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Abstract. In the not so distant future, we expect analytic models to become a 
commodity. We envision having access to a large number of data-driven mod-
els, obtained by a combination of crowdsourcing, crowdservicing, cloud-based 
evolutionary algorithms, outsourcing, in-house development, and legacy mod-
els. In this new context, the critical question will be model ensemble selection 
and fusion, rather than model generation. We address this issue by proposing 
customized model ensembles on demand, inspired by Lazy Learning. In our ap-
proach, referred to as Lazy Meta-Learning, for a given query we find the most 
relevant models from a DB of models, using their meta-information. After  
retrieving the relevant models, we select a subset of models with highly  
uncorrelated errors. With these models we create an ensemble and use their me-
ta-information for dynamic bias compensation and relevance weighting. The 
output is a weighted interpolation or extrapolation of the outputs of the models 
ensemble.  Furthermore, the confidence interval around the output is reduced 
as we increase the number of uncorrelated models in the ensemble. We have 
successfully tested this approach in a power plant management application. 

Keywords: Machine learning, lazy learning, meta-learning, computational in-
telligence, fusion, ensemble, entropy, Pareto set, neural networks, coal-fired 
power plant management. 

1 Analytic Model Building in the Near Future 

Until recently, analytic model building has been a specialized craft.  Usually, such 
models were handcrafted by specialized researchers and manually maintained. Typi-
cally, the model builder selected a data set for training, test, and validation, extracted 
a run-time model from the training data set using machine learning (ML) techniques 
as a compiler, validated the model using a validation set, and finally used the model to 
handle new queries.  When a model deteriorated, the model builder created a new 
model by following a similar build cycle.  As noted by the author in earlier papers [1-
2], this lack of automation in model creation has led to bottlenecks in the models life-
cycle, preventing their scalability and eventually leading to their obsolescence.  

To address the lack of automation in model building, we have proposed the use of 
meta-heuristics, specifically the use of evolutionary algorithms, to generate runtime 
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analytical models, while limiting the amount of human intervention in the process [3-5].  
Although this proposal was a step in the right direction, it was still aimed at generating 
single models or, in the best case, static ensembles of models [6-9].  While the model 
builder was no longer the bottleneck in the loop defining and running the experiments 
needed to create and test the model, s/he was still an integral part of the process. 

We believe that the advent of cloud computing has changed dramatically the 
process of developing analytic models. Cloud computing has lowered the barriers to 
entry, enabling a vast number of analytics-skilled people to access in a flexible  
manner large amounts of computing cycles for relatively low operational cost (and 
without any capital expenses).  The literature on cloud computing is growing expo-
nentially, making it difficult to provide the interested reader with a single reference. 
However, reference [10] provides a great explanation of the opportunities created by 
cloud computing for machine learning and crowdsourcing.   

1.1 Multiple Sources of Analytic Models Enabled by Cloud Computing 

To validate our assumption that analytic models are trending to become a commodity, 
let us explore some of the ways used to generate or obtain analytic models: 

1. Crowdsourcing analytics 

(a) Using traditional crowdsourcing markets 
(b) Using competitions and prizes 
(c) Using games or puzzles 

2. Evolving populations of models using evolutionary algorithms (GA’s, GP’s) 
3. Outsourcing analytics 
4. Traditional model development (including legacy models)  

We will focus on the first two sources, which are enabled or accelerated by cloud 
computing. Crowdsourcing is a relatively new phenomenon that started about a dec-
ade ago [11]. It is becoming increasingly popular for outsourcing micro-tasks to a 
virtual crowd, creating new marketplaces - see for instance Amazon’s Mechanical 
Turk (mturk.com). Recently, however these tasks have become more complex and 
knowledge intensive, requiring a more specialized crowd. Web portals such as Kaggle 
(kaggle.com), TunedIT (TunedIT.com), and CrowdANALYTICX (crowdanalytix.com) 
allow organizations to post problems, training data sets, performance metrics, and 
timelines for ML competitions.  The portals register the potential competitors and 
manage the competition during its various stages.  At the end, the models are scored 
against an unpublished validation set, the winners receive their prizes, and the spon-
soring organizations have access to new analytic models [12]. Alternative ways to 
incentivize a crowd to solve a given problem is by transforming the problem into a 
game or a puzzle.  A successful example of this approach can be found at Foldit 
(foldit.it), in which the gaming community was able to solve a molecular folding 
problem that had baffled biologists for over a decade. 

A second possible source of models is the use of evolutionary algorithms to search 
the model space.  The author has explored this approach over a decade ago [13-14] 
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inspired by many efforts in this area.  In the early days, researchers resorted to clus-
ters of computers, such as the Beowulf [15] to distribute the computational load of 
GP-driven search.  Recently, the MIT CSAIL Department developed a Flexible Ge-
netic Programming (groups.csail.mit.edu/EVO-DesignOpt/evo.php?n=Site.FlexGP) frame-
work, leveraging  cloud computing to evolve a population of models, whose outputs 
are ultimately averaged to produce an answer [16]. 

The last two approaches are more traditional ways of generating analytical models 
by outsourcing them to universities, developing them internally, or using legacy mod-
els.  Our goal is to create a touch-free, domain agnostic process that can use any 
subset of models, regardless of their sources, and determine at run-time the most suit-
able and diverse subset that should be used to construct the answer to a given query. 

To ensure a more focused discussion, we will limit the scope of this paper to the 
use of analytics to support Prognostics and Health Management (PHM) capabilities. 
However, the approach illustrated in this paper is application domain agnostic.  

1.2 Prognostics and Health Management (PHM) Motivation for Analytics 

The main goal of Prognostics and Health Management (PHM) for assets such as  
locomotives, medical scanners, aircraft engines, and turbines, is to maintain these 
assets’ performance over time, improving their utilization while minimizing their 
maintenance cost. This tradeoff is typical of contractual service agreements offered by 
OEMs to their valued customers.   

