitutions.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 24–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Translating TLA
+ to B for Validation with ProB 25

– TLA
+ allows to specify liveness properties while B is limited to invariance

properties (temporal formulas such as liveness conditions will be excluded
from our translation).

As far as tool support is concerned, TLA
+ is supported by the explicit state

model checker TLC [13], and more recently by the TLAPS prover [2]. B has
extensive proof support, e.g., in the form of the commercial product AtelierB
[3]. The animator and model checker ProB [6] can also be applied to B spec-
ifications. Both AtelierB and ProB are being used by companies, mainly in
the railway sector for safety critical control software. Some of the goals of our
translation are

– to gain a better understanding of the common core and of the differences
between TLA

+ and B,
– to obtain an animator for TLA

+,
– and to obtain a constraint solver for TLA

+.

Indeed, TLC is a very efficient model checker for TLA
+ with an efficient disk-

based algorithm and support for fairness. ProB has an LTL model checker, but
does not support fairness (yet) and is entirely RAM-based. The model checking
core of ProB is less tuned than TLA

+. However, ProB offers several features
which are absent from TLC, notably an interactive animator with various vi-
sualization options. More importantly, the ProB kernel provides for constraint
solving over predicate logic, set theory and arithmetic. ProB can also deal quite
well with large data values. This has many applications, from constraint-based
invariant or deadlock checking [4], over to test-case generation and on to im-
proved animation because the user has to provide much less concrete values
than with other tools. It also makes certain specifications “executable” which
are beyond the reach of other tools such as TLC.

We suppose that the reader is familiar with either TLA
+ or B. Indeed, we

hope that through our translation, TLA
+ constructs can be understood by B

users and vice-versa. Below, in Sect. 2 we introduce the essentials of our trans-
lation on a simple example, while in Sect. 3 we present the translation more
formally. In Sect. 4 we present case studies and experiments, and will also com-
pare the tools ProB and TLC. We conclude with more related and future work
in Sect. 5.

2 An Example Translation from TLA
+ to B

To allow B users to become familiar with TLA
+, we present a variation of the

well known HourClock example from Chapter 2 of [5]. Figure 1 shows the My-
HourClock module, which avoids the if/then/else expression of the original
at this point. The specification describes the typical behavior of a digital clock
displaying only hours. The module starts with the module clause followed by
the name of the specification. The analogous clause of a B machine is machine
or model. At the beginning of the module body, arithmetic operators such as

26 D. Hansen and M. Leuschel

module MyHourClock
extends Integers
constants c
assume c ∈ 1 . . 12
variables hr
Init

Δ
= hr = c

add 1(p)
Δ
= p + 1

Inc
Δ
= hr < 12 ∧ hr ′ = add 1(hr)

Reset
Δ
= hr = 12 ∧ hr ′ = 1

Next
Δ
= Inc ∨ Reset

Fig. 1. Module MyHourClock

+ or “..” are loaded via extends from the standard module Integers. These
operators are not built-in operators in TLA

+ and can either be defined by the
user or imported with their usual meaning as here. The declaration of constants
and variables is identical in both languages. The assume clause in TLA

+ cor-
respondes to the properties clause in B.

To understand the meaning of the other definitions in the module we need
some additional information.2 For our translation we use a configuration file,
as TLC also uses, telling us the initial state and the next-state relation of the
module. For this example we suppose Init to be the initial state predicate and
Next to be the next-state relation. Init indicates that the variable hr has the
value of the constant c in the initial state. Next is separated into two actions
by the disjunction operator. An action is a before-after predicate describing
a transition to a next-state with the aid of the prime operator(′). A primed
variable represents the variable in the next-state. The use of the additional add 1
operator may seem artificial here; its purpose is to demonstrate another aspect
of our translation.

Figure 2 shows the translated B Machine of the MyHourClock example. We
use the becomes/such/that substitution under the initialisation clause to
initialize the variables of the B machine. It assigns a value to the variable such
that the predicate in the brackets is satisfied. The TLA

+ actions Inc and Reset
are translated as separate B operations. We represent the prime operator in B by
adding a local auxiliary variable for every variable. The auxiliary variables (with
suffix “ n”) are generated in the any part of the any/where/then substitution
and get their value in the where part. If the predicate in the where part is not
satisfiable the operation can not be executed. Finally, the values of the auxiliary
variables are assigned to the corresponding global variables in the then part.

Operators such as add 1 are translated using B definitions. B definitions are a
kind of macro and help to write frequently used expressions. They are syntactic
sugar and will be resolved in the the parsing phase. Furthermore, they can
have parameters. Using B definitions avoids to replace an operator call by the

2 “What those definitions represent [. . .] lies outside the scope of mathematics and
therefore outside the scope of TLA

+” (see p. 21 of [5]).

Translating TLA
+ to B for Validation with ProB 27

machine MyHourClock
definitions add 1(p) == p + 1
constants c
properties c ∈ 1..12
variables hr
invariant hr ∈ Z

initialisation hr :(hr = c)
operations

Inc Op = any hr n
where hr < 12 ∧ hr n = add 1(hr)
then hr := hr n
end

Reset Op = any hr n
where hr = 12 ∧ hr n = 1
then hr := hr n
end

end

Fig. 2. Machine MyHourClock

definition of the operator. The arithmetic operators are translated with the use of
B’s built-in operators. Therefore, they do not appear in the definitions clause.
Finally, to obtain a correct B machine our translation has inferred and added
the types of the variables in the invariant clause.

3 The Translation from TLA
+ to B

3.1 Type System

The basis of our translation is a mapping of TLA
+ values to B values. Due to

the strict type system of B, every B value has to be associated with a type.
Below we list the translations of the TLA

+ values and the resulting restrictions:

– Numbers: In B real numbers are not supported. Thus, only integers can be
translated. They get the B type Z.

– The boolean values true and false are identical in both languages. They
get the B Type bool.

– The concepts of strings are different in both languages. In TLA
+ a string is

a sequence of characters and a single character can be accessed. However, a
string in B is atomic and has the base type string. For the translation we
currently reject strings if they are used as tuples.

– A model value is none of TLA
+’s own values but one of TLC’s. But it is

established to use TLA
+ together with TLC so we deliver a suitable trans-

lation. TLC allows to assign a model value or a set of model values to a
constant in the configuration file. The equivalent of a model value is an ele-
ment of an enumerated set in B. To make different model values comparable
to each other we put them in the same enumerated set named: enumi . How-
ever if two model values are never compared in the specification, we put

28 D. Hansen and M. Leuschel

them in different sets (such as enum1 and enum2). The B type of a model
value is the name of the enumerated set containing it.

– There is one main difference between sets in TLA
+ and B. In B all elements

of a set must have the same type, i.e., a set has the B type Pτ where τ is
the type of all its elements.

– In both languages functions are a mapping from a domain to a range. The
B type of a function is P(τ1 × τ2), where Pτ1 is the type of the domain and
Pτ2 is the type of the range.

– In TLA
+ a record is a special case of a function whose domain is a set

of strings (the field names). In B records have their own type struct(h1 :
τ1, . . . , hn : τn), where h1, . . . , hn are the names of the fields and τ1, . . . , τn
the corresponding field types.

– Likewise, tuples are based on functions in TLA
+. The domain is the interval

from 1 to n, where n is the number of components. We translate tuples as
sequences with the type P(Z × τ). Thereby all components of a tuple must
be of the same type τ .

In B only values of the same type are comparable to each other and variables as
well as constants can only have one type. To verify these rules a type checking
algorithm is required. Moreover we need a type inference algorithm to add miss-
ing type declarations to the translated B machine as shown in the example in
Sect 2. Type checking and type inference are closely related and can be handled
simultaneously.

We use an inference algorithm similar to [9], adapted to the B type system,
where we add an extra type u representing an unspecified type. At the beginning
each variable and constant have this type. The algorithm is based on the recursive
method eval(e, ε), dealing with a TLA

+ expression e and an expected type
ε. Evaluating an expression eval is applied recursively to its subexpressions.
Moreover eval tries to unify the expected type with the type of the expression and
returns the resulting type. The expected type of a subexpression is deduced from
type informations of the operator calling this subexpression. Type informations
of an operator arise from the translation. As an example the TLA

+ operator
+ is translated by the B built-in operator + and its operands are assumed to
be integers. There are polymorphic operators such as =, which only require
that both operands have the same type. In this case the expected type for both
operands is u but the resulting types of both sides have to be unified. Due
to unification, the eval method is only once applied to each (used) expression
of the TLA

+ module. Moreover, declarations in the configuration file are also
taken into account to infer the types of constants. The algorithm fails either if a
unification of two types fails or if a variable or constant still has a variable type
u (or a type constructor containing u such as Pu) at the end of algorithm.

3.2 Translation Rules

In this section we present translation rules for concepts which are different in
TLA

+ and B, or even missing in B.

Translating TLA
+ to B for Validation with ProB 29

In contrast to TLA
+, B distinguishes between boolean values and predicates.

The difference is already present at the syntactical level. Logical operators such
as ∧ or ∨ cannot be applied to boolean values. Similarly, variables or constants
can not take a predicate as a value. Though, there is a way to convert from a
predicate to boolean and vice versa. A predicate can be converted to a boolean
value using the bool operator. The other way around, we can turn a boolean
value into a predicate by comparing it with true. The translation of the TLA

+

predicate
true = (true ∨ false)

demonstrates both conversions:

true = bool((true = true) ∨ (false = true))

The if/then/else construct can be used in variety of ways in TLA
+. The two

branches can consist of arbitrary expressions with or without primed variables.
There is no general way to translate this construct with the if/then/else sub-
stitution of B. In order to make a translation to B possible, we first have to
restrict both branches to the same type. In case the branches are predicates the
construct

if P then e1 else e2

can be translated using two implications as

(P ⇒ e1) ∧ (¬(P)⇒ e2)

If e1 and e2 are expressions, we cannot use this scheme. Our solution is to
create for both branches a lambda function, with respectively e1 and e2 as result
expression. Moreover we choose true as the sole dummy element of the domains.
The “trick” is to add the condition P respectively its negation ¬(P) to the
corresponding function. As a consequence, one of the functions is always empty.
As already mentioned, B functions are sets and we can apply ∪ to combine
them (the result is still a function here). To get the value of the if/then/else
construct, we just have to call the function with the value true as argument:

(λt .(t ∈ {true} ∧ P |e1) ∪ λt .(t ∈ {true} ∧ ¬P |e2)) (true)

Compared to other possible translations, ours has the advantage that the ex-
pressions e1 and e2 are guarded by P and ¬P , i.e., the translation of if x =
0 then 1 else 1/x is well-defined in B. The translation of the case construct
is based on the same principle. However, every case is treated as single branch
and only one case can be true at the same time.

The LET d
Δ
= f IN e construct allows to define a “local” operator d which

can only be used in the expression e. This operator is treated as an ordinary
operator and translated with the aid of a B definition; conserving the scope
of the operator. In TLA

+ operators within different LET/IN constructs could
have the same name. We avoid name clashes by adding suffixes to multiply used
names.

30 D. Hansen and M. Leuschel

In TLA
+ the choose operator is used to choose an arbitrary value of a set.

The operator works in a deterministic way and chooses always the same value for
a given set. It is often combined with a recursive function such as determining
the sum of a set. In B there is no way to express the general functionality of the
choose operator3 and recursive functions are still not (well) supported by B
tools. Hence, we developed a way to handle frequently used operators which are
based on the choose operator or on recursive functions. The principle is inspired
by the way TLC overrides operators by its Java implementation: we create a
new TLA

+ standard module (see Figure 3.2) with some useful operators, and
during the translation these operators will be overridden by B built-in operators.

module TLA2B

extends Integers, Sequences
MinOfSet(S)

Δ
= choose p ∈ S : ∀n ∈ S : p ≤ n

MaxOfSet(S)
Δ
= choose p ∈ S : ∀ n ∈ S : p ≥ n

SetProduct(p)
Δ
=

let prod [S ∈ subset Int]
Δ
=

if S = {} then 1
else let q

Δ
= choose pr ∈ S : true

in q ∗ prod [S \ {q}]
in prod [p]

SetSummation(p)
Δ
=

let sum[S ∈ subset Int]
Δ
=

if S = {} then 0
else let q

Δ
= choose pr ∈ S : true

in q + sum[S \ {q}]
in sum[p]

PermutedSequences(S)
Δ
=

let perms[ss ∈ subset S]
Δ
=

if ss = {} then {〈〉}
else let ps

Δ
= [x ∈ ss �→

{Append(sq , x) : sq ∈ perms[ss \ {x}]}]
in union {ps[x] : x ∈ ss}

in perms[S]

The concepts of modularization are different in TLA
+ and B. In B a machine

is a closed system. Indeed, a machine can be included by another machine but
variables can only be modified by its operations. As a result, a single machine of
a compound system can be verified individually. A TLA

+ module does not need
to satisfy this property. Hence, we translate a compound of TLA

+ modules as
a single B machine:

– A module extending another module will be treated as a single module
containing declarations and definitions (including local definitions of the

3 Even though the operator does appear inside mathematical constructions of [1].

Translating TLA
+ to B for Validation with ProB 31

extended module) of both modules. Otherwise, there are no further differ-
ences in comparison to a translation of a single module.

– The statement

I
Δ
= INSTANCE M WITH vM ← v , cM ← c

allows the specifier to use the definitions of the module M. Thereby, all
variables and constants of M have to be overridden by variables and constants
(or constant expressions) of the module instantiating M. A definition dM of
Module M can be accessed via I !dM . Also multiple instantiations of the
same module are possible. We translate every definition dM of M as an
ordinary definition by only renaming it to I dM and by overriding variables
and constants as described in the statement.

In Sect. 2 we translated a TLA
+ action from Fig. 1 to a B operation in Fig. 2,

but we did not exactly define what TLA
+ actions are and how they are ex-

tracted. An action is defined to be “an ordinary mathematical formula, except
that it contains primed as well as unprimed variables”(see p. 16 of [5]). Following
this definition we could handle the whole next state relation as a single action.
However, this is not advisable, amongst others because of poor user feedback for
animation, proof and model checking. Consequently we separate actions with the
aid of the disjunction operator. If a disjunction of two actions occurs in a sub-
definition of the next state relation, we also will treat them as separate actions
unless the subdefinition has no parameter. Parameters indicate that a subdef-
inition can be used in different variations and multiple times; the translation
should not dissolve this structure of a module. In this case the subdefinition is
translated with a B definition. The mechanism splitting the next-state relation
into separate actions is similar to what TLC does when it pre-processes TLA

+

specifications, except that TLC resolves definitions regardless if they have pa-
rameters.

A special translation is possible if an action contains an existential quantifier:

act
Δ
= ∃x ∈ S : P(x)

The bounded variables of the quantification are handled as parameters of the
resulting B operation:

act op(x) = any . . .where x ∈ S ∧ P(x) then . . . end

The advantage is that a user can choose a possible value for the parameter x
during the animation process (values for x satisfying P(x) are generated by
ProB).

4 Implementation and Experiments

The translator is implemented in Java and is called TLA2B. The frontend of
TLA2B is based on SANY (cf., Chapter 12 of [5]) for parsing the module and

32 D. Hansen and M. Leuschel

performing a semantic analysis. Likewise, SANY serves as the frontend of the
modelchecker TLC. Moreover, we reuse the configuration file parser of TLC.
But the semantic analysis of the configuration file ist different: TLC requires a
value for every constant of the corresponding module. In our case, a constant
only has to be given a value if the type of the constant cannot be inferred from
the module. Otherwise, values of constants can be chosen at a later point in time
(ProB infers values for a constant satisfying possible restrictions of the assume
clause). TLA2B can handle the clauses specification (temporal description of
the specification), invariant (an invariant holding in every state) and overriding
of constants and definitions beside the already mentioned init (initial state) and
next (next state relation). Before inferring and checking types, we conduct a
further analysis phase discarding the unused definitions of a module. As an
example, temporal definitions are excluded from the translation. The remaining
part of the TLA2B consists of implementations of the algorithms described in
Sections 2 and 3. Finally, TLA2B creates a B machine file (.mch) containing the
translated B machine.

TLA2B has been integrated into ProB as of version 1.3.5: opening a TLA
+

module ProB invokes TLA2B to translate the module. As can bee seen in Fig. 3,
the TLA

+ module is displayed in the editor while ProB runs the translated B
machine in the background. The editor offers syntax highlighting and gives an
easy way to modify the module.

Fig. 3. ProB animator for the SimpleAllocator specification

Translating TLA
+ to B for Validation with ProB 33

The following examples show some fields of application of TLA2B in combina-
tionwithProB.4 It is not our intention to present a complete comparisonbetween
ProB andTLC. The experiments were all run on a systemwith Intel Core2 Duo 2
GHz processor, runningWindows Vista 32 Bit, TLC2 2.03 andProB 1.3.5-beta1.

Note that both ProB and TLC support symmetry, but in different ways. In
TLC symmetries are provided by the user (e.g., in a configuration file) and are
not checked, ProB identifies symmetries over given sets automatically.

SimpleAllocator. As the first example we use the resource allocator case study
from [8]. The purpose of the system is to manage a set of resources that are
shared among a number of client processes. The first abstract specification of
the system is the SimpleAllocator. TLA2B translates the module without the
need for any modification (the TLA

+ module and the translated B machine
are shown in Appendix A). Clients and resources are specified as sets of model
values and allow TLC as well as ProB to use symmetry. Table 1 summarises the
running times of model checking for TLC and ProB. Without symmetry TLC

is superior to ProB, but for larger set sizes ProB’s symmetry outperforms
TLC. It seems that TLC’s symmetry reduction cannot deal well with larger
base set sizes and a lot of symmetrical states exist (incidentally, a situation
where symmetry reduction could be particularly useful). This is actually to be
expected, given the description of the symmetry reduction algorithm in [5]: when
a state is addedTLC checks for every permutation of it whether it already exists.
This is expensive when there are many such permutations.

Table 1. SimpleAllocator: Runtimes of Model Checking (times in seconds)

Clients Resources TLC TLC ProB ProB
(no symmetry) (symmetry) (no symmetry) (symmetry)

3 2 <1 <1 <2 <1

4 3 28 2 678 8

5 3 450 29 - 28

6 3 >4200 573 - 90

Login. To specifically test this aspect of symmetry reduction, we have written
the TLA specification Login which simply allows users to login and logout and
deadlocks if all users have logged in. Here, for 9 Users, TLC without symmetry
reduction takes 1 second to find the deadlock, but did not terminate within 105
minutes with symmetry enabled. ProB takes 0.73 seconds without symmetry,
and 0.04 using hash symmetry reduction [7]. For 21 users, TLC requires 141
seconds to find the deadlock without symmetry, and with symmetry an error
message is generated.5 ProB with hash symmetry takes 0.29 seconds to find

4 The source code of the examples are available in the technical report at:
http://www.stups.uni-duesseldorf.de/w/Special:Publication/

HansenLeuschelTLA2012 .
5 “Attempted to construct a set with too many elements (>1000000)”. This error
message already appears with 15 Users.

http://www.stups.uni-duesseldorf.de/w/Special:Publication/HansenLeuschelTLA2012
http://www.stups.uni-duesseldorf.de/w/Special:Publication/HansenLeuschelTLA2012

34 D. Hansen and M. Leuschel

the deadlock for 21 users. The constraint-based deadlock checking algorithm [4]
finds a deadlock in less than 0.01 seconds for 21 users.

SchedulingAllocator. This is an advanced version of the SimpleAllocator from
[8]. However, this time a small modification is required to be able to validate
the specification using our tool. Indeed, the SchedulingAllocator contains the
definition PermSeqs(S) that is based on a recursive function and computes
the set of permutation sequences of the set S. To translate this to the B built-
in operator, we have to override PermSeqs with the PermutedSequences

definition provided by our TLA2B module. For this, we simply have to create
a new module MCSchedulingAllocator extending the SchedulingAllo-

cator as well as the TLA2B module and then add the override statement
PermSeqs <- PermutedSequences to the configuration file. The results of model
checking are comparable to the SimpleAllocator specification, and can be found
in Table 2.

Table 2. McSchedulingAllocator: Running times of Model Checking (times in seconds)

Clients Resources TLC ProB
(symmetry) (symmetry)

3 2 1 2

4 3 70 165

5 3 >3600 1579

Producer-Consumer. Another example is the specification of a multi-threaded
program by Charpentier taken from http://www.cs.unh.edu/%7Echarpov/Teaching/TLA/.
The specification describes a system of threads working on a buffer. In case of a
critical ratio between consumer and producer threads, the system can deadlock.
After translation ProB reproduces the various deadlocks by model checking. For
example, for 11 producers and 10 consumers a deadlock can be reached after 431
steps. Using the AtelierB provers we have also managed to prove the invariant of
that model, i.e., that the buffer capacity is never exceeded and that the waitSet
only contains valid participants. This required 8 interactive proofs and 5 automatic
ones.

Constraint Solving: GraphIso and N-Queens. One of the distinguishing
features of ProB is its ability to solve complicated high-level constraints. For
example, to find an isomorphism between two graphs (of out-degree exactly one
and with nine vertices) , ProB requires less than a second to find all solutions,
while TLC requires over two hours to find the first solution.

As another example, consider the well-known N-Queens puzzle. We have ex-
perimented with two encodings of the puzzle: one6 where we use the model
checker to search for all valid placements of N queens on an N×N chessboard
and a more declarative encoding where we directly write a predicate describing

6 The specification was written by S. Merz and is included in the TLA
+ Tools

Distribution.

Translating TLA
+ to B for Validation with ProB 35

all valid solutions (i.e., all solutions are generated in single set-builder rather
than through an iterative algorithm). As can be seen in Table 3, the model
checking approach can only deal with very small values of N. In contrast, ProB
can handle values of N up to 13 for the declarative version of N-Queens. Fur-
thermore, when one is interested in only one solution, ProB can, e.g., find a
solution for N=50 in less than a second. (Restricting to single solutions does not
make much of a performance difference for TLC, however.)

Table 3. Finding all solutions for N-Queens (times in seconds)

N Solutions N-Queens (imperative) N-Queens (declarative)
TLC ProB TLC ProB

4 2 1 <2 <1 <1

5 10 >3600 >3600 <1 <1

6 4 - - 1 <1

7 40 - - 16 <1

8 92 - - 375 <1

9 352 - - 2970 <1

10 724 - - - <1

11 2,680 - - - <1

12 14,200 - - - 9

13 73,712 - - - 41

We have also successfully animated several other existing models from the lit-
erature, but several specifications are rejected by TLA2B due to type conflicts or
unsupported concepts such as real numbers. In summary, the ProB constraint
solving capabilities open up the way to animate and validate new kinds of specifi-
cations, which are outside the reach ofTLC.TLC on the other hand is extremely
valuablewhen it comes to explicit statemodel checking for large state spaces. How-
ever, ProB’s symmetry reduction techniques seem to scale better than TLC’s.

5 More Related Work, Discussion and Conclusion

The paper by Mokhtari and Merz [10] presents an animator and model checker
for an executable subset of TLA

+. The article clearly outlines the needs for an
animator for TLA

+; unfortunately the tool seems to be no longer to be available.
Mosbahi et al. [11] describe an approach of a translation from B to TLA

+.
In contrast to our translation they have to deal with concepts which are miss-
ing in TLA

+ such as partial functions. Moreover their main intention is to let
TLC verify liveness properties on the translated TLA

+ specification, to over-
come the restriction of the B-Method to invariance properties. Otherwise, [12]
presents a LTL model checker, implemented inside ProB, that can verify live-
ness properties. So far, this model checker does not support fairness conditions,
but an extension would give us the possibility to enlarge TLA2B to support the
temporal part of TLA

+.

36 D. Hansen and M. Leuschel

In terms of features, we also plan to provide for TLA
+ the graphical visu-

alization features of ProB already available for B, Z and Event-B. More work
on translating various constructs effectively to B, such as the choose operator
or recursive functions, is planned. Another important avenue of further work
lies in improving our translation to B. In particular, we aim to generate various
B style substitutions such as assignments or if/then/else constructs, rather
than generic any substitutions. This makes the B translation more readable,
but would also lead to noticeable performance improvements with ProB. E.g.,
in our experiments, this would lead, to a further 20 % runtime improvement for
the SimpleAllocator example and up to a factor 2 for other examples.

We would also like to better exploit the symmetry reduction provided by
ProB. While the SimpleAllocator, SchedulingAllocator and Login example
worked well, the symmetry in the Producer-Consumer example could only be
exploited by manually tweaking the B translation. We would like to automate
this as much as possible, as it can lead to a considerable performance boost
(after tweaking ProB with symmetry requires about a minute to find the 413
step counter example for the Producer-Consumer example; TLC requires more
than three and a half hours to to find a deadlock7). We are also interested in
the correctness of our translation. A formal correctness proof is probably not
feasible, but we hope to be able to extensively validate our translation, e.g., by
exporting the state space computed by ProB to TLC and use TLC to check
that it conforms to the original specification.

In conclusion, we have presented a translation from TLA
+ to B, which makes

use of a type inference algorithm and effectively translates a large subset of
TLA

+ to B. The complicated aspects of the translation are linked to the different
modularization concepts, as well as to various operators which are missing in
B. The translation also identifies operations and parameters within the TLA

+

specification formula, in order to make the translation more readable as well
as to enable effective application of B tools. In particular, by integrating our
translation into the ProB validation tool, we obtain a new tool for TLA

+

specifications which is complementary to TLC, providing convenient animation,
expression evaluation, constraint solving and improved symmetry reduction. As
our experiments show, TLC remains more effective for brute-force explicit state
model checking, at least for those specifications which do not require solving
complicated constraints. As such it is very useful that both these tools can be
applied to TLA

+ specifications. The translation itself is also human readable,
and we hope that the paper also provides a bridge between the TLA

+ and B
communities.

Acknowledgements. We are grateful to Daniel Plagge for various discussions
and helpful comments that helped in developing the translator. We also would
like to thank Leslie Lamport and Stephan Merz for very useful feedback concern-
ing TLA

+ and TLC and for giving us access to various specifications. Finally,
we are thankful to anonymous referees for their useful feedback.

7 When trying to use symmetry, the same error message occurs as in the Login example.

Translating TLA
+ to B for Validation with ProB 37

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press (1996)
2. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: The TLA+ Proof System: Build-

ing a Heterogeneous Verification Platform. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, p. 44. Springer, Heidel-
berg (2010)

3. ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France (2009),
http://www.atelierb.eu/

4. Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level
specifications. TPLP 11(4-5), 767–782 (2011)

5. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

6. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

7. Leuschel, M., Massart, T.: Efficient approximate verification of B via symmetry
markers. Annals of Mathematics and Artificial Intelligence 59(1), 81–106 (2010)

8. Merz, S.: TLA+ Case Study: A Resource Allocator. Technical Report A04-R-101,
INRIA Lorraine - LORIA (2004), http://hal.inria.fr/inria-00107809

9. Merz, S., Vanzetto, H.: Automatic Verification of TLA+ Proof Obligations with
SMT Solvers. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180,
pp. 289–303. Springer, Heidelberg (2012)

10. Mokhtari, Y., Merz, S.: Animating TLA Specifications. In: Ganzinger, H.,
McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 92–110.
Springer, Heidelberg (1999)

11. Mosbahi, O., Jemni, L., Jaray, J.: A formal approach for the development of auto-
mated systems. In: Filipe, J., Shishkov, B., Helfert, M. (eds.) ICSOFT (SE), pp.
304–310. INSTICC Press (2007)

12. Plagge, D., Leuschel, M.: Seven at a stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. STTT 11, 9–21 (2010)

13. Yu, Y., Manolios, P., Lamport, L.: Model Checking TLA+ Specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Heidel-
berg (1999)

A A More Complicated Translation: SimpleAllocator

The configuration file for the model below is as follows:
init Init next Next constants Clients = {c1, c2, c3}Resources = {r1, r2}

module SimpleAllocator

extends FiniteSets, TLC
constants Clients, Resources
assume IsFiniteSet(Resources)
variables unsat , alloc
TypeInvariant

Δ
= ∧ unsat ∈ [Clients → subset Resources]

∧ alloc ∈ [Clients → subset Resources]
available

Δ
= Resources \ (union {alloc[c] : c ∈ Clients})

http://www.atelierb.eu/
http://hal.inria.fr/inria-00107809

38 D. Hansen and M. Leuschel

Init
Δ
= ∧ unsat = [c ∈ Clients �→ {}] ∧ alloc = [c ∈ Clients �→ {}]

Request(c, S)
Δ
= ∧ unsat [c] = {} ∧ alloc[c] = {}

∧ S = {} ∧ unsat ′ = [unsat except ! [c] = S] ∧ unchanged alloc
Allocate(c, S)

Δ
= ∧ S = {} ∧ S ⊆ available ∩ unsat [c]

∧ alloc′ = [alloc except ! [c] = @ ∪ S] ∧ unsat ′ = [unsat except ! [c] = @ \S]
Return(c, S)

Δ
= ∧ S = {} ∧ S ⊆ alloc[c]

∧ alloc′ = [alloc except ! [c] = @ \S] ∧ unchanged unsat
Next

Δ
= ∃ c ∈ Clients, S ∈ subset Resources :

Request(c, S) ∨Allocate(c, S) ∨ Return(c, S)

MACHINE SimpleAllocator
SETS enum1 = {r1, r2}; enum2 = {c1, c2, c3}
CONSTANTS Clients, Resources
PROPERTIES Clients = enum2 ∧ Resources = enum1

∧ ∃seq .(seq ∈ seq(Resources) ∧ ∀s.(s ∈ Resources ⇒
∃n.(n ∈ 1 .. size(seq) ∧ seq (n) = s)))

DEFINITIONS
TypeInvariant == unsat ∈ Clients → P(Resources)

∧ alloc ∈ Clients → P(Resources);
available == Resources - union(t |∃c.(c ∈ Clients ∧ t = alloc(c)));
Init == unsat = λc.(c ∈ Clients| {}) ∧ alloc = λc.(c ∈ Clients| {});
Request(c,S) == unsat(c) = {} ∧ alloc(c) = {}

∧ (S = {} ∧ unsat n = unsat � {c �→ S});
Allocate(c,S) == S = {} ∧ S ⊆ available ∩ unsat(c)

∧ alloc n = alloc � {c �→ (alloc(c) ∪ S)}
∧ unsat n = unsat � {c �→ (unsat(c) - S)};

Return(c,S) == S = {} ∧ S ⊆ alloc(c) ∧ alloc n = alloc � {c �→ (alloc(c) - S)};
ResourceMutex == ∀c1,c2.(c1 ∈ Clients ∧ c2 ∈ Clients ⇒

(c1 = c2 ⇒ alloc(c1) ∧ alloc(c2) = {}));
VARIABLES unsat, alloc
INVARIANT unsat ∈ P(enum2×P(enum1))
∧ alloc ∈ P(enum2×P(enum1)) ∧ TypeInvariant ∧ ResourceMutex

INITIALISATION unsat, alloc ∈ (Init)
OPERATIONS
Request Op(c, S) = ANY unsat n

WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Request(c, S)
THEN unsat := unsat n END;

Allocate Op(c, S) = ANY unsat n, alloc n
WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Allocate(c, S)
THEN unsat, alloc := unsat n, alloc n END;

Return Op(c, S) = ANY alloc n
WHERE c ∈ Clients ∧ S ∈ P(Resources) ∧ Return(c, S)
THEN alloc := alloc n END;

END

Rely/Guarantee Reasoning for Teleo-reactive Programs
over Multiple Time Bands

Brijesh Dongol1,2 and Ian J. Hayes1

1 School of Information Technology and Electrical Engineering
The University of Queensland, Australia

2 Department of Computer Science, The University of Sheffield, UK
{brijesh,Ian.Hayes}@itee.uq.edu.au

Abstract. A complex real-time system consists of components at multiple time
abstractions with varying notions of granularity and precision. Existing hybrid
frameworks only allow reasoning at a single granularity and at an absolute level
of precision, which can be problematic because the models that are developed
can become unimplementable. In this paper, we develop a framework that incor-
porates time bands so that the behaviour of each component may be specified at
a time granularity that is appropriate for the component and its properties. We
implement our controllers using teleo-reactive programs, which are high-level
programs that are well-suited to controlling reactive systems in dynamic environ-
ments. We develop rely/guarantee-style reasoning rules and as an example, prove
properties of a well-known mine-pump system.

1 Introduction

Autonomous controllers are increasingly being used in safety-critical real-time systems,
where failures have a high cost and/or endanger human lives. As the systems under con-
sideration become more complex, we must develop high-level languages and logics to
ensure their dependability. In this paper we implement our controllers using Nilsson’s
teleo-reactive programs [18,7,5] and develop an interval-based logic to formalise its
semantics (Section 2). Our logic incorporates the time bands framework [2,3] and in-
cludes methods for reasoning about sampling [3,5] (Section 3). We develop rules that
allow one to prove that a program executing in an environment formalised by a rely
condition satisfies a guarantee condition (Section 4).

As a motivating example, we consider the well-known mine-pump system [4] (see
Fig. 1), where an autonomous controller must read methane and water-level sensors
(from the environment) and send signals to the water pump to turn it on or off. To
prevent an explosion, the pump must be stopped whenever the level of methane in the
mine is above a critical level. The challenge is to show that both the program and its
environment (specified over multiple time bands) satisfy the guarantee (which may be
specified at time bands different from the program and its environment).

Time Bands. A complex system may consist of multiple components that operate in dif-
ferent time scales and hence reasoning about a component that operates over a coarse-
grained time scale (e.g., days) using a finer-grained scale (e.g., seconds) and vice versa
over-complicates the reasoning. Furthermore, developing a specification using a single

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 39–53, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

40 B. Dongol and I.J. Hayes

methane sensor alarm

water
high sensor

low sensor

pump

Fig. 1. Mine-pump system

mp =̂
Out ps,w pump Init−→ps = stopped •
〈

m ≥ CT → Alarm ∧ Stop Pump ,
true → pump

〉

† M

pump =̂
〈high ∨
(¬low ∧ ps0 = stopped)

→ Run Pump ,

true → Stop Pump

〉

† W

Fig. 2. Teleo-reactive controller for mine-pump

time scale can lead to difficulties in implementation, where it becomes impossible for
any real system to satisfy the timing requirements [21]. In this paper, we use Burns’
time bands framework [2,3], which enables one to make allowances for the timing re-
strictions of an implementation as part of the specification. Within each time band, one
may distinguish between activities, which may take time within the band, and events,
which execute within the precision of the band (i.e., the amount of time that may be re-
garded as “instantaneous”). The behaviour of an event of a coarse-grained time band is
defined by mapping the event to an activity in a finer-grained time band. The behaviour
of an activity may be formalised by using a continuous function on the state or as a
sequence of events.

Example 1. In the mine-pump system one may differentiate between the water, pump
and methane time bands (denoted W, P and M, respectively). In the pump time band
P, turning the pump on/off is an instantaneous event, however, in a finer-grained time
band, pump on/off events correspond to activities that specify the pump’s accelera-
tion/deceleration. We assume that the methane time band M is finer-grained than that
of the water W because there may be a sudden surge of methane in the mine, whereas
the water changes at a slower rate.

Sampling. Reactive controllers use (discrete) sampling events to determine the state of
their (continuous) environments. Sampling events are prone to timing precision errors
(where there is a range of possible sampled values due to imprecise timing of when
the sample is taken) and sampling anomalies (where sampling two or more sensors
causes a non-existent state to be returned because they are sampled at slightly different
times). To simplify the presentation, in this paper, we ignore the possibility of sensor
errors, where the sensors have inaccuracies in measuring the environment; these are
straightforward to incorporate.

Example 2. Consider the three sampling events se1, se2 and se3 in Fig. 3, which respec-
tively correspond to sampling activities sa1, sa2 and sa3, where environment variables
x and y are sampled at different times within the interval. Sampling event se1 will return
x < y regardless of when the values of x and y are read within the sampling interval,
because x < y definitely holds for all sampled values of x and y. Sampling event se2
may return either x > y, x = y or x < y because it is possibly true that x > y, x = y and
x < y hold. Event se3 may have a sampling anomaly. Although x > y holds throughout
sa3, because x and y are sampled at different times, it is possible for sa3 to return either
x > y, x = y or x < y.

Rely/Guarantee Reasoning for Teleo-reactive Programs 41

x
ysa3

se3se1 se2

sa2sa1

Fig. 3. Sampling events and corresponding activities

Teleo-reactive Programs. Teleo-reactive programs are excellent candidates for imple-
menting controllers for goal-directed agents in dynamically changing real-time envi-
ronments [7,9,18]. A guarded program c → M executes program M over an interval if
the guard c continues to hold over the interval. An ideal execution of a program would
continuously evaluate its guards all the time. Of course, continuous evaluation is not
feasible and it has to be approximated by repeated sampling and evaluation. One of the
issues addressed in this paper is handling the imprecision of such approximations by
making use of a time band framework [2,3,5].

For a teleo-reactive program that consists of a prioritised sequence of guarded pro-
grams, the first alternative that has a true guard is executed continuously while that
guard evaluates to true and no earlier guard in the sequence evaluates to true. As soon
as that guard evaluates to false or an earlier guard evaluates to true, execution switches
to the first guard in the sequence that evaluates to true.

Example 3. Consider the teleo-reactive program in Fig. 2 that controls the mine-pump
in Fig. 1. The program has inputs m (methane level sensor), high, low (high and low
water-level sensors) and ps0 (fed back value of the pump state) and has outputs ps (pump
state) and w pump (total amount of water pumped out). We assume ps = stopped de-
notes that the pump has physically come to a stop, which we distinguish from the con-
troller sending a stop signal. The main program (mp) assumes −→ps = stopped holds
initially and consists of a sequence of two guarded programs. The meaning of −→ps =
stopped is explained in Section 2.2. Program pump is executed while the methane level
m is sampled to be less than the critical threshold CT (i.e., m is sampled so that m < CT
holds). In doing so, pump may switch back and forth between its two alternatives, de-
pending on the water level. As soon as the methane is sampled to be not below CT, ex-
ecution of pump is immediately terminated and control is passed to the first alternative
of mp, i.e., Alarm ∧ Stop Pump. Thus, within a hierarchical teleo-reactive program,
the top-level guards take precedence over all lower-level guards.

Programs mp and pump execute in time bands M and W, respectively, which ensures
that sampling events of mp and pump take place within the precisions of M and W,
respectively. Note that in the top-level program mp, methane monitoring takes place in
a time band M, yet mp is able to control a pump that operates in a time band P and
execute controller pump, which monitors the water-level sensors in the coarser-grained
time band W. The pump can be stopped either because of a high methane level or a low
water level, but the controller reacts more quickly to a high methane level.

Related Work. Unlike other formalisms, such as hybrid action systems [19], TLA+

[14] and hybrid automata [12], in which controller actions are assumed to take no time

42 B. Dongol and I.J. Hayes

to execute, the execution of a teleo-reactive action is durative, i.e., it takes time. Defin-
ing the semantics of durative actions using a discrete model of time such as linear
temporal logic [15] is inappropriate. Instead, we consider interval-based logics. An in-
terval temporal logic for discrete traces [17] has been extended to continuous streams
to obtain the duration calculus [22]. However, the duration calculus assumes all inter-
vals are closed, allows adjoining intervals to overlap and uses the almost everywhere
operator. (A state predicate holds almost everywhere in an interval iff it is only false for
a set of measure zero.) Almost everywhere is inappropriate for our purposes because
we do not fix the absolute precision of a time band, i.e., a single time in any time band
may expand to an interval of time at another finer-grained time band. Thus, an almost
everywhere property in a time band may not be preserved in finer-grained time bands.
An extended duration calculus that uses everywhere as opposed to almost everywhere
as been defined. However, the framework only allows open intervals [23], and hence
is problematic in the context of time bands because the properties at the boundaries of
the intervals are undefined. In this paper, we present a logic that is influenced by the
duration calculus [22] but is better suited to incorporation with time bands [3].

The idea of structuring systems using multiple abstractions of time (e.g., to handle
sampling) is not new. Moszkowski presents a method of abstracting between different
time granularities for interval temporal logic using a projection operator, however the
framework uses a discrete model of time [17] as opposed to our continuous model.
Guelev and Hung present a projection operator for duration calculus where computation
is assumed to take time, however, they assume that the time taken is negligible [10].
Montanari et al explore multiple granularities in a real-time context, but the theory
is not well developed [16]. Henzinger presents a theory of refinement over multiple
granularities where sampling events are executed by a separate process [13]. Broy [1]
considers sampling to be an abstraction (via discretisation) of continuous behaviour,
however, the framework does not include methods for reasoning about sampling. Burns’
time bands theory [3] has been incorporated into Circus [20], however, the focus is on
the specification of systems, as opposed to developing real-time controllers.

We have used the logic of sampling and timebands to develop methods of approx-
imating idealised specifications [5] and used the logic of sampling to derive real-time
action systems [6].

2 A Real-Time Framework

2.1 Intervals, Streams and Interval Stream Predicates

Our logic is based on non-empty sets of contiguous real numbers (of type Interval)
which may be open, closed or infinite at either end. Using ‘.’ for function application,
we use glb.SS and lub.SS to refer to the greatest lower and least upper bounds of a set
of numbers SS, respectively. For intervals Δ,Δ′ we define:

�.Δ =̂ lub.Δ− glb.Δ

Δ ∝ Δ′ =̂ (lub.Δ = glb.Δ′) ∧ (Δ ∪Δ′ ∈ Interval) ∧ (Δ ∩Δ′ = {})

That is, �.Δ denotes the length of Δ and Δ ∝ Δ′ states that Δ′ is an interval that
immediately follows Δ (i.e., Δ adjoins Δ′). Within the definition of Δ ∝ Δ′, conjunct

Rely/Guarantee Reasoning for Teleo-reactive Programs 43

lub.Δ = glb.Δ′ ensures Δ′ follows Δ, conjunct Δ ∪Δ′ ∈ Interval ensures Δ ∪Δ′ is
contiguous and conjunct Δ ∩Δ′ = {} ensures that Δ and Δ′ are disjoint.

Given that variable names are taken from the set Var, a state space over a set of
variables V ⊆ Var is given by ΣV =̂ V → Val, which is a total function from variables
in V to values in Val. We leave out the subscript when the value of V is clear from the
context. A state is a member of ΣV , and the stream of behaviours over time of variables
in V is given by StreamV =̂ R → ΣV which is a total function from real numbers to
states. A predicate over a type X is given by PX =̂ X → B (e.g., a stream predicate
is a member of PStreamV). An interval predicate has type IntvPredV =̂ Interval →
PStreamV . For interval predicates p, p1 and p2, we define:

(prev p).Δ =̂ ∃Δ′: Interval • (Δ′ ∝ Δ) ∧ p.Δ′

(next p).Δ =̂ ∃Δ′: Interval • (Δ ∝ Δ′) ∧ p.Δ′

(�p).Δ =̂ ∀Δ′: Interval • Δ′ ⊆ Δ⇒ p.Δ′

Thus (prev p).Δ and (next p).Δ hold iff p holds in some interval that immediately
precedes and follows Δ, respectively and (�p).Δ holds iff p holds in all subintervals
of Δ. Note that the stream s is implicit in both sides of each of the definitions above.

We assume pointwise lifting of the boolean operators on stream and interval predi-
cates in the normal manner, e.g., if p1 and p2 are interval predicates, Δ is an interval
and s is a stream, we have (p1 ∧ p2).Δ.s = (p1.Δ.s ∧ p2.Δ.s). Furthermore, when
reasoning about properties of programs, we would like to state that whenever a property
p1 holds over any interval Δ and stream s, a property p2 also holds over Δ and s. Hence,
we define universal implication for interval predicates p1 and p2 as p1.Δ � p2.Δ =̂
∀s: Stream • p1.Δ.s ⇒ p2.Δ.s and p1 � p2 =̂ ∀Δ: Interval • p1.Δ � p2.Δ. Both
‘≡’ and ‘�’ are similarly defined.

2.2 Evaluating State Predicates over an Interval

A state predicate over a set of variables V has type PΣV . Because there are multiple
states in a stream within a non-point interval, there are several possible ways of inter-
preting the value of a state predicate with respect to a given interval and stream. We use
lim

x→a+
f .x and lim

x→a−
f .x to denote the limit of f .x as x tends to a from above and below,

respectively. To ensure that limits are well defined, we assume all variables are piece-
wise continuous [8]. For a variable v, a time t and stream s, we use (v@t).s =̂ (s.t).v to
denote the value of v in state s.t. For an interval Δ, we define:

−→v .Δ =̂

{
v@(lub.Δ) if lub.Δ ∈ Δ
lim

t→lub.Δ−
v@t otherwise

←−v .Δ =̂

{
v@(glb.Δ) if glb.Δ ∈ Δ
lim

t→glb.Δ+
v@t otherwise

Thus, −→v .Δ.s denotes the value of v at the right limit of Δ if Δ is right closed and the
value of v in s as the value approaches the right limit if Δ is right open.

In an implementation, evaluating a state predicate over an interval takes time, and
hence the value of the state predicate returned by an evaluation is dependent on the
evaluation strategy used [11]. The simplest evaluation strategy considers the set of states
over the interval in which the predicate is evaluated and evaluates the predicate in one of

44 B. Dongol and I.J. Hayes

these states. For a state predicate c and interval Δ, we define the always and sometime
operators as follows1:

(�c).Δ =̂ ∀t:Δ • c@t (�c).Δ =̂ ∃t:Δ • c@t

Example 4. Consider variable x such that (x@0) = 10 and (� x̂).[0, 2] = 1 hold, where
x̂ denotes the rate of change of variable x (c.f. [12]). Thus, the value of x at time 0 is 10
and the rate of change of x throughout the closed interval [0, 2] is 1. Then for adjoining
intervals [0, 1) and [1, 2], both (−→x = 11).[0, 1) and (←−x = 11).[1, 2] hold (because x is
continuous), and both (�(x < 11)).[0, 1) and (�(x ≥ 11)).[1, 2] hold.

Thus, the value of a variable at the boundaries of adjoining intervals can be precisely
defined. For a set of variables V , we define:

st V =̂ ∀v:V • ∃k:Val • prev(−→v = k) ∧ �(v = k)

Hence, st V holds iff the value of each variable in V is stable. Such a definition of
invariance is necessary because adjoining intervals are disjoint, and hence prev(−→v = k)
does not necessarily imply←−v = k, e.g., if v is discrete.

Example 5. We consider the specification of a safety property of the mine pump in
Fig. 1. A required safety condition is that �((m ≥ C) ⇒ (ps = stopped)) holds, i.e.,
in any state of the real-time stream, if the methane level m is above the critical level C,
then the state of the pump is such that it is stopped. A program should only be required
to satisfy this property if ps = stopped holds initially, hence we obtain:

prev(−→ps = stopped)⇒ �((m ≥ C)⇒ (ps = stopped)) (1)

Note that C refers to the actual critical value of the methane as opposed to the critical
threshold value CT used in the program in Fig. 2. We obtain relationships between the
values of C and CT as part of the proof of safety in Section 4.2.

2.3 Chop, Iterated Chop and Alternation

The chop operator ‘;’ allows an interval to be split as follows:

(p1 ; p2).Δ =̂ ∃Δ1, Δ2: Interval • (Δ = Δ1 ∪Δ2) ∧ (Δ1 ∝ Δ2) ∧ p1.Δ1 ∧ p2.Δ2

Unlike the duration calculus [22], our chop operator does not restrict intervals Δ1 and
Δ2 to be closed. Thus, for x as given in Example 4, both (�(x < 11); �(x ≥ 11)).[0, 2]
and (�(x ≤ 11) ; �(x > 11)).[0, 2] hold, however (�(x < 11) ; �(x > 11)).[0, 2]
does not. Using chop we define the weak chop and iterated chop operators as:

p1 : p2 =̂ p1 ∨ (p1 ; p2) pω =̂ μ z • p : z

1 The notations � and � follow the nomenclature of Burns and Hayes [3] and should not be
confused with temporal operator ‘always’ (�). Instead, we ask the reader to focus on the ‘∗’
(which represents “for all”) and ‘·’ (which represents “for some”) as used in regular expres-
sions. This also applies to � and � in Section 3.1, both of which should not be confused with
temporal operator ‘next’ (�).

Rely/Guarantee Reasoning for Teleo-reactive Programs 45

Thus, (p1 : p2) holds iff either p1 holds for the whole interval or we can split the in-
terval so that (p1 ; p2) holds. The iterated chop pω is the least fixed point of the weak
chop (which defines both finite and infinite iteration of p) assuming that predicates are
ordered using �.

Because we have a dense notion of time, there is a possibility for an iteration to be-
have in a Zeno-like manner, where a predicate iterates an infinite number of times within
a finite interval. We can rule out Zeno-like behaviour for our implementations because
there is a physical lower limit on the time taken to execute each iteration and hence a
specification that allows Zeno-like behaviour can be safely ignored. However, we must
be careful not to require Zeno-like behaviour, which would cause our specifications to
become unimplementable.

We use the iterated chop to define strict alternation and alternation between interval
predicates p1 and p2 as follows.

p1 salt p2 =̂ (p1 : (p2 ; p1)
ω) ∨ (p1 ; p2)

ω p1 alt p2 =̂ (p1 salt p2) ∨ (p2 salt p1)

Thus, p1 saltp2 alternates between p1 and p2 starting with p1 and p1altp2 may alternate
between p1 and p2 starting with either p1 or p2. Proofs of properties that involve chop
may be decomposed if the interval under consideration splits and/or joins.

Definition 6. Interval predicate p splits iff p � �p and joins iff pω � p.

For example, �c both splits and joins, �c joins but does not split, � < 2 splits but does
not join and � = 2 neither splits nor joins. In particular, if (�c ; �c).Δ, then (�c).Δ
must hold, but if (�c).Δ, there may be a subintervalΔ′ of Δ such that (�¬c).Δ′ holds.

Lemma 7. If p splits then p ∧ (p1 alt p2) � ((p ∧ p1) alt (p ∧ p2)).

3 Multi-time-Band Systems

3.1 Sampling and Time Bands

Although � and � accommodate for the fact that expression evaluation takes time,
they implicitly assume that a snapshot of the entire state is taken when an expression
is evaluated, which may not be implementable because variables are usually sampled
at different times [11]. Real-time controllers usually evaluate expressions by sampling
the environment variables that occur in the expression once, then evaluate the expres-
sion using these sampled values. Note that if a variable occurs multiple times within an
expression, the same sampled value is used for all occurrences of the variable. Hence,
expression x = x is guaranteed to evaluate to true, however, x > y may evaluate to false
even if �(x > y) holds as in sa3 of Fig. 3 (cf [3]). For a set of states SS ⊆ ΣV , we
define the apparent states over SS as app.SS =̂ {σ:Σ | ∀ v:V • σ.v ∈ {σ: SS • σ.v}},
where {σ: SS • σ.v} is equivalent to {x:Val | ∃σ: SS • x = σ.v}. Thus, {σ: SS • σ.v}
maps each variable v in SS to its set of values in the set of states SS, and hence app.SS
represents the set of possible states that a sampling event may observe. Evaluating an
expression in one of the states of app.SS represents a possible evaluation of the ex-
pression. The set of all states that occur within an interval Δ of stream s is given by

46 B. Dongol and I.J. Hayes

states.Δ.s =̂ {t:Δ • s.t} and we formalise state predicates that are definitely true (de-
noted �) and possibly true (denoted �) over a given interval Δ and stream s as follows:

(�c).Δ.s =̂ ∀σ: app.(states.Δ.s) • c.σ (�c).Δ.s =̂ ∃σ: app.(states.Δ.s) • c.σ

That is, (�c).Δ.s and (�c).Δ.s hold iff c holds in each and some apparent state of s
within Δ, respectively. Note that ¬�c ≡ �¬c and �(c ∧ d) � �c ∧ �d. As an
example, if Δ1, Δ2 and Δ3 correspond to sa1, sa2 and sa3 in Fig. 3, respectively, both
�(x < y).Δ1 and (�(x < y) ∧ �(x ≥ y)).Δ2 hold. For sa3 (which has a sampling
anomaly), both �(x > y).Δ3 and �(x > y).Δ3 hold, but �(x > y).Δ3 does not, i.e.,
¬�(x > y).Δ3 holds, which is equivalent to stating that �(x ≤ y).Δ3 holds.

We let vars.c denote the set of all variables V that occur (free) in c ∈ PΣV and obtain
the following lemma.

Lemma 8. For a state predicate c, �c � �c and �c � �c hold [3]. Furthermore,
for any variable v, st(vars.c\{v}) � (�c = �c) ∧ (�c = �c) [11].

The set of all time bands is given by the primitive type TimeBand [3]. In this paper, we
are mainly interested in the precision of a time band, which defines a constraint on the
duration of an instantaneous event of the time band. Hence, we define ρ: TimeBand →
R>0 to be a function that returns the precision of the given time band. We define the type
of a time band predicate as TBPredV : TimeBand → IntvPredV , which for a given time
band returns an interval predicate. As with interval predicates, we assume time band
predicates are lifted pointwise over boolean operators and for time band predicates tp1

and tp2, we define universal implication tp1 � tp2 =̂ ∀β: TimeBand • tp1.β � tp2.β
(and similarly � and ≡).

Real-time controllers use approximate values of environment variables using sam-
pling events [5]. We relate the actual and sampled values of a real-valued variable, say
v, in a time band, say b, using accuracy.v.b, which describes the maximum possible
change to v within events of time band b. For an interval Δ and stream s, we define:

(diff .v).Δ.s =̂ let vs = {σ: states.Δ.s • σ.v} in lub.vs− glb.vs

which returns the difference between the greatest and least values of v in s withinΔ. The
maximum possible change to v within a time band is an assumption on the behaviour of
v. In this paper, for any real-valued variable v, we implicitly assume a rely condition:

∀β: Timeband • �(� ≤ ρ.β ⇒ diff .v ≤ accuracy.v.β) (2)

That is, we assume that in any time band β, the maximum possible change to v within
events of time band β is bounded above by accuracy.v.β.

For a state predicate c, we define the following time band predicates to simplify
reasoning about repeated sampling.

�ρc =̂ (� ≤ ρ) ∧ �c (eval c).β =̂ (�ρ.βc)ω

Hence, (�ρc).Δ holds iff the length of Δ is at most ρ and c possibly holds in Δ.
Predicate (eval c).β holds iff �ρ.βc holds iteratively. We assume that it takes time for
the a variable v to be set to a new (constant) value k. Thus, we define the following time
band predicate.

set(v, k) =̂ λβ • (prev(−→v = k)⇒ �(v = k)) ∧ (� < ρ.β : �(v = k))

Rely/Guarantee Reasoning for Teleo-reactive Programs 47

Thus, (set(v, k)).β holds iff v = k is invariant and if v = k does not hold at the
start, then there is a delay of at most ρ.β before �(v = k) is established. Note that
if (set(v = k) ∧ prev(−→v �= k) ∧ (� < ρ.β)).Δ, then v = k may not be established
within Δ.

We combine the time band predicates above and obtain the following lemma.

Lemma 9. If v is a real-valued variable and k is a constant, then eval(v < k) �
�(v < k + accuracy.v).

3.2 Teleo-reactive Programs

Definition 10. For an interval predicate p, set of variables V ⊆ Var, time band β and
state predicate c, the syntax of a teleo-reactive program is given by P, where

P::= (Out V Init p • SP) | P1

−→
‖ P2 SP::= p | seq.GP † β GP::= c → SP

Thus, Out V Init p • SP denotes a program with output variables V that begins executing

immediately after an interval satisfying p and P1

−→
‖ P2 denotes the parallel composition

of programs P1 and P2. A simple program (of type SP) may either be an interval predi-
cate or a sequence of guarded simple programs within a time band.

We follow the convention of using T for a teleo-reactive program, M for a simple
program and S and T for sequences of guarded simple programs. Sequences are written
within brackets ‘〈’ and ‘〉’ and ‘�’ is used for sequence concatenation. Given that vars.p
denotes the set of all variables that occur free in interval predicate p, the sets of inputs

and outputs of a programs T =̂ Out V Init p • M and T1

−→
‖ T2 are defined as follows:

in.T =̂ cin.V.M

in.(T1

−→
‖ T2) =̂ in.T1 ∪ (in.T2\out.T1)

out.T =̂ V

out.(T1

−→
‖ T2) =̂ out.T1 ∪ out.T2

where cin.V.p =̂ vars.p\V
cin.V.〈〉 =̂ {}
cin.V.((〈c → M〉� S) † β) =̂ vars.c ∪ cin.V.M ∪ cin.V.S

We let vars.T =̂ in.T∪out.T denote the set of all variables of program T. For any teleo-
reactive program T, we require that in.T ∩ out.T = {}, i.e., the inputs and outputs of
the program are distinct. Two programs executing in parallel may not modify the same

outputs. Hence, we require out.T1 ∩ out.T2 = {} for any program T1

−→
‖ T2. Note that

parallel composition is not necessarily commutative because the outputs of T1 may be

used as inputs to T2, and hence T2

−→
‖ T1 may not be well-defined. Furthermore, because

in.(T1

−→
‖ T2) ∩ out.(T1

−→
‖ T2) = {} is assumed, in.T1 ∩ out.T2 = {} holds.

Definition 11. Suppose p is an interval predicate, c is a state predicate, S and T are a
sequences of guarded programs, β is a time band, V is a set of variables, M is a simple
program and T1 and T2 are a teleo-reactive programs. We define:

beh.p =̂ p (3)

48 B. Dongol and I.J. Hayes

cbeh.(d ∧ ¬c).(T † β)beh.M

�ρ.β(d ∧ c)�ρ.β(d ∧ c)�ρ.β(d ∧ c)

Fig. 4. cbeh.d.((〈c → M〉 � T) † β)

beh.(S † β) =̂ cbeh.true.(S † β) (4)

beh.(Out V Init p • M) =̂ prev p ∧ beh.M (5)

beh.(T1

−→
‖ T2) =̂ beh.T1 ∧ beh.T2 (6)

where:

cbeh.d.(〈〉 † β) =̂ (eval d).β

cbeh.d.(〈c → M〉� T † β) =̂ ((eval(d ∧ c)).β ∧ beh.M) alt cbeh.(d ∧ ¬c).(T † β)

By (3), the behaviour of an action p is given by p itself. By (4), the behaviour of a
sequence of guarded programs is defined using the contextual behaviour function cbeh
(see Fig. 4), where the contextual behaviour of an empty sequence is the iterated eval-
uation of the context in time band β, and the contextual behaviour of a non-empty se-
quence (〈c → M〉� T) † β) in context d alternates between execution of M with d ∧ c
evaluated iteratively in time band β and execution of T † β in context d ∧ ¬c. Such a
definition is necessary because the negations of the earlier guards become conjuncts to
later guards. By using the contextual behaviour function, we ensure that the variables
of the context are evaluated in the same apparent state as those of the guard, i.e., we
evaluate �(d ∧ c) as opposed to the weaker interval predicate �d ∧ �c. By (5), the
behaviour of Out V Init p • M holds if beh.M holds immediately after an interval that
satisfies p. By (6), the behaviour of the parallel composition of two programs is defined
to be the conjunction of both behaviours.

Example 12. Fig. 2 provides a teleo-reactive controller for the mine pump in Fig. 1.
We now further specify the controller by formalising its (durative) actions Run Pump
and Stop Pump. The water level w is controlled by both the environment and the
pump, thus, w may not be a direct output of either. Instead, we split w into w env and
w pump, which denote the total amount of water added and removed from the mine
by the environment and water pump, respectively. Hence, the water level is given by
w = w env− w pump. To formalise the specification of the pump, we use:

�(ŵ pump ≥ 0) (7)

�(ps = running)⇒ �(� ≥ ρ.W ⇒ (accuracy.w env.W < diff .w pump)) (8)

�(ps = stopped)⇒ �(ŵ pump = 0) (9)

Condition (7) states that the rate of change of w pump is non-negative (i.e., water never
flows back through the pump). Condition (8) states that if the pump is running, then
in any interval whose length is at least ρ.W, the maximum difference between any two

Rely/Guarantee Reasoning for Teleo-reactive Programs 49

w pump values in the interval must be above the accuracy of w env in time band W.
Because we implicitly assume that the maximum change to w env within any event
of time band W is bounded above by accuracy.w env.W (see (2)), the water level is
guaranteed to reduce if the pump is running and (8) holds. Similarly, over any interval
in which the pump is stopped, w pump does not change (9).

The durative actions that run and stop the pump are specified as follows.

Run Pump =̂ (set(ps, running)).P ∧ (7) ∧ �(8)

Stop Pump =̂ (set(ps, stopped)).P ∧ (7) ∧ �(9)

If Run Pump is executing then set(ps, running) holds for the pump time band P, i.e.,
ps = running is invariant, or ps = running becomes true within the precision of
P. Furthermore, w pump changes as described by (7) and �(8). The specification of
Stop Pump is similar.

Note that our specifications of Run Pump and Stop Pump are quite general and do
not overly restrict the manner in which the pump starts/stops or the manner in which
the pump modifies w pump while the pump is running. For example, if prev(−→ps �=
running) and set(ps, running).P hold, an implementation must only guarantee that ps =
running becomes true within the precision of time band P and the acceleration/dece-
leration of the pump is unspecified. By (8), while running, the pump is only required to
guarantee a certain throughput in the precision of time band W and the instantaneous
rate of change of w pump may vary (c.f. the stricter requirement �(ŵ pump = 0) in
(9)). Hence, there are several possible implementations of the pump specification at
higher-precision time bands (e.g., piston-driven versus centrifugal pumps).

4 Rely/Guarantee Reasoning

4.1 Rely/Guarantee Rules

Teleo-reactive programs are often only required to execute correctly under certain en-
vironment assumptions; these assumptions may be formalised within a rely condition.
To prevent circular reasoning, a program must not depend on its own output, and hence,
we say interval predicate r is a rely condition of program T iff vars.r ∩ out.T = {}.
Definition 13. For a teleo-reactive program T with rely condition r, and interval pred-
icate g (representing the guarantee of T), we define {r}T {g} =̂ r ∧ beh.T � g.

Thus, {r}T {g} states that if the environment behaves as specified by rely condition r
and the program T behaves as specified by beh.T, then the guarantee condition g holds.
We obtain some straightforward properties for proving rely/guarantee properties.

(r � r1) ∧ {r1}T {g1} ∧ (g1 � g)⇒ {r}T {g} (10)

{r}T {g1} ∧ {r}T {g2} ⇒ {r}T {g1 ∧ g2} (11)

{r1}T {g} ∧ {r2}T {g} ⇒ {r1 ∨ r2}T {g} (12)

{r1 ∧ r2}T {g} = {r1}T {r2 ⇒ g} (13)

Because the behaviour of T1

−→
‖ T2 is defined to be the conjunction of the behaviours of

T1 and T2 (see (6)), rely/guarantee reasoning for parallel composition may be decom-
posed in a straightforward manner.

50 B. Dongol and I.J. Hayes

Theorem 14. {r1}T1 {g1} ∧ {r2}T2 {g1 ⇒ g2} ⇒ {r1 ∧ r2}T1

−→
‖ T2 {g1 ∧ g2}

Proof. {r1}T1 {g1} ∧ {r2}T2 {g1 ⇒ g2}
= definition and logic

(r1 ∧ beh.T1 � g1) ∧ (r2 ∧ beh.T2 � (g1 ⇒ g2))
⇒ logic, weaken antecedents

r1 ∧ r2 ∧ beh.T1 ∧ beh.T2 � g1 ∧ (g1 ⇒ g2)
= (6), definitions and logic

{r1 ∧ r2}T1

−→
‖ T2 {g1 ∧ g2} �

Within a program P =̂ Out V Init p • M, the simple programs contained in M (including
M itself) execute within an output context V. To prevent circular reasoning, we disallow
the rely conditions of a simple program from referring to the variables of its output
context. Thus, for any simple program M with output context V , interval predicate r is
a rely condition of M iff vars.r ∩ V = {}. For a simple program M with rely condition
r and an interval predicate g, we define {r}M {g} =̂ r ∧ beh.M � g. Each of the
properties (10)-(13) with T replaced by M holds. Furthermore, we have the following
straightforward property for a conjunction of actions p1 and p2.

{r} p1 {g} ∨ {r} p2 {g} ⇒ {r} (p1 ∧ p2) {g} (14)

For any S ∈ seq.GP, the effective guard of any branch contains the negations of all pre-
ceding guards as conjuncts. We use functions grd.(c → M) =̂ c and body.(c → M) =̂
M to return the guard and body of the guarded simple program c → M, respectively.
For any S ∈ seq.GP and i ∈ dom.S, the effective guard of S.i is given by

eff .S.i =̂ grd.(S.i) ∧
∧

j:0..i−1 ¬grd.(S.j)

i.e., the effective guard of S.i is the actual guard of S.i in conjunction with the negations
of all guards that precede i in S.

Lemma 15. For any S ∈ seq.GP and i, j ∈ dom.S, i �= j ∧ eff .S.i ⇒ ¬eff .S.j.

The following theorem allows one to decompose a proof of a sequence of guarded
teleo-reactive programs. We let ALTi:0..n Xi =̂ X0 alt X1 alt · · · alt Xn and exec.S.i.β =̂
(eval eff .S.i).β ∧ beh.(body.(S.i)).

Theorem 16. If r and g are interval predicates such that r splits and g joins, then
{r} Out V Init p • S † β {g} holds provided that for each i ∈ dom.S:

{r ∧ (eval eff .S.i).β} body.(S.i) {prev(p ∨ �ρ.β¬eff .S.i)⇒ g} (15)

Proof. {r} Out V Init p • S † β {g}
= expand rely/guarantee triple and beh.(S † β)

r ∧ prev p ∧ (ALTi:dom.S exec.S.i.β) � g
⇐ r splits Lemma 7, alt is monotonic

prev p ∧ (ALTi:dom.S r ∧ execV .S.i.β) � g
⇐ Lemma 15 and logic

Rely/Guarantee Reasoning for Teleo-reactive Programs 51

(ALTi:dom.S r ∧ prev(p ∨ �ρ.β¬eff .S.i) ∧ exec.S.i.β) � g
⇐ (15)

(ALTi:dom.S g) � g
= (g alt g) ≡ gω and (gω alt g) ≡ gω

gω � g
⇐ g joins

true �
Here, p specifies an initial assumption and S † β implements the controller. By (15), if
the rely r holds and program body.(S.j) executes, then if the guard of S.j possibly holds
in time band β, and either there is a previous interval in which p holds or there is a
previous sampling interval in which ¬grd.(S.j) can be sampled, then g holds.

4.2 Proof of Safety for mp

We prove {true}mp{(1)} i.e., under the implicit rely condition that the maximum
difference between any two values of m within an event (including sampling events) of
time bands M and P are bounded by the accuracy of m in M and P, respectively (see
(2)), execution of program mp satisfies the safety condition (1). Assuming Stopped =̂

(ps = stopped) and
−−−−−→
Stopped =̂ (−→ps = stopped), we have:

{true}mp {(1)}
⇐ Theorem 16 then weaken rely/strengthen guarantee (10) and then (14)

{true} Stop Pump

{
prev(

−−−−−→
Stopped ∨ �ρ.M(m < CT))⇒

�(m ≥ C ⇒ Stopped)

}
∧ (A)

{(eval(m < CT)).M} pump {�(m ≥ C ⇒ Stopped)} (B)

For the conjunct (B) above, noting that �(c ⇒ d) is implied by �c ⇒ �d, assuming
CT < C − accuracy.m.M we obtain

{(eval(m < CT)).M} pump {�(m ≥ C)⇒ �Stopped}
⇐ Lemma 9 and (13)
{�(m < C) ∧ �(m ≥ C)} pump {�Stopped}

= rely simplifies to false
true

For conjunct (A) above, because prev(p1 ∨ p2) ≡ prev p1 ∨ prev p2, we obtain:

{true} Stop Pump {prev
−−−−−→
Stopped ⇒ �(m ≥ C ⇒ Stopped)} (16)

{true} Stop Pump {prev(�ρ.M(m < CT))⇒ �(m ≥ C ⇒ Stopped)} (17)

For (16), because beh.Stop Pump implies Stopped is invariant and because Stopped
holds initially, we have �Stopped and hence �(m ≥ C ⇒ Stopped). For (17), we
strengthen our assumption on CT so that CT < C−accuracy.m.M−accuracy.m.P and
obtain the following.

prev(�ρ.M(m < CT))⇒ �(m ≥ C ⇒ Stopped)
� strengthen consequent

52 B. Dongol and I.J. Hayes

prev(�ρ.M(m < CT))⇒ ((� < ρ.P) : �Stopped) ∧ �(m ≥ C ⇒ Stopped)
� �c joins and logic

prev(�ρ.M(m < CT))⇒ ((� < ρ.P ∧ �(m ≥ C ⇒ Stopped)) : �Stopped)
� Lemma 9 and logic
←−m < CT + accuracy.m.M ⇒ ((� < ρ.P ∧ �(m < C)) : �Stopped)

� assumption CT < C − accuracy.m.M − accuracy.m.P
←−m < C − accuracy.m.P⇒ ((� < ρ.P ∧ �(m < C)) : �Stopped)

� Lemma 9
(� < ρ.P) : �Stopped

� beh.Stop Pump

5 Conclusions

We have presented an interval-based framework for specifying real-time systems with
components that operate over multiple time bands and rely/guarantee-style rules for
reasoning about such systems. The controllers are implemented using teleo-reactive
programs [18,7], which allow reactive real-time controllers to be implemented in a
straightforward manner.

Unlike existing hybrid methods (e.g., hybrid automata [12], TLA+ [14], hybrid ac-
tion systems [19]) where controller actions are assumed to take no time to execute,
teleo-reactive programs execute durative actions. The durative actions are much closer
to an abstract specification, which allows programs to be describe their intended be-
haviour. Sequences of guarded programs are structured in a goal-directed manner [18,7]
and hierarchical nesting of programs is incorporated into the abstract syntax. We model
true concurrency between a controller and its environment then map “instantaneous”
sampling events to a higher precision time band to enable sampling anomalies to be
taken into consideration. By incorporating a time bands framework, we may distin-
guish between fine and coarse grained sampling and develop programs that take both
into account. We also accommodate the time taken to execute start and stop events of
the pump in our reasoning.

As an example, we have specified and proved properties of the well-known mine-
pump example. An unexpected aspect of our controller is that the time band of the top-
level controller, which is monitoring for a critical level of methane, is finer grained than
the time band of its component water monitoring controller. Interestingly, our approach
handles this unexpected time band structure because we allow the time band of the
top-level controller’s guard evaluation to differ arbitrarily from the time bands of its
component actions.

Teleo-reactive programs are much closer to specifications than action systems [6],
which are much closer to code. As future work, we aim to further explore this link to
simplify development of real-time controllers.

Acknowledgements. This research is supported by ARC Discovery Grant DP0987452
and EPSRC Grant EP/J003727/1 Verifying Lock-Free Algorithms.

References

1. Broy, M.: Refinement of time. Theor. Comput. Sci. 253(1), 3–26 (2001)

Rely/Guarantee Reasoning for Teleo-reactive Programs 53

2. Burns, A., Baxter, G.: Time bands in systems structure. In: Structure for Dependability, pp.
74–88. Springer (2006)

3. Burns, A., Hayes, I.J.: A timeband framework for modelling real-time systems. Real-Time
Systems 45(1), 106–142 (2010)

4. Burns, A., Lister, A.M.: A framework for building dependable systems. Comput. J. 34(2),
173–181 (1991)

5. Dongol, B., Hayes, I.J.: Approximating idealised real-time specifications using time bands.
In: AVoCS 2011. ECEASST, vol. 46, pp. 1–16. EASST (2012)

6. Dongol, B., Hayes, I.J.: Deriving real-time action systems in a sampling logic. Sci. Comput.
Program. (Special Issue of MPC 2010) (2012) (accepted October 17, 2011)

7. Dongol, B., Hayes, I.J., Robinson, P.J.: Reasoning about real-time teleo-reactive programs.
Technical Report SSE-2010-01, The University of Queensland (2010)

8. Gargantini, A., Morzenti, A.: Automated deductive requirements analysis of critical systems.
ACM Trans. Softw. Eng. Methodol. 10, 255–307 (2001)

9. Gubisch, G., Steinbauer, G., Weiglhofer, M., Wotawa, F.: A Teleo-Reactive Architecture
for Fast, Reactive and Robust Control of Mobile Robots. In: Nguyen, N.T., Borzemski, L.,
Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 541–550. Springer,
Heidelberg (2008)

10. Guelev, D.P., Hung, D.V.: Prefix and projection onto state in duration calculus. Electr. Notes
Theor. Comput. Sci. 65(6), 101–119 (2002)

11. Hayes, I.J., Burns, A., Dongol, B., Jones, C.: Comparing models of nondeterministic expres-
sion evaluation. Technical Report CS-TR-1273, Newcastle University (2011)

12. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE Com-
puter Society, Washington, DC (1996)

13. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Assume-Guarantee Refinement Between Dif-
ferent Time Scales. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
208–221. Springer, Heidelberg (1999)

14. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

15. Manna, Z., Pnueli, A.: Temporal Verification of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag New York, Inc. (1992)

16. Montanari, A., Ratto, E., Corsetti, E., Morzenti, A.: Embedding time granularity in logical
specifications of real-time systems. In: Euromicro 1991, pp. 88–97 (June 1991)

17. Moszkowski, B.C.: Compositional reasoning about projected and infinite time. In: ICECCS,
pp. 238–245. IEEE Computer Society (1995)

18. Nilsson, N.J.: Teleo-reactive programs and the triple-tower architecture. Electronic Transac-
tions on Artificial Intelligence 5, 99–110 (2001)

19. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290, 937–973
(2003)

20. Wei, K., Woodcock, J., Burns, A.: Formalising the timebands model in timed Circus. Tech-
nical report, University of York (June 2010)

21. Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Form.
Methods Syst. Des. 33, 45–84 (2008)

22. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems.
EATCS: Monographs in Theoretical Computer Science. Springer (2004)

23. Zhou, C., Ravn, A.P., Hansen, M.R.: An Extended Duration Calculus for Hybrid Real-Time
Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS
1992. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993)

Safety and Line Capacity in Railways

– An Approach in Timed CSP

Yoshinao Isobe1, Faron Moller2,
Hoang Nga Nguyen2, and Markus Roggenbach2,�

1 AIST, Japan
2 Swansea University, UK

Abstract. Railways need to be safe and, at the same time, should offer
high capacity. While the notion of safety is well understood in the railway
domain, the meaning of capacity is understood only on an intuitive and
informal level. In this study, we show how to define and analyse capac-
ity in a rigorous way. Our modelling approach builds on an established
modelling technique in the process algebra Csp for safety alone, provides
an integrated view on safety as well as capacity, and offers proof support
in terms of (untimed) model checking.

1 Introduction

Overcoming the constraints on railway capacity caused by nodes (stations and
junctions) on the rail network is one of the most pressing challenges to the rail
industry. In 2007, the UK governmental White Paper “Delivering a Sustain-
able Railway” [9] stated: “Rail’s biggest contribution to tackling global warming
comes from increasing its capacity.” High capacity, however, is but one design
aim within the railway domain. Railways are safety-critical systems. Their mal-
function could lead to death or serious injury to people, loss or severe damage
to equipment, or environmental harm. This work, carried out in cooperation
with our industrial partner Invensys Rail, aims to develop an integrated view of
rail networks within which capacity can be investigated and enhanced without
compromising safety.

The process algebra Csp [11,18] has successfully been applied to modelling,
analysing and verifying railways for safety aspects, see e.g. [20,21]. Solely con-
cerned with safety, these approaches have ignored any aspect of time. However,
the capacity of a rail network node is highly dependent on time: moving a point
or moving a train through a node takes time, and sighting and braking dis-
tance are both functions of time. Thus, rather than using Csp, we apply Timed
Csp [19,17] in order to achieve an integrated view on safety and capacity. While,
e.g., [20,21] model safety within Csp, to the best of our knowledge we are the
first to consider railway capacity within Timed Csp or any other similar formal-
ism. One of the benefits of using (Timed) Csp is its naturalness; it takes little

� This work was supported by RSSB/EPSRC under the grant EP/I010807/1.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 54–68, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Safety and Line Capacity in Railways 55

effort to explain our formal models to our industrial partners who have assisted
us throughout the process in ensuring that our models remain faithful to their
engineering designs.

Of the various capacity notions within the railway domain, we deal here with
so-called theoretical line capacity. “Theoretical capacity” denotes the capacity
(i.e., throughput) that in principal can be scheduled (as opposed to the capacity
actually used). By “line capacity” we refer to a situation in which all trains
are of the same characteristic (e.g., all trains have the same braking behaviour
and the same maximal speed) and take the same path through a network. It
remains future work to capture the more complex notion of “network capacity”
(the number of trains that can operate on a rail network in a given time period).

The literature on railway capacity classifies the various approaches into an-
alytical, optimisation and simulation methods. Analytical methods, e.g., [3,7],
model the railway infrastructure by means of mathematical expressions where a
preliminary solution can be easily determined. This measures theoretical capac-
ity and helps to identify bottlenecks. In contrast to this, optimisation methods,
e.g., [4,16], utilise theoretical capacity by providing optimal time tables. Finally,
simulation methods, see [6] for a survey, imitate the operation of the real world
railway network over time. They present the dynamic behaviour of the network
as moving from state to state with respect to well-defined rules. Our approach
is closest to simulation methods. We differ from them as we take all possible
system runs into account and therefore obtain a more concise result concerning
capacity. Taking into account the whole behaviour of the system allows us also
to consider safety. Overall, this leads to an integrated method.

Concerning safety, we build on the work of [21]. In general, other approaches
outside of the Csp world, e.g., [10,13] verify the safety of interlocking programs
with logical approaches and SAT-based model checking as the underlying proof
technique.

Our paper is organized as follows. In Section 2, we discuss basic railway con-
cepts in terms of a realistic double junction example provided as a real-world
challenge by our industrial partner Invensys Rail, and use this example to moti-
vate the question of capacity. In Section 3, we review the approach advocated by
Winter [21] to modelling safety in the railway domain using Csp. In Section 4,
the language Timed Csp and the idea of timed traces is introduced. In Section 5,
we describe how to extend Winter’s approach in order to capture the timing of
events on a railway. Given such a timed behaviour, we ask in Section 6 what
capacity it has by defining capacity as a function on timed traces which we then
encode as a Timed Csp refinement. In Section 7 we apply these results to our
original example, before concluding with an outline of future work in Section 8.

This paper is a significantly improved variant of [12], which was presented
in an informal workshop setting without proper proceedings. We would like to
thank Simon Chadwick and Dominic Taylor from Invensys Rail for their encour-
aging support and continuous invaluable feedback.

56 Y. Isobe et al.

2 Railway Terminology and the Double Junction
Example

We explain typical railway concepts in terms of the track plan shown in Figure 1.
Engineers from Invensys Rail proposed this plan of a realistic double junction
for our study as it exhibits typical challenges for safety and capacity. Their plan
consisted of the elements in normal font; we added the components in boldface
in order to facilitated the analysis and verification of railway protocols working
over this junction. The double junction connects a side line with a main line.
Concerning safety, its challenges include avoiding train collisions and preventing
derailments. Concerning capacity, one is interested in optimising single paths
through the junction as well as in reducing the time that one path blocks another.

The track plan depicted in Figure 1 consists of various elements. There are a
number of individual tracks, which in the plan are named with two characters,
e.g., AA; there are two points, namely point 101 and point 102; and finally there
is the diamond crossing BW. A point may be in one of two positions: normal
or reverse. If point 101 is in normal position, a train can pass from track AB to
track AD; if it is in reverse position, a train can pass from track AB to track
BW. The diamond crossing BW can be passed in two ways: it connects the
tracks BV and BX, and it also connects the tracks AC and CM. The double
junction is designed in such a way that trains can travel through it along four
paths. There are two paths on the main line, paths −−→

AB and −−→
DC . Path −−→

AE leaves
the main line and enters the side line on track CM. Finally, path −→

FC leaves the
side line after track DR and enters the main line on track BY. On the main
line, trains can travel at a speed of 120mph, whereas on the side line (i.e., on
tracks CM, CL, DR, and DP) there is a speed restriction of 70mph. There is a
further speed restriction of 40mph on the points 101 and 102 when they are in
reverse position. These speed restrictions, which are as provided as a realistic
scenario by Invensys Rail, are not shown on the track plan. There are six signals
in the original plan, labelled 2, 3, 4, 5, 16 and 17, which show either proceed or
stop. Train drivers are only allowed to enter a track, say AB, when its protecting
signal, in our example signal 3, shows proceed; otherwise, the train driver has
to stop and to wait until the signal changes to proceed.

Railway signals are controlled by an interlocking system which aims to guar-
antee safety. In general, train movements are considered safe if there is no risk of
collision (through allowing two trains on the same track at the same time) nor
any risk of derailment (through allowing a point to move while there is a train
passing over the point, or by allowing a train to pass too fast over a point). In
our study, we concentrate on capacity and consider only the collision-freedom
aspect of safety.

An interlocking system gathers inputs from the physical railway, such as train
locations with respect to tracks, and sends out commands to control signal as-
pects and point positions. To this end, it implements so-called control tables
which dictate its behaviour. The control table for our double junction example
appears in the lower left corner of Figure 1 and restricts the behaviour of the
railway according to current UK regulations. For each signal, there is one row

Safety and Line Capacity in Railways 57

Fig. 1. The track plan of the double junction

describing the condition under which the signal can show proceed. There are
two rows for signal 3: one for when the train stays on the main line (Route 3A)
and one for when the train moves to the side line (Route 3B). Signal 3 for the
main line can only show proceed when point 101 is in normal position and tracks
AB, AC, AD and AE all are clear. The track AE is called an overlap. This rule
ensures that the driver will always be able to stop the train before entering the
track following AE, even if signal 5 is seen too late (e.g., just as the train is
passing it). Besides the condition shown in the control table, signal 3 for the
side line can only show proceed if an approaching train on track AA is slow
enough. This is controlled by measuring the time that the train occupies track
AA (approach control). This forces the train to slow down to 40mph even before
it reaches signal 3. We refer to this version of control as Scenario 1.

Scenario 2 makes the assumption that all trains are equipped with an Auto-
matic Train Protection (ATP) system [14]. ATP ensures that trains brake when
needed and reduce their speed as required. Thanks to ATP, trains are guaranteed
to stop at or before signal 5. Therefore the overlap AE can be removed from the
clear part of the control table of signal 3. ATP guarantees that trains slow down
in time to 40mph when passing a point. Thus, approach control is not needed.
For Scenario 2, we remove all overlaps from the control table and work without
approach control. Under current UK regulations, Scenario 2 is not allowed.

In the railway domain, capacity is regarded as an elusive concept which is not
easy to define and measure. In general, it can be described as below:

“Capacity determines the maximum number of trains that would be
able to operate on a given railway infrastructure, during a specific time
interval, given the operational conditions.” [5].

Returning to our double junction example, the general view in the railway indus-
try – shared by our industrial partner Invensys Rail – is the following. Removing
overlaps such as track AE from control tables and removing approach control
increases capacity. Our scientific questions are: can safety still be guaranteed?
And how can the expected effect be measured? Based on the answers to these

58 Y. Isobe et al.

questions, the political question would be: does the resulting capacity increase
justify changes to regulations?

3 Modelling Railways for Safety in CSP

The process algebra Csp [11,18] is an established formalism for describing con-
current systems. While there is still ongoing research on foundations, Csp has
many applications, e.g., in train controllers, in avionics, and in security protocols.
We describe here only the basic constructs of Csp that we shall exploit.

Csp describes reactive systems in terms of abstract, discrete events such as
“train 12 enters track 1”. The events of a system are collected together in an
alphabet of communications Σ. All such communications are atomic. In Csp

terminology, a reactive system is referred to as a process. The most basic process
is Stop, which represents the system that does not do anything. Another basic
process is Skip, which represents the system that performs the termination event
� (pronounced as tick) and then behaves like Stop. Given an event a and a
process P , the Csp process (a → P) represents the system that engages in the
event a and then behaves like P . Csp provides two operators which allow a
choice between processes: the process (P � Q) is the internal choice operation
which represents a system which will behave as either P or Q with the choice
made nondeterministically by the system; while the process (P � Q) is the
external choice operation in which the choice between behaving as either P
or Q is made by the environment. Csp provides various operators to combine
two processes P and Q in parallel, but the only such operator of interest to
us is (P |[X]|Q) which requires the processes P and Q to cooperate on the
events in the set X . Finally, the process (P \ X) behaves like P but makes the
events of X invisible to the environment. Semantically, Csp describes a process
P by the set of all its traces T [[P]], i.e., all finite sequences of events that the
process can perform. A process SPEC is refined by a process IMP , written as
SPEC �T IMP , iff T [[IMP]] ⊆ T [[SPEC]]. This refinement preserves safety: if
a forbidden sequence of events s is excluded from SPEC , then s cannot be a
trace of IMP if SPEC �T IMP . In practice, one usually works with CspM ,
a machine-readable version of Csp which also includes concepts of functional
programming which handle data.

Winter [21] describes how to model railway systems in Csp for proving safety.
We illustrate Winter’s approach by modelling the double junction shown in Fig-
ure 1. Here we include the bold elements: without signal 1 trains could collide
on track AA. The first step is to formalise the track plan as a graph:

datatype TrackIDs = AA | AB | AC | AD | AE | ...

datatype SignalIDs = S2 | S3A | S3B | S4 | S5 | S16 | S17 | ...

datatype PointIDs = P101 | P102

next(AA) = {AB} next(AB) = {AC} next(AC) = {AD,BW} ...

Then, trains are modelled as processes. Here, it is necessary to change Winter’s
definitions, as tracks can be shorter than trains (track AE is 50m long, Invensys
suggested to work with a train length of 200m). We associate every track t (and

Safety and Line Capacity in Railways 59

train id) with its length, denoted as tracklength(t) (and trainlength(id)) and
define a process, namely RearBehaves , which refrains rear moves if the front
track is shorter than the train length. Then, a train process is characterized by
its identifier id , by the position of its front and by a list of rearmoves as follows:

TrainBehave(id,front,rearmoves) =

if (front==Exit and null(rearmoves)) then TrainBehave(id,entry(id),<>)

else ([] n1 : next(front) @ moveff.front.n1 ->

RearBehaves(trackLength(n1),id,n1,

rearmoves^<(moverr.front.n1,trainLength(id))>))

Next, control tables are modelled. We give here only the basic idea as presented
in [21]. The signalling in the double junction requires a slightly more involved
approach. When the front of a train enters the protected area, the signal state
becomes Red indicating “halt”. Similarly, when the rear of a train leaves the
protected area, the signal state becomes Green indicating “proceed”.

SignalBehave(id.aspect) =

(aspect == Green & [] n : next(signalhome(id)) @

moveff.signalhome(id).n -> SignalBehave(id.Red))

[] (aspect == Red & [] n : next(signalend(id)) @

moverr.signalend(id).n -> SignalBehave(id.Green))

Finally, the whole train system comprises trains and signals which interact
through a set of synchronized events:

TrainSystem = Trains [| union(

Union({{ moveff.signalhome(id).n |

n<- next(signalhome(id)) } | id <- SignalIDs }),

Union({{ moverr.signalend(id).n |

n<- next(signalend(id)) } | id <- SignalIDs }))

|] Signals

We formalise the property NoCollision following Winter [21]. The difference is
that we exclude the entry and exit tracks from the safety analysis:

P(F,R) =

([] on:union(F,R) @

(not(member(next(on),union(F,R))) or member(next(on),Exits) &

(moveff.on.next(on) ->

P(union(diff(F,{on}),union({next(on)},Entries)),R)))

[]

(moverr.on.next(on) ->

P(F,union(F,union(diff(R,{on}),union({next(on)},Entries))))))

SafeMove = P(Entries,Entries)

NoCollision = SafeMove ||| CHAOS(diff(Events,{|moveff,moverr|}))

A railway is safe iff it can perform only safe moves. This can equivalently be
formulated in Csp as the refinement statement over the traces of the respective
processes: NoCollision �T TrainSystem.

60 Y. Isobe et al.

4 Timed CSP and Timed Traces

Timed Csp [19] conservatively extends the process algebra Csp with timing
primitives, modelling the passage of time with reference to a single, conceptually
global clock. Syntactically, the core extension of Csp to Timed Csp is modest.
There are only three new operators, including timeout after d time units: (P �d

Q). Based on these, Timed Csp adds many operators as syntactic sugar. Most
prominent are (Wait d) = (Stop �d Skip) – the process, which waits for d time

units before it terminates – and a delayed event prefix (a
d→ P) = (a → (Stop �d

P)) which performs a and then behaves as P after a delay of d time units.
Semantically, processes in Timed Csp perform timed events (r , e) ∈ R≥0×Σ :

r is the time at which event e occurs. Events are instantaneous, i.e., they do
not take any time. The execution of a system leads to a timed trace. We write 〈〉
for the empty trace and t = 〈(r1, e1), . . . , (rn , en)〉 for a finite observation with
∀ j > i ≥ 1 : ri ≤ rj and ∀n > i ≥ 1 : ei �= �. Given a non-empty timed trace
t , the time stamp of its first visible event is given by begintime(t) = r1; that
of its last visible event is given by endtime(t) = rn ; and its duration is given
by duration(t) = endtime(t) − begintime(t). We define duration(〈〉) = 0. #t
denotes the number of timed events occurring within a timed trace t . Given a
set of events A, t � A denotes the projection of t onto A, i.e., the subsequence of
timed events from t which consists only of events from A. Using these notations,
t ↓ A = #(t � A) is the number of timed events from A in t . Given two timed

traces t1 and t2, t1�t2 denotes their concatenation; if the time stamps do not
match, this concatenation is undefined.

We denote the set of all timed traces by TT , and write TR[[P]] ⊆ TT for the set
of all timed traces of a Timed-CSP process P . Given two Timed Csp processes
IMP and SPEC , we say that SPEC refines to IMP , denoted by SPEC �TT

IMP , iff TR[[SPEC]] ⊇ TR[[IMP]].
For the case that SPEC is independent of time, i.e., SPEC does not include

any timed operator, and IMP is an integer-wait Timed Csp process, Roscoe [18]
provides the following proof technique: SPEC �TT IMP over Timed Csp is
equivalent to time(SPEC) �T time(IMP) over (untimed) Csp. The latter proof
obligation can be discharged using standard CSP tools such as the model checker
FDR [1]. The function time adds a special event called tock to the alphabet of
the processes in order to indicate the passage of time, e.g., time(Wait 0) = SKIP
and time(Wait (n+1)) = tock → time(Wait n). For the external choice operator,
we use Schneider’s construction [19]: time((?x : A → P) � (?y : B → Q)) =
time(?x : A → P) � time(?y : B → Q) � tock → time((?x : A → P) � (?y :
B → Q)) which provides a correct translation if A∩B = ∅; this can be seen, e.g.,
by comparison with the semantics of �tock (see [19]). The automatic verification
of real-time systems with FDR is competitive with other approaches [15].

We use the timed refusal trace semantics of Timed Csp as defined in [17],
which guarantees a semantics for recursion even if the processes involved fail to
be timed-guarded (see [19]). The timed traces of a process P can be extracted
straightforwardly from the timed refusal traces of P [17].

Safety and Line Capacity in Railways 61

5 Modelling Timed Behaviours of Railway System

In the following, we make two assumptions concerning time in railways. Firstly,
we assume signalling to be instantaneous. In the real world, the cycle time of
an interlocking is in the region of two seconds. This time is (nearly) negligible
compared to the time a train needs to move from one track to another, so for
the current study we disregard this delay rather than require the interlocking to
await confirmation that the signal has been changed. Slightly more critical is our
second assumption; for this study we assume that trains accelerate and brake
immediately. The consequence is that we overestimate capacity (as trains move
faster than in reality). The second assumption is clearly an over simplification
to be remedied in future work.

In order to model time, we enrich Winter’s model [21] of a track plan. To
this end, we record the time it takes to travel a distance l at a speed limit s in
a table delay(l , s). The second change to the untimed model is that trains get
one more parameter: besides their identity id and the position front , rearmoves ,
they also have the speed allowed on track front . The following Timed Csp code
summarizes the essential part of these changes; all other processes remain as
described in Section 3.

TrainBehave(id,front,rearmoves,curspeed) =

if (front==Exit and null(rearmoves))

then TrainBehave(id,entry(id),<>,0)

else ([] n1 : next(front) @

moveff.front.n1?speed ->

if (tracklength(n1)>trainlength(id))

then Wait(delay(trainlength(id),speed))

else Wait(delay(tracklength(n1),speed));

RearBehaves(tracklength(n1),id,n1,

rearmoves^<(moverr.front.n1,trainlength(id))>),speed)

6 Modelling Railway Capacity

We now develop a semantic concept of capacity based on timed traces, and
characterise a railway’s capacity via time-wise refinement in Timed Csp.

6.1 Capacity Semantically

In this section, we present a formal definition of railway capacity which is compli-
ant with the quotation given in Section 2 and compatible with existing analytical
methods, for example [3]. Informally speaking, we want to count the number of
trains appearing and operating within the railway. This number depends on two
parameters: namely, (i) when we start counting and (ii) how long we observe.
Thus, we speak of an observation window characterised by a starting time and
a duration. There are two kinds of trains that we can observe in such a window:
those trains which are already present at the starting time of the window, and
those trains, which appear in the window while it is open.

62 Y. Isobe et al.

Initially, we assume that there are no trains in the railway. As trains enter,
travel through and leave a railway, their movements are recorded in a timed
trace. Relative to a given track plan, we define Entering and Leaving as the sets
of timed events which indicate the entering and leaving of trains, respectively.
In our example, moveff .Entry1.AA is an element of Entering, the set Leaving
includes, e.g., the element moverr .AE .Exit .

Let s be a timed trace of a railway model. The number of trains in the
railway after s is given by the number of trains entering the railway reduced by
the number of trains leaving the railway:

storage(s) = s ↓ Entering − s ↓ Leaving

The number of trains entering the railway during s is given by

increase(s) = s ↓ Entering

Relative to the duration δ of an observation window, we define the capacity of
a Train System TS by

capacity(TS , δ) = max
{

storage(s1) + increase(s2) :

s1�s2 ∈ TR[[TS]] and duration(s2) ≤ δ
}
.

Each decomposition s1�s2 ∈ TR[[TS]] of a timed trace yields a value to be con-
sidered for capacity. We determine how many trains are in the system after the
set-up phase s1 and how many trains enter the system during the observation
window s2, and maximise the sum storage(s1)+increase(s2) over all timed traces

s1�s2 ∈ TR[[TS]] in which duration(s2) ≤ δ. The following result shows that this
definition of capacity nicely fits with refinement:

Theorem 1 (Capacity and Refinement). If TS2 �TT TS1 then ∀ δ ≥ 0 :
capacity(TS1, δ) ≤ capacity(TS1 , δ).

For our purposes the decomposition of a timed trace into a set-up phase and an
observation window gives a good insight into a railway system (see especially the
paragraph on simulation later in Section 7). However, we note in passing that a
notion of capacity for a Train System TS which is independent of observation
duration, giving a long-term rate of “trains per unit time”, could be defined by

lim
δ→∞

capacity(TS , δ)

δ
.

6.2 Capturing Storage and Increase in Timed Csp

In this section, we provide a construction in Timed Csp which turns capacity
into an observable event. To this end, we run the process TrainSystem in a
two-layered environment. The first layer consists of an observer process, while
the second layer controls the whole set-up. The observer process synchronises

Safety and Line Capacity in Railways 63

with TrainSystem over events indicating the entering and leaving of trains with
respect to the railway. The controller process synchronises with the observer
process on the duration of the observation window and the observed capacity.
The observer process works in two phases: the process Storage (see below) realises
the function storage (see above); after a startObs signal from the control layer,
control goes over to the second phase in which the process Increase (see below)
realises the function increase (see above).

The process Storage counts the entering trains and reduces this number by
one for every leaving train:

Storage(n) = ([] n1 : next(Entry) @ moveff.Entry.n1?_ -> Storage(n+1))

[] ([] n1 : pre(Exit) @ moverr.n1.Exit -> Storage(n-1))

[] startObs?delta -> Increase(n,0,delta)

In addition, the process listens on the channel startObs . When it receives a value
delta, it passes control to the process Increase(n, 0, delta). Here, n is the number
of trains which are on the railway already, 0 is the duration since the observation
started, and delta is the size of the observation windows.

The process Increase counts the entering trains as long as the observation
window is open. When the window is closed, it informs the controller on the
channel infocap on the observed capacity. After this, it goes to an idle state
EndCapObserver . The process Increase is defined as follows:

Increase(n,d,delta) =

d<=delta & ([] n1 : next(Entry) @ moveff.Entry.n1?_ @ u ->

if d+u<=delta then Increase(n+1,d+u,delta)

else Infocap(n))

[] ([] n1 : pre(Exit) @ moverr.n1.Exit @ u ->

if d+u<=delta then Increase(n,d+u,delta)

else Infocap(n))

Infocap(n) = infocap.n -> EndCapObserver

[] ([] n1 : next(Entry) @ moveff.Entry.n1?_ -> Infocap(n))

[] ([] n1 : pre(Exit) @ moverr.n1.Exit -> Infocap(n))

EndCapObserver = ([] n1:next(Entry)@moveff.Entry.n1?_ -> EndCapObserver)

[] ([] n1:pre(Exit)@moverr.n1.Exit -> EndCapObserver)

The process Controller decides when the observation window starts, and later
receives the value of the observed capacity through the channel infocap. This
process is defined as follows:

Controller(delta) = startObs.delta -> infocap?n -> Stop

The overall set-up is given by the process TrainSystemWithCapacity:

TrainSystemWithCapacity =

(TrainSystem

[|union(

{ moveff.Entry.n._ | n <- next(Entry) },

{ moverr.n.Exit | n <- pre(Exit) })|]

Storage(0)) [| {|startObs, infocap|} |] Controller(delta)

64 Y. Isobe et al.

We define that a process Q does not block a process P with alphabet ΣP over
a synchronization set X if (TR[[P]] = TR[[P |[X]|Q]]) � ΣP . We establish the
following result for the coupling of TrainSystem and Storage in the definition of
the process TrainSystemWithCapacity:

Theorem 2. Storage(0) does not block TrainSystem.

Proof (Sketch). In Storage(0), every event in {moveff .Entry.n. | n ∈ next
(Entry)} ∪ {moverr .n.Exit | n ∈ pre(Exit)} is always ready to engage.

This insight provides the following result.

Theorem 3. The following are equivalent:

– capacity(TrainSystem, δ) = n.

– n ′ ≤ n iff there exists a timed trace t ∈ TR[[TrainSystemWithCapacity]]
such that (r , infocap.n ′) ∈ t for some r ∈ R.

Proof (Sketch). The following two correspondences hold between the timed traces
of the process TrainSystem and the process TrainSystemWithCapacity:

– If t1 = s1�s2 ∈ TR[[TrainSystem]] then t ′1 = s1�〈(begintime(s2), startObs .δ)〉�
s2�〈(endtime(s2), infocap.n)〉 ∈ TR[[TrainSystemWithCapacity]].

– If t2 = s1�〈(r1, startObs .δ)〉�s2�s3�〈(r , infocap.n)〉 ∈
TR[[TrainSystemWithCapacity]] then t ′2 = s1�s2 ∈ TR[[TrainSystem]].

6.3 Capacity via Refinement

We formulate a process which allows at most n trains operating within an ob-
servation window of duration delta. Here, we use only events of the interface
between the observer process and the controller process:

CapacityFrom(n,delta)=|~|n’:{0..n}@ startObs.delta -> infocap.n’ -> Stop

With regards to this process, we have the following result:

Theorem 4. Given a length δ of observation, capacity(TrainSystem, δ) = n iff

– for all k ≥ n holds:
CapacityFrom(k , δ) �TT TrainSystemWithCapacity \ MoveEvents, and

– for all 0 ≤ l < n holds:
CapacityFrom(l , δ) ��TT TrainSystemWithCapacity \ MoveEvents,

where MoveEvents = {moveff .x .y. , moverr .x .y | x , y ∈ Tracks}

Proof (Sketch). By Theorem 3 and the definition of CapacityFrom(n, δ).

Safety and Line Capacity in Railways 65

7 Studying Safety and Capacity in the Context of the
Double Junction

In this section, we study safety and capacity in one model formulated in Timed
Csp. To this end, we consider each of the paths −−→

AB, −−→
DC , −−→

AE and −→
FC shown in

Figure 1 in isolation. It remains future work to study the double junction as a
whole. For each of the four paths, we encode Scenarios 1 and 2 from Section 2. It
turns out that both scenarios are safe and that capacity increases when signalling
is changed from Scenario 1 to Scenario 2.

For the model of each path, we determine the minimal amounts of time a train
travels from one end to the other of each track. Here, we use data suggested by
our industrial partner Invensys Rail about the lengths of trains and tracks. We
take the length of trains to be 200m, the length of tracks where there is either a
point or a diamond crossing to be 50m, the length of overlap tracks to be 200m,
the length of other tracks to be 1500m, and the track lengths on path −−→

AE to be
summarised in the following table:

Track AA AB AC BW CM CL
Length 1500m 200m 50m 50m 1500m 200m

The minimal amounts of time to travel such distances in different speed limits
can be easily calculated. For example, it takes at least 4s for a train to travel
on AA at a speed of 120mph. These constants are incorporated into the Timed
Csp models as presented in Section 5. These result in processes TrainSystemp,s ,
where p ranges over {−−→AB,−−→AE ,−−→DC ,−→FC} and s ∈ {1, 2}.

