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Preface

The 2012 IEEE World Congress on Computational Intelligence (IEEE WCCI)
is a premier event organized by the IEEE Computational Intelligence Society.
On even years it hosts three large conferences: The IEEE Congress on Evo-
lutionary Computation (CEC), the International Joint Conference on Neural
Networks (IJCNN), and the IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE).

It has been a tradition for IEEE WCCI to issue a book composed of chapters
written by the Plenary (Congress Level) and Invited Lecture (Conference Level)
speakers. This volume is the culmination of this activity in 2012.

The Organizing Committee of IEEE WCCI 2012 wish to take this opportunity
to acknowledge the contributions made by these speakers. Each of them presents
a chapter capturing the state of the art in their own domain. Together, these
chapters form a snapshot of recent research, trends and future directions in
computational intelligence. We sincerely hope that the readers of this volume find
useful information relevant to their own interest in computational intelligence.

June 2012 Jing Liu
Cesare Alippi

Bernadette Bouchon-Meunier
Garrison W. Greenwood

Hussein A. Abbass
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Lazy Meta-Learning: Creating Customized Model 
Ensembles on Demand 

Piero P. Bonissone 

GE Global Research Center, Niskayuna, NY 12309, USA 
bonissone@ge.com 

Abstract. In the not so distant future, we expect analytic models to become a 
commodity. We envision having access to a large number of data-driven mod-
els, obtained by a combination of crowdsourcing, crowdservicing, cloud-based 
evolutionary algorithms, outsourcing, in-house development, and legacy mod-
els. In this new context, the critical question will be model ensemble selection 
and fusion, rather than model generation. We address this issue by proposing 
customized model ensembles on demand, inspired by Lazy Learning. In our ap-
proach, referred to as Lazy Meta-Learning, for a given query we find the most 
relevant models from a DB of models, using their meta-information. After  
retrieving the relevant models, we select a subset of models with highly  
uncorrelated errors. With these models we create an ensemble and use their me-
ta-information for dynamic bias compensation and relevance weighting. The 
output is a weighted interpolation or extrapolation of the outputs of the models 
ensemble.  Furthermore, the confidence interval around the output is reduced 
as we increase the number of uncorrelated models in the ensemble. We have 
successfully tested this approach in a power plant management application. 

Keywords: Machine learning, lazy learning, meta-learning, computational in-
telligence, fusion, ensemble, entropy, Pareto set, neural networks, coal-fired 
power plant management. 

1 Analytic Model Building in the Near Future 

Until recently, analytic model building has been a specialized craft.  Usually, such 
models were handcrafted by specialized researchers and manually maintained. Typi-
cally, the model builder selected a data set for training, test, and validation, extracted 
a run-time model from the training data set using machine learning (ML) techniques 
as a compiler, validated the model using a validation set, and finally used the model to 
handle new queries.  When a model deteriorated, the model builder created a new 
model by following a similar build cycle.  As noted by the author in earlier papers [1-
2], this lack of automation in model creation has led to bottlenecks in the models life-
cycle, preventing their scalability and eventually leading to their obsolescence.  

To address the lack of automation in model building, we have proposed the use of 
meta-heuristics, specifically the use of evolutionary algorithms, to generate runtime 
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analytical models, while limiting the amount of human intervention in the process [3-5].  
Although this proposal was a step in the right direction, it was still aimed at generating 
single models or, in the best case, static ensembles of models [6-9].  While the model 
builder was no longer the bottleneck in the loop defining and running the experiments 
needed to create and test the model, s/he was still an integral part of the process. 

We believe that the advent of cloud computing has changed dramatically the 
process of developing analytic models. Cloud computing has lowered the barriers to 
entry, enabling a vast number of analytics-skilled people to access in a flexible  
manner large amounts of computing cycles for relatively low operational cost (and 
without any capital expenses).  The literature on cloud computing is growing expo-
nentially, making it difficult to provide the interested reader with a single reference. 
However, reference [10] provides a great explanation of the opportunities created by 
cloud computing for machine learning and crowdsourcing.   

1.1 Multiple Sources of Analytic Models Enabled by Cloud Computing 

To validate our assumption that analytic models are trending to become a commodity, 
let us explore some of the ways used to generate or obtain analytic models: 

1. Crowdsourcing analytics 

(a) Using traditional crowdsourcing markets 
(b) Using competitions and prizes 
(c) Using games or puzzles 

2. Evolving populations of models using evolutionary algorithms (GA’s, GP’s) 
3. Outsourcing analytics 
4. Traditional model development (including legacy models)  

We will focus on the first two sources, which are enabled or accelerated by cloud 
computing. Crowdsourcing is a relatively new phenomenon that started about a dec-
ade ago [11]. It is becoming increasingly popular for outsourcing micro-tasks to a 
virtual crowd, creating new marketplaces - see for instance Amazon’s Mechanical 
Turk (mturk.com). Recently, however these tasks have become more complex and 
knowledge intensive, requiring a more specialized crowd. Web portals such as Kaggle 
(kaggle.com), TunedIT (TunedIT.com), and CrowdANALYTICX (crowdanalytix.com) 
allow organizations to post problems, training data sets, performance metrics, and 
timelines for ML competitions.  The portals register the potential competitors and 
manage the competition during its various stages.  At the end, the models are scored 
against an unpublished validation set, the winners receive their prizes, and the spon-
soring organizations have access to new analytic models [12]. Alternative ways to 
incentivize a crowd to solve a given problem is by transforming the problem into a 
game or a puzzle.  A successful example of this approach can be found at Foldit 
(foldit.it), in which the gaming community was able to solve a molecular folding 
problem that had baffled biologists for over a decade. 

A second possible source of models is the use of evolutionary algorithms to search 
the model space.  The author has explored this approach over a decade ago [13-14] 
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inspired by many efforts in this area.  In the early days, researchers resorted to clus-
ters of computers, such as the Beowulf [15] to distribute the computational load of 
GP-driven search.  Recently, the MIT CSAIL Department developed a Flexible Ge-
netic Programming (groups.csail.mit.edu/EVO-DesignOpt/evo.php?n=Site.FlexGP) frame-
work, leveraging  cloud computing to evolve a population of models, whose outputs 
are ultimately averaged to produce an answer [16]. 

The last two approaches are more traditional ways of generating analytical models 
by outsourcing them to universities, developing them internally, or using legacy mod-
els.  Our goal is to create a touch-free, domain agnostic process that can use any 
subset of models, regardless of their sources, and determine at run-time the most suit-
able and diverse subset that should be used to construct the answer to a given query. 

To ensure a more focused discussion, we will limit the scope of this paper to the 
use of analytics to support Prognostics and Health Management (PHM) capabilities. 
However, the approach illustrated in this paper is application domain agnostic.  

1.2 Prognostics and Health Management (PHM) Motivation for Analytics 

The main goal of Prognostics and Health Management (PHM) for assets such as  
locomotives, medical scanners, aircraft engines, and turbines, is to maintain these 
assets’ performance over time, improving their utilization while minimizing their 
maintenance cost. This tradeoff is typical of contractual service agreements offered by 
OEMs to their valued customers.   

PHM analytic models are used to provide anomaly detection and identification (le-
veraging unsupervised learning techniques, such as clustering), diagnostic analysis 
(leveraging supervised learning techniques, such as classification), prognostics  
(leveraging prediction techniques to produce estimates of remaining useful life), fault 
accommodation (leveraging intelligent control techniques), and logistics and  
maintenance optimization (leveraging optimization techniques). A more detailed de-
scription of PHM functionalities and how they can be addressed individually by 
Computational Intelligence techniques can be found in [17]. In this paper, we will 
take a more holistic view on how to address PHM needs, while at the same time we 
will remain agnostics on the specific technologies used to build each model.  

Since analytics play such a critical role in the development of PHM services, it is 
necessary to ensure that the underlying analytic models are accurate, up-to-date, ro-
bust, and reliable. There are at least two PHM applications for which such accuracy is 
critical: (1) anomaly detection (1-class classification), in which high volume of false 
positives might decrease the usefulness of the PHM system; (2) prognostics (predic-
tion), in which high prediction variance might prevent us from acting on the results.  

We will focus on a PHM prediction application in which prediction accuracy is a 
stringent requirement for production optimization. We will show how to leverage 
computational intelligence and ML techniques, combined with the elasticity of cloud 
computing, to address these accuracy requirements. 

1.3 The Novel Idea 

In this paper we are shifting our focus from model creation to model ensemble  
assembly. Rather than creating and optimizing models based on expected queries,  
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we want to build a vast library of robust, local or global models, and compile relevant 
meta-information about each model.  At run-time, for a specific query, we will select 
an ensemble of the most appropriate models from the library and determine their 
weights in the model fusion schema, based on their local performance around the 
query. The model ensemble will be constructed dynamically, on the basis of the mod-
els’ meta-information.  The model fusion will use the meta-information to determine 
bias compensation and relevance weight for each model’s output. Finally, the models 
run-time versions will be executed via a function call at the end of the fusion stage.   
This concept is illustrated in Figure 1. 

 

Fig. 1. The two modeling stages: Model Creation and Model Assembly 

1.4 Paper Organization  

In section 2, we will examine the relevant state of the art for this problem, while in 
section 3 we will describe a summary of our approach.  In section 4, we will provide 
an in-depth analysis of the proposed approach, while in section 5 we will show some 
preliminary results using an ensemble of thirty neural networks to predict load, effi-
ciency, and emissions in a power plant.  In section 6, we will draw some conclusions 
from our experiments and highlight future work and extensions. 

2 Related Work 

We are proposing an approach for creating the best model ensemble on demand, 
based on the query information (as in Lazy-Learning), and performing the selection 
and dynamic fusion of the ensemble based on several performance criteria. In the 
literature we find vast amount of work covering model ensembles, meta-learning, 
lazy-learning, and multi-criteria decision making, but to the best of our knowledge 
there is no related work covering the intersection of these topics. 
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2.1 Model Ensembles  

Individual models (classifiers or predictors) have a performance ceiling, which limits 
their performance, regardless of the amount of training or tuning.  One way to raise 
this ceiling is by creating an ensemble of highly diverse models and performing a 
fusion of their outputs.  There is currently an entire scientific community,  
Multi-Classifier Systems (MCS), devoted to this area.  

The design of a successful classifier fusion system consists of three parts: design of 
the individual classifiers [18], selection of a set of classifiers [19-20], and design of the 
classifier fusion mechanism.  The most critical factor for an effective model fusion, 
however, is the diversity of the individual classifiers, where model diversity is defined 
in terms of the orthogonality of their errors [21].  Strategies for boosting such diversity 
include: 1) using different types of classifiers; 2) training individual classifiers with 
different data set (bagging and boosting); and 3) using different subsets of features.    

2.2 Meta- Learning and Lazy Learning  

Meta-learning literally means learning how to learn, but in our context it means 
learning how to use ML models.  Most meta-learning approaches deal with topics 
such as: Discovering meta-knowledge  (e.g. rule induction of rules from data to 
create a rule-based system that will solve the object-level problem); Stacked generali-
zation [22] (e.g. combining a number of different learning algorithms); Boosting (e.g. 
combining the same learning algorithm trained in different ways); Dynamic bias se-
lection (e.g. modifying the ML algorithm bias to match a given problem); and Induc-
tive transfer (e.g. trying to improve the learning process over time) [23]. 

An interesting approach is one proposed by Duch [24], in which he creates a 
framework of Similarity-Based Methods to represent many algorithms, such as k-NN, 
MLP, RBF, etc. A variant of the Best First Search is used to perform a local search 
for optimal parameters. 

In [25] Schaul attributes to Utgoff [26] the development of the first meta-learning 
system that learns parameters and to Schmidhuber [27] the first learning algorithm to 
learn other ML algorithms using evolutionary search in the model space (using GP for 
improving GP). According to Schaul: “…meta-learning can be used for automating 
human design decisions (e.g. parameter tuning) and then automatically revisiting and 
optimizing those decisions dynamically in the light of new experience obtained during 
learning. Another application is transfer of knowledge between multiple related 
tasks…” [25]. 

We endorse this goal, but our proposal is not limited to parameter tuning. Our key 
idea is not to focus on the optimization and tuning of pre-computed models. Rather, 
we aim to create model ensembles on demand, guided by the location of the query in 
the feature space.  This approach can be traced back to memory-based approaches 
[27-29], instance-based learning, and lazy-learning [30].  Figure 2 shows the Lazy 
Learning approach for locally weighted interpolation.   

For a query Q, defined as a point  in the state space X, and a set of data points 
defined in the cross-product X x Y, we find the points ,  that are close to 
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Q in their projection on X. We compute a matching score between the query and each 
of these data points, as a function of its proximity to the query. Such proximity is 
measured by a distance ,  that is interpreted as the dissimilarity between 
the two points in X. The distance is smoothed by a parameter h that defines the scale 
or range of the model. Usually h is computed by minimizing a cross-validation error. 
Each output  (corresponding to each of the points close to Q) is weighted by ap-
plying a kernel function K to this smoothed distance. A convex sum is used for the 
aggregation, which is identical to the Nadaraya-Watson estimator for non-parametric 
regressions using locally weighted averages. When dealing with extrapolation, 
weighted linear models are used instead of convex sums in the aggregation box, to 
provide for a better generalization [4]. 

 

 

Fig. 2. Lazy Learning (or Locally Weighted Kernel-based) Interpolation - adapted from [4] 

2.3 MCDM: Selection of Best Model Ensemble Based on Constrained  
Multi-Criteria 

We plan to create a dynamic ensemble that best satisfies a set of performance metrics, 
leveraging techniques in Multi Criteria Decision Making (MCDM). There is a vast 
amount of literature on MCDM, ranging from pioneering books [31-32], to many 
conference proceedings and articles focused on improving search methods, preference 
aggregations, interactive solution visualization, etc.  

The author’s perspective on MCDM is described in [33]. It can be summarized as 
defining a proper problem representation followed by the intersection of search, pre-
ference aggregation, and (when needed) interactive visualization of their solutions.  
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• Representation. A typical MCDM process starts with a set of constraints over the 
solution space, defining the feasible solution set. Each point from this set is 
mapped into a performance space, whose dimensions are the criteria used to eva-
luate the MCDM solutions.   

• Multi Objective Search. We search for the set of non-dominated solutions, forming 
the Pareto set. This step induces a partial ordering on the set of feasible solutions, 
and defines the concept of Multi-Objective Optimization (MOO). 

• Preferences. MCDM requires an additional step over MOO, which is the selection 
of one or more non-dominated solutions, to maximize our aggregated preferences, 
thus creating a complete order over the feasible solutions sets. 

• Interactive Visualization. In cases when the decision-maker is part of the solution 
refinement and selection loop, we need a process to enhance our cognitive view of 
the problem and enable us to perform interim decisions. We need to understand 
and present the impacts that intermediate tradeoffs in one sub-space could have in 
the other ones, while allowing him/her to retract or modify any intermediate deci-
sion steps to strike appropriate tradeoff balances. This last step will not be needed 
in our proposed MCDM approach. 

 

Fig. 3. Meta-Lazy Learning 

In our case, model creation is equivalent to creating the solutions set, while model fil-
tering generates the feasible solution set.  The model pre-selection, based on the meta-
information attached to each model, maps the solutions in the performance space and 
the extraction of the points in the Pareto set represents the MOO step. The model final 
selection, i.e. the selection of the k-tuple of local models with the least amount of error 
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correlation (via entropy maximization) reflects our preferences.  The aggregation is the 
final ensemble with the parameters defining dynamic fusion represents the outcome of 
the MCDM process, i.e. our customized ensemble on demand. Our approach is summa-
rized in Fig. 3 and will be further explained in sections 3 and 4. 

We have briefly covered the state of the art in multi classifier systems, lazy learn-
ing, meta-learning, and MCDM. Our goal is to address their intersection in a way that 
has never been investigated before.   

3 Summary of the Approach  

3.1 Cloud Computing, the Enabler 

Although the concept of model ensemble has been proposed and analyzed since the 
early 2000 [18], the idea of creating dynamic ensembles at run-time has not been 
proposed yet.  Such idea would not have been feasible or practical, had it not been 
for the advent of Grid- and Cloud-computing. After constructing an offline library of 
models with their associate meta-information, we can now leverage the cloud envi-
ronment, with its parallel computation and automated provisioning of processors, to 
implement this approach and provide fast run-time responses. Our approach is predi-
cated on a cloud-based Software as a Service (SaaS) paradigm. 

3.2 Lazy Meta-Learning 

In the ML literature, the concept of Lazy learning (LL) or memory-based learning 
departs radically from traditional ML approaches.  Instead of training a model from 
the data to become a functional approximation of the underlying relationships, the LL 
approach states that the model is in the data. Upon receiving a query, at run-time LL 
creates a temporary model by finding the closest points to the query and performing 
an aggregation (usually a weighted interpolation or extrapolation) of the outputs of 
those points. 

Our approach, labeled Lazy Meta-Learning, can be described by the analogy: Me-
ta-learning is Lazy Learning for models like learning is Lazy-Learning for data 
points. This approach can be described as a multi-criteria decision-making (MCDM) 
process, whose structure follows the steps defined in [5].  The model design is per-
formed by an offline meta-heuristics (the MCDM process), while the run-time model 
architecture is formed by an online meta-heuristics (the fusion module), and a collec-
tion of object models (the analytic models.) 

Within the scope of this paper, a model could be a one-class classifier for anomaly 
detection, a multi-class classifier for diagnostics, or a predictor for prognostics. Each 
model will have associated meta-information, such as its region of competence and 
applicability (based on its training set statistics), a summary of its (local) performance 
during validation, an assessment of its remaining useful life (based on estimate of its 
obsolescence), etc.   
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Fig. 4. Model Design: Offline Meta-Heuristics to design, tune, optimize, adapt to changes, and 
maintain the runtime models over time. Model Architecture: (a) Online Meta-Heuristics to 
integrate or interpolate among multiple local object-models, manage their complexity, and 
improve their overall performance; (b) Multiple object-models, either in parallel configuration 
(ensemble) or sequential configuration (cascade, loop), to integrate functional approximation 
with optimization and reasoning with imperfect data (imprecise and uncertain). 

3.3 MCDM Process for Model Creation and Dynamic Model Assembly 

We decompose the MCDM process into two stages:  

• Model Creation, an off-line stage in which we create the initial building blocks for 
the assembly and we compile their meta-information 

• Dynamic Model Assembly, an on-line stage in which, for a given query we select 
the best subset of models  

This process is followed by the execution stage, Dynamic Model Fusion, in which we 
evaluate the selected models and dynamically fuse them to solve the query. We will use 
different metrics to evaluate each stage, looking for coverage and diversity in the crea-
tion stage, while looking for accuracy and precision in the assembly and fusion stages. 

Model Creation: The Building Blocks. We assume the availability of an initial train-
ing set that samples an underlying mapping from a feature space X to an output y.  In 
the case of supervised learning, we also know the ground truth-value t for each record 
in the training set.  We create a library of diverse, local or global models. We in-
crease model diversity by using competing ML techniques trained on the same local 
regions. We assume that any of the sources mentioned in section 1.1 could be used to 
create these models. 

Dynamic Model Assembly: Query Driven Model Selection and Ensemble. This 
stage is divided into three steps:  

• Model Filtering, in which we retrieve the applicable models from the DB for the 
given query; 

• Model Pre-Selection, in which we reduce the number of models based on their 
local performance characteristics (bias, variability, and distance from the query); 

• Model Final Selection, in which we define the final model subset. 
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Fig. 5. Dynamic Model Assembly on Demand (Filtering, Selection) 

 

Fig. 6. Dynamic Model Fusion on Demand 
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Dynamic Model Fusion: Generating the Answer.  Finally, we evaluate the selected 
models and we aggregate their outputs after compensating for their biases and weight-
ing them by their proximity to the query (or by their estimated error) to generate the 
solution to the query. 

4 (The Devil Is in the) Details of Our Approach 

4.1 Model Creation  

This step is common to both regression and classification problems.  The premise is 
that local models, trained on regions of the feature space, usually will have smaller va-
riances than global models, trained on the entire space, providing that the local models 
are used only within their region of competence. Typically this requires a supervision 
mechanism (at the meta-level) to determine their degree of applicability and contribu-
tion to the final output.  We rely upon the model meta-information to make this as-
sessment. There are many ways to segment the original training set to define regions of 
competence for local models, but this topic is outside the scope of this paper. 

Library of m Local Models. As stated above, for each prediction or classification 
problem we want to generate a large number of global and local models.  We will 
assume that m is the total number of available models for each problem. 

Prediction Problems. Each regression model Mi will define a mapping: : ,  1, … , ;  | | ; | | 1;  ;  
In a more general case, we might want to predict multiple i.e., g variables, i.e.: 

 : ,  1, … , ;  | | ; | | 1;  ;  
Within the scope of this article we will limit ourselves to a single output. 

 
Classification Problems. Each classification model Mi will define a mapping: : ,  1, … , ; | | ; 1 , and C is the number of 
classes.  Within the scope of this article, we will assume that the classifier output is a 
probability density function (pdf) over C classes.  The first C components of the pdf 
are the probabilities of the corresponding classes.  The (C+1)th element of the pdf 
allows the classifier to represent the choice “none of the above” (i.e., it permits to deal 
with the Open World Assumption). The (C+1)th element of the pdf is computed as the 
complement to 1 of the sum of the first C components.  The final decision of classifi-
er  is the argmax of the pdf. 
 
Meta-information. Every time that we create a model, we need to capture its asso-
ciated meta-information, i.e., information about the model itself, its training set, and 
its local/global performance in the validation set.  Over time, we will define a stan-
dard API for this purpose. Table 1 summarizes our current preliminary thoughts on 
meta-information. The essence is to capture information that we can use later on to 
reason about the applicability and suitability of a model for a given situation (e.g., a 
set of queries).   



12 P.P. Bonissone 

Table 1. Meta-Information (Preliminary Version) 

Model Training Set Validation Set 
Label:  Label:  Label:  
Model Mapping:   :    ;     0,1  .  

Model Applicability:      
  Hyper-rectangle:    ,  is the range  
  of values of each of the 
n    
  features over  

Local Model Perfor-
mance:    
  CART Tree:   :

   ; 
 0,1 .   

 

Model Applicability: Hyper-rectangle HRi.  The Hyper-rectangle in the feature space 
defines each model’s region of competence1.  Each model  has a training set TSi, 
which is a region of the feature space X.  We define the Hyper-rectangle of each 
model , HR(Mi), to be the smallest hyper-rectangle that encloses all the training 
points in training set TSi.. If a query point q is contained in HR(Mi), we consider mod-
el  applicable for such query.  For a set of query points Q, we consider the model 
applicable if HR(Q) is not disjoint with HR(Mi).  

Local Model Performance.  We want to capture the local performance of the model by 
answering the question: “For this type of query, how reliable is this model?” For regres-
sion problems, we have used continuous case-based reasoning and fuzzy constraints 
[35], and lazy learning [36] to estimate the local prediction error. Within the same con-
text of regression problems, the authors replaced the run-time use of lazy learning with 
the compilation of local performance via CART trees [34] for the purpose of correcting 
the prediction via bias compensation [7]. For classification problems, we find a similar 
lazy learning approach [37] to estimate the local classification error.   

After many experiments to find the most efficient summary of the model perfor-
mance, we opted for using a CART Tree  that maps the feature space to the signed 
error computed in the validation set, i.e. : . 

Each CART tree T i will have a depth di, such that there will be up to 2di paths from 
the roots to the leaf nodes (for a fully balanced tree). For each tree, we store each path 
from the root node to each leaf node.  The path is as a conjunct of constraint rules 
that need to be satisfied to reach the leaf node. The leaf node is a pointer to a table 
containing the leaf node statistics: 

• Ni  – Number points in the leaf node (from the training/testing set) 
•  – Bias (Average error computed over Ni points) 
•  – Standard Deviation of the error computed over Ni points 
• Xdi  – Normalized centroid as percentage of its average (1,…,1) of the Ni points 

In the future, we will extend the meta-information to capture temporal and usage infor-
mation, such as model creation date, last usage date, and usage frequencies, which will 
be used by the model lifecycle management to select the models to maintain and update.  
                                                           
1 By defining the applicability of a model as its hyper-rectangle in the feature space, we are 

limiting the use of the model to interpolation. Should we choose to use it for extrapolation, 
we would consider queries outside the hyper-rectangle (within some fuzzy tolerance). 
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4.2 Dynamic Model Assembly on Demand 

Query Formulation: q or Q. To simplify the description of our approach we have 
used the case of the query being a single point query q. However, our approach can be 
easily generalized to the case when the query is a data set (time-series or time inde-
pendent).  Let’s refer to such query as Q=[q1, …, qz ].  In such case, the model filter-
ing described in section 4.3.1 will be modified.  Instead of retrieving for each point q 
those models  whose associated hyper-rectangles   contain q, i.e., 

, we retrieve all models  whose associated hyper-rectangles   are 
not disjoint with the Hyper-rectangle of Q, i.e.  .  This will 
avoid the overhead of multiple accesses to the DB2.  The model assembly, composed 
by the model pre-selection and model final selection steps, will be performed itera-
tively for every point query q in Q. So these steps, as well as final model evaluation 
and fusion, will be linear in the number of query points z.   The most efficient way to 
generate the set Q is to cluster similar query points using a k-d tree [38-39]. 

Model Filtering: From m to r Models. After creating m models, trained on their 
corresponding regions of the training space, we will organize the models in a database 
DB, whose indices will be derived from the models meta-information (see section 
4.1.2).  For a given query q, the MCDM process starts with a set of constraints to 
define the feasibility set.  In this case the constraints are:  

• Model soundness, i.e., there are sufficient points in the training/testing set to de-
velop a reliable model, competent in its region of applicability 

• Model vitality, i.e., the model is up-to-date, not obsolete 
• Model applicability to the query, i.e., the query is in the model’s competence  

region 

For each of the r retrieved models Mi, we will use a compiled summary of its perfor-
mance, represented by a CART tree Ti, of depth di, trained on the model error vector 
obtained during the validation of the model.   

Model Pre-selection: From r to p Models. We will classify the query using the same 
CART tree Ti, reaching leaf node Li(q).  Each leaf will be defined by its path to the 
root of the tree and will contain di constraints over (at most) di features. Leaf Li(q) 
will provide estimates of model Mi performance in the region of the query.  Follow-
ing the MCDM process described in section 3, we map each feasible solution (the r 
models) into the performance space. This space is defined by the following criteria: 

• Model bias: | | 
• Model variability  
• Model suitability for the query: ||qdi, Xdi ||2  (Distance of q di to the normalized cen-

troid (X di), computed in a reduced, normalized feature space d 
 

                                                           
2 This step might allow models that are irrelevant for a subset of points in Q. These models will 

be rejected in the model pre-selection (due to their high distances from the query point). 
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In this three dimensional space, we want to minimize all three objectives. We may 
further impose limits to the largest value that each dimension can have.   

                     

 

Fig. 7. Local Model Performance Space – r points represent r model performances 

We can use a Pareto Filter to extract all the non-dominated points in this space. 
Should the result be too limited, we can resort to additional Pareto set (after removing 
the previous tier), until we have p models.   
 
Model Final Selection: From p to k Models.  During the previous steps, we relied 
on meta-information to reduce the number of models from the original m models 
available in the DB, to r applicable models, to p suitable models.   Before perform-
ing the fusion, we need to make sure that the models are diverse, i.e. we need to ex-
plore the error correlation among smaller subsets of k models that we will use for 
generating the answer to the query.  This step would require generating all possible 

k-tuples chosen from p models to evaluate their error correlations, i.e. . Although, 

this is a much smaller number than , it is still an onerous step to take for each 

point.  So we will use a greedy search to further decrease this complexity.  
Models in an ensemble should be different from each other for the ensemble’s out-

put to be better than the individual models outputs.  The goal is to use an ensemble 
whose elements have the most uncorrelated errors.  In reference [21], Kuncheva and 
Whitaker propose six different non-pairwise diversity measures to determine the 
models difference.  We will use the Entropy Measure E, proposed in the same refer-
ence, as the way to find the k most diverse models to form the ensemble. Let’s create 
an N by k matrix M, such that N is the number of records evaluated by k models.   
 

Classification Problems. When the models are classifiers, cell M[i,j] contains a binary 
value Z[i,j] (1 if classifier j classified record i correctly, 0 otherwise).  This metric 
assumes that we already obtained each classifier decision on the training/validation 
records, by applying the argmax function to the pdf generated by the classifier. Then, 
we compute diversity of the k classifiers by using the Entropy measure E (modified 
from reference [21]): 

|μ| 

σ

D = ||qdi, Xdi ||2
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  ∑ ∑ , , ∑ ,       (1) 

E takes values in [0,1]. 

Prediction Problems. When the models are predictors, cell M[i,j] contains the error 
value e[i,j], which is the prediction error made by model i on record j.  In such case, 
we will follow the following process: 

• Histogram of Record Error: Compute a histogram of the errors for each record 
M[i,.]. We need to define a reasonable bin size for the histogram, thus defining the 
total number of bins, nmax. Let H(i,r) be the histogram for record i, where r de-
fines the bin number (r=1, nmax). 

• Normalized Histogram of Record Error: Normalize histogram H(i,r), so that its 
area is equal to one (becoming a pdf). Let HN(i,r) be the normalized histogram, i.e.: , ,∑ ,                                  (2) 

• Normalized Record Entropy: Compute the normalized record entropy of the pdf  
(so that its value is in [0,1]), i.e.: 

     ∑ , ,          (3) 

where  is a normalizing factor so that ent(i) takes values in [0,1] , ,∑ ,                               (4) 

• Overall Normalized Entropy: Average the normalized entropy over all N records: ∑                                  (5) 

E takes values in [0,1]. 
For both classifiers and prediction problems, higher overall normalized entropy 

values indicate higher models diversity.  

Greedy Search in Combinatorial Space. In both cases we will use a greedy search, 
starting from k=2 and compute the normalized entropy for each 2-tuple, to find the 
one(s) with the highest entropy. We will then increase the value of k to explore all 3-
tuples. If the maximum normalized entropy for the explored 3-tuples is lower than the 
maximum value obtained for the 2-tuples, we will stop and use the 2-tuple with the 
highest entropy.  Otherwise we will keep the 3-tuple with the highest entropy and 
explore the next level (k=4) and so on, until no further improvement can be found.  
With all the caveats of local search, this greedy approach will substantially reduce 
search complexity, as we will not need to explore all the combinations of ensembles. 
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4.3 Dynamic Model Fusion 

The last step in our approach is to perform the dynamic fusion of the selected k models. 
When probed with the query q, each model Mi will produce and output . Each 
model also has a corresponding CART tree Ti, which will be used to classify the query 
q.  In that case, the query will reach a leaf node Li(q) in the corresponding tree Ti.  The 
leaf node will contain the local statistics for the points similar to the query, such as the 
bias (average of the error) | , and the standard deviation of the error, | .  
 