PHM analytic models are used to provide anomaly detection and identification (le-
veraging unsupervised learning techniques, such as clustering), diagnostic analysis 
(leveraging supervised learning techniques, such as classification), prognostics  
(leveraging prediction techniques to produce estimates of remaining useful life), fault 
accommodation (leveraging intelligent control techniques), and logistics and  
maintenance optimization (leveraging optimization techniques). A more detailed de-
scription of PHM functionalities and how they can be addressed individually by 
Computational Intelligence techniques can be found in [17]. In this paper, we will 
take a more holistic view on how to address PHM needs, while at the same time we 
will remain agnostics on the specific technologies used to build each model.  

Since analytics play such a critical role in the development of PHM services, it is 
necessary to ensure that the underlying analytic models are accurate, up-to-date, ro-
bust, and reliable. There are at least two PHM applications for which such accuracy is 
critical: (1) anomaly detection (1-class classification), in which high volume of false 
positives might decrease the usefulness of the PHM system; (2) prognostics (predic-
tion), in which high prediction variance might prevent us from acting on the results.  

We will focus on a PHM prediction application in which prediction accuracy is a 
stringent requirement for production optimization. We will show how to leverage 
computational intelligence and ML techniques, combined with the elasticity of cloud 
computing, to address these accuracy requirements. 

1.3 The Novel Idea 

In this paper we are shifting our focus from model creation to model ensemble  
assembly. Rather than creating and optimizing models based on expected queries,  
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we want to build a vast library of robust, local or global models, and compile relevant 
meta-information about each model.  At run-time, for a specific query, we will select 
an ensemble of the most appropriate models from the library and determine their 
weights in the model fusion schema, based on their local performance around the 
query. The model ensemble will be constructed dynamically, on the basis of the mod-
els’ meta-information.  The model fusion will use the meta-information to determine 
bias compensation and relevance weight for each model’s output. Finally, the models 
run-time versions will be executed via a function call at the end of the fusion stage.   
This concept is illustrated in Figure 1. 

 

Fig. 1. The two modeling stages: Model Creation and Model Assembly 

1.4 Paper Organization  

In section 2, we will examine the relevant state of the art for this problem, while in 
section 3 we will describe a summary of our approach.  In section 4, we will provide 
an in-depth analysis of the proposed approach, while in section 5 we will show some 
preliminary results using an ensemble of thirty neural networks to predict load, effi-
ciency, and emissions in a power plant.  In section 6, we will draw some conclusions 
from our experiments and highlight future work and extensions. 

2 Related Work 

We are proposing an approach for creating the best model ensemble on demand, 
based on the query information (as in Lazy-Learning), and performing the selection 
and dynamic fusion of the ensemble based on several performance criteria. In the 
literature we find vast amount of work covering model ensembles, meta-learning, 
lazy-learning, and multi-criteria decision making, but to the best of our knowledge 
there is no related work covering the intersection of these topics. 
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2.1 Model Ensembles  

Individual models (classifiers or predictors) have a performance ceiling, which limits 
their performance, regardless of the amount of training or tuning.  One way to raise 
this ceiling is by creating an ensemble of highly diverse models and performing a 
fusion of their outputs.  There is currently an entire scientific community,  
Multi-Classifier Systems (MCS), devoted to this area.  

The design of a successful classifier fusion system consists of three parts: design of 
the individual classifiers [18], selection of a set of classifiers [19-20], and design of the 
classifier fusion mechanism.  The most critical factor for an effective model fusion, 
however, is the diversity of the individual classifiers, where model diversity is defined 
in terms of the orthogonality of their errors [21].  Strategies for boosting such diversity 
include: 1) using different types of classifiers; 2) training individual classifiers with 
different data set (bagging and boosting); and 3) using different subsets of features.    

2.2 Meta- Learning and Lazy Learning  

Meta-learning literally means learning how to learn, but in our context it means 
learning how to use ML models.  Most meta-learning approaches deal with topics 
such as: Discovering meta-knowledge  (e.g. rule induction of rules from data to 
create a rule-based system that will solve the object-level problem); Stacked generali-
zation [22] (e.g. combining a number of different learning algorithms); Boosting (e.g. 
combining the same learning algorithm trained in different ways); Dynamic bias se-
lection (e.g. modifying the ML algorithm bias to match a given problem); and Induc-
tive transfer (e.g. trying to improve the learning process over time) [23]. 

An interesting approach is one proposed by Duch [24], in which he creates a 
framework of Similarity-Based Methods to represent many algorithms, such as k-NN, 
MLP, RBF, etc. A variant of the Best First Search is used to perform a local search 
for optimal parameters. 

In [25] Schaul attributes to Utgoff [26] the development of the first meta-learning 
system that learns parameters and to Schmidhuber [27] the first learning algorithm to 
learn other ML algorithms using evolutionary search in the model space (using GP for 
improving GP). According to Schaul: “…meta-learning can be used for automating 
human design decisions (e.g. parameter tuning) and then automatically revisiting and 
optimizing those decisions dynamically in the light of new experience obtained during 
learning. Another application is transfer of knowledge between multiple related 
tasks…” [25]. 

We endorse this goal, but our proposal is not limited to parameter tuning. Our key 
idea is not to focus on the optimization and tuning of pre-computed models. Rather, 
we aim to create model ensembles on demand, guided by the location of the query in 
the feature space.  This approach can be traced back to memory-based approaches 
[27-29], instance-based learning, and lazy-learning [30].  Figure 2 shows the Lazy 
Learning approach for locally weighted interpolation.   

For a query Q, defined as a point തܺொ in the state space X, and a set of data points 
defined in the cross-product X x Y, we find the points ݑ௝ ൌ ൫ തܺ௝,  ௝൯ that are close toݕ
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Q in their projection on X. We compute a matching score between the query and each 
of these data points, as a function of its proximity to the query. Such proximity is 
measured by a distance ݀൫ തܺொ, തܺொ௝൯ that is interpreted as the dissimilarity between 
the two points in X. The distance is smoothed by a parameter h that defines the scale 
or range of the model. Usually h is computed by minimizing a cross-validation error. 
Each output ݕ௝ (corresponding to each of the points close to Q) is weighted by ap-
plying a kernel function K to this smoothed distance. A convex sum is used for the 
aggregation, which is identical to the Nadaraya-Watson estimator for non-parametric 
regressions using locally weighted averages. When dealing with extrapolation, 
weighted linear models are used instead of convex sums in the aggregation box, to 
provide for a better generalization [4]. 

