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Abstract. Theoretical analysis of evolutionary algorithms (EAs) has
made significant progresses in the last few years. There is an increased
understanding of the computational time complexity of EAs on certain
combinatorial optimisation problems. Complementary to the traditional
time complexity analysis that focuses exclusively on the problem, e.g., the
notion of NP-hardness, computational time complexity analysis of EAs
emphasizes the relationship between algorithmic features and problem
characteristics. The notion of EA-hardness tries to capture the essence
of when and why a problem instance class is hard for what kind of EAs.
Such an emphasis is motivated by the practical needs of insight and
guidance for choosing different EAs for different problems. This chapter
first introduces some basic concepts in analysing EAs. Then the impact
of different components of an EA will be studied in depth, including
selection, mutation, crossover, parameter setting, and interactions among
them. Such theoretical analyses have revealed some interesting results,
which might be counter-intuitive at the first sight. Finally, some future
research directions of evolutionary computation will be discussed.

1 Introduction

Evolutionary computation refers to the study of computational systems that are
inspired by natural evolution. It includes four major research areas, i.e., evolu-
tionary optimisation, evolutionary learning, evolutionary design and theoretical
foundations of evolutionary computation.

1.1 Evolutionary Optimisation

Evolutionary optimisation includes a wide range of topics related optimisation,
such as global (numerical) optimisation, combinatorial optimisation, constraint
handling, multi-objective optimisation, dynamic optimisation, etc. Many evolu-
tionary algorithms (EAs) have been used with success in a variety of application
domains that rely on optimisation. For example, in the area of global optimi-
sation, fast evolutionary programming (FEP) and improved FEP [1] were used
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successfully in modelling and designing new aluminium alloys [2]. Self-adaptive
differential evolution with neighbourhood search (SaNSDE) [3] was used to
calibrate building thermal models [4].

In the area of combinatorial optimisation, memetic algorithms were designed
for tackling capacitated arc routing problems [5], which were inspired by the real
world problem of route optimisation for gritting trucks in winter road mainte-
nance [6]. Multi-objective EAs (MOEAs) were used very effectively for module
clustering in software engineering [7] and optimal testing resource allocation
in modular software systems [8]. Advantages of using the MOEAs were clearly
demonstrated in these two cases.

1.2 Evolutionary Learning

Evolutionary learning appears in many different forms, from the more classical
learning classifier systems to various hybrid learning systems, such as neural-based
learning classifier systems [9], evolutionary artificial neural networks [10], evolu-
tionary fuzzy systems [11], co-evolutionary learning systems [12], etc. While most
of the learning problems considered in evolutionary learning are also investigated
in the broader domain of machine learning, co-evolutionary learning has stood out
as a learning paradigm that is rather unique to evolutionary computation.

1.3 Evolutionary Design

Evolutionary design is closely related to optimisation, especially in engineering
domains, such as digital filter design [13] and shape design [14]. However, there
is one different consideration in evolutionary design, which is evolutionary dis-
covery. There has been a strong interest in using EAs as a discovery engine, in
discovering novel designs, rather than just treating EAs as optimisers. A lot of
work has appeared in using interactive evolutionary computation for creative
design, e.g., traditional Batik design [15] and others.

1.4 Theoretical Foundations of Evolutionary Computation

In spite of numerous successes in real-world applications of EAs, theories of evo-
lutionary computation have not progressed as fast as its applications. However,
there have been significant advances in the theoretical foundation of evolutionary
computation in the last decade or so. There have been a number of theoretical
analyses of different fitness landscapes in terms of problem characterisation, as
well as rigorous analysis of computation time used by an EA to solve a problem.

In global (numerical) optimisation, the analysis of EA’s convergence has rou-
tinely been done. It was an active research topic in 1990s. Later on, convergence
rates (to a local optimum) were also studied in depth. In recent years, there has
been a significant growth in the computational time complexity analysis of EAs
for combinatorial optimisation problems, which really bridges the gap between
the analysis of EAs in the evolutionary computation field and the analysis of
heuristics in theoretical computer science in general. After all, EAs are algo-
rithms and can/should be analysed just like we analyse any other algorithms.
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This book chapter will focus on the computational time complexity analysis
of EAs for combinatorial optimisation problems. It will not cover other theories
of evolutionary computation, which are equally important for the field. Even for
the computational time complexity analysis of EAs, we will not be able to cover
everything within a limited numner of pages. The choice of the topics covered
in this chapter is highly biased by the author’s own experience. One of the ob-
jectives of this chapter is to illustrate that there are some interesting theoretical
results in evolutionary computation, which may help us in understanding why
and when EAs work/fail. Such theoretical results are of interest in their own
right. They also help to guide the design of better algorithms in the future.