Fusion for Regression Problems. After many design experiments, which will be 
described in details in a follow-up paper, we concluded that the best fusion schema is 
accomplished by using dynamic bias compensation and by weighting the compen-
sated output using a kernel function of the standard deviation of the error, i.e.: ∑ |∑                               (6) 

where: |
                                  (7) 

and h is the usual smoothing factor for the kernel function K(.) obtained by minimiz-
ing the cross-validation error. 
 
Fusion for Classification Problems.  As shown in reference [37], the classification 
problem can be cast in a fashion similar to the regression problem. In reference [37] 
we used a local weighting fusion (similar to [7] but for classifications), and used dy-
namic bias compensation with equal weight contributions for the selected models.  In 
section 6, we will discuss how to extend our approach, based on these preliminary 
results, to cover classification problems. 

5 Customized Analytics Applied to Power Plant Management 

5.1 Problem Definition  

In references [40-41] we described the optimization problem for a power plant man-
agement system, in which a coal-fired boiler drives a steam turbine to generate elec-
tric power.  For given environmental conditions, the problem was to determine the 
control variable set points that could generate the load (equality constraint), without 
exceeding CO and SO limits (inequality constraints), while minimizing both Heat 
Rate and NOx emissions. After using first-principles-based methods and domain-
knowledge to identify the relevant model inputs, we built a nonlinear neural-network 
to map the inputs space (control variable set-points) and time variable, ambient un-
controllable variables, to each of the outputs of interest, which represented our objec-
tives and constraints. As shown in the above references, we used an evolutionary 
multi-objective optimizer to evolve the set points and identify the Pareto-optimal set 
of input-output vector tuples that satisfy operational constraints.   
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Fig. 8. Power plant input-output relationships.  Each output (NOx, Heat Rate, Load) is mod-
eled by a committee of predictive neural networks (adapted from reference [7]). 

We noted the importance of reducing the neural networks uncertainty, as they gen-
erated the fitness function that drove the evolutionary search.  In reference [41] we 
showed how we managed the model extrapolation error by using the equivalent of 
continuous case-based reasoning. We also need to address the intrinsic model uncer-
tainty of the NNs. So, we performed preliminary experiments using the same data set, 
and created a fixed committee of neural networks, injecting diversity by bootstrapping 
their training set.  We noted that model performance was significantly improved by 
fusing the outputs from the ensemble of models. 

In references [36] we presented a method called locally weighted fusion, which ag-
gregated the results of multiple predictive models based on local accuracy measures of 
these models in the neighborhood of the probe point for which we want to make a  
prediction. This neighborhood was computed on demand, following a Lazy Learning 
technique.  In reference [7], we extended our experimentation by compiling the error 
information and avoiding the run-time search for the closest points.  Figure 8, adapted 
from reference [7] shows the (23-3-1) structure of the NN’s used in the ensemble. 

This paper is an extension of the work initiated in reference [7].  We have pro-
posed a complete architecture for selecting a dynamic committee of neural networks, 
and a dynamic fusion, based on the query and the meta- information.  We extended 
the experiments with the same data set to compare our results with the ones previous-
ly obtained in references [7, 36]. 

5.2 Preliminary Experimental Results 

The following tables show a sample of early experiments performed in [36] and [7], 
followed by the current experiments, in which we used part of the proposed  
architecture. 

 n = # inputs = 23 
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Table 2. Experimental Results (Baseline, Global, Local fusion without bias compensation) 

Exp. 
# 

Fusion Strategy Heat Rate 
MAE 

[Btu/KwHr] 

Heat 
Rate 

pg [%]

NOx 
MAE 

[lb/MBtu] 

NOx 
pg [%]

Load 
MAE 
[MW] 

Load 
pg [%] 

1 Baseline: average of 
30 predictors 

91.79 0.00 0.0228 0.00 1.05 0.00 

2 Best of 30 predictors 85.1 7.29 0.0213 6.58 0.987 6.00 
3 Global Average 87.15 5.06 0.0214 6.14 1.042 0.78 
4 Global GWF 86.91 5.32 0.0214 6.14 1.04 0.95 
5 Global Least Square 83.05 9.52 0.02 12.28 0.984 6.29 
6 H-Rect+W1 No bias 82.19 10.46 0.0202 11.40 1.024 2.48 
7 H-Rect No bias 87.15 5.06 0.0214 6.14 1.042 0.78 
8 H-Rect+W2 No bias 83.93 8.56 0.0208 8.77 1.03 1.93 
9 1-nn No bias 81.19 11.55 0.0214 6.14 1.008 4.02 
10 5-nn No bias 84.31 8.15 0.0206 9.65 1.029 1.97 
11 CART EW No bias  87.15 5.06 0.0213 614 1.042 0.78 
12 CART UW0 No bias 87.15 5.06 0.0213 614 1.042 0.78 

The data set was comprised by 8,000+ records of daily operations, sampling the 
mapping between operational set points under given environmental conditions and 
power plant outputs, such as Heat Rate (HR), NOx emissions, and generated load. 
Roughly 25% of these records were used as the validation set. 

In table 2, the baseline labeled as experiment 1, is the simple average of the outputs 
of the thirty neural networks. As such, the column labeled pg (percentage gain) is 0%. 
We will use percentage gain to show the percentage improvement over the baseline 
for each experiment. Experiment 2 reports the output of the best predictor (a posteri-
ori).  The remaining ten experiments in Table 2, show the results of various fusion 
combinations, without performing bias compensation, i.e., weighing the outputs of the 
models using different fusion schemes: variations of global fusion (experiments 3-5), 
local fusion based on Lazy learning (experiments 6-10), and CART trees to selected 
the local points (experiments 11-12).  Most of these results were reported in refer-
ence [36].  The conclusion from this table is that without bias compensation the im-
provements are marginal: HR pg: 11%, NOx pg: 12%; Load pg: 6%. 

In Table 3, we perform bias compensation for all experiments. In a separate set of 
experiments (not shown for sake of brevity) we concluded that the best CART trees 
are the one mapping the feature space to the signed error (as opposite to the unsigned 
error or the output of the model).  Thus, with the exception of experiments 13-17, 
which show the results for lazy leaning type of local fusion (i.e., without using CART 
tree as part of the meta-information), all other experiments (18-33) use the signed 
error derived CART tree to compile their local performance in the validation set. 

Experiments 18-27 show the result of using all thirty models with different weight-
ing schemas: from equal weights (exp. 18), to unequal weights derived from linear or 
exponential kernel functions using as arguments various elements of the performance 
space in the pre-selection stage, e.g., distance of the query from the centroid, standard 
deviation of the error, etc.  Overall the results are comparable (with very similar 
standard deviations of the error).  The best result in this set of the experiments is 
from Unequal Weights-7 (UW7), in which we used a linear kernel function and the 

standard deviation of the error, i.e.: 
|

. 
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Table 3. Experimental Results (All with bias compensation, CART trees) 

Exp. # Fusion Strategy Heat Rate 
MAE 

[Btu/KwHr] 

Heat 
Rate 

pg [%]

NOx 
MAE 

[lb/MBtu] 

NOx 
pg [%] 

Load 
MAE 
[MW] 

Load 
pg [%] 

13 H-Rect+W1 bias 69.20 24.61 0.0140 38.60 0.855 18.57 
14 H-Rect bias 69.23 24.58 0.0140 38.60 0.855 18.56 
15 H-Rect+W2 bias 69.16 24.66 0.0140 38.60 0.854 18.63 
16 1-nn bias 72.99 20.48 0.0143 37.28 0.861 17.98 
17 5-nn bias 76.34 16.83 0.0169 25.88 0.903 14.04 
18 CART EW bias  60.62 33.96 0.0117 48.68 0.718 31.62 
19 CART UW0 bias (nf) 68.56 25.31 0.0148 35.09 0.817 22.19 
20 CART UW1 bias (nf) 60.57 34.01 0.0111 51.32 0.725 30.92 
21 CART UW2 bias (nf) 60.45 34.14 0.0116 49.12 0.719 31.50 
22 CART UW3 bias (nf) 64.62 29.60 0.0130 42.98 0.733 30.20 
23 CART UW4 bias (nf) 62.31 32.12 0.0125 45.18 0.721 31.35 
24 CART UW5 bias (nf) 60.10 34.53 0.0145 36.40 0.792 24.59 
25 CART UW6 bias (nf) 59.75 34.90 0.0129 43.42 0.745 29.04 
26 CART UW7 bias (nf) 59.77 34.88 0.0115 49.56 0.713 32.10 
27 CART UW8 bias (nf) 61.87 32.60 0.0122 46.49 0.743 29.25 
28 CART UW7 bias (f1) 59.75 34.91 0.0117 48.68 0.721 31.35 
29 CART UW7 bias (f2) 65.04 29.14 0.0135 40.79 0.776 26.10 
30 CART UW7 bias (f3) 64.82 29.38 0.0130 42.98 0.772 26.46 
31 CART UW7 bias (f4) 62.18 32.26 0.0122 46.49 0.744 29.12 
32 CART UW7 bias (f5) 60.54 34.04 0.0117 48.68 0.726 30.86 
33 CART UW7 bias (f6) 59.69 34.98 0.0116 49.12 0.716 31.86 

 

 

Fig. 9. Summary of experimental results 
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Finally, in experiments 28-33, we fixed this weighting scheme and searched for the 
best value of p, the number of models to use in the ensemble.  The results, only valid 
for this specific application and for the initial DB of models, indicate that ~80% of the 
models provide the best results.  All experiments results are illustrated in figure 9. 

6 Conclusions 

6.1 Analysis for Regression Problems 

The experiments presented in this paper are preliminary in nature and have not com-
pletely exercised our approach.  By using thirty neural networks trained on the entire 
feature space, we did not compare global and local models.  As a result, we did not 
need to perform the filtering stage, i.e., r = m =30.  The selection process indicated 
that the best performance was obtained with about 80% of our models (i.e., p = 25).  
This was the result of performing a local search in the number of models. This 
process should be repeated for different applications and for a different DB of models. 
From the same experiments, we learned that there are statistically significant differ-
ences in performing dynamic bias compensation, and in using the local bias compiled 
in the CART trees. After experimenting with unsigned error, model output, and 
signed error, we concluded that the latter was the best way to generate the CART 
trees as part of the models meta-information.  Finally, given that we controlled the 
original model generation and used bootstrapped training sets to inject diversity in the 
models, we did not need to perform an entropy-based final selection stage (i.e., p = k 
= 25).  However, we will need to execute this step for larger DB of models in which 
we are agnostics about the model generation process. Our next step will be to test this 
hypothesis, by creating a DB with hundreds of models, generated by FlexGP [16], 
and exercising the remaining stages of our approach. The following table summarizes 
our current findings. 

Table 4. Regression Problems: Design Parameters and Processes (Preliminary Version) 

Design Phase Design Choices Generalization / Process 
Meta-Information CART Trees based on signed 

error; limited pruning 
OK for all regressions 

Model Filtering 
 

N/A: All global models appli-
cable by construction  

Process: Apply Hyper-
rectangles for local models 

Model Pre-Selection 80% of applicable models (for 
this application) 

Process: Greedy search in 
error space to find number of 
pre-selected models  

Final Model Selection N/A: model diversity built-in 
with bootstrapping  

Process: Greedy search in 
entropy space to find error-
uncorrelated models 

Dynamic Fusion Dynamic bias compensation 
(μe from leaf node) 
Unequal weights based from 
kernel function based on mod-
el prediction error (σe) 

OK for all regressions 
 
OK for all regressions 
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6.2 Future work for Classification Problems 

In reference [37], we used lazy learning to perform local fusion for classification 
problems. We want to extend our approach to these types of problems and design a 
set of experiments to validate it. Specifically, let us assume that a classifier maps a n-
dimensional feature space X into a C-dimensional space Y, where C is the number of 
classes.  Then, the output of each model k for the training record j, is a normalized 
probability density , where  is a (C+1) dimensional vector. The error of 
each model k for the training record j is computed as , 
where  is a binary C+1 dimensional vector in which only one element is 1, indi-
cating the correct classification for training record j.  Since  is a normalized 
probability density, then the sum of all the elements of  equals 0. 

By following a process similar to the one for the regression problems, we will train 
a CART Tree Tk for each class value. The tree will map the feature space X to the 
error vector e (for that specific class value), such that in each leaf node we will cluster 
the subset of the training records that have similar classification errors.  We will 
compute the mean error of the kth classifier over the points in each leaf node. In a fa-
shion similar to the regression, we will refer to the average error of the leaf node 

, in which query q was classified, as | . For a given query we will use the 
same model assembly steps (filtering, preference, and final selection based on entropy 
maximization). For the selected k models, we will perform a similar bias compensa-
tion.  For the case when all k models are equally weighted, we have:  
 ∑ |                             (8) 
 
We also plan to perform a design of experiments to determine the most appropriate 
weighting scheme for each model in a manner similar to our regression experiments.  
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Abstract. Neuroevolution is a promising approach for constructing in-
telligent agents in many complex tasks such as games, robotics, and de-
cision making. It is also well suited for evolving team behavior for many
multiagent tasks. However, new challenges and opportunities emerge in
such tasks, including facilitating cooperation through reward sharing and
communication, accelerating evolution through social learning, and mea-
suring how good the resulting solutions are. This paper reviews recent
progress in these three areas, and suggests avenues for future work.

Keywords: Neuroevolution, neural networks, intelligent agents, games.

1 Introduction

Neuroevolution, i.e. evolution of artificial neural networks, has recently emerged
as a powerful approach to constructing complex behaviors for intelligent agents
[11,24]. Such networks can take a number of simulated or real sensor values
as input, and perform a nonlinear mapping to outputs that represent actions
in the world such as moving around, picking up objects, using a tool or fir-
ing a weapon. Recurrency in neural networks allow then to integrate infor-
mation over time, and make decisions robustly even in partially observable
domains where traditional value-function based reinforcement learning tech-
niques [42] have difficulty. Neuroevolution has thus been useful in building intel-
ligent agents for e.g. video games, board games, mobile robots, and autonomous
vehicles [40,13,45,12,21,16,23].

Much of the work so far has focused on developing intelligent behaviors for
single agents in a complex environment. As such behaviors have become more
successful, a need for principled multiagent interactions has also risen. In many
domains such as video games and robotics, there are actually several agents that
work together to achieve a goal. A major part of being effective in such domains
is to evolve principled mechanisms for interacting with other agents. Neuroevolu-
tion is a natural approach to multiagent systems as well: The evolving population
provides a natural team setting, and neural networks allow implementing team
sensing and interactions in a natural manner.

It turns out the multiagent perspective brings entirely new challenges and
opportunities to neuroevolution research. This paper reviews recent progress
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in three of them: Setting up evolution so that effective collaboration emerges,
combining evolution with learning within the team, and evaluating the team
behaviors quantitatively.

First, how should evolution be set up to promote effective team behaviors.
That is, when the team is successful, should the rewards be distributed among
team members equally, or should individuals be rewarded for their own perfor-
mance? Should the team members communicate explicitly to coordinate their
behavior, or is it sufficient to rely on changes in the environment (i.e. stigmergy)?
How much should collaboration be rewarded for it to emerge over simpler in-
dividual behaviors? Experiments illustrating these issues will be reviewed in
section 2.1.

Second, being part of a team provides an opportunity not only for coordinat-
ing actions of several team members, but also of learning from one another in
the team. How should just learning be best established? Should the population
champion be used as a teacher, or is it better to learn from any successful be-
havior in the population, in an egalitarian fashion? If everyone is learning based
on the same successful behaviors, how can diversity be maintained in the popu-
lation? Is learning useful in driving evolution through the Baldwin effect, or is
it more effective to encode the learned behaviors directly to the genome through
Lamarckian evolution? Section 3 evaluates possible solutions to these issues.

Third, given that multiagent behaviors can be particularly complex, depend-
ing on interactions between the team members, the environment, and opponents,
how can they be best characterized and evaluated? For instance in a competi-
tive environment, can a tournament be set up to evaluate the strengths of teams
quantitatively? Is there a single best behavior or are multiple roughly equally
good different solutions possible? Are best behaviors shared by everyone on the
team, or is it better to have different specialties, or even on-line adaptation?
These issues are discussed in the context of a comprehensive NERO tournament
in section 4.

2 Setting up Multiagent Neuroevolution

As described below in separate sections, prey capture by a team of predators is
used as the experimental domain to study how reward structure and amount and
coordination mechanism affect multiagent evolution. An advanced neuroevolu-
tion method of multi-component-ESP will be used to evolve the controller neural
networks.

2.1 Predator-Prey Environment

A significant body of work exists on computational modeling of cooperation in
nature. For instance, flocking behaviors of birds and schooling of fish have been
modeled extensively using rule-based approaches [6,31,37]. Cooperative behav-
ior of micro-organisms like bacteria and viruses has been modeled with genetic
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algorithms [22,33]. Ant and bee colonies have been the subject of many stud-
ies involving evolutionary computation as well [9,29,47]. Similarly, as a research
setting to study how cooperation can best emerge in multiagent neuroevolution,
predator-prey simulation environment was constructed to model hunting behav-
iors of hyenas. This environment provides immediate motivation and insight from
nature; it is also easy to simulate with quantifiable results.

In this environment, a team of predators (hyenas) is evolved using cooperative
coevolution to capture fixed-behavior prey (a gazelle or a zebra). The world in
this simulation is a discrete toroidal environment with 100 × 100 grid locations
without obstacles, where the prey and predators can move in four directions:
east, west, north and south. They move one step at a time, and all the agents
take a step simultaneously. To move diagonally, an agent has to take two steps
(one in the east-west direction and one in the north-south direction). A predator
is said to have caught a prey if it moves into the same location in the world as
the prey. The predators are aware of prey positions and the prey are aware of
predator positions. Direct communication among predators (in terms of knowl-
edge of other predators’ positions) is also introduced in some cases. In all other
cases, the predator agents can sense only prey movements and have to use that
to coordinate their actions (stigmergic communication). There is no direct com-
munication among the prey. Each predator has as its inputs the x and y offsets
of all the prey from that predator. In the case of communicating predators, they
also get as input the x and y offsets to the other predators. When fitness re-
wards from prey capture are shared, all the predators gain fitness even when
only one of them actually catches the prey. In cases with individual fitness, only
the particular predator that captures the prey gets the reward.

There are two types of prey in the environment - a smaller prey (gazelle) that
moves with 0.75 times the speed of the predator and a larger prey (zebra) that
has the same speed as the predator. The prey behaviors in these experiments
are hard-coded and do not evolve. Each prey simply moves directly away from
the current nearest predator. The predators can therefore catch the smaller prey
individually, but cannot catch the larger prey by just following the prey around,
because their grid world is toroidal. The predators have to surround a zebra from
different directions before they can catch it. In cases where both types of prey
exist in the field simultaneously, the predators need to decide whether to catch
the small prey individually or to coordinate and hunt the larger prey together.
The larger prey give more reward than the smaller prey, and the relative reward
amounts can be varied.

Thus, three parameters are progressively modified in these experiments: (1)
whether only the individual actually catching the prey receives the fitness, or
whether it is shared by all individuals, (2) whether the predators can observe
one another or not (direct vs. stigmergic communication), and (3) the size of the
fitness reward from catching a prey. These experiments are used to contrast the
role of each of these parameters in the evolution of cooperation.
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Fig. 1. Multi-Component ESP in the predator-prey domain for predator agent in Ex-
periment 1. A single predator agent (shown in (b)) is composed of five neural networks.
Four of these sense one of the prey agents. Their outputs are given to a fifth combiner
network that outputs the next move for that predator. Each network is evolved in a
separate ESP process, where one subpopulation is evolved for each of the neurons in
the network (a). The predator is evaluated in the domain simulation with prey and
other predator agents (c). Its fitness is distributed equally among all the networks and
among all the neurons that participated in it. In this manner, evolution can discover
neurons and networks that cooperate well to form an effective agent.

2.2 The Multi-component ESP Neuroevolution Method

Coevolution is defined as the simultaneous evolution of two or more individuals
whose fitness is measured based on their interactions with each other [25]. In
cooperative coevolution, the individuals have to evolve to cooperate to perform
a task. They share the rewards and punishments of their individual actions
equally. It turns out that it is often easier to coevolve components that cooperate
to form a solution, rather than evolve the complete solution directly [15,26]. The
components will thus evolve different roles in the cooperative task.

For example, in the Enforced SubPopulations (ESP) architecture [15], neurons
selected from different subpopulations are required to form a neural network
whose fitness is then shared equally among them. Such an approach breaks a
complex task into easier sub-tasks, avoids competing conventions among the
component neurons and makes the search space smaller. These effects make
neuroevolution faster and more efficient.

Similarly, Multi-Component ESP extends this approach to evolve a team of
agents (Figure 1). Each agent comprises multiple ESP-type neural networks to
sense different objects in the environment. The team’s reward from fitness eval-
uations is shared equally by the component networks of all the agents [30].
The cooperative coevolution approach has been shown to be effective when
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Fig. 2. Average number of prey (zebras) caught (out of four possible) in Experi-
ments 1, 2, 3 and 4. The total number of prey caught by the three predators was
averaged over 6000 trials for each generation. Cooperation is slow to evolve with indi-
vidual rewards and without communication, and is less efficient (Experiment 1). Intro-
duction of reward sharing results in faster and more effective evolution of cooperation
(Experiment 2). Knowledge of positions of other predators makes it easier to evolve
coordinated hunting strategies (Experiment 3). Evolution of cooperation is strongest
when reward sharing and communication are combined (Experiment 4).

coevolving teams of agents. First, Yong and Miikkulainen [51] showed that a
team of predators that share fitness can evolve to cooperate to catch prey with
or without communication. In their experiments, without communication, the
roles the predators evolve are more rigid but more effective; with communication,
their roles are less efficient but more flexible. Second, Rawal et al. [30] showed
that the Multi-Component ESP architecture can coevolve a team of predators
with a team of prey. The individuals cooperate within the team, but the preda-
tor team competes with the prey team. Therefore, the Multi-Component ESP
architecture will be used to evolve the predators in this paper as well.

In prior work, the outputs of the neural networks within a predator or prey
agent were summed to get the final output action. However, preliminary experi-
ments showed that including a combiner network to combine the outputs of these
networks was more powerful and resulted in the emergence of more complex be-
haviors. Hence, this technique was used in this paper (Figure 1). The combiner
network weights were evolved using the same technique as the other networks.

2.3 Experimental Setting Results

In the control experiment (Experiment 1), the predators neither communicate
nor share fitness. Cooperation does not evolve initially and as a result, they
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Fig. 3. Average number of zebras caught in Experiments 5 and 6. The total number
of prey (out of one possible) caught by the three predators was averaged over 6000
trials for each generation. When the payoff on capturing a zebra is low with respect to
the difficulty of catching it (Experiment 5), the predators prefer to hunt the easy-to-
catch gazelles individually. When the net return for capturing the zebra is high enough
(Experiment 6), the predators evolve to discover cooperative strategies to hunt it. Once
it is caught, they continue by hunting gazelles.

rarely catch any zebras. On the other hand, adding reward sharing (Experi-
ment 2) increases the number of prey caught as the predators efficiently evolve
to cooperate over the early generations. The average number of zebras caught
in each generation in Experiments 1 and 2 are contrasted in Figure 2.

Similarly, adding communication to predators with individual fitness in Ex-
periment 3 results in the predators easily evolving to cooperate, leading to more
prey captures (Figure 2). This effect is even stronger with both communication
and fitness sharing enabled (Experiment 4; Figure 2), suggesting that these two
factors affect different aspects of the evolution process, i.e. how easy it is to
establish cooperation, and how worthwhile it is.

Experiments 5 and 6 were designed to answer the question: If there are both
gazelles, which can be caught easily but give a lower fitness, and zebras, which
need all the predators to cooperate to catch them but give higher fitness, which
one is preferred? In Experiment 5, the predators prefer to hunt gazelles instead of
evolving to cooperate to capture the zebra. The reward for catching the zebra is
not large enough for cooperative behaviors to be selected during evolution. In con-
trast, in Experiment 6, it is large enough, and the predators slowly evolve to team
up to capture this more difficult prey, thus verifying the hypothesis that net return
is important in the evolution of cooperation (Figure 3). Interestingly, they are still
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able to hunt gazelles as well, but only do it when there are no zebras around even
though zebras are still hard to catch. This result is important because it suggests
that cooperative strategies include individual strategies as a special case.

2.4 Experimental Setting Conclusions

The experiments confirmed that predator coordination mechanism, reward struc-
ture, and net return on prey capture are important factors in the evolution of
efficient cooperative hunting behaviors. When hyenas survive on gazelles, they
do not need to cooperate. However, if the zebras are available and tasty enough,
they will. These results are intuitive, but this is the first time easily replicable
experiments were constructed to verify them. The same factors that were estab-
lished to be important in the evolution of cooperation in this domain can be
manipulated in more complex artificial environments to build interesting behav-
iors for other intelligent agents in the future.

3 Combining Evolution with Social Learning

After a brief motivation for social learning in multiagent neuroevolution, the
robot foraging domain and the NEAT neuroevolution method are briefly de-
scribed, followed by results answering the questions posed in section 1.

3.1 Motivation for Social Learning

Evolutionary algorithms (EAs) [14] evaluate agents either in isolation or in di-
rect competition with a subset of the other members of the population. Social
and cultural learning algorithms [32] extend EAs by enabling agents to leverage
observations of other members of the population to improve their own perfor-
mance during their lifetime. By learning from others without having to directly
experience or acquire knowledge, social learning algorithms have been able to
improve the learning rate of EAs in many challenging domains [8,17,46,1,7,48].

Traditionally in social learning algorithms, each agent is either a student or
a teacher [28,2]. All actions of the teacher agents are considered to be good
examples from which to learn, as they are derived from a high-fitness strategy
(i.e. the teacher’s policy). However, an agent with high overall fitness may not
always choose good actions and agents with low overall fitness may actually
perform well in some limited scenarios. Filtering potential observations based on
their own merit may therefore be more appropriate and lead to both improved
learning rate and stronger final strategies.

This paper presents Egalitarian Social Learning (ESL) as an alternative to
the student-teacher paradigm. Agents in ESL are divided into subcultures at
the start of each generation and can learn from any other agent in their subcul-
tural group. Learning examples are determined by a user-defined acceptability
function that filters out examples leading to low rewards. When an action is ac-
cepted, agents mimic it in order to learn a policy similar to that of the observed
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agent. ESL differs from other social learning algorithms in that the quality of a
training example is measured by the reward received rather than the fitness of
the agent generating the example.

3.2 The Foraging Domain

The domain used to evaluate ESL is a foraging world in which agents move freely
on a continuous toroidal surface. The world is populated with various plants,
some of which are nutritious and bear positive reward, while others are poisonous
and bear negative reward. These plants are randomly distributed over the surface
of the world. The foraging domain is non-competitive and non-cooperative; each
agent acts independently of all other agents, with the exception of the teaching
signals that pass between them. At the start of each generation, all individuals
begin at the center of the world, oriented in the same direction, and confronted
with the same plant layout and configuration. Every agent then has a fixed
number time steps to move about the surface of the world eating plants— which
happens automatically when an agent draws sufficiently close to one— before
the evaluation is over.

Agents “see” plants within a 180◦ horizon via a collection discretized sensors.
Each agent has eight sensors for each type of plant, with each sensor covering
a different 12.5◦ sector of the 180◦ ahead of the agent. Agents cannot see other
individuals or plants they have already eaten— all they can see is edible food.
The strength of the signal generated by each plant is proportional to its proximity
to the agent. Agents also have a sensor by which they can detect their current
velocity. As agents can only turn up to 30◦ in a given timestep, knowledge
of velocity is necessary for agents to accurately plan optimal trajectories (e.g.
agents may need to slow down in order to avoid overshooting a plant). Each
agent is controlled by an artificial neural network that maps from the agent’s
sensor readings to the desired change in orientation and velocity.

Two separate configurations of the robot foraging world are used in the experi-
ments. The first two experiments use a “simple” world where the toroidal surface
is 2000 by 2000 units, with a single plant type of value 100 and 50 randomly dis-
tributed instances of the plant. In this world, the agents have a straightforward
task of learning to navigate efficiently and gather as many plants as possible. The
third set of experiments uses both the simple world and a second, more complex
world to evaluate performance. The “complex” world has a surface of 500 by 500
units, with five different plant types of value -100, -50, 0, 50, and 100. For each
plant type, 20 instances are created and randomly distributed across the surface.
This world presents the agents with a more difficult task as they must efficiently
gather nutritious food while simultaneously avoiding the poisonous food.

In all four experiments, 100 different agents are created in each generation.
All networks are initialized with fully-connected weights with no hidden neurons
and a learning rate of 0.1 is used when performing backpropagation. Agents au-
tomatically eat any plant within five units. Each evaluation lasts 1000 timesteps



32 R. Miikkulainen et al.

and the results for each experiment are the average of 30 independent runs. The
acceptability function for all experiments is to learn from any action yielding a
positive reward.

3.3 The NEAT Neuroevolution Method

NeuroEvolution of Augmenting Topologies (NEAT)[39] is an evolutionary algo-
rithm that generates recurrent neural networks. Through a process of adding
and removing nodes and changing weights, NEAT evolves genomes that unfold
into networks. In every generation, those networks with the highest fitness repro-
duce, while those with the lowest fitness are unlikely to do so. NEAT maintains
genetic diversity through speciation and encourages innovation through explicit
fitness sharing.

In the foraging domain, NEAT is used to generate a population of individual
neural networks that control agents in the world. The input to each network is the
agent’s sensors, and the outputs control the agent’s velocity and orientation. The
fitness of each network is determined by the success of the agent it controls—
over the course of a generation, networks that control agents who eat a good
deal of rewarding food and very little poison will have high fitness and those
that control agents with less wise dietary habits will have low fitness.

