
J. Liu et al. (Eds.): WCCI 2012 Plenary/Invited Lectures, LNCS 7311, pp. 1–23, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Lazy Meta-Learning: Creating Customized Model
Ensembles on Demand

Piero P. Bonissone

GE Global Research Center, Niskayuna, NY 12309, USA
bonissone@ge.com

Abstract. In the not so distant future, we expect analytic models to become a
commodity. We envision having access to a large number of data-driven mod-
els, obtained by a combination of crowdsourcing, crowdservicing, cloud-based
evolutionary algorithms, outsourcing, in-house development, and legacy mod-
els. In this new context, the critical question will be model ensemble selection
and fusion, rather than model generation. We address this issue by proposing
customized model ensembles on demand, inspired by Lazy Learning. In our ap-
proach, referred to as Lazy Meta-Learning, for a given query we find the most
relevant models from a DB of models, using their meta-information. After
retrieving the relevant models, we select a subset of models with highly
uncorrelated errors. With these models we create an ensemble and use their me-
ta-information for dynamic bias compensation and relevance weighting. The
output is a weighted interpolation or extrapolation of the outputs of the models
ensemble. Furthermore, the confidence interval around the output is reduced
as we increase the number of uncorrelated models in the ensemble. We have
successfully tested this approach in a power plant management application.

Keywords: Machine learning, lazy learning, meta-learning, computational in-
telligence, fusion, ensemble, entropy, Pareto set, neural networks, coal-fired
power plant management.

1 Analytic Model Building in the Near Future

Until recently, analytic model building has been a specialized craft. Usually, such
models were handcrafted by specialized researchers and manually maintained. Typi-
cally, the model builder selected a data set for training, test, and validation, extracted
a run-time model from the training data set using machine learning (ML) techniques
as a compiler, validated the model using a validation set, and finally used the model to
handle new queries. When a model deteriorated, the model builder created a new
model by following a similar build cycle. As noted by the author in earlier papers [1-
2], this lack of automation in model creation has led to bottlenecks in the models life-
cycle, preventing their scalability and eventually leading to their obsolescence.

To address the lack of automation in model building, we have proposed the use of
meta-heuristics, specifically the use of evolutionary algorithms, to generate runtime

2 P.P. Bonissone

analytical models, while limiting the amount of human intervention in the process [3-5].
Although this proposal was a step in the right direction, it was still aimed at generating
single models or, in the best case, static ensembles of models [6-9]. While the model
builder was no longer the bottleneck in the loop defining and running the experiments
needed to create and test the model, s/he was still an integral part of the process.

We believe that the advent of cloud computing has changed dramatically the
process of developing analytic models. Cloud computing has lowered the barriers to
entry, enabling a vast number of analytics-skilled people to access in a flexible
manner large amounts of computing cycles for relatively low operational cost (and
without any capital expenses). The literature on cloud computing is growing expo-
nentially, making it difficult to provide the interested reader with a single reference.
However, reference [10] provides a great explanation of the opportunities created by
cloud computing for machine learning and crowdsourcing.

1.1 Multiple Sources of Analytic Models Enabled by Cloud Computing

To validate our assumption that analytic models are trending to become a commodity,
let us explore some of the ways used to generate or obtain analytic models:

1. Crowdsourcing analytics

(a) Using traditional crowdsourcing markets
(b) Using competitions and prizes
(c) Using games or puzzles

2. Evolving populations of models using evolutionary algorithms (GA’s, GP’s)
3. Outsourcing analytics
4. Traditional model development (including legacy models)

We will focus on the first two sources, which are enabled or accelerated by cloud
computing. Crowdsourcing is a relatively new phenomenon that started about a dec-
ade ago [11]. It is becoming increasingly popular for outsourcing micro-tasks to a
virtual crowd, creating new marketplaces - see for instance Amazon’s Mechanical
Turk (mturk.com). Recently, however these tasks have become more complex and
knowledge intensive, requiring a more specialized crowd. Web portals such as Kaggle
(kaggle.com), TunedIT (TunedIT.com), and CrowdANALYTICX (crowdanalytix.com)
allow organizations to post problems, training data sets, performance metrics, and
timelines for ML competitions. The portals register the potential competitors and
manage the competition during its various stages. At the end, the models are scored
against an unpublished validation set, the winners receive their prizes, and the spon-
soring organizations have access to new analytic models [12]. Alternative ways to
incentivize a crowd to solve a given problem is by transforming the problem into a
game or a puzzle. A successful example of this approach can be found at Foldit
(foldit.it), in which the gaming community was able to solve a molecular folding
problem that had baffled biologists for over a decade.

A second possible source of models is the use of evolutionary algorithms to search
the model space. The author has explored this approach over a decade ago [13-14]

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 3

inspired by many efforts in this area. In the early days, researchers resorted to clus-
ters of computers, such as the Beowulf [15] to distribute the computational load of
GP-driven search. Recently, the MIT CSAIL Department developed a Flexible Ge-
netic Programming (groups.csail.mit.edu/EVO-DesignOpt/evo.php?n=Site.FlexGP) frame-
work, leveraging cloud computing to evolve a population of models, whose outputs
are ultimately averaged to produce an answer [16].

The last two approaches are more traditional ways of generating analytical models
by outsourcing them to universities, developing them internally, or using legacy mod-
els. Our goal is to create a touch-free, domain agnostic process that can use any
subset of models, regardless of their sources, and determine at run-time the most suit-
able and diverse subset that should be used to construct the answer to a given query.

To ensure a more focused discussion, we will limit the scope of this paper to the
use of analytics to support Prognostics and Health Management (PHM) capabilities.
However, the approach illustrated in this paper is application domain agnostic.

1.2 Prognostics and Health Management (PHM) Motivation for Analytics

The main goal of Prognostics and Health Management (PHM) for assets such as
locomotives, medical scanners, aircraft engines, and turbines, is to maintain these
assets’ performance over time, improving their utilization while minimizing their
maintenance cost. This tradeoff is typical of contractual service agreements offered by
OEMs to their valued customers.

PHM analytic models are used to provide anomaly detection and identification (le-
veraging unsupervised learning techniques, such as clustering), diagnostic analysis
(leveraging supervised learning techniques, such as classification), prognostics
(leveraging prediction techniques to produce estimates of remaining useful life), fault
accommodation (leveraging intelligent control techniques), and logistics and
maintenance optimization (leveraging optimization techniques). A more detailed de-
scription of PHM functionalities and how they can be addressed individually by
Computational Intelligence techniques can be found in [17]. In this paper, we will
take a more holistic view on how to address PHM needs, while at the same time we
will remain agnostics on the specific technologies used to build each model.

Since analytics play such a critical role in the development of PHM services, it is
necessary to ensure that the underlying analytic models are accurate, up-to-date, ro-
bust, and reliable. There are at least two PHM applications for which such accuracy is
critical: (1) anomaly detection (1-class classification), in which high volume of false
positives might decrease the usefulness of the PHM system; (2) prognostics (predic-
tion), in which high prediction variance might prevent us from acting on the results.

We will focus on a PHM prediction application in which prediction accuracy is a
stringent requirement for production optimization. We will show how to leverage
computational intelligence and ML techniques, combined with the elasticity of cloud
computing, to address these accuracy requirements.