The rest of this chapter is organised as follows. Section 2 introduces drift
analysis as an easy-to-understand approach to analyse computational time com-
plexity of EAs. General conditions under which an EA solves (or fails to solve)
a problem within a polynomial time will be given. Section 3 presents a prob-
lem classification, which tries to identify hard and easy problem instances for
a given EA. Such problem classification helps us to get a glimpse at potential
characteristics that make a problem hard/easy for a given EA. Section 4 anal-
ysed the role of population in EAs. It is interesting to discover that a common
belief — the large the population, the more powerful an EA would be — is
not necessarily true. There are proven cases where a large population could be
harmful. Section 5 investigates the impact of crossover on EA’s computation
time on the unique input output problem, a problem that occurs in finite state
machine testing. This was the first time that crossover was analysed in depth on
a non-artificial problem. All previous analyses on crossover were done on artifi-
cial problems. Section 6 examines the interactions of different components of an
EA. Rather than analysing search operators (such as crossover and mutation) or
selection mechanisms individually, this section is focused on the interactions be-
tween mutation and selection. It is shown that even parameter settings can have
a significant on EA’s computation, even when exactly the same EA was used.
Section 7 discusses some recent results on analysing estimation of distribution
algorithms (EDAs), which have rarely been studied in terms of computational
time complexity analysis. A more general problem classification is also given.
Finally, Section 8 concludes this chapter with some remarks and future research
directions.

2 Evolutionary Algorithms and Drift Analysis

This section reviews some basic techniques used in analysing EAs as given pre-
viously [16]. The combinatorial optimization problem considered in this chap-
ter can be described as follows: Given a finite state space S and a function
f(x),x ∈ S, find

x∗ = argmax{f(x);x ∈ S},
where x∗ is a state with the maximum function value, i.e., fmax = f(x∗).

The EA for solving the combinatorial optimization problem can be described
as follows:
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1. Initialization: generate, either randomly or heuristically, an initial population
of 2N individuals, ξ0 = (x1, · · · ,x2N ), and let k ← 0, where N > 0 is an
integer. For any population ξk, define f(ξk) = max{f(xi);xi ∈ ξk}.

2. Generation: generate a new intermediate population by crossover and mu-
tation (or any other operators for generating offspring), and denote it as
ξk+1/2.

3. Selection: select and reproduce 2N individuals from the combined population
of ξk+1/2 and ξk, and obtain another new intermediate population ξk+s.

4. If f(ξk+s) = fmax, then terminate the algorithm; otherwise let ξk+1 = ξk+s

and k ← k + 1, and go to step 2.

The EA framework given above is very general because it allows for any initial-
ization methods, any search operators and any selection mechanisms, to be used.
The only difference from some EAs is that selection is applied after, not before,
the search operators. However, the main results introduced in this chapter, i.e.,
Theorems 1 and 2, are independent of any such implementation details. In fact,
the results in this section hold for virtually any stochastic search algorithms.
They serve as the basis for many more specific results using specific EAs on
specific problems.

2.1 Modelling EAs Using Stochastic Processes

Assume x∗ is an optimal solution, and let d(x,x∗) be the distance between a
solution x and x∗, where x ∈ S. If there are more than one optimal solution
(that is, a set S∗), we use d(x, S∗) = min{d(x,x∗) : x∗ ∈ S∗} as the distance
between individual x and the optimal set S∗. For convenience, we can denote
the distance as d(x), which satisfies d(x∗) = 0 and d(x) > 0 for any x /∈ S∗.

Given a population X = {x1, · · · ,x2N}, let

d(X) = min{d(x) : x ∈ X},

which is used to measure the distance of this population to the optimum. The
drift of the random sequence {d(ξk), k = 0, 1, · · · } at time k is defined by

Δ(d(ξk)) = d(ξk+1)− d(ξk).