In standard NEAT, the networks that are created do not change within one
generation. To facilitate social learning, we must perform backpropagation [34]
on the networks that NEAT creates in order to train agents on accepted exam-
ples. Since NEAT networks are recurrent, ESL enhances NEAT with backprop-
agation capabilities using the backpropagation through time algorithm [49].

The final fitness of each phenome, then, reflects the performance of the individ-
ual that used that phenome and elaborated on it over the course of a generation.
This elaboration drives evolution in two alternate ways. In Darwinian evolution,
the changes that were made to the phenome only affect selection and are not
saved; in Lamarckian, the genome itself is modified.

3.4 Social Learning Results

Three experiments were performed: ESL was first applied to the entire popula-
tion (without subcultures), and the best way to make use of learning (Darwinian
vs. Lamarckian) determined. The effect of maintaining diversity through explicit
subcultures was then evaluated. In the third experiment, ESL was compared to
the traditional student-teacher model of social learning.

Figure 4 shows the results of applying a monocultural egalitarian social learn-
ing algorithm to the foraging domain in both the Lamarckian and Darwinian
paradigms. The performance of both algorithms quickly converges, with Lamar-
ckian reaching a higher-fitness solution than Darwinian evolution. In the context
of on-line evolutionary learning algorithms, previous work [50] showed that Dar-
winian evolution is likely to be preferable to Lamarckian evolution in dynamic
environments where adaptation is essential and the Baldwin effect [38] may
be advantageous. However, as adaptation is not necessary for foraging agents
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Fig. 4. The effects of Darwinian and Lamarckian evolution when using a monocul-
tural variant of ESL. While both evolutionary paradigms converge rapidly Lamarck-
ian evolution is more effective than Darwinian in the foraging domain. Consequently,
Lamarckian evolution is the paradigm used in all remaining experiments.

(i.e. the rewards of each plant type are the same in every generation), in this
experiment Lamarckian evolution outperforms Darwinian evolution. Neverthe-
less, in both cases performance converges to a lower score than that of simple
neuroevolution.

On the other hand, monocultural Lamarckian social learning is likely to pro-
vide redundant information that may result in getting stuck in local optima. In
order to address this problem, subcultural version of egalitarian social learning
was designed to promote and protect diversity. At the start of each genera-
tion, the population is divided into 10 subcultures of 10 agents each, with each
agent’s subculture decided at random. During the evaluation, agents only teach
and learn from other agents in their own subculture.

Figure 5 shows results comparing monocultural and subcultural learning.
Subcultural learning not only reaches a higher peak than the monocultural
method, but also arrives at this level of fitness more rapidly than the simple
neuroevolution approach. When every mutated organism has the opportunity to
train every other, as is the case in monocultural learning, the entire population
may be negatively impacted by any one individual. By preventing agents that
lead the population towards local optima from impacting the remainder of the
population, subcultural learning provides safety and protection from premature
convergence.

In the third set of experiments, subcultural ESL is compared to an on-line
student-teacher learning algorithm inspired by the NEW TIES system [17].
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Fig. 5. Monocultural agents learning from the entire population and subcultural agents
learning only from their subcultures. Subcultural agents outperform monocultural
agents, converging to a much higher ultimate fitness.

The system utilizes a steady-state evolution in which at every timestep each
agent probabilistically teaches the lowest-fitness member of the population within
some radius, effectively forming geographical subcultures.

Figures 6 and 7 show the results of the subcultural ESL algorithm compared
to the student-teacher variant of NEW TIES and simple neuroevolution. Subcul-
tural ESL converges to a near-optimal solution faster than the student-teacher
variant in both the simple and the complex world. While in the simple world
(Figure 6) this speed-up is slight, in the complex world (Figure 7) the egalitarian
approach is more than an order of magnitude faster, reaching a higher fitness by
generation 50 than either the student-teacher or simple neuroevolution methods
achieve by generation 500.

3.5 Social Learning Conclusions

Unlike traditional social learning algorithms that follow a student-teacher model,
ESL teaches agents based on acceptable actions taken by any agent in its subcul-
ture. By constraining teaching samples to those from the same subcultural group,
ESL promotes diversity in the overall population and prevents premature con-
vergence. Experiments in a complex robot foraging domain demonstrated that
this approach is highly effective at quickly learning a near-optimal policy with
Lamarckian evolution. The results thus suggest that egalitarian social learning
is a strong technique for taking advantage of team behaviors that exist in the
evolving population.
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Fig. 6. ESL compared to simple neuroevolution, and student-teacher learning in the
simple world. All strategies converge to solutions of similar quality, with egalitarian
learning converging in the fewest evaluations.

4 Evaluating Multiagent Performance

4.1 Motivation

The NERO video game [40] was originally developed to demonstrate that neu-
roevolution could be a powerful tool for constructing solutions to open-ended
design problems. A human player provides increasingly challenging goals, and a
team of NPCs evolves to meet those goals, eventually excelling in the game. Com-
plex behavior was demonstrated in a number of different challenge situations,
such as running a maze, approaching enemy while avoiding fire, and coordinat-
ing behavior of small sub-teams. However, the final behavior of entire teams was
never evaluated, so it is not clear how complex the behaviors could become in
this process and what successful behavior in the game might actually look like.
Also, it is not clear whether there is one simple winning strategy that just needs
to be refined to do well in the game, or whether there are multiple good ap-
proaches; similarly, it is unclear whether winning requires combining individuals
with different skills into a single team, or perhaps requires on-line adaptation of
team composition or behaviors.

In any case, such evaluations are difficult for two reasons: (1) designing teams
takes significant human effort, and covering much of the design space requires
that many different designers participate; (2) evaluation of the resulting behav-
iors takes significant computational effort, and it is not clear how it can be
best spent. This paper solves the first problem by crowd-sourcing, i.e. running
a NERO tournament online. Students in the 2011 Stanford online AI course1

1 www.ai-class.com

www.ai-class.com
http://www.ai-class.com/
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Fig. 7. ESL compared to simple neuroevolution, and student-teacher learning in the
complex world. ESL is more than an order of magnitude faster, reaching a higher fitness
by generation 50 than either comparison method achieves by generation 500.

were invited to participate. About 85 of them did, many spending considerable
effort to produce good teams, thereby resulting in a wide selection of approaches
and solutions. The second problem was solved by first testing out different tour-
nament structures, and eventually running a comprehensive round robin tour-
nament of 24,180 games in parallel in a Condor cluster. The results from the
tournament were then used to identify complex and interesting behaviors that
perform well on the task.

4.2 The NERO Domain

NERO [41] was originally developed as an experimental platform for training
teams of agents to accomplish complex tasks based on the rtNEAT [39] method
for evolving artificial neural networks. The rtNEAT method is a version of
NEAT described in the previous section, with the difference that individuals
are evaluated, reproduced, and replaced continuously instead of in generations.
This approach allows running evolution in the background continuously in real-
time without distracting the human player. The original NERO game was later
extended into an open-source version called OpenNERO,2 which is a general-
purpose platform for AI research and education [20]. OpenNERO includes sev-
eral different environments and AI methods in addition to the NERO game
environment itself, but only the NERO environment in OpenNERO was used in
this research.

Each NERO agent on a team has a fixed array of 15 sensors that detect
agents on the same and opposite teams, placement of nearby walls, distance to

2 opennero.googlecode.com

opennero.googlecode.com
http://opennero.googlecode.com/
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Fig. 8. A screenshot of a single NEROmatch. Two teams of agents are shown as bipedal
robots in a playing arena with obstacles and boundaries. The teams start opposite each
other on the two sides of the obstacle wall in the middle and have to get around this
obstacle to damage opponents and earn points.

a flag (if present), current motion, damage to opponents, and damage to the
agent itself. Agents control their movement on the field using a two-dimensional
control signal u =< r̈, θ̈ >, where r̈ is the linear acceleration of the agent in
the direction of the agent’s current orientation θ, and θ̈ is the agent’s angular
acceleration.

Training teams in OpenNERO is similar to NERO. The user can dynamically
change the virtual environment by adding, scaling, rotating or removing walls,
moving a flag, and adding or removing immobile enemy agents. The user can also
change the way the fitness function is computed by adjusting a (positive or neg-
ative) weight on each of the different available fitness dimensions. The available
fitness dimensions are stand ground (i.e. minimize ṙ), stick together (minimize
distance to the team’s center of mass), approach flag (minimize distance to a
flag on the field, if present), approach enemy (minimize distance to the closest
enemy agent), hit target (successfully fire at an enemy), and avoid fire (minimize
accrued damage).

For the battle task, two teams—each consisting of 50 NERO agents—occupy
a continuous, two-dimensional, virtual playing field of fixed size (see Figure 8).
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The playing field contains one central obstacle (a wall), four peripheral obstacles
(trees), and four walls around the perimeter to contain all agents in the same
general area. Each NERO agent starts a battle with 20 hit-points. At each time
slice of the simulation, each agent has the opportunity to fire a virtual laser
at the closest target on the opponent’s team that is within two degrees of the
agent’s current orientation. If an agent fires and hits an opponent, the opponent
loses one hit-point. The score for a team is equal to the number of hit-points
that the opponent team loses in the course of the battle.

A team of NERO agents can be serialized to a flat text file. The text file
describes each of the 50 agents on a team. Agents that use rtNEAT serialize
to a description of the genotype for each agent, and agents that use Q-learning
serialize their (hashed) Q-tables directly to the file. Anyone was allowed to par-
ticipate in the tournament by submitting online a serialized team of virtual agent
controllers for the NERO battle task. The only difference between the teams was
in the training of the controllers contributed by the competitors.

The OpenNERO code was extended for this tournament to allow teams to
consist of mixtures of rtNEAT (neural network) and reinforcement learning
(Q-learning) agents; this distinction is primarily interesting in the sense that
rtNEAT agents search for control policies directly, while Q-learning searches in
value-function space and then uses value estimates for each state to determine
appropriate actions. For rtNEAT–based training, individuals within the popu-
lation are ranked based on the weighted sum of the Z-scores over the fitness
components. For Q-learning–based training, each fitness dimension is scaled to
[0, 1], and then a linear weighted sum is used to assign a total reward to each
individual.

Both types of controllers could be submitted to the online tournament: ar-
tificial neural network controllers of arbitrary weight and topology, and hash
tables approximating the value function of game states. The competitors could
extend and/or modify the available OpenNERO training methods as well as
create their own training environments and regimens. It was this training that
determined the fitness of each team when pitted against other teams submitted
to the tournament.

4.3 Evaluation Results

An online NERO tournament was run in December 2011. About 85 participants
submitted 156 teams to the tournament. Of these, 150 teams contained neural
network-controlled agents and 11 contained value table-controlled agents. Mixed
teams were also allowed; four of the submitted teams contained mixed agent
types. Because of the large number of teams, each game was played off-screen
and limited to 5 minutes of game time. (In practice, good teams were able
to eliminate all opponents in less than 5 minutes.) The team with the highest
number of remaining hit points was declared the winner at the end of the match.
Ties were extremely rare and were broken by a pseudo-random coin toss. The
match-making script allowed matches to be run in parallel on a single machine
or to be distributed to a Condor compute cluster [43].
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Fig. 9. Results from the round-robin NERO tournament. Teams are sorted by average
score differential over all matches. Rows and columns in the matrix represent teams
in the tournament, and colors represent score differentials for the respective individual
matches between two teams. Red indicates victory by the row team, and blue indicates
victory by the column team.

First, several double-elimination tournaments were run with the submitted
teams. Repeated runs of the double-elimination tournament revealed that while
the set of teams in the top 10 was generally consistent, their ranking was not
stable. The teams were then placed in a round-robin tournament to evaluate the
overall winner more accurately. In the round-robin tournament, each of the 156
submitted teams was matched against the 155 other teams. Each pair of teams
was matched up twice (i.e. k = 2), allowing each team to play once as the blue
team and once as the red team. This resulted in 24180 separate games, which
were processed in parallel on approximately 100 computing nodes, which allowed
the entire round-robin tournament to complete in less than 24 hours.

Figure 9 shows the complete results of the round-robin tournament. Black
squares along the diagonal represent matches that were not played, blue squares
indicate a win by the column team, and red squares indicate a win by the row
team. One group of near-duplicate teams was submitted to the tournament;
this shows up as the band of similar-colored games about one-third of the way
through the matrix. The teams in the Figure are enumerated on both axes in
order of increasing average match score differential.
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Table 1. Top 10 teams by number of wins

Rank Team Total wins

1 synth.pop 137
2 synth flag.pop 130
3 lolwutamidoing 126
3 me - Rambo 126
5 PollusPirata 125
6 Cyber-trout 124
7 CirclingBullies 123
8 SneakySnipers 121
8 Tut 121

10 coward1 120

Table 1 shows the top ten teams. Despite the large number of teams, no single
competitor emerged that significantly outperformed all others. It is interesting
to analyze why.

In NERO, agents can be “shaped” towardsmore complex behaviors by progres-
sively changing the environment and the fitness function during training. This pro-
cess can create teams of agents that perform specific tasks during a battle. Given
the complexity of the environment and the task,many different strategies can arise
in this process, and they can interactwith each other in complex ways.Considering
this potential complexity, evolved strategies in the tournament turned out to be
surprisingly easy to analyze. Because fitness is evaluated similarly for each team
member during training, teams generally consist of agents that perform similar
actions in a given world state. In principle, multiple teams can be trained using
different shaping strategies, and single agents from those teams then combined
into one team by copying the appropriate parts of the serialized team files (as was
suggested in the online tournament instructions). However, most teams submitted
to the tournament did not (yet) take advantage of this possibility; instead, agents
on a single team usually performed similar actions in response to each game state.
It was therefore possible to characterize the most common strategies used in the
tournament, as outlined below. The example teams and videos of games between
then are available at the tournament website3.

Pack: The most prominent strategy among winning teams was to train agents
to move as a group toward the central wall, then follow the wall tightly to
go around it, and then proceed towards the opponents on the other side. This
strategy shows up in several of the top ten teams, but most notably in synth.pop

and me-Rambo. These teams actively pursued their opponents by forming agents
into a “pack” that had a lot of firepower and was therefore able to eliminate
opponents effectively.

Backpedaling: A second successful strategy was almost exactly the opposite
from the “pack” strategy: From the start, most agents backpedaled away from

3 code.google.com/p/opennero/wiki/TournamentResults2011

code.google.com/p/opennero/wiki/TournamentResults2011
http://code.google.com/p/opennero/wiki/TournamentResults2011
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the opponents and the central wall, and then took shots against the opponents
from afar. Backpedaling preserves the ability of the agents to fire at opponents,
while increasing the distance to the opposing team and maximizing view of the
field. Backing up was often effective against the “pack” strategy because a team
could eliminate the opponents one-by-one as they emerged around the edge of
the wall. Examples of this strategy included EvilCowards and SneakySnipers.

Encircling: Some teams followed a third strategy, where all agents on the team
would run to the far right or left of the wall in a wide arc, and that way try
to encircle the enemy agents. Interestingly, although at the outset this strategy
seems logical, and was indeed devastating to some opponents, it often lost to the
first two strategies. Against the teams that adopted the “pack” strategy, agents
following the “encircle” strategy were often not pointed toward their opponents,
and thus could be fired upon without recourse. Similarly, teams following the
“encircle” strategy tended to fail against the “backpedal” teams because the
“encircle” agents again tended to be pointed away from enemy agents too often
to fire successfully. Examples of encircling teams include Caipirinha 01 FNM

and Artificial Ignorance.

Brownian Motion: Teams that used reinforcement learning agents tended to
cluster in the middle of the playing field and move back and forth in Brownianmo-
tion. This behavior likely originated from a difficulty in acquiring sufficient data
during training, and from a difficulty in approximating the value function for the
task, resulting in agents that effectively chose random actions at each time step.
However, sometimes this behavior was seen in rtNEAT teams as well, and it was at
times surprisingly effective. When other teams approached the cluster, they were
not always lined up to shoot—on the other hand, because of the Brownianmotion,
the shots were not always on target either. So the Brownian motion teams formed
a firing squad that was difficult to approach, performing sometimes better than
teams that employed a strategy for going around the wall. Examples of Brownian
motion teams include Peaceful Barbarians 1 and The729Gang.

Perhaps most interestingly, the strategies do not form a strict dominance hi-
erarchy, but instead are highly cyclic. For instance, the third-place me-Rambo (a
“pack” team) reliably defeats the first-place synth.pop (also a “pack” team), ap-
parently due to subtle differences in timing. On the other hand, synth.pop wins
over the 24th-place EvilCowards (a “backpedal” team), because the synth.pop
pack splits into two and breaches the wall from both edges simultaneously. How-
ever, EvilCowards handily defeats me-Rambo, because agents in the me-Rambo

train are eliminated one-at-a-time as they come around the wall!
There are many other similar cycles in the tournament graph as well, i.e. there

is not a team in the tournament that is objectively better than all other teams.
It actually seems that there is not even a single strategy that is better than the
others: as e.g. the “pack” strategy becomes highly optimized, it also becomes
more vulnerable to the “backpedal” counter-strategy. Such relationships may
indeed be inherent and even desirable for complex games.
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Based on these observations, a compelling next step might be to construct
composite teams of individuals from several different teams. The idea is that
such teams could perform well against a variety of strategies. Such an approach
was already possible in the online tournament, but not extensively used. With
more multi-objective evolutionary methods [35,36], it might also be possible to
develop multi-modal behaviors that identify what strategy the opponent is using,
and select a counter-strategy accordingly. It might also be possible in principle
to adapt to opponents online, while the battle is taking place. Such extensions
should result in more versatile multi-agent behavior; they will also make it even
more difficult to analyze such behavior in the future.

4.4 Evaluation Conclusions

The results of the online NERO tournament demonstrate that multi-agent be-
havior can be evaluated quantitatively using tournaments. To fully characterize
the behaviors, it is necessary to run round-robin tournaments: There may not
be a single best strategy, but behaviors may instead be highly diverse, and per-
form differently against different opponents. This phenomenon may indeed be
an inherent property of multiagent behavior in complex domains, and further
computational tools may need to be developed to analyze it fully.

5 Discussion and Future Work

The experiments on cooperation raise an interesting issues about the nature of
cooperation. For instance, the predators in Experiment 3 (individual rewards
with communication) evolve cooperative hunting strategies efficiently, but they
do not have any fitness incentive for cooperation. Instead, they use one another
to improve individual fitness. Is this real cooperation? In biological literature, a
cooperator is defined as an individual who pays a cost for another individual to
receive a benefit [27]. This is a useful working definition in artificial settings as
well. Thus in Experiment 3, though not all the predators gain by coordinating
their behaviors, it is still considered cooperation.

Social learning is strongly motivated by biological analogy as well. The so-
cial intelligence hypothesis [5,19] and the cultural intelligence hypothesis [44]
suggest that the need to handle complex social behaviors was the primary selec-
tion pressure driving the increase in brain size in primates and humans. These
hypotheses are indeed supported by strong empirical evidence in recent years
[18]. Further, egalitarianist philosophy advocates treating all individuals in a
population as equals, regardless of such factors as background and status [3].
In hunter-gatherer societies, egalitarianism is a common paradigm for managing
daily activities and organizing social structures [4]. It is likely that this lack of
hierarchy and strict maintenance of equality has been pivotal in the development
of human society and in separating humans from other primates [10]. It is inter-
esting to see that the same conclusion follows from computational experiments
on social learning: Egalitarianism promotes diversity, which in turn allows the
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population as a whole to achieve better performance. Given how difficult it may
be to verify social and computational intelligence hypotheses directly, computa-
tional simulations may prove instrumental in testing and refining it further in
the future.

Given that the NERO evaluation with 156 teams took significant supercom-
puting resources, it is useful to evaluate how this approach might be scaled up.
Larger tournaments could be organized by using a hybrid structure; round-robin
pools could be run in parallel to identify the proper seeds for top-ranking teams,
and then a double-elimination tournament could be used to identify the overall
winner. Thanks to the independence of individual matches in round-robin tour-
naments and within each level of a knockout tournament, it should be possible to
scale up to even larger tournaments by running games on more compute nodes
or carefully designing a tournament structure to optimize use of computing re-
sources.

On the other hand, the tournament also showed that machine-learning games,
where neuroevolution of multiagent behavior play a central role, may indeed be
a viable game genre in the future. Several approaches to the game were identified
in the tournament, none of them dominating all others. This is precisely what
makes such games interesting: There is room for innovation and creativity, and
the outcomes often turn out to be surprising. Using such games as a platform, it
may also be possible to make significant research progress in multi-agent systems
and intelligent agents in general.

6 Conclusion

Multiagent systems can be seen as the next frontier in constructing intelligent
behavior through neuroevolution. This paper reviewed three challenges and op-
portunities in such systems: manipulating the rewards, coordination, and return;
combining social learning with evolution; and evaluating performance through
tournaments. Significant interactions and complexity were observed in each case,
leading to the conclusion that the research is still in the beginning stages, but
also that the technology is a good match with the opportunities.
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Abstract. The goal of reverse-engineering the human brain, starting with the 
auditory pathway, requires three essential ingredients: Neuroscience 
knowledge, a sufficiently capable computing platform, and a long-term funding 
source.  By 2003, the neuroscience community had a good understanding of the 
characterization of sound which is carried out in the cochlea and auditory 
brainstem, and 1.4 GHz single-core computers with XGA displays were fast 
enough that it was possible to build computer models capable of running and 
visualizing these processes in isolation at near biological resolution in real-time, 
and it was possible to raise venture capital funding to begin the project.  By 
2008, these advances had permitted the development of products in the area of 
two-microphone noise reduction for mobile phones, leading to viable business 
by 2010, thus establishing a self-sustaining funding source to continue the work 
into the next decade 2010-2020.  By 2011, advances in fMRI, multi-electrode, 
and behavioral studies have illuminated the cortical brain regions responsible 
for separating sounds in mixtures, understanding speech in quiet and in noisy 
environments, producing speech, recognizing speakers, and understanding and 
responding emotionally to music.  2GHz computers with 8 virtual cores and HD 
displays now permit models of these advanced auditory brain processes to be 
simulated and displayed simultaneously in real-time, giving a rich perspective 
on the concurrent and interacting representations of sound and meaning which 
are developed and maintained in the brain, and exposing a deeper generality to 
brain architecture than was evident a decade earlier.  While there is much still to 
be discovered and implemented in the next decade, we can show demonstrable 
progress on the scientifically ambitious and commercially important goal of 
reverse-engineering the human auditory pathway. 

As outlined in 2003 [1], the goal of reverse-engineering the human brain, starting with 
the auditory pathway, requires three essential ingredients:  Neuroscience knowledge, 
a sufficiently capable computing platform, and a long-term funding source. In this 
paper, we will describe the first successful decade of this multi-decade project, and 
show progress and new directions leading into a promising second decade. 

By 2003, the neuroscience community had a good understanding of the 
characterization of sound which is carried out in the cochlea and auditory brainstem, 
including the detection of inter-aural time and level differences (ITD and ILD) 
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computed in the superior olivary complex (SOC, MSO, LSO) used for determining 
the azimuthal location of sound sources, and the essential brainstem foundations for 
extracting polyphonic pitch (delay lines needed for autocorrelation in the nucleus of 
the lateral lemniscus (NLL), and combination-sensitive cells in the inferior colliculus 
(IC)). While there was still significant uncertainty about the full role of the inferior 
colliculus, medial geniculate body (MGB) of the thalamus, and auditory cortical 
regions, there was sufficient clarity and consensus of the lower brainstem 
representations to begin a serious modeling effort [1]. 

In 2003, on a single-core 1.4 GHz processor, it was possible to build computer 
models capable of running these processes in isolation at near biological resolution in 
real-time, e.g., a 600-tap cochlea model spanning a frequency range 20Hz - 20kHz at 
60 taps/octave with realistic critical bandwidths, efficient event-driven ITD and 
normalized ILD computations, and a plausible model of polyphonic pitch [1].  By 
2008, these advances had permitted the development of products in the area of two-
microphone noise reduction for mobile phones [2][3][4], leading to viable business by 
2010, thus establishing a commercial foundation to continue the work into the next 
decade 2010-2020.   

1 Neuroscience Advances in 2003-2010 Illuminate Cortical 
Architecture 

During 2003-2010, new fMRI, multi-electrode, and behavioral studies have 
illuminated the cortical brain regions responsible for separating sounds in mixtures 
[5][6], understanding speech in quiet and in noisy environments [7], producing speech 
[7], recognizing speakers [8], and understanding music [9][10].  Similarly, there is 
greater clarity in the function of the hippocampus [11] and amygdala [12][13] in the 
limbic system, relating to long-term memory storage and retrieval, and emotional 
responses to auditory stimuli [12]. While there is still much to be discovered about the 
underlying representation of signals in the cortex, it is now possible to see an 
architectural organization begin to emerge within the auditory pathway, as shown in 
Figures 1 and 2.   

These figures were created by starting with the auditory pathway diagram first 
published in [1], and then updating the cortical regions to show the speech recognition 
and production pathways from [7], speaker identification pathway from [8], music 
pathways inferred from the functional description in [9], and limbic system pathways 
from [10][11][12], with additional guidance from [14]. 

Based on Figures 1 and 2, we may make some observations about the human 
auditory pathway: 

• The auditory pathway contains many different representations of sounds, at 
many different levels.  The most fundamental representation is the cochlea 
representation carried on the auditory nerve, from which all other 
representations are derived.  Any realistic computational model of the human 
hearing system will have to generate all of the representations and allow 
them to interact realistically, thus extracting and utilizing all of the 
information in the auditory signals. 
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Fig. 1. Block diagram of the Human Auditory Pathway (high-level).   Sounds enter the system 
through the two ears at the bottom of the diagram. The left and right cochleas create the 
spectro-temporal representation of sounds, which projects onto the cochlear nerve into the 
lower brainstem, beginning with the cochlear nucleus (CN), then projects to the superior 
olivary complex (SOC) and nucleus of the lateral lemniscus (NLL).  From there, signals project 
to the inferior and superior Colliculus and Thalamus.  The thalamus projects to the Limbic 
system (emotion and memory) and to primary auditory cortex, which then projects to the 
specialized pathways for speech recognition, production, speaker identification, and music 
perception.  
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Fig. 2. Block diagram of the Human Auditory Pathway (detail). Original sources in 
[1][7][8][9][10][11][12]. Please see the Glossary of Terms for full list of abbreviations. 

• It would appear that the functions of auditory scene analysis (breaking a 
mixture of sound up into its constituent sources [15]) must occur within the 
regions of inferior colliculus, thalamus (MGB), and primary auditory cortex, 
for the following reasons: 

o Below inferior colliculus, the lower brainstem is only extracting 
basic attributes of sound; it is too early in the system to have 
completed auditory scene analysis. 
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o Above primary auditory cortex, we see regions specialized for deep 
analysis of isolated sounds (i.e. speech recognition, speaker 
identification, music perception).  Thus, above auditory cortex, it 
appears that the auditory scene analysis has been largely completed. 

• Thalamus (medial geniculate body (MGB)) functions largely as a wide, 
controllable cross-bar switch, to allow signals to be routed to cortex 
(selective attention) or cut off (not paying attention, or during sleep) [16].  
However, some signals are capable of waking us up from sleep (i.e. baby 
cry), suggesting that some rudimentary signal classification is being done 
below the Thalamus, apparently in the inferior colliculus and peri-
acqueductal gray (PAG) [17]. 

• The cortical speech recognition part of the human auditory pathway includes 
a phonological network (lmpSTS), lexical network (pMTG/pITS), and 
combinatorial network (aMTG/aITS) [7].  These elements are roughly 
analogous to the phoneme classifier, word recognizer, and language model of 
a conventional speech recognizer.  However, as emphasized in [1], 
conventional modern speech recognizers do not include an auditory scene 
analysis engine to separate sounds in a mixture into their constituent sources 
prior to recognition.  Instead, a conventional speech recognizer performs the 
front-end (Fast Fourier Transform and cepstrum) and projects them 
immediately to the back-end, which can only work well when the input 
signal is already isolated speech.  The lack of an auditory scene analysis 
engine is the primary reason that modern speech recognizers exhibit poor 
noise robustness relative to human listeners, especially when the background 
noise consists of competing speech. 

• There is a notably parallel structure between the speech recognition pathway [7] 
and the speaker identification pathway [8] – note that each has three major 
stages between primary auditory cortex and inferior frontal gyrus (IFG). 

• Finally, the new block diagrams in Figures 1 and 2 indicate some important 
interactions between the auditory pathway and other parts of the brain. On 
the right side of both diagrams, there are additional connections: 

o To/From Cerebellum (at bottom right, from ICx):  This connection 
is to trigger reflexive head movement in response to directional 
sound. 

o To/From LGN (at lower right, from SC):  This is a bidirectional 
connection to allow a calibration and spatial alignment between the 
visual system and auditory system [18]. 

o From other sensory modalities (middle right, to SPT (sylvian 
parietal-temporal junction)):  This is the pathway by which lip-
reading can assist the speech recognition pathway in the correct 
perception of spoken phoneme-level sounds [7], especially in noise 
where the auditory input may be corrupted [14]. 

o To Cerebellum (upper right, from SMA):  This is the motor output 
for speech production. 
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These four external interfaces indicate that the auditory pathway does not act 
in isolation – it interacts with the visual and motor pathways to create a 
whole-brain system that can hear, see, move, and talk. 

2 Compute Capacity in 2012 Is Capable of Comprehensive 
Simulation and Visualization of the Multi-representation 
System 

In early 2012, high-end gaming notebook computers have 2.0 GHz microprocessors 
with 8 virtual cores, about 11.4 times the compute capability of the 1.4 GHz single-
core machines of 2003.  In 2003, it took the entire machine to compute any one of the 
basic brainstem representations of sound, by itself.  In 2012, it is possible to compute 
all of the representations simultaneously, including new ones which had not been 
developed in 2003.  In 2003, the highest resolution display on a notebook computer 
was XGA (1024x768 pixels), which was only enough to display a single 
representation at once.  In 2012, with a 1080p HD display (1920x1080 pixels), it is 
possible to compute and display all of the existing representations simultaneously, as 
shown in Figure 4.  

