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Abstract. The invited lecture in 2012 IEEE World Congress on Com-
putational Intelligence (WCCI 2012) presents an overview of a unified
fuzzy model-based framework for modeling and control of complex sys-
tems. A number of practical applications, ranging from flying vehicles
control (including micro helicopter control) to brain-machine coopera-
tive control, are provided in the lecture. The theory and applications
have been developed in our laboratory [1] at the University of Electro-
Communications (UEC), Tokyo, Japan, in collaboration with Prof. Hua
O. Wang and his laboratory [2] at Boston University, Boston, USA. Due
to lack of space, this chapter focuses on a unified fuzzy model-based
framework for modeling and control of a micro helicopter that is a key
application in our research.

1 Introduction

Unmanned aerial vehicles (UAVs) have been an active area of research in recent
years. A large number of studies [3] on helicopter control have been conducted as
a typical application of UAVs over the last two decades. It is well known that heli-
copter control is a difficult and challenging problem due to its properties like insta-
bility, nonlinearity and coupling, etc. As be mentioned in [3], Sugeno and his group
have presented several pioneer and excellent works [4,5] in 1980s and 1990s.

In recent years, in parallel with researches on micro air vehicles (MAVs),
autonomous control of micro (small) helicopter (like palm-size helicopters) [6]-
[23] has been paid great attention. Due to its restricted payload, the studies
[6]-[9] utilize external sensors like CCD camera-type vision sensors. However,
use of external vision sensors makes autonomous flight so difficult. The main
disadvantage is that micro helicopters can not be controlled in outside vision
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sensing area. The study [24] deals with hovering of a micro helicopter carrying
vision sensors. However, to accomplish the hovering control, they set up external
markers outside the helicopter. As well as the external sensor problem, use of
external markers makes autonomous flight so difficult. In addition, the studies
[24]-[27] provide no theoretical guarantees of the stability of control system.

Our research targets are to achieve autonomous control of a micro helicopter
without any external sensors and markers and to design a controller (theoreti-
cally) guaranteeing some kinds of control performance in addition to global and
asymptotical stability of control system. The former and latter parts of this
chapter focus on the achievement of the second and first targets, respectively.

The pioneer and excellent works by Sugeno and co-workers [4,5] applied tra-
ditional model-free fuzzy control to a (large-size) RC helicopter. The author [6]
also applied model-free fuzzy control to a micro (palm-size) helicopter. Though
the works [4,5] by Sugeno and co-workers particularly achieve great flight con-
trol performance such as hovering, turning, taking off and landing by using
fuzzy control rules obtained from expert’s knowledge and operation manuals,
the model-free approaches provide no theoretical guarantees of the stability of
control system. In this chapter, to guarantee some kinds of control performance
in addition to global and asymptotical stability, we apply two innovative fuzzy
model-based control approaches to a micro helicopter. One is a linear matrix in-
equality (LMI) approach [28] that is a well-known approach and has been widely
used in control system design and analysis over the last decade. The other is a
sum of squares (SOS) approach [29]-[33] recently presented by the author and
co-workers. These [29]-[33] are completely different approaches from the existing
LMI approaches. To the best of our knowledge, the paper [29] presented the first
attempt at applying an SOS to fuzzy systems. Our SOS approach [29]-[33] pro-
vided more extensive results for the existing LMI approaches to Takagi-Sugeno
fuzzy model and control. SOS design conditions can be symbolically and numer-
ically solved via the SOSTOOLS [34] and the SeDuMi[35].

Section 2 presents our experimental system and micro helicopter dynamics. In
Section 3, we summarize a recent developed SOS design approach for polynomial
fuzzy control systems based on polynomial Lyapunov functions. Due to lack of
space, we will omit the explanation of LMI-based design approach to Takagi-
Sugeno fuzzy systems. For more details of the approach, see [28]. In Section
4, we present a comparison result of a micro helicopter via the LMI and SOS
approaches. The simulation result shows that the SOS approach provides better
results than the existing LMI approach. Finally, in Section 5, we apply one of the
control approaches discussed here to vision-based control of the micro helicopter
in real environments [36].

2 Micro Helicopter Dynamics

Fig. 2 shows the micro helicopter that we consider in this study. The helicopter
with coaxial counter-rotating blades has two features. One is that rotating torque
of yaw-direction of the main body can be canceled by rotating torques between
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the upper and lower rotors. In other words, the body-turn can be achieved by
generating a difference of rotating torques between the upper and lower rotors.
The other is that a mechanical stabilizer attached above the upper rotor has
a function of keeping the upper rotor horizontally. The two features will be
considered in the dynamic model construction. The dynamics of the helicopter
can be described as (1)-(6).

m(u̇(t) + q(t)w(t) − r(t)v(t)) = FX(t) (1)

m(v̇(t) + r(t)u(t)− p(t)w(t)) = FY (t) (2)

m(ẇ(t) + p(t)v(t)− q(t)u(t)) = FZ(t) (3)