Define the stopping time of an EA as τ = min{k; d(ξk) = 0}, which is the
first hitting time on an optimal solution. Our interest now is to investigate
the relationship between the expected first hitting time and the problem size n,
i.e., the computational time complexity of EAs in our context. In this chapter,
we will establish the conditions under which an EA is guaranteed to find an
optimal solution in polynomial time on average and conditions under which an
EA takes at least exponential time on average to find an optimal solution. Such
theoretical results help us to gain a better understanding of when and why an
EA is expected to work well/poorly.
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2.2 Conditions for Polynomial Average Computation Times

Theorem 1 ([16]). If {d(ξk); k = 0, 1, 2, · · · } satisfies the following two
conditions,

1. there exists a polynomial of problem size n, h0(n) > 0, such that

d(ξk) ≤ h0(n)

for any population ξk, and
2. for any k ≥ 0, if d(ξk) > 0, then there exists a polynomial of problem size n,

h1(n) > 0, such that

E[d(ξk)− d(ξk+1) | d(ξk) > 0] ≥ 1

h1(n)
,

then starting from any initial population ξ0 with d(ξ0) > 0,

E[τ | d(ξ0) > 0] ≤ h(n),

where h(n) is a polynomial of problem size n.

The first condition in the theorem implies that all populations occurred during
the evolutionary search process are reasonably close to the optimum, i.e., their
distances to the optimum is upper bounded by a polynomial in problem size.
The second condition implies that, on average, the EA always drifts towards
the optimum with at least some reasonable distance, i.e., the drifts are lower
bounded by 1

h1(n)
, where h1(n) > 0 is a polynomial. The theorem basically says

that the stochastic process defined by the EA can reach the optimum efficiently
(in polynomial time) if the search is never too far away from the optimum and
the drift towards the optimum is not too small.

Using the same intuition and analytical methods, as first proposed by Hajek
[17], we can establish conditions under which an EA will take at least exponential
time to reach an optimum.

2.3 Conditions for Exponential Average Computation Time

Theorem 2 ([16]). Assume the following two conditions hold:

1. For any population ξk with db < d(ξk) < da, where db ≥ 0 and da > 0,

E[e−(d(ξk+1)−d(ξk)) | db < d(ξk) < da] ≤ ρ < 1,

where ρ > 0 is a constant.
2. For any population ξk with d(ξk) ≥ da, da > 0,

E[e−(d(ξk+1)−da) | d(ξk) ≥ da] ≤ D,

where D ≥ 1 is a constant.
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If d(ξ0) ≥ da, D ≥ 1 and ρ < 1, then there exist some δ1 > 0 and δ2 > 0 such
that

E[τ | d(ξ0) ≥ da] ≥ δ1e
δ2(da−db)

The first condition in the above theorem indicates that (db, da) is a very difficult
interval to search. When this condition is satisfied, d(ξk+1) > d(ξk). In other
words, the offspring population is on average drifting away from the optimum,
rather than getting closer to it. The second condition indicates that a population
in the interval [da,+∞) will not, on average, drift towards the optimum too much
because it is always quite far away from the optimum, i.e., (d(ξk+1)) ≥ da− lnD.

Although the above two general theorems were first proved more than a decade
ago [16], they still serve as foundations of many later results for EAs on specific
problems, e.g., the subset sum problem [16], maximum matching [18, 19], vertex
cover [20], unique input-output sequence [21], etc. The analytical techniques, i.e.,
drift analysis, advocated here is very intuitive and offer a general approach to
analysing different EAs on different problems, which avoids the need to develop
different and complicated analytical techniques for different EAs and problems.

3 Problem Classification: EA-hard vs EA-easy

Traditional complexity theories, such as NP-hardness, characterise the inherent
complexity of a problem, regardless of any algorithms that might be used to
solve them. However, we might not always encounter the worst case in practical
cases. For a hard problem, we are interested in understanding what instance
classes are hard and what instances are actually easy. When we analyse an
algorithm, we want to know which problem instance classes are more amenable
to this algorithm and which are not. Different instance classes of a problem pose
different challenges to different algorithms. In evolutionary computation, we are
particularly interested in problem characteristics that make the problem hard
or easy for a given algorithm. A problem instance class may be very hard for
one algorithm, but easy for another. Analysing the relationship between problem
characteristics and algorithmic features will shed light on the essential question
of when to use which algorithm in solving a difficult problem instance class. In
order to emphasise such an algorithm-specific complexity concept, we introduce
EA-hard and EA-easy problem instance classes in this section. For simplicity,
we will just use the term problems to mean problem instance classes here.

