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Abstract. Multi-objective optimization is widely found in many fields,
such as logistics, economics, engineering, or whenever optimal decisions
need to be made in the presence of tradeoff between two or more con-
flicting objectives. The synergy of probabilistic graphical approaches in
evolutionary mechanism may enhance the iterative search process when
interrelationships of the archived data has been learned, modeled, and
used in the reproduction. This paper presents the implementation of
probabilistic graphical approaches in solving multi-objective optimiza-
tion problems under the evolutionary paradigm. First, the existing work
on the synergy between probabilistic graphical models and evolutionary
algorithms in the multi-objective framework will be presented. We will
then show that the optimization problems can be solved using a restricted
Boltzmann machine (RBM). The learning, modeling as well as sampling
mechanisms of the RBM will be highlighted. Lastly, five studies that im-
plement the RBM for solving multi-objective optimization problems will
be discussed.

Keywords: Evolutionary algorithm, multi-objective optimization, prob-
abilistic graphical model, restricted Boltzmann machine.

1 Introduction

Many real-world problems involve the simultaneous optimization of several com-
peting objectives and constraints that are difficult, if not impossible, to solve
without the aid of powerful optimization algorithms. In a multi-objective op-
timization problem (MOP) [1, 2], no one solution is optimal to all objectives.
Therefore, in order to solve the MOP, search methods employed must be capable
of finding a number of alternative solutions representing the tradeoff among the
various conflicting objectives. An MOP in minimization case can be formulated
as follows. Minimize:

F (X) = (f1(X), ..., fm(X)) (1)

subject to X = {x1, ..., xn} ∈ θ, F ∈ Rm, where θ is the decision space and Rm

is the objective space.
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Evolutionary algorithms (EAs) are a class of stochastic search methods that
have been found to be efficient and effective in solving MOPs. The advantage
of EAs can be attributed to their capabilities of sampling multiple candidate
solutions simultaneously, a task that most conventional optimization techniques
fail to work well. Nonetheless, the stochastic recombination in standard EAs
may disrupt the building of strong schemas of a population and thus move-
ment towards optimal is extremely difficult to predict. Motivated by the idea of
exploiting the linkage information among the decision variables, estimation of
distribution algorithm (EDA) has been regarded as a new computing paradigm
in the field of evolutionary computation [3–5].

In EDAs, the discovered knowledge of the data is used to predict the location
or pattern of the Pareto front or to predict the favorable movement in the search
space. By using the discovered correlations of the parameters of a cost function,
the search can be regulated to follow the correlated patterns when generating an
offspring solution. The correlations as well as the probability distribution of the
cardinalities of the parameters can be learned and modeled by a probabilistic
model. In order to effectively learn and model that information, the probabilistic
graphical approach is one of the well-known and promising techniques [6–8]. In
EDAs, the reproduction of children solutions is carried out by building a repre-
sentative probabilistic model of the parent solutions, and new solutions are then
generated through the sampling of the constructed probabilistic model. There-
fore, the learning, modeling, and sampling mechanisms are important features
of an EDA.

This paper focuses on the implementation of EDAs for solving MOPs. First,
a literature review that studies the potential of EDAs in solving MOPs is given.
Then, the focus is tailored to introduce an EDA that uses the restricted
Boltzmann machine (RBM) as its modeling technique. An insight discussion
on how and what information is learned and modeled by the RBM will be cov-
ered. Subsequently, five studies that implement the RBM-based EDA (REDA)
in solving scalable problems, epistatic problems, noisy problems, combinatorial
problems, and global unconstrained continuous optimization problems will be
presented.

The rest of the paper is as follows. Section 2 presents a literature review on
the implementation of probabilistic graphical models (PGMs) in solving MOPs.
Section 3 describes the RBM as well as its training and modeling mechanisms.
Five case studies that implement the REDA in solving MOPs are presented in
Section 4. The conclusion is drawn in Section 5.

2 Probabilistic Graphical Models in Multi-objective
Evolutionary Algorithms

EDAs draw its inspiration from the use of the probability distribution of promis-
ing solutions to predict the Pareto optimal front or the favorable movement in
the search space. Based on this idea, the linkage information or the regularity
patterns that appear quite often in a set of promising solutions can be captured
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and used to predict the probability distribution of other superior solutions. In
the literature, the probability information can be captured using at least three
methods depends on how the interactions among the decision variables are taken
into consideration. Those methods are the univariate modeling, bivariate model-
ing, and multivariate modeling [3]. Over the last decade, several attempts have
been devoted to developing EDAs in the context of multi-objective optimization
(MOEDAs) [9]. The main differences among the MOEDAs are the employment
of different modeling and sampling mechanisms.

The first MOEDA was introduced in [10]. The authors proposed a mixture-
based multi-objective iterated density-estimation evolutionary algorithm
(MIDEA) with both discrete and continuous representations. The mixture prob-
ability distribution in MIDEA was constructed using the univariate factorization.
MIDEA is well-known for its simplicity, speed, and effectiveness. Furthermore, it
can also serve as a baseline algorithm for other MOEDAs. The simulation results
indicated that MIDEA is able to generate a set of diverse solutions that is close
to the Pareto optimal front.

In [11], Laumanns and Ocenasek examined the effect of incorporating mu-
tual dependencies between the decision variables in approximating the set of
Pareto optimal solutions. The mutual dependencies were captured using the
Bayesian optimization algorithm with binary decision trees. The experimental
results showed that the proposed Bayesian multi-objective optimization algo-
rithm (BMOA) is effective in approximating the Pareto front for simple test
instances. In order to deal with harder test instances, an additional computa-
tional time is required.

In [12], MOEDA based on the Parzen estimator was introduced. The Parzen
estimator, a non-parametric technique, was used to estimate the kernel density
through the learning of the multivariate dependencies among the decision vari-
ables. The Parzen estimator was also used in the objective space to enhance the
diversity preservation of the algorithm. The empirical results indicated that the
proposed algorithm has better convergence rate and is able to obtain a set of
well spread solutions.