These models are collision-free iff NoCollision �TT TrainSystemp,s . Since the
processes TrainSystemp,s contain only integer-wait operators and NoCollision
does not include any timed operator, we utilise FDR to prove the refinements
time(NoCollision) �T time(TrainSystemp,s). FDR shows that all these refine-
ments hold. Thus, all paths are safe in both scenarios.

In order to deal with capacity, we simulate both scenarios with our Timed
Csp Simulator tool [8]. This is possible as the processes TrainSystemp,s involve
only rational numbers for time. To this end, we apply the automatic simulation
available in the Timed Csp Simulator, which randomly chooses between events
and prioritises events over the evolution of time. Simulating TrainSystemp,s in
the Timed Csp Simulator yields one of its timed traces.

We determine capacity in a three step process. First, we make estimates on
the length of the set-up phase and on the minimal length δ of an observa-
tion window. We choose these numbers in such a way that we can expect a
difference in the capacities of Scenarios 1 and 2. Next, we validate this esti-
mation. Both these steps are based on simulation with the Timed Csp Sim-
ulator. Finally, given a good estimate for the length δ, Theorem 4 allows us
to determine capacity(TrainSystemp,s , δ) for each TrainSystemp,s . Here, we dis-
charge the involved proof obligations with FDR. This is possible as the process
CapacityFrom(n) does not have any timed operator and there are only integer-
waits in the process TrainSystemWithCapacity.

66 Y. Isobe et al.

Step 1: Simulation with the Timed Csp Simulator suggests that it takes a
fixed time μ from one train entering TrainSystemp,s until this train leaves.
Furthermore, it suggests that it takes a fixed time d from one train entering
TrainSystemp,s to the next train entering TrainSystemp,s . Let μ1, d1 and μ2,
d2 be the estimates from the simulation of Scenarios 1 and 2, respectively. For
the length of the observation window we select δ = d1x for some x such that
d1x = d2(x+1). For total run-times we choose μ1 +δ (μ2 +δ) for Scenario 1 (Sce-
nario 2). This “guarantees” (based on the simulation data) that the two scenar-
ios show different capacities. For the path −−→

AE , we obtain μ1 = 113s , μ2 = 105s ,
d1 = 85s and d2 = 70s . Thus, we choose δ = 397s and simulate Scenario 1 for
μ1 +δ = 510s and Scenario 2 for μ2 +δ = 502s .

Step 2: Automatic simulation of Scenario 1 for μ1 +δ and of Scenario 2 for μ2 +δ
yields two timed traces. The capacity observed on these timed traces gives lower
bounds for the capacity of TrainSystemp,s . For path

−−→
AE , we obtain a capacity of

7 in Scenario 1 and a capacity of 8 in Scenario 2.

Step 3: Finally, we verify with FDR that these numbers are indeed the capacity.
For path −−→

AE, we obtain:

−−→
AE 6 7 8 Running time in FDR

Scenario 1 x (1, 12 × 106) � (1, 14 × 106) - 25s
Scenario 2 - x (1, 67 × 106) � (1, 73 × 106) 33s

Each row in the table provides the result for one scenario. Column n expresses if
the refinement CapacityFrom(n) �TT TrainSystemWithCapacity \ MoveEvents
holds. “�” stands for successful verification, “x” indicates that the refinement
does not hold, “-” says that this check was not carried out. We associate the
round number of states that are checked by FDR in each refinement. The last
column shows how long FDR spends for running all checks needed for determin-
ing capacity in each scenario1. The results for the other paths are obtained in
the same way as for −−→

AE . We summarise these in the following table:

Path Window Capacity in Capacity in
length Scenario 1 Scenario 2

−−→
AB 379s 12 13
−−→
DC 399s 12 13
−→
FC 328s 7 8

Interpreting our results within the railway domain, we can state: under optimal
conditions, we expect one more train approximately every 6.5 minutes in Sce-
nario 2 compared with Scenario 1 without compromising safety. It takes about
2 minutes of set-up time to observe this difference.

For windows of length larger than 6.5 minutes, TrainSystemp,2 has at least
the capacity of TrainSystemp,1. This holds by Theorem 1. We observe that
TrainSystemp,1 and TrainSystemp,2 are identical but for the value x in the

1 On a machine with a 2GHz 64 bit processor with 4GByte memory running Mac OS.

Safety and Line Capacity in Railways 67

Wait x processes involved. Here, x ′ ≤ x for the corresponding Wait processes,
where x is the value in TrainSystemp,1 and x ′ is the value in TrainSystemp,2.
Thus, any delay y between two timed events of a timed trace of TrainSystemp,1

can be reproduced in TrainSystemp,2 as for the corresponding Wait x ′, we have
x ′ ≤ x ≤ y.

Lessons learnt from using tools for Csp and Timed Csp for our performance
analysis in the railway domain include:

1. Obviously, one would like to study safety for the whole junction and not, as
we do above, for single paths in isolation. However, it turns out that handling
the complete junction (even in the untimed case) is beyond the proof support
given by FDR, at least for our current modelling approach.

2. Reducing proof obligations over Timed Csp to proof obligations over (un-
timed) Csp works well. Tool support for the translation (which we carry out
manually) would be welcome.

3. Concerning capacity, it might be possible to determine it by “optimal” sim-
ulation in the Timed Csp Simulator. To this end, one would have to argue
which simulation strategy leads to a timed trace showing the capacity of the
railway system.

4. Proper time-wise refinement, as in TrainSystemp,2 �TT TrainSystemp,1, still
lacks convincing tool support. On our examples, the PAT system [2] was
running out of memory for the refinement checks.

8 Summary and Future Work

In close cooperation with railway industry, we have provided a formal definition
of line capacity based on the timed traces that one can observe in a natural,
timed model of railway systems. This definition can equivalently be characterized
as a refinement statement in Timed Csp. By adapting the safety formulation
of Winter [21], we are able to study both safety and capacity in one formal
model in Timed Csp. As the refinements for safety and capacity only require the
checking of qualitative properties, both refinement statements can be discharged
by translation into untimed Csp. This approach has the advantage that one can
re-use established tool support for Csp alone.

To illustrate our approach, we have applied it to a standard double junction
from the (UK) railway domain. For this junction, we can answer fundamental
questions from railway industry: changing control tables in the way suggested by
railway engineers yields a capacity increase without compromising safety. This
increase can be quantified: under optimal conditions, after the change there can
be one more train every six minutes in our example. Having shown the increases
that can be gained via changing signalling rules through the trusted use of ATP,
this encourages changes to be proposed to the current UK railway regulation.

The double junction example demonstrates the limitations of the current proof
support in terms of the model checker FDR. For complex examples, e.g., with
more tracks, 3-aspect or 4-aspect signalling, long or different-length delays, the
translational approach is inefficient. Dedicated proof support, e.g., in the form
of a Timed Csp-Prover (currently under construction) is necessary.

68 Y. Isobe et al.

It remains future work to include further timing aspects into our modelling,
such as the cycle time of signalling and point movements or braking and accel-
erating curves of trains. Finally, we intend to develop our definition further, so
that it also captures the more complex notion of network capacity.

Acknowledgement. The authors would like to thank Erwin R. Catesbeiana
(Jr) for pointing out that immobility is the enemy of capacity.

References

1. FDR2, http://www.fsel.com/software.html
2. PAT, http://www.comp.nus.edu.sg/~pat/
3. UIC Leaflet 405 OR. Links between Railway Infrastructure Capacity and the Qual-

ity of Operations. International Union of Railways (1996)
4. UIC Leaflet 406. Capacity. International Union of Railways (2004)
5. Abril, M., Barber, F., Ingolotti, L., Salido, M., Tormos, P., Lova, A.: An assessment

of railway capacity. Transportation Research Part E: Logistics and Transportation
Review 44(5), 774–806 (2008)

6. Barber, F., Abril, M., Salido, M., Ingolotti, L., Tormos, P., Lova, A.: Survey of
automated systems for railway management. Technical Report. TU Valencia (2007)

7. Burdett, R.L., Kozan, E.: Techniques for absolute capacity determination in rail-
ways. Transportation Research Part B: Methodological 40(8), 616–632 (2006)

8. Dragon, M., Gimblett, A., Roggenbach, M.: A Simulator for Timed CSP. In: AVoCS
2011. Technical Report. Newcastle University (2011)

9. Department of Transport. Delivering a Sustainable Railway. White Paper CM 7176
(2007)

10. Fokkink, W., Hollingshead, P.: Verification of interlockings: from control tables to
ladder logic diagrams. In: Proceedings of FMICS 1998, pp. 171–185 (1998)

11. Hoare, T.: Communicating Sequential Processes. Prentice Hall (1985)
12. Isobe, Y., Nguyen, H.N., Roggenbach, M.: Towards safe capacity in the railway

domain – an experiment in Timed-CSP. In: DSW 2011 (2011)
13. James, P., Roggenbach, M.: Automatically Verifying Railway Interlockings using

SAT-based Model Checking. In: AVoCS 2010. EASST (2011)
14. Kerr, D., Rowbotham, T.: Introduction To Railway Signalling. Institution of Rail-

way Signal Engineers (2001)
15. Khattri, M., Ouaknine, J., Roscoe, A.: Automated translation of timed automata

to Tock-CSP. In: AVoCS 2010. Technical Report. Düsseldorf University (2010)
16. Landex, A., Kaas, A., Schittenhelm, B., Schneider-Tilli, J.: Practical use of the

UIC 406 capacity leaflet by including timetable tools in the investigations. In:
Proceedings of the 10th International Conference on Computers in Railways (2006)

17. Ouaknine, J., Worrell, J.: Timed CSP = closed timed ε-automata. Nordic Journal
of Computing 10, 1–35 (2003)

18. Roscoe, B.: Understanding Concurrent Systems. Springer (2010)
19. Schneider, S.: Concurrent and Real-time systems. Wiley (2000)
20. Simpson, A., Woodcock, J., Davies, J.: The mechanical verification of solid-state

interlocking geographic data. In: Formal Methods Pacific 1997. Springer (1997)
21. Winter, K.: Model checking railway interlocking systems. Australian Computer

Science Communications 24(1) (2002)

http://www.fsel.com/software.html
http://www.comp.nus.edu.sg/~pat/

Refinement-Based Development
of Timed Systems

Jesper Berthing1, Pontus Boström2, Kaisa Sere2,
Leonidas Tsiopoulos2, and Jüri Vain3

1 Danfoss Power Electronics A/S, Denmark
jbe@danfoss.com

2 Åbo Akademi University, Finland
{pontus.bostrom,kaisa.sere,leonidas.tsiopoulos}@abo.fi

3 Tallinn University of Technology, Estonia
vain@ioc.ee

Abstract. Refinement-based development supported by Event-B has
been extensively used in the domain of embedded and distributed sys-
tems design. For these domains timing analysis is of great importance.
However, in its present form, Event-B does not have a built-in notion
of time. The theory of refinement of timed transition systems has been
studied, but a refinement-based design flow of these systems is weakly
supported by industrial strength tools. In this paper, we focus on the re-
finement relation in the class of Uppaal Timed Automata and show how
this relation is interrelated with the data refinement relation in Event-B.
Using this interrelation we present a way how the Event-B and Uppaal
tools can complement each other in a refinement-based design flow. The
approach is demonstrated on a fragment of an industrial case study.

1 Introduction

The Correct-by-Construction Design (CCD) workflow has proven its importance
with motivating facts from recent industrial practice. Peugeot Automobiles has
developed the model of the functioning of subsystems (lightings, airbags, en-
gine, etc) for Peugeot after sales service; RATP (Paris Transportation) used the
model of automatic platform doors to equip an existing metro line to verify the
consistency of System Specification. Event-B [1] as one such CCD supporting
formalism has proven its relevance in data intensive development while lacking
sufficient support for timing analysis and refinement of timed specifications. Up-
paal Timed Automata (UPTA) [2] address timing aspects of systems providing
efficient data structures and algorithms for their representation and analysis but
are less focusing on supporting refinement-based development, especially data
refinement. The goal of this paper is to advocate the model-based transforma-
tional design method where these two approaches are combined to mutually
complement each other.

The transformational design flow discussed in the paper consists of alternation
between data and timing refinement steps (see Fig. 1). The result of a data

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 69–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

70 J. Berthing et al.

correctness check

Refinement step

Event-B Uppaal

Event-B UPTA

Functional
requirements

Timing
requirements

ok nok

Design spec n
(implementable)

 ok nok

Design of functional
aspects

Design of timing
aspects

Refinement

Event-B UPTA

Event-B UPTA

ok nok

nok ok

Design spec 1

Design spec 2

 ok

nok

 ok

nok

...

Fig. 1. CCD workflow with interleaving data and timing refinement steps

refinement step, performed within Event-B, after being proved correct, serves as
an input to timing refinement step. The timing refinement means mapping the
constraints of the previous level timing specification onto the UPTA model that is
derived from the UPTA model of the previous design step and from the Event-B
refinement of the current step. Then the newly introduced refinement of Event-
B model must be decorated with timing attributes so that timing correctness
criteria are satisfied. The timing correctness of refinement is verified using Uppaal
[2] tool in two steps. At first, the consistency of the model being the result of
timing refinement step is verified internally. Here the properties, e.g. deadlock
and non-Zenoness are checked. Second, the preservation of timing properties
introduced in the previous refinement step are verified. The design flow depicted
in Fig. 1 is not complete since the real design flow may include also backtracking
over several earlier design steps. For instance, when no feasible timing refinement
is possible, it may require revision of much earlier functional refinement phases.
The design backtracking issues and error diagnostics are not addressed also in
the current paper.

2 Related Work

An extensive study of automata models for timed systems is presented in [12].
A general automaton model is defined as the context for developing a vari-
ety of simulation proof techniques for timed systems. These techniques include
refinements, forward and backward simulations, hybrid forward-backward and
backward-forward simulations, and other relations. Relationships between the
different types of simulations are stated and proved. To improve model checking
performance of timed systems, timing constraint refinement methods such as the
efficient forward algorithm based on zones for checking reachability [3] and the
counter example guided automatic timing refinement technique [8] have been
studied. The refinement of timing has been addressed as part of specification

Refinement-Based Development of Timed Systems 71

technique recently in [7] where the constructs for refinement of Timed I/O spec-
ifications were defined for development of compositional design methodology.

In works [3,7,8] the motivation behind timing refinement has been rather
model checking or automated design verification than stepwise transformation-
based design development. The way how timing refinement steps are constructed
in the course of practical design flow has deserved relatively little attention.
For systematic and modular co-use of refinement transformations both data
and timing refinement transformations must be specified explicitly in terms of
syntactic constraints, i.e., the domain of refinement transformations must consist
of well-defined syntactic constructs of the modelling language.

In [4,11,13] attempts have been made to incorporate discrete time directly into
formalisms without having a native notion of time. However, the clocks are not
an integrated part, but are modelled as ordinary variables. Hence, continuous
time specific problems such as Zeno behaviour cannot be addressed directly in,
for example, the Event-B proof system. Furthermore, timing can be seen as an
extra functional property and adding this to a functional Event-B model will
make it cluttered with non-functional aspects. This will, apart from making the
model less readable, make the proofs harder to automate.

An earlier attempt to integrate stepwise development in Event-B with model
checking in Uppaal is given in [10] where the events are grouped into more coarse
grained processes with timing properties. We aim to provide a framework where
the timing refinements can be addressed by reusing the model constructs of Event-
B introduced in the course of data refinement steps. That provides opportunity
to verify data refinement steps also from the timing feasibility point of view.

3 Case-Study: Safety Related Controller Design

The CCD methodology introduced above will be deployed on an industrial re-
dundant safety controller design case study by Danfoss A/S. The case study
concerns an emergency shutdown module for a frequency converter that is used
to control the speed of an electrical motor. An emergency switch and a safe field
bus are used to activate the safety functions. The emergency shutdown module
provides two safety functions, the Safe Torque Off (STO) and the Safe Stop 1
(SS1). In this paper we focus on the activation of the safety functions through
the emergency switch only. The safety functions are activated if at least one of
the two emergency switches (ES) is pushed. STO will remove the torque on the
electrical motor. If SS1 is configured active, on activation of SS1 a timer with a
configurable delay shall be started and the frequency converter is requested to
start a non-safe ramp down. After the timer expires, STO shall be activated. In
addition to these functional requirements we need to take into account timing
requirements. Specifically, the reaction time from user terminal (pushing of ES)
to active STO or active SS1 shall be less than 10 ms. STO or SS1 shall not be
activated if the duration of the ES signal is shorter than or equal to 3 ms.

The deployment of our CCD methodology starts with a specification which
captures an abstract description of the behaviour of the whole system. Step-
wise refinements should introduce the algorithms needed for the implementable

72 J. Berthing et al.

system to behave according to the specification. The abstract specification and
refinements should be done in such a manner that we can prove all (safety
and liveness) properties stated in the requirements as invariant properties or
refinements. Because of the space limit, in this paper we will present only one
refinement step introducing the needed redundancy. The safety integrity require-
ments of this safety critical system require the safety controller to be mapped
onto a redundant architecture (see 1oo2 architecture of IEC 61508-6 [9]). Before
we proceed with the actual modelling of the emergency shutdown module we
first present in the next section preliminaries of Event-B and UPTA as well as
the mapping between the two formalisms.

4 Preliminaries

4.1 Preliminaries of Event-B

Consider an Event-B model M with variables v, invariant I(v) and events
E1, . . . , Em. All events can be written in the form

Ei = when Gi(v) then v : |Si(v, v′) end

where Gi(v) is a predicate called the guard and v : |Si(v, v′) is a statement that
describes a nondeterministic relationship between variable valuations before and
after executing the event. Event-B models do not have a fixed semantics [1], but
correctness of a model is defined by a set of proof obligations. We can use these
proof obligations to prove correctness of many transition systems. In order to
guarantee that Ei preserves invariant I(v) we need to show that [1]:

– I(v) ∧ Gi(v) ∧ Si(v, v′) ⇒ I(v′) (INV).

In order to be able to relate Event-B with UPTA in the following sections we
interpret an Event-B model as a Labelled Transition System (LTS) (Σ, init, T, i),
where Σ is the set of states, init is the set of initial states, T ⊆ Σ×Σ is the set
of transitions and i is the set of legal states i ⊆ Σ. The set of states gi where
the guard of a transition σi holds is given as gi = {v|Gi(v)} and the relation
s describing the before after relation for states corresponding to the update
statement v : |Si(v, v′) is given as {v �→ v′|Si(v, v′)}. The relation describing the
before-after states for each transition Ti is then given as1 gi � si. We can now
describe the Event-B model as a transition system (Σ, init, T, i) where the state
space Σ is formed from the variables v1, . . . , vn, Σ = Σ1 × . . .×Σn , Σi is the
type of vi. The initial states are formed as init = {v|Init(v)}. The transitions
Ti are given as Ti = g1 � s1 ∪ . . .∪ gm � sm. The set of legal states are the ones
where the invariant holds i = {v|I(v)}.

1 The domain restriction operator � is defined as: g � s = {σ �→ σ′ ∈ s|σ ∈ g}.

Refinement-Based Development of Timed Systems 73

4.2 Preliminaries of UPTA

An UPTA is given as the tuple (L,E , V, Cl, Init, Inv, TL), where L is a finite set
of locations, E is the set of edges defined by E ⊆ L×G(Cl, V)×Sync×Act×L,
where G(Cl, V) is the set of constraints allowed in guards. Sync is a set of
synchronisation actions over channels. An action send over a channel h is denoted
by h! and its co-action receive is denoted by h?. Act is a set of sequences of
assignment actions with integer and boolean expressions as well as with clock
resets. V denotes the set of integer and boolean variables. Cl denotes the set of
real-valued clocks (Cl ∩ V = ∅). Init ⊆ Act is a set of assignments that assigns
the initial values to variables and clocks. Inv : L→ I(Cl, V) is a function that
assigns an invariant to each location, I(Cl, V) is the set of invariants over clocks
Cl and variables V . TL : L→{ordinary, urgent, committed} is the function that
assigns the type to each location of the automaton.

We introduce the semantics of UPTA as defined in [2]. A clock valuation is a
function valcl : Cl → R≥0 from the set of clocks to the non-negative reals. A
variable valuation is a function valv : V → Z∪BOOL from the set of variables
to integers and booleans. Let RCl and (Z∪BOOL)V be the sets of all clock and
variable valuations, respectively. The semantics of an UPTA is defined as an
LTS (Σ, init,→), where Σ ⊆ L × RCl × (Z ∪ BOOL)V is the set of states, the
initial stateinit = Init(cl, v) for all cl ∈ Cl and for all v ∈ V , with cl = 0, and
→⊆ Σ × {R≥0 ∪Act} ×Σ is the transition relation such that:

(l, valcl, valv) d−→ (l, valcl + d, valv) if ∀d′ : 0 ≤ d′ ≤ d⇒ valcl +d′ |= Inv(l), and

(l, valcl, valv) act−−→ (l′, val′cl, val
′
v) if ∃e = (l, act,G(cl, v), r, l′) ∈ E s.t.

valcl, valv |= G(cl, v), val′cl = [re �→ 0]valcl, and val′cl, val
′
v |= Inv(l′),

where for delay d ∈ R≥0, valcl +d maps each clock cl in Cl to the value valcl +d,
and [re �→ 0]valcl denotes the clock valuation which maps (resets) each clock in
re to 0 and agrees with valcl over Cl \ re.

We have now obtained the correspondence between Event-B and UPTA mod-
els through their semantics definition as LTS.

4.3 Mapping from Event-B Models to UPTA

The goal in this paper is to extend the Event-B based stepwise CCD to timed
systems. In the subsequent description of CCD model transformations the fol-
lowing notions are used:

– RT - Refinement transformation of type T ∈ {evt,e,l}, where evt

stands for event refinement, eand l stand for edge and location refinement
respectively (elaborated in Section 5).

– M T
i - Model of type T resulting in ith refinement step, where T is given as

T ∈ {B,EFSM ,UPTA }.
– M T

0 - The initial specification of type T.
– Tkl : M Tk �→ M Tl - Syntactic map of model M Tk to M Tl , where Tk, Tl ∈
{B,EFSM ,UPTA }and Tk �= Tl.

74 J. Berthing et al.

– dom(RT ,M T
i) - domain of the refinement RT in the model M T

i (Note that
dom(RT ,M T

i) = ∅, if RT is not defined in M T
i).

– ran(RT ,M T
i) - co-domain of the refinement RT in the model M T

i .

Let us now state some properties of the transformations:

– For any M Tl
i = ran(RT , M Tk

i) ⇒ Tk = Tl (R is conservative regarding the
type of argument model)

– Submodel: M Ti

j ⊆M Ti

i iff ∀el ∈M Ti

j ⇒ el ∈M Ti

i

– M T
j = dom(RT ,M T

i) ⇒M T
j ⊆M T

i , where dom(RT ,M T
i) is submodel of M T

i ,
and M Ti

k is model complement of M Ti

j in M Ti

i : M Ti

i \ M Ti

j = {el | el ∈
M Ti

i , el /∈M Tj , M Ti

j }
– M Ti

i |M Tj

j - projection of the model M Ti

i on the model M Tj

j

Due to the fact thatMB �→MUPTA mappings depicted in Fig. 1 preserve locality
of MB changes introduced by refinements, only those model fragments that are
introduced by Event-B refinements need to be mapped to the corresponding
UPTA fragments. The rest of the refined UPTA model remains same.

The Event-B to UPTA mapping proceeds in following steps:

Step 1: The Event-B model MB is transformed to a flat Extended Finite State
Machine (EFSM) model MEFSM that serves as an UPTA skeleton to be dec-
orated in the next step with UPTA specific timing attributes. The step can be
implemented in two sub-steps:

Step 1.1: The Event-B specification is transformed to a Hierarchical Abstract
State Transition Machine (HASTM) representation by the algorithm described
in [5]. HASTM is a subclass of UML state charts without AND-parallelism.

Step 1.2: The HASTM representation is flattened by means of the algorithm
introduced in [6]. The transformation result is an EFSM model MEFSM with
operational semantics that is equivalent to the one of the original Event-B model
MB. Thus, the proposed MB �→MEFSM transformation implements a total in-
jective syntactic map. The derivation of a partially defined (i.e., without timing)
UPTA model MUPTA# from the MEFSM is straightforward:

Let a EFSM model MEFSM = (Σ, T, V, s0), be a syntactic representation
of the LTS of the Event-B model MB, where Σ is a finite set of states, V is a
finite set of variables, V may include distinguished subsets I and O - of inputs
and outputs respectively, T is the set of transitions, and s0 is the initial state.

Let MUPTA# = (L#, E#, V, ∅, l0) be an UPTA model without the elements
of timing specification, i.e., L# is a set of locations without clock invariants
and committed or urgent types, E# is a set of edges without clock resets and
clock conditions in the edge guards. Then we can establish the correspondence
between the elements of MEFSM and MUPTA# as follows. L# = Σ, E# = T ,
V is the set of variables of the Event-B model MB (as well as of MEFSM due
to Step 1.2), l0 = s0.

Step 2: In this step the partially defined UPTA model MUPTA# is extended
to full UPTA model MUPTA. The timing constraints to be added to the newly

Refinement-Based Development of Timed Systems 75

introduced by Event-B refinement MUPTA# fragment, MUPTA#
i = TB,UPTA#

[ran(RT , MB
i−1)], have to satisfy also the timing constraints of the resultant

model MUPTA
i−1 of the previous timing refinement step. Thus, the arguments

of the timing refinement operator RT
i to be applied in ith step are untimed

MUPTA#
i and the timing constraints of dom(RT , MB

i−1) |MUPTA
i−1). The rest

of the timing specification MUPTA
i i.e., the parts that do not concern the ith

refinement step remain the same as in MUPTA
i−1 . The formal definition of UPTA

timing refinement and its correctness properties are defined in section 5.1.

4.4 Abstract Event-B and UPTA Specifications of Safety Controller

We can now proceed with the formal modelling of the shutdown module exempli-
fying the mapping from Event-B to UPTA proposed in the previous subsection.
We start the modelling by defining only three externally observable variables,
namely ES, STO and SS1, in the abstract Event-B model. The abstract Event-B
specification MB

0 named Safe is presented in Fig. 2a. We have a configuration
parameter defined in SafeCTX named ss1_status which can be set either to
active or nonactive. If ss1_status is set to active then activation of STO should
occur after the delay when SS1 is activated. All the variables of this abstract
model are of the boolean type BOOL. Value TRUE corresponds to STO or SS1
being active and value FALSE corresponds to STO or SS1 being nonactive.

At initialisation STO is active. Event ES_ReleasedReact2 takes care of reset-
ing STO. Events ES_Pushed and ES_Released separately model the physical
act of pushing and releasing ES and they can be considered as input events from
the environment to the system. Events ES_React1 and ES_React2 model the
eventual reaction of the system to the pushing of ES ; ES_React1 corresponds to
the case when ss1_status=active and ES_React2 corresponds to the case when
ss1_status=nonactive. Similarly, we distinguish between these two cases for the
reaction of the system to the release of ES with events ES_ReleasedReact1 and
ES_ReleasedReact2. Already at this abstraction level we need to consider the re-
dundancy of the system. Thus, these events are non-deterministic because both
redundant systems need to first react to the pushing of ES and then they can
be disabled. Moreover, the redundant STO outputs are disabled asynchronously.
The last event SS1_DelayReact models the activation of STO after the timer
triggered by the activation of SS1 has expired. For the same reasons as above
this event is non-deterministic too at this point. The initial model describes
the desired functionality of the system in such a manner that is easy to get an
overview of the intended behaviour.

Let us now introduce the corresponding UPTA abstract specification result-
ing from MB

0 Safe incorporating the timing requirements. We map the events
of MB

0 Safe to edges of MUPTA
0 that is defined as parallel composition of au-

tomata Safe and Environment. The parallel composition of automata is needed
to avoid explicit modelling of system and environment events’ interleaving. Sim-
ilarly, interleaving of system and environment events is implicit in Event-B.
Events ES_Pushed and ES_Released of MB

0 Safe are modelled in automaton
MUPTA

0 Environment illustrated in Fig. 2c and all other events of MB
0 Safe in

76 J. Berthing et al.

cl_ES<=max_push_time

(b) (c)

MACHINE Safe
SEES SafeCTX
VARIABLES ES, STO, SS1
INVARIANT
inv1 STO BOOL inv2 SS1 BOOL inv3 ES 0 1

EVENTS
Init BEGIN ES 0 STO TRUE SS1 FALSE END
ES_Pushed WHEN ES 0 THEN ES 1 END
ES_Released WHEN ES 1 THEN ES 0 END
ES_React1 WHEN ss1_status active ES 1 THEN SS1 TRUE END
ES_React2 WHEN ss1_status nonactive ES 1 THEN STO TRUE END
ES_ReleasedReact1 WHEN ES 0 SS1 TRUE THEN SS1 BOOL END
ES_ReleasedReact2 WHEN ES 0 STO TRUE THEN STO BOOL END
SS1_DelayReact WHEN SS1 TRUE THEN STO TRUE SS1 BOOL END

END

(a)

ES==0 && STO
&& cl==Tick
sto : BOOL1
STO=sto, cl=0

ES && ss1_status
&& cl_ES >= 3
&& cl_ES <= 4

ch1!
SS1=1, cl=0

ch2!
ES &&
ss1_status==0
&& cl_ES >= 3
&& cl_ES <= 4
STO = 1, cl=0

ES==0
&& SS1
&& cl==Tick
ss1 : BOOL1
SS1 = ss1,
cl=0

ch4!

ch3!

ch1r!
SS1
ss1 : BOOL1
STO = 1,
SS1 = ss1

ch1!
cl==SS1_delay
cl=0

cl==Tick &&
cl_ES<3
cl=0 ES==0

ES=1,
cl_ES=0
chE!

chE?
ES==1 &&
cl_ES >= min_push_time
ES=0,
cl_ES=0

(ES_React1)

(ES_ReleasedReact1)
(ES_React2)

(ES_ReleasedReact2)

(SS1_DelayReact)

cl<=SS1_delay

cl<=Tick

ES_Released ES_PushedL2

L1

L0

Fig. 2. (a) Event-B model MB
0 Safe, (b) UPTA model MUPTA

0 Safe and (c) UPTA
model MUPTA

0 Environment

automaton MUPTA
0 Safe illustrated in Fig. 2b. Since the only causally depen-

dent event pair in MB
0 is ES_React1 and SS1_DelayReact their sequencing is

mapped in MUPTA
0 to the pair of edges connected via location L1. Second rea-

son forL1 is to model SS1_delay. L2 is introduced for technical reasons to limit
the number of channels per edge in UPTA. In fact, channels depicted in Fig.
2b and 2c are obsolete for MUPTA

0 , they are shown only because of specifying
synchronization constraints with the edges of refined model MUPTA

1 in Fig. 4b
and 4c respectively.

The timing constraints added to MB
0 events are specified in MUPTA

0 by means
of model clocks, clock guards and clock resets. To avoid the interference of clock
constraints of parallel automata there is one local clock defined for each automa-
ton. An extra local clock is needed only when there is simultaneously timeout
bounded waiting for an external event and periodic time bound actions executed
during that timeout period. For instance, the invariant cl ≤ T ick of location L0
guarantees that each time after the state variables are updated some of the
enabled transitions in L0 will be executed latest at time instant specified by
constant Tick. The clock guard cl == T ick of edge Idle time pass ensures that
if there is not any transition enabled within T ick then at least the clock cl reset
action has to be taken by executing edge Idle time pass with update cl = 0.
The alternative clock cl_ES is needed for specifying the timing of simultaneous
events ES_Pushed and ES_Released. One clock can be used also for specify-
ing alternative time delays when used at different locations, e.g. the invariant

Refinement-Based Development of Timed Systems 77

cl ≤SS1_delay of location L1 and clock guard cl == SS1_delay of edge outgoing
L1 model the SS1 delay.

5 Proving Refinement of Timed Systems

We now have an interpretation of Event-B models as UPTA. The goal is to ensure
correctness of the abstract model and its refinements. Let us first introduce the
refinement definition for timed systems presented by Lynch and Vaandrager
[12]. We adapt this definition in order to correspond to the UPTA semantics of
section 4.2. Let clc and cla be the concrete and abstract clocks of refinement and
specification model N and M respectively.

Definition 1. A specification M is refined by a specification N , written M N ,
iff there exists a binary relation R ⊆ ΣN ×ΣM such that for each pair of states
(n, m) ∈ R we have:

1. whenever n(lref ,valclc ,valw) act
N−−−→ n′

(l
′
ref ,val

′
clc

,val′w)
for some n′ ∈ ΣN then

m(labs,valcla ,valv) act
M−−−→m′

(l
′
abs,val

′
cla

,val′v)
and (n′, m′) ∈ R for some m′ ∈ ΣM

2. whenever n(lref ,valclc ,valw) dN−−→ n′
(lref ,valclc+d,valw) for d ∈ R≥0 then

m(labs,valcla ,valv) dM−−→m′
(labs,valcla+d,valv) and (n′, m′) ∈ R for some m′ ∈ ΣM

Let us introduce the original Event-B proof obligations that are considered in this
paper and needed to be discharged in order to ensure correctness of refinements.
Let M and N be Event-B models, where M N with refinement transformation
RT of type T ∈ {evt}, where evt stands for event refinement. Let w be the
concrete variables of model N and J(v, w) be the concrete invariant stating
properties on variables w and the gluing invariant between the abstract and
concrete state space. For a concrete transition r of model N with guards H(w)
and before-after predicate R(w,w′) refining the abstract transition e defined in
section 4.1 the following proof obligations [1] need to be discharged:

– I(v) ∧ J(v, w) ∧ H(w) ⇒ G(v) (GRD),
– I(v) ∧ J(v, w) ∧ H(w) ∧ R(w,w′) ⇒ ∃v′. S(v, v′) ∧ J(v′, w′) (INV-SIM),

where obligation GRD states the guard strengthening of event e by event r,
obligation INV-SIM states the preservation of the invariant after updates on
variables v and w and the simulation of the abstract event e by the concrete event
r. It is easy to see that condition 1 of Definition 1 can be checked by the Event-B
proof obligations given above [1]. Since the UPTA models are constructed from
the Event-B models we need to extend the original refinement proof obligations
GRD and INV-SIM to also check the timing obligations of all conditions of
Definition 1.

Let Jt(cla, clc) be the concrete invariant stating properties on abstract and
concrete clocks cla and clc in a timed system. Based on the untimed Event-B
proof obligations given above we propose the following proof obligations elab-
orated with timing conditions for a concrete event r of model N with guards

78 J. Berthing et al.

H(w) and Ht(clc), before-after predicate S(w,w′) and clocks reset on clc refining
the abstract event e defined in section 4.1:

– I(v) ∧ J(v, w) ∧ It(cla) ∧ Jt(cla, clc) ∧ H(w) ∧ Ht(clc) ⇒ G(v) ∧ Gt(cla)
(GRD+),

– I(v) ∧ J(v, w) ∧ H(w) ∧ R(w,w′) ∧ It(cla) ∧ Jt(cla, clc) ∧ Ht(clc) ∧ cl
′
c =

0 ⇒ ∃v′, cl′a · S(v, v′) ∧ J(v′, w′) ∧ cl
′
a = 0 ∧ Jt(cl

′
a, cl

′
c) (INV-SIM+).

Note that if there are no clock resets on the event the clock reset updates are
omitted. Let us elaborate more on obligation GRD+. Invariant Jt(cla, clc) can
be defined as:

– Jt(cla, clc) = J1t(cla, clc) ∧ J2t(clc),

where J1t is the gluing invariant expressing that (i) resets of cla and clc are
synchronous when entering source locations pre(e) and pre(r) of events e and r,
respectively, and (ii) Jt(clc) ∧ Ht(clc) ⇒ It(cla) ∧ Gt(cla). J2t is the invariant
of the source location of r.

The proposed INV-SIM+ proof obligation can be decomposed by logic rules
to two substatements (for each pair of concrete and abstract clocks clcand cla):

– I(v) ∧ J(v, w) ∧ H(w) ∧ R(w,w′) ⇒ ∃v′ · S(v, v′) ∧ J(v′, w′),
– It(cla) ∧ Jt(cla, clc) ∧ Ht(clc) ⇒ Jt(0, 0).

The first condition corresponds to the original proof obligation within Event-B,
while the second condition is the correctness condition for resetting of clocks.
The general functional and timing statements introduced in this subsection are
instantiated by UPTA syntax related refinement conditions introduced in the
next subsection.

5.1 Superposition Refinement of UPTA

To check the timing refinement conditions in UPTA, we use an approach where
the abstract UPTA model is composed in parallel with models that describe
the refined parts of the abstract model. Thus, the refinements are added to the
abstract model incrementally in the course of design development process and
to support compositional solving of model checking tasks. For composition the
refinements have a wrapping construct “context frame” that allows their uniform
and easy injection into the abstract model. To keep the clear correspondence
between syntactic units of the abstract model and refinement we define the
refinement transformations syntactic element wise, i.e., by locations and edges
of UPTA calling them location and edge refinements respectively.

Also, the course of refinement is made explicit in the model by introducing
each refinement step as an increment to the resultant model of the previous re-
finement. It means that without changing the semantics of the abstract model
we add the refinement of its syntactic element el as new automaton Mel that
is composed with the original model M . For composition we use synchronized

Refinement-Based Development of Timed Systems 79

parallel composition ‖sync, i.e. M M ‖sync M
el. Synchronization of M and

M el is needed to preserve the contract of el with its context after refinement.
Technically, it means decorating the primary automaton M with auxiliary chan-
nel labels to synchronize the entry and leave points to/from the element el of
M .

For further elaboration of the technique, we define location refinement (l)
and edge refinement (e) relations separately. Notice that the event (guard and
update) refinement introduced in Event-B [1] can be considered as special case
of edge refinement where the guards of edges are strengthened and new updates
are added respectively in the refining model M e consisting of exactly one edge.

Edge Refinement. We say that a synchronous parallel composition of automata
M and M ei is an edge refinement for edge ei of M , (M e M ‖M ei) iff:

ei ∈ E(M), and there existsM ei such that P1 ∧ P2 ∧ P3 ∧ P4,

where P1(interference free new updates): No variable of M is updated in M ei ,
i.e. no variable of M occurs in the left-hand side of any update in M ei .

– P2(guard splitting): Let <l
′
0, l

′
F > denote a set of all feasible paths from the

initial location l
′
0 to final location l

′
F in M ei and <l

′
0, l

′
F >k∈<l

′
0, l

′
F > be

kthpath in that set. Then,

• ∀k ∈ [1, | < l
′
0, l

′
F > |]. ∧j∈[1,Length(k)] G(e

′
j) ⇒ G(ei),

i.e., the conjunction of edge guards of any path in <l
′
0, l

′
F > is not weaker than

the guard of the edge ei refined.

– P3(0-duration unwinding): ∀l′i ∈ (LMei \ l′0).T(l
′
i) = committed,

i.e., all edges in the refinement M ei must be atomic and locations committed.

– P4(non-divergency): G(ei) ⇒M e, l
′
0 |= A♦l′F ,

i.e., validity of G(ei) implies the existence of a feasible path in M ei .
The context frame needed to implement the edge refinement is depicted in

Fig. 3a. It includes auxiliary locations l
′
0 and l

′
F .

Location Refinement. We say that a synchronous parallel composition of au-
tomataM and M li is a location refinement for location li ofM , (M l M ‖M li)
iff li ∈ LM , and exists M li s.t. P

′
1 ∧ P5 ∧ P ′

4, where:

– P
′
1(interference free new updates - same as P1 above).

– P5(preservation of non-blocking invariant):

• [(M ‖M li), (l0, l’0) |=E♦deadlock]⇒[M, l0 |=E♦deadlock].
– P

′
4(non-divergency):

• inv(li) ≡ x ≤ d for x ∈ ClM , d <∞⇒[M li , l
′
0 |= l

′
0 �d l

′
F],

80 J. Berthing et al.

where “�d” denotes bounded reachability operator with non-negative integer
time bound, ClM is the set of clocks ofM , locations l

′
0 and l

′
F denote respectively

auxiliary pre- and post-locations in the context frame of the refinement.
P5 and P

′
4 are specified as Uppaal model checking queries expressed in TCTL.

“deadlock ” denotes a standard predicate in Uppaal about the existence of dead-
locks in the model. P

′
4 requires that the invariant of li is not violated due to ac-

cumulated delays of M li runs. A graphical representation of the model fragment
that schematically represents location refinement is depicted in Fig. 3b.

The auxiliary context frame of l consists of the following elements (denoted
by dashed line in Fig. 3b):

– Synchronizing channel ch is needed to synchronize the executions of enter-
ing to and departing from location li transitions with those entering and
departing to and from refining model M li .

– Auxiliary initial location l′0 and final location l
′
F of M li are introduced to

model waiting before the synchronization via channel ch arrives and after
the execution of M li terminates.

Location refinement can be applied when the refinement M li specifies non-
instantaneous time bounded behaviours that are represented in abstract model
as location li.

||

Context frame of

ch!

 M

 ch?
...

 ch?
C

 l ’F

... ...

...

Fragment that
refines edge ei

Context frame of
the refinement

ch! ch?

(a)

ei

ei

Mei

l’0

ch?

Fragment that
refines the functionality
and timing of location li

 ch?

i

ch!

... ...

the refinement

ch!

 ch?

... ...
l’0 l ’F

l

M li

M li

||

(b)

Fig. 3. (a) A fragment of the primary model M and refinement Mei of edge ei. (b) A
fragment of the abstract model M with location li and its refinement M li .

5.2 Event-B and UPTA Refinement of Safety Controller

Let us now exemplify the refinement theory proposed above by performing a
refinement on the abstract safety controller specification. The Event-B refine-
ment presented in this subsection introduces the required redundancy for the
system. The excerpt of the Event-B refined model MB

1 Safe1 is presented in
Fig. 4a. Each (redundant) variable becomes a function from the set of CPUs
(including two instances, cpu1 and cpu2) to some boolean value. The new set is
specified in a refined context. The refined variables are named ES_Redundant,
STO_Redundant and SS1_Redundant.

Refinement-Based Development of Timed Systems 81

MACHINE Safe1
REFINES Safe
SEES SafeCTX, RedundancyCTX
VARIABLES ES_Redundant, STO_Redundant, SS1_Redundant
INVARIANT
inv1 STO_Redundant CPUS BOOL
inv4 STO FALSE (STO_Redundant(cpu1) FALSE

STO_Redundant(cpu2) FALSE)
inv5 STO TRUE (STO_Redundant(cpu1) TRUE

STO_Redundant(cpu2) TRUE)
VARIANT
EVENTS
Init
ES_Pushed
ANY ES1, ES2WHERE
ES1, ES2 0 1 ES_Redundant(cpu1) 0
ES_Redundant(cpu2) 0 (ES1 0 ES2 0)

THEN ES_Redundant {cpu1 ES1, cpu2 ES2} END
ES_Released
ES_React1
ANY cpuWHERE
cpu CPUs ss1_status active ES_Redundant(cpu) 1
SS1_Redundant(cpu) FALSE STO_Redundant(cpu) FALSE
THEN SS1_Redundant(cpu) TRUE END

ES_React2
ES_ReleasedReact1
ANY cpuWHERE
cpu CPUs ES_Redundant(cpu1) 0
ES_Redundant(cpu2) 0 SS1_Redundant(cpu) TRUE

THEN SS1_Redundant(cpu) FALSE END
ES_ReleasedReact2
ES_DelayReact

END

ES_Redundant[cpu] &&
SS1_Redundant[cpu]==0

&& STO_Redundant(cpu)==0
SS1_Redundant[cpu]=1

(a)

CPU.ES_Redundant[CPU]==0
&& STO_Redundant[cpu]
STO_Redundant[cpu]=0

CPU.ES_Redundant[CPU]==0
&& SS1_Redundant[cpu]

SS1_Redundant[cpu]=0

(ES_React1)

(b)

ES_Pushed

ES_Redundant[0]==0 &&
ES_Redundant[1]==0
&& (ES1 or ES2)
j : BOOL1
ES1=1, ES2=1,i=j

ES_Redundant[0]==1 or
ES_Redundant[1]==1
ES_Redundant[0]=0,
ES_Redundant[1]=0,
ES1=0, ES2=0

ES_Redundant[0]=ES1,
ES_Redundant[1]=ES2

ES1=(i==0? 0:ES1)

ES2=(i==0? 0:ES2)

ES_Released

chE!
chE?

(c)

SS1_Redundant[cpu]
SS1_Redundant[cpu]=0
STO_Redundant[cpu]=1

ES_Redundant[cpu] &&
STO_Redundant[cpu]==0
SS1_Redundant[cpu]==0
STO_Redundant[cpu]=1

ch4?

ch3?

ch2?

ch1?
ch1?

ch1r?
L0_1

L1_1

L2_1

(ES_ReleasedReact2)

(ES_ReleasedReact1)

(ES_React2)
(SS1_DelayReact)

Fig. 4. (a) Event-B refinement MB
1 Safe1, (b) UPTA refinement MUPTA

1 Safe1 and (c)
UPTA model MUPTA

0 Environment

Some gluing invariants are required to relate the abstract state with the more
concrete state. Considering the deactivation and activation of STO, we need two
different invariants. If STO is deactivated, then none of the redundant outputs
are activated (inv4 in Fig. 4a). If STO is activated, then at least one of the
redundant outputs is activated (inv5 in Fig. 4a). The reason for such invariants
is that it is enough for only one of the redundant inputs and outputs to work in
order for the system to be safe. Similar pairwise gluing invariants exist for the
other two redundant variables.

Let us focus on some of the refined events. Event ES_Pushed is refined as
follows in order to model the redundant pushing of ES. Either ES can ac-
tivate its corresponding safety function. The refined events ES_React1 and
ES_React2 model the reaction of each CPU to its corresponding ES. The re-
finement of the previously non-deterministic events ES_ReleasedReact1 and
ES_ReleasedReact2 takes into account the redundant CPUs. In order to al-
low reseting of an activated redundant safety function it is required that both
redundant ES are released (handled by event ES_Released). This can handle
failure of an ES which would cause the deactivation of its corresponding safety
function.

Since only new variables and their updates are introduced by Event-B refine-
ment R�evt : MB

0 →MB
1 the mapping TB,UPTA# : MB

1 �→MUPTA#
1 copies the

82 J. Berthing et al.

control structure of model MUPTA#
0 by introducing two structurally identical

parallel instances MUPTA(0)
1 and MUPTA(1)

1 to model the redundancy. Note that
both instances need their own context frame. Technically, copying the control
structure of MUPTA

0 in MUPTA
1 can be considered as an aggregate model result-

ing from refinement steps of all edges with simple variable renaming. Since the
timing of MUPTA

1 does not differ from that of MUPTA
0 the edge Idle time pass

and location L2 of type committed added to MUPTA#
0 when specifying timing,

do not need duplication. The edge refinement preserves the timing behaviour of
MUPTA

0 by construction. Regardless the aggregation of several parallel refining
models MUPTA(i)

1 into one in Fig. 4b, the synchronization defined by R�eneeds
to be preserved between the edges of MUPTA

0 and their refinements in MUPTA
1 .

The correctness of R(�e) : MUPTA
0 → MUPTA

1 follows trivially from the
proof obligations of the definition of edge refinement given in Section 5.1. Both
the consistency of abstract timing specification of MUPTA

0 and the correctness
of timing refinement are verified by means of the Uppaal model checker. The
proof obligations of this refinement are expressed in TCTL (query language of
Uppaal). For instance, the reaction time requirement in MUPTA

0 is expressed as
bounded (with time bound t) liveness property ϕ→≤t ψ. The query:

– (ES && cl_ES ≥ 3) → ((STO or SS1) && gclock ≤ 10)

is satisfied for MUPTA
1 if and only if after starting pushing ES longer than 3

time units the state where STO or SS1 is active is reached always within 10
time units. After timing refinement (in our example applying edge refinement as
described above) one needs to model check the properties P2 and P4. For P2 it
suffices from checking implication between guards of refined and abstract model
edges. Checking P4 reduces to checking the queries of form A♦post(r) where
post(r) denotes the post location of edge r in refined model MUPTA

1 . Properties
P1 and P3 are subject to simple syntactic checks.

6 Conclusion and Future Work

We propose a correct-by-construction design workflow where model-based de-
sign transformations combine alternating data and timing constraints refinement
steps. The goal is to benefit from mutually complementing formalisms Event-
B and Uppaal automata and related verification techniques. For bridging the
data and timing refinement steps the Event-B to UPTA map and its timing
refinement transformations have been defined. That allows to verify the data
refinement correctness also from its timing feasibility point of view. The ap-
proach is demonstrated on a fragment of an industrial case study of a safety
critical system. The approach does not guarantee the fully incremental design
flow, backtracking is needed when there is no feasible timing refinement possible
for a given data refinement result. The design backtracking and error diagnos-
tics are not addressed in the current paper. Also the automation of the proposed
design transformations remain for future work.

Refinement-Based Development of Timed Systems 83

Acknowledgement. This work has been partially funded by RECOMP project
within the ARTEMIS joint undertaking (Grant agreement no. 100202). We would
also like to thank the reviewers for their useful comments.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

3. Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal Constraints in Timed Au-
tomata: Forward Analysis of Timed Systems. In: Pettersson, P., Yi, W. (eds.)
FORMATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005)

4. Cansell, D., Méry, D., Rehm, J.: Time Constraint Patterns for Event B Devel-
opment. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp.
140–154. Springer, Heidelberg (2006)

5. Chaudhari, D.L., Damani, O.P.: Generating hierarchical state based representation
from Event-B models. In: Proceedings of the B 2011 Workshop. ENTCS, vol. 280
(2011)

6. Chimisliu, V., Wotawa, F.: Abstracting timing information in UML state charts
via temporal ordering and LOTOS. In: AST 2011, pp. 8–14. ACM (2011)

7. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O Au-
tomata: A complete specification theory for real-time systems. In: HSCC 2010.
ACM (2011)

8. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic Abstraction Refinement
for Timed Automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007)

9. International Electrotechnical Commission (IEC). IEC 61508-6: Functional safety
of electrical/electronic/programmable electronic safety-related systems, 2nd edn.
(2010)

10. Iliasov, A., Laibinis, L., Troubitsyna, E., Romanovsky, A., Latvala, T.: Augmenting
Event-B modelling with real-time verification. Technical Report 1006, TUCS (2011)

11. Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul,
W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg
(2005)

12. Lynch, N., Vaandrager, F.: Forward and backward simulations - Part II: Timing-
Based systems. Information and Computation 128 (1995)

13. Sarshogh, M.R., Butler, M.: Specification and refinement of discrete timing prop-
erties in Event-B. Technical report, Electronic and Computer Science, University
of Southampton (2011)

Analysing and Closing Simulation Coverage

by Automatic Generation and Verification
of Formal Properties from Coverage Reports

Tim Blackmore1, David Halliwell1, Philip Barker1,
Kerstin Eder2, and Naresh Ramaram2

1 Infineon Technologies, Infineon House
Great Western Court, Hunts Ground Road, Bristol BS34 8HP, UK

firstname.surname@infineon.com
2 Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK

Kerstin.Eder@bristol.ac.uk

Abstract. A significant amount of time during simulation-based hard-
ware design verification is spent analysing coverage reports in order to
identify which uncovered cases are coverable and which are not, ie indi-
cating areas of dead code. This dead-code analysis is typically left until
the code is stable because changes to the code can mean having to start
the analysis again. Some formal tools offer a push-button functionality
allowing this process to be automated to some extent. This paper extends
this capability of formal tools. A method is presented that automatically
extracts candidates for dead code analysis from coverage reports, turns
these into formal assertions and uses a formal property checker to deter-
mine whether or not the code can be reached. The core principle of the
method is based on temporal induction. The method is fully automatic
and generic in that it can be implemented with any state-of-the-art for-
mal property checker; it also does not need code stability. The major
benefits of employing this method in practice are a saving of engineering
effort and earlier coverage closure which can avoid late discovery of bugs
and schedule slips.

1 Introduction

We present a methodology that uses a formal property checker to analyse cover-
age holes left by module-level simulation in order to achieve early coverage clo-
sure. Coverage [1] is used to assess completeness of simulation-based verification.
Coverage models are either based on the code being verified, ie code coverage, or
on a more abstract view of the functionality of the design, ie functional coverage.
The most common code coverage models are statement and branch coverage. It
is normally regarded as a minimum requirement to achieve 100% statement and
branch coverage as well as 100% functional coverage to complete verification.
Having other coverage targets, such as 100% focused-expression coverage, can
ensure a more thorough simulation-based verification, which may be desirable
eg for safety critical designs.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 84–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analysing and Closing Simulation Coverage 85

----- ----- -----
#Line #Hits #Code
----- ----- -----
743 if (A && B)
744 512 X = X + 2 ;
745 else if (C)
746 **0** X = X + 3 ;
747 else
748 417 X = X + 4 ;

Code with coverage hole. Holes are
usually identified by line number.

----- ----- -----
#Line #Hits #Code
----- ----- -----
743 if (Mode == 2)
744 begin
745 if (A && B)
746 512 X = X + 2 ;
747 else if (C)
748 **0** X = X + 3 ;
749 else
750 417 X = X + 4 ;
751 end

After a bug fix, line numbers have changed.
The hole needs to be re-analysed.

Fig. 1. Code Stability Example

Coverage targets need to be carefully defined and justified since it is rarely
possible to exercise all statements, take all branches or cover all expression cases.
This is for various reasons, some are given in Section 2.1. For example, it may
only be possible to take 95% of the branches in the code for the configuration
being verified, perhaps leaving several hundred branches uncovered. These sev-
eral hundred branches have to be analysed to decide whether they can in fact
be covered, if so then how, and if not, justification must be given as to why not,
potentially identifying a coding error.

There are two major challenges in practice. Firstly, analysis of the missing
coverage can consume a large amount of valuable engineering time. Secondly,
recording of code that cannot be covered is typically based on line number or
pattern recognition, both of which are susceptible to changes to the code. Indeed,
changes to the code may mean that code that previously could not be covered can
now be covered. To avoid this, coverage closure is typically left to near the end of
the project, after sufficient code stability is achieved. This makes schedules more
difficult to predict and means that bugs in the design and testbench may only be
found late, both increasing the likelihood of schedule slips. An example of this
code stability issue is shown in Figure 1 and is addressed by our methodology
as detailed in Section 3.2.

Our methodology uses a formal property checker to overcome these two chal-
lenges by automating the analysis of coverage holes. To illustrate the fundamen-
tal idea, let us consider an uncovered branch. We observe that, to enter a branch
during simulation a certain condition must be satisfied. Now, if it is possible
to formally prove that this condition can never be satisfied, then clearly this
branch is not coverable and can be discounted wrt branch coverage. If, however,
the proof fails, then a counter example is produced by the property checker.
This counter example provides an indication (rather than proof) of whether the
branch really can be covered and if so how to cover it.

A similar approach, termed Coverability Analysis, has been developed at IBM
to address statement coverage [2,3]. It was later extended to handle a form of
expression coverage [4]. This approach requires source code instrumentation be-
fore formal analysis can be performed. The instrumentation is very similar in

86 T. Blackmore et al.

style to that implemented in coverage tools to enable coverage collection during
simulation. Our approach does not require any such source code modifications,
it purely works with the coverage report generated by a standard coverage col-
lection tool after simulation. Nevertheless, we review this approach in detail in
Section 2 and compare it to our method.

Some formal tools have dead code checks built in, eg [5,6], and we compare
our methodology with such built-in checks indicating why our method is both
more efficient and effective, as well as being more generally applicable. Finally we
report the results of using this methodology on the development of the Infineon
TriCore 1.6 microcontroller.

Although the methodology includes formal verification, the development of the
properties does not require formal verification expertise beyond that described
in Section 3, The Methodology. In addition, interaction with the formal tool is
encapsulated within the process thus automating away any direct interaction
with this tool for a user.

This paper is organised as follows. Section 2 briefly reviews the background
including coverage models, formal property checking and related work. Section 3
presents our new methodology detailing the core principle of temporal induction
and how it is applied in the case of branch coverage. Section 4 gives brief de-
tails of the work flow and implementation. Section 5 contains the results of our
experiments which were conducted on the TriCore 1.6 microprocessor. Section 6
presents a detailed discussion including a comparison to off-the-shelf tools. Sec-
tion 7 concludes this paper with an outlook on next steps.

2 Background

2.1 Coverage

To assess the completeness of simulation-based verification engineers measure
coverage. Models used for this purpose can be classified into code and functional
coverage models [1]. Code coverage models are based on the code structure of
the design to be verified, while functional coverage models are based on a more
abstract view of the functionality of the design such as given in a functional de-
sign specification. Code coverage models are often further refined into statement,
branch, expression and toggle coverage. Statement coverage reports which state-
ments in the code have and have not been exercised during simulation. Branch
coverage, sometimes referred to as decision coverage, is more detailed in that it
reports on the control flow transfer in the code, ie on branches that have been
taken or not during simulation. Expression coverage, sometimes also referred to
as multiple condition coverage, is an extension of branch coverage which reports
the number of times each permutation of the elements in a branch condition has
made the result true or false. Finally, toggle coverage reports on which signals
in the design have been toggled.

Note that 100% branch coverage implies 100% statement coverage, since if all
branches have been taken then all statements have been exercised. The converse
is, however, not true, eg an if statement may not have an explicit else branch

Analysing and Closing Simulation Coverage 87

----- ----- -----
#Line #Hits #Code
----- ----- -----
343 if (ready && sel mast)
344 begin
345 if (burst <= 3)
346 begin
347 case(Mast num)
348 1003 Mast’h1 : master = 1;
349 ** 0 ** Mast’h2 : master = 3;
350 5000 default : master = 0;
351 endcase
352 end
353 else if (burst > 4)
354 begin
355 case(Mast num)
356 507 Mast’h0 : master = 2;
357 432 Mast’h3 : master = 4;
358 872 default : master = 0;
359 endcase
360 end
361 end

Fig. 2. Coverage report fragment

coded, and hence no statements are associated with the else branch. Hence it
is possible to get 100% statement coverage without ever seeing the if condition
being false, but 100% branch coverage requires that this condition be hit true
and false.

The most common code coverage models used in practice are statement and
branch coverage. It is normally regarded as a minimum requirement to achieve
100% statement and branch coverage to complete verification. Because full ex-
pression coverage requires too many simulation runs to be of practical value, a
scaled down version of expression coverage, called Focused Expression Cover-
age (FEC), is typically used in practice. FEC is a variant of Modified Condi-
tion/Decision Coverage [7]. Broadly speaking, it requires that each single element
in a branch condition independently affects the result.

As mentioned earlier, coverage targets need to be carefully defined and justi-
fied. In practice it is rarely possible to exercise all statements, take all branches
or cover all expression cases. The three main reasons for not being able to obtain
full coverage we encountered in practice as as follows.

One is the coding style. In [4] examples are given where coding style, such as
exhaustive enumeration and redundancy in expressions, can lead to uncoverable
expressions. For branches, it may be quite natural to code if .. elseif ..

elseif .. thereby enumerating all the possible cases exhaustively. However,
this coding style leaves the implicit else unreachable. In fact, this type of coding
style has long been known to unnecessarily increase code complexity and impede
effective testing in the software domain [8]. Nevertheless, in practice this is often
tolerated as a compromise to facilitate readability of code. In fact, Figure 2
illustrates this example. The implicit else branch to line 353 has a condition,
shown in Figure 3 with label branch path n353, that is not reachable.

88 T. Blackmore et al.

Label Control Flow Conditions

branch path 343 ready && sel mast

branch path 345 ready && sel mast && burst <= 3

branch path 348 ready && sel mast && burst <= 3 && Mast num == 1

branch path 349 ready && sel mast && burst <= 3 && Mast num == 2

branch path 350 ready && sel mast && burst <= 3 && Mast num != 1 && Mast num != 2

branch path 353 ready && sel mast && !(burst <= 3) && burst > 4

branch path 356 ready && sel mast && !(burst <= 3) && burst > 4 && Mast num == 0

branch path 357 ready && sel mast && !(burst <= 3) && burst > 4 && Mast num == 3

branch path 358 ready && sel mast && !(burst <= 3) && burst > 4 &&

Mast num != 0 && Mast num != 3

branch path n353 ready && sel mast && !(burst <= 3) && !(burst > 4)

branch path n343 !(ready && sel mast)

Fig. 3. Control flow conditions extracted from the code fragment depicted in Figure 2

The second factor is configurability of designs. Designs have become so con-
figurable that it may only be desirable to completely verify them for the config-
uration being used in the current system. Failure to recognize this may result
in engineers spending a lot of effort verifying for configurations that are never
used, eg various local memory sizes for microcontrollers.

The third reason for unreachable coverage encountered in our case study was
reverification of legacy designs using new coverage models. Because designers
tend to have less thorough knowledge of these designs they may be unwilling to
remove code that appears to not be coverable, ’just in case’.

2.2 Model Checking

Formal property checkers are tools that are used to formally verify whether or
not a design satisfies user-specified properties expressed as formulae in a tem-
poral logic language such as Linear Time Temporal Logic, Computational Tree
Logic or the Accellera Property Specification Language (PSL) [9]. They typically
implement model checking methods which, given a design description and a tem-
poral logic formula, fully automatically and exhaustively determine whether the
formula holds for the state machine derived from the design description. If the
proof fails, a counter example is provided. The counter example presents an
execution trace that illustrates under what conditions the property is violated.
More detailed information on model checking can be found in [10].

2.3 Related Work

The coverability of a coverage model refers to the degree to which the model can
be covered during simulation [2]. Intuitively, a coverage goal, such as a statement
or a branch depending on the coverage model, is coverable if and only if a test
that covers this coverage goal exists. Coverability analysis is the process used to
determine for all coverage goals in a given coverage model whether or not they
are coverable. In [2] a first method is presented that implements coverability

Analysing and Closing Simulation Coverage 89

analysis using symbolic model checking. The focus of this method is firstly on
checking whether a variable can take all its defined values. This is determined by
introducing, for each variable var, a set of auxiliary properties !EF (var = Vi)

1,
one for each value Vi. The conjunction of these properties is then fed to a formal
property checker. Secondly, the method is applied to statement coverage, ie
checking whether all statements in a program are coverable. This is achieved by
instrumenting the program separately for each statement Si in two steps. First,
an auxiliary variable Vi is created and initialized to 0. Then, the statement
Si is replaced with the assignment Vi = 1. The formula !EF (Vi = 1) is then
presented to a model checker. If the proof succeeds then indeed the assignment,
and hence also the original statement Si, is not reachable. Because this type
of code instrumentation significantly changes the program behaviour only one
statement can be checked for coverability at a time.

Because the code is modified for each statement it is necessary to recompile
the code, as well as run a property, for each statement. This is likely to impact
run times considerably. Our methodology requires only one compilation step
to run properties for all coverage goals. Indeed, the properties produced by our
methodology are so simple, they run in seconds, while compilation takes minutes.
It is also difficult to see how the methodology developed in [2] can be generalised
from statement coverage to branch coverage, at least not without considerable
parsing of the code. The methodology presented in this paper works on branch
coverage, and indeed can be generalised to any of the types of code coverage
discussed in Section 2.1 above in a straightforward manner.

Overall, the coverability analysis method presented in [2] is computationally
expensive and in [3] optimizations are presented to increase performance. A ma-
jor modification in [3] is that the statement Si is now replaced with the block
{Vi = 1;Si}, effectively retaining the original program behaviour. Performance
improvements have been achieved by using a variety of dynamic and static tech-
niques including inflation, static analysis and the creation of drastically reduced
programs that retain the same coverability properties as the original, but are
faster to compile and model check. These techniques are then combined into one
algorithm for efficient coverability analysis. It was also noted that by running
random simulations before starting the coverability analysis many cases, namely
the ones covered during simulation, could be removed from the analysis, thereby
drastically reducing the number of cases to be analysed.

In [4] the above method is extended to focused expression coverability analysis.
This is achieved by adding auxiliary variables initialized to false to the code
and also assignment statements immediately before each expression case. One
variable and one assignment is needed for each FEC goal. The model checker
is then called to determine whether the modified design satisfies a property
that requires each of the auxiliary variables to become true, which corresponds
to reaching each FEC goal. The experimental evaluation on two commercial
designs by Motorola show the effectiveness of the extended method. It detected

1 Read as “It is not the case that there exists a path on which eventually variable var
has value Vi.”

90 T. Blackmore et al.

an impressive number of intrinsically uncoverable cases many resulted from the
coding style employed at Motorola.

The methodology presented in [4] overcomes the need to recompile the design
for each statement to check each property. In doing so, it does mean that greater
care must be taken when instrumenting the code to ensure that the intention
of the original code is not changed. Eg for a branch in Verilog with a single
associated statement it is not necessary to bracket the statement in a begin-
end block. If other statements are added during code instrumentation then the
begin-end block markers must be added.

Both the statement coverability as well as the expression coverability anal-
ysis method reviewed above require source code instrumentation before formal
analysis can be performed. This we view as a drawback of these methods. Our
approach does not require any such source code modifications. Properties to be
verified formally are generated from the coverage report obtained from a stan-
dard coverage collection tool after simulation. In addition, we note that while
statement and expression coverage have been addressed, branch coverability has
not been. The particular difficulty with branch coverability is the detection and
correct handling of implicit branches, such as implicit else branches.

3 Methodology

3.1 The Principle of Temporal Induction

The core principle of our methodology is based on the notion of temporal induc-
tion, a form of inductive proof carried out over the time steps in a design. Like
traditional inductive proof, temporal induction requires two parts: the base case
and the inductive step. The behaviour of a design will vary with time as the
state of the design changes. Temporal induction states that to show B is true
for any state of the design it is sufficient to prove the following two properties:

(1) B holds at reset and (Base Case)
(2) B ⇒ next(B) holds (Inductive Step)

A formal definition of the next() operator can be found in eg the PSL Language
Reference Manual [9]. We note also that it may be that B only holds after an
initialisation sequence rather than at reset, and this can be dealt with similarly.
Intuitively, temporal induction works as follows. The first property, Equation (1),
shows B holds at reset; it is called Base Case or Reset Property. The second
property, Equation (2), called Inductive Step or Step Property, shows that B
holds at cycle reset+1, another application of the second property shows that B
holds at cycle reset+2, and so on. Figure 4 gives a graphical illustration of the
basic principles of temporal induction.

In particular, if there is a branch in the code such as

if X then ...

temporal induction can be used to show that the branch is never entered by
substituting B in Equations (1) and (2) above with not(X), ie showing that

Analysing and Closing Simulation Coverage 91

clk

r+1r r+2 r+3 r+4

True True TrueTrue

reset step step step
(t=r+1) (t=r+2)(t=r)

B

...

...

...

reset

Fig. 4. The basic principle of Temporal Induction

1. not(X) at reset and
2. not(X)⇒ next(not(X))

both hold. These properties are simple in that they can be easily handled by
any formal property checker in seconds and they can be derived from a coverage
report via scripting. The properties are conservative in that if they pass then
the branch (and any statements within the branch) definitely cannot be covered,
but if they fail it may or may not be possible to cover the branch.

The properties can be strengthened while still remaining simple by analysing
code structure. Thus for priority coding of branches eg an else if,

if X then A

else if Y ...

it can be proven that the else if branch is never entered by substituting B in
Equations (1) and (2) above with not(not(X) and Y), ie showing that

1. not(not(X) and Y) at reset and
2. not(not(X) and Y)⇒ next(not(not(X) and Y))

both hold. Similarly for nested branches:

if X then

if Y then ...

it can be proven that the nested branch is never entered by substituting B in
Equations (1) and (2) above with not(X and Y), ie showing that

1. not(X and Y) at reset and
2. not(X and Y)⇒ next(not(X and Y))

both hold. With some understanding of the Hardware Description Language
(HDL) used, these rules can be easily generalised to branches with any level of
priority coding or nesting to give the highest possible chance of proving a branch
(and its corresponding statements) cannot be covered.

92 T. Blackmore et al.

macro branch path 349
(ready && sel mast && burst <= 3 && Mast num == 2)

endmacro;

property branch not covered 349 base case =
!(branch path 349) @ reset;

endproperty;

property branch not covered 349 inductive step =
!(branch path 349) => next (!(branch path 349)) @ posedge(clk);

endproperty;

assert branch not covered 349 base case;
assert branch not covered 349 inductive step;

Fig. 5. Stepwise generation of the formal property

Essentially, temporal induction allows the proof that the design always be-
haves in a particular way by considering very small time windows. The time
windows considered above are of 1 and 2 cycles. These can be lengthened to
increase the likelihood of the properties passing, although this will increase run
times and in practice it is unlikely to have much effect, especially when extend-
ing the time windows above 3 or 4 cycles. The small time windows have two
definite advantages over a property that considers an infinite time window, such
as !EF (Vi = 1). Firstly the property can be run on a bounded model checker.
Secondly the property will typically run in seconds on any model checker. A dis-
advantage is that reachable state information independent of the property must
be considered separately.

3.2 Application of the Methodology

In this section we use branch coverage to illustrate how our methodology is
applied to achieve branch coverage closure. Note, however, that the application
of this methodology is not restricted to branch coverage; it can be applied to
many coverage models including the code coverage models discussed in Section 2.
We are now transferring these principles to close functional coverage.

The methodology, applied to close branch coverage, starts from analysing cov-
erage reports after simulation. Figure 2 gives an example fragment of a coverage
report consisting of three columns. The first column refers to the line number in
the HDL file. The second column indicates the number of times each statement
has been executed during simulation. The third column refers to the actual HDL
code. Note that for line number 349 there are zero hits, ie there is a coverage
hole at this line and coverage closure will focus on this line.

Coverage analysis is performed to extract control flow conditions from the
code. Figure 3 shows the control flow conditions extracted from the code frag-
ment depicted in Figure 2. Note that the expressions on the last two lines, the
ones labeled branch path n353 and branch path n343, are generated from the
implicit else branches that complement line 353 and line 343 respectively.

Analysing and Closing Simulation Coverage 93

Fig. 6. Counter example waveform

Once these conditions have been extracted, a set of properties is generated
for each uncovered branch. Figure 5 shows an example translation of the control
flow expression for line 349 in Figure 3 to a formal property. The property is
defined in three steps, namely macro generation, property definition based on the
macro and property assertion. The macro generation encapsulates the control
flow condition in formal syntax and assigns a name to the macro. The property
definition then refers to this macro and claims that the specified condition is
not reachable, hence the negation. The final step is asserting the property so
that it can be executed by the formal property checker.

If these properties pass then the branch can be filtered from the coverage
report as it is not reachable. By using a naming convention, eg one that contains
the line number of the code, this filtering can easily be scripted. Thus the full
process of reading the coverage report, generating and proving the properties,
and filtering code that cannot be covered becomes push button.

If a property fails then the property checker provides a counter example that
indicates how the property can be violated. Figure 6 presents a small fraction
of such a counter example. Observe that the signal Mast num in Figure 6 has
assumed a value of 1 at time ’t’. The formal tool inductively tries to prove that
it holds the same value in the next time interval ’t+1’. However, in this case
the property fails and the property checker provides this counter example in
form of a waveform. The waveform shows that the signal Mast num can take a
value of 2, which indicates that the code is reachable. Further analysis of this
counter example is now needed to determine how the code has been reached;
this is beyond the scope of this paper.

Similarly the code stability issue can be easily handled by applying the above
discussed principles to Figure 1 as shown in Figure 7. As the methodology de-
pends on coverage holes, this assures that irrespective of any amount of changes
to the code, if a particular code is found to be uncovered then it sure to be
picked up for formal consideration.

Rather than running separate properties for statement coverage, this can
be derived from the results of branch coverage. Thus any statement within a
branch that cannot be covered can in turn not be covered. Statements outside of
branches can usually be hit in a trivial way. If this is not the case (eg statements
within a particular instance of a function) then this can normally be dealt with
statically by scripts but without the need to use formal verification.

94 T. Blackmore et al.

branch path 746 reset;
branch path 746 step t;

macro branch 746
!(A && B) && C ;
endmacro;

property
branch path 746 step t =
! branch path 746
=> next (! branch path 746);
endproperty

branch path 748 reset;
branch path 748 step t;

macro branch 748
Mode == 2 && !(A && B) && C;
endmacro;

property
branch path 748 step t =
! branch path 748
=> next (! branch path 748);
endproperty

Fig. 7. Properties for Code Stability Example as depicted in Figure 1

3.3 Further Considerations

The methodology described above can be modified and enhanced in various ways.
In this section a few are described. Firstly, the methodology can be extended in
a straightforward way to deal with other coverage models, such as expression,
focused expression and toggle coverage. This can all be done within the context
of branching. Thus, eg for an expression

x <= A or B;

if the case A = 1 and B = 0 has not been simulated then the properties

1. not(A = 1 and B = 0) at reset and
2. not(A = 1 and B = 0)⇒ next(not(A = 1 and B = 0))

can be run in an attempt to see if this case cannot be covered. If the expression
is within a branch

if (Y) X <= A or B;

then the properties can be modified to

1. not(Y and A = 1 and B = 0) at reset and
2. not(Y and A = 1 and B = 0)⇒ next(not(Y and A = 1 and B = 0))

There is a subtlety here. The properties encapsulate more information and so are
intuitively more likely to pass. Indeed, this is always true of the reset property.
However, the step property has both a weaker RHS and a weaker LHS. Thus
it is feasible that the properties without consideration of the branching context
will pass and the properties with the extra branching information will fail. It can
thus be beneficial to run both sets of properties (and since they run very quickly
this is not a great overhead). In practice it happens extremely rarely that the
simpler properties pass and those that consider branching context fail.

Secondly, the properties can be made more likely to pass by the addition of
extra (valid) assumptions. For instance, some code will not be covered because
the testbench is not intended to cover it. This information can be encapsulated

Analysing and Closing Simulation Coverage 95

in the properties quite simply in the form of extra assumptions. For example, if
an input is intentionally never driven high by the testbench, or if inputs never
violate a bus protocol, then this can easily be added to the properties as extra
assumptions. Such assumptions can be derived from consideration of why an
individual property is failing, but once derived can be used on all properties
without considerably extending run times. Assumptions can also specify values
of internal signals, eg configuration registers. As well as reflecting specified be-
haviour or documented restrictions, these extra assumptions should be checked
as assertions during simulation to ensure that they correctly reflect testbench
behaviour and that they have been coded correctly.

Going one step further, for someone with formal expertise, unreachable state
information about the design can be proved and added as an assumption to all of
these properties. In this way, it is possible to formally prove that all uncoverable
code cannot be covered, although the effort for this may be considered too great
(unless required for eg safety accreditation), but this is not the primary purpose
of this methodology.

Thirdly, just the reset property can be run, but over a number of cycles ie

B holds n numbers of cycles from reset

for eg n = 5, n = 10, n = 20, etc. This may give some confidence that a certain
coverage is not reachable. More importantly it can direct the user to code that
is easy to cover and how to cover it. Thus coverage that fails 5 cycles from reset
is likely to be easier to cover than coverage that fails for the first time 20 cycles
from reset. The counter example will be easier to understand and will give a
good idea of how to reach the coverage. It may be that analysis of the counter
example shows that more assumptions are needed on the environment. As noted
above these assumptions can then be used on all properties.

4 Implementation

The work flow of the implementation of our methodology is depicted in Figure 8.
The process of property generation and the invocation of the formal property

checker are completely automated in a series of scripts, so is the filtering of
unreachable coverage. Manual post processing is required for the analysis of
failed properties where the tool generated a counter example.

5 Experiments and Results

This methodology was applied at Infineon Technologies during the TriCore 1.6
microcontroller verification; results are presented in Table 1.

Statement, branch and focused expression coverage (FEC) models were con-
sidered, all in the context of branch prioritisation and nesting. For statement
coverage, 331 of 41074 statements were not covered during simulation and of
these, 309 were proved not coverable. For branch coverage, 353 of 12341 branches

96 T. Blackmore et al.

Not
Reachable

Simulate Code and
generate coverage report

Testbench
Assertions

Extra tests or
modification
of Testbench

Extra
assumptions
on properties

Coding

Generate properties for
coverage holes

Formal proof of
unreachability -

Coverage hole can
be filtered or

uncovered code
can be removed

Passing Property

Failing property
with counter

example
Formally
check all

properties

Analysis of
counter
example

Reachable

Specification

All properties PASS

All Dead
code filtered

Fig. 8. Work Flow

Table 1. Experimental Results on TriCore 1.6 Design

Total Coverage Holes Filtered % Filtered
Coverage Model Coverage Goals after Simulation Coverage Holes Coverage Holes

Statement 41074 331 309 93.4

Branch 12341 353 334 94.6

FEC 27230 1581 1080 68.3

were not covered during simulation and of these, 334 were proved not coverable.
For FEC, 1581 of 27230 FEC goals were not covered during simulation and of
these, 1080 were proved not coverable. Using this methodology meant that state-
ment and branch coverage were achieved early in the HDL verification phase,
and the number of FEC goals left for consideration could be prioritised. This
directly led to the discovery of several bugs in the code, testbench and random
constraints. These bugs may not have been found otherwise.

The scripts developed for use on TriCore 1.6 have been re-used with very
little modification on a subsequent TriCore development, showing that after the
initial effort involved in script development it is possible to re-use the scripts in an
almost push-button manner. We note that in comparison to the results published
in [2,3] and [4] the number of coverage goals processed in our experiments is
considerably higher than the ones presented there.

Analysing and Closing Simulation Coverage 97

6 Discussion

In this section we discuss the advantages of using our methodology and compare
it to off-the shelf solutions. Firstly, because the entire process, once scripted,
is fully automatic, the methodology saves considerable engineering effort. In
addition, the scripts are re-usable between projects, with modifications only
needed in case the HDL, coverage tool or formal tool changes. Secondly, this
methodology can be applied early in the project since it does not rely on code
stability. Code changes are automatically reflected in the generated properties.
Engineering effort can be invested into adding assumptions to the properties as
described above in order to increase the number of holding properties. Hence,
code that is not covered but can be covered can be identified much earlier,
allowing tests or constraints to be written, regressions improved and bugs found
earlier avoiding significant late code changes. Thirdly, it has been formally shown
that any code excluded from coverage in this manner cannot be covered. This
contrasts with the standard approach, often based on informal arguments. In
the context of safety-critical applications, or when re-verifying legacy code with
new coverage models, this is particularly significant.

Formal tools with built-in dead code analysis provide the above advantages to
some extent. However, there are some major benefits to using this methodology
in terms of performance and effectiveness. The main reason that performance
will be significantly better is that properties are only generated for uncovered
code. This means that, even very early in a project, more than 90% of the code
will not be considered which makes the difference between an overnight run and
a run taking several weeks. Without any scripting a built-in solution will only be
able to take advantage of the coverage information if the formal tool is integrated
with the coverage tool and specifically designed to do this.

The fact that the user has control over the properties greatly improves the
effectiveness of the proposed methodology compared to built-in tools. Thus, eg
including priority coding or nesting of branches, is only possible because the user
is writing the scripts that extract the properties. This alone, in our experience,
already identified a greater amount of unreachable code than a built-in solution.
For the TriCore 1.6 microcontroller, this methodology found 93% of uncovered
statements were indeed not coverable, while a built-in tool only found 55%. Also,
the addition of extra assumptions to reflect testbench scope and input behaviour
may or may not be available when using a built-in solution.

We have found that built-in solutions target a limited number of coverage
models, often only statement and branch coverage. Our scripted solution can be
tailored for any model, including FEC and even functional coverage, provided
that the functional coverage is specified in a language understood by formal tools
such as System Verilog Assertions or PSL.

7 Conclusion

We have presented a truly integrated method that automatically extracts candi-
dates for dead code analysis from simulation coverage reports, turns these into

98 T. Blackmore et al.

formal properties and uses a formal property checker to determine whether or not
the code can be exercised during simulation. The core principle of the method
is based on temporal induction. In comparison to existing methods developed
for coverability analysis our method does not require source code modifications,
it purely works with the coverage report generated by a standard coverage col-
lection tool after simulation. We are currently working on an extension of our
method to functional coverage.

References

1. Piziali, A.: Functional Verification Coverage Measurement and Analysis. Springer
(2004)

2. Ratzaby, G., Ur, S., Wolfsthal, Y.: Coverability Analysis Using Symbolic Model
Checking. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144,
pp. 155–160. Springer, Heidelberg (2001)

3. Ratsaby, G., Sterin, B., Ur, S.: Improvements in Coverability Analysis. In: Eriks-
son, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 41–56. Springer,
Heidelberg (2002)

4. Cunningham, G., Jackson, P., Dines, J.: Expression Coverability Analysis: Improv-
ing Code Coverage Analysis with Model Checking. In: Proceedings of the Design
and Verification Conference (DVCon) (March 2004)

5. Andrews, M.: Tightening the Loop in Coverage Closure. Mentor Graphics, EDA
Tech Forum (December 2008)

6. OneSpin Solutions GmbH: User Documentation: OneSpin 360TM, Version 4.0 (Au-
gust 2006)

7. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A Practical Tutorial
on Modified Condition/Decision Coverage. NASA, Technical Memorandum TM-
2001-210876 (2001)

8. Watson, A.H., McCabe, T.J., Wallace, D.R.: Special Publication 500-235, Struc-
tured Testing: A Software Testing Methodology Using the Cyclomatic Complexity
Metric. In: U.S. Department of Commerce/National Institute of Standards and
Technology (1996)

9. Accellera: Property Specification Language Reference Manual (v1.1) (June 2004)
10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

Model Checking as Static Analysis: Revisited

Fuyuan Zhang, Flemming Nielson, and Hanne Riis Nielson

DTU Informatics, Technical University of Denmark, DK-2800 Lyngby, Denmark
{fuzh,nielson,riis}@imm.dtu.dk

Abstract. We show that the model checking problem of the μ-calculus
can be viewed as an instance of static analysis. We propose Succinct
Fixed Point Logic (SFP) within our logical approach to static analysis
as an extension of Alternation-free Least Fixed Logic (ALFP). We gen-
eralize the notion of stratification to weak stratification and establish
a Moore Family result for the new logic as well. The semantics of the
μ-calculus is encoded as the intended model of weakly stratified clause
sequences in SFP.

1 Introduction

Both model checking [1, 5] and static analysis [7] are prominent approaches
to detecting software errors. Model Checking is a successful formal method for
verifying properties specified in modal logics with respect to transition systems.
Static analysis is also a powerful method for validating program properties which
can predict safe approximations to program behaviors.

The link between model checking and static analysis has been studied for many
years. Recent research [13] takes the point of view that model checking problems
can be reduced to static analysis and presents a flow logic approach to static
analysis which encodes the model checking problem of Action Computation Tree
Logic [14] in Alternation-free Least Fixed Point Logic (ALFP [15]). It is shown
in [21] that model checking for the alternation-free μ-calculus can be encoded
in ALFP as well. However, as is suggested in the negative result there, ALFP
is not well-suited for the encoding of the full fragment of the μ-calculus, where
nesting of the least and greatest fixed points are allowed.

Continuing these lines of work, we propose Succinct Fixed Point Logic (SFP)
as an extension of ALFP within the framework of our logical approach to static
analysis and show that the model checking problem of the μ-calculus [1, 6] can
be encoded in SFP. We first propose the notion of weak stratification which
allows a convenient specification of nested fixed points in the μ-calculus. Then,
we give the definition of the intended model of SFP clause sequences. Unlike in
ALFP, we explicitly introduce a least fixed point operator in SFP to facilitate
our development. Last, we explain our approach to the analysis of the μ-calculus
and show that the intended model of an SFP clause sequence specifying a μ-
calculus formula exactly characterizes the set of states which satisfy this μ-
calculus formula over a given Kripke structure.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 99–112, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

100 F. Zhang, F. Nielson, and H. Riis Nielson

The structure of this paper is as follows. In Section 2, we briefly introduce
Kripke structure and the syntax and semantics of the μ-calculus. Section 3 ex-
plains our logical approach to static analysis, where we first review ALFP and
then propose SFP, which is a main contribution of this paper. We show through
an example that we cannot take the greatest lower bound of the set of models
of an SFP clause sequence as the intended model, since this does not match the
fixed point semantics of the μ-calculus. Section 4 is the other main contribution
of our work, where we encode the model checking problem of the μ-calculus in
SFP. We conclude our work in Section 5.

2 Modal μ-Calculus

2.1 Kripke Structures

The definition of Kripke Structure is modified slightly in comparison with [1] to
distinguish different transitions in a system. Here, a Kripke structure over a set
P of atomic propositions is a tuple M = (S, T, L), where S is a set of states,

T is a set of transition relations, and L : S → 2P labels each state with the
set of true atomic propositions. Each element a in T is a transition relation and
a ⊆ S × S. As in [1] we also assume that the Kripke structure is total, although
this is not necessary for our development.

2.2 Syntax and Semantics of the Modal μ-Calculus

Definition 1 (Syntax of the Modal μ-calculus). Let V ar be a set of vari-
ables, and P be a set of atomic propositions. The syntax of the modal μ-calculus
is defined as follows:

φ ::= p | Q | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | μQ.φ |νQ.φ

Here p ∈ P, Q ∈ V ar and a ∈ T . The μ (resp. ν) operator is the least (resp.
greatest) fixed point operator. For μQ.φ and νQ.φ, it is required that all occur-
rences of Q in φ are under an even number of negations within φ. In this case,
φ is said to be syntactically monotone in Q. A variable is free if it is not bound
by any fixed point operator in a formula. A formula is closed if there are no free
variables in it.

A formula φ is interpreted as the set of states, on a given Kripke structure,
that make it true and this set of states is denoted by [[φ]]e, where e : V ar → 2S

is an environment. We use e[Q �→ S] to denote the new environment updated
from e by binding the relational variable Q to the set of states S. The semantics
of μ-calculus formulas are defined as follows.

– [[p]]e = { s | p ∈ L(s) }
– [[Q]]e = e(Q)
– [[¬φ]]e = S \ [[φ]]e
– [[φ1 ∨ φ2]]e = [[φ1]]e ∪ [[φ2]]e

Model Checking as Static Analysis 101

– [[φ1 ∧ φ2]]e = [[φ1]]e ∩ [[φ2]]e
– [[〈a〉φ]]e = { s | ∃s′ : (s, s′) ∈ a and s′ ∈ [[φ]]e}
– [[[a]φ]]e = { s | ∀s′ : (s, s′) ∈ a implies s′ ∈ [[φ]]e}
– [[μQ.φ]]e is the least fixpoint of the function τ(S) = [[φ]]e[Q�→S]

– [[νQ.φ]]e is the greatest fixpoint of the function τ(S) = [[φ]]e[Q�→S]

The boolean operators have the usual meanings. If (s, s′) ∈ a, we call s′ an
a-derivative of s. Due to the restricted use of negations in φ, monotonicity is
guaranteed [1] for the function τ(S) = [[φ]]e[Q�→S]. The dualities ¬[a]φ ≡ 〈a〉¬φ,
¬〈a〉φ ≡ [a]¬φ, ¬μQ.φ ≡ νQ.¬φ[¬Q/Q], and ¬νQ.φ ≡ μQ.¬φ[¬Q/Q] are useful
when transforming a formula to an equivalent form according to the semantics
of the μ-calculus. The notation φ[¬Q/Q] refers to a formula resulting from φ by
substituting all occurrences of Q in φ with ¬Q. We give another syntax of the
μ-calculus using only the μ operator as follows, which will facilitate our static
analysis approach to the analysis of the μ-calculus.

Definition 2. Let V ar be a set of variables, P be a set of atomic propositions
that is closed under negation. The syntax of the μ-calculus is defined as follows:

φ ::= p | Q | ¬Q| φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | μQ.φ | ¬μQ.φ

where no variable is quantified twice and φ is syntactically monotone in Q in the
cases of μQ.φ and ¬μQ.φ.

3 Logical Approach to Static Analysis

In our logical approach to static analysis, we specify analysis constraints in clause
sequences. Assume that we are given a fixed countable set X of variables and a
finite alphabet R of predicate symbols. We define the syntax of clause sequences
cls, together with basic values v, pre-conditions pre and clauses cl as follows:

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= R(v1, ..., vn) | true | cl1 ∧ cl2 | pre⇒ R(v1, ..., vn) | ∀x : cl
cls ::= cl1, ..., cln

The pre-conditions, clauses and clause sequences are interpreted over a finite and
non-empty universe U . A constant c is an element of U , a variable x ∈ X ranges
over U , and the n-ary relation R ∈ R denotes a subset of Un. We use pre ⇒
R(v1, ..., vn) instead of pre⇒ cl which is used in [15] to simplify our development,
but this does not restrict the expressiveness (merely the succinctness) of our
approach.

Occurrences of R(v1, ..., vn) and ¬R(v1, ..., vn) in pre-conditions are called pos-
itive queries and negative queries, respectively. All other occurrences of relations

102 F. Zhang, F. Nielson, and H. Riis Nielson

are definitions and often occur to the right of an implication. To deal with nega-
tions conveniently, we are often interested in some subsets of clause sequences
defined by the above grammar.

Let Int :
∏

k Relk → P(Uk) be a mapping where Relk is a finite alphabet of
k-ary predicate symbols and P(Uk) is the powerset of Uk. We define the satis-
faction relations for pre-conditions, clauses and clause sequences (ρ, σ) sat pre,
(ρ, σ) sat cl and (ρ, σ) sat cls in Table 1, where ρ ∈ Int is an interpretation
of relations which maps each k-ary predicate symbol R to a subset of Uk and σ
is an interpretation of variables. We write ρ(R) for the set of k-tuples (a1, ...ak)
from U associated with the k-ary predicate R, we use σ(x) to denote the atom
of U bound to x and σ[x �→ a] stands for the mapping that is σ except that x is
mapped to a. We also treat a constant c as a variable by setting σ(c) = c.

Table 1. Semantics of Pre-conditions, Clauses and Clause Sequences

(ρ, σ) sat R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ ρ(R)
(ρ, σ) sat ¬R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ ρ(R)
(ρ, σ) sat pre1 ∧ pre2 iff (ρ, σ) sat pre1 and (ρ, σ) sat pre2
(ρ, σ) sat pre1 ∨ pre2 iff (ρ, σ) sat pre1 or (ρ, σ) sat pre2
(ρ, σ) sat ∀x : pre iff (ρ, σ[x �→ a]) sat pre for all a ∈ U
(ρ, σ) sat ∃x : pre iff (ρ, σ[x �→ a]) sat pre for some a ∈ U
(ρ, σ) sat R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ ρ(R)
(ρ, σ) sat true iff true
(ρ, σ) sat cl1 ∧ cl2 iff (ρ, σ) sat cl1 and (ρ, σ) sat cl2
(ρ, σ) sat pre ⇒ R(v1, ..., vn) iff (ρ, σ) sat R(v1, ..., vn) whenever (ρ, σ) sat pre
(ρ, σ) sat ∀x : cl iff (ρ, σ[x �→ a]) sat cl for all a ∈ U
(ρ, σ) sat cl1, ..., cln iff (ρ, σ) sat cli for all i where 1 ≤ i ≤ n

A clause sequence with no free variables is called closed, and in closed clause
sequences the interpretation σ is of no importance. For a fixed interpretation σ0,
when cls is closed, we have that (ρ, σ) sat cls agrees with (ρ, σ0) sat cls. We
call an interpretation ρ a solution, or a model, of cls whenever (ρ, σ0) sat cls
holds.

Central to our approach to static analysis is the establishment of an intended
model of cls. We often consider the least model of cls as a candidate, since that
is the most precise analysis result. We briefly review ALFP in Section 3.1. ALFP
restricts itself to the stratified fragment of clause sequences. The intended model
of an ALFP formula is defined by the least model characterized by Moore Family
properties. We propose Succinct Fixed Point Logic in Section 3.2. SFP restricts
itself to the weakly stratified fragment of clause sequences. The Moore Family
result of SPF is established in a slightly different way and the model of an SFP
formula is defined as the least model characterized by Moore Family properties
as well.

Model Checking as Static Analysis 103

3.1 Alternation-Free Least Fixed Point Logic

Alternation-free Least Fixed Point Logic is more expressive than Datalog [19, 20]
and has been used in a number of papers for specifying static analysis. It has
proved to be very useful for obtaining efficient implementations of static analyses
and there are a number of solvers available [17]. A clause sequence cls is called an
ALFP formula iff it is stratified. The notion of stratification is given as follows.

Definition 3. A clause sequence cls = cl1, ..., cln is stratified if there is a rank-
ing function rank : R → {0, ..., n} such that the following holds for 0 ≤ i ≤ n:

– if cli contains a definition of R then rank(R) = i;
– if cli contains a positive query of R then rank(R) ≤ i; and
– if cli contains a negative query of R then rank(R) < i.

Example 1. The following clause sequence is not in ALFP since it is ruled out
by the notion of stratification:

cls = (∀x : R1(x)⇒ R2(x)), (∀x : ¬R2(x)⇒ R1(x))

This is because it is not possible that we have both rank(R1) ≤ rank(R2) and
rank(R2) < rank(R1).

According to the choice of ranks we have made, we define a lexicographic order-
ing, �, for the interpretations of relations, ρ, as follows: ρ1 � ρ2 if there exists
a rank i ∈ {0, ..., r} such that (1) ρ1(R) = ρ2(R) whenever rank(R) < i, (2)
ρ1(R) ⊆ ρ2(R) whenever rank(R) = i, and (3) either i = r or ρ1(R) ⊂ ρ2(R)
for some R with rank(R) = i. We define ρ1 ⊆ ρ2 to mean ρ1(R) ⊆ ρ2(R) for all
R ∈ R.

The set of interpretations of relations constitutes a complete lattice with
respect to �. We know from [15] that the set of solutions to an ALFP for-
mula constitutes a Moore Family. Recall that a Moore Family [7] is a subset
Y of a complete lattice L = (L,�) that is closed under greatest lower bounds:
∀Y ′ ⊆ Y :

�
Y ′ ∈ Y . The Moore Family result of ALFP is given as follows:

Proposition 1. The set {ρ|(ρ, σ0) sat cls} is a Moore Family, i.e. is closed
under greatest lower bounds, whenever cls is closed and stratified; the greatest
lower bound � {ρ|(ρ, σ0) sat cls} is the least model of cls.

More generally, given ρ0 the set {ρ|(ρ, σ0) sat cls∧ρ0 ⊆ ρ} is a Moore Family
and � {ρ|(ρ, σ0) sat cls ∧ ρ0 ⊆ ρ} is the least model.

The Moore Family result of ALFP formulas ensures the existence of a unique
least model. We take the least model as the unique intended model of our analysis
constraints specified by ALFP formulas.

ALFP suffices [21] to encode the alternation-free fragment of the μ-calculus,
where nesting of least and greatest fixed points are prohibited. We give an ex-
ample in the following.

104 F. Zhang, F. Nielson, and H. Riis Nielson

Example 2. Consider a Kripke structure, given by the diagram to the left, where
S = {s1, s2, s3}, the transition relation T = {a} is represented by edges labeled
with a between states, and L labels s1 with proposition p.

�(RQ) [[μQ.[a](p ∨Q)]]
{s1, s3} {s1, s3}

We evaluate the formula μQ.[a](p ∨ Q) over the above Kripke structure using
ALFP and the semantics of the μ-calculus respectively. The results are given in
the table to the right.

In our static analysis approach, we first encode the above Kripke structure in
�0 by defining �0(Pp) = {s1} and �0(Ta) = {(s2, s1), (s2, s2), (s1, s3), (s3, s1)}.
Here, the universe is U = S. The relation Pp specifies the set of states on which
the atomic proposition p holds, and the relation Ta specifies the transition rela-
tion of the given Kripke structure. Then we specify the formula μQ.[a](p ∨ Q)
with the clause sequence cls = ∀s : ∀s′ : ¬Ta(s, s

′) ∨ Pp(s
′) ∨ RQ(s

′) ⇒ RQ(s).
The relation RQ intends to characterize [[μQ.[a](p ∨ Q)]][]. The least solution ρ
to cls subject to �0 ⊆ ρ can be calculated by Succinct Solver [15].

3.2 Succinct Fixed Point Logic

The condition of stratification in ALFP requires that the definition of a relation
R in cls only depends on relations with ranks less or equal to R. In particular, the
requirement that a relation must be defined before they can be negatively queried
is essential. This makes it inconvenient for ALFP to specify nested fixed points
in the μ-calculus, where least and greatest fixed points are mutually dependent
on each other.

In this section, we propose Succinct Fixed Point Logic (SFP) to encode nested
fixed points in the μ-calculus. We first define the syntax of SFP, which include
basic values v, pre-conditions pre, clauses cl, clause sequences cls and formulas
f , as follows:

Definition 4 (Syntax of Succinct Fixed Point Logic)

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= R(v1, ..., vn) | true | cl1 ∧ cl2 | pre⇒ R(v1, ..., vn) | ∀x : cl
cls ::= cl1, ..., cln
f ::= LFP(cls)

where cls is weakly stratified.

Model Checking as Static Analysis 105

Here, we require that clause sequences are weakly stratified. The definition of
weak stratification will be given later. We introduce a least fixed point operator
LFP and f = LFP(cls) is defined as SFP formulas. This is mainly to facilitate
the definition of the intended model of weakly stratified clause sequences. Our
intention is that ρ is the intended model of cls iff ρ satisfies the formula LFP(cls).

To formalize the notion of weak stratification, we first give the definition of
Dependency Graph as follows.

Definition 5 (Dependency Graph). The dependency graph DGcls of cls =
cl1, ..., cln is a directed graph where each edge is labeled with a sign. The nodes
of DGcls are cl1,...,cln. We define a positive (resp. negative) edge from cli to clj
iff a relation defined in cli is positively (resp. negatively) queried in clj, where
1 ≤ i, j ≤ n.

We say that clj depends positively (resp. negatively) on cli iff there exists a path
in DGcls from cli to clj with even (resp. odd) number of negative edges.

Definition 6 (Weak Stratification). A clause sequence cls = cl1, ..., cln is
weakly stratified iff the following conditions hold, where 1 ≤ i, j ≤ n, i �= j and
R ∈ R:

– if R is defined in cli, then R is not defined in clj, and
– cli does not depend negatively on itself.
– if cli depends positively (resp. negatively) on clj, then cli does not depend

negatively (resp. positively) on clj.

The first condition in the above definition simply says that we use only one
clause to define each relation. The second condition imposes syntactic mono-
tonicity to the clause sequence. The last condition is actually used to facilitate
the establishment of a Moore Family result for SFP.

Example 3. The following clause sequence satisfies the condition of weak strati-
fication.

cls = (∀x : ¬R2(x)⇒ R1(x)), (∀x : ¬R1(x)⇒ R2(x))

Example 4. The following clause sequence is ruled out by the notion of weak
stratification. We can see that the clause (∀x : R2(x) ⇒ R1(x)) depends nega-
tively on itself.

cls = (∀x : R2(x)⇒ R1(x)), (∀x : ¬R1(x)⇒ R2(x))

Let’s consider the following example where we specify a μ-calculus formula of
nested fixed points with a weakly stratified clause sequence.

Example 5. Consider the μ-calculus formula φ = μQ1.(¬μQ2.(Q2 ∨ (¬Q1 ∧ p))),
which is semantically equivalent to μQ1.(νQ2.(Q2 ∧ (Q1 ∨ ¬p))) and therefore
consists of nested fixed points. The formula φ can be specified by the following
clause sequence cls.

cls = [∀s : ¬RQ2(s)⇒ RQ1(s)], [∀s : [RQ2(s) ∨ (¬RQ1 (s) ∧ Pp(s))]⇒ RQ2(s)]

106 F. Zhang, F. Nielson, and H. Riis Nielson

The clause sequence cls is weakly stratified. The relation Pp intends to specify the
set of states, in a given Kripke structure, on which the atomic proposition p holds.
The relation RQ1 (resp. RQ2) intends to characterize [[φ]][] (resp. [[μQ2.(Q2 ∨
(¬Q1 ∧ p))]][Q1 �→[[φ]][]]).

The next step is to define an intended model ρ of cls. In our setting, this amounts
to define the semantics of formulas f = LFP(cls). Our intention is to use ρ to
encode the fixed point semantics in the μ-calculus. Our first try is to define
it in a similar way as we do in ALFP. Let’s assume that all relations defined
in a clause cli have the same rank and that all predefined relations have rank
0. However, we show through the following example that we cannot define the
intended model ρ of cls as �{ρ|(ρ, σ0) sat cls ∧ ρ0 ⊆ ρ}, where ρ0 defines all
predefined relations, with respect to �, since it does not capture the fixed point
semantics.

Example 6. Consider the Kripke structure M = (S, T, L), given by the diagram
to the left, where S = {s1, s2}, T = {a}, a = {(s1, s2), (s2, s2)}, and L labels s2
with the proposition p. We encode the μ-calculus formula φ = μQ1.(¬μQ2.(Q2∨
(¬Q1 ∧ p))) in the same clause sequence cls = [∀s : ¬RQ2(s) ⇒ RQ1(s)], [∀s :
[RQ2(s) ∨ (¬RQ1 (s) ∧ Pp(s))]⇒ RQ2(s)] as we do in Example 5. We evaluate φ
over M using SFP and the semantics of the μ-calculus respectively.