1.3 The Novel Idea

In this paper we are shifting our focus from model creation to model ensemble
assembly. Rather than creating and optimizing models based on expected queries,

4 P.P. Bonissone

we want to build a vast library of robust, local or global models, and compile relevant
meta-information about each model. At run-time, for a specific query, we will select
an ensemble of the most appropriate models from the library and determine their
weights in the model fusion schema, based on their local performance around the
query. The model ensemble will be constructed dynamically, on the basis of the mod-
els’ meta-information. The model fusion will use the meta-information to determine
bias compensation and relevance weight for each model’s output. Finally, the models
run-time versions will be executed via a function call at the end of the fusion stage.
This concept is illustrated in Figure 1.

Fig. 1. The two modeling stages: Model Creation and Model Assembly

1.4 Paper Organization

In section 2, we will examine the relevant state of the art for this problem, while in
section 3 we will describe a summary of our approach. In section 4, we will provide
an in-depth analysis of the proposed approach, while in section 5 we will show some
preliminary results using an ensemble of thirty neural networks to predict load, effi-
ciency, and emissions in a power plant. In section 6, we will draw some conclusions
from our experiments and highlight future work and extensions.

2 Related Work

We are proposing an approach for creating the best model ensemble on demand,
based on the query information (as in Lazy-Learning), and performing the selection
and dynamic fusion of the ensemble based on several performance criteria. In the
literature we find vast amount of work covering model ensembles, meta-learning,
lazy-learning, and multi-criteria decision making, but to the best of our knowledge
there is no related work covering the intersection of these topics.

Model
Creation

Model
Ensemble
Assembly

…

M1, M2
 ,… , Mm

Mi
 , Mj

 , Mk

Query Q Output (Q)
classification or regression

 Dynamic Model Selection g(Q)

 Dynamic Output Fusion f(Q)
Weights/biases are functions of regional

performance (based on Q)

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 5

2.1 Model Ensembles

Individual models (classifiers or predictors) have a performance ceiling, which limits
their performance, regardless of the amount of training or tuning. One way to raise
this ceiling is by creating an ensemble of highly diverse models and performing a
fusion of their outputs. There is currently an entire scientific community,
Multi-Classifier Systems (MCS), devoted to this area.

The design of a successful classifier fusion system consists of three parts: design of
the individual classifiers [18], selection of a set of classifiers [19-20], and design of the
classifier fusion mechanism. The most critical factor for an effective model fusion,
however, is the diversity of the individual classifiers, where model diversity is defined
in terms of the orthogonality of their errors [21]. Strategies for boosting such diversity
include: 1) using different types of classifiers; 2) training individual classifiers with
different data set (bagging and boosting); and 3) using different subsets of features.

2.2 Meta- Learning and Lazy Learning

Meta-learning literally means learning how to learn, but in our context it means
learning how to use ML models. Most meta-learning approaches deal with topics
such as: Discovering meta-knowledge (e.g. rule induction of rules from data to
create a rule-based system that will solve the object-level problem); Stacked generali-
zation [22] (e.g. combining a number of different learning algorithms); Boosting (e.g.
combining the same learning algorithm trained in different ways); Dynamic bias se-
lection (e.g. modifying the ML algorithm bias to match a given problem); and Induc-
tive transfer (e.g. trying to improve the learning process over time) [23].

An interesting approach is one proposed by Duch [24], in which he creates a
framework of Similarity-Based Methods to represent many algorithms, such as k-NN,
MLP, RBF, etc. A variant of the Best First Search is used to perform a local search
for optimal parameters.

In [25] Schaul attributes to Utgoff [26] the development of the first meta-learning
system that learns parameters and to Schmidhuber [27] the first learning algorithm to
learn other ML algorithms using evolutionary search in the model space (using GP for
improving GP). According to Schaul: “…meta-learning can be used for automating
human design decisions (e.g. parameter tuning) and then automatically revisiting and
optimizing those decisions dynamically in the light of new experience obtained during
learning. Another application is transfer of knowledge between multiple related
tasks…” [25].

We endorse this goal, but our proposal is not limited to parameter tuning. Our key
idea is not to focus on the optimization and tuning of pre-computed models. Rather,
we aim to create model ensembles on demand, guided by the location of the query in
the feature space. This approach can be traced back to memory-based approaches
[27-29], instance-based learning, and lazy-learning [30]. Figure 2 shows the Lazy
Learning approach for locally weighted interpolation.

For a query Q, defined as a point തܺொ in the state space X, and a set of data points
defined in the cross-product X x Y, we find the points ݑ௝ ൌ ൫ തܺ௝, ௝൯ that are close toݕ

6 P.P. Bonissone

Q in their projection on X. We compute a matching score between the query and each
of these data points, as a function of its proximity to the query. Such proximity is
measured by a distance ݀൫ തܺொ, തܺொ௝൯ that is interpreted as the dissimilarity between
the two points in X. The distance is smoothed by a parameter h that defines the scale
or range of the model. Usually h is computed by minimizing a cross-validation error.
Each output ݕ௝ (corresponding to each of the points close to Q) is weighted by ap-
plying a kernel function K to this smoothed distance. A convex sum is used for the
aggregation, which is identical to the Nadaraya-Watson estimator for non-parametric
regressions using locally weighted averages. When dealing with extrapolation,
weighted linear models are used instead of convex sums in the aggregation box, to
provide for a better generalization [4].

Fig. 2. Lazy Learning (or Locally Weighted Kernel-based) Interpolation - adapted from [4]

2.3 MCDM: Selection of Best Model Ensemble Based on Constrained
Multi-Criteria

We plan to create a dynamic ensemble that best satisfies a set of performance metrics,
leveraging techniques in Multi Criteria Decision Making (MCDM). There is a vast
amount of literature on MCDM, ranging from pioneering books [31-32], to many
conference proceedings and articles focused on improving search methods, preference
aggregations, interactive solution visualization, etc.

The author’s perspective on MCDM is described in [33]. It can be summarized as
defining a proper problem representation followed by the intersection of search, pre-
ference aggregation, and (when needed) interactive visualization of their solutions.

jK
Weighted
Similarity
for peer uj

2y

1y

ky

u1

u2

uk

)(1uO

)(kuO

)(2uO

(.,.)d

Smoothed Distance
(Dissimilarity) for peer uj

)(QP

Distance (Dissimilarity)
for peer uj

(.)K

Qjd , Qjd ,
ˆ

Points Retrieval

Matching (Points similarity)

Local Models = Data Points

Aggregation
(Interpolation)

Q

[Distance
Function]

[Kernel
Function]

jX

Qŷ

),(Qj XXd
QX

[Smoothing
parameter]

1y

2y

ky

I

I

I

()Qjj
Qj

j dK
h

XXd
K ,

),(
=









h

h
1

 =
×k

j jj yK
1

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 7

• Representation. A typical MCDM process starts with a set of constraints over the
solution space, defining the feasible solution set. Each point from this set is
mapped into a performance space, whose dimensions are the criteria used to eva-
luate the MCDM solutions.

• Multi Objective Search. We search for the set of non-dominated solutions, forming
the Pareto set. This step induces a partial ordering on the set of feasible solutions,
and defines the concept of Multi-Objective Optimization (MOO).

• Preferences. MCDM requires an additional step over MOO, which is the selection
of one or more non-dominated solutions, to maximize our aggregated preferences,
thus creating a complete order over the feasible solutions sets.

