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The representation of a problem for evolutionary computation is the choice of
the data structure used for solutions and the variation operators that act upon
that data structure. For a difficult problem, choosing a good representation can
have an enormous impact on the performance of the evolutionary computation
system. To understand why this is so, one must consider the search space and
the fitness landscape induced by the representation. If someone speaks of the
fitness landscape of a problem, they have committed a logical error: problems
do not have a fitness landscape. The data structure used to represent solutions
for a problem in an evolutionary algorithm establishes the set of points in the
search space. The topology or connectivity that joins those points is induced by
the variation operators, usually crossover and mutation. Points are connected if
they differ by one application of the variation operators. Assigning fitness values
to each point makes this a fitness landscape. The question of the type of fitness
landscape created when a representation is chosen is a very difficult one, and we
will explore it in this chapter.

The primary goal of this chapter is to argue for more research into represen-
tation in evolutionary computation. The impact of representation is substantial
and is not studied enough. The genetic programming community has been using
parameter sweeps [18] which compare different choices of operations and termi-
nals within a genetic programming environment. This is a big step in the right
direction, but even this work ignores the issue of whether genetic programming
is appropriate for a given problem. One of the implications of the No Free Lunch
Theorem of Wolpert and Macready is that the quality of a given optimizer is
problem specific. This includes the choice of representation.

There are reasons that representation has not been explored. While there
can be huge rewards from exploring different representations, there is also a
substantial cost. One must implement alternate representations; one must run
well-designed experiments with them which probably include parameter tuning
for each representation; and then one must find a way to compare the solutions.
This last task seems simple – could not one simply examine final fitness numbers?
While the first answer to this question is clearly yes, it may be that a problem
requires diverse solutions or robust solutions. The recent explosion of research in
multicriteria optimization with evolutionary algorithms means that issues like
the diversity of solutions produced are important.
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We will examine the question of representation through a series of examples
involving: a simple toy optimization problem, the problem of evolving game
playing agents, real optimization problems, and, finally, a problem drawn from
automatic content generation for games.

1 Representation in Self-avoiding Walks

The self-avoiding walk (SAW) problem involves traversing a grid, given in-
structions for each move, in such a way that every square is visited. Fitness
is evaluated by starting in the lower left corner of the grid and then making
the moves specified by the chromosome. The sequence of moves made is re-
ferred to as the walk. If a move is made that would cause the walk to leave
the grid, then that move is ignored. The walk can also revisit cells of the grid.
Fitness is equal to the number of squares visited at least once when the walk
is completed. The problem is called the self-avoiding walk problem because op-
timal solutions for a number of moves equal to the number of squares minus
one do not revisit squares; they are self-avoiding walks. Figure 1 shows the 52
global optima for the 4 × 4 SAW problem. In addition to a diverse set of opti-
mal solutions, the SAW problem has many local optima when the grid is large
enough.

The SAW problems has a number of nice qualities as an evolutionary
computation test problem:

– The problem has a large number of cases, one for each possible size of grid.
While problem difficulty does increase with grid size, it is also different for
grids of the same size with different dimensions such as 4× 4 and 2× 8.

– Even for quite long genes, the solutions have a simple two-dimensional rep-
resentation. This makes visualizing final populations easy. Visualizations of
the final walk also make it easy to compare between different representations.

– The problem, when the grid is large enough, has a large number of both
global and non-global optima. This starts, roughly, when both dimensions
are larger than 3. Table 1 gives the number of global optima.

– The global optima are not symmetrically distributed. Some have many other
optima nearby, while others are far from other optima. This means that, even
though they have the same fitness, they differ in how easy they are to locate.
The notion of nearby used here is Hamming distance.

Having made a case that the SAW has desirable properties for a test problem, the
next step is to construct multiple representations for it. We will examine three
representations, one of them the obvious choice, and all implemented as strings
over some alphabet. Other than changing the representation, all experiments
will be performed using a population of 100 strings using two-point crossover
and a mutation operator that changes two of the characters in the string. The
problem case used is the 4× 4 SAW.
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Fig. 1. The optimal solutions to the 4× 4 SAW problem

The Direct Representation

The direct representation uses a character string over the alphabet {U,D,L,R},
which stand for Up, Down, Left, and Right. The string is of length fifteen and
the fitness function simply executes the moves in order, recording the number of
squares visited. Since evaluation starts in the lower left square with that square
already visited the minimum fitness is one and the maximum is 16. The string
length is equal to the minimum number of moves required to visit all the squares.