ρ1 ρ2 ρ3
RQ2 {s1, s2} ∅ {s2}
RQ1 ∅ {s1, s2} {s1}
Pp {s2} {s2} {s2}

Assume we have an initial interpretation ρ0, where ρ0(Pp) = {s2} and ρ0(RQ1) =
ρ0(RQ2) = ∅. We now consider the set of interpretations I = {ρ|(ρ, σ0) sat cls∧
ρ0 ⊆ ρ} according to the semantics in Table 1. There are at least three solutions
ρ1, ρ2 and ρ3, given in the table to the right, in the set I.

We can take at most two essentially different ranking functions rank1 and
rank2, where rank1(Pp) = 0, rank1(RQ1) = 1 and rank1(RQ2) = 2, rank2(Pp) =
0, rank2(RQ1) = 2 and rank2(RQ2) = 1. Let e = [Q1 �→ [[φ]][], Q2 �→ [[μQ2.(Q2 ∨
(¬Q1 ∧ p))]][Q1 �→[[φ]][]]]. According to the semantics of the μ-calculus, we know
that [[Q1]]e = {s1} and [[Q2]]e = {s2}. We can see that ρ3 exactly characterizes
the semantics of the μ-calculus in our example. However, due to the existence of
ρ1 and ρ2, the solution ρ3 is not the least model in I for either rank1 or rank2.

The method of establishing an intended model of cls in the above example can be
summarized as follows. First, we calculate all the models that satisfy cls. Second,
we make a choice of ranks for all those relations defined in cls. Last, we choose
the least model as the intended model of cls, according to the lexicographic

Model Checking as Static Analysis 107

ordering with respect to the choice of ranks we have made. This method applies
well when we approximate an analysis where analysis information only flows from
the lowest rank to the highest rank. Therefore, ALFP successfully characterizes
the semantics of the alternation-free μ-calculus, where information flows from
inner fixed points to outer fixed points since nesting of fixed points operators of
different types are prohibited.

In the following, we define the semantics of formulas f . We assume that cls =
cl1, ..., cln and write ρ = �0, �1, ..., �n to mean that �0 is an interpretation for
some predefined relations and �i (1 ≤ i ≤ n) is an interpretation of relations
defined in cli. We use ρ[�′i/�i] to denote a new interpretation updated from ρ by
substituting �i with �′i. Let �i and �′i be two interpretations of relations defined
in cli. We define that �i ⊆ �′i iff for all relations R defined in cli, �i(R) ⊆ �′i(R)
holds. The set of interpretations defined in cli constitute a complete lattice with
respect to ⊆. The satisfaction relation (ρ, σ) sat LFP(cl1, ..., cln) is defined in
the following.

Definition 7 (Semantics of SFP formulas). Let ρ = �0, ..., �n be an inter-
pretation and cls = cl1, ..., cln a weakly stratified clause sequence. The satisfac-
tion relation (ρ, σ) sat LFP(cl1, ..., cln) is defined inductively as follows:

– (ρ, σ) sat LFP(cln) iff �n = �{�′n | (ρ[�′n/�n], σ) sat cln}
– (ρ, σ) sat LFP(cli, ..., cln) iff

1. (ρ, σ) sat LFP(cli+1, ..., cln), and

2. �i = �{�′i | ∃�′i+1, ..., �
′
n : (ρ[�′i/�i, ..., �

′
n/�n], σ) sat cli ∧

(ρ[�′i/�i, ..., �
′
n/�n], σ) sat LFP(cli+1, ..., cln)}

TheMoore Family properties for weakly stratified clause sequence cls = cl1, ..., cln
is established as follows.

Theorem 1. Let ρ = �0, ..., �n be an interpretation, cls = cl1, ..., cln a weakly
stratified clause sequence and 1 ≤ i ≤ n. Then, we have the followings:

– The set of interpretations {�′n | (ρ[�′n/�n], σ) sat cln} is a Moore Family

– The set of interpretations {�′i | ∃�′i+1, ..., �
′
n : (ρ[�′i/�i, ..., �

′
n/�n], σ) sat cli∧

(ρ[�′i/�i, ..., �
′
n/�n], σ) sat LFP(cli+1, ..., cln)} is a Moore Family.

We define the intended model of a weakly stratified clause sequence below.

Definition 8. Assume that cls = cl1, ..., cln is a weakly stratified clause se-
quence. The model ρ is an intended model of cls iff (ρ, σ) sat LFP(cl1, ..., cln).

The Moore Family properties of SFP leads to the following theorem which guar-
antees the existence and the uniqueness of the intended model of cls.

Theorem 2. Let cls = cl1, ..., cln be a weakly stratified clause sequence. The
model ρ such that (ρ, σ) sat LFP(cl1, ..., cln) exists and is unique.

108 F. Zhang, F. Nielson, and H. Riis Nielson

Example 7. Let’s reconsider the problem in Example 6 again and show how
to find the model ρ = �0, �1, �2 to the formula LFP(cls). Let’s write cls =
cl1, cl2 where cl1 = [∀s : ¬RQ2 (s) ⇒ RQ1(s)] and cl2 = [∀s : [RQ2(s) ∨
(¬RQ1(s)∧Pp(s))]⇒ RQ2(s)]. According to Definition 7, (ρ, σ) sat LFP(cl1, cl2)
iff (ρ, σ) sat LFP(cl2) and �1 = �{�′1 | ∃�′2 : (ρ[�′1/�1, �

′
2/�2], σ) sat cl1 ∧

(ρ[�′1/�1, �
′
2/�2], σ) sat LFP(cl2)}.

We first calculate the set of interpretations such that (ρ, σ) sat LFP(cl2). To
this end, we first list all the interpretations such that (ρ, σ) sat cl2 in Table 2.
In this case, relations Pp and RQ1 are predefined relations for the clause cl2.

Table 2. (ρ, σ) sat cl2

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12
RQ2 {s2}{s1, s2}{s2}{s1, s2} ∅ {s1 {s2} {s1, s2} ∅ {s1} {s2} {s1, s2}
RQ1 ∅ ∅ {s1} {s1} {s2} {s2} {s2} {s2} {s1, s2} {s1, s2} {s1, s2} {s1, s2}
Pp {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2}

The next step is to select those interpretations which satisfy LFP(cl2) from
Table 2. From all those interpretations which coincide on predefined relations,
we choose the one with the best analysis result for RQ2 . Let’s take ρ1 and ρ2 as an
example. The models ρ1 and ρ2 coincide on their interpretations for Pp and RQ1 .
However, ρ1(RQ2) = �{ρ1(RQ2), ρ2(RQ2)}. Therefore, (ρ1, σ) sat LFP(cl2).
The result of our selection are {ρ1, ρ3, ρ5, ρ9}. These are the interpretations which
satisfy LFP(cl2).

We now select those interpretations which satisfy cl1 from {ρ1, ρ3, ρ5, ρ9} and
see that only ρ3 and ρ9 do. The last step is to select from ρ3 and ρ9 the one
which satisfies LFP(cl1, cl2). Since ρ3(RQ1) = �{ρ3(RQ1), ρ9(RQ1)}, we know
that (ρ3, σ) sat LFP(cl1, cl2). Notice that ρ3 exactly characterized the fixed
point semantics here.

4 Model Checking as Static Analysis

Here, we use Definition 2 to give the syntax of the μ-calculus. Given a μ-calculus
formula φ, for each variable Q in φ, a relation RQ is defined. We specify our
analysis with a pair 〈clsφ, preφ〉, where clsφ is a weakly stratified clause sequence
and preφ is a pre-condition.

Assume that ρ = �0, ..., �n such that (ρ, σ) sat LFP(clsφ), where �0 is an
initial interpretation which encodes a given Kripke structure and defines relations
RQ1 , ..., RQn , where Q1, ..., Qn are all the free variables in φ. The intention of
our development is that s′ ∈ [[φ]]e[Q1 �→S1,...,Qn �→Sn] iff (ρ, σ[s �→ s′]) sat preφ,
and that when φ takes the form μQ.φ, we have that [[μQ.φ]]e[Q1 �→S1,...,Qn �→Sn]

equals ρ(RQ).
We encode a Kripke structure M = (S, T, L) into SFP by defining the corre-

sponding relations in �0 as follows. Assume that the universe is U = S,

Model Checking as Static Analysis 109

Table 3. μ-calculus in Succinct Fixed Point Logic

p �−→ 〈true, Pp(s)〉
Q �−→ 〈true, RQ(s)〉
¬Q �−→ 〈true, ¬RQ(s)〉
φ1 ∨ φ2 �−→ 〈(clsφ1 , clsφ2), preφ1 ∨ preφ2〉

whenever φ1 �−→ 〈clsφ1 , preφ1〉 and φ2 �−→ 〈clsφ2 , preφ2〉
φ1 ∧ φ2 �−→ 〈(clsφ1 , clsφ2), preφ1 ∧ preφ2〉

whenever φ1 �−→ 〈clsφ1 , preφ1〉 and φ2 �−→ 〈clsφ2 , preφ2〉
〈a〉φ �−→ 〈clsφ, ∃s′ : Ta(s, s

′) ∧ preφ[s
′/s]〉

whenever φ �−→ 〈clsφ, preφ〉
[a]φ �−→ 〈clsφ, ∀s′ : ¬Ta(s, s

′) ∨ preφ[s
′/s]〉

whenever φ �−→ 〈clsφ, preφ〉
μQ.φ �−→ 〈([∀s : preφ ⇒ RQ(s)], clsφ), RQ(s)〉

whenever φ �−→ 〈clsφ, preφ〉
¬μQ.φ �−→ 〈clsμQ.φ, ¬RQ(s)〉

whenever μQ.φ �−→ 〈clsμQ.φ, preμQ.φ〉

– for each atomic proposition p we define a predicate Pp such that s ∈ �0(Pp)
if and only if p ∈ L(s),

– for each element a in T , we define a binary relation Ta such that (s, t) ∈
�0(Ta) if and only if (s, t) ∈ a.

The mapping rules for φ �−→ 〈clsφ, preφ〉 is given in Table 3. The clause sequence
clsφ is used to define all the relations RQ where Q is a bounded variable in φ.
We use preφ[s

′/s] to denote a pre-condition resulting from preφ by substituting
the free variable s in preφ with s′.

In Table 3, the choice of the ordering of clauses in clsφ is essential in our
approach. Assume that clsφ = cl1, ..., cln. We define only one relation in each
clause cli (1 ≤ i ≤ n). Assume that we are given a μ-calculus formula φ. We
call a subformula of φ a μ-subformula iff its main connective is μ. Assume that
μQi.ϕ1 and μQj .ϕ2 are two μ-subformulas in φ and we define RQi (resp. RQj)
in cli (resp. clj), our intention is to ensure that i < j if μQj .ϕ2 is a subformula
of μQi.ϕ1. Therefore, in the case of μQ.φ �−→ 〈clsφ, preφ〉, for example, we
have that clsμQ.φ = ([∀s : preφ ⇒ RQ(s)], clsφ) instead of clsμQ.φ = (clsφ, [∀s :
preφ ⇒ RQ(s)]).

We first explain the case of μQ.φ. Here, Q is a bounded variable. Under the
assumption that φ �−→ 〈clsφ, preφ〉 holds, we define clsμQ.φ as ([∀s : preφ ⇒
RQ(s)], clsφ). The clause [∀s : preφ ⇒ RQ(s)] defines the relation RQ and the
clause sequence clsφ defines all those relations RQ′s where Q′ is a bounded
variable in φ. We define preμQ.φ as RQ(s).

For atomic proposition p, we simply define clsp as true since there are no
bounded variables in p. We make use of the predefined predicate Pp and define
prep as Pp(s). For a variable Q, we also define clsQ as true since the Q is a free
variable here. We define preQ as RQ(s). For ¬Q, we define cls¬Q as true and
define pre¬Q as ¬RQ(s).

110 F. Zhang, F. Nielson, and H. Riis Nielson

For φ1 ∨ φ2, we assume that φ1 �−→ 〈clsφ1 , preφ1〉 and φ2 �−→ 〈clsφ2 , preφ2〉.
This means that for each subformula μQ.φ in φ1 (resp. φ2), the relation RQ

is defined in clsφ1 (resp. clsφ2) and that preφ1 and preφ2 are also defined as
expected. We define clsφ1∨φ2 as (clsφ1 , clsφ2). This ensures that for each bounded
variableQ in φ1∨φ2, RQ is defined in (clsφ1 , clsφ2). It’s natural to define preφ1∨φ2

as preφ1 ∨ preφ2 . The case for φ1 ∧ φ2 follows the same pattern.
For 〈a〉φ, we assume that φ �−→ 〈clsφ, preφ〉. We simply define that cls〈a〉φ =

clsφ and this suffices to guarantee that for each bounded variable Q in 〈a〉φ, the
relation RQ is defined in cls〈a〉φ. We define pre〈a〉φ as ∃s′ : Ta(s, s

′)∧ preφ[s
′/s].

This means for any state s if preφ[s
′/s] holds on any of the a-derivative s′ of s,

then pre〈a〉φ holds on state s. This matches the semantics for 〈a〉φ.
For [a]φ, we also assume that φ �−→ 〈clsφ, preφ〉. For a similar reason as

in the case for 〈a〉φ, we define that cls[a]φ = clsφ. We define pre[a]φ by ∀s′ :
¬Ta(s, s

′) ∨ preφ[s
′/s]. This means for any state s if preφ[s

′/s] holds on all of
the a-derivative s′ of s, then pre[a]φ holds on state s.

For ¬μQ.φ, we assume that μQ.φ �−→ 〈clsμQ.φ, preμQ.φ〉. We define that
cls¬μQ.φ = clsμQ.φ. We simply define pre¬μQ.φ as ¬RQ(s).

We have the following lemma which ensures that our specification of the μ-
calculus formulas is within SFP.

Lemma 1. Given a closed μ-calculus formula φ, assume that φ �−→ 〈clsφ, preφ〉
holds according to Table 3, the clause sequence clsφ is closed and weakly stratified.

The following theorem shows that the pre-condition preφ in our mapping φ �−→
〈clsφ, preφ〉 correctly characterizes the semantics of φ.

Theorem 3. Let φ be a μ-calculus formula with Q1, ..., Qn being all the free vari-
ables in it. Assume that φ �−→ 〈clsφ, preφ〉. Let ρ = �0, ..., �n be an interpretation
such that (ρ, σ) sat LFP(clsφ), where �0(RQ1) = S1, ..., �0(RQn) = Sn and �0
defines Pp and Ta. Then, s

′ ∈ [[φ]]e[Q1 �→S1,...,Qn �→Sn] iff (ρ, σ[s �→ s′]) sat preφ.

We focus on closed μ-calculus formulas of the form μQ.φ. This is not a restriction
since [[φ]] = [[μQ.φ]] when Q is not a free variable in φ. From Theorem 3, we have
the following corollaries saying that the model of SFP formulas for the analysis of
the μ-calculus coincides with the solution for the corresponding model checking
problem.

Corollary 1. Let μQ.φ be a closed μ-calculus formula. Assume that μQ.φ �−→
〈clμQ.φ, preμQ.φ〉 holds. Let ρ = �0, ..., �n be an interpretation such that
(ρ, σ) satLFP(clsμQ.φ), where �0 defines Pp and Ta. Then, we have that [[μQ.φ]] =
ρ(RQ).

5 Conclusion

Early works [9–12] have taken the view that static analysis problems can be
reduced to model checking. In the other research direction, we have generalized
the work in [13, 21] by showing that the model checking problem of the μ-calculus

Model Checking as Static Analysis 111

can also be reduced to static analysis as well. We first propose Succinct Fixed
Point Logic as a specification language which allows convenient specifications of
nest fixed points in the μ-calculus and then present a mapping which can encode
the full fragment of the μ-calculus to SFP. We show that μ-calculus formulas of
nested fixed points can be characterized as the intended model of SFP clause
sequences.

A number of previous papers (surveyed in [8, 18]) have developed a uniform
approach to static analysis using ALFP as the specification language. On top
of the many theoretical results established for this approach also a number of
solvers have been developed [17] to calculate the least model of ALFP. ALFP
can be encoded in SFP by showing that the least model of an ALFP formula can
be characterized as the model of a corresponding SFP formula. This encoding is
conceptually obvious and we didn’t give it here.

The link between model checking and logic programming has been investi-
gated in [22–26], where model checkers based on logic programming have been
implemented. In our future work, we are interested in developing an efficient
solver to calculate the model for SFP formulas so that a model checker for the
μ-calculus is also implicitly implemented.

Acknowledgements. The research presented in this paper has been supported
by MT-LAB, a VKR Centre of Excellence for the Modelling of Information
Technology.

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

2. Emerson, E.A., Lei, C.-L.: Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus (Extended Abstract). In: LICS 1986, pp. 267–278 (1986)

3. Cleaveland, R., Steffen, B.: A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus. Formal Methods in System Design 2(2), 121–
147 (1993)

4. Andersen, H.R.: Model Checking and Boolean Graphs. Theor. Comput. Sci. 126(1),
3–30 (1994)

5. Baier, C., Katoen, J.-P.: Principles of model checking, pp. I-XVII, 1-975. MIT
Press (2008)

6. Kozen, D.: Results on the Propositional mu-Calculus. Theor. Comput. Sci. 27,
333–354 (1983)

7. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis (2. corr.
print), pp. I-XXI, 1-452. Springer (2005)

8. Nielson, H.R., Nielson, F.: Flow Logic: A Multi-paradigmatic Approach to Static
Analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)

9. Steffen, B.: Data Flow Analysis as Model Checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg (1991)

10. Steffen, B.: Generating Data Flow Analysis Algorithms from Modal Specifications.
Sci. Comput. Program. 21(2), 115–139 (1993)

112 F. Zhang, F. Nielson, and H. Riis Nielson

11. Schmidt, D.A., Steffen, B.: Program Analysis as Model Checking of Abstract In-
terpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998)

12. Schmidt, D.A.: Data Flow Analysis is Model Checking of Abstract Interpretations.
In: POPL 1998, pp. 38–48 (1998)

13. Nielson, F., Nielson, H.R.: Model Checking Is Static Analysis of Modal Logic. In:
Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 191–205. Springer, Heidelberg
(2010)

14. De Nicola, R., Vaandrager, F.W.: Action Versus State Based Logics for Transition
Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

15. Nielson, F., Seidl, H., Nielson, H.R.: A Succinct Solver for ALFP. Nord. J. Com-
put. 9(4), 335–372 (2002)

16. Nielson, F.: Two-Level Semantics and Abstract Interpretation. Theor. Comput.
Sci. 69(2), 117–242 (1989)

17. Filipiuk, P., Nielson, H.R., Nielson, F.: Explicit Versus Symbolic Algorithms for
Solving ALFP Constraints. Electr. Notes Theor. Comput. Sci. 267(2), 15–28 (2010)

18. Nielson, H.R., Nielson, F., Pilegaard, H.: Flow Logic for Process Calculi. ACM
Comput. Surv. 44(1), 3 (2012)

19. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge. In:
Foundations of Deductive Databases and Logic Programming, pp. 89–148 (1988)

20. Chandra, A.K., Harel, D.: Computable Queries for Relational Data Bases. J. Com-
put. Syst. Sci. 21(2), 156–178 (1980)

21. Zhang, F., Nielson, F., Nielson, H.R.: Fixpoints vs. Moore Families. Student Re-
search Forum at SOFSEM 2012 (2012)

22. Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift,
T., Warren, D.S.: Efficient Model Checking Using Tabled Resolution. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg
(1997)

23. Ramakrishnan, C.R.: A Model Checker for Value-Passing Mu-Calculus Using Logic
Programming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 1–
13. Springer, Heidelberg (2001)

24. Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Dong, Y., Du, X., Roy-
choudhury, A., Venkatakrishnan, V.N.: XMC: A Logic-Programming-Based Verifi-
cation Toolset. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 576–580. Springer, Heidelberg (2000)

25. Delzanno, G., Podelski, A.: Model Checking in CLP. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

26. Delzanno, G., Podelski, A.: Constraint-based deductive model checking.
STTT 3(3), 250–270 (2001)

Formal Verification of Compiler Transformations

on Polychronous Equations

Van Chan Ngo1, Jean-Pierre Talpin1, Thierry Gautier1,
Paul Le Guernic1, and Löıc Besnard2

1 INRIA Rennes-Bretagne Atlantique, 35042 Rennes cedex, France
{Chan.Ngo,Jean-Pierre.Talpin,Thierry.Gautier,Paul.LeGuernic}@inria.fr

2 IRISA/CNRS, 35042 Rennes cedex, France
Loic.Besnard@irisa.fr

Abstract. In this paper, adopting the translation validation approach,
we present a formal verification process to prove the correctness of com-
piler transformations on systems of polychronous equations. We encode
the source programs and the transformations with polynomial dynam-
ical systems and prove that the transformations preserve the abstract
clocks and clock relations of the source programs. In order to carry out
the correctness proof, an appropriate relation called refinement and an
automated proof method are presented. Each individual transformation
or optimization step of the compiler is followed by our validation process
which proves the correctness of this running. The compiler will continue
its work if and only if the correctness is proved positively. In this paper,
the highly optimizing, industrial compiler from the synchronous language
SIGNAL to C is addressed.

Keywords: Formal Verification, Translation Validation, Validated
Compiler, Multi-clocked Synchronous Programs, Polychronous Model.

1 Introduction

In the synchronous approaches, synchronous data-flow languages such as LUS-
TRE [9], SIGNAL [7] have been introduced and used successfully for the design
and implementation of embedded and critical real-time systems. For the critical,
high-assurance systems, the design and realization highly require an efficient and
reliable implementation. Thus the systems must be verified using formal methods
(e.g. model checking, etc). We want that when the compiler does not claim bugs
in the formally verified source code, the generated executable code behaves as
abstract clock relations semantics of the source program. However, compilation is
complex and compilers involve many phases where they perform transformations
over the data structures of the source program. Some transformations might be
optimizations based on static analyses to eliminate inefficiencies, subexpressions
in the code. Thus, bugs in the compilers can happen, making wrong executable
code to be generated from correct source programs. The software industry is
aware of these issues and applies many techniques to deal with them, such as

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 113–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

114 V.C. Ngo et al.

manual reviews of the generated code, or testing. These techniques are not fully
automated, and are expensive in terms of time and performance. An automated
formal approach is applied to verify the compiler in order to prove that the
semantic of the source program is preserved during the compilation is needed.

In this paper, adopting the translation validation approach in [15], we present
an automated verification process to prove the correctness of a multi-clocked
synchronous language compiler. As a part of the VERISYNC project [18], due
to the very important role of abstract clock and clock relations, we are interested
in proving that abstract clocks and clock relations semantics of source programs
are preserved during the compilation phases of the compiler. Each individual
transformation or optimization step of the compiler is followed by our verifi-
cation process which proves the correctness of this running. The compiler will
continue its work if and only if the correctness is proved positively. This ap-
proach avoids the disadvantage of proving in advance that the compiler always
do correctly since every small change to the compiler requires reproving. Our ver-
ification framework uses polynomial dynamical systems (PDS) over a finite field,
as common semantics for both source and compiled programs and a syntactic
simulation-based proof which automatically proves the semantic preservation.
This automated proof is implemented within the existing model checker SIGALI
in the Polychronly toolset [12].

The remainder of this paper is organized as follows. Section 2 introduces the
formal model of synchronous program behaviors and the automatic translation
from a SIGNAL program to its formal model. In Section 3, we present our ap-
proaches to formally verify the compilation and formalize the notion of “correct
translation” by means of a refinement relation between PDSs. Section 4 ad-
dresses the application of our verification approaches to the highly optimizing,
industrial compiler from the synchronous language SIGNAL with the implemen-
tation which is integrated in the Polychrony toolset. Section 5 describes some
related works, concludes our work and describes future work.

2 An Equational Model of Synchronous Programs

2.1 An Equational Model of the Synchronous Program Behavior

We denote by �/pZ[Z] the set of polynomials over variables Z = {z1, ..., zk}
whose coefficients range over �/pZ, where �/pZ is the finite field modulo p, with
p prime. For a polynomial P ∈ �/pZ[Z], the solutions of the polynomial equation
P (Z) = 0 is denoted by Sol(P). We say that P1 ≡ P2 whenever Sol(P1) =
Sol(P2). And the representative of Sol(P) of each ≡-equivalence class is called
the canonical generator. In the following, we shall use some notations:

P 	 1− P p−1. Thus (�/pZ)k\Sol(P) = Sol(P)

P1 ⊕ P2 	 (P p−1
1 + P p−1

2)p−1

P1 ⇒ P2 	 {Z ∈ (�/pZ)k|P1(Z) = 0⇒ P2(Z) = 0} ≡ P1 ∗ P2

∃ziP 	 P |zi=1 ∗ P |zi=2 ∗ ... ∗ P |zi=p

∀ziP 	 P |zi=1 ⊕ P |zi=2 ⊕ ...⊕ P |zi=p

Formal Verification of Compiler Transformations 115

where P |zi=v is P obtained by instantiating any occurrence of variable zi by
value v. The manipulations of polynomials over the finite field modulo p, with p
prime can be found in [2].

Synchronous data-flow languages (e.g. LUSTRE, SIGNAL) represent data
as an infinite sequence of values called stream, and each data stream is com-
bined with an associated abstract clock as a means of discrete time. Streams
and stream relations, abstract clocks and clock relations are called functional
constraints and temporal constraints, respectively. The structure of synchronous
programs is usually described as a series of equational definitions, the whole
system is represented as systems of equations. This original structure makes
that it is natural to represent the program behaviors in terms of systems of
equations. The compilers of these languages, such as that we consider here, are
composed of a sequence of code transformations. The transformations and op-
timizations that rewrite or translate source code to eliminate inefficiencies of
functional constraints and temporal constraints. Some of the transformations
are non-optimizing translations from a synchronous language or its intermediate
language to another, lower-level language (e.g. C, Java code). Abstract clocks
and clock relations are used to represent all the control parts (e.g. activation
events) and interaction between different components in system. The control
flow resulting from the analysis of abstract clocks and clock relations is used
to derive an optimized data-flow following the transformations of the compiler.
Therefore, the correctness of clock analysis in synchronous language compilation
strongly impacts the quality of the compiled program. And as we have mentioned
above, we would like to cope with the semantics of abstract clocks and clock con-
straints. In other words, our aim is to build formal models which represent the
behaviors of synchronous data-flow programs in terms of the presence, absence
of values in a stream (abstract clock) and the clock relations. The principle is to
encode the status of a value in a stream with two possible values: absence and
presence. We will use the finite field modulo p = 3,�/3Z, i.e. integers modulo
3 : {−1, 0, 1} to encode the states of values in a data stream. For the Boolean
data stream x, three possible states of x at an instant time are encoded as:
present ∧ true → 1; present ∧ false → −1; absent → 0. For the non-boolean
data streams, it only encodes the fact that the value is present or absent (the
clock value of the data stream is true or false): present→ ±1; absent→ 0. And
the clock of a data stream is the square x2 : 1 if present, 0 if absent. Thus,
two synchronous data streams (they have the same clock) x and y satisfy the
constraint equation: x2 = y2. It is obvious that the abstract clocks and clock
relations of a synchronous data-flow program can be modeled efficiently with
PDSs with coefficients ranging over �/3Z.

Definition 1. A PDS is a system of equations which is organized into three
subsystems of polynomial equations of the form:

⎧⎨
⎩

Q(X,Y) = 0
X ′ = P (X,Y)

Q0(X) = 0

116 V.C. Ngo et al.

where:

– X is a set of n variables, called state variables, represented by a vector in
(�/3Z)n;

– Y is a set of m variables, called event variables, represented by a vector in
(�/3Z)m;

– X ′ = P (X,Y) is the evolution equation of the system. It can be considered
as a vectorial function [P1, ..., Pn] from (�/3Z)n+m to (�/3Z)n;

– Q(X,Y) = 0 is the constraint equation of the system. It is a vectorial equa-
tion [Q1, ..., Ql];

– Q0(X) = 0 is the initialization equation of the system. It is a vectorial
equation [Q01 , ..., Q0n].

Synchronous data-flow languages use some operators requiring memorization of
past value of a data stream, that is done by introducing the state variables. The
vector values (x1, ..., xn), (x

′
1, ..., x

′
n) store respectively the past values and the

current values of the data streams that are involved in the memorizing operators
(e.g. SIGNAL delay operator). Systems of polynomial equations characterize sets
of solutions, which are states and events of programs. A system of equation based
method consists in manipulating the equation systems instead of the solution
sets, avoiding the enumeration of the state space [2]. There is no terminal state
since a synchronous data-flow program takes the input data streams that are
infinite flows of values, for every state of its PDS there exist always the events
to produce the next state.

2.2 Overview of the SIGNAL Language Features

In SIGNAL language [8], a signal noted as x, is a sequence of values with the
same type x(ti)i∈�, which are present at some instants. The set of instants
(or time tags) where a signal is present is the clock of the signal, noted x̂. A
particular type of signal called event is characterized only by its presence, and
always has the value true. The constructs of the language use an equational
style to specify the relations between signals in the form R(x1, ..., xk), where the
values of signals and the abstract clocks of signals x1, ..., xk are the functional
constraint and temporal constraint, respectively. Systems of equations on signals
are built using a composition construct which defines a process. A whole SIGNAL
program is a process which runs infinitely taking parameters, input signals for
computing the output signals to react to the environment. The language is based
on seven different types of equations to construct primitive processes or equations
specifying computations over signals. We will present each equation along with
its semantic meaning and the implicit relationships between the clocks of the
input and output signals.

– Equation on Data: The equation y := f(x1, ..., xn) where f is an n-ary
relation over numerical or boolean data types, defines a process whose output
y(t) for tag t ∈ ŷ is y(t) = f(x1(t), ..., xn(t)). The clock constraint of the
input and output signals is ŷ = x̂1 = ... = x̂n.

Formal Verification of Compiler Transformations 117

– Delay: The equation y := x$1 init a defines a process whose output y(ti) = a
if ti is the initial time tag, and for every other tag, y(ti) = x(ti−1). The clock
constraint of the input and output signals is ŷ = x̂.

– Merge: The merge equation y := x default z defines a process whose output
at time tag t is y(t) = x(t) when t ∈ x̂ and y(t) = z(t) if t �∈ x̂ ∧ t ∈ ŷ. The
clock constraint of the merge equation is ŷ = x̂ ∪ ẑ.

– Sampling: The sampling equation y := x when b defines a process whose
output signal y(t) has value x(t) when the signal x is present and the boolean
signal b is present with the value true. The clock constraint of input and
output signals is ŷ = x̂ ∩ [b] where [b] = {t ∈ b̂|b(t) = true}.

– Composition: P 	 P1 | P2 where P1 and P2 are processes. P consists of
the composition of the systems of equations. The composition operator is
commutative and associative.

– Restriction: P 	 P1 where x, where P1 and x are a process and a signal,
respectively. It enables local declarations in the process P1, and leads to the
same constraints as P1.

– Equation on clocks: The SIGNAL language allows clock constraints to be
defined explicitly by equations. The signal’s clock is represented in SIGNAL
by a special signal of type event which carries only a single value true. It
specifies the presence of the signal, denoted x̂. Thus, equations on clocks
over signals are equations over their corresponding event signals. They are:
(i) the synchronization relation x =̂ y 	 x̂ = ŷ, (ii) clock union relationship
x +̂ y 	 x̂ default ŷ, (iii) clock intersection relationship x ∗̂ y 	 x̂ when ŷ.

Furthermore, the unary form of the sampling operation when b returns an event
signal representing the clock of [b]. The special event signal 0̂ denotes the null
clock (the clock that is never present).

2.3 PDS Model of SIGNAL Programs

In order to model SIGNAL programs behaviors, their processes are translated
into systems of polynomial equations over �/3�. Each individual SIGNAL equa-
tion is translated into a polynomial equation. The language uses some primitive
equations to construct programs. Thus, we only need to define the translation of
these primitive equations to polynomial equations over the finite field (�/3Z)n.
The composition equation type is simply translated as the combination of the
polynomial equations in the same equation system. For the equations on clocks
they are derived directly from the primitive equations. Table 1 shows the trans-
lation of the primitive equations of the SIGNAL language. The delay operator $
requires memorizing the past value of the signal, that is done by introducing the
state variable ξ, where ξ stores the previous value of the signal and ξ′ stores the
current value of the signal. For example the simple SIGNAL program shown in
Table 2 that specifies the alternative presence between the input signals A and
B is translated in the PDS model with variables a, b, x and zx corresponding to
the events A,B and boolean signals X and ZX and a state variable ξ for the
delay operator. In particular, SIGNAL allows one to explicitly manipulate clocks

118 V.C. Ngo et al.

through some derived con- structs that can be rewritten in terms of primitive
ones. For instance, y := when b is equivalent to y := b when b.

Table 1. Translation of the primitive equations

Boolean signals Non-boolean signals

y := not x y = −x y := f(x1, ..., xn) y2 = x2
1 = ... = x2

n

z := x and y
z = xy(xy − x− y − 1)
x2 = y2

z := x or y
z = xy(1− x− y − xy)
x2 = y2

z := x default y z = x+ (1− x2)y z := x default y z2 = x2 + y2 − x2y2

z := x when y z = x(−y − y2)y z := x when y z2 = x2(−y − y2)

y := x$1 init y0

ξ′ = x+ (1− x2)ξ y := x$1 init y0 y2 = x2

y = x2ξ
ξ0 = y0

Table 2. Program altern and its PDS model

process altern =

(? event A, B;

!)

(| X := not ZX

| ZX := X$ 1

| A ^= when X

| B ^= when ZX

|)

where

boolean X, ZX init false;

end;

initial equations :

ξ = −1
evolution equations :

ξ′ = x+ (1− x2) ∗ ξ
constraint equations :

x = −zx, zx = ξ ∗ x2,

a2 = −x− x2, b2 = −zx− zx2

3 Formally Verified Compilation Approaches

3.1 Definition of Correct Translation: Refinement

Given a PDS model L over the finite field �/3�, it can be viewed as an inten-
sional Labeled Transition System (iLTS) [10] as defined in Definition 2:

Definition 2. An intensional Labeled Transition System is a structure L =
(Q, Y, I, T), where Q is a set of states, Y is a set of m variables Y1, ..., Ym, I is
a set of initial states, and T ⊆ Q×�/3�[Y]×Q is the transition relation. Each
transition is labeled by a polynomial over the set Y .

The iLTS representation of a PDS can be obtained directly from the set of state
variables, event variables, systems of initial equations, evolution equations, and
constraint equations as follows:

Formal Verification of Compiler Transformations 119

– Q = DX , where DX =
∏

i∈[1,n]

Dxi = (�/3�)n as the domain of a set of

variables X = (x1, ..., xn)
– Y = Y,DY =

∏
i∈[1,m]

Dyi = (�/3�)m

– I = Sol(Q0(X))
– (q, Pq(Y), q′) ∈ T where Pq(Y) ≡ Q(q, Y)⊕ (P (q, Y)− q′)

We write q
P (Y)−−−→ q′ (or for short q

P−→ q′), instead of (q, P (Y), q′) ∈ T . Then
iLTSs can be viewed as an “intensional” representation of classical LTSs, where
the labels are tuples in (�/3�)m: each arrow of the iLTS labeled by P (Y) in-
tensionally represents as many arrows labeled by some y ∈ Sol(P (Y)). We will
call Ext(L) the corresponding “extensional” LTS.

Definition 3. Let L = (Q, Y, I, T) an iLTS. The infinite sequence σ = q0, y0, q1,
y1, q2, y2, ..., where qi ∈ Q, yi ∈ DY for each i ∈ �, is an execution of L if it
satisfies the following requirements:

– q0 ∈ I.
– there exists a polynomial P (Y) such that (qi, P (Y), qi+1) ∈ T ∧yi ∈ Sol(P (Y))

for each i ∈ �.

We denote by σact = y0, y1, y2, is an action-based execution, ||L||, ||L||act the
sets of executions and action-based executions of the iLTS L, respectively.

Consider the two iLTSs A = (Q2, Y, I2, T2) and C = (Q1, Y, I1, T1), to which
we refer respectively as a source program and a compiled program produced
by a synchronous data-flow compiler. We assume that they have the same set
of event variables. In case the set of event variables of the compiled model is
different from the set of event variables of the source model, we consider only
the common event variable and the different event variables are considered as
hiding events [14]. Our aim is to prove that the desired behaviors of the source
program are preserved during the compilation. In our case, the set of action-
based executions models the desired behaviors of the program. The behaviors
reflect the states of data streams and the data stream clocks constraints of the
program. The strongest notion of behavior preservation during compilation is
that the source program A and its compiled program C have exactly the same
desired behaviors:

∀σact. (σact ∈ ||C||act ⇔ σact ∈ ||A||act) (1)

Requirement (1) is too strong in general to be in practical for synchronous data-
flow languages. The source language is usually non-deterministic, compilers are
allowed to select one of the possible behaviors of the source program. In this
case, the compiled program C will have fewer behaviors than the source pro-
gram A. Additionally, compilers do transformations, optimizations for removing
or eliminating some wrong behaviors of the source program (e.g. eliminating
subexpressions, trivial clock constraints). To address these issues, we relax the
requirement (1) as follows:

∀σact.(σact ∈ ||C||act ⇒ σact ∈ ||A||act) (2)

120 V.C. Ngo et al.

Requirement (2) says that all action-based executions of C are acceptable ex-
ecutions of A. And we say that C refines A w.r.t action-based executions. We
write C � A to denote the fact that C refines A. In the next section we present
a method to establish the refinement between the two given models C and A.

3.2 Proving Refinement by Simulation

We now discuss an approach to automatically reason that a compiler preserves
semantics of the source program during its compilation, in the sense of refinement
relation. Given two iLTSs A and C, we propose a symbolic simulation for the two
iLTSs to establish that C � A. The symbolic simulation satisfies the property
that if there exists a symbolic simulation for (C,A) then C � A.

Definition 4. Let C = (Q1, Y, I1, T1) and A = (Q2, Y, I2, T2) be two iLTSs. A
symbolic simulation for (C,A) is a binary relation R ⊆ Q1 ×Q2 which satisfies
the following properties:

– (A) ∀q1 ∈ I1, ∃q2 ∈ I2, (q1, q2) ∈ R.

– (B) for any (q1, q2) ∈ R it holds that: if q1
P−→ q′1 there exists a finite set of

transitions (q2
Pi−→ qi2)i∈I (where I is a set of indexes) with

• (P ⇒
∏
i∈I

Pi) ≡ 0 and

• (q′1, q
i
2) ∈ R, ∀i ∈ I.

(P ⇒
∏
i∈I

Pi) ≡ 0 denotes that the polynomial (P ⇒
∏
i∈I

Pi) is equivalent to

the zero polynomial, which means that Sol((P ⇒
∏
i∈I

Pi)) = Sol(0) = (�/3�)m

or Sol(P) ⊆ Sol(
∏
i∈I

Pi). Condition (A) asserts that every initial state of C is

related to an initial state of A. According to condition (B), for every transition
of the state q1 which is labeled by the set of events (or actions) represented by
Sol(P (Y)), there exist some transitions of the state q2 which are labeled by the
same set of events. And it states that every outgoing transition from q1 must
be matched by outgoing transitions from q2. Thus, Definition 4 captures exactly
classic action-based simulation definition of standard LTSs. Since symbolic sim-
ulation is closed under arbitrary unions, there is a greatest symbolic simulation.
In the following parts, when we talking about symbolic simulation, we imply
talk about the greatest symbolic simulation.

C is simulated by A (or, equivalently, A simulates C), denoted C � A, if
there exists a symbolic simulation for (C,A). Given two states q1 ∈ Q1 and
q2 ∈ Q2, the state q1 is simulated by q2, denoted q1 � q2, if there exists a
symbolic simulation R for (C,A) with (q1, q2) ∈ R. In that case, we say that the
two states ”q1 and q2 are similar”.

Definition 5. Let C = (Q1, Y, I1, T1) and A = (Q2, Y, I2, T2) be two iLTSs. We
define a family of binary relations �j⊆ Q1 ×Q2 by induction over j ∈ �.

– �0	 Q1 ×Q2.

Formal Verification of Compiler Transformations 121

– q1 �(j+1) q2 iff for all (q1, P, q
′
1) ∈ T1, there exists a finite set of transitions

(q2, Pi, q
i
2)i∈I with (P ⇒ Πi∈IPi) ≡ 0 ∧ q′1 �j qi2 for all i ∈ I, where I is a

set of indexes.

Based on the above definition, we can now have the following theorem which
gives us a method to compute the greatest symbolic simulation for two iLTSs.

Theorem 1. Let C = (Q1, Y, I1, T1) and A = (Q2, Y, I2, T2) be two iLTSs.

1. There exists a symbolic simulation for (C,A) if and only if there exists a
simulation for (Ext(C), Ext(A)).

2. Then for all q1 ∈ Q1 and q2 ∈ Q2, q1 � q2 iff q1(
⋂

n∈� �n)q2, where
(
⋂

n∈� �n) =�0 ∩ �1 ∩...∩ �n.

Proof. (1) The proof can be found in [10].
(2) Since the number of state variables, event variables and the value domain of
a PDS are finite then its iLTS is finite. Symbolic simulation over a finite iLTS
(therefore finitely branching) is the limit of nested projective equivalences. Thus
we can use the same proof method as in [16] for strong simulation. We omit the
proof here.

The use of a symbolic simulation as a proof method to establish the refinement
between the two given models C and A is stated in the following theorem.

Theorem 2. Let C = (Q1, Y, I1, T1) and A = (Q2, Y, I2, T2) be two iLTSs. If
there exists a symbolic simulation for (C,A), then C � A.

Proof. The proof of Theorem 2 is trivial with following Lemma 1.

Lemma 1. Let C and A be iLTSs, R is a symbolic simulation for (C,A), and
(q1, q2) ∈ R. Then for each infinite (or finite) execution σ1 = q0,1, y0,1, q1,1, y1,1,
q2,1, y2,1, ... starting in q0,1 = q1 there exists an execution σ2 = q0,2, y0,2, q1,2, y1,2,
q2,1, y2,2, ... from state q0,2 = q2 of the same length such that (qj,1, qj,2) ∈ R and
yj,1 = yj,2 for all j.

Proof. Due to the lack of space, we omit the proof here.

With an unverified compiler of synchronous data-flow language, each compila-
tion phase is followed by our refinement verification process to provide formal
guarantees as strong as those provided by a formally verified compiler. Indeed,
consider the following process:

Cp′(A) = if Cp(A) is
Error → Error

| OK(C)→ if C � A then OK(C) else Error

where Cp(A) is the compilation of A to either compiled code (written as Cp(A) =
OK(C)) or compilation errors (written as Cp(A) = Error).

122 V.C. Ngo et al.

3.3 Composition of Compilation Phases

Compilation is always decomposed into several phases of transformations, opti-
mizations through intermediate representations. It is better to decompose the
verification process too. Fortunately, our verification process can be decomposed
well thanks to the transitive property of symbolic simulation. Let A, I and C
are three iLTSs, if I � A and C � I then C � A (the proof is trivial based on
the definition of symbolic simulation). We assume that there are two compila-
tion stages Cp1 and Cp2 from source program A to I and I to C, respectively.
Consider the composition compilation as follows:

Cp(A) = if Cp1(A) is
Error → Error

| OK(I)→ if I � A then Cp2(I) else Error

It is obvious to see that the compilation Cp(A) is formally verified from A to C.

4 Proving the SIGNAL Compiler

4.1 Implementation of Symbolic Simulation with SIGALI

In this section, we discuss how to implement the proof method with symbolic
simulation for the two iLTSs of a source program and its compiled form using
the companion model-checker of the Polychrony toolset, SIGALI. Symbolic sim-
ulation can be implemented as an extended library of SIGALI, we represent a
PDS as an iLTS in the more specific form L = (X,X ′, Y, I, T), where:

– X,X ′, Y are the sets of state and event variables as in the PDS,
– I(X) = Q0(X) is the polynomial representing the set of initial states, Sol(I),
– T (X,Y,X ′) ≡ Q(X,Y)⊕ (P (X,Y)−X ′) is the polynomial representing the
set of transitions.

In SIGALI, polynomials are internally represented as ternary decision diagrams
(TDD) [5] which are an extension of binary decision diagrams (BDD) [1]. They
are convenient for an efficient manipulation the polynomial equation systems.
Theorem 1 gives us an iterative algorithm to compute the greatest symbolic
simulation for (C,A). It can be obtained by computing the convergence of the
sequence (Rj)j∈� as in Algorithm 1 which can be efficiently implemented with
the fixed-point computation of the SIGALI kernel (see Appendix B). The cor-
rectness of Algorithm 1 is proved by the following proposition.

Proposition 1. For all j ∈ �,Rj(x1, x2) = 0 if and only if x1 �j x2.

Proof. ⇒) We use an induction proving method over j. It holds obviously with

j = 0. Assume that we have Rj+1(x1, x2) = 0 and let x1
P−→ x′

1 be a transition
in C. It is clear that P (Y) ≡ T1(x1, Y, x

′
1). We define the polynomial Q(Y) ≡

∃x′
2T2(x2, Y, x

′
2) ⊕ Rj(x

′
1, x

′
2), Rj being computed in Algorithm 1 above. This

Formal Verification of Compiler Transformations 123

Algorithm 1. Compute symbolic simulation R(X1, X2)

Require: C = (X1, X
′
1, Y, I1, T1), A = (X2, X

′
2, Y, I2, T2)

Ensure: R(X1, X2)
1: R0(X1, X2) ≡ 0
2: while Rj(X1, X2) is not convergent do
3: Rj+1(X1, X2) is the canonical generator of the ≡-class of:
4: Rj(X1, X2)⊕
5: ∀X ′

1∀Y [(T1(X1, Y,X
′
1) ⇒ ∃X ′

2(T2(X2, Y,X
′
2)⊕Rj(X

′
1, X

′
2))]

6: end while
7: if ∀X1[(I1(X1) ⇒ ∃X2(I2(X2)⊕R(X1, X2))] then
8:
9: return R(X1, X2)
10: else
11: return R(X1, X2) ≡ 1
12: end if

polynomial captures the set {y|∃x2
Pi−→ xi

2, Pi(y) = 0∧ x′
1 �j x

i
2}. By the defini-

tion of Rj+1, the y value is in Sol(T1(x1, Y, x
′
1)), thus Sol(P (Y)) ⊆

⋃
i Sol(Pi),

which means x1 �(j+1) x2.
⇐) We can apply again an induction method over j similar to the proof of the
Theorem 1. Thus we omit it here.

Proposition 2. Algorithm 1 terminates and at the end, R(x1, x2) = 0 if and
only if x1 � x2.

Proof. Termination is guaranteed by the fact that relations Rj are finite and
nested. The second statement is a corollary of Proposition 1 and Theorem 1.

4.2 Proving the Compiler Transformations

The compiler of the SIGNAL language [3] that we consider is composed of a
sequence of code transformations. Some transformations are optimizations that
rewrite the code to eliminate subexpressions, inefficiencies. The compilation pro-
cess may be seen as a sequence of morphisms rewriting SIGNAL programs to
SIGNAL programs. And the final steps (C or Java code generation) are simple
morphisms over the ultimately transformed SIGNAL program. For convenience,
the transformations of the compiler are classed into three stages:

Fig. 1. Scheme of the SIGNAL compiler

124 V.C. Ngo et al.

– The front-end : non-optimizing translations from the source program in SIG-
NAL language to a program in SIGNAL language. The clock information of
all signals in the source program is calculated, which is called clock calculus.

– The optimizer : the synchronization and precedence relations of all signals
and clocks are represented in a directed labeled graph structure called the
Data Control Graph (DCG); it is composed of a Clock Hierarchy (CH) and
a Conditioned Precedence Graph (CPG). A node of this CPG is a primitive
equation or, in a hierarchical organization, a composite SIGNAL process con-
taining its own DCG. Then the optimizations are performed on the output
of the front-end stage based on the DCG.

– The back-end : translations from the optimized final SIGNAL program to
executable code (C/C++ or Java).

For instance, consider a source program called Mouse.SIG (example program
available in the online examples of the Polychrony toolset), the transformations
of the stages front-end, optimizer, back-end areMouse TRA.SIG,Mouse BOOL
TRA.SIG, and Mouse SEQ TRA.SIG, respectively.

The optimized final program Mouse SEQ TRA.SIG is translated directly to
executable code. We are interested in the first two stages of the compiler: the
non-optimizing translations and the optimizations. The intermediate forms in the
transformations of the compiler may be expressed in the SIGNAL language itself.
Moreover the Polychrony toolset provides a function to translate a SIGNAL
program into a PDS over the finite field �/3�. Then the correctness of the
compiler is proved in each transformation of the two first stages. For instance,
we consider the compilation of Mouse.SIG program, the verification asserts that
Mouse SEQ TRA.SIG � Mouse BOOL TRA.SIG � Mouse TRA.SIG �
Mouse.SIG along the transformations of the SIGNAL compiler.

Experimental Results. We here provide some experimental results verify-
ing the transformations of the SIGNAL compiler with a simulation based proof
method. The experimental results deal with the complexity of the symbolic sim-
ulation computation. All the examples here are available in the online examples
of the Polychrony toolset. In the X, Y, ’Correct’ columns, we write the numbers
of state variables, event variables and the correctness of the compiler transforma-
tions, respectively (hence, the transition relation T (X,Y,X ′) will have 2X + Y
variables). We measure description complexity of the symbolic simulation by the
size of fix point computation in Algorithm 1 (in terms of the number of TDD
nodes that we need to represent the manipulation of polynomial equation sys-
tems). The number of TDD nodes is showed in SIGALI model checker only when
it is big enough, so for the tests whose numbers of TDD nodes are not showed
we write ”Small”. We denote R1(X1, X2),R2(X1, X2),R3(X1, X2) are symbolic
simulations for (A TRA.z3z, A.z3z),(A BOOL TRA.z3z, A TRA.z3z), and (A
SEQ TRA.z3z, A BOOL TRA.z3z), respectively, for the compilation of the
SIGNAL program, called A.

Formal Verification of Compiler Transformations 125

Table 3. Experimental results

Name X Y
R1(X1, X2) R2(X1, X2) R3(X1, X2)

Correct
TDD nodes TDD nodes TDD nodes

MOUSE.z3z 2 5

Small Small Small Yes
MOUSE TRA.z3z 2 5
MOUSE BOOL TRA.z3z 2 6
MOUSE SEQ TRA.z3z 2 6

RAILROADCROSSING.z3z 2 40

Small Small Small Yes
RRCROSSING TRA.z3z 2 40
RRCROSSING BOOL TRA.z3z 2 39
RRCROSSING SEQ TRA.z3z 2 39

CHRONOMETER.z3z 6 33

Small Small Small Yes
CHRONOMETER TRA.z3z 6 33
CHRONOMETER BOOL TRA.z3z 6 37
CHRONOMETER SEQ TRA.z3z 6 37

ALARM.z3z 19 45

3775163 3810301 4721454 Yes
ALARM TRA.z3z 19 45
ALARM BOOL TRA.z3z 19 53
ALARM SEQ TRA.z3z 19 53

5 Related Work and Conclusions

The notion of translation validation was introduced in [15] by A. Pnueli et al. to
verify the code generator of SIGNAL. In this work, the authors define a language
of symbolic models to represent both the source and target programs called
Synchronous Transition Systems (STS). A STS is a set of logic formulas which
describe the functional and temporal constraints of the whole SIGNAL program
and its generated C code. Then they use BDD representations to implement
the symbolic models STSs, and their proof method uses a SAT-solver to reason
on the signals and clock constraints of STSs. It amounts to the mapping for
selected states, consisting of the values of input-output-memory variables, for
the source and the target code. The drawback of this approach is that in some
cases, the code generator eliminates the use of a local register variable in the
generated code and then, the mapping cannot be established. Additionally, for
a large SIGNAL program, the logic formula is asked to SAT-solver to solve is
very large that makes some inefficiency. Another related work is the approach
of J. C. Peralta et al. [13] in a similar approach as the work of A. Pnueli et
al. In particular, they translate both the SIGNAL (multi-clocked) specifications
given in SIGNAL language and its generated code C/C++ or Java simulator into
LTSs. Then, an appropriate pre-order test on both LTSs can be interpreted as
a refinement between a generated code implementation and its source SIGNAL
specification. The refinement they propose is a bisimulation relation and they
use the existing tools to generate the greatest bisimulation relation for the source
SIGNAL specification and the target generated code in C/C++. In case there is
no bisimulation relation, counterexamples are generated automatically. However,
this approach has not been fully automated.

126 V.C. Ngo et al.

This paper presents the correctness proof of the transformations, optimiza-
tions of the multi-clocked synchronous programming language compiler and ap-
plies this approach to the highly industrial synchronous data-flow language SIG-
NAL’s compiler. We are interested in proving that abstract clocks and clock
relations semantics of source programs are preserved during the compilation
phases of the compiler. The desired behaviors of a given source program and
its compiled program are represented as PDSs over the finite field of integers
modulo p = 3. A refinement relation between the source program and its com-
piled form is used to express the preservation. A proof by simulation is presented
to establish the refinement relation. Each compilation stage is followed by our
refinement verification process to provide formal guarantees as strong as those
provided by a formally verified compiler. If the compilation task from the source
program to the compiled form applies without compilation errors, and the com-
piled form refines the source program, then the compiled form is produced as
output else the compiler terminates with an error.

We have implemented and integrated our verification process within the Poly-
chrony toolset by extending the functionality of the existing model checker SI-
GALI to prove the correctness of the front-end and optimizations phases of the
optimizing SIGNAL compiler.

As future work, given a synchronous data-flow program and the correspond-
ing generated C/C++ code, we would like to formally verify that the generated
code correctly implements the source program. As we have shown, the verifica-
tion process can be decomposed into several stages as the decomposition of the
compilation task, thanks to the transitive property of symbolic simulation. Thus
we only need to prove that there exists a symbolic simulation for the generated
C/C++ code and the optimized final program given that the optimized final
program refines the source program. In order to do that, we could first translate
the asynchronous C/C++ code into the synchronous language SIGNAL. One of
the methods is to represent C/C++ code in the Static Single Assignment (SSA)
intermediate form and then translate the SSA intermediate form into SIGNAL
[4]. The rest of work is the same as the verification process we have presented in
this paper.

References

1. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

2. Le Borgne, M., Benveniste, A., Le Guernic, P.: Dynamical systems over Galois fields
and control problems. In: Proceedings of 33th IEEE on Decision and Control, vol. 3,
pp. 1505–1509 (1991)

3. Besnard, L., Gautier, T., Le Guernic, P., Talpin, J.-P.: Compilation of polychronous
data flow equations. In: Synthesis of Embedded Software. Springer (2010)

4. Besnard, L., Gautier, T., Moy, M., Talpin, J.-P., Johnson, K., Maraninchi, F.:
Automatic translation of C/C++ parallel code into synchronous formalism using
an SSA intermediate form. In: Proceedings of the 9th Workshop on Automated
Verification of Critical Systems, AVOCS (2009)

Formal Verification of Compiler Transformations 127

5. Dutertre, B., Le Borgne, M., Marchand, H.: SIGALI: un système de calcul formel
pour la vérification de programmes SIGNAL. Manuel d’utilisation. Note technique,
non publiée (December 1998)

6. Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

7. Gamatie, A.: Designing embedded systems with the SIGNAL programming: Syn-
chronous, Reactive Specification. Springer, New York (2009) ISBN 978-1-4419-
0940-4

8. Le Guernic, P., Talpin, J.-P., Le Lann, J.-C.: Polychrony for system design. Journal
for Circuits, Systems and Computers 12(3), 261–304 (2003)

9. Halbwachs, N.: A synchronous language at work: the story of LUSTRE. In: 3th
ACM-IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2005) (July 2005)

10. Kouchnarenko, O., Pinchinat, S.: Intensional approaches for symbolic methods.
Electronic Notes in Theoretical Computer Science (August 1998)

11. Marchand, H., Rutten, H., Le Borgne, E., Samaan, M.: Formal verification of SIG-
NAL programs: Application to a power transformer station controller. Science of
Computer Programming 41(1), 85–104 (2001)

12. Polychrony Toolset, http://www.irisa.fr/espresso/Polychrony/
13. Peralta, J.C., Gautier, T., Besnard, L., Le Guernic, P.: LTSs for translation valida-

tion of (multi-clocked) SIGNAL specifications. In: 8th IEEE/ACM International
Conference on Formal Method and Models for Codesign, MEMOCODE (2010)

14. Pinchinat, S., Marchand, H., Le Borgne, M.: Symbolic abstractions of automata
and their application to the supervisory control problem. In: INRIA Technical
Reports No 1279, pp. 1–29 (November 1999)

15. Pnueli, A., Shtrichman, O., Siegel, M.D.: Translation validation: From SIGNAL to
C. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710,
pp. 231–255. Springer, Heidelberg (1999)

16. Milner, R.: Operational and algebraic semantics of concurrent processes. Research
Report ECS-LFCS-88-46, Lab. for Foundations of Computer Science, Edinburgh
(February 1988)

17. Van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum II: The Semantics
of Sequential Systems with Silent Moves (Extended Abstract). In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

18. VeriSync Project, http://www.irit.fr/Verisync/

http://www.irisa.fr/espresso/Polychrony/
http://www.irit.fr/Verisync/

Understanding Programming Bugs in ANSI-C

Software Using Bounded Model Checking
Counter-Examples

Herbert Rocha, Raimundo Barreto, Lucas Cordeiro, and Arilo Dias Neto

Federal University of Amazonas
Av. General Rodrigo Octávio Jordão Ramos, 3000

Campus, Coroado I - Manaus/Amazonas
{herberthb12,lucasccordeiro}@gmail.com,

{rbarreto,arilo}@dcc.ufam.edu.br

http://portal.ufam.edu.br

Abstract. One of the main challenges in software development is to
ensure the correctness and reliability of software systems. In this sense,
a system failure or malfunction can result in a catastrophe especially
in critical embedded systems. In the context of software verification,
bounded model checkers (BMCs) have already been applied to discover
subtle errors in real projects. When a model checker finds an error, it pro-
duces a counter-example. On one hand, the value of counter-examples to
debug software systems is widely recognized in the state-of-the-practice.
On the other hand, model checkers often produce counter-examples that
are either too large or difficult to be understood mainly because of the
software size and the values chosen by the respective solver. This paper
proposes a method with the purpose of automating the collection and
manipulation of counter-examples in order to generate new instantiated
code to reproduce the identified error. The proposed method may be seen
as a complementary technique for the verification performed by state-of-
the-art BMC tools. In particular, we used the ESBMC model checker
to show the effectiveness of the proposed method over publicly available
benchmarks and, additionally, a comparison with the tool Frama-C.

1 Introduction

Building complex software systems has been a great challenge to software en-
gineers. This situation can become worse when such software system belongs
to a critical embedded system (e.g., aeronautics, space, automotive, health ap-
plications) that has to be formally verified to identify errors that may result in
failures during the software execution. Thus, verification techniques and software
testing are indispensable items for high quality software development.

In the last few years, we can observe a trend towards the application of for-
mal verification techniques to the implementation level. Bounded model check-
ing (BMC) is going to this direction since it has been applied to reason about
low-level ANSI-C programs, usually checking safety and/or liveness properties,

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 128–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://portal.ufam.edu.br

Understanding Programming Bugs in ANSI-C Software 129

considering single- and multi-threaded applications [5,6]. BMCs have gained pop-
ularity due to their ability to handle the full semantics of actual programming
languages, and to support the verification of a rich set of properties such as
shared variables and locks, arithmetic under- and overflow, pointer safety, array
bounds, deadlocks, and fixed-point arithmetic [5].

This paper proposes a method called EZProofC that aims to apply a software
bounded model checker, in this case ESBMC (Efficient SMT-Based Context-
Bounded Model Checker), with the purpose of verifying critical parts of a software
written in the C programming language and, additionally, collecting data to show
the evidence that failures might happen. ESBMC is a state-of-the-art symbolic
context bounded model checker, which performs comparable to other off-the-
shelf software model checkers (e.g., CBMC, SATABS) [5]. The motivation of
this work is that data collected by verification tools is usually not trivial to be
understood, mainly due to the amount of variables and values involved in the
counter-example as well as the lack of a standard output to represent the counter-
example. The proposed method uses the data provided by counter-examples to
generate new instantiated code to reproduce the identified error. In this paper,
the instantiated code is a particular instance of the code with the variable values
provided by the BMC, which are enough to reproduce the error. This work thus
proposes a method where developers can confirm the results provided by the
bounded model checker, and additionally, alleviates the process of analyzing large
counter-examples, as well as counter-examples that do not characterize an error
(i.e., a spurious counter-examples). We adopted the C programming language
since it is the standard language to implement several kinds of software including
performance-critical software [11]. However, our techniques can also be applied
to other programming languages like C++ and Java.

We show the effectiveness of the proposed method over publicly available
benchmarks and, additionally, a comparison with the tool Frama-C [4]. Our
experimental results show that EZProofC is able to automatically reproduce
all failures found in the benchmarks by the adopted BMC tools through the
instantiation of the code. Additionally, EZProofC shows a great advantage in
comparison to Frama-C since we do not need to write specifications (i.e., pre-
and post-conditions) in the source code. We advocate that automating the data
collection process we may disseminate the application of formal methods, help
developers not very familiar with this subject, and consequently help them to
verify more complex C programs.

2 Context-Bounded Model Checking with ESBMC

Model checking has been used successfully to verify actual software (as opposed
to abstract system designs) [3,5,12], including multi-threaded applications writ-
ten in low-level programming languages such as ANSI-C [5]. In context-bounded
model checking, the state spaces of such applications are bounded by limiting the
size of the program’s data structures (e.g., arrays) as well as the number of loop
iterations and context switches between the different threads that are explored

130 H. Rocha et al.

by the model checker. In symbolic model checking, a set of verification condi-
tions (VCs) is derived from the (bounded) system, which are then solved using
a Boolean satisfiability (SAT) or satisfiability modulo theories (SMT) solver.

ESBMC is a symbolic context-bounded model checker based on SMT solvers,
which allows the verification of single- and multi-threaded software with shared
variables and locks [5]. ESBMC supports full ANSI-C, and can verify programs
that make use of bit-level, arrays, pointers, structs, unions, memory allocation
and fixed-point arithmetic. It can reason about arithmetic under- and overflows,
pointer safety, memory leaks, array bounds violations, atomicity and order vio-
lations, local and global deadlocks, data races, and user-specified assertions.

In ESBMC, the program to be analyzed is modeled as a state transition
system M = (S,R, S0), which is extracted from the control-flow graph (CFG).
S represents the set of states, R ⊆ S × S represents the set of transitions (i.e.,
pairs of states specifying how the system can move from state to state) and
S0 ⊆ S represents the set of initial states. A state s ∈ S consists of the value
of the program counter pc and the values of all program variables. An initial
state s0 assigns the initial program location of the CFG to pc. ESBMC identifies
each transition γ = (si, si+1) ∈ R between two states si and si+1 with a logical
formula γ(si, si+1) that captures the constraints on the corresponding values of
the program counter and the program variables.

Given the transition system M, a safety property φ, a context bound C and
a bound k, ESBMC builds a reachability tree (RT) that represents the program
unfolding for C, k and φ. ESBMC then derives a verification condition (VC) ψπ

k

for each given interleaving (or computation path) π = {ν1, . . . , νk} such that ψπ
k

is satisfiable if and only if φ has a counter-example of depth k that is exhibited
by π. ψπ

k is given by the following logical formula:

ψπ
k = I(s0) ∧

k∨
i=0

i−1∧
j=0

γ(sj, sj+1) ∧ ¬φ(si) (1)

where function I characterizes the set of initial states of M and γ(sj , sj+1) is
the transition relation of M between time steps j and j + 1. Hence, I(s0) ∧∧i−1

j=0 γ(sj , sj+1) represents executions of M of length i and ψπ
k can be satisfied

if and only if for some i ≤ k there exists a reachable state along π at time step
i in which φ is violated. ψπ

k is a quantifier-free formula in a decidable subset of
first-order logic, which is checked for satisfiability by an SMT solver. If ψπ

k is
satisfiable, then φ is violated along π and the SMT solver provides a satisfying
assignment, from which ESBMC can extract the values of the program variables
to construct a counter-example.

A counter-example is a trace that shows that a given property does not hold
in the model [1]. Counter-examples allow the user: (i) to analyze the failure; (ii)
to understand the root of the error; and (iii) to correct either the specification
or the model, in this case, from the property and the program that has been
analyzed respectively. A counter-example for a property φ is a sequence of states
s0, s1, . . . , sk with s0 ∈ S0, sk ∈ S, and γ (si, si+1) for 0 ≤ i < k. If ψπ

k is
unsatisfiable, we can conclude that no error state is reachable in k steps or less
along π. Finally, we can define ψk =

∧
π ψ

π
k and use it to check all paths.

Understanding Programming Bugs in ANSI-C Software 131

3 EZProofC Method

This section describes the main steps of the EZProofC method1 which aims to
explore the counter-examples generated by the ESBMC model checker, in such
a way that it can generate a new instantiated code to reproduce the errors. It is
important to emphasize here that we could adopt any BMC tool.

Figure 1 shows an overview of our proposed method. The EZProofC method
consists of the following steps: (i) code preprocessing; (ii) model checking with
ESBMC; (iii) generation of a new instantiated code; and (iv) code execution and
confirmation of defects.

Uncrustify

ESBMC

No Counterexample

With Counterexample

Verification

OK

NOK

Out_P1

Out_P2

For each property

Counterexample
Reader

 Code
Instantiation

Execution

Compilation

Output

Report

C Code

Preprocessed
Code

Preprocessing

First Step Second Step

Third Step

Fourth Step

New C Code

Data

Start

Finish

Fig. 1. Flow structure of the proposed method

To explain the main steps of our proposed method, we use the application
Sendmail2, in particular, the code tTflag arr two loops bad.c extracted from
the Verisec3 benchmark suite, which is the the standard Unix mail (SMTP)
server. This code has 64 lines of code and aims to parse a string of digits into
two signed integers.

3.1 First Step: Code Preprocessing

In the first step, the analyzed code is preprocessed using the tool UNCRUS-
TIFY4 that will preprocess the code, as show in Figure 2, to define a standard
formatting to improve the presentation of the formatting items such as: inden-
tation, block delimiters, one command per line, delineation of structures, and
other formatting aspects. This preprocessing step allows a better identification
of structures contained in the code, facilitating its handling and making it easier
to implement the next steps. It is important to note that Figure 2 presents just
a fragment from the original code.
1 Available at https://sites.google.com/site/ezproofc/
2 Available at http://www.sendmail.org
3 Available at http://se.cs.toronto.edu/index.php/Verisec_Suite
4 Available at http://uncrustify.sourceforge.net

https://sites.google.com/site/ezproofc/
http://www.sendmail.org
http://se.cs.toronto.edu/index.php/Verisec_Suite
http://uncrustify.sourceforge.net

132 H. Rocha et al.

1 #define INSIZE 14
2 int main (void){
3 unsigned char in [INSIZE+1] ;
4 unsigned char c ;
5 int i , j ;
6 int i dx i n = 0 ;
7 . . .
8 /∗accumulate l a s t (in t) from in (char []) ∗/
9 c = in [i dx in] ;

10 i f (c == ‘− ’)
11 {
12 i =0;
13 i d x i n++;
14 c = in [i d x i n] ;
15 whi l e ((‘ 0 ’ <= c) && (c <= ‘9 ’))
16 {
17 j = c − ‘0 ’ ;
18 i = i ∗ 10 + j ;
19 i dx in++;
20 c = in [i dx in] ;
21 }
22 }
23 }

Fig. 2. C code fragment already pre-processed

3.2 Second Step: Model Checking with ESBMC

In the second step, we use the ESBMC to verify the properties that are violated in
the code. ESBMC divides the verification in two levels: In the first level, ESBMC
determines which properties might be violated by means of preliminary static
analysis (using abstract interpretation), for determining program locations that
potentially contain an error (these properties are called claims). It is worth to
note that claims are automatically generated by ESBMC. Due to the imprecision
of the static analysis, there is the need to go the second level, that is, ESBMC has
to confirm that these claims are indeed genuine errors by using a more complete
and accurate verification technique (it is important to emphasize that during
the verification, ESBMC adopts the program slicing technique [14]).

The verification result may be classified in two ways: the code was checked
and there is no counter-example (i.e., the property was verified but no error has
been found up to the given bound k) and the code was verified and there is a
counter-example (i.e., a property violation has been found, as shown in Figure 3)
which presents the violation of the property “idx in<15” identified in the code
fragment shown in Figure 2 (line 20). Additionally, for the verification process,
ESBMC has an Eclipse plug-in, 5 which allows the user to locate the variable
in the counter-example directly in the analyzed code. To explain clearly each
proposed step, we decided to analyze one specific claim as shown in line 20 of
Figure 2.

The property “idx in<15” has been violated due to the fact that in the array
index in the variable idx in exceeds the upper bound of the array in as defined
in line 3 (in[INSIZE+1]) of Figure 2, where INSIZE is defined with the value 14.
5 Available at http://www.eclipse.org

http://www.eclipse.org

Understanding Programming Bugs in ANSI-C Software 133

Counterexample:

(......)

State 55 file line function main thread 0

--

pre_tTflag_arr_two_loops_bad::main::1::c=45 (00101101)

State 58 file line function main thread 0

--

pre_tTflag_arr_two_loops_bad::main::1::idx_in=9 (00000000000000000000000000001001)

State 59 file line function main thread 0

--

pre_tTflag_arr_two_loops_bad::main::1::c=48 (00110000)

State 96 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line function main thread 0

--

pre_tTflag_arr_two_loops_bad::main::1::j=3 (00000000000000000000000000000011)

State 97 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line function main thread 0

--

pre_tTflag_arr_two_loops_bad::main::1::i=33 (00000000000000000000000000100001)

State 98 file ccode.pre/pre_tTflag_arr_two_loops_bad.c line function main thread 0

--

pre_tTflag_arr_two_loops_bad::main::1::idx_in=15 (00000000000000000000000000001111)

State 93 file line function main thread 0

--

pre_tTflag_arr_two_loops_bad::main::1::c=51 (00110011)

Violated property:

file ccode.pre/pre_tTflag_arr_two_loops_bad.c line 20 function main

array `in' upper bound

idx_in < 15

VERIFICATION FAILED

ccode.pre/pre_tTflag_arr_two_loops_bad.c

ccode.pre/pre_tTflag_arr_two_loops_bad.c

ccode.pre/pre_tTflag_arr_two_loops_bad.c

ccode.pre/pre_tTflag_arr_two_loops_bad.c

9

13

14

17

18

19

20

Fig. 3. Counter-example

As the loop in line 15 does not control the value of the variable idx in, in state
98 this variable receives a value greater than the upper bound of the array in,
which thus causes the UPPER BOUND violation.

3.3 Third Step: Code Instantiation

The third step is divided into two phases: analysis of counter-examples produced
in step 2 and generation of a new instantiated C code. Algorithm 1 details the
method to run both phases. The runtime complexity of this algorithm is O(n+
m), where n is the size of the analyzed C code and m is the size of the counter-
example. The inputs of this algorithm are the analyzed code (Code) and the
counter-example (CE Out). Initially, the counter-example (CE Out) is analyzed
to collect several pieces of information, such as: (1) the variables involved in the
property violation; (2) the line number where values are assigned to variables;
and (3) the specific value for each variable. This information is obtained by the
function GetValuesCEER (line 1 of the Algorithm 1) through regular expressions
applied to the counter-example file. This function returns a set that contains
data about the variables found in the counter-example (e.g., Var{vline = 9,var
= c,vvalue = 45}), the violated property (P) and the line number where the
property has been violated (line p).

In this way, the analyzed code is read (starting from line 8), as well as the
counter-example. If the line number of the variable identified in the counter-
example is equal to the line number of the analyzed code we can generate a new

134 H. Rocha et al.

Input: Code, CE Out
Output: New instantiated code
// first phase

Var,P,line p ← GetValuesCEER(CE Out);1

SCE ← {Var{vline,var,vvalue},P,line p};2

size ← GetTotalLineCE(SCE[Var[]]);3

Lines, tline ← GetValuesCode(Code);4

SCode ← {Lines{ }, tline};5

UPCASE ← {Set of specific cases for counter-example data collection};6

i, k ← 1;7

// second phase

while i ≤ SCode[tline] do8

if i == SCE[Var[vline[k]]] AND k ≤ size then9

if SCE[P] OR SCE[Var[vvalue[k]]] ∈ UPCASE then10

New Line ← StartTrigger(SCE[P], SCE[Var[vvalue[k]]]);11

WriteLineCode(New Line); k ← k + 1;12

end13

else14

New Line ← “SCE[Var[var[k]]] = SCE[Var[vvalue[k]]]”;15

WriteLineCode(New Line); k ← k + 1;16

end17

end18

else19

WriteLineCode(SCode[Lines[i]]); i ← i + 1;20

end21

end22

Algorithm 1: Counterexample2NewCode

line of code; where the identified variable receives the value abstracted from the
counter-example (e.g., the following values of the variables gathered from the
counter-example line = 9, var =c and value = 45 result that the variable
New Line (in line 15) receives the text c = 45, which thus generates a new
line). Importantly, the instantiation of the variables in the new code is strictly
executed according to the sequence in the counter-example. For instance, if the
same variable in the counter-example is mentioned multiple times in the same
line (for example, in loops), only the last value found in the counter-example
will be assigned to the variable in the instantiated code.

Improving the counter-example data collection, the proposed method may
require a separate approach for some specific cases, where it is applied to the
verification step of the EZProofC method (see Section 3.2) or triggered by the
analysis of the counter-example. Line 10 of the Algorithm 1 checks whether
the property or a variable in the counter-example is in a set of specific cases
already predefined (line 6 variable UPCASE). Thus, if there is some specific case
in the counter-example that has been identified, the proper approach is applied
by the adoption of the function StartTrigger in the line 11, as following:

(i) When the violation of a property is identified and there is not enough in-
formation about the counter-example, it is necessary to use in the verifica-
tion step with ESBMC, particularly in smaller code, the option --no-slice

Understanding Programming Bugs in ANSI-C Software 135

which does not remove unused equations of the program for generating the
counter-example. Another way to diversify the values of variables, and hence
the result in the counter-example, is to apply non-deterministic values to
them, e.g. a[0]=nondet int();

(ii) In some specific cases, the violation of the property UPPER BOUND can
generate a counter-example without the data about the upper bound of the
array. In this case, the method firstly identifies the array name and, through
the analysis of the code, it can collect the upper bound. This procedure is
accomplished by two elements: the first is the function NUM OF(arr) to get
the array size; and the second element is an assert that will contain the
result of the function NUM OF(arr) and the index value of the array that was
identified in the counter-example, thereby the structure of the assert will be
the following assert((N)<=NUM OF(arr)−1), where N is the index value,
that will be adopted to validate the bound of the array;

(iii) Considering dynamic memory allocation violations, the proposed method has
to analyze: (1) if the pointer is referencing to the correct object; (2) if the
pointer points to an invalid object; (3) if the object considered is a dynamic
object; and (4) the argument of a free function call if in the deallocation
procedure is still a valid pointer value. The aim of this analysis is to obtain
a right assertion about the property identified.

The second phase of this third step from the EZProofC method aims to generate
a new instantiated code. The method only makes a copy of the original code (in
line 20 of the Algorithm 1), and replaces variables assignments using the specific
values identified in phase one (in line 12 or 16). In the case of properties such as
UPPER BOUND or LOWER BOUND, the proposed method includes assertions in the
instantiated code to reproduce the error, as mentioned before in line 11 about
the triggers in the analysis of the counter-example. Such assertions contain data
from the property identified in the counter-example. The final result of this step
is an instantiated C code with the values of variables that are extracted from the
counter-example, as shown in Figure 4. It is worth noting that in the counter-
example (see Figure 3), the property violated was UPPER BOUND, and the data
was “idx in<15”. In this case, in line 20 of Figure 4, the proposed method has
included an assertion in order to reproduce the error.

In particular, in this example it is obvious that the assertion will fail. This is
because the previous instruction assigns exactly a value that contradicts the as-
sertion. However, it is worth observing that this assignment comes directly from
the counter-example, implying that there is a situation where this assignment
happens in one of the execution paths.

3.4 Fourth Step: Code Execution and Confirmation of Errors

In the third step of this method, we generate one instantiated program for each
property violated. In this fourth step, each instantiated code is compiled and
executed. The result of the execution demonstrates the error (Line:20:main:
Assertion & ‘idx in<15’ failed. Aborted) pointed out by the counterex-
ample.

136 H. Rocha et al.

1 #define INSIZE 14
2 int main (void){
3 unsigned char in [INSIZE+1] ;
4 unsigned char c ;
5 int i , j ;
6 int i dx i n = 0 ;
7 . . .
8 /∗accumulate l a s t (in t) from in (char []) ∗/
9 c =45 ; //<− by EZProofC

10 i f (c == ‘− ’)
11 {
12 i =0 ;
13 i d x i n = 9 ; //<− by EZProofC
14 c =48 ; //<− by EZProofC
15 whi l e ((‘ 0 ’ <= c) && (c <= ‘9 ’))
16 {
17 j =3 ; //<− by EZProofC
18 i =33 ; //<− by EZProofC
19 i dx in = 15 ; //<− by EZProofC
20 a s s e r t (i dx in <15); //<− by EZProofC
21 c =51 ; //<− by EZProofC
22 }
23 }
24 }

Fig. 4. C code already instantiated

4 Experimental Results

This section describes the planning, design, execution, and the analysis of the
results of an empirical study conducted with the purpose of evaluating the
proposed method when applied to the verification of standard ANSI-C bench-
marks and, additionally, a comparison with the tool Frama-C6 [4] version Boron-
20100401. Frama-C is a suite of tools dedicated to the analysis of software written
in C. Frama-C makes it possible to observe sets of possible values for the vari-
ables of the program at each point of the execution. Frama-C also allows verifying
that the source code satisfies a provided formal specification. The specifications
can be written in a dedicated language, in this case, ANSI/ISO C Specification
Language (ACSL).

The experiments were conducted on an Intel Core 2 Duo CPU, 2Ghz, 3GB
RAM with Linux OS. The proposed method was implemented in a tool called
EZProofC using the ESBMC v1.16 model checker.

4.1 Planning and Design the Experiments

The goal of this empirical evaluation is to analyze the impact of the proposed
method with the purpose of confirming the properties reported by the model
checker as possible errors in the code. This confirmation is based on the number
of properties (claims) reported by the model checker, which should be confirmed
by the proposed method.

6 http://frama-c.com/

http://frama-c.com/

Understanding Programming Bugs in ANSI-C Software 137

In order to evaluate the proposed method, we considered 211 ANSI-C pro-
grams from six different benchmarks selected with the aim to evaluate the ca-
pacity and performance of methods and techniques in the identification of errors.
Moreover, such ANSI-C programs from these standard benchmark suites repre-
sent real implementations. The adopted benchmarks were: (i) EUREKA7 which
contains programs that allow us to assess the scalability of the model checking
tools on problems of increasing complexity. It is worth observing that some of
the programs represent more than one execution, with different input data. For
instance, the program bubble sort1 13.c represents 13 instances (from 1 to 13)
of the program bubble sort.c. The program prim4 8.c represents 5 instances
(from 4 to 8) of the program prim.c; (ii) SNU8 which contains C programs
used for worst-case execution time analysis, where such programs are mostly of
numeric analysis and DSP (Digital Signal Processing) algorithms; (iii) WCET9

which, in the same way as SNU, contains programs used for worst-case exe-
cution time analysis; (iv) NEC10 which contains C programs that allow us to
check error-detection easily since they provide ANSI-C programs with and with-
out known errors; (v) Siemens (SIR11) which is a test suite for lexical analyzer,
pattern matching and (vi) some ANSI-C programs taken from the CBMC (C
bounded model checker) tutorial 12.

During this empirical evaluation, each program of the benchmark was exe-
cuted using 3 methods: (1) Application of the EZProofC method (see Section 3),
i.e., code preprocessing, identification of claims, verification, analysis of counter-
examples, and code instantiation; (2) Application of the tool Frama-C with the
option -val, which means that the value analysis plug-in is called in such a
way that it computes automatically variation domains for the variables of the
program. This plug-in is used to infer absence/presence of runtime errors; and
(3) Application of the tool Frama-C with the plug-in Jessie, which is a plug-
in that allows deductive verification of C programs annotated with ACSL [2].
The verification conditions (VC) are verified by the Z3 theorem prover 13, which
is the same standard theorem prover used by the ESBMC model checker. In
this way the tool Frama-C was executed as: frama-c -jessie -jessie-atp=z3
<file.c>, where <file.c> is the C code that will be verified.

4.2 Experiment’s Execution and Results Analysis

After executing the benchmarks, we obtained the results shown in Table 1, where
each column of this table means: (1) the application identification (ID), (2) the
C program name and, additionally, in some cases, the range of instances, e.g.,
7 http://www.ai-lab.it/eureka/bmc.html
8 http://www.cprover.org/goto-cc/examples/snu.html
9 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

10 http://www.nec-labs.com/research/system/systems SAV-website/

benchmarks.php
11 http://sir.unl.edu/portal/index.html
12 http://www.cprover.org/cbmc/doc/manual.pdf
13 http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://www.ai-lab.it/eureka/bmc.html
http://www.cprover.org/goto-cc/examples/snu.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
http://sir.unl.edu/portal/index.html
http://www.cprover.org/cbmc/doc/manual.pdf
http://research.microsoft.com/en-us/um/redmond/projects/z3/

138 H. Rocha et al.

file1 13.c, meaning that there are 13 instances, from 1 to 13. In Table 1 the
programs from 1 to 16 come from the EUREKA benchmark, from 17 to 19 come
from the CBMC tutorial, program 20 comes from the NEC benchmark, from 21
to 22 come from the SNU benchmark, program 23 comes from WCET bench-
mark, and program 24 comes from SIR benchmark; (3) the lines of code - LOC
(#L); (4) the amount of identified warnings (#W) and the execution time (TW)
of the Frama-C with the value analysis plug-in; (5) the total number of proper-
ties (or claims) that may be violated (#P), the execution time of the properties
identification spent by ESBMC and EZProofC (TC), the execution time of the
verification of all properties spent by ESBMC (TV), total number of proper-
ties that have been violated and reproduced using the EZProofC method (#V),
and the number of lines in the counter-examples (CE); and (6) the number of
properties found in common (Same Claims & Warnings) between the EZProofC
(claims) and the Frama-C (warnings).

It is important to note that for programs with several instances, the num-
ber of violated properties presented is that of the highest instance value. Ad-
ditionally, in case of programs with more than one instance, the number of
lines in the counter-examples (#CE) and properties found in common (Same
Claims & Warnings) is respectively the largest counter-example found and
the largest number of properties found in common. The results of the

Table 1. Details related to the execution time of the benchmarks

Module #L
Frama-C EZProofC/ESBMC Same Claims
#W TW #P TC TV #V CE & Warnings

1 bf5 20.c 49 6 <1s 33 <1s <60s 0 - 0

2 bubble sort1 13.c 51 2 <1s 25 <1s <15s 0 - 0

3 fibonacci1 13.c 25 1 <1s 1 <1s <1s 0 - 0

4 init sel sort1 13.c 54 2 <1s 25 <1s <15s 0 - 0

5 minmax1 13.c 19 6 <1s 9 <1s <3s 0 - 0

6 minmax unsafe1 13.c 19 6 <1s 9 <1s <4s 1 16 0

7 n k gray codes1 13.c 45 36 <1s 22 <1s <120s 0 - 11

8 no init bubble sort safe1 13.c 25 2 <1s 14 <1s <7s 1 32 1

9 no init sel sort1 13.c 41 5 <1s 25 <1s <15s 12 144 3

10 no init sel sort safe1 13.c 28 5 <1s 14 <1s <7s 1 32 3

11 no init sel sort unsafe1 13.c 28 5 <1s 14 <1s <7s 1 32 3

12 prim4 8.c 79 12 <1s 30 <1s <60s 0 - 3

13 selection sort1 13.c 54 2 <1s 25 <1s <15s 0 - 0

14 strcmp1 13.c 15 4 <1s 6 <1s ≈14400s 3 80 0

15 sum1 13.c 21 1 <1s 1 <1s <1s 1 48 0

16 sum array1 13.c 11 1 <1s 7 <1s <3s 1 8 0

17 assert unsafy.c 15 4 <1s 1 <1s <1s 1 24 0

18 bound array.c 16 2 <1s 10 <1s <10s 1 30 1

19 division by zero.c 32 3 <1s 1 <1s <1s 1 24 1

20 ex26.c 29 4 <1s 8 <1s ≈420s 2 1236 1

21 crc det.c 125 1 <1s 15 <1s ≈840s 0 - 1

22 select det.c 122 3 <1s 39 <1s ≈14400s 3 40 1

23 cnt nondet.c 139 0 <1s 16 <1s <1s 0 - 0

24 Siemens print tokens2.c 508 90 <1s 51 <1s ≈18000s 1 3344 34

Understanding Programming Bugs in ANSI-C Software 139

application of the proposed method, as well as the EZProofC tool are available
at https://sites.google.com/site/ezproofc/.

As shown in Table 1, the EZProofC method is scalable to any code and
counter-example size, since the complexity of the proposed method algorithm
is O(n+m). The execution time of EZProofC is thus linear, even when consid-
ering different code sizes, as we can see in the experiments’ execution time.

One could argue that the selected benchmarks may not represent well all the
possible scenarios for applying the proposed method, mainly when taking into
account the programs size in terms of LOCs. However, as an example consider
the experiment with the program 20 from Table 1, which has only 29 LOCs but
it was the one that produced some of the largest counter-examples, in this case
1236 lines. Note further that this counter-example has a trace that shows all
the variables, as well as the assignments included in a specific execution (i.e.,
including loops) that will result in the violation of the property that has been
identified by ESBMC (i.e., unwind of a specific execution of the program). The
drawback of the EZProofC tool is that it relies on the scalability of the adopted
model checker, since it depends only on it to generate the counter-examples.
Apart from that, the proposed method is able to scale to large sizes of counter-
examples, in this case, from 8 up to 3344 lines. However, we believe that the
limiting factor on the size of the counter-example is far beyond this.

Analyzing the Frama-C tool with the value analysis plug-in, it is important
to emphasize that the results about warnings (in the column #W) are very
effective, providing the user with a good support to explore the code that has
been analyzed. However, such warnings were not only about safety properties,
but involved analysis of the structures of the code (e.g., return of functions). This
partly explains why the number of properties between the EZProofC (claims)
and the Frama-C (warnings) (column Same Claims & Warnings of Table 1) are
rather different.

The Frama-C tool also allows the use of other plug-ins, for instance, the plug-
in Jessie, which aims to perform deductive verification of C programs not using,
in this case, static analysis. The C program does not need to be complete nor an-
notated to be analyzed with the Jessie plug-in [10]. However, in the experiment
conducted, Jessie plug-in did not find any property violation, i.e., no error was
found, even though Frama-C pointed out several warnings. Jessie plug-in also
allows to prove that C functions satisfy their specification as expressed in AN-
SI/ISO C Specification Language (ACSL). We understand that the verification
of Frama-C could be improved by writing such specifications on the analyzed C
code. However, the inclusion of such specifications may be hard and error-prone,
especially for legacy code. Therefore, if we compare the use of Frama-C/Jessie
and the EZProofC, we argue that a great advantage of EZProofC is not requiring
such auxiliary specifications. EZProofC is a completely automatic method that
does not need to write specifications, and neither preconditions and postcondi-
tions. Additionally, in the case of the Frama-C, the user has to act explicitly to
reproduce the error using the computed values.

140 H. Rocha et al.

In these experiments some situations need to be pointed out about the appli-
cation of the EZProofC method.

– In program 20 from Table 1, EZProofC identified properties of safety point-
ers and dynamic memory allocation (POINTER OFFSET and SAME-OBJECT).
The property identified was UPPER BOUND and the data was !(2 * y +
POINTER OFFSET(x) >= 200) || !(SAME-OBJECT (x, &b[0])). However, af-
ter handling all information (see Section 3.3), this resulted only in the fol-
lowing assertive (2*y + x >= 200) || (x != b).

– Program 24 is considered the golden version code (i.e., the supposed correct
version). Taking into account that this code is very large, and requires a
significant amount of memory, the verification was performed in a function-
by-function basis. Particularly, we checked the function get token. The error
identified in this code is the UPPER BOUND violation of array buffer, which
is declared with the upper bound of 80. However, based on the proof of the
error, it is noticed that the index of this array, the variable i, exceeded the
upper bound, causing the violation of property i < 81, in the same way as
identified in the work of Cordeiro et.al. [6].

We have shown that the manipulation of the counter-example is not always a triv-
ial task. During the experiments, we obtained relatively large counter-examples
(e.g., 3344 lines). However, the application of our proposed method decreases sub-
stantially the complexity of this task, i.e., the EZProofC solves the problem in less
than 1s (without the verification step with the model checker), to manipulate a
large amount of data, variables and their values. It is important to emphasize the
need for verifying each property (claims) identified in the analyzed code. This is
because these properties do not necessarily correspond to errors, but these are only
potential failures. This is the reason by which the number of properties identified
in Table 1 is greater than or equal to the number of errors reproduced.

5 Related Work

In the technical literature, there are several tools and methods for analysis of
counter-examples and debugging code for error-proof. Many studies have ad-
dressed this problem (e.g. [4], [7], [9], [13]), that aim to find the root cause of a
failure in the model, and propose automated means of extracting more informa-
tion about the model, facilitating the debugging process.

Ji et al. [9] present a software debugger used for finding errors in C programs.
In the same way, EZProofC aims to demonstrate errors found by BMCs. The
difference is that our technique tests the system exhaustively for verifying that
a given property is part of the model. Additionally, BMCs run the code symbol-
ically, that is, they do not test programs with fixed entry values, but create a
mathematical model of the program [1]. Debuggers, however only evaluate execu-
tion paths that were defined according to the input variables. Thus, a debugger
will not exhaustively test the state space of the analyzed code.

Taghdiri and Jackson [13] propose a counter-example guided refinement of
an abstraction to check programs written in any programming language that

Understanding Programming Bugs in ANSI-C Software 141

supports procedure declarations and can be translated to logical constraints. In
the same way as our work, they propose a “validity check”, where the validity of
each behavior in the counter-example is checked in the original program. They
use a SAT solver, and our work uses ESBMC that adopts an SMT solver. Never-
theless, if the counter-example is invalid they propose to adopt a “specification
inference”, that is, the specification is not provided by the user but automati-
cally inferred from the code. In our opinion, the drawback of such method is the
limited applicability since they target to solve only structural properties, i.e.,
properties that constrain the configuration of the heap after the execution of a
procedure.

Astrée14 [7] is a completely automatic analyzer that aims to prove the absence
of run time errors (RTE) in C programs. The design of Astrée is based on ab-
stract interpretation, which is a formal theory of discrete approximation. Astrée
analyzes structured C programs, with complex memory usages, but without dy-
namic memory allocation and recursion. It also excludes union types, unbounded
recursive functions calls, and the use of C libraries. In the same way as Astrée,
the EZProofC aims to produce a correctness proof for complex software without
any false alarm (or spurious counter-examples). However, EZProofC differs from
Astrée in the sense that the proposed verification is made by a bounded model
checker which provides support for structures not supported by Astrée.

6 Conclusions and Future Work

The main purpose of this paper is to help developers not familiar with formal
verification techniques to use a model checker tool to find failures in the soft-
ware and to verify that such errors may happen. We described a method called
EZProofC that aims to contribute as a complementary technique to the verifica-
tion performed by BMCs. Specifically, we have used the ESBMC tool, which is a
state-of-the-art symbolic context bounded model checker. Basically, our method
proposes to automate the gathering and manipulation of the counter-example
generated by ESBMC in order to reproduce the identified error.

The experimental results have shown to be very effective over publicly avail-
able benchmarks. In this case, we could reproduce all failures encountered by
the adopted BMC tool. On the one hand, we demonstrate that EZProofC has
some advantages, when compared to Frama-C, mainly because EZProofC can
automatically reproduce the identified property violation, through the genera-
tion of a instantiated code. On the other hand, the Frama-C requires the user
to act explicitly to demonstrate the error using computed values.

We noticed that due to the state space explosion problem, the user may ask
to the BMC to adopt simplifications in the model (e.g. function-by-function
verification). In some situations, this can lead to spurious results, i.e., a counter-
example may not truly characterize an error. In this way, we want to investigate
the inclusion of additional data during the phase of new instantiated code gen-
eration in order to demonstrate the verification (with such simplifications). For

14 http://www.astree.ens.fr/

http://www.astree.ens.fr/

142 H. Rocha et al.

instance, in the case of verifying a program function-by-function, we need to
include the values of variables that are dependent on other functions other than
the function being verified. Additionally, we intend to extend our experiments
to evaluate the usability of the proposed method. We also plan to adapt the pro-
posed method to use other model checkers (Blast [3] and Java PathFinder [8])
that rely on other abstraction techniques. We think that the adjustment will be
in most part on regular expressions, which was the way we implemented data
gathering and new code generation.

Acknowledgement. The authors acknowledge the support granted by FAPESP
process 08/57870-9, CAPES process BEX-3586/10-3, and by CNPq processes
575696/2008-7, and 573963/2008-8.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.:

ACSL: ANSI/ISO C Specification Language. In: CEA LIST and INRIA (2009),
http://frama-c.cea.fr/acsl.html

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast: Applications to software engineering. Int. J. Softw. Tools Technol. Transf.
(STTT) 9, 505–525 (2007)

4. Canet, G., Cuoq, P., Monate, B.: A Value Analysis for C Programs. In: Intl. Conf.
on Source Code Analysis and Manipulation (SCAM), pp. 123–124 (2009)

5. Cordeiro, L., Fischer, B.: Verifying Multi-threaded Software using SMT-based
Context-Bounded Model Checking. In: Intl. Conf. on Software Engineering (ICSE),
pp. 331–340 (2011)

6. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Check-
ing for Embedded ANSI-C Software. IEEE Transactions on Software Engineering
(TSE) 99 (2011), http://eprints.ecs.soton.ac.uk/22291/

7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

8. Havelund, K.: Java PathFinder, A Translator from Java to Promela. In: Dams,
D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, p. 152.
Springer, Heidelberg (1999)

9. Ji, J.H., Woo, G., Park, H.B., Park, J.S.: Design and Implementation of Retar-
getable Software Debugger Based on GDB. In: Intl. Conf. on Convergence and
Hybrid Information Technology (CHIT), vol. 1, pp. 737–740 (2008)

10. Marché, C., Moy, Y.: Jessie plugin tutorial. In: INRIA (2010),
http://frama-c.com/download/jessie-tutorial-Carbon-20101201-beta1.pdf

11. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: CETS: Compiler Enforced
Temporal Safety for C. SIGPLAN Notes 45, 31–40 (2010)

12. Schlich, B., Kowalewski, S.: Model checking C source code for embedded systems.
Int. J. Softw. Tools Technol. Transf. (STTT) 11, 187–202 (2009)

13. Taghdiri, M.: Inferring Specifications to Detect Errors in Code. In: Intl. Conf. on
Automated Software Engineering (ASE), pp. 144–153 (2004)

14. Tip, F.: A survey of program slicing techniques. Journal Programming Lan-
guages 3(3) (1995)

http://frama-c.cea.fr/acsl.html
http://eprints.ecs.soton.ac.uk/22291/
http://frama-c.com/download/jessie-tutorial-Carbon-20101201-beta1.pdf

MULE-Based Wireless Sensor Networks:
Probabilistic Modeling and Quantitative Analysis

Fatemeh Kazemeyni1,2, Einar Broch Johnsen1,
Olaf Owe1, and Ilangko Balasingham2

1 Department of Informatics, University of Oslo, Norway
2 The Intervention Center, Oslo University Hospital, Oslo, Norway

Abstract. Wireless sensor networks (WSNs) consist of resource-con-
strained nodes; especially with respect to power. In most cases, the re-
placement of a dead node is difficult and costly. It is therefore crucial to
minimize the total energy consumption of the network. Since the major
consumer of power in WSNs is the data transmission process, we consider
nodes which cooperate for data transmission in terms of groups. A group
has a leader which collects data from the members and communicates
with the outside of the group. We propose and formalize a model for data
collection in which mobile entities, called data MULEs, are used to move
between group leaders and collect data messages using short-range and
low-power data transmission. We combine declarative and operational
modeling. The declarative model abstractly captures behavior without
committing to specific transitions by means of probability distributions,
whereas the operational model is given as a concrete transition system
in rewriting logic. The probabilistic, declarative model is not used to
select transition rules, but to stochastically capture the result of apply-
ing rules. Technically, we use probabilistic rewriting logic and embed our
models into PMaude, which gives us a simulation engine for the combined
models. We perform statistical quantitative analysis based on repeated
discrete-event simulations in Maude.

1 Introduction

Formal methods traditionally consider qualitative properties of models such as
various correctness properties. However, many communities (additionally) ex-
pect quantitative analysis results, which can be difficult to obtain for such
models. In contrast, approaches based on probability distributions over possible
transitions are able to provide numerical results; for example, the probability of
reaching a certain state with a given probability for message loss. Probabilistic
rewrite theories [17] form a semantic framework for system specification which
is capable of specifying both nondeterministic and probabilistic behaviors of sys-
tems, extending rewriting logic [21]. Probabilistic rewrite theories can be used
instead of traditional rewrite theories to model networks with different proba-
bilistic and nondeterministic behaviors. The execution of models given as prob-
abilistic rewrite theories can be simulated using the Maude rewriting tool [6],
which allows tool-supported analysis.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 143–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 F. Kazemeyni et al.

In this paper, we apply a combination of operational specifications of behavior,
given as a transition system, with declarative specifications, given by probability
distributions, using probabilistic rewrite theories. Abstract declarative specifica-
tions are used to underspecify behavior when it is difficult to predict the exact
behavior of the model in terms of specific transitions, whereas operational spec-
ifications are used otherwise. This way, the probability distributions are not
associated with the choice of transitions rules, but rather with the outcome of
applying transitions. Combining declarative and operational specifications as a
means for underspecification can in some cases remove oversimplifying assump-
tions from the operational model; this makes the resulting specifications more
realistic while they can still be analyzed using quantitative techniques. Using
Maude to simulate the basic behavior of models given as probabilistic rewrite
theories, we apply a statistical quantitative analysis method based on discrete-
event simulation, in order to obtain numerical results about the combined model.

The proposed modeling approach is illustrated by a case study in the do-
main of underwater wireless sensor networks (UWSNs). WSNs consist of small
nodes with sensing, computing, and communication devices, which collabora-
tively monitor and collect data from the environment. Resource limitations in
WSNs raise the importance of efficient communication protocols among sensor
nodes. Especially, limitations of energy resources need to be considered in order
to improve the longevity of the nodes [26]. Data transmission is expensive with
respect to power, therefore, the management of communication between nodes is
an important factor for network power efficiency. In UWSNs [7], communication
uses acoustic data transmission through water. Due to its acoustic nature, trans-
mission costs more power than in usual WSNs, and message loss may occur. One
approach to UWSNs is Mobile Ubiquitous LAN Extension (MULE) systems [29].
A (data) MULE is a mobile object, such as a vehicle with large and replaceable
energy resources. A MULE system consists of a three-tier architecture: (i) sensor
nodes, in the lower level, which gather data; (ii) mobile agents as MULEs, in the
middle level, which move around in the network area and collect nodes’ data
using single-hop short range transmission; and (iii) access points or sink nodes,
in the upper level, which receive the data from the MULEs. MULEs move inde-
pendently from the sensors, and in most cases randomly or following predefined
paths. The MULE architecture is an energy efficient solution for data gathering
in WSNs that is also scalable and flexible with respect to the network size [3].

This paper develops a probabilistic model that is a combination of declarative
and operational models for data collection in a MULE-based WSN, extending a
grouping protocol introduced in [16]. In this protocol sensor nodes form groups,
using coalitional game theory, in order to save energy in the network. A group
has a selected node called leader which is responsible for receiving data from
the group members and for communication with the outside of the group. To
further improve energy efficiency, MULEs gather the data from group leaders.
We model MULEs by using a probability distribution of the MULEs’ locations
in order to abstractly model their movement and the rate of message loss. We
combine this declarative specification of MULE-based communication with an

MULE-Based Wireless Sensor Networks 145

operational model of the grouping protocol in rewriting logic [21], and use the
Maude tool [6] to simulate the stochastic behavior of the resulting model. Com-
bining a series of Maude simulations, we obtain numerical insight about the
behavior of this protocol. The numerical results show that using the grouping
protocol is beneficial to MULE-based WSNs with respect to energy conservation.

Related Work. Protocol validation is mostly done with simulation-based tools,
using NS, OMNeT+. Formal analysis techniques are much less explored in the
development and analysis of WSNs, but start to appear. Among automata-based
techniques, the TinyOS operating system has been modeled as a hybrid automa-
ton [9] and UPPAAL has been used for analyzing the LMAC protocol [11] and
the temporal configuration parameters of radio communication [30]. A recent
process algebra for active sensor processes includes primitives for, e.g., sens-
ing [8]. Ölveczky and Thorvaldsen show how a rich specification language like
Maude is well-suited to model WSNs, using Real-Time Maude to analyze the
performance of the OGCD protocol [24].