Given an EA, we can divide all optimisation problems into two classes based
on the mean number of generations (i.e., the mean first hitting time) needed to
solve the problems [22].

Easy Class: For the given EA, starting from any initial population, the mean
number of generations needed by the EA to solve the problem, i.e., E[τ |ξ0],
is at most polynomial in the problem size.

Hard Class: For the given EA, starting from some initial population, the mean
number of generations needed by the EA to solve the problem, i.e., E[τ |ξ0],
is at least exponential in the problem size.
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Theorem 3 ([22]). Given an EA, a problem belongs to the EA-easy Class if
and only if there exists a distance function d(ξk), where ξk is the population at
generation k, such that for any population ξk with d(ξk) > 0,

1. d(ξk) ≤ g1(n), where g1(n) is polynomial in the problem size n, and
2. E[d(ξk)− d(ξk+1)|ξk] ≥ clow, where clow > 0 is a constant.

Although the above theorem is closely related to Theorem 1, it shows stronger
necessary and sufficient conditions. Similarly, the following theorem, related to
Theorem 2, establishes the necessary and sufficient conditions for a problem to
be hard for a given EA.

Theorem 4 ([22]). Given an EA, a problem belongs to the EA-hard Class if
and only if there exists a distance function d(ξk), where ξk is the population at
generation k, such that

1. for some population ξk1 , d(ξk1) ≥ g2(n), where g2(n) is exponential in the
problem size n, and

2. for any population ξk with d(ξk) > 0, E[d(ξk) − d(ξk+1)|ξk] ≤ cup, where
cup > 0 is a constant.

The above two theorems can be used to verify whether a problem is hard/easy
for a given EA. The key steps are to prove whether the two conditions hold.
These conditions give us some important insight into problem characteristics
that make a problem hard/easy for a given EA.

4 Is a Large Population Always Helpful?

Population has always been regarded as a crucial element of EAs. There have
been numerous empirical studies that showed the benefit of a large population
size. Whenever a problem becomes more challenging, one tends to increase the
population size in an attempt to make the EA more ‘powerful’. However, such an
intuition might not be correct in all cases. He and Yao [23] first compared (1+1)
EAs and (N+N) EAs theoretically. They showed cases where (N+N) EAs are
indeed more efficient than (1+1) EAs, i.e., populations do help. They also showed
somewhat surprising cases where (N+N) EAs might actually perform worse than
(1+1) EAs, i.e., having a population actually makes an EA less efficient.

More recently, Chen et al. [24] investigated the population issue further and
used the solvable rate as an improved performance measure of EAs. The solvable
rate is a more precise performance measure than the mean first hitting time,
because it considers a probability distribution, rather than just a mean.

Let τ = min{t|x∗ ∈ ξt} be the first hitting time, where x∗ is the global
optimum and ξt is the population at the tth generation. The solvable rate κ is
defined by

κ = P (τ ≺ Poly(n)) ,

where the event τ ≺ Poly(n) means that there exists some polynomial function
(of the problem size n) h(n) such that τ < h(n) for any n > n0 > 0.
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Consider the following multi-modal TrapZeros problem with its global
optimum at x∗ = (1, ..., 1).

TrapZeros(x)
�
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n+
∑n

i=1

∏i
j=1(1 − xj), if (x1 = 0) ∧ (x2 = 0);

3n+
∑n

i=1

∏i
j=1 xj , if (x1 = 1) ∧ (x2 = 1) ∧

(∏ln2 n+2
i=3 xi = 1

)
;

n+
∑n

i=1

∏i
j=1 xj , if (x1 = 1) ∧ (x2 = 1) ∧

(∏ln2 n+2
i=3 xi = 0

)
;

0, if (x1 = 0) ∧ (x2 = 1);

1, if (x1 = 1) ∧ (x2 = 0);

0, Otherwise.

Consider the following (N +N) EA used to solve the above problem.

Initialization: The N initial individuals are generated uniformly at random.
Generation counter k := 0.

Mutation: For each individual in population ξk, one offspring is generated by
flipping each bit independently with a uniform probability 1/n, where n is

the problem size (chromosome length). The offspring population is ξ
(m)
k .