ṗ(t)IX + q(t)r(t)(IZ − IY ) =MX(t) (4)

q̇(t)IY + r(t)p(t)(IX − IZ) =MY (t) (5)

ṙ(t)IZ + p(t)q(t)(IY − IX) =MZ(t) (6)

Table 1 shows the definition of variables used in the dynamic models. By con-
sidering its co-axial counter structure, the restitutive force (generated by a me-
chanical stabilizer attached on the helicopter) and gravity compensation, the
dynamics can be rewritten as

u̇(t) =r(t)v(t) +
1

m
UX(t), (7)

v̇(t) =− r(t)u(t) +
1

m
UY (t), (8)

ẇ(t) =
1

m
UZ(t), (9)

ψ̇(t) =
1

IZ
Uψ(t), (10)

Table 1. Definition of variables

x, u position and velocity (X-axis)
y, v position and velocity (Y-axis)
z,w position and velocity (Z-axis)
φ, p angle and angle velocity (X-axis)
θ, q angle and angle velocity (Y-axis)
ψ, r angle and angle velocity (Z-axis)
m mass
IX , IY , IZ moments of inertia with respect to X, Y and Z axes
FX , FY , FZ translational forces to X, Y and Z axes
MX ,MY ,MZ rotational forces around X, Y and Z axes

where m = 0.2 and Iz = 0.2857. UX(t), UY (t), UZ(t) and Uψ(t) denote new
control input variables. We can obtain the original control inputs (to the real
helicopter) from UX(t), UY (t), UZ(t) and Uψ(t).
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3 Polynomial Fuzzy Model and SOS-Based Designs

In general, LMI conditions can be solved numerically and efficiently by interior
point algorithms, e.g., by the Robust Control Toolbox of MATLAB1. On the
other hand, stability [29], stabilization conditions [30,31], guaranteed cost control
[32,33] for polynomial fuzzy systems and polynomial Lyapunov functions reduce
to SOS problems. Clearly, the problem is never solved by LMI solvers and can
be solved via the SOSTOOLS [34] and the SeDuMi[35].

SOSTOOLS [34] is a free, third party MATLAB toolbox for solving sum of
squares problems. The techniques behind it are based on the sum of squares
decomposition for multivariate polynomials, which can be efficiently computed
using semidefinite programming. SOSTOOLS is developed as a consequence of
the recent interest in sum of squares polynomials, partly due to the fact that
these techniques provide convex relaxations for many hard problems such as
global, constrained, and boolean optimization. For more details, see the manual
of SOSTOOLS [34].

3.1 Polynomial Fuzzy Model and Controller

In [29], we proposed a new type of fuzzy model with polynomial model conse-
quence, i.e., fuzzy model whose consequent parts are represented by polynomials.
Consider the following nonlinear system:

ẋ(t) = f (x(t),u(t)), (11)

where f is a nonlinear function. x(t) = [x1(t) x2(t) · · · xn(t)]T is the state
vector and u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector. Using the sector
nonlinearity concept [28], we exactly represent (11) with the following polynomial
fuzzy model (12). The main difference between the Takagi-Sugeno fuzzy model
[37] and the polynomial fuzzy model (12) is consequent part representation. The
fuzzy model (12) has a polynomial model consequence.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Ai(x(t))x̂(x(t)) +Bi(x(t))u(t), (12)

where i = 1, 2, · · · , r. r denotes the number ofModel Rules. zj(t) (j = 1, 2, · · · , p)
is the premise variable. The membership function associated with the ith
Model Rule and jth premise variable component is denoted by Mij . Each zj(t)
is a measurable time-varying quantity that may be states, measurable external
variables and/or time. Ai(x(t)) and Bi(x(t)) are polynomial matrices in x(t).
x̂(x(t)) is a column vector whose entries are all monomials in x(t). That is,
x̂(x(t)) ∈ RN is anN×1 vector of monomials in x(t). Therefore,Ai(x(t))x̂(x(t))
+Bi(x(t))u(t) is a polynomial vector. Thus, the polynomial fuzzy model (12)

1 A registered trademark of MathWorks, Inc.
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has a polynomial in each consequent part. The details of x̂(x(t)) will be given
in Proposition 1. We assume that

x̂(x(t)) = 0 iff x(t) = 0
throughout this chapter.

The computational method used in this chapter relies on the sum of squares
decomposition of multivariate polynomials. A multivariate polynomial f(x(t))
(where x(t) ∈ Rn) is a sum of squares (SOS) if there exist polynomials f1(x(t)),
· · · , fm(x(t)) such that f(x(t)) =

∑m
i=1 f

2
i (x(t)). It is clear that f(x(t)) being

an SOS naturally implies f(x(t)) > 0 for all x(t) ∈ Rn. This can be shown
equivalent to the existence of a special quadric form stated in the following
proposition.

