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Abstract. We present several relational frameworks for expressing sim-
ilarities and preferences in a quantitative way. The main focus is on the
occurrence of various types of transitivity in these frameworks. The first
framework is that of fuzzy relations; the corresponding notion of transi-
tivity is C-transitivity, with C a conjunctor. We discuss two approaches
to the measurement of similarity of fuzzy sets: a logical approach based
on biresidual operators and a cardinal approach based on fuzzy set car-
dinalities. The second framework is that of reciprocal relations; the cor-
responding notion of transitivity is cycle-transitivity. It plays a crucial
role in the description of different types of transitivity arising in the
comparison of (artificially coupled) random variables in terms of win-
ning probabilities. It also embraces the study of mutual rank probability
relations of partially ordered sets.

1 Introduction

Comparing objects in order to group together similar ones or distinguish better
from worse is inherent to human activities in general and scientific disciplines in
particular. In this overview paper, we present some relational frameworks that
allow to express the results of such a comparison in a numerical way, typically
by means of numbers in the unit interval. A first framework is that of fuzzy
relations and we discuss how it can be used to develop cardinality-based, i.e.
based on the counting of features, similarity measurement techniques. A second
framework is that of reciprocal relations and we discuss how it can be used
to develop methods for comparing random variables. Rationality considerations
demand the presence of some kind of transitivity. We therefore review in detail
the available notions of transitivity and point out where they occur.

This contribution is organised as follows. In Section 2, we present the two
relational frameworks mentioned, the corresponding notions of transitivity and
the connections between them. In Section 3, we explore the framework of fuzzy
relations and its capacity for expressing the similarity of fuzzy sets. Section 4
is dedicated to the framework of reciprocal relations and its potential for the
development of methods for the comparison of random variables. We wrap up
in Section 5 with a short conclusion.
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2 Relational Frameworks and Their Transitivity

2.1 Fuzzy Relations

Transitivity is an essential property of relations. A (binary) relation R on a
universe X (the universe of discourse or the set of alternatives) is called transitive
if for any (a, b, c) ∈ X3 it holds that (a, b) ∈ R ∧ (b, c) ∈ R implies (a, c) ∈ R.
Identifying R with its characteristic mapping, i.e. defining R(a, b) = 1 if (a, b) ∈
R, and R(a, b) = 0 if (a, b) /∈ R, transitivity can be stated equivalently as
R(a, b) = 1∧R(b, c) = 1 implies R(a, c) = 1. Other equivalent formulations may
be devised, such as

(R(a, b) ≥ α ∧R(b, c) ≥ α) ⇒ R(a, c) ≥ α , (1)

for any α ∈ ]0, 1]. Transitivity can also be expressed in the following functional
form

min(R(a, b), R(b, c)) ≤ R(a, c) . (2)

Note that on {0, 1}2 the minimum operation is nothing else but the Boolean
conjunction.

A fuzzy relation R on X is an X2 → [0, 1] mapping that expresses the degree
of relationship between elements of X : R(a, b) = 0 means a and b are not related
at all, R(a, b) = 1 expresses full relationship, while R(a, b) ∈ ]0, 1[ indicates a
partial degree of relationship only. In fuzzy set theory, formulation (2) has led
to the popular notion of T -transitivity, where a t-norm is used to generalize
Boolean conjunction. A binary operation T : [0, 1]2 → [0, 1] is called a t-norm if
it is increasing in each variable, has neutral element 1 and is commutative and
associative. The three main continuous t-norms are the minimum operator TM,
the algebraic product TP and the �Lukasiewicz t-norm TL (defined by TL(x, y) =
max(x + y − 1, 0)). For an excellent monograph on t-norms and t-conorms, we
refer to [39].

However, we prefer to work with a more general class of operations called con-
junctors. A conjunctor is a binary operation C : [0, 1]2 → [0, 1] that is increasing
in each variable and coincides on {0, 1}2 with the Boolean conjunction.

Definition 1. Let C be a conjunctor. A fuzzy relation R on X is called C-
transitive if for any (a, b, c) ∈ X3 it holds that

C(R(a, b), R(b, c)) ≤ R(a, c) . (3)

Interesting classes of conjunctors are the classes of semi-copulas, quasi-copulas,
copulas and t-norms. Semi-copulas are nothing else but conjunctors with neutral
element 1 [30]. Where t-norms have the additional properties of commutativ-
ity and associativity, quasi-copulas are 1-Lipschitz continuous [33,44]. A quasi-
copula is a semi-copula that is 1-Lipschitz continuous: for any (x, y, u, v) ∈ [0, 1]4

it holds that |C(x, u)−C(y, v)| ≤ |x−y|+|u−v|. If instead of 1-Lipschitz continu-
ity, C satisfies the moderate growth property (also called 2-monotonicity): for any
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(x, y, u, v) ∈ [0, 1]4 such that x ≤ y and u ≤ v it holds that C(x, v) + C(y, u) ≤
C(x, u) + C(y, v), then C is called a copula.

Any copula is a quasi-copula, and therefore is 1-Lipschitz continuous; the
converse is not true. It is well known that a copula is a t-norm if and only if it
is associative; conversely, a t-norm is a copula if and only if it is 1-continuous.
The t-norms TM, TP and TL are copulas as well. For any quasi-copula C it holds
that TL ≤ C ≤ TM. For an excellent monograph on copulas, we refer to [44].

2.2 Reciprocal Relations

Another interesting class of X2 → [0, 1] mappings is the class of reciprocal
relations Q (also called ipsodual relations or probabilistic relations) satisfying
Q(a, b) + Q(b, a) = 1, for any a, b ∈ X . For such relations, it holds in particular
that Q(a, a) = 1/2. Reciprocity is linked with completeness: let R be a complete
({0, 1}-valued) relation on X , which means that max(R(a, b), R(b, a)) = 1 for any
a, b ∈ X , then R has an equivalent {0, 1/2, 1}-valued reciprocal representation
Q given by Q(a, b) = 1/2(1 + R(a, b) − R(b, a)).