• Interactive Visualization. In cases when the decision-maker is part of the solution
refinement and selection loop, we need a process to enhance our cognitive view of
the problem and enable us to perform interim decisions. We need to understand
and present the impacts that intermediate tradeoffs in one sub-space could have in
the other ones, while allowing him/her to retract or modify any intermediate deci-
sion steps to strike appropriate tradeoff balances. This last step will not be needed
in our proposed MCDM approach.

Fig. 3. Meta-Lazy Learning

In our case, model creation is equivalent to creating the solutions set, while model fil-
tering generates the feasible solution set. The model pre-selection, based on the meta-
information attached to each model, maps the solutions in the performance space and
the extraction of the points in the Pareto set represents the MOO step. The model final
selection, i.e. the selection of the k-tuple of local models with the least amount of error

8 P.P. Bonissone

correlation (via entropy maximization) reflects our preferences. The aggregation is the
final ensemble with the parameters defining dynamic fusion represents the outcome of
the MCDM process, i.e. our customized ensemble on demand. Our approach is summa-
rized in Fig. 3 and will be further explained in sections 3 and 4.

We have briefly covered the state of the art in multi classifier systems, lazy learn-
ing, meta-learning, and MCDM. Our goal is to address their intersection in a way that
has never been investigated before.

3 Summary of the Approach

3.1 Cloud Computing, the Enabler

Although the concept of model ensemble has been proposed and analyzed since the
early 2000 [18], the idea of creating dynamic ensembles at run-time has not been
proposed yet. Such idea would not have been feasible or practical, had it not been
for the advent of Grid- and Cloud-computing. After constructing an offline library of
models with their associate meta-information, we can now leverage the cloud envi-
ronment, with its parallel computation and automated provisioning of processors, to
implement this approach and provide fast run-time responses. Our approach is predi-
cated on a cloud-based Software as a Service (SaaS) paradigm.

3.2 Lazy Meta-Learning

In the ML literature, the concept of Lazy learning (LL) or memory-based learning
departs radically from traditional ML approaches. Instead of training a model from
the data to become a functional approximation of the underlying relationships, the LL
approach states that the model is in the data. Upon receiving a query, at run-time LL
creates a temporary model by finding the closest points to the query and performing
an aggregation (usually a weighted interpolation or extrapolation) of the outputs of
those points.

Our approach, labeled Lazy Meta-Learning, can be described by the analogy: Me-
ta-learning is Lazy Learning for models like learning is Lazy-Learning for data
points. This approach can be described as a multi-criteria decision-making (MCDM)
process, whose structure follows the steps defined in [5]. The model design is per-
formed by an offline meta-heuristics (the MCDM process), while the run-time model
architecture is formed by an online meta-heuristics (the fusion module), and a collec-
tion of object models (the analytic models.)

Within the scope of this paper, a model could be a one-class classifier for anomaly
detection, a multi-class classifier for diagnostics, or a predictor for prognostics. Each
model will have associated meta-information, such as its region of competence and
applicability (based on its training set statistics), a summary of its (local) performance
during validation, an assessment of its remaining useful life (based on estimate of its
obsolescence), etc.

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 9

Fig. 4. Model Design: Offline Meta-Heuristics to design, tune, optimize, adapt to changes, and
maintain the runtime models over time. Model Architecture: (a) Online Meta-Heuristics to
integrate or interpolate among multiple local object-models, manage their complexity, and
improve their overall performance; (b) Multiple object-models, either in parallel configuration
(ensemble) or sequential configuration (cascade, loop), to integrate functional approximation
with optimization and reasoning with imperfect data (imprecise and uncertain).

3.3 MCDM Process for Model Creation and Dynamic Model Assembly

We decompose the MCDM process into two stages:

• Model Creation, an off-line stage in which we create the initial building blocks for
the assembly and we compile their meta-information

• Dynamic Model Assembly, an on-line stage in which, for a given query we select
the best subset of models

This process is followed by the execution stage, Dynamic Model Fusion, in which we
evaluate the selected models and dynamically fuse them to solve the query. We will use
different metrics to evaluate each stage, looking for coverage and diversity in the crea-
tion stage, while looking for accuracy and precision in the assembly and fusion stages.

Model Creation: The Building Blocks. We assume the availability of an initial train-
ing set that samples an underlying mapping from a feature space X to an output y. In
the case of supervised learning, we also know the ground truth-value t for each record
in the training set. We create a library of diverse, local or global models. We in-
crease model diversity by using competing ML techniques trained on the same local
regions. We assume that any of the sources mentioned in section 1.1 could be used to
create these models.

Dynamic Model Assembly: Query Driven Model Selection and Ensemble. This
stage is divided into three steps:

• Model Filtering, in which we retrieve the applicable models from the DB for the
given query;

• Model Pre-Selection, in which we reduce the number of models based on their
local performance characteristics (bias, variability, and distance from the query);

• Model Final Selection, in which we define the final model subset.

Online MH’s (Fusion / Supervisory)

Object-level
(local) Problem

Solver

(Run-time
Analytic Model)

Offline
 Meta-Heuristics

(MCDM Process
for model design)

…

Object-level
(local) Problem

Solver

(Run-time
Analytic Model)

Run-time

10 P.P. Bonissone

Fig. 5. Dynamic Model Assembly on Demand (Filtering, Selection)

Fig. 6. Dynamic Model Fusion on Demand

r

r

m k

r

r CART Trees

p
[corresponding to p models]

p

r

r ≈ 30-100 p ≈ 10-20 k ≈ 3-10

μ1, σ1 1

μr, σr r

|μ|

σ

p

k

⎛

⎝
⎜
⎞

⎠
⎟

m ≈ 100-10,000

Selected
Model k

CART
Tree k

Query

Selected
Model 1

CART
Tree 1

Selected Models Dynamic Fusion

k CART Trees

k Models

 Dynamic Output
Fusion F(Q)

Weights/biases are func ons of
regional performance (based on Q)

µ1, σ1, D1

µk, σk, Dk

yk

yQ

y1

Dynamic bias
compensa on for each
model based on bias in

CART leaf node

Dynamic weighted fusion based
on each model predic on error

(σe) in CART leaf node

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 11

Dynamic Model Fusion: Generating the Answer. Finally, we evaluate the selected
models and we aggregate their outputs after compensating for their biases and weight-
ing them by their proximity to the query (or by their estimated error) to generate the
solution to the query.

4 (The Devil Is in the) Details of Our Approach

4.1 Model Creation

This step is common to both regression and classification problems. The premise is
that local models, trained on regions of the feature space, usually will have smaller va-
riances than global models, trained on the entire space, providing that the local models
are used only within their region of competence. Typically this requires a supervision
mechanism (at the meta-level) to determine their degree of applicability and contribu-
tion to the final output. We rely upon the model meta-information to make this as-
sessment. There are many ways to segment the original training set to define regions of
competence for local models, but this topic is outside the scope of this paper.

Library of m Local Models. As stated above, for each prediction or classification
problem we want to generate a large number of global and local models. We will
assume that m is the total number of available models for each problem.