 

 

Fig. 2. Lazy Learning (or Locally Weighted Kernel-based) Interpolation - adapted from [4] 

2.3 MCDM: Selection of Best Model Ensemble Based on Constrained  
Multi-Criteria 

We plan to create a dynamic ensemble that best satisfies a set of performance metrics, 
leveraging techniques in Multi Criteria Decision Making (MCDM). There is a vast 
amount of literature on MCDM, ranging from pioneering books [31-32], to many 
conference proceedings and articles focused on improving search methods, preference 
aggregations, interactive solution visualization, etc.  

The author’s perspective on MCDM is described in [33]. It can be summarized as 
defining a proper problem representation followed by the intersection of search, pre-
ference aggregation, and (when needed) interactive visualization of their solutions.  
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• Representation. A typical MCDM process starts with a set of constraints over the 
solution space, defining the feasible solution set. Each point from this set is 
mapped into a performance space, whose dimensions are the criteria used to eva-
luate the MCDM solutions.   

• Multi Objective Search. We search for the set of non-dominated solutions, forming 
the Pareto set. This step induces a partial ordering on the set of feasible solutions, 
and defines the concept of Multi-Objective Optimization (MOO). 

• Preferences. MCDM requires an additional step over MOO, which is the selection 
of one or more non-dominated solutions, to maximize our aggregated preferences, 
thus creating a complete order over the feasible solutions sets. 

• Interactive Visualization. In cases when the decision-maker is part of the solution 
refinement and selection loop, we need a process to enhance our cognitive view of 
the problem and enable us to perform interim decisions. We need to understand 
and present the impacts that intermediate tradeoffs in one sub-space could have in 
the other ones, while allowing him/her to retract or modify any intermediate deci-
sion steps to strike appropriate tradeoff balances. This last step will not be needed 
in our proposed MCDM approach. 

 

Fig. 3. Meta-Lazy Learning 

In our case, model creation is equivalent to creating the solutions set, while model fil-
tering generates the feasible solution set.  The model pre-selection, based on the meta-
information attached to each model, maps the solutions in the performance space and 
the extraction of the points in the Pareto set represents the MOO step. The model final 
selection, i.e. the selection of the k-tuple of local models with the least amount of error 



8 P.P. Bonissone 

correlation (via entropy maximization) reflects our preferences.  The aggregation is the 
final ensemble with the parameters defining dynamic fusion represents the outcome of 
the MCDM process, i.e. our customized ensemble on demand. Our approach is summa-
rized in Fig. 3 and will be further explained in sections 3 and 4. 

We have briefly covered the state of the art in multi classifier systems, lazy learn-
ing, meta-learning, and MCDM. Our goal is to address their intersection in a way that 
has never been investigated before.   

3 Summary of the Approach  

3.1 Cloud Computing, the Enabler 

Although the concept of model ensemble has been proposed and analyzed since the 
early 2000 [18], the idea of creating dynamic ensembles at run-time has not been 
proposed yet.  Such idea would not have been feasible or practical, had it not been 
for the advent of Grid- and Cloud-computing. After constructing an offline library of 
models with their associate meta-information, we can now leverage the cloud envi-
ronment, with its parallel computation and automated provisioning of processors, to 
implement this approach and provide fast run-time responses. Our approach is predi-
cated on a cloud-based Software as a Service (SaaS) paradigm. 

3.2 Lazy Meta-Learning 

In the ML literature, the concept of Lazy learning (LL) or memory-based learning 
departs radically from traditional ML approaches.  Instead of training a model from 
the data to become a functional approximation of the underlying relationships, the LL 
approach states that the model is in the data. Upon receiving a query, at run-time LL 
creates a temporary model by finding the closest points to the query and performing 
an aggregation (usually a weighted interpolation or extrapolation) of the outputs of 
those points. 

Our approach, labeled Lazy Meta-Learning, can be described by the analogy: Me-
ta-learning is Lazy Learning for models like learning is Lazy-Learning for data 
points. This approach can be described as a multi-criteria decision-making (MCDM) 
process, whose structure follows the steps defined in [5].  The model design is per-
formed by an offline meta-heuristics (the MCDM process), while the run-time model 
architecture is formed by an online meta-heuristics (the fusion module), and a collec-
tion of object models (the analytic models.) 

Within the scope of this paper, a model could be a one-class classifier for anomaly 
detection, a multi-class classifier for diagnostics, or a predictor for prognostics. Each 
model will have associated meta-information, such as its region of competence and 
applicability (based on its training set statistics), a summary of its (local) performance 
during validation, an assessment of its remaining useful life (based on estimate of its 
obsolescence), etc.   
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Fig. 4. Model Design: Offline Meta-Heuristics to design, tune, optimize, adapt to changes, and 
maintain the runtime models over time. Model Architecture: (a) Online Meta-Heuristics to 
integrate or interpolate among multiple local object-models, manage their complexity, and 
improve their overall performance; (b) Multiple object-models, either in parallel configuration 
(ensemble) or sequential configuration (cascade, loop), to integrate functional approximation 
with optimization and reasoning with imperfect data (imprecise and uncertain). 

3.3 MCDM Process for Model Creation and Dynamic Model Assembly 

We decompose the MCDM process into two stages:  

• Model Creation, an off-line stage in which we create the initial building blocks for 
the assembly and we compile their meta-information 

• Dynamic Model Assembly, an on-line stage in which, for a given query we select 
the best subset of models  

This process is followed by the execution stage, Dynamic Model Fusion, in which we 
evaluate the selected models and dynamically fuse them to solve the query. We will use 
different metrics to evaluate each stage, looking for coverage and diversity in the crea-
tion stage, while looking for accuracy and precision in the assembly and fusion stages. 