Li et al. [13] suggested a hybrid binary EDA with mixture distribution
(MOHEDA) for solving the multi-objective 0/1 knapsack problems. One of the
simplest EDA, the univariate marginal distribution algorithm (UMDA), was hy-
bridized with a weighted sum local search method. This hybridization enable
MOHEDA took advantage of both local and global information to guide the
search towards optimality. Furthermore, the population was clustered into sev-
eral groups using a proposed stochastic clustering algorithm before the mixture
distribution was constructed. In [14], Okabe et al. proposed an EDA that uses
Voronoi diagram (VEDA) as its probabilistic modeling method. The Voronoi
diagram takes into account the problem structure in estimating the most ap-
propriate probability distribution. Instead of determining the distribution from
individuals in the selected population, the implementation also makes use of
those that are not selected. The experimental results showed that VEDA per-
forms better than NSGA-II [15] for a limited number of fitness evaluations.
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In [16], Pelikan et al. modified the Bayesian optimization algorithm and
introduced a hierarchical Bayesian optimization algorithm (hBOA) to solve multi-
objective decomposable problems. hBOA adapted the NSGA-II’s domination-
based framework and used k-mean clustering for modeling purpose. hBOA were
used to solve scalable deceptive problems. The simulation results demonstrated
that hBOA successes to obtain the optimal solutions and has faster conver-
gence rate. They inferred that the clustering and linkage learning are the main
criteria that contribute to the success of the algorithm in solving decompos-
able multi-objective problems. In [17], Sastry et al. proposed another MOEDA,
called extended compact genetic algorithm (ECGA), to solve the scalable de-
ceptive problems. The paper analyzed the characteristics of the algorithm on
a class of bounding adversarial problems with scalable decision variables. m-k
deceptive trap problems [16] were used to investigate the performance of the
proposed algorithm.

In [18], Soh and Kirley proposed a parameter-less MOEA, which combines
the ECGA with external ε-Pareto archive, clustering, and competent muta-
tion to deal with scalable problems. Two types of scalable problems were stud-
ied, including deceptive problems with scalable decision variables and DTLZ
problems with scalable objective functions. The proposed algorithm showed
promising results in those test problems due to the incorporation of linkage
learning, clustering, and local search. In [19], the authors examined the lim-
itation of maximum-likelihood estimators in the problems which may lead to
the prematurely vanishing variance. Using the framework of MIDEA, the au-
thors combined the normal mixture distribution with adaptive variance scaling
to remedy the vanishing variance problem. Under this scheme, the premature
convergence was prevented in the condition that the estimated probability dis-
tribution is enlarged beyond its original maximum likelihood estimation. Zhong
and Li [20] presented a decision-tree-based multi-objective estimation of distri-
bution algorithm (DT-MEDA) for global optimization in the continuous-valued
representation. The conditional dependencies among the decision variables are
learned by the decision tree. The children solutions are generated through the
sampling of the constructed conditional probability distribution.

Zhang et al. [21] proposed a regularity model-based multi-objective estimation
of distribution algorithm (RM-MEDA) for solving continuous multi-objective
optimization problems with linkage dependencies. A local principle component
analysis (PCA) was used to model the probability distribution of promising indi-
viduals. The experimental results showed that RM-MEDA has good scalability
in terms of decision variables and less sensitive to algorithmic parameter settings.
In order to further improve the algorithm, Zhou et al. [22] generalized the idea of
RM-MEDA and proposed a probabilistic model-based multi-objective evolution-
ary algorithm, named as MMEA, which is able to simultaneously approximate
both the Pareto set and Pareto front of an MOP. Mart́ı et al. [23] developed an-
other MOEDA using growing neural gas (GNG) network - multi-objective neural
EDA (MONEDA). GNG network is a self-organizing neural network based on
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Fig. 1. Architecture of a RBM

neural gas model. This model creates an ordered cluster of input data set; a new
cluster will then be inserted based on the topology and cumulative errors. WFG
problems [24] were used to evaluate the search capability of the MONEDA.

In [25], an MOEDA, which uses Gaussian model as its modeling technique,
was used to optimize the radio frequency identification (RFID) network design.
In order to enhance the search capability of the algorithm, a particle swarm op-
timization (PSO) [26] algorithm was hybridized with the MOEDA. A number of
children solutions are generated by the EDA while the rest of them are produced
by the velocity-free PSO. The algorithm succeeded to obtain a set of tradeoff
solutions in RFID network design.

3 Restricted Boltzmann Machine (RBM)

The RBM [27–29] is an energy-based binary stochastic neural network. The ar-
chitecture of the network is illustrated in Fig. 1. The network consists of two
layers of neurons - a visible layer and a hidden layer. The visible layer, denoted
as vi, is an input layer of the network. The hidden layer, denoted as hj , is a
latent layer that determines the capability of the network in modeling the prob-
ability distribution of the input stimuli. The network does not have the output
layer. Instead, the output information is represented by the energy values of the
network. wij is the weight that connecting visible unit i and hidden unit j. bi
is the bias of the visible unit i and dj is the bias of hidden unit j. Both of the
layers are fully connected to one another and the weights are symmetric. In this
way, the information can flow from one layer to another, increasing the learning
capability of the network. Furthermore, there is no interconnection among the
neurons within the same layer. Thus, the hidden units are conditionally inde-
pendent. Besides, the visible units can be updated in parallel given the hidden
states. This behavior improves the training speed of the network. The weights
and biases of an RBM define the energy function of the network. The energy
function is presented as follows.