Proposition 1. [38] Let f(x(t)) be a polynomial in x(t) ∈ Rn of degree 2d. In
addition, let x̂(x(t)) be a column vector whose entries are all monomials in x(t)
with degree no greater than d. Then f(x(t)) is a sum of squares iff there exists
a positive semidefinite matrix P such that

f(x(t)) = x̂T (x(t))Px̂(x(t)). (13)

Expressing an SOS polynomial using a quadratic form as in (13) has also been
referred to as the Gram matrix method.

A monomial in x(t) is a function of the form xα1
1 xα2

2 · · ·xαn
n , where α1, α2, · · · ,

αn are nonnegative integers. In this case, the degree of the monomial is given by
α1 + α1 + · · ·+ αn.

The defuzzification process of the model (12) can be represented as

ẋ(t) =
r∑

i=1

hi(z(t)){Ai(x(t))x̂(x(t)) +Bi(x(t))u(t)}, (14)

where

hi(z(t)) =

∏p
j=1Mij(zj(t))

∑r
k=1

∏p
j=1Mkj(zj(t))

.

It should be noted from the properties of membership functions that hi(z(t)) ≥ 0
for all i and

∑r
i=1 hi(z(t)) = 1. Thus, the overall fuzzy model is achieved by fuzzy

blending of the polynomial system models. As shown in [29]-[31], the number of
rules in polynomial fuzzy model generally becomes fewer than that in T-S fuzzy
model, and our SOS approach to polynomial fuzzy models provides much more
relaxed stability and stabilization results than the existing LMI approaches to
T-S fuzzy model and control.

Since the parallel distributed compensation (PDC) [28] mirrors the structure
of the fuzzy model of a system, a fuzzy controller with polynomial rule conse-
quence can be constructed from the given polynomial fuzzy model (12).
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Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then u(t) = −F i(x(t))x̂(x(t)) i = 1, 2, · · · , r (15)

The overall fuzzy controller can be calculated by

u(t) = −
r∑

i=1

hi(z(t))F i(x(t))x̂(x(t)). (16)

From (14) and (16), the closed-loop system can be represented as

ẋ(t) =

r∑

i=1

r∑

j=1

hi(z(t))hj(z(t))

× {Ai(x(t))−Bi(x(t))Fj(x(t))}x̂(x(t)). (17)

If x̂(x(t)) = x(t) and Ai(x(t)), Bi(x(t)) and Fj(x(t)) are constant matrices
for all i and j, then (14) and (16) reduce to the Takagi-Sugeno fuzzy model and
controller, respectively. Therefore, (14) and (16) are more general representation.

3.2 Stable Control

To obtain more relaxed stability results, we employ a polynomial Lyapunov
function [29] represented by

x̂T (x(t))P (x̃(t))x̂(x(t)), (18)

where P (x̃(t)) is a polynomial matrix in x(t). If x̂(t) = x(t) andP (x̃(t)) is a con-
stant matrix, then (18) reduces to the quadratic Lyapunov function xT (t)Px(t).
Therefore, (18) is a more general representation.

From now, to lighten the notation, we will drop the notation with respect to
time t. For instance, we will employ x, x̂(x) instead of x(t), x̂(x(t)), respectively.
Thus, we drop the notation with respect to time t, but it should be kept in mind
that x means x(t).

Let Ak
i (x) denotes the k-th row of Ai(x), K = {k1, k2, · · · km} denote the

row indices of Bi(x) whose corresponding row is equal to zero, and define x̃ =
(xk1 , xk2 , · · ·xkm).

Theorem 1. [30] The control system consisting of (14) and (16) is stable if
there exist a symmetric polynomial matrix X(x̃) ∈ RN×N and a polynomial
matrix Mi(x) ∈ Rm×N such that (19) and (20) are satisfied, where ε1(x) and
ε2ij(x) are non negative polynomials such that ε1(x) > 0 (x �= 0) and ε2ij(x) ≥ 0
for all x.
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vT (X(x̃)− ε1(x)I)v is SOS (19)

−vT (T (x)Ai(x)X(x̃)− T (x)Bi(x)Mj(x)

+X(x̃)AT
i (x)T

T (x)−MT
j (x)B

T
i (x)T

T (x)

+T (x)Aj(x)X(x̃)− T (x)Bj(x)Mi(x)

+X(x̃)AT
j (x)T

T (x)−MT
i (x)B

T
j (x)T

T (x)

−
∑

k∈K

∂X

∂xk
(x̃)Ak

i (x)x̂(x)

−
∑

k∈K

∂X

∂xk
(x̃)Ak

j (x)x̂(x) + ε2ij(x)I

)

v is SOS i ≤ j, (20)

where v ∈ RN is a vector that is independent of x. T (x) ∈ RN×n is a poly-
nomial matrix whose (i, j)-th entry is given by T ij(x) = ∂x̂i

∂xj
(x). In addition,

if (20) holds with ε2ij(x) > 0 for x �= 0, then the zero equilibrium is asymp-
totically stable. If X(x̃) is a constant matrix, then the stability holds globally.
A stabilizing feedback gain Fi(x) can be obtained from X(x̃) and Mi(x) as
Fi(x) = Mi(x)X

−1(x̃).