Prediction Problems. Each regression model Mi will define a mapping: ܯ௜: ܺ ՜ ܻ, ݅ ݁ݎ݄݁ݓ ൌ 1, … , ݉; |ܺ| ൌ ݊; |ܻ| ൌ 1; ܺ߳Թ௡; ܻ߳Թ
In a more general case, we might want to predict multiple i.e., g variables, i.e.:

:௜ܯ ܺ ՜ ܻ, ݅ ݁ݎ݄݁ݓ ൌ 1, … , ݉; |ܺ| ൌ ݊; |ܻ| ൌ 1; ܺ߳Թ௡; ܻ߳Թ௚
Within the scope of this article we will limit ourselves to a single output.

Classification Problems. Each classification model Mi will define a mapping: ܯ௜: ܺ ՜ ܻ, ݅ ݁ݎ݄݁ݓ ൌ 1, … , ݉; |ܺ| ൌ ݊; ۂܻہ ൌ ሺܥ ൅ 1ሻ , and C is the number of
classes. Within the scope of this article, we will assume that the classifier output is a
probability density function (pdf) over C classes. The first C components of the pdf
are the probabilities of the corresponding classes. The (C+1)th element of the pdf
allows the classifier to represent the choice “none of the above” (i.e., it permits to deal
with the Open World Assumption). The (C+1)th element of the pdf is computed as the
complement to 1 of the sum of the first C components. The final decision of classifi-
er ܯ௜ is the argmax of the pdf.

Meta-information. Every time that we create a model, we need to capture its asso-
ciated meta-information, i.e., information about the model itself, its training set, and
its local/global performance in the validation set. Over time, we will define a stan-
dard API for this purpose. Table 1 summarizes our current preliminary thoughts on
meta-information. The essence is to capture information that we can use later on to
reason about the applicability and suitability of a model for a given situation (e.g., a
set of queries).

12 P.P. Bonissone

Table 1. Meta-Information (Preliminary Version)

Model Training Set Validation Set
Label: ܯ௜ Label: ܶ ௜ܵ Label: ܸ ௜ܵ
Model Mapping: ܯ௜: ௜ܺ ՜ ௜ܻ ௜ܺ א ܴ௡; ௜ܻא ܴ ሺݏ݊݋݅ݏݏ݁ݎ݃݁ݎሻ ௜ܻ א ሾ0,1ሿ ሺ஼ାଵሻሺ݈݂ܿܽ݅ݏݏ. ሻ

Model Applicability:
 Hyper-rectangle: ܴܪ௜ ܴܪ௜ א ܴଶ,௡ is the range
 of values of each of the
n
 features over ܶ ௜ܵ

Local Model Perfor-
mance:
 CART Tree: ௜ܶ : ௜ܺ ՜݁௜ ௜ܺ א ܴ௡; ݁௜א ܴ ሺݏ݊݋݅ݏݏ݁ݎ݃݁ݎሻ ݁௜ א ሾ0,1ሿ ሺ஼ାଵሻሺ݈݂ܿܽ݅ݏݏ. ሻ

Model Applicability: Hyper-rectangle HRi. The Hyper-rectangle in the feature space
defines each model’s region of competence1. Each model ܯ௜ has a training set TSi,
which is a region of the feature space X. We define the Hyper-rectangle of each
model ܯ௜, HR(Mi), to be the smallest hyper-rectangle that encloses all the training
points in training set TSi.. If a query point q is contained in HR(Mi), we consider mod-
el ܯ௜ applicable for such query. For a set of query points Q, we consider the model
applicable if HR(Q) is not disjoint with HR(Mi).

Local Model Performance. We want to capture the local performance of the model by
answering the question: “For this type of query, how reliable is this model?” For regres-
sion problems, we have used continuous case-based reasoning and fuzzy constraints
[35], and lazy learning [36] to estimate the local prediction error. Within the same con-
text of regression problems, the authors replaced the run-time use of lazy learning with
the compilation of local performance via CART trees [34] for the purpose of correcting
the prediction via bias compensation [7]. For classification problems, we find a similar
lazy learning approach [37] to estimate the local classification error.

After many experiments to find the most efficient summary of the model perfor-
mance, we opted for using a CART Tree ௜ܶ that maps the feature space to the signed
error computed in the validation set, i.e. ௜ܶ : ܺ ՜ ݁௜.

Each CART tree T i will have a depth di, such that there will be up to 2di paths from
the roots to the leaf nodes (for a fully balanced tree). For each tree, we store each path
from the root node to each leaf node. The path is as a conjunct of constraint rules
that need to be satisfied to reach the leaf node. The leaf node is a pointer to a table
containing the leaf node statistics:

• Ni – Number points in the leaf node (from the training/testing set)
 ௜ሺ݁ሻ – Bias (Average error computed over Ni points)ߤ •
 ௜ሺ݁ሻ – Standard Deviation of the error computed over Ni pointsߪ •
• Xdi – Normalized centroid as percentage of its average (1,…,1) of the Ni points

In the future, we will extend the meta-information to capture temporal and usage infor-
mation, such as model creation date, last usage date, and usage frequencies, which will
be used by the model lifecycle management to select the models to maintain and update.

1 By defining the applicability of a model as its hyper-rectangle in the feature space, we are

limiting the use of the model to interpolation. Should we choose to use it for extrapolation,
we would consider queries outside the hyper-rectangle (within some fuzzy tolerance).

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 13

4.2 Dynamic Model Assembly on Demand

Query Formulation: q or Q. To simplify the description of our approach we have
used the case of the query being a single point query q. However, our approach can be
easily generalized to the case when the query is a data set (time-series or time inde-
pendent). Let’s refer to such query as Q=[q1, …, qz]. In such case, the model filter-
ing described in section 4.3.1 will be modified. Instead of retrieving for each point q
those models ܯ௜ whose associated hyper-rectangles ௜ሻܯሺܴܪ contain q, i.e., ݍ ௜ሻ areܯሺܴܪ ௜ whose associated hyper-rectanglesܯ ௜ሻ, we retrieve all modelsܯሺܴܪא
not disjoint with the Hyper-rectangle of Q, i.e. ܴܪሺܳሻ ת ௜ሻܯሺܴܪ ് This will .׎
avoid the overhead of multiple accesses to the DB2. The model assembly, composed
by the model pre-selection and model final selection steps, will be performed itera-
tively for every point query q in Q. So these steps, as well as final model evaluation
and fusion, will be linear in the number of query points z. The most efficient way to
generate the set Q is to cluster similar query points using a k-d tree [38-39].

Model Filtering: From m to r Models. After creating m models, trained on their
corresponding regions of the training space, we will organize the models in a database
DB, whose indices will be derived from the models meta-information (see section
4.1.2). For a given query q, the MCDM process starts with a set of constraints to
define the feasibility set. In this case the constraints are:

• Model soundness, i.e., there are sufficient points in the training/testing set to de-
velop a reliable model, competent in its region of applicability

• Model vitality, i.e., the model is up-to-date, not obsolete
• Model applicability to the query, i.e., the query is in the model’s competence

region

For each of the r retrieved models Mi, we will use a compiled summary of its perfor-
mance, represented by a CART tree Ti, of depth di, trained on the model error vector
obtained during the validation of the model.