Model Creation: The Building Blocks. We assume the availability of an initial train-
ing set that samples an underlying mapping from a feature space X to an output y.  In 
the case of supervised learning, we also know the ground truth-value t for each record 
in the training set.  We create a library of diverse, local or global models. We in-
crease model diversity by using competing ML techniques trained on the same local 
regions. We assume that any of the sources mentioned in section 1.1 could be used to 
create these models. 

Dynamic Model Assembly: Query Driven Model Selection and Ensemble. This 
stage is divided into three steps:  

• Model Filtering, in which we retrieve the applicable models from the DB for the 
given query; 

• Model Pre-Selection, in which we reduce the number of models based on their 
local performance characteristics (bias, variability, and distance from the query); 

• Model Final Selection, in which we define the final model subset. 
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Fig. 5. Dynamic Model Assembly on Demand (Filtering, Selection) 

 

Fig. 6. Dynamic Model Fusion on Demand 
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Dynamic Model Fusion: Generating the Answer.  Finally, we evaluate the selected 
models and we aggregate their outputs after compensating for their biases and weight-
ing them by their proximity to the query (or by their estimated error) to generate the 
solution to the query. 

4 (The Devil Is in the) Details of Our Approach 

4.1 Model Creation  

This step is common to both regression and classification problems.  The premise is 
that local models, trained on regions of the feature space, usually will have smaller va-
riances than global models, trained on the entire space, providing that the local models 
are used only within their region of competence. Typically this requires a supervision 
mechanism (at the meta-level) to determine their degree of applicability and contribu-
tion to the final output.  We rely upon the model meta-information to make this as-
sessment. There are many ways to segment the original training set to define regions of 
competence for local models, but this topic is outside the scope of this paper. 

Library of m Local Models. As stated above, for each prediction or classification 
problem we want to generate a large number of global and local models.  We will 
assume that m is the total number of available models for each problem. 

Prediction Problems. Each regression model Mi will define a mapping: ܯ௜: ܺ ՜ ܻ, ݅ ݁ݎ݄݁ݓ ൌ 1, … , ݉; |ܺ| ൌ ݊; |ܻ| ൌ 1;  ܺ߳Թ௡; ܻ߳Թ 
In a more general case, we might want to predict multiple i.e., g variables, i.e.: 

:௜ܯ  ܺ ՜ ܻ, ݅ ݁ݎ݄݁ݓ ൌ 1, … , ݉; |ܺ| ൌ ݊; |ܻ| ൌ 1;  ܺ߳Թ௡; ܻ߳Թ௚ 
Within the scope of this article we will limit ourselves to a single output. 

 
Classification Problems. Each classification model Mi will define a mapping: ܯ௜: ܺ ՜ ܻ, ݅ ݁ݎ݄݁ݓ ൌ 1, … , ݉; |ܺ| ൌ ݊; ۂܻہ ൌ ሺܥ ൅ 1ሻ , and C is the number of 
classes.  Within the scope of this article, we will assume that the classifier output is a 
probability density function (pdf) over C classes.  The first C components of the pdf 
are the probabilities of the corresponding classes.  The (C+1)th element of the pdf 
allows the classifier to represent the choice “none of the above” (i.e., it permits to deal 
with the Open World Assumption). The (C+1)th element of the pdf is computed as the 
complement to 1 of the sum of the first C components.  The final decision of classifi-
er ܯ௜ is the argmax of the pdf. 
 
Meta-information. Every time that we create a model, we need to capture its asso-
ciated meta-information, i.e., information about the model itself, its training set, and 
its local/global performance in the validation set.  Over time, we will define a stan-
dard API for this purpose. Table 1 summarizes our current preliminary thoughts on 
meta-information. The essence is to capture information that we can use later on to 
reason about the applicability and suitability of a model for a given situation (e.g., a 
set of queries).   
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Table 1. Meta-Information (Preliminary Version) 

Model Training Set Validation Set 
Label: ܯ௜ Label: ܶ ௜ܵ  Label: ܸ ௜ܵ 
Model Mapping:   ܯ௜: ௜ܺ ՜ ௜ܻ   ௜ܺ א ܴ௡; ௜ܻא ܴ ሺݏ݊݋݅ݏݏ݁ݎ݃݁ݎሻ   ௜ܻ א ሾ0,1ሿ ሺ஼ାଵሻሺ݈݂ܿܽ݅ݏݏ. ሻ 

Model Applicability:      
  Hyper-rectangle: ܴܪ௜   ܴܪ௜ א ܴଶ,௡ is the range  
  of values of each of the 
n    
  features over ܶ ௜ܵ  

Local Model Perfor-
mance:    
  CART Tree:   ௜ܶ : ௜ܺ ՜݁௜   ௜ܺ א ܴ௡; ݁௜א ܴ ሺݏ݊݋݅ݏݏ݁ݎ݃݁ݎሻ ݁௜ א ሾ0,1ሿ ሺ஼ାଵሻሺ݈݂ܿܽ݅ݏݏ. ሻ  

 

Model Applicability: Hyper-rectangle HRi.  The Hyper-rectangle in the feature space 
defines each model’s region of competence1.  Each model ܯ௜ has a training set TSi, 
which is a region of the feature space X.  We define the Hyper-rectangle of each 
model ܯ௜, HR(Mi), to be the smallest hyper-rectangle that encloses all the training 
points in training set TSi.. If a query point q is contained in HR(Mi), we consider mod-
el ܯ௜ applicable for such query.  For a set of query points Q, we consider the model 
applicable if HR(Q) is not disjoint with HR(Mi).  

Local Model Performance.  We want to capture the local performance of the model by 
answering the question: “For this type of query, how reliable is this model?” For regres-
sion problems, we have used continuous case-based reasoning and fuzzy constraints 
[35], and lazy learning [36] to estimate the local prediction error. Within the same con-
text of regression problems, the authors replaced the run-time use of lazy learning with 
the compilation of local performance via CART trees [34] for the purpose of correcting 
the prediction via bias compensation [7]. For classification problems, we find a similar 
lazy learning approach [37] to estimate the local classification error.   