3.3 Guaranteed Cost Control

For the polynomial fuzzy model (14) and controller (16), we define the polyno-
mial fuzzy model output as

y =

r∑

i=1

hi(z)Ci(x)x̂(x), (21)

where Ci(x) is also a polynomial matrix. Let us consider the following perfor-
mance function to be optimized.

J =

∫ ∞

0

ŷT
[
Q 0
0 R

]

ŷdt, (22)

where

ŷ =

[
y
u

]

=

r∑

i=1

r∑

j=1

hi(z)hj(z)

[
Ci(x)
−F j(x)

]

x̂(x), (23)

Q and R are positive definite matrices.
Theorem 2 provides the SOS design condition that minimizes the upper bound

of the given performance function (22).

Theorem 2. [32] If there exist a symmetric polynomial matrix X(x̃) ∈ RN×N

and a polynomial matrix M i(x) ∈ Rm×N such that (24), (25), (26) and (27)
hold, the guaranteed cost controller that minimizes the upper bound of the given
performance function (22) can be designed as Fi(x) = Mi(x)X

−1(x̃).
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minimize λ
X(x̃),Mi(x)

subject to

vT1 (X(x̃)− ε1(x)I)v1 is SOS (24)

vT2

[
λ x̂T (0)

x̂(0) X(x̃(0))

]

v2 is SOS (25)

− vT3

⎡

⎣
N ii(x) + ε2ii(x)I ∗ ∗

Ci(x)X(x̃) −Q−1 ∗
−M i(x) 0 −R−1

⎤

⎦v3 is SOS, (26)

− vT4

⎡

⎢
⎢
⎣

N ij(x) +N ji(x) ∗ ∗(
Ci(x)X(x̃)
+Cj(x)X(x̃)

)

−2Q−1 0

−M i(x)−M j(x) 0 −2R−1

⎤

⎥
⎥
⎦v4 is SOS, i < j, (27)

where * denotes the transposed elements (matrices) for symmetric positions.

N ij(x) =T (x)Ai(x)X(x̃)− T (x)Bi(x)M j(x)

+X(x̃)AT
i (x)T

T (x)−MT
j (x)B

T
i (x)T

T (x)

−
∑

k∈K

∂X(x̃)

∂xk
Ak
i (x)x̂.

v1, v2, v3 and v4 are vectors that are independent of x. ε1(x) and ε2ii(x) are
non negative polynomials such that ε1(x) > 0 and ε2ii(x) > 0 at x �= 0, and
ε1(x) = 0 and ε2ii(x) = 0 at x = 0.

Remark 1. Note that v1, v2, v3 and v4 are vectors that are independent of
x, because L(x) is not always a positive semi-definite matrix for all x even if
xT (x)L(x)x(x) is an SOS, where L(x) is a symmetric polynomial matrix in
x(t). However, it is guaranteed from Proposition 2 in [32] that if vTL(x)v is an
SOS, then L(x) ≥ 0 for all x.

Remark 2. To avoid introducing non-convex condition, we assume that X(x̃)
only depends on states x̃ whose dynamics is not directly affected by the control
input, namely states whose corresponding rows in Bi(x) are zero. In relation
to this, it may be advantageous to employ an initial state transformation to
introduce as many zero rows as possible in Bi(x).

Remark 3. When X(x̃) is a constant matrix and x̂(x) = x, the system rep-
resentation is the same as the Takagi-Sugeno fuzzy model and control used in
many of the references, e.g., [28,39]. Thus, our SOS approach to fuzzy model and
control with polynomial rule consequence contains the existing LMI approaches
to Takagi-Sugeno fuzzy model and control as a special case. Therefore, our SOS
approach provides much more relaxed results than the existing approaches to
Takagi-Sugeno fuzzy model and control.
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4 Controller Designs

For the dynamics of the helicopter (7)-(10), we consider the local linear feedback
control with respect to the yaw angle ψ(t). From the practical control points of
view, we design a local stable feedback controller Uψ(t) = −a ·ψ(t), where a is a
positive value. Clearly, the yaw dynamics can be stabilized by the local feedback
controller. As a result, we can focus on the remaining x(t), y(t) and z(t) position
control. Then, the dynamics can be rewritten as

u̇(t) =− a

Iz
ψ(t)v(t) +

1

m
UX(t), (28)

v̇(t) =
a

Iz
ψ(t)u(t) +

1

m
UY (t), (29)

ẇ(t) =
1

m
UZ(t). (30)

Based on the concept of sector nonlinearity [28], the nonlinear system can be
exactly represented by a Takagi-Sugeno fuzzy model for ψ(t) ∈ [−π π]. The
Takagi-Sugeno fuzzy model is obtained as

ẋ(t) =
2∑

i=1

hi(z(t)){Aix(t) +Biu(t)}, (31)

ẏ(t) =
2∑

i=1

hi(z(t))Cix(t), (32)

where z(t) = ψ(t) and

x(t) = [u(t) v(t) w(t) ex(t) ey(t) ez(t)]
T ,

u(t) = [UX(t) UY (t) UZ(t)]
T .