Stochastic Transitivity. Transitivity properties for reciprocal relations rather
have the logical flavor of expression (1). There exist various kinds of stochastic
transitivity for reciprocal relations [3,42]. For instance, a reciprocal relation Q
on X is called weakly stochastic transitive if for any (a, b, c) ∈ X3 it holds that
Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2 implies Q(a, c) ≥ 1/2, which corresponds to
the choice of α = 1/2 in (1). In [11], the following generalization of stochastic
transitivity was proposed.

Definition 2. Let g be an increasing [1/2, 1]2 → [0, 1] mapping such that
g(1/2, 1/2) ≤ 1/2. A reciprocal relation Q on X is called g-stochastic transi-
tive if for any (a, b, c) ∈ X3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) .

Note that the condition g(1/2, 1/2) ≤ 1/2 ensures that the reciprocal represen-
tation Q of any transitive complete relation R is always g-stochastic transitive.
In other words, g-stochastic transitivity generalizes transitivity of complete rela-
tions. This definition includes the standard types of stochastic transitivity [42]:

(i) strong stochastic transitivity when g = max;
(ii) moderate stochastic transitivity when g = min ;
(iii) weak stochastic transitivity when g = 1/2 .

In [11], also a special type of stochastic transitivity has been introduced.

Definition 3. Let g be an increasing [1/2, 1]2 → [0, 1] mapping such that
g(1/2, 1/2) = 1/2 and g(1/2, 1) = g(1, 1/2) = 1. A reciprocal relation Q on
X is called g-isostochastic transitive if for any (a, b, c) ∈ X3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = g(Q(a, b), Q(b, c)) .
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The conditions imposed upon g again ensure that g-isostochastic transitivity
generalizes transitivity of complete relations. Note that for a given mapping g,
the property of g-isostochastic transitivity is much more restrictive than the
property of g-stochastic transitivity.

FG-Transitivity. The framework of FG-transitivity, developed by Swital-
ski [51,52], formally generalizes g-stochastic transitivity in the sense that Q(a, c)
is now bounded both from below and above by [1/2, 1]2 → [0, 1] mappings.

Definition 4. Let F and G be two [1/2, 1]2 → [0, 1] mappings such that
F (1/2, 1/2) ≤ 1/2 ≤ G(1/2, 1/2), and G(1/2, 1) = G(1, 1/2) = G(1, 1) = 1
and F ≤ G. A reciprocal relation Q on X is called FG-transitive if for any
(a, b, c) ∈ X3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2)

⇓
F (Q(a, b), Q(b, c)) ≤ Q(a, c) ≤ G(Q(a, b), Q(b, c)) .

Cycle-Transitivity. For a reciprocal relation Q, we define for all (a, b, c) ∈ X3

the following quantities [11]:

αabc = min(Q(a, b), Q(b, c), Q(c, a)) ,

βabc = median(Q(a, b), Q(b, c), Q(c, a)) ,

γabc = max(Q(a, b), Q(b, c), Q(c, a)) .

Let us also denote Δ = {(x, y, z) ∈ [0, 1]3 | x ≤ y ≤ z}. A function U : Δ → R

is called an upper bound function if it satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;
(ii) for any (α, β, γ) ∈ Δ:

U(α, β, γ) + U(1 − γ, 1 − β, 1 − α) ≥ 1 . (4)

The function L : Δ → R defined by L(α, β, γ) = 1−U(1−γ, 1−β, 1−α) is called
the dual lower bound function of the upper bound function U . Inequality (4)
then simply expresses that L ≤ U . Condition (i) again guarantees that cycle-
transitivity generalizes transitivity of complete relations.

Definition 5. A reciprocal relation Q on X is called cycle-transitive w.r.t. an
upper bound function U if for any (a, b, c) ∈ X3 it holds that

L(αabc, βabc, γabc) ≤ αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) , (5)

where L is the dual lower bound function of U .
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Due to the built-in duality, it holds that if (5) is true for some (a, b, c), then this is
also the case for any permutation of (a, b, c). In practice, it is therefore sufficient
to check (5) for a single permutation of any (a, b, c) ∈ X3. Alternatively, due
to the same duality, it is also sufficient to verify the right-hand inequality (or
equivalently, the left-hand inequality) for two permutations of any (a, b, c) ∈ X3

(not being cyclic permutations of one another), e.g. (a, b, c) and (c, b, a). Hence,
(5) can be replaced by

αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) .

Note that a value of U(α, β, γ) equal to 2 is used to express that for the given
values there is no restriction at all (as α + β + γ − 1 is always bounded by 2).

Two upper bound functions U1 and U2 are called equivalent if for any (α, β, γ) ∈
Δ it holds that α + β + γ − 1 ≤ U1(α, β, γ) is equivalent to α + β + γ − 1 ≤
U2(α, β, γ).

If it happens that in (4) the equality holds for all (α, β, γ) ∈ Δ, then the upper
bound function U is said to be self-dual, since in that case it coincides with its
dual lower bound function L. Consequently, also (5) and (2.2) can only hold with
equality. Furthermore, it then holds that U(0, 0, 1) = 0 and U(0, 1, 1) = 1.

Although C-transitivity is not intended to be applied to reciprocal relations,
it can be cast quite nicely into the cycle-transitivity framework.

Proposition 1. [11] Let C be a commutative conjunctor such that C ≤ TM.
A reciprocal relation Q on X is C-transitive if and only if it is cycle-transitive
w.r.t. the upper bound function UC defined by

UC(α, β, γ) = min(α + β − C(α, β), β + γ − C(β, γ), γ + α− C(γ, α)) .

Moreover, if C is 1-Lipschitz continuous, then UC is given by

UC(α, β, γ) = α + β − C(α, β) .

Consider the three basic t-norms (copulas) TM, TP and TL:

(i) For C = TM, we immediately obtain as upper bound function the median
(the simplest self-dual upper bound function):

UTM(α, β, γ) = β .

(ii) For C = TP, we find

UTP(α, β, γ) = α + β − αβ .