Model Pre-selection: From r to p Models. We will classify the query using the same
CART tree Ti, reaching leaf node Li(q). Each leaf will be defined by its path to the
root of the tree and will contain di constraints over (at most) di features. Leaf Li(q)
will provide estimates of model Mi performance in the region of the query. Follow-
ing the MCDM process described in section 3, we map each feasible solution (the r
models) into the performance space. This space is defined by the following criteria:

• Model bias: |ߤ௜ሺ݁ሻ|
• Model variability ߪ௜ሺ݁ሻ
• Model suitability for the query: ||qdi, Xdi ||2 (Distance of q di to the normalized cen-

troid (X di), computed in a reduced, normalized feature space d

2 This step might allow models that are irrelevant for a subset of points in Q. These models will

be rejected in the model pre-selection (due to their high distances from the query point).

14 P.P. Bonissone

In this three dimensional space, we want to minimize all three objectives. We may
further impose limits to the largest value that each dimension can have.

Fig. 7. Local Model Performance Space – r points represent r model performances

We can use a Pareto Filter to extract all the non-dominated points in this space.
Should the result be too limited, we can resort to additional Pareto set (after removing
the previous tier), until we have p models.

Model Final Selection: From p to k Models. During the previous steps, we relied
on meta-information to reduce the number of models from the original m models
available in the DB, to r applicable models, to p suitable models. Before perform-
ing the fusion, we need to make sure that the models are diverse, i.e. we need to ex-
plore the error correlation among smaller subsets of k models that we will use for
generating the answer to the query. This step would require generating all possible

k-tuples chosen from p models to evaluate their error correlations, i.e. ቀ݇݌ቁ. Although,

this is a much smaller number than ቀ݉݇ቁ, it is still an onerous step to take for each

point. So we will use a greedy search to further decrease this complexity.
Models in an ensemble should be different from each other for the ensemble’s out-

put to be better than the individual models outputs. The goal is to use an ensemble
whose elements have the most uncorrelated errors. In reference [21], Kuncheva and
Whitaker propose six different non-pairwise diversity measures to determine the
models difference. We will use the Entropy Measure E, proposed in the same refer-
ence, as the way to find the k most diverse models to form the ensemble. Let’s create
an N by k matrix M, such that N is the number of records evaluated by k models.

Classification Problems. When the models are classifiers, cell M[i,j] contains a binary
value Z[i,j] (1 if classifier j classified record i correctly, 0 otherwise). This metric
assumes that we already obtained each classifier decision on the training/validation
records, by applying the argmax function to the pdf generated by the classifier. Then,
we compute diversity of the k classifiers by using the Entropy measure E (modified
from reference [21]):

|μ|

σ

D = ||qdi, Xdi ||2

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 15

ܧ ൌ ଵே ∑ ሿே௜ୀଵ ቈ ଵ௞ି௙௟௢௢௥ቀೖశభమ ቁ ݉݅݊൫∑ ,ሾ݅ܯ ݆ሿ, ݇ െ ∑ ,ሾ݅ܯ ݆ሿ௞௝ିଵ௞௝ୀଵ ൯቉ (1)

E takes values in [0,1].

Prediction Problems. When the models are predictors, cell M[i,j] contains the error
value e[i,j], which is the prediction error made by model i on record j. In such case,
we will follow the following process:

• Histogram of Record Error: Compute a histogram of the errors for each record
M[i,.]. We need to define a reasonable bin size for the histogram, thus defining the
total number of bins, nmax. Let H(i,r) be the histogram for record i, where r de-
fines the bin number (r=1, nmax).

• Normalized Histogram of Record Error: Normalize histogram H(i,r), so that its
area is equal to one (becoming a pdf). Let HN(i,r) be the normalized histogram, i.e.: ܪேሺ݅, ሻݎ ൌ ுሺ௜,௥ሻ∑ ுሺ௜,௥ሻ೙೘ೌೣೝసభ (2)

• Normalized Record Entropy: Compute the normalized record entropy of the pdf
(so that its value is in [0,1]), i.e.:

ሺ݅ሻݐ݊݁ ൌ െ ቀ ଵ୪୬ ௡௠௔௫ቁ ∑ ,ேሺ݅ܪ ሻ௡௠௔௫௥ୀଵݎ ൈ ,ேሺ݅ܪ݈݊ ሻ (3)ݎ

where
ଵ୪୬ ௡௠௔௫ is a normalizing factor so that ent(i) takes values in [0,1] ܪேሺ݅, ሻݎ ൌ ுሺ௜,௥ሻ∑ ுሺ௜,௥ሻ೙೘ೌೣೝసభ (4)

• Overall Normalized Entropy: Average the normalized entropy over all N records: ܧ ൌ ଵே ∑ ሺ݅ሻே௜ݐ݊݁ (5)

E takes values in [0,1].
For both classifiers and prediction problems, higher overall normalized entropy

values indicate higher models diversity.

Greedy Search in Combinatorial Space. In both cases we will use a greedy search,
starting from k=2 and compute the normalized entropy for each 2-tuple, to find the
one(s) with the highest entropy. We will then increase the value of k to explore all 3-
tuples. If the maximum normalized entropy for the explored 3-tuples is lower than the
maximum value obtained for the 2-tuples, we will stop and use the 2-tuple with the
highest entropy. Otherwise we will keep the 3-tuple with the highest entropy and
explore the next level (k=4) and so on, until no further improvement can be found.
With all the caveats of local search, this greedy approach will substantially reduce
search complexity, as we will not need to explore all the combinations of ensembles.

16 P.P. Bonissone

4.3 Dynamic Model Fusion

The last step in our approach is to perform the dynamic fusion of the selected k models.
When probed with the query q, each model Mi will produce and output ݕ௜ሺݍሻ. Each
model also has a corresponding CART tree Ti, which will be used to classify the query
q. In that case, the query will reach a leaf node Li(q) in the corresponding tree Ti. The
leaf node will contain the local statistics for the points similar to the query, such as the
bias (average of the error) ߤ௜ሺ݁|ݍሻ, and the standard deviation of the error, ߪ௜ሺ݁|ݍሻ.

Fusion for Regression Problems. After many design experiments, which will be
described in details in a follow-up paper, we concluded that the best fusion schema is
accomplished by using dynamic bias compensation and by weighting the compen-
sated output using a kernel function of the standard deviation of the error, i.e.: ݕොሺݍሻ ൌ ∑ ௪ೞሺ௬ೞሺ௤ሻିఓೞሺ௘|௤ሻሻೖೞసభ ∑ ௪ೞೖೞసభ (6)

where: ݓ௦ ൌ ܭ ቀఙೞሺ௘|௤ሻ௛ ቁ (7)

and h is the usual smoothing factor for the kernel function K(.) obtained by minimiz-
ing the cross-validation error.

Fusion for Classification Problems. As shown in reference [37], the classification
problem can be cast in a fashion similar to the regression problem. In reference [37]
we used a local weighting fusion (similar to [7] but for classifications), and used dy-
namic bias compensation with equal weight contributions for the selected models. In
section 6, we will discuss how to extend our approach, based on these preliminary
results, to cover classification problems.

5 Customized Analytics Applied to Power Plant Management

5.1 Problem Definition

In references [40-41] we described the optimization problem for a power plant man-
agement system, in which a coal-fired boiler drives a steam turbine to generate elec-
tric power. For given environmental conditions, the problem was to determine the
control variable set points that could generate the load (equality constraint), without
exceeding CO and SO limits (inequality constraints), while minimizing both Heat
Rate and NOx emissions. After using first-principles-based methods and domain-
knowledge to identify the relevant model inputs, we built a nonlinear neural-network
to map the inputs space (control variable set-points) and time variable, ambient un-
controllable variables, to each of the outputs of interest, which represented our objec-
tives and constraints. As shown in the above references, we used an evolutionary
multi-objective optimizer to evolve the set points and identify the Pareto-optimal set
of input-output vector tuples that satisfy operational constraints.