The elements ex(t), ey(t) and ez(t) are defined as ex(t) = x(t)−xref , ey(t) = y(t)−
yref , ez(t) = z(t) − zref , where xref , yref and zref are constant target positions.
Ai,Bi andCi matrices and the membership functions are given as follows.

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −aπ
IZ

0 0 0 0
aπ
IZ

0 0 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 aπ
IZ

0 0 0 0

−aπ
IZ

0 0 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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B1 = B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
m 0 0
0 1

m 0
0 0 1

m
0 0 0
0 0 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C1 = C2 =

⎡

⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎦ ,

h1(ψ(t)) =
ψ(t) + π

2π
, h2(ψ(t)) =

π − ψ(t)

2π
.

Note that the Takagi-Sugeno fuzzy model exactly represents the dynamics (28) -
(30) for the range ψ(t) ∈ [−π π]. In addition, the local stable controller Uψ(t) =
−a ·ψ(t) guarantees ψ(t1) > ψ(t2) for t1 < t2. The asymptotic stability property
means that the helicopter describing by the dynamics (7) - (10) can be stabilized
if we can design a stable controller for (28) - (30).

4.1 LMI Design Approach

Consider the performance index (22) again. We can find feedback gains that
minimizes the upper bound of (22) by solving the following LMIs [28]. From
the solutions X and Mi, the feedback gains can be obtained as Fi = MiX

−1.
Then, the controller satisfies J < xT (0)Xx(0) < λ.

minimize
X,Mi,

λ

subject to

X > 0,

[
λ xT (0)

x(0) X

]

> 0, (33)

Û ii < 0 (34)

V̂ ij < 0 i < j, (35)

where

Ûii =

⎡

⎣
Hii XCT

i −MT
i

CiX −Q−1 0
−Mi 0 −R−1

⎤

⎦ ,

V̂ij =

⎡

⎢
⎢
⎢
⎢
⎣

Hij +Hji XCT
i −MT

j XCT
j −MT

i

CiX −Q−1 0 0 0
−Mj 0 −R−1 0 0
CjX 0 0 −Q−1 0
−Mi 0 0 0 −R−1

⎤

⎥
⎥
⎥
⎥
⎦
,

H ij = XAT
i +AiX −BiM j −MT

j B
T
i .
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4.2 Simulation Results

The above LMI conditions are feasible. Both SOS design conditions in Theorems
1 and 2 are also feasible. We compare the LMI-based guaranteed-cost controller
(designed by solving the (33) - (35)) with the controller (designed by the SOS
conditions in Theorem 2), that is, with the SOS-based guaranteed-cost controller.
Table 2 shows comparison results of performance function values J for the LMI
controller and the SOS controller, where the initial positions are u(0) = 0.5,
v(0) = 0.5, w(0) = 0.5 ex(0) = −0.6, ey(0) = −0.4 and ez(0) = −1. In Table
2, Cases I, II and III denote three cases of selecting the weighting matrices
(Q,R) = (I, 0.1I), (Q,R) = (I, I), and (Q,R) = (I, 10I), respectively. In the
SOS controller design, the order of M(x) is one, i.e., all the elements of M(x)
are permitted to be a linear combination of one order with respect to state
variables (namely affine), and the order of X(x̃) is zero, i.e., X(x̃) is a constant
matrix.

Table 2. Comparison of performance function values J

Case I Case II Case III

LMI controller 0.57724 1.392 5.0064

SOS controller (Order of M is 1) 0.49951 0.84659 2.8677

Reduction rate of J [%] 13.4658 39.1818 42.7193

It is found from Table 2 that the performance index values of the SOS based
guaranteed-cost control (Theorem 2) are better than those of the LMI based
guaranteed-cost control ((33) - (35)) in all the cases. When the orders of X(x̃)
and M(x) are zero, that is, whenX(x̃) and M (x) are constant matrices instead
of polynomial matrices in x, the design conditions in Theorems 1 and 2 reduce to
the existing LMI design conditions. In other words, when X(x̃) and M(x) are
constant matrices, the polynomial fuzzy controller reduces to the Takagi-Sugeno
fuzzy controller. Thus, the SOS approach provides more relaxed results than the
existing LMI approach.