After many experiments to find the most efficient summary of the model perfor-
mance, we opted for using a CART Tree ௜ܶ  that maps the feature space to the signed 
error computed in the validation set, i.e. ௜ܶ : ܺ ՜ ݁௜. 

Each CART tree T i will have a depth di, such that there will be up to 2di paths from 
the roots to the leaf nodes (for a fully balanced tree). For each tree, we store each path 
from the root node to each leaf node.  The path is as a conjunct of constraint rules 
that need to be satisfied to reach the leaf node. The leaf node is a pointer to a table 
containing the leaf node statistics: 

• Ni  – Number points in the leaf node (from the training/testing set) 
 ௜ሺ݁ሻ – Bias (Average error computed over Ni points)ߤ •
 ௜ሺ݁ሻ – Standard Deviation of the error computed over Ni pointsߪ •
• Xdi  – Normalized centroid as percentage of its average (1,…,1) of the Ni points 

In the future, we will extend the meta-information to capture temporal and usage infor-
mation, such as model creation date, last usage date, and usage frequencies, which will 
be used by the model lifecycle management to select the models to maintain and update.  
                                                           
1 By defining the applicability of a model as its hyper-rectangle in the feature space, we are 

limiting the use of the model to interpolation. Should we choose to use it for extrapolation, 
we would consider queries outside the hyper-rectangle (within some fuzzy tolerance). 
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4.2 Dynamic Model Assembly on Demand 

Query Formulation: q or Q. To simplify the description of our approach we have 
used the case of the query being a single point query q. However, our approach can be 
easily generalized to the case when the query is a data set (time-series or time inde-
pendent).  Let’s refer to such query as Q=[q1, …, qz ].  In such case, the model filter-
ing described in section 4.3.1 will be modified.  Instead of retrieving for each point q 
those models ܯ௜  whose associated hyper-rectangles ௜ሻܯሺܴܪ   contain q, i.e., ݍ  ௜ሻ areܯሺܴܪ  ௜ whose associated hyper-rectanglesܯ ௜ሻ, we retrieve all modelsܯሺܴܪא
not disjoint with the Hyper-rectangle of Q, i.e. ܴܪሺܳሻ ת ௜ሻܯሺܴܪ  ്  This will  .׎
avoid the overhead of multiple accesses to the DB2.  The model assembly, composed 
by the model pre-selection and model final selection steps, will be performed itera-
tively for every point query q in Q. So these steps, as well as final model evaluation 
and fusion, will be linear in the number of query points z.   The most efficient way to 
generate the set Q is to cluster similar query points using a k-d tree [38-39]. 

Model Filtering: From m to r Models. After creating m models, trained on their 
corresponding regions of the training space, we will organize the models in a database 
DB, whose indices will be derived from the models meta-information (see section 
4.1.2).  For a given query q, the MCDM process starts with a set of constraints to 
define the feasibility set.  In this case the constraints are:  

• Model soundness, i.e., there are sufficient points in the training/testing set to de-
velop a reliable model, competent in its region of applicability 

• Model vitality, i.e., the model is up-to-date, not obsolete 
• Model applicability to the query, i.e., the query is in the model’s competence  

region 

For each of the r retrieved models Mi, we will use a compiled summary of its perfor-
mance, represented by a CART tree Ti, of depth di, trained on the model error vector 
obtained during the validation of the model.   

Model Pre-selection: From r to p Models. We will classify the query using the same 
CART tree Ti, reaching leaf node Li(q).  Each leaf will be defined by its path to the 
root of the tree and will contain di constraints over (at most) di features. Leaf Li(q) 
will provide estimates of model Mi performance in the region of the query.  Follow-
ing the MCDM process described in section 3, we map each feasible solution (the r 
models) into the performance space. This space is defined by the following criteria: 

• Model bias: |ߤ௜ሺ݁ሻ| 
• Model variability ߪ௜ሺ݁ሻ 
• Model suitability for the query: ||qdi, Xdi ||2  (Distance of q di to the normalized cen-

troid (X di), computed in a reduced, normalized feature space d 
 

                                                           
2 This step might allow models that are irrelevant for a subset of points in Q. These models will 

be rejected in the model pre-selection (due to their high distances from the query point). 
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In this three dimensional space, we want to minimize all three objectives. We may 
further impose limits to the largest value that each dimension can have.   

                     

 

Fig. 7. Local Model Performance Space – r points represent r model performances 

We can use a Pareto Filter to extract all the non-dominated points in this space. 
Should the result be too limited, we can resort to additional Pareto set (after removing 
the previous tier), until we have p models.   
 
Model Final Selection: From p to k Models.  During the previous steps, we relied 
on meta-information to reduce the number of models from the original m models 
available in the DB, to r applicable models, to p suitable models.   Before perform-
ing the fusion, we need to make sure that the models are diverse, i.e. we need to ex-
plore the error correlation among smaller subsets of k models that we will use for 
generating the answer to the query.  This step would require generating all possible 

k-tuples chosen from p models to evaluate their error correlations, i.e. ቀ݇݌ቁ. Although, 

this is a much smaller number than ቀ݉݇ቁ, it is still an onerous step to take for each 

point.  So we will use a greedy search to further decrease this complexity.  
Models in an ensemble should be different from each other for the ensemble’s out-

put to be better than the individual models outputs.  The goal is to use an ensemble 
whose elements have the most uncorrelated errors.  In reference [21], Kuncheva and 
Whitaker propose six different non-pairwise diversity measures to determine the 
models difference.  We will use the Entropy Measure E, proposed in the same refer-
ence, as the way to find the k most diverse models to form the ensemble. Let’s create 
an N by k matrix M, such that N is the number of records evaluated by k models.   
 