The Relative Representation

The relative representation uses a character string of length 15 over the alpha-
bet {F,R, L} which stand for forward, turn right and then move forward, and
turn left and then move forward. Like the direct representation, the relative
representation keeps track of the square it currently occupies. It adds to that
information the direction it is currently facing. Fitness evaluation starts with
the drawing agent facing upward. Fitness evaluation is otherwise like the direct
representation.
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Table 1. Number of global optima in the SAW problem for problem sizes 2 ≤ n,m ≤ 7

n/m 2 3 4 5 6 7

2 2 3 4 5 6 7
3 3 8 17 38 78 164
4 4 17 52 160 469 1337
5 5 38 160 824 3501 16,262
6 6 78 469 3501 22,144 144,476
7 7 164 1337 16,262 14,4476 1,510,446

The Gene Expression Representation

The gene expression representation uses a character string over an alphabet
derived from the one used in the direct representation: {U,D,L,R, u, d, l, r}.
During fitness evaluation upper case letters are used normally and lower case
letters are ignored. If a gene has fewer than fifteen upper case letters, fitness
evaluation simply ends early, an implicit fitness penalty. If a gene has more than
fifteen upper case letters, only the first fifteen are used. In order to permit the
average number of upper case letters to be fifteen, the length of the string is set to
30. The name of the gene expression representation reflects that the upper/lower
case status of a character controls the expression of each gene loci.

Results

A simple assessment of the impact of changing the representation is given in
Figure 2. The time to solution for sets of 1000 replicates done for all three repre-
sentations was sorted and then graphed. The performance of the representations
is strongly stratified with the direct representation exhibiting the worse perfor-
mance (longer times to solution), the gene expression representation coming in
second, and the relative representation coming in first. For the replicates with
the longest time to solution (right end of the sorting order), the gene expression
representation takes over for first place.

The goal of demonstrating that the choice of representation makes a difference
has been met for the SAW problem. Let us now consider what caused the change
in performance. The size of the search space for the relative representation is
3n, while for the direct representation the size is 4n, meaning that evolution has
a smaller job to do. The relative representation encodes far fewer walks than
the direct one. In particular, the relative representation is incapable of moving
back to the square it just came from, a move that always results in a sub-
optimal solution. This gives the relative representation a substantial advantage:
it retains all the optimal solutions in the direct representation while excluding
many sub-optimal ones. This is an example of building domain information into
the representation.
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Fig. 2. This figure shows the impact of changing representation on the time to solution
for the 4x4 SAW problem. The graphs display the sorted times to solution for 1000
independent evolutionary replicates. The left panel displays all 1000 replicates while
the right one displays only the first 900.

The best average performer is the gene expression representation, though this
is due to a small number of bad results for the relative representation. The
size of the search space here is 830, enormously larger than direct or relative
representation. This demonstrates that the size of the search space, while poten-
tially relevant, cannot possibly tell the whole story. Both the direct and relative
representation uniquely specify a sequence of moves. The gene expression repre-
sentation has billions of different strings that yield the same sequence of moves.
It also specifies some sequences of moves the other two representations cannot,
but these all contain fewer than fifteen moves and have intrinsically bad fitness.

To understand the good performance of the gene expression representation,
it is necessary to consider the fitness landscape. A mutation of a gene in the
direct or relative representation changes one move in the walk represented by
that gene. Some of the mutations in the gene expression representation have the
same effect, but those that change a capital letter into lower case or vice versa
have the effect of inserting or deleting characters from the walk specified by the
gene. This means that the gene expression representation has edit mutations
that can insert, delete, or change the identity of a character in the walk the
gene codes for. The other two representations can only change the identity of
characters.

If we consider the space of encoded walks, rather than genes, the gene expres-
sion representation has more connectivity. If we think of optima as hills in the
fitness landscape, then using the gene expression representation has the effect of
merging some of the hills. Since the number of optimal results remains constant,
this means the only effect is to eliminate local optima.