In this paper, we use probabilistic rewrite theories [17] as the formal mod-
eling language and the Maude tool to develop a grouping protocol for MULE-
based WSNs that exhibit probabilistic behavior, building on a protocol proposed
in [16], which applies coalitional game theory but does not consider message loss
and probabilistic modeling. From the modeling point of view, PRISM [19] is
another probabilistic modeling language that comes with probabilistic model-
checking and quantitative analysis tools [18]. Some process algebraic approaches
to modeling, verification, and analysis of probabilistic models are the PEPA [13]
and EMPA [5] frameworks, the Probabilistic KLAIM coordination language [25],
and the Stochastic π calculus [27]. PMaude, the probabilistic extension of Maude,
is a rewrite-based modeling language. PMaude offers a natural way to describe
the structures considered in Stochastic CLS, so from a modeling perspective, it
is more suitable for our purpose. In contrast to PRISM, PMaude cannot ver-
ify quantitative properties. The VeStA [28] tool, which support both PMaude
and PRISM, fails when running as big state spaces as we have in our model.
As a solution, we take Maude extended with probabilistic rules, using sam-
pling from given distributions, and add a tailor-made external layer producing
quantitative results by repeated probabilistic simulations. Consequently, we do
not perform stochastic model checking as VeStA offers, but our analysis can
provide some quantitative information as well as diagrams of attribute values
during one simulation and the average of the values of different simulations,
which are important for understanding and comparing a protocol’s efficiency.
The Real-Time Maude approach [24] has also been combined with probabilistic
model-checking to analyze the LMST protocol [15]. They use VeStA to perform
statistical model checking, while in our approach, a probabilistic rewrite theory
is used to build the combined declarative and operational model with a simple
discrete time model. The PVeStA tool [31] is a client-server-based paralleliza-
tion of VeStA. The CaVi tool combines simulation in Castalia with probabilis-
tic model-checking [10]. There are some works that follow the same approach
as ours, but in different fields. For instance, the authors of [4] use stochastic

146 F. Kazemeyni et al.

abstraction and model checking for the communication system of the airplanes.
We work on the higher layers of the network and use rewriting logic for our
analysis, in contrast to the BIP toolset that is a component-based framework.

Different aspects of UWSNs have recently been studied. In [7] several research
challenges in this area are discussed, while [26] provides an overview of network-
ing protocols for UWSNs. Recent studies on the energy conservation in WSNs
are surveyed in [3]. Cluster-based protocols have been studied in some research
such as [22], which proposes a cluster-based routing protocol for UWSNs, re-
gardless of the nodes’ locations. A well-known work related to energy efficiency
of WSNs is LEACH [12], a cluster-based protocol that uses randomized rotation
of local cluster-based stations to distribute the energy load among the sensors.
MULEs have not only been used in UWSNs, but also for other kinds of WSNs,
see, e.g., [14]. We combine a MULE-based architecture and grouping of nodes,
in order to increase the energy efficiency of WSNs.

Paper Overview. Section 2 summarizes probabilistic rewrite theories. Section 3
describes the grouping protocol in MULE-based sensor networks, and Section 4
introduces our declarative model of MULE-based communication. Section 5 de-
scribes the proposed formal model, while the methods for statistical quantitative
analysis are introduced in Section 6. The paper ends with Section 7, containing
the conclusions and suggested future work.

2 Probabilistic Rewrite Theories and PMaude

Rewriting logic (RL) extends algebraic specification techniques with transition
rules: The dynamic behavior of a system is captured by rewrite rules supple-
menting the equations which define the term language. A rewrite theory is a
tuple (Σ,E,L,R) where the signature Σ defines the function symbols, E defines
equations between terms, L is a set of labels, and R is a set of labeled rewrite
rules. Rewrite rules apply to terms of given sorts. Sorts are specified in (member-
ship) equational logic (Σ,E). When modeling computational systems, different
system components are typically modeled by terms of suitable sorts defined in
the equational logic. The global state configuration is defined as a multiset of
these terms. From a computational viewpoint, a rewrite rule t −→ t′ may be
interpreted as a local transition rule allowing an instance of the pattern t to
evolve into the corresponding instance of the pattern t′. Formal models defined
in rewriting logic [21] are executable in Maude [6]. Maude provides a tool frame-
work that includes tools such as a reachability analyzer, an LTL model checker,
and InVa (invariant model checker for infinite state-spaces).

Probabilistic rewrite theories form a general semantic framework for the spec-
ification of systems with both nondeterministic and probabilistic behavior [17].
In [17] it is shown that probabilistic rewrite theories represent a unifying seman-
tic framework, i.e., that certain mappings exist between several different proba-
bilistic modeling formalisms and probabilistic rewrite theories. This framework is
an extension of rewrite theories [21], capturing the evolution of a system through
a series of conditional probabilistic rewrite rules with the syntax

MULE-Based Wireless Sensor Networks 147

t(
x) −→ t′(
x,
y) if cond(
x) with probability
y := π(
x), (1)

where
x,
y are sets of variables and t(
x), t′(
x,
y) are terms in an algebra of
fully simplified terms, with respect to a membership equational theory and a
collection of structural axioms [21]. Also, cond(
x) is a condition that needs to be
met for the rewrite (1) to take place and π is a probability distribution over a
set of substitutions for
y, possibly depending on the variables
x of the term t(
x).
Such rules are nondeterministic, as the variables
y in their right-hand side do
not also appear in the left-hand side. The notation := in (1) can be understood
as a standard let expression in functional languages, allowing us to specify the
probability distribution which the variables
y follow.

PMaude is introduced in [1] as a specification language for general proba-
bilistic rewrite theories. In general, probabilistic rewrite rules such as (1) are
nondeterministic, as the variables
y in their right-hand side do not appear in the
left-hand side, rendering them nonexecutable in Maude. However, Maude can be
used to simulate a PMaude specification, provided that all variables
y in rules
like (1) are replaced with actual values sampled from the probability distribution
π(
x). Thus, the executable Maude conditional rewrite rules have the form

t(
x) −→ t′(
x,sampleFromPi(
x)) if cond(
x),

where sampleFromPi(
x) is an operation that samples from the probability
distribution π in (1). The same paper [1] introduces a technique, namely an
Actor PMaude module, which can be used to create executable PMaude spec-
ifications that are free from any source of nondeterminism. This is achieved by
considering the current state of the system as a multiset of objects and mes-
sages, in which, time is made explicit through a global floating point value. In
an executable PMaude specification all rewrite rules are scheduled to execute at
random moments of time, with the interval between two consecutive executions
following an exponential probability distribution. Recall that the exponential
distribution has cumulative distribution function F (x) = 1− e−λx, where λ ∈ R

is called the rate parameter. As shown in [1], a stochastic time model can be im-
plemented in the following manner: A Configuration is the sort of the state
of a subsystem, to which the rewrite rules typically apply. In order to handle
scheduling of the concurrent objects, time is added to the global configuration
of the system, and the sorts execution mark and scheduled execution mark are
added as subsorts of Configuration.
subsort Time ExecMark ScheduledExecMark < Configuration .
op time: Float → ExecMark .
op execute : Oid → ExecMark .
op [_,_] : Float ExecMark → ScheduledExecMark .

Here, Oid is the sort of object identifiers. The scheduled execution marks form
the main ingredient of the stochastic time model introduced in [1], making it
possible to quantify and resolve nondeterminism. A tick operation then makes
the system evolve by unwrapping the scheduled execution marks into unsched-
uled ones and rendering exactly one object active. Config is the sort of the

148 F. Kazemeyni et al.

global system, obtained from terms of sort Configuration by adding a pair
of curly brackets:
op tick : Config → Config .
op {_} : Configuration → Config .

The motivation for having a global configuration sort is that, in order to specify
the scheduling mechanism, the whole current configuration of the model must be
considered. The semantics of the tick operation follows that of Actor PMaude
[1], selecting the next object for execution in chronological order:
op tickAux : Float ExecMark Configuration → Config .
var CF : Configuration . vars T T’ : Float . vars E E’ : ExecMark .

eq tick({[T, E] CF}) = tickAux(T, E, CF) .
eq tick({CF}) = {CF} [owise] .
ceq tickAux(T, E, [T’,E’] CF) = tickAux(T’, E’, [T,E] CF) if T’ < T .
eq tickAux(T, E, CF time(T’)) = {E CF time(T)} [owise] .

Here, owise equations are used only when no other equations apply and ceq
indicates conditional equations. The global system configuration will contain
exactly one time object time(T). Execution marks of form execute(O) are
added to the left-hand sides of all rewrite rules for an object O, as well as sched-
uled execution marks of form [T+δ,execute(O)] to their right-hand side, in
order to make the new subconfiguration active at a later time, after a random
interval of time δ has passed, following an exponential probability distribution
with some fixed rate parameter, in our case 0.1. The random length of this inter-
val is generated using a Maude operation denoted sampleExpWithRate (see
Section 5). In the current implementation, the rates corresponding to the expo-
nentially distributed waiting times of all scheduled execution marks are equal to
0.1. However, these rates can be given different values for each sensor, to simu-
late different sensor processor speeds. The tick rule { CF } −→ tick({ CF }),
used when CF contains no execution mark, is built into our analysis through the
script producing quantitative results. The tick rule advances time T and creates
an execution mark.

3 Grouping Nodes in MULE-Based Sensor Networks

In WSNs, when a large number of sensor nodes are placed in the environment,
neighbor nodes may end up being very close to one another. In this case, the
transmission power level for communication with a neighbor can be kept low
by using short-range multi-hop communication. Since nodes can cooperate to
transmit data, multi-hop communication in sensor networks is expected to con-
sume less energy than traditional single-hop communication [2]. Furthermore,
multi-hop communication can effectively overcome some signal propagation ef-
fects experienced in long-distance wireless communication.

Grouping is a method of cooperation between nodes, to transfer data, in which
nodes belong to distinct groups [20]. Each group has a leader ; i.e., a node which
is responsible for receiving data from the group members to route it to the sink,
and also for communicating with other leaders. Outside the group, nodes always

MULE-Based Wireless Sensor Networks 149

use their maximum transmission power. Instead, by cooperating with the group
members, nodes can use their minimum transmission power to reach the group
leader, and consequently decrease the power consumed for communication inside
the group. There are different approaches to group formation. The grouping can
be done based on distance. For better grouping, other factors such as signal
interference may also be considered. We use the grouping algorithm based on
coalitional game theory proposed in [16], considering the grouping problem for
WSNs as a coalitional game, in which the sensor nodes are the players and the
game is concerned with whether a node should join a group or not, as well as
which group is more beneficial to join. By using this algorithm, sensor nodes in
our model can find a suitable group to join after each movement. In the model,
nodes move to different locations according to a predefined set of movements.

4 A Declarative Model of MULE-Based Communication

In WSNs, nodes gather data from the environment and transmit them to sink
nodes using data messages. We consider an extension of the grouping protocol
in [16], in which nodes send messages to their group leaders and MULEs are
responsible for moving around leaders to collect these messages and transmit
them to sink nodes, in order to decrease the overall energy consumption of
the network. Leaders always use their minimum power to communicate with
MULEs. Also, nodes can send data messages at different rates. In general, it
is better for the network to have a fair message propagation, in which nodes
have equal message transmission rates, as it causes fair distribution of the power
consumption in the network. Thus, in order to model the propagation of data
messages, we assume that the next node to send a data message is selected
uniformly from the set of all sensor nodes. According to this distribution, at
each time tick, a node can send a data message with the same probability as
the other nodes, namely 1/N where N is the number of nodes in the network.
Single nodes communicate directly with the MULE using the maximum amount
of power Pmax. However, the nodes which belong to groups can send their data
messages to the group leaders using minimum power Pmin, and the leaders will
send them to the MULE through short range communication.

Besides the modeling of data messages, the movements of MULEs are modeled
using an abstract probabilistic approach to underspecify their concrete move-
ments. The general assumption is that the MULE’s movement is either random
or mostly predefined [29]. Thus, we do not attempt to model a MULE’s specific
movements, but rather assume that the MULE always moves around the leader
nodes, to increase the chance of successfully receiving messages. More precisely,
Fig. 1 shows the type of probability density that we assume for locating the
MULE at different coordinates. In this example, we considered three leaders at
positions (2, 3), (10, 6), and (4, 9). This probability is equal to the probability of
successful message transmission between a data MULE and a leader. Outside the
communication range of the leaders, the probability density breaks down to a
small constant value (in our case study 0.02). Figure 2 shows a two-dimensional

150 F. Kazemeyni et al.

Fig. 1. Three-dimensional plot of the probability density function fX,Y (x, y) giving the
probability of successful message transfer between a MULE found at position (x, y) and
one of the leaders

density plot of the probability of successful message transfer between a data
MULE found at polar coordinates (r, θ) with respect to a leader which is the
pole of the polar coordinate system. The darker gray towards the center of the cir-
cle indicates higher values of the probability density function, while lighter gray
indicates lower values. Notice from this diagram how the distance r between the
leader and the MULE is calculated, as well as the angle θ between them. We may
write

Fig. 2. Two-dimensional plot of
the probability density function

P = c

l∑
i=1

Wi, (2)

where c ∈ R is a normalizing constant and
Wi ∈ R is a weight corresponding to the
chance of the MULE to be in the commu-
nication range of leader i ∈ {1, 2, . . . , l}. We
suggest to define this weight through the fol-
lowing formula

Wi =
∫ 2π

0

∫ Rmaxi

0

wi(θ, r) dr dθ, (3)

with the intuition that the value wi(r, θ) ∈ R

corresponds to the chance of successful communication between leader i and the
MULE, where the polar coordinates of the MULE are given by (r, θ) ∈ [0,+∞)×
[0, 2π) and considering that the leader is the pole of the polar coordinate system.
Thus, the double integral in (3) calculates the “accumulated” weight associated
with the leader i over the interior of the circle centered at i, with radius equal
to Rmaxi, the communication range of i. The energy consumption of the leader

MULE-Based Wireless Sensor Networks 151

i, necessary to communicate with the MULE at a distance r > 0, is directly
proportional to r2 [23]. By making the natural assumption that the probability
pi of successful communication between i and the MULE is inversely proportional
to the consumed energy, we obtain that pi is inversely proportional to the squared
distance r2, which is the same order of magnitude as (1+r)2. We prefer the latter
expression since 1/(1 + r)2 is well-defined for all r ≥ 0, while 1/r2 is undefined
for r = 0. Thus, we consider the weight function

wi(r, θ) =
1
2π

· 1
(1 + r)2

(4)

where the factor 1/(2π) corresponds to the assumption that there is an equal
chance for the MULE to be located at any angle θ ∈ [0, 2π] around the leader i.
In this case, we obtain a closed form expression for the weight Wi in (3):

Wi =
∫ 2π

0

∫ Rmaxi

0

dr dθ
2π(1 + r)2

=
Rmaxi

1 +Rmaxi
(5)

The signal range of each node is limited by its transmission power Pi. Fol-
lowing [23], the maximum distance Rmaxi where the MULE can still receive
messages from node i, using transmission power Pi, is given by Rmaxi =

√
Pi.

When using the grouping protocol, we assume that Pi denotes the minimum
receiving power of leader i, otherwise we assume that it corresponds to its max-
imum receiving power. Replacing the maximum distance Rmaxi by

√
Pi in (5),

we obtain the following expression for the weight Wi:

Wi =
√
Pi

1 +
√
Pi

(6)

The constant c > 0 is calculated such that (2) holds, i.e., c = P /
(∑l

i=1Wi

)
,

which allows us to define the probability pi = cWi, where pi ∈ [0, P], for the
MULE to be in the range of leader i and to successfully communicate with it.
We use these probabilities to model the behavior of the MULE when receiving or
dropping messages. The main advantage of using probability distributions is that
we obtain an abstract view of the MULE and ignore unnecessary details about
the actual movements of the MULE vehicle and its physical communication with
the sensors. In addition, our probabilistic approach for message propagation and
MULE movement allows us to collect useful quantitative information for network
analysis. Using discrete-event simulation, we obtain data related to the behavior
of the network and to the amount of lost messages. Furthermore our model is
flexible, i.e., it is easy to reuse it for different network configurations and MULE
scenarios by just replacing the probability distribution in our model with another
suitable distribution. In this sense, our formalism can be used as a framework
for testing different MULE scenarios and algorithms.

In this paper, we used probabilistic rewrite theories [17] to model our grouping
protocol, the propagation of data messages and also to model MULE behaviors.
The next section describes how we can use this formalism to model the grouping
protocol, while also incorporating probabilistic information.

152 F. Kazemeyni et al.

5 Combining Declarative and Operational Models

In this section, we define a formal model of our proposed protocol in probabilistic
rewriting logic. Our assumptions are: messages do not expire, and the number of
nodes in the network is fixed, although they may move. The network is defined
as a system configuration, a multiset of objects and messages, allowing the spec-
ification of local rules, for example to send data messages, as well as global rules,
such as those used in the object scheduling mechanism. Following rewriting logic
conventions, whitespace denotes the associative and commutative concatenation
operator for configurations. The term 〈O : Node | leader : L, rpow : E, pow :
P, buf : B 〉 denotes a Node object, where O is the object identifier, L its leader,
E the remaining power, P the power capability, and B the message buffer.

As in [16], unicast messages have the form (M from O to O’) where M is
the message’s body (possibly with parameters), O the source and O’ the desti-
nation. A message will not reach its destination unless it is within the node’s
transmission range. Multicasting is modeled by allowing a set of destinations and
equations which expand the destination set. Wireless broadcasting uses messages
(M from O to all) where all is a constructor indicating that the message
is sent to all nodes within range. We abstract from the actual data content of
messages, and use a constant value for the message content.

In sensor networks, data is sensed from the environment continuously, and
it should be transferred to the sink node. This process starts as soon as the
network starts running and continues until all nodes run out of energy. Message
passing is modeled by rewrite rules that can be applied at any time while the
system is running, either during the grouping process or afterwards. These rules
nondeterministically apply to enabled nodes in the network, so the nodes have
an equal chance to pass messages to other sensor nodes.

If the selected node is a member of a group, then this node sends the data
message to its group leader, using minimum power. Otherwise, it will send the
message directly to the MULE, using maximum power. Fig. 3 describes the main
MULE-based message passing rules in our model. The other rules in our model,
such as those related to the underlying grouping protocol, are described in [16].

The MsgFromNode rule shows the message generated by a node. In this rule,
time(T) is the current time, while Pmin and Pmax are defined by two equations
that calculate minimum and maximum transmission power of nodes based on a
value P, specific to each node, which we call the power capability.

The leaders transfer the data messages which they have received from their
group members to the MULE. Rule MsgFromLeader represents the nondeter-
ministic selection of one of the leaders that will pass the data message to the
MULE. When a leader receives a data message from a node, it saves the message
in its buffer buf. As soon as the buffer becomes full, the leader sends all mes-
sages to the MULE. This sending is modeled by means of a function sendAll,
defined by two equations, which gives immediate sending of all messages in the
buffer, since equations represent timeless actions in rewriting logic. In the rule,
Prec(P) is defined by an equation calculating the power that a specific node
consumes to receive a message, based on its power capability P.

MULE-Based Wireless Sensor Networks 153

rl [MsgFromNode]: 〈O : Node | leader: L, rpow: E, pow: P 〉 execute(O) time(T)
−→ if (L 	= nil)
then 〈O: Node | leader: L, rpow: E-Pmin(P), pow: P 〉 (msg from O to L)
else 〈O: Node | leader: L, rpow: E-Pmax(P), pow: P 〉 (msg from O to "MULE") fi
[T+sampleExpWithRate(0.1), execute(O)] time(T).

rl [MsgFromLeader]: (M from O’ to O) execute(O) time(T)
〈O : Leader | rpow: E, pow: P, buf: B 〉
−→ if #B+1≥Buffersize
then sendAll(〈O: Leader | rpow: E-Prec(P), pow: P, buf: push(B,M) 〉)
else 〈O : Leader | rpow: E-Prec(P), pow: P, buf: push(B,M) 〉 fi
[T+sampleExpWithRate(0.1), execute(O)] time(T).

rl [MuleReceiveMsg]: (M from O’ to "MULE") time(T) execute("MULE")
〈"MULE" : MULE | RecMsg: B, NumOfLostMsg: Y 〉
−→ if sampleBerWithP(probability)
then 〈"MULE": MULE | RecMsg: B, NumOfLostMsg: (Y+1) 〉
else 〈"MULE": MULE | RecMsg: push(B,M), NumOfLostMsg: Y 〉 fi
[T+sampleExpWithRate(0.1), execute("MULE")] time(T).

eq sendAll(〈O: Leader | buf: empty 〉) = 〈O: Leader | buf: empty 〉 .
eq sendAll(〈O: Leader | rpow: E, pow: P, buf: push(B,M) 〉) =
(M from O to "MULE") sendAll(〈O: Leader | rpow: E-Pmin(P), pow: P, buf: B 〉).

Fig. 3. Rules for MULE-based communication. Each rule considers an object ready
for execution, and reschedules the object using sampling. Irrelevant node attributes
are omitted. Buffer operations include the constructor push and # for length. As in
Maude, we assume multiset matching. Variables are capitalized. msg is here a constant.

The MULEs move and gather data messages which are sent by leaders or sin-
gle nodes. The movement of the MULE causes some message loss, captured by
the probability distribution of successful message passing (cf. Section 4). By us-
ing this probability distribution, we abstract from the movement of the MULE.
In our model, every message sent to the MULE is received with a probabil-
ity calculated by Equation 6 in Section 4, otherwise the message is lost (i.e.,
removed from the system configuration). Rule MuleReceiveMsg represents this
process, with the probability variable giving the actual probability of suc-
cessfully receiving a data message; i.e., pi = cWi, as defined in Section 4. The
sampleBerWithP operation samples from the Bernoulli distribution; i.e., it
returns true with a given probability p and false with probability 1− p.

We assume that a MULE transmits all the received messages to the sink. So
in our model, there is no need for additional rules capturing the communication
between the sink and the MULE. Further details about modeling the grouping
and the routing protocols in rewriting logic can be found in [16]. In the present
work, we extended all of the rules in the cited work to probabilistic rewrite
rules, as well as added new equations. The validation of the group membership
protocol can be achieved by using Maude’s model checking tools. In [16], Maude’s
search tool has been applied to verify the correctness of the grouping protocol.

154 F. Kazemeyni et al.

Fig. 4. The remaining energy of a node Fig. 5. The remaining energy of a leader

6 Quantitative Analysis of the Combined Model

This section proposes an approach to obtain quantitative results by guiding and
monitoring Maude simulations. The basic idea is to control the run of the Maude
model and monitor the system configuration at each tick. The desired data is ex-
tracted from the configuration, including numerical data stored inside each node.
After the simulations, all the data extracted from the model is gathered and an-
alyzed. To automate this process, we have implemented a Python script which
extracts quantitative information from a system configuration of our model by
parsing the configuration after the application of each tick rule, and extracting
numerical data as queried by the user. This way, the script gathers data resulting
from the application of a specified number of ticks. Finally, the script analyzes
the data and provides a plot diagram showing the graph of a given system pa-
rameter against time. In addition, several simulations of the Maude model can be
combined, producing a graph which averages the data obtained from each sim-
ulation. More precisely, we use a modified linear interpolation procedure that is
able to precisely combine data from a set of graphs.

Thus, we used Maude to simulate our model of MULE-based WSNs, driven
by the grouping protocol proposed in [16]. Our topology contains a MULE and
two groups of six nodes each. Each node starts with 1000 units of energy. In the
beginning of the model execution, the nodes start sending data messages. During
the execution, they can move and join a new group. We capture the remaining
energy of each node at every tick of the simulation, as well as the number of sent
and received messages. We ran simulations for two distinct scenarios; namely,
when the WSN uses the grouping protocol vs. when it does not. Our purpose is to
compare the energy consumption of the nodes and the leaders, in each scenario.
In addition, in order to obtain a better understanding of the network’s efficiency,
we define an efficiency factor F with the following expression F = 1

LM

∑N
n=1En,

where N is the total number of sensor nodes, En is the remaining energy of node
n and LM is the total number of messages that the MULE has lost. The efficiency

MULE-Based Wireless Sensor Networks 155

Fig. 6. The graphs of the F factor (for 6 nodes), when the MULE-based WSN is using
(dashed line) and when it is not using the grouping protocol (solid line)

factor F represents a ratio between the energy consumption and the message
loss in the network. More efficient networks, in terms of energy consumption
and performance in message delivery, have higher values of F .

Figures 3 and 4 show the saved energy of a sensor node and of a leader,
respectively, in a MULE-based WSN with (dashed line) and without (solid line)
using the grouping protocol. We have also calculated the value of the F factor for
a run, as the average of 5 simulations, and displayed the results in Fig. 6, in the
case when the WSN uses the grouping protocol, as well as when it does not. By
comparing the two graphs in Fig. 6, we observe a considerable improvement in
the efficiency of the network when the grouping protocol is running. To generate
each of the graphs, we ran 5 simulations (each simulation lasting for 1000 ticks).

7 Conclusion

This paper applies a combination of declarative and operational specification,
using a probabilistic approach for underspecification in the operational model.
Technically, this is achieved using the framework of probabilistic rewriting logic
and PMaude. We demonstrate the approach on a grouping protocol for MULE-
based WSNs and show how the declarative specification provides an abstract and
flexible solution to model both fair message passing and underspecified MULE
behavior in WSNs. Furthermore we use a statistical method for quantitative
analysis of Maude models, which provides useful data sets and graphs for net-
work analysis and performance evaluation of protocols. The obtained numerical
results allow the energy efficiency of the network to be compared, with and
without using the considered protocol. We have shown that using the grouping
protocol improves the energy efficiency of the network. The particular choice of

156 F. Kazemeyni et al.

parameter values used in the probabilistic modeling is based on our preliminary
experience, and can easily be readjusted to fit better with reality. The approach
taken provides a framework for further experimentation.

In future work, we intend to build on our current Maude model as well as
to extend it, to capture real-time aspects of WSNs. Furthermore, we plan to
subject our model to statistical model checking, to be able to statistically prove
the correctness of large models. It is known that, due to their huge state space, it
is practically impossible to verify such models using traditional model checking
techniques. We also plan to make an integration of our current Maude imple-
mentation with the VeStA/PVeStA tool, which allows for probabilistic rea-
soning via statistical model checking and statistical quantitative analysis. Using
VeStA, we would be able to verify the statistical correctness of the protocol
proposed in this paper, as well as to make more precise quantitative analysis.

Acknowledgment. We would like to thank Lucian Bentea for his contribution
to this paper, and in particular for his help with the implementation.

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based Specification Language
for Probabilistic Object Systems. ENTCS 153(2), 213–239 (2006)

2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)

3. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in
wireless sensor networks: A survey. Ad Hoc Networks 7(3), 537–568 (2009)

4. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical abstraction
and model-checking of large heterogeneous systems. Software Tools for Technology
Transfer 14(1), 53–72 (2012)

5. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Sci-
ence 202(1-2), 1–54 (1998)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

7. Dario, I.A., Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor
networks: Research challenges. Ad Hoc Networks 3(3), 257–279 (2005)

8. Dong, J.S., Sun, J., Sun, J., Taguchi, K., Zhang, X.: Specifying and Verifying
Sensor Networks: An Experiment of Formal Methods. In: Liu, S., Araki, K. (eds.)
ICFEM 2008. LNCS, vol. 5256, pp. 318–337. Springer, Heidelberg (2008)

9. Ergen, S.C., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with
hybrid automata modelling. In: Proc. 1st ACM Int. Workshop on Wireless Sensor
Networks and Applications, pp. 98–104 (2002)

10. Fehnker, A., Fruth, M., McIver, A.K.: Graphical Modelling for Simulation and
Formal Analysis of Wireless Network Protocols. In: Butler, M., Jones, C., Ro-
manovsky, A., Troubitsyna, E. (eds.) Fault Tolerance. LNCS, vol. 5454, pp. 1–24.
Springer, Heidelberg (2009)

11. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and Verification of the LMAC
Protocol for Wireless Sensor Networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

MULE-Based Wireless Sensor Networks 157

12. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: Proc. 33rd Hawaii Int.
Conf. on System Sciences, vol. 8, p. 8020 (2000)

13. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

14. Jain, S., Shah, R.C., Brunette, W., Borriello, G., Roy, S.: Exploiting mobility for
energy efficient data collection in wireless sensor networks. Mobile Networks and
Applications 11(3), 327–339 (2006)

15. Katelman, M., Meseguer, J., Hou, J.C.: Redesign of the LMST Wireless Sensor
Protocol through Formal Modeling and Statistical Model Checking. In: Barthe,
G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer,
Heidelberg (2008)

16. Kazemeyni, F., Johnsen, E.B., Owe, O., Balasingham, I.: Grouping Nodes in Wire-
less Sensor Networks Using Coalitional Game Theory. In: Hatcliff, J., Zucca, E.
(eds.) FMOODS/FORTE 2010. LNCS, vol. 6117, pp. 95–109. Springer, Heidelberg
(2010)

17. Kumar, N., Sen, K., Meseguer, J., Agha, G.: Probabilistic Rewrite Theories: Uni-
fying Models, Logics and Tools. Technical report UIUCDCS-R-2003-2347, Dept. of
C. S., Univ. of Illinois at Urbana-Champaign (2003)

18. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the proba-
bilistic model checker PRISM. ENTCS 153(2), 5–31 (2006)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Model Check-
ing for Performance and Reliability Analysis. ACM SIGMETRICS Performance
Evaluation Review 36(4), 40–45 (2009)

20. Lloret, J., Palau, C.E., Boronat, F., Tomás, J.: Improving networks using group-
based topologies. Computer Communications 31(14), 3438–3450 (2008)

21. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

22. Muhammad, A., Azween, A.: Dynamic cluster based routing for underwater wire-
less sensor networks. In: ITSim 2010, 3 (June 2010)

23. Noori, M., Ardakani, M.: A probabilistic lifetime analysis for clustered wireless
sensor networks. In: Proc. WCNC 2008, pp. 2373–2378 (2008)

24. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
retical Computer Science 410(2-3), 254–280 (2009)

25. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic Linda-Based Coordination
Languages. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2004. LNCS, vol. 3657, pp. 120–140. Springer, Heidelberg (2005)

26. Pompili, D., Akyildiz, I.F.: Overview of networking protocols for underwater wire-
less communications. IEEE Communications Magazine 47(1), 97–102 (2009)

27. Priami, C.: Stochastic π-calculus. Computer Journal 38(7), 578–589 (1995)
28. Sen, K., Viswanathan, M., Agha, G.: VESTA: A Statistical Model-checker and

Analyzer for Probabilistic Systems. In: Proc. 2nd Int. Conf. on the Quantitative
Evaluation of Systems (QEST 2005), USA, p. 251 (2005)

29. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: Modeling a three-tier
architecture for sparse sensor networks. In: IEEE SNPA, pp. 30–41 (2003)

30. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of QoS properties of
biomedical sensor networks. In: Int. Conf. on Embedded Software, pp. 69–78 (2008)

31. AlTurki, M., Meseguer, J.: PVeStA: A Parallel Statistical Model Checking and
Quantitative Analysis Tool. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011)

Mechanized Extraction of Topology

Anti-patterns in Wireless Networks

Matthias Woehrle1, Rena Bakhshi2, and Mohammad Reza Mousavi1,3

1 Embedded Software Group, Delft University of Technology, The Netherlands
m.woehrle@tudelft.nl

2 Vrije Universiteit Amsterdam, Department of Computer Science, The Netherlands
rbakhshi@few.vu.nl

3 Eindhoven University of Technology, Eindhoven, The Netherlands
m.r.mousavi@tue.nl

Abstract. Exhaustive and mechanized formal verification of wireless
networks is hampered by the huge number of possible topologies and the
large size of the actual networks. However, the generic communication
structure in such networks allows for reducing the root causes of faults
to faulty (sub-)topologies, called anti-patterns, of small size. We pro-
pose techniques to find such anti-patterns using a combination of model-
checking and automated debugging. We apply the proposed technique on
two well-known protocols for wireless sensor networks and show that the
techniques indeed find the root causes in terms of canonical topologies
featuring the fault.

1 Introduction

Wireless (sensor) networks are increasingly used in critical areas such as geo-
science [4] and medicine [22], where correct and seamless operation is imperative.
Automated formal methods, in general, and model-checking, in particular, have
been used to ensure the correctness of computer systems and communication
protocols, but their application to wireless (sensor) networks is barred by the
well-known state-space explosion problem. This problem is severely intensified
in this domain due to the huge number of possible topologies (initial states) for
model-checking as well as the huge number of possible actions (next-steps) to be
taken by the numerous sensor nodes present in the protocol.

In the field of model checking, some reduction techniques such as symmetry
and partial-order reduction have been proposed in order to combat the state
space explosion problem. Nevertheless, our experiments show that even a com-
bination of the traditional techniques falls short of providing a solution for the
state spaces resulting from sizable wireless networks.

However, the generic structure of communication primitives in wireless net-
work protocols may come to the rescue: nodes of such networks work indepen-
dently, run similar or identical protocols, which are designed regardless of the size
of the network, and the protocols comprise generic and simple communication
primitives. Due this generic structure, a potential problem in a large network

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 158–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Mechanized Extraction of Topology Anti-patterns in Wireless Networks 159

should be traceable to a generic root cause, which also shows itself in an “anti-
pattern” of small size, i.e., minimal faulty sub-topologies that demonstrate the
causes of possible failures. Subsequently, the problem of model-checking large
networks (with a huge number of possible topologies) is reduced to checking a
small set of anti-patterns in large networks. For this approach to be success-
ful, the anti-patterns should canonically capture the essence of possible flaws in
the design. Moreover, these anti-patterns can then also serve as guidelines for
the network designers to make sure that the network topology never forms such
anti-patterns in its future evolutions. In this paper, we propose an approach
based on a combination of model-checking and automated debugging to find
anti-patterns. Searching for anti-patterns is a formal test-based approach; it is
sound but not complete, because the topology space is too large to be explored
exhaustively. We examine the above-mentioned approach on a number of simple,
yet typical, protocols for wireless sensor networks: a probabilistic code dissemi-
nation protocol, called Trickle [21] and a medium access control protocol, called
LMAC [28].

The contributions of this paper can be summarized as follows:

– We provide two complementary algorithms for determining and understand-
ing anti-patterns.

– We show, by means of case studies, that the detected anti-patterns can
canonically describe faults / implicit assumptions in protocol descriptions.

The structure of the paper is as follows. In Section 2 we provide an overview of
the related work. Section 3 describes our approach and its two main algorithms.
In Section 4 we describe the case studies and use them to demonstrate our
approaches. We conclude with Section 5.

2 Related Work

This paper focuses on understanding the root causes that let a protocol fail on
particular topologies. As such, our work is closely related to isolating faults in
software executions, of which the goal is to facilitate debugging by finding a min-
imal failing execution. Most prominently, delta debugging [29] uses a set of pass-
ing and failing conditions in order to efficiently uncover a small failing execution.
Complementary to our approach is the approach to explain counterexamples of
model-checking runs [6,12]. Note that we cannot generally rely on having a com-
plete set of counterexamples; some model-checking tools, such as PRISM [13],
do not provide any counter-example. For some expressive modal and temporal
logics, it is arguably questionable what the counter-example should be [8]. Addi-
tionally, as illustrated by our case studies, some topology-dependent bugs cannot
be easily understood and generalized using counter-examples, yet are easily com-
prehensible and generalizable by identifying the topology anti-pattern. Similarly,
there has been previous work on leveraging logs of sensor networks executions in
order to find root-causes of errors [18,23]. Different from these works, we work
on high-level specifications of protocols and are particularly interested in faults

160 M. Woehrle, R. Bakhshi, and M.R. Mousavi

due to specific topology patterns. Hence, in contrast to finding the exact location
in one node’s software, we analyze topological anti-patterns to understand the
root cause of a protocol failure.

Another related approach for debugging is diagnosis in general, and spectrum-
based diagnosis [1] in particular. In spectrum-based diagnosis passed or failed
executions are scrutinized and annotated with information about the execution
of each line (block or module) of code. Note that for diagnosis we do not dif-
ferentiate whether in a particular run a block caused the failure or not; we just
consider whether it is part of the whole execution. Obviously we need a differ-
ent formulation (than line of code) for debugging topologies. In particular, we
investigated using subgraph inclusions as “basic blocks” and count the specific
subgraphs included in a topology and count their occurrence in faulty and work-
ing examples. Thereby we can use the same ideas as in spectrum-based diagnosis
of software using different similarity coefficients such as the Jaccard coefficient.
Diagnosis has the advantage of only requiring a fixed set of executions, while
our methods necessitate additional model checking runs and are thus more time
intensive. However, as demonstrated by our experimental results, the results
of our algorithms are much clearer compared to the results obtained by using
spectrum-based diagnosis.

We use model-checking as a vehicle for our bug-hunting approach. Model
checking is an exhaustive and fully automatic state space exploration technique
that has been successfully applied to many academic and industrial systems [7].
However, a naive attempt for model checking wireless sensor networks is bound
to fail, due to the well-known state-space explosion problem. To overcome this
problem several techniques have been proposed to reduce the state space of such
networks, in particular: symmetry [9,14] and partial order reduction [11,25,27],
abstraction [2,17,19], and approximation [5,20], as well as domain-specific reduc-
tion techniques [16,24]. Our earlier experiments showed that, even after apply-
ing reduction techniques, model-checking networks of actual size still remains
practically infeasible. Also reducing the number of topologies using measures of
symmetry did not lead to a workable subset for networks of considerable size.
Hence, we decided to change our strategy and first find anti-patterns of small
size, which characterize possible causes for failure, and then efficiently search
for these anti-patterns in networks of larger size. Our experimental results show
that this does lead to an effective and efficient debugging procedure. In view of
the probabilistic features of our case studies, in this paper, we focus on model
checking of probabilistic models and to this end, we use PRISM [13] as our
probabilistic model-checking tool.

An alternative approach that has been used in proving correctness of wire-
less (sensor) network protocols is computer-assisted theorem proving [15]. The
advantage of this approach is that it can provide a general proof of correct-
ness under given assumptions. The disadvantage is that the assumptions under
which the protocol works correctly is not usually precisely specified and some-
times even not known to the designers. Moreover, theorem proving requires some

Mechanized Extraction of Topology Anti-patterns in Wireless Networks 161

affinity with the proof tools and the underlying mathematical theories. The
two approaches can, however, be combined by finding anti-patterns using our
approach, generalizing them and using them as assumptions (i.e., absence of
generalized anti-patterns) as proof obligations.

We use two case studies of topology-related faults in wireless sensor networks
that have been previously discussed. The Trickle protocol [21] has been shown
to be flawed in the presentation of Anquiro [24] with respect to its threshold
value for overhearing broadcast transmission. We had to make our own model
of Trickle in PRISM for our experiment, since the tool presented in [24] is not
available; however, our technique is applicable to any model-checking and au-
tomated verification, including that of [24]. The LMAC protocol [28] has been
first modeled and verified by Fehnker et al. [10] based on timed automata mod-
els using UPPAAL [3]. The authors considered a range of different topologies,
of size up to five nodes, and manually determined the causes of failures. As we
demonstrate in our case studies, our approach automatically arrives at the root
cause without necessitating manual generation of test cases nor analysis of 61
topologies.1

3 Identifying Topology Anti-patterns

The goal of this work is to detect anti-patterns : small faulty topologies that
characterize faults or implicit assumptions inherent to a particular protocol.
Once these anti-patterns are exhaustively enumerated, the problem of checking
correctness for larger designs is reduced to finding anti-patterns in them, which
is much more efficient than model checking the state space. Our approach is
inspired by the seminal work of Zeller et al. [29] on delta debugging. Similar to
delta debugging, we investigate two complementary approaches for identifying
topology anti-patterns: (i) minimization of topologies to find a set of minimal
topologies that fail and (ii) isolation of a single edge that changes a passing
topology to a failing topology.

The premise of our approaches is that we check, for a given topology, whether
the protocol model P violates the required properties φ given a certain topology
g, i. e., (P||g) �|= φ; in the present paper, we achieve this by means of model
checking. Our starting point is always a failing topology (or a set thereof) and
we search for the root cause of failures in these topologies. As we only decrease
topology sizes (and therefore state space) in our algorithms, the runs of the
model checker should always return a pass or fail answer. In case the run does not
terminate with a definite answer, we assume a passing run, since we cannot prove
the presence of a fault. Note that we assume that wireless network protocols are
designed for any type of network, i. e., protocol properties should hold invariant
of the topology. Hence, it follows that if: (P||g) �|= φ =⇒ ∀g′ ⊂ g : (P||g′) �|= φ.

1 Note that Fehnker et al. included duplicate topologies in their work. The actual
number of unique topologies of size 5 is 58.

162 M. Woehrle, R. Bakhshi, and M.R. Mousavi

3.1 Minimization

For minimization, we start with a set of topologies G, where a topology g ∈
G is a graph, i. e., g = (V,E). We focus on the set of failed runs F , i. e.,
F = {g ∈ G | (P||g) �|= φ}. Given F , we try to find a set of smallest topologies S
in order to determine anti-patterns.

Minimization Algorithm. Algorithm 1 summarizes our approach. Based on
the set of failing topologies F and using the procedure reduce, we minimize
each failing topology w. r. t. its number of (i) nodes and (ii) edges by calling the
procedure minimize. Note that this order is implied by the fact that reduction
in the number of nodes (removing all of its connected edges) is more granular
than removing a single edge.

Procedure minimize reduces the number of nodes or edges respectively. The
procedure minimize searches for subgraphs of smaller size and adapts the bound
on the topology size until decreasing the bound results in no failing topolo-
gies. We use the same procedure both for nodes and edges (parameterized by
[nodes/edges]), as they work identically, except for the generation of subgraphs
using the function sub. sub removes nodes or edges, respectively, depending
on its parameter. sub(g,n) returns all (connected) complete edge-induced sub-
graphs of graph g of order n (nodes), or size n respectively (edges). A complete
edge-induced subgraph of graph g = (V,E) is a graph g′ = (V ′, E′), V ′ ⊂ V and
E′ = {(v1, v2)|(v1, v2) ∈ E∧v1, v2 ∈ V ′}. Note that we can trivially speed up the
algorithm by memoizing calls to minimize with previously checked topologies.

The output of reduce is the set of smallest topologies S.2 As we see in the
case studies, this results in a small set of minimal topologies that may represent
the essence of the fault.

3.2 Isolation

Minimization results in a small set of graphs that (may) explain the underlying
fault of the protocol. Additional to minimization, we also perform fault isolation,
i.e., to identify the discriminating edge that lets a protocol fail. We start on the
one hand with a failing topology and on the other hand with a passing topology
and close in on the fault. Algorithm 2 presents the details of the approach: The
user provides one failing topology fin. We use as an initial passing topology a
graph with a single node that trivially satisfies requirements.3 The algorithm
relies on building the relative complement δ of the failing and the passing topol-
ogy, i. e., δ = Ef− \Ef+ , where f−, f+ are the currently smallest failing or largest
passing topology respectively. We sample from δ to shrink the failing and extend
the passing topologies, respectively, such that the new topology fnew is also a
connected graph. Please note that in this way the passing topology is always a
2 When building set S, we check that each element s ∈ S is unique modulo graph

isomorphism.
3 Depending on the protocol requirements, a larger passing topology with more nodes

may be used.

Mechanized Extraction of Topology Anti-patterns in Wireless Networks 163

Algorithm 1. Network minimization based on binary search
1: procedure reduce(P , φ, F)
2: /* input
3: P , Protocol model
4: φ, Protocol properties
5: F = {f1, . . . , fm}, Set of faulty topologies with fi = (Vfi , Efi)
6: output
7: S = {s1, . . . , sn}, Set of smallest topologies */

8: H = S = ∅
9: // Minimize faulty topologies

10: for f ∈ F do
11: H = H ∪ minimize[nodes](P ,φ, F, 1, |Vf |)
12: end for
13: for h ∈ H do
14: S = S ∪ minimize[edges](P ,φ, H, 1, |Eh| − |Vh|+ 1)
15: end for

16: return S
17: end procedure

18: procedure minimize[nodes/edges](P ,φ, T, low , high)
19: /* input
20: P , φ as before
21: T , Set of faulty topologies
22: low , high ∈ N, Upper and lower bound

23: Topology minimization using binary search */
24: if high > low then
25: middle = �(low + high)/2�
26: U = ∅
27: for all t ∈ T do
28: for all r ∈sub[nodes/edges](t,middle) do
29: if (P||r) 	|= φ then
30: U = U ∪ {r}
31: end if
32: end for
33: end for
34: if U 	= ∅ then
35: return minimize[nodes/edges](P ,φ, U, low ,middle − 1)
36: else
37: return minimize[nodes/edges](P ,φ, T,middle + 1 , high)
38: end if
39: else
40: return T
41: end if
42: end procedure

164 M. Woehrle, R. Bakhshi, and M.R. Mousavi

Algorithm 2. Fault isolation using a delta debugging strategy
1: procedure isolate(P , φ, fin)
2: /* input
3: P , Protocol model
4: φ, Protocol properties
5: fin, Faulty topology
6: output
7: f−, Smallest failing topology
8: f+, Largest passing topology */

9: f− = fin, f+ = ({0}, ∅) // Note that f+ ⊆ f−
10: // Loop until one-edge difference between f−, f+

11: while size(f− − f+) > 1 do
12: δ = Ef− \Ef+

13: fnew = f− − δ′, δ′ ⊆ δ, s.t. fnew is connected
14: if (P||fnew) 	|= φ then
15: f− = fnew

16: else
17: f+ = fnew

18: end if
19: end while
20: return f−, f+

21: end procedure

subgraph of the failing topology. If the newly created topology passes we assign
it to the currently largest passing topology f+, else it is the currently smallest
failing topology f−. Thereby, we iteratively increase/decrease the topologies un-
til they differ by a single edge. This single edge is instructive on why the protocol
fails.

3.3 Discussion

The minimization and isolation algorithm are different than the original delta
debugging formulation as graphs as relational data have a different structure
than execution traces: The difference for the minimization algorithm is that
instead of partitioning as described in delta debugging, we check all subgraphs of
a given size (w. r. t. nodes and edges). Further research is needed to investigate
different partitioning/bisection strategies, in particular how to handle the cut
set of the partitioning, and compare them with the subgraph-based approach
proposed in this work. Similarly, since we need to build a complement graph for
the isolation algorithm, it does not matter whether we grow from the passing
graph or decrease the failing graph. As such in our formulation we only remove
from the failing graph yet still approach the isolating edge from both sides.

Please note that minimized topologies also include isolation information. In a
minimal topology removing any edge will remove the fault. Since the minimiza-
tion algorithm necessitates more model checking runs evaluations than isolation,
there is a tradeoff between execution time and quality of results. Finally, we need

Mechanized Extraction of Topology Anti-patterns in Wireless Networks 165

to consider that both algorithms are heuristics. That means if we have multiple
faults in a protocol our algorithms potentially misses some of them. Since faults
are typically gradually fixed, this is not an issue. Additionally, we show in the
case studies in Sec. 4.5 that the algorithm can find the causes of multiple faults.

4 Case Studies

To demonstrate our methodology, we considered two protocols for wireless sen-
sor networks, namely, Trickle [21] and LMAC [28]. In this section, we briefly
describe each of the case studies and present the anti-patterns detected using
our approach.

4.1 Experimental Setup

We base our experiments on a set of randomly generated undirected graphs with
a dedicated sink node. We generate these graphs using the algorithm described
in Rodionov et al. [26]. Our protocols features a notion of sink (a node from
which the updates originate, see below). We run PRISM 4.0.1. All algorithms
and graph operations are performed using Python 2.7 and NetworkX 1.64. We
automatically generate PRISM models for a fixed topology of the network. Our
script takes a topology description as input, and generates the concrete PRISM
model.

4.2 PRISM

We modeled both protocols using the probabilistic model checker PRISM [13].
The model checker automatically computes precise quantitative results based on
an exhaustive analysis of a formal model. We specified the protocols in PRISM’s
state-based input language as discrete-time Markov chains (DTMCs), since they
exhibit probabilistic behavior.

In PRISM, a system consists of a set of communicating modules, each with its
local variables of the integer type. The evolution of each module is described by
a set of guarded commands of the form: [a] c → p1:e1 + . . . + pn:en;. Such
a transition consists of the predicate c on the state variable, also called a guard,
the action label a, and a probabilistic update relation pi:ei. If c evaluates to
true, then update ei is applied with the probability pi. Modules can synchronize
either on global shared variables or on common actions labels. Note that PRISM
implements CSP-style synchronization over an action label a: it requires the
participation of all modules with the common action label a simultaneously.

Once the system is specified in terms of its modules, PRISM constructs a
stochastic transition system for the composition of specified modules. Analysis
is performed through model checking such systems against properties specified
in the probabilistic temporal logic PCTL (for the DTMC model).

4 http://networkx.lanl.gov/

http://networkx.lanl.gov/

166 M. Woehrle, R. Bakhshi, and M.R. Mousavi

4.3 Verifying Trickle

Description: Trickle is a probabilistic code dissemination (maintenance) pro-
tocol. The goal of the protocol is to update all nodes with new versions of a
deployed software. The software update is first published at a sink (also called
base or root) node and is propagated among the involved nodes using a “polite
gossiping” approach.

In a nutshell, the protocol works as follows:
– Each node that hears about a new update, pulls the update from the source

and schedules an announcement to inform the new update to its neighbors.
– If prior to the announcement, the node hears at least w neighbors announc-

ing the update, it cancels its own announcement. (We call w the broadcast
parameter.)

– If a node hears a neighbor announcing an older update (than its local ver-
sion), it schedules an announcement of its own (newer) update as above.

If the network is connected, all nodes executing the Trickle protocol should
eventually receive the published update.

Implementation: We are interested in Trickle’s control flow and thus modeled
a spread of ‘the most recent update’ throughout the network, executing Trickle.
Thus, it is sufficient to use a single bit to indicate whether a node received the
update (as 1), or an older version (as 0).

Each node i is modeled as a PRISM module, maintaining local variables rcvij

for all its neighbors j. These variables indicate whether the recent update has
been received by node i from its neighbor j. Only the sink, i. e., node 0 has
a constant rcv0 with the value 1, thereby initially publishing the update. The
nodes communicate via message channels, represented by the action labels msgi,
with node i ‘broadcasting over this channel’ to all its neighbors. The broadcast
medium is implemented as an additional module broadcaster, simulating nodes
that initiate a broadcast. The module chooses the broadcasting node uniformly
at random. The node modules only wait for announcements and receive the up-
date. Our model is parameterized on the broadcast parameter w, assumed to
have value w := 3 in the following. This parameter defines an upper threshold: if
a node has heard broadcasts from w neighbors, it stops broadcasting itself. The
broadcaster has two types of transitions, a labelled command and a non-labelled
one; the node modules have only labelled commands. Each synchronization (la-
belled) command in the model is guarded by the constant w. As soon as any
node exceeds w, only non-synchronizing (local) transitions are enabled for this
node at the broadcaster module.

In our experiments, we verify whether all nodes eventually receive the recent
datum with probability 1. This can be formulated for PRISM as:

filter(forall,P ≥ 1[F(”all”)]) (1)

where the state all is specified as the conjunction for n nodes:
∧n−1

i=0

∨
j(rcvij ! =

0). Simply put, all is the state where every node i has received the recent update
rcvij ! = 0 from a neighbor j (at least once).

Mechanized Extraction of Topology Anti-patterns in Wireless Networks 167

0

1

2

3

Fig. 1. Result of minimizing Trickle

0

1

2

3

Fig. 2. Result of isolation for Trickle

Minimization Results: For Trickle, we generate a set of 50 random topologies
of order 8; in this set of topologies there are four faulty topologies. We minimize
these four topologies to a single anti-pattern that is shown in Fig. 1. In this
figure, and all other figures to come, we denote the sink node with a black circle
and the failing node with a gray circle. We can clearly see how the broadcast
parameter (set to 3), prevents the parent of the gray node to send an update.
This means that while the gray node is failing, the cause is actually due to the
fact that it has a single parent that is blocked by the broadcast parameter.

Isolation Results: We select one faulty topology and perform isolation. Fig. 2
presents the results where the dashed edge indicates the edge difference between
the passing and the failing topology. In this case the isolation algorithm merely
removes a single edge from the initial failing topology, yet grows the passing
topology to seven nodes. Although the resulting graphs feature two additional
nodes compared to the minimization result in Fig. 1, the underlying fault is
clearly visible in the differentiating edge 2. That is, adding a third predecessor
node to the (single) parent of the gray node results in a failure.

4.4 Verifying LMAC

Description: LMAC [28] is a medium access control protocol for wireless sensor
networks. LMAC is from the class of time-division multiple-access protocols: time
is segmented into (time) frames and frames are split into fixed-length time slots.
In each time slot a single node (in a given range) should have exclusive channel
access for transmission in order to avoid collisions.

The goal of the protocol is to assign time slots to nodes in a distributed
fashion. A node can then transmit its messages in the time slot it owns. For the
nodes that are within range of each other, only one node owns a given time slot,
so that only one node can transmit at a time. To limit the overall number of
time slots, LMAC allows for reuse of time slots by the nodes at a non-interfering
distance.

Nodes maintain a table of the time slot occupancy for its neighborhood. This
table is synchronized with other nodes by transmitting a short control message in
their time slots. In its time slot, a node broadcasts a bit array of slots chosen by

168 M. Woehrle, R. Bakhshi, and M.R. Mousavi

its (one-hop) neighbors and itself. When a node receives such a control message
from a neighbor, it stores the respective time slots of the two-hop neighborhood
in its table.

LMAC is initiated at a gateway node, which is the first to select a time slot
to control, and, thereafter, initiates the protocol by sending its slot occupancy
table. In the bootstrap state, i. e., after a node receives its first message, it listens
for an entire time frame to any messages from its neighbors. Based on the control
messages, nodes will determine the time slots that are currently occupied. Since
a node cannot control a time slot occupied by its one-hop and two-hop neighbors,
it randomly chooses one of the remaining time slots.

A node, that already owns a time slot, executes the protocol in three steps:

– It listens for messages during the time slots other than its own one. If the
node detects a collision, it stores the corresponding time slot in order to
notify its neighbors. This is necessary since a node cannot detect collisions it
may have caused by itself, since the radio of a sensor node cannot transmit
and listen at the same time.

– During its own time slot, the node transmits a control message, which in-
cludes the time slots it knows are occupied, and the time slots where it
detected collisions.

– If the node is notified about a collision that occurred in its time slot, it
chooses a number of time frames to wait, and proceeds to choose another
available time slot as described above.

Eventually all nodes should be able to transmit messages in their time slots,
without interfering with each others transmissions.

Implementation: We verify the time slot distribution procedure of LMAC.
Each node i is modeled as a PRISM module, which maintains several local
variables: the selected time slot own tsi, statei indicating the state node i is
in, and a time slot with detected collision col tsi. In addition, every node i
maintains an array slot tsij to record the occupancy of all time slots j.

According to the LMAC protocol and the model in [28], nodes are assumed
to be globally time synchronized. Thus, we model a global clock as a separate
module timer with the current time slot number timeslot and the current
time frame timeframe as variables. Three types of transitions of timer enable
time progress in the model: (i) the non-synchronizing transition is enabled if a
current time slot timeslot is not controlled by any node in the network, (ii)
nodes transmit and receive control messages using the labelled transition ts,
(iii) synchronization on the labelled transition decide allows nodes to select a
time slot to control. A node decides uniformly at random on a new time slot to
control (if more than one are unoccupied), and on the number of time frames to
back-off.

Our PRISM model is parameterized by t, the number of time slots in each
time frame. Note that there need to be sufficient time slots in a time frame for
a slot allocation to be feasible, e. g., at least n time slots for cliques of size n.

Mechanized Extraction of Topology Anti-patterns in Wireless Networks 169

0 0

Fig. 3. Result of minimizing LMAC

0

Fig. 4. Result of isolation for LMAC

Similar to Fehnker et al. [28], we introduced two rules in our model that were
underspecified in the informal description of LMAC5:

– a node may not select a new time slot, if it did not received a control message
from at least one of its neighbors;

– upon sending a control message to the neighbors, a node resets all array
entries tsij , except for its own controlled time slot. Thereby it propagates
only time slot information received in the recent time frame.

In our experiments with LMAC, we verify whether any two nodes i and j that
are one or two-hop neighbors will eventually proceed to choose a new time slot
if they experienced a collision. This property is expressed as follows:

filter(forall,((own tsi = own tsj)&(statei = 2)&(statej = 2))
=>P ≥ 1[F ((statei = 0)|(statej = 0))]) (2)

where statei = 2 denotes that the node i is broadcasting in the current time
slot. statei = 0 means that the node i is recording occupancy of the time slots
from control messages of its neighbors in order to select a new time slot.

Minimization Results: We run minimization on a (sub-)set of six node net-
works; in particular we choose three topologies that can be scheduled using
merely four slots (t:= 4). The minimization algorithm returns two topologies –
a four node ring and a five node ring as shown in Fig. 3. This is the optimal
(minimal) result: Rings of more than four nodes cause the LMAC property to
fail. Note that for LMAC this is not because of some parameterization of the
protocol or a specific issue with the neighborhood but an emergent detrimental
property of the protocol. If two neighboring nodes that have no common neigh-
bors end up in a collision, this collision cannot be detected by other nodes and
hence cannot be resolved.

Isolation Results: We perform isolation on one of the topologies that we used
for the minimization algorithm.6 The result is depicted in Fig. 4. We can see
here that the closing of this ring of four causes the fault. Note that we see here
one additional detail – the ring of three in the lower left is not a problem; yet a
ring of four in the upper right is.

5 Our model corresponds to model 11 in [28].
6 The faulty topology corresponds to number 29 in [28].

170 M. Woehrle, R. Bakhshi, and M.R. Mousavi

0

Fig. 5. Isolation of multiple faults

Diagnosis
Pattern

1

2
3

Fig. 6. Anti-patterns detected using
diagnosis

4.5 Handling Multiple Faults

As a final test in our case study we look at the Trickle protocol and additionally
inject an error for topologies that have a path from the sink in the graph of
at least 5 hops in order to represent a second fault that is depth or forwarding
related. Our minimization algorithm returns two topologies. One is related to
the trickle fault; it is exactly the same as the fault described in Sec. 4.3. The
other topology is a graph consisting of a chain of 6 nodes. As we can see the
results clearly indicate the two different types of faults that we inject. In contrast,
when we select a single topology and perform isolation we only investigate one
underlying cause. In this case, we consciously select a topology that is due to
both faults. As we can see in Fig. 5 isolation returns one of the two faults. In
this case we find (the simpler) depth-related inject that gets triggered by the
edge that increases the distance of the gray node to 5 hops.

4.6 Comparison to Diagnosis

In order to compare our results with diagnosis, we ran spectrum-based diagnosis
as described in Sec. 2 for the Trickle testcase using subgraphs of order 4 and 5.
We assume here a certain size of error which is reasonable, as we would start
debugging from small-size topologies. The highest ranked subgraph, which is
shown in the box in Fig. 6, is of order 5. Note that in this figure, we arrange the
graph to make the pattern contained in the box more visible. In particular, we
add a potential embedding into a larger graph outside the box just for clarifica-
tion; however, this embedding is not part of the diagnosis result. In the pattern,
the nodes on the top are not connected to a sink node. As we can see, such a
pattern does not necessarily demonstrate the core cause. Hence, these results
are not as helpful for debugging purposes as the patterns generated using the
anti-pattern approach, which clearly identifies the source of the problem.

5 Conclusions

In this paper, we presented an approach, inspired by delta debugging, to find the
root causes of failure in wireless network protocols. The causes are represented

Mechanized Extraction of Topology Anti-patterns in Wireless Networks 171

in terms of minimal topologies, called anti-patterns. We also developed another
approach inspired by fault diagnosis and showed that the approach based on
delta debugging is more effective in demonstrating the root causes of failure.

Although anti-patterns explain the faults or implicit assumptions of a proto-
col, their presence in a larger network does not necessarily lead to a failure. We
plan to extend our notion of anti-pattern to capture the boundary conditions
on the nodes, which also capture when these faults do lead to a failure in larger
topologies. We think that the isolation technique does provide additional infor-
mation that can be used in characterizing the boundary conditions under which
a fault will necessarily be triggered.

Acknowledgements. Matthias Woehrle is supported by the Dutch Technol-
ogy Foundation STW and the Technology Programme of the Ministry of Eco-
nomic Affairs, Agriculture and Innovation. The authors thank Koen Langendoen,
Tim Willemse, Wan Fokkink and the anonymous reviewers for their valuable
feedback.

References

1. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.: A practical evaluation of
spectrum-based fault localization. Journal of Systems and Software 82(11), 1780–
1792 (2009)

2. Bakhshi, R., Endrullis, J., Endrullis, S., Fokkink, W., Haverkort, B.: Automat-
ing the mean-field method for large dynamic gossip networks. In: Proc. Conf. on
Quantitative Evaluation of SysTems (QEST), pp. 241–250. IEEE Computer Soci-
ety (2010)

3. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

4. Beutel, J., Gruber, S., Hasler, A., Lim, R., Meier, A., Plessl, C., Talzi, I., Thiele,
L., Tschudin, C., Woehrle, M., Yuecel, M.: PermaDAQ: A scientific instrument
for precision sensing and data recovery in environmental extremes. In: Proc. 8th
ACM/IEEE Int’l Conf. on Information Processing in Sensor Networks (IPSN 2009),
pp. 265–276. ACM/IEEE, San Francisco, CA, USA (2009)

5. Cadilhac, M., Hérault, T., Lassaigne, R., Peyronnet, S., Tixeuil, S.: Evaluating
complex MAC protocols for sensor networks with APMC. In: Proc. Workshop on
Automated Verification of Critical Syst. (AVoCS 2006). ENTCS, vol. 185, pp. 33–
46. Elsevier (2007)

6. Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples. In: Pro-
ceedings of the 12th ACM SIGSOFT Twelfth International Symposium on Foun-
dations of Software Engineering, SIGSOFT 2004/FSE-12, pp. 73–82. ACM, New
York (2004)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
8. Clarke, E.M., Veith, H.: Counterexamples Revisited: Principles, Algorithms, Ap-

plications. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS,
vol. 2772, pp. 208–224. Springer, Heidelberg (2004)

9. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in
System Design 9(1/2), 105–131 (1996)

172 M. Woehrle, R. Bakhshi, and M.R. Mousavi

10. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and Verification of the LMAC
Protocol for Wireless Sensor Networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

11. Godefroid, P.: Using Partial Orders to Improve Automatic Verification Methods.
In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991)

12. Groce, A., Visser, W.: What Went Wrong: Explaining Counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–135. Springer,
Heidelberg (2003)

13. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-
matic Verification of Probabilistic Systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

14. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1/2), 41–75 (1996)

15. Kamali, M., Laibinis, L., Petre, L., Sere, K.: Self-recovering sensor-actor networks.
In: Mousavi, M.R., Salaün, G. (eds.) FOCLASA. EPTCS, vol. 30, pp. 47–61 (2010)

16. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation Minimisation
Mostly Speeds Up Probabilistic Model Checking. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)

17. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-Valued Abstraction for
Continuous-Time Markov Chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

18. Khan, M.M.H., Le, H.K., Ahmadi, H., Abdelzaher, T.F., Han, J.: Dustminer: trou-
bleshooting interactive complexity bugs in sensor networks. In: SenSys 2008: Pro-
ceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pp.
99–112. ACM, New York (2008)

19. Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for markov
decision processes. In: Proc. Conf. on Quantitative Evaluation of SysTems (QEST),
pp. 157–166. IEEE Computer Society (2006)

20. Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de Rougemont, M.: Prob-
abilistic abstraction for model checking: An approach based on property testing.
In: Proc. IEEE Symp. on Logic in Comput. Sci. (LICS 2002), pp. 30–39. IEEE
Computer Society (2002)

21. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. In: Proceedings of
the 1st Conference on Symposium on Networked Systems Design and Implemen-
tation, vol. 1, p. 2. USENIX Association (2004)

22. Lorincz, K., Chen, B.-R., Challen, G.W., Chowdhury, A.R., Patel, S., Bonato, P.,
Welsh, M.: Mercury: a wearable sensor network platform for high-fidelity motion
analysis. In: Proc. ACM Conf. on Embedded Networked Sensor Systems, SenSys
2009, pp. 183–196. ACM, New York (2009)

23. Khan, M.M.H., Abdelzaher, T., Gupta, K.K.: Towards Diagnostic Simulation in
Sensor Networks. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishna-
machari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 252–265. Springer, Heidel-
berg (2008)

24. Mottola, L., Voigt, T., Österlind, F., Eriksson, J., Baresi, L., Ghezzi, C.: Anquiro:
enabling efficient static verification of sensor network software. In: Proc. ICSE
Workshop on Software Engineering for Sensor Network Applications (SESENA),
pp. 32–37. ACM, New York (2010)

Mechanized Extraction of Topology Anti-patterns in Wireless Networks 173

25. Peled, D.: All From One, One For All: on Model Checking Using Representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Hei-
delberg (1993)

26. Rodionov, A.S., Choo, H.: On Generating Random Network Structures: Trees. In:
Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.,
Zomaya, A.Y. (eds.) ICCS 2003, Part II. LNCS, vol. 2658, pp. 879–887. Springer,
Heidelberg (2003)

27. Valmari, A.: A Stubborn Attack on State Explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

28. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for
wireless sensor networks: Reducing preamble transmissions and transceiver state
switches. In: Proc. Workshop on Networked Sensing Systems (INSS), pp. 205–208.
Society of Instrument and Control Engineers, SICE (2004)

29. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28, 183–200 (2002)

A Proof Framework for Concurrent Programs

Leonard Lensink, Sjaak Smetsers, and Marko van Eekelen

ICIS, Radboud University Nijmegen, The Netherlands
{l.lensink,s.smetsers,m.vaneekelen}@cs.ru.nl

Abstract. This paper presents a proof framework for verifying concur-
rent programs that communicate using global variables. The approach
is geared towards verification of models that have an unbounded state
size and are as close to the original code as possible. The bakery algo-
rithm is used as a demonstration of the framework basics, while the (full)
framework with thread synchronization was used to verify and correct
the reentrant readers writers algorithm as used in the Qt library.

1 Introduction

Parallelism has been employed for many years, mainly in high-performance com-
puting. The physical constraints preventing an unlimited growth in processor
speed have led to a revival of interest in concurrent computing. Parallel comput-
ing has become a dominant paradigm in computer architecture, particularly for
multi-core systems [13].

Parallel computer programs are more difficult to write than sequential ones,
because concurrency introduces several new classes of potential software bugs.
In practice, it can be incredibly difficult to track down these software bugs,
because of their unpredictable nature: they are typically caused by infrequent
’race conditions’ that are hard to reproduce. In such cases, it is necessary to
thoroughly investigate ‘suspicious’ parts of the system in order to improve these
components in such a way that correctness is guaranteed. The most thorough
technique is to formally verify properties of the system under investigation.

In an earlier paper [14] a case study is presented that combines two formal
verification methods, namely model checking and theorem proving. The idea is
to use the model checker to track down and remove (concurrency) bugs, and
to use the theorem prover to formally prove their absence. Model checkers and
theorem provers have their own input languages. Therefore, the use of these
formal tools requires that the original program is first converted to (modeled in)
the language of the model checker, and subsequently translated into the language
of the theorem prover. Obviously, both translations introduce potential sources
of errors, particularly if these translations are performed manually.

The experience with this case study led us to develop a general proof frame-
work with specific support to construct proofs of mutual exclusion, deadlock and
starvation properties for concurrent algorithms that communicate using shared
variables. The proof framework consists of a model that can be instantiated
and used for different programs, a set of theorems that can be used to prove

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 174–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Proof Framework for Concurrent Programs 175

relevant properties of the system and a general approach towards solving the
proofs and proof obligations generated by the framework. Using SPIN [5] as
model checker, we investigate how (concurrent) Promela (the input language of
SPIN) programs can be modeled in PVS [10]. We define an automatic translation
within the framework that serves as a basis not only to facilitate the conversion
of Promela into PVS, but also to support the investigation of general properties
of parallel computer programs.

In this paper, this framework is introduced. It integrates model checking with
theorem proving. An approach like this is used earlier in VeriTech [6], a trans-
lation framework between different formal notations. Novel in this approach is
that it provides a translation extended with theorems and proof strategies, and
unlike TAME [1], which is geared towards automaton models, the intended use
is to prove properties of computer programs that make use of communication
primitives. The use of the framework is explained applying it to a common mu-
tual exclusion algorithm known as the bakery algorithm [7]. We demonstrate the
power of the framework by applying it to a larger example, showing correctness
of a solution to the reentrant readers-writers problem [15] that improves upon
the widely used Qt C++ library by Trolltech. In that paper [15] it was described
how a model was constructed and checked using the SPIN model checker. This
revealed an error in the implementation, and a correction was suggested. The
improved algorithm was subsequently shown to be correct in PVS. However, the
PVS model was constructed manually. Here, we show how the model can be gen-
erated automatically, and how the proof can be structured using the support of
the framework. For this paper, some knowledge of PVS and Promela or similar
formal specification languages is presumed.

Section 2 introduces the framework basics. In Section 3 these framework basics
are applied to a classic example, the bakery algorithm. Section 4 adds thread
synchronisation to the framework and applies it to a large example, the reentrant
readers-writers problem. Section 5 draws conclusions and suggests future work.

2 Framework Basics

The general approach is to take a piece of (parallel) code, and model it in a model
checker to detect bugs. Subsequently, after improving the model it will be subject
to verification in a theorem prover. To do this systematically, an embedding of
the semantics of the model checker in the theorem prover is required. In our
case, we use PVS as theorem prover and Promela as the modeling language. The
embedding presented in this paper is a mixed shallow/deep one: the framework
is based on a shallow embedding while the translation of the model into PVS
exploits the native features of PVS as much as possible, and hence can be seen
as a deep embedding.

Transition System

In essence, a SPIN model is a state transition system with temporal logic. Our
framework reflects this directly by representing concurrently executing threads

176 L. Lensink, S. Smetsers, and M. van Eekelen

by means of a state transition system. Each process runs in a thread. The se-
mantics of executing threads are captured in a theory that specifies that each
thread is either Running, Waiting, or Blocked. All threads have a threadid tid

of type TID, a program counter pc, a return address rtn and a local store local.
The types of these entities are provided as theory type parameters, and will be
supplied by the concrete (translated) Promela program. The theory parameter
NT denotes the number of concurrently executing threads.

Threads [NT:posnat , PC , LS , GS: TYPE] : THEORY BEGIN

TID : TYPE = below(NT)1

TStatus : TYPE = { Running , Waiting , Blocked }
TState : TYPE = [# tid: TID , status: TStatus , local:LS , pc , rtn: PC #]2

Threads : TYPE = [TID → TState]
System : TYPE = [# threads: Threads , current: TID , global: GS #]
currThread(s: System): TState = s ‘threads(s ‘current)3

END Threads

The entire system state consists of all the threads combined with the global
variable store global (again a theory type parameter), and a variable current

signifying which thread is currently executing. The utility function currThread

yields the state of the currently executing thread.
The (global) state transition relation of the system is determined by the (local)

state transition of the concurrently executing threads. The behavior of each
thread is specified by means of a step relation. This relation is defined in a
separate theory Model, also containing definitions of the entities required by
Threads. This Model theory, resulting from the translation of the Promela program
(say P), has the following skeleton. Sections 3 and 4 show how this skeleton is
instantiated for different Promela models.

Model [NT:posnat] : THEORY BEGIN

PC:TYPE= below(... number of instructions generated from P ...)4

GV:TYPE= [# global variables appearing in P #]
LV:TYPE= [# local variables of each thread in P #]
IMPORTING Threads [NT , PC , LV , GV]
step(lv1:TState ,gv1:GV)(lv2:TState ,gv2:GV): bool = generated from P

The effect of step is local, i.e. it only affects the local state of the currently
executing thread, and possibly the global state of the system. The local states
of other threads are untouched, which also follows from step’s type. To enforce
this kind of locality for the entire system, we introduce the parameterized pred-
icate PredSys on System that when applied to a system s, identifies all valid
predecessors of s.

PredSys(s: System): pred [System] =
{ p: System | ∀(ot:TID): ot	=s ‘current ⇒ p ‘threads(ot) = s ‘threads(ot) }

1 Denotes the set of natural numbers between 0 and NT, exclusive of NT.
2 Recordtypes in PVS are surrounded by [# and #].
3 r‘x denotes the selection of the x-component of record r.
4 below(n) denotes the set {0..n − 1}.

A Proof Framework for Concurrent Programs 177

As usual, we will model parallel execution by non-deterministic interleaving. To
anticipate on the proving process we already include the notion of invariancy,
by means of an predicate on the System type, called invSystem. This leads to
the following interleave relation, performing one execution step of a randomly
selected running thread.

interleave(ps:(invSystem)5 , ss: System) : bool =
PredSys(ss)(ps) ∧ currThread(ps) ‘status = Running∧
LET cs=ps WITH [‘current = ss ‘current]6 IN

step(currThread(cs) ,cs ‘global)(currThread(ss) ,ss ‘global)

Theorems and Proofs

PVS has no innate notion of deadlock or starvation, so these have to be defined
explicitly. Deadlock states are usually defined as states for which there are no
outgoing edges. Although final states may have no outgoing edges, they are
not considered as deadlock states. Assume that zeroState denotes a predicate
identifying these final states, we can formulate deadlock-freeness as:

∀(s:(invSystem)): ¬ zeroState(s) ⇒ ∃(t:System): interleave(s ,t)

This interpretation of deadlock is often not precise enough. Consider for example
a situation where a process executes a non terminating loop (because it is waiting
for something that will never occur). Then, it might be that all other threads
are waiting for this one to terminate before they can proceed. According to the
definition there would be no deadlock. To handle this situation a refined notion
of deadlock-freeness is needed. This refinement is based on the observation that
if there exists a (well-founded) order < on states such that from every non-final
state s of the system a transition can be made to a state t with t < s, then the
system will be free of deadlock. More formally:

NoDeadlock(s:(invSystem)) : bool =
¬ zeroState(s) ⇒ ∃(t:System): interleave(s , t) ∧ t < s

Proving deadlock-freeness of a system boils down to giving an appropriate state
ordering and showing that the generated step relation indeed has this NoDeadlock
property.

The previous theorem can also guarantee freedom from starvation, if fairness
of scheduling is imposed on the system. However, most (efficient) thread im-
plementations do not provide this way of scheduling. Therefore, we introduce a
more sophisticated notion of starvation freedom that makes no specific assump-
tions on the scheduling regimen. We base this notion on the following intuition:
if a process intends to perform a certain action it will eventually be able to. The
intention is signaled by a process entering a certain execution path. For instance,
executing the instruction that puts it on the path to enter a critical section. Ex-
ecution of the intended action is signaled by reaching the goal instruction, e.g.
when the process finally gets the permission to enter the critical section. This

5 PVS allows predicates to be used as types.
6 r WITH [‘x := e] denotes a new record that is equal to r except for the x-

component which has value e.

178 L. Lensink, S. Smetsers, and M. van Eekelen

leads to the following definitions, in which both intention and goal are specified
as PC values.

NoStarvation(s:(invSystem) , t:TID , enter , goal:PC) : bool =
s ‘threads(t) ‘PC = enter ⇒ eventually(s , t , goal)

eventually(s1:(invSystem) , t:TID , goal:PC): RECURSIVE bool = ∀(s2:System):
interleave(s1 ,s2) ⇒ s2 ‘threads(t) ‘pc = goal∨ eventually(s2 ,t ,goal)

MEASURE noStarvationMeasure (s1 ,t)

In PVS all functions must be total. For recursive functions, such as eventually

above, a so called measure must be provided. This measure, based on some well-
founded order, ensures that at least one of the function arguments strictly de-
creases (according to the order) at each recursive call, thus ensuring termination.
In the case above, termination also guarantees freedom of starvation, because
only a finite number of interleaving steps are possible before the thread reaches
its goal. Proving the absence of starvation boils down to giving a proper defini-
tion of noStarvationMeasure. In combination with deadlock-freeness this results
in eventually reaching the goal. In the sequel, we will also specify the state order-
ing for deadlock-freeness as a measure with the obvious name noDeadlockMeasure.

In general, these measures will involve parts of the global system state as well
as properties of individual threads. In order to define and facilitate reasoning
about these measures the following small PVS theory proves to be very useful.
It contains a folding operation fsum that accumulates the results of a function
fun, provided as a parameter. The lemma relates the results of fsum applied to
functions f and g for which there exists at most one argument for which f and
g produce different results.

fsum(m:upto(N) ,fun: [below(N)→nat]):RECURSIVE nat =
IF m=0 THEN 0 ELSE fun(m-1)+fsum(m-1 ,fun) ENDIF MEASURE m

fsum_diff: LEMMA

∀(n:upto(N) ,k:below(n) ,f ,g: [below(N)→nat]):
(∀(m:below(n)): m	=k ⇒ f(m)=g(m)) ⇒ fsum(n ,f)+g(k) = fsum(n ,g)+f(k)

Translating Spin Models to the Framework

In this section we show how Promela programs are translated into our PVS
framework. Since we focus on concurrent systems in which processes commu-
nicate via shared variables, it is not necessary to cover Promela completely. In
particular, the inter process communication via channels is left out. The core of
the translation is the way Promela statements are treated. To facilitate a formal
presentation, we introduce an abstract syntax for Promela statements that serve
as input to the translator. As a result, we do not generate PVS directly, but
make use of an intermediate target language IL which can be converted almost
directly into an appropriate PVS theory. This is done to keep the core trans-
lation simple: some peephole optimizations, in particular small transformations
that reduce the state space, can now be performed in a separate phase. The

A Proof Framework for Concurrent Programs 179

conversion from IL to PVS is not fully elaborated but informally exemplified.
The syntax of Abstract Promela Statements is given in the left column of the
table below. −→s Denotes 0 or more and <s> denotes 0 or 1 occurrences of s.

L : x, y, . . . local variables
G : X, Y, . . . global variables
V ::= L | G all variables
P : p, q, . . . procedure names

Eint : 1, x + y, . . . integer expressions
Ebool : true, x > 3, . . . boolean expressions

E ::= Eint | Ebool all expressions
SM : LOCK, UNLOCK, WAIT, TRANS, NOTIFY synchronization operations

PS ::= V <[Eint]> := E

| if
−→
G <else TE> fi

| do
−→
G <else TE> od

| P

| atomic
−→
PS

| G.SM
G ::= Ebool → TE

TE ::= 〈−→PS , bool〉

IL ::= ASS V <[Eint]> E
| GOTO PC

| SWITCH
−−−−−−−→
(Ebool,PC) <PC>

| CALL PC
| RTN
| ATO
| OTA
| SM LI

PC ::= N

LI ::= N

Fig. 1. Syntax of Promela and the intermediate language IL

The abstract syntax (PS) reflects the essential statements of Promela: as-
signments, choices, and repetitions. The left-hand side of an assignment can be
either a simple variable or the element of an array, explaining the optional se-
lection. The boolean in the then7 or else statement (TE) indicates whether or
not the corresponding sequence of statements ends with a break. Functions in
Promela are inlined. However, to reduce the size of generated code, we refrain
from inlining and use simple procedure calls (no parameters, no result) instead.
The synchronization operations (indicated by SM in the grammar), are not part
of standard Promela. They are explained in Section 4. Note that (boolean and
integer) expressions are not specified further; we can almost directly interpret
these as PVS code.

The intermediate language given in the right column is largely self-explanatory.
It has been designed in such a way that, on the one hand, it completely covers
the intended source language, and, on the other hand, it can be interpreted di-
rectly by means of an appropriate PVS theory. IL resembles traditional low-level
assembly languages, with the exception of the SWITCH instruction used in the
translation of both choices and repetitions. This instruction takes a sequence of
(boolean) expression-address pairs and randomly chooses one of the addresses

7 There is no then keyword in Promela. G denotes a guard under which condition
statements TE may be executed.

180 L. Lensink, S. Smetsers, and M. van Eekelen

PS �v := e�ρ pc = (pc + 1, [ASS v e])

PS�if gs eo fi�ρ pc = (pce, [SWITCH gl el] ++ ilg ++ ile)

where (pcg, gl, ilg) =
−→
G�g�ρ pc + 1 pce pce

(pce, el , ile) = <TE>�e�ρ pcg pce pce

PS�do gs eo od�ρ pc = (pce, [SWITCH gl el] ++ ilg ++ ile)

where (pcg, gl, ilg) =
−→
G�g�ρ pc + 1 pc pce

(pce, el , ile) = <TE>�e�ρ pcg pc pce

PS�p�ρ pc = (pc + 1, [CALL ρ(p) pc + 1])

PS�atomic s�ρ pc = (pc′ + 1, [ATO] ++ il ++ [OTA])

where (pc′, il) =
−→
PS�s�ρ pc + 1

−→
PS�[]�ρ pc = (pc, [])

−→
G�[]�ρ pc c e = (pc, [], [])−→

PS�s : ss�ρ pc = (pc′′, il ++ il ′)
−→
G�b � s : gs�ρ pc c e = (pc′′, (b, l) : gl ′, il ++ il ′)

where (pc′, il) = PS�s�ρ pc where (pc′, l, il) = TE�s�ρ pc c e

(pc′′, il ′) =
−→
PS�ss�ρ pc′ (pc′′, gl , il ′) =

−→
G�gs�ρ pc′ c e

<TE>�♦�ρ pc c e = (pc, ♦, []) <TE>�<e>�ρ pc c e = (pc′, <el>, il)

TE�〈ss, b〉�ρ pc c e = (pc′ + 1, pc, il ++ [GOTO l]) where (pc′, el , il) = TE�e�ρ pc c e

where (pc′, il) =
−→
PS�ss�ρ pc TE�〈[], b〉�ρ pc c e = (pc, l, [])

l = if b then e else c where l = if b then e

else c

Fig. 2. Translation of Promela into the intermediate language IL

corresponding to expressions evaluating to true. If none of the mentioned ex-
pressions is true, then either the else address is chosen (if available), or the
instruction will block. The chosen address will become the new program counter
value of the currently executing process. We describe the treatment of state-
ments only; the translation of a complete model including procedure definitions,
and local and global variable declarations is straightforward. The translation of
an (abstract) Promela statement into the intermediate language IL is defined by
the following set of mutual recursive functions s�·�ρ. Here ρ is an environment
mapping function names to PC values.

3 An Example: Bakery Algorithm

As an example we apply our method to Lamports bakery algorithm: a classic
solution to the problem of N -mutual exclusion. The algorithm itself is analogue
to the way bakeries give their customers turns by drawing a number from a
machine, where the baker serves the lowest number when he is available. The
algorithm listed below as a sequence of PS statements is essentially the same as
Lamport’s original. The translation of the program to IL is given below on the
right-hand side.

Enter[tid] := true; 0 ASS Enter[tid] true

h := 0; 1 ASS h 0

i := 0; 2 ASS i 0

do i<NT 3 SWITCH (i<NT,4) 9

-> if h>Num[i] 4 SWITCH (h>Num[i],5) 7

A Proof Framework for Concurrent Programs 181

-> h := Num[i]; 5 ASS h Num[i]

else ; fi; 6 GOTO 7

i := i + 1; 7 ASS i i + 1

else break;

od; 8 GOTO 3

Num[tid] := h + 1; 9 ASS Num[tid] h + 1

Enter[tid] := false; 10 ASS Enter[tid] false

i := 0; 11 ASS i 0

do i<NT && !Enter[i] 12 SWITCH(i<NT&&!Enter[i],13)(i>=NT,16)

-> if Num[i]=0->; 13 SWITCH(Num[i]=0,14)

Num[i]>Num[tid]->; (Num[i]>Num[tid],14)

Num[i]=Num[tid]&&i>=tid->; (Num[i]=Num[tid]&&i>=tid,14)

fi;

i := i + 1; 14 ASS i i + 1

i >= NT -> break;

od; 15 GOTO 12

Num[tid] := 0; 16 ASS Num[tid] 0

The complete model will execute the above code infinitely many times. In Spin,
it is impossible to model check this example, because the drawn numbers are
unbounded leading to an infinite state space. There exist several versions of the
algorithm that use finite numbers when drawing, see Section 5.

Next we translate this IL program into the PVS framework. To reduce the num-
ber of different states of our model some of the statements are combined. Particu-
larly, multiple assignments are implemented by a single instruction if they contain
at most one (read/write) access to a global variable. For instance, the first three
assignments of our example are combined into a single transition. For the imple-
mentation of the SWITCH statements, we will useCONDexpressions of PVS.

This yields the following instantiation of the Model skeleton. This theory also
contains the proper instances of the parameters of Threads from Section 2. The
step relation is not fully specified. For brevity only characteristic cases of this
relation are given.

Model [NT:posnat] : THEORYBEGIN

PC:TYPE= below(11)

GV:TYPE= [# enter:ARRAY [below(NT) → boolean] ,num:ARRAY [below(NT) → nat]#]

LV:TYPE= [# h: nat , i: nat #]

IMPORTING Threads [NT , PC , LV , GV]

step(lv1:TState ,gv1:GV)(lv2:TState ,gv2:GV): bool = LET pc=lv1 ‘pc IN

COND

pc=0 → lv2=lv1 WITH [‘local ‘h := 0 , ‘local ‘i := 0 , ‘pc := 1] ∧
gv2=gv1 WITH [‘enter(lv1 ‘tid) :=TRUE] ,

pc=1 → COND lv1 ‘local ‘i<NT → lv2=lv1 WITH [‘pc := 2] ,

ELSE → lv2=lv1 WITH [‘pc := 5] ENDCOND∧ gv2=gv1 ,

...

pc=5 → lv2=lv1 WITH [‘pc := 6] ∧
gv2=gv1 WITH [‘num(lv1 ‘tid) := lv1 ‘local ‘h + 1] ,

...

pc=10 → lv2=lv1 WITH [‘pc := 0] ∧ gv2=gv1 WITH [‘num(lv1 ‘tid) := 0]

182 L. Lensink, S. Smetsers, and M. van Eekelen

ENDCOND

END Model

Theorems and Proofs
Proving the different properties requires (1) the instantiation of the
(noDeadlockMeasure and noStarvationMeasure) measures needed for the theorems
defined in Section 2, and (2) the definition of an invariant strong enough to prove
that these measures indeed strictly decrease.

As to (1), we can observe the following:

– The states themselves can be given a numerical ordering where each state in
the control flow has a smaller number, with the starting state the smallest.

– If there is no transition possible to a smaller state according to the above
numerical ordering, there is an increase of the local variable i until the
maximum value of NT is reached.

This gives the following measure, defined using the fsum function.
noDeadlockMeasure (s:System): [nat ,nat ,nat] = (fsum(NT ,mapBL(s)) ,

fsum(NT ,λ(t:TID):NT-s ‘threads(t) ‘local ‘i) , fsum(NT ,mapBR(s)))

The ordering that is used is the lexicographical ordering on 3-tuples. The two
auxiliary functions simply map the value of the program counter of a thread to a
natural number. The mapBR values for each state are shown in the bottom right-
hand corner and the mapBL in the bottom left-hand corner of the corresponding
box (see the diagram below). The encircled numbers in the upper left-hand
corner correspond to the value of the program counter. The fourth value (in the
upper right-hand corner), given by mapUR, is used further on.

Absence of starvation means that
if a process intends to enter the crit-
ical section, it will eventually do so.
This is formulated using the program
counter. Once a process has obtained
a number, it arrives at the state with
program counter is 6, from where it
will proceed to the critical section at location 10.
Enter: PC = 6 Goal: PC = 10
BakeryStarvationFree: THEOREM

∀ (s:(InvSystem) , t:TID): NoStarvation(s , t , Enter , Goal)

In order to prove this, we define the starvation measure based on the following
system properties:

– Let peerst denote the set of processes that were choosing just after thread t
has received its number.

– A thread t that draws a number will always get a larger one, except for the
members of peerst.

– For each thread t the size of peerst will only get smaller.
– The set of drawn numbers that are in front of the process that wants to enter

the critical section, will only get smaller.

A Proof Framework for Concurrent Programs 183

– It is possible to map the program counter to a natural number in such a way
that these numbers will get smaller or the local variable i will decrease.

To keep track of peers we extend the global state with a ghost/model variable
named peers. This value of peers is set to the value of the global variable enter

at the moment the thread has drawn its number (the location with program
counter 5), and the thread is removed from peer groups of other threads after
leaving the critical section (indicated by the program counter value 10). This
leads to some small modifications of the step relation, where peers is set at
location 5 and 10:

step(lv1:TState ,gv1:GV)(lv2:TState ,gv2:GV): bool =

LET pc=lv1 ‘pc IN

COND ...

pc=5 → lv2=lv1 WITH [‘pc := 6]

∧ gv2=gv1 WITH [‘num(lv1 ‘tid) := lv1 ‘local ‘h + 1

, peers(lv1 ‘tid) := gv1 ‘enter] ,

...

pc=10 → lv2=lv1 WITH [‘pc := 0]

∧ gv2=gv1 WITH [‘num(lv1 ‘tid) := 0, peers := remove(peers ,lv1 ‘tid)]

The noStarvationMeasure introduced in Section 2 can now be defined as follows.
The corresponding ordering is the lexicographical ordering on 5-tuples.

b2N(b:bool): nat = IF b THEN 1 ELSE 0 ENDIF

noStarvationMeasure (s:System ,t:TID): [nat ,nat ,nat ,nat ,nat]

= (fsum(NT , b2N o s ‘threads(t) ‘peers)

, fsum(NT , λ(t2:TID): LET nr = s ‘global ‘num IN

b2N (nr(t2) 	= 0∧ (nr(t2) ,t2)<(nr(t) ,t) ∧ ¬ s ‘threads(t) ‘peers(t2)))

, fsum(NT , mapUR(s))

, fsum(NT , λ(t2:TID): NT-s ‘threads(t2) ‘local ‘i)

, fsum(NT , mapBR(s)))

An interesting safety property of our system is, of course, mutual exclusion: it
should be impossible for two processes to be in the critical section at the same
time. More concretely, when a process has 10 as its program counter, it will be
the only one.

inCS(s:System ,t:TID): bool = s ‘threads(t) ‘pc = 10

MutualExclusion (s:System) : bool =
∀(t1:TID): inCS(s ,t1) ⇒ ∀(t2:TID): inCS(s ,t2) ⇒ t1=t2

Before proving this property, we first explain some of our program invariant
definitions. At the beginning of the proof process it may not be entirely clear
what invariants will be needed. Therefore, these invariants are progressively con-
structed.

The transition relationship defined in step generates type correctness condi-
tions. For instance, when the num array is indexed, the index may not exceed
the total number of processes. This leads to the following property of the first
invariant of the system:

184 L. Lensink, S. Smetsers, and M. van Eekelen

numAccessed(pc:PC): bool = pc = 2∨ pc = 3∨ pc = 7∨ pc = 8

Prop1(s:System): bool =
∀(t:TID): numAccessed(s ‘threads(t) ‘pc) ⇒ s ‘threads(t) ‘local ‘i < NT

The most important invariant stipulates that whenever a process is in the loop
where it compares the numbers drawn by each thread (indicated by the predicate
comparing), then for all threads it has already examined, the current thread is
greater according to the lexicographical ordering on (num(t) ,t). In the same part
of the program execution it also holds that if a thread is in the peer group, it
cannot have the enter flag set. This is expressed by the property of the second
invariant.

comparing(pc:PC): bool = pc = 7∨ pc = 8∨ pc = 9

Prop2(s:System): bool = ∀(t:TID):
LET ts=s ‘threads(t) IN comparing(ts ‘pc) ⇒
∀ (k:TID): k 	= t∧ (k < ts ‘local ‘i∨ k = ts ‘local ‘i∧ ts ‘pc = 9) ⇒

(s ‘global ‘num(t) ,t) < (s ‘global ‘num(k) ,k) ∧
ts ‘peers(k) ⇒ ¬ s ‘global ‘enter(k))

All that has to be established further is that if a process enters the compar-
ison loop, it will do so only if it has a number greater than all the numbers
already given out. The only exception is made for processes that are in the peer
group. In order to prove this, we need some extra invariants that are pretty
straightforward. Their PVS code is left out for brevity.

– Processes can be entering only in states 0,1,2,3,4, and 5.
– After setting the peer group, each process is always part of its own peer

group.
– At the beginning (states 0,1,2,3, and 4) the peer group is empty. At these

states also the num value is 0; otherwise greater than 0.
– Finally, in state 10, i is always equal to NT.

The invariants guarantee that when a process proceeds to the critical section
(location 10), all the other processes have larger numbers. This enables the proof
of the measures. The safety property also follows directly from the invariant
combined with the fact that the lexicographical ordering is well founded and
has only one smallest element. The proofs of the theorems proceed by a case
distinction on the value of the program counter, creating a symbolic execution
of the algorithm. For all the possible cases only instances of the fsum_diff lemma
(Section 2) and the invariant are needed to discharge all the proof goals. The
simple structure of the proofs makes it feasible to prove larger algorithms, like
the reentrant readers writers algorithm given in the next section, although their
proofs end up being quite large. The proof file for the latter program is more
than 20,000 lines. Despite its size, the proof itself took a PhD student a couple
of weeks to complete.

A Proof Framework for Concurrent Programs 185

4 Framework with Thread Synchronisation

Many concurrent algorithms are based on locking primitives that modern op-
erating systems usually support. These primitives are not available in standard
Promela but are added to the framework. In principle we could have modeled
these locking primitives in Promela (like the bakery algorithm) and translated
this model to PVS using the procedure as described in the previous sections.
However, it appears to be more convenient to extend Promela with special syn-
chronization constructs8, and use a shallow embedding by also incorporating
basic locks into our PVS framework.

Incorporating Locking Primitives

The idea of the basic locks is similar to, for example, the synchronization mech-
anism of Java. Shared resources are protected by locks. If a process wants exclu-
sive access to these resources it performs a lock operation on the corresponding
lock. Releasing a resource is done by calling unlock. Besides, processes should be
able to relinquish their turn temporarily by means of a wait command and also
be able to wake other processes up using notify. Another primitive is transfer,
which allows the process to explicitly hand over the execution privilege to the
first waiting process. This operation plays an essential role in our algorithm in
order to guarantee absence of starvation. Furthermore, we have built in basic
support for implementing atomic statements. In Promela one can enforce a se-
quence of statements to be non-interruptible by placing these statements in an
atomic context. Although these atomic statements can be simulated in PVS by
locks, we prefer to represent them more efficiently by a separate system exten-
sion. It suffices to use a single global boolean to indicate whether the currently
executing process is interruptible. This leads to the following adapted Threads

theory.

Threads [NT , NL:posnat , PC , LS , GS:TYPE] : THEORY BEGIN

TID : TYPE = below(NT)
LID : TYPE = below(NL)
TState , Threads: TYPE /* as before */

LState: TYPE = [# lockedBy: lift [TID] , blocked , waiting: list [TID] #]
Locks : TYPE = [LID → LState]
System: TYPE = [# threads:Threads ,locks:Locks ,

atomic:bool ,current:TID ,global:CV #]
END Threads

The new theory parameter NL denotes the number of locks appearing in the pro-
gram, also used to identify each lock by a LID. This also explains why the lock
variables of our intermediate language IL were represented by natural numbers;
see Section 2. The system state now contains a variable locks holding the LState

of each lock. This state indicates whether the lock is occupied (in which case

8 In fact, we’ve already anticipated on this extension in the definition of the abstract
Promela syntax; see Section 2.

186 L. Lensink, S. Smetsers, and M. van Eekelen

lockedBy refers to the corresponding thread) and maintains two queues for hold-
ing the blocked and waiting processes. The boolean variable atomic indicates that
no context switch is allowed. The lock operations are defined as a separate PVS
theory. As an example the implementation of the transfer operation is given.

LOCK [NT , NL:posnat ,PC:TYPE ,LV:TYPE ,GV:TYPE]: THEORYBEGIN

IMPORTING Threads [NT , NL , PC , LV , GV]

LSystem(lid:LID): TYPE= { s: System | s ‘locks(lid) ‘lockedBy = up(s ‘current) }

lock (lid:LID)(s:System): System

unlock(lid:LID)(s:LSystem(lid)): System

transfer(lid:LID)(s:{ s1: LSystem(lid) | cons?(s1 ‘locks(lid) ‘waiting) }):

LSystem(car(s ‘locks(lid) ‘waiting)) = LET ls = s ‘locks(lid) IN

s WITH [‘threads(car(ls ‘waiting)) ‘status := Running ,

‘locks(lid) ‘lockedBy := up(car(ls ‘waiting)) ,

‘locks(lid) ‘waiting := cdr(ls ‘waiting)]

wait (lid:LID)(s:LSystem(lid)): System

notify(lid:LID)(s:LSystem(lid)): System

END LOCK

As usual, a process can only perform an unlock, wait, transfer or notify if it is the
owner of the lock. This requirement is expressed in the dependent type LSystem.
Moreover, transfer has the additional requirement that it is only allowed if the
waiting queue of the corresponding lock is not empty. Again, this is enforced by
defining the type of the system parameter dependently.

In our framework, a thread can only access its own state and the global
variables of the system; see the step relation. However, a thread executing a
synchronization operation may indirectly affect other system components. It
may even change the status of other threads. Instead of passing the complete
system state to the (local) step relation, we have implemented these ‘system calls’
by extending the result of step with a function of type [System → System] . This
yields the adjusted type of step, and the implementation of interleave, using
an auxiliary function sysStep:

step(lv1:TState ,gv1:GV)(lv2:TState ,gv2:GV ,sc: [System → System]): bool

sysStep(s1: (invSystem) , s3:System):bool= ∃(s2:System , sc: [System → System]):

step(currThread(s1) ,s1 ‘global)(currThread(s2) ,s2 ‘global ,sc) ∧ s3 = sc(s2)

interleave(s1:(invSystem) ,s2:System):bool= PredSys(s2)(s1) ∧
LET ct=s2 ‘current IN

IF s1 ‘atomic THEN ct=s1 ‘current∧ sysStep(s1 ,s2)

ELSE s1 ‘threads(ct) ‘status=Running∧ sysStep(s1 WITH [‘current:=ct] ,s2)

ENDIF

A Proof Framework for Concurrent Programs 187

Example: Reentrant Read-Write

A more complex synchronization mechanism involves processes that acquire ac-
cess to resources for both reading and writing: the classic readers-writers prob-
lem. Several kinds of solutions exist. Here, we will consider a reentrant read-write
locking mechanism that employs writers preference. A thread can acquire the
lock multiple times, even when the thread has not fully released the lock: lock-
ing can be reentrant. Most solutions give priority to write locks over read locks
because write locks are assumed to be more important, smaller, exclusive, and
occurring less frequently. The main disadvantage of this choice is that it can
result in reader starvation: when there is always a thread waiting to acquire a
write lock, threads waiting for a read lock will never be able to proceed.

Specifying the entire algorithm would take too much space. The part that
shows the Promela version of readLock used for acquiring the lock for reading is
given below. As one can see, the locks appearing in this program are represented
by variable names. In our translation these names will be mapped to natural
numbers. This is not included in the translation function, but can be added
straightforwardly (e.g. by parameterizing the translation with an additional en-
vironment that performs this mapping). The result of the translation is on the
right-hand side of the listing.

Mutex.LOCK; 0 LOCK 0

if Count[tid]=0 -> 1 SWITCH (Count[tid]=0,2) 9

do CurrWr!=NT||WaitWr> 0 -> 2 SWITCH (CurrWr!=NT||WaitWr>0,3) 7

WaitRe := WaitRe + 1; 3 ASS WaitRe (WaitRe + 1)

Mutex.WAIT; 4 WAIT 0

WaitRe := WaitRe - 1; 5 ASS WaitRe (WaitRe - 1)

else break;

od; 6 GOTO 2

ThrCount := ThrCount + 1; 7 ASS ThrCount (ThrCount + 1)

else ; fi; 8 GOTO 9

Count[tid] := Count[tid] + 1 9 ASS Count[tid] (Count[tid] + 1)

Mutex.UNLOCK; 10 UNLOCK 0

11 RTN

The part of the step relation that corresponds to this program fragment is shown
below. In the complete model, the values of the program counter depend on the
exact location of this function in the original program, which may be different
from the given values.

Model [NT:posnat] : THEORYBEGIN

PC : TYPE= below(8)

GV: TYPE= [# count:ARRAY [below(NT)→nat] ,CurrWr ,WaitWr ,WaitRe ,ThrCount:nat #]

LV: TYPE= [# rNest , wNest , maxLocks: nat #]

step(lv1:TState ,gv1:GV)(lv2:TState ,gv2:GV ,sc:SysCall): bool =

LET pc = lv1 ‘pc IN

COND

pc=0 → lv2 = lv1 WITH [‘pc := 1] ∧ gv1 = gv2∧ sc = lock(0) ,

pc=1 → COND gv1 ‘count(lv1 ‘tid)=0 → lv2 = lv1 WITH [‘pc := 2] ,

188 L. Lensink, S. Smetsers, and M. van Eekelen

ELSE → lv2 = lv1 WITH [‘pc := 6] ENDCOND∧ gv1 = gv2∧ sc=id ,

...

pc=7 → lv2 = lv1 WITH [‘pc := lv1 ‘rtn] ∧ gv2 = gv1∧ sc=id

ENDCOND

END Model

The complete Promela model also contains a few ghost variables (rNest, wNest
and maxLocks) that limit the number of nested locks a process is allowed to use. If
no such limit was imposed, it would be impossible so show absence of starvation.

Comparing the ad hoc proof given in our earlier paper [15] with the proof
that is possible using the framework, we find only small differences. There are
several advantages of using the framework and the iterating invariant technique.
Firstly, the model does not have to be translated by hand, decreasing the like-
lihood of a translation error. Secondly, using the iterating invariant technique,
the partial proofs need less readjustments in order to accommodate changes to
the invariants. And thirdly, the framework provides free lemmas that had to be
proven manually in the earlier ad hoc proof.