E(v, h) = −
∑

i

∑

j

vihjwij −
∑

i

vibi −
∑

j

hjdj (2)



PGM for Learning, Modeling, and Sampling in EMO 127

Using the energy function of the network, the probability distribution of any
global state can be derived as follows

P (v, h) =
exp(−E(v, h))

Z =
∑

x,y exp(−E(x, y))
(3)

where Z is the normalizing constant, which is defined by the energy of all the
global states while the numerator of the equation is the energy of a particular
state. By summing all the configurations of the hidden units, the probability
distribution of a visible state can be clamped to be

P (v) =

∑
h exp(−E(v, h))∑
x,y exp(−E(x, y))

(4)

3.1 Training

The training is one of the main issues in the RBM. In the literature, the con-
trastive divergence (CD) training method [30, 31] is the most well-known training
mechanism for the RBM. In the CD training, two phases (positive phase and
negative phase) are carried out. In the positive phase, the input stimuli or in-
put data are rendered into the visible units of the network. Subsequently, the
hidden states, given the visible states, are constructed by performing the Gibbs
sampling as follows

P (hj |v) = ϕ(
∑

i

wijvi − dj) (5)

where ϕ(x) = 1
1+e−x is the logistic function. In the negative phase, given the

hidden states, the visible states are reconstructed using the same logistic func-
tion. The process of these two phases is repeated S times. Next, the weights and
biases of the network are updated as follows

w
′
ij = wij + ε(< vihj >0 − < vihj >1) (6)

b
′
i = bi + ε(< vi >0 − < vi >1) (7)

d
′
j = dj + ε(< hj >0 − < hj >1) (8)

where ε is the learning rate, <>0 is the original states of the neurons, and <>1

is the states of the neurons after a single step of reconstruction. The overall CD
training is repeated until a stopping criterion is met. The process of CD training
is further demonstrated in Fig. 2.
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Fig. 2. The contrastive divergence (CD) training mechanism

3.2 Modeling

This paper will only study a restrcited Boltzmann machine-based estimation of
distribution algorithm for multi-objective optimization (REDA). In the imple-
mentation stage, the alleles of the decision variables in the cost function are the
input data that will be rendered to the visible layer of an RBM. Therefore, the
RBM has n visible units if an MOP has n decision variables to be optimized.
The setting of the number of hidden units is to be determined by users. The
complexity of the network is directly proportional to the setting of the number
of visible and hidden units. Since the probability distribution of the population
needs to be constructed at every generation, it is essential for the model to be
kept simple. Therefore, the number of hidden units is set to as small as possible
as long as the probability model is representative.

After performing the CD training, a set of trained weights, biases, and hidden
states are obtained. Subsequently, in binary representation, the joint probability
distribution with n decision variables in generation g is formulated as follows.

Pg(v) =

n∏

i=1

pg(vi) (9)

where pg(vi) is the marginal probability of decision variable i (vi) at generation
g. The marginal probability of each decision variable is obtained through (4).
Expanding the equation,

pg(vi = 1) =

∑N
l=1 δl(v

+
i )∑N

l=1 δl(v
+
i ) +

∑N
l=1 δl(v

−
i )

(10)

δl(v
+
i ) =

H∑

h=1

e−E(vi=1,h) (11)

δl(v
−
i ) =

H∑

h=1

e−E(vi=0,h) (12)

where δl(v
+
i ) is the marginal cost of vi when the cardinality of vi = 1, δl(v

−)
is the marginal cost of vi when the cardinality cost of vi = 0, N is the number
of selected solutions or parent solutions, and H is the number of hidden units.
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Direct sampling from the above probabilistic model reaches a limit in progress
when the probability reaches a maximum value of 1.0 or a minimum value of 0.0.
Therefore, the lower and upper bounds are added to the probability distribution
based on the average cost of cardinality. The modified version of the marginal
probability is given as below

pg(vi = 1) =

∑N
l=1 δl(v

+
i ) + avg(

∑N
l=1 δl(vi))∑N

l=1 δl(v
+
i ) +

∑N
l=1 δl(v

−
i ) + ri × avg(

∑N
l=1 δl(vi))

(13)

where avg(
∑N

l=1 δl(vi)) =
∑N

l=1 δ(vi)

N and ri is the number of different values that
vi may take. In binary case, ri is 2.

3.3 Sampling

The children solutions are generated through the sampling of the constructed
probabilistic model as follows

vi =

{
1 if random(0, 1) ≤ pg (vi = 1)
0 otherwise

(14)

where random (0,1) is a randomly generated value between [0, 1].

3.4 Learning Capability of REDA

In this section, a detailed description of the behaviors of the RBM in the evolu-
tionary perspective is presented. Three main issues will be covered: (1) How and
what information is captured in an RBM (2) How to effectively train the RBM in
the evolutionary perspective (3) What can be elucidated from the energy values
of the RBM in the fitness landscape perspective.

How and What Information Is Captured in an RBM. In an RBM, the
neurons between two layers are fully connected via weighted synaptic connec-
tions, and there is no intra-layer connection. These weight connections are used
by the neurons to communicate their activations to one another. The quality
of training of the network corresponds directly to the effectiveness at which the
algorithm learns the probability distribution. Whenever the number of hidden
units is sufficiently large, the network can represent any discrete distribution.
This behavior that a sufficient number of hidden units in the network would
guarantee improvement in the training error has been proven mathematically in
[31]. During the training process, the aim is to minimize the energy equilibrium
of the network such that the implicit correlations as well as the probability dis-
tribution of the input stimuli is captured and stored in the synaptic weights of
the network. This distribution-based model allows the RBM to globally learn
the probability distribution of the decision variables by considering the interde-
pendencies of the data.
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How to Effectively Train an RBM in the Evolutionary Perspective.
The weight update process in an RBM requires calculating the gradient of log-
likelihood of the input data. The gradient is minimal when the reconstructed
data is exactly similar to the input stimuli. Contrastive divergence training [31]
method aims to minimize the energy level and training error of the network.
The primary understanding is that the minimal energy level and training error
can be achieved when sufficient number of hidden units and training epochs are
applied. This is because the learning capability of the network is determined
by the number of hidden units. A larger number of hidden units gives extra
flexibility for the network to model the global distribution of the input stimuli,
and thus could yield better convergence. On the other hand, CD training will
require a large number of training epochs to train the network well. When the
RBM is modeled as EDA (REDA), another factor that can reduce the energy
level and training error is the number of generations of an optimization process.
Over generations, the training error and energy level of the network are reduced.
This is most likely due to the reduction in the size of more promising search
space when the search converges to near optimal points. By taking this into
consideration, the computational time of the algorithm can be improved by
eliminating unnecessary training of the network in each generation.