Selection: Select the best N individuals from ξk ∪ ξ
(m)
k to form the next

generation ξk+1. k := k + 1 and go to the mutation step.

This algorithm is very generic except for the lack of crossover, which we will
discuss in the next section. The following results compare the EA’s performance
theoretically when N = 1 and N > 1.

Theorem 5 ([24]). The first hitting time of the (1 + 1) EA on TrapZeros is

O(n2) with the probability of 1
4 −O

(
ln2 n
n

)
. In other words, the solvable rate of

the (1 + 1) EA on TrapZeros is at least 1
4 −O

(
ln2 n
n

)
.

This theorem shows that (1 + 1) EA can solve the problem in polynomial time
with an almost constant probability.

Theorem 6 ([24]). The first hitting time of the (N + N) EA, where N =

O(lnn) and N = ω(1), on TrapZeros is O
(

n2

N

)
with a probability of 1/Poly(n),

where 1/Poly(n) refers to some positive function (of the problem size n), whose
reciprocal is bounded from above by a polynomial function of the problem size n.
In other words, the solvable rate of the (N +N) EA on TrapZeros is at least
1/Poly(n).

When the population size increases from 1 to greater than 1, but not too much
greater (i.e., N = O(lnn)), there is no significant gain in terms of EA’s compu-
tation time, although the upper bound is decreased marginally from O(n2) to

O
(

n2

N

)
. Note that we do not have a near constant solvable rate anymore when

the population size is greater than 1.
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Theorem 7 ([24]). The first hitting time of the (N + N) EA, where N =
Ω(n/ lnn), on TrapZeros is super-polynomial with an overwhelming probabil-
ity. In other words, the solvable rate of the (N + N) EA on TrapZeros is
super-polynomially close to 0.

Surprisingly, when the population size is very large, i.e., N = Ω(n/ lnn), the
(N + N) EA is no longer able to solve the TrapZeros in polynomial time. A
large population size is actually harmful in this case!

Although the above study [24] was carried out on a specific problem using
a specific type of EAs, it has actually revealed some interesting problem char-
acteristics under which the (N + N) EA may perform poorly: when the basin
of attraction for a local optimum has relatively high fitness in comparison with
most areas in the entire search space, a large population may be harmful, since
it may lead to a large probability of finding individuals at the local basin. The
search process towards and staying at the local basin can quickly eliminate other
promising individuals that could lead to the global optimum later. When such
congregation at the local basin happens, only large search step sizes can help to
find promising individuals again, resulting in a long computation time towards
the global optimum.

The weakness of the (N + N) EA without crossover on the above problem
characteristic can partially be tackled by employing larger search step sizes. Ei-
ther an appropriately designed crossover operator or some adaptive/self-adaptive
mutation schemes could work well with a large population in this case, as long
as they can provide large search step sizes in exploring the correct attraction
basin even if the whole population has been trapped in a local basin.

5 Impact of Crossover

The previous section used an artificial problem to gain some insight into the role
of population in EAs. Crossover was not considered. This section introduces a
real-world problem and analyses when crossover can be beneficial in improving
EA’s computation time.

Unique input-output sequences (UIO) have important applications in confor-
mance testing of finite state machines (FSMs) [25]. In spite of much experimental
work, few theoretical results exist [21, 26]. One significant result that does exist
is the rigorous analysis of crossover’s impact on EA’s performance on one type
of UIO problems [27].

Following [27], a finite state machine (FSM) is defined as a quintuple, M =
(I, O, S, δ, λ), where I(O) is the set of input (output) symbols, S is the set of
states, δ : S × I → S is the state transition function, and λ : S × I → O
is the output function. A unique input-output sequence (UIO) for a state s in
M is a string x over I such that λ(s, x) 
= λ(t, x), ∀t, t 
= s. In other words, x
identifies state s uniquely. Although the shortest UIO in the general case can be
exponentially long with respect to the number of states [25], our objective here
is to search for an UIO of length n for state s in an FSM, where the fitness of
an input sequence is defined as a function of the state partition tree induced by
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the input sequence [26]. In other words, given an FSM M with m states, the
associated fitness function UIOM,s : I

n → N is defined as

UIOM,s(x) := m− γM (s, x),

where
γM (s, x) := |{t ∈ S|λ(s, x) = λ(t, x)}| .