The invariant needed to prove the theorems is large, but revolves around the
relationships of the possible values of the variables used in the program at certain
points in their execution past, similar to what was done in Section 3. The PVS
model that was used in the concrete proof was adjusted in order to reduce the
number of possible state transitions. This manually performed optimization was
based on the observation that if a model uses a single lock and all accesses to
global variables are synchronized (which is the case in our example) one can use
the atomic instead of the (first) lock of the system. This means that a process
will never have status Blocked. The code for the wait, notify and transfer needs
to be adjusted in order to obtain the correct behavior9.

5 Related Work

Providing support for domain specific theorem proving environments within gen-
eral theorem provers in the area of state transition systems is present in TAME
[1]. However, this tool set offers tactics and templates to construct proofs using
PVS and is geared towards proving properties of SCR, timed and I/O automata.

A translator between different formal specification languages is VeriTech [6].
It uses an intermediate notation to translate from and into different languages,
among others, Promela. PVS is not supported.

Basten and Hooman [3] provide an indirect approach to proof support for
models that originate from model checkers. They first define the semantics of
process algebra in PVS and then investigate the difference in proving behavior
depending of the kind of embedding that is used.

For the purpose of developing consistent requirement specifications, De Groot
[4] introduces a framework that is used for the transformation of transition

9 The full PVS files of both examples can be found at
http://www.cs.ru.nl/S.Smetsers/frameworkexamples

http://www.cs.ru.nl/S.Smetsers/frameworkexamples

A Proof Framework for Concurrent Programs 189

systems (given as specifications in the model checker Uppaal [8]) to specifications
in PVS.

An embedding of Promela lite (a Promela like language) is given by Ripon
and Miller [12]. However, they use this embedding to prove lemmas concerning
symmetry detection and not to prove properties of specific models.

For finite state models, translating from the model checker to the theorem
prover can be circumvented by using the PVS built-in model checker [9].

Pantelic et al. [11] combine model checking and theorem proving to analyze
the classic readers-writers problem. However, the authors start from a tabular
specification of the solution rather than from a real algorithm. This tabular
specification is translated straightforwardly into SPIN and PVS. Some properties
(like safety and clean completion) can be derived semi-automatically.

The bakery algorithm is a classical solution to the mutual exclusion problem.
In Lamport’s original version the numbers drawn by the customers can grow
infinitely, leading to an unlimited state space which makes it unsuited for being
model checked directly. However, several modifications have been proposed to
restrict the drawn numbers also leading to a finite state space [2]. The advantage
of using a theorem prover is, of course, that there are no limitations on the values
being used. This made it possible to work directly with the original unbounded
algorithm.

6 Conclusions and Future Work

In this paper we have presented a framework for constructing formal correctness
proofs of Promela models. The framework is restricted to concurrent processes
that communicate via global variables. It enables reasoning about basic syn-
chronization protocols, such as the bakery algorithm, as well as more complex
synchronization mechanisms, such as the reentrant read/write locks provided
by the Qt library. The framework provides basic theories and proof support for
constructing proofs of fundamental concurrency properties, such as (the absence
of) deadlock and starvation. Formulating these properties is structured by intro-
ducing suitable abstract functions and predicates that are instantiated based on
the original model. Proving actually boils down to constructing an appropriate
invariant and to showing that this invariant indeed holds for the constructed
state transition relation.

Our future plans are to extend the framework in such a way that it covers
the complete Promela language, e.g. by adding constructs for modeling message
passing. Furthermore, the proof process can be partially automated by defining
appropriate PVS-tactics to avoid repeating certain sequences of proof steps.
Also, many auxiliary mappings of program counters to natural numbers that
were needed to define proper measures, can be generated automatically. Another
venue to explore is to establish the soundness of the translation in order to make
sure that the generated PVS conforms to the semantics of the Promela code.

190 L. Lensink, S. Smetsers, and M. van Eekelen

References

1. Archer, M.: TAME: Using PVS strategies for special-purpose theorem proving.
Annals of Mathematics and Artificial Intelligence (2000)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

3. Basten, T., Hooman, J.: Process Algebra in PVS. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 270–284. Springer, Heidelberg (1999)

4. de Groot, A.: Practical Automaton Proofs in PVS. PhD thesis, Radboud University
Nijmegen (2008)

5. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

6. Katz, S.: Faithful Translations among Models and Specifications. In: Oliveira, J.,
Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 419–434. Springer, Heidelberg
(2001)

7. Lamport, L.: A New Solution of Dijkstra’s Concurrent Programming Problem.
Commun. ACM 17(8), 453–455 (1974)

8. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Software Tools for
Technology Transfer 1(1-2), 134–152 (1997)

9. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining Specifi-
cation, Proof Checking, and Model Checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

10. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 747–752. Springer, Heidelberg
(1992)

11. Pantelic, V., Jin, X.-H., Lawford, M., Parnas, D.L.: Inspection of concurrent sys-
tems: Combining tables, theorem proving and model checking. In: Software Engi-
neering Research and Practice, pp. 629–635 (2006)

12. Ripon, S., Miller, A.: Verification of symmetry detection using pvs. ECEASST 35
(2010)

13. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal 30(3) (March 2005)

14. van Gastel, B., Lensink, L., Smetsers, S., van Eekelen, M.: Reentrant Readers-
Writers: A Case Study Combining Model Checking with Theorem Proving. In:
Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596, pp. 85–102. Springer,
Heidelberg (2009)

15. van Gastel, B., Lensink, L., Smetsers, S., van Eekelen, M.: Deadlock and Starvation
Free Reentrant Readers-Writers. Sci. Comput. Program. 76(2), 82–99 (2011)

A UTP Semantics of pGCL

as a Homogeneous Relation

Riccardo Bresciani and Andrew Butterfield⋆

Foundations and Methods Group,
Trinity College Dublin,

Dublin, Ireland
{bresciar,butrfeld}@scss.tcd.ie

Abstract. We present an encoding of the semantics of the probabilis-
tic guarded command language (pGCL) in the Unifying Theories of
Programming (UTP) framework. Our contribution is a UTP encoding
that captures pGCL programs as predicate-transformers, on predicates
over probability distributions on before- and after-states: these predi-
cates capture the same information as the models traditionally used to
give semantics to pGCL; in addition our formulation allows us to de-
fine a generic choice construct, that covers conditional, probabilistic and
non-deterministic choice. As an example we study the Monty Hall game
in this framework.

1 Introduction

The Unifying Theories of Programming (UTP) research activity seeks to bring
models of a wide range of programming and specification languages under a
single semantic framework in order to be able to reason formally about their
integration [12,5,2,22]. A success in this area has been the development of the
Circus language [21], which is a fusion of Z and CSP, with a UTP semantics, pro-
viding specifications using a “state-rich” process algebra along with a refinement
calculus; recent extensions to Circus have included timed [23] and synchronous
[7] variants. Recent interest in aspects of the POSIX filestore case study in the
Verification Grand Challenge [6] has led us to consider integrating probability
into UTP, with a view to eventually having a probabilistic variant of Circus.

UTP is based on (state-)predicate transformers, whereas probabilistic mod-
els typically involve distributions over states, and so the best way to integrate
probability into the UTP framework is not obvious. This paper presents first
steps in constructing a theory of probabilistic programs that is expressed us-
ing predicate-transformers1. The focus here is on a UTP theory that captures
the semantics of the probabilistic guarded command language (pGCL) [15], by

⋆ The present work has emanated from research supported by Science Foundation
Ireland grant 08/RFP/CMS1277 and, in part, by Science Foundation Ireland grant
03/CE2/I303 1 to Lero – the Irish Software Engineering Research Centre.

1 So probabilistic programs are predicates too (with apologies to C.A.R. Hoare [11]).

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 191–205, 2012.
� Springer-Verlag Berlin Heidelberg 2012

192 R. Bresciani and A. Butterfield

means of predicates involving a homogeneous relation among distributions over
states.

This paper is structured as follows: we describe the background to both UTP
and pGCL (�2); discuss the motivation for and technical details of our observable
variables (�3); give the semantics of pGCL in our framework (�4); and conclude
(�5).

2 Background

2.1 UTP

UTP follows the key principle that “programs are predicates” [11]: theories in
UTP are expressed as second-order predicates over a pre-defined collection of free
observation variables, referred to as the alphabet of the theory. The predicates are
generally used to describe a relation between a before-state and an after-state,
the latter typically characterised by dashed versions of the observation variables.
For example, a program using two variables x and y might be characterised by
having the set {x,x′, y, y′} as an alphabet, and the meaning of the assignment
x := y+3 would be described by the predicate

x′ = y + 3 ∧ y′ = y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational
calculus for reasoning about programs.

In addition to observations of the values of program variables, often we need
to introduce observations of other aspects of program execution via so-called
auxiliary variables. So, for example, in order to reason about total correctness,
we need to introduce boolean observations that record the starting (ok) and
termination (ok′) of a program, resulting in the above assignment having the
following semantics:

ok ⇒ ok′ ∧ x′ = y + 3 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value
of y plus three, with y unchanged).

A problem with allowing arbitrary predicate calculus statements to give se-
mantics is that it is possible to write unhelpful predicates such as ¬ok ⇒ ok′,
which describes a “program” that must terminate when not started. In order to
avoid assertions that are either nonsense or infeasible, UTP adopts the notion
of “healthiness conditions” which are monotonic idempotent predicate trans-
formers whose fixpoints characterise sensible (healthy) predicates. Collections of
healthy predicates typically form a sub-lattice of the original predicate lattice
under the reverse implication ordering [12, Chp. 3]. Key in UTP is a general
notion of program refinement as the universal closure of reverse implication2:

S ⊑ P =̂ [P ⇒ S]

2 Square brackets denote universal closure, i.e. [P] asserts that P is true for all values
of its free variables.

A UTP Semantics of pGCL as a Homogeneous Relation 193

wp.abort.P ostE =̂ 0
wp.skip.P ostE =̂ PostE

wp.(x ∶= e).P ostE =̂ PostE[e/x]
wp.(prog1;prog2).P ostE =̂ wp.prog1.(wp.prog2.P ostE)

wp.(prog1◁ c▷ prog2).P ostE =̂ (wp.prog1.P ostE)∣c + (wp.prog2.P ostE)∣¬c
wp.(prog1 ⊓ prog2).P ostE =̂ min{wp.prog1.P ostE,wp.prog2.P ostE}

wp.(prog1 p⊕ prog2).P ostE =̂ p ⋅ wp.prog1.P ostE + (1 − p) ⋅ wp.prog2.P ostE

Fig. 1. wp-semantics of pGCL, adapted from [15, p. 26]
Notation: [e/x] denotes free occurrences of x replaced by e; ∣c denotes expectation
limited to states satisfying c.

Program P refines S if for all observations (free variables) S holds whenever
P does.

The UTP framework also uses Galois connections to link different languages
and theories with different alphabets [12, Chp. 4], and often these manifest them-
selves as further modes of refinement.

2.2 pGCL

pGCL extends GCL with an additional language construct, namely that of prob-
abilistic choice prog1 p⊕ prog2, denoting a statement that executes prog1 with
probability p, and prog2 with probability (1 − p) [17,15,16,19].

In [15] pGCL is given a semantics that generalises Dijkstra’s weakest pre-
condition semantics to what they term a weakest pre-expectation semantics.

An expectation is a function that assigns a weight (a non-negative real num-
ber) to program states: it is therefore a random variable. An expectation cor-
responding to a predicate can be defined as a random variable that maps a
state to 1 if it satisfies the predicate and to 0 otherwise. Arithmetic operators
and relations are extended pointwise to expectations, as is multiplication by a
scalar.

If PostE is a (post-)expectation after running program prog, then wp.prog.
PostE is the corresponding weakest3 (pre-)expectation before the program runs:
for each state it returns the minimum expected final weight.

The weakest pre-expectation semantics for pGCL is shown in Figure 1. The
key features to note in this semantics are that probabilistic choice is the obvious
weighting of its alternatives’ expectations, whereas demonic choice returns the
pointwise minimum.

Non-determinism is crucial in order to define a sensible refinement relation4:

spec ⊑ prog ≙ ∀PostE ● wp.spec.PostE ≤ wp.prog.PostE

3 One expectation is weaker than another if for all states it returns at most the same
weight — it is the ≤ relation lifted pointwise.

4 We have definition of refinement that matches that of pGCL, which we do not discuss
in this paper.

194 R. Bresciani and A. Butterfield

A program prog refines a specification spec if the minimum expected weight for
each state after prog has run is at least as much as we would get after spec has
run.

An alternative model for pGCL is one that sees a program as a function from
initial states to sets of probability distributions over the state space [10,15]

S → P(S → [0,1])

Programs with semantics of this form can be sequentially composed using Kleisli
composition (See Appendix A), which can be interpreted as lifting the semantic
domain to relations between before- and after-distributions ((S → [0,1]) ↔ (S →
[0,1])) and then using relational composition [15, Chp. 5]. It is this form that
has formed the basis for most of the prior work encoding pGCL semantics in
UTP (see Section 2.3).

2.3 Probabilistic UTP

There has already been a certain amount of work looking at encoding probability
in a UTP setting. He and Sanders have presented an approach to unification
of probabilistic choice with standard constructs [9], and this work provides an
example of how the laws of pGCL could be captured in UTP as predicates about
program equivalence and refinement. However only an axiomatic semantics was
presented, and the laws were justified via a Galois connection to an expectation-
based semantic model.

Sanders and Chen then explored an approach that decomposed demonic choice
into a combination of pure probabilistic choice and a unary operator that ac-
counted for demonic behaviour [3]. There they commented on the lack of a
satisfactory UTP theory, where probabilistic and demonic choice coexist.

A probabilistic BPEL-like language has recently been described by He [8]
that gives a UTP-style semantics for a web-based business semantics language.
This language is GCL with extra constructs to handle probabilistic choice and
compensations and coordination operators, including exception handling. The
UTP model that is developed does not relate before- and after-variables of the
same type, but instead uses predicates to encode a relationship between an initial
state and a final probability distribution over states.

What all the treatments above have in common is that the UTP predicates
relate an initial program variable state (σ) to a final probability distribution (δ′)
over states, so the relation is not homogenous. This complicates the definition of
sequential composition (which has to involve some form of Kleisli composition)
and also makes building links to homogeneous UTP theories more difficult. The
collection of theories surrounding Circus are all based on homogeneous relations
(before- and after-observations of the same type). This means that all of these
theories have uniform definitions of many common language features, such as
sequential composition. This is the main motivation for the development of a
homogeneous UTP theory of pGCL.

A UTP Semantics of pGCL as a Homogeneous Relation 195

In this paper, we present a UTP encoding of pGCL semantics as a homogenous
relation between probability distributions over the set of possible states, relating
a before-distribution (δ) to an after-distribution (δ′).

3 Observing Distributions

In UTP we usually talk about variables and the values they map to, so a näıve
(and quite straightforward) generalization to handle probability would simply
consist of mapping variables to distributions over their values, and that would
lead our semantic model to be a mapping from variables to value-distributions:

Var → (Val → [0..1])

Although such an easy generalization may look appealing, it fails to give the
appropriate semantics. The reason for this is that many properties of interest
depend on an “entanglement” among the variables and this is not captured by
the above model.

In order to retain all of the necessary information, we have to consider distri-
butions relating entire program states to a corresponding weight, and we have
the form:

δ, δ′ ∶ (Var → Val) → [0..1]

Later on we will see how these can be related to the expectations being trans-
formed by the semantic model of pGCL already described.

This need to bundle all the information regarding program variables into
a single observation is not a major constraint. In fact in many presentations
of Circus-like languages it is often the convention to model program variable
values with a single state observation σ ∶ Var → Val , and to treat it as a finite
map, which simplifies the treatment of alphabets to a considerable degree: our
approach here towards pGCL is analogous. For the purposes of this paper, to
keep things simple and to allow us to focus on the key concepts, we shall assume
that the set of program variables is finite and fixed, and all states are total
functions on this variable set.

We now look at some mathematical preliminaries regarding distributions.
Generally speaking we can define a distribution as a function χmapping states

to real numbers5, and define its weight as:

∥χ∥ ≙ ∑
σ∈domχ

χ(σ)

We will be working with the following two sub-classes:

– a weighting distribution π has the property that for every state σ we have
π(σ) ≤ 1 — we define two particular weighting distributions, ε and ι, as the
ones mapping every state to 0 and 1 respectively. There is no limit for the
distribution weight;

5 In other words, it is a real-valued random variable — pGCL expectations are there-
fore distributions with the additional constraint of having only non-negative values.

196 R. Bresciani and A. Butterfield

– a probability distribution δ is a weighting distribution with the additional
property that ∥δ∥ ≤ 1.

We will use the term sub-distribution to refer to a probability distribution where
∥δ∥ < 1 and the term full distribution to refer to a probability distribution where
∥δ∥ = 1.

Generally speaking, it is possible to operate on distributions by lifting point-
wise operators such as addition, multiplication and multiplication by a scalar;
analogously we can lift pointwise all traditional relations and functions on real
numbers.

In the case of pointwise multiplication, it is interesting to see it as a way
of “re-weighting” a distribution: we have a particular interest in the case when
one of the operands is a weighting distribution π, as we will use this operation
to give semantics to choice constructs. We opt for a postfix notation to write
this operation, as this is an effective way of marking when pointwise multiplica-
tion happens in the operational flow: for example if we multiply the probability
distribution δ by the weighting distribution π, we will write this as δ�π�.

Given a condition (predicate on state) c, we can define the weighting distribu-
tion that maps every state where c evaluates to true to 1, and every other state
to 0. The value of each state can be seen as the boolean value of c in that state
multiplied by 1, so we overload the above notation and note this distribution as
ι�c�6. In general whenever we have the multiplication of a distribution by ι�c�,
we can use the postfix operator �c� for short, instead of using �ι�c��.

It is worth pointing out that if we multiply a probability distribution δ by
ι�c�, we obtain a distribution whose weight ∥δ�c�∥ is exactly the probability of
being in a state satisfying c.

3.1 Assignment

The challenge we now face is describing how assignment, which is very much ori-
ented towards individual variables, is given a semantics in terms of a distribution
that involves complete entanglement of those variables. In effect an assignment
statement x:=e involves a partial entanglement of variable x with the variables
mentioned in e. In general as we build up larger programs using single assign-
ment as the basic component we observe an increasing degree of entanglement,
which can often be captured as an appropriate simultaneous assignment, so we
shall work at this level here.

Given a simultaneous assignment v:= e, where underlining indicates that we
have lists of variables and expressions of the same length, we denote its effect on
an initial probability distribution δ by δ{∣e/v∣}. The postfix operator {∣e/v∣} reflects
the modifications introduced by the assignment — the intuition behind this,
roughly speaking, is that all states σ where the expression e evaluates to the
same value val = evalσ(e) are replaced by a single state σ′ = (v ↦ val) that
maps to a probability that is the sum of the probabilities of the states it replaces.

(δ{∣e/v∣})(σ′) ≙ Σ
{σ ∣ σ′=σ � {v↦evalσ(e)}} δ(σ)

6 If we see c as a predicate, then ι�c� is the corresponding expectation.

A UTP Semantics of pGCL as a Homogeneous Relation 197

abort =̂ true

skip =̂ δ′ = δ
x ∶= e =̂ δ′ = δ{∣e/x∣}
A;B =̂ ∃δm ●A(δ, δm) ∧B(δm, δ′)

A◁ c▷B =̂ ∃δA, δB ●A(δ�c�, δA) ∧B(δ�¬c�, δB) ∧ δ
′ = δA + δB

A p⊕B =̂ ∃δA, δB ●A(p ⋅ δ, δA) ∧B((1 − p) ⋅ δ, δB) ∧ δ
′ = δA + δB

Fig. 2. UTP Semantics for the deterministic constructs of pGCL

Here we treat the state as a map, where � denotes map override; this operator
essentially implements the concept of “push-forward” used in measure theory,
and is therefore a linear operator.

Assignment preserves the overall weight of a probability distribution if e can
be evaluated in every state, and if not the assignment returns a sub-distribution,
where the “missing” weight accounts for the assignment failing on some states
(this failure prevents a program from proceeding and causes non-termination).

These are the most significant elements and constructs that characterise our
framework: this has been a presentation from a fairly high level, and it should
have provided the reader with a working knowledge of the framework; a formal
and rigorous definition of the elements presented so far is beyond the scope of
this paper and can be found in [1], along with some soundness proofs.

4 UTP Semantics of pGCL

We are going to express the semantics of pGCL in UTP using predicates based
on a homogeneous relation among probability distributions: we will see programs
as distribution-transformers, as they change a before-distribution δ into an after-
distribution δ′.

This semantics can be related to the relational semantics and the wp-semantics
of pGCL. [1]

4.1 Deterministic Constructs

The semantic definitions for all deterministic constructs of pGCL are listed in
Figure 2 and we will now proceed to discuss each one.

The failing program abort is represented by the predicate true, which cap-
tures the fact that it is maximally unpredictable. Program skip makes no
changes and immediately terminates.

Assignment x ∶= e remaps the distribution as has already been discussed in
the previous section 3.1.

Sequential composition A;B is characterised by the existence of a “mid-point”
distribution that is the outcome of the first program, and is then fed into the
second.

We characterise conditional choice A ◁ c ▷ B by using the condition (and
its negation) to filter the left- and right-hand programs appropriately, and we

198 R. Bresciani and A. Butterfield

simply sum the (now effectively disjoint) distributions. Probabilistic choice A p⊕
B simply uses the probability and its complement to scale the distributions for
merge — this definition preserves all usual properties. In effect the predicate is
only satisfied by any combination of left and right distributions that is pointwise
larger than the minimum of both.

It is possible to build an isomorphism to relate the semantics of determinis-
tic constructs described so far to the semantics proposed by Kozen [13,14] for
probabilistic programs.

4.2 Non-deterministic Choice

We are now going to address non-determinism. According to the relational se-
mantics of pGCL from [10,15], which sees programs as relations from a state σ
to a probability distribution, we have that7

(A ⊓B).σ = ∪p∈[0..1](A p⊕B).σ

If a demonic choice is performed on a state, the set of resulting distributions
is that containing all possible distributions resulting from a probabilistic choice
with probability p varying in the range [0..1].

Seeing this, one could (reasonably?) expect the following definition for non-
deterministic choice in our framework:

A ⊓B
?
= ∃p ●A p⊕B

However this definition does not work. In particular, with the above definition,
we can prove the following (which is most definitely not a law of pGCL) :

(A ⊓B); (C p⊕D) = (C p⊕D); (A ⊓B) (!?)

It describes a demonic choice that is both history-aware, and prescient, and this
latter ability to look into the future is undesirable, and infeasible.

The key point to note is that the first statement is talking about the possible
resulting distributions starting from one single state, whereas this last definition
considers all possible starting states. As a result the set of after-distributions that
satisfy this definition of demonic choice (for a given before-distribution) is strictly
smaller then the set of after-distributions satisfying the first statement. We can
easily see this by considering that if we take the Kleisli lifting of (A ⊓B).σ for
σ ranging over the whole state space. We obtain some after-distributions which
are the result of composing programs where p is not constrained to be constant
over all states, and these cases are ruled out in the proposed definition by the
single quantification of p valid for all states.

The solution is therefore to take a weighting distribution π, use it with its
complementary distribution π̄ = ι−π) to weight the distributions resulting from
the left- and right-hand side respectively, and existentially quantify it:

A ⊓B ≙ ∃π, δA, δB ●A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB

7 Here we are using the point notation for function application, as in [15].

A UTP Semantics of pGCL as a Homogeneous Relation 199

In this way π can range over the set of weighting distributions, and the set of
after-distributions satisfying this second definition coincides with the set obtain-
able via the Kleisli lifting mentioned above.

A few more comments: usually we talk about demonic non-determinism when
we are expecting the worst-case behaviour, to model something that behaves
“as bad as it can” for any desired outcome, nevertheless our definition of non-
deterministic choice per se mandates no such behaviour: depending on the con-
text where it is used (e.g. in a framework where refinement is defined in a similar
way as for pGCL), this behaviour shows up but it is not intrinsic to the definition
— from this perspective we have a similar situation as in the relational model
of [10,15].

We can see that non-determinism yields a many-to-many relation: a program
can be seen as a relation that associates probability before-distributions with
non-disjoint sets of probability after-distributions.

The non-deterministic choice operator is idempotent according to our defi-
nition, in accordance with the pGCL semantics we take as a guide. Although
some definitions of demonic choice in the literature have this property, there are
others where this property does not hold: for example if on both sides we have
the same program containing a probabilistic choice and this choice is resolved in-
dependently on each side before the non-deterministic choice is performed, then
idempotency does not hold. Nonetheless idempotency does hold if the proba-
bilistic choice is triggered after the non-deterministic choice is made — this
is the behaviour that we can find in our framework and in pGCL,where non-
deterministic choice is history-aware, but lacks prescience [9, p.187].

We can reproduce prescient non-deterministic behaviour if we run the program
twice with probabilistic choice on local variables, and then merge the outputs
by means of a non-deterministic choice: this is a behaviour that has nothing to
do with idempotency — we keep the actions of one program separate from the
other’s, so we are actually dealing with two different program instances that
share the same specification.

We are now going to treat the well-known Monty Hall game as an example,
which contains all of the main constructs of pGCL and shows the interaction
between demonic and probabilistic choice.

The Monty Hall Game. In the Monty Hall game a player is challenged to
guess which of the three doors in front of him hides a car. After having chosen a
door among the three possible options, Monty Hall will open one of the remaining
two doors: Monty Hall knows where the car is, so he is going to open one of the
other two; the player is given the chance to change his guess at this point.

It is known from the literature that the player will maximize the probability
of finding the car if now he changes the door he has chosen (the probability will
be 2/3) — this is Bertrand’s box paradox (1889).

In fact the player can lose only if his first choice was the i-th door, which is
hiding the car (and this happens with probability 1/3), so after Monty Hall has
opened the k-th door, that is one of the two hiding a goat, the switching strategy
leads the player’s final choice to be the j-th door, which is hiding a goat.

200 R. Bresciani and A. Butterfield

Nevertheless this is a winning strategy with probability 2/3, as the chances of
winning equal the chances of choosing a door hiding a goat, when all doors are
closed. In fact choosing the j-th door forces Monty Hall to open the k-th door,
and switching makes the player choose the i-th door.

The following is a short program, which uses the program constructs defined
above to implement the game — in Figure 3 we give the definition for each
variable, function and instruction that we are using:

P ≙ setup;player;host;guess

The variables a, b, c have values in the set {1,2,3}, therefore the state space is:

S = {σ ∣ σ = v ↦ val }

where v = (a, b, c) and val ∈ {1,2,3} × {1,2,3} × {1,2,3}.
The initial distribution is a parameter of the problem: we assume its weight

is 1, but make no further assumptions on the individual weight of each state.
The first instruction is made of three assignments8, combined via non-

deterministic choice:

a ∶= i = δ′ = δ{∣i/a∣}

setup = ∃π1, π2, π3 ● δ
′ = δ�π1�{∣1/a∣} + δ�π2�{∣2/a∣} + δ�π3�{∣3/a∣}

∧ π3 = ι − π1 − π2

The second instruction is also made of three assignments, but this time they are
combined via a uniform probabilistic choice:

b ∶= i = δ′ = δ{∣i/b∣}

player = δ′ = 1/3 ⋅ δ{∣1/b∣} + 1/3 ⋅ δ{∣2/b∣} + 1/3 ⋅ δ{∣3/b∣}

a ≙ the position of the car S(x, y) ≙ min({1,2,3} ∖ {x, y})

b ≙ the player’s guess Hm(x) ≙ min({1,2,3} ∖ {x})

c ≙ Monty Hall’s hint HM(x) ≙ max({1,2,3} ∖ {x})

setup ≙ a ∶= 1 ⊓ (a ∶= 2 ⊓ a ∶= 3) [1]

player ≙ b ∶= 1 1
3
⊕ (b ∶= 2 1

2
⊕ b ∶= 3) [2]

host ≙ c ∶= S(a, b) ◁ (a ≠ b) ▷ (c ∶= Hm(a) ⊓ c ∶= HM(a)) [3]

guess ≙ b ∶= S(b, c) [4]

Fig. 3. Variables, functions and instructions for the program implementing the Monty
Hall game

8 We use the notation {∣e/x∣} for the assignment x:=e, which leaves all other variables
unchanged.

A UTP Semantics of pGCL as a Homogeneous Relation 201

We have an if-statement in the third instruction, so we have:

c ∶= S(a, b) = δ
′

= δ{∣S(a,b)/c∣}

c ∶= Hm(a) = δ′ = δ{∣Hm(a)/c∣}

c ∶= HM(a) = δ′ = δ{∣HM (a)/c∣}

c ∶= Hm(a) ⊓ c ∶= HM(a) = ∃πH ● δ
′ = δ�πH�{∣Hm(a)/c∣} + δ�π̄H�{∣HM (a)/c∣}

host = ∃πH ● δ
′

= δ�a ≠ b�{∣S(a,b)/c∣}+

+ δ�a = b��πH�{∣Hm(a)/c∣} + δ�a = b��ι − πH�{∣HM (a)/c∣}

Finally the fourth instruction gives

b ∶= S(b, c) = δ′ = δ{∣S(b,c)/b∣}

If we compose sequentially the four instructions (and jump to conclusions, full
details are available in [1]), we obtain the following expression for the final
probability distribution, which describes the program output:

δ′ =∑
i≠j

1/3 ⋅ δ�πi�{∣i/a∣}{∣j/b∣}�a ≠ b�{∣S(a,b)/c∣}{∣S(b,c)/b∣}

+∑ 1/3 ⋅ δ�πi�{∣i/a∣}{∣i/b∣}�a = b��πhost�{∣H(a)/c∣}{∣S(b,c)/b∣}

where i, j range over {1,2,3} and πhost ranges over {πH, π̄H} — and H will be
Hm or HM depending on πhost.

To evaluate the probability of winning, which is the probability of a = b, we
have to evaluate ∥δ′�a = b�∥; if we recall that ι�a = b� represents the expectation
of the predicate a = b, we can see that we are computing its expected value.

In the above expression we can distinguish two kinds of terms, and if we work
on each one under the winning condition we obtain:

δ�πi�{∣i/a∣}{∣j/b∣}�a ≠ b�{∣S(a,b)/c∣}{∣S(b,c)/b∣}�a = b� = δ�πi�{∣i,j/a,b∣}{∣S(a,b),a/c,b∣}

δ�πi�{∣i/a∣}{∣i/b∣}�a = b��πhost�{∣H(a)/c∣}{∣S(b,c)/b∣}�a = b� = ε

The terms of the second kind will give no contribution to the overall weight of
δ′�a = b� (and in fact they account for the case when the player’s first guess was
the right one), whereas all others contribute with 1/3 ⋅ ∥δ�πi�{∣i,j/a,b∣}{∣S(a,b),a/c,b∣}∥
(and of course these account for the case when the player had first chosen a door
hiding a goat).

As both remapping operations use expressions defined everywhere, and thanks
to the fact that in this condition the remap operators preserves the weight of a
distribution, we have that:

∥δ�πi�{∣i,j/a,b∣}{∣S(a,b),a/c,b∣}∥ = ∥δ�πi�∥

Therefore we have:

∥δ′�a = b�∥ = ∥2 ⋅ (1/3 ⋅ δ�π1� + 1/3 ⋅ δ�π2� + 1/3 ⋅ δ�π3�)∥ = 2/3 ⋅ ∥δ∥

202 R. Bresciani and A. Butterfield

We have assumed that the weight of the initial distribution is 1, so the weight
of all winning states is 2/3 — it is now clear why we did not need to make any
other assumption, as this is all that matters, as all the variables undergo at least
an assignment during the run of the program. 2/3 is also the expected value for
each of the initial states, so the pre-expectation assigning this weight to every
state corresponds to the post-expectation of the predicate ι�a = b�.

4.3 Generic Choice

Now that we have given an appropriate definition of non-deterministic choice, it
is worth to remark in passing that we can see how all choice constructs follow a
common pattern.

The reason is that all choice constructs can be seen as a specific instance of a
generic choice construct:

choice(A,B,X) ≙ ∃π, δA, δB ● π ∈X ∧A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB

where X ⊆Dw and Dw is the set of all weighting distributions.
We can express all our choice constructs with appropriate choices of X :

– for X = {ι�c�} we have conditional choice: A◁ c▷B = choice(A,B,{ι�c�})

– for X = {p ⋅ ι} we have probabilistic choice: A p⊕B = choice(A,B,{p ⋅ ι})

– for X =Dw we have non-deterministic choice: A ⊓B = choice(A,B,Dw)

Moreover we can see the disjunction of two programs as another kind of choice,
where X = {ε, ι}: A ∨B = choice(A,B,{ε, ι})

Our generic choice operator allows us to define a framework with only one
choice construct, where all of the usual choice operators can be seen as syntactic
sugar of a particular class of generic choices; moreover we can also use this
generic construct to create new kinds of choices, other than the more traditional
ones—the reader can refer to [1] for some examples; the potential of this generic
choice operator has still to be fully explored.

4.4 The Linkage between Other Semantic Models and Ours

The relational demonic semantics for pGCL [15, p139] is given as a function
from a state to a probabilistically closed set9 of distributions: S → CS. Kleisli
lifting (See Appendix A) of that model results in a function between such sets of
distributions, so p ∶ S → CS is lifted to p∗ ∶ CS → CS. From this lifted semantics,
we can extract the corresponding UTP relation (R) on distributions as follows:

R = {(δ, δ′) ∣ δ′ ∈ p∗{δ} }

Things are slightly more complicated if we want to relate the wp-semantics from
[15] to our semantic model. The way to do this is to observe that an expectation

9 Here denoted by CS.

A UTP Semantics of pGCL as a Homogeneous Relation 203

is a random variable (with non-negative real values), and as such it can be
represented as a distribution χ in our framework. Then if χ′ represents a post-
expectation and A is a program, we can define the corresponding pre-expectation
χ by computing the expected final weight of each state before A is run:

χ(σ) =min({∥χ′ ⋅ δ′∥ ∣ A(ησ, δ
′)})

Here ησ represents a point distribution, which is a distribution where all states
other than σ map to zero, while σ maps to 1:

ησ ≙ ε � {σ ↦ 1}

So, A(ησ, δ
′) is true for all δ′ that can result from running A given a point dis-

tribution about σ. For each such δ′ we scale with the post-expectation, and take
the minimum over those. It shall be noted that this set of δ′ so obtained is a
singleton set for all deterministic constructs. We extract of the pointwise mini-
mum from that set if not a singleton, as in this case we have non-determinism,
and so we have to mirror the pointwise minimum used in Figure 1.

5 Conclusion and Future Work

We have provided an encoding of the semantics of pGCL in UTP, as a homo-
geneous relation on the alphabet {δ, δ′}, where the before and after variables
are distributions over program states. The key is that our semantics models
probabilistic programs as predicate transformers, so allowing us to claim that
“probabilistic programs are predicates too”. We have shown that we can deal
with variables by name, despite their being entangled in the semantic domain,
and that the laws of pGCL are provable from our semantics. In addition we
have formulated our semantics in such a way as to be able to view all choices as
instances of a generic choice construct, and even to be able to allow disjunction
back in as a form of choice.

We have shown the linkage between our semantic model and the two models
that feature in [10,15]: this will lead to a formalization of the healthiness condi-
tions, which characterise the predicates in our framework, and which we expect
to be substantially the same, modulo an appropriate generalization, as in pGCL.

A further step forward to be taken is to explore the role of auxiliary variables
such as ok and ok′ that capture a behaviour such as termination: non-termination
leads to probability sub-distributions, similar to what happens in pGCL, so we
could manage without, but their introduction — together with other auxiliary
variables such as wait and wait′ — may prove of help in moving towards the
encoding of reactive systems in this framework.

This is important, as the long term focus of this work is on a probabilistic
variant of Circus, which requires semantic models for probabilistic process alge-
bras like pCSP [18,4] or ptsc [20]. These will then have to be integrated with
our pGCL semantics in much the same way that the theory of Reactive Designs
in UTP is the basis for the semantics of Circus-like languages.

204 R. Bresciani and A. Butterfield

Acknowledgements. We wish to thank (some of) the anonymous referees who
have reviewed previous versions of this paper for their insightful comments and
suggestions.

References

1. Bresciani, R., Butterfield, A.: Towards a UTP-style framework to deal with proba-
bilities. Technical Report TCD-CS-2011-09, FMG, Trinity College Dublin, Ireland
(August 2011)

2. Butterfield, A. (ed.): UTP 2008. LNCS, vol. 5713, pp. 22–41. Springer, Heidelberg
(2010)

3. Chen, Y., Sanders, J.W.: Unifying Probability with Nondeterminism. In: Caval-
canti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 467–482. Springer,
Heidelberg (2009)

4. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising test-
ing preorders for finite probabilistic processes. Logical Methods in Computer Sci-
ence 4(4) (2008)

5. Dunne, S., Stoddart, B. (eds.): UTP 2006. LNCS, vol. 4010, pp. 236–256. Springer,
Heidelberg (2006)

6. Freitas, L., Woodcock, J., Butterfield, A.: Posix and the verification grand chal-
lenge: A roadmap. In: 13th IEEE International Conference on Engineering of Com-
plex Computer Systems, ICECCS 2008, March 31-April 3, pp. 153–162 (2008)

7. Gancarski, P., Butterfield, A.: The Denotational Semantics of slotted-Circus. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 451–466.
Springer, Heidelberg (2009)

8. He, J.: A probabilistic BPEL-like language. In: Qin [22], pp. 74–100
9. He, J., Sanders, J.W.: Unifying probability. In: Dunne and Stoddart [5], pp. 173–

199
10. He, J., Seidel, K., McIver, A.: Probabilistic models for the guarded command lan-

guage. Science of Computer Programming 28(2-3), 171–192 (1997); Formal Speci-
fications: Foundations, Methods, Tools and Applications

11. Hoare, C.A.R.: Programs are predicates. In: Proceedings of a Discussion Meeting of
the Royal Society of London on Mathematical Logic and Programming Languages,
pp. 141–155. Prentice-Hall, Upper Saddle River (1985)

12. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science (1998)

13. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

14. Kozen, D.: A probabilistic pdl. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
15. McIver, A., Morgan, C.: Abstraction, Refinement And Proof For Probabilistic Sys-

tems (Monographs in Computer Science). Springer, Heidelberg (2004)
16. McIver, A., Morgan, C.: Abstraction and refinement in probabilistic systems. SIG-

METRICS Performance Evaluation Review 32(4), 41–47 (2005)
17. Morgan, C., McIver, A.: A probabilistic temporal calculus based on expectations.

Technical Report PRG-TR-13-97, Oxford University Computing Laboratory (1997)
18. Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability

for CSP. Formal Asp. Comput. 8(6), 617–647 (1996)
19. Ndukwu, U., McIver, A.: An expectation transformer approach to predicate ab-

straction and data independence for probabilistic programs. CoRR (2010)

A UTP Semantics of pGCL as a Homogeneous Relation 205

20. Ndukwu, U., Sanders, J.W.: Reasoning about a distributed probabilistic system.
In: Downey, R., Manyem, P. (eds.) Fifteenth Computing: The Australasian Theory
Symposium (CATS 2009). CRPIT, vol. 94, pp. 35–42. ACS, Wellington (2009)

21. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput. 21(1-2), 3–32 (2009)

22. Qin, S. (ed.): UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010)
23. Sherif, A., Kleinberg, R.D.: Towards a Time Model for Circus. In: George, C.W.,

Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg
(2002)

A Keisli Composition

Assume a semantic model of the form S → FS where F is a type constructor (functor).
The question that naturally arises is how to compose such functions, i.e., given p ∶ S →
FT and q ∶ T → FU , how do we compose these to get (p; q) ∶ S → FU? The standard
solution for this is Kleisli lifting and composition which involves two functions with
the following signatures:

ηS ∶ S → FS ∗ ∶ (S → FT) → (FS → FT)

that obey the following laws:

η
∗

S = idFS p∗ ○ ηS = p (q
∗

○ p)
∗

= q
∗

○ p
∗

The intuition behind these is best understood in a diagram:

FS FT FU

S T U

ηS
p

ηT
q

p∗ q∗

ηU

The Kleisli composition of p and q is given by q∗ ○ p, where ○ denotes regular function
composition.

In this paper FS = P(S → [0,1]).

Behaviour-Based Cheat Detection

in Multiplayer Games with Event-B

HaiYun Tian
∗
, Phillip J. Brooke, and Anne-Gwenn Bosser

School of Computing, Teesside University, Middlesbrough, UK, TS1 3BA
{H.Tian,A.G.Bosser}@tees.ac.uk, pjb@scm.tees.ac.uk

Abstract. Cheating is a key issue in multiplayer games as it causes
unfairness which reduces legitimate users’ satisfaction and is thus detri-
mental to game revenue. Many commercial solutions prevent cheats by
reacting to specific implementations of cheats. As a result, they respond
more slowly to fast-changing cheat techniques. This work proposes a
framework using Event-B to describe and detect cheats from server-
visible game behaviours. We argue that this cheat detection is more
resistant to changing cheat techniques.

Keywords: Cheat detection, multiplayer games, Event-B.

1 Introduction

Multiplayer games give players a sense of reality and engagement more so than
in single-player games. They have gained considerable popularity in the enter-
tainment world [5,19,10]. Cheating is a major concern for many game developers
as it reduces the fairness of games, damages the expected game experience and
thus decreases revenue [10,7,17]. “Cheating” refers to any game behaviour that
players use to achieve an unfair advantage and/or a target that they are not
supposed to [15]. Cheating may exceed the possible bounds of human capabil-
ity, e.g., Aimbot, Spinbot, or provide “extra-sensory perception” such as seeing
through opaque objects (commonly called “wallhacking”) as well as learning
about the hidden information (ESP) [23]. Moreover, cheating has grown to such
an extent that not only are private hackers involved but also some companies
commercially thrive by offering cheat techniques [11,10].

Game developers face an up-hill battle with cheat developers [17]. Many com-
mercial solutions (e.g., DMW [13], GameGuard [14], VAC [21], etc.) act reac-
tively by discovering and studying unknown cheat techniques then developing
countermeasures, as illustrated in Figure 1. However, games can remain vulnera-
ble to particular cheats in this defense process. This work is inspired by Laurens
et al. [17], a proof-of-concept solution that calculates game behaviours for in-
dications of cheating. This work attempts to formalise the description of game
behaviours using Event-B and provides a behaviour analysis method for detect-
ing cheating. Although we specify some behaviours within a particular game,
∗

Corresponding author.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 206–220, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Behaviour-Based Cheat Detection 207

Fair
game

Fairness
at risk

Unfair
game

New vulnerability
exploited by game
hackers

Countermeasure
released by game

developers

Cheat technique developed
by game hackers

Cheat technique studied,
countermeasure developed
by game developer

Cheat technique
used by game
cheaters

Fig. 1. Traditional cheat defence loop

M

G A D

game behaviour

cheating result

refine

input output

input

output

Fig. 2. A’s environment

we are not attempting to specify a complete game. As a result, matters such as
deadlock, fairness and liveness not within the scope of this work.

The rest of this paper is structured as follows. Section 2 presents our approach
to modelling cheating behaviour in Event-B; section 3 introduces the actual pro-
duction of cheat detectors. Section 4 validates the framework using an example
game. Section 5 discusses related work before we conclude in section 6.

2 Behaviour-Based Cheat Detection with Formal
Methods

The framework presented in this paper contains both a method for modelling
game behaviour and a procedure for producing behaviour-based cheat detectors.
This framework, illustrated in Figure 2, can be divided into two sub-systems, S1

and S2:

S1 = (M,G,A,D) S2 = (game behaviour ,D, cheating results)

S1 produces cheat detectors: algorithmA uses G, a derivation of a base modelM,
to produce a cheat detector D. S2 uses a detector produced by S1 to measure the
cheating behaviours of players. We next consider how we might model cheating
behaviours before introducing Event-B in section 2.2.

2.1 Cheating Behaviour Modelling

For now, we consider only games based on a client/server architecture. That
is, we have multiple players who send commands to and receive feedback and
updates from the server.

A player’s behaviour is usually a thoughtful response to the current game
state. This game state is distributed by the game server to all involved players,
and their responses result in the subsequent game state. We write a game state
as

208 H. Tian, P.J. Brooke, and A.-G. Bosser

game state =

⎧⎪⎨
⎪⎩

player1.local state,
...,

playern .local state

⎫⎪⎬
⎪⎭

i.e., a game state is a collection of client states reported by all involved clients
player1..n to their game server at an instant. Thus, a particular game behaviour
can be described as

game behaviour = (game state, game state ′)

This means that a game behaviour is an ordered pair of antecedent and conse-
quent game states. A player ’s behaviour is also an ordered pair

player behaviour = (game state, game state ′(player)).

player represents a player and game state ′(player) stands for the player ’s re-
sponse to the antecedent game state.

We use predicates to define these game behaviours. Let STATE be a set con-
taining all possible client states and PLAYER a set of all involved players. We
give a predicate, P1, for describing general player behaviour below.

P1((game state, game state ′(player))) =

game state, game state ′ ∈ PLAYER → STATE ∧ player ∈ PLAYER

P1 is very abstract. Suppose the game involves three possible player responses,
moving, aiming and firing. We can then refine STATE to {position, aim,fire}.
At this level of abstraction, we can also specify a particular cheat, a “trigger-
bot” which automatically fires whenever an opponent is located such that the
opponent is likely to be hit. This gives its users an advantage over legitimate
opponents of being the first to fire. We can describe triggerbotting behaviour in
the predicate P2 as defined below.

P2((game state, game state ′(player))) = P1 ∧
(∃ peer ∈ PLAYER ∧ peer 	= player

∧ game state ′(player).aim = game state(peer).location)

⇒ game state ′(player).fire = true

The predicate P2 includes P1 in its conjunction: this means that all behaviour
described by P2 are permitted by P1. In addition, P2 describes that, whenever
an opponent is at the point of aim, the player immediately fires. It is very likely
that fair (i.e., non-cheating) players can achieve immediate fire responses too,
but we suggest that they do it less frequently than a cheater since a triggerbot
allows its users to exceed the typical bounds of human capability. Most wide-
spread game cheats do not employ an ‘alien’ behaviour, a behaviour out of the
bounds of {P1}. Otherwise, cheat detection would not be difficult since the mes-
sage from the client would be obviously unacceptable. As a result, many cheats
cause more effective play than a fair player during a game period. However, a
cheat that exhibits behaviours identical (in probabilistic terms) to a fair player
cannot be detected by our system.

Behaviour-Based Cheat Detection 209

M.R M.C G.C

M.S G.S G.Cb1..bn

Decomposition
refinement

Refinement

Refinement
Decomposition

refinement

Refinement

Fig. 3. Derivation from base model

Using formal languages to describe a game’s behaviour can ensure the consis-
tency in different developers’ individual understanding of cheating behaviour at
different abstraction levels. For example, the members of a development team
(e.g., game designers, game developers, security specialists) can use a formal
description to ensure a consistent description of particular cheats, as well as the
overall design (in common with existing formal methods approaches).

2.2 Cheating Behaviour in Event-B

Event-B [3] is chosen in this particular work for two reasons. Firstly, many com-
mercial games use a vast amount of data associated with world simulation, and
thus modelling even an abstraction of these simulations would encounter compli-
cated data structures. Event-B is a state-rich formalism which suits this require-
ment. Other options included Z [22], B [1] and Circus [9]. Secondly, Event-B has
a toolkit Rodin [4,2]. Rodin contains a model editor, an obligation generator, an
obligation viewer, an obligation automatic proof, comprehensive model analysis,
etc., together with a friendly user interface.

Event-B models can be constructed in an arbitrary way. As our contribution
involves A, a mechanical procedure for producing cheat detectors, we need to
constrain these models so that A is able to work. This work uses constraints on
both refinement architecture and machine refinement to ensure G’s compatibility
to A via an abstraction M, the base model.

We refine the machines as shown in Figure 3. The base model M acts as the
top abstraction of client/server game systems, providing the game model with a
structure suitable for subsequent processing by A. Decomposition refinement is
a technique of describing parallelism in Event-B due to Butler [8]: M uses it to
describe synchronisation between game servers and game clients. Details of a spe-
cific game and its cheats can be added by refinements fromM to G via refinement.
The machine G.S , the model of game servers, is refined from M.S . The machine
G.C refines M.C , modelling the game clients of a specific game. The machines
G.Cb1..bn refine G.C , modelling different types of cheating game clients.

During this refinement, we instantiate some variables listed in Table 1. For
conciseness, this report omits some details; they can be found in [20] (along with
full versions of the machines presented shortly). Machine G.C can be defined as
follows:

210 H. Tian, P.J. Brooke, and A.-G. Bosser

Table 1. Machine component variables

Var Machine component description

Sf A list of machine state variables.

If (V) A list of invariants on V , implicitly conjoined.

Ef A label for a machine event.

Xf A list of event parameters.

Pf (V) A list of guards on V , implicitly conjoined.

Qf (V) A list of actions on V .

Table 2. Example of component variable assignments (client)

Variable Machine component

Ef (event name) play

Pf (event para) pos

Pf (event guard) position(cstate) = pos

Machine G.C
Refines M.C
Sees G.Cxt
Variables buffer , clients , game situation, local state, own ID ,Sf

Invariants . . . , If (Sf , buffer , clients , game situation, local state, own ID)

Events
initialisation =̂ Qf (Sf) . . . end
. . .
Ef =̂
refine client act
any cstate,Xf where

clientID(cstate) = own ID
cstate ∈ CLIENT STATE
Pf (Sf ,Xf , buffer , clients , game situation, local state, own ID)

then
local state := cstate
Qf (Sf ,Xf , buffer , clients , game situation, own ID)

End
End

The full text of this machine (and others given in this work) has been checked
in Rodin; the version presented here is a shortened version from Rodin’s LATEX
plugin.

Suppose we have a game where avatars can change their positions. Assume
the model context G.Cxt has a fresh carrier set MAP containing all possible
positions that avatars can move to in the game; a set CLIENT STATE contains
all possible client state; and one axiom position ∈ CLIENT STATE →MAP .

Behaviour-Based Cheat Detection 211

Table 3. Component variable assignments for wallhacking example

Variable Machine component

Ef (event name) wallhack

Pf (event guard) ∃ opponent state ∈ game situation
∧ clientID(opponent state) 	= own ID
∧ position(opponent state) 	∈ VISIBLE(local state)
∧ (DISTANCE (pos, position(opponent state))

< DISTANCE (position(local state), position(opponent state)))

An instance of Ef can be made using Table 2 so that
play =̂

refine client act
any cstate, pos where

clientID(cstate) = own ID
cstate ∈ CLIENT STATE
position(cstate) = pos

then
local state := cstate

End

Now consider the cheat “wallhacking”. This cheat allows players to see through
opaque objects. A behavioural characteristic of this cheat can be described that

Antecedent state: An opponent is not visible to a wallhacker.
Player’s response: The wallhacker approach that opponent.

This characteristic can be described in Table 3 by adding a fresh guard to play
in a refinement. This guard involves some fresh constants and variables. Briefly,
game situation is defined in the base model M; it is a set containing the up-
to-date game state. These constants are defined in the Event-B context. For
example, the constant VISIBLE represents the game function that calculates
the up-to-date visible zone for a game client, and DISTANCE calculates the
distance between two map locations.

The event wallhack refines play by adding a fresh guard, which describes
that a player can approach to a legally invisible opponent. A wallhacking client
machine can then be composed as the following.

Machine GTankWar .CWallhack

Refines GTankWar .C

Sees GTankWar .Cxt

Variables . . .

Invariant . . .

Event . . .

wallhack =̂ . . . End

End

As more behavioural characteristics are identified, more events like wallhack can
be added, and better cheat detection would is achieved using the algorithm A
(described in the next section).

212 H. Tian, P.J. Brooke, and A.-G. Bosser

3 Production of Cheat Detector

This work aims at mechanically producing behaviour-based cheat detectors. We
now describe our approach to detection, given the Event-B models outlined
above.

Suppose we embed a specific model of cheating behaviour into a robot player,
robot (e.g., the wallhacker behaviour or the triggerbot behaviour). Assume we
now ask the detector to examine a game player, player . The detector first records
a sequence of player ’s behaviours, which are not necessarily adjacent in time
or captured at the same interval, and then runs robot using the antecedent
game state of each behaviour and collects robot ’s response to the same sequence.
Recall that a player’s game behaviour is an ordered pair of the antecedent game
state and the player’s response (consequent client state). It is very likely that
robot has a nondeterministic choice in its response. Thus, the detector collects
from the robot a set that contains all its possible responses in that context.
This is repeated until all collected player behaviours are used. In the end, the
detector has a sequence of responses from player and a corresponding sequence of
response sets from robot . The proportion of player ’s response contained in robot ’s
corresponding response set is the rate that player behaves like this cheat.

To calculate whether or not player can make the same response as robot , we
introduce the function Exam below.

Exam((game state, game state ′), player , robot)

=

{
1 if game state ′(player) ∈ robot’s response set to game state

0 otherwise.

The detector D uses Exam to assess monitored game behaviour. Recall that
a game behaviour is a game state transition and described as (game state,
game state ′). Let tr be a sequence of game behaviour and k be the length of tr :

tr = 〈(tr1.game state, tr1.game state ′), . . . , (trk .game state, trk .game state ′)〉

That is, tr is a sequence of observations of game behaviours, or a sequence of
pairs of states. The expressions tri .game state and tri .game state ′ represent the
first element (antecedent game state) and the second element (consequent game
state) of a particular transition tri .

Rather than calculating a single numeric matching rate between player and
robot , our detector calculates how much player acts as robot for each leading
subsequence of tr and returns a sequence of matching rates. This allows consid-
eration of trends through a particular game, as it carries more information than
a single final rate. For example, when a player finishes at 15%, but stays above
60% more than half time of the game, this player might be suspicious.

Let ratei be the matching rate for the subsequence 〈tr1, . . . , tk〉. We can calcu-

late ratei =
∑i

m=1 Exam(trm , player , robot)
i

[i ∈ 1..k]. This describes that
ratei is the proportion of the transitions in which player matches robot to the

Behaviour-Based Cheat Detection 213

total transitions that are collected until ti . We can use ratei to define a function
rateDst to calculate a rate sequence

rateDst(〈tr1, . . . , trk〉, player , robot) =̂ rate1, . . . , ratek

Thus,

rateDst(〈tr1, . . . , trk 〉, player , robot) =

〈
∑1

m=1 Exam(tr1, player , robot)
1

, . . . ,

∑k
m=1 Exam(trm , player , robot)

k
〉

For example, a sequence of game behaviour (game state transition) is captured
as tr ′ = 〈tr1, tr2, tr3, tr4〉. Given the following

Exam(tr1, player , robot) = 1, Exam(tr3, player , robot) = 0,
Exam(tr2, player , robot) = 0, Exam(tr4, player , robot) = 1

then rateDst(〈tr1, tr2, tr3, tr4〉, player , robot) = 〈100%, 50%, 33%, 50%〉.
So the function rateDst takes the input of game behaviour sequence and pro-

duces matching rates in the same sequence. The algorithm A uses rateDst to
construct the detector D, and is defined below.

1 Algorithm: A
input : G, a game model for game.
output: D, a cheat detector for game.

2 begin
3 D =̂ begin

input : player , a game client.
input : tr , a sequence of server-side game state transitions.
output: ratedsrc1..cn , matching distributions for G.Cb1..G.Cbn .

4 ratedsrc1 = rateDst(tr , player , G.Cb1)

5
...

...
6 ratedsrcn = rateDst(tr , player , G.Cbn)

7 end

8 end

Using the example above, A replaces robot with the machine G.Cb1..bn , which
describes the behaviours of different cheats. Thus, a produced detector D is
able to detect these cheats by comparing the possible behaviours specified in
the formal model. As presented in Figure 2, the algorithm A takes a behaviour
model G and returns a detector D. The resulting detector can monitor players
for the cheats that G specifies.

Importantly, it is necessary to discuss the criteria of judging a player using
the output of our cheat detectors. Judging a player does not rely on the player’s

214 H. Tian, P.J. Brooke, and A.-G. Bosser

Fig. 4. Deployment of detector (1) Fig. 5. Deployment of detector (2)

matching rates alone. We must consider the individual rates in the context of
all the players’ rates.

For example, when most players have rates between 5% and 15%, some players
may always stay at about 30%: these latter players are suspects. We must also
consider the cases that our detectors are wrongly specified, i.e., the predicates in
the Event-B model are ineffective. This could result in no cheats being detected
(false negatives) or too many fair players being identified as cheats (false posi-
tives). Another interesting case concerns most players engaging in cheating: this
results in many high rates and it becomes difficult for an automated process to
suitably identify them. The detection performance is determined by the quality
of cheating behaviour knowledge that the framework users accumulate before
embedding them in the framework as predicates.

3.1 Merits of Implementation

Our cheat detection can handle increasing amounts of work in a scalable manner.
A’s detectors only need the data packets that the game server distributes to game
clients for maintaining game consistency, and requests neither extra information
nor any computing service from the game server and clients. The number of
detectors working for a game simultaneously has no impact on the performance
of games, provided that the server broadcasts the relevant packets onto their
network. When dealing with a number of cheats, rather than using a single
‘giant’ detector for all them as Figure 4 shows, we could produce one detector
per cheat. Assume there are two cheats, wallhacking and triggerbots: a possible
deployment can be as shown in Figure 5 with, one node for one cheat. When
a new cheat detector is produced, it can be plugged into the network as a new
independent node.

4 Validation of the Framework

This framework is validated by an experiment. An example game, TankWar
(more fully described in [20]), was used to test the resulting detector with human
volunteers. It is simple by contrast with many commercial games. But it contains

Behaviour-Based Cheat Detection 215

Fig. 6. Visibility zones Fig. 7. Validation design

most important elements of first-person shooter games, e.g., surviving, attacking,
limited vision, etc. More importantly, M is a generic client/server architecture
game model, and it is designed for deriving behaviour model G for the games of
this tier, even though TankWar is relatively small. Therefore, we suggest that
it is a suitable proof-of-concept test of its applicability for larger games.

TankWar , is a real-time strategy/FPS multiplayer game, and is played by
moving and shooting. Players have restricted vision as shown in Figure 6. A
player’s visible zone is the area to their front and is stopped by solid objects.
Players can only see opponents who are in their visible zones.

Using our framework, we produce the model GTankWar , which describes wall-
hacking and triggerbotting behaviour. Running A, we obtain detector DTankWar ,
which is intended to detect the two cheats, as shown below.

Procedure. DTankWar

1 begin
input : player , a game client.
input : tr , a sequence of server-side game state transitions.
output: ratedsrwallhack , ratedsrtriggerbot

2 ratedsrwallhack = rateDst(tr , player , G.Cwallhack)
3 ratedsrtriggerbot = rateDst(tr , player , G.Ctriggerbot)

4 end

The detector DTankWar is equipped with client machines GTankWar .Cwallhack

and GTankWar .Ctriggerbot . To examine DTankWar , a strategy is designed as shown
in Figure 7. Besides the game server and game clients, there are three more
components: a cheat detector, a client monitor and an assessment module. These
three components never return data to both server and clients and thus have no
influence on the game experience. The client probe is a component independent
from the detector. It is made only for validating the performance of the detector
by recording each client’s behaviour since we have full control of the clients for
the experiment.

The top-right diagram of Figure 8 is an example of the detector’s output,
presenting the matching rates in a game for a particular player. The x -axis is
a timeline and the y-axis shows matching rates. The example detector report

216 H. Tian, P.J. Brooke, and A.-G. Bosser

Fig. 8. Example of validation output

describes that the client T02 remained at a low rate at the beginning and in-
creased abruptly to about 50% then gradually rose to about 90% in the end. The
top-left of Figure 8 is from the client probe, consisting of three columns: user
name, time and action. It reveals when and which clients activated a cheating
play mode. The probe report presents that player T02 joined the game at 0s
and played in a fair play mode; T02 activated cheating play mode at 45s and
finished at 358s. Assessment of the detector’s performance is by comparison of
the reports from the client probes and the detector.

This validation involves a number of game trials: 32 games were monitored,
with 16 for wallhacking and 16 for triggerbotting with five players from a pool
of seven.

In most trials, a cheat finished at a rate twice or more as high as a legitimate
player. There were only four exceptions, and three of them were accounted for
by limitation of data (the players lost the game too quickly) and only one is a
true detection failure. The success detection rate is 28 out of 32. We note that
the change in detection rate over time was sometimes interesting. For example,
some wallhacking detection reports show a rapid rate increase shortly after the
beginning. It can be envisaged that cheat detection would perform well when
game designers and developers use their knowledge about cheating to describe
problems in commercial games.

5 Related Work

Recent research has proposed some novel techniques of cheat detection that do
not rely on knowledge about specific game vulnerabilities as many commercial

Behaviour-Based Cheat Detection 217

solutions do. They consider cheats by looking at particular measurements. A
work based on probability theory was proposed by Chapel et al. [10]. It proposes
two complementary frameworks based on the use of the law of large numbers
and the Bradley-Terry model [6], which calculate statistical indexes that suggest
a player is cheating. The two frameworks are both based on the assumption
that each player can be assigned a rank which determines the probability of
the outcomes of their games, and determines cheating by observing the differ-
ence from resulting ranks and expected ranks. Another novel cheat detection
design was proposed by Laurens et al. [17], which we have discussed in previous
sections. The design statistically analyses server-side observable behaviour for
indications of cheating. For example, to prevent wallhacking, the system collects
data (e.g., player view and game world geometry) and then transforms the data
to a measure of cheating based on, e.g., frequencies of behind-wall sight vector,
distance between players and walls). Subsequently, the measurements are used
by statistical algorithms to determine the probability of wallhacking.

Our work is inspired by them and has its own features. It does not rely on
any particular measurement (e.g., rank, sight vector, distance). It uses behaviour
models to investigate behavioural characteristics and uses the comparison of
possible vs. observed behaviours to detect cheats. In common with the methods
described above, its performance is resistant to fast-changing cheat implemen-
tations due to being a server-side detector.

There are other approaches. For example, it is proposed in [12] that high-level
game rules can be described in temporal logic and used to verify the properties
of game players at the run-time. The main difference is that our cheat detec-
tion does not reply on either rule-enforcement or rule-violation. But, it is done
by simulating cheating at instant observation and matching players’ behaviours
with the simulation result at each instant and calculating to which extent the
players are cheating during a reasonable period. In [18], a client patching mecha-
nism is introduced that increases the difficulty of being identified and broken by
hackers. The main difference is that our work uses formally-specified simulations
of cheaters to detect cheating and does not need patches on game clients.

Moreover, our work has some similarity to intrusion detection systems (ID-
Ses). These are primarily focused on identifying possible incidents, which are
violations or imminent threats of violation of system security policies or accept-
able use policies [16]. A typical IDS records observed events, and (1) matches
them with some event patterns (signatures) corresponding to known security
threats, (2) examines whether or not there are anomalous events using defini-
tions of normal events (profiles) or (3) identifies unexpected sequences of events
by comparing predetermined profiles of generally accepted definitions of benign
protocol activity for each protocol state against the observed events.

The common feature of IDSes and this work is that they all use clients’ foot-
prints (or “server-side observable behaviour”) on a server or the network to
match certain ‘characteristics’ and calculate the indication of a threat. Typi-
cal IDSes present the characteristics (e.g., threat signature, anomalous profile,
definitions of benign protocol activity) in some form of pattern or description

218 H. Tian, P.J. Brooke, and A.-G. Bosser

language and match observed behaviours against those patterns. This framework
also uses a language —in this case, Event-B— to describe particular cheating
behaviours. Our base model M does not contain any fixed cheating behaviour
patterns; it has no direct concern with cheating behaviours and acts as the top
abstraction. The validity of G and the efficiency of the resulting cheat detectors
mechanically produced by A using G is determined by the quality of the cheating
descriptions that are incorporated in G. Similarly, IDSes are only as good as the
signatures, profiles or definitions of benign activity.

6 Conclusions

We have demonstrated that we can use refinement in Event-B to describe some
cheating behaviours in games. The resulting machines can be used to produce
cheat detectors that we argue are more resistant to changing implementations
of cheats. We have demonstrated the credibility of describing cheats via formal
specification via experiment. This experiment tests both that we can describe
the cheats in this fashion and that the resulting detector is accurate.

One might notice that this work shows a different concern from typical work
in formal methods. One aim is to bring the precision of formal methods to the
description of cheating behaviours. However we have not concerned ourselves
with the development of games; we are not, for example, attempting to formally
derive or prove the implementation of a game. As a result, it is out of scope for us
to address classical issues such as deadlock, fairness, liveness and inconsistency of
the games. More detailed designs may be amenable to such analysis depending on
the tool support in each instance. Moreover, we are not aware of any significant
game designed using such formal specification or analysis.

The major advantage of this work is that it allows game developers to proac-
tively protect their games instead of defending passively against cheat tech-
niques. There is no necessity of capturing behaviour in a temporally adjacent
manner and/or at the same interval: for a long-running game, our detectors
can randomly sample behaviour several times during a period (e.g., one or two
hours), and gradually generate cheating references.

However, we must be able to describe the cheating behaviour in question in
Event-B. Essentially, we are trying to describe cheats at a very abstract level
such that the implementation of the cheat is inconsequential. Discovery of cheat-
ing behaviour is itself an interesting question which we have not attempted to
answer here. Automatic construction of these descriptions would require some
description of the rules of a game itself; thus these rules would require formal
specification.

One limitation is that this work cannot efficiently detect cheats that lead only
to trivial behavioural difference between fair players and cheaters. For exam-
ple, some games allow virtual gifts (e.g., weapons) exchanged between players.
When people abuse this feature and illegally trade, the buyers would obtain an
unbalanced (unfair) power against the time they spent. Our detector might not
work for this cheat since there might not be a behavioural difference between
the buyers and fair players when they exchange their avatars.

Behaviour-Based Cheat Detection 219

Another limitation is on game architecture. The base model M is an ab-
straction of client/server architecture games, and the behaviour model G must
be derived from it. However, this does not suit all game architectures, some of
which may have strong peer-to-peer components.

This work leaves open many possible future improvements.

– Introduce a set of base models, M1..n to allow for a broader range of game
types.

– Developing easier ways to produce the predicates that describe cheating be-
haviour. A further development would be to automatically identify possible
predicates describing cheating; but this itself would require some description
of the intent and rules of any particular game. We speculate that particular
patterns may arise often enough that they could be described generically.

– Extend our framework to be able to identify game players from their be-
haviour. This would work even if they use different user names. This can
prevent people from cultivating avatars or farming games for buyers, or from
changing IP address to avoid countermeasures such as IP blacklisting.

Although we have used this framework only for the classification of game users
into fair-player and cheating-player groups in this paper, its application can
feasibly be extended to the classification of users in other multiuser systems,
such as a social-networking system. A could be adapted from being a creator of
cheat detectors to a creator of user classifiers. A user classifier could put social
network users into a variety of categories (e.g., a movie fan, a sport fan, etc.)
and even sub-categories (e.g., an action movie fan, a bicycle sport fan, etc.)
by calculating server visible behaviours. Thus, it might facilitate solutions for
delivering relevant content to the users who are most likely to be interested.

Acknowledgements. This work was undertaken during the first author’s PhD
studies at Teesside University, and was funded by a research doctoral scholarship
from that university. We thank the anonymous reviewers for their detailed and
constructive remarks.

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.-R.: A System Development Process with Event-B and the Rodin Plat-
form (2007)

3. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press (2010)

4. Abrial, J.-R., Voisin, L.: Rodin deliverable 3.2 Event-B language (2005)
5. Bell, M.: Toward a definition of “virtual worlds”. Journal of Virtual World Re-

search 1(1) (2008)
6. Bradley, R.A., Terry, M.E.: Rank Analysis of Incomplete Block Designs: I. The

Method of Paired Comparisons. Biometrika, vol. 39 (1952)

220 H. Tian, P.J. Brooke, and A.-G. Bosser

7. Brooke, P.J., Paige, R.F., Clark, J.A., Stepney, S.: Playing the game: cheating,
loopholes, and virtual identity. SIGCAS Comput. Soc. 34(2) (September 2004)

8. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

9. Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002)

10. Chapel, L., Botvich, D., Malone, D.: Probabilistic approaches to cheating detection
in online games. In: IEEE Symposium on Computational Intelligence and Games
(2010)

11. de Paoli, S., Kerr, A.: We will always be one step ahead of them: A case study on
the economy of cheating in MMORPGs. Journal of Virtual Worlds Research 2(4)
(2010)

12. DeLap, M., Knutsson, B., Lu, H., Sokolsky, O., Sammapun, U., Lee, I., Tsarouchis,
C.: Is runtime verification applicable to cheat detection? In: Proceedings of
3rd ACM SIGCOMM Workshop on Network and System Support for Games,
NetGames 2004, pp. 134–138. ACM, New York (2004)

13. DMW (2002), http://www.dmwworld.com/
14. INCA Internet (2000), http://www.inca.co.kr/
15. Choi, H.-J., Xin, J., Yan, J.: Security issues in online games. The Electronic Library

20 (2002)
16. Karen, S., Peter, M.: Guide to Intrusion Detection and Prevention Systems (IDPS).

Computer Security Resource Center (2009)
17. Laurens, P., Paige, R.F., Brooke, P.J., Chivers, H.: A novel approach to the detec-

tion of cheating in multiplayer online games. In: ICECCS 2007: Proceedings of the
12th IEEE International Conference on Engineering Complex Computer Systems,
pp. 97–106. IEEE Computer Society, Washington, DC (2007)

18. Mönch, C., Grimen, G., Midtstraum, R.: Protecting online games against cheat-
ing. In: Proceedings of 5th ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames 2006. ACM, New York (2006)

19. Schroeder, R.: Defining virtual worlds and virtual environments. Journal of Virtual
Worlds Research 1(1), 1–3 (2008)

20. Tian, H.Y.: Formal Derivation of Behaviour-based Cheat Detectors for Multiplayer
Games, PhD thesis. School of Computing, Teesside University (2012)

21. Valve Corporation (2002), http://www.valvesoftware.com/
22. Woodcock, J., Davies, J.: Using Z - Specification, Refinement, and Proof. Prentice

Hall (1996)
23. Yan, J., Randell, B.: A systematic classification of cheating in online games. In:

NetGames 2005: Proceedings of 4th ACM SIGCOMM Workshop on Network and
System Support for Games, pp. 1–9. ACM, New York (2005)

http://www.dmwworld.com/
http://www.inca.co.kr/
http://www.valvesoftware.com/

Refinement-Preserving Translation from

Event-B to Register-Voice Interactive Systems

Denisa Diaconescu2, Ioana Leustean2, Luigia Petre1,
Kaisa Sere1, and Gheorghe Stefanescu2

1 Åbo Akademi University, Finland
2 University of Bucharest, Romania

Abstract. The state-based formal method Event-B relies on the concept
of correct stepwise development, ensured by discharging corresponding
proof obligations. The register-voice interactive systems (rv-IS) formal-
ism is a recent approach for developing software systems using both
structural state-based as well as interaction-based composition opera-
tors. One of the most interesting feature of the rv-IS formalism is the
structuring of the components interactions. In order to study whether a
more structured (rv-IS inspired) interaction approach can significantly
ease the proof obligation effort needed for correct development in Event-
B, we need to devise a way of integrating these formalisms. In this paper
we propose a refinement-based translation from Event-B to rv-IS, exem-
plified with a file transfer protocol modelled in both formalisms.

1 Introduction

Event-B [2,9,14,15,16,17,18] is a state-based formalism dedicated to the refine-
ment-based development of parallel and distributed systems. This amounts to
developing an abstract model into more concrete ones, so that we are sure that a
more concrete model correctly develops a more abstract one. A central advantage
of Event-B is the associated Rodin tool platform [27,3] employed in discharg-
ing the proof obligations that ensure this correct development. In addition to
providing a user interface for editing Event-B models, the proving process is
closely integrated with the modelling process, encouraging proof-based model
improvement. Event-B is currently successfully integrated in several industrial
developments, for instance at Space Systems Finland [13] and at SAP [8].

The register-voice interactive systems [24,25,21,11,12,23] (rv-IS) formalism is
a recent approach for developing software systems using both structural state-
based as well as interaction-based composition operators. Interactive compu-
tation [29] is an important computer science topic, often related to human-
computer interaction, the particular case when one of the interacting entities is
human. While able to deal with such cases as well, the rv-IS formalism is more
oriented to the process-to-process interaction. There are already many success-
ful formalisms for this, including Petri nets [26], process algebras [5], π-calculus
[20,19], dataflow networks [6,7], etc. The approach used in this paper integrates a
dataflow-like interaction model with a classical state-based computation model.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 221–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

222 D. Diaconescu et al.

One of the most interesting feature of the rv-IS formalism is the structuring of
the component interactions.

Our aim is to study whether a more (rv-IS inspired) structured approach of
an interactive, modular system has any effect on the correct development as
designed in Event-B. More precisely, we are interested in uncovering whether
the proof obligations are significantly eased when a certain structure is assumed
in the model. For this, we need to devise an integration of Event-B and rv-IS,
up to a level where the key features of each formalism can be easily translated
into the other. We have set up the following working plan for integrating the
Event-B and the rv-IS formalisms:

1. Define a notion of refinement in rv-IS models based on a combination of the
refinement of state-based systems and of Broy-style refinement of dataflow-
based interactive systems.

2. Define a translation eb2is from Event-B models to structured rv-IS models.
3. Prove the translation eb2is preserves refinement.
4. Use one of the known translations to pass from structured rv-IS models to

unstructured rv-IS models, e.g, the translation in [12].
5. Define a refinement preserving translation is2eb from unstructured rv-IS

models to Event-B models.
6. Use these translations eb2is and is2eb to: (1) improve the discharging of

proof obligations in Event-B based on rv-IS structural operators and associ-
ated decomposition techniques; (2) get tool support to develop and analyze
rv-IS models.

In this paper we present a double-folded contribution. First, we introduce a
refinement-preserving translation eb2is from Event-B models to structured rv-
IS models. Second, we argue our translation by analyzing an example: we present
three refinement steps for modeling a simple file transfer protocol in Event-
B and show the associated refined structured rv-IS models. This means we are
addressing items 2. and 3. in our working plan above. We have already addressed
item 1. in [10] and item 4. in [12].

We proceed as follows. In Section 2 we outline Event-B and rv-IS. In Section
3 we introduce a general translation from Event-B models to rv-IS models and
briefly put forward the concept of rv-IS refinement. In Section 4 we present an
example of a file transfer protocol and in Section 5 we conclude the paper.

2 Preliminaries

In this section we overview the formalisms to integrate to the extent needed in
this paper.

2.1 Event-B

Event-B [2] is a state-based formal method focused on the stepwise development
of correct systems. This formalism is based on Action Systems [4,28] and the
B-Method [1]. In Event-B, the development of a model is carried out step by
step from an abstract specification to more concrete specifications.

Refinement-Preserving Translation from Event-B to rv-IS 223

The general form of an Event-B model is illustrated in the side figure. Models
in Event-B consist of contexts and machines. A context describes the static part
of a model, containing sets and con-
stants, together with axioms about
these. A machine describes the dy-
namic part of a model, containing
variables, invariants (boolean pred-
icates on the variables), and events,
that evaluate (via event guards)
and modify (via event actions) the
variables. The guard of an event is
an associated boolean predicate on

Machine M
Variables v
Invariants I
Events

Init
evt1
· · ·
evtN

Sees−−−→

Context C
Carrier Sets d
Constants c
Axioms A

A machine M and a context C in Event-B

the variables, that determines if the event can execute or not. If the event can ex-
ecute, then we say it is enabled. The action of an event is a parallel composition
of either deterministic or non-deterministic assignments. Upon executing the
initializing event Init, computation proceeds by a repeated, non-deterministic
choice and execution of an enabled event. If none of the events is enabled then
the system deadlocks. The relationship Sees between a machine and its accom-
panying context denotes a structuring technique that allows the machine access
to the contents of the context.

The semantics of events is defined using before-after (BA) predicates [2]. A
before-after predicate describes a relationship between the system states before
and after the execution of an event. The semantics of a whole Event-B model
is formulated as a number of proof obligations, expressed in the form of logical
sequents. The full list of proof obligations can be found in [2]. Every Event-B
model should satisfy the event feasibility and invariant preservation properties.
The feasibility of an event means that, whenever the event is enabled, its BA
predicate is well-defined, i.e., there is some reachable after-state. Each event
should also preserve the given model invariant. The formal semantics provides
us with a foundation for establishing correctness of Event-B specifications.

System Development. Event-B employs a top-down refinement-based approach
to formal system development. Development starts from an abstract system
specification that models some essential functional requirements. While captur-
ing more detailed requirements, each refinement step typically introduces new
events and variables into an abstract specification. These new events correspond
to stuttering steps that are not visible in the abstract specification. We call such
model refinement as superposition refinement. Moreover, Event-B formal devel-
opment supports data refinement, allowing us to replace some abstract variables
with their concrete counterparts. In that case, the invariant of a refined model
formally defines the relationship between the abstract and concrete variables;
this type of invariants are called gluing invariants.

In order to prove the correctness of each step of the development, a set of
proof obligations needs to be discharged. Thus, in each development step we
have mathematical proof that our model is correct. The model verification effort

224 D. Diaconescu et al.

and, in particular, the automatic generation and proving of the required proof
obligations, are significantly facilitated by the provided tool support – the Rodin
platform [27,3].

2.2 Register-Voice Interactive Systems

The rv-IS formalism is built on top of register machines, closing them with re-
spect to a space-time duality transformation. Specifically, we use the model, the
core programming language, the specification formalism and the analysis tech-
niques developed for modeling, programming and reasoning about interactive
computing systems by the last author and coworkers in the recent years, see
[24,25,21,11,12,23]. In the following, we shortly overview the approach.

n=10 .

. I1 tn=10 I2 .

x=3 y=10,z=1

. P tx=3 D .

x=2 y=10,z=1

. P tx=2 D .

x=1 y=10,z=0

. E1 tx=1 E2 .

. z=0

module I1
{listen nil}{read n}{
tn:tInt; x:Int;
tn = n; x = sqrt(n);

}{speak tn}{write x}

module I2
{listen tn}{read nil}{
y,z:Int;
y = tn; z = 1;

}{speak nil}{write y,z}
module P
{listen nil}{read x}{
tx:tInt;
tx = x; x = x-1;

}{speak tx}{write x}

module D
{listen tx}{read y,z}{
if(y % tx = 0){
z = 0;};

}{speak nil}{write y,z}
module E1
{listen nil}{read x}{
tx:tInt; tx = x;

}{speak tx}{write nil}

module E2
{listen tx}{read y,z}{
null;

}{speak nil}{write z}

Fig. 1. A scenario and the modules of the Prime rv-IS program

Scenarios. A scenario is a two-dimensional rectangular area filled in with iden-
tifiers and enriched with data around each identifier. In our interpretation the
columns correspond to processes, the top-to-bottom order describing their pro-
gress in time. The left-to-right order corresponds to process interaction in a
nonblocking message passing discipline. This means that a process sends a mes-
sage to the right, then it resumes its execution. (Memory) states are placed at
the north and at the south borders of the identifiers and (interaction) classes are
placed at the west and at the est borders of the identifiers. In the the left-hand
side of Fig. 1 we illustrate an rv-IS scenario for deciding whether the number 10
is prime. We explain this example in detail at the end of this section.

Spatio-temporal specifications. A spatio-temporal specification combines con-
straints on both spatial and temporal data. For the spatial data, we use the
common data structures and their natural representations in memory. For rep-
resenting temporal data we use streams: a stream is a sequence of data ordered
in time and is denoted as a0

�a1
�. . . , where a0, a1, . . . are the data laying on

the stream at time 0, 1, . . . , respectively.

Refinement-Preserving Translation from Event-B to rv-IS 225

A voice is defined as the time-dual of a register. Voices are simple temporal
structures, represented on streams, that hold natural numbers. The value of a
voice can be modified in a location and then propagated within the system. A
voice can be “listened” at various locations, at each location the piece of stream
representing the voice displaying a particular value. Voices may be implemented
on top of a stream in a similar way registers are implemented on top of a Turing
tape, for instance specifying their starting address and their length. Most of
usual data structures have natural temporal representations. Examples includes
timed booleans, timed integers (denoted tInt), timed arrays, timed lists, etc.

The notation ⊗ is used for the product of memory states, while � for the
product of interaction classes; N⊗k denotes N ⊗ . . . ⊗ N (k terms) and N�k

denotes N�. . .�N (k terms); the associated “star” operations are denoted as
(⊗)∗ and (�)∗.

A simple spatio-temporal specification S : (m, p) → (n, q) is a relation S ⊆
(N�m × N⊗p)× (N�n × N⊗q), where m (resp. p) is the number of input voices
(resp. registers) and n (resp. q) is the number of output voices (resp. registers).
More general spatio-temporal specifications may be introduced using complex
interface types, not only registers and voices.

Syntax of Structured rv-Programs. The type of a structured rv-program P ,
denoted by

P : (w(P), n(P))→ (e(P), s(P)),

collects the types at the west, north, east and south borders of its scenarios. In
general, these are relatively complex types built up from boolean and integer
types - see the concrete types used in Agapia v0.1 programming language [11].

The syntax of structured rv-programs is defined as follows:

P ::= null | X | P % P | P # P | P $ P | if(C) then {P} else {P}

| while_t(C) {P} | while_s(C) {P} | while_st(C) {P}

The starting blocks for the construction of structured rv-programs are called
modules. The syntax of a module is given as follows:

module module name

{listen temporal variables}{read spatial variables}{
code

}{speak temporal variables}{write spatial variables}

where the read (resp. listen) instruction collects the spatial (resp. temporal)
input and the write (resp. speak) instruction returns the spatial (resp. tempo-
ral) output. The code consists in instructions similar to the C code.

The operations on structured rv-programs are briefly described below. More
details and examples may be found in [24,11,12].

1. Composition: Due to their two dimensional structure, programs may be com-
posed horizontally and vertically, as long as their types agree. They can also be
composed diagonally by mixing the horizontal and vertical composition.

226 D. Diaconescu et al.

(a) For two programs Pi : (wi, ni) → (ei, si), i = 1, 2, the horizontal composition
P1#P2 is well-defined only if e1 = w2; the type of the composite is (w1, n1 ⊗
n2) → (e2, s1 ⊗ s2).

(b) Similarly, the vertical composition P1%P2 is well-defined only if s1 = n2; the
type of the composite is (w1

�w2, n1) → (e1
�e2, s2).

(c) The diagonal composition P1$P2 is a derived operation - it connects the east
border of P1 to the west border of P2 and the south border of P1 to the north
border of P2; it is defined only if e1 = w2 and s1 = n2; the type of the composite
is (w1, n1) → (e2, s2).

2. If: For the “if” operation, given two programs with the same type P, Q : (w, n) →
(e, s), a new program if(C) then {P} else {Q} : (w, n) → (e, s) is constructed, for
a condition C involving both, the temporal variables in w and the spatial variables
in n.

3. While: There are three while statements, each being the iteration of the corre-
sponding composition operation.
(a) For a program P : (w, n) → (e, s), the temporal while statement while t(C){P}

is defined if n = s and C is a condition on the variables in w ∪ n. The type of
the result is ((w�)∗, n) → ((e�)∗, n).

(b) The case of spatial while while s(C){P} is similar.
(c) If P : (w, n) → (e, s), the statement while st(C){P} is defined if w = e and

n = s and C is a condition on w ∪ n. The type of the result is (w, n) → (e, s).

Operational Semantics of Structured rv-Programs. The operational se-
mantics is given in terms of scenarios. Scenarios are built up with the following
procedure:

1. Each cell of the associated grid has as label a module name.
2. An area around a cell may have additional information. For example, if a

cell has the information x = 2, that means that in that area x is updated to
be 2.

3. The scenario is built from the current rv-program by reducing it to sim-
ple compositions of spatio-temporal specifications w.r.t. the syntax of the
program, until we reach basic blocks, e.g. modules.

Example. We illustrate the operational semantics by considering an example:

(I1 # I2) % while_t(x > 1){P # D} % (E1 # E2)

This is a structured rv-program Prime verifying if a number n is prime. Its
modules are listed in the right-hand side of Fig. 1.

Our rv-IS program has two processes: one generates all the numbers in the
set {!

√
n#, . . . , 2} (the P module) and the other checks if a number is a divisor

of n (the D module) as well as updates a variable z. Modules I1 and I2 are used
for initializations and E1 and E2 for ending. At the end of the program, if the
variable z is 1, then the number n is prime.

In order to show how we can construct a scenario for the rv-IS program
above we consider a concrete example for n = 10. The corresponding scenario
is presented in the right-hand side of Fig. 1. In the first line of the scenario
we initialize the processes with the needed information. Module I1 reads the
value n = 10, provides the first process with the square root of n, i.e., x = 3,

Refinement-Preserving Translation from Event-B to rv-IS 227

and declares a temporal variant of n, namely tn = 10. This is used by module
I2 to initialize the process with the initial value of n, namely y = 10; in this
module we also set z = 1 (hence initially, we assume n is prime). In the next
step, module P produces a temporal data tx = 3 (tx is equal with the data x

of the first process) and decreases x. Module D verifies if tx is a divisor of y

and, if it is, then it resets the value of z to 0. We repeat these steps until the
variable x becomes 1. The last line contains ending modules that only change
the interfaces.

The scenarios may be constructed in various ways. For instance, programs
building the scenarios by columns [10] exhibit a dataflow computation style.

3 From Event-B to Structured rv-IS

In this section we introduce a general method for translating an Event-B system
specification into an rv-IS specification. The method actually produces an rv-
program, whenever the transformations used to define the actions of the events
can be implemented with a code written in the rv-module code syntax. We also
describe shortly our approach to the refinement of rv-IS [10]. In this paper, we
are concerned with the events of a certain system, not with its invariants.

An Event-B model can be seen as a set of events of the form
presented in the box on the right, where for each i, Event-i is the
name of the event, Grd-i is the guard and Act-i is the action, so
that Grd-i and Act-i are sets of predicates, respectively actions.
We denote with Ainit the actions of the event Init.

Event-i
when
Grd-i

then
Act-i

end

The rv-IS specification associated to an Event-B model captures not only the
model, but also the semantic rules used for its execution. In order to construct
a structured rv-IS specification from an Event-B model, we define a manager
that decides which event can take place at each time. For each event Event-i,
we construct two modules Gi and Ei - modules Gi are used by the manager in
order to decide which event to be triggered, while modules Ei are used by the
manager to describe the state changes caused by the event.

In Event-B the memory is shared by all the events, hence in the associated
rv-IS specification we need to simulate this common memory. Therefore, after
each action, the manager must update the variables of all the processes.

Table 1. The formula for eb2is translated model

1: (I # for s(j=1,N){ID})
2: $ (Mg # for s(j=1,N){Gj})
3: $ while st(ten = ∅) {
4: (Me # for s(j=1,N){Ej})
5: $ (Mu # for s(j=1,N){U}))
6: $ (Mg # for s(j=1,N){Gj})
7: }

228 D. Diaconescu et al.

Assume that the Event-B model to translate has N events, in addition to the
Init event. We define the set Ev = {Ei | i = 1, N} and we denote by C the set
of all the constants and by V the set of all the variables of the Event-B model.

The general format of the corresponding rv-IS specification is presented in
Table 1. (The for s statement is derived from while s in the natural way.)

Module I contains all the initializations from the event Init in Event-B and
module ID provides the same variables to all the processes involved in the pro-
gram. The manager uses the modules Mg, Me and Mu to simulate the behavior in
Event-B and to decide which event can take place next. In line 2, the manager
constructs the set ten of enabled events by checking their guards; the module
Gj checks the guard of the event Event-j. While we have at least one enabled
event, we start to simulate its behavior. In line 4, the manager chooses one event
from the list of enabled events at the current moment and starts to search for the
process modeling the execution of this event. Module Ej modifies in the system
with respect to actions Act-j if Event-j is the chosen one. In line 5, the manager
updates the variables in all the processes with respect to the new modifications.
After this, we repeat the procedure until no more events can occur, as described
in line 6.

Table 2. Modules for eb2is translation

module I
{listen nil}{read C,V}{
Ainit; tV = V ∪ C;

}{speak tV}{write nil}

module Gi
{listen ten}{read V}{
if(Grd-i){ten=ten∪{Event-i};};

}{speak ten}{write V}

module Mg
{listen tV}{read nil}{
ten = ∅;

}{speak ten}{write nil}

module ID
{listen tV}{read nil}{
V = tV;

}{speak tV}{write V}

module Ei
{listen tk,tV}{read V}{
if(tk=Event-i){Act-i; tV=V;}

}{speak tk,tV}{write V}

module Me
{listen ten}{read nil}{
tk :∈ ten; tV = ∅;

}{speak tk,tV}{write nil}

module U
{listen tV}{read V}{
V = tV;

}{speak tV}{write V}

module Mu
{listen tk,tV}{read nil}{
null;

}{speak tV}{write nil}

The behavior of the manager is split in the following actions: search for the
‘chosen’ event (lines 2 and 6), modify the system with respect to the actions of
the ‘chosen’ event (line 4), and update the variables of all processes (line 5). In
order to take the next action, the manager needs information from the previous
action, therefore we must compose the parts of the program diagonally. The
modules of the associated rv-IS specifications are described in Table 2.

In this translation the manager decides in an nondeterministic fashion which
event can take place next; however, in module Me we can implement any method
for deciding this. The manager described above chooses one single event (tk :∈
ten; tk is a single token). In a more general implementation, the manager is free
to choose a set of events that can take place at a certain moment of time, by
constructing tk to be a set. In such a case, we have to avoid written conflicts for
updated variables occurring in more than one event. A general scenario for the
program above is presented in Fig. 2.

Refinement-Preserving Translation from Event-B to rv-IS 229

C,V . .

. I tV ID tV ... tV ID tV
. V V �

� tV Mg ten G1 ten ... ten Gn ten

. V V �
� ten Me tk,tV E1 tk,tV ... tk,tV En tk,tV

. V V �
� tk,tV Mu tV U tV ... tV U tV

. V V �
� tV Mg ten G1 ten ... ten Gn ten

. V V �
�

Fig. 2. Scenarios for an rv-IS obtained from an Event-B model

Refinement of register-voice interactive systems. We associate a graph Gr(S) to
a scenario S, with the following procedure: (1) we give a proper name to each
tuple (w, n, e, s) of data surrounding a scenario cell; a cell is called an identity if
(e = w ∨ e = n) ∧ (s = n ∨ s = w); (2) we replace the identifiers of the cells by
these names; (3) the graph Gr(S) has as nodes the scenario non-identity cells
and as edges connections via identity nodes of their w/n/e/s ports.

Two scenarios S1 and S2 are equal up-to-stuttering of states and classes if the
graphs Gr(S1) and Gr(S2) are isomorphic. S2 up-to-stuttering includes S2 if
Gr(S1) and Gr(S2) have the same nodes and the edges of Gr(S1) are included
in the edges of Gr(S2).

For two rv-IS models IS1 and IS2, we say IS2 is a refinement of IS1 if: (1)
up to a connecting relation between the states and classes of IS1 and IS2, each
scenario of IS2 up-to-stuttering includes a scenario of IS1; (2) if a scenario of
IS2 is related to a scenario of IS1 and the latter may be extended in IS1, then
the former may be extended in IS2.

As an example, consider the scenarios in Fig. 3. If Y,Z,U,W are identity nodes
so that b=d, B=C=D=E and F=H, then S1 is up-to-stuttering equal to S2.

S1 =

a .

A X B Y C

b c �
� C Z D U E

d e �
� E V F W H −→

f .

and S2 =

a

A X B

b �
� B V F −→

f

Fig. 3. Two up-to-stuttering equal scenarios

230 D. Diaconescu et al.

4 An Example – A Simple File Transfer Protocol

In this section we translate an Event-B model into an rv-IS specification.
The model is that of a classical file transfer protocol, also described in [2].

The file to be transferred is sequential, i.e. composed of a finite number of items
arranged in a specific order. The file has to be sent from one agent - the sender,
to another one - the receiver. The transferred file should be equal to the original
one. The protocol is distributed, realized by two distinct modules that exchange
various kinds of messages and reside in different sites.

We develop the protocol in three steps. Initially, we are interested only in the
final result of the protocol, not in how it is achieved. The file in this model is
transmitted in one shot and the agents do not reside on different sites. In the first
refinement, we transmit the file piece by piece between the two agents. The main
difference with respect to the initial model is that we separate the sender and the
receiver. They are still not completely independent, since the receiver can still
access the sender’s memory. In the second refinement, the sender and the receiver
are completely independent from each other and the receiver has no longer access
to the sender’s memory. In this stage, the two agents communicate only through
messages: the sender is sending messages that are read by the receiver and the
receiver responds to these messages by returning an acknowledgement message
to the sender. The distributed nature of the protocol is therefore revealed in this
final refinement step.

Initial Model. We assume a nonempty set D (the carrier set) and two constants:
n is a positive number and f is a total function from {1, . . . , n} to D. Informally,
f is the file to be transferred, the constant n represents the length of the file f ,
while D contains the data that can be stored in the file f . We represent the file f
as a total function with elements in D. The result of the protocol is a variable g,
the file transferred to the receiver. Since we construct g step by step, we model
g as a partial function from {1, . . . , n} to D.

In the initial model, we say nothing about the internal structure of the file f .
In order to transfer the file, we have an event receive that chooses randomly
a partial function g with values in D, until this function is equal to f . When
we obtain such a function g, then we can assume that the file f was sent to the
receiver’s site.

The Event-B events of this initial model FTP-EB1 are the following:

FTP-EB1 ::= init

g :∈ N ↔ D
receive
when
g = f

then
g :∈ N ↔ D

end

final
when
g = f

then
skip

end

In order to construct an rv-IS specification FTP-IS1, let us consider the follow-
ing set of events Ev = {Erecv, Efin}. The specification is presented in Table 3,
where the involved modules I, Grecv, Erecv, Gfin, Efin are described in
Table 4. In the initial model we have the modules I, Grecv, Erecv, Gfin,

Refinement-Preserving Translation from Event-B to rv-IS 231

Efin subscribed by 1, in the second model these modules are subscripted by 2,
and in the final model these modules are subscripted by 3.

Let us analyze a simple case: suppose that f contains only two characters,
say f=a.b; thus n=2. A typical scenario for the FTP-IS1 specification is built up
using partial scenarios illustrated below. In the presentation, g=x.y.z, g=s.t,

. . . , g=a.b is just a sequence of random assignments for g. Alternatively, one
can consider the case where the lucky assignment g=a.b never occurs.

Init1(x.y.z) =
f=a.b,n=2 . .

. I1
tV={f,n,g}
f=a.b,n=2
g=x.y.z

ID
tV={f,n,g}
f=a.b,n=2
g=x.y.z

ID
tV={f,n,g}
f=a.b,n=2
g=x.y.z

. f=a.b,n=2
g=x.y.z

f=a.b,n=2
g=x.y.z

�

�
tV={f,n,g}
f=a.b,n=2
g=x.y.z

Mg ten=∅ Grecv ten={recv} Gfin ten={recv} −→

. f=a.b,n=2
g=x.y.z

f=a.b,n=2
g=x.y.z

The first scenario Init1(x.y.z) (above) is an initialization step that starts with
the given data f,n. The random assignment g=x.y.z generates the initial data
for all the processes associated to the events, i.e., for the recv and fin processes.
In addition, the scenario starts to check the validity of the guards: in this case
the guard of the recv event is true and recv is exported on the last line.

Table 3. Formulas for FTP-IS1 and FTP-IS3 specifications

FTP-IS1 = FTP-IS3 =
(I1 # ID # ID)

$ (Mg # Grecv1 # Gfin1)
$ while st(ten �= ∅) {

(Me # Erecv1 # Efin1)
$ (Mu # U # U)
$ (Mg # Grecv1 # Gfin1)

}

(I3 # ID # ID # ID)
$ (Mg # Grecv3 # Gsend3 # Gfin2)
$ while st(ten �= ∅) {

(Me # Erecv3 # Esend3 # Efin1)
$ (Mu # U # U # U)
$ (Mg # Grecv3 # Gsend3 # Gfin2)

}

The second scenario DoRecv1(x.y.z;s.t) (next page) corresponds to the
application of the recv event, resulting in a state change from g=x.y.z to g=s.t.
Hopefully, after a number of such steps, the random assignment leads to g=a.b:
in that case, the exported guard in the last line is fin, not recv. If fin holds,
then the last scenario DoFin1 (next page) applies. In this part, the fin event
has no actions, so nothing changes in the states. Therefore, this repeats forever.

First refinement. In the first refinement, we modify the event receive in order
to send concrete parts of the file f . The event receive will no longer produce
files randomly until it obtains one equal with f . Instead, it sends one element of
the file f at each step. For this we introduce a new variable r which models an
index of the file f . At each step, the r-th element of f is copied in the file g of
the receiver’s site. The file transfer is finished when r is greater than n.

232 D. Diaconescu et al.

Table 4. Modules for FTP-IS1 to FTP-IS3 specifications

module I1
{listen nil}{read f,n}{
g :∈ N ↔ D;
tV = {f,n,g};

}{speak tV}{write nil}

module I2
{listen nil}{read f,n}{
g = ∅; r = 1;
tV = {f,n,g,r};

}{speak tV}{write nil}

module I3
{listen nil}{read f,n}{
g = ∅; r = 1 ; s = 1;
d :∈ D; tV = {f,n,g,r,d};

}{speak tV}{write nil}
module Grecv1
{listen ten}{read V}{
if(g �= f){
ten = ten ∪ {Erecv1};};

}{speak ten}{write V}

module Grecv2
{listen ten}{read V}{
if(r ≤ n){
ten = ten ∪ {Erecv2};};

}{speak ten}{write V}

module Grecv3
{listen ten}{read V}{
if(s = r+1){
ten = ten ∪ {Erecv3};};

}{speak ten}{write V}
module Erecv1
{listen tk,tV}{read V}{
if(tk = Erecv1){
g :∈ N ↔D;
tV = V;};

}{speak tk,tV}{write V}

module Erecv2
{listen tk,tV}{read V}{
if(tk = Erecv2){
g = g ∪ {r �→ f(r)};
r = r+1; tV = V;};

}{speak tk,tV}{write V}

module Erecv3
{listen tk,tV}{read V}{
if(tk = Erecv3){
g = g ∪ {r �→d}; r = r+1;
tV = V;};

}{speak tk,tV}{write V}
module Gfin1
{listen ten}{read V}{
if(g = f){
ten = ten ∪ {Efin1};};

}{speak ten}{write V}

module Gfin2
{listen ten}{read V}{
if(r = n+1){
ten = ten ∪ {Efin2};};

}{speak ten}{write V}

module Gsend3
{listen ten}{read V}{
if(s=r ∧ r �=n+1){
ten = ten ∪ {Esend3};};

}{speak ten}{write V}
module Efin1
{listen tk,tV}{read V}{
if(tk = Efin1){
tV = V;};

}{speak tk,tV}{write V}

Efin2 = Efin1

Mg, Me, Mu, U and ID
are as in Table 2

module Esend3
{listen tk,tV}{read V}{
if(tk = Esend3){
d = f(s); s = s+1;
tV = V;};

}{speak tk,tV}{write V}

The refinement FTP-EB2 of our model in Event-B has the following events:

FTP-EB2 ::= init

g := ∅
r := 1

receive
when
r ≤ n

then
g := g ∪ {r �→ f(r)}
r := r + 1

end

final
when
r = n+ 1

then
skip

end

DoRecv1(x.y.z;s.t) =
. f=a.b,n=2

g=x.y.z
f=a.b,n=2
g=x.y.z

−→ ten={recv} Me
tk=recv
tV=∅ Erecv

tk=recv
tV={f,n,g}
f=a.b,n=2

g=s.t

Efin

tk=recv
tV={f,n,g}
f=a.b,n=2

g=s.t
. f=a.b,n=2

g=s.t
f=a.b,n=2
g=x.y.z

�

�
tk=recv

tV={f,n,g}
f=a.b,n=2

g=s.t

Mu
tV={f,n,g}
f=a.b,n=2

g=s.t
U

tV={f,n,g}
f=a.b,n=2

g=s.t
U

tV={f,n,g}
f=a.b,n=2

g=s.t

. f=a.b,n=2
g=s.t

f=a.b,n=2
g=s.t �

�
tV={f,n,g}
f=a.b,n=2

g=s.t
Mg ten=∅ Grecv ten={recv} Gfin ten={recv} −→

. f=a.b,n=2
g=s.t

f=a.b,n=2
g=s.t

Refinement-Preserving Translation from Event-B to rv-IS 233

DoFin1 =
. f=a.b,n=2

g=a.b
f=a.b,n=2

g=a.b

−→ ten={fin} Me
tk=fin
tV=∅ Erecv

tk=fin
tV=∅ Efin

tk=fin
tV={f,n,g}
f=a.b,n=2

g=a.b
. f=a.b,n=2

g=a.b
f=a.b,n=2

g=a.b
�

�
tk=fin

tV={f,n,g}
f=a.b,n=2

g=a.b

Mu
tV={f,n,g}
f=a.b,n=2

g=a.b
U

tV={f,n,g}
f=a.b,n=2

g=a.b
U

tV={f,n,g}
f=a.b,n=2

g=a.b

. f=a.b,n=2
g=a.b

f=a.b,n=2
g=a.b �

�
tV={f,n,g}
f=a.b,n=2

g=a.b
Mg ten=∅ Grecv ten=∅ Efin ten={fin} −→

. f=a.b,n=2
g=a.b

f=a.b,n=2
g=a.b

The corresponding rv-IS specification FTP-IS2 uses the same formula as in
the case of the initial model, but with modules I1, Grecv1, Gfin1, Erecv1

slightly changed: they are replaced by the new modules I2, Grecv2, Gfin2,

Erecv2 listed in Table 4.
Let us analyze the above case again: suppose that f=a.b,n=2. The running

scenario is unique (deterministic) this time and consists of an initial action,
followed by n times repeated recv actions, followed by repeated fin actions. A
detailed presentation appears in [10].