One weakness of this demonstration of the impact of representation on the
SAW problem is that only one case of the problem was examined. Figure 3 shows
the result of performing the same experiments for the 5 × 5 case of the SAW
problem. The algorithm was set to halt if it did not find a solution in 1,000,000
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fitness evaluations. This is what causes the flat portions of the plots on the
right side of the figure. Notice that, in this experiment, the order of the direct
and relative representations is reversed and the gene expression representation
is clearly the best.

This second example serves to demonstrate that the representation issue is
complex, even on a problem as simple as the SAW. Another quality of the SAW,
demonstrated in [15], is that different cases of the problem behave differently
from one another as optimization problems. The results in Figure 3 provide ad-
ditional evidence that different sizes of SAW problems are substantially different
from one another.

Fig. 3. This figure shows the impact of changing representation on the time to solution
for the 5x5 SAW problem. The graphs display the sorted times to solution for 1000
independent evolutionary replicates.

2 Representation in Game-Playing Agents

The game used to demonstrate the impact of representation on the evolution of
game playing agents is the iterated prisoner’s dilemma. The prisoner’s dilemma
[13] is a widely known abstraction of the tension between cooperation and con-
flict. In the prisoner’s dilemma two agents each decide simultaneously, without
communication, whether to cooperate (C) or defect (D). If both players cooper-
ate, they receive a payoff of C; if both defect, they receive a payoff of D. If one
cooperates and the other defects, then the defector receives the temptation payoff
T , while the cooperator receives the sucker payoff S. In order for a simultaneous
two-player game to be prisoner’s dilemma two conditions must hold:
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S ≤ C ≤ D ≤ T (1)

and
(S + T ) ≤ 2C (2)

The first of these simply places the payoffs in their intuitive order while the
second requires that the average score for both player’s in a unilateral defection
be no better than mutual cooperation.

A situation modeled by the prisoner’s dilemma is that of a drug dealer and an
addict exchanging money for drugs in simultaneous blind drops to avoid being
seen together by the police. Cooperation consists of actually leaving the money
or drugs; defection consists of leaving something worthless like an envelope full
of newspaper clippings in place of money or an inert white powder in place of
the drugs. If the exchange is made only once, then neither party has an incentive
to do anything but defect. If the drop is to be made weekly, into the indefinite
future, then the desire to get drugs or money next week strongly encourages
cooperation today. This latter situation is an example of the iterated prisoner’s
dilemma. When play continues, the potential for future retribution opens the
door to current cooperation. The payoff values used in the experiments described
here are S = 0, D = 1, C = 3, and T = 5, largely because these values have
been used in many other studies in which prisoner’s dilemma agents were evolved
[2,10,4,9].

Earlier research [5,1] compared ten different representations for the iterated
prisoner’s dilemma. These experiments all used populations of 36 agents whose
fitness was computed as the average score in a round-robin tournament of 150
rounds of iterated prisoner’s dilemma between each pair of players. Each agent
had access to their opponent’s last three plays, and perhaps more in the case of
state conditioned representations. Evolution was run for 250 generations with the
crossover and mutation operators kept as similar as possible given the differing
representations.

Representations

The representations studied for the iterated prisoner’s dilemma are as follows:

Finite State Machines. Two types of finite state machines are used: directly
encoded finite state machines with 16 states (AUT) and finite state machines
represented with a developmental encoding [19]. The number of states in the
machine is variable but not more than twenty. These finite state machines are
referred to by the tag CAT.

Function Stacks. The tags F40, F20, and F10 are for function stacks, a linear
genetic programming representation based on a directed acyclic graph. The data
type is boolean and the operations available are logical And, Or, Nand, and Nor.
The constants true and false are available as are the opponent’s last three actions.
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We use the encoding true=defect, false=cooperate. The numbers 10, 20, and 40
refer to the number of nodes in the directed acyclic graph.

Tree-Based Genetic Programming. We use standard tree-based genetic pro-
gramming [20] with the same encoding as the function stacks and the same
Boolean functions with access to the opponent’s last three actions. These are re-
ferred to with the tag TRE. The tag DEL corresponds to Boolean parse trees,
identical to TRE,save that a one-time-step delay operator is incorporated into
the operation set.