 

Fig. 3. Output of real-time, high-resolution functioning model of major auditory pathway 
elements. (a) Waveforms, at the level of the eardrums at the two ears.  (b) Cochlea energy, as 
seen by the Multipolar Cells in the Cochlear Nucleus.  (c)  Inter-aural time difference (ITD), as 
computed by the medial superior olive (MSO).  (d) Inter-aural level difference (ILD), as 
computed by the lateral superior olive (LSO) and normalized in the inferior colliculus (IC).  (e) 
Correlogram, as computed in the nucleus of the lateral lemniscus (NLL) and inferior colliculus 
(IC). (f) Pitch Chroma Spiral (cortical pitch representation).  (g) Pitch-adaptive spectral 
smoothing, with formant tracking (cortical speech representation).  (h) Vocal Articulator 
mapping, in the sylvian parietal-temporal junction (SPT). (i) Polyphonic pitch. (j) Speech 
recognition. (i) Speaker identification. 

(a) 
      (b)                                                       (c)                (d)                  (e)                          (f)        

      (g)                                                      (h)                                        (i)  

      (j)                                                                                                          (k)                                        
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There is still much to be done – in particular, the highest-level recognition 
functions (speech recognition, speaker ID) currently implemented are introductory 
placeholders based on fairly basic technologies.  And currently, the representations 
are running simultaneously, but they are not yet interacting with each other.  The true 
promise of integrating all of the representations together so that they can help each 
other is still to be done.  But it is clear that we have sufficient neuroscience 
knowledge of a powerfully multi-representation system, and a sufficiently capable 
computing platform to be able to build the next level of the integrated system and 
visualize its output.  

3 Next Steps in Neuroscience Research for the Next Decade 
2010-2020 

Neuroscientists are now beginning to explore the interactions between the scene 
analysis, speaker tracking, and speech recognition functions.  One excellent example 
of this is the recent work by Dr. Eddie Chang at the University of California at San 
Francisco, in which subjects are asked to listen to a mixture of commands spoken by 
two different speakers (one male, one female), pick out a keyword spoken by one of 
them, and report the following command by the correct speaker [6], as shown in 
Figure 5. 

 

 

Fig. 4. Dr. Eddie Chang’s task can be understood in the context of the whole auditory pathway.  
For the subjects to get the correct answer, they must separate the voices, presumably on the 
basis of polyphonic pitch, since the subjects are unable to reliably perform the task if there is 
not a clear pitch difference.  Then they must spot the keyword, then track the voice that spoke 
the keyword, and then listen for the command in the chosen voice while ignoring the other 
voice, all while under time pressure.  
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Dr. Chang’s task exercises the major elements of the auditory pathway – polyphonic 
pitch detection, grouping and separation into voices, word spotting, selective attention to 
the correct voice, and listening for the correct answer.  And he is able to make direct 
multi-electrode recordings from the relevant brain regions of awake functioning human 
beings – his neurosurgery patients who have volunteered to participate in his study.  This 
is a major recent advancement in auditory neuroscience, already shedding light on the 
detailed mechanisms of auditory attention, stream separation, and speech recognition, 
with much promise over the next decade 2010-2020. 

While the architectural advances from the last decade’s fMRI studies are very 
important and encouraging, a notable foundational weakness still remains:  what is the 
general computational and learning strategy of the cortical substrate?   In 2012, it is 
safe to say that there is no clear consensus, although there are many sophisticated 
models with persuasive proponents [19][20][21][22], including Hierarchical Bayesian 
Models [23], Hierarchical Temporal Memories [24], and Deep Belief Networks [25].  
From my own work on modeling the human auditory pathway, it is apparent that the 
cortex must be capable of at least the following set of functions: 

Table 1. Functions performed in cortex 

Cortical Capability Example 
Finding patterns in sensory input Recognizing sounds of speech 
Recognizing temporal sequences Recognizing speech and music 
Memory Storage and Retrieval 
Creating new memories 

Remembering and recalling a fact 

Adding attributes to existing memories Learning new meaning of a word 
Associative Memory, Relational Database Recalling a person by their voice, recalling all 

people with a similar voice 
Organizing short-term and long-term 
memory (with hippocampus) 

Memory updates during sleep 

Learning Learning a language or a song 
Searching large spaces while maintaining 
multiple hypotheses 

Understanding a sentence in which the last word 
changes the expected meaning.  Getting a joke. 
Viterbi search in a modern speech recognizer. 

Playing back sequences Playing music, singing, speaking well-known 
phrases. 

Predicting future, detecting prediction 
errors, re-evaluating assumptions 

Motor control, getting a joke. 

Tracking multiple moving targets Polyphonic pitch perception 
Separating multiple objects Auditory Stream separation 
Making decisions about what to pay 
attention to 

Listening in a cocktail party 

Local cross-correlations Stereo Disparity in the visual system 

Note that there are computer programs that can do each of the above things, in 
isolation, at some level of ability.  For example, music sequencers can play back long 
and complicated sequences of musical notes.  The Acoustic Model part of a modern 
speech recognizer has been trained to estimate the likelihood of phonemes, given 
speech input.  Back-propagation and Deep Belief Networks are examples of programs 
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that learn. Google’s web crawl and hash table updates are examples of organizing 
associative memories for fast recall.  Creating new memories and adding new 
attributes to existing memories are routine operations on linked lists.  Stereo disparity 
algorithms have been around since the early 1990’s [26]. 

In principle, I see nothing in the brain that could not be implemented on a 
sufficiently fast computer with enough memory, although matching the low power 
consumption of the brain will favor a parallel/slow architecture over the conventional 
fast/serial architecture.  It is common to regard the cortical columns as basic units of 
computation [19][21][22][24], and in principle, I see no reason why these columns (or 
groups of columns) could not be reasonably modeled by a sufficiently capable 
microprocessor running a suitable program, provided the microprocessors can 
communicate adequately with each other.  But the key question is: 

 

In such a model, should each cortical processor be running the same program? 
  

I believe the answer is No.  The highly differentiated functions performed in the different 
cortical regions shown in Figure 2 and listed in Table 3, suggest that, while the cortical 
structure (hardware) may be quite uniform across the cortex, the functions performed in 
the mature brain in each region (software) must be quite specialized for each region.   For 
example, the functions of stream separation performed in auditory cortex are extremely 
different than the functions of phoneme recognition performed in the left medial posterior 
Superior Temporal Sulcus (lmpSTS), which in turn are extremely different from the 
functions of working memory for extracting the meaning of sentences in and near the 
posterior Inferior Frontal Gyrus (pIFG).  And all of these are fundamentally different 
from the functions of controlling movement in motor cortex or computing the cross-
correlations for determining stereo disparity in visual cortex. 

It is not clear whether the functional specialization in the mature cortex is the result 
of a uniform cortical structure in which different regions learn their specialized 
function solely because of their unique inputs (i.e., wiring determines function), or if 
there is some other additional way that the specialized functions in each region are 
determined during development – perhaps genetic [27][28][29].  For example, recent 
evidence from 2001-2009 points to mutations in the FOXP2 gene as causing severe 
speech and language disorders [30][31][32][33][34], including defects in processing 
words according to grammatical rules, understanding of more complex sentence 
structure such as sentences with embedded relative clauses, and inability to form 
intelligible speech [35]. 

I am emphasizing this point because the observation that the cellular structure of 
cortex appears uniform has led to a widely accepted hypothesis that there must be a 
single learning or computational strategy that will describe the development and 
operation of all of cortex.  For this hypothesis to be true, the learning or computational 
strategy would have to be capable of developing, from a generic substrate, a wide variety 
of very different functional specialties, including functions well-modeled as correlators, 
hierarchical temporal memories, deep belief networks, associative memories, relational 
databases, pitch-adaptive formant trackers, object trackers, stream separators, phoneme 
detectors, Viterbi search engines, playback sequencers, etc.   

In any case, so far, to even come close to matching the functions that are observed 
by my neuroscience collaborators working in mature brains, I have found it necessary 
to write very specialized programs to model each functional area of the mature brain.   
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4 Non-technical Issues: Collaboration and Funding for  
2010-2020 

In 2003 [1] and 2007 [2], I outlined the importance of collaboration with leading 
neuroscientists, and of finding a funding model that would sustain the multi-decade 
project of reverse-engineering the brain, beginning with the auditory pathway.  The 
basic science work and early prototypes were done in 1998-2000 at Interval Research, 
and in 2000-2003 in the early days of Audience.  From 2004-2010, the focus was on 
building a viable business to commercialize the practical applications of research into 
the auditory pathway. In 2010-2011, we revisited the neuroscience community and 
found substantial progress had been made in the cortical architecture of the auditory 
pathway, and Moore’s Law has ensured that compute capacity has grown ten-fold as 
expected.  It remains to be seen what new insights and products will emerge from the 
next phase of scientific exploration over the next few years, but we can at least say 
that after the first decade, the neuroscience, compute capacity and funding aspects of 
the project have all advanced in sync with each other, as hoped in [1], and the multi-
decade project is still on track.   

5 Conclusions 

The goal of reverse-engineering the human brain, starting with the auditory pathway, 
requires three essential ingredients:  Neuroscience knowledge, a sufficiently capable 
computing platform, and a long-term funding source to sustain a multi-decade project. 
All of these were available on a small scale at the time of founding Audience in 2000, 
enough to begin the project in earnest.   By 2010, neuroscience knowledge had 
advanced dramatically, giving major insights into cortical architecture and function, 
compute capacity had grown ten-fold, and a commercial foundation had been 
established to allow the project to continue into the next decade 2010-2020.  While 
there is still much work to do, and many risks remain, the multi-decade project still 
appears to be on track. 
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Glossary of Terms 

Abbreviation Full Name Function 
SBC Spherical Bushy Cell Sharpen timing, phase locking for ITD 

comparison 
GBC Globular Bushy Cell Condition for ILD amplitude comparison 
MC Multipolar Cell Detect amplitude independent of phase  
OC Octopus Cell Broadband transient detection 

DCN Dorsal Cochlear Nucleus Elevation processing 
MSO Medial Superior Olive ITD comparison 
LSO Lateral Superior Olive ILD comparison 

VNTB Ventral Nucleus of the Trapezoid 
Body 

Control efferent signals to cochlea OHCs 
(top-down gain control loop) 

MNTB Medial Nucleus of the Trapezoid 
Body 

Inverter between GBC and LSO to allow 
amplitude subtraction operation 

VNLL Ventral Nucleus of the Lateral 
Lemniscus 

Prepare for broad system-wide reset in ICC 
(triggered temporal integration?) 

PON Peri-Olivary Nuclei  
DNLL Dorsal Nucleus of the Lateral 

Lemniscus 
Precedence effect processing of spatial 
information, compensate for reverberation 

ICC Inferior Colliculus (Central)  Scaling, normalizing (L-R)/(L+R), align data 
structure, selectivity 

ICx Inferior Colliculus (Exterior) Audio visual alignment 
SC Superior Colliculus Audio visual alignment 

MGB Medial Geniculate Body 
(Thalamus) 

Attentional relay, sleep switch 

PAG Peri-acqueductal Gray Wake from sleep from sounds like baby cry 
LS Limbic System (includes 

Amygdala, Hippocampus, 
hypothalamus, Pituitary gland, 
adrenal gland) 

Fast-acting fear pathway, memory controller, 
hash table generator 

A1 Primary Auditory Cortex Primary area of Auditory cortex 
R Rostral part of Auditory Cortex  

CM Caudal Medial part of AC  
AL Anterior Lateral part of AC Extraction of spectral shape – pitch-adaptive 

spectral smoothing, or preparations for it 
ML Medial Lateral part of AC  
CL Caudal Lateral part of AC  
STS Superior Temporal Sulcus Phonological network (phonemes, speech 

components).  Possible site of pitch-adaptive 
spectral smoothing and formant detection  
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PB ParaBelt region Pitch, noise  
pMTG Posterior Medial Temporal Gyrus Lexical network (words, vocabulary, HMM) 
pITS Posterior Inferior Temporal 

Sulcus 
Lexical network (words, vocabulary, HMM) 

aMTG, aITS Anterior Medial Temporal Gyrus, 
Anterior Inferior Temporal Sulcus 

Combinatoric network (sentences, grammar, 
HMM) 

SPT Sylvian Parietal-Temporal 
junction 

Sensori-motor interface 

LAG, SMG Left Angular Gyrus 
Super Modular Gyrus 

Activated in degraded/challenging speech 
conditions 

rmpSTS Right medial posterior Superior 
Temporal Sulcus 

Voice recognition 

rmaSTS Right medial anterior Superior 
Temporal Sulcus 

Non-familiar voices 

raSTS Right anterior Superior Temporal 
Sulcus 

Familiar voices 

IP Inferior Parietal  
pIFGa Posterior Inferior Frontal Gyrus 

(anterior part) 
Syntax and Semantics in speech 
comprehension, working memory for speech 

pIFGd Posterior Inferior Frontal Gyrus 
(dorsal part) 

Phonemes in speech production 

PM Pre-Motor Cortex  
AI Anterior Insula Modulation of speech production (disgust) 
M Motor Cortex  

SMA Supplemental Motor Area Interface between Motor Cortex and 
Cerebellum, subvocalization, rhythm 
perception and production 

rSTS Right Superior Temporal Sulcus Chord and scale in music 
rIPS Right Inferior Parietal Sulcus Pitch intervals in music 
lIPS Left Inferior Parietal Sulcus Gliding pitch in speech 

raSTG Right anterior Superior Temporal 
Gyrus 

Beat in music 

laSTG Left anterior Superior Temporal 
Gyrus 

Rhythm pattern in music 

dFG, IFG Dorsal Frontal Gyrus, Inferior 
Frontal Gyrus 

Working memory for pitch, tones 
harmonic expectations/violations 

 Cerebellum, basal ganglia Auditory intervals (lateral cerebellum, basal 
ganglia), Motor timing (medial cerebellum, 
basal ganglia) 
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Abstract. Theoretical analysis of evolutionary algorithms (EAs) has
made significant progresses in the last few years. There is an increased
understanding of the computational time complexity of EAs on certain
combinatorial optimisation problems. Complementary to the traditional
time complexity analysis that focuses exclusively on the problem, e.g., the
notion of NP-hardness, computational time complexity analysis of EAs
emphasizes the relationship between algorithmic features and problem
characteristics. The notion of EA-hardness tries to capture the essence
of when and why a problem instance class is hard for what kind of EAs.
Such an emphasis is motivated by the practical needs of insight and
guidance for choosing different EAs for different problems. This chapter
first introduces some basic concepts in analysing EAs. Then the impact
of different components of an EA will be studied in depth, including
selection, mutation, crossover, parameter setting, and interactions among
them. Such theoretical analyses have revealed some interesting results,
which might be counter-intuitive at the first sight. Finally, some future
research directions of evolutionary computation will be discussed.

1 Introduction

Evolutionary computation refers to the study of computational systems that are
inspired by natural evolution. It includes four major research areas, i.e., evolu-
tionary optimisation, evolutionary learning, evolutionary design and theoretical
foundations of evolutionary computation.

1.1 Evolutionary Optimisation

Evolutionary optimisation includes a wide range of topics related optimisation,
such as global (numerical) optimisation, combinatorial optimisation, constraint
handling, multi-objective optimisation, dynamic optimisation, etc. Many evolu-
tionary algorithms (EAs) have been used with success in a variety of application
domains that rely on optimisation. For example, in the area of global optimi-
sation, fast evolutionary programming (FEP) and improved FEP [1] were used
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c© Springer-Verlag Berlin Heidelberg 2012
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successfully in modelling and designing new aluminium alloys [2]. Self-adaptive
differential evolution with neighbourhood search (SaNSDE) [3] was used to
calibrate building thermal models [4].

In the area of combinatorial optimisation, memetic algorithms were designed
for tackling capacitated arc routing problems [5], which were inspired by the real
world problem of route optimisation for gritting trucks in winter road mainte-
nance [6]. Multi-objective EAs (MOEAs) were used very effectively for module
clustering in software engineering [7] and optimal testing resource allocation
in modular software systems [8]. Advantages of using the MOEAs were clearly
demonstrated in these two cases.

1.2 Evolutionary Learning

Evolutionary learning appears in many different forms, from the more classical
learning classifier systems to various hybrid learning systems, such as neural-based
learning classifier systems [9], evolutionary artificial neural networks [10], evolu-
tionary fuzzy systems [11], co-evolutionary learning systems [12], etc. While most
of the learning problems considered in evolutionary learning are also investigated
in the broader domain of machine learning, co-evolutionary learning has stood out
as a learning paradigm that is rather unique to evolutionary computation.

1.3 Evolutionary Design

Evolutionary design is closely related to optimisation, especially in engineering
domains, such as digital filter design [13] and shape design [14]. However, there
is one different consideration in evolutionary design, which is evolutionary dis-
covery. There has been a strong interest in using EAs as a discovery engine, in
discovering novel designs, rather than just treating EAs as optimisers. A lot of
work has appeared in using interactive evolutionary computation for creative
design, e.g., traditional Batik design [15] and others.

1.4 Theoretical Foundations of Evolutionary Computation

In spite of numerous successes in real-world applications of EAs, theories of evo-
lutionary computation have not progressed as fast as its applications. However,
there have been significant advances in the theoretical foundation of evolutionary
computation in the last decade or so. There have been a number of theoretical
analyses of different fitness landscapes in terms of problem characterisation, as
well as rigorous analysis of computation time used by an EA to solve a problem.

In global (numerical) optimisation, the analysis of EA’s convergence has rou-
tinely been done. It was an active research topic in 1990s. Later on, convergence
rates (to a local optimum) were also studied in depth. In recent years, there has
been a significant growth in the computational time complexity analysis of EAs
for combinatorial optimisation problems, which really bridges the gap between
the analysis of EAs in the evolutionary computation field and the analysis of
heuristics in theoretical computer science in general. After all, EAs are algo-
rithms and can/should be analysed just like we analyse any other algorithms.
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This book chapter will focus on the computational time complexity analysis
of EAs for combinatorial optimisation problems. It will not cover other theories
of evolutionary computation, which are equally important for the field. Even for
the computational time complexity analysis of EAs, we will not be able to cover
everything within a limited numner of pages. The choice of the topics covered
in this chapter is highly biased by the author’s own experience. One of the ob-
jectives of this chapter is to illustrate that there are some interesting theoretical
results in evolutionary computation, which may help us in understanding why
and when EAs work/fail. Such theoretical results are of interest in their own
right. They also help to guide the design of better algorithms in the future.

The rest of this chapter is organised as follows. Section 2 introduces drift
analysis as an easy-to-understand approach to analyse computational time com-
plexity of EAs. General conditions under which an EA solves (or fails to solve)
a problem within a polynomial time will be given. Section 3 presents a prob-
lem classification, which tries to identify hard and easy problem instances for
a given EA. Such problem classification helps us to get a glimpse at potential
characteristics that make a problem hard/easy for a given EA. Section 4 anal-
ysed the role of population in EAs. It is interesting to discover that a common
belief — the large the population, the more powerful an EA would be — is
not necessarily true. There are proven cases where a large population could be
harmful. Section 5 investigates the impact of crossover on EA’s computation
time on the unique input output problem, a problem that occurs in finite state
machine testing. This was the first time that crossover was analysed in depth on
a non-artificial problem. All previous analyses on crossover were done on artifi-
cial problems. Section 6 examines the interactions of different components of an
EA. Rather than analysing search operators (such as crossover and mutation) or
selection mechanisms individually, this section is focused on the interactions be-
tween mutation and selection. It is shown that even parameter settings can have
a significant on EA’s computation, even when exactly the same EA was used.
Section 7 discusses some recent results on analysing estimation of distribution
algorithms (EDAs), which have rarely been studied in terms of computational
time complexity analysis. A more general problem classification is also given.
Finally, Section 8 concludes this chapter with some remarks and future research
directions.

2 Evolutionary Algorithms and Drift Analysis

This section reviews some basic techniques used in analysing EAs as given pre-
viously [16]. The combinatorial optimization problem considered in this chap-
ter can be described as follows: Given a finite state space S and a function
f(x),x ∈ S, find

x∗ = argmax{f(x);x ∈ S},
where x∗ is a state with the maximum function value, i.e., fmax = f(x∗).

The EA for solving the combinatorial optimization problem can be described
as follows:
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1. Initialization: generate, either randomly or heuristically, an initial population
of 2N individuals, ξ0 = (x1, · · · ,x2N ), and let k ← 0, where N > 0 is an
integer. For any population ξk, define f(ξk) = max{f(xi);xi ∈ ξk}.

2. Generation: generate a new intermediate population by crossover and mu-
tation (or any other operators for generating offspring), and denote it as
ξk+1/2.

3. Selection: select and reproduce 2N individuals from the combined population
of ξk+1/2 and ξk, and obtain another new intermediate population ξk+s.

4. If f(ξk+s) = fmax, then terminate the algorithm; otherwise let ξk+1 = ξk+s

and k ← k + 1, and go to step 2.

The EA framework given above is very general because it allows for any initial-
ization methods, any search operators and any selection mechanisms, to be used.
The only difference from some EAs is that selection is applied after, not before,
the search operators. However, the main results introduced in this chapter, i.e.,
Theorems 1 and 2, are independent of any such implementation details. In fact,
the results in this section hold for virtually any stochastic search algorithms.
They serve as the basis for many more specific results using specific EAs on
specific problems.

2.1 Modelling EAs Using Stochastic Processes

Assume x∗ is an optimal solution, and let d(x,x∗) be the distance between a
solution x and x∗, where x ∈ S. If there are more than one optimal solution
(that is, a set S∗), we use d(x, S∗) = min{d(x,x∗) : x∗ ∈ S∗} as the distance
between individual x and the optimal set S∗. For convenience, we can denote
the distance as d(x), which satisfies d(x∗) = 0 and d(x) > 0 for any x /∈ S∗.

Given a population X = {x1, · · · ,x2N}, let

d(X) = min{d(x) : x ∈ X},

which is used to measure the distance of this population to the optimum. The
drift of the random sequence {d(ξk), k = 0, 1, · · · } at time k is defined by

Δ(d(ξk)) = d(ξk+1)− d(ξk).

Define the stopping time of an EA as τ = min{k; d(ξk) = 0}, which is the
first hitting time on an optimal solution. Our interest now is to investigate
the relationship between the expected first hitting time and the problem size n,
i.e., the computational time complexity of EAs in our context. In this chapter,
we will establish the conditions under which an EA is guaranteed to find an
optimal solution in polynomial time on average and conditions under which an
EA takes at least exponential time on average to find an optimal solution. Such
theoretical results help us to gain a better understanding of when and why an
EA is expected to work well/poorly.
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2.2 Conditions for Polynomial Average Computation Times

Theorem 1 ([16]). If {d(ξk); k = 0, 1, 2, · · · } satisfies the following two
conditions,

1. there exists a polynomial of problem size n, h0(n) > 0, such that

d(ξk) ≤ h0(n)

for any population ξk, and
2. for any k ≥ 0, if d(ξk) > 0, then there exists a polynomial of problem size n,

h1(n) > 0, such that

E[d(ξk)− d(ξk+1) | d(ξk) > 0] ≥ 1

h1(n)
,

then starting from any initial population ξ0 with d(ξ0) > 0,

E[τ | d(ξ0) > 0] ≤ h(n),

where h(n) is a polynomial of problem size n.

The first condition in the theorem implies that all populations occurred during
the evolutionary search process are reasonably close to the optimum, i.e., their
distances to the optimum is upper bounded by a polynomial in problem size.
The second condition implies that, on average, the EA always drifts towards
the optimum with at least some reasonable distance, i.e., the drifts are lower
bounded by 1

h1(n)
, where h1(n) > 0 is a polynomial. The theorem basically says

that the stochastic process defined by the EA can reach the optimum efficiently
(in polynomial time) if the search is never too far away from the optimum and
the drift towards the optimum is not too small.

Using the same intuition and analytical methods, as first proposed by Hajek
[17], we can establish conditions under which an EA will take at least exponential
time to reach an optimum.

2.3 Conditions for Exponential Average Computation Time

Theorem 2 ([16]). Assume the following two conditions hold:

1. For any population ξk with db < d(ξk) < da, where db ≥ 0 and da > 0,

E[e−(d(ξk+1)−d(ξk)) | db < d(ξk) < da] ≤ ρ < 1,

where ρ > 0 is a constant.
2. For any population ξk with d(ξk) ≥ da, da > 0,

E[e−(d(ξk+1)−da) | d(ξk) ≥ da] ≤ D,

where D ≥ 1 is a constant.
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If d(ξ0) ≥ da, D ≥ 1 and ρ < 1, then there exist some δ1 > 0 and δ2 > 0 such
that

E[τ | d(ξ0) ≥ da] ≥ δ1eδ2(da−db)

The first condition in the above theorem indicates that (db, da) is a very difficult
interval to search. When this condition is satisfied, d(ξk+1) > d(ξk). In other
words, the offspring population is on average drifting away from the optimum,
rather than getting closer to it. The second condition indicates that a population
in the interval [da,+∞) will not, on average, drift towards the optimum too much
because it is always quite far away from the optimum, i.e., (d(ξk+1)) ≥ da− lnD.

Although the above two general theorems were first proved more than a decade
ago [16], they still serve as foundations of many later results for EAs on specific
problems, e.g., the subset sum problem [16], maximum matching [18, 19], vertex
cover [20], unique input-output sequence [21], etc. The analytical techniques, i.e.,
drift analysis, advocated here is very intuitive and offer a general approach to
analysing different EAs on different problems, which avoids the need to develop
different and complicated analytical techniques for different EAs and problems.

3 Problem Classification: EA-hard vs EA-easy

Traditional complexity theories, such as NP-hardness, characterise the inherent
complexity of a problem, regardless of any algorithms that might be used to
solve them. However, we might not always encounter the worst case in practical
cases. For a hard problem, we are interested in understanding what instance
classes are hard and what instances are actually easy. When we analyse an
algorithm, we want to know which problem instance classes are more amenable
to this algorithm and which are not. Different instance classes of a problem pose
different challenges to different algorithms. In evolutionary computation, we are
particularly interested in problem characteristics that make the problem hard
or easy for a given algorithm. A problem instance class may be very hard for
one algorithm, but easy for another. Analysing the relationship between problem
characteristics and algorithmic features will shed light on the essential question
of when to use which algorithm in solving a difficult problem instance class. In
order to emphasise such an algorithm-specific complexity concept, we introduce
EA-hard and EA-easy problem instance classes in this section. For simplicity,
we will just use the term problems to mean problem instance classes here.

Given an EA, we can divide all optimisation problems into two classes based
on the mean number of generations (i.e., the mean first hitting time) needed to
solve the problems [22].

Easy Class: For the given EA, starting from any initial population, the mean
number of generations needed by the EA to solve the problem, i.e., E[τ |ξ0],
is at most polynomial in the problem size.

Hard Class: For the given EA, starting from some initial population, the mean
number of generations needed by the EA to solve the problem, i.e., E[τ |ξ0],
is at least exponential in the problem size.
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Theorem 3 ([22]). Given an EA, a problem belongs to the EA-easy Class if
and only if there exists a distance function d(ξk), where ξk is the population at
generation k, such that for any population ξk with d(ξk) > 0,

1. d(ξk) ≤ g1(n), where g1(n) is polynomial in the problem size n, and
2. E[d(ξk)− d(ξk+1)|ξk] ≥ clow, where clow > 0 is a constant.

Although the above theorem is closely related to Theorem 1, it shows stronger
necessary and sufficient conditions. Similarly, the following theorem, related to
Theorem 2, establishes the necessary and sufficient conditions for a problem to
be hard for a given EA.

Theorem 4 ([22]). Given an EA, a problem belongs to the EA-hard Class if
and only if there exists a distance function d(ξk), where ξk is the population at
generation k, such that

1. for some population ξk1 , d(ξk1) ≥ g2(n), where g2(n) is exponential in the
problem size n, and

2. for any population ξk with d(ξk) > 0, E[d(ξk) − d(ξk+1)|ξk] ≤ cup, where
cup > 0 is a constant.

The above two theorems can be used to verify whether a problem is hard/easy
for a given EA. The key steps are to prove whether the two conditions hold.
These conditions give us some important insight into problem characteristics
that make a problem hard/easy for a given EA.

4 Is a Large Population Always Helpful?

Population has always been regarded as a crucial element of EAs. There have
been numerous empirical studies that showed the benefit of a large population
size. Whenever a problem becomes more challenging, one tends to increase the
population size in an attempt to make the EA more ‘powerful’. However, such an
intuition might not be correct in all cases. He and Yao [23] first compared (1+1)
EAs and (N+N) EAs theoretically. They showed cases where (N+N) EAs are
indeed more efficient than (1+1) EAs, i.e., populations do help. They also showed
somewhat surprising cases where (N+N) EAs might actually perform worse than
(1+1) EAs, i.e., having a population actually makes an EA less efficient.

More recently, Chen et al. [24] investigated the population issue further and
used the solvable rate as an improved performance measure of EAs. The solvable
rate is a more precise performance measure than the mean first hitting time,
because it considers a probability distribution, rather than just a mean.

Let τ = min{t|x∗ ∈ ξt} be the first hitting time, where x∗ is the global
optimum and ξt is the population at the tth generation. The solvable rate κ is
defined by

κ = P (τ ≺ Poly(n)) ,
where the event τ ≺ Poly(n) means that there exists some polynomial function
(of the problem size n) h(n) such that τ < h(n) for any n > n0 > 0.
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Consider the following multi-modal TrapZeros problem with its global
optimum at x∗ = (1, ..., 1).

TrapZeros(x)
�
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n+
∑n

i=1

∏i
j=1(1 − xj), if (x1 = 0) ∧ (x2 = 0);

3n+
∑n

i=1

∏i
j=1 xj , if (x1 = 1) ∧ (x2 = 1) ∧

(∏ln2 n+2
i=3 xi = 1

)
;

n+
∑n

i=1

∏i
j=1 xj , if (x1 = 1) ∧ (x2 = 1) ∧

(∏ln2 n+2
i=3 xi = 0

)
;

0, if (x1 = 0) ∧ (x2 = 1);

1, if (x1 = 1) ∧ (x2 = 0);

0, Otherwise.

Consider the following (N +N) EA used to solve the above problem.

Initialization: The N initial individuals are generated uniformly at random.
Generation counter k := 0.

Mutation: For each individual in population ξk, one offspring is generated by
flipping each bit independently with a uniform probability 1/n, where n is

the problem size (chromosome length). The offspring population is ξ
(m)
k .

Selection: Select the best N individuals from ξk ∪ ξ(m)
k to form the next

generation ξk+1. k := k + 1 and go to the mutation step.