Second refinement. In the last refinement step we split the event receive in
Event-B into two corresponding events, send and receive. The indexes s and
r model the positions of the current file item (to be) sent and the next position
where a file item is to be received, respectively. The event send models the
activity of the sender, that forms a message d to be sent by copying in d the
file item at position s. The event receive models the activity of the receiver,
that stores the message d as the file item at position r. Hence, we now have a
distributed file transfer protocol where the sender and the receiver communicate
by sending message d and sharing variables r and s.

FTP-EB3 ::= init

g = ∅
s = 1
r = 1
d :∈ D

send
when
s = r
r = n+ 1

then
d = f(s)
s = s+ 1

end

receive
when
s = r + 1

then
g = g ∪ {r �→ d}
r = r + 1

end

final
when
r = n+ 1

then
skip

end

For presenting the associated rv-IS specification FTP-IS3, we fix the following
set of events Ev = {recv, send, fin}, also adding the subscript 3 to indicate that
we are at the third modeling level. The specification is presented in Table 3
and the modules in Table 4. The scenarios can be constructed in a similar way
as shown for FTP-IS1. The particular case when f=a.b, with scenarios named
Init3, DoSend3(a) and DoRecv3(a) is discussed in [10].

234 D. Diaconescu et al.

Refinement Preservation. The state space of FTP-IS1 is S1 = {f, n, g}, of
FTP-IS2 is S2 = {f, n, g, r} and of FTP-IS3 is S3 = {f, n, g, r, s, d}. The class
space of FTP-IS2 is C2 = {ten, tk, tV = (f, n, g, r)}, departing from that of
FTP-IS1 C1 = {ten, tk, tV = (f, n, g)} by the type of tV. The class space of the
last model FTP-IS3 is C3 = {ten, tk, tV = (f, n, g, r, s, d)}. FTP-IS3 has a new
event send and the sets used for ten, tk are larger, including this new element.

Proposition 1. (a) FTP-IS2 is a refinement of FTP-IS1; and (b) FTP-IS3 is
a refinement of FTP-IS2.

Proof: (Outline) For (a), let ρ = (ρs, ρc) be a relation between the states and
classes of FTP-IS2 and FTP-IS1, where ρs : S2 → S1 and ρc : C2 → C1 are
the natural projections that abstract r away. If Scen is a scenario in FTP-IS2,
then ρ(Scen) is a scenario in FTP-IS1. For (b), let ρ = (ρs, ρc) be a relation
between the FTP-IS3 and FTP-IS2, where ρs : S3 → S2 and ρc : C3 → C2
are the natural projections that abstract s, d, send away. If Scen is a scenario in
FTP-IS3, then ρ(Scen) is a scenario in FTP-IS2 up to sub-scenario stuttering
corresponding to the application of the macro-steps associated to the send event
and to the column corresponding to the send event. Indeed, this latter sub-
scenarios have no visible effect on the states and classes of FTP-IS2. These
arguments demonstrate condition (1) in the refinement definition at the end of
Section 3.

Condition (2) in this definition is valid for case (a): if Scen1 is a partial sce-
nario in FTP-IS2 and the scenario ρ(Scen1) can be extended in FTP-IS1, then
the same is true for Scen1 in FTP-IS2. A similar property holds for (b). �

5 Conclusions

Our motivation in this paper is based on one quintessential feature of Event-B
and its associated Rodin platform. Modeling in Event-B is semantically justified
by proof obligations. Every update of a model generates a new set of proof
obligations in the background. It is this interplay between modeling and proving
that sets Event-B apart from other formalisms. Without proving the required
obligations, we cannot be sure of correctness of a model. The proving effort thus
encourages the developer to structure formal model development in such a way
that manageable proof obligations are generated at each step. This leads to very
abstract initial models so that we can gradually introduce into a system model
various facets of the system. Such a development method fits well when we have
to describe complex algorithms.

However, it is not obvious how to structure the development of a model, what
to model in the initial specification, and what other details to introduce in each
of the following refinements. This is especially true when considering the gen-
erated proof obligations, because differently structured developments generate
different sets of obligations. Several structuring mechanisms have been presented
before for Event-B, for instance in [9], to address the complexity of system de-
velopment. The problem of structuring the development has also been observed

Refinement-Preserving Translation from Event-B to rv-IS 235

before in the efforts to develop the Flow-plugin in the Rodin platform [27], to
address the event ordering and enabledness conditions of a model. In this paper
we bring forward the enabledness of events as well as the choice of the event
to execute next, via the manager modules Me,Mu,Mg in rv-IS. Each event is
seen as an independent process that is activated when enabled. The interactions
between events are ‘normalized’ to sharing the variables, but in fact new values
(hence interactions) occur only upon the execution of an enabled event. This
puts forward a clear separation between computation and communication and
is resemblant of employing Event-B||CSP in [22], to demonstrate (with the help
of the same case study) an explicit approach to control flow.

The main contribution of our paper consists in the definition of a translation
eb2is from Event-B models to structured rv-IS models. Moreover, we provide
evidence that the translation preserves refinement, by considering a refinement
chain of relatively complex Event-B models and the corresponding translated
chain of rv-IS models. As refinement is the fundamental feature of Event-B, this
argues in favor of our proposed translation.

Acknowledgement. This work was supported by IST FP7 DEPLOY project,
grant agreement 214158.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Design. Cambridge Uni-
versity Press (2010)

3. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. International Journal
on Software Tools for Technology Transfer 6, 447–466 (2010)

4. Back, R.J., Kurki-Suonio, R.: Decentralization of process nets with centralized con-
trol. In: Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pp. 131–142 (1983)

5. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. El-
sevier (2001)

6. Broy, M.: Compositional refinement of interactive systems. Journal of the ACM 44,
850–891 (1997)

7. Broy, M., Stefanescu, G.: The algebra of stream processing functions. Theoretical
Computer Science 258, 99–129 (2001)

8. Bryans, J., Wei, W.: Formal Analysis of BPMN Models Using Event-B. In:
Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 33–49.
Springer, Heidelberg (2010)

9. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

10. Diaconescu, D., Leustean, I., Petre, L., Sere, K., Stefanescu, G.: Refinement-
Preserving Translation from Event-B to Register-Voice Interactive Systems. TUCS
Technical Reports No. 1028 (December 2011), http://tucs.fi

http://tucs.fi

236 D. Diaconescu et al.

11. Dragoi, C., Stefanescu, G.: AGAPIA v0.1: A programming language for interactive
systems and its typing systems. In: Proc. FINCO/ETAPS 2007. ENTCS, vol. 203,
pp. 69–94. Elsevier (2008)

12. Dragoi, C., Stefanescu, G.: On Compiling Structured Interactive Programs with
Registers and Voices. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B.,
Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 259–270.
Springer, Heidelberg (2008)

13. Salehi Fathabadi, A., Rezazadeh, A., Butler, M.: Applying Atomicity and Model
Decomposition to a Space Craft System in Event-B. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 328–342.
Springer, Heidelberg (2011)

14. Hoang, T.S., Fürst, A., Abrial, J.-R.: Event-B Patterns and Their Tool Support.
In: Proc. SEFM 2009, pp. 210–219. IEEE (2009)

15. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A.: Patterns for Refinement
Automation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M.
(eds.) FMCO 2009. LNCS, vol. 6286, pp. 70–88. Springer, Heidelberg (2010)

16. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting Reuse in Event B Development: Modularisation Approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010)

17. Kamali, M., Petre, L., Sere, K., Daneshtalab, M.: Refinement-Based Modeling of
3D NoCs. In: Sirjani, M. (ed.) FSEN 2011. LNCS, vol. 7141, pp. 236–252. Springer,
Heidelberg (2011)

18. Kamali, M., Petre, L., Sere, K., Daneshtalab, M.: Formal Modeling of Multicast
Communication in 3D NoCs. In: Proc. DSD 2011, pp. 634–642. IEEE (2011)

19. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press (1999)

20. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes I and II. Infor-
mation and Computation 100(1), 1–77 (1992)

21. Popa, A., Sofronia, A., Stefanescu, G.: High-level structured interactive programs
with registers and voices. JUCS 13, 1722–1754 (2007)

22. Schneider, S., Treharne, H., Wehrheim, H.: Bounded Retransmission in Event-
B||CSP: a Case Study. ENTSC 280, 69–80 (2011)

23. Sofronia, A., Popa, A., Stefanescu, G.: Undecidability Results for Finite Interactive
Systems. ROMJIST 12, 265–279 (2009); Also: Arxiv, CoRR 1001.0143 (2010)

24. Stefanescu, G.: Interactive systems with registers and voices. Fundamenta Infor-
maticae 73, 285–306 (2006)

25. Stefanescu, G.: Towards a Floyd logic for interactive rv-systems. In: Proc. ICCP
2006, pp. 169–178. TU Cluj-Napoca (2006)

26. URL, http://www.petrinets.info/
27. URL RODIN tool platform, http://www.event-b.org/platform.html
28. Waldén, M., Sere, K.: Reasoning About Action Systems Using the B-Method.

FMSD 13, 5–35 (1998)
29. Wegner, P.: Interactive foundations of computing. TCS 192, 315–351 (1998)

http://www.petrinets.info/
http://www.event-b.org/platform.html

Formal Modelling and Verification

of Service-Oriented Systems
in Probabilistic Event-B

Anton Tarasyuk1,2, Elena Troubitsyna2, and Linas Laibinis2

1 Turku Centre for Computer Science, Turku, Finland
2 Åbo Akademi University, Turku, Finland

{anton.tarasyuk,elena.troubitsyna,linas.laibinis}@abo.fi

Abstract. Modelling and refinement in Event-B provides a scalable sup-
port for systematic development of complex service-oriented systems.
This is achieved by a gradual transformation of an abstract service spec-
ification into its detailed architecture. In this paper we aim at integrating
quantitative assessment of essential quality of service attributes into the
formal modelling process. We propose an approach to creating and veri-
fying a dynamic service architecture in Event-B. Such an architecture can
be augmented with stochastic information and transformed into the cor-
responding continuous-time Markov chain representation. By relying on
probabilistic model-checking techniques, we allow for quantitative eval-
uation of quality of service at early development stages.

1 Introduction

The main goal of service-oriented computing is to enable rapid building of com-
plex software by assembling readily-available services. While promising productiv-
ity gain in the development, such an approach also poses a significant verification
challenge – how to guarantee correctness of complex composite services?

In our previous work we have demonstrated how to build complex service-
oriented systems (SOSs) by refinement in Event-B [12,11]. We have not only
formalised Lyra – an industrial model-driven approach – but also augmented it
with a systematic modelling of fault tolerance. However, within this approach we
could not evaluate whether the designed fault tolerant mechanisms are appro-
priate, i.e., they suffice to meet the desired quality of service (QoS) attributes.

To address this issue, in this paper we propose an approach to building a
dynamic service architecture – an Event-B model that formally represents the
service orchestration. In particular, we define the set of requirements – the formal
verification conditions – that allow us to ensure that the modelled service ar-
chitecture faithfully represents the dynamic service behaviour. Such an Event-B
model can be then augmented with stochastic information about system failures
and duration of the orchestrated services. Essentially, this results in creating a
continuous-time Markov chain (CTMC) model representation and hence enables
the use of existing probabilistic model checking techniques to verify the desired

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 237–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

QoS attributes. We demonstrate how to formulate a number of widely used QoS
attributes as temporal logic formulae to be verified by PRISM [14]. Overall, our
approach enables an early quantitative evaluation of essential QoS attributes
and rigorous verification of the dynamic aspects of the system behaviour.

The paper is organised as follows. In Section 2 we briefly describe our formal
modelling framework, Event-B, and also define its underlying transition system.
Section 3 discusses SOSs and the associated dynamic service architectures. In
Section 4 we propose a set of necessary requirements for SOSs as well as their
formalisation in Event-B. Section 5 presents a small case study that illustrates
building a dynamic service architecture. In Section 6 we explain how to convert
Event-B models into CTMCs and also demonstrate the use of probabilistic model
checking for analysis of QoS attributes. Finally, Section 7 gives some concluding
remarks as well as overviews the related work in the field.

2 Modelling in Event-B

Event-B is a formal framework derived from the (classical) B method [1] to model
parallel, distributed and reactive systems [2]. The Rodin platform provides tool
support for modelling and formal verification (by theorem proving) in Event-B
[17]. Currently, Event-B is used in the EU project Deploy to model dependable
systems from from automotive, railway, space and business domains [9].

In Event-B, a system specification is defined using the notion of an abstract
state machine. An abstract state machine encapsulates the model state, repre-
sented as a collection of model variables, and defines operations on this state via
machine events. The occurrence of events represents the system behaviour. In a
most general form, an Event-B model can be defined as follows.

Definition 1. An Event-B model is a tuple (C,S,A, υ, I, Σ, E , Init) where:

– C is a set of model constants;
– S is a set of model sets;
– A is a set of axioms over C and S;
– υ is a set of system variables;
– I is a set of invariant properties over υ, C and S;
– Σ is a model state space defined by all possible values of the vector υ;
– E ⊆ P(Σ ×Σ) is a non-empty set of model events;
– Init is a predicate defining an non-empty set of model initial states.

The model variables υ are strongly typed by the constraining predicates specified
in I and initialised by the predicate Init. Furthermore, I defines important
properties that must be preserved by the system during its execution.

Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, and the guard Ge is a
predicate over the model variables. The Re is a next-state relation called gener-
alised substitution. The guard defines the conditions under which the substitution

Formal Modelling and Verification of Service-Oriented Systems 239

can be performed, i.e., when the event is enabled. If several events are enabled
at the same time, any of them can be chosen for execution nondeterministically.

If an event does not have local variables, it can be described simply as

e =̂ when Ge then Re end.

Throughout the paper we will consider only such simple events. It does not
make any impact on the generality of our approach because any event specified
by using local variables can be always rewritten in the simple form.

Essentially, such an event definition is just a syntactic sugar for the underlying
relation e(σ, σ′) = Ge(σ)∧Re(σ, σ′). Generally, a substitution Re is defined by a
multiple (possibly nondeterministic) assignment over a vector of system variables
u ⊆ υ, i.e., u := X , for some vector of values X . Hence the state transformation
(via Re) can be intuitively defined as Re(σ, σ′) ⇒ σ′ = σ[X/u], where σ[X/u] is
a substitution of values of the variables u in σ by the vector X . Obviously, due
to presence of nondeterminism the successor state σ′ is not necessarily unique.

For our purposes, it is convenient to define an Event-B model as a transition
system. To describe a state transition for an Event-B model, we define two
functions before and after from E to P(Σ) in a way similar to [8]:

before(e) = {σ ∈ Σ | I(σ) ∧Ge(σ)} and

after(e) = {σ′ ∈ Σ | I(σ′) ∧ (∃σ ∈ Σ · I(σ) ∧Ge(σ) ∧Re(σ, σ′)
)}.

These functions essentially return the domain and the range of an event e con-
strained by the model invariants I. It is easy to see that e is enabled in σ if
σ ∈ before(e). At any state σ, the behaviour of an Event-B machine is defined
by all the enabled in σ events.
Definition 2. The behaviour of any Event-B machine is defined by a transition
relation →:

σ, σ′ ∈ Σ ∧ σ′ ∈ ⋃
e∈Eσ

after(e)

σ → σ′ ,

where Eσ = {e ∈ E | σ ∈ before(e)} is a subset of events enabled in σ.

Remark 1. The soundness of Definition 2 is guaranteed by the feasibility prop-
erty of Event-B events. According to this property, such σ′ should always exist
for any σ ∈ before(e), where e ∈ Eσ [2].
Together Definitions 1 and 2 allow us to describe any Event-B model as a tran-
sition system with state space Σ, transition relation → and a set of initial states
defined by Init. Next we describe the essential structure of SOSs and reflect on
our experience in modelling SOSs in Event-B.

3 Service-Oriented Systems

3.1 Service Orchestration

Service-oriented computing is a popular software development paradigm that
facilitates building complex distributed services by coordinated aggregation of

240 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

lower-level services (called subservices). Coordination of a service execution is
typically performed by a service director (or service composer). It is a dedi-
cated software component that on the one hand, communicates with a service
requesting party and on the other hand, orchestrates the service execution flow.

To coordinate service execution, the service director keeps information about
subservices and their execution order. It requests the corresponding components
to provide the required subservices and monitors the results of their execution.
Let us note that any subservice might also be composed of several subservices,
i.e., in its turn, the subservice execution might be orchestrated by its (sub)service
director. Hence, in general, a SOS might have several layers of hierarchy.

Often, a service director not only ensures the predefined control and data
flow between the involved subservices but also implements fault-tolerance mech-
anisms. Indeed, an execution of any subservice might fail. Then the service direc-
tor should analyse the failed response and decide on the course of error recovery
actions. For instance, if an error deemed to be recoverable, it might repeat the
request to execute the failed subservice. However, it might also stop execution
of a particular subservice to implement coordinated error recovery or abort the
whole service execution due to some unrecoverable error.

Let us consider a simple case when the involved subservices S1, S2, ..., Sn

should be executed in a fixed sequential order:

S1 −→ S2 −→ S3 −→ Sn

According the discussion above, the overall control flow can be graphically rep-
resented as shown in Fig. 1.

SD SDS1 SD S2 SD SD SN...IN OUT

Fig. 1. Service flow in a service director

Here IN and OUT depict receiving new requests and sending service responses,
while the service director SD monitors execution of the subservices and performs
the required controlling or error recovery actions. These actions may involve
requesting a particular subservice to repeat its execution (a dashed arrow from
SD to Si), aborting the whole service (a dashed arrow from SD to OUT), or
allowing a subservice to continue its execution (a looping arrow for Si).

Though we have considered a sequential service execution flow, the service ex-
ecution per se might have any degree of parallelism. Indeed, any subservice might
consist of a number of independent subservices Si1, ..., Sik that can be executed
in parallel. Such a service architecture allows the designer to improve perfor-
mance or increase reliability, e.g., if parallel subservices replicate each other.

Formal Modelling and Verification of Service-Oriented Systems 241

3.2 Towards Formalisation of Service Orchestration

In our previous work [12,11], we have proposed a formalisation of the service-
oriented development method Lyra in the B and Event-B frameworks. In our ap-
proach, refinement formalises unfolding of architectural layers and consequently
introduces explicit representation of subservices at the corresponding architec-
tural layer. Reliance of refinement, decomposition and proof-based verification
offers a scalable support for development of complex services and verification of
their functional correctness. The result of refinement process is a detailed system
specification that can be implemented on a targeted platform. However, before
such an implementation is undertaken, it is desirable to evaluate whether the
designed service meets its QoS requirements.

To enable such an evaluation, we propose to build a formal model that explic-
itly represents service orchestration, i.e., defines the dynamic service architecture,
while suppressing unnecessary modelling details. Such a model can be augmented
with probabilistic information and serve as an input for the evaluation of the
desirable QoS attributes, as we will describe in Section 6.

To achieve this goal, we should strengthen our previous approach by formal-
ising service orchestration requirements. Indeed, in [12,11] the service execution
flow and possible parallelism were modelled via an abstract function Next. Essen-
tially, this function served as an abstract scheduler of subservices. However, such
a representation does not allow for a verification of service orchestration that is
essential for building an adequate model of the dynamic service architecture.

We start our formalisation of service orchestration requirements by assuming
that a service S is composed of a finite set of subservices {S1, S2, . . . , Sn} that
are orchestrated by a service director. The behaviour of the service director
consists of a number of activities {IN, OUT, SD}, where IN and OUT are
modelling the start (i.e., receiving a service request) and the end (i.e., sending a
service response) of the service execution flow. SD represents the decision making
procedure performed by the service director after execution of any subservice,
i.e., it computes whether to restart the execution of the current subservice, call
the next scheduled subservice, or abort the service execution.

In Event-B, the subservices S1, ..., Sn as well as the service director activi-
ties IN, OUT, SD can be represented as groups of mutually exclusive events.
Without losing generality, we will treat all these activities as single events.

Let us also tailor our generic definitions of before and after functions to mod-
elling service-oriented systems. For a composite subservice Si, i.e., a subservice
that is a parallel composition of sub-subservices Si1, ..., Sik, we define

before(Si) =
⋃

j∈1..k

before(Sij) and after(Si) =
⋃

j∈1..k

after(Sij).

Moreover, we introduce a version of the function after that is “narrowed” with
respect to a particular fixed pre-state σ:

afterσ(e) = {σ′ ∈ Σ | I(σ′) ∧ I(σ) ∧Ge(σ) ∧Re(σ, σ′)}.

242 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Essentially, this function gives the relational image of the next-state relation Re

for the given singleton set {σ}. We will rely on these definitions while postulating
the service orchestration conditions that we present next.

4 Modelling the Dynamic Service Architecture

In this paper, we focus on modelling of SOSs that can provide service to only one
request at any time instance. In other words, it means that once a SOS starts
to serve a request, it becomes unavailable for the environment until the current
service is finished or aborted. Such a discipline of service imposes the following
requirements for receiving a service request and sending a service response:

(REQ1) After receiving a service request, the service director is activated to han-
dle it;

(REQ2) Once the service execution is finished, the service director is ready to
receive a new service request;

(REQ3) Receiving a service request and sending a service response is not possible
when orchestration of the service execution is still in process.

Formally, the first two requirements can be formulated as follows:

after(IN) ⊆ before(SD) and after(OUT) ⊆ before(IN),

while the formalisation of (REQ3) can be defined by the following two predicates:

∀e1, e2 ∈ {IN,OUT, SD} ·before(e1) ∩ before(e2) = ∅,(
before(IN) ∪ before(OUT)

) ∩ (⋃
i∈1..n

before(Si)
)

= ∅.

Essentially, these predicates state that IN and OUT cannot be enabled at the
same time as any of subservices Si or the service director event SD.

Moreover, the service director should follow the predefined order of the service
execution. This, however, should not prevent the service director from interfering:

(REQ4) At any moment only one of sequential subservices (i.e., only one of
S1,, Sn) can be active;

(REQ5) The service director has an ability to always provide a required control
action upon execution of the active subservice (or any of parallel subservices);

Formally, (REQ4) is ensured by requiring that the sets of states, where any two
different subservices are enabled, are disjoint:

∀i, j ∈ 1..n · i �= j ⇒ before(Si) ∩ before(Sj) = ∅,

while (REQ5) implies that SD can be enabled by execution of any subservice:

∀i ∈ 1..n · after(Si) ⊆ before(Si) ∪ before(SD).

Let us note that we delegate a part of the service director activity to the guards
of the events modelling the subservices. Specifically, we allow a subservice to
be executed in a cyclic manner without any interference from the service direc-
tor, i.e., it may either block itself or continue its activity if it remains enabled.

Formal Modelling and Verification of Service-Oriented Systems 243

However, if an active subservice blocks itself, it must enable the service director:

∀i ∈ 1..n, σ ∈ Σ · σ ∈ after(Si) ∧ σ /∈ before(Si) ⇒ σ ∈ before(SD)
that directly follows from the formalisation of (REQ5).

The next requirement concerns handling performed by the service director.
(REQ6) The reaction of the service director depends on the result returned by the

supervised subservice (or several parallel subservices) and can be one of the
following:
– upon successful termination of the subservice, the service director calls

the next scheduled subservice;
– in case of a recoverable failure of the subservice, the service director

restarts it;
– in case of an unrecoverable failure (with respect to the main service)

of the subservice, the service director aborts the execution of the whole
service.

Formally, it can be specified in the following way:

∀i ∈ 1..n−1;σ ∈ Σ ·σ ∈ after(Si) ∩ before(SD) ⇒
afterσ(SD) ⊆ before(Si) ∪ before(Si+1) ∪ before(OUT)

and, for a special case when a subservice is the last one in the execution flow,

∀σ ∈ Σ · σ ∈ after(Sn) ∩ before(SD) ⇒
afterσ(SD) ⊆ before(Sn) ∪ before(OUT).

In addition, it is important to validate that execution of any subservice cannot
disable execution of the service director:

(REQ7) None of active subservices can block execution of the service director.

It means that, whenever SD is enabled, it stays enabled after execution of any
subservice:

∀i ∈ 1..n;σ ∈ Σ · σ ∈ before(SD) ∪ before(Si) ⇒ afterσ(Si) ⊆ before(SD).
In the general case, when the execution flow of a SOS contains parallel compo-
sitions of subservices, a couple of additional requirements are needed:

(REQ8) All the subservices of a parallel composition must be independent of each
other, i.e., their execution order does not affect the execution of the overall
service;

(REQ9) Execution of any subservice of a parallel composition cannot block exe-
cution of any other active parallel subservice;

In terms of model events, the independence requirement means that forward
relational composition of two different events running in any order have the
same range:

∀i ∈ 1..n; j, l ∈ 1..k · after(Sij ;Sil) = after(Sil;Sij),
where

after(ei; ej) =
{
σ′′ ∈ Σ | σ′′ ∈ after(ej) ∧

(∃σ, σ′ ∈ Σ ·σ ∈ before(ei)∧
σ′ ∈ after(ei) ∩ before(ej) ∧Rei(σ, σ

′) ∧Rej (σ
′, σ′′)

)}
.

244 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Such a definition of independence is imposed by the interleaving semantics of
Event-B and the fact that the framework does not support events composition
directly. Finally, we formulate the requirement (REQ9) as follows:

∀i ∈ 1..n; j, l ∈ 1..k · j �= l∧
σ ∈ before(Sij) ∪ before(Sil) ⇒ afterσ(Sij) ⊆ before(Sil)

and ∀i ∈ 1..n; j ∈ 1..k · after(Sij) ∩ before(Sij) �= ∅,

where the second formula states that any subservice can continue its execution
without interference from the service director.

To verify that an Event-B model of a SOS satisfies the requirements (REQ1)–
(REQ9), their formalisation (based on concrete model elements) could be gener-
ated and added as a collection of model theorems. A similar approach has been
applied in [8]. The generation and proof of additional model theorems can be
partially automated, provided that the mapping between the model events and
the subservices as well as the activities IN, OUT , and SD is supplied.

In the next section we consider a small example of a SOS. To demonstrate
our approach, we formally model the system dynamic architecture in Event-B
and then show that the model satisfies the formulated flow conditions.

5 Case Study

We model a simple dynamic service architecture that consists of a service director
and five subservices. The latter can be structured into two composite subservices,
S1 and S2, where S1 is a parallel composition of the subservices S11, S12 and
S13, while S2 consists of the parallel subservices S21 and S22. Next we define the
fault assumptions and decision rules used by the service director. Besides (fully)
successful termination of subservices, the following alternatives are possible:

– the subservice S11 can terminate with a transient failure, in which case its
execution should be restarted. The total number of retries cannot exceed the
predefined upperbound number MAX ;

– the subservices S12 and S13 can terminate with a permanent failure. More-
over, each of them may return a partially successful result, complementing
the result of the other subservice;

– the subservices S21 and S22 can also terminate with a permanent failure.
These subservices are functionally identical, thus successful termination of
one of them is sufficient for the overall success of S2.

Fig. 2 shows the events that abstractly model the behaviour of subservices. The
variables srvij , where i ∈ 1..2 and j ∈ 1..3, represent statuses of the correspond-
ing subservices. Here, the value nd (meaning “not defined”) is used to distinguish
between the subservices that are currently inactive, and those that are active but
have not yet returned any result. The value nok stands for a permanent failure
of a subservice, while the values ok and pok represent respectively successful and
partially successful subservice execution.

Formal Modelling and Verification of Service-Oriented Systems 245

Variables cnt, srv11, srv12, srv13, srv21, srv22
Invariants cnt ∈ N∧srv11, srv21, srv22 ∈ {ok, nok, nd}∧srv12, srv13 ∈ {ok, nok, pok, nd}
Events

subsrv11 =̂
when active = 1 ∧ srv11 = nd
then srv11 :∈ {nd, ok}

cnt := cnt + 1 end
subsrv12 =̂

when active = 1 ∧ srv12 = nd
then srv12 :∈ {ok, nok, pok} end

subsrv13 =̂ · · ·
subsrv21 =̂

when active = 2 ∧ srv21 = nd
then srv21 :∈ {nd, ok} end

subsrv22 =̂ · · ·

Fig. 2. Case study: modelling subservices in Event-B

Initially all the subservices have the status nd. Note that, in case of a transient
failure of S11, the value of srv11 remains nd and, as a result, the subservice can
be restarted. The counter variable cnt stores the number of retries of S11.

To provide the overall service, the following necessary conditions must be
satisfied:
– S11 returns a successful result within MAX retries;
– both S12 and S13 do not fail and at least one of them returns a (fully)

successful result;
– at least one of S21 and S22 does not fail.

The service director controls execution of subservices and checks preservation
of these conditions. The events modelling behaviour of the service director are
shown in Fig. 3. Here, the boolean variable idle stores the status of the overall
service, i.e., whether the service director is waiting for a new service request or
the service execution is already in progress. The variable active indicates which
group of subservices or which activity of the service director is currently enabled.
The value of the boolean variable abort shows whether one of the conditions
necessary for successful completion of the service has been violated and thus
the service execution should be interrupted. Finally, the variable failed counts
the number of such interrupted service requests. Please note that the service
director activities sd success1 and sd fail1 may run in parallel with subsrv11.
On the other hand, sd success2 can be activated even if only one of subsrv21
and subsrv22 has been successfully executed and the other one is still running.

For our case study, it is easy to prove that the presented model satisfies the
requirements (REQ1)–(REQ9). For instance, a proof of (REQ7) preservation can be
split into two distinct cases, when active = 1 and active = 2. Let us consider
the first case. When σ ∈ before(sd success1), then all the subservices’ events are
disabled and the requirement is obviously satisfied. When σ ∈ before(sd fail1),
at least one of the disjuncts in the guard of sd fail1 is satisfied. In the case
when cnt > MAX is true, subsrv11 can only increase the value of cnt, and
neither subsrv12 nor subsrv13 can modify it. In the case when either (srv12 =
nok ∨ srv13 = nok) or (srv12 = pok ∧ srv13 = pok) is true, both subsrv12 and
subsrv13 are disabled, and since subsrv11 cannot affect any of these two guards
the requirement is satisfied. Overall, the formal proofs for this model are simple
though quite tedious.

246 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Variables idle, active, abort, failed
Invariants idle ∈ BOOL ∧ active ∈ 0..3 ∧ abort ∈ BOOL ∧ failed ∈ N

Events

in =̂
when active = 0 ∧ idle = TRUE
then idle := FALSE end

sdin =̂
when active = 0 ∧ idle = FALSE
then active := 1 end

outsuccess =̂
when active = 3 ∧ abort = FALSE
then active, cnt := 1, 0

idle := TRUE
srv11 := nd
srv12 := nd . . . end

outfail =̂
when active = 3 ∧ abort = TRUE
then . . .

failed := failed + 1
abort := FALSE end

sd success1 =̂
when active = 1∧

srv11 = ok ∧ cnt ≤ MAX ∧
srv12
= nok ∧ srv13
= nok ∧
(srv12 = ok ∨ srv13 = ok)

then active := 2 end
sd fail1 =̂

when active = 1 ∧ (cnt > MAX ∨
srv12 = nok ∨ srv13 = nok ∨
(srv12 = pok ∧ srv13 = pok))

then active, abort := 3, TRUE end
sd success2 =̂

when active = 2∧
(srv21 = ok ∨ srv22 = ok)

then active := 3 end
sd fail2 =̂

when active = 2∧
srv21 = nok ∧ srv22 = nok

then active, abort := 3, TRUE end

Fig. 3. Case study: modelling the service director in Event-B

As we have mentioned in the previous section, the verification of an Event-B
model against the formulated requirements (REQ1)–(REQ9) is based on generation
and proof of a number of Event-B theorems in the Rodin platform. However,
for more complex, industrial-size systems, it can be quite difficult to prove such
theorems in Rodin. To tackle this problem, some external mechanised proving
systems, such as HOL or Isabelle, can be used. Bridging the Rodin platform
with such external provers is currently under development.

The goal of building a model of dynamic service architecture is to enable
quantitative evaluation of QoS attributes. In the next section we show how
an Event-B machine can be represented by a CTMC and probabilistic model
checking used to achieve the desired goal.

6 Probabilistic Verification in Event-B

6.1 Probabilistic Event-B

In this paper, we aim at quantitative verification of QoS of SOSs modelled in
Event-B. To perform such a verification, we will transform Event-B models defin-
ing dynamic service architecture into CTMCs. The properties that we are inter-
ested to verify are the time-bounded reachability and reward properties related
to a possible abort of service execution. For continuous-time models, such proba-
bilistic properties can be specified as CSL (Continuous Stochastic Logic) formu-
lae [3,4]. A detailed survey and specification patterns for probabilistic properties
can be found in [7]. There are several examples of properties of SOSs that can
be interesting for verification:

Formal Modelling and Verification of Service-Oriented Systems 247

– what is the probability that at least one service execution will be aborted
during a certain time interval?

– what is the probability that a number of aborted services during a certain
time interval will not exceed some threshold?

– what is the mean number of served requests during a certain time interval?
– what is the mean number of failures of some particular subservice during a

certain time interval?

To transform an Event-B machine into a CTMC, we augment all the events
with information about probability and duration of all the actions that may
occur during its execution. More specifically, we refine all the events by their
probabilistic counterparts.

Let us consider a system state σ ∈ Σ and an event e ∈ E such that σ ∈
before(e). Assume that Re can transform σ to a set of states {σ′

1, . . . , σ
′
m}, where

m ≥ 1. Please recall that in Event-B, if m > 1 then the choice between the
successor states is nondeterministic. We augment every such state transformation
with a constant rate λi ∈ R+, where λi is a parameter of the exponentially
distributed sojourn time that the system will spend in the state σ before it goes
to the new state σ′

i. In such a way, we can replace a nondeterministic choice
between the possible successor states by the probabilistic choice associated with
the (exponential) race condition.

It is easy to show that such a replacement is a valid refinement step. Indeed,
let pi be a probability to choose a state transformation σ → σ′

i, σ /∈ {σ′
1, . . . , σ

′
m}.

For i ∈ 1..m, it is convenient to define pi as:

pi =
λi

m∑
j=1

λj

.

The probabilities pi define a next-state distribution for the current state σ.
Refinement of the nondeterministic branching by the (discrete) probabilistic one
is a well-known fact (see [15] for instance), which directly implies the validity of
the refinement.

We adopt the notation λe(σ, σ′) to denote the transition rate from σ to σ′ via
the event e, where σ ∈ before(e) and Re(σ, σ′). Augmenting all the event actions
with transition rates, we can respectively modify Definition 2 as follows.

Definition 3. The behaviour of any probabilistically augmented Event-B ma-
chine is defined by a transition relation Λ−→:

σ, σ′ ∈ Σ ∧ σ′ ∈ ⋃
e∈Eσ

after(e)

σ
Λ−→ σ′

,

where Λ =
∑

e∈Eσ

λe(σ, σ′).

With such a probabilistic transition relation, an Event-B machine becomes a
CTMC, whereas pi are the one-step transition probabilities of the embedded
(discrete-time) Markov chain. Such an elimination of nondeterminism between

248 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

enabled events is not always suitable for modelling. However, for SOSs this as-
sumption seems quite plausible. Indeed, the fact that execution of two or more
simultaneously enabled services may “lead” to the same state usually means
that all these services share the same functionality. In this situation it is nat-
ural to expect that the overall transition rate will increase and thus summing
of the corresponding subservice rates looks absolutely essential. Moreover, for
parallel composition of subservices, the interleaving semantics of Event-B per-
fectly coheres with the fact that the probability that two or more exponentially
distributed transition delays elapse at the same time moment is zero.

Generally, we can assume that σ ∈ {σ′
1, . . . , σ

′
m} and attach a rate for this skip

transformation as well. While participating in the race, such a transition does not
affect it (because it does not change the system state and due to the memoryless
property of the exponential distribution). However, the skip transition can be
useful for verification of specific reward properties, e.g., the number of restarts
for a particular subservice, the number of lost customers in the case of buffer
overflow, etc. Obviously, such a transition is excluded from the calculation of pi.

6.2 Case Study: Quantitative Modelling and Verification

Now let us perform quantitative verification of QoS attributes of the SOS pre-
sented in our case study using the probabilistic symbolic model checker PRISM.
We start by creating a PRISM specification corresponding to our Event-B model.
Short guidelines for Event-B to PRISM model transformation can be found in
our previous work [19]. Fig. 4 and Fig. 5 show the resulting PRISM model as
well as the rates we attached to all the model transitions. The behaviour of sub-
services is modelled by two modules S1 and S2. Note that the rate of successful
execution of S11 is decreasing with the number of retries.

In Fig. 5, the modules SD and IN OUT model behaviour of the service
director. Since the model checker cannot work with infinite sets we have bounded
from above the number of interrupted service requests by the predefined constant
value MAX failed. Such a restriction is reasonable because when the number
of interrupted service requests exceeds some acceptable threshold, the system is
usually treated as unreliable and must be redesigned.

Various properties that can be probabilistically verified for such a system
were presented in the beginning of this section. In particular, the following CSL
property is used to analyse the likelihood that a service request is interrupted
as time progresses:

P=?[F ≤ T abort].
Usually the probability to “lose” at least one request is quite high (for instance,
it equals 0.99993 for 104 time units and rates presented in Fig. 4–5). Therefore,
it is interesting to assess the probability that the number of interrupted (failed)
service request will exceed some threshold or reach the predefined acceptable
threshold:

P=?[F ≤ T (failed > 10)] and P=?[F ≤ T (failed = MAX failed)].
Fig. 6(a) demonstrates how these probabilities change over a period of T = 104

time units.

Formal Modelling and Verification of Service-Oriented Systems 249

// successful service rates of subservices
const double α11 = 0.9; const double α12 = 0.1; const double α13 = 0.12;
const double α2 = 0.085;

const double γ = 0.001; // transient failure rate of S11

// partially successful service rates of S12 and S13
const double β12 = 0.025; const double β13 = 0.03;

// permanent failure rates of S12, S13, and S21(S22)
const double δ12 = 0.001; const double δ13 = 0.002; const double δ2 = 0.003;

const int MAX = 5; // upperbound for retries of S11

// subservice states: 0 = nd, 1 = ok, 2 = nok, 3 = pok
global srv11 : [0..1] init 0; global srv12 : [0..1] init 0; . . . global cnt : [0..100] init 0;

module S1

[] (active = 1)&(srv11 = 0) → α11/(cnt + 1) : (srv′
11 = 1) + γ : (cnt′ = cnt + 1);

[] (active = 1)&(srv12 = 0) → α12 : (srv′
12 = 1) + δ12 : (srv′

12 = 2) + β12 : (srv′
12 = 3);

[] (active = 1)&(srv13 = 0) → α13 : (srv′
13 = 1) + δ13 : (srv′

13 = 2) + β13 : (srv′
13 = 3);

endmodule

module S2

[] (active = 2)&(srv21 = 0) → α2 : (srv′
21 = 1) + δ2 : (srv′

21 = 2);

[] (active = 2)&(srv22 = 0) → α2 : (srv′
22 = 1) + δ2 : (srv′

22 = 2);

endmodule

Fig. 4. Case study: modelling subservices in PRISM

const double λ = 0.2 // service request arrival rate
const double μ = 0.6; // service director’s output rate
const double η = 1; // service director’s handling rate

const int MAX failed = 40; // max acceptable threshold for the failed requests

global abort : bool init false; // 0 = nd, 1 = ok, 2 = nok, 3 = pok
global active : [0..3] init 1; // 1 = IN, 2 = S1..S3, 3 = S4..S5, 4 = OUT

module SD

[] (active = 0)&(!idle) → η : (active′ = 1);

[] (active = 1)&(srv11 = 1)&(cnt ≤ MAX)&(srv12
= 2)&(srv13
= 2)&
(srv12 = 1 | srv13 = 1) → η : (active′ = 2);

[] (active = 1)&(srv12 = 2 | srv13 = 2 | cnt > MAX | (srv12 = 3& srv13 = 3)) →
η : (active′ = 3)&(abort′ = true);

[] (active = 2)&(srv21 = 1 | srv22 = 1) → η : (active′ = 3);

[] (active = 2)&(srv21 = 2)&(srv22 = 2) → η : (active′ = 3)&(abort′ = true);

endmodule

module IN OUT

idle : bool init true;
failed : [0..MAX failed + 1] init 0;

[] (active = 0)&(idle) → λ : (idle′ = false);

[] (active = 3)&(!abort) → μ : (active′ = 0)&(cnt′ = 0)&(idle′ = true)&
(srv′

11 = 0)&(srv′
12 = 0)&(srv′

13 = 0)&(srv′
21 = 0)&(srv′

22 = 0);

[] (active = 3)&(abort)&(failed ≤ MAX failed) → μ : (active′ = 0)&(cnt′ = 0)&
(idle′ = true)&(abort′ = false)&(failed′ = failed + 1)&(srv′

11 = 0)& . . . ;

[] (active = 3)&(abort)&(failed > MAX failed) → μ : (active′ = 0)&(cnt′ = 0)&
(idle′ = true)&(abort′ = false)&(srv′

11 = 0)& . . . ;

endmodule

Fig. 5. Case study: modelling the service director in PRISM

250 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

(a) Probabilistic properties (b) Reward-based properties

Fig. 6. Case study: results of probabilistic analysis by PRISM

The next part of the analysis is related to estimation of the failed/served re-
quests over a period of T time units. This analysis was accomplished in PRISM
using its support for reward-based properties. For each class of states corre-
sponding to the OUT activity of the service director, a cost structure which
assigns a cost of 1 is used. The properties

R{‘num failed’}=?[C ≤ T] and R{‘num served’}=?[C ≤ T]

are then used to compute the expected number of failed and served service
requests cumulated by the system over T time units (see Fig. 6(b)).

7 Related Work and Conclusions

Modelling of SOSs is a topic of active ongoing research. Here we only overview
two research strands closely related to our approach: 1) formal approaches to
modelling SOSs and quantitative assessment of QoS, and 2) the approaches that
facilitate explicit reasoning about the dynamic system behaviour in Event-B.

Significant research efforts have been put into developing dedicated languages
for modelling SOSs and their dynamic behaviour. For instance, Orc [10] is a
language specifically designed to provide a formal basis for conceptual program-
ming of web-services, while COWS (Calculus for Orchestration of Web Services)
is a process calculus for specifying and combining services [13]. Similarly to our
approach, the stochastic extension of COWS relies on CTMCs and the PRISM
model checker to enable quantitative assessment of QoS parameters [16]. A fun-
damental approach to stochastic modelling of SOSs is proposed by De Nicola
et al. [6]. The authors define a structural operational semantics of MarCaSPiS
– a Markovian extension of CaSPiS (Calculus of Sessions and Pipelines). The
proposed semantics is based on a stochastic version of two-party (CCS-like)
synchronisation, typical for service-oriented approaches, while guaranteeing as-
sociativity and commutativity of parallel composition of services.

In contrast, in our approach we rely on a formal framework that enables unified
modelling of functional requirements and orchestration aspects of SOSs. We have
extended our previous work on formalisation of Lyra, an UML-based approach

Formal Modelling and Verification of Service-Oriented Systems 251

for development of SOSs [12,11], in two ways. First, we defined a number of
formal verification requirements for service orchestration. Second, we proposed
a probabilistic extension of Event-B that, in combination with the probabilistic
model checker PRISM, enables stochastic assessment of QoS attributes.

There is also an extensive body of research on applying of model checking
techniques for quantitative evaluation of QoS (see, e.g., [5]). We however focus
on combining formal refinement techniques with quantitative assessment of QoS.

Several approaches have been recently proposed to enable explicit reason-
ing about the dynamic system behaviour in Event-B. Iliasov [8] has proposed
to augment Event-B models with additional proof obligations derived from the
provided use case scenarios and control flow diagrams. An integration of CSP
and Event-B to facilitate reasoning about the dynamic system behaviour has
been proposed by Schneider et al. [18]. In the latter work, CSP is used to pro-
vide an explicit control flow for an Event-B model as well as to separate the
requirements dependent on the control flow information. The approach we have
taken is inspired by these works. We however rely solely on Event-B to built a
dynamic service architecture and verify the required service orchestration.

We can summarise our technical contribution as being two-fold. First, we have
put forward an approach to defining a dynamic service architecture in Event-B.
Such an Event-B model represents service orchestration explicitly, i.e., it depicts
interactions of a service director with the controlled services, the order of service
execution as well as fault tolerance mechanisms. Moreover, we have formally
defined the conditions required for verification of a dynamic service architecture
modelled in Event-B. Second, we have demonstrated how to augment such a
model with stochastic information and transform it into a CTMC. It allows us
to rely on probabilistic model checking techniques to quantitatively assess the
desired quality of essential service attributes. In our future work, it would be in-
teresting to extend the proposed approach to deal with dynamic reconfiguration
as well as unreliable communication channels.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (2005)

2. Abrial, J.R.: Modeling in Event-B. Cambridge University Press (2010)
3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying Continuous Time Markov

Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996)

4. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of
Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw,
S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg
(1999)

5. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS Management and Optimization in Service-Based Systems. IEEE Trans.
Softw. Eng. 37, 387–409 (2011)

6. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a Markovian
Extension of a Calculus for Services. Electronic Notes in Theoretical Computer
Science 229(4), 11–26 (2009)

252 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

7. Grunske, L.: Specification patterns for probabilistic quality properties. In: Inter-
national Conference on Software Engineering, ICSE 2008, pp. 31–40. ACM (2008)

8. Iliasov, A.: Use Case Scenarios as Verification Conditions: Event-B/Flow Approach.
In: Troubitsyna, E.A. (ed.) SERENE 2011. LNCS, vol. 6968, pp. 9–23. Springer,
Heidelberg (2011)

9. Industrial Deployment of System Engineering Methods Providing High Depend-
ability and Productivity (DEPLOY): IST FP7 IP Project,
http://www.deploy-project.eu/

10. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc Programming Language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009)

11. Laibinis, L., Troubitsyna, E., Leppänen, S.: Formal Reasoning about Fault Toler-
ance and Parallelism in Communicating Systems. In: Butler, M., Jones, C., Ro-
manovsky, A., Troubitsyna, E. (eds.) Methods, Models and Tools for Fault Toler-
ance. LNCS, vol. 5454, pp. 130–151. Springer, Heidelberg (2009)

12. Laibinis, L., Troubitsyna, E., Leppänen, S., Lilius, J., Malik, Q.A.: Formal Model-
Driven Development of Communicating Systems. In: Lau, K.-K., Banach, R. (eds.)
ICFEM 2005. LNCS, vol. 3785, pp. 188–203. Springer, Heidelberg (2005)

13. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

15. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic
Systems. Springer (2005)

16. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Hei-
delberg (2007)

17. Rodin: Event-B Platform, http://www.event-b.org/
18. Schneider, S., Treharne, H., Wehrheim, H.: A CSP Approach to Control in Event-

B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 260–274. Springer,
Heidelberg (2010)

19. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Quantitative Reasoning about Depend-
ability in Event-B: Probabilistic Model Checking Approach. In: Dependability and
Computer Engineering: Concepts for Software-Intensive Systems, pp. 459–472. IGI
Global (2011)

http://www.deploy-project.eu/
http://www.event-b.org/

Partially-Supervised Plants: Embedding

Control Requirements in Plant Components

Jasen Markovski, Dirk A. van Beek, and Jos Baeten�

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{j.markovski,d.a.van.beek,j.c.m.baeten}@tue.nl

Abstract. Supervisory control deals with automated synthesis of con-
trollers based on models of the uncontrolled system and the control re-
quirements. In this paper we share the lessons learned from synthesizing
controllers for a patient support system of an MRI scanner regarding
the specification of the control requirements. We learned that strictly
following the philosophy of supervisory control, which partitions specifi-
cations in an uncontrolled plant and control requirements, may lead to
unnecessarily complex specifications and duplication of information. In
such cases, the specification can be substantially simplified by embedding
part of the control requirements in so-called partially-supervised plants.
To formalize the new concepts, we apply a recently developed process-
theoretic approach to supervisory control. The new method for analysis
of the models provides a better insight into their underlying behavior,
which is demonstrated by revisiting the models of the industrial study.

1 Introduction

Modern market trends dictate lower development costs and shorter time-to-
market, while increasing demands for better quality, performance, safety, and
ease of use. Among else, this raises the demands on the development of control
software. Traditionally, software engineers write control software based on infor-
mal specification documents, amounting to a time-consuming iterative process
as the control requirements constantly change during product development. This
issue gave rise to supervisory control theory of discrete-event systems [9,3], where
high-level supervisory controllers are synthesized automatically based upon for-
mal models of the hardware and control requirements.

The supervisory controller observes the discrete-event behavior of the system
by receiving sensor signals from ongoing activities. Based upon these signals it
makes a decision which activities are allowed to be carried out and sends back
control signals to the hardware actuators. Under the assumption that the super-
visory controller can react sufficiently fast on input, one can model this feedback
loop as a pair of synchronizing processes. The model of the uncontrolled system,
referred to as plant, is restricted by the model of the controller, referred to as

� Supported by Dutch NWO project ProThOS, no. 600.065.120.11N124.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 253–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

254 J. Markovski, D.A. van Beek, and J. Baeten

OFF ON ON-RUNKeyON

KeyOFF

KeyOFF

KeyStart
KeyStart

OFF ON ON-RUNKeyON

KeyOFF

KeyOFF

KeyStart

a) b)

Fig. 1. Starting a car engine: a) plant component and b) control requirements

supervisor. Traditionally, the plant is modeled as a set of observable traces of
events, given as a set of synchronizing components (automata), whose joint rec-
ognized language corresponds to the observed traces. The events are split into
controllable events, which can be disabled by the supervisor in the synchronous
composition (typically actuator events), and uncontrollable events, which must
always be allowed by the supervisor (typically sensor events). The control re-
quirements specify allowed behavior again as sequences of events, leading to
event-based supervisory control theory [9,3].

In this paper, we revisit an industrial study regarding supervisory control of a
patient support system for MRI scanners of Philips Healthcare [11]. We discuss
the lessons learned from specifications of the plant and the control requirements.
Namely, following the supervisory control paradigm, the plant should be modeled
as unrestricted with respect to the controllable events, i.e., disabling of such
events should be stated in the control requirements. However, following this
paradigm may lead to duplicated specifications, slightly altered only to specify
some controllable events that should be restricted. This situation usually occurs
when one wants to make the specification of the (unsupervised) plant complete
in the sense that all possible behavior is included, despite knowing it is irrelevant.

To provide a better intuition, we consider the process of starting a car engine.
After turning the key in position ON, the engine can be started by turning the
key to position start and releasing it (event KeyStart). Once it is started, by
turning the key to position OFF, it is switched off. However, in position ON,
there is no prohibition to turn the key again to “start” the already running
engine. This is encountered (by accident) by almost everyone that drove in a
car, observing strange noises produced by the engine. From a supervisory control
point of view, the position of the key defines the behavior of the (unsupervised)
plant component that models the starting of the car, depicted in Fig. 1a). The
control requirements show the correct way of starting a car, depicted in Fig. 1b).
Note that the requirements actually duplicate the plant component, omitting
only the self loop in ON-RUN that specifies the turning of the key, while the
engine is running. Moveover, every driver knows the correct way of starting a
car, so we could argue that the partially-supervised behavior of the plant actually
comprises the component in Fig. 1b). This makes for a more readable plant
specification, while reducing a (superfluous) control requirement.

In the remainder, we formalize the notion of partially-supervised plants and
we develop a method for analysis of the plant and control requirements that
provides better insights into the underlying behavior. To this end, we employ

Partially-Supervised Plants 255

a recent process-theoretic approach to supervisory control that captures the
standard notion of controllability by means of a behavioral preorder termed
partial bisimilarity [2,10]. We retain the trace-based semantics by restricting to
deterministic automata and we adapt partial bisimilarity to automata as used
in supervisory control [3].

2 Supervisory Control Theory

We introduce some preliminary notions of automata and language theory as used
in supervisory control theory [3]. Let A = C ∪U be the set of all events that can
be observed in the plant, with C being the set of controllable events and U the
set of uncontrollable events, such that C ∩ U = ∅. We form traces and languages
in a standard manner, i.e., t ∈ A∗ is a trace and L ⊆ A∗ is a language, where
A∗ 	 {a1a2 . . . an | ai ∈ A for 0 ≤ i ≤ n, n ∈ IN} and ε denotes the unique
empty trace a1 . . . an for n = 0. By t·t′ we denote the concatenation of the traces
t, t′ ∈ A∗ and by L·L′ 	 {t·t′ | t ∈ L, t′ ∈ L′} the concatenation of languages.
We omit · when clear from the context. We say that a language is prefix-closed
if L = L, where L 	 {t | there exists t′ such that tt′ ∈ L}.

We define a discrete-event automaton as a tuple P = (SP ,AP ,→P , sP ,Sm
P),

where SP is a set of states, AP is the alphabet or the set of events used for
synchronization, →P ∈ SP × AP × SP the transition relation, sP the initial
state, and Sm

P is the set of marked states that denote successfully executed jobs.
By F we denote the set of all finite automata. We define →∗

P ∈ SP ×A∗
P ×SP as

s
ε→∗ s for all s ∈ SP , and s

at→∗
P s′ for a ∈ AP and t ∈ A∗

P , if there exists s
′′ ∈ SP

such that s
a→P s′′ t→∗

P s′. By s
t→∗
P we denote that there exists s′ ∈ SP such that

s
t→∗
P s′. Now, the recognized (prefix-closed) language of automaton P is given

by L(P) 	 {t ∈ A∗
P | sP t→∗

P }. The recognized marked language additionally
requests that the ending state is a marked state given by Lm(P) 	 {t ∈ A∗

P |
sP

t→∗
P s, s ∈ Sm

P }. By P1 | P2 	 (S1 × S2,A1 ∪ S2,→, (s1, s2),Sm
1 × Sm

2) we
denote the synchronous parallel composition of P1 = (S1,A1,→1, s1,Sm

1) and
P2 = (S2,A2,→2, s2,Sm

2):

(s′, s′′) a→

⎧⎨
⎩

(s′, s′′) if a ∈ A1 ∩ A2, s
′ a→1 s

′, and s′′ a→2 s
′′

(s′, s′′) if a ∈ A1 \ A2 and s′ a→1 s
′

(s′, s′′) if a ∈ A2 \ A1 and s′′ a→2 s
′′.

It is easily observed that this composition is commutative and associative [3].
Note that by increasing the alphabet of an automaton with events that occur
in synchronizing automata, the parallel composition would remain the same,
provided that these events were added as self loops in every state.

Suppose that the plant is given by P = (SP ,A,→P , sP ,Sm
P) and the control

requirements byR = (SR,A,→R, sR,Sm
R). If there exists S=(SS ,A,→S , sS ,Sm

S)
such that L(P | S) = L(R), then we say that S is a supervisor for P that
achieves R. We refer to P | S as the supervised plant. We ensure that S does not

256 J. Markovski, D.A. van Beek, and J. Baeten

User Interface

Bore

Patient support table

Horizontal motor
(in/out/stopped)

Clutch
(on/off)

Max out sensor
(on/off)

Vertical motor
(up/down/stopped)

Max up sensor
(on/off)

Max down sensor
(on/off)

Fig. 2. Patient support system of an MRI scanner

disable uncontrollable events by requesting that R is controllable with respect
to P , expressed by L(R)U ∩L(P) ⊆ L(R) [9,3]. Controllability is interpreted as
follows. If we observe a desired trace in the plant followed by an uncontrollable
event, then the control requirements cannot request that this uncontrollable
event should be disabled after allowing that trace.

To assure, in addition, that the control is nonblocking, it is also required that
L(R) ⊆ Lm(P). The condition ascertains that every state can reach a marked
state, guaranteeing that all jobs can be successfully finished, while preventing
deadlocks and livelocks. If R is controllable with respect to P and also L(R) ⊆
Lm(P), then one can guarantee the existence of a supervisor S, achieving the
desired nonblocking supervised behavior R by restricting the plant P .

In general, the control requirements are not achievable and one seeks a max-
imally permissive (nonblocking) supervisor, its prefix-closed language uniquely
defined for deterministic plants and control requirements as

M =
⋃
{K ⊆ L(R) ∩ Lm(P) | K is controllable with respect to P}.

In other words, the maximally permissive supervisor enables the greatest achiev-
able nonblocking behavior that is controllable with respect to P and bounded by
R. Consequently, if S is a supervisor for the plant P with respect to the control
requirements R, then L(S) ⊆ L(M) ⊆ L(R) and Lm(S) ⊆ Lm(M) ⊆ Lm(R).

Next, we revisit the supervisor synthesis for a patient support system [11].

3 Supervisor Synthesis for a Patient Support System

The patient support system positions a patient inside an MRI scanner, see Fig. 2.
The system comprises a vertical axis, a horizontal axis, and a user interface. Due
to page limitations, we present only a part of the system [11]. The vertical axis
consists of a lift with a motor drive and end sensors. The horizontal axis contains
a removable tabletop, which can be moved in and out of the bore either by a
motor drive, when the clutch is on, or by hand, otherwise. It contains sensors
to detect the presence of the tabletop and its end positions. A tumble switch
controls table movement and the clutch is controlled by a manual button.

The control should accomplish multiple control objectives. When the opera-
tor operates the tumble switch, the table should move up and down, or in and out

Partially-Supervised Plants 257

Vertical motor

vM
oveD

ow
n vM

ov
eU
p

vStopUp
vStopDown
vStopTumble

vStopped

vUpOff
vDownOn

vStopDown
vStopTumble vStopped

vUpOn
vDownOff

vStopUp
vStopTumble

v
S
to
p
D
o
w
n

v
S
to
p
T
u
m
b
le

vUpOff
vDownOn

vMoveDown

vMoveUp

vMoveDown

v
S
to
p
U
p

v
S
to
p
T
u
m
b
le

vUpOn
vDownOff

vMoveUp

Vertical up sensor

vUpOff

vUpOn

Vertical down sensor

vDownOff

vDownOn

Fig. 3. Plant components for the vertical motor and end sensors

of the bore. This depends on the current position of the table and the position
of the tumble switch. When the manual button is pushed, the clutch should be
released such that the table can be moved manually. Finally, the table should
not move beyond its end positions, and it should not collide with the magnet.
Note that we do not consider faulty behavior in this paper.

This system is more difficult to control then it might appear at first sight.
It contains several complex interactions of components, and the overall finite
state model of the uncontrolled system contained 6.3 · 109 states (6.4 · 107 states
without user interface). Recall, that here we show just a part of this system.
Nonetheless, the manufacturer estimated one week for manual adaptation of the
control software to meet a change in the control requirement, while adapting
them using supervisor synthesis took merely four hours [11].

We model the plant and the control requirements using automata as given
in Section 2. To visualize automata, we use circles for states, full and dashed
labeled arrows for controllable and uncontrollable events, respectively, incoming
arrows for initial states, and doubly-lined circles for marked states. The plant
and control requirements are composed out of synchronizing models for each of
the components. The alphabets of the automata are comprised of the transition
labels. We assume full observation of the sensors and the actuators.

Vertical Axis. The table moves up and down along the vertical axis, which com-
prises one actuator and two end sensors, see Fig. 3. The system should never
be required to move beyond the maximally up and down position. We name the
events such that their purpose becomes clear from the context. Initially, the mo-
tor is stopped and after any movement it should be able to return to its marked
state. Movement is started via events vMoveUp and vMoveDown. If the motor
is moving and a stop event, vStopUp, vStopDown, or vStopTumble is triggered,
the motor slows down. When it comes to a halt, the event vStopped is emitted.

258 J. Markovski, D.A. van Beek, and J. Baeten

Vertical motor

vM
oveD

ow
n vM

ov
eU
p

vStopped

vUpOff
vDownOn

vStopped

vUpOn
vDownOff

v
S
to
p
D
o
w
n

v
S
to
p
T
u
m
b
le

vUpOff
vDownOn

vMoveUp

vMoveDown

v
S
to
p
U
p

v
S
to
p
T
u
m
b
le

vUpOn
vDownOff

Vertical up sensor

vUpOff

vUpOn

vMoveUp vStopUp

Vertical down sensor

vDownOff

vDownOn

vMoveDown vStopDown

Fig. 4. Control requirements for the vertical motor and end sensors

Horizontal motor

hM
oveO

ut hM
ov
eI
n

hStopIn
hStopOut
hStopTumble
hStopTableTop

hStopped

hInOff
hOutOn

hStopOut
hStopTumble
hStopTableTop hStopped

hInOn
hOutOff

hStopIn
hStopTumble
hStopTableTop

h
S
to
p
O
u
t

h
S
to
p
T
u
m
b
le

h
S
to
p
T
a
b
le
T
o
p

hInOff
hOutOn

hMoveOut

hMoveIn

hMoveOut

h
S
to
p
In

h
S
to
p
T
u
m
b
le

h
S
to
p
T
a
b
le
T
o
p

hInOn
hOutOff

hMoveIn

Horizontal in sensor

hInOff

hInOn

Horizontal out sensor

hOutOff

hOutOn

Table top off sensor

hTableTopOn

hTableTopOff

Fig. 5. Plant components for the horizontal motor, end sensors, and table top sensor

The maximally up and down sensors are active if the table is at the end sen-
sor position, otherwise the sensors are inactive. They are modeled by means
of automata with corresponding (uncontrollable) sensor events vDownOn and
vDownOff, for the down sensor, and vUpOn and vUpOff, for the up sensor.

The sensors only change state when the table moves vertically. Only when the
motor drive is moving the table up, the maximally down sensor can turn off, and
the maximally up sensor can turn on, and vice versa. Although the end positions
must be reachable, movement beyond them is not allowed. This implies that up
movement is only allowed when the table is not maximally up and likewise for
the down movement. Furthermore, up movement must be stopped when the
table is maximally up and likewise for the down movement. In addition, once a
stop event has been issued, there is no need to issue it again. These requirements
lead to the models depicted in Fig. 4. Note that automata alphabets increase by
adding new events, and unless self loops are added in every state, this actually
restricts events in the parallel composition, cf. Section 2.

Partially-Supervised Plants 259

Horizontal motor

hM
oveO

ut hM
ov
eI
n

hStopped

hInOff
hOutOn

hStopped

hInOn
hOutOff

h
S
to
p
O
u
t

h
S
to
p
T
u
m
b
le

h
S
to
p
T
a
b
le
T
o
p

hInOff
hOutOn

hMoveIn

hMoveOut

h
S
to
p
In

h
S
to
p
T
u
m
b
le

h
S
to
p
T
a
b
le
T
o
p

hInOn
hOutOff

Horizontal in sensor

hInOff

hInOn

hMoveIn hStopIn

Horizontal out sensor

hOutOff

hOutOn

hMoveOut hStopOut

Table top off sensor

hTableTopOn

hStopTableTop
hMoveIn
hMoveOut

hTableTopOff

Fig. 6. Control requirements for horizontal motor, end sensors, and table top sensor

Horizontal Axis. The movement along the vertical axis is analogous to the one
for the vertical axis, with the exception that the table top may be taken off by the
operator, which is detected using an additional sensor. The plant components
dealing with horizontal movement are depicted in Fig. 5, whereas the control
requirements are depicted in Fig. 6.

User Interface. The user interface consists of a tumble switch that controls the
table movement and a manual button that controls the operation mode via the
clutch. In motorized mode, the tumble switch controls the movement of the table.
In manual mode, the operator can move the table top by hand. When the manual
button is pushed, the clutch is either applied or released, if allowed by the safety
requirements of Fig. 10, leading to motorized or manual mode, respectively. The
manual button push is associated to a safety timeout as manual operation is
allowed only when the table top is on and it is in the topmost position, and the
motors are stopped. As this takes some time, the button push might be forgotten
by the operator. Fig. 7 depicts the plant components modeling the user interface.

Manual button Tumble switch

uManualPushed
uManualTimeout

hClutchOn
hClutchOff

uTumbleNeutral

uTumbleDown

uTumbleUp

uTumbleNeutral

Fig. 7. Plant components for the manual button and the tumble switch

When the manual button is pressed, either the clutch is applied or released,
or a timeout occurs, that invalidates the button push. When the tumble switch
is down, then either downward or outward movement is allowed, whereas when
the switch is up, either upward or inward movement is allowed. This is captured
by the control requirements depicted in Fig. 8.

260 J. Markovski, D.A. van Beek, and J. Baeten

Manual button
uManualPushed

uManualTimeout
uManualTimeout

hClutchOn
hClutchOff

uManualPushed

Tumble switch

hMoveOut
vMoveDown

uTumbleNeutral

uTumbleDown

hStopTumble
vStopTumble

uTumbleUp
hMoveIn
vMoveUp

uTumbleNeutral

Fig. 8. Control requirements for the manual button and the tumble switch

hMoveOut
hClutchOff

hOutOn
hOutOff
hInOn
hInOff

hOutOn
hOutOff
hInOn
hInOff

hMoveIn
hClutchOff

hOutOn, hOutOff
hInOn, hInOff hClutchOff

hStopped

hMoveOut hStopped

hMoveIn

hMoveIn

hMoveOut

h
C
lu
tc
h
O
n

h
C
lu
tc
h
O
ff

h
C
lu
tc
h
O
n

h
C
lu
tc
h
O
ff

h
C
lu
tc
h
O
n

h
C
lu
tc
h
O
ff

hStopped

hMoveOut hStopped

hMoveIn

hMoveIn

hMoveOut

hMoveOut
hClutchOn

hOutOn
hInOff hClutchOn

hMoveIn
hClutchOn

hOutOff
hInOn

Fig. 9. Plant component relating horizontal actuator and sensor events

Finally, in Fig. 9, we capture the relationship between the horizontal motor
and sensors. We note that when the clutch is off, every activation/deactivation
of horizontal end sensors is possible, as the operator can move the table top un-
restrictedly. We also note that the component depicted in Fig. 9 results from an
interleaving (nonsynchronizing) parallel composition of a component that gives
the relation between the clutch and horizontal sensor events and a component
that describes motorized horizontal table movement [11].

To guarantee safe operation of the patient support system, the following safety
movement restrictions apply. To ensure that the patient support table does not
collide with the magnet of the MRI machine, it is required that the table can
enter the magnet only if it is maximally up, and the table can move vertically

Partially-Supervised Plants 261

a) Safety movement restriction

vUpOn

vUpOff vOutOn

vOutOff

b) Safety manual movement restriction

hClutchOn

hClutchOff

hMoveIn
hMoveOut

hMoveIn
hMoveOut

hStopped

c) Safety tumble switch allowed movement

vMoveUp
vMoveDown

uTumbleNeutral

vMoveUp
vMoveDown

uTumbleNeutral

hMoveIn
hMoveOut

hMoveIn
hMoveOut

uTumbleNeutral

Fig. 10. Control requirements for safe patient support table movement

only if it is fully retracted (Fig. 10a). The table top can be manually operated
only if the horizontal movement of the motor is stopped (Fig. 10b). In addition,
to change the axis of movement, the tumble switch must be first placed in neutral
position, while the motors can be activated only if the tumble switch is not in
neutral position (Fig. 10c).

One cannot help to notice the duplication of information in Fig. 3 and Fig. 4,
Fig. 5 and Fig. 6, and Fig. 7 and Fig. 8. Moreover, for modelers involved in
this study, the plant components depicted in Fig. 3, Fig. 5, and Fig. 7, are
overly simplified and actually produce the countereffect of making the plant
specification unclear. This is most obvious in Fig. 9, where one can hardly deduce
anything about the relationship between the horizontal actuators and sensors.

In the next chapter, we alleviate some of these issues by embedding a part of
the control requirements into the plant components.

4 Process-Theoretic Approach to Controllability

We present a process-theoretic approach to supervisory control theory that
enables us to manipulate more easily with the underlying notions. We define
controllability from a process-theoretic perspective in terms of a so-called par-
tial bisimilarity preorder. This preorder is meant to capture that uncontrollable
events should not be disabled by the supervisor and it gives the relation between
the original and the supervised plant. It requires that the unrestricted plant sim-
ulates, i.e., it is enabled to perform, every event of the supervised plant, but it
is required that the supervised plant only simulates back uncontrollable events.
We note that in the original process-theoretic setting of [2] we employed labeled
transition systems, whereas here we adjust the behavioral (semantic) relation to
accommodate deterministic automata in the vein of [3].

262 J. Markovski, D.A. van Beek, and J. Baeten

Definition 1. Let P1 = (S1,A1,→1, s1,Sm
1) and P2 = (S2,A2,→2, s2,Sm

2) be
two finite automata with A1 = A2 = A′ ⊆ A. A relation Q ⊆ S1 × S2 is a
partial bisimulation between P1 and P2 with respect to the bisimulation action
set B ⊆ A′ if for all p1 ∈ S1 and p2 ∈ S2 such that (p1, p2) ∈ Q it holds that:

1. p1 ∈ Sm
1 if and only if p2 ∈ Sm

2 ;

2. for all p′1 ∈ S1 and a ∈ A′ such that p1
a→1 p

′
1, there exists p′2 ∈ S2 such that

p2
a→2 p

′
2 and (p′1, p

′
2) ∈ Q;

3. for all p′2 ∈ S2 and b ∈ B such that p2
b→2 p

′
2, there exists p′1 ∈ S1 such that

p1
b→1 p

′
1 and (p′1, p

′
2) ∈ Q;

We say that P1 is partially bisimilar to P2 with respect to the bisimulation action
set B, notation P1 �B P2, if there exists a partial bisimulation Q with respect
to B such that (s1, s2) ∈ Q. If P2 �B P1 holds as well, then P1 and P2 are
mutually partially bisimilar with respect to B and we write P1↔B P2.

Note that �B is a preorder relation, making ↔B an equivalence relation for all
B ⊆ A [10]. If B = ∅, then �∅ coincides with strong similarity preorder and ↔∅
coincides with strong similarity equivalence [5,1]. When B = A, both �A and
↔A turn into strong bisimilarity [5,1].

By adopting partial bisimilarity as a behavioral (semantic) relation, we replace
the original language-based equivalence, which also permits the use of nondeter-
ministic automata. We note that partial bisimilarity also accounts for controlla-
bility of nondeterministic plants and control requirements, see [2]. Nonetheless,
in the setting of this paper we only consider deterministic plants and control
requirements, as they guarantee existence of a unique maximally permissive su-
pervisor. The uniqueness is a prerequisite for the proof of main theorem that
enables the embedding of the control requirements. Moreover, our experience,
during execution of several other industrial studies [8,4,6,7], points out to no
particular need to employ nondeterministic automata for modeling purposes.

Definition 2. Automaton P = (SP ,AP ,→P , sP ,Sm
P) is deterministic if for all

s, s1, s2 ∈ SP and a ∈ AP it holds that if s
a→ s1 and s

a→ s2 then s1 = s2.

We denote the set of deterministic automata by D. We give properties of partial
bisimilarity that help to relate it to the standard notion of controllability.

Proposition 1. Let P1, P2 ∈ D with P1 = (S1,A1,→1, s1,Sm
1) and

P2 = (S2,A2,→2, s2,Sm
2). Then, the following holds:

1. if P1 �B P2, then P1 | P �B P2 | P for every P ∈ D;
2. if P1 �B P2, then P1 �C P2 for every C ⊆ B;
3. P1 �∅ P2 if and only if L(P1) ⊆ L(P2) and Lm(P1) ⊆ Lm(P2);
4. if A2 ⊆ A1, then P1 | P2 �∅ P1 and P2 | P1 �∅ P1; and
5. if P1 �U P2 then L(P1)U ∩ L(P2) ⊆ L(P1).

Proof. Property 1. states that the partial bisimilarity preorder is a precongruence
for the parallel composition, as shown in [2].

Partially-Supervised Plants 263

Property 2. is straightforward, by following Definition 1 [2].
Property 3. follows from Definition 1 and the definitions of recognized and

marked languages, and it has been given explicitly for simulation in [5].
Property 4. follows directly from the definition of the parallel composition

and the fact that A2 ⊆ A1 implies that P2 can only restrict the transitions of
P1 and, therefore, L(P1 | P2) = L(P2) ∩ L(P1) [3] implying P1 | P2 �∅ P1 and
P2 | P1 �∅ P1 by property 2.

Property 5. has been previously stated in [10] in a slightly different context,
but having in mind its significance, we will give another proof in this setting.
Suppose that P1 �U P2 holds. By Definition 1, there exists a partial bisimula-
tion Q such that (s1, s2) ∈ Q. We show that L(P1)U ∩ L(P2) ⊆ L(P1) holds by
contradiction. Suppose that there exists a trace t ∈ L(P1) such that tu ∈ L(P2)

for some u ∈ U , but tu �∈ L(P1). As t ∈ L(P1), we have that s1
a1→ . . .

an→ sn for

si ∈ S1 and t = a1 . . . an. Then, we also have that s2 ≡ q1
a1→ . . .

an→ qn for qi ∈ S2.
Following Definition 2 we have (si, qi) ∈ Q for 1 ≤ i ≤ n. However, according to

Definition 1, sn
u→ s′n for some s′n ∈ S1 as qn

u→ , leading to a contradiction. �%

As in Section 2, we have that P,R, S ∈ D denote the plant, the control require-
ments, and the supervisor, respectively. Again, the supervised plant is given by
P | S. Intuitively, controllability requires that the uncontrollable transitions of P
should be bisimilar to those of P | S, so that the reachable uncontrollable parts
of P and P | S are indistinguishable. The controllable transitions of the super-
vised plant may only be simulated by the ones of the original plant, since some
controllable transitions are suppressed by the supervisor. Then, we have that R
is controllable, if R �U P . For nonblocking behavior, we still need to ascertain
that L(R) ⊆ Lm(P). In case the behavior defined by the control requirements
cannot be achieved, then we have that P | S �U P and P | S �∅ R for some
supervisor S. Note that P | S↔∅ S, i.e., the achievable behavior is identified by
the supervisor [3,9]. Also, note that for deterministic systems this is equivalent
to P | S ↔B S for every B ∈ A [5]. Finally, if M is the maximally permissive
supervisor for P and R, then S �∅ M for every other supervisor S of P .

Next, we employ this approach to directly manipulate plant and control re-
quirement components, without having to unravel their recognized languages.

5 Partially-Supervised Plants

We assume that, as in Section 3, the plant and the control requirements are
given as sets of parallel synchronizing components and restrictions, respectively.
The following theorem states when it is possible to embed a control require-
ment component in the definition of the plant, without affecting the supervised
behavior of the plant.

Theorem 1. Let P,R,X, S, T ∈ D such that P | X �U P , S is the maximally
permissive supervisor for P with respect to R | X, and T is the maximally
permissive supervisor for P | X with respect to R. Then S↔∅ T | X.

264 J. Markovski, D.A. van Beek, and J. Baeten

Proof. As S and T are a supervisors for P and P | X , respectively, we have that

P | S �U P and (P | X) | T �U (P | X).

From the assumptions, we have P | X �U P . Thus,

(P | X) | T ↔U P | (T | X)�U P | X �U P,

implying that T | X is a supervisor for P . As S is the maximally permissive
supervisor for P , we have that T | X �∅ S. On the other hand, from P | S �U P
we derive that

(P | S) | X ↔U (P | X) | S �U P | X
implying that S is a supervisor for P | X . As T is the maximally permissive
supervisor for P | X , we have that S �∅ T . We show that T �∅ T | X , which
implies that S ↔∅ T | X . Using that (P | X) | T ↔∅ T , since T is a supervisor
for P | X , we derive:

(P | X) | T �∅ P | X implies
((P | X) | T) | (T | X)�∅ (P | X) | (T | X) implies
(P | (X | X)) | (T | T)�∅ ((P | X) | T) | X implies
(P | X) | T �∅ ((P | X) | T) | X) implies
T �∅ T | X.

As S↔∅ T | X , we conclude that S and T deliver the same supervised behavior
for P and P | X with respect to R | X and R, respectively. We validate that the
requirements are satisfied accordingly. We have the following derivation:

(P | X) | T �∅ R implies
((P | X) | T) | X �∅ R | X implies
(P | (X | X)) | T �∅ R | X implies
(P | X) | T �∅ R | X implies
P | (T | X)�∅ R | X,

i.e., T | X satisfies the control requirements for P . Also, we derive:

(P | X) | T ↔∅ (P | (X | X)) | T ↔∅ (P | X) | (T | X)↔∅ (P | X) | S �∅ R,

implying that the requirements are satisfied for both supervisors.
Finally, we show that the marked behavior of P | S and (P | X) | T is

equivalent, i.e., Lm(P | S) = Lm((P | X) | T). First, note that for every
P1, P2 ∈ D, if t ∈ Lm(P1 | P2), then t ∈ Lm(P1) and t ∈ Lm(P2). Suppose that
t ∈ Lm(P | S), implying that t ∈ Lm(P) and t ∈ Lm(S). Then, by Proposition 1,
t ∈ Lm(R | X) and, thus, t ∈ Lm(R) and t ∈ Lm(X). Now, it is not difficult to
observe that t ∈ Lm(P | T | X), as S↔∅T | X . The other direction is analogous,
which completes the proof. �%

Using the result of Theorem 1 we can define the notion of partially-supervised
plants as specifications that embed a portion of the control requirements in them.

Partially-Supervised Plants 265

Such practice removes trivial and intuitive control requirements that require
duplication of information and increase both the readability and meaningfulness
of both the plant and control requirements.

The essential requirement of Theorem 1 is that P | X �U P must hold. How-
ever, such a requirement may prove difficult to check. We note that it is not
necessary to take the whole plant into account, but it is sufficient to prove the
claim for a portion of it. To show this, assume that P ↔A P1 | P2 and X is such
that P1 | X �U P1. Then, according to Proposition 1, (P1 | X) | P2 �U P1 | P2

holds as well, implying that P | X �U P . Next, we characterize two cases that
can be easily checked by visual inspection.

Let E ∈ D represent a totally unrestricted behavior given by
E = ({sE},A,→E , sE , {sE}), where sE a→sE for every a ∈ A. Then, P | E↔AP
for every P ∈ D. Now, if X�U E, then X is a suitable control requirement com-
ponent for embedding. Visually, one needs only to verify that X does not disable
any uncontrollable events in its alphabet.

A typical situation arises when the control requirements need to restrict the
occurrence of controllable self loops as shown in Section 3. This requires a dupli-
cation of the plant component, while selectively adding transitions with control-
lable self-loop events (if not already present in the alphabet of the automaton
at hand) and/or restricting their occurrences as desired, compare, e.g., Fig. 3
and Fig. 4. We show that in that case the control requirement component can
be taken as a plant component.

Let P | K be the plant, with K = (SK ,AK ,→K , sK ,Sm
K) a plant component.

Let L = (SK ,AL,→L, sK ,Sm
K) be a control requirement corresponding to this

component with AL = AK ∪C, where C ⊆ C \AK and →L =→K ∪{(s, c, s′) ∈
SK × C × SK | s = s′}. Augment the transition relation of K with self loops of
events in C for every state in SK given by U = {(s, c, s) | s ∈ SK , c ∈ C}. Denote
the augmented automaton as K ′. It is straightforward that P | K↔AP | K ′, cf.
Section 2. Moreover, it is easy to see that L | K ′ �U K ′, so that we can replace
the updated plant component K ′ by L, as shown above for P1 and X .

Using the results above, we can adapt the specifications of the plant and the
control requirements given in Section 3. We can replace the plant components
of Figures 3, 5, and 7, with the corresponding control requirements of Figures 4,
6, and 8, respectively. The resulting replacement of the vertical and horizontal
motor models of Figures 3 and 5, by the respective motor models of Figures 4
and 6, leads to a simplified plant model, which is more intuitive, and would be
directly modeled by modelers with insight to the matter at hand. The substitu-
tion of the other sensor and actuator plant models of Figures 3, 5, and 7, by the
corresponding control requirement models of Figures 4, 6, and 8, does eliminate
duplication of information, but does not simplify the plant models themselves.

What remains are the control requirements regarding the safety of move-
ment, depicted in Fig. 10, which can be considered as the ‘meaningful’ set of
requirements. Here, we embed the requirement regarding the behavior of the
clutch: the “Safety manual movement restriction” of Fig. 10b, in the plant com-
ponent describing the actuator-sensor relationship of Fig. 9. The result of such an

266 J. Markovski, D.A. van Beek, and J. Baeten

hOutOn
hOutOff
hInOn
hInOff

hMoveIn

hMoveOut

h
C
lu
tc
h
O
n

h
C
lu
tc
h
O
ff

hStopped

hMoveOut hStopped

hMoveIn
hOutOn
hInOff

hOutOff
hInOn

Fig. 11. Embedding the behavior of the clutch in the actuator-sensor relation

embedding is depicted in Fig. 11, which clearly shows the relation between the
horizontal actuators and sensors. Namely, the horizontal motor must be stopped
to allow manual operation, and in that case every sensor event is possible. In case
the patient support system is in motorized mode, i.e., the clutch is applied, the
sensor events can only occur consistently with the horizontal movement of the
table. This behavior cannot be easily deduced from the “crowded” plant com-
ponent of Fig. 9, so our analysis reveals the intended behavior of the system.

We conclude that partially-supervised plants contribute to clarity and mean-
ingfulness of supervisory control specifications, when they are employed to elimi-
nate trivial and cluttered control requirements. We also demonstrated that they
can help better understand the underlying behavior. However, we must warn
that ad-hoc modeling should not replace supervisory control, i.e., the conditions
of Theorem 1 must be verified before applying the presented method. Further-
more, checking that the preconditions of the theorem hold, actually amounts to
supervisory control synthesis in some cases [2]. For that purpose, we character-
ized two simple instances of the Theorem 1, that are often found and applied in
practice without formalizing the underlying process of thought [11,8,6,4].

6 Concluding Remarks

We introduced the notion of partially-supervised plants that embed control re-
quirements in their components. The main motivator for such an embedding is
that by strictly following the principles of supervisory control, we sometimes end
up with cluttered and “redundant” plant components and control requirements.
Moreover, we noticed that embedding of control requirements actually occurs ad
hoc during the plant modeling. We characterized when this embedding is safe
and does not alter the supervised behavior. We also gave a simple characteriza-
tion, which can be ‘verified’ visually, of the two most intuitive and most applied
situations. We demonstrated the new concept in an industrial study involving
supervision of a patient support system for an MRI scanner. We showed that

Partially-Supervised Plants 267

there is considerable improvement of the readability and the meaningfulness of
the specifications of the plant and control requirements.

To show that the embedding of the control requirements does not alter the
supervised behavior of the plant, we employed a process-theoretic approach that
captures the notion of controllability by means of a behavioral preorder. The pre-
order, termed partial bisimilarity, has been adapted for deterministic automata
as employed in standard supervisory control. By analyzing the proof of the main
theorem, one also observes the ease of manipulation with the underlying notions,
which further validates our approach to supervisory control theory.

As future work, we intend to deepen our understanding of nondeterministic
partially-controlled plants, as there does not exist a unique maximally permissive
supervisor. We will also investigate state-based supervisory control, where the
control requirements refer to states, instead of supplying traces of events.

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press (2010)

2. Baeten, J.C.M., van Beek, D.A., Luttik, B., Markovski, J., Rooda, J.E.: A process-
theoretic approach to supervisory control theory. In: Proceedings of ACC 2011,
pp. 4496–4501. IEEE (2011)

3. Cassandras, C., Lafortune, S.: Introduction to discrete event systems. Kluwer Aca-
demic Publishers (2004)

4. Forschelen, S.T.J.: Supervisory control of theme park vehicles. Master’s thesis,
Systems Engineering Group, Eindhoven University of Technology (2010)

5. van Glabbeek, R.J.: The linear time–branching time spectrum I. In: Handbook of
Process Algebra, pp. 3–99 (2001)

6. Leijenaar, J.F.: Supervisory Control of Document Processing Machines. Master’s
thesis, Systems Engineering Group, Eindhoven University of Technology (2009)

7. Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J.A.M., Rooda, J.E.:
Coordination of resources using generalized state-based requirements. In: Proceed-
ings of WODES 2010, pp. 300–305. IFAC (2010)

8. Petreczky, M., van Beek, D.A., Rooda, J.E.: Supervisor for toner error handling: a
case study in supervisory control of Océ printers. SE Report 2008-011, Eindhoven
University of Technology, Systems Engineering Group (2008),
http://se.wtb.tue.nl/sereports

9. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

10. Rutten, J.J.M.M.: Coalgebra, concurrency, and control. SEN Report R-9921, Cen-
ter for Mathematics and Computer Science, Amsterdam, The Netherlands (1999)

11. Theunissen, R., Schiffelers, R., van Beek, D., Rooda, J.: Supervisory control syn-
thesis for a patient support system. In: Proceedings of 10th European Control
Conference, pp. 1–6. EUCA (2009)

http://se.wtb.tue.nl/sereports

Early Fault Detection in Industry

Using Models at Various Abstraction Levels�

Jozef Hooman1,2, Arjan J. Mooij2, and Hans van Wezep3

1 Computing Science Department, Radboud University Nijmegen, The Netherlands
2 Embedded Systems Institute, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{jozef.hooman,arjan.mooij}@esi.nl
3 Interventional X-Ray Department, Philips Healthcare, Best, The Netherlands

hans.van.wezep@philips.com

Abstract. Most formal models that are used in the industry are close to
the level of code, and often ready to be used for code generation. Formal
models can also be analysed and verified in order to detect any faults. As
the first formal models are often such code-level models, their analysis
not only reveals a lot of detailed design faults, but also the more relevant
conceptual faults in the design and the requirements. Our observations
are based on our experiences in an industrial development project that
uses a commercial tool for formal modelling, compositional verification,
and code generation. In addition to the provided tool functionality, we
have introduced formal techniques to detect conceptual faults during
the earlier design and requirements phases. To this end we have made
additional formal models, both for the requirements and for the early
designs at various abstraction levels. We have analysed these models
using simulation and interactive visualization, and we have compared
them using refinement checking.

1 Introduction

The formal methods that are currently the most successful in the industry are
methods with commercially supported tools that provide code generation. An ex-
ample is the industrial tool VDMTools [7] for the formal language VDM++ [11].
Similarly, the B-method [1], which has been used to develop a number of safety-
critical systems, is supported by the commercial Atelier B tool [6]. The SCADE
Suite [10] provides a formal industry-proven method for critical applications with
both verification and code generation.

We report about our experiences with the industrial application of formal
methods and the introduction of techniques for early fault detection [18,19]. In
particular, we report about our experiences in an industrial development project
at Philips Healthcare to develop control software for an interventional X-ray
system. A brief description of this type of system and the developed control
components can be found in Section 2.
� This publication was supported by the Allegio project, as part of the Dutch national

program COMMIT, and the ITEA project Care4Me.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 268–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Early Fault Detection in Industry 269

This development project uses a formal approach called Analytical Software
Design (ASD) [5,21] that is supported by the commercial tool ASD:Suite [29]
of the company Verum. The ASD approach uses two types of formal models:
design models and interface models; both types of models are described using
state machines in a tabular notation. A prerequisite for the introduction of ASD
is a layered architecture with a particular communication pattern between com-
ponents. Control components can be realized by an ASD design model which
implements one interface model; in addition, each component can use any num-
ber of interfaces. The use of formal interface models supports concurrent software
development and prevents certain integration faults.

ASD:Suite can formally verify whether each design model together with the
used interface models refines the implemented interface model. The ASD ap-
proach is compositional as each component can be verified in isolation, using
only the interface model of any component with which it interacts. In addition,
properties like absence of deadlocks and livelocks can be checked. These formal
checks can reveal subtle faults in the components, such as race conditions. An
analysis of earlier applications of ASD at Philips Healthcare showed that units
containing ASD components have less reported defects than other units [16].

A very important feature in industrial contexts is that ASD:Suite can use the
design models to generate implementation code in a number of programming
languages (C, C++, C#, Java). Code generation adds immediate value [12] to
the modelling efforts that are involved in formal approaches. This also prevents
the introduction of certain implementation faults related to thread creation and
synchronization. Section 6 provides more details about the ASD approach.

Problem statement. In industrial development processes, the first formal models
are usually close to the level of code, whereas the earlier design and requirements
phases are based on informal documents. As a result, formal modelling and
analysis not only reveal a lot of detailed design faults, but also the more relevant
conceptual faults in the design and the requirements. These conceptual faults
are often costly to repair in a detailed design phase. Moreover, as faults from
several development phases are detected, it gives the impression that applying
the formal approach itself is very time consuming.

Our approach. In addition to the commercial tool ASD:Suite for formal mod-
elling, compositional verification and code generation, we have introduced formal
techniques to detect conceptual faults during earlier design and requirements
phases. To this end we have made additional formal models, both for the re-
quirements and for early designs at various abstraction levels. In comparison to
code-level models like ASD, such models may ignore any restrictions imposed by
specific implementation technologies, they may rely on additional assumptions,
and they can use simplified external interfaces.

We have analysed these models using simulation and interactive visualization,
and we have compared them using refinement checking; see also the schematic
overview in Fig. 8. In the next three paragraphs we describe the kinds of
faults that we have thus detected in early development phases. In traditional

270 J. Hooman, A.J. Mooij, and H. van Wezep

development approaches, these faults would probably be detected later on dur-
ing the test and integration phase, where they are more expensive to repair.

Modelling and analysing requirements. Throughout the development process, we
have observed that many faults are due to some unclarities in the requirements,
and that such faults often lead to time-consuming redesigns. Our first priority
was to increase the confidence in the requirements. In addition to the traditional
documentation, we have made formal, executable models of the required system
behaviour, as is also advocated by [8].

Making formal requirements models directly triggers all kinds of questions
about the interpretation of the requirements. In addition, we have validated
the requirements models using simulation. To support discussions with domain
experts and non-technical stakeholders, we have connected the simulations to an
interactive visualization of a physical view on the system. This is described in
Section 3.

Modelling and analysing designs. The ASD approach imposes some restrictions
on the design models, e.g., to ensure that they can be verified compositionally.
To validate high-level design decisions, we have made several formal, executable
models of early designs that do not (yet) adhere to these restrictions. We have
validated these models using simulation. In early development phases, we have
thus revealed various design faults, often related to feature interactions, that
lead to deadlocks, livelocks, and functional errors.

During the development phases, we have iteratively analysed increasingly de-
tailed design models. The use of interactive visualizations (as discussed for the
requirements models) also proved useful for the design models. To prepare the
final application of ASD, we have defined a pattern for simulating the ASD
components in detailed design models. More details are given in Section 4.

Comparing requirements and designs. When making several formal models, it
often happens that small discrepancies are introduced. To some extent, these
can be discovered using the light-weight simulations discussed before. For a more
profound comparison, we have built a compiler that transforms a requirements
model and a design model to the input language of a refinement checker.

The use of refinement checkers to compare models has revealed subtle design
faults that are difficult to find by simulation. However, exhaustive verification
easily hits the state space explosion problem, and scalability to industrial sizes
is still challenging. In Section 5 we explain how we have addressed this.

2 Control Components for an Interventional X-Ray
System

The experiences described in this paper are based on our work in a development
project at Philips Healthcare. This project concentrates on the development of
control components for interventional X-ray systems as depicted in Fig. 1. Such

Early Fault Detection in Industry 271

Fig. 1. Interventional X-Ray system

systems are used for minimally-invasive cardiac, vascular and neurological pro-
cedures, such as placing a stent via a catheter. During such a medical procedure,
the surgeon is guided by real-time images showing, for instance, the position of
the catheter inside the patient. These images are constructed from the amount
of X-ray that is detected after sending X-ray beams (generated by the tube)
through the patient.

The system under development consists of two X-ray planes (called lateral and
frontal) that can be used in isolation or together (called biplane). Each plane
can apply three types of X-ray that vary in the amount of X-ray that is emitted:

– Fluoroscopy: low dose, for interactive viewing and positioning;
– Exposure SingleShot: high dose, for recording a single image;
– Exposure Series: high dose, for recording a series of images.

The clinical users can control this system using six pedals and one hand-switch.
Moreover, each of these inputs can be replicated multiple times. Three of the
pedals are used to start Fluoroscopy, corresponding to the planes. For Exposure,
there is one pedal to switch between the planes, and there are two pedals to start
the two types of Exposure. In addition, Exposure Series can also be started using
the hand-switch.

Apart from the user inputs, there can be several reasons for interrupting
the X-ray beams once started, or for preventing the X-ray beams to start in
the first place; such conditions are called run-conditions and start-conditions
respectively. Examples include technical problems with the hardware, but also
conditions related to physical safety such as an open door.

Given the earlier experiences [16,20] of Philips Healthcare with ASD, it was
decided to develop the main control components using ASD. Moreover, their

272 J. Hooman, A.J. Mooij, and H. van Wezep

external interfaces were already specified using ASD. The use of ASD is mo-
tivated by the aim to shorten the test and integration phase, which is usually
long to ensure a high level of quality. Starting from the application of the ASD
approach, we have experimented with the introduction of formal techniques to
describe the requirements and the global design. The aim was to find faults as
early as possible to improve the efficiency of the development process.

3 Modelling and Analysing Requirements

Since it is very costly to correct requirements faults during detailed design, we
propose the use of formal techniques to detect such faults as early as possible.
To obtain industrial acceptance and fast feedback, we have made executable
models that can be simulated. In addition, the models have been simulated in
combination with an interactive visualisation of the externally visible behaviour.

Executable models. To model the requirements, we have used the Parallel Object-
Oriented Specification Language (POOSL) [9,28]. POOSL is a very expressive
formal language with timing, predefined data types, statistical distributions and
synchronous communication along channels, similar to CSP [25]. The semantics
of POOSL is defined as a timed probabilistic labelled transition system. Models
can be simulated by means of the tools supporting POOSL.

Interactive visualisation. To discuss the requirements with domain experts, we
have investigated the use of interactive visualizations. The visualizations provide
an attractive and understandable graphical user interface, but the logic follows
from a simulation of the formal, executable requirements model.

In earlier work [23] we have used interactive 2D animations based on Flash.
More recently we have started to explore the use of interactive 3D animations
based on Blender [2]; see Fig. 2(a). Blender is an open source tool that combines
a 3D modelling environment with an interactive game engine. Our first impres-
sion is that some situations (pedal states, active X-ray beams, etc.) are more
easily understood using a realistic graphical view. In comparison to the profes-
sional animations that are used in the industry for explaining their products, our
visualizations are interactive and the graphical aspects are separated from the
internal logic. In this way, our interactive visualizations can also be used later
in the development process to evaluate technical models of the architecture and
detailed design.

By connecting a Blender model (see Fig. 2(a)) and a POOSL model (see
Fig. 2(b)) via sockets, we obtain a simulation that combines two views on the
system: the physical hardware and the control logic, respectively. As shown in
Fig. 2(c), inputs to the system are forwarded by Blender to POOSL, whereas
resulting actions are transferred from POOSL to Blender. This combination can
also be used to analyse the effectiveness of the full clinical workflows for executing
the use cases. We can even imagine that such techniques can be used for training
purposes, e.g., when the real system is not (yet) available.

Early Fault Detection in Industry 273

(a) 3D visualization for simulation (b) Modelling and simulation

SHE/POOSL
simulation

pedal/handswitch events
Blender

visualization

POOSL model
(functional view)

3D game model
(physical view)

X-ray beam events

run/start-condition events

(c) Coupling models

Fig. 2. Modelling and analysing requirements using Blender and POOSL

Results. We have started with modelling the types of X-ray and their relations.
At any moment in time, only one type of X-ray may be active; in particular, the
Exposure types have priority over Fluoroscopy. This basic behaviour was well
documented, but the interpretation of the informal text was not always easy. For
instance, regarding the intended result of simultaneous X-ray requests through
different pedals and hand-switches. In these cases, our light-weight simulations
quickly clarified the intended interpretation of the descriptions.

In a later phase, we considered error handling by adding start-conditions
and run-conditions to the models. For instance, as Exposure Series can only be
started after an additional preparation phase, it needs to be decided when the
start-conditions should be checked, and whether any ongoing Fluoroscopy needs
to be stopped at the beginning of the preparation phase. The formal, executable
models turned out to be useful to make some implicit domain knowledge explicit.
In this way time-consuming re-designs can be avoided.

4 Modelling and Analysing Designs

To enable a successful application of ASD, the design should meet a number of
constraints. During our project, it turned out to be difficult to devise a design
that meets these ASD constraints. The main limiting factors are that ASD:Suite
concentrates on single components only and that it does not support simulation.

To get some insight in the essential structure and interaction between the
components, we have first made several abstract design models and simulated
them using POOSL. The graphical part of a POOSL model shows the structure

274 J. Hooman, A.J. Mooij, and H. van Wezep

(a) Modelling and simulation (b) MSC generated by simulation

Fig. 3. Modelling and analysing designs using POOSL

of components and their interaction, as depicted in Fig. 3(a). Components can
be clustered into hierarchies. At the lowest level, a component is described in
a textual CSP-like language. During the simulation, the POOSL tool shows
the internal state of each component, and also the interactions between the
components in terms of a Message Sequence Chart (MSC); see Fig. 3(b). These
features enable a developer to perform a detailed analysis of whether and how
the design supports the typical use cases and their interactions.

Abstract designs. The first design model that we made focused on the component
structure and the basic component interaction, without considering message pa-
rameters and error handling. After a number of iterations, a first satisfactory
abstract design was obtained. An important aspect of this design is the decou-
pling between the fast interactions with the users of the system and the more
time-consuming control of the X-ray devices in the system. This design was in-
formally validated using simulation and inspection of the generated MSCs by
industrial domain experts.

Afterwards, this design has been refined gradually with message parameters
and error handling. Some restructuring was needed to keep the components small
and to achieve the required behaviour. For instance, one of the early design
models revealed that after a specific scenario the X-ray beam was erroneously
not switched off, although all pedals were released. Clearly such important faults
would also be detected immediately during the test and integration phase, but
the benefit of formally analysing the design models is that the fault is detected
earlier, and hence it is faster and cheaper to repair.

ASD-based designs. The application of ASD requires a layered architecture
where components can interact as described in Fig. 4(a). The components in
higher layers may perform function calls (resulting in a reply) on components
at lower layers, but not the other way around. Components in lower layers may

Early Fault Detection in Industry 275

Component

Component

call

reply

notification

(a) Component interactions

Component
ASD design

call

reply

notification

Queue

Scheduler

notification

reply

call

(b) Modeling ASD components in POOSL

Fig. 4. ASD interaction patterns

send asynchronous notifications to components in higher layers. There should be
no direct interaction between components in the same layer. In this way, ASD
can achieve absence of deadlocks by construction.

The POOSL models that contain ASD design models need to take this into
account. Notifications have to be buffered in one queue per component. The
ASD semantics also prescribes specific scheduling rules for the order in which
the calls and queued notifications are processed. This semantics can be captured
in POOSL by a cluster consisting of three components, as shown in Fig. 4(b).

5 Comparing Requirements and Designs

To check the consistency between the requirements and design models, we have
used the formal refinement checker FDR2 [13,14]; see the screenshot in Fig. 5(a)
together with a debug trace for a detected fault in Fig. 5(b). To this end, we
have built a compiler that translates two models (using a subset of the POOSL
language) to a CSP model, which is the input of FDR2; see also Fig. 8. An
alternative refinement checker would be the Process Analysis Toolkit (PAT) [27],
which is also based on a CSP dialect. In comparison to simulations, refinement
checkers can automatically verify a lot of subtle scenarios.

The FDR2 tool supports, amongst others, trace refinement and failures-
divergence refinement [14]. As explained in Section 6, Verum’s tool ASD:Suite
successfully manages to apply FDR2 to the verification of components. How-
ever, directly comparing full design and requirements models using FDR2 easily
becomes infeasible. In the following, we explain how we were able to use FDR2
to find subtle discrepancies between the requirements and design models. We
conclude with some typical results that we have obtained.

276 J. Hooman, A.J. Mooij, and H. van Wezep

(a) Main window of FDR2 (b) Debug trace generated by FDR2

Fig. 5. Comparing requirements and design models using FDR2

Making the models finite state. Tools like FDR2 apply explicit state space explo-
ration, and hence the state space of the models must be finite. The models that
we consider consist of several components. In general, even if the components
have an unbounded state space, it is possible that in their composition only a
finite part is reachable. However, to analyse any model using FDR2, not only
the state space of the entire model must be finite, but also the state space of
each of the components must be finite.

The notification queues that are used in ASD designs are unbounded. Verum
provides various suggestions for users of ASD:Suite to deal with this for single
components, but these are not generally applicable to full design models. We have
manually introduced an upperbound on the size of each queue. If the bound is
violated, a special event is generated. The upperbound is valid in the design if
a trace refinement indicates that this special event cannot occur.

For some external events, such as run-conditions, the bound on the queue size
depends on timing aspects (the speed with which events are generated and con-
sumed). To do partial verification in these cases, we have restricted the number
of these external events that can be generated.