Markov Chains. The tag MKV is used for Markov chains implemented as
look-up tables indexed by the opponent’s last three actions that gives the prob-
ability of cooperation. Once this probability has been found a random number
is used to determine the agent’s action. The tag LKT is used for look-up ta-
bles indexed by the opponent’s last three actions. The lookup tables are like the
Markov chains if the only probabilities permitted are 0 and 1.

ISAc Lists. A different linear genetic programming representation denoted
by ISC are If-Skip-Action lists [12]. An ISAc list executes a circular list of
Boolean tests on data items consisting of the opponent’s last three actions and
the constants “cooperate” and “defect” until a test is true. Each Boolean test
has an action associated with it, the action for the true test is the agent’s next
action. On the next round of the game execution starts with the next test. The
lists of tests used here have a length of 30.

Neural Nets. The tag CNN is used for feed-forward neural nets with a per-
neuron bias in favor of the output signifying cooperation; they access the oppo-
nent’s last three actions and have a single hidden layer containing three neurons.
The tagNNN are feed-forward neural nets identical to CNN save that they have
no bias in favor of cooperation or defection.

2.1 Results

The metric used to compare representations is the probability the final popula-
tion, at generation 250, is essentially cooperative. We measure this as having an
average payoff of 2.8 or more. This is a somewhat arbitrary measure, carefully
justified only for the Aut representation. For finite state automata, a series of
initial plays between two players must be followed by a repeating sequence of
plays caused by having reached a closed loop in the (finite) space of states. When
fitness evaluation consists of 150 rounds of iterated prisoner’s dilemma and the
automata have no more than sixteen states, an average score of 2.8 or more
corresponds to having no defections in the looped portion of play.

Figure 4 shows the probability that different representations will be coopera-
tive. This result is, in a sense, appalling. The outcome of the basic experiment
to demonstrate that cooperation arises [22] has an outcome that can be dialed
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Fig. 4. Shown are 95% confidence intervals on the probability that the final generation
of an evolutionary algorithm training prisoner’s dilemma playing agents, with different
representations, will be cooperative

from 95% cooperative to no cooperation by changing the representation. This
shows not only that representation has an impact but that it can be the dominant
factor. In other words, an experiment using competing agents that does not
control for the effects of representation may have results entirely dictated by the
choice of representation.

There are a number of features of these experiments that make the situation
worse. In order to check the importance of changing the parameters of a single
representation, the function stack (Boolean directed acyclic graph genetic pro-
gramming) representation was run with 10, 20, and 40 nodes. Notice that the
10-node version of this representation is significantly less cooperative than the
others.

In a similar vein, the AUT and CAT are alternate encodings of the same
data structure. In spite of this they have huge differences in their degree of
cooperativeness. There is a mathematical proof in [1] that the function stack
representation encodes the same space of strategies as finite state machines.
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A slightly different version of this fact applies to the two neural net (CNN and
NNN) and the lookup table (LKT) representations. All of these are a map
from the opponent’s last three actions to a deterministic choice of an action. It
is not difficult to show all three representation encode exactly the same space
of 28 strategies in different ways. In spite of this the neural net representations
have an experimentally estimated probability of zero of cooperating; the lookup
tables are among the most cooperative representations.

3 Representation in Real Optimization

Real parameter optimization is one of the earliest applications of evolution-
ary computation. Evolution strategies [14] were originally designed to optimize
parameters that described an airfoil and also has had substantial success at de-
signing nozzles that convert hot water into steam efficiently. Real parameter
optimization also substantially pre-dates evolutionary computation; it is one of
the original applications of the differential calculus with roots in the geometry
of the third century B.C. and modern treatments credited to Isaac Newton and
Gottfried Leibniz in the seventeenth century. The natural representation from
the calculus, as functions mapping m-tuples of numbers to a single parame-
ter to be optimized, is a natural one only adopted by some techniques within
evolutionary computation.

The largest difference between real optimization and representations built on
character strings is the set of available mutation operators. When we change
the value of a real number, that change is a probability distribution on the
real numbers. It could be uniform, Gaussian, or some more exotic distribution.
Evolutionary programming [16] pioneered the use of mutation operators that use
covariance across parameters to permit evolution to modify mutation operators
to respect the local search gradient. One of the representations we will examine
completely avoids the issue of selecting the correct distribution for a mutation
operator, while the other two retain their critical dependence on that choice.
Correct choice of the type of mutation operator in real parameter optimization
is very important, but it is not the subject we are concerned with in this article.