(iii) For C = TL, we obtain

UTL(α, β, γ) =

{
α + β , if α + β < 1 ,
1 , if α + β ≥ 1 .

An equivalent upper bound function is given by U ′
TL

(α, β, γ) = 1.



150 B. De Baets

Cycle-transitivity also incorporates stochastic transitivity, although the latter
fits more naturally in the FG-transitivity framework; in particular, isostochastic
transitivity corresponds to cycle-transitivity w.r.t. particular self-dual
upper bound functions [11]. We have shown that the cycle-transitivity and FG-
transitivity frameworks cannot easily be translated into one another, which un-
derlines that these are two essentially different approaches [6].

One particular form of stochastic transitivity deserves our attention. A prob-
abilistic relation Q on X is called partially stochastic transitive [31] if for any
(a, b, c) ∈ X3 it holds that

(Q(a, b) > 1/2 ∧ Q(b, c) > 1/2) ⇒ Q(a, c) ≥ min(Q(a, b), Q(b, c)) .

Clearly, it is a slight weakening of moderate stochastic transitivity. Interestingly,
also this type of transitivity can be expressed elegantly in the cycle-transitivity
framework [24] by means of a simple upper bound function.

Proposition 2. Cycle-transitivity w.r.t. the upper bound function Ups defined
by

Ups(α, β, γ) = γ

is equivalent to partial stochastic transitivity.

A Frequentist Interpretation. Finally, we provide an interesting interpreta-
tion of some important types of upper bound functions [23].

Definition 6. Let C be a conjunctor and Q be a reciprocal relation on X. A
permutation (a, b, c) ∈ X3 is called a C-triplet if

C(R(a, b), R(b, c)) ≤ R(a, c) .

Let ΔC(Q) denote the greatest number k such that any subset {a, b, c} ⊆ X has
k C-triplets. Obviously, Q is C-transitive if and only if ΔC(Q) = 6.

Proposition 3. For any conjunctor C ≤ TM and any reciprocal relation Q on
X it holds that 3 ≤ ΔC(Q) ≤ 6. More specifically, it holds that

(i) ΔTM(Q) ∈ {3, 5, 6};
(ii) ΔTP(Q) ∈ {3, 4, 5, 6};
(iii) ΔTL(Q) ∈ {3, 6}.
Proposition 4. Let C be a commutative quasi-copula. A reciprocal relation Q
on X is cycle-transitive w.r.t.

(i) U(α, β, γ) = β + γ − C(β, γ) if and only if ΔC(Q) ≥ 4;
(ii) U(α, β, γ) = α + γ − C(α, γ) if and only if ΔC(Q) ≥ 5;
(iii) U(α, β, γ) = α + β − C(α, β) if and only if ΔC(Q) = 6.

Statement (iii) is nothing else but a rephrasing of Proposition 1. According
the above proposition (statement (ii) applied to C = TM), partial stochastic
transitivity of a reciprocal relation implies that it is ‘at least 5/6’ TM-transitive.

For ease of reference, we will refer to cycle-transitivity w.r.t. U(α, β, γ) = β +
γ−C(β, γ) as weak C-transitivity, to cycle-transitivity w.r.t. U(α, β, γ) = α+γ−
C(α, γ) as moderate C-transitivity, and to cycle-transitivity w.r.t. U(α, β, γ) =
α + β − C(α, β) as (strong) C-transitivity.
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3 Similarity of Fuzzy Sets

3.1 Basic Notions

Recall that an equivalence relation E on X is a reflexive, symmetric and transitive
relation on X and that there exists a one-to-one correspondence between equiv-
alence relations on X and partitions of X . In fuzzy set theory, the counterpart
of an equivalence relation is a T -equivalence: given a t-norm T , a T -equivalence
E on X is a fuzzy relation on X that is reflexive (E(x, x) = 1), symmetric
(E(x, y) = E(y, x)) and T -transitive. A T -equivalence is called a T -equality if
E(x, y) implies x = y.

For the prototypical t-norms, it is interesting to note that (see e.g. [15,17]):

(i) A fuzzy relation E on X is a TL-equivalence if and only if d = 1 − E is a
pseudo-metric on X .

(ii) A fuzzy relation E on X is a TP-equivalence if and only if d = − logE is a
pseudo-metric on X .

(iii) A fuzzy relation E on X is a TM-equivalence if and only if d = 1 − E is
a pseudo-ultra-metric on X . Another interesting characterization is that a
fuzzy relation E on X is a TM-equivalence if and only if for any α ∈ [0, 1]
its α-cut Eα = {(x, y) ∈ X2 | E(x, y) ≥ α} is an equivalence relation on
X . The equivalence classes of Eα become smaller for increasing α leading
to the concept of a partition tree (see e.g. [26]).

3.2 A Logical Approach

To any left-continuous t-norm T , there corresponds a residual implicator IT :
[0, 1]2 → [0, 1] defined by

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} ,

which can be considered as a generalization of the Boolean implication. Note that
IT (x, y) = 1 if and only if x ≤ y. In case y < x, one gets for the prototypical t-
norms: IM(x, y) = y, IP(x, y) = y/x and IL(x, y) = min(1−x+y, 1). An essential
property of the residual implicator of a left-continuous t-norm is related to the
classical syllogism:

T (IT (x, y), IT (y, z)) ≤ IT (x, z)) ,

for any (x, y, z) ∈ [0, 1]3. The residual implicator is the main constituent of the
biresidual operator ET : [0, 1]2 → [0, 1] defined by

ET (x, y) = min(IT (x, y), IT (y, x)) = IT (max(x, y),min(x, y)) ,

which can be considered as a generalization of the Boolean equivalence. Note that
ET (x, y) = 1 if and only if x = y. In case x 
= y, one gets for the prototypical
t-norms: EM(x, y) = min(x, y), EP(x, y) = min(x, y)/max(x, y) and EL(x, y) =
1 − |x− y|.
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Of particular importance in this discussion is the fact that ET is a T -equality
on [0, 1]. The biresidual operator obviously serves as a means for measuring
equality of membership degrees. Any T -equality E on [0, 1] can be extended in
a natural way to F(X), the class of fuzzy sets in X :

E′(A,B) = inf
x∈X

E(A(x), B(x)) .