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 17

Fig. 8. Power plant input-output relationships. Each output (NOx, Heat Rate, Load) is mod-
eled by a committee of predictive neural networks (adapted from reference [7]).

We noted the importance of reducing the neural networks uncertainty, as they gen-
erated the fitness function that drove the evolutionary search. In reference [41] we
showed how we managed the model extrapolation error by using the equivalent of
continuous case-based reasoning. We also need to address the intrinsic model uncer-
tainty of the NNs. So, we performed preliminary experiments using the same data set,
and created a fixed committee of neural networks, injecting diversity by bootstrapping
their training set. We noted that model performance was significantly improved by
fusing the outputs from the ensemble of models.

In references [36] we presented a method called locally weighted fusion, which ag-
gregated the results of multiple predictive models based on local accuracy measures of
these models in the neighborhood of the probe point for which we want to make a
prediction. This neighborhood was computed on demand, following a Lazy Learning
technique. In reference [7], we extended our experimentation by compiling the error
information and avoiding the run-time search for the closest points. Figure 8, adapted
from reference [7] shows the (23-3-1) structure of the NN’s used in the ensemble.

This paper is an extension of the work initiated in reference [7]. We have pro-
posed a complete architecture for selecting a dynamic committee of neural networks,
and a dynamic fusion, based on the query and the meta- information. We extended
the experiments with the same data set to compare our results with the ones previous-
ly obtained in references [7, 36].

5.2 Preliminary Experimental Results

The following tables show a sample of early experiments performed in [36] and [7],
followed by the current experiments, in which we used part of the proposed
architecture.

 n = # inputs = 23

18 P.P. Bonissone

Table 2. Experimental Results (Baseline, Global, Local fusion without bias compensation)

Exp.

Fusion Strategy Heat Rate
MAE

[Btu/KwHr]

Heat
Rate

pg [%]

NOx
MAE

[lb/MBtu]

NOx
pg [%]

Load
MAE
[MW]

Load
pg [%]

1 Baseline: average of
30 predictors

91.79 0.00 0.0228 0.00 1.05 0.00

2 Best of 30 predictors 85.1 7.29 0.0213 6.58 0.987 6.00
3 Global Average 87.15 5.06 0.0214 6.14 1.042 0.78
4 Global GWF 86.91 5.32 0.0214 6.14 1.04 0.95
5 Global Least Square 83.05 9.52 0.02 12.28 0.984 6.29
6 H-Rect+W1 No bias 82.19 10.46 0.0202 11.40 1.024 2.48
7 H-Rect No bias 87.15 5.06 0.0214 6.14 1.042 0.78
8 H-Rect+W2 No bias 83.93 8.56 0.0208 8.77 1.03 1.93
9 1-nn No bias 81.19 11.55 0.0214 6.14 1.008 4.02
10 5-nn No bias 84.31 8.15 0.0206 9.65 1.029 1.97
11 CART EW No bias 87.15 5.06 0.0213 614 1.042 0.78
12 CART UW0 No bias 87.15 5.06 0.0213 614 1.042 0.78

The data set was comprised by 8,000+ records of daily operations, sampling the
mapping between operational set points under given environmental conditions and
power plant outputs, such as Heat Rate (HR), NOx emissions, and generated load.
Roughly 25% of these records were used as the validation set.

In table 2, the baseline labeled as experiment 1, is the simple average of the outputs
of the thirty neural networks. As such, the column labeled pg (percentage gain) is 0%.
We will use percentage gain to show the percentage improvement over the baseline
for each experiment. Experiment 2 reports the output of the best predictor (a posteri-
ori). The remaining ten experiments in Table 2, show the results of various fusion
combinations, without performing bias compensation, i.e., weighing the outputs of the
models using different fusion schemes: variations of global fusion (experiments 3-5),
local fusion based on Lazy learning (experiments 6-10), and CART trees to selected
the local points (experiments 11-12). Most of these results were reported in refer-
ence [36]. The conclusion from this table is that without bias compensation the im-
provements are marginal: HR pg: 11%, NOx pg: 12%; Load pg: 6%.

In Table 3, we perform bias compensation for all experiments. In a separate set of
experiments (not shown for sake of brevity) we concluded that the best CART trees
are the one mapping the feature space to the signed error (as opposite to the unsigned
error or the output of the model). Thus, with the exception of experiments 13-17,
which show the results for lazy leaning type of local fusion (i.e., without using CART
tree as part of the meta-information), all other experiments (18-33) use the signed
error derived CART tree to compile their local performance in the validation set.

Experiments 18-27 show the result of using all thirty models with different weight-
ing schemas: from equal weights (exp. 18), to unequal weights derived from linear or
exponential kernel functions using as arguments various elements of the performance
space in the pre-selection stage, e.g., distance of the query from the centroid, standard
deviation of the error, etc. Overall the results are comparable (with very similar
standard deviations of the error). The best result in this set of the experiments is
from Unequal Weights-7 (UW7), in which we used a linear kernel function and the

standard deviation of the error, i.e.: ܭ ቀఙೞሺ௘|௤ሻ௛ ቁ.

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 19

Table 3. Experimental Results (All with bias compensation, CART trees)

Exp. # Fusion Strategy Heat Rate
MAE

[Btu/KwHr]

Heat
Rate

pg [%]

NOx
MAE

[lb/MBtu]

NOx
pg [%]

Load
MAE
[MW]

Load
pg [%]

13 H-Rect+W1 bias 69.20 24.61 0.0140 38.60 0.855 18.57
14 H-Rect bias 69.23 24.58 0.0140 38.60 0.855 18.56
15 H-Rect+W2 bias 69.16 24.66 0.0140 38.60 0.854 18.63
16 1-nn bias 72.99 20.48 0.0143 37.28 0.861 17.98
17 5-nn bias 76.34 16.83 0.0169 25.88 0.903 14.04
18 CART EW bias 60.62 33.96 0.0117 48.68 0.718 31.62
19 CART UW0 bias (nf) 68.56 25.31 0.0148 35.09 0.817 22.19
20 CART UW1 bias (nf) 60.57 34.01 0.0111 51.32 0.725 30.92
21 CART UW2 bias (nf) 60.45 34.14 0.0116 49.12 0.719 31.50
22 CART UW3 bias (nf) 64.62 29.60 0.0130 42.98 0.733 30.20
23 CART UW4 bias (nf) 62.31 32.12 0.0125 45.18 0.721 31.35
24 CART UW5 bias (nf) 60.10 34.53 0.0145 36.40 0.792 24.59
25 CART UW6 bias (nf) 59.75 34.90 0.0129 43.42 0.745 29.04
26 CART UW7 bias (nf) 59.77 34.88 0.0115 49.56 0.713 32.10
27 CART UW8 bias (nf) 61.87 32.60 0.0122 46.49 0.743 29.25
28 CART UW7 bias (f1) 59.75 34.91 0.0117 48.68 0.721 31.35
29 CART UW7 bias (f2) 65.04 29.14 0.0135 40.79 0.776 26.10
30 CART UW7 bias (f3) 64.82 29.38 0.0130 42.98 0.772 26.46
31 CART UW7 bias (f4) 62.18 32.26 0.0122 46.49 0.744 29.12
32 CART UW7 bias (f5) 60.54 34.04 0.0117 48.68 0.726 30.86
33 CART UW7 bias (f6) 59.69 34.98 0.0116 49.12 0.716 31.86

Fig. 9. Summary of experimental results

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

HR

NOx

Load

Customized Fusion CART-based Model Selec on Exp. (w/best weigh ng scheme)

Customized Fusion CART-based Model Weigh ng Scheme Experiments [18-27]

Global
Weighted
Fusion
[3-5]

Baseline
Normal
Fusion

(Average)

Best overall
Weigh ng scheme

Second Best overall
Weigh ng scheme Best overall

Weigh ng scheme
+ Best Selec on

Percentage improvement
 over baseline of Mean
Absolute Error (MAE)

 Lazy learning [13-17]
No Meta-

informa on

Dynamic Bias Compensa on

 Lazy learning [6-10] Meta-info (CART) [11-12]

No bias Comp.