3.1 Representations

We will examine three possible representations for real-parameter optimization.
There are many others. Some of the earliest work in real optimization [17] repre-
sented sets of real parameters as strings of bits with blocks of bits first mapped
onto an integer value and then the integer value used to pick out a value from
an equally spaced set for a given parameter value. This representation required
techniques, like Grey-coding, to ensure that some bits were not far more im-
portant than others. This is a nice, early example of finding a more effective
representation.
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The Standard Direct Representation. Current evolutionary real optimiza-
tion often operate on vectors of real numbers holding the parameters to be
optimized in some order. We will call treating such a vector of real numbers as a
string of values, using crossover operators analogous to the string like ones, the
standard direct representation. This is the first of our three representations.

The Gene Expression Representation for Real Parameters. The gene
expression representation, used on the SAW problem in Section 1, can easily
be adapted to real parameter optimization. We first lengthen the vector of real
parameters by double and then add an expression layer in the form of a binary
gene with one loci for each parameter in the vector of reals. Before the vector
of reals is sent to the fitness function, an expression step is performed. Suppose
that n real parameters are required. Only those real values with a one in the
corresponding position in the expression layer are used. If fewer than n real
parameters are expressed in this fashion, then the individual receives fitness
that is the worst possible. If n or more parameters are expressed, then the first
n, in the order they appear in the data structure, are used. In this case, the
usual fitness for those n parameters is the fitness of the entire data structure.

The Sierpinski Representation. The Sierpinski representation first appears
in [11] and was used in [3] to located parameters for interesting subsets of the
Mandelbrot set. The Sierpinski representation is inspired by the chaos game,
an iterative averaging algorithm for generating the Sierpinski triangle or gasket,
shown in Figure 5. The game starts at any vertex of the triangle. The game then
iteratively moves half way toward a vertex of the triangle selected uniformly at
random and plots a point. The points have been colored by averaging a color
associated with each vertex into a color register each time a particular corner
was selected. This visualizes the importance of each vertex to each plotted point.

If, instead of the three vertices of a triangle, we use the 2n points that are the
vertices of an n-dimensional box, then a series of averaging moves toward these
points specify a collection of points that densely covers the interior of the box
[11]. Strings of averaging moves form the representation for evolutionary search.
Formally:

Definition 1. The Sierpinski representation. Let G = {g0, g1, . . . , gk−1} be
a set of points in R

n called the generator points for the Sierpinski representation.
Typically these are the vertices of a box in some number of dimensions. Associate
each of the points, in order, with the alphabet A = {0, 1, . . . , k − 1}. Let the
positive integer r be the depth of representation. Then for s ∈ Ar the point
represented by s, ps, is given by Algorithm 31.

Definition 2. The normalized Sierpinski representation(NSR) is achieved
by insisting that the last character of the string always be the first generator.
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Fig. 5. The Sierpinski triangle or gasket

Algorithm 31. Sierpinski Unpacking Algorithm

Input: A string s ∈ Ar;The set G of k generator points;
An averaging weight α

Output: A point in R
n

Details:
Set x← gs[r−1]

for(i← r − 2; i ≥ 0; i← i− 1)
x← α · gs[i] + (1− α) · x

end for
return(x)

The following lemma is offered without proof (but is elementary).

Lemma 1. Let a string s of length r be a name for a point x = ps. Suppose that
α = 0.5 and that the last character (initial generator) of s is always the same.
Then s is the sole name of x of length r.

The Sierpinski representation reduces the problem of real optimization to that
of evolving a string. Lemma 1 tells us that each string in the normalized version
of the representation corresponds to a unique point. An important feature of the
Sierpinski representation is that it searches only inside the convex hull of the
generators. This has good and bad points; the generators can be used to direct
search, but the search cannot use a mutation operator to locate an optima outside
of the initial boundaries in which the population was initialized – something both
the other representations can do.
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3.2 Comparing the Direct and Sierpinski Representations

We will compare the direct and Sierpinski representations on the problem of
optimizing the function:

h(x0, x1, . . . , xn−1) = sin(
√
x2
0 + x2

1 + · · ·+ x2
n−1) ·

∏
sin(xi) (3)

in n = 5 dimensions. This function possesses an infinite number of optima of
varying heights and is thus good for testing the ability of an algorithm to locate
a diversity of optima.