Making the refinement checks feasible. The requirement that the state space
must be finite is just a minimum requirement. As FDR2 applies explicit state
space exploration, the size of the state space requires constant attention when
applying FDR2 to full models. In our project, generating the state spaces of
the models is not the biggest issue. After generating the state spaces, however,
FDR2 applies a normalization step before the real refinement checking begins.
For complex specifications, it is known [25] that this normalization step can
take a long time, and that the normalized version can be much larger than the
original. To be able to find at least some traces that distinguish the requirements
and design models, we have used FDR2’s function “lazynorm” [26,24,25] that
does not attempt to normalise the specification completely before carrying out
the refinement check.

Early Fault Detection in Industry 277

Next requirementsRequirements

Fragment

Intermediate

Compensation

Component

RemainderRemainder

Compensation

Remainder

Component

is refined by
(FDR2)

Partial design Partial design Partial design

Isolate Component Extract Component

Fig. 6. Decomposition by extracting components

Most of the faults that we have detected using checks for failures-divergence
refinement were actually at the level of trace refinement. Failures-divergence
refinement implies trace refinement, and the latter seems easier to check. When
feasibility is an issue, we have switched to checking for just trace refinement.

Decomposing models by extracting components. Another way to make refinement
checking feasible in practice is to decompose a single refinement check on large
models into several separate refinement checks on smaller models. In particular,
we have considered a decomposition related to a typical design process that
iteratively identifies design components based on the requirements. The idea is to
gradually transform a requirements model into a design model; the intermediate
stages combine some design components with the remaining requirements.

Consider the upper part of Fig. 6, i.e., ignore the blocks labelled “Partial
design”. The starting point at the left is a requirements model. After having
defined a suitable design component, this component is related to a fragment
of the requirements model. The aim is to show that this requirements fragment
can be replaced by the composition of two blocks, viz., the component and some
compensation. That is, the component and the compensation together should
be a refinement of the original fragment. We have constructed the compensation
manually, but ideally this would be automated using techniques like submodule
construction [17,4] or equation solving [22]. If we can construct a compensation,
then we have managed to isolate the component.

To finish this step, we extract the component from the requirements. Thus
we obtain a model consisting of a part of the requirements (the remainder of
the requirements and the compensation) and a model consisting of a part of the
design (the design component). Afterwards we apply this approach again on the
requirements part, as indicated by the blocks labelled “Partial design” in the full
version of Fig. 6. In this way, the design model grows gradually and the formal
refinements deal with a part of the original requirements only.

The validity of this decomposition approach depends on the associativity and
congruence properties of composition. We have applied this approach mainly to

278 J. Hooman, A.J. Mooij, and H. van Wezep

some conceptually simple components in the design that have a large state space,
for example, because of internal counters. By extracting these components, the
state space of the remaining models is reduced drastically.

Restricting the interfaces. The design models have to deal with the real tech-
nical interfaces, whereas the requirements models may make some simplifying
assumptions. To compare requirements and design models, we have added some
components that perform the conversions between these interfaces. In particular,
we have extended the design model with components that translate the more de-
tailed design interfaces to the simpler requirements interfaces, thus hiding some
of the technical details.

In some cases, we have also restricted the possible external events. Although
this means that we are not performing a full verification, again it has led to the
detection of faults that were not found otherwise (see also the guiding techniques
proposed in [15]). This can also be used for comparing a design model with a
requirements model that is only correct under some assumptions.

Results. This kind of analysis reveals very subtle faults earlier in the development
process than using traditional development approaches. For instance, we have
detected some discrepancies between our models with respect to the requirement
that in certain situations X-ray requests are cancelled when a pedal is released
quickly after it has been pressed. In some cases, the problem turned out to be
an inaccuracy in our requirements model.

Note that our design model is not failures-divergence equivalent to the re-
quirements model. For instance, when biplane Fluoroscopy cannot be started
because of a start-condition, instead only one of the planes without a start-
condition (if any) should be started. In the requirements model this is specified
as a non-deterministic choice between the lateral or the frontal plane, whereas
the design model implements this choice deterministically, which is fine.

6 Detailed Design with ASD

Once we had obtained confidence in the design, the individual components were
realized using the ASD approach. We briefly describe the four ASD phases:
interface modelling, design modelling, formal verification, and code generation.
A small example that illustrates ASD can be found, for example, in [20].

Interface modelling. First, the internal and external interfaces of all components
have been modelled using ASD. Such an interface model is a state machine that
defines which calls and notifications are allowed and in which order. For instance,
it may state that a StartXRay call is always followed by a Started or StartFailed
notification; afterwards, a next StartXRay call may only occur after a StopXRay
call. Thus, an interface model can be seen as a contract about the interaction
protocol between components.

The tool ASD:Suite includes a number of basic consistency checks on the
interface models. Most important is that the interface model must be complete in

Early Fault Detection in Industry 279

Interface
Interface model

Implementation

Component
design model

...Interface model Interface model

(a) Verification condition (b) MSC generated by verification

Fig. 7. Verification of an implementation with respect to an interface

the sense that the response to each call or notification must be defined explicitly
in all states. If a call or notification should not occur in a state, then it can be
declared to be illegal.

Design modelling. After the definition of the interface models, which was a joint
team effort, the components were developed concurrently. Components with data
manipulations were implemented manually and tested to check compliance with
their interfaces. The control components that do not involve any data manip-
ulations were implemented using ASD design models. An ASD design model is
a state machine, but, in contrast to an interface model, it must be determin-
istic. It defines how the component responds to calls and notifications, e.g., by
performing calls and notifications to other components.

Formal verification. ASD:Suite can verify each design model for properties like
absence of deadlocks and livelocks. In addition, it can verify whether each com-
ponent is correct with respect to its interfaces, which means that

– no illegal calls are performed on the used interfaces; and
– the design model composed with all used interface models is a failures-

divergence refinement of the implemented interface model (these are called
implementation and interface respectively in Fig. 7(a)).

The motivation for these verifications is that the component interfaces are a fre-
quent source of faults during integration. Such a verification can already elimi-
nate such faults during the design. However, it does not guarantee the functional
correctness of the components nor the entire design.

These verifications are implemented in ASD:Suite by internally transforming
the models into CSP and then invoking the refinement checker FDR2; see also
Fig. 8. To make the verification feasible, it is important to keep (the state space
of) the components small and to limit the number of notifications.

280 J. Hooman, A.J. Mooij, and H. van Wezep

Design artefacts

Verum ASD:Suite

Requirements
(POOSL)

Source code
(C++)

Design
(POOSL)

Components
(ASD) (CSP) FDR2

Analysis
results

compiler

(CSP)compiler FDR2

compiler

simulator

simulator

Fig. 8. Overview of models and transformations

This kind of verification typically reveals all kinds of race conditions due to the
non-deterministic arrival order of events. For instance, many detected faults were
related to the run-conditions, which can interrupt the normal execution flow at
almost any point in time. These faults manifest themselves as refinement errors
or as calls or notifications that are illegal according to the interface models. Each
fault is reported as a Message Sequence Chart (MSC) covering the component
and its interfaces; see Fig. 7(b).

Code generation. Finally, when the design models have been verified, ASD:Suite
can generate code from the design models. Currently, ASD:Suite offers a choice
between a number of programming languages (C, C++, C#, or Java).

7 Conclusions and Further Work

The first formal models that are made during development are usually close to
the code level. The danger is that the formal analysis of such models reveals all
kinds of faults from all previous development phases. In our industrial project,
we have observed that this complicates the application of formal methods and
causes delays in the project planning. To detect faults earlier, i.e., in the ap-
propriate development phase, we have introduced additional formal models at
various levels of abstraction and earlier in the development process.

In our industrial project, the formal ASD approach has been used, supported
by the commercial tool ASD:Suite of the company Verum. We have added a
number of techniques on top of this approach, as summarized in Fig. 8:

– modelling: to define the functionality precisely;
– simulation: to explore the functionality described in the models;
– visualization: to provide a user interface based on a physical system view;
– refinement checking: to rigorously compare pairs of models.

Early Fault Detection in Industry 281

The main benefit of applying such techniques is early fault detection. By not only
applying them to design models, but also to requirements models, developers
can create a better understanding of the requirements in earlier stages of the
development process.

It is well-known that unclear requirements lead to costly redesigns. This be-
comes very visible in the context of formal approaches such as ASD, because
redesigns also require that the interface models have to be adapted, and that a
large number of formal verification conditions has to be satisfied again. To use
ASD more effectively, the conclusion is, also at Philips Healthcare, that more
attention should be paid to the definition of the requirements.

Making formal models of the requirements, and analysing these models using
simulation and interactive visualization has proved to be very useful to remove
a number of unclarities. On the other hand, we have also observed that not all
faults can be found practically in this way. Using refinement checking, we have
detected additional faults in scenarios where a number of fast user commands
are received while the system is still busy processing the first command. It is
almost impossible to explore such subtle scenarios using interactive simulation.

Further work. There are various directions for further work. First of all, we are
planning to evaluate the use of multiple formal models during the development
of another, larger industrial system. In particular, we anticipate the need for
additional kinds of analysis, such as a performance analysis for response times.
It is also interesting to explore to what extent a good requirements model can
formally guide the development of the design model.

On the tooling side, a compiler from (a restricted class of) POOSL design
models to ASD components would be a nice extension. An all-in-one tool covering
all these techniques might be interesting, but automated model transformations
are our first priority. For the applicability of refinement checking, it is very
relevant to investigate whether techniques such as submodule construction and
equation solving, as mentioned in Section 5, can be applied at an industrial scale.
It is also interesting to explore whether model-based testing [3] can be applied
to the design models as an alternative for the refinement checking.

References

1. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York (1996)

2. Blender, http://www.blender.org/
3. Boberg, J.: Early fault detection with model-based testing. In: Proceedings of Er-

lang Workshop 2008, pp. 9–20. ACM (2008)
4. von Bochmann, G.: Using First-Order Logic to Reason about Submodule Con-

struction. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE
2009. LNCS, vol. 5522, pp. 213–218. Springer, Heidelberg (2009)

5. Broadfoot, G.H., Broadfoot, P.J.: Academia and industry meet: Some experiences
of formal methods in practice. In: Proceedings of APSEC 2003, pp. 49–58 (2003)

6. ClearSy: Atelier B, http://www.atelierb.eu/en/
7. CSK Systems Corporation: VDMTools, http://www.vdmtools.jp/en/

http://www.blender.org/
http://www.atelierb.eu/en/
http://www.vdmtools.jp/en/

282 J. Hooman, A.J. Mooij, and H. van Wezep

8. Easterbrook, S.M., Lutz, R.R., Covington, R., Kelly, J., Ampo, Y., Hamilton, D.:
Experiences using lightweight formal methods for requirements modeling. IEEE
Transactions on Software Engineering 24(1), 4–14 (1998)

9. Eindhoven University of Technology: Software/Hardware Engineering (SHE) - Par-
allel Object-Oriented Specification Language (POOSL),
http://www.es.ele.tue.nl/poosl/

10. Esterel Technologies: SCADE Suite,
http://www.esterel-technologies.com/products/scade-suite/

11. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs
for Object-oriented Systems. Springer, New York (2005)

12. Fitzgerald, J.S., Larsen, P.G.: Balancing Insight and Effort: The Industrial Uptake
of Formal Methods. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods
and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 237–254. Springer, Heidel-
berg (2007)

13. Formal Systems (Europe) Ltd: FDR2, http://www.fsel.com/
14. Formal Systems (Europe) Ltd and Oxford University Computing Laboratory:

Failures-Divergence Refinement – FDR2 User Manual, 9th edn. (2010)
15. Goga, N., Romijn, J.: Guiding Spin Simulation. In: Davies, J., Schulte, W., Barnett,

M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 176–193. Springer, Heidelberg (2004)
16. Groote, J.F., Osaiweran, A., Wesselius, J.H.: Analyzing the effects of formal meth-

ods on the development of industrial control software. In: Proceedings of ICSM
2011, pp. 467–472. IEEE (2011)

17. Haghverdi, E., Ural, H.: Submodule construction from concurrent system specifi-
cations. Information & Software Technology 41(8), 499–506 (1999)

18. Holzmann, G.J.: Early fault detection tools. Software - Concepts and Tools 17(2),
63–69 (1996)

19. Holzmann, G.J.: Formal Methods for Early Fault Detection. In: Jonsson, B., Parrow,
J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 40–54. Springer, Heidelberg (1996)

20. Hooman, J., Huis in ’t Veld, R., Schuts, M.: Experiences with a Compositional
Model Checker in the Healthcare Domain. In: George, C. (ed.) FHIES 2011. LNCS,
vol. 7151, pp. 93–110. Springer, Heidelberg (2012)

21. Hopcroft, P.J., Broadfoot, G.H.: Combining the box structure development method
and CSP for software development. ENTCS 128(6), 127–144 (2005)

22. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
Proceedings of LICS 1990, pp. 108–117. IEEE Computer Society (1990)

23. Li, L., Hooman, J., Voeten, J.: Connecting technical and non-technical views of sys-
tem architectures. In: Proceedings of CPSCom 2010, pp. 592–599 (December 2010)

24. Roscoe, A.W., Armstrong, P.J., Pragyesh: Local Search in Model Checking. In: Liu,
Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 22–38. Springer, Heidelberg
(2009)

25. Roscoe, B.: Understanding Concurrent Systems. Springer (2010)
26. Ryan, P.Y.A., Schneider, S.A., Goldsmith, M.H., Lowe, G., Roscoe, A.W.: The

Modelling and Analysis of Security Protocols: the CSP Approach. Pearson Educa-
tion (2000)

27. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: Introducing a pro-
cess analysis toolkit. In: Proceedings of ISoLA 2008. CCIS, vol. 17, pp. 307–322.
Springer (2008)

28. Theelen, B.D., Florescu, O., Geilen, M., Huang, J., van der Putten, P.H.A., Voeten,
J.: Software/hardware engineering with the parallel object-oriented specification
language. In: Proceedings of MEMOCODE 2007, pp. 139–148. IEEE (2007)

29. Verum Software Technologies: ASD:Suite, http://www.verum.com/

http://www.es.ele.tue.nl/poosl/
http://www.esterel-technologies.com/products/scade-suite/
http://www.fsel.com/
http://www.verum.com/

PE-KeY: A Partial Evaluator for Java Programs�

Ran Ji and Richard Bubel

Technische Universität Darmstadt, Germany
{ran,bubel}@cs.tu-darmstadt.de

Abstract. We present a prototypical implementation of a partial eval-
uator for Java programs based on the verification system KeY. We argue
that using a program verifier as technological basis provides potential
benefits leading to a higher degree of specialization. We discuss in partic-
ular how loop invariants and preconditions can be exploited to specialize
programs. In addition, we provide the first results which we achieved
with the presented tool.

1 Introduction

In this paper we present a prototypical implementation of a partial evaluator for
Java based on the verification system KeY [1] called PE-KeY. The theoretical
framework for this approach has been presented in [2].

The KeY verification system formalizes the Java programming language as
proof system using a Gentzen-style sequent calculus capturing the sequential
Java semantics faithfully. Although declarative, the sequent calculus used in KeY
features a strong operational flavor. The calculus rules capturing the semantics
of the Java programming language, are designed following closely the symbolic
execution paradigm. They realize basically a symbolic interpreter, which differs
from a concrete interpreter by using symbolic input values instead of concrete
values. For instance, consider the Java program statement x = y + z; where the
program variables y and z have the symbolic values y0 and z0 respectively. Sym-
bolically executing the statement leads to a (symbolic) state update for program
variable x whose new symbolic value becomes the expression (and not the value
of) y0 + z0. In general, the symbolic execution of control flow statements like an
if-statement will branch as the condition might be true or false depending on
the instantiation of the symbolic values. Subsequently, the symbolic interpreter
follows both branches in separation.

Once the Java program has been executed symbolically, the verifier ends up
with a set of symbolic states. These symbolic states represent in particular all
concrete states the original Java program may encounter in an actual program
run. In a verification setting one has now to prove that the property of interest
is valid in all these possible final states.

� This work has been supported by the Information Society Technologies program of
the European Commission, Future and Emerging Technologies under the IST-231620
HATS project Highly Adaptable and Trustworthy Software using Formal Models.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 283–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 R. Ji and R. Bubel

The idea of using symbolic execution as a technology for program verification
goes back to [3]. While the verification of a program is performed in an analytical
manner, i.e., the program is eliminated until only first-order proof obligations
remain to be proven, one can also read the proof in a program construction fash-
ion. The tool presented here interweaves both views. While the original source
program is analyzed (verified) in a first phase, the specialized program is con-
structed in a second phase by traversing the obtained proof tree in the opposite
direction.

The potential benefit of this approach is the following: The verifier maintains
a faithful representation of the symbolic state at all intermediate program states.
The degree of precision of the symbolic state is crucial for possible simplifica-
tions of program expressions as well as for other specialization techniques like
dead-code elimination. We argue that using a program verifier and associated
techniques allows the achievement of a high degree of precision. For instance,
in case of loops we are able to use unwinding and/or loop invariants. The pos-
sibility to provide (strong) loop invariants allows to maintain a highly precise
description of the symbolic state even if a loop cannot be completely unwound.
A similar argument holds for method calls where method contracts can be used
in addition to method inlining.

Another benefit, is that (modular) program verification does not assume a
single entry point and can be applied to each method in isolation. In general
this limits the effect of program specialization as the parameters cannot be as-
sumed to have static and known values. However, the state and the allowed
values of the method parameters are usually restricted by method preconditions
and system invariants. In a program verification environment we use these re-
strictions to simplify expressions and to cut off infeasible program paths. Hence,
the specialized programs do not include code for these infeasible code paths.
In addition our approach is not restricted to static input values but can also
achieve specialization (and/or certain kinds of optimizations) using first-order
constraints on the input values.

Further, the program verification calculus can itself be extended by rules per-
forming basic partial evaluation steps like constant propagation. This extension
and a logic characterization of the partial evaluation rules has been presented
in [4]. Using this technique improves the obtainable degree of specialization con-
siderably.

The paper is structured as follows: In Section 2 we describe the theoretical
background of our approach. Section 3 describes the implementation and the
results achieved so far. Section 4 describes related work. Finally, Section 5 con-
cludes with an outlook of ongoing and future work.

2 Calculus

2.1 Dynamic Logic

We consider only sequential Java programs (without garbage collection) and
can thus make the assumption that all programs are deterministic. In addition,

PE-KeY: A Partial Evaluator for Java Programs 285

when using the notion “program” we usually mean an executable sequence of
statements. If we want to refer to the context in which these statements are
executed, we make this explicit by using the notion context program. The context
program encompasses all interface and class declarations.

Java Dynamic Logic (JavaDL) is basically a standard first-order logic plus
two modalities 〈·〉· (diamond) and [·]· (box). In this paper we use only the box
modality. Given an executable sequence of Java statements p and an arbitrary
JavaDL formula φ then the formula

– 〈p〉φ means intuitively that program p terminates and in its final state φ
holds (total correctness).

– [p]φmeans that if program p terminates then φ holds in its final state (partial
correctness).

As mentioned in the introduction, symbolic states play a central role for our ap-
proach. The representation of symbolic states, and in particular of state changes
are crucial and often a bottleneck for symbolic interpreters. JavaDL models
locations (program variables, attributes, etc.) as flexible constants (or unary
functions on objects), i.e., constants and functions whose value can be changed
by a program. Relations between locations and restrictions on their values can
be expressed using standard first-order (dynamic logic) formulas. To keep track
and to represent state changes efficiently, JavaDL has one additional important
feature named updates.

An elementary update u is an update of the form loc := val where loc is
a program variable and val is a term representing the value assigned to loc.
Updates can be parallelized u1‖ . . . ‖un meaning that all locations are assigned
their new values simultaneously. An update u can be applied to terms t and
formulas φ resulting again in a term {u}t or a formula {u}φ. Some examples:

– {i := j}φ: formula φ is evaluated in a state where the program variable i is
assigned j.

– {i := j‖j := i}φ where φ is evaluated in a state where the values of i and
j have been swapped.

Update simplification is performed eagerly to achieve a compact representation
of the symbolic state.

2.2 Sequent Calculus

A formula in JavaDL is proven correct in KeY using a Gentzen-style sequent
calculus. A sequent is a data structure of the following shape Γ =⇒ Δ, where Γ
and Δ are sets of formulas. The meaning of a sequent is the same as the meaning
of the implication

∧
γ∈Γ γ →

∨
δ∈Δ δ. The sequent calculus performs syntactic

transformations of the sequents by applying rules of the form

name
seq1| . . . |seqn

seq

286 R. Ji and R. Bubel

where seq, seqi, i ∈ {1, . . . n}, n ≥ 0 are sequents. The sequent seq is called
conclusion of the rule, while the sequents seq1, . . . , seqn are called premises. An
example of such a rule is the andRight rule:

andRight
Γ =⇒ φ,Δ Γ =⇒ ψ,Δ

Γ =⇒ φ ∧ ψ,Δ

The formula φ ∧ ψ is called main formula of the sequent, φ and ψ are schema
variables that stand for any possible JavaDL formula, Γ,Δ are schema variables
that match on sets of formulas.

Application of a rule happens in an analytic manner, i.e., the rule is applied
from bottom to top. A rule can be applied on a sequent s if there is a match for
its conclusion. In that case the premises are instantiated accordingly and become
the children of sequent s.

A sequent proof is a tree with a root r where each node n �= r is the result of
a rule application on its parent node. A branch of the tree is closed if a closure
rule like close/closeTrue/closeFalse

∗
Γ, φ =⇒ φ,Δ

∗
Γ =⇒ true,Δ

∗
Γ, false =⇒ Δ

has been applied, marking the sequent as valid. A proof is called closed if all its
branches are closed.

For this paper we are most interested in the rules working on program formu-
las. The calculus is designed to work like a symbolic interpreter. The rules match
and work on the first (active) statement. One class of rules performs equivalent
program transformations which stepwise decompose a complex statement into
a series of atomic statements. While another class of rules translates atomic
statements into a first-order logic representation.

The rule postInc

Γ =⇒ {u}[int t = i; i = i + 1; j = t; r]φ,Δ

Γ =⇒ {u}[j = i++; r]φ,Δ

is a representative of a pure program transformation rule transforming a complex
statement in two simpler statements1. The assignment rule

assignment
Γ =⇒ {u}{j := i}[r]φ,Δ
Γ =⇒ {u}[j = i; r]φ,Δ

belongs to the second class of rules. It performs the single side-effects of an atomic
assignment by moving the assignment into an update. Another representative of
this class is the rule conditional

Γ, {u}b =⇒ {u}[p;r]φ,Δ Γ, {u}¬b =⇒ {u}[q;r]φ,Δ
Γ =⇒ {u}[if (b) { p } else { q } r]φ,Δ

1 The temporary variable t is necessary because the schema variables i and j may
match on the same local variable.

PE-KeY: A Partial Evaluator for Java Programs 287

which causes the proof to split. The first branch assumes that b holds and we
have to show that φ holds if the then branch is executed or that the assumption
b is contradictory in the current state. Analogous for the else branch.

2.3 Compilation Rules

While the sequent calculus is applied analytically when used for verification, it is
also possible to interpret a proof in a program construction manner. We use the
second reading as motivation for our approach to implement a partial evaluator
on top of a proof attempt.

The main idea is to extend the box modality

[p ∼ spp]@(obs, use)

to carry additional information. The extension consists of a second compartment
for the specialized version spp of the source program p and two additional anno-
tations obs and use containing sets of locations (program variables, fields, etc.).
The location set obs keeps track of observable locations by an “outside” entity,
while the location set use contains those locations that are read from in the
continuation of the program. Without going into detail, these sets of locations
are used to detect unused variable assignments and to eliminate them as soon
as possible. We call these modalities, bisimulation modalities as p and spp have
to be in a bisimulation relation with respect to the postcondition and the set of
observable variables.

The general sequent calculus rules for the bisimulation modality are of the
following form:

ruleName

Γ1 =⇒ {u1}[p1 ∼ sp1]@(obs1, use1)φ1, Δ1

. . .
Γn =⇒ {un}[pn ∼ spn]@(obsn, usen)φn, Δn

Γ =⇒ {u}[p ∼ sp]@(obs, use)φ,Δ

The application of sequent calculus rules for the bisimulation modality consists
of two phases.

1. Symbolic execution of source program p. It is performed bottom-up as usual
in sequent calculus rules. In addition, the observable location sets obsi are
also propagated since they contain the locations observable by pi and φi that
will be used in the second phase to synthesize the specialized program. Nor-
mally obs could contain the return variables of a method and the locations
used in the continuation of the program.

2. We synthesize the target program spi and usei by applying the rules in a
top-down manner.

To obtain a specialization of a method m(args) we start the proof with a sequent
of the form

=⇒ pre → [r=m(args) ∼ sp]@({r}, use)POST

288 R. Ji and R. Bubel

where pre is the precondition of method m and POST is an unspecified predicate
which can neither be proven nor disproved. This allows the easy identification of
closed proof branches with infeasible paths and thus sound elimination of dead-
code. The variables sp and use are placeholders for the specialized program and
the used variable set which is computed in the second phase.

In the second phase, when the program is fully symbolically executed, the
specialized program is synthesized by “applying” the rules in the opposite direc-
tion. This phase starts effectively with nodes where the emptyBox rule has been
applied:

emptyBox
Γ =⇒ {�}@(obs, use)φ,Δ

Γ =⇒ {u}[nop ∼ nop]@(obs, obs)φ,Δ

with nop denoting the empty program. The rule initializes the variable set use
to the set of observable variables obs. The idea is that use keeps track of all
variables whose value has (potentially) been read.

We show only some of the bisimulation rules introduced in [2]. We use p
to denote the specialized version of p and omit for space reasons the context
variables Γ,Δ. The rule

assignLocalVariable

=⇒ {u}{l := r}[ω ∼ ω]@(obs, use)φ

=⇒ {u}[l = r;ω ∼ l = r;ω]@(obs, use− {l} ∪ {r})φ
if l ∈ use & r := r′ /∈ u

=⇒ {u}[l = r;ω ∼ l = r′;ω]@(obs, use− {l} ∪ {r′})φ
if l ∈ use & r := r′ ∈ u

=⇒ {u}[l = r;ω ∼ ω]@(obs, use)φ otherwise

describes the specialization of an assignment statement where one local variable
is assigned to another one. The rule has three conclusions of which only one is
taken. They differ only in the synthesized program compartments, i.e., in the
analyzing (first) phase no ambiguity arises.

If the left side l of the assignment is a location with a (potential) read access
before its next re-definition, i.e., l ∈ use, an assignment statement is generated.
The use set is updated by removing the now re-defined program variable l and
adding the program variable r which is read by the assignment. This explains
the first of the three conclusions. But we can do better: in case the preceding
update contains an elementary update with r as left-hand side and r′ as right-
hand side, we inline the actual value directly and generate as assignment l = r′.
The use set is updated accordingly2.

We give a brief example motivating the existence of the second conclusion.
Assume we encounter the following sequent:

=⇒ {. . . ‖y := z+ 1}{x := y}[ω ∼ ω]@(obs, {x, . . .})φ

2 if r′ is an expression all variables occurring in r′ have to be added to use.

PE-KeY: A Partial Evaluator for Java Programs 289

Since x is in the use set, an assignment statement has to be generated. Notice
that y := z+ 1 occurs in the update u, therefore the assignment is synthesized
as x = z + 1 according to the second case of the assignment rule. The variable
x is removed and the variable z is added to the use set. We get as result:

=⇒ {. . . ‖y := z+ 1}[x = y;ω ∼ x = z + 1;ω]@(obs,{z, . . .})φ
The third conclusion of the assignment rule is used if the value of l has not been
accessed by the remaining program ω and does not generate an assignment at
all.

Synthesizing loops is achieved using one (or a combination) of two approaches:
(i) loop unwinding to execute a fixed number of loop iterations and (ii) using
the loop invariant rule for loops with no fixed bound:

whileInv

Γ =⇒ {u}inv,Δ
Γ, {u}{Vmod}(b = TRUE ∧ inv) =⇒ {u}{Vmod}

[p ∼ p]@(obs ∪ use1 ∪ {b}, use2)inv,Δ
Γ, {u}{Vmod}(b = FALSE∧ inv) =⇒ {u}{Vmod}[ω ∼ ω]@(obs, use1)φ,Δ

Γ =⇒ {u}[while(b){p}ω ∼ while(b){p}ω]@(obs, use1 ∪ use2 ∪ {b})φ,Δ

to achieve program specialization in finite time.
On the logical side the loop invariant rule is as expected and has three

premises. Here we are interested in compilation of the analyzed program rather
than proving its correctness. Therefore, it is sufficient to use true as a trivial
invariant or to use any automatically obtainable invariant. In this case the first
premise ensuring that the loop invariant is initially valid contributes nothing to
the program compilation process and is ignored from here onwards (if true is
used as invariant then it holds trivially).

Two things are of importance: the third premise executes only the program
following the loop. Furthermore, this code fragment is not executed by any of the
other branches and, hence, we avoid unnecessary code duplication. The second
observation is that variables read by the program in the third premise may be
assigned in the loop body, but not read in the loop body. Obviously, we have to
prevent that the assignment rule discards those assignments when compiling the
loop body. Therefore, we must add to the variable set obs of the second premise
the used variables of the third premise and, for similar reasons, the program
variable(s) read by the loop guard. In practice this is achieved by first executing
the use case premise of the loop invariant rule and then using the resulting use1
set in the second premise.

3 Implementation and Experiments

The implementation of PE-KeY is a non-trivial extension based on KeY, which
includes the following efforts:

290 R. Ji and R. Bubel

– An information collector along with the symbolic execution of the source
Java program. It keeps track of the observable variables and constructs the
working stack that is used in the synthesize phase.

– An integrated partial evaluator which performs some simple partial evalua-
tion operations such as constant propagation and dead code elimination. It
is used in the symbolic execution phase.

– The compilation rules that are used to generate specialized program in the
second phase. KeY’s sequent calculus has around 1200 rules of which around
100-150 rules are used for symbolic execution of programs. Around half of
them has been implemented in the current version of PE-KeY, but a consid-
erable effort is required to get a complete coverage.

– An update analyzer used to extract symbolic values of program variables
from preceding updates to achieve a higher degree of specialization.

The current version of PE-KeY supports basic Java features such as assign-
ment, comparison, conditional, loop, method call inlining, integer arithmetics.
Array data structure and field access are also supported to some extent. Multi-
threading and floating point arithmetics are not supported due to limitations of
KeY.

PE-KeY is available at www.key-project.org/ifm12 and runnable via Java
Web Start (no installation needed). We have tried PE-KeY with a set of example
programs that are available from the website given above. Although in an early
stage, the examples indicate the potential of PE-KeY once full Java is supported.
For instance, the (simplified) formula

i>j→ [if(i>j) max = i; else max = j;]POST

leads to the following specialization of the conditional statement:

max = i;

because of the precondition i>j and thanks to the integrated first-order reason-
ing mechanism in PE-KeY. For the same reason,

i = 5→ [i++;]POST

results in the specialized statement i = 6.
In fact, the program can be specialized according to the given specification

from a general implementation. Fig. 1 shows a fragment of a bank account im-
plementation. A bank account includes the current available balance and the
credit line (normally fixed) that can be used when the balance is negative. Cash
withdraw can be done by calling the withdraw method. If the withdraw amount
does not exceed the available balance, the customer will get the cash without
any extra service fee; if the available balance is less than the amount to be with-
drawn, the customer will use the credit line to cover the difference with 5 extra
cost; if the withdrawn amount could not be covered by both the available balance
and the credit line, the withdraw does not succeed. In every case, the informa-
tion of the new available balance will be printed (returned). This is a general

http://www.key-project.org/ifm12

PE-KeY: A Partial Evaluator for Java Programs 291

implementation of the cash withdrawal process, but some banks (or ATMs) only
allow cash withdraw when the balance is above 0. In this case, the precondition
of the withdraw method is restricted to withdrawAmt <= availableBal. Then
with help of PE-KeY, the implementation of method withdraw is specialized to:

return availableBal - withdrawAmt;

������ ����� BankAccount {

�	
 availableBal;

�	
 creditLn;

BankAccount(�	
 availableBal, �	
 creditLn) {

���.availableBal = availableBal;

���.creditLn = creditLn;

}

������ �	
 withdraw(�	
 withdrawAmt) {

�� (withdrawAmt <= availableBal) {

availableBal = availableBal - withdrawAmt;

�
�	 availableBal;

} ���� {

��(withdrawAmt - availableBal <= creditLn) {

availableBal = availableBal - withdrawAmt - 5;

�
�	 availableBal;

} ���� {

�
�	 availableBal;

}

}

}

...

}

Fig. 1. Code fragment of bank account

We applied our prototype partial evaluator also on some examples stemming
from the JSpec test suite [5]. One of them is concerned with the computation of
the power of an arithmetic expression, as shown in Fig. 2.

The interesting part is that the arithmetic expression is represented as an
abstract syntax tree (AST) like structure. The abstract class Binary is the su-
perclass of the two concrete binary operators Add and Mult (the strategies). The
Power class can be used to apply a Binary operator op and a neutral value for
y times to a base value x, as illustrated by the following expression.

power = ��� Power(y, ��� op(), neutral).raise(x)

The actual computation for concrete values is performed on the AST represen-
tation. To be more precise, the task was to specialize the program

292 R. Ji and R. Bubel

����� Power ��
�	�� Object{

�	
 exp;

Binary op;

�	
 neutral;

Power(�	
 exp, Binary op,

�	
 neutral) {

����();

���.exp = exp;

���.op = op;

���.neutral = neutral;

}

�	
 raise(�	
 base) {

�	
 res = neutral;

�� (�	
 i=0; i<exp; i++) {

res = op.eval(base, res);

}

�
�	 res;

}

}

����� Binary ��
�	�� Object {

Binary() { ����(); }

�	
 eval(�	
 x, �	
 y) {

�
�	
���.eval(x, y);

}

}

����� Add ��
�	�� Binary {

Add() { ����(); }

�	
 eval(�	
 x, �	
 y) {

�
�	 x+y;

}

}

����� Mult ��
�	�� Binary {

Mult() { ����(); }

�	
 eval(�	
 x, �	
 y) {

�
�	 x*y;

}

}

Fig. 2. Source code of the Power example as found in the JSpec suite [5]

power = ��� Power(y, ��� Mult(), 1).raise(x);

under the assumption that the value of y is constant and equal to 16.
As input formula for PE-KeY we get:

y
.
= 16→
[power=new Power(y,new Mult(),1).raise(x); ∼ spres]@(obs, use)POST

PE-KeY then executes the program symbolically and extracts the specialized
program spres as power = ((x*x)*x)*...)*x; (see Fig. 3). The achieved re-
sult is a simple int-typed expression without the intermediate creation of the
abstract syntax tree and should provide a significant better performance than
executing the original program.

Our current implementation is still in its infancies and there are other exam-
ples of the JSpec test suite. But the already achieved results indicate that the
presented approach can be scaled up to real world examples. More examples and
results can be found at www.key-project.org/ifm12.

4 Related Work

JSpec [5] is the state-of-the-art program specializer for Java. In fact, JSpec does
not support full Java but a subset without concurrency, exception, reflection.

http://www.key-project.org/ifm12

PE-KeY: A Partial Evaluator for Java Programs 293

Fig. 3. Specialized program computed by PE-KeY as result of the JSpec example

Our tool has similar limitations due to the restriction of KeY itself. JSpec uses
an offline partial evaluation technique that depends on binding time analysis,
which in general is possibly not as precise as online partial evaluation.

Civet [6] is a recent partial evaluator for Java based on hybrid partial evalua-
tion, which performs offline-style specialization using an online approach without
static binding time analysis. The programmer needs to explicitly identify which
parts of the programs partial evaluation should be applied. In our approach,
which is based on the program verification, the specification (or precondition) is
mainly used to prove the correctness of the programs, and it also contributes to
the program specialization. Our approach is similar to Civet in the sense that
the specification is also user provided, but no extra annotations specially for the
partial evaluation purpose is needed.

Our approach is based on symbolic execution to derive information on-the-
fly, similar to online partial evaluation [7], the main difference being that we do
not generate the specialized program during the symbolic execution phase, but
synthesize it in the second phase. In principle, our first phase can obtain as much
information as online partial evaluation, and the second phase can generate a
more precise specialized program.

A big advantage of our approach is that the specialized program is guaranteed
to be correct with respect to the original program. It is related to the work
of proving the correctness of a partial evaluator by Hatcliff et al. [8,9]. The
difference is that they need to encode the correctness properties into a logic
programming language to perform the proof; while our approach ensures the
correctness naturally by the deductive compilation rules and thus no further
proof is needed.

Verifying Compiler [10] project aims at the development of a compiler that
verifies the program during compilation. In contrast to this, our approach might
be called the Compiling Verifier, since the specialized Java program is generated
after verifying the source program. The correctness of the generated program is
ensured by the compilation rules. Related to our work, compiler verification [11]

294 R. Ji and R. Bubel

aims to guarantee the correctness of the target program. However, compiler
verification attempts to verify the compiling program which is very expensive
and hardly scales to realistic target languages and sophisticated optimizations.

Our work is closely related to rule-based compilation [12,13], but to the best of
our knowledge their inference machine is by far not as powerful as the reasoning
engine of KeY. Also closely related are recent approaches to translation validation
of optimizing compilers (e.g., [14]) which also use a theorem prover to discharge
proof obligations. They work usually on an abstraction of the target program.
Both mentioned approaches encode the compilation strategy within the rules,
while our approach separates the actual strategy from the translation rules.
What distinguishes our work from most approaches that we know is that the
starting point is a system for functional verification of Java which is used for
program specialization in such a way that it becomes fully automatic.

5 Conclusions and Future Work

In this work, we presented PE-KeY, a partial evaluator for Java programs based
on KeY. It works in two phases. In the first phase, symbolic execution inter-
leaved with simple partial evaluation is performed, which is similar to online
partial evaluation process. In the second phase, the specialized Java program
is synthesized. A use-definition chain set is maintained to eliminate unused as-
signments and to avoid unnecessary statements occurring in the specialized pro-
gram. The advantage of PE-KeY, among other Java partial evaluators, is that
the correctness of the specialization is naturally guaranteed by the bisimulation
relationship of the source and specialized programs, together with the soundness
of the program logic. This has been proved in our previous work[2].

As an extension of KeY, PE-KeY does not support multi-threading and floating
point in Java due to the restriction of KeY itself. However, these features are
being investigated in KeY, once they are supported, PE-KeY could easily extend
these features as well.

There are still some optimization opportunities for the current version of PE-
KeY. For instance, on encountering a loop, the heuristics that decide whether to
unwind it or not have a strong influence on the resulting specialized programs.
Importing information, e.g., loop invariants or ranking functions, from other
tools could also be useful. And for the method call, the method body is always
inlined for the moment, however, to use the method contract instead might
sometimes generate a better specialized program and is worthy to investigate in
the future.

The idea of this paper is to generate specialized Java programs, however, the
bisimulation modality is not restricted to source and target program being from
the same language, but it can be generalized to other languages provided with
corresponding observable locations. Consequentially, the approach is still sound
for generating bytecode or other intermediate languages. An important future
work will be to generate Java bytecode from Java source by using our approach.
It will be a deductive Java compiler which guarantees a correct compilation

PE-KeY: A Partial Evaluator for Java Programs 295

without further verification of the bytecode or JVM as introduced in [15]. We
also plan to apply our approach to the modeling language ABS developed in the
context of the HATS project [16,17].

References

1. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334, pp. 410–451. Springer, Heidelberg (2007)

2. Bubel, R., Hähnle, R., Ji, R.: Program Specialization via a Software Verification
Tool. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 80–101. Springer, Heidelberg (2011)

3. King, J.C.: A program verifier. PhD thesis, CMU (1969)
4. Bubel, R., Hähnle, R., Ji, R.: Interleaving Symbolic Execution and Partial Eval-

uation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 125–146. Springer, Heidelberg (2010)

5. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for Java.
ACM-TPLS 25(4), 452–499 (2003)

6. Shali, A., Cook, W.R.: Hybrid partial evaluation. In: OOPSLA, pp. 375–390 (2011)
7. Ruf, E.S.: Topics in online partial evaluation. PhD thesis, Stanford University,

Stanford, CA, USA, UMI Order No. GAX93-26550 (1993)
8. Hatcliff, J.: Mechanically Verifying the Correctness of an Offline Partial Evalua-

tor. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 279–298. Springer,
Heidelberg (1995)

9. Hatcliff, J., Danvy, O.: A computational formalization for partial evaluation. Math-
ematical Structures in Computer Science 7(5), 507–541 (1997)

10. Hoare, T.: The verifying compiler: A grand challenge for computing research. J.
ACM 50, 63–69 (2003)

11. Dave, M.A.: Compiler verification: a bibliography. SIGSOFT Softw. Eng. Notes 28,
2 (2003)

12. Augustsson, L.: A compiler for lazy ML. In: Proc. of the ACM Symposium LFP
1984, pp. 218–227. ACM, New York (1984)

13. Breebaart, L.: Rule-based compilation of data parallel programs. PhD thesis, Delft
University of Technology (2003)

14. Barrett, C.W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.D.: TVOC: A
Translation Validator for Optimizing Compilers. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)

15. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine. Springer
(2001)

16. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling Spatial and Temporal Variability with the HATS Ab-
stract Behavioral Modeling Language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

17. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability Mod-
elling in the ABS Language. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 204–224. Springer, Heidelberg (2011)

Specification-Driven Unit Test Generation
for Java Generic Classes

Francisco R. de Andrade2, João P. Faria2,3, Antónia Lopes1, and Ana C.R. Paiva2

1 Faculdade de Ciências da Universidade de Lisboa
2 Faculdade de Engenharia, Universidade do Porto

3 INESC Porto
{francisco.andrade,jpf,apaiva}@fe.up.pt, mal@di.fc.ul.pt

Abstract. Several approaches exist to automatically derive test cases that check
the conformance of the implementation of abstract data types (ADTs) with
respect to their specification. However, they lack support for the testing of im-
plementations of ADTs defined by generic classes. In this paper, we present a
novel technique to automatically derive, from specifications, unit test cases for
Java generic classes that, in addition to the usual testing data, encompass im-
plementations for the type parameters. The proposed technique relies on the use
of Alloy Analyzer to find model instances for each test goal. JUnit test cases and
Java implementations of the parameters are extracted from these model instances.

1 Introduction

Algebraic specifications have been successfully used for the formal specification of
abstract data types (ADTs) and several approaches exist to automatically derive test
cases that check the conformance of the implementation of ADTs with respect to their
algebraic specifications (e.g., [3,5,8,11,17]). In these approaches, because ADTs are
described in an axiomatic way, the derivation of tests involves choosing some instanti-
ations of the axioms or their consequences. Then, concrete tests are generated to check
if these properties hold in the context of the implementation under test (IUT).

Many data types admit different versions in different applications—e.g., sets of
strings, dates, messages. Nowadays, the implementation of these data types in main-
stream object-oriented languages, such as Java and C#, strongly relies on generic classes.
However, existing methods and techniques to automatically generate test suites from
specifications cannot be directly applicable in these cases.

Genericity poses new difficulties for testing. To write tests for a generic class one
has to commit to a set of types for its parameters and this raises several problems. First,
in the case of non trivial parameters, types for instantiating them may not be available
at test time (e.g., trees of intervals as defined by edu.stanford.nlp.util.IntervalTree have
intervals as parameters and no implementation for this type is available there [16]).
Second, the types available for instantiating the parameters may not cover all the possi-
bilities allowed by the parameters. For instance, partially ordered sets that have a type
parameter that corresponds to partial orders can be tested with strings or integers, how-
ever, the properties of these sets that hold vacuously in total orders will not be properly
tested. Third, in order to isolate the source of possible failures, one may not want to

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 296–311, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Specification-Driven Unit Test Generation for Java Generic Classes 297

depend on the implementation of other types besides the one under test (this is a unit
testing best practice). A technique that is often used to overcome these difficulties in
manual test generation is the use of mock objects [14]. One of the challenges in auto-
matic test generation for generic classes is the automatic generation of mock objects for
their parameters, removing from the user the burden of providing the types for instanti-
ating the type parameters.

In this paper we address the generation of unit test cases for Java implementations of
ADTs defined by generic classes, that comprise automatically generated mock classes
and mock objects that can be used to instantiate their type parameters. As illustrated in
Fig. 1, we consider that ADTs are described by parameterized specifications and that the
abstraction gap between the specifications and the implementations is bridged through
refinement mappings. Parameterized specifications are supported by several specifica-
tion languages. In contrast, refinement mappings were defined in [15] for CONGU spec-
ifications [4]. Herein, we revisit this notion and reformulate it in a more general setting.

specification

 sorts

 constructors

 observers

 domains

 axioms

not

if

if and

if not and not

end specification

specification TotalOrder

 sorts

 Orderable

 observers

 geq: Orderable Orderable;

 axioms

 E, F, G: Orderable;

 E = F if geq(E, F) and geq(F ,E);

 geq(E, F) if E=F;

 geq(E, F) if not geq(F, E);

 geq(E, G) if geq(E ,F) and geq(F, G);

end specification

refinement

is

is

is

is

end refinement

specification SortedSet[TotalOrder]

 sorts

 SortedSet[Orderable]

 constructors

 empty: --> SortedSet[Orderable];

 insert: SortedSet[Orderable] Orderable --> SortedSet[Orderable];

 observers

 isEmpty: SortedSet[Orderable];

 isIn: SortedSet[Orderable] Orderable;

 largest: SortedSet[Orderable] -->? Orderable;

 domains

 S: SortedSet[Orderable];

 largest(S) if not isEmpty(S);

 axioms

 E, F: Orderable; S: SortedSet[Orderable];

 isEmpty(empty());

 not isEmpty(insert(S, E));

 largest(insert(S, E)) = E if isEmpty(S);

 largest(insert(S, E)) = E if not isEmpty(S) and geq(E, largest(S));

 largest(insert(S, E)) = largest(S) if not isEmpty(S) and not geq(E, largest(S));

 ...

end specification

specification

sorts

observers

 axioms

and

if

if not

if and

end specification

refinement

is

is

is

is

end refinement

sorts

observers

 axioms

if and

if

end specification

refinement

is

is

is

is

is

is

is

end refinement

refinement

is

is

is

is

end refinement

refinement <E>

 SortedSet[TotalOrder] is TreeSet<E> {

 empty: --> SortedSet[Orderable] is TreeSet<E>();

 insert: SortedSet[Orderable] e:Orderable -->

 SortedSet[Orderable] is void insert(E e);

 …

 }

 TotalOrder is E {

 geq: Orderable e:Orderable is boolean greaterEq(E e);

 }

end refinement

interface

boolean

public class TreeSet<E extends IOrderable<E>>{

 public TreeSet<E>(){...}

 public void insert(E e){...}

 public boolean isEmpty(){...}

 public boolean isIn(E e){...}

 public E largest(){ ...}

 ...

}

specification

sorts

observers

 axioms

and

if

if not

if and

end specification

specification

 sorts

 constructors

 observers

 domains

 axioms

not

not

if or

if

if and

if not and not

if

end specification

specification

interface IOrderable<E>{

 boolean greaterEq(E e);

}

public class extends

public

public void

public boolean

public boolean

public

specification

sorts

observers

 axioms

and

if

if not

if and

end specification

specification

 sorts

 constructors

 observers

 domains

 axioms

not

not

if or

if

if and

if not and not

if

end specification

specification

Fig. 1. The aim is to generate tests for checking if a set of classes correctly implements an ADT

298 F.R. de Andrade et al.

Following the tradition of specification-based testing, the developed technique in-
volves considering some abstract tests obtained through the instantiation of the axioms.
The difference is that, in our case, this instantiation is not exclusively achieved at the
syntactical level by substitution of axiom variables by ground terms; it also involves
assigning a value to some variables according to a specific model of the parameter
specification. For the generation of abstract tests, the proposed technique relies on Al-
loy Analyzer [13], a tool that finds finite models of relational structures. Abstract tests
are then translated into JUnit tests for a given implementation of the specification. This
translation takes into account the correspondence between specifications and Java types
defined by the given refinement mapping. Fig. 2 presents an overview of this process.

Spec2Alloy
Translator

Alloy
Analyzer

Abs. Tests
Extractor

JUnit Tests
Generator

Refinement
Mapping

ADT
Implementation

Abstract
Tests

Alloy
Model

Model
Instances

Mock
Classes

JUnit
Tests

depends on

ADT
Specification

Fig. 2. Overview of the test generation process

The organisation of the paper is as follows. Sec. 2 presents the specifications we
have considered in our approach and their semantics. In Sec. 3, we introduce a notion
of abstract test appropriate for parameterized specifications and present a technique for
the generation of these tests that relies on the encoding of specifications into Alloy and
on Alloy Analyzer for finding model instances. In Sec. 4, we show how to automatically
translate abstract tests to JUnit tests for a concrete implementation. Sec. 5 presents some
evaluation experiments and Sec. 6 concludes the paper and discusses future work.

2 Specifications of Generic Data Types

In algebraic specification, the description of ADTs that admit different versions is sup-
ported by parameterized specifications [6]. The description of algebraic specifications
in general, and parameterized specifications in particular, is supported by different lan-
guages (e.g., [2,6,7]) with significant variations in terms of syntax and semantics. In this
section, we present the specifications considered in our approach and their semantics.

Preliminaries. We use Σ to represent a many-sorted signature 〈S, F, P 〉, where S is
the set of sorts and F and P are the sets of, respectively, operation and predicate sym-
bols. Moreover, we use Spec to represent a specification 〈Σ,Ax〉, where Ax is the set
of axioms described by formulas in first-order logic (with equality). An example of a
specification is TotalOrder , partially described in Fig. 1 using the language of CONGU.
It has the sort Orderable , a single predicate symbol geq and no operation symbols. Its
set of axioms includes ∀e:Orderable ∀f :Orderable . geq(e, f) ∧ geq(f, e) ⇒ e = f .

We use PSpec to represent a parameterized specification, i.e., a pair 〈Param ,Body〉
of specifications with Param (the formal parameter) included in Body (the body). An

Specification-Driven Unit Test Generation for Java Generic Classes 299

example of a parameterized specification is SortedSet [TotalOrder], also partially de-
scribed in Fig. 1. The formal parameter is TotalOrder and the body is SortedSet , a
specification that contains what is in TotalOrder and the sort SortedSet [Orderable],
the operation symbols empty, insert and largest, the predicate symbols isEmpty and
isIn, and several axioms that express the properties of these operations and predicates.

2.1 Specifications

In this work, we restrict our attention to a set of parameterized specifications that can
be described in CONGU. More concretely, we consider specifications in which opera-
tion symbols are classified as constructors or observers and that are obtained through
the extension of a given specification Spec with an increment, i.e.,: (i) a single sort s,
(ii) constructors that produce elements of sort s, (iii) observers and predicate symbols
that take an element of sort s as first argument, (iv) axioms that express properties of the
new operation and predicate symbols only. An increment can define a specification by
itself or rely on sorts, operations and predicates available in the base specification Spec.
In any case, we use Spec+Specs to represent the extension of Spec with an increment
centred on sort s and Specs1

+...+Specsn
to represent a sequence of increments. For

the body of PSpec, we also require that all increments different from Param include at
least one creator, i.e., a constructor that does not have elements of the introduced sort
among its arguments. In the sequel, we use Body−Param to refer to sorts, operations,
predicates and axioms in Body but not in Param . It is easy to see that TotalOrder and
SortedSet fulfill these requirements: TotalOrder is an extension of the empty spec-
ification while SortedSet is an extension of TotalOrder that indeed introduces one
creator (empty) of the introduced sort (SortedSet[Orderable]).

In the sequel we will use TermΣ and CTermΣ to denote, respectively, the set of
ground terms and the set of canonical ground terms (i.e., terms defined exclusively in
terms of constructors). For terms, canonical terms and formulas built over a set X of
variables typed by sorts in Σ, we use TermΣ(X), CTermΣ(X) and FormΣ(X).

In what concerns the axioms, we assume they have one of the following forms:

∀x1 : s1...∀xn : sn . φ ∀x1:s1...∀xn : sn. ψop ⇒ defined(op(x1, ..., xn))
where op is an operation symbol and φ, ψop are quantifier-free first-order logic formu-
las built over Σ. The first type of axioms is used for expressing usual properties of
operations and predicates. The other type of axioms supports the definition of a do-
main condition of an operation, i.e., the condition under which the operation must be
defined (these are needed because operations can be interpreted as partial functions). In
SortedSet [TotalOrder], all operations but largest must be interpreted by total func-
tions and, hence, their domain conditions are true while largest has to be defined for
non empty sets, i.e., ∀s : SortedSet [Orderable]. ¬isEmpty(s)⇒defined(largest(s)).

We further assume there is exactly one domain condition for each operation, which
allows us to define the formula defined∗(t) that, as we will see later on, defines suffi-
cient conditions for the term t to be defined.
Definition 1. defined∗(t) is the formula defined inductively in the structure of term t
as follows: (1) defined∗(x) = true if x is a variable, (2) defined∗(op(t1, ..., tn)) =
defined∗(t1)∧...∧defined ∗(tn)∧ψop[t1/x1,...tn/xn] if op : s1, ..., sn → s is an oper-
ation with domain condition ∀x1:s1...∀xn:sn. ψop ⇒ defined(op(x1, ..., xn)).

300 F.R. de Andrade et al.

2.2 Semantics

Specifications are interpreted in terms of Σ-algebras. More concretely, we take Σ-
algebras as triples A = 〈{As}s∈S ,F ,P〉, where As is the carrier set of sort s, F
defines the interpretation of operation symbols as partial functions and P defines the
interpretation of predicate symbols as relations. We use �t�A,ρ to denote the interpreta-
tion of a term t in TermΣ(X) with an assignment ρ of X into A, i.e., a function that
assigns a value in As to each variable x:s in X . Given that operation symbols can be
interpreted by partial functions, �t�A,ρ might not be defined. In fact, �t�A,ρ is defined
if and only if A, ρ � defined(t). The interpretation of equality also has to take into ac-
count the possibility of terms not being defined. Equality is interpreted as being strong,
i.e., t1 = t2 holds in aΣ-algebraA when the values of both terms are defined and equal
or both are undefined. In what concerns predicates, when they are applied to undefined
terms they are always false (see [2] for the rational of this choice).

There are various forms of semantic construction in the algebraic approach to speci-
fication of ADTs. For the purpose at hand, the appropriate construction is loose seman-
tics. It associates to Spec=〈Σ,Ax〉 the class of all Σ-algebras which satisfy its axioms
Ax; these are called Spec-algebras. According to this semantics, an implementation of
the ADT in which all specified properties hold is considered to be correct.

For parameterized specifications, loose semantics associates to 〈Param ,Body〉 the
class of functions TBody that assign to each Param-algebraA, a Body -algebraTBody(A)
that coincides with A when restricted to Param . This means that an implementation of
a parameterized specification is correct if it has all the specified properties, when in-
stantiated with any correct implementation of its parameter.

3 Generation of Abstract Tests

The envisaged strategy for deriving test cases for implementations of generic data types
encompasses the generation of tests for their parameterized specifications. We call them
abstract tests because their target are abstract models (algebras). For testing Java imple-
mentations, we need to convert them into object-oriented tests (JUnit tests, in our case).

3.1 Tests for Parameterized Specifications

A test for an algebraic Spec is usually defined as a ground and quantifier-free formula
that is a semantic consequence of Spec and, hence, valid in every Spec-algebra [8].
This can be generalised to parameterized specifications but the result is not interest-
ing as specifications used as parameters are not expected to have creators and so, the
corresponding set of ground terms is empty. In fact, specifications used as parameters
are not expected to have constructors as they often correspond to a required “ability”.
For instance, in our example, TotalOrder corresponds to a requirement for the actual
parameter of a sorted set to have a comparison operation that defines a total order.

The notion of test that we found useful for parameterized specifications is one in
which we fix a specific Param-algebra.

Definition 2. A closed test for a parameterized specification PSpec = 〈Param ,Body〉
is a tuple 〈A,X, φ, ρP , ρB〉 where A is a Param-algebra;X is a finite set of variables

Specification-Driven Unit Test Generation for Java Generic Classes 301

typed by sorts in Body; φ is a quantifier-free logic formula in FormΣ(X); ρP is an
assignment of XP into A, where XP is the set of variables in X typed by sorts in
Param; ρB is a function that assigns a term ρB(x) in Terms

Σ(XP) to each x:s in
XB=X\XP ; such that TBody(A), ρP � ρ∗B(φ), for every TBody in the semantics of
PSpec, where ρ∗B(φ) is the translation of formulas induced by ρB .

Notice that, in these tests, the instantiation of the variables in the formula is achieved
through the combination of (i) a syntactic replacement of variables in XB by terms and
(ii) an assignment of variables in XP into the fixed Param-algebra. In this way, we can
exercise the test in any ΣBody -algebra that extends A.

We are interested in tests that result from the instantiation of axioms of the form
∀x1:s1...∀xn:sn. φ. Closed tests may involve the replacement of variables by terms
and their interpretation in a specific ΣBody -algebra might be undefined and, hence, this
instantiation needs to be conditioned by the definedeness of these terms. Because the
formula defined∗(t) provides a sufficient condition for the term t to be defined in any
Spec-algebra (for details, see [1]), we can use the formula∧x∈XB defined∗(ρB(x))⇒φ.

Proposition 1. Let PSpec = 〈Param ,Body〉 be a parameterized specification and
∀x1:s1...∀xn:sn. φ an axiom in Body . If A is a Param-algebra,X is a set of variables
including {x1:s1,..., xn:sn}, ρP is an assignment of XP into A and ρB is a function
that assigns a term ρB(x) in Terms

Σ(XP) to each x:s in XB , then

〈A,X, (∧x∈XBdefined∗(ρB(x))) ⇒ φ, ρP , ρB〉
is a closed test for PSpec.(See [1] for the proof.)

As an example, let us consider the axiom ∀s:SortedSet [Orderable]. ∀e:Orderable.
¬isEmpty(insert(s, e)) of SortedSet [TotalOrder]. As a result of Prop. 1:

– the TotalOrder -algebra TO2 with two elements, say, Ord0 and Ord1 and geq
interpreted as the relation {(Ord1, Ord0), (Ord1, Ord1), (Ord0, Ord0)}

– the set of variables {s:SortedSet[Orderable], e:Orderable}
– the formula true⇒ ¬isEmpty(insert(s, e))
– ρP : {e:Orderable �→ Ord0} and ρB: {s:SortedSet[Orderable] �→ empty()}

defines a closed test for SortedSet [TotalOrder].

3.2 Generation Technique

When tests are obtained through ground instantiation of axioms, performing a test ex-
periment just requires evaluating a ground formula in the IUT. The generation of closed
tests for parameterized specifications also involves the instantiation of axioms, but this
instantiation is only partial — the instantiation of an axiom involving a set of variables
X is limited to the variables in XB . Hence, the generation of closed tests involves the
generation of models for the parameter specification and evaluations in these models for
the variables in XP . In this subsection, we describe a technique for the generation of
abstract test suites for parameterized specifications that can be subsequently translated
into JUnit test suites for testing Java implementations.

As pointed out in [8], test thoroughness is increased by generating multiple test cases
for each axiom, through the partitioning of each axiom into a finite set of “cases”,
either by successively unfolding the premises of equational axioms or by considering

302 F.R. de Andrade et al.

the conjunctive terms in the Disjunctive Normal Form (DNF) of the axiom expression.
In our case, since axioms are not restricted to equational ones, DNF partitioning is
more directly applicable, with the advantage of not mixing together different axioms. To
further assure that the different cases are disjoint, and hence avoid generating redundant
tests, we take a special DNF form — the Full Disjunctive Normal Form (FDNF). The
FDNF of a logical formula that consists of Boolean variables connected by logical
operators is a canonical DNF in which each Boolean variable appears exactly once
(possibly negated) in every conjunctive term (called a minterm) [9].

The technique consists in considering each of the axioms ∀x1:s1...∀xn:sn. φ in
Body−Param that do not express a domain condition and start by converting it to
FDNF. Assuming that the result is ∀x1:s1...∀xn:sn. φ1∨...∨φk then, for every 1≤i≤k,
the technique involves using Alloy Analyzer to find a Body -algebraM such that: (1)M
is finite; (2) M satisfies sort generation constraints for sorts in Body−Param (each of
these sorts is constrained to be generated by the declared constructors); (3) M satisfies
a stronger version of the domain condition of every operation op in Body−Param :
∀x1:s1 ...∀xn:sn. ψop ⇔ defined(op(x1, ..., xn)); (4)M satisfies ∃x1:s1...∃xn:sn. φi.

Only axioms in Body−Param are considered because these are the axioms that
express the properties of the generic data type that we are interested to check in the
IUT (the other axioms concern properties that are expected to hold in actual parame-
ters). In what concerns the constraints imposed on the finding of the Body -algebra (the
model instances of the Alloy specification): condition 1 is a requirement imposed by
the model finder tool, which limits search to finite models; condition 2 excludes models
that have junk in the carrier sets as we will need to subsequently convert the elements
of this model to arbitrary ΣBody-algebras that extend M |Param (the restriction of M
to Param); condition 3 avoids the generation of some models that define an evalua-
tion for terms that are undefined in other Body -algebras; condition 4 ensures we get
from the model finder tool an assignment ρ of the variables in φi into M satisfying it.
Since the formula is in FDNF, all variables of the axiom occur in φi and, hence, ρ is an
assignment of X={x1:s1,..., xn:sn} into M .

Because M restricted to sorts in Body−Param is a generated model, for each x in
XB , there exists (i) a canonical term tx∈CTermΣ(Yx) for some set Yx of variables
typed by sorts in Param and disjoint from X , and (ii) an assignment ρx of Yx into M
such that �tx�M,ρx = ρ(x). This family of terms and assignments can be used to define
a closed test for PSpec as follows:

〈M |Param , X
′, φ′, ρP , ρB〉

– M |Param is the restriction of M to Param
– X ′ = ∪x∈XBYx ∪X
– φ′ is the formula (∧x∈XB defined∗(ρB(x))) ⇒ φ
– ρP coincides with ρ for XP and with ρx for Yx, for every x∈XB

– ρB is the function that maps each x in XB into tx

The correctness of the proposed technique is an immediate consequence of Prop. 1.

Proposition 2. The tuple 〈M |Param , X
′, φ′, ρP , ρB〉 is a closed test for PSpec.

Consider, for instance, the axiom of SortedSet [TotalOrder]:
∀s:SortedSet [Orderable].∀e:Orderable.

¬isEmpty(s) ∧ ¬geq(e, largest(s))⇒largest(insert(s, e))=largest(s)

Specification-Driven Unit Test Generation for Java Generic Classes 303

Fig. 3. A model instance defining a SortedSet -algebra and an assignment to variables e and s

One minterm of the corresponding FDNF is ¬isEmpty(s) ∧ ¬geq(e, largest(s)) ∧
largest(insert(s, e))=largest(s). The application of the technique just described in-
volves using Alloy Analyzer to obtain a SortedSet-algebra that satisfies this minterm
(and fulfills the other three requirements described before). Fig. 3 presents an example
of one of these algebras (referred as SS2 in the sequel), represented as an Alloy model
instance. In fact, it also defines ρ:{e:Orderable �→ Ord1, s:SortedSet[Orderable]�→
SortedSet3}. The last step is to find a pair 〈ts, ρs〉 that representsSortedSet3. Through
the analysis of SS2, we find the term insert(empty(), f) and the assignment ρs:
{f :Orderable �→ Ord0}. As a result, we obtain the closed test 〈TO2, X ′, φ′, ρP , ρB〉
for SortedSet [TotalOrder], where

– X ′={s:SortedSet[Orderable], e:Orderable} ∪ Ys with Ys = {f :Orderable}
– φ′ is defined∗(insert(empty(), f)) ⇒

(¬isEmpty(s) ∧ ¬geq(e, largest(s))⇒largest(insert(s, e))=largest(s)),
with defined∗(insert(empty(), f)) = true ∧ true ∧ true

– ρP is the assignment {e �→ Ord1, f �→ Ord0}
– ρB is the function {s �→ insert(empty(), f)}.

The number of tests generated for each axiom is in general smaller than the number
of minterms in the corresponding FDNF since a minterm may not be satisfiable by
Body -algebras. In particular, this happens in minterms that require the satisfaction of
the negation of the definedeness condition of some term. This is the case of the minterm
isEmpty(s) ∧ ¬geq(e, largest(s)) ∧ largest(insert(s, e))=largest(s).

3.3 From Algebraic Specifications to Alloy and Back

The technique just described requires the ability to generate Alloy models from a pa-
rameterized specification PSpec=〈Param ,Body〉 and model finding commands for

304 F.R. de Andrade et al.
end specification

sig Orderable {
 geq: Orderable -> one BOOLEAN/Bool
}
sig SortedSet {
 insert:Orderable -> one SortedSet,
 isEmpty:one BOOLEAN/Bool,
 isIn:Orderable ->one BOOLEAN/Bool,
 largest: lone Orderable
}
one sig start{
 empty: one SortedSet
}
fact SortedSetConstruction{
 SortedSet in (start.empty).*{x: SortedSet, y: x.insert[Orderable]}
}
fact domainSortedSet0{
 all S:SortedSet |
 S.isEmpty != BOOLEAN/True implies one S.largest else no S.largest
}
fact axiomSortedSet4{
 all E:Orderable, S:SortedSet |
 (S.isEmpty = BOOLEAN/False and E.geq[S.largest] = BOOLEAN/False)
 implies (S.insert[E].largest = S.largest)
}
// … other axioms of Orderable and SortedSet
run run_axiomSortedSet4_0{
 some E:Orderable, S:SortedSet |
 S.isEmpty = BOOLEAN/False and E.geq[S.largest] = BOOLEAN/False
 and S.insert[E].largest = S.largest
} for 6 but exactly 2 Orderable
// … other run commands for other minterms and axioms

Fig. 4. Excerpt of the Alloy model and run commands for SortedSet [TotalOrder]

Alloy Analyzer (Alloy “run” commands) and, in the end, to extract abstract closed tests
from the model instances found by Alloy Analyzer.

Encoding of Algebraic Specifications in Alloy. The encoding of PSpec in Alloy takes
into account the sorts, operations, predicates and axioms in Body and, at the same time,
has to ensure conditions 2 and 3 of Sec. 3.2: there is no junk in the parameterized sorts
and partial operations are defined if and only if their domain condition holds.

Due to space limitation we explain the translation rules (presented in full detail in
[1]) using our running example. Fig. 4 shows an excerpt of the Alloy model produced
for SortedSet [TotalOrder]. Sorts are translated into Alloy signatures. A special signa-
ture start with a single instance is defined to represent the root of the graph view of
each model instance found by Alloy Analyzer (see Fig. 3), holding fields corresponding
to the creators of all sorts (e.g., empty). Other operations and predicates are encoded
as fields of the signature corresponding to their first argument. To allow this encod-
ing for predicates without further arguments (e.g., isEmpty), predicates are handled
as operations of return type Boolean . Partial operations (e.g., largest) originate fields
with lone multiplicity (0 or 1) and a fact encoding their (strong) domain condition.
To exclude junk for a sort s, a fact is introduced (e.g., SortedSetConstruction fact in
Fig. 4) imposing that all its instances are generated by applying constructors (a creator
followed by other constructors). When constructors have extra arguments that also have
to be constructed, it is necessary to ensure that all instances can be constructed in an
acyclic way, e.g., by imposing in the construction fact that, in each step, it is possible
to construct an instance y by using only instances x1, ..., xn that precede y in a partial

Specification-Driven Unit Test Generation for Java Generic Classes 305

ordering (to be found by Alloy Analyzer) of all instances. Axioms are straightforwardly
encoded as Alloy facts (e.g., axiomSortedSet4 in Fig. 4).

Generation of Model Finding Commands. In order to find a model instance that sat-
isfies each minterm of the FDNF of each axiom in Body−Param , a “run” command
that encodes condition 4 of Sec. 3.2 is generated. This is illustrated in the bottom of
Fig. 4 for the same axiom and minterm used in the example of Sec. 3.2. The exploration
bounds can be configured by the user. In the example of Fig. 4, we are searching for
models with at most 6 instances of each signature and exactly 2 instances of Orderable .

Extraction of Abstract Tests from the Model Instances Found. When a “run” com-
mand is executed, each model instance found by Alloy Analyzer can be visualized as
a graph as illustrated in Fig. 3. From this instance an abstract test can be extracted as
partially explained in Sec. 3.2. The canonical term to be assigned to each variable x in
XB (e.g., S in Fig. 3) is obtained by following a path from the start node to the node
assigned to that variable (e.g., SortedSet3). When constructors have extra parameters
that have also to be constructed, only paths obeying the partial ordering of all instances
imposed by the construction fact are considered. In the example, the extracted Alloy ex-
pression is start.empty.insert[Ord0]. Since a canonical term cannot contain elements
of carrier sets, values of parameter sorts (Ord0 in this case) are replaced by variables
in the expression and their values are recorded in an assignment (ρP).

Prop. 1 ensures the correctness of the test generation technique in abstract terms.
Obviously, the preservation of this correctness result depends on how specifications are
encoded into Alloy. Concretely, it is necessary to ensure that all model instances of the
generated model, restricted to the elements of Param , define a Param-algebra. For the
encoding technique presented in this section, all model instances of the generated Alloy
model define a Body -algebra.

4 From Abstract Tests to JUnit Tests

In this work, we focus on Java implementations of ADTs. Hence, we consider im-
plementations of parameterized specifications to be sets of Java classes and interfaces,
some of them defining generic types. The challenge we address in this section is
the translation of the abstract tests generated for the parameterized specification with
the help of Alloy Analyzer to concrete JUnit tests. The goal of these tests is to exercise
the IUT, instantiating its parameters with mock classes and mock objects derived from
the abstract tests.

The translation of abstract into concrete tests requires that a correspondence between
what is specified algebraically and what is programmed is defined. We assume this
correspondence is defined in terms of a refinement mapping. This notion, defined in the
context of CONGU specifications in [15], is formulated in a more general setting.

4.1 Refinement Mappings

The correspondence between specifications and Java types as well as between opera-
tions/predicates and methods can be described in terms of what we have called a re-
finement mapping. We will restrict our attention to the set of specifications described in

306 F.R. de Andrade et al.

Sec. 2.1. Hence, in the rest of this section we will consider a parameterized specification
PSpec with Body defined by B = Specs1

+...+Specsn
+Specp+Spect1+...+Spectk

in
which Specp corresponds to the parameter specification. Moreover, to ease the presen-
tation, we will consider that Specp has a single sort and all increments Specti

depend
on Specp (i.e., they cannot be moved to a position on the left of Specp). For the same
reason, we also consider only Java generic types with a single parameter.

Definition 3. A refinement mapping from B to a set C of Java types consists of a type
variable V and an injective refinement function R that maps:

– each si to a non-generic type defined by a Java class in C;
– each ti to a generic type with a single parameter, defined by a Java class in C;
– p to the type variable V ;
– each operation/predicate of Specs, with s ∈ {s1,..., sn, t1,..., tk}, to a method

of the corresponding Java type R(s) with a matching signature: (i) every n-ary
creator corresponds to an n-ary constructor; (ii) every other (n+1)-ary opera-
tion/predicate symbol corresponds to an n-ary method (object this corresponds
to the first parameter of the operation/predicate); (iii) every predicate symbol cor-
responds to a boolean method; (iv) every operation with result sort s corresponds
to a method with any return type, void included, and every operation with a result
sort different from s corresponds to a method with the corresponding return type;
(v) the i-th parameter of the method that corresponds to an operation/predicate
symbol has the type corresponding to its (i+1)-th parameter sort;

– each operation/predicate of Specp to a matching method signature such that, for
1≤i≤k, we can ensure that any typeK that can be used to instantiate the parameter
of the generic type R(ti) possesses all methods defined by R for type variable V
after appropriate renaming — the replacement of all instances of V by K .

Fig. 1 partially shows a refinement mapping from SortedSet [TotalOrder] to the Java
types {TreeSet<E>,IOrderable<E>}, using CONGU refinement language. We can check
if the last condition above holds by inspecting whether any bounds are declared in
the class TreeSet for its parameter E, and whether those bounds are consistent with
the methods that were associated to parameter type E by the refinement mapping —
boolean greaterEq(E e). This is indeed the case: the parameter E of TreeSet is bounded
to extend IOrderable<E>, which, in turn, declares the method boolean greaterEq(E e).

4.2 Mock Classes and JUnit Tests

In order to test generic classes against their specifications, finite mock implementations
of their parameters are automatically generated, comprising mock classes, that are in-
dependent of the generated abstract tests, and mock objects, instances of mock classes
that are created and set up in each test method according to a specific abstract test.

Mock Classes. For the parameter sort p, a mock class named pMock is generated.
This class will be used to instantiate the parameter of all generic types R(ti) and,
hence, has to implement all the interfaces that bound these parameters. For instance,
in our example, the class OrderableMock was generated (see Fig. 5) implementing
IOrderable<OrderableMock> because the parameter E of TreeSet is bounded to extend

Specification-Driven Unit Test Generation for Java Generic Classes 307

ppublic class OrderableMock implements IOrderable<OrderableMock> {
 private HashMap<OrderableMock, Boolean> greaterEqMap =
 new HashMap<OrderableMock, Boolean>();
 public boolean greaterEq(OrderableMock o) {return greaterEqMap.get(o);}
 public void add_greaterEq(OrderableMock o, boolean result) {
 greaterEqMap.put(o, result);
 }
}

private interface
private void

public void

final new
final new

true
false
true
true

new
public

return

Fig. 5. Mock class generated from the refinement mapping in Fig.1

IOrderable<E>. The mock class defines extensional implementations of all interface
methods that correspond to operations or predicates of the parameter specification (in
our example, just the method greaterEq). More concretely, for each interface method
m, the mock class provides: a hash map mMap, to store the method return values for
allowed actual parameters; an add m method, to be used by the test setup code to define
the above return values; and an implementation of m itself, that simply retrieves the
value previously stored in the hash map.

JUnit Tests: Axiom Tester Method. Each axiom ∀x1:s1...∀xn:sn . φ in Body−Param
not defining a domain condition is encoded as a method (reused by all test methods gen-
erated for that axiom) with the axiom variables as parameters and a body that evaluates
and checks the value of φ for the given parameter values (see axiomSortedSet4Tester
in Fig. 6). In the case of a variable xk of a parameterized sort sk, since operations of
sk may be mapped to methods with side effects (see the case of insert in Figs. 1 and
6), a factory object (of type Factory<sk>) is expected as parameter instead of an object
of type sk, to allow the creation of as many copies as needed of xk (a copy for each
occurrence of xk in φ) without depending on the implementation of clone. This way,
methods with side effects can be invoked on one copy without affecting the other copies.
Sub-expressions involving operations mapped to void methods are evaluated in separate
instructions (see insert in Fig. 6). Equality is evaluated with the equals method.

JUnit Tests: Test Methods Encoding Abstract Tests. For each abstract test

〈A,X,∧x∈XB defined∗(ρB(x)) ⇒ φ, ρP , ρB〉
generated according to the technique described in Sec. 3.2, a concrete JUnit test method
is generated comprising three parts (for an example, see Fig. 6):

– Mock Objects: Creation of mock objects (instances of mock classes) for the values
in the carrier set of A, and addition of tuples for the functions and relations in A.

– Factory Objects: Creation of a factory object of type Factory<s> for each variable
x : s in XB , that constructs an object of type s upon request according to the term
ρB(x) and the mapping ρP . The verification of the condition defined∗(ρB(x)) is
performed incrementally in each step of the construction sequence, by checking the
domain condition before applying any operation with a defined domain condition
and issuing a warning in case it does not hold (not needed in the example).

– Axiom Verification: Invocation of the method that checks φ, passing as actual
parameters the factory objects prepared in the previous step (for the variables in
XB) and the values defined in ρP (for the remaining variables).

308 F.R. de Andrade et al.

public class implements
private

new
public boolean return
public void boolean

private interface Factory<T> {T create();}
private void axiomSortedSet4Tester(Factory<TreeSet<OrderableMock>> sFact,OrderableMock e) {
 TreeSet<OrderableMock> s_0 = sFact.create();
 TreeSet<OrderableMock> s_1 = sFact.create();
 if(!s_0.isEmpty() && !e.greaterEq(s_0.largest())) {
 s_1.insert(e);
 assertTrue(s_1.largest().equals(s_0.largest()));
 }
}
@Test public void test0_axiomSortedSet4_0(){
 // mock objects for the parameter
 final OrderableMock ord0 = new OrderableMock();
 final OrderableMock ord1 = new OrderableMock();
 ord0.add_greaterEq(ord0, true);
 ord0.add_greaterEq(ord1, false);
 ord1.add_greaterEq(ord0, true);
 ord1.add_greaterEq(ord1, true);
 // factory objects for the axiom var’s of parameterized type
 Factory<TreeSet<OrderableMock>> sFact =
 new Factory<TreeSet<OrderableMock>>() {
 public TreeSet<OrderableMock> create() {
 TreeSet<OrderableMock> s = new TreeSet<OrderableMock>();
 s.insert(ord0);
 return s; }

};
 // checking the axiom
 axiomSortedSet4Tester(sFac, ord1);
}//… other axioms and test cases

specification

 sorts

Fig. 6. Excerpt of JUnit test code generated corresponding to the model instance shown in Fig. 3

5 Evaluation

To assess the efficacy (defect detection capability of the generated test cases) and effi-
ciency (time spent) of the proposed technique, an experiment was conducted using dif-
ferent specifications. Herein, we report on the results of the experiment with our running
example. We started by generating abstract test cases for the specification SortedSet .
We measured the time spent by Alloy Analyzer on finding model instances for the sev-
eral run commands (axiom cases) and the number of run commands for which instances
were found. For the ones that Alloy Analyzer could not find instances, a manual analysis
was conducted to determine whether they could be satisfied with other search settings
(exploration bounds). After that, JUnit test cases generated from abstract tests and the
refinement mapping to TreeSet and IOrderable were executed to check the correctness
of the implementation and of the test suite. Subsequently, a mutation analysis was per-
formed to assess the quality of the test suite. Mutants not killed by the test suite were
manually inspected to determine if they were equivalent to the original code, and ad-
ditional test cases were added to kill the non-equivalent ones. A test coverage analyses
was also performed as a complementary test quality assessment technique. The exper-
iment was conducted on a portable computer with a 32 bits Intel Core 2 Duo T6600
@ 2.20 GHz processor with 2.97 GB of RAM, running Microsoft’s Windows 7. The
results are summarized in Table 1.

In terms of efficiency, we concluded that the time spent in finding model instances
(∼ 2 minutes) is not a barrier for the adoption of the proposed approach. The percent-
age of axiom cases for which a model instance was not found was significant (44%).
A manual analysis showed that these cases were not satisfiable. Mutation analysis re-
vealed some parts of the implementation of equals and largest that were not adequately

Specification-Driven Unit Test Generation for Java Generic Classes 309

Table 1. Experimental results for the SortedSet example

Item Sorted Set
Size of algebraic specification (Body − Param) 25 lines (1)

Total number of axioms 9
With instances found in all axiom cases 5
With instances found in some axiom cases 4

Total number of axiom cases (minterms) 36
Number of cases for which instances were found (2) 20 (56%)
Number of cases for which no instances were found (2)(3) 16 (44%)

Time spent by Alloy analyzer finding instances (2) 129 sec
Number of JUnit test cases generated (4) 20
Size of Java implementation under test 77 lines (1)

Number of failed test cases 0
Total number of mutants generated (with Jumble [12]) 41

Killed by the original test suite 35 (85%)
Not killed by the original test suite 6 (15%)

Equivalent to original implementation 0
Not equivalent to original implementation (5) 6

Coverage of Java implementation under test (measured with Eclemma [10]) 96,9%
Number of added test cases to kill all mutants (and achieve 100% code coverage) 3
(1) Ignoring comments and blank lines.(2) In this experiment, the exploration was limited to at most 12 instances per sort,

but exactly 3 Orderable. (3) Manual analysis showed that these cases were not satisfiable. (4) Only one test case was

generated for each satisfiable axiom case (corresponding to the first instance retrieved by Alloy Analyzer). (5) Related to

method invocation outside the domain and to insufficient testing of equals (lack of inequality cases).

exercised, due to the fact that conditions for inequality are not explicitly specified and
consequently not tested in this example, and due to the fact that the behaviour of opera-
tions outside their domain (in the example, the behaviour of largest over an empty set)
is not specified and consequently not tested.

6 Conclusions and Future Work

Although test generation from algebraic specifications has been thoroughly investi-
gated, existing approaches are based on flat specifications. In this paper, we have dis-
cussed testing from parameterized specifications and put forward a notion of a closed
test appropriate for these specifications, which generalises the standard notion of test as
a quantifier-free ground formula. Then, based on closed tests, we presented an approach
for the generation of unit tests for Java implementations of generic ADTs from specifi-
cations in which the generated test code includes finite implementations (mocks) of the
parameters. This paper addresses the foundational aspects of the approach. A tool that
fully automates the test generation from specifications is currently under development.
The tool supports the translation of CONGU specifications to Alloy, the translation of
model instances found by Alloy Analyzer to JUnit as well as the tuning of exploitation
bounds. We envisage the tool can also provide support for other related problems, like
the automatic generation of actual parameters for methods when the type parameters
are interfaces (e.g., comparator in TreeSet<E>(Comparator<E> comparator)).

310 F.R. de Andrade et al.

The proposed approach relies on a translation of specifications into Alloy and on the
capability of Alloy Analyzer to find model instances that satisfy given properties—in
our case, the minterms of the FDNF representation of each axiom. In the conducted
experiments, Alloy Analyzer was able to find model instances for all theoretically sat-
isfiable axiom cases in a moderate time. Mutation testing and code coverage analyses
showed that the generated test cases were of high quality, because they were able to kill
all the mutants and cover all the code apart from behaviours that were not explicitly
specified (behaviour outside operation domains and conditions for inequality).

Although Alloy Analyzer has scalability limitations due to the time required to find
instances of complex models, we did not find that to be an issue for unit testing ADTs.
The fact that Alloy Analyzer only performs model-finding over restricted scopes con-
sisting of a user-defined finite number of objects is what imposes a limitation of the
approach presented: the inability to generate tests for ADTs that do not admit finite
models, such as unbounded stacks (since the domain of push is true, it is always pos-
sible to create a bigger stack). To overcome that problem, we are currently working on
an extension of the approach to automatically handle that kind of specifications, that
encompasses transforming constructors into partial functions in the Alloy model and
inserting definedeness guard conditions in the axioms that use those constructors.

As future work, we also intend to extend the approach to rule out automatically by
static analysis unsatisfiable axiom cases and generate tests outside operations’ domains
and for properties not explicitly included in specifications such as those related with the
fact that equality is a congruence. This will reduce the dependence of the approach on
the correct implementation of equals.

Acknowledgement. This work was partially supported by FCT under contract
PTDC/EIA-EIA/103103/2008.

References

1. Andrade, F., Faria, J.P., Lopes, A., Paiva, A.: Specification-driven unit test generation for
Java generic classes (2011),
http://paginas.fe.up.pt/˜jpf/research/TR-QUEST-2011-01.pdf

2. Bidoit, M., Mosses, P.: CASL User Manual. LNCS, vol. 2900, pp. 3–9. Springer, Heidelberg
(2004)

3. Chen, H.Y., Tse, T.H., Chen, T.Y.: TACCLE: a methodology for object-oriented software
testing at the class and cluster levels. ACM Trans. Softw. Eng. Methodol. 10, 56–109 (2001)

4. Crispim, P., Lopes, A., Vasconcelos, V.T.: Runtime Verification for Generic Classes with
CONGU2. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527, pp. 33–48. Springer, Heidel-
berg (2011)

5. Doong, R.K., Frankl, P.G.: The ASTOOT approach to testing object-oriented programs.
ACM Trans. Softw. Eng. Methodol. 3, 101–130 (1994)

6. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations und Initial Se-
mantics. Monographs in Theoretical Computer Science (EATCS), vol. 6. Springer, Heidel-
berg (1985)

7. Futatsugi, K., Goguen, J.A., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ2. In: Proceed-
ings of the 12th POPL, pp. 52–66. ACM, New York (1985)

http://paginas.fe.up.pt/~jpf/research/TR-QUEST-2011-01.pdf

Specification-Driven Unit Test Generation for Java Generic Classes 311

8. Gaudel, M.-C., Le Gall, P.: Testing Data Types Implementations from Algebraic Specifica-
tions. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp.
209–239. Springer, Heidelberg (2008)

9. Hein, J.L.: Discrete Structures, Logic, and Computability. Jones & Bartlett Publishers (2009)
10. Hoffmann, M.R.: Ecclema: Java code coverage tool for Eclipse,

http://www.eclemma.org/
11. Huges, M., Stotts, D.: Daistish: Systematic algebraic testing for OO programs in the presence

of side-effects. In: Proc. ISSTV, pp. 53–61. ACM (1996)
12. Irvine, S.A., Pavlinic, T., Trigg, L., Cleary, J.G., Inglis, S., Utting, M.: Jumble Java byte code

to measure the effectiveness of unit tests (2007),
http://jumble.sourceforge.net/

13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press (2006)
14. Mackinnon, T., Freeman, S., Craig, P.: Endotesting: Unit testing with mock objects. In: eX-

treme Programming and Flexible Processes in Software Engineering – XP 2000 (2000)
15. Nunes, I., Lopes, A., Vasconcelos, V.T.: Bridging the Gap between Algebraic Specification

and Object-Oriented Generic Programming. In: Bensalem, S., Peled, D.A. (eds.) RV 2009.
LNCS, vol. 5779, pp. 115–131. Springer, Heidelberg (2009)

16. The Stanford Natural Language Processing Group,
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/
util/package-tree.html

17. Yu, B., King, L., Zhu, H., Zhou, B.: Testing Java components based on algebraic specifica-
tions. In: Proc. International Conference on Software Testing, Verification and Validation,
pp. 190–198. IEEE (2008)

http://www.eclemma.org/
http://jumble.sourceforge.net/
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/util/package-tree.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/util/package-tree.html

Specifying UML Protocol State Machines

in AlloyÆ

Ana Garis1, Ana C.R. Paiva2, Alcino Cunha3, and Daniel Riesco1

1 Universidad Nacional de San Luis, Argentina
{agaris,driesco}@unsl.edu.ar

2 DEI-FEUP, Universidade do Porto, Portugal
apaiva@fe.up.pt

3 HASLab, INESC TEC and Universidade do Minho, Portugal
alcino@di.uminho.pt

Abstract. A UML Protocol State Machine (PSM) is a behavioral dia-
gram for the specification of the external behavior of a class, interface or
component. PSMs have been used in the software development process
for different purposes, such as requirements analysis and testing. How-
ever, like other UML diagrams, they are often difficult to validate and
verify, specially when combined with other artifacts, such as Object Con-
straint Language (OCL) specifications. This drawback can be overcome
by application of an off-the-shelf formal method, namely one support-
ing automatic validation and verification. Among those, we have the
increasingly popular Alloy, based on a simple relational flavor of first-
order logic. This paper presents a model transformation from PSMs,
optionally complemented with OCL specifications, to Alloy. Not only it
enables automatic verification and validation of PSMs, but also a smooth
integration of Alloy in current software development practices.

Keywords: UML, OCL, Protocol State Machines, Alloy.

1 Introduction

UML state machine diagrams can be used to describe the dynamic behavior of a
system or part of it. There are two variants, namely Behavioral State Machines
and Protocol State Machines (PSMs) [16]. While the former is used to express
behavior of various elements (e.g., class instances), the latter is a way to define
the allowed behavior of classifiers; namely, classes, interfaces and components.
Therefore, PSMs enable the specification of a lifecycle for objects or an order
of invocation of its operations and to express usage protocols. PSMs typically
omit implementation details and allow the use of the Object Constraint Language
(OCL) [17] to specify state invariants and transitions’ pre- and post-conditions.
As such, PSMs are well-suited to be integrated in a Model Driven Engineering
(MDE) context, allowing the specification of the allowed behavior of a classifier

Æ Work partially supported by FCT (Portugal) under contract PTDC/EIA-
EIA/103103/2008.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 312–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Specifying UML Protocol State Machines in Alloy 313

in a highly abstract way. PSMs have been used for the specification of dynamic
views during the analysis phase, and they have been exploited for the generation
of class contracts, test code and test cases [19,18,3,21].

Since UML is the industry de facto language for modeling, there exist myriad
tools supporting it. In particular, UML integration in the Model Driven Archi-
tecture (MDA), the MDE initiative of the OMG, led to an explosion of UML
based MDE tools, such as code generators and reverse engineering frameworks.
Unfortunately, in part due to the fact that UML has only an informally given
semantics, most of these tools do not offer adequate support for Verification and
Validation (V&V).

Formal methods have been successfully applied in the formalization and V&V
of UML state machines [22,23,12,5,21]. However, the consistency between these
and other UML specification artifacts has rarely been addressed. Moreover, most
of these formalizations rely on traditional formal methods, that are avoided by
software developers due to the inherent complexity that makes them hard to
learn and use.

The objective of this paper is precisely to tackle both these issues: we show how
both PSMs and Class Diagrams (CDs) enhanced with OCL can be formalized
in Alloy [10] lightweight formal modeling language; and we present an approach
to develop V&V tasks using Alloy Analyzer. This formalization allows us to
simulate and verify the consistency between UML artifacts and to perform other
V&V activities, such as detect unreachable states or invalid transitions. The
formalization of PSMs is implemented using the model transformation language
ATL [4]. For the formalization of OCL, we use the UML2Alloy tool [2] and the
approach presented in [1] but adapted to support dynamic behavior.

The rest of the paper is structured as follows. Section 2 shows a case study in
order to explain our proposal. Section 3 describes preliminary concepts referred
to PSMs and Alloy. Section 4 presents our approach. Section 5 discusses the
related work. Finally, Section 6 summarizes the contributions and exposes some
ideas for future work.

2 Case Study

Figure 1(a) shows an example of a PSM. It is a simplified model of a student
coursing a career. The PSM describes the intended behavior of the class Student,
specified also in CD enriched with OCL shown in Figure 1(b). Initially, the
student is not enrolled to any course. The enroll operation enrolls the student
in a course, and enables him to attend the course exam, while performing lab

assignments. If he is approved in the exam and completes all mandatory lab
assignments he can pass the course. If he fails the exam, he also fails the
course. At any time, he can quit the course. After failing, quitting, or passing a
course he returns to the Enrolling state where he can enroll in another (or the
same) course.

Note that the transitions labeled with operations enroll, lab, and pass have
attached pre- and post-conditions defined in OCL. These constrain when such

314 A. Garis et al.

(a) Protocol State Machine

(b) Class Diagram enriched with OCL

Fig. 1. Coursing case study

operations can be invoked and their effect on the modeled student state (namely,
associations passed, current, exams, and labs). Likewise, the Studying

composite state is characterized by an invariant, forcing the student to be
enrolled in order to attend the exam and the labs. The Student class oper-
ations are further specified in OCL. Due to space limitation we only show
the specification of the operation enroll and the predicate isEnrolled in
figure 1(b). Note that the OCL specification includes frame conditions,
such as Student.allInstances()->forAll(s|s.passed=s.passed@pre), stat-
ing which attributes should remain unchanged when executing an operation. It
is not consensual whether such frame-conditions must be specified, and some au-
thors assume an implicit invariability assumption, stating that what is not men-
tioned in a post-condition should remain unchanged. However, such assumption
may lead to ambiguities in post-condition interpretation [11], and we require

Specifying UML Protocol State Machines in Alloy 315

them to be explicitly specified, however, this step will be automated to release
the user of this, potential, tedious task.

When PSMs are combined with UML static models such as CDs, both anno-
tated with OCL, the V&V task substantially increases in complexity. Namely,
it is no longer trivial to manually check consistency and detect specification
errors, such as unreachable states. For instance, is it possible to ensure that
every student has the opportunity to pass a course, by eventually reaching the
Passed state? And upon reaching such state, are the Student attributes consis-
tent, namely, is the course part of the exams association that stores the exams
successfully completed by the student? We will show how an Alloy formalization
of PSMs, CDs, and OCL, enables automatic verification of properties such as
these using the Alloy Analyzer.

3 Preliminary Concepts

We present preliminary concepts related to PSMs and Alloy. Section 3.1 explains
syntactic and semantics issues of PSMs. Section 3.2 introduces Alloy, and de-
scribes how UML models enriched with OCL can be formalized using an Alloy
idiom tailored for dynamic specification.

3.1 UML Protocol State Machines

The abstract syntax of a PSM is shown in Figure 2. A PSM is modeled using a di-
rected graph where the nodes represent states and the arrows transitions between
states. A transition is an expression of the form [precondition] operation /

[postcondition]. Pre- and post-conditions can be informally defined, however
UML prescribes the use of OCL for their formal specification. State invariants
can be associated to each state. A state invariant should be satisfied whenever
the related state is active. There exist three kind of states: simple, composite or
submachine. The first one is a state without sub-states (neither regions nor sub-
machines), the second one can be composed of two or more orthogonal regions,
and the third one allows the specification of inner state machine (submachines).
For instance, the PSM in Figure 1(a) shows a composite state, Studying, with
two regions which we will name them as R1 and R2. A region may optionally
have a final state and an initial pseudostate. Other examples of pseudostates
are: join, fork, junction and choice.

A transition is enabled when its source state is active, the source state invari-
ant holds and the pre-condition associated to its operation is true. Transitions
are triggered by events which represent invocation of operations. When the same
operation is referred by more than one transition, if it is invoked, different tran-
sitions will be enabled resulting in a conflict. The UML standard [16] prioritizes
firing using the state hierarchy: transitions from deeper sub-states have higher
priority over the ones from including composite states.

316 A. Garis et al.

Fig. 2. Metamodel of UML Protocol State Machines

3.2 Alloy

Alloy [10] is a formal modeling language based on a relational flavor of first-order
logic. Alloy is supported by the Alloy Analyzer, a SAT (satisfiability problem)
based tool that enables automatic model V&V. Alloy Analyzer is inspired by
model checkers, but it is implemented as a solver, performing verification within
a bounded scope.

The abstract syntax of Alloy language is described in the metamodel presented
in Figure 3. An Alloy module consists of a module header, a set of imports and
zero or more paragraphs. Themodule header is a name of the module where para-
graphs are defined. The import keyword specifies the inclusion of other modules.
A paragraph can either be a signature declaration, a constraint, an assertion or
a command.

A signature declaration denotes a set of atoms. An atom is a unity with three
basic properties: it is indivisible, immutable and uninterpreted. Signature decla-
rations can introduce fields. A field represents a relation among signatures. Facts,
predicates and functions describe invariants, named constraints, and named ex-
pressions, respectively. The difference between a fact and a predicate is that the
first one always holds while the second one only holds when invoked. Assertions
allow the expression of properties that are expected to hold as consequence of
specified facts. Finally, commands instruct the Alloy Analyzer to perform par-
ticular analysis using two possible instructions: run and check. The first checks
model consistency by requesting a valid instance, and the latter verifies an as-
sertion by searching for a counterexample. Both commands optionally define a
scope, bounding the number of instances allowed for each signature.

Specifying OCL Annotated Class Diagrams in Alloy. Alloy’s logic is
quite generic and does not commit to a particular specification style [10]. There

Specifying UML Protocol State Machines in Alloy 317

Alloy-metapackage Data[]

NamedElement

-name : String

intersection
difference

override

product
domain
range

union

join

<<enumeration>>
BinOp

-abs : Boolean
-mult : Mult [0..1]
-constSeq : ConstSeq [1]
-ext : SigId [0..1]

Sig

Header

-moduleId : ModuleId [1]
Import

-path : String
-sig : Sig [0..1]
-moduleId : ModuleId [1]

<<enumeration>>
Quant

some

lone
one

set

no

all

QuDcForm

-quant : Quant [1]
-decls : DeclExpr [1..*]
-forms : Form [1..*]

Paragraph

TypScope

-num : Integer [1]
-scopeable : SigId [1]
-exactly : Boolean

Fact

-factId : RelId [0..1]

ButScope

-num : Integer [0..1]

Expr

Pred

-predId : PredId [1]

<<enumeration>>
Mult

some

lone

one

set

<<enumeration>>
LogOp

andOp

iffiOp
iffOp

orOp

DeclExpr

-expr : Expr [1]
-vIds : VarId [1..*]

<<enumeration>>
CompOp

incl
eq

CpExForm

-lEx : Expr [1]
-rEx : Expr [1]
-op : CompOp [1]

Decl

-relId : RelId [1]

LogForm

-lFm : Form [1]
-rFm : Form [1]
-Op : LogOp [1]

SimpleScope

BinOpExpr

-lEx : Expr [1]
-rEx : Expr [1]
-op : BinOp [1]

FormConstSeq

ModuleId

Scope

SetDecl

Module

FunCall

RelDecl

Assert

PredId
Check

FactId

RelId
Run

VarId

Fun

FunId

SigId

-header1

-imports

0..*

0..1

-params
0..*

0..*

1..*

1..*

0..*

-paragraphs0..*

-decls
0..*

Fig. 3. Metamodel of Alloy

is also no predefined way to model dynamic behavior, since instances can only
be populated with immutable atoms. A standard way to circumvent this is to
introduce a signature denoting the overall state of the system, and model oper-
ations as predicates that specify the relationship between pre- and post-states.
Two variants of this idiom are known respectively as global state and local state.
In the first one, all mutable fields are defined in the global state signature. In
the second one, an extra column at the end of each mutable field is added lo-
cally to represent the state signature (usually denoted Time). The local state is
often simpler than other competing idioms for modeling the dynamics of com-
plex systems [24] and well-suited for modeling state machines [10]. In this idiom,
operations are modeled as predicates that specify the relationship between pre-
and post-states. To be more specific, an operation op is specified using a pred-
icate pred op[...,t,t’:Time] {...} with two special parameters t and t’

denoting, respectively, the pre- and post-state. Predicates of the form pred q

[...,t:Time] {...} are used to specify boolean queries. A formal character-
ization of this idiom can be found in [8], together with a translation to UML
CDs enriched with OCL.

Figure 4 shows how the OCL annotated CD of Figure 1(b) can be specified
in Alloy using the local state idiom. The passed, current, labs and exams as-
sociations are modeled as mutable relations in Student. Cardinality constraints
at association ends yield corresponding multiplicities in field declarations. For
example, the keyword lone in the field current limits the cardinality of the set
Course to zero or one instances, when it is associated to Time. OCL pre- and
post-conditions in operations are modeled by relational expressions evaluated
at state t and t’, respectively. In Alloy everything is a relation. Therefore, the
relational composition operator can be used to various purposes. In particular,

318 A. Garis et al.

module student

sig Time {}

sig Student {

passed : Course -> Time, current : Course lone -> Time,

labs : Laboratory -> Time, exams : Course -> Time }

sig Course { labs : some Laboratory }

sig Laboratory {}

fact { labs in Course lone -> Laboratory}

pred enroll [s : Student, c : Course, t,t’ : Time] {

no s.current.t

c not in s.passed.t

current.t’ = current.t + s -> c

passed.t’ = passed.t

labs.t’ = labs.t

exams.t’ = exams.t }

pred isEnrolled [s : Student, t : Time] { some s.current.t }

Fig. 4. Coursing example in Alloy

when t is composed with a mutable field, it denotes its value at the pre-state.
For example, s.current.t denotes the course of a student s prior to method
invocation. In Alloy there is no implicit self object, and an explicit self pa-
rameter must be included in the operation signatures. This explicit parameter
must then be used whenever self is implicitly used. For example, the OCL pre-
condition not passed->includes(c) of method enroll, stating that a student
can enroll only in courses not yet passed, can be specified in Alloy as c not in

s.passed.t. There are many challenging issues to address when implementing
an automatic translation from OCL to Alloy, such as the translation of OCL
pre- and post-conditions. These have been addressed but not implemented in
[1]. We will use the same approach, as in [1], to translate CDs annotated with
OCL to Alloy but considering dynamic issues. In particular, we will generate
a specification conforming the local state idiom; namely, to translate OCL pre-
and post-conditions to predicates and to include an extra column Time at the
end of each mutable field. Following this approach, an Alloy model equivalent
to the one of Figure 4 can be generated from the UML model of Figure 1(b).

4 Specifying Protocol State Machines in Alloy

We present an approach to specify PSMs in Alloy. Firstly, we specify how CD
enriched with OCL (CD+OCL) can be integrated in order to be used by a PSM.
Then, we describe the transformation of a PSM to Alloy and we show how to
perform V&V tasks using the Alloy Analyzer. The proposal is explained using
a case study. Finally, we formalize the transformation by defining the rules in
ATL.

Specifying UML Protocol State Machines in Alloy 319

4.1 Importing UML Class Diagram into Alloy

Two separate Alloy modules will be used: one to specify the CD+OCL, and
another to specify the PSM. The latter imports the former, since the trans-
formation from PSMs to Alloy requires the specification of classes, attributes,
relations and operations, corresponding to the CD+OCL, in the local state id-
iom. This separation of concerns allows us to directly reuse part of the output of
UML2Alloy tool, and, if the user makes changes to the Alloy model, it is possible
to translate it back to a CD+OCL using Alloy2OCL, another tool previously
developed for this particular effect [8].