It then holds that E′ is a T -equality on F(X) if and only if E is a T -equality on
[0, 1]. Starting from ET we obtain the T -equality ET . A second way of defining
a T -equality on F(X) is by defining

ET (A,B) = T ( inf
x∈X

IT (A(x), B(x)), inf
x∈X

IT (B(x), A(x))) .

The underlying idea is that in order to measure equality of two (fuzzy) sets
A and B, one should both measure inclusion of A in B, and of B in A. Note
that in general ET ⊆ ET , while EM = EM. These T -equivalences can be used
as a starting point for building metrics on F(X). The above ways of measuring
equality of fuzzy sets are very strict in the sense that the “worst” element decides
upon the value.

Without going into detail, it is worth mentioning that there exist an ap-
propriate notion of fuzzy partition, called T -partition [16], so that there exists a
one-to-one correspondence between T -equalities on X and T -partitions of X [17].

3.3 A Cardinal Approach

Classical Cardinality-Based Similarity Measures. A common recipe for
comparing objects is to select an appropriate set of features and to construct
for each object a binary vector encoding the presence (1) or absence (0) of
each of these features. Such a binary vector can be formally identified with the
corresponding set of present features. The degree of similarity of two objects is
then often expressed in terms of the cardinalities of the latter sets. We focus
our attention on a family of [0, 1]-valued similarity measures that are rational
expressions in the cardinalities of the sets involved [12]:

S(A,B) =
xαA,B + t ωA,B + y δA,B + z νA,B

x′ αA,B + t′ ωA,B + y′ δA,B + z′ νA,B
,

with A,B ∈ P(X) (the powerset of a finite universe X),

αA,B = min(|A \B|, |B \A|) ,
ωA,B = max(|A \B|, |B \A|) ,
δA,B = |A ∩B| ,
νA,B = |(A ∪B)c| ,

and x, t, y, z, x′, t′, y′, z′ ∈ {0, 1}. Note that these similarity measures are sym-
metric, i.e. S(A,B) = S(B,A) for any A,B ∈ P(X).
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Reflexive similarity measures, i.e. S(A,A) = 1 for any A ∈ P(X), are char-
acterized by y = y′ and z = z′. We restrict our attention to the (still large)
subfamily obtained by putting also t = x and t′ = x′ [5,14], i.e.

S(A,B) =
xA,B +y δA,B + z νA,B

x′ A,B +y δA,B + z νA,B
, (6)

with A,B = |A  B| = |A \ B| + |B \ A|. On the other hand, we allow more
freedom by letting the parameters x, y, z and x′ take positive real values. Note
that these parameters can always be scaled to the unit interval by dividing
both numerator and denominator of (6) by the greatest among the parameters.
In order to guarantee that S(A,B) ∈ [0, 1], we need to impose the restriction
0 ≤ x ≤ x′. Since the case x = x′ leads to trivial measures taking value 1 only, we
consider from here on 0 ≤ x < x′. The similarity measures gathered in Table 1
all belong to family (6); the corresponding parameter values are indicated in the
table.

Table 1. Some well-known cardinality-based similarity measures

Measure expression x x′ y z T

Jaccard [34] |A∩B|
|A∪B| 0 1 0 1 TL

Simple Matching [50] 1− |A�B|
n

0 1 1 1 TL

Dice [29] 2|A∩B|
|A�B|+2|A∩B| 0 1 2 0 –

Rogers and Tanimoto [46] n−|A�B|
n+|A�B| 0 2 1 1 TL

Sneath and Sokal 1 [49] |A∩B|
|A∩B|+2|A�B| 0 2 1 0 TL

Sneath and Sokal 2 [49] 1− |A�B|
2n−|A�B| 0 1 2 2 –

The TL- or TP-transitive members of family (6) are characterized in the fol-
lowing proposition.

Proposition 5. [14]

(i) The TL-transitive members of family (6) are characterized by the necessary
and sufficient condition x′ ≥ max(y, z).

(ii) The TP-transitive members of family (6) are characterized by the necessary
and sufficient condition xx′ ≥ max(y2, z2).

Fuzzy Cardinality-Based Similarity Measures. Often, the presence or ab-
sence of a feature is not clear-cut and is rather a matter of degree. Hence, if
instead of binary vectors we have to compare vectors with components in the
real unit interval [0, 1] (the higher the number, the more the feature is present),
the need arises to generalize the aforementioned similarity measures. In fact, in
the same way as binary vectors can be identified with ordinary subsets of a finite
universe X , vectors with components in [0, 1] can be identified with fuzzy sets
in X .
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In order to generalize a cardinality-based similarity measure to fuzzy sets,
we clearly need fuzzification rules that define the cardinality of a fuzzy set and
translate the classical set-theoretic operations to fuzzy sets. As to the first, we
stick to the following simple way of defining the cardinality of a fuzzy set, also
known as the sigma-count of A [55]: |A| =

∑
x∈X A(x). As to the second, we

define the intersection of two fuzzy sets A and B in X in a pointwise manner
by A ∩ B(x) = C(A(x), B(x)), for any x ∈ X , where C is a commutative con-
junctor. In [14], we have argued that commutative quasi-copulas are the most
appropriate conjunctors for our purpose. Commutative quasi-copulas not only
allow to introduce set-theoretic operations on fuzzy sets, such as A \ B(x) =
A(x)−C(A(x), B(x)) and AB(x) = A(x) +B(x)− 2C(A(x), B(x)), they also
preserve classical identities on cardinalities, such as |A \B| = |A| − |A ∩B| and
|A  B| = |A \ B| + |B \ A| = |A| + |B| − 2|A ∩ B|. These identities allow to
rewrite and fuzzify family (6) as

S(A,B) =
x(a + b− 2u) + yu + z(n− a− b + u)

x′(a + b− 2u) + yu + z(n− a− b + u)
, (7)

with a = |A|, b = |B| and u = |A ∩B|.