Classification Problems. When the models are classifiers, cell M[i,j] contains a binary 
value Z[i,j] (1 if classifier j classified record i correctly, 0 otherwise).  This metric 
assumes that we already obtained each classifier decision on the training/validation 
records, by applying the argmax function to the pdf generated by the classifier. Then, 
we compute diversity of the k classifiers by using the Entropy measure E (modified 
from reference [21]): 

|μ| 

σ

D = ||qdi, Xdi ||2
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ܧ ൌ  ଵே  ∑ ሿே௜ୀଵ ቈ ଵ௞ି௙௟௢௢௥ቀೖశభమ ቁ ݉݅݊൫∑ ,ሾ݅ܯ ݆ሿ, ݇ െ ∑ ,ሾ݅ܯ ݆ሿ௞௝ିଵ௞௝ୀଵ ൯቉      (1) 

E takes values in [0,1]. 

Prediction Problems. When the models are predictors, cell M[i,j] contains the error 
value e[i,j], which is the prediction error made by model i on record j.  In such case, 
we will follow the following process: 

• Histogram of Record Error: Compute a histogram of the errors for each record 
M[i,.]. We need to define a reasonable bin size for the histogram, thus defining the 
total number of bins, nmax. Let H(i,r) be the histogram for record i, where r de-
fines the bin number (r=1, nmax). 

• Normalized Histogram of Record Error: Normalize histogram H(i,r), so that its 
area is equal to one (becoming a pdf). Let HN(i,r) be the normalized histogram, i.e.: ܪேሺ݅, ሻݎ ൌ ுሺ௜,௥ሻ∑ ுሺ௜,௥ሻ೙೘ೌೣೝసభ                                  (2) 

• Normalized Record Entropy: Compute the normalized record entropy of the pdf  
(so that its value is in [0,1]), i.e.: 

ሺ݅ሻݐ݊݁      ൌ െ ቀ ଵ୪୬ ௡௠௔௫ቁ ∑ ,ேሺ݅ܪ ሻ௡௠௔௫௥ୀଵݎ ൈ ,ேሺ݅ܪ݈݊  ሻ         (3)ݎ

where 
ଵ୪୬ ௡௠௔௫ is a normalizing factor so that ent(i) takes values in [0,1] ܪேሺ݅, ሻݎ ൌ ுሺ௜,௥ሻ∑ ுሺ௜,௥ሻ೙೘ೌೣೝసభ                               (4) 

• Overall Normalized Entropy: Average the normalized entropy over all N records: ܧ ൌ ଵே ∑ ሺ݅ሻே௜ݐ݊݁                                  (5) 

E takes values in [0,1]. 
For both classifiers and prediction problems, higher overall normalized entropy 

values indicate higher models diversity.  

Greedy Search in Combinatorial Space. In both cases we will use a greedy search, 
starting from k=2 and compute the normalized entropy for each 2-tuple, to find the 
one(s) with the highest entropy. We will then increase the value of k to explore all 3-
tuples. If the maximum normalized entropy for the explored 3-tuples is lower than the 
maximum value obtained for the 2-tuples, we will stop and use the 2-tuple with the 
highest entropy.  Otherwise we will keep the 3-tuple with the highest entropy and 
explore the next level (k=4) and so on, until no further improvement can be found.  
With all the caveats of local search, this greedy approach will substantially reduce 
search complexity, as we will not need to explore all the combinations of ensembles. 
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4.3 Dynamic Model Fusion 

The last step in our approach is to perform the dynamic fusion of the selected k models. 
When probed with the query q, each model Mi will produce and output ݕ௜ሺݍሻ. Each 
model also has a corresponding CART tree Ti, which will be used to classify the query 
q.  In that case, the query will reach a leaf node Li(q) in the corresponding tree Ti.  The 
leaf node will contain the local statistics for the points similar to the query, such as the 
bias (average of the error) ߤ௜ሺ݁|ݍሻ, and the standard deviation of the error, ߪ௜ሺ݁|ݍሻ.  
 
Fusion for Regression Problems. After many design experiments, which will be 
described in details in a follow-up paper, we concluded that the best fusion schema is 
accomplished by using dynamic bias compensation and by weighting the compen-
sated output using a kernel function of the standard deviation of the error, i.e.: ݕොሺݍሻ ൌ ∑ ௪ೞሺ௬ೞሺ௤ሻିఓೞሺ௘|௤ሻሻೖೞసభ ∑ ௪ೞೖೞసభ                               (6) 

where: ݓ௦ ൌ ܭ ቀఙೞሺ௘|௤ሻ௛ ቁ                                  (7) 

and h is the usual smoothing factor for the kernel function K(.) obtained by minimiz-
ing the cross-validation error. 
 
Fusion for Classification Problems.  As shown in reference [37], the classification 
problem can be cast in a fashion similar to the regression problem. In reference [37] 
we used a local weighting fusion (similar to [7] but for classifications), and used dy-
namic bias compensation with equal weight contributions for the selected models.  In 
section 6, we will discuss how to extend our approach, based on these preliminary 
results, to cover classification problems. 

5 Customized Analytics Applied to Power Plant Management 

5.1 Problem Definition  

In references [40-41] we described the optimization problem for a power plant man-
agement system, in which a coal-fired boiler drives a steam turbine to generate elec-
tric power.  For given environmental conditions, the problem was to determine the 
control variable set points that could generate the load (equality constraint), without 
exceeding CO and SO limits (inequality constraints), while minimizing both Heat 
Rate and NOx emissions. After using first-principles-based methods and domain-
knowledge to identify the relevant model inputs, we built a nonlinear neural-network 
to map the inputs space (control variable set-points) and time variable, ambient un-
controllable variables, to each of the outputs of interest, which represented our objec-
tives and constraints. As shown in the above references, we used an evolutionary 
multi-objective optimizer to evolve the set points and identify the Pareto-optimal set 
of input-output vector tuples that satisfy operational constraints.   
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Fig. 8. Power plant input-output relationships.  Each output (NOx, Heat Rate, Load) is mod-
eled by a committee of predictive neural networks (adapted from reference [7]). 