4.2 PSM’s States and Transitions

PSM simple states can be modelled directly in Alloy using singleton signatures.
On the other hand, composite states and regions can be modeled using abstract
signatures, to be extended by the signatures modeling its sub-states. At the top
of the state hierarchy we will have the signature State containing all states.
The pseudostate Initial is also modeled similarly to simple states. Following
these rules, the states of our running example, in figure 1(b), can be specified as
follows.

abstract sig State {}

abstract sig Studying extends State {}

abstract sig R1 extends Studying {}

abstract sig R2 extends Studying {}

one sig Lab extends R1 {}

one sig NoExam, Exam extends R2 {}

one sig Initial, Enrolling, Passed, Quitted, Failed extends State {}

The PSM itself is modeled using a singleton signature PSM, with a single mutable
relation state, that, for each time instant and instance of the associated class
returns the set of active states.

one sig PSM { state: State some -> Student -> Time }

Similarly to operations, transition between normal states will be modeled by a
predicate that, for each instance of the class associated with the PSM, relates
the pre- and post-state. The metamodel of PSMs (see Figure 2) establishes
that a protocol transition can refer to zero or more operations. To simplify the
presentation, we will limit this set to at most one operation per transition. The
transition predicate invokes the referred operation, whose predicate is defined in
the imported model. If no operation is referred, the transition predicate invokes
a special nop predicate, with frame-conditions that constrain all mutable fields
to remain unchanged. Each transition predicate also includes two constraints to
model the dynamics of the machine: one checks if all the source states are active
in the pre-state for the given instance, and the other changes the relation state,
so that its target states are active in the post-state. For example, transition t3

of figure 1(a) can be modeled as follows.

320 A. Garis et al.

pred t3 [s : Student, t,t’ : Time] {

NoExam in PSM.state.t.s

PSM.state.t’ = PSM.state.t - (NoExam -> s) + (Exam -> s)

approve[s,t,t’] }

The relational expression NoExam -> s denotes the cartesian product of NoExam
and s. Since these are singletons, in this case it denotes just a tuple. As such, the
second constraint ensures that relation state has the same pre- and post-state
for all student instances, except for s, which changes its state from NoExam to
Exam.

Some transitions are not translated as predicates. In particular, this is the
case of incoming transitions of join pseudostates and outgoing transitions of fork
pseudostates. Their source and target states will be handled by the respective
outgoing and incoming transitions. For instance, consider the fork pseudostate
whose incoming transition is t1, with two outgoing transitions leading to the
Studying composite state, respectively to Lab and NoExam. These states will be
activated by the predicate modeling t1, which is defined as follows.

pred t1 [s: Student, t,t’ : Time] {

Enrolling in PSM.state.t.s

PSM.state.t’ = PSM.state.t - (Enrolling -> s) + ((Lab + NoExam) -> s)

some c : Course { (no s.current.t) && enroll[s,c,t,t’] } }

Notice the usage of an existential quantifier, some, to introduce the parameters
of operation enroll, and the inclusion of the Alloy translation of the specified
OCL pre-condition before its invocation.

State invariants are enforced using a fact for each state that declares them.
For composite states, the invariant must hold whenever any of its sub-states is
active. For example, the state invariant of Studying is specified as follows.

fact Studying {

all t:Time, s:Student | some (PSM.state.t.s & Studying)=> isEnrolled[s,t]}

4.3 Finite Execution Traces

To model finite execution traces, a total order will be imposed on the Time

signature using the predefined Alloy library ordering. This library defines useful
relations to manipulate the total order, namely first to denote the first atom,
and next, a binary relation that, given an atom, returns the following atom in
the order.

The next relation must be restricted to relate only Time atoms for which a
transition predicate holds for one of the instances of the class associated with the
PSM. Moreover, at the first time atom all instances must be at the Initial

pseudostate. Both these constraints are defined in the special fact Traces.

fact Traces {

all s : Student | PSM.state.first.s = Initial

all t : Time, t’ : t.next | some s : Student {

t0[s,t,t’] or t1[s,t,t’] or t2[s,t,t’] or t3[s,t,t’] or t4[s,t,t’] or

t5[s,t,t’] or t6[s,t,t’] or t7[s,t,t’] or t8[s,t,t’] or t9[s,t,t’] }}

Specifying UML Protocol State Machines in Alloy 321

Firing Priority. Our running example does not contain conflicting transitions.
If two transitions high and low could potentially be in conflict (that is, the same
operation is invoked in both), and high has higher priority then low, then fact
Traces would invoke them using

high[s,t,t’] or (not high[s,t,t’] and low[s,t,t’]).

4.4 Verification and Validation of UML Diagrams

With both the PSM and the CD+OCL specified in Alloy, we can now check
their consistency by asking for an execution trace. This can be done with the
command run, that instructs the Alloy Analyzer to look for a valid instance of
the model.

For instance, consider the command run {} for 2 but 1 Student, 15 Time.
The keyword for can be used to define a scope bounding the number of atoms
allowed for each signature. The keyword but establishes an exception for the
boundary defined by for. In this case, the number of Student atoms is limited
to 1 and the number of Time atoms is extended to 15.

In this particular example, the run command returns a valid trace and thus
the PSM is consistent with the OCL annotated CD. However, this notion of
consistency is very basic and does not suffice in order to validate the models. A
more reliable notion is to check that every state of the PSM is reachable. For
example, is it possible for a student to pass at least one course? Again, using a
run command, we can ask the analyzer to return a trace where a student reaches
state Passed.

run {some t : Time, s : Student | Passed in PSM.state.t.s

} for 2 but 1 Student, 15 Time

In this case the analyzer cannot find a valid execution trace, meaning that state
Passed is unreachable in 15 steps. Obviously, this means that there is some
problem with one of the models. Looking back at the PSM of Figure 1(a)
we can see that there is a problem with the pre-condition of transition t2,
that requires the (to be completed) lab assignment to already been completed
before. After inserting the missing not, changing that pre-condition to (not

self.labs->includes(l)) and self.current.labs->includes(l) the ana-
lyzer returns a valid execution trace. Figure 5 presents 6 consecutive states of this
trace moving the student from state Enrolling to Passed: the student is first
approved in the exam and then completes the two mandatory lab assignments.
Since reachability is a desirable property, we will define a rule transformation to
generate similar runs for each simple state of the PSM.

There are other examples of V&V tasks that can be performed using the Alloy
Analyzer. For example, we can check that, when a student is in the Passed state,
the exams relation contains the current course, using the following command.

check {all t :Time, s : Student { Passed in PSM.state.t.s =>

s.current.t in s.exams.t } } for 10 but 1 Student, 30 Time

322 A. Garis et al.

(a) Time 4 (b) Time 5 (c) Time 6

(d) Time 7 (e) Time 8 (f) Time 9

Fig. 5. Trace leading to a passed course

As previously mentioned, check verifies the assertion by searching for a coun-
terexample. We specify a big scope in order to be confident that the assertion
holds. In particular, we bound the number of atoms allowed for each signature to
10 but 30 for Time. Since no counterexamples are returned with such big scope,
we can be more confident that this assertion holds.

4.5 Implementation

Our proposal was prototyped in a model transformation tool using the MDA
approach: First, both the PSM and Alloy metamodels were specified, and then
we defined a mapping from PSM elements to Alloy elements using the model
transformation language ATL. Some of the ATL rules are presented in Figure 6.

Rule Model2Module maps a UML model of one PSM to an Alloy module,
declaring the respective header and imports. Rule PSM2Sig creates the singleton
signature PSM with the dynamic relation state. Rule CompositeState2Sig cre-
ates an abstract signature extending State for each PSM composite
state. SimpleState2Run generate a run command for each simple state
of the PSM. The ATL transformation is available for download at
http://sourceforge.net/p/psm2alloy.

http://sourceforge.net/p/psm2alloy

Specifying UML Protocol State Machines in Alloy 323

5 Related Work

Likewise other UML diagrams, the semantics of PSMs is quite ambiguous, and
several attempts have been made to formalize it. For example, Bauer et al. [5]
propose a model-theoretic semantics, based on labelled transition systems, for
three different perspectives (namely, implementator’s view, user’s view, and in-
teraction view) of the PSM. Here we will follow the user’s view, that a PSM
specifies the allowed call sequences on the classifiers operations.

The joint V&V of PSMs and other UML diagrams using traditional formal
methods has also been proposed. For example, Lanoix et al. [12] use the B
method to verify the interoperability and refinement of UML components, spec-
ified using CDs, sequence diagrams and PSMs. However, the focus is not on
consistency and class methods are specified directly in B instead of the UML
standard OCL. The consistency of an UML classes and the associated PSM
has previously been addressed by Rash and Wehrheim [20], using a formaliza-
tion to CSP. Again, classes are not specified with OCL, but using Object-Z.
Lightweight formal methods have also been used for similar purposes before. In
particular, Nimiya et al. [15] propose a method for verifying consistency of UML
state machine diagrams and communication diagrams using Alloy, but it does
not consider integration with CDs neither OCL. Ries [21] formalizes a subset of
UML CDs and PSMs in Alloy, as part of a lightweight model-driven test selec-
tion process called SESAME, but it does not consider complex UML elements,
such as composite states or fork and choice pseudostates, neither addresses the
consistency of PSMs with CDs+OCL.

The relationship between CDs+OCL with Alloy has been extensively stud-
ied by Anastaskis et al. [2], resulting in a prototype model transformation tool
named UML2Alloy that formalizes that relationship as a shallow embedding.
Maoz et al [13] proposed a formalization of CDs using a deep embedding to Al-
loy, to support UML features not directly expressible in Alloy, such as multiple
inheritance. However, both these formalizations yield Alloy specifications which
are not well-suited to model dynamic behavior, namely by not making clear the
distinction between pre- and post-states in method specification. Anastasakis [1]
showed how UML2Alloy could be extended to solve that issue, but that extension
was never incorporated into UML2Alloy. These formalizations did not consider
PSMs, and thus left out some OCL features related to state machines, namely
the OCL predefined operation oclIsInState, which evaluates whether an object
is in a specific state.

UML has also been mapped to Alloy for model V&V of particular case-studies.
We present three examples: the first one uses the Alloy Analyzer for formal
security evaluation in a methodology called Aspect-Oriented Risk-Driven De-
velopment [9]; the second one describes a proposal for Alloy specification of
Aspect-UML models, a UML Profile for extending UML with Aspect-oriented
concepts [14]; the third one explains an approach to translate UML models,
specified with OntoUML, for model validation using Alloy [6]. These examples,
likewise [2] and [13], make evident Alloy potential for UML V&V, but they do
not consider UML dynamic diagrams such as PSMs.

324 A. Garis et al.

create OUT : MMAlloy from IN : MMUml;

rule Model2Module {

from s : MMUml!Model (

MMUml!ProtocolStateMachine.allInstances()->size() =1)

to mId : MMAlloy!ModuleId (name <- s.name),

hd : MMAlloy!Header (moduleId <- mId),

stId : MMAlloy!SigId (name <- ’State’),

st : MMAlloy!Sig (abs <- true, sigId <- stId),

m : MMAlloy!Module (header<- hd,

imports <- MMAlloy!Import.allInstances(),

paragraphs <- MMAlloy!Paragraph.allInstances())

}

rule PSM2Sig {

from s : MMUml!ProtocolStateMachine

to sig : MMAlloy!SigId (name <- ’PSM’),

var : MMAlloy!VarId (name <- ’state’),

decl : MMAlloy!RelDecl(

varIds <- var, mult <- #some, sigs <- getSigId(’State’)...),

psm : MMAlloy!Sig (

abs <- false, mult <- #one, sigId <- sig, decls <- decl)

}

rule CompositeState2Sig {

from s : MMUml!State (s.name <> ’’ and s.isComposite())

to sigId: MMAlloy!SigId(name <- s.name),

sigEx : MMAlloy!SigId(name <- s.getRegion()),

sig : MMAlloy!Sig (abs <- true, sigId <- sigId, exts <- sigEx)

}

rule SimpleState2Run {

from s : MMUml!State (s.name <> ’’ and s.isSimple())

to

v1 : MMAlloy!VarId (name <- ’t’),

v2 : MMAlloy!VarId (name <- ’s’),

dEx1: MMAlloy!DeclExpr (vId <- v1, sigId <- getSigId(’Time’)),

dEx2: MMAlloy!DeclExpr (vId <- v2, sigId <- getSigCl())),

ex : MMAlloy!BinOpExpr(op <- #join, rEx <- ex2,lEx <- getSigId(’PSM’)),

ex2 : MMAlloy!BinOpExpr(op <- #join, rEx <- ex3,lEx <- getRel(’state’)),

ex3 : MMAlloy!BinOpExpr(op <- #join, rEx <- v1 , lEx <- v2),

fm : MMAlloy!CpExForm (op <- #incl, lEx <- getSigId(s.name),rEx <- ex),

qF : MMAlloy!QuDcForm (q <- #some, decls<- Set{dEx1,dEx2},forms<- fm),

tyT : MMAlloy!TypeScope(num <- ’15’,scopeable <- getSigId(’Time’)),

tyC : MMAlloy!TypeScope(num <- ’1’ ,scopeable <- getSigIdClass()),

sc : MMAlloy!ButScope (num <- ’2’, typeScopes <- Set{tyT,tyC}),

run : MMAlloy!SimpleRun(form<- qF, scope <- sc) }

Fig. 6. ATL rules to map a PSM to Alloy

Specifying UML Protocol State Machines in Alloy 325

6 Conclusions and Future Work

We have shown how both PSMs and CDs enriched with OCL can be formal-
ized in Alloy, using the local state idiom to handle dynamics. This formalization
enables us to perform automatic V&V of these UML diagrams using the Alloy
Analyzer. In particular, it allows us to check they are consistent with each other,
a fundamental property ignored by current UML tools. The proposed PSM for-
malization was prototyped using ATL. The proposed formalization of CDs+OCL
could be implemented with a new version of UML2Alloy, to be (hopefully) re-
leased soon. The output (in Alloy) of this tool can be changed by the user (e.g.,
to correct ambiguities) and translated back into UML using the (previously de-
veloped) tool OCL2Alloy. This allows a smooth integration of Alloy in software
development practices, namely allowing the use of the many available MDA tools
on models which are verified and validated with Alloy.

The proposal could be scalable to other domains, such as safety-critical sys-
tems. So far, the formalization was only tested with small examples. We intent to
validate it with larger case studies. Other ongoing work includes a (small) exten-
sion to Alloy to allow the specification of more complex behavioral properties in
temporal logic (LTL). This will further simplify the V&V effort required by the
user, by allowing him to reuse well-known temporal specification patterns [7].
In the future we also intend to use this formalization to automatically generate
UML sequence diagrams, to be used in model based testing.

References

1. Anastasakis, K.: A Model Driven Approach for the Automated Analysis of UML
Class Diagrams. Ph.D. thesis, University of Birmingham (2009)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software and Systems Modeling 9(1), 69–86 (2008)

3. de Andrade, F.R., Faria, J.P., Paiva, A.C.R.: Test generation from bounded alge-
braic specifications using alloy. In: ICSOFT (2), pp. 192–200 (2011)

4. ATLAS: ATLAS Transformation Language, LINA&INRIA (2009)
5. Bauer, S.S., Hennicker, R.: Views on Behaviour Protocols and Their Semantic

Foundation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS,
vol. 5728, pp. 367–382. Springer, Heidelberg (2009)

6. Braga, B.F.B., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming On-
toUML into Alloy: towards conceptual model validation using a lightweight formal
method. Innovations in Systems and Software Engineering 6(1-2), 55–63 (2010)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM (1999)

8. Garis, A., Cunha, A., Riesco, D.: Translating Alloy Specifications to UML Class
Diagrams Annotated with OCL. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 221–236. Springer, Heidelberg (2011)

9. Georg, G., Anastasakis, K., Bordbar, B., Houmb, S.H., Toahchoodee, I.R.M.: Ver-
ification and trade-off analysis of security properties in UML system models. IEEE
Transactions on Software Engineering 36(3), 338–356 (2010)

326 A. Garis et al.

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

11. Kosiuczenko, P.: Specification of Invariability in OCL. In: Wang, J., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 676–691. Springer,
Heidelberg (2006)

12. Lanoix, A., Souquières, J.: Trustworthy Assembly of Components using B Refine-
ment. e-Informatica Software Engineering Journal (ISEJ) 2(1) (2008)

13. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class Diagrams Analysis Using
Alloy Revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 592–607. Springer, Heidelberg (2011)

14. Mostefaoui, F., Vachon, J.: Verification of Aspect-UML models using Alloy. In:
Proceedings of the 10th International Workshop on Aspect-Oriented Modeling,
pp. 41–48. ACM (2007)

15. Nimiya, A., Yokigawa, T., Miyazaki, H., Amasaki, S., Sato, Y., Hayase, M.: Model
checking consistency of UML diagrams using Alloy. World Academy of Science,
Engineering and Technology 71(99), 547–550 (2010)

16. OMG: UML Superstructure, Version 2.4.1 (2011)
17. OMG: Object Constraint Language, Version 2.3.1 (2012)
18. Paiva, A.C.R., Faria, J.C.P., Vidal, R.F.A.M.: Towards the integration of visual

and formal models for GUI testing. Electronic Notes in Theoretical Computer
Science 190(2), 99–111 (2007)

19. Porres, I., Rauf, I.: Generating class contracts from UML protocol statemachines.
In: Proceedings of the 6th International Workshop on Model-Driven Engineering,
Verification and Validation, MoDeVVa 2009. pp. 8:1–8:10. ACM (2009)

20. Rasch, H., Wehrheim, H.: Checking Consistency in UML Diagrams: Classes and
State Machines. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003.
LNCS, vol. 2884, pp. 229–243. Springer, Heidelberg (2003)

21. Ries, B.: SESAME: A Model-Driven Process for the Test Selection of Small-Size
Safety- Related Embebbed Software. Ph.D. thesis, Université du Luxembourg
(2009)

22. Schinz, I., Toben, T., Mrugalla, C., Westphal, B.: The Rhapsody UML verification
environment. In: Proceedings of the Software Engineering and Formal Methods,
SEFM 2004. pp. 174–183 (2004)

23. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15, 92–122 (2006)

24. Taghdiri, M., Jackson, D.: A Lightweight Formal Analysis of a Multicast Key
Management Scheme. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003.
LNCS, vol. 2767, pp. 240–256. Springer, Heidelberg (2003)

Patterns for a Log-Based Strengthening

of Declarative Compliance Models

Dennis M.M. Schunselaar, Fabrizio M. Maggi, and Natalia Sidorova

Eindhoven University of Technology, The Netherlands
{d.m.m.schunselaar,f.m.maggi,n.sidorova}@tue.nl

Abstract. LTL-based declarative process models are very effective
when modelling loosely structured processes or working in environments
with a lot of variability. A process model is represented by a set of con-
straints that must be satisfied during the process execution. An impor-
tant application of such models is compliance checking: a process model
defines then the boundaries in which a system/organisation may work,
and the actual behaviour of the system, recorded in an event log, can be
checked on its compliance to the given model.

A compliance model is often a general one, e.g., applicable for a whole
branch of industry, and some constraints used there may be irrelevant
for a company in question: for example, a constraint related to property
assessment regulations will be irrelevant for a rental agency that does not
execute property assessment at all. In this paper, we take the compliance
model and the information about past executions of the process instances
registered in an event log and, by using a set of patterns, we check which
constraints of the compliance model are irrelevant (vacuously satisfied)
with respect to the event log. Our compliance patterns are inspired by
vacuity detection techniques working on a single trace. However, here we
take all the knowledge available in the log into consideration.

Keywords: Linear Temporal Logic, Declare, Vacuity detection, Com-
pliance checking, Event log.

1 Introduction

While imperative process modelling languages such as BPMN, UML ADs, EPCs
and BPEL are very useful when it is necessary to provide strong support to
the process participants during the process execution, they are less appropriate
for environments characterised by high flexibility and variability. In such cases,
declarative process models are more effective than the imperative ones [1,14].
Instead of explicitly specifying all the possible sequences of activities in a process,
� This research has been carried out as part of the Configurable Services for Local

Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).
�� This research has been carried out as a part of the Poseidon project at Thales under

the responsibilities of the Embedded Systems Institute (ESI). The project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 327–342, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.win.tue.nl/coselog/

328 D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova

declarative models implicitly specify the allowed behaviour of the process with
constraints, i.e., rules that must be followed during execution. In comparison to
imperative approaches, which produce “closed” models (what is not explicitly
specified is forbidden), declarative languages are “open’: everything that is not
forbidden is allowed. In this way, models offer flexibility and still remain compact.

Recent works have showed that declarative languages based on LTL (Linear
Temporal Logic) [16] can be fruitfully applied in the context of process discov-
ery [7,11] and compliance checking [5,10,12]. In [13], the authors introduced a
declarative process modelling language called Declare characterised by a user-
friendly graphical representation and a formal semantics grounded in LTL. A
Declare model is a set of Declare constraints, which are defined as instantiations
of Declare templates. Templates are abstract entities that define parameterised
classes of properties. Fig. 1 shows the representation of the response template
�(x ⇒ ♦y) in Declare and its possible instantiation in a process for renting
apartments, where parameters x and y take the values Plan final inspection
and Execute final inspection. This constraint means that every action Plan final
inspection must eventually be followed by action Execute final inspection.

Since Declare models are focused on ruling out forbidden behaviour, Declare
is very suitable for defining compliance models that are used for checking that
the behaviour of a system complies certain regulations. The compliance model
defines the rules related to a single instance of a process, and the expectation
is that all the instances follow the model. For example, the constraint after
planning a final inspection, the inspection must be eventually executed will be
satisfied for a process instance trace if the activity “plan final inspection” is
followed by “execute final inspection”, or if “plan final inspection” does not
happen at all. Note that this constraint is only informative for a company if
“plan final inspection” can happen in some process instance; if it never happens,
the constraint is still satisfied but in an uninteresting way, which is called vacuous
satisfaction.

Vacuous satisfaction of a constraint might signal that the constraint from
some reference compliance model is (1) irrelevant for a particular company (e.g.,
the company does not do final inspections at all), or (2) it might indicate some
underspecification in the compliance model (e.g., the constraint saying that every
process execution should contain the planning of the final inspection is missing).
In case (1), the model is unnecessarily difficult for (new) company employees and
they get inclined to disregard it as irrelevant. The company needs this constraint
to be strengthened to the constraint saying that “plan final inspection” cannot
occur. In case (2), the danger is even bigger, since the model does not capture
the regulations correctly.

In this paper, we take the information about the executions of process in-
stances captured in the event log (assuming that it is long enough [4] and thus
captures enough information about the system behaviour), we check which con-
straints are vacuously satisfied on the log and we replace them with stronger
constraints using our compliance patterns. We start from the existing results in
the field of vacuity detection for single traces [2,6] and we extend the method

Patterns for a Log-Based Strengthening 329

Fig. 1. Response template in Declare and its possible instantiation

of [6] in order to take into account the context of compliance checking where
constraints are evaluated not just on single traces but on sets of traces coming
from an event log.

We have evaluated our approach on an event log from a Dutch rental agency.
Starting from an input compliance model defined by a domain expert we applied
our approach and diagnosed the options for strengthening the compliance model
so that the obtained model shows constraints relevant with respect to the log.

The remainder of the paper is structured as follows: we discuss related work in
Sect. 2. In Sect. 3, we provide an informal introduction to the Declare language
based on the Declare model for cancellation of a rental contract of an apartment
rental company that we use as a running example. In Sect. 4, we propose compli-
ance patterns for Declare constraints and in Sect. 5 we discuss our methodology
for strengthening compliance models. In Sect. 6, we show an application of our
approach to a real-life example. Section 7 concludes the paper.

2 Basic Concepts and Related Work

In Tab. 1, we briefly introduce the standard LTL operators and their (informal)
semantics [16], which is used in Declare constraints.

In this paper, we start from the notions of vacuity detection and interesting
witness first introduced in [2] for CTL* formulas. Since CTL* is a superset of
LTL (in which we are interested in the context of Declare), we can apply these
notions in our work. According to [2], a path π is an interesting witness for a
formula ϕ if π satisfies ϕ non-vacuously, which means that every subformula ψ
of ϕ affects the truth value of ϕ in π. In [2], the authors present an approach for
vacuity detection for w-ACTL, a subset of Action Computational Tree Logic,
which is, in turn, a subset of CTL. In [17], the authors present an approach for

Table 1. The LTL operators and their semantics

Operator Semantics

©ϕ ϕ holds in the next position of a path.

�ϕ ϕ holds always in the subsequent positions of a path.

♦ϕ ϕ holds eventually (somewhere) in the subsequent positions of a path.

ϕUψ ϕ holds in a path at least until ψ holds. ψ must hold in the current or
in a future position.

330 D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova

vacuity detection in CTL formulas. They do not provide, however, an operative
algorithm to be applied to LTL specifications.

In [6], the authors introduce an approach for vacuity detection in temporal
model checking for LTL; they provide a method for extending an LTL formula
ϕ to a new formula witness(ϕ) that, when satisfied, ensures that the origi-
nal formula ϕ is non-vacuously true. In particular, witness(ϕ) is generated by
considering that a path π satisfies ϕ non-vacuously (and then is an interesting
witness for ϕ), if π satisfies ϕ and π satisfies a set of additional conditions that
guarantee that every subformula of ϕ does really affect the truth value of ϕ in
π. These conditions correspond to the formulas ¬ϕ[ψ ← ⊥] where, for all the
subformulas ψ of ϕ, ϕ[ψ ← ⊥] is obtained from ϕ by replacing ψ by false or true,
depending on whether ψ is in the scope of an even or an odd number of nega-
tions. Then, witness(ϕ) is the conjunction of ϕ and all the formulas ¬ϕ[ψ ← ⊥]
with ψ being a subformula of ϕ:

witness(ϕ) = ϕ ∧
∧
¬ϕ[ψ ← ⊥]. (1)

This approach was applied to Declare in [11] for vacuity detection in the context
of process discovery. However, the algorithm introduced in [6] can generate dif-
ferent results for equivalent LTL formulas. Consider, for instance, the following
equivalent formulas (corresponding to a Declare alternate response constraint):

ϕ = �(a⇒ ♦b) ∧�(a⇒©((¬aUb) ∨�(¬b))) , and

ϕ′ = �(a⇒©(¬aUb)).

When we apply (1) to ϕ and ϕ′, we obtain that witness(ϕ) �= witness(ϕ′):

witness(ϕ) = false ,

witness(ϕ′) = ϕ′ ∧ ♦(¬© (¬aUb)) ∧ ♦(a) ∧ ♦(a ∧ ¬© (b)).

In compliance models, LTL-based declarative languages like Declare are used
to describe requirements to the process behaviour. In this case, each LTL rule
describes a specific constraint with clear semantics. Therefore, we need a univocal
(i.e., not sensitive to syntax) and intuitive way to diagnose vacuously compliant
behaviour in an LTL-based process model.

Another issue in the approach proposed by [6] is that for two LTL formulas
f and g, the composite formula ϕ = f ∨ g is never non-vacuously true. This
is definitely counterintuitive, because one would expect that ϕ is non-vacuously
true if f is non-vacuously true or g is non-vacuously true.

Furthermore, the notion of vacuous satisfaction, as introduced in [2,6], is de-
signed for formulas that hold on a given trace in an uninteresting way. However,
when applying (1) in the context of a log (a set of traces), we obtain, in some
cases, conditions for vacuity detection that are too strong and difficult to satisfy.

For instance, if we apply (1) to ϕ = �(Agree on self made changes? ⇒
♦(Plan final inspection ∨ Adjust floor plan)), we obtain that witness(ϕ) is:

Patterns for a Log-Based Strengthening 331

ϕ ∧ ♦(Agree on self made changes? ∧ ♦(Plan final inspection)) ∧
♦(Agree on self made changes? ∧ ♦(Adjust floor plan)).

This formula is too strong in the context of a log, since we will not have in every
trace Agree on self made changes? followed by both Plan final inspection and
Adjust floor plan. In our approach, we will “weaken” this condition by requiring
that each term of the conjunction must be valid, separately, on different traces. In
addition, the original formula must be also always valid. This yields the following
two formulas:

ϕ ∧ ♦(Agree on self made changes? ∧ ♦(Plan final inspection)), and
ϕ ∧ ♦(Agree on self made changes? ∧ ♦(Adjust floor plan))

each of which is expected to hold independently on some trace of the log to
justify that the original formula is non-vacuously satisfied in the log.

3 Declare

Declare is characterised by a user-friendly graphical front-end and is based on a
formal LTL back-end. These characteristics are crucial for two reasons. First of
all, Declare is understandable for end-users and suitable to be used by stakehold-
ers with different backgrounds. For instance, Declare has been already effectively
applied in a project for maritime safety and security [9] where several project
members did not have any formal background. Secondly, Declare has a formal
semantics and Declare models are verifiable. This characteristic is important for
the implementation of tools to check the compliance of process behaviour to
Declare models (see, e.g., [10]).

A Declare model consists of a set of constraints which, in turn, are based on
templates. Templates are parameterised classes of properties (a superset of the
ones defined by Dwyer et al. in [3]) equipped with a graphical representation and
a semantics specified through LTL formulas. Each Declare constraint inherits the
graphical representation and semantics from its template. When a template is
instantiated in a constraint, a template parameter is replaced by one or several
activities. When two or more activities are used for one parameter, we say that
this parameter branches and it is then substituted by a disjunction of branched
activities in the LTL formula.

Declare constraints can be subdivided into four groups: existence (i.e., exis-
tence, absence, exactly and init), relation (i.e., responded existence, co-existence,
response, precedence, succession, alternate response, alternate precedence, alter-
nate succession, chain response, chain precedence and chain succession),
negative relation (i.e., not co-existence, not succession and not chain succes-
sion), and choice (i.e., choice and exclusive choice). The LTL semantics for
existence and relation constraints are listed in Tab. 2, Tab. 3 and Tab. 4 (first
line for each constraint). For the full overview of the language we refer the reader
to [13,15].

332 D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova

Fig. 2. An example of a Declare model

Fig. 2 shows a Declare model that describes a process for cancellation of a
rental contract at a rental agency, which we use to explain the main charac-
teristics of the language. The process in Fig. 2 involves five activities, depicted
as rectangles (e.g., Plan final inspection), and three constraints, showed as con-
nectors between the activities (e.g., not succession). In our example, prior to
agreeing to any changes made by the tenant, the company must create a rental
cancellation form. This form will be used in the activity Agree on self made
changes? to specify whether the company agrees or disagrees with the self-made
changes. This is indicated by the precedence constraint. After agreeing or dis-
agreeing with the self-made changes, the company either plans a final inspec-
tion (to determine whether the tenant has reverted or mended her self-made
changes), or adjusts the floor plan to reflect the current situation after the self-
made changes. If they partially agree on the changes made by the tenant, it is
possible to adjust the floor plan and plan a final inspection. All this is captured
in the branched response constraint. Finally, the company cannot plan a final
inspection after having created (and sent) a confirmation letter (stating that no
problem was encountered), as indicated by the not succession constraint.

The response constraint in Fig. 2 is an example of a branched response con-
straint �(x ⇒ ♦y), where parameter x is replaced by Agree on self made
changes? and parameter y is branched on Plan final inspection and Adjust
floor plan. This means that if Agree on self made changes? occurs in a trace,
it must be eventually followed by Plan final inspection or Adjust floor plan,
captured in LTL as �(Agree on self made changes ⇒ ♦(Plan final inspection ∨
Adjust floor plan)).

The other two constraints in our renting agency model, are captured in LTL
as �(Create confirmation letter ⇒ (¬♦Plan final inspection)) (not succession),
and (¬Agree on self made changes? U Create rental cancellation form) ∨
�(¬Agree on self made changes?) (precedence).

The semantics of the whole model is determined by the conjunction of these
formulas. Note that, when operating on business processes, we reason on finite
traces. Therefore, we assume that the semantics of the Declare constraints is
expressed in FLTL [8], a variant of LTL for finite traces.

Patterns for a Log-Based Strengthening 333

4 Approach

In the remainder of the paper, we write A for the disjunction over the activities
in A = {a1, · · · , an}, i.e., A =

∨
a∈A a. Similarly, we write B for the disjunction∨

b∈B b over the activities in B = {b1, · · · , bm}. We write W for an event log,
t ∈ W for a trace in W and we assume the activities to be atomic.

Similarly to the notion for vacuity detection captured by (1), we define a
vacuity detection condition as follows:

Definition 1. Given a (branched) Declare constraint ϕ, a vacuity detection
condition of ϕ is a formula ¬ϕ[ψ ← ⊥] with ψ being a subformula of ϕ.

In the context of compliance checking,we do not reason in terms of single traces but
in terms of event logs that are composed of multiple traces. Therefore, as explained
in Sect. 2, when applying (1) to a branched Declare constraint, instead of verifying
the conjunction of all the vacuity detection conditions on every single trace, we
adopt a more “permissive” approach. In particular,we require that for each vacuity
detection condition, there exists a trace on which the condition holds.

According to [6], the algorithm described by (1) can be applied in a user-
guided mode by limiting the evaluation of witness(ϕ) only to a subset of vacuity
detection conditions. We choose these subsets differently for different Declare
constraints by considering the vacuity detection conditions that give significant
results from the point of view of each specific constraint. We have to use the
user-guided mode because of the problems mentioned in Sect. 2.

As final output of our approach we want to obtain from a given compliance
model and a log a more restrictive compliance model, where strengthening of the
constraints is defined by the results of the vacuity check. The vacuity check can
be done by applying a set of compliance patterns. First, through a compliance
pattern, we check whether ϕ is satisfied everywhere in the log. Second, we check
whether, for each vacuity detection condition ¬ϕ[ψ ← ⊥], there is a trace of the
considered log where the condition is satisfied. Third, we check, for each con-
straint of the original model, whether a stronger constraint holds non-vacuously
on every trace of the log. For this purpose, in Fig. 3, we define a hierarchy of
Declare constraints where an arrow from a node x to a node y means that x
implies y (x is stronger than y). The names of the constraints suggest their
meaning and their semantics is defined later in this section. Note that RE−1 is
used to denote that the sets of activities has been swapped. Therefore, from the
hierarchy, responded existence(B ,A) is weaker than precedence(A,B).

Based on these observations, we can define the compliance pattern of a Declare
constraint:

Definition 2. Given a log W and a (branched) Declare constraint ϕ, the com-
pliance pattern of ϕ in W is a set composed of three conditions:

1. ϕ holds on every trace of W ;
2. for each element of a selection of vacuity detection conditions of ϕ, there is

a trace in W on which this element holds (user-guided application of (1));
3. no stronger constraint holds non-vacuously in W .

334 D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova

C S C PC R

A SA R A P

S PR

CERE

EXAn

ABSn+1

EXIn

Init ¬ CE

¬ S

¬ C S

C: Chain

A: Alternate

R: Response

P: Precedence

S: Succession

RE: Responded Existence

CE: Co-Existence

CH: Choice

E: Exclusive

ABS: Absence

EXI: Existence

EXA: Exactly

ABSn

EXAn+1

EXIn+1

ABSn+2

E CH CHRE−1

Fig. 3. The hierarchy of the Declare constraints

Furthermore, we define the notion of strong compliance as follows:

Definition 3. Given a log W and a Declare constraint ϕ, W is strongly com-
pliant to ϕ if all the conditions of the corresponding compliance pattern of ϕ are
satisfied in conjunction on W .

In the remaining subsections, we describe the compliance patterns of the existence
and relation constraints. For the negative relation and choice constraints the ap-
plication of the compliance patterns can be reduced to the evaluation of items
1 and 3 of Def. 2.

4.1 Existence Constraints

The compliance patterns for the existence constraints are listed in Tab. 2. For
each constraint, the first line of the pattern shows the original LTL semantics
that must hold for every trace in the log. For the init constraints, the additional
condition is obtained by applying the approach for vacuity detection (1). When
applying (1) on the existence(nr , A), we replace a ∈ A by false. Then, we obtain
¬existence(nr ,A[a← false]) ≡ absence(nr ,A \ {a}).

Moreover, we want to ensure that in all these cases a stronger constraint does
not hold (these conditions are not shown in the table for the sake of readability:
they can be derived from the hierarchy in Fig. 3).

4.2 Relation Constraints

Our compliance patterns for the relation constraints are listed in Tab. 3 and
Tab. 4. The conditions

∀a ∈ A ∃t ∈ W : t |= ♦a, and ∀b ∈ B ∃t ∈ W : t |= ♦b
must always be satisfied and we omit them in the tables. We also omit the
conditions defining for each constraint that no stronger constraint holds non-
vacuously in the log: they can be directly derived from the hierarchy in Fig. 3.

Patterns for a Log-Based Strengthening 335

Table 2. Compliance patterns for existence constraints

Constraint Pattern

existence(1, A) ∀t ∈W : t |= ♦(A)
∀a ∈ A : ∃t ∈W : t |= ♦(a)
∀a ∈ A : ∃t ∈W : t |= absence(1,A \ {a})

existence(nr , A) ∀t ∈W : t |= ♦(A ∧©(existence(nr − 1,A)))
∀a ∈ A : ∃t ∈W : t |= ♦(a)
∀a ∈ A : ∃t ∈W : t |= absence(nr ,A \ {a})

absence(nr , A) ∀t ∈W : t |= ¬existence(nr ,A)

exactly(nr , A) ∀t ∈W : t |= existence(nr ,A)∧
absence(nr + 1,A)
∀a ∈ A : ∃t ∈W : t |= ♦(a)

init(A) ∀t ∈W : t |= A
∀a ∈ A : ∃t ∈W : t |= a

Table 3. Compliance patterns for relation constraints without order

Constraint Pattern

responded existence(A, B) ∀t ∈W : t |= ♦(A)⇒ ♦(B)
∀b ∈ B : ∃t ∈W : t |= ♦(A) ∧ ♦(b)

co-existence(A, B) ∀t ∈W : t |= responded existence(A, B) ∧
responded existence(B , A)
∀b ∈ B : ∃t ∈W : t |= ♦(A) ∧ ♦(b)
∀a ∈ A : ∃t ∈W : t |= ♦(B) ∧ ♦(a)

For each constraint, the first line of the pattern shows the original LTL semantics
that must hold on every trace of the log. The additional conditions are obtained
by applying (1) to the original semantics. Due to space restrictions we will only
elaborate on the deduction of some compliance patterns.

Responded Existence. Applying (1) to responded existence(A,B), we replace b ∈
B by false in the LTL formula ♦(A) ⇒ ♦(B). We obtain ¬(♦(A) ⇒ ♦(B[b ←
false])). This formula is equivalent to ♦(A) ∧ ¬♦(B[b← false]). Combining this
formula with responded existence(A,B) yields ♦(A) ∧ ♦(b). The condition of
the compliance pattern of responded existence(A,B) is the combination of the
conditions we obtain by replacing each b ∈ B by false in the original formula.

Response. When we replace b ∈ B in the LTL formula of response(A,B) by false,
we obtain ¬�(A ⇒ ♦(B[b ← false])). This is equivalent to ♦(A ∧ ¬♦(B[b ←
false])). Considering that the original formula must be true, we can conclude
that every a ∈ A is not followed by any b′ ∈ B \ {b} is equivalent to every
a ∈ A is followed by b. This implies that ♦(A ∧ ♦(b)). When we replace every
b ∈ B by false in the original formula, we have the condition of the pattern for
response(A,B).

If we apply this pattern, for example, to response ({Agree on self made
changes?}, {Plan final inspection, Adjust floor plan}), we obtain the following
set of conditions that need to hold in the log:

336 D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova

Table 4. Compliance patterns for relation constraints with order

Constraint Pattern

response(A, B) ∀t ∈W : t |= �(A ⇒ ♦(B))
∀b ∈ B : ∃t ∈W : t |= ♦(A∧ ♦(b))

precedence(A, B) ∀t ∈W : t |= ¬BUA ∨ �(¬B)
∀a ∈ A : ∃t ∈W : t |= (¬BUa) ∧ ♦(B)
∃t ∈W : t |= ¬init(A)

succession(A, B) ∀t ∈W : t |= response(A, B) ∧ precedence(A, B)
∀b ∈ B : ∃t ∈W : t |= ♦(A∧ ♦(b))
∀a ∈ A : ∃t ∈W : t |= (¬BUa) ∧ ♦(B)
∃t ∈W : t |= ¬init(A)

alternate response(A, B) ∀t ∈W : t |= �(A ⇒ ♦(B))∧ �(A⇒©(¬AUB))
∀b ∈ B : ∃t ∈W : t |= ♦(A∧ ♦(b))

alternate precedence(A, B) ∀t ∈W : t |= (¬BUA ∨�(¬B))∧
�(B ⇒ ©(¬BUA ∨�(¬B)))
∀a ∈ A : ∃t ∈W : t |= (¬BUa) ∧ ♦(B)

alternate succession(A, B) ∀t ∈W : t |= alt . response(A, B) ∧ alt . precedence(A, B)
∀b ∈ B : ∃t ∈W : t |= ♦(A∧ ♦(b))
∀a ∈ A : ∃t ∈W : t |= (¬BUa) ∧ ♦(B)

chain response(A, B) ∀t ∈W : t |= �(A ⇒©B)
∀b ∈ B : ∃t ∈W : t |= ♦(A∧©(b))

chain precedence(A, B) ∀t ∈W : t |= �(©B ⇒ A)
∀a ∈ A : ∃t ∈W : t |= ♦(©(B) ∧ a)

chain succession(A, B) ∀t ∈W : t |= ch. response(A, B) ∧ ch. precedence(A, B)
∀b ∈ B : ∃t ∈W : t |= ♦(A∧©(b))
∀a ∈ A : ∃t ∈W : t |= ♦(a ∧©(B))

∀t ∈ W : t |= �(Agree on self made changes? ⇒
♦(Plan final inspection ∨ Adjust floor plan));

∃t ∈ W : t |= ♦(Agree on self made changes? ∧ ♦(Plan final inspection));
∃t ∈ W : t |= ♦(Agree on self made changes? ∧ ♦(Adjust floor plan)).
Also, every constraint stronger than response({Agree on self made changes?},
{Plan final inspection, Adjust floor plan}) must not hold non-vacuously in the
log.

Precedence. If we apply (1) to the LTL formula of precedence(A,B) and replace
a ∈ A by false, we obtain the condition ¬((¬BU(A[a ← false]))∨�(¬B)) that is
equivalent to ¬(¬BU(A[a← false]))∧¬�(¬B)). Similarly to the response(A,B),
given that the original LTL formula holds, we have (¬BUa) ∧ ♦(B). When we
replace every b ∈ B in the original formula by true, we obtain the condition
¬(false UA) ∨�(false). This is equivalent to ¬A, which means that there exists
a trace where no a ∈ A occurs at the first position.

Chain Response. Applying (1) to chain response(A,B), we replace in �(A ⇒
©(B)) each b ∈ B by false. We have ¬�(A ⇒©(B[b← false])) that is equivalent
to ♦(A∧¬© (B[b← false])). Combining this formula with the original formula
yields the condition ♦(A ∧©(b)).

Patterns for a Log-Based Strengthening 337

Take, for example, the constraint chain response({Plan final inspection},
{Execute final inspection, Cancel final inspection}). Applying this compliance
pattern, we have:

∀t ∈ W : t |= �(Plan final inspection ⇒
©(Execute final inspection ∨ Cancel final inspection));

∃t ∈ W : t |= ♦(Plan final inspection ∧©(Execute final inspection));
∃t ∈ W : t |= ♦(Plan final inspection ∧©(Cancel final inspection)).

Moreover, chain succession({Plan final inspection}, {Execute final inspection,
Cancel final inspection}) and absence(1, {Plan final inspection}) must not hold
non-vacuously in the log.

5 Methodology

We present now a methodology for the application of the patterns from Sect. 4
in order to transform an existing compliance model into a strongly compliant
one. We assume that the constraints of the existing model do hold on the log.
Moreover, we check, for each activity in the model, whether it is present in the
log. If not, we explicitly introduce an absence constraint on it.

Algorithm 1 lists the steps we execute to obtain a strongly compliant model
Moutput starting from a given compliant model Minput . We take a top-down ap-
proach, i.e., we start with the strongest constraints being candidates for strength-
ening and, according to the hierarchy defined in Fig. 3, we weaken them until
we find a set of non-vacuously satisfied constraints (possibly the original con-
straint). When strengthening a constraint, we immediately remove branching on
activities that do not occur in the log. For instance, if our model contains the
constraint �(A ⇒ ♦(B)) and a b ∈ B does not occur in the log, we strengthen
the constraint to �(A ⇒ ♦(B′)) (where B ′ = B \ {b}). It cannot be the case
that no b ∈ B occurs in the log since this would mean that the constraint does
not hold in the log. If b does not occur in the log, we add absence(1, b) to the
output model.

The algorithm relies on the following notion of a composed constraint:

Definition 4. A composed constraint ϕ is a constraint that can be obtained by
the conjunction of some other constraints, which we call components of ϕ.

In Algorithm 1, we write C for the set of the components of constraint c; C = {c}
if c is not composed. For instance, for c = chain succession(A,B) we have C =
{chain response(A,B), chain precedence(A,B)}, for c = co-existence(A,B) we
have C ={responded existence(A,B), responded existence(B,A)}, and for ϕ =
alternate response(A,B), C = {alternate response(A,B)}.

For each constraint in the model, we first check whether it is the case that
the constraint is of the type precedence(A,B) and init(A) holds non-vacuously.
If so, we add init(A) to the output model. If the constraint is not of the type
precedence(A,B) or init(A) does not hold non-vacuously, we check whether (a)

338 D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova

Algorithm 1. Transforming a compliant model to strongly compliant
Input: Minput a model, W a log
Output: Moutput a strongly compliant model
(1) M ′

input ← an empty model
(2) foreach Constraint c in Minput

(3) substitute c by the strongest constraint w.r.t. the hierar-
chy and add it to M ′

input

(4) while M ′
input is not empty

(5) Mtemp ← an empty model
(6) foreach constraint c in M ′

input

(7) if c is precedence(A, B) and init(A) holds non-
vacuously on W then

(8) add init(A) to Moutput

(9) else
(10) if precedence(A, B) ∈ C and init(A) holds non-

vacuously on W then
(11) cp ← precedence(A, B)
(12) add init(A) to Moutput

(13) add all c′ ∈ C \{cp} which hold non-vacuously
on W to Moutput and add the remaining con-
straints in C \ {cp} to Mtemp

(14) else if each c′ ∈ C holds non-vacuously on W
then

(15) add c to Moutput

(16) else if some c′ ∈ C hold non-vacuously then
(17) add all c′ ∈ C which hold non-vacuously on W

to Moutput and add the remaining constraints
in C to Mtemp

(18) else if no c′ ∈ C holds non-vacuously on W then
(19) substitute c by its immediate weaker notion

and add it to Mtemp

(20) replace M ′
input by Mtemp

(21) return Moutput

precedence(A,B) is in C and init(A) holds non-vacuously, or (b) all constraints
in C hold non-vacuously, or (c) a subset of the constraints in C holds non-
vacuously, or (d) all constraints in C do not hold non-vacuously.

In the first case, we add the init and all non-vacuously satisfied constraints
from C to the output model. The remaining constraints of C are added to the
temporary model Mtemp to be processed in the next iteration. In the second case,
we add the constraint to the output model since in this case the constraint holds
non-vacuously. In the third case, we add the subset of non-vacuously satisfied
constraints in C to the output model and we add the remaining constraints in
C to the temporary model to be processed in the next iteration. Consider, for
instance, an alternate succession constraint where only the component alternate
response is non-vacuously satisfied. In this case, we add the alternate response
component to Moutput and we keep the alternate precedence for future iterations.

Patterns for a Log-Based Strengthening 339

In the fourth case, we add one of the weaker constraints (following the hierarchy
defined in Fig. 3) to the temporary model.

When we check whether a constraint holds non-vacuously, we also remove
vacuously satisfied branches of the constraint.

6 Case Study

We now present a small case study provided by a Dutch apartment rental agency
in the form of an event log, recording process executions of a process for the
cancellation of the rental contract by a tenant, and a compliance model defined
by their domain expert (showed in Fig. 4). When the tenant gives a notice, the
rental agency has to perform inspections to determine that the apartment is in
a proper state. Based on these inspections, further actions might be needed.

Given an input model and a log, the question we want to pose is: Does this
compliance model correctly reflect the behaviour of the process represented in the
log, assuming that the behaviour complies the model? Note that we only want to
facilitate the answering of this question for the domain expert. The final answer
is up to the user, who can decide in which parts the strongly compliant model
that our approach generates provides her with relevant information.

Starting from the model in Fig. 4, we apply the methodology from Sect. 5.
First, we verify whether each activity in the model occurs at least once in the
log. The activity Create rental cancellation never occurs in the log, so we add the
constraint absence(1, 7) to the output model (labelled with “0” in Fig. 5). More-
over, we replace all constraints by the strongest constraints with respect to the
hierarchy introduced in Fig. 3. In particular, we replace the precedence constraint
and all the response constraints by chain succession constraints. Moreover, we
replace not succession by not co-existence.

After that, for all constraints, we check which of them hold non-vacuously on
the log. To do this we use the LTL Checker plug-in of ProM1. The LTL Checker
allows us to verify the validity of an LTL formula on a log. We use it to verify
the validity of the conditions of a compliance pattern.

The not co-existence constraint holds on the log. This is enough to add this
constraint to our output model. Indeed, this constraint is always non-vacuously
true and there is no constraint stronger than not co-existence. All chain succes-
sion constraints added after the previous step do not hold: both the chain re-
sponse component and the chain precedence component of each chain succession
constraint do not hold. Therefore, we replace the chain succession constraints
by alternate succession constraints. None of the alternate succession constraints
hold, i.e., both the alternate response component and the alternate precedence
component of each alternate succession constraint do not hold.

We replace then all alternate succession constraints by succession constraints.
The succession constraints are also composed constraints. If we first consider
succession(3, {4, 5, 6}), we need to have that response(3, {4, 5, 6}) and prece-
dence(3, {4, 5, 6}) must hold non-vacuously. In the log, response(3, {4, 5, 6})
1 www.processmining.org

340 D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova

Fig. 4. Input model

Fig. 5. Output model

Table 5. The compliance of the different conditions on the log

Constraint Compliance pattern conditions Valid

precedence({0, 1}, 2) ∀t ∈W : t |= ¬2U(0 ∨ 1) ∨ �(¬2) ✓

∃t ∈W : t |= ¬2U0 ∧ ♦(2) ✓

∃t ∈W : t |= ¬2U1 ∧ ♦(2) ✓

∃t ∈W : t |= ¬init({0, 1}) ✗

a stronger constraint should not hold non-vacuously ✓

not succession(2, 4) ∀t ∈W : t |= �(2⇒ ¬♦(4)) ✓

¬∀t ∈W : t |= ¬(♦2 ∧ ♦4) ✗

response(3, {4, 5, 6}) ∀t ∈W : t |= �(3⇒ ♦(4 ∨ 5 ∨ 6)) ✓

∃t ∈W : t |= ♦(3 ∧ ♦(4)) ✓

∃t ∈W : t |= ♦(3 ∧ ♦(5)) ✓

∃t ∈W : t |= ♦(3 ∧ ♦(6)) ✗

a stronger constraint should not hold non-vacuously ✓

response(7, 8) ∀t ∈W : t |= �(7⇒ ♦(8)) ✓

∃t ∈W : t |= ♦(7 ∧ ♦(8)) ✗

a stronger constraint should not hold non-vacuously ✗

holds non-vacuously if we remove the branch on activity 6, so we add response(3,
{4, 5}) to the output model. Moreover, precedence(3, {4, 5, 6}) does not hold, so
we add this constraint to the temporary model to verify it in the next iteration.
We also split succession({0, 1}, 3) into response({0, 1}, 3) and precedence({0,
1}, 3). We have that the init(0) holds non-vacuously, so we add init(0) to the

Patterns for a Log-Based Strengthening 341

output model. Moreover, response({0, 1}, 3) does not hold and we add it to the
temporary model.

We have now two constraints we want to verify: precedence(3, {4, 5, 6}) and
response({0, 1}, 3). Both do not hold in our log. precedence(3, {4, 5, 6}) is
weakened to a responded existence({4, 5, 6}, 3). response({0, 1}, 3) is weakened
to a responded existence({0, 1}, 3) and both are checked. Both responed existence
constraints do not and are removed from the model. The strongly compliant
model we obtain is depicted in Fig. 5. Here, all constraints hold non-vacuously.

All the constraints from the input model and their compliance patterns are
listed in Tab. 5. For each pattern we have indicated whether every single condi-
tion is valid on the log or not. The table shows that for each constraint in the
original model a part of the pattern is not valid on the log. Based on the results
in Tab. 5, each constraint of the original model must be modified to obtain the
strongly compliant model depicted in Fig. 5. The advantages of the output model
with respect to the input model are: (1) precision, the output model describes
reality better than the input model, and (2) understandability, one only has to
understand the relevant parts.

7 Conclusion

In this paper, we describe compliance patterns for strengthening constraints
in compliance models specified in Declare in order to show which part of the
behaviour is actually covered by the process executions recorded in the event
log of the system, and which (parts of) constraints are vacuously satisfied. This
approach can be used for configuring reference models towards the needs of a
company. We have shown in the case study how we make use of our constraints
hierarchy to achieve the best results.

Our approach can easily be extended for the use in situations when some log
traces violate a compliance model in order to produce a weakened compliance
model showing what part of the compliance regulations does hold in the company
practice.

For the future work, we plan to introduce quantitative measurements for vacu-
ity, which are interesting in the context of large logs. In this case, a strengthened
model can show in which way most of the process executions satisfy the compli-
ance model, and which part of the behaviour is rather exceptional for the system
in question. The quantitative approach can also be useful for logs with noise.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, M.H.: Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - Research and Devel-
opment 23, 99–113 (2009)

2. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient Detection of Vacuity in
Temporal Model Checking. Formal Methods in System Design 18, 141–163 (2001)

342 D.M.M. Schunselaar, F.M. Maggi, and N. Sidorova

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for
Finite-State Verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM (1999)

4. van Hee, K.M., Liu, Z., Sidorova, N.: Is my event log complete? - A probabilistic
approach to process mining. In: Proceedings of RCIS 2011, pp. 1–7. IEEE (2011)

5. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On Enabling
Data-Aware Compliance Checking of Business Process Models. In: Parsons, J.,
Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp.
332–346. Springer, Heidelberg (2010)

6. Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. In-
ternational Journal on Software Tools for Technology Transfer 4(2), 224–233 (2003)

7. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing Declarative
Logic-Based Models from Labeled Traces. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)

8. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The Glory of the Past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

9. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: Analyzing Vessel Behavior using
Process Mining in the Poseidon book edited by Springer (to appear)

10. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
Business Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

11. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: Proceedings of CIDM 2011, pp. 192–199. IEEE (2011)

12. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring Business Constraints with the Event Calculus. Technical Report DEIS-LIA-
002-11, University of Bologna, Italy (2011)

13. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business
Processes Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

14. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

15. Pesic, M., Schonenberg, M.H., van der Aalst, W.M.P.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proceedings of EDOC 2007, pp. 287–300. IEEE
Computer Society (2007)

16. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of FOCS 1977,
pp. 46–57. IEEE Computer Society (1977)

17. Purandare, M., Somenzi, F.: Vacuum Cleaning CTL Formulae. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg
(2002)

A Formal Interactive Verification Environment

for the Plan Execution Interchange Language

Camilo Rocha1, Héctor Cadavid2, César Muñoz3, and Radu Siminiceanu4

1 University of Illinois at Urbana-Champaign, Urbana IL, USA
2 Escuela Colombiana de Ingenieŕıa, Bogotá, Colombia
3 NASA Langley Research Center, Hampton VA, USA
4 National Institute of Aerospace, Hampton VA, USA

Abstract. The Plan Execution Interchange Language (PLEXIL) is an
open source synchronous language developed by NASA for command-
ing and monitoring autonomous systems. This paper reports the devel-
opment of the PLEXIL’s Formal Interactive Verification Environment
(PLEXIL5), a graphical interface to the formal executable semantics of
PLEXIL. Among its main features, PLEXIL5 provides model checking
of plans with support for formula editing and visualization of counterex-
amples, interactive simulation of plans at different granularity levels,
and random initialization of external environment variables. The for-
mal verification capabilities of PLEXIL5 are illustrated by means of a
human-automation interaction model.

1 Introduction

Plan execution is a centerpiece of systems involving intelligent software agents
such as robotics, unmanned vehicles, and habitats. The Plan Execution Inter-
change Language PLEXIL [8] is a synchronous language developed by NASA to
support autonomous spacecraft operations. Programs in PLEXIL, called plans,
specify actions to be executed by an autonomous system as part of normal space-
craft operations or as reactions to changes in the environment. The computer
system on board the spacecraft that executes plans is called the executive and is a
safety-critical component of the space mission. The PLEXIL Executive [18] is an
open source executive developed by NASA (http://plexil.sourceforge.net).
PLEXIL has been used on mid-size applications such as robotic rovers, a pro-
totype of a Mars drill, and to demonstrate automation capabilities for potential
future use on the International Space Station. A summary of PLEXIL’s syntax
and semantics is presented in Section 2.

Spacecraft operations require flexible, efficient, and reliable plan execution.
Given its critical nature, PLEXIL’s operational semantics has been formally
specified in the Prototype Verification System (PVS) [5]. Moreover, key meta-
theoretical properties of the language, such as determinism and compositionality,
have been mechanically verified in PVS [6]. Based on this formalization, a formal
executable semantics of PLEXIL has been specified in the rewriting logic engine
Maude [7]. The executable semantics of PLEXIL serves as an efficient formal

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 343–357, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://plexil.sourceforge.net

344 C. Rocha et al.

interpreter of the language and, as illustrated by this paper, is at the core of the
PLEXIL Formal Interactive Verification Environment (PLEXIL5).

PLEXIL5 is an interactive environment for verifying and testing PLEXIL
plans and for studying new features and possible variants of the language. A
proof of concept of such an environment was originally presented in [11], but
that tool was mainly concerned with the semantic validation of the language.
This paper reports significant progress on the evolution of this proof of concept
into an environment for the validation and formal verification of PLEXIL plans.
To emphasize these new capabilities, the word “Visual” in the original acronym
became “Verification” in the new system. PLEXIL5 consists of a graphical envi-
ronment developed in Java that interfaces with the rewriting logic semantics in
Maude. Users are not required to have any knowledge of the Maude system to
take advantage of PLEXIL5’s formal analysis capabilities. An overview of some
architecture and design features, software metrics, and aspects of user interaction
are presented in Section 3.

The formal analysis capabilities in PLEXIL5 are based on the rewriting logic
semantics of the language and the formal analysis tools available in the Maude
system, such as the rewriting engine, the model checker, and the strategy lan-
guage [4]. The environment supports the verification of temporal properties on
PLEXIL plans. These properties can be provided by the user or automatically
generated from plan annotations such as preconditions, invariants, and post-
conditions. PLEXIL5 provides a mechanisms for modeling the interaction of
plans with the external environment. Technical details on the formal analysis
capabilities, i.e., simulation, model checking, and semantic validation, offered
by PLEXIL5 are given in Section 4. As a case study, Section 5 presents a for-
malization of a simple cruise control system in PLEXIL and illustrates how
PLEXIL5 can aid in discovering and correcting errors in plans. The case study
presented in this paper and more information about PLEXIL5 is available from
http://shemesh.larc.nasa.gov/people/cam/PLEXIL.

2 PLEXIL Overview

This section presents an overview of PLEXIL, a synchronous language for au-
tomation developed by NASA. The reader is referred to [8] for a detailed de-
scription of the language.

A PLEXIL program, called a plan, is a tree of nodes representing a hierarchical
decomposition of tasks. Interior nodes, called list nodes, provide control structure
and naming scope for local variables. The primitive actions of a plan are specified
in the leaf nodes. Leaf nodes can be assignment nodes, which assign values to
local variables, command nodes, which call external commands, or empty nodes,
which do nothing. PLEXIL plans interact with a functional layer that provides
the interface with the external environment. This functional layer executes the
external commands and communicates the status and result of their execution
to the plan through external variables.

Nodes have an execution state, which can be inactive, waiting , executing,
iterationend , failing , finishing, or finished , and an execution outcome, which can

http://shemesh.larc.nasa.gov/people/cam/PLEXIL

A Formal Interactive Verification Environment for the PLEXIL 345

be unknown, skipped , success, or failure. They can declare local variables that
are accessible to the node in which they are declared and all its descendants. In
contrast to local variables, the execution state and outcome of a node are visible
to all nodes in the plan. Assignment nodes also have a priority that is used to
solve race conditions. The internal state of a node consists of the current values
of its execution state, execution outcome, and local variables.

Each node is equipped with a set of gate conditions and check conditions that
govern the execution of a plan. Gate conditions provide control flow mechanisms
that react to external events. In particular, the start condition specifies when
a node starts its execution, the end condition specifies when a node ends its
execution, the repeat condition specifies when a node can repeat its execution,
and the skip condition specifies when the execution of a node can be skipped.
Check conditions are used to signal abnormal execution states of a node and they
are pre-condition, post-condition, and invariant. The language includes Boolean,
integer and floating-point arithmetic, and string expressions. It also includes
lookup expressions that read the value of external variables provided to the plan
through the executive. Expressions appear in conditions, assignments, and argu-
ments of commands. Each one of the basic types is extended by a special value
unknown that can occur in the case, for instance, when a lookup fails.

The execution of a plan in PLEXIL is driven by external events that trigger
changes in the gate conditions. All nodes affected by a change in a gate condi-
tion synchronously respond to the event by modifying their internal state. These
internal modifications may trigger more changes in gate conditions that in turn
are synchronously processed until quiescence is reached for all nodes involved.
External events are considered in the order in which they are received. An ex-
ternal event and all its cascading effects are processed before the next event is
considered. This behavior is known as run-to-completion semantics.

Henceforth, the notation (Γ, π) is used to represent the execution state of a
plan, where Γ is a set of external variables and their current values, and π is
a set of nodes and their internal states. Formally, the semantics of PLEXIL is
defined on states (Γ, π) by a compositional layer of five reduction relations [8].
The atomic relation describes the execution of an individual node in terms of
state transitions triggered by changes in the environment. The micro relation
describes the synchronous reduction of the atomic relation with respect to the
maximal redexes strategy, i.e., the synchronous application of the atomic rela-
tion to the maximal set of nodes of a plan. The remaining three relations are
the quiescence relation, the macro relation, and the execution relation that, re-
spectively, describe the reduction of the micro relation until normalization, the
interaction of a plan with the external environment upon one external event,
and the n-iteration of the macro relation corresponding to n time steps.

Consider the PLEXIL plan in Figure 1. The plan consists of a root node
Exchange of type list, and leaf nodes SetX and SetY of type assignment. The node
Exchange declares two local variables x and y. The values of these variables are
exchanged by the synchronous execution of the node assignments SetX and SetY.
The node Exchange also declares a start condition and an invariant condition.

346 C. Rocha et al.

The start condition states that the node can start executing whenever the value
of an external variable T is greater than 10. The invariant condition states that
at any state of execution the values of x and y add up to 3.

Exchange: {
Integer x = 1;

Integer y = 2;

StartCondition: Lookup(T) > 10;

Invariant: x+y == 3;

NodeList:

SetX: { Assignment: x = y; }
SetY: { Assignment: y = x; }

}

Fig. 1. A PLEXIL plan that reads the value of an external variable T and syn-
chronously exchanges the values of internal variables x and y

3 PLEXIL5

PLEXIL5 is a graphical environment for the formal simulation and verification
of PLEXIL plans, and the validation of the intended semantics of the language
against its rewriting logic semantics. This section presents an overview of its
architecture and design, including some software metrics, and aspects regarding
user interaction in the environment.

3.1 Architecture and Design

Figure 2 depicts PLEXIL5’s key components and their interaction. The graph-
ical user interface has been developed in Java using the model-view-controller
pattern and, for some views on execution states, uses third-party open-source
libraries such as JGraph and JGoodies. The object oriented model represents the
hierarchical structure of plans, their execution behavior, and the external envi-
ronment. The view consists of several classes that present the user with views of
the tree-like-structure of plans. The controller consists of a custom controller-
facade class and listener classes using and extending the Java framework.

PLEXIL5 supports a number of input formats defining plans. For this purpose,
the tool links a series of parsers and translators that internally (i) generate the
format supported by the rewriting logic semantics of the language implemented
in Maude and (ii) construct an object oriented plan model from Maude’s output.
The parsers are all generated from XML Schemas and BNF-like specifications by
external tools, such as ANTLR, JAXB, and JavaCC. Some of the XML schemas
have been borrowed and adapted from PLEXIL’s software distribution. Java and
Maude communicate as processes at the operating system’s level with help of
the Java/Maude Integration API, developed as part of the PLEXIL5 framework.

A Formal Interactive Verification Environment for the PLEXIL 347

Fig. 2. PLEXIL5 logical components and their interaction

The implementation of PLEXIL5 consists of 270 Java classes and 38 Maude
modules, among other resources. The Java classes comprise 85K lines of code,
of which 24K are automatically generated by the external tools. The Maude
modules are 2K lines of code.

3.2 User Interaction

Once PLEXIL5 is launched for the first time, the user is required to select the
folder containing PLEXIL’s rewriting logic semantics. This selection is kept for
future sessions and can be modified at any time through the graphical interface.

A plan is read from a file containing one of the several supported PLEXIL
notations, then transformed into an object model, and ultimately presented to
the user with a visual representation of the initial state of the plan. The visual
representation of plans implemented in the prototype described in [11] was based
on trees. That representation is only practical for plans with a small numbers of
nodes. In the current version, plans are displayed by default as tables and the
hierarchical structure of plans is given by tabular indentations. The original tree
representation of plans is still supported.

A plan can be edited by the user with the help of the graphical user interface.
The plan can be accompanied by a script file, in XML format, describing the
values of external variables at different macro steps. External variables can be
initialized to random Boolean, integer, and floating-point values, and can be

348 C. Rocha et al.

specified using an enumeration or a range. The following XML script specifies
the values for the external variable T of integer type, for the plan Exchange in
Figure 1. In the first macro step the variable T is assigned the value 2, at the
second macro step it is assigned a random non-negative value, and in the third
macro step it is assigned a value randomly chosen from 2 or 7.

<Script>

<Step>

<State name="T" type="int"><Value>2</Value></State>

</Step>

<Step>

<State name="T" type="int"><RandomValue min="0"/></State>

</Step>

<Step>

<State name="T" type="int">

<RandomValue><Enum value="2"/><Enum value="7"/></RandomValue>

</State>

</Step>

</Script>

The translation process of a plan and its script only takes place the first time
the plan is loaded and every time a plan is edited.

Plans can be executed at the level of the micro, quiescence, macro, and exe-
cution semantic relations, with undo-redo support. The tool can automatically
generate formulas for checking invariant, pre, and post conditions, and the user
can also define formulas from atomic predicates parameterized by the active plan.
A Maude specification in the syntax of the rewriting logic semantics is generated
from the object model every time the user requests to perform an action on the
current state of execution. This Maude specification and the user’s command are
delegated to Maude via the Java/Maude integration API. The resulting output
is then used to generate a new instance of the object model that is graphically
presented to the user.

4 Formal Analysis in PLEXIL5

The formal analysis capabilities offered by PLEXIL5 are based on PLEXIL’s
rewriting logic semantics written in Maude. This section provides technical de-
tails on how these capabilities, i.e., simulation and debugging, model checking,
and semantic validation, are implemented in PLEXIL5 via Maude’s verification
tools. This section uses standard notation and terminology of rewriting logic;
the user is referred to [4] for more details.

Rewriting logic [10] is a general semantic framework that unifies a wide
range of models of concurrency. Rewriting logic specifications can be executed
in Maude, a high-performance rewriting logic implementation, and thus take
advantage of all the formal analysis tools available in Maude. A rewriting logic
specification is a tuple R = (Σ,E,R) where (Σ,E) is an order-sorted equational
theory with signature Σ and equations E, and a set of rewrite rules R. The

A Formal Interactive Verification Environment for the PLEXIL 349

equational theory (Σ,E) induces the congruence relation =E on the set TΣ of
Σ-ground terms defined for any t, u ∈ TΣ by t =E u if and only if (Σ,E) � t = u.
The expression TΣ/E denotes the initial algebra of (Σ,E). Similarly, a rewrite
theory R = (Σ,E,R) induces the rewrite relation −→R on the set TΣ/E of E-
equivalence classes of groundΣ-terms defined by any t, u ∈ TΣ by [t]E −→R [u]E
if and only if t −→ u can be deduced from R by the deduction rules in [3]. The
tuple TR=(TΣ/E ,−→R) is called the initial reachability model of R. Intuitively,
TR represents the concurrent system whose states are the set of E-equivalence
classes of ground Σ-terms and whose concurrent transitions are specified by R.

4.1 Simulation and Debugging

The rewriting logic semantics of a synchronous language such as PLEXIL poses
interesting practical challenges because Maude implements the maximal concur-
rency of rewrite rules by interleaving, i.e., asynchronous concurrency. To over-
come this situation, the rewriting logic semantics P = (ΣP , EP , RP) of PLEXIL
implements a serialization procedure [13] that completely and correctly simu-
lates PLEXIL’s synchronous semantics. Since PLEXIL is deterministic, the seri-
alization procedure implemented by P can be equationally defined in EP , thus
avoiding the interleaving semantics associated with rewrite rules in Maude.

A PLEXIL node in P is a term object denoted 〈O : C | a1 : v1, . . . , am : vm〉,
where O is the object’s identifier corresponding to the node’s qualified name, C
is the object’s class corresponding to the node’s type, e.g., assignment, list, local
variable, etc., and where v1 to vm are the current values of the attributes a1 to
am corresponding to the node’s internal state of execution. An execution state
of a plan has sort PlxState and the form (Γ , π), where Γ has the structure of
a multiset of pairs representing the set Γ of external variables and their values,
and π is a term that has the structure of a multiset of objects representing the
set of nodes π. Multiset union is denoted by a juxtaposition operator that is
declared associative and commutative, so that rewriting is multiset rewriting
supported in Maude.

Given a PLEXIL plan p, PLEXIL5 internally generates the rewrite theory
P(p) that extends P with the constructs of p. The rewrite theory P(p) is a formal
model of p in rewriting logic and it induces the rewrite relation −→P(p),m that
uses the equationally defined serialization procedure to soundly and completely
simulate PLEXIL’s synchronous micro relation for p.

Maude’s strategy language [9] is used to simulate the quiescence, macro, and
execution semantic relations from −→P(p),m. By definition, the quiescence re-
lation −→P(p),q is the normalized relation obtained from −→P(p),m, namely,
−→P(p),q=−→↓

P(p),m. Because −→P(p),m is deterministic, the quiescence rela-
tion −→P(p),q is also deterministic. For the purpose of simulating the macro
and execution relations, PLEXIL5 allows for the definition of a sequence Γ =
Γ0, Γ1, . . . , Γn of collections of external variables indicating their value at each
time step 0, 1, . . . , n (Γ can be empty when the plan does not depend on external
variables). For a sequence Γ0, Γ1, . . . , Γn, the macro relation −→P(p),M is de-
fined by (Γi, π) −→P(p),M (Γ ′, π′) if and only if Γ ′ = Γi+1 and (Γi, π) −→P(p),q

350 C. Rocha et al.

(Γi, π′), for 0 ≤ i < n. The execution relation −→P(p),E normalizes a given
state with the macro relation and then normalizes the resulting state further
with the quiescence relation in the last time step. It is formally defined by
−→P(p),E=−→↓

P(p),M ◦ −→P(p),q.

4.2 Model Checking

In general, a Kripke structure can be associated with the initial reachability
model TR of a rewrite theory R = (Σ,E,R) by making explicit the intended
sort State of states in the signature Σ and the relevant set Φ of atomic predicates
on states. The set of atomic propositions Φ is defined by an equational theory
EΦ = (ΣΦ, E EΦ). Signature ΣΦ contains Σ and a sort Bool with constant
symbols ⊥ and ! of sort Bool , predicate symbols φ : State → Bool for each
φ ∈ Φ, and optionally some auxiliary function symbols. Equations in EΦ define
the predicate symbols in ΣΦ and auxiliary function symbols, if any, including the
Boolean operations on the sort Bool . For φ ∈ Φ and a ground term of sort State
t ∈ TΣ,State , the semantics of φ in TR is defined by EΦ as follows: φ(t) holds
in TR if and only if EΦ � φ(t) = !. This defines the Kripke structure KΦ

R =
(TΣ/E,State ,−→R, LΦ) with labeling function LΦ defined for any t ∈ TΣ,State by
φ ∈ LΦ(t), written KΦ

R, t |= φ, if and only if φ(t) holds in TR. All formulas of the
Linear Temporal Logic (LTL) can be interpreted in KΦ

R in the standard way.
PLEXIL5 supports LTL model checking of plans at the level of the micro rela-

tion on the sort PlxState. The set of atomic propositions is parameterized by the
set of qualified names of nodes and variables (internal and external) in the plan
to be model checked. The BNF-like notation in Figure 3 defines the syntax of the
atomic propositions ΦN and formulas LTLN for model checking a plan p with
set of qualified names N . The collection of PLEXIL Boolean expressions param-
eterized by N is denoted with BExprN . They include comparison operators for
Boolean and arithmetic expressions, evaluation of local variables, and lookups.
Atomic propositions ΦN include the constants true and false, predicates for test-
ing the status, outcome, and gate and checking conditions of a node. They also

StatusN ::= inactive | waiting | executing | finishing | iterended | failing | finished

FailureN ::= parent | invariant | pre | post
OutcomeN ::= unknown | skipped | success | fail(μ)

CondN ::= start | end | repeat | pre | post | invariant

ΦN ::= true | false | status(λ, σ) | outcome(λ, ω) | ψ(λ, δ) | eval(δ)
LTLN ::= α | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ϕ⇒ ϕ′ |Gϕ | Fϕ | Xϕ | ϕUϕ′ | ϕWϕ′ | ϕRϕ′

with variables
μ : FailureN λ : N σ : StatusN ω : OutcomeN
ψ : CondN δ : BExprN α : ΦN ϕ, ϕ′ : LTLN

Fig. 3. Parameterized atomic predicates ΦN and LTL formulas LTLN in PLEXIL5

A Formal Interactive Verification Environment for the PLEXIL 351

include the atomic proposition eval for testing PLEXIL’s Boolean expressions.
Formulas in LTLN include the usual Boolean connectives, and the temporal con-
nectives ‘always’ (G), ‘eventually’ (F), ‘next’ (X), ‘until’ (U), ‘weak until’ (W),
and ‘release’ (R), all interpreted in the standard way.

Given a plan p, an initial state (Γ, π), and a LTLN formula ϕ over the names
N in p, PLEXIL5 uses Maude’s LTL model checker to check KΦN

P(p), (Γ , π) |= ϕ,

where KΦN
P(p) is the Kripke structure associated with TP(p), with the set of states

TΣ(p)/E(p),PlxState , transition relation −→P(p),m, and labeling function LΦN .
PLEXIL5 provides interactive means for producing and visually inspecting

counterexamples. The model checking window is equipped with three predefined
checks that can be performed on any PLEXIL program: “check invariants”,
“check pre-conditions”, and “check post-conditions”. Pushing one of the three
buttons generates the corresponding LTL formulas. Additionally, an input field
in provided to enter custom, application specific LTL formulas specified using
the above syntax. For example, the formula

G invariant(Exchange , true) ∧ F status(Exchange ,finished)

for the plan Exchange in Figure 1, tests the invariant of node Exchange and that
it will eventually transition to state finished .

Counterexamples are displayed in a tree table with collapsible nodes, conform-
ing to the PLEXIL program tree structure, and can be interactively navigated
step-by-step for debugging and validation purposes.

4.3 Semantic Validation

The rewriting logic semantics P is being used to study variations and extensions
of PLEXIL. This section provides examples of such variants and extensions that
have been studied in PLEXIL5.

PLEXIL’s macro relation is especially important because it is the semantic
relation defining the interaction of a plan with the external environment. On
the one hand, it is reasonable to have access to the external state as often as
possible so that lookups in each atomic reduction can use the latest information
available. On the other hand, it can be computationally expensive to implement
such a policy because sensors or similar artifacts can significantly delay the ex-
ecution of a plan. Another dimension of the problem arises when a guard of an
internal loop depends on external variables: should the loop run-to-completion
regardless of the possible updates to the value of the variable in its guard, or
should it stop at each iteration so that the value of the external variable can be
updated? The rewriting logic semantics P has been modified to accommodate
alternative specifications of PLEXIL’s semantics with different definitions of the
macro relation. These semantic variants of PLEXIL have been studied and ex-
ercised using PLEXIL5. Thanks to its modular design, PLEXIL5 can integrate
the alternative semantics with a click of a button: the user has the freedom to
choose the formal semantics of preference.

352 C. Rocha et al.

Another concrete example that illustrates the use of PLEXIL5 by the designers
of the language is the addition of a gate condition called exit condition. The exit
condition provides a mechanism for a clean interruption of execution. In order
to support this feature in PLEXIL5, the specification of the PLEXIL’s atomic
relation in Maude was modified to include the intended semantics. Given the
modular definition of the formal semantics none of the other rewriting relations
were modified.

5 A Case Study

A cruise control system adapted from [2] is presented to showcase the model
checking capabilities implemented in PLEXIL5. Originally, the model was de-
signed for the Enhanced Operator Function Model (EOFM) formalism, which
is intended for the study of human behavior in a human-computer interaction
framework. However, PLEXIL shares many characteristics with EOFM, includ-
ing the hierarchical structure of tasks decomposed into sub-tasks and the exe-
cution governed by conditions (pre, post , repeat , invariant).

adjust speed
increase

set desired
cruise speed

maintain
cruise speed

no
traffic

let ahead
(slowdown)

let behind
(speed up)

roll to stop break

seq xor xor

Drive to ramp Avoid traffic on ramp Stop at red light

speed = fast
acceleration > 0

cruise = on/moderate

roll cruise on break

seq

Fig. 4. Cruise control model with task hierarchy

5.1 Model Description

The model consists of three main components: car, driver, and stoplight, which
execute synchronously. The operator drives the car on a street, approaching the
stoplight. Other cars may merge into the lane from a side ramp, roughly midway
through. The car has three controls represented in the model: the gas and break
pedals to manage speed and acceleration, and a cruise button to switch the cruise
mode on/off and set the cruise speed. The human operator’s plan is to safely

A Formal Interactive Verification Environment for the PLEXIL 353

operate the controls of the car to achieve three sub-goals: (i) drive at a desired
cruise speed (ii) avoid the possible merging traffic from the ramp, and (iii) obey
the traffic light at the intersection, i.e., stop the car in time if the light turns
red. All three properties can be represented in PLEXIL. Here we focus on the
third, which is a safety property.

The model parameters are: the geometry of the intersection, i.e., the length of
each street segment; the location of the ramp along the street, in distance units;
the stoplight cycle length, in time units, for each color; and the speed range, in
distance per time units.

Model variables. The model variables and their range are selected according
to an abstraction scheme that discretizes the values to allow finite state model
checking, yet leaves sufficient information to make the study relevant.

– distance ∈ [0 . . . 55], the distance of the car to the intersection;
– time ∈ [0 . . . 28];
– speed ∈ {stopped = 0, slow = 1,moderate = 2, fast = 3};
– acceleration ∈ {−1, 0, 1};
– cruise enabled ∈ {true, false};
– cruise speed ∈ {0, 1, 2, 3};

Transitions. The car advances according to its speed until it reaches the intersec-
tion, formally, update distance := distance − speed∗timestep while the condition
speed > 0∧distance > 0 holds. The discretized speed can change by at most one
unit at a time, hence the possible values for acceleration are only {−1, 0, 1}. The
stoplight counts down the time units to the end of the green-yellow-red cycle by
assigning stoplight := stoplight − timestep. The light is red in the time interval
[0 . . . 8], yellow in [9 . . . 12], and green in [13 . . . 28].

The complexity resides in capturing the decision making of the driver. In the
first segment, the driver wants to set the cruise control to a desired speed (e.g.,
moderate). The driver has the choice to accelerate from slow or decelerate from
fast , then enable the cruise control which will maintain the desired speed. On
the second segment, the driver needs to react to merging traffic from the ramp.
If any car is on the ramp, the driver may choose to let the other car in front by
slowing down, or behind by speeding up. On the last segment, the driver has to
react to the stoplight turning red. The driver may choose to maintain the speed
and then break before reaching the stoplight, or roll to a stop by releasing the
gas pedal.

Comparison with the EOFM model.

– The original abstraction has been refined in PLEXIL to allow more distance
and time divisions, making it more realistic; in the EOFM model the distance
is heavily discretized (abstract locations 0 to 7) and not coordinated with
the time to travel each segment.

– Non-determinism is introduced by lookups of environment variables. The
script plays out a sequence of random choices for three Boolean environment
variables: MergingTraffic,LetBehind ,RollStop.

354 C. Rocha et al.

– Some of the concepts are essentially cognitive in nature, as they depend
on the subjective (sometimes erroneous) perceptions and assessments of the
situation by the human operator, hence they cannot be as naturally captured
in the formal model. However, both normative and erroneous behaviors are
captured in the PLEXIL model, and it is the job of the model checker to
discover violations.

– The synchronous behavior is natural in PLEXIL, no further instrumentation
is necessary, while in EOFM synchrony has to be expressly specified, using
appropriate decomposition operators.

5.2 Verification

The property of interest can be expressed either as a global invariant in the
PLEXIL model itself and checked with the generic “check invariants” button,
or entered in the LTL Model Checking dialog window. The safety property is
specified in the top level task node Main as the invariant condition:

not(stoplight <= red and distance == 0 and speed > 0),

stating that it is not the case that the vehicle is moving at the intersection when
the light is red.

The PLEXIL5 simulator shows that the execution of the plan ends with the
outcome invariantFail for the root node (and parentFail for the successor nodes)
when the environment variables MergingTraffic, LetBehind , and RollStop are all
true. The result of model checking the safety property is an execution trace
where the formula is violated. The counter example can be described as follows:

1. the car enters at low speed at distance = 55 and time = 28;
2. the driver accelerates to the desired moderate speed and sets the cruise on

at time = 20 and distance = 42;
3. at the ramp, with distance = 33, the driver decides to let the merging car

behind by accelerating to fast at time = 12 and distance = 25;
4. the stoplight light turns yellow, the driver chooses to roll to a stop (assessing

there is sufficient distance to the intersection to do so, by releasing the gas
pedal);

5. with the acceleration negative, the driver does not disengage the cruise mode,
the cruise control kicks in and maintains the cruise speed to moderate for
one execution cycle at time = 6 and distance = 10;

6. the effect of the automation is that the (now necessary) breaking is too late
to decrease the speed from moderate to low at time = 2 and distance = 2,
and then stopped in two execution cycles; and

7. when time expires, the car is moving in the intersection on the red light.

The PLEXIL5 model checking environment provides the means for detecting the
aforementioned error using the predefined “check invariant” test. To correct the
problem, the node corresponding to the “roll to stop” action has to be rectified, in
order to include a check on the status of the cruise control. The driver either has

A Formal Interactive Verification Environment for the PLEXIL 355

to make sure it is disabled before initiating the “roll to stop” option or manually
disable it. In PLEXIL, this can be instrumented via a start condition or, by
duality, with the corresponding negated skip condition. No other combination of
environment lookup variables leads to violations in this model.

The full model of the cruise control system consists of 252 lines of PLEXIL
code. The generated Maude file is 929 lines long.

6 Related Work and Conclusion

An executable semantics of PLEXIL has been developed by P. J. Strauss in the
Haskell language [16] with the aim of analyzing features of the language regarding
the plan interaction with the environment. As a result, new data types represent-
ing the external world have been proposed for more dynamic runtime behavior
of PLEXIL plans. More recently, D. Balasubramanian et al. have proposed Poly-
glot, a framework for modeling and analyzing multiple Statechart formalisms,
and have initiated research towards the formal analysis of a Statechart-based
semantics of PLEXIL [1]. In rewriting logic literature, similar approaches to
the one used in PLEXIL5 have been proposed for other languages and protocol
analysis. In particular, A. Verdejo and N. Mart́ı-Oliet [17] have explored the idea
of having easy-tool-building techniques from operational semantics specified in
Maude. S. Santiago et al. [15] have developed a graphical user interface that an-
imates the Maude-NPA verification process, displaying the complete search tree
and allowing users to display graphical representations of final and intermediate
nodes of the search tree. Maude-NPA is a crypto protocol analysis tool developed
in Maude that takes into account algebraic properties of crypto-systems.

This paper reported significant progress on the evolution of PLEXIL5, an en-
vironment for the verification and validation of NASA’s synchronous language
PLEXIL. The environment uses the formal semantics of the language written in
Maude to formally analyze PLEXIL plans. Maude is a rewriting logic formalism
that provides advanced verification tools such as a fast rewriting engine and a
LTL model checker. In PLEXIL5, the user is presented with the option to exe-
cute any combination of the micro, quiescence, macro, and execution reduction
relations. In this way, the user has the freedom to determine the level of detail for
simulating and debugging plans. The verification tools are available in PLEXIL5
through a graphical interface that does not require knowledge of rewriting logic
or the Maude system.

The formal environment has been used by the developers of the language
to investigate semantic variations and extensions of PLEXIL. These include a
new semantics for the execution of loops and a new feature in the language to
handle exit conditions. Furthermore, several minor issues in the original intended
semantics of PLEXIL have been identified and corrected. PLEXIL5 has become
a formal benchmark for executives and will be part of PLEXIL’s distribution in
an upcoming release.

An important subset of PLEXIL’s core language is currently supported by
PLEXIL5. The main features of the language that are not supported by the for-
mal semantics are array variables (arrays are not directly supported in Maude),

356 C. Rocha et al.

PLEXIL’s resource model, which enables the specification of resource require-
ments for commands, and Update nodes, which provide an importing mechanism
to the language. Regarding research on PLEXIL5’s rewriting logic semantics, fu-
ture work will explore the possibility of having an operational semantics of the
language using the framework presented in [12], so that the dependency between
the rewrite rules specifying the atomic relation and the serialization procedure
can be eliminated. Another interesting alternative is to study the extension of
the K framework [14] with priorities for state transitions, so that it can accom-
modate the specification of the atomic relation. Regarding the verification and
validation capabilities in PLEXIL5, future work will add support for symbolic
execution and concolic testing of PLEXIL plans, and will study scalability issues
with mid-size and large plans.

Acknowledgments. The authors would like to thank Michael Dalal and the
Planning and Scheduling group at NASA Ames for fruitful discussions on PLEXIL
and suggestions for the PLEXIL5 tool. They are also grateful to the anonymous
referees for comments that helped to improve the paper. This work is supported
by NASA’s Autonomous Systems and Avionics Project, Software Verification
Algorithms. The first author has been partially supported by NSF grant CCF
09-05584. The first, second, and fourth authors have been partially supported by
the National Aeronautics and Space Administration at Langley Research Cen-
ter under Research Cooperative Agreement No. NNL09AA00A awarded to the
National Institute of Aerospace.

References

1. Balasubramanian, D., Păsăreanu, C., Whalen, M.W., Karsai, G., Lowry, M.R.:
Polyglot: modeling and analysis for multiple Statechart formalisms. In: Dwyer,
M.B., Tip, F. (eds.) ISSTA, pp. 45–55. ACM (2011)

2. Bolton, M.L., Bass, E.J., Siminiceanu, R.I.: A systematic approach to model check-
ing human-automation interaction using task analytic models. IEEE Transactions
on Systems, Man, and Cybernetics–Part A: Systems and Humans 41(5), 961–976
(2011)

3. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360(1-3), 386–414 (2006)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

5. Dowek, G., Muñoz, C., Păsăreanu, C.: A small-step semantics of PLEXIL. Tech-
nical Report 2008-11, National Institute of Aerospace, Hampton, VA (2008)

6. Dowek, G., Muñoz, C., Păsăreanu, C.: A formal analysis framework for PLEXIL.
In: Proceedings of 3rd Workshop on Planning and Plan Execution for Real-World
Systems (September 2007)

7. Dowek, G., Muñoz, C., Rocha, C.: Rewriting logic semantics of a plan execution
language. In: Klin, B., Sobocinski, P. (eds.) SOS. EPTCS, vol. 18, pp. 77–91 (2009)

8. Estlin, T., Jónsson, A., Păsăreanu, C., Simmons, R., Tso, K., Verma, V.: Plan
Execution Interchange Language (PLEXIL). Technical Memorandum TM-2006-
213483, NASA (2006)

A Formal Interactive Verification Environment for the PLEXIL 357

9. Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: A rewriting semantics for maude strate-
gies. Electronic Notes in Theoretical Computer Science 238(3), 227–247 (2009)

10. Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

11. Rocha, C., Muñoz, C., Cadavid, H.: A graphical environment for the semantic val-
idation of a plan execution language. In: IEEE International Conference on Space
Mission Challenges for Information Technology, pp. 201–207. IEEE Computer So-
ciety, Los Alamitos (2009)

12. Rocha, C., Muñoz, C.: Simulation and Verification of Synchronous Set Relations
in Rewriting Logic. In: da Silva Simão, A., Morgan, C. (eds.) SBMF 2011. LNCS,
vol. 7021, pp. 60–75. Springer, Heidelberg (2011)

13. Rocha, C., Muñoz, C., Dowek, G.: A formal library of set relations and its applica-
tion to synchronous languages. Theoretical Computer Science 412(37), 4853–4866
(2011)

14. Rosu, G., Serbanuta, T.F.: An overview of the K semantic framework. Journal of
Logic and Algebraic Programming 79(6), 397–434 (2010)

15. Santiago, S., Talcott, C.L., Escobar, S., Meadows, C., Meseguer, J.: A graphi-
cal user interface for Maude-NPA. Electronic Notes in Theoretical Computer Sci-
ence 258(1), 3–20 (2009)

16. Strauss, P.J.: Executable semantics for PLEXIL: simulating a task-scheduling lan-
guage in Haskell. Master’s thesis, Oregon State University (2009)

17. Verdejo, A., Mart́ı-Oliet, N.: Two case studies of semantics execution in Maude:
CCS and LOTOS. Formal Methods in System Design 27(1-2), 113–172 (2005)

18. Verma, V., Jónsson, A., Păsăreanu, C., Iatauro, M.: Universal Executive and
PLEXIL: Engine and language for robust spacecraft control and operations. In:
Proceedings of the American Institute of Aeronautics and Astronautics Space Con-
ference (2006)

Author Index

Baeten, Jos 253
Bakhshi, Rena 158
Balasingham, Ilangko 143
Barker, Philip 84
Barreto, Raimundo 128
Berthing, Jesper 69
Besnard, Löıc 113
Blackmore, Tim 84
Börger, Egon 1
Bosser, Anne-Gwenn 206
Boström, Pontus 69
Bresciani, Riccardo 191
Brooke, Phillip J. 206
Bubel, Richard 283
Butterfield, Andrew 191

Cadavid, Héctor 343
Calder, Muffy 21
Cisternino, Antonio 1
Cordeiro, Lucas 128
Cunha, Alcino 312

Diaconescu, Denisa 221
Dias Neto, Arilo 128
Dongol, Brijesh 39

Eder, Kerstin 84

Faria, João P. 296

Garis, Ana 312
Gautier, Thierry 113
Gervasi, Vincenzo 1

Halliwell, David 84
Hansen, Dominik 24
Hayes, Ian J. 39
Hooman, Jozef 268

Isobe, Yoshinao 54

Ji, Ran 283
Johnsen, Einar Broch 143

Kazemeyni, Fatemeh 143

Laibinis, Linas 237
Le Guernic, Paul 113
Lensink, Leonard 174
Leuschel, Michael 24
Leustean, Ioana 221
Lopes, Antónia 296

Maggi, Fabrizio Maria 327
Markovski, Jasen 253
Moller, Faron 54
Mooij, Arjan J. 268
Mousavi, Mohammad Reza 158
Muñoz, César 343

Ngo, Van Chan 113
Nguyen, Hoang Nga 54
Nielson, Flemming 99

Owe, Olaf 143

Paiva, Ana C.R. 296, 312
Petre, Luigia 221

Ramaram, Naresh 84
Rebello de Andrade, Francisco 296
Riesco, Daniel 312
Riis Nielson, Hanne 99
Rocha, Camilo 343
Rocha, Herbert 128
Roggenbach, Markus 54

Schunselaar, Dennis M.M. 327
Sere, Kaisa 69, 221
Sevegnani, Michele 21
Sidorova, Natalia 327
Siminiceanu, Radu 343
Smetsers, Sjaak 174
Stefanescu, Gheorghe 221

Talpin, Jean-Pierre 113
Tarasyuk, Anton 237

360 Author Index

Tian, HaiYun 206
Troubitsyna, Elena 237
Tsiopoulos, Leonidas 69

Vain, Jüri 69
van Beek, Dirk A. 253

van Eekelen, Marko 174
van Wezep, Hans 268

Woehrle, Matthias 158

Zhang, Fuyuan 99

	Title
	Foreword
	Preface
	Organization
	Contents
	Contribution to a Rigorous Analysis of Web Application Frameworks
	Introduction
	Concrete Goals and Results So Far

	Modeling Browser Components
	Browsing Context
	Renderer
	Event Loop

	A High-Level WebServer Model
	Functional Request-Reply Web Server View
	Refinement for File Transfer Execution
	Refinement for Common Gateway Module Execution
	Refinement for Scripting Module Execution

	The Challenge of Accurate Analysis
	References

	Process Algebra for Event-Driven Runtime Verification: A Case Study of Wireless Network Management
	References

	Translating TLA+ to B for Validation with ProB
	Introduction and Motivation
	An Example Translation from TLA+ to B
	The Translation from TLA+ to B
	Type System
	Translation Rules

	Implementation and Experiments
	More Related Work, Discussion and Conclusion
	References

	Rely/Guarantee Reasoning for Teleo-reactive Programs over Multiple Time Bands
	Introduction
	A Real-Time Framework
	Intervals, Streams and Interval Stream Predicates
	Evaluating State Predicates over an Interval
	Chop, Iterated Chop and Alternation

	Multi-time-Band Systems
	Sampling and Time Bands
	Teleo-reactive Programs

	Rely/Guarantee Reasoning
	Rely/Guarantee Rules
	Proof of Safety for mp

	Conclusions
	References

	Safety and Line Capacity in Railways – An Approach in Timed CSP
	Introduction
	Railway Terminology and the Double Junction Example
	Modelling Railways for Safety in CSP
	Timed CSP and Timed Traces
	Modelling Timed Behaviours of Railway System
	Modelling Railway Capacity
	Capacity Semantically
	Capturing Storage and Increase in Timed Csp
	Capacity via Refinement

	Studying Safety and Capacity in the Context of the Double Junction
	Summary and Future Work
	References

	Refinement-Based Development of Timed Systems
	Introduction
	Related Work
	Case-Study: Safety Related Controller Design
	Preliminaries
	Preliminaries of Event-B
	Preliminaries of UPTA
	Mapping from Event-B Models to UPTA
	Abstract Event-B and UPTA Specifications of Safety Controller

	Proving Refinement of Timed Systems
	Superposition Refinement of UPTA
	Event-B and UPTA Refinement of Safety Controller

	Conclusion and Future Work
	References

	Analysing and Closing Simulation Coverage by Automatic Generation and Verification of Formal Properties from Coverage Reports
	Introduction
	Background
	Coverage
	Model Checking
	Related Work

	Methodology
	The Principle of Temporal Induction
	Application of the Methodology
	Further Considerations

	Implementation
	Experiments and Results
	Discussion
	Conclusion
	References

	Model Checking as Static Analysis: Revisited
	Introduction
	Modal -Calculus
	Kripke Structures
	Syntax and Semantics of the Modal -Calculus

	Logical Approach to Static Analysis
	Alternation-Free Least Fixed Point Logic
	Succinct Fixed Point Logic

	Model Checking as Static Analysis
	Conclusion
	References

	Formal Verification of Compiler Transformations on Polychronous Equations
	Introduction
	An Equational Model of Synchronous Programs
	An Equational Model of the Synchronous Program Behavior
	Overview of the SIGNAL Language Features
	PDS Model of SIGNAL Programs

	Formally Verified Compilation Approaches
	Definition of Correct Translation: Refinement
	Proving Refinement by Simulation
	Composition of Compilation Phases

	Proving the SIGNAL Compiler
	Implementation of Symbolic Simulation with SIGALI
	Proving the Compiler Transformations

	Related Work and Conclusions
	References

	Understanding Programming Bugs in ANSI-C Software Using Bounded Model Checking Counter-Examples
	Introduction
	Context-Bounded Model Checking with ESBMC
	EZProofCMethod
	First Step: Code Preprocessing
	Second Step: Model Checking with ESBMC
	Third Step: Code Instantiation
	Fourth Step: Code Execution and Confirmation of Errors

	Experimental Results
	Planning and Design the Experiments
	Experiment’s Execution and Results Analysis

	Related Work
	Conclusions and Future Work
	References

	MULE-Based Wireless Sensor Networks: Probabilistic Modeling and Quantitative Analysis
	Introduction
	Probabilistic Rewrite Theories and PMaude
	Grouping Nodes in MULE-Based Sensor Networks
	A Declarative Model of MULE-Based Communication
	Combining Declarative and Operational Models
	Quantitative Analysis of the Combined Model
	Conclusion
	References

	Mechanized Extraction of Topology Anti-patterns in Wireless Networks
	Introduction
	Related Work
	Identifying Topology Anti-patterns
	Minimization
	Isolation
	Discussion

	Case Studies
	Experimental Setup
	PRISM
	Verifying Trickle
	Verifying LMAC
	Handling Multiple Faults
	Comparison to Diagnosis

	Conclusions
	References

	A Proof Framework for Concurrent Programs
	Introduction
	Framework Basics
	An Example: Bakery Algorithm
	Framework with Thread Synchronisation
	Related Work
	Conclusions and Future Work
	References

	A UTP Semantics of pGCL as a Homogeneous Relation
	Introduction
	Background
	UTP
	pGCL
	Probabilistic UTP

	Observing Distributions
	Assignment

	UTP Semantics of pGCL
	Deterministic Constructs
	Non-deterministic Choice
	Generic Choice
	The Linkage between Other Semantic Models and Ours

	Conclusion and Future Work
	References

	Behaviour-Based Cheat Detection in Multiplayer Games with Event-B
	Introduction
	Behaviour-Based Cheat Detection with Formal Methods
	Cheating Behaviour Modelling
	Cheating Behaviour in Event-B

	Production of Cheat Detector
	Merits of Implementation

	Validation of the Framework
	Related Work
	Conclusions
	References

	Refinement-Preserving Translation from Event-B to Register-Voice Interactive Systems
	Introduction
	Preliminaries
	Event-B
	Register-Voice Interactive Systems

	From Event-B to Structured rv-IS
	An Example – A Simple File Transfer Protocol
	Conclusions
	References

	Formal Modelling and Verification of Service-Oriented Systems in Probabilistic Event-B
	Introduction
	Modelling in Event-B
	Service-Oriented Systems
	Service Orchestration
	Towards Formalisation of Service Orchestration

	Modelling the Dynamic Service Architecture
	Case Study
	Probabilistic Verification in Event-B
	Probabilistic Event-B
	Case Study: Quantitative Modelling and Verification

	Related Work and Conclusions
	References

	Partially-Supervised Plants: Embedding Control Requirements in Plant Components
	Introduction
	Supervisory Control Theory
	Supervisor Synthesis for a Patient Support System
	Process-Theoretic Approach to Controllability
	Partially-Supervised Plants
	Concluding Remarks
	References

	Early Fault Detection in Industry Using Models at Various Abstraction Levels
	Introduction
	Control Components for an Interventional X-Ray System
	Modelling and Analysing Requirements
	Modelling and Analysing Designs
	Comparing Requirements and Designs
	Detailed Design with ASD
	Conclusions and Further Work
	References

	PE-KeY: A Partial Evaluator for Java Programs
	Introduction
	Calculus
	Dynamic Logic
	Sequent Calculus
	Compilation Rules

	Implementation and Experiments
	Related Work
	Conclusions and Future Work
	References

	Specification-Driven Unit Test Generation for Java Generic Classes
	Introduction
	Specifications of Generic Data Types
	Semantics

	Generation of Abstract Tests
	Tests for Parameterized Specifications
	Generation Technique
	From Algebraic Specifications to Alloy and Back

	From Abstract Tests to JUnit Tests
	Refinement Mappings
	Mock Classes and JUnit Tests

	Evaluation
	Conclusions and Future Work
	References

	Specifying UML Protocol State Machines in Alloy
	Introduction
	Case Study
	Preliminary Concepts
	UML Protocol State Machines
	Alloy

	Specifying Protocol State Machines in Alloy
	Importing UML Class Diagram into Alloy
	PSM's States and Transitions
	Finite Execution Traces
	Verification and Validation of UML Diagrams
	Implementation

	Related Work
	Conclusions and Future Work
	References

	Patterns for a Log-Based Strengthening of Declarative Compliance Models
	Introduction
	Basic Concepts and Related Work
	Declare
	Approach
	Existence Constraints
	Relation Constraints

	Methodology
	Case Study
	Conclusion
	References

	A Formal Interactive Verification Environment for the Plan Execution Interchange Language
	Introduction
	PLEXILOverview
	PLEXIL5
	Architecture and Design
	User Interaction

	Formal Analysis in PLEXIL5
	Simulation and Debugging
	Model Checking
	Semantic Validation

	A Case Study
	Model Description
	Verification

	Related Work and Conclusion
	References

	Author Index