For theoretical analysis, a special FSM instance class, i.e., the TwoPaths
problem, is introduced here [27].

For instance size n and constant ε, 0 < ε < 1, a TwoPaths FSM has input
and output symbols I := {0, 1} and O := {a, b, c}, respectively, and 2(n + 1)
states S = R∪Q, where R := {s1, s2, . . . , sn+1}and Q := {q1, q2, . . . , qn+1}. The
output function λ is

λ(qi, x) :=

{
c, if i = n+ 1 and x = 0
a, otherwise

λ(si, x) :=

{
b, if i = n+ 1 and x = 1
a, otherwise

The state transition function δ is

δ(si, 0) :=

{
q(1−ε)n+3, if i = (1 − ε)n+ 1,
s1, otherwise

δ(si, 1) :=

{
q1, if i = n+ 1
si+1, otherwise

δ(qi, 1) := q1

δ(qi, 0) :=

{
s1, if i = n+ 1
qi+1, otherwise

We can use the following (N+1) steady state EA (SSEA) [27] to solve the above
problem.

Initialisation: Initialise N individuals uniformly at random from {0, 1}n to
form the initial population P0. i = 0.

Reproduction: Perform one of the following two choices
1-point Crossover: With probability pc(n), select x and y uniformly at

random from population Pi. Select k from {1, . . . , n} uniformly at
random. Perform 1-point crossover between x and y and obtain

x′ := x1x2 · · ·xk−1ykyk+1 · · · yn,
y′ := y1y2 · · · yk−1xkxk+1 · · ·xn.

If max{f(x′), f(y′)} ≥ max{f(x), f(y)}, then x := x′,y := y′.
Mutation Only: With probability 1−pc(n), select x from Pi uniformly at

random. Flip each bit of x independently with probability 1/n. If the
result is no worse than x, the mutant replaces x.

i := i+ 1: and go to the Reproduction step.
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Given the UIO problem and the SSEA as described above, the following results
show clearly the significant impact crossover has on SSEA’s performance.

Theorem 8 ([27]). For a sufficiently large constant c > 0, if the (N+1) SSEA
with a constant crossover probability pc > 0 and population size N , 2 ≤ N =
Poly(n), is restarted every cN2n2 generations on TwoPaths, then the expected
first hitting time is O(N2n2).

In other words, the optimum can be found within polynomial time as long as
crossover is used. The following theorem shows that it is no longer possible to
find the optimum in polynomial time if crossover is not used.

Theorem 9 ([27]). If the crossover probability pc = 0, the probability that
the (N + 1) SSEA with population size N = Poly(n) finds the optimum of
TwoPaths within 2cn generations, where c is a constant, is upper-bounded by
e−Ω(n).

It is important to note that these two theorems only state the benefits of this
crossover operator for the TwoPaths problem. The conclusions should not be
generalised to other problems without new proofs, because different search oper-
ators are effective on different problems. There are problems on which crossover
will not be beneficial.

6 Interaction between Operators/Parameters

The performance of an EA is determined by its operators, parameters and inter-
actions among them. While there have been studies on individual operators, such
as crossover described in the previous section, and parameters, such as popula-
tion size as discussed in Section 4, only one study [28] exists, which analyses the
interaction of two operators, i.e., mutation and selection. It was shown in this
work that neither mutation nor selection alone could determine the performance
of an EA [28]. It was their combined effect that determined EA’s performance.
While this might sound intuitive, it was the first time that a rigorous analysis
was given.

Let’s investigate a non-elitist population-based EA with the linear ranking
scheme [28], which captures many features of the EAs used in practice.

Initialisation: Generate N individuals at random for the initial population
P0. Each individual P0(i) is generated by sampling {0, 1}n uniformly at
arandom, i ∈ {1, 2, . . . , N}. t := 0.

Evolutionary Cycle: Repeat the following until certain stopping criterion is
met.
1. Sort Pt according to fitness f such that

f(Pt(1)) ≥ f(Pt(2)) ≥ · · · ≥ f(Pt(N)).

2. For i ∈ {1, 2, . . . , N},
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(a) Sample r from {1, . . . , N} using the linear ranking scheme.
(b) Pt+1 := Pt(r).
(c) Flip each bit in Pt+1(i) with probability χ/n.

3. t := t+ 1.