20 P.P. Bonissone

Finally, in experiments 28-33, we fixed this weighting scheme and searched for the
best value of p, the number of models to use in the ensemble. The results, only valid
for this specific application and for the initial DB of models, indicate that ~80% of the
models provide the best results. All experiments results are illustrated in figure 9.

6 Conclusions

6.1 Analysis for Regression Problems

The experiments presented in this paper are preliminary in nature and have not com-
pletely exercised our approach. By using thirty neural networks trained on the entire
feature space, we did not compare global and local models. As a result, we did not
need to perform the filtering stage, i.e., r = m =30. The selection process indicated
that the best performance was obtained with about 80% of our models (i.e., p = 25).
This was the result of performing a local search in the number of models. This
process should be repeated for different applications and for a different DB of models.
From the same experiments, we learned that there are statistically significant differ-
ences in performing dynamic bias compensation, and in using the local bias compiled
in the CART trees. After experimenting with unsigned error, model output, and
signed error, we concluded that the latter was the best way to generate the CART
trees as part of the models meta-information. Finally, given that we controlled the
original model generation and used bootstrapped training sets to inject diversity in the
models, we did not need to perform an entropy-based final selection stage (i.e., p = k
= 25). However, we will need to execute this step for larger DB of models in which
we are agnostics about the model generation process. Our next step will be to test this
hypothesis, by creating a DB with hundreds of models, generated by FlexGP [16],
and exercising the remaining stages of our approach. The following table summarizes
our current findings.

Table 4. Regression Problems: Design Parameters and Processes (Preliminary Version)

Design Phase Design Choices Generalization / Process
Meta-Information CART Trees based on signed

error; limited pruning
OK for all regressions

Model Filtering

N/A: All global models appli-
cable by construction

Process: Apply Hyper-
rectangles for local models

Model Pre-Selection 80% of applicable models (for
this application)

Process: Greedy search in
error space to find number of
pre-selected models

Final Model Selection N/A: model diversity built-in
with bootstrapping

Process: Greedy search in
entropy space to find error-
uncorrelated models

Dynamic Fusion Dynamic bias compensation
(μe from leaf node)
Unequal weights based from
kernel function based on mod-
el prediction error (σe)

OK for all regressions

OK for all regressions

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 21

6.2 Future work for Classification Problems

In reference [37], we used lazy learning to perform local fusion for classification
problems. We want to extend our approach to these types of problems and design a
set of experiments to validate it. Specifically, let us assume that a classifier maps a n-
dimensional feature space X into a C-dimensional space Y, where C is the number of
classes. Then, the output of each model k for the training record j, is a normalized
probability density ߸௞ሺ݆ሻ, where ߸௞ሺ݆ሻ is a (C+1) dimensional vector. The error of
each model k for the training record j is computed as ൌ ݁௞ሺ݆ሻ ൌ ߸௞ሺ݆ሻ െ ௞ሺ݆ሻݐ ,
where ݐ௞ሺ݆ሻ is a binary C+1 dimensional vector in which only one element is 1, indi-
cating the correct classification for training record j. Since ߸௞ሺ݆ሻ is a normalized
probability density, then the sum of all the elements of ݁௞ሺ݆ሻ equals 0.

By following a process similar to the one for the regression problems, we will train
a CART Tree Tk for each class value. The tree will map the feature space X to the
error vector e (for that specific class value), such that in each leaf node we will cluster
the subset of the training records that have similar classification errors. We will
compute the mean error of the kth classifier over the points in each leaf node. In a fa-
shion similar to the regression, we will refer to the average error of the leaf node ܮ௦ሺݍሻ, in which query q was classified, as ߤ௞ሺ݁|ݍሻ. For a given query we will use the
same model assembly steps (filtering, preference, and final selection based on entropy
maximization). For the selected k models, we will perform a similar bias compensa-
tion. For the case when all k models are equally weighted, we have:
ሻݍොሺݕ ൌ ݔܽ݉݃ݎܽ ቄଵ௞ ∑ ሺݕ௦ሺ݁ሻ െ ሻሻ௞௦ୀଵݍ|௦ሺ݁ߤ ቅ (8)

We also plan to perform a design of experiments to determine the most appropriate
weighting scheme for each model in a manner similar to our regression experiments.

Acknowledgements. I would like to thank my colleagues Ya Xue, Fred Xue, Dustin
Garvey, Steve Gustafson, Dongrui Wu, Scott Evans, Jianhui Chen, Weizhong Yan,
and many others for their feedback and constructive criticism that helped shaping this
idea.

References

1. Bonissone, P.: The life cycle of a fuzzy knowledge-based classifier. In: Proc. North Amer-
ican Fuzzy Information Processing Society (NAFIPS 2003), Chicago, IL, pp. 488–494
(2003)

2. Patterson, A., Bonissone, P., Pavese, M.: Six Sigma Quality Applied Throughout the Life-
cycle of and Automated Decision System. Journal of Quality and Reliability Engineering
International 21(3), 275–292 (2005)

3. Bonissone, P., Varma, A., Aggour, K.: An Evolutionary Process for Designing and Main-
taining a Fuzzy Instance-based Model (FIM). In: Proc. First Workshop of Genetic Fuzzy
Systems (GFS 2005), Granada, Spain (2005)

4. Bonissone, P., Varma, A., Aggour, K., Xue, F.: Design of local fuzzy models using evolu-
tionary algorithms. Computational Statistics and Data Analysis 51, 398–416 (2006)

22 P.P. Bonissone

5. Bonissone, P.: Soft Computing: A Continuously Evolving Concept. Int. J. Computational
Intelligence Systems 3(2), 237–248 (2010)

6. Bonissone, P., Cadenas, J.M., Garrido, M.C., Diaz, R.A.: A Fuzzy Random Forest. Inter-
national Journal of Approximate Reasoning 51(7), 729–747 (2010),
doi:10.1016/j.ijar.2010.02.003

7. Bonissone, P., Xue, F., Subbu, R.: Fast Meta-models for Local Fusion of Multiple Predic-
tive Models. Applied Soft Computing Journal 11(2), 1529–1539 (2008),
doi:10.1016/j.asoc.2008.03.006

8. Bonissone, P., Eklund, N., Goebel, K.: Using an Ensemble of Classifiers to Audit a Pro-
duction Classifier. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS,
vol. 3541, pp. 376–386. Springer, Heidelberg (2005)