What Can Be Elucidated from the Energy Values of an RBM in the
Fitness Landscape Perspective. In EDAs, the two main mechanisms that
determine the success of the algorithms are probabilistic model construction and
sampling technique. The core purpose of probabilistic modeling is to learn the
probability distribution of the candidate solutions and to capture the dependen-
cies among the decision variables. By using the linkage information of known
solutions, the characteristics of the unknown solutions can be studied. In EDAs,
the sampled solutions are the unknown solutions. If the characteristics of these
solutions are known, this additional information can be taken into consideration
during the optimization process. In an RBM, the energy-based model captures
the dependencies of the decision variables by associating a scalar energy value
from the network to each solution. Thus, it can be inferred that sampled solu-
tions may have higher energy if the solutions are outside the boundary modeled
by the RBM. In pattern recognition, a lower energy level suggests that a test
sample is more likely to belong to a certain class of patterns. However, this is
not the case in EDAs as a lower energy level does not mean that the solutions
are fitter, and vice versa. The choice of a solution outside the boundary of the
modeled energy distribution may imply an increase in the exploration capability,
while focusing on the solutions inside the boundary may imply an increase in
the exploitation capability of the algorithm.

3.5 Algorithmic Process Flow

The general evolutionary process flow of REDA is presented in Fig. 3.
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Begin 
 Initialization: At generation g=0, randomly generate N solutions as the 

initial population, ����� � �� 
 Evaluation: Evaluate all solutions 

Do While (“maximum generation is not reached”) 
1. Fitness Assignment: Perform Pareto ranking and crowding 

distance over the population 
2. Selection: Select �  promising individuals based on the binary 

tournament selection 
3. Training: Train the RBM by using CD training method to obtain 

the weights, biases, and hidden states 
4. Probabilistic model: Compute the probability of the joint 

configuration ����  by using the trained weights, biases, and 
hidden states of the RBM 

5. Reproduction: Generate new set of N solutions (��from����� 
6. Evaluation: Calculate the fitness values of all offspring 
7. Elitism: Select N individuals from � � ������ to form������ �

��. � � �� � 
End Do 

End 

Fig. 3. Pseudo-code of REDA

4 Restricted Boltzmann Machine-Based Estimation of
Distribution Algorithm for Solving Multi-objective
Optimization Problems

4.1 REDA with Clustering for Solving High Dimensional Problems

Many real-world optimization problems are challenged by the different charac-
teristics and difficulties. The problems may be non-linear, restricted to several
constraints, has complex relationships within the decision variables, has a large
number of variables, and even consists of several conflicting objectives [32, 33].
High dimensional problems with many decision variables and conflicting objec-
tive functions to be optimized simultaneously are hard problems which may
challenge the algorithm in finding the global optimal solutions. In the problems
with many decision variables, the complexity of the problems increase with an
increase in the number of decision variables. This is due to the enlargement of
the search space and an increase in the number of possible moves towards opti-
mality. In the problems with many conflicting objective functions, the selection
pressure in selecting fitter individuals is reduced when the number of conflicting
objective functions is increased. This is due to the high rate of non-dominance
among individuals during the evolutionary process. This may hinder the search
towards optimality or result in the population getting trapped in a local optimal.
One of the ideas to overcome these issues is to exploit extra information (e.g.
linkage dependencies) from within the selected population. This information is
hypothesized to provide valuable guidance in driving the search process.

In order to solve MOPs with scalable number of decision variables, the algo-
rithm presented in Fig. 3 is implemented directly. The simulation results pre-
sented in [34] indicated that REDA performs equally well or slightly inferior
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to NSGA-II in ZDT and DTLZ problems with a smaller number of decision
variables. This may be attributed to the fact that, REDA does not directly
use location information of the selected solutions in exploiting the new solu-
tions. Furthermore, REDA, which models the global probability of the selected
individuals, is not able to effectively escape from local optima. REDA shows
superior convergence performances in problems with a larger number of decision
variables. Besides, REDA also able to produce more non-dominated solutions
compared to NSGA-II. The increase in number of decision variables increases
the size of the search space, and thus increases the complexity of the problems.
The stochastic behavior of NSGA-II prevents the algorithm from evolving a good
set of solutions since the number of possible combinations towards optimality is
increased. The incorporation of dependency information as well as the use of the
global probability distribution of solutions enables REDA to effectively explore
the huge search space.

In problems with many objective functions, clustering is incorporated into
REDA in order to build a probabilistic model from different regions in the
search space. For sake of simplicity, the number of cluster, k, is determined
by the user. In the implementation stage, a probabilistic model is built for each
cluster, L1, L2, ..., Lk. Subsequently, the new population Pop(g+1) is generated
by sampling the probabilistic model constructed from each cluster L, where N
new solutions are generated and equal number of individuals is sampled from
each cluster.

In problems with three objective functions, the performance of REDA is com-
parable to NSGA-II. In a higher number of objective functions, REDA gives
the superior performance in converging to the Pareto optimal front as well as
maintaining a set of diverse solutions. The superior performance of REDA may
be due to the incorporation of linkage information in driving the search. This
information is learned by the network and is clamped into the probability distri-
bution before the sampling takes place. Some flexibility is given to the algorithm
in exploring the search space by allowing the training to stop before the energy
reaches the minimum. The good performance of REDA in these test instances
supports the claim that REDA scales well with the number of objective functions
compared to NSGA-II. Clustering is important for problems with solutions that
are hard to represent by a single probabilistic model.