Bell-Inequalities and Preservation of Transitivity. Studying the transi-
tivity of (fuzzy) cardinality-based similarity measures inevitably leads to the
verification of inequalities on (fuzzy) cardinalities. We have established several
powerful meta-theorems that provide an efficient and intelligent way of verify-
ing whether a classical inequality on cardinalities carries over to fuzzy cardi-
nalities [13]. These meta-theorems state that certain classical inequalities are
preserved under fuzzification when modelling fuzzy set intersection by means of
a commutative conjunctor that fulfills a number of Bell-type inequalities.

In [35], we introduced the classical Bell inequalities in the context of fuzzy
probability calculus and proved that the following Bell-type inequalities for
commutative conjunctors are necessary and sufficient conditions for the cor-
responding Bell-type inequalities for fuzzy probabilities to hold. The Bell-type
inequalities for a commutative conjunctor C read as follows:

B1 : TL(p, q) ≤ C(p, q) ≤ TM(p, q)

B2 : 0 ≤ p− C(p, q) − C(p, r) + C(q, r)

B3 : p + q + r − C(p, q) − C(p, r) − C(q, r) ≤ 1

for any p, q, r ∈ [0, 1]. Inequality B2 is fulfilled for any commutative quasi-copula,
while inequality B3 only holds for certain t-norms [36], including the members
of the Frank t-norm/copula family TF

λ with λ ≤ 9 + 4
√

5 [45]. Also note that
inequality B1 follows from inequality B2.

Theorem 1. [13] Consider a commutative conjunctor I that satisfies Bell in-
equalities B2 and B3. If for any ordinary subsets A, B and C of an arbitrary
finite universe X it holds that

H(|A|, |B|, |C|, |A ∩B|, |A ∩ C|, |B ∩ C|, |X |) ≥ 0 ,
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where H denotes a continuous function which is homogeneous in its arguments,
then it also holds for any fuzzy sets in an arbitrary finite universe Y .

If the function H does not depend explicitly upon |X |, then Bell inequality
B3 can be omitted. This meta-theorem allows us to identify conditions on the
parameters of the members of family (7) leading to TL-transitive or TP-transitive
fuzzy similarity measures. As our fuzzification is based on a commutative quasi-
copula C, condition B2 holds by default. The following proposition then is an
immediate application.

Proposition 6. [13]

(i) Consider a commutative quasi-copula C that satisfies B3. The TL-transitive
members of family (7) are characterized by x′ ≥ max(y, z).

(ii) The TL-transitive members of family (7) with z = 0 are characterized by
x′ ≥ y.

(iii) Consider a commutative quasi-copula C that satisfies B3. The TP-transitive
members of family (7) are characterized by xx′ ≥ max(y2, z2).

(iv) The TP-transitive members of family (7) with z = 0 are characterized by
xx′ ≥ y2.

However, as our meta-theorem is very general, it does not necessarily always pro-
vide the strongest results. For instance, tedious and lengthy direct proofs allow
to eliminate condition B3 from the previous theorem, leading to the following
general result.

Proposition 7. [13] Consider a commutative quasi-copula C.

(i) The TL-transitive members of family (7) are characterized by the necessary
and sufficient condition x′ ≥ max(y, z).

(ii) The TP-transitive members of family (7) are characterized by the necessary
and sufficient condition xx′ ≥ max(y2, z2).

4 Comparison of Random Variables

4.1 Dice-Transitivity

Consider three dice A, B and C which, instead of the usual numbers, carry the
following integers on their faces:

A = {1, 3, 4, 15, 16, 17}, B = {2, 10, 11, 12, 13, 14}, C = {5, 6, 7, 8, 9, 18} .
Denoting by P(X,Y ) the probability that dice X wins from dice Y , we have
P(A,B) = 20/36, P(B,C) = 25/36 and P(C,A) = 21/36. It is natural to say
that dice X is strictly preferred to dice Y if P(X,Y ) > 1/2, which reflects that
dice X wins from dice Y in the long run (or that X statistically wins from Y ,
denoted X >s Y ). Note that P(Y,X) = 1 − P(X,Y ) which implies that the
relation >s is asymmetric. In the above example, it holds that A >s B, B >s C
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and C >s A: the relation >s is not transitive and forms a cycle. In other words,
if we interpret the probabilities P(X,Y ) as constituents of a reciprocal relation
on the set of alternatives {A,B,C}, then this reciprocal relation is even not
weakly stochastic transitive.

This example can be generalized as follows: we allow the dice to possess any
number of faces (whether or not this can be materialized) and allow identical
numbers on the faces of a single or multiple dice. In other words, a generalized
dice can be identified with a multiset of integers. Given a collection of m such
generalized dice, we can still build a reciprocal relation Q containing the winning
probabilities for each pair of dice [28]. For any two such dice A and B, we define

Q(A,B) = P{A wins from B} +
1

2
P{A and B end in a tie} .

The dice or integer multisets may be identified with independent discrete random
variables that are uniformly distributed on these multisets (i.e. the probability of
an integer is proportional to its number of occurrences); the reciprocal relation
Q may be regarded as a quantitative description of the pairwise comparison of
these random variables.

In the characterization of the transitivity of this reciprocal relation, a type of
cycle-transitivity, which can neither be seen as a type of C-transitivity, nor as
a type of FG-transitivity, has proven to play a predominant role. For obvious
reasons, this new type of transitivity has been called dice-transitivity.

Definition 7. Cycle-transitivity w.r.t. the upper bound function UD defined by

UD(α, β, γ) = β + γ − βγ ,

is called dice-transitivity.

Dice-transitivity is nothing else but a synonym for weak TP-product transitivity.
According to Proposition 4, dice-transitivity of a reciprocal relation implies that
it is ‘at least 4/6’ TP-transitive. Dice-transitivity can be situated between TL-
transitivity and TP-transitivity, and also between TL-transitivity and moderate
stochastic transitivity.

Proposition 8. [28] The reciprocal relation generated by a collection of gener-
alized dice is dice-transitive.