We noted the importance of reducing the neural networks uncertainty, as they gen-
erated the fitness function that drove the evolutionary search.  In reference [41] we 
showed how we managed the model extrapolation error by using the equivalent of 
continuous case-based reasoning. We also need to address the intrinsic model uncer-
tainty of the NNs. So, we performed preliminary experiments using the same data set, 
and created a fixed committee of neural networks, injecting diversity by bootstrapping 
their training set.  We noted that model performance was significantly improved by 
fusing the outputs from the ensemble of models. 

In references [36] we presented a method called locally weighted fusion, which ag-
gregated the results of multiple predictive models based on local accuracy measures of 
these models in the neighborhood of the probe point for which we want to make a  
prediction. This neighborhood was computed on demand, following a Lazy Learning 
technique.  In reference [7], we extended our experimentation by compiling the error 
information and avoiding the run-time search for the closest points.  Figure 8, adapted 
from reference [7] shows the (23-3-1) structure of the NN’s used in the ensemble. 

This paper is an extension of the work initiated in reference [7].  We have pro-
posed a complete architecture for selecting a dynamic committee of neural networks, 
and a dynamic fusion, based on the query and the meta- information.  We extended 
the experiments with the same data set to compare our results with the ones previous-
ly obtained in references [7, 36]. 

5.2 Preliminary Experimental Results 

The following tables show a sample of early experiments performed in [36] and [7], 
followed by the current experiments, in which we used part of the proposed  
architecture. 

 n = # inputs = 23 
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Table 2. Experimental Results (Baseline, Global, Local fusion without bias compensation) 

Exp. 
# 

Fusion Strategy Heat Rate 
MAE 

[Btu/KwHr] 

Heat 
Rate 

pg [%]

NOx 
MAE 

[lb/MBtu] 

NOx 
pg [%]

Load 
MAE 
[MW] 

Load 
pg [%] 

1 Baseline: average of 
30 predictors 

91.79 0.00 0.0228 0.00 1.05 0.00 

2 Best of 30 predictors 85.1 7.29 0.0213 6.58 0.987 6.00 
3 Global Average 87.15 5.06 0.0214 6.14 1.042 0.78 
4 Global GWF 86.91 5.32 0.0214 6.14 1.04 0.95 
5 Global Least Square 83.05 9.52 0.02 12.28 0.984 6.29 
6 H-Rect+W1 No bias 82.19 10.46 0.0202 11.40 1.024 2.48 
7 H-Rect No bias 87.15 5.06 0.0214 6.14 1.042 0.78 
8 H-Rect+W2 No bias 83.93 8.56 0.0208 8.77 1.03 1.93 
9 1-nn No bias 81.19 11.55 0.0214 6.14 1.008 4.02 
10 5-nn No bias 84.31 8.15 0.0206 9.65 1.029 1.97 
11 CART EW No bias  87.15 5.06 0.0213 614 1.042 0.78 
12 CART UW0 No bias 87.15 5.06 0.0213 614 1.042 0.78 

The data set was comprised by 8,000+ records of daily operations, sampling the 
mapping between operational set points under given environmental conditions and 
power plant outputs, such as Heat Rate (HR), NOx emissions, and generated load. 
Roughly 25% of these records were used as the validation set. 

In table 2, the baseline labeled as experiment 1, is the simple average of the outputs 
of the thirty neural networks. As such, the column labeled pg (percentage gain) is 0%. 
We will use percentage gain to show the percentage improvement over the baseline 
for each experiment. Experiment 2 reports the output of the best predictor (a posteri-
ori).  The remaining ten experiments in Table 2, show the results of various fusion 
combinations, without performing bias compensation, i.e., weighing the outputs of the 
models using different fusion schemes: variations of global fusion (experiments 3-5), 
local fusion based on Lazy learning (experiments 6-10), and CART trees to selected 
the local points (experiments 11-12).  Most of these results were reported in refer-
ence [36].  The conclusion from this table is that without bias compensation the im-
provements are marginal: HR pg: 11%, NOx pg: 12%; Load pg: 6%. 

In Table 3, we perform bias compensation for all experiments. In a separate set of 
experiments (not shown for sake of brevity) we concluded that the best CART trees 
are the one mapping the feature space to the signed error (as opposite to the unsigned 
error or the output of the model).  Thus, with the exception of experiments 13-17, 
which show the results for lazy leaning type of local fusion (i.e., without using CART 
tree as part of the meta-information), all other experiments (18-33) use the signed 
error derived CART tree to compile their local performance in the validation set. 

Experiments 18-27 show the result of using all thirty models with different weight-
ing schemas: from equal weights (exp. 18), to unequal weights derived from linear or 
exponential kernel functions using as arguments various elements of the performance 
space in the pre-selection stage, e.g., distance of the query from the centroid, standard 
deviation of the error, etc.  Overall the results are comparable (with very similar 
standard deviations of the error).  The best result in this set of the experiments is 
from Unequal Weights-7 (UW7), in which we used a linear kernel function and the 

standard deviation of the error, i.e.: ܭ ቀఙೞሺ௘|௤ሻ௛ ቁ. 
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Table 3. Experimental Results (All with bias compensation, CART trees) 

Exp. # Fusion Strategy Heat Rate 
MAE 

[Btu/KwHr] 

Heat 
Rate 

pg [%]

NOx 
MAE 

[lb/MBtu] 

NOx 
pg [%] 

Load 
MAE 
[MW] 

Load 
pg [%] 