Most of the probabilistic modeling techniques for learning the linkage depen-
dencies of the solutions incur additional computational cost and time. In an
RBM, the most time consuming part is the network training. Training is con-
ducted at each generation and stops when the maximum number of training
epochs is reached. This training process is more complicated than the genetic
operators in standard MOEAs, and thus incurs additional simulation time. Even
though REDA may spend more simulation time, it has a faster convergence rate
compared to NSGA-II. This is one of the strengths of REDA, especially when
dealing with real-world problems where the fitness evaluations are computation-
ally expensive. Detailed information of the implementation and experimental
results can be referred to [34].
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Even though REDA showed promising results in solving scalable problems, it
still suffers several flaws which requires further investigation. Firstly, univariate
sampling in REDA may limit its ability to generate new solutions. This is be-
cause univariate sampling does not consider the correlation between the decision
variables when performing the sampling. A more sophisticated sampling mecha-
nism that is able to take into account the multivariate dependencies between the
decision variables may enhance the search capability of REDA. Secondly, REDA
fails to converge to the global Pareto optimal front in problems with many local
optima. This is because REDA in particular and MOEDAs in general will model
the probability distribution of the solutions even though they are trapped at lo-
cal optima, and subsequently use the constructed probabilistic information as a
reference model to produce offspring. Hybridization with local search algorithms
may be one of the approaches in dealing with problems with many local optima.
Thirdly, REDA is sensitive to bias. This is because the modeling in EDAs only es-
timates the probability distribution of the current best solutions. In other words,
only global information is used. Whenever the maintained solutions are biased
towards certain search regions, EDAs may consider the maintained solutions
are the promising one, thus, construct their probability distribution accordingly.
Therefore, it is necessary to enhance the diversity preservation of REDA espe-
cially the ability to produce a set of diverse solutions. This can be achieved by
combining EDAs with other search algorithms which use location information in
producing offspring, including genetic algorithms, differential evolution, particle
swarm optimization algorithms, or any other algorithms with similar features.

4.2 An Energy-Based Sampling Mechanism of REDA

In our another study, the sampling mechanism of REDA was investigated [35].
In [34], the simple probability sampling is employed in REDA. This sampling
technique may, however, limit the production of appropriate solutions if the de-
cision variables are highly correlated or have a high dimension. This is because,
during sampling, marginal probability distribution considers the distribution of
the particular decision variable but not the correlation between the decision vari-
ables. As a result, the sampled solutions have difficulties following the correlated
distribution. One way to tackle this problem is to sample an infinite number
of solutions. This may increase the number of possible combinations of the so-
lutions and thus increase the chance of producing fitter individuals. However,
sampling of an infinitely large number of solutions may lead to an increase in
the number of fitness evaluations and computational time. It is known that some
real world problems are very time consuming and such an algorithm would not
be practical. To deal with this problem, energy value can be taken into consid-
eration. Firstly, N ×M solutions are generated. Then, the energy value serves
as the main criterion for forming new N solutions from the alleles of the N ×M
solutions, where M > 1 is a multiplier. A lower energy level implies that the
solution is in a more stable state while a higher energy level means that the so-
lution is not in energy equilibrium. The energy-based sampling mechanism will,
therefore, prefer the alleles of solutions with lower energy levels.
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As probabilistic modeling only models the previous best topology, the so-
lutions that are located inside the modeled topology are stable (lower energy
levels) in terms of energy equilibrium and are generally fit. On the other hand,
the solutions outside the modeled topology (higher energy levels) may be con-
sidered unstable but not unfit. This means that the solutions with higher energy
levels may be the promising solutions that are not modeled by the network and
thus will be worth preserving to the next generation. Therefore, it is required
to give the algorithm the flexibility of choosing the alleles of solutions with high
energy levels in order to achieve a more explorative search.

By incorporating the above-mentioned approach (energy-based sampling ap-
proach) into REDA, the simulation results in [35] indicated that the modified
REDA, which models the probability distribution of the solutions by applying
the energy information to detect the dependencies, is able to perform well on
epistatic problems. The results also showed that the incorporation of the energy-
based sampling mechanism enhances the exploration and exploitation capability
of REDA. However, the limitation of REDA in escaping from local optima has
not been significantly improved through this mechanism. REDA with energy-
based sampling mechanism is able to escape the local optima in some simulation
runs, however, is trapped in local optima in most of the runs. Therefore, it can
be concluded that the REDA with energy-based sampling mechanism is sensitive
to different initializations for problem with multi-modality.

4.3 REDA in Noisy Environments

In [36], we have extended the study of REDA in dealing with MOPs with noisy
objective functions. In noisy environments, the presence of noise in the cost func-
tions may affect the ability of the algorithms to drive the search process towards
optimality. Beyer [37] carried out an investigation and found that the presence
of noise may reduce the convergence rate, resulting in suboptimal solutions. In
another study by Goh and Tan [38], it was reported that the low level of noise
helps an MOEA to produce better solutions for some problems, but a higher
noise level may degenerate the optimization process into a random search. Dar-
wen and Pollack [39] concluded that re-sampling can reduce the effect of noise
for a small population, but may not be as helpful for a larger population.

EDAs surpass the standard MOEAs in handling noisy information by con-
structing a noise handling feature in the built probabilistic model. In order to
show this advantage, a likelihood correction feature was proposed in [36] in order
to tune the error in the constructed probabilistic model. The previous studies
showed that REDA has its limitations in exploiting the search space and may
be trapped at any local optimum [34]. In order to overcome these limitations,
REDA was hybridized with a particle swarm optimization (PSO) algorithm.
This hybridization is expected to improve the performance since the particles
may now move out of the regions modeled by REDA, and thus provide extra
solutions that REDA alone was not able to tap on.