This algorithm is very generic except for the lack of crossover, which we will
discuss in the next section. The following results compare the EA’s performance
theoretically when N = 1 and N > 1.

Theorem 5 ([24]). The first hitting time of the (1 + 1) EA on TrapZeros is

O(n2) with the probability of 1
4 −O

(
ln2 n
n

)
. In other words, the solvable rate of

the (1 + 1) EA on TrapZeros is at least 1
4 −O

(
ln2 n
n

)
.

This theorem shows that (1 + 1) EA can solve the problem in polynomial time
with an almost constant probability.

Theorem 6 ([24]). The first hitting time of the (N + N) EA, where N =

O(lnn) and N = ω(1), on TrapZeros is O
(

n2

N

)
with a probability of 1/Poly(n),

where 1/Poly(n) refers to some positive function (of the problem size n), whose
reciprocal is bounded from above by a polynomial function of the problem size n.
In other words, the solvable rate of the (N +N) EA on TrapZeros is at least
1/Poly(n).

When the population size increases from 1 to greater than 1, but not too much
greater (i.e., N = O(lnn)), there is no significant gain in terms of EA’s compu-
tation time, although the upper bound is decreased marginally from O(n2) to

O
(

n2

N

)
. Note that we do not have a near constant solvable rate anymore when

the population size is greater than 1.
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Theorem 7 ([24]). The first hitting time of the (N + N) EA, where N =
Ω(n/ lnn), on TrapZeros is super-polynomial with an overwhelming probabil-
ity. In other words, the solvable rate of the (N + N) EA on TrapZeros is
super-polynomially close to 0.

Surprisingly, when the population size is very large, i.e., N = Ω(n/ lnn), the
(N + N) EA is no longer able to solve the TrapZeros in polynomial time. A
large population size is actually harmful in this case!

Although the above study [24] was carried out on a specific problem using
a specific type of EAs, it has actually revealed some interesting problem char-
acteristics under which the (N + N) EA may perform poorly: when the basin
of attraction for a local optimum has relatively high fitness in comparison with
most areas in the entire search space, a large population may be harmful, since
it may lead to a large probability of finding individuals at the local basin. The
search process towards and staying at the local basin can quickly eliminate other
promising individuals that could lead to the global optimum later. When such
congregation at the local basin happens, only large search step sizes can help to
find promising individuals again, resulting in a long computation time towards
the global optimum.

The weakness of the (N + N) EA without crossover on the above problem
characteristic can partially be tackled by employing larger search step sizes. Ei-
ther an appropriately designed crossover operator or some adaptive/self-adaptive
mutation schemes could work well with a large population in this case, as long
as they can provide large search step sizes in exploring the correct attraction
basin even if the whole population has been trapped in a local basin.

5 Impact of Crossover

The previous section used an artificial problem to gain some insight into the role
of population in EAs. Crossover was not considered. This section introduces a
real-world problem and analyses when crossover can be beneficial in improving
EA’s computation time.

Unique input-output sequences (UIO) have important applications in confor-
mance testing of finite state machines (FSMs) [25]. In spite of much experimental
work, few theoretical results exist [21, 26]. One significant result that does exist
is the rigorous analysis of crossover’s impact on EA’s performance on one type
of UIO problems [27].

Following [27], a finite state machine (FSM) is defined as a quintuple, M =
(I, O, S, δ, λ), where I(O) is the set of input (output) symbols, S is the set of
states, δ : S × I → S is the state transition function, and λ : S × I → O
is the output function. A unique input-output sequence (UIO) for a state s in
M is a string x over I such that λ(s, x) 
= λ(t, x), ∀t, t 
= s. In other words, x
identifies state s uniquely. Although the shortest UIO in the general case can be
exponentially long with respect to the number of states [25], our objective here
is to search for an UIO of length n for state s in an FSM, where the fitness of
an input sequence is defined as a function of the state partition tree induced by
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the input sequence [26]. In other words, given an FSM M with m states, the
associated fitness function UIOM,s : I

n → N is defined as

UIOM,s(x) := m− γM (s, x),

where
γM (s, x) := |{t ∈ S|λ(s, x) = λ(t, x)}| .

For theoretical analysis, a special FSM instance class, i.e., the TwoPaths
problem, is introduced here [27].

For instance size n and constant ε, 0 < ε < 1, a TwoPaths FSM has input
and output symbols I := {0, 1} and O := {a, b, c}, respectively, and 2(n + 1)
states S = R∪Q, where R := {s1, s2, . . . , sn+1}and Q := {q1, q2, . . . , qn+1}. The
output function λ is

λ(qi, x) :=

{
c, if i = n+ 1 and x = 0
a, otherwise

λ(si, x) :=

{
b, if i = n+ 1 and x = 1
a, otherwise

The state transition function δ is

δ(si, 0) :=

{
q(1−ε)n+3, if i = (1 − ε)n+ 1,
s1, otherwise

δ(si, 1) :=

{
q1, if i = n+ 1
si+1, otherwise

δ(qi, 1) := q1

δ(qi, 0) :=

{
s1, if i = n+ 1
qi+1, otherwise

We can use the following (N+1) steady state EA (SSEA) [27] to solve the above
problem.

Initialisation: Initialise N individuals uniformly at random from {0, 1}n to
form the initial population P0. i = 0.

Reproduction: Perform one of the following two choices
1-point Crossover: With probability pc(n), select x and y uniformly at

random from population Pi. Select k from {1, . . . , n} uniformly at
random. Perform 1-point crossover between x and y and obtain

x′ := x1x2 · · ·xk−1ykyk+1 · · · yn,

y′ := y1y2 · · · yk−1xkxk+1 · · ·xn.
If max{f(x′), f(y′)} ≥ max{f(x), f(y)}, then x := x′,y := y′.

Mutation Only: With probability 1−pc(n), select x from Pi uniformly at
random. Flip each bit of x independently with probability 1/n. If the
result is no worse than x, the mutant replaces x.

i := i+ 1: and go to the Reproduction step.
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Given the UIO problem and the SSEA as described above, the following results
show clearly the significant impact crossover has on SSEA’s performance.

Theorem 8 ([27]). For a sufficiently large constant c > 0, if the (N+1) SSEA
with a constant crossover probability pc > 0 and population size N , 2 ≤ N =
Poly(n), is restarted every cN2n2 generations on TwoPaths, then the expected
first hitting time is O(N2n2).

In other words, the optimum can be found within polynomial time as long as
crossover is used. The following theorem shows that it is no longer possible to
find the optimum in polynomial time if crossover is not used.

Theorem 9 ([27]). If the crossover probability pc = 0, the probability that
the (N + 1) SSEA with population size N = Poly(n) finds the optimum of
TwoPaths within 2cn generations, where c is a constant, is upper-bounded by
e−Ω(n).

It is important to note that these two theorems only state the benefits of this
crossover operator for the TwoPaths problem. The conclusions should not be
generalised to other problems without new proofs, because different search oper-
ators are effective on different problems. There are problems on which crossover
will not be beneficial.

6 Interaction between Operators/Parameters

The performance of an EA is determined by its operators, parameters and inter-
actions among them. While there have been studies on individual operators, such
as crossover described in the previous section, and parameters, such as popula-
tion size as discussed in Section 4, only one study [28] exists, which analyses the
interaction of two operators, i.e., mutation and selection. It was shown in this
work that neither mutation nor selection alone could determine the performance
of an EA [28]. It was their combined effect that determined EA’s performance.
While this might sound intuitive, it was the first time that a rigorous analysis
was given.

Let’s investigate a non-elitist population-based EA with the linear ranking
scheme [28], which captures many features of the EAs used in practice.

Initialisation: Generate N individuals at random for the initial population
P0. Each individual P0(i) is generated by sampling {0, 1}n uniformly at
arandom, i ∈ {1, 2, . . . , N}. t := 0.

Evolutionary Cycle: Repeat the following until certain stopping criterion is
met.
1. Sort Pt according to fitness f such that

f(Pt(1)) ≥ f(Pt(2)) ≥ · · · ≥ f(Pt(N)).

2. For i ∈ {1, 2, . . . , N},
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(a) Sample r from {1, . . . , N} using the linear ranking scheme.
(b) Pt+1 := Pt(r).
(c) Flip each bit in Pt+1(i) with probability χ/n.

3. t := t+ 1.

In the above algorithm, N is the population size and χ determines the mutation
probability. Both are fixed during evolution. To illustrate the importance of
selection-mutation balance in this algorithm, the following problem is considered.

For any constants σ, δ, 0 < δ < σ < 1 − 3δ, and integer k ≥ 1, the fitness
function considered here is [28]

SelPresσ,δ,k(x) :=

{
2n, if x ∈ X∗

σ,∑n
i=1

∏i
j=1 xj , otherwise

where the set of optimal solutions X∗
σ contain all bitstrings x ∈ {0, 1}n satisfying

‖x[1, k + 3]‖ = 0,

‖x[k + 4, (σ − δ)n− 1]‖ = 1,

‖x[(σ + δ)n, (σ + 2δ)n− 1]‖ ≤ 2/3.

Theorem 10 ([28]). For any constant integer k ≥ 1, let T be the runtime of
the non-elitist population-based EA with linear ranking selection. Its population
size N satisfies n ≤ N ≤ nk. It has a constant selection pressure of η, where
1 < η ≤ 2. The bit-wise mutation rate is χ/n. On function SelPresσ,δ,k, for
any constant ε > 0,

1. If η < exp(χ(σ − δ))− ε, then for some constant c > 0,

Pr(T ≥ ecn) = 1− e−Ω(n).

2. If η = exp(χσ), then

Pr(T ≤ nk+4) = 1− e−Ω(n).

3. If η > 2 exp(χ(σ+3δ))−1
1−δ , then

E(T ) = eΩ(n).

A couple of observations can be made from the above theorem. First, the theorem
shows an interesting relationship between selection pressure η and mutation
rate χ. Neither determines the EA’s computation time by itself. If selection
pressure is high, it can be compensated by a high mutation rate to achieve
the balance between the two, i.e., η = exp(χσ). If selection pressure is too
low, we can lower the mutation rate accordingly to maintain an efficient EA.
This theorem also suggests that trying to increase the mutation rate in order to
increase evolvability and the ability of escaping from local optima may not work
well for some problems, unless selection pressure is also increased appropriately.



72 X. Yao

Second, the EA’s computation time is very sensitive to the ratio between
η and χ. The ratio needs to be in a very narrow range around η = exp(χσ)
to achieve EA’s efficiency, i.e., polynomial computation time. Given a mutation
rate, either a slightly small selection pressure or a moderately larger one will lead
to exponential computation time. This is a rather unique example that unpacks
the relationship between the EA and the problem, and sheds light into how the
parameter interactions affect EA’s performance on this problem.

7 Estimation of Distribution Algorithms (EDAs)

Although estimation of distribution algorithms (EDAs) were proposed and stud-
ied in the field of evolutionary computation, they are actually very different from
other EAs. Instead of using any search operators, EDAs rely on model-building
and sampling.

Initialisation: Generate N individuals using the initial probability distribu-
tion. t := 0.

Iterations: Repeat the following until the stopping criterion is met.

1. M individuals are selected from the population of N individuals;
2. A probability distribution is estimated from these M individuals;
3. N individuals are sampled from this estimated probability distribution;
4. t := t+ 1.

Similar to Section 3, given an EDA, we can classify all problem instance classes
into hard and easy cases [29].

EDA-easy Class. For a given EDA, a problem is EDA-easy if and only if, with
the probability of 1−1/SuperPoly(n), the first hitting time needed to reach
the global optimum is polynomial in the problem size n.

EDA-hard Class. For a given EDA, a problem is ED-hard if and only if, with
the probability of 1/Poly(n), the first hitting time needed to reach the global
optimum is superpolynomial in the problem size n.

Note the hardness definition here is EDA-dependent, because we are interested
in the relationship between algorithms and problems. The above definition is
similar to but different from that in Section 3 because the probabilities are used
here, not mean first hitting times as in Section 3.

We define formally an optimisation problem as I = (Ω, f), where Ω is the
search space and f the fitness function. P = (Ω, f,A) indicates an algorithm A
on a fitness function f in the search space Ω. P ∗

t indicates the probability of
generating the global optimum in one sampling at the t-th generation.

Given a function f(n), where f(n) > 1 always holds and when n→∞, f(n)→
∞, denote

1. f(n) ≺ Poly(n) and g(n) = 1
f(n) 

1
Poly(n) if and only if ∃a, b > 0, n0 > 0 :

∀n > n0, f(n) ≤ anb.
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2. f(n)  SuperPoly(n) and g(n) = 1
f(n) ≺

1
SuperPoly(n) if and only if ∀a, b >

0 : ∃n0 : ∀n > n0, f(n) > anb.

Theorem 11 ([29]). For a given P = (Ω, f,A), if the population size N of the
EDA A is polynomial in the problem size n, then

1. if problem I is EDA-easy for A, then ∃t′ ≤ �E[τ(P)|τ(P) ≺ Poly(n)]�+ 1
such that

P ∗
t′ 

1

Poly(n)
;

2. if ∀t ≺ Poly(n), P ∗
t ≺ 1

SuperPoly(n) , then problem I is EDA-hard for A.

Because the hardness definition used here is algorithm dependent. A problem
that is easy for one EDA can be hard for another EDA or another EA. Chen
et al. [29] described one problem that is EA-easy but EDA-hard. An example
of EA-hard bu EDA-easy problems is yet to be found. Such theoretical compar-
ison of problem hardness under different algorithms can often lead to a better
understanding of the algorithms and shed light on the issue of what algorithmic
features are most effective in tackling certain problem characteristics.

8 Concluding Remarks

Although most research in evolutionary computation relies on computational
studies, there have been an increasing number of theoretical results in recent
years. Significant progresses in analysing the computational time complexity of
EAs have been made. Not only have there been a large number of papers on evo-
lutionary computation theories in journals in evolutionary computation, artifi-
cial intelligence and theoretical computer science, there are also published books
[30, 31]. One of the three sections, Section C, of the well-established Theoretical
Computer Science (TCS) journal is entirely devoted to Natural Computing. Ac-
cording to Elsevier (http://www.journals.elsevier.com/theoretical-compu
ter -science/most-cited-articles/), two of the top three most cited TCS
papers published since 2007 are on evolutionary computation theories. This chap-
ter only reviewed a tiny part of the results in evolutionary computation theory.

In spite of significant progresses, there is still much work to be done in de-
veloping better theories for evolutionary computation. There are several future
research directions that seem to be particularly attractive and important.

First, the analysis of EDAs has been very few. The work by Chen et al. [29]
investigated UMDAs only and on two artificial problems. More work is needed
to analyse other EDAs on non-artificial problems. In particular, it will be very
interesting to study when an EDA is likely to outperform an EA and why [32].
It is also interesting to analyse the impact of different probabilistic models on
EDA’s performance. Is it possible to improve EDA’s performance by using a
more powerful probabilistic model? When will a more powerful probabilistic
model help?
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Second, many real world problems are dynamic. Yet the analysis of EAs on
dynamic problems is lagging behind applications. The existing work in this topic
area is still in its infancy [33, 34]. There is a need for more theoretical work to
complement computational studies in this area.

Third, all the work reviewed here focused on the time of finding the global
optimal solution. In practice, good approximate solutions are often sufficient.
Theoretical analysis of evolutionary approximation algorithms has shown some
promising results [18–20, 35]. It has been shown that EAs from a random ini-
tial population can perform just as well as tailored heuristics for certain com-
binatorial optimisation problems. Can we find an example that an EA finds
an approximate solution to a problem more efficiently than a human-designed
heuristic?

Fourth, there has been some interest in algorithm portfolios in evolutionary
computation [36, 37]. Computational studies have shown very promising results.
However, it is unclear whether or not such type of algorithms offers any theoret-
ical advantages over conventional ones. This is certainly an interesting challenge
for theoretical research.

Fifth, the work reviewed in this chapter is all related to combinatorial optimi-
sation. Yet EAs are equally often used in global (numerical) optimisation. There
has been excellent work on the convergence and convergence rates of various
EAs. However, theoretical analysis of EA’s scalability has been few, in spite of
recent surge in the interest of large scale optimisation [38–40]. It is still unclear
what the relationship is between the optimisation time and the problem size (in
terms of dimensionality) for different EAs on different problems. In fact, it is
not entirely clear what a good measure for the optimisation time should be. The
convergence time may not be very interesting from a practical point of view as
we may not find the exact global optimum in finite time. It is more interesting
to analyse the computation time towards a near optimum. Maybe we should
explore the potential links to Blum et al.’s seminal work [41].
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(No. EP/I010297/1).

References

1. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transac-
tions on Evolutionary Computation 3, 82–102 (1999)

2. Li, B., Lin, J., Yao, X.: A novel evolutionary algorithm for determining unified creep
damage constitutive equations. International Journal of Mechanical Sciences 44(5),
987–1002 (2002)

3. Yang, Z., Tang, K., Yao, X.: Self-adaptive differential evolution with neighborhood
search. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation
(CEC 2008), pp. 1110–1116. IEEE Press, Piscataway (2008)

4. Yang, Z., Li, X., Bowers, C., Schnier, T., Tang, K., Yao, X.: An efficient evolu-
tionary approach to parameter identification in a building thermal model. IEEE
Transactions on Systems, Man, and Cybernetics — Part C (2012),
doi:10.1109/TSMCC.2011.2174983



Unpacking and Understanding Evolutionary Algorithms 75

5. Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search
for capacitated arc routing problems. IEEE Transactions on Evolutionary Compu-
tation 13, 1151–1166 (2009)

6. Handa, H., Chapman, L., Yao, X.: Robust route optimisation for gritting/salting
trucks: A CERCIA experience. IEEE Computational Intelligence Magazine 1, 6–9
(2006)

7. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering 37, 264–282
(2011)

8. Wang, Z., Tang, K., Yao, X.: Multi-objective approaches to optimal testing resource
allocation in modular software systems. IEEE Transactions on Reliability 59, 563–
575 (2010)

9. Dam, H.H., Abbass, H.A., Lokan, C., Yao, X.: Neural-based learning classifier
systems. IEEE Transactions on Knowledge and Data Engineering 20, 26–39 (2008)

10. Yao, X., Islam, M.M.: Evolving artificial neural network ensembles. IEEE Compu-
tational Intelligence Magazine 3, 31–42 (2008)

11. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of
genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Sys-
tems 141(1), 5–31 (2004)

12. Chong, S.Y., Tino, P., Yao, X.: Measuring generalization performance in co-
evolutionary learning. IEEE Transactions on Evolutionary Computation 12, 479–
505 (2008)

13. Salcedo-Sanz, S., Cruz-Roldán, F., Heneghan, C., Yao, X.: Evolutionary design of
digital filters with application to sub-band coding and data transmission. IEEE
Transactions on Signal Processing 55, 1193–1203 (2007)

14. Zhang, P., Yao, X., Jia, L., Sendhoff, B., Schnier, T.: Target shape design opti-
mization by evolving splines. In: Proc. of the 2007 IEEE Congress on Evolutionary
Computation (CEC 2007), pp. 2009–2016. IEEE Press, Piscataway (2007)

15. Li, Y., Hu, C., Yao, X.: Innovative batik design with an interactive evolutionary
art system. J. of Computer Sci. and Tech. 24(6), 1035–1047 (2009)

16. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artificial Intelligence 127, 57–85 (2001)

17. Hajek, B.: Hitting time and occupation time bounds implied by drift analysis with
applications. Adv. Appl. Probab. 14, 502–525 (1982)

18. He, J., Yao, X.: Maximum cardinality matching by evolutionary algorithms. In:
Proceedings of the 2002 UK Workshop on Computational Intelligence (UKCI
2002), Birmingham, UK, pp. 53–60 (September 2002)

19. He, J., Yao, X.: Time complexity analysis of an evolutionary algorithm for finding
nearly maximum cardinality matching. J. of Computer Sci. and Tech. 19, 450–458
(2004)

20. Oliveto, P., He, J., Yao, X.: Analysis of the (1+1)-ea for finding approximate
solutions to vertex cover problems. IEEE Transactions on Evolutionary Computa-
tion 13, 1006–1029 (2009)

21. Lehre, P.K., Yao, X.: Runtime analysis of the (1+1) ea on computing unique input
output sequences. Information Sciences (2010), doi:10.1016/j.ins.2010.01.031

22. He, J., Yao, X.: A study of drift analysis for estimating computation time of evo-
lutionary algorithms. Natural Computing 3, 21–35 (2004)

23. He, J., Yao, X.: From an individual to a population: An analysis of the first hitting
time of population-based evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation 6, 495–511 (2002)



76 X. Yao

24. Chen, T., Tang, K., Chen, G., Yao, X.: A large population size can be
unhelpful in evolutionary algorithms. Theoretical Computer Science (2011),
doi:10.1016/j.tcs.2011.02.016

25. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines
— a survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

26. Lehre, P.K., Yao, X.: Runtime analysis of (1+1) ea on computing unique input out-
put sequences. In: Proc. of the 2007 IEEE Congress on Evolutionary Computation
(CEC 2007), pp. 1882–1889. IEEE Press, Piscataway (2007)

27. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-
output sequences. Soft Computing 15, 1675–1687 (2011)

28. Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on the runtime of
evolutionary algorithms. IEEE Transactions on Evolutionary Computation (2011),
doi:10.1109/TEVC.2011.2112665

29. Chen, T., Tang, K., Chen, G., Yao, X.: Analysis of computational time of simple
estimation of distribution algorithms. IEEE Transactions on Evolutionary Com-
putation 14, 1–22 (2010)

30. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer, Berlin (2010)

31. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics: Foundations
and Recent Developments. World Scientific, Singapore (2011)

32. Chen, T., Lehre, P.K., Tang, K., Yao, X.: When is an estimation of distribution
algorithm better than an evolutionary algorithm? In: Proceedings of the 2009 IEEE
Congress on Evolutionary Computation, pp. 1470–1477. IEEE Press, Piscataway
(2009)

33. Droste, S.: Analysis of the (1+1) ea for a dynamically changing onemax-variant. In:
Proceedings of the 2002 IEEE Congress on Evolutionary Computation, pp. 55–60.
IEEE Press, Piscataway (2002)

34. Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: An
analysis of frequency and magnitude of change. In: Proceedings of the 2009 Genetic
and Evolutionary Computation Conference, pp. 1713–1720. ACM Press, New York
(2009)

35. Yu, Y., Yao, X., Zhou, Z.-H.: On the approximation ability of evolutionary opti-
mization with application to minimum set cover. Artificial Intelligence (2012),
doi:10.1016/j.artint.2012.01.001

36. Fukunaga, A.S.: Genetic algorithm portfolios. In: Proceedings of the 2000 IEEE
Congress on Evolutionary Computation, pp. 16–19. IEEE Press, Piscataway (2000)

37. Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for
numerical optimization. IEEE Transactions on Evolutionary Computation 14, 782–
800 (2010)

38. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Information Sciences 178, 2985–2999 (2008)

39. Yang, Z., Tang, K., Yao, X.: Scalability of generalized adaptive differential evolu-
tion for large-scale continuous optimization. Soft Computing 15, 2141–2155 (2011)

40. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimiza-
tion. IEEE Transactions on Evolutionary Computation (2011),
doi:10.1109/TEVC.2011.2112662

41. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society 21, 1–46 (1989)



Representation in Evolutionary Computation

Daniel Ashlock1, Cameron McGuinness1, and Wendy Ashlock2

1 University of Guelph, Guelph, Ontario, Canada, N1G 2W1
{dashlock,cmcguinn}@uoguelph.ca

2 York University, Toronto, Ontario, Canada, M3J 1P3
washlock@cse.yorku.ca

The representation of a problem for evolutionary computation is the choice of
the data structure used for solutions and the variation operators that act upon
that data structure. For a difficult problem, choosing a good representation can
have an enormous impact on the performance of the evolutionary computation
system. To understand why this is so, one must consider the search space and
the fitness landscape induced by the representation. If someone speaks of the
fitness landscape of a problem, they have committed a logical error: problems
do not have a fitness landscape. The data structure used to represent solutions
for a problem in an evolutionary algorithm establishes the set of points in the
search space. The topology or connectivity that joins those points is induced by
the variation operators, usually crossover and mutation. Points are connected if
they differ by one application of the variation operators. Assigning fitness values
to each point makes this a fitness landscape. The question of the type of fitness
landscape created when a representation is chosen is a very difficult one, and we
will explore it in this chapter.

The primary goal of this chapter is to argue for more research into represen-
tation in evolutionary computation. The impact of representation is substantial
and is not studied enough. The genetic programming community has been using
parameter sweeps [18] which compare different choices of operations and termi-
nals within a genetic programming environment. This is a big step in the right
direction, but even this work ignores the issue of whether genetic programming
is appropriate for a given problem. One of the implications of the No Free Lunch
Theorem of Wolpert and Macready is that the quality of a given optimizer is
problem specific. This includes the choice of representation.

There are reasons that representation has not been explored. While there
can be huge rewards from exploring different representations, there is also a
substantial cost. One must implement alternate representations; one must run
well-designed experiments with them which probably include parameter tuning
for each representation; and then one must find a way to compare the solutions.
This last task seems simple – could not one simply examine final fitness numbers?
While the first answer to this question is clearly yes, it may be that a problem
requires diverse solutions or robust solutions. The recent explosion of research in
multicriteria optimization with evolutionary algorithms means that issues like
the diversity of solutions produced are important.
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We will examine the question of representation through a series of examples
involving: a simple toy optimization problem, the problem of evolving game
playing agents, real optimization problems, and, finally, a problem drawn from
automatic content generation for games.

1 Representation in Self-avoiding Walks

The self-avoiding walk (SAW) problem involves traversing a grid, given in-
structions for each move, in such a way that every square is visited. Fitness
is evaluated by starting in the lower left corner of the grid and then making
the moves specified by the chromosome. The sequence of moves made is re-
ferred to as the walk. If a move is made that would cause the walk to leave
the grid, then that move is ignored. The walk can also revisit cells of the grid.
Fitness is equal to the number of squares visited at least once when the walk
is completed. The problem is called the self-avoiding walk problem because op-
timal solutions for a number of moves equal to the number of squares minus
one do not revisit squares; they are self-avoiding walks. Figure 1 shows the 52
global optima for the 4 × 4 SAW problem. In addition to a diverse set of opti-
mal solutions, the SAW problem has many local optima when the grid is large
enough.

The SAW problems has a number of nice qualities as an evolutionary
computation test problem:

– The problem has a large number of cases, one for each possible size of grid.
While problem difficulty does increase with grid size, it is also different for
grids of the same size with different dimensions such as 4× 4 and 2× 8.

– Even for quite long genes, the solutions have a simple two-dimensional rep-
resentation. This makes visualizing final populations easy. Visualizations of
the final walk also make it easy to compare between different representations.

– The problem, when the grid is large enough, has a large number of both
global and non-global optima. This starts, roughly, when both dimensions
are larger than 3. Table 1 gives the number of global optima.

– The global optima are not symmetrically distributed. Some have many other
optima nearby, while others are far from other optima. This means that, even
though they have the same fitness, they differ in how easy they are to locate.
The notion of nearby used here is Hamming distance.

Having made a case that the SAW has desirable properties for a test problem, the
next step is to construct multiple representations for it. We will examine three
representations, one of them the obvious choice, and all implemented as strings
over some alphabet. Other than changing the representation, all experiments
will be performed using a population of 100 strings using two-point crossover
and a mutation operator that changes two of the characters in the string. The
problem case used is the 4× 4 SAW.
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Fig. 1. The optimal solutions to the 4× 4 SAW problem

The Direct Representation

The direct representation uses a character string over the alphabet {U,D,L,R},
which stand for Up, Down, Left, and Right. The string is of length fifteen and
the fitness function simply executes the moves in order, recording the number of
squares visited. Since evaluation starts in the lower left square with that square
already visited the minimum fitness is one and the maximum is 16. The string
length is equal to the minimum number of moves required to visit all the squares.

The Relative Representation

The relative representation uses a character string of length 15 over the alpha-
bet {F,R, L} which stand for forward, turn right and then move forward, and
turn left and then move forward. Like the direct representation, the relative
representation keeps track of the square it currently occupies. It adds to that
information the direction it is currently facing. Fitness evaluation starts with
the drawing agent facing upward. Fitness evaluation is otherwise like the direct
representation.
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Table 1. Number of global optima in the SAW problem for problem sizes 2 ≤ n,m ≤ 7

n/m 2 3 4 5 6 7

2 2 3 4 5 6 7
3 3 8 17 38 78 164
4 4 17 52 160 469 1337
5 5 38 160 824 3501 16,262
6 6 78 469 3501 22,144 144,476
7 7 164 1337 16,262 14,4476 1,510,446

The Gene Expression Representation

The gene expression representation uses a character string over an alphabet
derived from the one used in the direct representation: {U,D,L,R, u, d, l, r}.
During fitness evaluation upper case letters are used normally and lower case
letters are ignored. If a gene has fewer than fifteen upper case letters, fitness
evaluation simply ends early, an implicit fitness penalty. If a gene has more than
fifteen upper case letters, only the first fifteen are used. In order to permit the
average number of upper case letters to be fifteen, the length of the string is set to
30. The name of the gene expression representation reflects that the upper/lower
case status of a character controls the expression of each gene loci.

Results

A simple assessment of the impact of changing the representation is given in
Figure 2. The time to solution for sets of 1000 replicates done for all three repre-
sentations was sorted and then graphed. The performance of the representations
is strongly stratified with the direct representation exhibiting the worse perfor-
mance (longer times to solution), the gene expression representation coming in
second, and the relative representation coming in first. For the replicates with
the longest time to solution (right end of the sorting order), the gene expression
representation takes over for first place.

The goal of demonstrating that the choice of representation makes a difference
has been met for the SAW problem. Let us now consider what caused the change
in performance. The size of the search space for the relative representation is
3n, while for the direct representation the size is 4n, meaning that evolution has
a smaller job to do. The relative representation encodes far fewer walks than
the direct one. In particular, the relative representation is incapable of moving
back to the square it just came from, a move that always results in a sub-
optimal solution. This gives the relative representation a substantial advantage:
it retains all the optimal solutions in the direct representation while excluding
many sub-optimal ones. This is an example of building domain information into
the representation.
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Fig. 2. This figure shows the impact of changing representation on the time to solution
for the 4x4 SAW problem. The graphs display the sorted times to solution for 1000
independent evolutionary replicates. The left panel displays all 1000 replicates while
the right one displays only the first 900.