Fig. 1 shows the SOS control result in the following target trajectory:
[xref yref zref ] given as [0 0 0] at t = 0, [0 0 1] at 0 < t < 60, [1 0 1] at
60 ≤ t < 120, [1 1 1] at 120 ≤ t < 180, [0 1 1] at 180 ≤ t < 240, and [0 1 0]
at 240 ≤ t ≤ 300, where ψ = 0 for all t. The designed SOS controller perfectly
works even for the trajectory task since x(t) → 0 implies ex(t) → 0, ey(t) → 0
and ez(t) → 0. Table 3 shows comparison results of performance function values
J in the above trajectory control. The SOS control result is better than the LMI
control result also in the trajectory control.
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Fig. 1. Trajectory control via SOS control (Case I)

Table 3. Comparison of performance function values J

Case I Case II Case III

LMI controller 0.0479 0.4733 8.0186

SOS controller (Order of M is 1) 0.0274 0.1614 5.1378

5 Vision-Based Micro Helicopter Control in Real
Environments

In the previous sections, we have mainly discussed LMI and SOS based fuzzy
control system design approaches for the micro helicopter. In this section, we
apply one of the approaches to vision-based control of the micro helicopter in
real environments [36].

Autonomous control (e.g., [4]-[16]) of helicopters has been conducted for out-
door helicopters with expensive inertial measurement units (IMU) including
GPS, 3D acceleration sensors, 3D gyro sensors, etc. On the other hand, it is
possible to control a small helicopter with inexpensive (reasonable price) sen-
sors. However, it is, in general, harder to stabilize smaller helicopters due to their
smaller moment of inertia in addition to the properties of unstable, nonlinear
and coupling.
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Fig. 2 shows the micro (palm-size) helicopter that is a co-axial counter rotating
helicopter produced by HIROBO. Table 4 shows the specification of helicopter.
The weight of the helicopter itself is 200g. It should be noted that the payload
is only 60 g due to micro (palm-size) helicopter. Thus, due to the payload re-
striction, it is difficult to put a 3D acceleration sensor, a 3D gyro sensor and a
3D geomagnetic sensor, etc., on the micro helicopter.

Fig. 2. R/C Micro Helicopter

Table 4. Specification of helicopter

Mass 0.20[kg] Length 0.40[m]
Width 0.23[m] Height 0.20 [m]
Blade diameter 0.35 [m] Payload 60 [g]

We put only a small-light wireless camera on the micro-helicopter. The cam-
era is employed for detecting the position and attitude and for gathering flight
visual information. The first point is accomplished by the so-called parallel track-
ing and mapping (PTAM) [40]. Thus, the PTAM technique using a small single
wireless camera on the helicopter is utilized to detect the position and attitude
of the helicopter. We construct the measurement system that is able to calibrate
the mapping between local coordinate system in the PTAM and world coordi-
nate system and is able to realize noise detection and elimination. In addition,
we design the guaranteed cost (stable) controller for the dynamics of the heli-
copter via an LMI approach. Although path tracking control only via the small
single wireless vision sensor is a quite difficult task, the control results demon-
strate the utility of our approach. We have verified in the previous sections that
the proposed SOS approach is better than the existing LMI approaches. The
SOS design for the micro helicopter is currently ongoing and is expected to be
presented elsewhere.
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Subsection 5.1 presents our experimental system and micro helicopter with a
wireless camera. We also discuss the PTAM as a visual SLAM to detect the po-
sition and attitude of the helicopter. In addition, we construct the measurement
system that is able to calibrate the mapping between local coordinate system in
the PTAM and world coordinate system and is able to realize noise detection
and elimination. In Subsection 5.2, we design the guaranteed cost (stable) con-
troller for the dynamics of the helicopter via an LMI approach. Subsection 5.3
demonstrates that the constructed system with the guaranteed cost controller
achieves path tracking control well even though stabilization of the indoor micro
helicopter only via the small single wireless vision sensor is a quite difficult task.

5.1 Experimental System

Fig. 3 shows the experimental system using the small-light wireless camera
(TINY-3H) produced by RFSystem Co.,Ltd. The weight is 55 g and is within the
payload limitation (60 g). Table 5 summarizes the specification of the wireless
camera. The six degree of freedom of the helicopter is calculated by the PTAM
based on vision obtained from the wireless camera. After the computation using
the PTAM, the control input determined by a stable controller (that will be
discussed later) is sent to the helicopter via an R/C transmitter. The sampling
rate is 30 [Hz].

In this research, an open-source software, parallel tracking and mapping
(PTAM) developed by Klein and Murray [40], is employed to detect the po-
sition and attitude of the indoor micro helicopter. The PTAM is a method of
estimating camera pose in an unknown scene. They proposed a system specifi-
cally designed to track a hand-held camera in a small augmented reality (AR)
workspace. For more details of the PTAM, see [40]-[45].

As mentioned before, the PTAM is supposed to use for tracking a hand-held
camera in a small AR workspace. Hence, we need to add two functions to achieve
stabilization of the micro helicopter.

– Accurate calibration of the mapping between world coordinate system and
PTAM coordinate system.

– Compensation of the vision noise contaminated by wireless vision transmis-
sion, electromagnetic devices, or body vibrations of the helicopter, etc.