In the likelihood correction feature, the concept of probability dominance,
proposed in [40], was employed. This concept is implemented to determine the
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probability error of each selected individual. This probability error is then used
to group the population into several clusters before a probabilistic model is
built. Assume that fi(A) and fi(B) are two solutions in the objective space with
m objective functions (i = 1, ...,m). In a noise free situation, fi(A) is said to
strictly dominate fi(B) if fi(A) is smaller than fi(B) in all the objective values
in minimization case. On the other hand, fi(A) and fi(B) are mutually non-
dominated only if not all the objective values in one solution are lower than
that of the other. In a noisy domain, the above statements may not correctly
represent the true domination behavior. Even through fi(A) appears to strictly
dominate fi(B), the noise may distort the actual fitness values where fi(B) is
supposed to dominate fi(A). In the selection process, the selection error occurs
when the less fit individual is chosen. Therefore, the probability to make an error
in the selection process could be utilized to improve the decision making process.

The likelihood correction feature is based on the heuristic that if the distribu-
tion can be approximated as close to the real distribution of the best solutions,
the detrimental effect of the noise can then reduced. To approximate the real dis-
tribution, the probability of making an error in the selection process is adapted
in the probabilistic modeling. In binary tournament selection, if two solutions
in the tournament have a huge distinction in their objective values, for exam-
ple fi(A) dominates fi(B) by far, then the selection error for selecting fi(A)
is small. On the other hand, if two individuals in the tournament are near to
each other in the objective space, then the selection error is larger. Therefore, if
the probabilistic model built by REDA is only based on individuals with small
selection error, then, the model may avoid distortions caused by those solutions
with a large selection error. However, the probability distribution may not come
close to the real distribution if the number of individuals with smaller selection
error is too little. Thus, a method to combine the distribution between solutions
with small selection error and those with large selection error was designed. This
combination was based on the penalty approach where individuals with smaller
selection error will be penalized less while solutions with larger selection error
will be more heavily penalized. This is because the real distribution is more
likely to follow the distribution of the population with smaller selection error
than those with larger selection error.

The simulation results in [36] demonstrated that the hybridization between
REDA and PSO may slightly deteriorate the search ability of REDA in some
noiseless circumstances. However, its performance was outstanding in noisy en-
vironments. The results also showed that REDA is more robust than NSGA-II
because the performance of REDA is better than NSGA-II in noisy conditions.
REDA, which performs the search by modeling the global probability distri-
bution of the population, is more responsive since the reproduction is based
on the global information and not individual solutions. Furthermore, likelihood
correction is able to tune the probability distribution so that the distribution
of the solutions is more likely to follow the one with a smaller selection er-
ror. The hybridization has further enhanced the ability of REDA in exploring
the search space, especially in noisy conditions. This hybridization is utterly
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important when REDA fails to model the promising regions in the search space.
In that case, the hybridization could provide opportunities to explore those
regions, thus, improving the search ability.

The scalability issue was also investigated. The results indicated that the
hybrid REDA obtained the most promising results in the noisy test problems
with different number of decision variables. This result demonstrated that the
hybridization with PSO has enhanced the search ability of REDA. This is im-
portant as PSO provides a directional search which may explore the promising
regions where probabilistic model may fail to explore. It can be concluded that
the hybrid REDA scaled well with the number of decision variables compared
to NSGA-II.

In order to study the potential of other hybridizations, REDA was hybridized
with a genetic algorithm (GA) and a differential evolution (DE). The simplest
and most common GA is applied, where single point crossover and bit-flip mu-
tation are implemented. For DE, the standard recombination proposed in [41]
is applied. The results indicated that all hybridizations are able to improve the
performance of REDA, in most of the test problems, under both noiseless and
noisy environments. Among them, hybridization with PSO gave the best results
followed by DE and then GA. The function of hybridization is to provide extra
search ability for REDA as REDA performs the search by using only global sta-
tistical information. This hybridization therefore enhances the ability for REDA
in exploring the search space, especially in the early stage of evolutions where
the search space is huge. The search using position information (GA, PSO, DE)
is also essential and useful especially to explore and exploit certain promising
regions. Thus, hybridization is an important mechanism to improve the search
performance of EDAs.

4.4 REDA for Solving the Multi-objective Multiple Traveling
Salesman Problem

In [42], REDA was implemented to solve the multi-objective multiple traveling
salesman problem (MmTSP). The multiple travelling salesman problem (mTSP)
is a generalization of the classical travelling salesman problem (TSP). In the
mTSP, Ω salesmen are involved in a routing to visit Ψ cities (Ω < Ψ) in order
to achieve a common goal. In the routing, all the salesmen will start from and
end at the single depot after visiting the ordered cities. Each city can only be
visited once, and the total cost for all salesmen is required to be minimized.
The cost can be defined as distance, time, expense, risk, etc. The complexity
of the mTSP is higher than the TSP since it is required to allot a set of cities
to each salesman in an optimal ordering while minimizing the total travelling
cost for all salesmen. Furthermore, the mTSP is more appropriate for real life
scheduling or logistic problems than the TSP because more than one salesman is
usually involved. Over the past few decades, research on the TSP has attracted
a great deal of attention. However, the mTSP has not received the same amount
of research effort compared to the TSP.
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In an MOP, no single point is an optimal solution. Instead, the optimal solu-
tion is a set of non-dominated solutions, which represents the tradeoff between
the multiple objectives. In this case, fitness assignment to each solution in the
evolutionary multi-objective evolutionary optimization is an important feature
for the assurance of the survival of fitter and less crowded solutions to the next
generation. Much research has been carried out over the past few decades to ad-
dress this issue, and fitness assignment based on the domination approach is one
of the most popular approaches. However, the fitness assignment in the domina-
tion approach is less efficient in solving many-objective problems. This is because
the strength of the domination among the solutions in a population is weakened
with the increase in the number of objective functions. This phenomenon results
in poor decision making in the selection of promising solutions.

Recently, the classical method for multi-objective optimization based on de-
composition has been re-formularized into a population-based approach [43, 44].
The decomposition approach decomposes an MOP into several subproblems and
subsequently optimizes all the subproblems concurrently. Under this approach,
it is not required to differentiate the domination behaviors of the solutions. In-
stead, the subproblems are constructed using any aggregation approach, and the
superiority of the solutions is determined using the aggregated values.