4.2 A Method for Comparing Random Variables

Many methods can be established for the comparison of the components (random
variables, r.v.) of a random vector (X1, . . . , Xn), as there exist many ways to ex-
tract useful information from the joint cumulative distribution function (c.d.f.)
FX1,...,Xn that characterizes the random vector. A first simplification consists in
comparing the r.v. two by two. It means that a method for comparing r.v. should
only use the information contained in the bivariate c.d.f. FXi,Xj . Therefore, one
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can very well ignore the existence of a multivariate c.d.f. and just describe mu-
tual dependencies between the r.v. by means of the bivariate c.d.f. Of course one
should be aware that not all choices of bivariate c.d.f. are compatible with a mul-
tivariate c.d.f. The problem of characterizing those ensembles of bivariate c.d.f.
that can be identified with the marginal bivariate c.d.f. of a single multivariate
c.d.f., is known as the compatibility problem [44].

A second simplifying step often made is to bypass the information contained
in the bivariate c.d.f. to devise a comparison method that entirely relies on the
one-dimensional marginal c.d.f. In this case there is even not a compatibility
problem, as for any set of univariate c.d.f. FXi , the product FX1FX2 · · ·FXn is a
valid joint c.d.f., namely the one expressing the independence of the r.v. There
are many ways to compare one-dimensional c.d.f., and by far the simplest one is
the method that builds a partial order on the set of r.v. using the principle of
first order stochastic dominance [40]. It states that a r.v. X is weakly preferred
to a r.v. Y if for all u ∈ R it holds that FX(u) ≤ FY (u). At the extreme end
of the chain of simplifications, are the methods that compare r.v. by means
of a characteristic or a function of some characteristics derived from the one-
dimensional marginal c.d.f. The simplest example is the weak order induced by
the expected values of the r.v.

Proceeding along the line of thought of the previous section, a random vector
(X1, X2, . . . , Xm) generates a reciprocal relation by means of the following recipe.

Definition 8. Given a random vector (X1, X2, . . . , Xm), the binary relation Q
defined by

Q(Xi, Xj) = P{Xi > Xj} +
1

2
P{Xi = Xj}

is a reciprocal relation.

For two discrete r.v. Xi and Xj , Q(Xi, Xj) can be computed as

Q(Xi, Xj) =
∑
k>l

pXi,Xj (k, l) +
1

2

∑
k

pXi,Xj (k, k) ,

with pXi,Xj the joint probability mass function (p.m.f.) of (Xi, Xj). For two
continuous r.v. Xi and Xj , Q(Xi, Xj) can be computed as:

Q(Xi, Xj) =

∫ +∞

−∞
dx

∫ x

−∞
fXi,Xj (x, y) dy ,

with fXi,Xj the joint probability density function (p.d.f.) of (Xi, Xj).
For this pairwise comparison, one needs the two-dimensional marginal distri-

butions. Sklar’s theorem [44,48] tells us that if a joint cumulative distribution
function FXi,Xj has marginals FXi and FXj , then there exists a copula Cij such
that for all x, y:

FXi,Xj (x, y) = Cij(FXi (x), FXj (y)) .

If Xi and Xj are continuous, then Cij is unique; otherwise, Cij is uniquely
determined on Ran(FXi) × Ran(FXj ).
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As the above comparison method takes into account the bivariate marginal
c.d.f. it takes into account the dependence of the components of the random
vector. The information contained in the reciprocal relation is therefore much
richer than if, for instance, we would have based the comparison of Xi and Xj

solely on their expected values. Despite the fact that the dependence structure is
entirely captured by the multivariate c.d.f., the pairwise comparison is only apt
to take into account pairwise dependence, as only bivariate c.d.f. are involved.
Indeed, the bivariate c.d.f. do not fully disclose the dependence structure; the
r.v. may even be pairwise independent while not mutually independent.

Since the copulas Cij that couple the univariate marginal c.d.f. into the bi-
variate marginal c.d.f. can be different from one another, the analysis of the
reciprocal relation and in particular the identification of its transitivity prop-
erties appear rather cumbersome. It is nonetheless possible to state in general,
without making any assumptions on the bivariate c.d.f., that the probabilistic
relation Q generated by an arbitrary random vector always shows some minimal
form of transitivity.

Proposition 9. [7] The reciprocal relation Q generated by a random vector is
TL-transitive.

4.3 Artificial Coupling of Random Variables

Our further interest is to study the situation where abstraction is made that the
r.v. are components of a random vector, and all bivariate c.d.f. are enforced to
depend in the same way upon the univariate c.d.f., in other words, we consider
the situation of all copulas being the same, realizing that this might not be
possible at all. In fact, this simplification is equivalent to considering instead
of a random vector, a collection of r.v. and to artificially compare them, all in
the same manner and based upon a same copula. The pairwise comparison then
relies upon the knowledge of the one-dimensional marginal c.d.f. solely, as is the
case in stochastic dominance methods. Our comparison method, however, is not
equivalent to any known kind of stochastic dominance, but should rather be
regarded as a graded variant of it (see also [8]).

The case C = TP generalizes Proposition 8, and applies in particular to a
collection of independent r.v. where all copulas effectively equal TP.

Proposition 10. [27,28] The reciprocal relation Q generated by a collection of
r.v. pairwisely coupled by TP is dice-transitive.

Next, we discuss the case when using one of the extreme copulas to artificially
couple the r.v. In case C = TM, the r.v. are coupled comonotonically. Note
that this case is possible in reality. Comparing with Proposition 9, the follow-
ing proposition expresses that this way of coupling does not lead to a gain in
transitivity.

Proposition 11. [24,25] The reciprocal relation Q generated by a collection of
r.v. pairwisely coupled by TM is TL-transitive.
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In case C = TL, the r.v. are coupled countermonotonically. This assumption can
never represent a true dependence structure for more than two r.v., due to the
compatibility problem.

Proposition 12. [24,25] The reciprocal relation Q generated by a collection of
r.v. pairwisely coupled by TL is partially stochastic transitive.