Fig. 4 shows an example of the vision noise contaminated by transmission, elec-
tromagnetic devices, or body vibrations of the helicopter, etc., where i-th frame

Table 5. Specification of TINY-3H

Weight 55g

Image Sensor 270000 pixels 1/4 inch color CCD

Unobstructed Effective Range 100m (Transmission distance)

Size 117 18 75
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Fig. 3. Experimental System

Fig. 4. Vision contaminated by noise

is clear, but i+1-th frame is contaminated by noise. In the i+1-th frame, the po-
sition and attitude of the helicopter calculated using the PTAM for noise vision
suddenly change for the calculation result from the previous i-th frame. In this
case, we ignore the calculation result for the i+1-th frame and still utilizes the
calculation result for the previous i-th frame. The threshold of judging the noise
frame is ε % change of at least one of six variables in the position and attitude.
The value of ε is adjusted through experiments.
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5.2 Controller Design

In this section, we consider also yaw dynamics in addition to (28)-(30). Then,
by considering its co-axial counter structure, the restitutive force (generated by
a mechanical stabilizer attached on the helicopter) and gravity compensation,
the dynamics can be rewritten as

u̇(t) =r(t)v(t) +
1

m
FX(t), (36)

v̇(t) =− r(t)u(t) +
1

m
FY (t), (37)

ẇ(t) =
1

m
FZ(t), (38)

ψ̇(t) =
1

IZ
Uψ(t). (39)

The approximation is sometimes used in practical control field [46,47] and ac-
tually works well. Of course, these papers do not realize wireless vision-based
stabilization in addition to without external markers. UX(t), UY (t), UZ(t) and
Uψ(t)(U̇ψ(t) = Mz(t)) denote new control input variables. We can obtain the
original control inputs (to the real helicopter) from FX(t), FY (t), FZ(t) and
Uψ(t).

By taking time derivative of (36)-(39) and defining the state and control
vectors as

x(t) = [x(t) y(t) z(t) ψ(t) u(t) v(t) w(t)]T ,

u(t) = [FX(t) FY (t) FZ(t) Uψ(t)]
T ,

we arrive at the following state equation

d

dt
ẋ(t) = Aẋ(t) +Bu̇(t) (40)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 r(t) 0
0 0 0 0 −r(t) 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 1

IZ
v(t)

0 1
m 0 − 1

IZ
u(t)

0 0 1
m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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C =

⎡

⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎤

⎥
⎥
⎦ .

We consider reasonable assumption such that −ud ≤ u(t) ≤ ud, −vd ≤ v(t) ≤ vd
and −rd ≤ r(t) ≤ rd. Applying the sector nonlinearity procedure [28] to the
augmented system, we obtain the fuzzy model (41) that exactly represent the
dynamics (40) under the assumption. In this case, we set ud = 2, vd = 2 and
rd = π.

The Takagi-Sugeno fuzzy model for micro helicopter dynamics considering the
above two features can be represented as

dt

d
ẋ(t) =

8∑

i=1

hi(u(t), v(t), r(t)){Aiẋ(t) +Biu̇(t)}, (41)

where

x(t) = [x(t) y(t) z(t) ψ(t) u(t) v(t) w(t)]T ,

u(t) = [FX(t) FY (t) FZ(t) Uψ(t)]
T ,

A1 = A3 = A5 = A7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 rd 0
0 0 0 0 −rd 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A2 = A4 = A6 = A8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 −rd 0
0 0 0 0 rd 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B1 = B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 vd

IZ
0 1

m 0 −ud

IZ
0 0 1

m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B3 = B4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 − vd

IZ
0 1

m 0 −ud

IZ
0 0 1

m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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B5 = B6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 vd

IZ
0 1

m 0 ud

IZ
0 0 1

m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B7 = B8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 − vd

IZ
0 1

m 0 ud

IZ
0 0 1

m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

h1(u(t), v(t), r(t)) =
u(t) + ud

2ud
· v(t) + vd

2vd
· r(t) + rd

2rd
,

h2(u(t), v(t), r(t)) =
u(t) + ud

2ud
· v(t) + vd

2vd
· rd − r(t)

2rd
,

h3(u(t), v(t), r(t)) =
u(t) + ud

2ud
· vd − v(t)

2vd
· r(t) + rd

2rd
,

h4(u(t), v(t), r(t)) =
u(t) + ud

2ud
· vd − v(t)

2vd
· rd − r(t)

2rd
,

h5(u(t), v(t), r(t)) =
ud − u(t)

2ud
· v(t) + vd

2vd
· r(t) + rd

2rd
,

h6(u(t), v(t), r(t)) =
ud − u(t)

2ud
· v(t) + vd

2vd
· rd − r(t)

2rd
,

h7(u(t), v(t), r(t)) =
ud − u(t)

2ud
· vd − v(t)

2vd
· r(t) + rd

2rd
,

h8(u(t), v(t), r(t)) =
ud − u(t)

2ud
· vd − v(t)

2vd
· rd − r(t)

2rd
.