The best average performer is the gene expression representation, though this
is due to a small number of bad results for the relative representation. The
size of the search space here is 830, enormously larger than direct or relative
representation. This demonstrates that the size of the search space, while poten-
tially relevant, cannot possibly tell the whole story. Both the direct and relative
representation uniquely specify a sequence of moves. The gene expression repre-
sentation has billions of different strings that yield the same sequence of moves.
It also specifies some sequences of moves the other two representations cannot,
but these all contain fewer than fifteen moves and have intrinsically bad fitness.

To understand the good performance of the gene expression representation,
it is necessary to consider the fitness landscape. A mutation of a gene in the
direct or relative representation changes one move in the walk represented by
that gene. Some of the mutations in the gene expression representation have the
same effect, but those that change a capital letter into lower case or vice versa
have the effect of inserting or deleting characters from the walk specified by the
gene. This means that the gene expression representation has edit mutations
that can insert, delete, or change the identity of a character in the walk the
gene codes for. The other two representations can only change the identity of
characters.

If we consider the space of encoded walks, rather than genes, the gene expres-
sion representation has more connectivity. If we think of optima as hills in the
fitness landscape, then using the gene expression representation has the effect of
merging some of the hills. Since the number of optimal results remains constant,
this means the only effect is to eliminate local optima.

One weakness of this demonstration of the impact of representation on the
SAW problem is that only one case of the problem was examined. Figure 3 shows
the result of performing the same experiments for the 5 × 5 case of the SAW
problem. The algorithm was set to halt if it did not find a solution in 1,000,000
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fitness evaluations. This is what causes the flat portions of the plots on the
right side of the figure. Notice that, in this experiment, the order of the direct
and relative representations is reversed and the gene expression representation
is clearly the best.

This second example serves to demonstrate that the representation issue is
complex, even on a problem as simple as the SAW. Another quality of the SAW,
demonstrated in [15], is that different cases of the problem behave differently
from one another as optimization problems. The results in Figure 3 provide ad-
ditional evidence that different sizes of SAW problems are substantially different
from one another.

Fig. 3. This figure shows the impact of changing representation on the time to solution
for the 5x5 SAW problem. The graphs display the sorted times to solution for 1000
independent evolutionary replicates.

2 Representation in Game-Playing Agents

The game used to demonstrate the impact of representation on the evolution of
game playing agents is the iterated prisoner’s dilemma. The prisoner’s dilemma
[13] is a widely known abstraction of the tension between cooperation and con-
flict. In the prisoner’s dilemma two agents each decide simultaneously, without
communication, whether to cooperate (C) or defect (D). If both players cooper-
ate, they receive a payoff of C; if both defect, they receive a payoff of D. If one
cooperates and the other defects, then the defector receives the temptation payoff
T , while the cooperator receives the sucker payoff S. In order for a simultaneous
two-player game to be prisoner’s dilemma two conditions must hold:
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S ≤ C ≤ D ≤ T (1)

and
(S + T ) ≤ 2C (2)

The first of these simply places the payoffs in their intuitive order while the
second requires that the average score for both player’s in a unilateral defection
be no better than mutual cooperation.

A situation modeled by the prisoner’s dilemma is that of a drug dealer and an
addict exchanging money for drugs in simultaneous blind drops to avoid being
seen together by the police. Cooperation consists of actually leaving the money
or drugs; defection consists of leaving something worthless like an envelope full
of newspaper clippings in place of money or an inert white powder in place of
the drugs. If the exchange is made only once, then neither party has an incentive
to do anything but defect. If the drop is to be made weekly, into the indefinite
future, then the desire to get drugs or money next week strongly encourages
cooperation today. This latter situation is an example of the iterated prisoner’s
dilemma. When play continues, the potential for future retribution opens the
door to current cooperation. The payoff values used in the experiments described
here are S = 0, D = 1, C = 3, and T = 5, largely because these values have
been used in many other studies in which prisoner’s dilemma agents were evolved
[2,10,4,9].

Earlier research [5,1] compared ten different representations for the iterated
prisoner’s dilemma. These experiments all used populations of 36 agents whose
fitness was computed as the average score in a round-robin tournament of 150
rounds of iterated prisoner’s dilemma between each pair of players. Each agent
had access to their opponent’s last three plays, and perhaps more in the case of
state conditioned representations. Evolution was run for 250 generations with the
crossover and mutation operators kept as similar as possible given the differing
representations.

Representations

The representations studied for the iterated prisoner’s dilemma are as follows:

Finite State Machines. Two types of finite state machines are used: directly
encoded finite state machines with 16 states (AUT) and finite state machines
represented with a developmental encoding [19]. The number of states in the
machine is variable but not more than twenty. These finite state machines are
referred to by the tag CAT.

Function Stacks. The tags F40, F20, and F10 are for function stacks, a linear
genetic programming representation based on a directed acyclic graph. The data
type is boolean and the operations available are logical And, Or, Nand, and Nor.
The constants true and false are available as are the opponent’s last three actions.
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We use the encoding true=defect, false=cooperate. The numbers 10, 20, and 40
refer to the number of nodes in the directed acyclic graph.

Tree-Based Genetic Programming. We use standard tree-based genetic pro-
gramming [20] with the same encoding as the function stacks and the same
Boolean functions with access to the opponent’s last three actions. These are re-
ferred to with the tag TRE. The tag DEL corresponds to Boolean parse trees,
identical to TRE,save that a one-time-step delay operator is incorporated into
the operation set.

Markov Chains. The tag MKV is used for Markov chains implemented as
look-up tables indexed by the opponent’s last three actions that gives the prob-
ability of cooperation. Once this probability has been found a random number
is used to determine the agent’s action. The tag LKT is used for look-up ta-
bles indexed by the opponent’s last three actions. The lookup tables are like the
Markov chains if the only probabilities permitted are 0 and 1.

ISAc Lists. A different linear genetic programming representation denoted
by ISC are If-Skip-Action lists [12]. An ISAc list executes a circular list of
Boolean tests on data items consisting of the opponent’s last three actions and
the constants “cooperate” and “defect” until a test is true. Each Boolean test
has an action associated with it, the action for the true test is the agent’s next
action. On the next round of the game execution starts with the next test. The
lists of tests used here have a length of 30.

Neural Nets. The tag CNN is used for feed-forward neural nets with a per-
neuron bias in favor of the output signifying cooperation; they access the oppo-
nent’s last three actions and have a single hidden layer containing three neurons.
The tagNNN are feed-forward neural nets identical to CNN save that they have
no bias in favor of cooperation or defection.

2.1 Results

The metric used to compare representations is the probability the final popula-
tion, at generation 250, is essentially cooperative. We measure this as having an
average payoff of 2.8 or more. This is a somewhat arbitrary measure, carefully
justified only for the Aut representation. For finite state automata, a series of
initial plays between two players must be followed by a repeating sequence of
plays caused by having reached a closed loop in the (finite) space of states. When
fitness evaluation consists of 150 rounds of iterated prisoner’s dilemma and the
automata have no more than sixteen states, an average score of 2.8 or more
corresponds to having no defections in the looped portion of play.

Figure 4 shows the probability that different representations will be coopera-
tive. This result is, in a sense, appalling. The outcome of the basic experiment
to demonstrate that cooperation arises [22] has an outcome that can be dialed
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Fig. 4. Shown are 95% confidence intervals on the probability that the final generation
of an evolutionary algorithm training prisoner’s dilemma playing agents, with different
representations, will be cooperative

from 95% cooperative to no cooperation by changing the representation. This
shows not only that representation has an impact but that it can be the dominant
factor. In other words, an experiment using competing agents that does not
control for the effects of representation may have results entirely dictated by the
choice of representation.

There are a number of features of these experiments that make the situation
worse. In order to check the importance of changing the parameters of a single
representation, the function stack (Boolean directed acyclic graph genetic pro-
gramming) representation was run with 10, 20, and 40 nodes. Notice that the
10-node version of this representation is significantly less cooperative than the
others.

In a similar vein, the AUT and CAT are alternate encodings of the same
data structure. In spite of this they have huge differences in their degree of
cooperativeness. There is a mathematical proof in [1] that the function stack
representation encodes the same space of strategies as finite state machines.
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A slightly different version of this fact applies to the two neural net (CNN and
NNN) and the lookup table (LKT) representations. All of these are a map
from the opponent’s last three actions to a deterministic choice of an action. It
is not difficult to show all three representation encode exactly the same space
of 28 strategies in different ways. In spite of this the neural net representations
have an experimentally estimated probability of zero of cooperating; the lookup
tables are among the most cooperative representations.

3 Representation in Real Optimization

Real parameter optimization is one of the earliest applications of evolution-
ary computation. Evolution strategies [14] were originally designed to optimize
parameters that described an airfoil and also has had substantial success at de-
signing nozzles that convert hot water into steam efficiently. Real parameter
optimization also substantially pre-dates evolutionary computation; it is one of
the original applications of the differential calculus with roots in the geometry
of the third century B.C. and modern treatments credited to Isaac Newton and
Gottfried Leibniz in the seventeenth century. The natural representation from
the calculus, as functions mapping m-tuples of numbers to a single parame-
ter to be optimized, is a natural one only adopted by some techniques within
evolutionary computation.

The largest difference between real optimization and representations built on
character strings is the set of available mutation operators. When we change
the value of a real number, that change is a probability distribution on the
real numbers. It could be uniform, Gaussian, or some more exotic distribution.
Evolutionary programming [16] pioneered the use of mutation operators that use
covariance across parameters to permit evolution to modify mutation operators
to respect the local search gradient. One of the representations we will examine
completely avoids the issue of selecting the correct distribution for a mutation
operator, while the other two retain their critical dependence on that choice.
Correct choice of the type of mutation operator in real parameter optimization
is very important, but it is not the subject we are concerned with in this article.

3.1 Representations

We will examine three possible representations for real-parameter optimization.
There are many others. Some of the earliest work in real optimization [17] repre-
sented sets of real parameters as strings of bits with blocks of bits first mapped
onto an integer value and then the integer value used to pick out a value from
an equally spaced set for a given parameter value. This representation required
techniques, like Grey-coding, to ensure that some bits were not far more im-
portant than others. This is a nice, early example of finding a more effective
representation.
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The Standard Direct Representation. Current evolutionary real optimiza-
tion often operate on vectors of real numbers holding the parameters to be
optimized in some order. We will call treating such a vector of real numbers as a
string of values, using crossover operators analogous to the string like ones, the
standard direct representation. This is the first of our three representations.

The Gene Expression Representation for Real Parameters. The gene
expression representation, used on the SAW problem in Section 1, can easily
be adapted to real parameter optimization. We first lengthen the vector of real
parameters by double and then add an expression layer in the form of a binary
gene with one loci for each parameter in the vector of reals. Before the vector
of reals is sent to the fitness function, an expression step is performed. Suppose
that n real parameters are required. Only those real values with a one in the
corresponding position in the expression layer are used. If fewer than n real
parameters are expressed in this fashion, then the individual receives fitness
that is the worst possible. If n or more parameters are expressed, then the first
n, in the order they appear in the data structure, are used. In this case, the
usual fitness for those n parameters is the fitness of the entire data structure.

The Sierpinski Representation. The Sierpinski representation first appears
in [11] and was used in [3] to located parameters for interesting subsets of the
Mandelbrot set. The Sierpinski representation is inspired by the chaos game,
an iterative averaging algorithm for generating the Sierpinski triangle or gasket,
shown in Figure 5. The game starts at any vertex of the triangle. The game then
iteratively moves half way toward a vertex of the triangle selected uniformly at
random and plots a point. The points have been colored by averaging a color
associated with each vertex into a color register each time a particular corner
was selected. This visualizes the importance of each vertex to each plotted point.

If, instead of the three vertices of a triangle, we use the 2n points that are the
vertices of an n-dimensional box, then a series of averaging moves toward these
points specify a collection of points that densely covers the interior of the box
[11]. Strings of averaging moves form the representation for evolutionary search.
Formally:

Definition 1. The Sierpinski representation. Let G = {g0, g1, . . . , gk−1} be
a set of points in R

n called the generator points for the Sierpinski representation.
Typically these are the vertices of a box in some number of dimensions. Associate
each of the points, in order, with the alphabet A = {0, 1, . . . , k − 1}. Let the
positive integer r be the depth of representation. Then for s ∈ Ar the point
represented by s, ps, is given by Algorithm 31.

Definition 2. The normalized Sierpinski representation(NSR) is achieved
by insisting that the last character of the string always be the first generator.
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Fig. 5. The Sierpinski triangle or gasket

Algorithm 31. Sierpinski Unpacking Algorithm

Input: A string s ∈ Ar;The set G of k generator points;
An averaging weight α

Output: A point in R
n

Details:
Set x ← gs[r−1]

for(i ← r − 2; i ≥ 0; i ← i− 1)
x ← α · gs[i] + (1− α) · x

end for
return(x)

The following lemma is offered without proof (but is elementary).

Lemma 1. Let a string s of length r be a name for a point x = ps. Suppose that
α = 0.5 and that the last character (initial generator) of s is always the same.
Then s is the sole name of x of length r.

The Sierpinski representation reduces the problem of real optimization to that
of evolving a string. Lemma 1 tells us that each string in the normalized version
of the representation corresponds to a unique point. An important feature of the
Sierpinski representation is that it searches only inside the convex hull of the
generators. This has good and bad points; the generators can be used to direct
search, but the search cannot use a mutation operator to locate an optima outside
of the initial boundaries in which the population was initialized – something both
the other representations can do.
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3.2 Comparing the Direct and Sierpinski Representations

We will compare the direct and Sierpinski representations on the problem of
optimizing the function:

h(x0, x1, . . . , xn−1) = sin(
√
x20 + x21 + · · ·+ x2n−1) ·

∏
sin(xi) (3)

in n = 5 dimensions. This function possesses an infinite number of optima of
varying heights and is thus good for testing the ability of an algorithm to locate
a diversity of optima.

Notice that the Sierpinski representation stores points as strings of characters.
This means that we can store and retrieve points in a dictionary – with logarithmic
time for access – and can compare points for “nearness” by simply checking their
maximum common prefix. In particular, if we are searching a space with multiple
optima, it becomes very easy to database optima that the algorithm has already
located. The MOSS, given as Algorithm 32, was first specified in [11].

Algorithm 32. Multiple Optima Sierpinski Searcher (MOSS)

Input: A set of generator points G
An averaging parameter α
A depth of representation r
A depth of exclusion d
A multi-modal function f to optimize

Output: A collection of optima
Details:
Initialize a population of Sierpinski representation strings
Run a string-EA until an optimum x is found
Initialize a dictionary D with the string specifying x
Repeat

Re-run the EA, awarding minimal fitness to any string
with the same d-prefix as any string in the dictionary

Record the new optimum’s string in D
Until(Enough optima are found)

The MOSS algorithm creates zones of low fitness around the optima it has
already located. The size of the zones is determined by the exclusion depth and
have a shape identical to the convex hull of the generators. Each increase in the
exclusion depth decreases the size of the holes around known optima by one-half.

Table 2 compares 100 runs of the standard algorithm with 100 runs of the
MOSS algorithm supported by the Sierpinski representation. The goal, in this
case, is to locate as many optima as possible. The table gives a tabulation of op-
tima located stratified by the number of times they were located. The results are
striking: the MOSS algorithm located far more optima (969) than the standard
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Table 2. Relative rate of location among the 1000 populations optimizing Equation 3
for the original and MOSS algorithms

Times Number of Optima Times Number of Optima
located Original MOSS located Original MOSS

1 122 938 8 6 0

2 77 31 9 1 0

3 56 0 10 3 0

4 40 0 11 1 0

5 19 0 12 1 0

6 15 0 13 1 0

7 14 0

algorithm (356) and never located a given optima three times. The standard
algorithm located six optima more than ten times each. The average quality of
the optima located is higher for the standard algorithm, because it locates high
quality optima multiple times. The two representations compared are not, in an
absolute sense, better or worse. Rather, each has situations in which it is better.
The strength of the Sierpinski representation is locating a diversity of optima;
it makes databasing optima easy and so enables the MOSS algorithm.

3.3 Comparison of the Direct and Gene Expression Representations

We compare the standard direct and gene expression representations on the
function:

gn(x1, x2, . . . , xn) =
1

20n

n∑
k=0

xk +

n∑
k=0

sin(
√
k · xk) (4)

in two through seven dimensions. This problems has many local optima and the
small linear trend means that the better optima are further afield.

For each dimension and representation, 400 replicates of an evolutionary al-
gorithm were run and a 95% confidence interval on the quality of the optima lo-
cated were constructed. This confidence interval was constructed at both 100,000
fitness evaluations and 1,000,000 fitness evaluations. The results are given in
Table 3.

The advantage of using the gene expression representation is largest in lower
dimensions. It ceases to be significant when we compare the results in d = 7
dimensions for the shorter evolutionary runs. The significance returns in the
longer evolutionary runs. This demonstrates that the gene expression represen-
tation made better use of additional time.

The fitness landscape for this problem is easy to understand - it has a lot
of hills and the small linear trend means that searching further afield will al-
ways locate better optima. This lets us draw the following conclusion: the gene
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Table 3. Mean value of best optima located, averaged over replicates, and best op-
timum located in any replicate for the polymodal function. This table compares the
standard direct representation and the gene expression representations for two different
lengths of evolution.

100,000 fitness evaluations 1,000,000 fitness evaluations

Gene Expression Direct Gene Expression Direct

Dimension Mean Best Mean Best Mean Best Mean Best

2 2.77 ± 0.02 3.25 2.59± 0.02 2.98 3.04 ± 0.03 4.17 2.58± 0.02 2.98

3 3.74 ± 0.01 4.11 3.54± 0.02 3.97 3.94 ± 0.02 4.45 3.55± 0.02 3.97

4 4.71 ± 0.01 5.05 4.54± 0.01 4.97 4.88 ± 0.01 5.33 4.52± 0.01 4.97

5 5.68 ± 0.02 5.98 5.51± 0.01 5.85 5.80 ± 0.02 6.31 5.52± 0.01 5.87

6 6.58 ± 0.02 6.95 6.49± 0.01 6.82 6.73 ± 0.01 7.10 6.51± 0.01 6.90

7 7.54 ± 0.04 7.93 7.50± 0.01 7.85 7.68 ± 0.02 8.08 7.50± 0.01 7.80

expression representation is better at exploration, while the standard direct rep-
resentation is better at exploitation. It is easy to test this hypothesis in the
opposite direction by optimizing a different function. Recall that mutations to
the binary expression layer amount to inserting or deleting values from the se-
quence of real parameters. The gene expression representation preforms badly
when optimizing a unimodal function with its mode selected so that no two of
its coordinates are the same (data not shown). It has a far worse mean time to
solution than the direct representation in low dimensions and completely fails
to locate the optimum in higher dimensions.

As with the Sierpinski representation, the gene expression representation is
neither better nor worse than the standard direct one. Each has its own ap-
propriate domain of applicability. This is additional support for the thesis of
this chapter, that we should study representation more assiduously. Each new
representation is an additional item in our toolbox. Both the comparisons made
in this section demonstrate that there is a significant impact to the choice of
representation.

4 Representation in Automatic Content Generations

In this section we look at the problem of evolving a maze. Examples of the types
of mazes we are evolving are shown in Figures 8 and 9. We will use the same
evolutionary algorithm for each of five representations. The representations used
in this study are defined in [6,8,21]. Since none of the cited publications used the
same fitness function on all five representations we use a new fitness function.
The mazes we are evolving are specified on a grid. The mazes have an entrance
in the center of each wall and two internal checkpoints. Figure 7 designates long
and short distances. These distances are the lengths of the shortest paths between
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Fig. 6. Shown are a raw (left) and rendered (right) maze of the sort specified by
evolving which squares on a grid are obstructed

the specified points. The fitness function is the sum of the long distances divided
by the sum of the short distances, except that any maze where we cannot move
from each door to both checkpoints is awarded a fitness of zero. Distances are
computed using a simple dynamic programming algorithm [6].

We will demonstrate that the visual character of the mazes changes substan-
tially when the representation is changed. All the evolutionary algorithms use
a population of 100 mazes stored as strings of values with a 1% mutation rate
and two-point crossover. Evolution proceeds for 500,000 fitness evaluations. The
representations are as follows:

First Direct Representation. Open and blocked squares within a rectangular
grid are specified directly as a long, binary gene.

Chromatic Representation. A direct representation, in which the squares
within a grid are assigned colors from the set { red, orange, yellow, green, blue,
violet}. These colors are specified directly as a long gene over the alphabet
{R,O, Y,G,B, V }. An agent can move between adjacent squares if they are (i)
the same color or (ii) adjacent in the above ordering.

Height-Based Representation. A direct representation, in which the squares
within a grid are assigned heights in the range 0 ≤ h ≤ 10.0. An agent can move
between adjacent squares if their heights differ by 1.0 or less.

Indirect positive representation. The chromosome specifies walls that are
placed on an empty grid to form the maze. The walls can be horizontal, vertical,
or diagonal. In this representation walls are explicit, and rooms and corridors
are implicit.
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Fig. 7. This figure shows the four doors and internal checkpoints within a maze. The
fitness function maximizes the quotient of the sum of the red distances and the sum
of the black distances. This permits the evolution of a diverse collection of mazes with
similar properties.

Indirect Negative Representation. The chromosome specifies material to
remove from a filled grid to form the maze. In this representation, rooms and
corridors are explicit, and walls and barriers are implicit.

All of the representations, except the indirect negative representation, use
a technique called sparse initialization to compensate for the fact that, when
the data structure is filled in uniformly at random, it is quite likely to have
zero fitness, because there is no path between at least one door and at least
one checkpoint. Sparse initialization biases the initial population to have high
connectivity. Sparse initialization takes the following forms. For the direct repre-
sentation, only 5% of the squares are filled in. For the chromatic representation
all squares are initialized to green or yellow. For the height-based representa-
tion the heights are initialized to a Gaussian random value with mean three
and height one. For the indirect positive representation all walls start at length
three. Using sparse initialization places the burden of building the maze onto
the variation operators. The initialization to a highly connected state biases the
trajectory of evolution.

4.1 Results

Figure 8 gives examples of evolved mazes for the direct and indirect negative
and positive representations. Figure 9 gives the examples for the chromatic and
height representations. Since it is very hard to see paths in these mazes, they are
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accompanied by a key where non-adjacent squares are separated by walls and
inaccessible squares are blacked out.

Fig. 8. Examples of the direct, positive, and negative representations for making mazes.
The checkpoints are shown as green circles.

The results in this section speak for themselves. Even though they are evolved
to satisfy the same distance-based fitness function the overall appearance of the
mazes is very different. The appearance is entirely dependent on the choice
of representation. The two most similar representations are the chromatic and
height based. The keys to these mazes look similar. The actual mazes, though,
look quite different. The type of representation that should be chosen, in this
example, depends strongly on the goals of the user of the maze. The mazes shown
here are simple. In [7] more complex design criteria for mazes are given. In [8],
individual evolved maze tiles are used to build scalable maps.
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Fig. 9. Examples of height-based and chromatic mazes, together with their keys. The
checkpoints are shown as black circles. The minimum height in the height-based mazes
is colored red and colors move down the rainbow order of colors as heights increase.

5 Discussion and Conclusions

In all four examples in this chapter it has been demonstrated that representation
has a substantial impact on the outcome of an evolutionary algorithm. The ex-
ample using self avoiding walks showed that changing the representation changed
the time to solution, but in different ways for different cases of the problem. This
demonstrates that, even within a simple problem domain, the best choice of rep-
resentation is problem specific. The SAW problem is the simplest system that
has, so far, shown this sort of complex response to the change of representation.
This makes it a good sandbox for developing tools for exploring the issue of
representation.

In the section on evolving agents to play the iterated prisoner’s dilemma we
saw that the choice of representation can dominate the behavior of a simulation.
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This means that a justification of the choice of representation is critical when
evolving competing agents. This is the strongest evidence of a need to better
understand representation within evolutionary computation. This example goes
beyond the issue of performance to that of validity of results.

The examples given in the section on real parameter optimization show that
the representation can be chosen to meet particular goals. The Sierpinski repre-
sentation permits log-time databasing of optima already located and so makes
enumeration of optima within the convex hull of its generators a simple mat-
ter. The gene expression representation favors exploration over exploitation and
so is good for an environment with many optima of differing quality. Both the
Sierpinski and gene expression representations are potentially valuable in hybrid
algorithms. Each could generate locations near optima that are then finished by
a standard hill-climber. Adding a special purpose local optimizer could enhance
the performance of each of these representations while permitting them to retain
their other special qualities.

The experiments with representations for maps of mazes show that the choice
of representation can be used to control the appearance of the output of the
algorithm. In the maze evolution project there is no point to comparing the
final fitness of the different representations. The needs of a game designer for a
particular type of appearance dominate the need to obtain a global best fitness.
This speaks to an important point: one should carefully consider one’s goals
when choosing a representation.

Representation for the mazes is a matter of controlling the appearance of
the maze. In real optimization the final goal may be global best fitness, but it
might also be obtaining a diverse set of solutions. This latter goal becomes more
important if the goal is multi-criteria optimization. With game playing agents,
it was demonstrated that representation has a dominant effect on a simple type
of experiment. The goal of choice of representation for game playing agents is
to simulate some real-world situation. So far we have very little idea of how to
choose an humaniform or ant-like representation for simulation of conflict and
cooperation. This is a wide-open area for future research. The SAW problems
are a toy problem that exhibit complex representational effects.

We hope that this chapter has convinced the reader of the importance of
considering representation. We conclude by noting that for every example we
chose to discuss here we have five others for which there was no room. We invite
and appeal to the reader to join in the effort of understanding representation in
evolutionary computation.
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Abstract. At the Workshop on Evolutionary Algorithms, organized by the In-
stitute for Mathematics and Its Applications, University of Minnesota, Minne-
apolis, Minnesota, October 21 – 25, 1996, one of the invited speakers, Dave 
Davis made an interesting claim. As the most recognised practitioner of Evolu-
tionary Algorithms at that time he said that all theoretical results in the area of 
Evolutionary Algorithms were of no use to him – actually, his claim was a bit 
stronger. He said that if a theoretical result indicated that, say, the best value of 
some parameter was such-and-such, he would never use the recommended val-
ue in any real-world implementation of an evolutionary algorithm! Clearly, 
there was – in his opinion – a significant gap between theory and practice of 
Evolutionary Algorithms. 

Fifteen years later, it is worthwhile revisiting this claim and to answer some 
questions; these include: What are the practical contributions coming from the 
theory of Evolutionary Algorithms? Did we manage to close the gap between 
the theory and practice? How do Evolutionary Algorithms compare with Opera-
tion Research methods in real-world applications? Why do so few papers on 
Evolutionary Algorithms describe real-world applications? For what type of 
problems are Evolutionary Algorithms “the best” method?  In this article, I’ll 
attempt to answer these questions – or at least to provide my personal perspec-
tive on these issues. 

1 Inspiration 

Since the publication of my first book on Genetic Algorithms (Michalewicz, 1992) 
exactly twenty years ago, I have been thinking about theory and practice of these 
algorithms. From my early experiments it was clear that it would be necessary to ex-
tend the binary representation of genetic algorithms by some other data structures 
(hence the ‘data structure’ term in the title of the book) and incorporate problem-
specific knowledge into the algorithm. These initial thoughts were later supplemented 
by various research activities as well as real world experiences – working on many 
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projects for very large companies (e.g. Ford, General Motors, BMA Coal, Orlando 
Wines, Bank of America, BHP Billiton, Viterra. Dentsu, Rio Tinto, Xstrata,  
Fortescue). This chapter summarizes my dual experience – academia vs. industry – 
and I hope it would be useful for the current and the future generations of researchers 
in the Evolutionary Computation (EC) community. After all, it took me 20 years sit-
ting on both sides of the fence to collect my thoughts! 

However, the inspiration for this chapter (and my talk at the IEEE CEC’12) came 
from reading a relatively recent short article by Jeff Ullman on how to advise PhD 
students (Ullman, 2009). By the way, my PhD (from 1981) was in database systems 
(at that time I have not even heard about evolutionary/genetic algorithms) and Jeff 
Ullman was one of my heroes – his articles and books at that time set directions for 
(usually theoretical) research in many areas of database management – from database 
design to concurrency control (of course, he has made also substantial contributions in 
other areas of computer science). At that time I considered him as one of the leading 
researchers in theoretical computer science – it is why I found his thoughts (written 
up recently – six years or so after his retirement) a bit surprising! 

In his article he addressed the issue of advising PhD students, and many comments 
he made were applicable to a much wider audience. For example, he discussed a stan-
dard way to write and publish a paper: “Look at the last section [of some paper], 
where there were always some ‘open problems.’ Pick one, and work on it, until you 
are able to make a little progress. Then write a paper of your own about your 
progress, and don’t forget to include an ‘open problems’ section, where you put in 
everything you were unable to do.” Indeed, it is hard to disagree – and this is what we 
often experience reading papers written by researchers from the Evolutionary Compu-
tation community… For example, one researcher proposes a new method for some-
thing and the method includes a few parameters – the follow-up researcher tunes these 
parameters and the next researcher proposes adaptive method for handling them. The 
number of examples of such papers (whether experimental or theoretical) is extensive. 

However, Jeff Ullman does not believe that such approach is a good one: “Unfortu-
nately this approach, still widely practiced today, encourages mediocrity. It gives the 
illusion that research is about making small increments to someone else’s work. But 
worse, it almost guarantees that after a while, the work is driven by what can be solved, 
rather than what needs to be solved. People write papers, and the papers get accepted 
because they are reviewed by the people who wrote the papers being improved incre-
mentally, but the influence beyond the world of paper-writing is minimal.”  