Problem Formulation. The aim of the mTSP is to minimize the total traveling
cost of all the salesmen under the condition that each city must be visited strictly
once by any salesman, and all the salesmen must return to the starting depot
after visiting their final ordered city. The traveling cost could be defined as the
traveling distance, traveling time, traveling expense, traveling risk, etc incurred.
Each salesman will have his own route and there should be no repeated visit on
any city in the route of the salesman.

In the literature, the aim of the mTSP is specified to be either minimizing the
total traveling cost of all salesmen or the highest traveling cost incurred by any
single salesman [45]. In [42], the focus is tailored specifically for the mTSP with
single depot; considering the minimization of the total traveling cost and the
balancing of the workload among all salesmen. This is achieved by formularizing
the objective function to be the weighted sum of the total traveling cost of all
salesmen and the highest traveling cost of any single salesman. In the context of
multi-objective optimization (MmTSP), more than one objective is subject to
be minimized, which is formulated as follows.

Minimize:

F (x) = (F1(x), ..., Fm(x))

F1(x) = ω1 × TC1 + ω2 ×MC1

...

Fm(x) = ω1 × TCm + ω2 ×MCm
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where

TCk(x) =

Ω∑

j=1

ICk
j (x)

MCk(x) = max
1≤j≤Ω

(ICk
j (x))

ICk
j (x) =

nj−1∑

i=1

Dk(ai,j , ai+1,j) +Dk(anj ,j , a1,j)

In the above formulation, x ∈ φ, φ is the decision space, ai,j is the ith visiting
city by salesman j, m is the number of objective functions, ω1 and ω2 are the
weights to balance between total cost and highest cost (ω1 + ω2 = 1.0), TC is
the total traveling cost of all salesmen, MC is the highest traveling cost of any
single salesman, IC is the individual traveling cost, Ω is the number of salesmen,
nj is the number of cities traveled by salesman j, Dk(ai,j , ai+1,j) is the traveling
cost (for the kth objective function) between cities at locations i and i + 1 for
salesman j. In a chromosome, two conditions should be met, which are all the
cities must be visited exactly once and each salesman must be assigned at least
one city in his traveling route.

REDA in this section was developed in the decomposition-based framework
of multi-objective optimization. Furthermore, REDA was also hybridized with
the evolutionary gradient search [46] (hREDA). In the mTSP, integer number
representation is used to represent the permutation of the cities. The modeling
and sampling steps of REDA or hREDA is illustrated as follows.

1. Modeling. Decode the integer representation of the cities into the binary
representation. Train the network. Compute the δ(xji ) as (11) and (12). Encode

the binary representation of δ(xji ) into integer representation. Construct the
probabilistic model Pg(x) by computing the marginal probability of each city
(c1, ..., cβ), where β = Ψ +Ω − 1, in each permutation location as follows.

pg(x) =

⎡

⎢⎣
pg(x1 = c1) . . . pg(xβ = c1)

...
. . .

...
pg(x1 = cβ) . . . pg(xβ = cβ)

⎤

⎥⎦

pg(xi = cj) =

∑N
l=1 δl(xi = cj) +

Zi

β×N

Zi +
Z2

i

β×N

where pg(xi) is the probability distribution of the cities at the position xi of the
chromosomes at generation g, pg(xi = cj) is the probability of city j to be located
at the ith position of the chromosomes, cj is the city j (c1 = 2− Ω, ..., cβ = Ψ)
and Zi is the normalizing constant.

2. Sampling. Sample the constructed probabilistic model, pg(x), to generate N
children solutions as follows.
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yi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1 if random(0, 1) ≤ pg (xi = c1)

c2 if pg(xi = c1) < random(0, 1) ≤ ∑2
j=1 pg(xi = cj))

...

cβ if
∑β−1

j=1 pg(xi = cj) < random(0, 1) ≤ ∑β
j=1 pg(xi = cj)

where yi is a newly generated city at ith position of a chromosome.

The formulation of the MmTSP takes into account the weighted sum of total
traveling cost of all salesmen and the highest traveling cost of any single sales-
man. The weight setting is dependent on the preference of the manager whether
he wants to achieve the lowest total traveling cost of all salesmen or he wants
to achieve the balancing of workload of all salesmen. If the aim is to obtain the
lowest total traveling cost, the weights will be set to ω1 = 1.0, ω2 = 0.0. On
the other hand, if the final objective is to balance the workload of all salesmen,
the weights will then be set to ω1 = 0.0, ω2 = 1.0. However, if the aim is to
achieve tradeoff between the two aims, then different weight settings should be
employed.

The simulation results reported in [42] indicated that the hybrid REDA with
decomposition (hREDA) is able to produce a set of diverse solutions but it is
slightly inferior in terms of proximity to MOEA/D [44] in problems with small
number of cities. In problems with a large number of cities, the simulation results
showed that the decomposition algorithms (hREDA, REDA, and MOEA/D)
achieve better Pareto front than the domination algorithms (NSGA-II). For the
decomposition algorithms, hREDA generates a better set of diverse solutions
than REDA and MOEA/D. However, the solutions generated by REDA have a
better proximity than hREDA. Shim et al. [42] concluded that the decomposi-
tion algorithms scale well with the increase in the number of decision variables
compared to the algorithms using the concept of domination. REDA uses global
distribution of the parent solutions to guide the search process. The results
showed that REDA have good proximity results, but poor solution diversity.
Introducing local information into the evolutionary process, which helps the al-
gorithm to further explore and exploit the search space, rectifies this limitation
of REDA.