The proofs of these propositions were first given for discrete uniformly dis-
tributed r.v. [25,28]. It allowed for an interpretation of the values Q(Xi, Xj) as
winning probabilities in a hypothetical dice game, or equivalently, as a method
for the pairwise comparison of ordered lists of numbers. Subsequently, we have
shown that as far as transitivity is concerned, this situation is generic and there-
fore characterizes the type of transitivity observed in general [24,27].

The above results are special cases of a more general result [7,9].

Proposition 13. Consider a Frank copula TF
λ , then the reciprocal relation Q

generated by a collection of random variables pairwisely coupled by TF
λ is cycle-

transitive w.r.t. to the upper bound function Uλ defined by:

Uλ(α, β, γ) = β + γ − TF
1/λ(β, γ) .

4.4 Comparison of Special Independent Random Variables

Dice-transitivity is the generic type of transitivity shared by the reciprocal re-
lations generated by a collection of independent r.v. If one considers indepen-
dent r.v. with densities all belonging to one of the one-parameter families in
Table 2, the corresponding reciprocal relation shows the corresponding type of
cycle-transitivity listed in Table 3 [27].

Note that all upper bound functions in Table 3 are self-dual. More striking is
that the two families of power-law distributions (one-parameter subfamilies of the
two-parameter Beta and Pareto families) and the family of Gumbel distributions,
all yield the same type of transitivity as exponential distributions, namely cycle-
transitivity w.r.t. the self-dual upper bound function UE defined by:

UE(α, β, γ) = αβ + αγ + βγ − 2αβγ .

Table 2. Parametric families of continuous distributions

Name Density function f(x)

Exponential λe−λx λ > 0 x ∈ [0,∞[

Beta λx(λ−1) λ > 0 x ∈ [0, 1]

Pareto λx−(λ+1) λ > 0 x ∈ [1,∞[

Gumbel μe−μ(x−λ)e−e−μ(x−λ)

λ ∈ R, μ > 0 x ∈ ]−∞,∞[

Uniform 1/a λ ∈ R, a > 0 x ∈ [λ, λ+ a]

Laplace (e−|x−λ|/μ))/(2μ) λ ∈ R, μ > 0 x ∈ ]−∞,∞[

Normal (e−(x−λ)2/2σ2

)/
√
2πσ2 λ ∈ R, σ > 0 x ∈ ]−∞,∞[
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Table 3. Cycle-transitivity for the continuous distributions in Table 1

Name Upper bound function U(α, β, γ)

Exponential

Beta

Pareto αβ + αγ + βγ − 2αβγ

Gumbel

Uniform

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β + γ − 1 +
1

2
[max(

√
2(1− β) +

√
2(1− γ)− 1, 0)]2

β ≥ 1/2

α+ β − 1

2
[max(

√
2α+

√
2β − 1, 0)]2 β < 1/2

Laplace

{
β + γ − 1 + f−1(f(1− β) + f(1− γ)) β ≥ 1/2

α+ β − f−1(f(α) + f(β)) β < 1/2

with f−1(x) = 1
2

(
1 + x

2

)
e−x

Normal

{
β + γ − 1 + Φ(Φ−1(1− β) + Φ(1− γ)) β ≥ 1/2

α+ β − Φ(Φ−1(α) + Φ−1(β)) β < 1/2

with Φ(x) = (
√
2π)−1

∫ x

−∞ e−t2/2dt

Cycle-transitivity w.r.t. UE can also be expressed as

αabcβabcγabc = (1 − αabc)(1 − βabc)(1 − γabc) ,

which is equivalent to the notion of multiplicative transitivity [53]. A reciprocal
relation Q on X is called multiplicatively transitive if for any (a, b, c) ∈ X3 it
holds that

Q(a, c)

Q(c, a)
=

Q(a, b)

Q(b, a)
· Q(b, c)

Q(c, b)
.

In the cases of the unimodal uniform, Gumbel, Laplace and normal distributions
we have fixed one of the two parameters in order to restrict the family to a one-
parameter subfamily, mainly because with two free parameters, the formulae
become utmost cumbersome. The one exception is the two-dimensional family
of normal distributions. In [27], we have shown that the corresponding reciprocal
relation is in that case moderately stochastic transitive.

4.5 Mutual Rank Transitivity in Posets

Partially ordered sets, posets for short, are witnessing an increasing interest in
various fields of application. They allow for incomparability of elements and
can be conveniently visualized by means of a Hasse diagram. Two such fields
are environmetrics and chemometrics [1,2]. In these applications, most methods
eventually require a linearization of the poset. A standard way of doing so is
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to rank the elements on the basis of their averaged ranks, i.e. their average
position computed over all possible linear extensions of the poset. Although the
computation of these averaged ranks has become feasible for posets of reasonable
size [19], they suffer from a weak information content as they are based on
marginal distributions only, as explained further. For this reason, interest is
shifting to mutual rank probabilities instead.

The mutual rank probability relation is an intriguing object that can be asso-
ciated with any finite poset. For any two elements of the poset, it expresses the
probability that the first succeeds the second in a random linear extension of that
poset. Its computation is feasible as well for posets of reasonable size [19,21], and
approximation methods are available for more extensive posets [18]. However,
exploiting the information contained in the mutual rank probability relation to
come up with a ranking of the elements is not obvious. Simply ranking one el-
ement higher than another when the corresponding mutual rank probability is
greater than 1/2 is not appropriate, as it is prone to generating cycles (called lin-
ear extension majority cycles in this context [22,38]). A solution to this problem
requires a better understanding, preferably a characterization, of the transitivity
of mutual rank probability relations, coined proportional probabilistic transitiv-
ity by Fishburn [32], and, for the sake of clarity, renamed mutual rank transitivity
here. A weaker type of transitivity (called δ∗-transitivity, expression not shown
here) has been identified by Kahn and Yu [37] and Yu [54]. We have identified a
weaker type of transitivity, yet enabling us to position mutual rank transitivity
within the cycle-transitivity framework.