This is probably a fair introduction and a summary of this chapter – I will argue 
that the gap between the theory and practice of Evolutionary Algorithms (EA) is  
getting wider, partially because of reasons identified by Jeff Ullman, and partially 
because complexity of business problems increased many times over the last 15  
years (mainly due to the globalization and integration processes)1, whereas the theory 
still studies the same types of problems (TSP, JSSP, Knapsack Problem, sphere  
                                                           
1 Scott Wooldridge, Vice President Industry Business at Schneider Electric Australia said  

(private communication): “The world is becoming more dynamic and more interconnected 
each year. Managers and executives are finding that changes in supply and demand can be 
sudden and unexpected. The complexity of doing business is increasing at a rapid rate and it 
is becoming hard to anticipate events, interpret their potential impact and understand the im-
plication of various decisions at both an operational and strategic level.” 
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function, etc.). Indeed, the influence of many research papers in the EC community, 
beyond the world of paper-writing, is minimal. Of course, the problem is much 
broader – note that publication quantity is often used as a proxy of academic success 
and influences funding decisions, however the research questions that need answering 
don't always lend themselves to rapid incremental publications.  Moreover, there is no 
substantial reward for research that demonstrates linkage with the real world, thus no 
real incentive for academia to solve the problems that industry is really interested in. 

His further thought was the following: “In the first years of computer science as an 
academic discipline, many theses were ‘theoretical,’ in the sense that the contribution 
was mostly pencil-and-paper: theorems, algorithms and the like, rather than software. 
While much of this work was vulnerable to the problem just described – paper build-
ing on paper – it is quite possible for a theoretical thesis to offer a real contribution.” 
Then he discussed as a case from many years ago where a “theoretical” piece of work 
was not based on what some paper left open, but rather on an expressed need of the 
real-world – and it was a great success in the real-world environment. Another exam-
ple given was that of Sergey Brin and Larry Page, who saw the need for a better 
search engine and the key ways that goal could be reached. Clearly, “…there needs to 
be an exposure to problems that are at the frontier, and that are needed by a ‘custom-
er.’ Sometimes, they can find a customer in industry […]. Summer internships can be 
a great opportunity. However, advisors should encourage students to intern at a 
strong industrial research group, one where the goals are more than minor tweaks to 
what exists. Whether the thesis is theoretical or an implemented solution, students 
need to be guided to understand who will consume their contribution if they are suc-
cessful. And the answer cannot be ‘people will read the paper I will write, and they 
will use the open problems in it to help form their own theses.’ Especially when deal-
ing with theoretical theses, the chain of consumption may be long, with idea feeding 
idea, until the payload is delivered. Yet if we let students ignore the question of 
whether such a chain and payload plausibly exist, we are doing them a disservice.”  

The EC community should be immune from the problem of identifying possible 
payloads as evolutionary algorithms are directly applicable to a variety of real-world 
problems. Indeed, many EA papers indicate a strong connection between the pre-
sented approach and real-world applicability. But there is a huge difference between a 
“strong connection” and an “implementation” (or practice) – and it would be neces-
sary for the EC community to make this transition sooner than later. Otherwise, EAs 
would be perceived as one of many methods one can just try in some special circums-
tances – whereas these algorithms have a potential to deliver a significant return on 
investment for many hard real-world problems (see further sections of this chapter).  

To progress our discussion on the gap between theory and practice of evolutionary 
algorithms, first we have to address two fundamental questions: (1) what is an evolu-
tionary algorithm? and (2) what is practice (i.e. a real-world application)? These two 
questions are important because without some discussion of them it would be difficult 
to discuss the current gap2 between their theory and practice. 
                                                           
2 A continuing gap between theory and practice can be viewed as a positive feature of any 

dynamic, exciting, growing field, however, it seems that in the case of Evolutionary  
Computation this gap is too large… 
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For example (this emerged during my recent private correspondence with Hans-
Georg Beyer, the current editor-in-chief of Evolutionary Computation Journal) some 
researchers believe that for operational-type problems (i.e. problems that require op-
timisation with some regular frequency) “…you may do better by design a problem-
specific optimisation algorithm. And this will be quite often not an EA due to different 
reasons.” However, the question is how to distinguish between “a problem-specific 
optimisation algorithm” and “an EA with problem-specific variation operators and 
some other non-standard features”?  

So these two topics are discussed in the following two sections of this chapter (sec-
tions 2 and 3), whereas section 4 talks about the gap between theory and practice. 
Section 5 concludes the chapter. 

2 What Is an Evolutionary Algorithm? 

The field of meta-heuristics has a rich history. Many meta-heuristics have emerged 
during the past 30 years; many of them have been inspired by some aspects of nature, 
ranging from the cooling of metal to the movements of ants. Meta-heuristics methods 
include a variety of hill climbing techniques (deterministic and stochastic), ant colo-
nies, artificial immune systems, differential evolution, particle swarms, simulated 
annealing, tabu search, cultural algorithms, evolutionary and co-evolutionary algo-
rithms. These meta-heuristics can be classified into some categories based on differ-
ent criteria. For example, some meta-heuristics process single solution (e.g. simulated 
annealing) whereas some others process a set of solutions (and are called population-
based methods, e.g. evolutionary algorithms). Some meta-heuristics can be determi-
nistic (e.g. tabu search), some other are stochastic (e.g. simulated annealing). Some 
meta-heuristic generate complete solutions by modifying complete solutions (e.g. 
evolutionary algorithms), whereas some other construct new solutions at every itera-
tion (e.g. ant systems). Many of these meta-heuristics offer some unique features (e.g. 
use of memory, use of 'temperature', use of methods for exchange information  
between individuals in population-based methods). Further, even within a single me-
ta-heuristic, there are many variants which incorporate different representations of 
solutions and different operators for generating new solutions.  

However, there is one common denominator: all meta-heuristics strive to create 
high quality solutions by making a series of improvements during their iterative 
process. Whether they start with (randomly generated) low quality solutions or they 
use smart initialisation methods to take advantage of the problem-specific knowledge, 
they aim to improve solution quality during the search process. At any iteration a 
meta-heuristic method must make some 'selection' decisions: which solutions of the 
current iteration should be kept for further processing and which should be discarded? 
And this selection step is quite important as it is often responsible for maintaining 
balance between exploration and exploitation of the search space – e.g. strong selec-
tive pressure harms exploratory capabilities of the algorithm and often results in a 
premature convergence. Of course, different meta-heuristics address this question in 
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their own way. For example, evolutionary algorithms usually split selection process 
into two independent activities: (1) selection of parents and (2) selection of survivors.  

So, what is an evolutionary algorithm and how does it differ from other meta-
heuristics? Well, this is actually a very good question! Of course, one can explain 
evolutionary algorithms as the ones based on concepts of natural evolution. It is also 
possible to discuss 'mutation' and 'crossover' operators, parents and offspring, not to 
mention the Darwinian principle of natural selection and survival of the fittest. How-
ever, from a high-level perspective things are not so clear. Say, you are solving a new 
challenging optimization problem and you have designed a new method. So you have 
selected some appropriate representation for candidate solutions for the problem and 
agreed on the evaluation function which would measure the quality of solutions. Fur-
ther, you came with (more or less clever) heuristic method for finding a few initial 
solutions, and (after analysing the characteristics of the problem) you have also  
designed a few variation operators which would be responsible for modifying the 
current solutions (thus creating new set of candidate solutions). You have also incor-
porated some simple selection method (say, ranking method, where the better individ-
ual has better chances to be selected) at any iteration. You have extended the system 
by some additional non-standard features (e.g. special repair method or decoder to 
deal with problem-specific constraints). Finally, you experimented with the system 
and as the result you have tuned a few parameters of the method (e.g. population size, 
rates of operators). 

Have you just created an evolutionary algorithm? Note that if your answer is 'yes', 
meaning “yes, I have created a variant of an evolutionary algorithm”, the consequence 
might be that any meta-heuristic method which searches for a solution in iterative 
manner can be labelled as a variant of 'evolutionary algorithm'. For example, simu-
lated annealing can be considered as a variant of (1 + 1) evolutionary algorithm with 
an adaptive selection method; tabu search can be considered as (1 + 1) evolutionary 
algorithm with memory-based selection method.  In general, there are many iterative 
stochastic search methods – are all of these ‘evolutionary algorithms’? Recall also, 
that some ‘evolutionary algorithms’ have been 'extended' by memory structures (e.g. 
when they operate in dynamic environments or to keep the search history – Chow & 
Yuen, 2011) or by a parameter called 'temperature' (to control mutation rates). And it 
is possible to provide many other examples! 

Consider, for example, the Newton method – the method for finding successively 
better approximations to the roots of a real-valued function. For one-dimensional 
functions, the Newton method generates an initial individual x0 and generate the next 
point x1 (provided the function is reasonably well-behaved): 

 x1 = x0 – f(x0)/f’(x0) 

where f’(x) is derivative of f(x). Geometrically, x1 is the intersection with the x-axis 
of a line tangential to f at f(x0). The process is repeated: 

 xn+1 = xn – f(xn)/f’(xn) 
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until a sufficiently accurate (i.e. near-optimum) value is reached. So the method 
works as follows: one starts with an initial guess which is reasonably close to the true 
root (i.e. intelligent initialisation), then a variation operator (problem-specific muta-
tion) is applied to generate offspring. The selection method always selects offspring 
for further processing. These steps are repeated for several iterations (we should say: 
generations), until a termination condition is met (the error drops below a predefined 
threshold).  

Did Newton discover an ‘evolutionary algorithm’? Before you answer, recall that 
(1 + 1) evolutionary strategy does not require population of solutions as it is 
processing just one individual (which is compared with its only offspring). Recall, 
that many 'evolutionary algorithms’ assume a deterministic selection method; many 
'evolutionary algorithms' take advantage of smart initialisation and problem-specific 
operators. Yes, I realise that stochastic component is missing, but it would be relative-
ly easy to modify the method from deterministic one to stochastic. For example, we 
can easily modify the formula for generating the ‘offspring’: 

 xn+1 = xn – f(xn)/f’(xn) + N(0,δ) 

Note also that the argument that evolutionary algorithms in numerical domains are 
derivative-free (hence applicable to discontinuous functions) will not hold here as 
there have been many evolutionary algorithms proposed with problem-specific varia-
tion operators, which take advantage from the knowledge of the shape of the land-
scape. Not to mention that – as for evolutionary algorithms – we can test the modified 
Newton method on different landscapes, investigate its convergence rates, investigate 
its scalability for higher dimensions, investigate the issue of deceptiveness, etc.  

Newton’s method emerged in 17th century, however, his method was probably de-
rived from a similar but less precise method by Vieta. And the essence of Vieta's me-
thod can be found in the work of the Persian mathematician, Sharaf al-Din al-Tusi. So 
we can rewrite the history of evolutionary algorithms moving their roots centuries 
earlier as there are many examples of search methods based on (smart) initialisation, 
(problem-specific) mutation, selection, iterations (generations), termination condi-
tions… It seems that the era of evolutionary algorithms3 started with just a new  
terminology – all pioneers of EAs have been using ‘right’ vocabulary – generations 
(instead of iterations), mutation and/or crossover (instead of just ‘variation operator’), 
the Darwinian selection – survival of the fittest (instead of just selection), etc. So what 
does it take to call an iterative search algorithm – an ‘evolutionary algorithm’?  
Terminology used? A stochastic component? Or something else? 

These remarks are also applicable to the whole field of modern heuristic methods. 
Over the last few years we saw emergence of a variety of new methods; these include 
bee colony optimisation, honey-bee mating optimisation, glow-worm swarm  

                                                           
3 I do believe that the modern era of evolutionary algorithms started at the 4th International 

Conference on Genetic Algorithms (San Diego, 1991) when Evolution Strategies and Genetic 
Programming approaches were presented to the participants of the conference, together with 
other approaches based on different data structures (like the original Evolutionary Program-
ming approach). 
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optimisation, intelligent water drops, firefly algorithm, the monkey search, cuckoo 
search, galaxy-based search algorithms, spiral optimisation… Which of these are 
evolutionary algorithms? For example, in cuckoo search each egg in a nest represents 
a solution, and a cuckoo egg represents a new solution. The aim is to use the new and 
potentially better solutions (cuckoos) to replace a not-so-good solution in the nests (in 
the simplest form, each nest has one egg only and the algorithm can be extended to 
more complicated cases in which each nest has multiple eggs representing a set of 
solutions). Cuckoo search is based on three idealized rules: (1) each cuckoo lays one 
egg at a time, and dumps its egg in a randomly chosen nest; (2) the best nests with 
high quality of eggs will carry over to the next generation; and (3) the number of 
available hosts nests is fixed, and the egg laid by a cuckoo is discovered by the host 
bird with some probability. Clearly, it would be easy to rewrite all these in ‘evolutio-
nary’ terminology (e.g. including the island population model)… 

This very issue was recently addressed by Fred Glover4 in his article Sex and Me-
taheuristic Metaphors, where a ‘new’ meta-heuristic method, the Courtship Algo-
rithm, is proposed. The algorithm is loaded with some principles that people have 
applied to courtship – and these principles translate directly into rules for meta-
heuristic methods. These include: (a) Have we met before? (i.e. use memory to exploit 
recurrences), (b) Your place or mine?  (i.e. consider the benefits of regional explora-
tion), (c) Variety is spice (i.e. employ diversification at all levels), (d) Once is not 
enough (i.e. iterate over good options), (e) No need to be timid (i.e. well-timed ag-
gressive moves can pay off), or (f)  Don’t stop now!  (i.e. take advantage of momen-
tum). Of course, they are many more of such useful principles one can use – reading 
this article I recalled that in 1999 I published a paper (Hinterding et al. 1999) titled 
Your Brains and My Beauty: Parent Matching for Constrained Optimisation – very 
much in line with the Courtship Algorithm! So, is Evolutionary Algorithm a special 
case of Courtship Algorithm or vice versa? 

It seems that many researchers are just playing games with terminology. In particu-
lar, it is always possible to extend the definition of something to include everything 
else, and people often do this, although it obviously doesn't establish any real general-
ity to the “extended definition”. Moreover, the architecture of so-called “special  
cases” may be more intricate and advanced than the architecture that has been con-
structed for the “general case” (as where a general-case design of a building may have 
nothing of the complexity and intricacy that must go into the design of a skyscraper). 
A similar sort of thing also occurs in speaking of probabilistic and deterministic me-
thods. We can say that deterministic methods are a special case of probabilistic me-
thods, because deterministic methods result by making all probabilities 1 and 0. But 
this blurs a great deal of the special essence of each category of method.  

It seems that Evolutionary Algorithms, in the broad sense of this term, provide just 
a general framework on how to approach complex problems. All their components, 
from the initialisation, through variation operators and selection methods, to con-
straint-handling methods, might be problem-specific. Some researchers (but not that 
many, I believe) in the Evolutionary Computation community agree – and view an 

                                                           
4 See http://optimaldecisionanalytics.typepad.com/ 
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EA as a meta-heuristic in the broad sense of the term by providing a framework for 
creating/instantiating problem specific heuristic methods [De Jong, 2002]. Evolutio-
nary Algorithms, to be successfully applied, must be tailored to a specific domain in 
order to be useful and provide decent results in specified time; without any doubt, 
incorporating domain knowledge leads to more effective EA searches. Probably this 
is why so many authors talk about ‘variants’, ‘modified versions’, ‘extensions’, or just 
‘knowledge-enhanced’ evolutionary algorithms in their application-oriented papers – 
for which theoretical results usually are not relevant. 

3 What Is ‘Practice’? What Is a Real-World Application? 

Clearly, the ‘practice’ of evolutionary algorithms is connected with real-world appli-
cations – after all, this is what the term ‘practice’ means (at least in the context of 
evolutionary algorithms). But as it was the case with the definition of evolutionary 
algorithms, the meaning of the term ‘real-world application’ is not that clear at all! 

The Evolutionary Computation community over the last 30 years has been making 
claims that their methods are ideal for hard problems – problems, where other  
methods usually fail. As most real-world problems are very hard and complex, with 
nonlinearities and discontinuities, complex constraints and business rules, noise and 
uncertainty, EAs should provide a great benefit to the real-world community. 

Even today, many research papers point to ability of evolutionary algorithms to 
solve real-world problems. For example, I reviewed the last two issues (Spring and 
Summer 2011) of the Evolutionary Computation Journal and the last two issues (Oc-
tober and December 2011) of the IEEE Transactions on Evolutionary Computation. 
In the introductory paragraphs of some papers included in these issues I found the 
following sentences: 

• “Evolutionary algorithms are a wide class of solution methods that have 
been successfully applied to many optimisation problems,”  

• “Despite the lack of theoretical foundation, simplicity of Evolutionary Algo-
rithms has attracted many researchers and practitioners,” 

•  “EAs are randomized search heuristics that solve problems successfully in 
many cases,”  

• “…but in practice they optimise many challenging problems effectively,”  
• “Randomized search algorithms have been very successful is solving combi-

natorial optimisation problems,”  
• “For the past three decades, many population based search techniques have 

surfaced to become a mainstay of optimisation,”  
• “However, as many real-world optimisation problems are black-box prob-

lems of which a priori problem knowledge is not available, the use of meta-
heuristics started to prevail,” 

• “EAs are used for solving many various problems,” or  
• “Recently, researchers are increasingly directing their focus on solving mul-

ti-objective optimisation problems (MOPs), since the solution of these prob-
lems is of great importance in the areas of economics, engineering, biology, 
medicine, materials, and so on.”  
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Some papers focus on classic problems (e.g. graph partitioning, maximum clique) – 
and in such cases the authors make a connection with real world:  

• “Graph partitioning is one of the fundamental combinatorial optimisation 
problems which is notable for its applicability to a wide range of domains, 
such as very large scale integration (VLSI) design, data mining, image seg-
mentation, and so on,” and  

• “The maximum clique (MC) problem in graphs is a paradigmatic combina-
torial optimisation problem with many relevant applications, including in-
formation retrieval, computer vision, and social network analysis.”  

The influence of benchmark problems on the EA research manifests itself in state-
ments like “When genetic algorithms (GAs) are applied to combinatorial problems, 
permutation representation is usually adopted” which is very true for many bench-
mark problems and very false for real-world problems. 

It is my opinion that these sentences speak loud and clear about desires of many re-
searchers to see a stronger connection between their research and the real-world (or 
their belief that this is the case!). However, these statements are harmful for the com-
munity as they give a misleading perspective on the current spread of evolutionary 
methods in businesses and industries and provide unjustified psychological comfort. 
Where are all these applications that the authors refer to? Where do you see the preva-
lence of EAs in business and industry? When did these techniques become the 
‘mainstay of optimisation’? Where are all these success stories? What does it mean 
that EAs have been successfully applied to many optimisation problems? In my recent 
essay (Michalewicz, 2012) I addressed this very issue and concluded that (for many 
reasons) there are not that many real world implementations of EAs after all… 

Further, it seems that many researchers are interpreting the phrase “real-world appli-
cation” in a quite arbitrary way. I have looked through proceedings of many internation-
al conferences on evolutionary algorithms (e.g. GECCO, IEEE CEC, PPSN) which 
often include special sessions on “real-world applications”. I have checked many jour-
nals (e.g. Journal of Evolutionary Algorithms, IEEE Transactions on Evolutionary 
Computation) with special attention to their special issues on real-world applications 
(e.g. scheduling) and a few edited volumes which aimed at real-world applications. The 
main problem is that all these “real-world applications” look like “Guinea pigs” – not 
really from Guinea, and not really pigs... It seems that researchers are interpreting the 
phrase ““real-world applications” in very arbitrary way. However, it is relatively easy to 
group all these “real-world applications” into four broad categories: 

1.  Applications used in some business/industry on daily (regular) basis. 
2. Applications tested on real data (e.g. taken from a hospital, city council, a 

particular business unit). 
3. Applications tested on some well-known model (e.g. TSP, VRP, JSSP) of a 

real-world problem. 
4. Other applications (e.g. numerical optimisation, constraint-handling, multi-

objective optimisation). 
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Of course, this classification is not that precise – one can imagine a border case be-
tween categories 1 and 2, where an application might be used intermittently, e.g. in 
some relatively infrequent planning or modelling task. However, the question is: Are 
the applications in all these four categories real-world applications? Clearly, category 
1 is beyond any dispute. But the case of category 2 is not that clear – it is true that 
real-world data were used in experimentation; however, application as such is not 
real-world application – as no one uses it. It is rather an indication, that such approach 
– in the real-world setting – may have a merit. Category 3 is also muddy – there is no 
question that some models, e.g. for vehicle routing, scheduling, distribution, are  
models of real-world environments, however, these applications do not operate in 
real-world environment (and most likely, they never will). And most other novel ap-
plications (category 4), whether they aim at handling constraints, many objectives, or 
the issue of noise – while very important and directly applicable for real-world set-
tings, are hardly real-world applications. 

Clearly, there are also EA-based “solvers” and a variety of EA-based “tools”  
available; however, there is a huge difference between these and real-world software 
applications. Solvers and tools are sometimes useful, but they have very limited ap-
plicability and a limited audience. Some individuals in some companies use solvers 
which are based on modern heuristic methods (and Evolutionary Algorithms in par-
ticular) for solving some small-scale optimisation problems; however, due to the li-
mited usefulness of such tools I heard quite often negative statements from various 
researchers employed in major companies, e.g. “I tried a Genetic Algorithm on my 
problem, but I did not get any results…They do not work”.  

Some senior researchers agree. Garry Greenwood, the current editor-in-chief of the 
IEEE Transactions on Evolutionary Computation, wrote recently:5 “I believe the 
MATLAB GA toolbox has been devastating to the EC field and has done far, far more 
damage than good. I wish it had never been created. It was designed to do searches 
over an extremely broad class of optimisation problems. No domain knowledge could 
be incorporated so the search results on non-toy problems were often mediocre. More 
than one person has told me he tried a GA using that MATLAB toolbox and wasn’t 
impressed with the results. Hence, he was convinced GAs weren’t very good. The EC 
community has taken a bad rap for years because people formed a negative opinion 
of GAs based on one encounter with that damn MATLAB toolbox.” 

There are, of course, papers describing some interesting applications (e.g. applica-
tions of Covariance Matrix Adaptation Evolution Strategies – CMA-ES6), however, 
many of these are not real-world applications, they are usually restricted to continuous 
variables only, and they hardly address complex business problems. There are also 
many papers which aim at classic Operation Research (OR) problems, e.g. traveling 
salesman problems, job shop scheduling problems, graph colouring problems, variety 
of vehicle routing problems, knapsack problems, packing and cutting problems – but 
all these have very limited significance for today’s real-world problems.  

                                                           
5 Private correspondence. 
6 See http://www.lri.fr/~hansen/cmaapplications.pdf 



108 Z. Michalewicz 

Let’s illustrate the point of expectations of the real-world community in the context 
of supply chain – understood as “…a combination of processes, functions, activities, 
relationships and pathways along which products, services, information and financial 
transactions move in and between enterprises, in both directions (Gattorna, 2010). 
One can visualise a supply chain as a combination of multiple logistic networks which 
involve many upstream and downstream organisations – and clearly, the potential of 
significant improvement in performance of such network is much greater than within 
a single silo7. Note, for example, that the issue of scheduling production lines (e.g. 
maximising the efficiency,  minimizing the cost) has direct relationships with invento-
ry and stock-safety levels, replenishments strategies, transportation costs, deliver-in-
full-on-time, to name a few. Moreover, optimising one silo of the operation may have 
negative impact on upstream and/or downstream silos8. Thus businesses these days 
need “global solutions” for their whole operation, not silo solutions. This was recog-
nised over 30 years ago by Operations Research community; in 1979 R. Ackoff 
wrote: “Problems require holistic treatment. They cannot be treated effectively by 
decomposing them analytically into separate problems to which optimal solutions are 
sought.” Only an integrated view of supply chain operations would increase visibility 
and transparency across end-to-end supply chains. Managers these days are looking 
for applications that, for example, will enable fully integrated, financially-driven 
Sales & Operations Planning with, for example, transportation costs, working capital 
requirements, and stock outs as priorities. They need to create within such 
applications consistent what-if scenarios to facilitate the planning, scheduling, and 
optimisation of multi-site sourcing, production, storage, logistics, and distribution 
activities – all these in time changing (dynamic) environments.  

It seems to me that (from a high level perspective) most real-world problems fall 
into two categories: (1) design/static problems, and (2) operational/dynamic problems. 
The first category includes a variety of hard problems, like TSP, VRP, JSSP, graph 
coloring, knapsack problem, and millions of others. Some of them are really hard – 
and I believe that 99% of research aims at these type of problems. I do believe, how-
ever, that the problems from the second category are (a) much harder, (b) the standard 
methods usually fail for them, and (c) they represent a huge opportunity for EAs. Let 
me explain further. 

The systems to address problems in the 2nd category are really decision-support 
systems that require continuous flow of data, predictive components, almost imme-
diate recommendations for recovering from sudden changes, etc. Not to mention that 
they should handle the 1st category instances as they have to solve static versions of 
the problem as well. This is altogether a different game, and the differences between 
problems in the 1st and 2nd categories are huge. Problems in the 2nd category are usual-
ly multi-silo problems as opposed to single silo for the 1st category problems. Prob-
lems in the 2nd category usually deal with many variables, nonlinear relationships, 
huge varieties of constraints (e.g. constraints in real-world settings often include  

                                                           
7 We use the term ‘silo’ for one component of a supply chain. 
8 Of course, there are some real-world scientific and engineering problems where a good solu-

tion to a silo problem is beneficial (e.g. a variety of design problems), but they do not 
represent complexities of today’s business problems. 
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'if-then' conditions), business rules, many (usually conflicting) objectives – and all of 
these are set in a dynamic and noisy environment. These problems belong to an opti-
mization class, as they require recommendations for “the best” decision at the mo-
ment (whichever complex characteristic of what “the best” may mean – often with 
risk factors included). An additional feature of these systems is that they do not oper-
ate on crisp values but rather on probability distributions. For example, one thing is to 
assume that the travel from one point to another takes 36 hours, another thing is to 
accept a probability distribution with mean 36 and standard deviation determined 
from past data. Not to mention that these probability distributions change over time 
(the system learns) as new data are coming in (e.g. due to some improvements, six 
months later the mean is 35.5 hours, and standard deviation is much smaller). Further, 
the response time is expected to be much shorter – applications for the design-type 
problems are not time-critical, whereas applications for operational-type problems 
are. Finally, robustness of a solution is as important as its quality... In comparison 
with such problems, NP-hard problems like TSP seem to be toy problems (which they 
are, in a sense). 

Clearly, these are types of problems which should be addressed by Evolutionary 
Computation community, as they represent hard real-world problems where other 
methods usually fail.9 These are the problems for which meta-heuristic methods in 
general (and EA-based methods in particular) should be the methods of choice.  

4 Theory versus Practice 

As indicated in the abstract of this chapter, at the Workshop on Evolutionary Algo-
rithms, organized by the Institute for Mathematics and Its Applications, University of 
Minnesota, Minneapolis, Minnesota, October 21 – 25, 1996, one of the invited speak-
ers, Dave Davis made a claim that all theoretical results in the area of Evolutionary 
Algorithms were of no use to a practitioner. At that time there was – in his opinion – a 
significant gap between theory and practice of Evolutionary Algorithms. 

So where are we 15 years later with this issue? Did we manage to close the gap  
between the theory and practice? It seems that there is still a significant mismatch 
between the efforts of hundreds of researchers who have been making substantial 
contributions to the theory of evolutionary computation over the years and the number 
of real-world applications which are based on concepts of evolutionary algorithms – it 
seems also, that this gap is still growing.  

I believe that there are two main reasons for this phenomenon; these are: 

1. The growing complexity of real-world problems 
2. The focus of research community on issues which are secondary for real-world 

applications 

                                                           
9  A recent report (private correspondence) generated by several Operations Research experts on 

optimisation of a particular supply chain with 37 nodes and 69 arcs, 862,000 variables and 
1.6 million constraints, would require 18 hours per objective by mixed integer programming. 
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The first point was already touched on in the previous section of the chapter. For 
many reasons today’s business problems are of much higher complexity than 30 years 
ago and the real-world is searching for techniques which would address their prob-
lems – problems which are loaded with nonlinearities and/or discontinuities, many 
(possibly conflicting) objectives, variety of business rules, soft and hard constraints, 
and noise.  

However, it seems to me that many researchers in the EC community are quite dis-
connected with today’s business, and they still believe that10: “In business applica-
tions, the goal function is often quite simple, a linear one. Most of the modelling is put 
into the inequality constraints which very often can be linearized and integer condi-
tions can be relaxed. As a result, one often ends up with an LP11. And if not, then the 
modelling is changed in such a manner that the resulting problem is again an LP. 
This is the main reason why CPLEX (and some others) is so prevalent.” 

I think that a perception that in business applications the goal function is often 
quite simple, was right 30 years ago, but today it is just wrong and there is nothing 
further from the truth. The real complexity exists mainly in real-world problems (and 
not in artificial benchmarks). The business goal functions usually are extremely com-
plex, not to mention constraints and business rules, which are often conditional, ca-
lendarised, dynamic, etc. and they interact with many objectives in complex ways. 
And the main reasons of the popularity of LP methods are the ease of their use and the 
knowledge, how to use them – which is not the case with EAs. The main reason of 
their popularity is not the quality of results... Many business units dream about replac-
ing their software which incorporates LP as their optimisation engine, but they do not 
see alternatives. There is also an amazing amount of inertia in the business that has 
nothing to do with what technology really works – and it is much easier to plug-in 
CPLEX than to develop an EA for a problem at hand… 

Real-world optimisation problems involve large number of variables, numerous 
objectives, constraints, and business rules, all contributing in various ways to the 
quality of solutions. The complexity of such problems makes it virtually impossible 
for human domain experts to find an optimal solution. Further, manual adjustments of 
scenarios (what-if scenarios and trade-off analysis), which are needed for strategic 
planning, become an expensive or unaffordable exercise. The main reason behind this 
complexity is that large-scale business problems consist of several interconnected 
components, which makes many standard approaches ineffective. Even if we know 
exact and efficient algorithms for solving particular components or aspects of an 
overall problem, these algorithms only yield solutions to sub-problems, and it remains 
an open question how to integrate these partial solutions to obtain a global optimum 
for the whole problem. Moreover, optimising one silo of the operation may have neg-
ative impact on upstream and/or downstream silos. For example, at PPSN’10 I gave a 
keynote talk on a powerful EA-based enterprise12 software application that was  

                                                           
10 This is the exact quote from my private correspondence with one of senior members of the 

EC community. 
11 Linear Programming. 
12 Enterprise software addresses the needs of organization processes and data flow, often in a 

large distributed environment (e.g. supply-chain management software). 
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developed recently13 to address many of wine production challenges present in differ-
ent parts of the wine supply chain. This enterprise software application for wine in-
dustries consists of a suite of software modules (these include predictive modelling 
for grape maturity, using weather forecasts and readings on Baum, PH, and TA, vin-
tage planning, crush scheduling, tank farm optimisation, bottling-line sequencing, and 
demand planning) that can optimise the end-to-end wine supply chain.. When dep-
loyed together, these applications can optimise all planning & scheduling activities 
across a winery’s entire supply chain.  