The findings also revealed that the total traveling cost increases with the
increase in the number of salesmen. This is because when more salesmen are
involved, the task gets more difficult since the algorithms need to determine
the route for each salesman while maintaining the minimum total traveling cost
at the same time. Since all salesmen need to return to the home city and the
final assigned city could be far from the depot, additional traveling cost may
be incurred. For hREDA, the gradient information weakens with the increase in
the number of salesmen, resulting in the algorithm not being able to exploit the
information as effectively. However, its performance was the best compared to
the other algorithms.
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Overall, the performances of algorithms using the decomposition framework
(hREDA, REDA and MOEA/D) were superior to those of the algorithms based
on the concept of domination (NSGA-II) in most of the problem settings. The
superiority of the decomposition algorithms is attributed to the aggregation prin-
ciple used for fitness assignment. The tournament could be carried out by simply
comparing the aggregated fitness values of solutions. Solutions with higher fitness
values will always be selected to survive and reproduce. On the other hand, the
concept of domination requires that fitness be assigned to each solution based
on their rank of domination. In many-objective problems, most of the solutions
are non-dominated and are given lower ranks. This may prevent the tournament
process from selecting promising solutions to survive. Thus, NSGA-II performed
poorly compared to the decomposition algorithms.

4.5 Hybrid Adaptive MOEAs for Solving Continuous MOPs

In our recent work [47], we introduced two versions of hybrid adaptive MOEAs
for solving continuous MOPs. The motivation of this study is as follows. Many
multi-objective evolutionary algorithms (MOEAs) have been designed to solve
MOPs. For example, MOEAs that use genetic algorithms (GAs) as the search
technique are NSGA-II [15] and MOEA/D [44], among others. MOEAs that use
differential evolutions (DE) as the search technique are Pareto differential evolu-
tion (PDE) [48], generalized differential evolution3 (GDE3) [49], and MOEA/D
with DE [50], among others. Next, MOEAs that use estimation of distribution
algorithms (EDAs) as the search approach are as discussed in Section II. Each
of the above-mentioned algorithms is efficient in solving certain MOPs and has
their own strengths and weaknesses. Furthermore, no evidence indicates that one
of the EAs is superior to the others. Thus, it is possible that the synergy among
the EAs can complement their weaknesses while maintaining their strengths.

In [47], an adaptive feature, which determines the proportion of the number
of solutions to be produced by each EA in a generation, was proposed. Initially,
each EA is given an equal chance to produce the initial solutions. After the repro-
duction processes, a number of promising solutions are selected and stored in an
archive. Then, the proportion of the number of solutions to be generated by each
optimizer in the next generation is calculated according to the proposed adaptive
mechanism as illustrated in Fig. 4. Let ψ as the solutions in an archive. First, cal-
culate the number of solutions in ψ that are generated by each EA. Afterward, the
adaptive proportion rate (ArEAi

g ) at generation g for each EA is calculated accord-
ing to Step 2. A learning rate (ε < 0) is incorporated to the updating rule in Step
2 in order to moderate the influences of the proportion of the number of selected
solutions in generation g to the whole evolutionary processes. This is because the
optimizers that are able to generate a more number of promising solutions in the
current generation may not be the superior optimizers in the next generation. In
Step 3, a lower bound is set to the adaptive proportion rate. This is necessary since
an optimizer may dominate other EAs and finally the adaptive proportion rate of
this optimizer will become 1.0 while the adaptive proportion rate of other EAs will
become 0.0. When this happens, all children solutions will only be generated by
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%%Given a set of selected solutions that are stored in an archive (�) 
1. Calculate the number of solutions in � that are generated by each EA, denoted 

as �����  where � � ��� ��, � is the number of EAs that are involved in the 
hybridization. In this paper, three EAs are involved. Thus, the number of 
solutions in �  that are generated by each EA are denoted as ������ � ���� , 

������ � ����  and ������ � ����� . 
2. Calculate the adaptive proportion rate for each EA as follows. 
����� � 	�
 

 ������� � ��������� � � � ������� , where  ������� ��������	� 
������� 

 where �������  is the adaptive proportion rate at generation � for ���  EA,  is the 

learning rate, �������  is the current proportion rate and � is the archive size or 
the number of solutions in an archive. 

3. Check for the lower bound of the adaptive proportion rate 
����� � 	�
 
���������� 
 ������� 

������� � ������� 
������� 

4. Normalize the adaptive proportion rate so that the sum of the adaptive 
proportion rates is equal to 1.0 
����� � 	�
 

������� ��������� �	�� �������
�

���

� 

������� 

Fig. 4. Pseudo-code of the adaptive mechanism

this optimizer till the end of the evolutionary processes. Thus, it is necessary to
set a lower bound to the adaptive proportion rate to guarantee that the problem
would not exist. Since the summation of all the adaptive proportion rates should
be equal to 1.0, the final adaptive proportion rates should be normalized espe-
cially when Step 3 is applied (Step 4). Afterward, a typical evolutionary process
is continued. Through this hybridization, the hybrid algorithms showed the best
results in most of the MOPs.

5 Conclusion

This paper presented our recent works on synergy between PMGs and MOEAs.
More specifically, a literature review focused on the existing work on MOEDAs
has been outlined. Next, the possibility of constructing an EDA based on RBM
has also been demonstrated. Next, five studies that implement REDA for solving
different MOPs were given. The case studies are:(1) REDA with clustering in
solving scalable MOPs (2) sampling study of REDA and its implementation in
solving epistatic MOPs (3) synergy between REDA and PSO in tackling noisy
MOPs (4) hybrid REDA with the EGS in evolving a set of permutation of cities
in MmTSP problems and (5) hybrid adaptive MOEAs in solving various types of
MOPs. The simulation results indicated that REDA is weak in addressing multi-
modality problems, inferior to NSGA-II in exploiting the near optimal solutions,
and mediocre in generating a set of diverse solutions. The positive aspects are
that REDA can perform well in high dimensional problems and many objective
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problems, REDA is more robust than NSGA-II in noisy MOPs, and REDA has
a faster convergence rate than NSGA-II even though it takes a higher computa-
tional time. The performance of REDA was improved through the hybridization
with local search algorithms and the synergy with other evolutionary algorithms.
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