13 H-Rect+W1 bias 69.20 24.61 0.0140 38.60 0.855 18.57 
14 H-Rect bias 69.23 24.58 0.0140 38.60 0.855 18.56 
15 H-Rect+W2 bias 69.16 24.66 0.0140 38.60 0.854 18.63 
16 1-nn bias 72.99 20.48 0.0143 37.28 0.861 17.98 
17 5-nn bias 76.34 16.83 0.0169 25.88 0.903 14.04 
18 CART EW bias  60.62 33.96 0.0117 48.68 0.718 31.62 
19 CART UW0 bias (nf) 68.56 25.31 0.0148 35.09 0.817 22.19 
20 CART UW1 bias (nf) 60.57 34.01 0.0111 51.32 0.725 30.92 
21 CART UW2 bias (nf) 60.45 34.14 0.0116 49.12 0.719 31.50 
22 CART UW3 bias (nf) 64.62 29.60 0.0130 42.98 0.733 30.20 
23 CART UW4 bias (nf) 62.31 32.12 0.0125 45.18 0.721 31.35 
24 CART UW5 bias (nf) 60.10 34.53 0.0145 36.40 0.792 24.59 
25 CART UW6 bias (nf) 59.75 34.90 0.0129 43.42 0.745 29.04 
26 CART UW7 bias (nf) 59.77 34.88 0.0115 49.56 0.713 32.10 
27 CART UW8 bias (nf) 61.87 32.60 0.0122 46.49 0.743 29.25 
28 CART UW7 bias (f1) 59.75 34.91 0.0117 48.68 0.721 31.35 
29 CART UW7 bias (f2) 65.04 29.14 0.0135 40.79 0.776 26.10 
30 CART UW7 bias (f3) 64.82 29.38 0.0130 42.98 0.772 26.46 
31 CART UW7 bias (f4) 62.18 32.26 0.0122 46.49 0.744 29.12 
32 CART UW7 bias (f5) 60.54 34.04 0.0117 48.68 0.726 30.86 
33 CART UW7 bias (f6) 59.69 34.98 0.0116 49.12 0.716 31.86 

 

 

Fig. 9. Summary of experimental results 
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Finally, in experiments 28-33, we fixed this weighting scheme and searched for the 
best value of p, the number of models to use in the ensemble.  The results, only valid 
for this specific application and for the initial DB of models, indicate that ~80% of the 
models provide the best results.  All experiments results are illustrated in figure 9. 

6 Conclusions 

6.1 Analysis for Regression Problems 

The experiments presented in this paper are preliminary in nature and have not com-
pletely exercised our approach.  By using thirty neural networks trained on the entire 
feature space, we did not compare global and local models.  As a result, we did not 
need to perform the filtering stage, i.e., r = m =30.  The selection process indicated 
that the best performance was obtained with about 80% of our models (i.e., p = 25).  
This was the result of performing a local search in the number of models. This 
process should be repeated for different applications and for a different DB of models. 
From the same experiments, we learned that there are statistically significant differ-
ences in performing dynamic bias compensation, and in using the local bias compiled 
in the CART trees. After experimenting with unsigned error, model output, and 
signed error, we concluded that the latter was the best way to generate the CART 
trees as part of the models meta-information.  Finally, given that we controlled the 
original model generation and used bootstrapped training sets to inject diversity in the 
models, we did not need to perform an entropy-based final selection stage (i.e., p = k 
= 25).  However, we will need to execute this step for larger DB of models in which 
we are agnostics about the model generation process. Our next step will be to test this 
hypothesis, by creating a DB with hundreds of models, generated by FlexGP [16], 
and exercising the remaining stages of our approach. The following table summarizes 
our current findings. 

Table 4. Regression Problems: Design Parameters and Processes (Preliminary Version) 

Design Phase Design Choices Generalization / Process 
Meta-Information CART Trees based on signed 

error; limited pruning 
OK for all regressions 

Model Filtering 
 

N/A: All global models appli-
cable by construction  

Process: Apply Hyper-
rectangles for local models 

Model Pre-Selection 80% of applicable models (for 
this application) 

Process: Greedy search in 
error space to find number of 
pre-selected models  

Final Model Selection N/A: model diversity built-in 
with bootstrapping  

Process: Greedy search in 
entropy space to find error-
uncorrelated models 

Dynamic Fusion Dynamic bias compensation 
(μe from leaf node) 
Unequal weights based from 
kernel function based on mod-
el prediction error (σe) 

OK for all regressions 
 
OK for all regressions 
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6.2 Future work for Classification Problems 

In reference [37], we used lazy learning to perform local fusion for classification 
problems. We want to extend our approach to these types of problems and design a 
set of experiments to validate it. Specifically, let us assume that a classifier maps a n-
dimensional feature space X into a C-dimensional space Y, where C is the number of 
classes.  Then, the output of each model k for the training record j, is a normalized 
probability density ߸௞ሺ݆ሻ, where ߸௞ሺ݆ሻ is a (C+1) dimensional vector. The error of 
each model k for the training record j is computed as ൌ ݁௞ሺ݆ሻ ൌ ߸௞ሺ݆ሻ െ ௞ሺ݆ሻݐ , 
where ݐ௞ሺ݆ሻ is a binary C+1 dimensional vector in which only one element is 1, indi-
cating the correct classification for training record j.  Since ߸௞ሺ݆ሻ is a normalized 
probability density, then the sum of all the elements of ݁௞ሺ݆ሻ equals 0. 

By following a process similar to the one for the regression problems, we will train 
a CART Tree Tk for each class value. The tree will map the feature space X to the 
error vector e (for that specific class value), such that in each leaf node we will cluster 
the subset of the training records that have similar classification errors.  We will 
compute the mean error of the kth classifier over the points in each leaf node. In a fa-
shion similar to the regression, we will refer to the average error of the leaf node ܮ௦ሺݍሻ, in which query q was classified, as ߤ௞ሺ݁|ݍሻ. For a given query we will use the 
same model assembly steps (filtering, preference, and final selection based on entropy 
maximization). For the selected k models, we will perform a similar bias compensa-
tion.  For the case when all k models are equally weighted, we have:  
ሻݍොሺݕ  ൌ ݔܽ݉݃ݎܽ ቄଵ௞ ∑ ሺݕ௦ሺ݁ሻ െ ሻሻ௞௦ୀଵݍ|௦ሺ݁ߤ ቅ                            (8) 
 
We also plan to perform a design of experiments to determine the most appropriate 
weighting scheme for each model in a manner similar to our regression experiments.  
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