In the above algorithm, N is the population size and χ determines the mutation
probability. Both are fixed during evolution. To illustrate the importance of
selection-mutation balance in this algorithm, the following problem is considered.

For any constants σ, δ, 0 < δ < σ < 1 − 3δ, and integer k ≥ 1, the fitness
function considered here is [28]

SelPresσ,δ,k(x) :=

{
2n, if x ∈ X∗

σ,∑n
i=1

∏i
j=1 xj , otherwise

where the set of optimal solutions X∗
σ contain all bitstrings x ∈ {0, 1}n satisfying

‖x[1, k + 3]‖ = 0,

‖x[k + 4, (σ − δ)n− 1]‖ = 1,

‖x[(σ + δ)n, (σ + 2δ)n− 1]‖ ≤ 2/3.

Theorem 10 ([28]). For any constant integer k ≥ 1, let T be the runtime of
the non-elitist population-based EA with linear ranking selection. Its population
size N satisfies n ≤ N ≤ nk. It has a constant selection pressure of η, where
1 < η ≤ 2. The bit-wise mutation rate is χ/n. On function SelPresσ,δ,k, for
any constant ε > 0,

1. If η < exp(χ(σ − δ))− ε, then for some constant c > 0,

Pr(T ≥ ecn) = 1− e−Ω(n).

2. If η = exp(χσ), then

Pr(T ≤ nk+4) = 1− e−Ω(n).

3. If η > 2 exp(χ(σ+3δ))−1
1−δ , then

E(T ) = eΩ(n).

A couple of observations can be made from the above theorem. First, the theorem
shows an interesting relationship between selection pressure η and mutation
rate χ. Neither determines the EA’s computation time by itself. If selection
pressure is high, it can be compensated by a high mutation rate to achieve
the balance between the two, i.e., η = exp(χσ). If selection pressure is too
low, we can lower the mutation rate accordingly to maintain an efficient EA.
This theorem also suggests that trying to increase the mutation rate in order to
increase evolvability and the ability of escaping from local optima may not work
well for some problems, unless selection pressure is also increased appropriately.
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Second, the EA’s computation time is very sensitive to the ratio between
η and χ. The ratio needs to be in a very narrow range around η = exp(χσ)
to achieve EA’s efficiency, i.e., polynomial computation time. Given a mutation
rate, either a slightly small selection pressure or a moderately larger one will lead
to exponential computation time. This is a rather unique example that unpacks
the relationship between the EA and the problem, and sheds light into how the
parameter interactions affect EA’s performance on this problem.

7 Estimation of Distribution Algorithms (EDAs)

Although estimation of distribution algorithms (EDAs) were proposed and stud-
ied in the field of evolutionary computation, they are actually very different from
other EAs. Instead of using any search operators, EDAs rely on model-building
and sampling.

Initialisation: Generate N individuals using the initial probability distribu-
tion. t := 0.

Iterations: Repeat the following until the stopping criterion is met.

1. M individuals are selected from the population of N individuals;
2. A probability distribution is estimated from these M individuals;
3. N individuals are sampled from this estimated probability distribution;
4. t := t+ 1.

Similar to Section 3, given an EDA, we can classify all problem instance classes
into hard and easy cases [29].

EDA-easy Class. For a given EDA, a problem is EDA-easy if and only if, with
the probability of 1−1/SuperPoly(n), the first hitting time needed to reach
the global optimum is polynomial in the problem size n.

EDA-hard Class. For a given EDA, a problem is ED-hard if and only if, with
the probability of 1/Poly(n), the first hitting time needed to reach the global
optimum is superpolynomial in the problem size n.

Note the hardness definition here is EDA-dependent, because we are interested
in the relationship between algorithms and problems. The above definition is
similar to but different from that in Section 3 because the probabilities are used
here, not mean first hitting times as in Section 3.

We define formally an optimisation problem as I = (Ω, f), where Ω is the
search space and f the fitness function. P = (Ω, f,A) indicates an algorithm A
on a fitness function f in the search space Ω. P ∗

t indicates the probability of
generating the global optimum in one sampling at the t-th generation.