Notice that the Sierpinski representation stores points as strings of characters.
This means that we can store and retrieve points in a dictionary – with logarithmic
time for access – and can compare points for “nearness” by simply checking their
maximum common prefix. In particular, if we are searching a space with multiple
optima, it becomes very easy to database optima that the algorithm has already
located. The MOSS, given as Algorithm 32, was first specified in [11].

Algorithm 32. Multiple Optima Sierpinski Searcher (MOSS)

Input: A set of generator points G
An averaging parameter α
A depth of representation r
A depth of exclusion d
A multi-modal function f to optimize

Output: A collection of optima
Details:
Initialize a population of Sierpinski representation strings
Run a string-EA until an optimum x is found
Initialize a dictionary D with the string specifying x
Repeat

Re-run the EA, awarding minimal fitness to any string
with the same d-prefix as any string in the dictionary

Record the new optimum’s string in D
Until(Enough optima are found)

The MOSS algorithm creates zones of low fitness around the optima it has
already located. The size of the zones is determined by the exclusion depth and
have a shape identical to the convex hull of the generators. Each increase in the
exclusion depth decreases the size of the holes around known optima by one-half.

Table 2 compares 100 runs of the standard algorithm with 100 runs of the
MOSS algorithm supported by the Sierpinski representation. The goal, in this
case, is to locate as many optima as possible. The table gives a tabulation of op-
tima located stratified by the number of times they were located. The results are
striking: the MOSS algorithm located far more optima (969) than the standard
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Table 2. Relative rate of location among the 1000 populations optimizing Equation 3
for the original and MOSS algorithms

Times Number of Optima Times Number of Optima
located Original MOSS located Original MOSS

1 122 938 8 6 0

2 77 31 9 1 0

3 56 0 10 3 0

4 40 0 11 1 0

5 19 0 12 1 0

6 15 0 13 1 0

7 14 0

algorithm (356) and never located a given optima three times. The standard
algorithm located six optima more than ten times each. The average quality of
the optima located is higher for the standard algorithm, because it locates high
quality optima multiple times. The two representations compared are not, in an
absolute sense, better or worse. Rather, each has situations in which it is better.
The strength of the Sierpinski representation is locating a diversity of optima;
it makes databasing optima easy and so enables the MOSS algorithm.

3.3 Comparison of the Direct and Gene Expression Representations

We compare the standard direct and gene expression representations on the
function:

gn(x1, x2, . . . , xn) =
1

20n

n∑
k=0

xk +

n∑
k=0

sin(
√
k · xk) (4)

in two through seven dimensions. This problems has many local optima and the
small linear trend means that the better optima are further afield.

For each dimension and representation, 400 replicates of an evolutionary al-
gorithm were run and a 95% confidence interval on the quality of the optima lo-
cated were constructed. This confidence interval was constructed at both 100,000
fitness evaluations and 1,000,000 fitness evaluations. The results are given in
Table 3.

The advantage of using the gene expression representation is largest in lower
dimensions. It ceases to be significant when we compare the results in d = 7
dimensions for the shorter evolutionary runs. The significance returns in the
longer evolutionary runs. This demonstrates that the gene expression represen-
tation made better use of additional time.

The fitness landscape for this problem is easy to understand - it has a lot
of hills and the small linear trend means that searching further afield will al-
ways locate better optima. This lets us draw the following conclusion: the gene



Representation in Evolutionary Computation 91

Table 3. Mean value of best optima located, averaged over replicates, and best op-
timum located in any replicate for the polymodal function. This table compares the
standard direct representation and the gene expression representations for two different
lengths of evolution.