Consider a finite poset (P,≤). The discrete random variable Xa denotes the
position (rank) of an element a ∈ P in a random linear extension of P . The
mutual rank probability pa>b of two different elements a, b ∈ P is defined as the
fraction of linear extensions of P in which a succeeds b (a is ranked higher than
b), i.e., pa>b = Prob{Xa > Xb}. The [0, 1]-valued relation QP : P 2 → [0, 1]
defined by QP (a, b) = pa>b, for all a, b ∈ P with a 
= b, and QP (a, a) = 1/2,
for all a ∈ P , is a reciprocal relation. Note that in the way described above,
with any finite poset P = {a1, . . . , an} we associate a unique discrete random
vector X = (Xa1 , . . . , Xan) with joint distribution function FXa1 ,...,Xan

. The
mutual rank probabilities pai>aj are then computed from the bivariate marginal
distributions FXai

,Xaj
.

Note that, despite the fact that the joint distribution function FXa1 ,...,Xan

does not lend itself to an explicit expression, a fair amount of pairwise couplings
are of a very simple type. If it holds that a > b, then a succeeds b in all linear
extensions of P , whence Xa and Xb are comonotone. For pairs of incomparable
elements, the bivariate couplings can vary from pair to pair. Certainly, these
couplings cannot all be counter-monotone. Despite all this, it is possible to obtain
transitivity results on mutual rank probability relations [10].

Definition 9. The mutual rank probability relation QP associated with a finite
poset (P,≤) is cycle-transitive w.r.t. the upper bound function UP defined by

UP(α, β, γ) = α + γ − αγ .
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Proposition 4 implies that the mutual rank probability relation of a poset it is
‘at least 5/6’ TP-transitive.

5 Conclusion

We have introduced the reader to two relational frameworks and the wide variety
of types of transitivity they cover. When considering different types of transi-
tivity, we can try to distinguish weaker or stronger types. Obviously, one type is
called weaker than another, if it is implied by the latter. Hence, we can equip a
collection of types of transitivity with this natural order relation and depict it
graphically by means of a Hasse diagram.

The Hasse diagram containing all types of transitivity of reciprocal relations
encountered in this contribution is shown in Figure 1. At the lower end of
the diagram, TM-transitivity and multiplicative transitivity, two types of cycle-
transitivity w.r.t. a self-dual upper bound function, are incomparable and can
be considered as the strongest types of transitivity. At the upper end of the
diagram, also TL-transitivity and weak stochastic transitivity are incomparable
and can be considered as the weakest types of transitivity. Furthermore, note
that the subchain consisting of partial stochastic transitivity, moderate product
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Fig. 1. Hasse diagram with different types of transitivity of reciprocal relations (weak-
est types at the top, strongest types at the bottom
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transitivity and weak product transitivity, bridges the gap between g-stochastic
transitivity and T -transitivity.

Anticipating on future work, in particular on applications, we can identify
two important directions. The first direction concerns the use of fuzzy similarity
measures. Moser [43] has shown recently that the T -equality ET , with T = TP or
T = TL, is positive semi-definite. This question has not yet been addressed for the
fuzzy cardinality-based similarity measures. Results of this type allow to bridge
the gap between the fuzzy set community and the machine learning community,
making some fuzzy similarity measures available as potential kernels for the
popular kernel-based learning methods, either on their own or in combination
with existing kernels (see e.g. [41] for an application of this type).

The second direction concerns the further exploitation of the results on the
comparison of random variables. As mentioned, the approach followed here can
be seen as a graded variant of the increasingly popular notion of stochastic dom-
inance. Future research will have to clarify how these graded variants can be
defuzzified in order to come up with meaningful partial orderings of random
variables that are more informative than the classical notions of stochastic dom-
inance. Some results into that direction can be found in [8,20].

Acknowledgement. This chapter is a slightly updated version of [4].
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P., Hyrniewicz, O., Lawry, J. (eds.) Soft Methods for Integrated Uncertainty Mod-
elling. AISC, pp. 273–280. Springer (2006)

21. De Loof, K., De Meyer, H., De Baets, B.: Exploiting the lattice of ideals represen-
tation of a poset. Fundamenta Informaticae 71, 309–321 (2006)

22. De Loof, K., De Baets, B., De Meyer, H.: Cycle-free cuts of mutual rank probability
relations. Computers and Mathematics with Applications (submitted)

23. De Loof, K., De Baets, B., De Meyer, H., De Schuymer, B.: A frequentist view on
cycle-transitivity w.r.t. commutative dual quasi-copulas. Fuzzy Sets and Systems
(submitted)

24. De Meyer, H., De Baets, B., De Schuymer, B.: On the transitivity of the comono-
tonic and countermonotonic comparison of random variables. J. Multivariate Anal-
ysis 98, 177–193 (2007)

25. De Meyer, H., De Baets, B., De Schuymer, B.: Extreme copulas and the comparison
of ordered lists. Theory and Decision 62, 195–217 (2007)

26. De Meyer, H., Naessens, H., De Baets, B.: Algorithms for computing the min-
transitive closure and associated partition tree of a symmetric fuzzy relation. Eu-
ropean J. Oper. Res. 155, 226–238 (2004)

27. De Schuymer, B., De Meyer, H., De Baets, B.: Cycle-transitive comparison of
independent random variables. J. Multivariate Analysis 96, 352–373 (2005)

28. De Schuymer, B., De Meyer, H., De Baets, B., Jenei, S.: On the cycle-transitivity
of the dice model. Theory and Decision 54, 264–285 (2003)

29. Dice, L.: Measures of the amount of ecologic associations between species. Ecol-
ogy 26, 297–302 (1945)

30. Durante, F., Sempi, C.: Semicopulæ. Kybernetika 41, 315–328 (2005)
31. Fishburn, P.: Binary choice probabilities: On the varieties of stochastic transitivity.

J. Math. Psych. 10, 327–352 (1973)



The Quest for Transitivity 165

32. Fishburn, P.: Proportional transitivity in linear extensions of ordered sets. Journal
of Combinatorial Theory Series B 41, 48–60 (1986)

33. Genest, C., Quesada-Molina, J.J., Rodŕıguez-Lallena, J.A., Sempi, C.: A charac-
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