By defining the error e(t) = r−y(t), we have the following augmented system.

d

dt
x̂(t) =

8∑

i=1

hi(u(t), v(t), r(t)){Âix̂(t) + B̂iû(t)} (42)

y(t) =

8∑

i=1

hi(u(t), v(t), r(t))Ĉix̂(t), (43)

where û(t) = u̇(t),

x̂(t) =

[
ẋ(t)
e(t)

]

, Âi =

[
Ai 0

Ĉi 0

]

, B̂i =

[
Bi

0

]

,

Ĉi =

⎡

⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎤

⎥
⎥
⎦ .
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We design the following dynamic fuzzy controller to stabilize the augmented
system.

û(t) =−
8∑

i=1

hi(u(t), v(t), r(t))Fix̂(t) (44)

Let us consider the following performance function to be optimized.

J =

∫ ∞

0

ŷT (t)

[
Q 0
0 R

]

ŷ(t)dt, (45)

where

ŷ(t) =

[
y(t)
û(t)

]

=

r∑

i=1

r∑

j=1

ĥi(t)ĥj(t)

[
Ĉi

−F j

]

x̂(t), (46)

Q and R are positive definite matrices, and ĥi(t) = hi(u(t), v(t), r(t)).
We can find feedback gains that minimizes the upper bound of (45) by solving

the following linear matrix inequalities (LMIs) (47)-(49) [28]. From the solutions
X and Mi, the feedback gains can be obtained as Fi = MiX

−1. Then, the
controller satisfies J < xT (0)Xx(0) < λ.

minimize
X,Mi,

λ

subject to

X > 0,

[
λ xT (0)

x(0) X

]

>0, (47)

Û ii <0 (48)

V̂ ij <0 i < j, (49)

where

Ûii =

⎡

⎣
Hii XĈT

i −MT
i

ĈiX −Q−1 0
−Mi 0 −R−1

⎤

⎦ ,

V̂ij =

⎡

⎢
⎢
⎢
⎢
⎣

Hij +Hji XĈT
i −MT

j XĈT
j −MT

i

ĈiX −Q−1 0 0 0
−Mj 0 −R−1 0 0

ĈjX 0 0 −Q−1 0
−Mi 0 0 0 −R−1

⎤

⎥
⎥
⎥
⎥
⎦
,

H ij = XAT
i +AiX −BiM j −MT

j B
T
i .

It should be noted that the controller satisfying the LMIs (47)-(49) is a stable
controller.
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5.3 Experimental Results

Control experiment is performed from the take-off on the floor at the origin
(x(0), y(0), z(0)) = (0[mm], 0[mm], 0[mm]) and rectangular trajectory flight dur-
ing keeping z(t)=1000 [mm]. The vertex points of the rectangular trajectory are
Point A (0 [mm], 0 [mm], 1000 [mm]), Point B (2000 [mm], 0 [mm], 1000 [mm]),
Point C (2000 [mm], 1500 [mm], 1000 [mm]) and Point D (0 [mm], 1500 [mm],
1000 [mm]). The flight task is to make two circles around Points A, B, C and D
during keeping the altitude z(t)=1000 [mm].

Fig. 5. Experimental result of path tracking flight

Fig. 5 shows the trajectory control result (yaw, x, y and z) via the fuzzy con-
troller, where the target (green lines) and control result (red lines) are plotted.
It can be seen that the helicopter can follow the trajectory well even though
the impulse noises are sometimes caused by wireless vision transmission, elec-
tromagnetic devices, or body vibrations of the helicopter, etc. Thus, the control
result shows the utility of our wireless vision-based control system. Fig 6 shows
photographs of the experimental result, where the red boxes indicate the po-
sitions of the micro helicopter and the small window in each the photograph
shows vision views from the wireless camera on the micro helicopter. It should
be noted that the trajectory of the micro helicopter is stabilized only by using
the wireless vision sensor without 3D acceleration sensors, 3D gyro sensors and
3D geomagnetic sensors, etc., in addition to without external markers.
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Fig. 6. Experimental results (photos)
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6 Conclusions

The former of this chapter has presented a comparison result of micro helicopter
control via a typical linear matrix inequality (LMI) approach and a sum of
squares (SOS) approach. The SOS design approach discussed in this chapter is
more general than that based on the existing LMI design approaches to T-S
fuzzy control systems. The control results of a micro helicopter have shown that
the SOS design approach provides better control results than the LMI design
approach.

The latter of this chapter has presented wireless vision-based stabilization
of an indoor micro helicopter via visual simultaneous localization and mapping
(SLAM). The PTAM technique using a small single wireless camera on the he-
licopter has been utilized to detect the position and attitude of the helicopter.
We have also constructed the measurement system that is able to calibrate the
mapping between local coordinate system in the PTAM and world coordinate
system and is able to realize noise detection and elimination. In addition, we
have designed the guaranteed cost (stable) controller for the dynamics of the
helicopter via a linear matrix inequality (LMI) approach. The path tracking
control results only via the small single wireless vision sensor have demonstrated
the utility of our approach.

Our next target is to realize vision-based formation control of plural micro
helicopters.
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