100,000 fitness evaluations 1,000,000 fitness evaluations

Gene Expression Direct Gene Expression Direct

Dimension Mean Best Mean Best Mean Best Mean Best

2 2.77 ± 0.02 3.25 2.59± 0.02 2.98 3.04 ± 0.03 4.17 2.58± 0.02 2.98

3 3.74 ± 0.01 4.11 3.54± 0.02 3.97 3.94 ± 0.02 4.45 3.55± 0.02 3.97

4 4.71 ± 0.01 5.05 4.54± 0.01 4.97 4.88 ± 0.01 5.33 4.52± 0.01 4.97

5 5.68 ± 0.02 5.98 5.51± 0.01 5.85 5.80 ± 0.02 6.31 5.52± 0.01 5.87

6 6.58 ± 0.02 6.95 6.49± 0.01 6.82 6.73 ± 0.01 7.10 6.51± 0.01 6.90

7 7.54 ± 0.04 7.93 7.50± 0.01 7.85 7.68 ± 0.02 8.08 7.50± 0.01 7.80

expression representation is better at exploration, while the standard direct rep-
resentation is better at exploitation. It is easy to test this hypothesis in the
opposite direction by optimizing a different function. Recall that mutations to
the binary expression layer amount to inserting or deleting values from the se-
quence of real parameters. The gene expression representation preforms badly
when optimizing a unimodal function with its mode selected so that no two of
its coordinates are the same (data not shown). It has a far worse mean time to
solution than the direct representation in low dimensions and completely fails
to locate the optimum in higher dimensions.

As with the Sierpinski representation, the gene expression representation is
neither better nor worse than the standard direct one. Each has its own ap-
propriate domain of applicability. This is additional support for the thesis of
this chapter, that we should study representation more assiduously. Each new
representation is an additional item in our toolbox. Both the comparisons made
in this section demonstrate that there is a significant impact to the choice of
representation.

4 Representation in Automatic Content Generations

In this section we look at the problem of evolving a maze. Examples of the types
of mazes we are evolving are shown in Figures 8 and 9. We will use the same
evolutionary algorithm for each of five representations. The representations used
in this study are defined in [6,8,21]. Since none of the cited publications used the
same fitness function on all five representations we use a new fitness function.
The mazes we are evolving are specified on a grid. The mazes have an entrance
in the center of each wall and two internal checkpoints. Figure 7 designates long
and short distances. These distances are the lengths of the shortest paths between
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Fig. 6. Shown are a raw (left) and rendered (right) maze of the sort specified by
evolving which squares on a grid are obstructed

the specified points. The fitness function is the sum of the long distances divided
by the sum of the short distances, except that any maze where we cannot move
from each door to both checkpoints is awarded a fitness of zero. Distances are
computed using a simple dynamic programming algorithm [6].

We will demonstrate that the visual character of the mazes changes substan-
tially when the representation is changed. All the evolutionary algorithms use
a population of 100 mazes stored as strings of values with a 1% mutation rate
and two-point crossover. Evolution proceeds for 500,000 fitness evaluations. The
representations are as follows:

First Direct Representation. Open and blocked squares within a rectangular
grid are specified directly as a long, binary gene.

Chromatic Representation. A direct representation, in which the squares
within a grid are assigned colors from the set { red, orange, yellow, green, blue,
violet}. These colors are specified directly as a long gene over the alphabet
{R,O, Y,G,B, V }. An agent can move between adjacent squares if they are (i)
the same color or (ii) adjacent in the above ordering.

Height-Based Representation. A direct representation, in which the squares
within a grid are assigned heights in the range 0 ≤ h ≤ 10.0. An agent can move
between adjacent squares if their heights differ by 1.0 or less.

Indirect positive representation. The chromosome specifies walls that are
placed on an empty grid to form the maze. The walls can be horizontal, vertical,
or diagonal. In this representation walls are explicit, and rooms and corridors
are implicit.
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Fig. 7. This figure shows the four doors and internal checkpoints within a maze. The
fitness function maximizes the quotient of the sum of the red distances and the sum
of the black distances. This permits the evolution of a diverse collection of mazes with
similar properties.

Indirect Negative Representation. The chromosome specifies material to
remove from a filled grid to form the maze. In this representation, rooms and
corridors are explicit, and walls and barriers are implicit.