Given a function f(n), where f(n) > 1 always holds and when n→∞, f(n)→
∞, denote

1. f(n) ≺ Poly(n) and g(n) = 1
f(n) 
 1

Poly(n) if and only if ∃a, b > 0, n0 > 0 :

∀n > n0, f(n) ≤ anb.
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2. f(n) 
 SuperPoly(n) and g(n) = 1
f(n) ≺ 1

SuperPoly(n) if and only if ∀a, b >
0 : ∃n0 : ∀n > n0, f(n) > anb.

Theorem 11 ([29]). For a given P = (Ω, f,A), if the population size N of the
EDA A is polynomial in the problem size n, then

1. if problem I is EDA-easy for A, then ∃t′ ≤ �E[τ(P)|τ(P) ≺ Poly(n)]�+ 1
such that

P ∗
t′ 


1

Poly(n)
;

2. if ∀t ≺ Poly(n), P ∗
t ≺ 1

SuperPoly(n) , then problem I is EDA-hard for A.

Because the hardness definition used here is algorithm dependent. A problem
that is easy for one EDA can be hard for another EDA or another EA. Chen
et al. [29] described one problem that is EA-easy but EDA-hard. An example
of EA-hard bu EDA-easy problems is yet to be found. Such theoretical compar-
ison of problem hardness under different algorithms can often lead to a better
understanding of the algorithms and shed light on the issue of what algorithmic
features are most effective in tackling certain problem characteristics.

8 Concluding Remarks

Although most research in evolutionary computation relies on computational
studies, there have been an increasing number of theoretical results in recent
years. Significant progresses in analysing the computational time complexity of
EAs have been made. Not only have there been a large number of papers on evo-
lutionary computation theories in journals in evolutionary computation, artifi-
cial intelligence and theoretical computer science, there are also published books
[30, 31]. One of the three sections, Section C, of the well-established Theoretical
Computer Science (TCS) journal is entirely devoted to Natural Computing. Ac-
cording to Elsevier (http://www.journals.elsevier.com/theoretical-compu
ter -science/most-cited-articles/), two of the top three most cited TCS
papers published since 2007 are on evolutionary computation theories. This chap-
ter only reviewed a tiny part of the results in evolutionary computation theory.

In spite of significant progresses, there is still much work to be done in de-
veloping better theories for evolutionary computation. There are several future
research directions that seem to be particularly attractive and important.

First, the analysis of EDAs has been very few. The work by Chen et al. [29]
investigated UMDAs only and on two artificial problems. More work is needed
to analyse other EDAs on non-artificial problems. In particular, it will be very
interesting to study when an EDA is likely to outperform an EA and why [32].
It is also interesting to analyse the impact of different probabilistic models on
EDA’s performance. Is it possible to improve EDA’s performance by using a
more powerful probabilistic model? When will a more powerful probabilistic
model help?



74 X. Yao

Second, many real world problems are dynamic. Yet the analysis of EAs on
dynamic problems is lagging behind applications. The existing work in this topic
area is still in its infancy [33, 34]. There is a need for more theoretical work to
complement computational studies in this area.

Third, all the work reviewed here focused on the time of finding the global
optimal solution. In practice, good approximate solutions are often sufficient.
Theoretical analysis of evolutionary approximation algorithms has shown some
promising results [18–20, 35]. It has been shown that EAs from a random ini-
tial population can perform just as well as tailored heuristics for certain com-
binatorial optimisation problems. Can we find an example that an EA finds
an approximate solution to a problem more efficiently than a human-designed
heuristic?

Fourth, there has been some interest in algorithm portfolios in evolutionary
computation [36, 37]. Computational studies have shown very promising results.
However, it is unclear whether or not such type of algorithms offers any theoret-
ical advantages over conventional ones. This is certainly an interesting challenge
for theoretical research.

Fifth, the work reviewed in this chapter is all related to combinatorial optimi-
sation. Yet EAs are equally often used in global (numerical) optimisation. There
has been excellent work on the convergence and convergence rates of various
EAs. However, theoretical analysis of EA’s scalability has been few, in spite of
recent surge in the interest of large scale optimisation [38–40]. It is still unclear
what the relationship is between the optimisation time and the problem size (in
terms of dimensionality) for different EAs on different problems. In fact, it is
not entirely clear what a good measure for the optimisation time should be. The
convergence time may not be very interesting from a practical point of view as
we may not find the exact global optimum in finite time. It is more interesting
to analyse the computation time towards a near optimum. Maybe we should
explore the potential links to Blum et al.’s seminal work [41].
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