9. Evangelista, P., Embrechts, M., Bonissone, P., Szymanski, B.: Fuzzy ROC Curves for Un-
supervised Nonparametric Ensemble Techniques. In: IJCNN 2005, Montreal, Canada, pp.
3040–3045 (2005)

10. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report EECS-2009-28, EECS Department, University of Califor-
nia, Berkeley (2009)

11. Howe, J.: Crowdsourcing- Why the Power of the Crowd Is Driving the Future of Business.
Random House, New York (2008)

12. Vance, A.: Kaggle’s Contests: Crunching Numbers for Fame and Glory. Businessweek,
January 04 (2012)

13. Bonissone, P., Subbu, R., Aggour, K.: Evolutionary Optimization of Fuzzy Decision Sys-
tems for Automated Insurance Underwriting. In: Proc. FUZZ-IEEE 2002, Honolulu, HI,
pp. 1003–1008 (2002)

14. Aggour, K., Bonissone, P., Cheetham, W., Messmer, R.: Automating the Underwriting of
Insurance Applications. AI Magazine 27(3), 36–50 (2006)

15. Bennett III, F.H., Koza, J.R., Shipman, J., Stiffelman, O.: Building a parallel computer
system for $18,000 that performs a half peta-flop per day. In: Banzhaf, W., Daida, J., Ei-
ben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) GECCO 1999: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, Orlando, FL, pp.
1484–1490. Morgan Kaufmann, San Francisco (1999)

16. Sherry, D., Veeramachaneni, K., McDermott, J., O’Reilly, U.-M.: FlexGP: Genetic Pro-
gramming on the Cloud. To Appear in Parallel Implementation of Evolutionary Algo-
rithms, EvoStar 2012, Malaga, Spain (2012)

17. Bonissone, P.P., Iyer, N.: Soft Computing Applications to Prognostics and Health Man-
agement (PHM): Leveraging Field Data and Domain Knowledge. In: Sandoval, F., Prieto,
A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 928–939.
Springer, Heidelberg (2007)

18. Roli, F., Giacinto, G., Vernazza, G.: Methods for Designing Multiple Classifier Systems.
In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 78–87. Springer, Heidelberg
(2001)

19. Kuncheva, L.: Switching between selection and fusion in combining classifiers: An expe-
riment. IEEE Transactions on Systems, Man, and Cybernetics, Part B 32(2), 146–156
(2002)

20. Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers. Con-
nection Science 8, 385–404 (1996)

 Lazy Meta-Learning: Creating Customized Model Ensembles on Demand 23

21. Kuncheva, L., Whitaker, C.: Ten measures of diversity in classifier ensembles: Limits for
two classifiers. In: Proceedings of IEE Workshop on Intelligent Sensor Processing, Bir-
mingham, p. 10/1-6 (2001)

22. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)
23. http://en.wikipedia.org/wiki/Meta_learning_(computer_science)
24. Duch, W., Grudzinski, K.: Meta-learning: searching in the model space. In: Proc. of the

Int. Conf. on Neural Information Processing (ICONIP), Shanghai, China (2001)
25. Schaul, T., Schmidhuber, J.: Meta-learning. Scholarpedia 5(6), 4650 (2010)
26. Utgoff, P.: Shift of bias for inductive concept learning. In: Michalski, R., Carbonell, J.,

Mitchell, T. (eds.) Machine Learning, pp. 163–190 (1986)
27. Schmidhuber, J.: Evolutionary principles in self-referential learning. Diploma thesis, Insti-

tut für Informatik, Technische Universität München (1987)
28. Atkeson, C.G.: Memory-based approaches to approximating continuous functions. In:

Casdagli, M., Eubank, S. (eds.) Nonlinear Modeling and Forecasting, pp. 503–521. Addi-
son Wesley, Harlow (1992)

29. Atkeson, C.G., Moore, A., Schaal, S.: Locally Weighted Learning. Artificial Intelligence
Review 11(1-5), 11–73 (1997)

30. Bersini, H., Bontempi, G., Birattari, M.: Is readability compatible with accuracy? From
neuro-fuzzy to lazy learning. In: Freksa, C. (ed.) Proceedings in Artificial Intelligence 7,
pp. 10–25. Infix/Aka, Berlin (1998)

31. Deb, K.: Multi-objective optimization using evolutionary algorithms. J. Wiley (2001)
32. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithm MOP

Approaches, Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer
Academic (2002)

33. Bonissone, P., Subbu, R., Lizzi, J.: Multi Criteria Decision Making (MCDM): A Frame-
work for Research and Applications. IEEE Computational Intelligence Magazine 4(3), 48–
61 (2009)

34. Breiman, L., Friedman, J., Olshen, R.A., Stone, C.J.: Classification and regression trees.
Wadsworth (1984)

35. Bonissone, P., Cheetham, W.: Fuzzy Case-Based Reasoning for Decision Making. In:
Proc. FUZZ-IEEE 2001, Melbourne, Australia, vol. 3, pp. 995–998 (2001)

36. Xue, F., Subbu, R., Bonissone, P.: Locally Weighted Fusion of Multiple Predictive Mod-
els. In: IEEE International Joint Conference on Neural Networks (IJCNN 2006), Vancou-
ver, BC, Canada, pp. 2137–2143 (2006), doi:10.1109/IJCNN.2006.246985

37. Yan, W., Xue, F.: Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple
Classifiers. In: IJCNN 2008, Hong Kong, pp. 1585–1591 (2008)

38. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18(9), 509–517 (1975)

39. Gray, A., Moore, A.: N-Body Problems in Statistical Learning. In: Proc. Advances in
Neural Information Processing Systems, NIPS (2001)

40. Subbu, R., Bonissone, P., Eklund, N., Yan, W., Iyer, N., Xue, F., Shah, R.: Management of
Complex Dynamic Systems based on Model-Predictive Multi-objective Optimization. In:
CIMSA 2006, La Coruña, Spain, pp. 64–69 (2006)

41. Subbu, R., Bonissone, P., Bollapragada, S., Chalermkraivuth, K., Eklund, N., Iyer, N.,
Shah, R., Xue, F., Yan, W.: A review of two industrial deployments of multi-criteria deci-
sion-making systems at General Electric. In: First IEEE Symposium on Computational In-
telligence in Multi-Criteria Decision-Making (MCDM 2007), Honolulu, Hawaii (2007),
doi:10.1109/MCDM.2007.369428

	Lazy Meta-Learning: Creating Customized Model Ensembles on Demand
	Analytic Model Building in the Near Future
	Multiple Sources of Analytic Models Enabled by Cloud Computing
	Prognostics and Health Management (PHM) Motivation for Analytics
	The Novel Idea
	Paper Organization

	Related Work
	Model Ensembles
	Meta- Learning and Lazy Learning
	MCDM: Selection of Best Model Ensemble Based on Constrained Multi-Criteria

	Summary of the Approach
	Cloud Computing, the Enabler
	Lazy Meta-Learning
	MCDM Process for Model Creation and Dynamic Model Assembly

	(The Devil Is in the) Details of Our Approach
	Model Creation
	Dynamic Model Assembly on Demand

	Customized Analytics Applied to Power Plant Management
	Problem Definition
	Preliminary Experimental Results

	Conclusions
	Analysis for Regression Problems
	Future work for Classification Problems

	References