All of the representations, except the indirect negative representation, use
a technique called sparse initialization to compensate for the fact that, when
the data structure is filled in uniformly at random, it is quite likely to have
zero fitness, because there is no path between at least one door and at least
one checkpoint. Sparse initialization biases the initial population to have high
connectivity. Sparse initialization takes the following forms. For the direct repre-
sentation, only 5% of the squares are filled in. For the chromatic representation
all squares are initialized to green or yellow. For the height-based representa-
tion the heights are initialized to a Gaussian random value with mean three
and height one. For the indirect positive representation all walls start at length
three. Using sparse initialization places the burden of building the maze onto
the variation operators. The initialization to a highly connected state biases the
trajectory of evolution.

4.1 Results

Figure 8 gives examples of evolved mazes for the direct and indirect negative
and positive representations. Figure 9 gives the examples for the chromatic and
height representations. Since it is very hard to see paths in these mazes, they are
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accompanied by a key where non-adjacent squares are separated by walls and
inaccessible squares are blacked out.

Fig. 8. Examples of the direct, positive, and negative representations for making mazes.
The checkpoints are shown as green circles.

The results in this section speak for themselves. Even though they are evolved
to satisfy the same distance-based fitness function the overall appearance of the
mazes is very different. The appearance is entirely dependent on the choice
of representation. The two most similar representations are the chromatic and
height based. The keys to these mazes look similar. The actual mazes, though,
look quite different. The type of representation that should be chosen, in this
example, depends strongly on the goals of the user of the maze. The mazes shown
here are simple. In [7] more complex design criteria for mazes are given. In [8],
individual evolved maze tiles are used to build scalable maps.
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Fig. 9. Examples of height-based and chromatic mazes, together with their keys. The
checkpoints are shown as black circles. The minimum height in the height-based mazes
is colored red and colors move down the rainbow order of colors as heights increase.

5 Discussion and Conclusions

In all four examples in this chapter it has been demonstrated that representation
has a substantial impact on the outcome of an evolutionary algorithm. The ex-
ample using self avoiding walks showed that changing the representation changed
the time to solution, but in different ways for different cases of the problem. This
demonstrates that, even within a simple problem domain, the best choice of rep-
resentation is problem specific. The SAW problem is the simplest system that
has, so far, shown this sort of complex response to the change of representation.
This makes it a good sandbox for developing tools for exploring the issue of
representation.

In the section on evolving agents to play the iterated prisoner’s dilemma we
saw that the choice of representation can dominate the behavior of a simulation.
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This means that a justification of the choice of representation is critical when
evolving competing agents. This is the strongest evidence of a need to better
understand representation within evolutionary computation. This example goes
beyond the issue of performance to that of validity of results.

The examples given in the section on real parameter optimization show that
the representation can be chosen to meet particular goals. The Sierpinski repre-
sentation permits log-time databasing of optima already located and so makes
enumeration of optima within the convex hull of its generators a simple mat-
ter. The gene expression representation favors exploration over exploitation and
so is good for an environment with many optima of differing quality. Both the
Sierpinski and gene expression representations are potentially valuable in hybrid
algorithms. Each could generate locations near optima that are then finished by
a standard hill-climber. Adding a special purpose local optimizer could enhance
the performance of each of these representations while permitting them to retain
their other special qualities.

The experiments with representations for maps of mazes show that the choice
of representation can be used to control the appearance of the output of the
algorithm. In the maze evolution project there is no point to comparing the
final fitness of the different representations. The needs of a game designer for a
particular type of appearance dominate the need to obtain a global best fitness.
This speaks to an important point: one should carefully consider one’s goals
when choosing a representation.

Representation for the mazes is a matter of controlling the appearance of
the maze. In real optimization the final goal may be global best fitness, but it
might also be obtaining a diverse set of solutions. This latter goal becomes more
important if the goal is multi-criteria optimization. With game playing agents,
it was demonstrated that representation has a dominant effect on a simple type
of experiment. The goal of choice of representation for game playing agents is
to simulate some real-world situation. So far we have very little idea of how to
choose an humaniform or ant-like representation for simulation of conflict and
cooperation. This is a wide-open area for future research. The SAW problems
are a toy problem that exhibit complex representational effects.

We hope that this chapter has convinced the reader of the importance of
considering representation. We conclude by noting that for every example we
chose to discuss here we have five others for which there was no room. We invite
and appeal to the reader to join in the effort of understanding representation in
evolutionary computation.
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