Each of these individual software application deals with a silo problem; for exam-
ple, the bottling module (Mohais et al. 2011) is responsible for generating optimal 
production schedules for the wineries’ bottling operations. Opportunities for optimisa-
tion include manipulating the sequencing order, selecting which bottling lines to use, 
consolidating similar orders within the planning horizon, and suggesting changes to 
the requested dates to improve the overall schedule.  Some of the key objectives are to 
maximise export and domestic service levels (i.e. DIFOT), maximising production 
efficiency, and minimising cost. As the module provides decision-support, the user 
has full control over the optimisation process in that they are able to lock in manual 
decisions, set the business rules and constraints, re-optimise after making changes, 
and compare the current solution with an alternative plan. The module also provides a 
what-if tab that can be used to analyse strategic business decisions and events such as 
capital investment in new equipment, or to look at operational decisions like adding 
or removing extra shifts, or even for crisis management (what is the impact of a bot-
tling line going down or key staff being ill).  Reporting is provided on a number of 
levels and to suit different stakeholders; for example the daily bottling programs for 
execution, a report on particular wine blends, or a report on expected production effi-
ciency. Users are also able to generate an alternative to the current production sche-
dule, with the system providing a comparison to help the user evaluate the impact of 
any changes.  The comparison includes performance metrics (KPI’s) such as any dif-
ference in the number of late orders, and changes to production efficiency and cost 
(this could include measures such as cost per unit, total production throughput, pro-
duction line utilisation, etc.). This allows the user to experiment with different sche-
dules before committing to making any changes; for example, trying to incorporate a 
last minute export order without disrupting existing orders. 

Each of these modules (whether predictive modelling for grape, vintage planning, 
crush scheduling, tank farm optimisation, bottling-line sequencing, and demand plan-
ning) represents a significant large-scale optimisation/prediction problem in itself and 
includes several interesting research aspects (e.g. variable constraints in the bottling 
module). However, finding the optimal solution in one silo of the operation may have 
negative impact downstream and/or upstream of the whole operation. Consider, for 
example, the following example. The bottling plant has to process 700,000 litres of 
Jacob’s Creek14 to satisfy demand. However, the closest (in terms of volume) tank on 

                                                           
13 The application was developed at SolveIT Software (www.solveitsoftware.com) together 

with similar applications in other verticals (e.g. for grain handling, pit-to-port mining logis-
tics, and mine-planning activities). 

14 Jacob’s Creek is one of the most known, trusted and enjoyed Australian wines around the 
world. 
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the tank farm contains 800,000 litres of Jacob’s Creek – and what is the optimal deci-
sion here? Clearly, from the bottling perspective they should get just 700,000 litres of 
that wine and process it – but it would be a bad decision from the perspective of 
another silo: tank farm. They will be left with 100,000 litres leftover with all risks (the 
quality of these 100,000 litres will go down quickly due to oxygen levels in the tank) 
and inefficiencies in operations (the tank with the leftover 100,000 litres can’t be used 
in their operation). From tank farm perspective, the ‘optimal’ decision would be to 
send 800,000 litres of Jacob’s Creek for bottling (no leftovers with clear benefits), but 
the bottling operation would not be happy with such a solution (note that once a wine 
is bottled and labelled, the choice for its destination is quite limited as different cus-
tomers have different requirements for packaging). This is why the global optimum 
here should consider implications of various decisions across all silos. Further, it is 
next to impossible to compare the result to some theoretical global optimum – usually 
the comparisons are made with respect to some metrics from the previous year (i.e. 
before the system went live). Further, by considering the entire supply chain we can 
attempt to answer some key (global) questions, as “What is the impact of increasing 
demand by 10% of Jacob’s Creek across all operations”? And the answers for such 
questions are sought today by businesses and industries. 

Darrell Whitley (the former editor-in-chief of Evolutionary Computation Journal 
who also participated actively in a few real-world projects), wrote:15 “Your comments 
about silos and up-stream and down-stream side effects is spot-on and is something I 
have worried about for some years now. If you say ‘I ran an experiment and I can 
increase line-loading by 10 percent, what does this do to inventory?’ Is that increase 
in line-loading sustainable or just temporary because if you increase line-loading, 
you decrease inventory, which might reduce your ability to line-load. When you in-
troduce a change in one silo you move the steady-state in other silos. You almost 
NEVER see this in academic studies.”  

A decision-support system that optimises multi-silo operational problems is of a 
great importance for an organisation; it supports what-if analysis for operational and 
strategic decisions and trade-off analysis to handle multi-objective optimisation prob-
lems; it is capable of handling and analysing variances; it is easy to modify – con-
straints, business rules, and various assumptions can be re-configured by a client. 
Further, from end-user perspective, such decision-support system must be easy to use, 
with intuitive interfaces which lead to faster and easier adoption by users with less 
training. 

However, it seems to me that the research done within the EC community diverges 
further and further from complexities of today’s problems mainly because the focus 
of the research is on issues which are secondary for real-world applications. This is 
partially due to the reasons identified by Jeff Ullman and discussed in the Inspiration 
section of this article – most researchers follow up of some previous work of other 
researchers, making progress on some ‘open issues’, and, in the words of Jeff Ullman: 
“it almost guarantees that after a while, the work is driven by what can be solved, 
rather than what needs to be solved.” Thus the influence of many research papers in 
the EC community, beyond the world of paper-writing, is minimal. 

                                                           
15 Private correspondence. 
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In my recent correspondence with Hans-Georg Beyer he identified: “… 3 fields 
where theory should focus on or contribute  to in the future: (1) mathematical charac-
terization of evolutionary dynamics (in a sense of a predictive theory); (2) population 
sizing rules for highly multimodal optimization problems, and (3) development of 
stopping rules based on evolutionary dynamics.” However, it is not clear to me how 
even breakthrough results in these areas would help practitioners for approaching 
complex real-world problems of growing complexity, as described earlier?  

Consider, for example, the number of published papers on EAs in dynamic envi-
ronments. Most researchers focused at recovery rates in cases there was a change in 
the shape of a landscape. I think it is of no significance, as in real-world problems (1) 
the objective is usually fixed (e.g. say, you minimize the cost of some operation and 
you do not change this objective), (2) constraints are changing (e.g. failure of a truck), 
and (3) we deal with partially-executed solutions. Thus the concept of recovery is 
very different. There is an enormous gap between theoretical models and practice. 
The same is in many other research areas. For example, I remember that I was amazed 
when (over 20 years ago) I discovered the first textbook on genetic algorithms (Gold-
berg, 1989). The book was around 400 pages, and it included one paragraph on how 
to deal with constraints (!). The same is true today – many theoretical results are 
achieved in constraints-free environments and their applicability to real world situa-
tions is quite limited. 

Further, as discussed in Section 2, it is unclear what is (and what is not) an Evolu-
tionary Algorithm. On one hand, EA practitioners usually employ hybrid forms of 
evolutionary algorithms (e.g. extending the system by problem-specific initialisation, 
problem-specific operators) and a successful application of EA to a complex business 
problem requires a significant dose of ‘art’; on the other hand most of theoretical 
research concentrates on classic versions of EAs and toy problems. There are many 
research papers published in the EC community on convergence properties of evolu-
tionary algorithms, diversity, exploration, exploitation, constraint-handling, multi-
objective optimisation, parallel EAs, handling noise and robustness, ruggedness of the 
landscape, deceptiveness, epistasis, pleiotropy – to name just a few areas of research. 
In most cases some standard versions of EA are studied: binary coded GA with a 
tournament selection or (1+1) ES. Whatever the results, their applicability to solving 
complex real-world problem are questionable.  

A large portion of the research on Evolutionary Algorithms is experimental – 
hence the researchers use a variety of benchmark functions and test cases. However, 
these experiments are usually conducted on simple silo problems. The researchers use 
some classic sets of functions (from f1,…, f5 proposed by Ken De Jong [De 
Jong,1975] to fn today, where n approaches 100) for numerical optimisation and clas-
sic benchmarks (e.g. on graph colouring, traveling salesman, vehicle routing, job shop 
scheduling) for combinatorial optimisation. However, these small-scale silo problems 
are far cry from complexity of real-world problems – consequently these theoretical 
and experimental results are of little help (if any) to any practitioner who works on 
EA-based enterprise software applications. There are hundreds (if not thousands) of 
research papers addressing traveling salesman problems, job shop scheduling prob-
lems, transportation problems, inventory problems, stock cutting problems, packing 
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problems, etc. While most of these problems are NP-hard and clearly deserve research 
efforts, it is not exactly what real-world community needs. Most companies run com-
plex operations and they need solutions for complex multi-silo problems with all their 
complexities (e.g. many objectives, noise, constraints). In the same time Evolutionary 
Computation offers various techniques to experiment with, e.g., cooperative coevolu-
tion [Potter and De Jong, 1994], where several EAs, each corresponding to a single 
silo, are run in parallel. Communication between silos may occur during evaluation of 
individual solutions. Solutions from one silo might be evaluated based on their per-
formance when combined with representative solutions from the other silos. 

However, there are very few research efforts which aim in the direction of optimis-
ing interdependent multi-silo operational problems with many conflicting objectives, 
complex constraints and business rules, variability issues and noise. This might be 
due to the lack of benchmarks or test cases available. It is also much harder to work 
with a company on such global level as a delivery of successful software solution 
usually involves many other (apart from optimisation) skills, from understanding the 
company’s internal processes to complex software engineering issues. And it is much 
harder to report the results, as they may involve revealing company’s confidential 
data. It is also much harder to run significant number of experiments to satisfy re-
quirements of many journals. 

Further, in almost in all cases a new method (whether new representation, new set 
of operators, new selection method, a novel way to incorporate problem-specific 
knowledge into the algorithm, a novel way to adapt parameters in the algorithm, and 
so on) is tested against such accepted benchmarks – and the most popular quality 
measure of a new method is the closeness of the generated solution to the known, 
global optima in a number of function evaluations.  Of course, it is helpful that some 
silo problems are used for testing, as for many of these the global optima are known 
(or it is possible to estimate their values). However, for many real-world applications 
getting to the global optima is secondary. First, the concept of global optima in busi-
ness is different to that in academia – a global optimum for a silo is referred to as a 
local optimum solution, as it does not take into account other interacting silos of the 
business. And the global optimum solution refers to whole multi-silo operation of the 
organisation. Second, for large-scale (e.g. multi-silo) problems, it would take days (if 
not more) to generate a global optimum solution, while decision-makers have minutes 
to react. Third, the multi-silo environment is highly variable (delays, unexpected or-
ders, failures, etc.) and a robust, quality solutions are of higher importance, as the 
current solution would be modified, anyway, due to changes in the environment.  
Fourth, due to many, possibly conflicting, objectives, business rules, and soft con-
straints, the meaning of the term “global optimum” is not that clear – even expe-
rienced decision makers often have difficulties in pointing to a better solution out of 
two available solutions. Finally, the name of the game in industry is not to find an 
elusive global optimum, but rather to match (and hopefully improve) the results of the 
human team of experts16, who have been involved in particular decision-making  

                                                           
16 There is a nice, one sentence summary of how evolution works: “You don't have to outrun 

the bear, but you just have to outrun the other hunter”. 
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activity for a significant time – however, technical journals reject such comparisons. 
Not to mention that it would be extremely hard to document such comparisons in a 
systematic way without revealing sensitive data of an organisation. 

Each EA possesses a number of algorithm-specific parameters. Clearly, theory 
should provide guidelines how to choose those parameters (this is what Dave Davis 
referred to in his talk from 15 years ago). But theory can only consider simple toy 
problems. Many researchers would like to believe that if these toy problems cover 
certain aspects of real-world problem, the results of the theory can be used as a first 
guideline to choose these parameters. But it seems to me that this is just a wishful 
thinking – there is no comparison in terms of complexity between real-world prob-
lems are and toy problems – and I cannot see any justified transition of results. Fur-
ther, most research papers focus on one selected aspect of a problem, whether this is 
constraint-handling method, handling many objectives, dealing with noise and/or 
uncertain information. In business problems, however, all these aspects are usually 
present in every problem – and there is hardly a paper which addresses problems of 
such complexity. Further, real-world applications usually require hybrid approaches – 
where an ‘evolutionary algorithm’ is loaded with non-standard features (e.g. decoders, 
problem-specific variation operators, memory) – but the current theory of evolutio-
nary algorithms does not support such hybrid approaches very well. 

5 Conclusions and Recommendations 

Let us conclude by returning to the questions from the second paragraph of the ab-
stract: What are the practical contributions coming from the theory of Evolutionary 
Algorithms? Did we manage to close the gap between the theory and practice? How 
Evolutionary Algorithms do compare with Operation Research methods in real-world 
applications? Why do so few papers on Evolutionary Algorithms describe the real-
world applications? For what type of problems Evolutionary Algorithm is “the best” 
method?  Let’s address these questions in turn. 

5.1 What Are the Practical Contributions Coming from the Theory  
of Evolutionary Algorithms? 

It seems that the practical contributions coming from the theory of Evolutionary Al-
gorithms are minimal at the best. When a practitioner faces complex business problem 
(problem which involved many silos of the operation, significant number of business 
rules and constraints, many (possibly conflicting) objectives, uncertainties and noise – 
all of these combined together, there are very few hints available which might be used 
in the algorithms being developed. None of the results on convergence properties, 
diversity, exploration, exploitation, ruggedness of the landscape, deceptiveness, epi-
stasis, pleiotropy that I know of would help me directly in developing EA-based en-
terprise software application. This is partially due to the lack of benchmarks or test 
cases of appropriate complexity and partially that the EC technical journals are not 
appropriate for publicizing business successes (see later questions/answers).  
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5.2 Did We Manage to Close the Gap between the Theory and Practice? 

No, we did not – and as a matter of fact, the gap is growing. As discussed in this ar-
ticle, there are two main reasons for this phenomenon (1) Growing complexity of 
real-world problems and (2) focus of research community on issues which are sec-
ondary for real-world applications. 

5.3 How Do Evolutionary Algorithms Compare with Operation Research 
Methods in Real-World Applications? 

It seems to me that (after talking to many practitioners at many major corporations) 
they compare quite poorly… The main reason (I think) is due to the wide spread of 
standard Operation Research methods which dominated optimisation aspects of busi-
ness operations for more than 30 years. Further, the Operation Research community 
has a few standard and powerful tools (e.g. integer programming methods) which are 
widely in use in many organisations. On the other hand, this is not the case for the EC 
community – there are no ‘plug-in’ software tools appropriate to deal with thousands 
of variables and hundreds of constraints, there are no tools available of comparable 
power to integer programming. Further, many Operation Research methods are exact 
– they guarantee the optimum solution, which is not the case with heuristic methods 
in general and Evolutionary Algorithms in particular.  

However, there is one catch here, as every time we solve a problem we must real-
ize that we are in reality only finding the solution to a model of the problem. All mod-
els are a simplification of the real world – otherwise they would be as complex and 
unwieldy as the natural setting itself. Thus the process of problem solving consists of 
two separate general steps: (1) creating a model of the problem, and (2) using that 
model to generate a solution: 

Problem → Model → Solution 

Note that the “solution” is only a solution in terms of the model. If our model has a 
high degree of fidelity, we can have more confidence that our solution will be mea-
ningful. In contrast, if the model has too many unfulfilled assumptions and rough 
approximations, the solution may be meaningless, or worse. 

So in solving real-world problem there are at least two ways to proceed: 

1. We can try to simplify the model so that traditional OR-based methods might 
return better answers. 

2. We can keep the model with all its complexities, and use non-traditional ap-
proaches, to find a near-optimum solution. 

In either case it's difficult to obtain a precise solution to a problem because we either 
have to approximate a model or approximate the solution. In other words, neither 
exact methods nor heuristic methods return optimum solution to the problem, as the 
former methods simplify the problem (by building simplified, usually linear, model of 
the problem) so the optimum solution to the simplified model does not correspond to 
the optimum solution of the problem, and the latter methods return near-optimum 
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solutions (but to the more precise models). Further, as discussed in section 4, for 
many real-world applications the issue of getting to the global optima is secondary as 
robust, quality (i.e. near-optimum) solutions are of higher importance. And the more 
complexity in the problem (e.g., size of the search space, conflicting objectives, noise, 
constraints), the more appropriate it is to use a heuristic method. A large volume of 
experimental evidence shows that this latter approach can often be used to practical 
advantage. 

5.4 Why Do So Few Papers on Evolutionary Algorithms Describe Real-World 
Applications? 

The journal editors and reviewers of submitted papers are well versed in the standard 
criteria for acceptance:  (a) clearly revealed algorithms, so the reader can at least at-
tempt to replicate you approach, (b) well characterized problems, so the reader can 
tell if his problem is the right type, (c) rigorous comparison with known results, so the 
reader can have confidence your results are significant. All this is needed for verifia-
bility – the soul of science. On the other hand, a successful application of EA to com-
plex business problem requires a significant dose of ‘art’ – and technical journals and 
(to some lesser extend) conferences generally have difficulties with that. For addi-
tional thoughts on this very topic, see (Michalewicz, 2012). 

5.5 For What Type of Problems Evolutionary Algorithm Is “The Best” 
Method? 

A submission of a survey article on Evolutionary Algorithms  (written with Marc 
Schoenauer) – for Wiley Encyclopedia of Operations Research and Management 
Science, 2010 edition – generated editor’s comment/request: “Can the authors pro-
vide objective guidance on the types of problems for which evolutionary methods are 
more appropriate than standard methods? I know a lot of ‘hearsay’ related to this 
issue but I am wondering if there is more objective evidence. Is there any solid evi-
dence of EA superiority in a class of problems?” More and more people question the 
usefulness and applicability of Evolutionary Computation methods and it is essential 
that our community would get ready to answer such questions.  

And I think that the right answers for above questions are not of the type: “EA 
techniques are superior for, say, symmetrical TSP” or  “EA techniques are superior 
for, say, such-and-such types of scheduling problems,” as the main issue is just in size 
and complexity of the problems – for example, multi-silo operational problems with 
many conflicting objectives, tens of thousands of variables, complex constraints and 
business rules, variability issues and noise, interdependencies between operational 
silos – problems, for which standard Operations Research methods are not appropri-
ate. For such problems the business starts looking for optimization support because 
rational decision making and logical decomposition of the problem are no longer 
possible. This is a big chance for Evolutionary Computation community, and the time 
is right to move that direction. However, this would require some fundamental 
changes in a way the EC community looks at real-world problems… 
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Many traditional decision-support applications at large corporations worldwide 
have failed, not realising the promised business value, mainly because small im-
provements and upgrades of systems created in the 1990s do not suffice any longer 
for solving 21st century companies’ problems. Also, the existing applications often are 
not flexible enough to cope with exceptions, i.e. it is very difficult, if not impossible, 
to include problem-specific features – and most businesses have unique features 
which need to be included in the underlying model, and are not adequately captured 
by off-the-shelf standard applications. Thus, the results are often not realistic. A new 
approach is necessary which seamlessly integrates local models and optimisation 
algorithms for different components of complex business problems with global mod-
els and optimisation algorithms for the overall problem. Such decision-support sys-
tems should allow also manual adjustments by domain experts, to achieve optimal 
decisions with the flexibility to be adapted to business rules and unforeseen circums-
tances. And I believe that this new generation of decision-support systems will be 
based on Evolutionary Algorithms (understood in a broad sense of this term).  

So let’s move to the last part of this article and discuss what should be done to re-
medy the current state of the art with respect to Evolutionary Algorithms? Before we 
start this discussion, let’s go back 20 years… 

Most of the readers might be aware that the field of evolvable hardware (EHW) is 
about 20 years old. Some of the first really serious work was done by John Koza – in 
fact, EHW was one of the applications Koza used to show the power of Genetic Pro-
gramming (GP). He used GP to evolve a series of analog filters (both circuit configu-
ration and passive component values). He was able to evolve a series of filters that 
were essentially identical to filters that were patented in the 1930s for the telephone 
industry. Based on those results he coined the phrase “human competitive designs” 
and claimed this was something GP can do. Ten years ago there was the annual 
(small, but enthusiastic) NASA/DOD sponsored EHW conference. However, that 
conference is no longer held and a majority of the main players have moved on to 
other areas. Why? Well, the human competitive designs were just that and little else. 
GP could duplicate what people had done before, but really didn’t (couldn’t?) evolve 
much new and innovative. Consequently people figured all of the low hanging fruit 
had been picked and EHW had little new to offer. So they moved on to new areas… 

This story should serve as a warning to the whole EC community – I believe that 
the future of EAs would be determined by the applicability of EAs. The excitement 
connected with terms like ‘genetic’, ‘evolution’, ‘emergence’, if not supported by 
practice, would wear off (this is, to some extent, already happening in industry). And 
as long as EAs would produce just ‘interesting’, ‘promising’, or ‘comparable to an 
OR method’ results on some benchmark problems, and the theory would focus on 
standard properties of EAs, it would be hard to compete in the real-world  
environment.  

Some theoreticians do not worry: one of them wrote to me: “Good problem solv-
ers/theoreticians can also work in other fields. I do not see this as a severe problem.” 
I found such comments quite depressing, as they remind me of a sad story where a 
group of scientists (astronomers) were studying climate patterns of a planet X which 
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was located millions of light-years from the Earth. One day the planet exploded, and 
these scientists moved to study another planet, Y…  

So, what should we do? What can be done? Well, apart from suggesting that the 
IEEE should give a post mortem Evolutionary Computation Pioneer Award to Isaac 
Newton, it seems there are a few things that are worth considering; these include: 

1. revisiting the policies of some EC journals – and introduce a different set of 
criteria to evaluate application papers. After all, the whole purpose of the jour-
nal is to disseminate knowledge. It assumes that only the top researchers, the 
leading edge theory types, are the only ones who might read the journals. Gar-
ry Greenwood summarized it nicely: “The notion that a paper has to have 
some theoretical component or it doesn't rise to the level of a journal publica-
tion is absurd”. However, due to complexities of evaluating the merit of an ap-
plication paper, this task is far from trivial. There is need for a framework that 
would give the reader confidence that: (a) the described methods really are an 
advance on previous industrial practice (validity); (b) the described methods 
will often port to other industrial problems (generalisability), and (c) the ad-
vances described really are new (novelty). And there are no easy ways to ac-
complish that. Note that application papers that describe systems which are in 
daily use (whatever their significance) are routinely rejected as, for example, it 
is impossible to run millions scenarios, which is usually required for the evalu-
ation of the approach. However, papers which document millions of scenarios 
run on a meaningless problem (e.g. an unconstrained sphere problem) have 
much better chance – as this is real science… Whichever way I look at this, it 
does not seem right. 

2. removing ‘lip-service’ from publications, e.g. the authors of accepted papers 
should be asked to remove sentences about applicability of EAs to a wide-
range of real-world problems in many verticals (as discussed in section 3 of 
this paper), not to misled the EC community (unless some concrete examples 
are provided). 

3. educating the research community on real-world problems, as it seems that 
most of the researchers are disconnected from the real-world and its chal-
lenges. Some of these challenges include separation of business rules and con-
straints from the optimisation engine, as no industrial user is going to accept a 
software that needs to be modified (or worse, redesigned) if the application 
problem slightly changes. The methods have to be robust in the sense they can 
work with just about any variation of the application problem domain without 
redesign or recoding – but rather just by changing environmental settings in 
the configuration file of the system17. Garry Greenwood, summarised this18 
very well: “If you have to take your EC method offline to change it for every 
new application problem variation and the user interface keeps changing, 

                                                           
17 Similar issue was raised in [Goertzel, 1997]:  AI-based software applications are quite fra-

gile, often a slight change in problem definition will render them useless. This problem is the 
main motivation for the establishment of Artificial General Intelligence community. 

18 Private correspondence. 
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forget it.” Additional challenges include “explanatory features” of the optimis-
er – as usually end-users hate “black-boxes” which return just a recommended 
result without any “explanations” and interactive components, which are very 
helpful in influencing the optimiser into particular directions, to name a few. 

4. encouraging researchers who deal with theoretical aspects of EAs to pay atten-
tion to commercial developments. Theoreticians should understand that the 
work in vacuum is not that significant. For many people it is clear that a re-
searcher working on internet search engines should not ignore developments at 
Google – so the same should apply to an EA researcher who works on optimi-
sation of supply chain type of problems and such researcher should be know-
ledgeable on offerings of SAP (Kallrath and Maindl, 2006). 

5. developing artificial problem sets that better reflect real-world difficulties 
which the research community can use to experience (and appreciate) for 
themselves what it really means to tackle a real-world problem. This would 
lead to some meaningful classification of different types of problems to under-
stand the effectiveness of various algorithms. This would require studying the 
problem representation and modeling issues, as these are the key components 
in approaching any real-world problem. Finally, more emphasis should be 
placed on studying the reliability of algorithms versus the frequency of hitting 
the global optimum, as in the real world setting reliability (in the sense of get-
ting quality solution every run) is more desirable than getting global optimum 
in 95% of runs (and poor quality solutions in the remaining 5% of runs). 

I think the following story nicely concludes this chapter and illustrates the gap be-
tween the theory and practice in Evolutionary Algorithms:  

A scientist discovered a special dog food with amazing characteristics. He has proved 
(by a scientific method) that if a dog eats this food on regular basis, its fur would be 
always shiny, its teeth would be always white, it would never be sick, it would be well-
behaved, together with many additional advantages. However, there was just one 
problem with this invention – when it was commercialized, it was discovered that 
dogs refused to eat this food… 
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Abstract. Multi-objective optimization is widely found in many fields,
such as logistics, economics, engineering, or whenever optimal decisions
need to be made in the presence of tradeoff between two or more con-
flicting objectives. The synergy of probabilistic graphical approaches in
evolutionary mechanism may enhance the iterative search process when
interrelationships of the archived data has been learned, modeled, and
used in the reproduction. This paper presents the implementation of
probabilistic graphical approaches in solving multi-objective optimiza-
tion problems under the evolutionary paradigm. First, the existing work
on the synergy between probabilistic graphical models and evolutionary
algorithms in the multi-objective framework will be presented. We will
then show that the optimization problems can be solved using a restricted
Boltzmann machine (RBM). The learning, modeling as well as sampling
mechanisms of the RBM will be highlighted. Lastly, five studies that im-
plement the RBM for solving multi-objective optimization problems will
be discussed.

Keywords: Evolutionary algorithm, multi-objective optimization, prob-
abilistic graphical model, restricted Boltzmann machine.

1 Introduction

Many real-world problems involve the simultaneous optimization of several com-
peting objectives and constraints that are difficult, if not impossible, to solve
without the aid of powerful optimization algorithms. In a multi-objective op-
timization problem (MOP) [1, 2], no one solution is optimal to all objectives.
Therefore, in order to solve the MOP, search methods employed must be capable
of finding a number of alternative solutions representing the tradeoff among the
various conflicting objectives. An MOP in minimization case can be formulated
as follows. Minimize:

F (X) = (f1(X), ..., fm(X)) (1)

subject to X = {x1, ..., xn} ∈ θ, F ∈ Rm, where θ is the decision space and Rm

is the objective space.

J. Liu et al. (Eds.): WCCI 2012 Plenary/Invited Lectures, LNCS 7311, pp. 122–144, 2012.
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Evolutionary algorithms (EAs) are a class of stochastic search methods that
have been found to be efficient and effective in solving MOPs. The advantage
of EAs can be attributed to their capabilities of sampling multiple candidate
solutions simultaneously, a task that most conventional optimization techniques
fail to work well. Nonetheless, the stochastic recombination in standard EAs
may disrupt the building of strong schemas of a population and thus move-
ment towards optimal is extremely difficult to predict. Motivated by the idea of
exploiting the linkage information among the decision variables, estimation of
distribution algorithm (EDA) has been regarded as a new computing paradigm
in the field of evolutionary computation [3–5].

In EDAs, the discovered knowledge of the data is used to predict the location
or pattern of the Pareto front or to predict the favorable movement in the search
space. By using the discovered correlations of the parameters of a cost function,
the search can be regulated to follow the correlated patterns when generating an
offspring solution. The correlations as well as the probability distribution of the
cardinalities of the parameters can be learned and modeled by a probabilistic
model. In order to effectively learn and model that information, the probabilistic
graphical approach is one of the well-known and promising techniques [6–8]. In
EDAs, the reproduction of children solutions is carried out by building a repre-
sentative probabilistic model of the parent solutions, and new solutions are then
generated through the sampling of the constructed probabilistic model. There-
fore, the learning, modeling, and sampling mechanisms are important features
of an EDA.

This paper focuses on the implementation of EDAs for solving MOPs. First,
a literature review that studies the potential of EDAs in solving MOPs is given.
Then, the focus is tailored to introduce an EDA that uses the restricted
Boltzmann machine (RBM) as its modeling technique. An insight discussion
on how and what information is learned and modeled by the RBM will be cov-
ered. Subsequently, five studies that implement the RBM-based EDA (REDA)
in solving scalable problems, epistatic problems, noisy problems, combinatorial
problems, and global unconstrained continuous optimization problems will be
presented.

The rest of the paper is as follows. Section 2 presents a literature review on
the implementation of probabilistic graphical models (PGMs) in solving MOPs.
Section 3 describes the RBM as well as its training and modeling mechanisms.
Five case studies that implement the REDA in solving MOPs are presented in
Section 4. The conclusion is drawn in Section 5.

2 Probabilistic Graphical Models in Multi-objective
Evolutionary Algorithms

EDAs draw its inspiration from the use of the probability distribution of promis-
ing solutions to predict the Pareto optimal front or the favorable movement in
the search space. Based on this idea, the linkage information or the regularity
patterns that appear quite often in a set of promising solutions can be captured
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and used to predict the probability distribution of other superior solutions. In
the literature, the probability information can be captured using at least three
methods depends on how the interactions among the decision variables are taken
into consideration. Those methods are the univariate modeling, bivariate model-
ing, and multivariate modeling [3]. Over the last decade, several attempts have
been devoted to developing EDAs in the context of multi-objective optimization
(MOEDAs) [9]. The main differences among the MOEDAs are the employment
of different modeling and sampling mechanisms.

The first MOEDA was introduced in [10]. The authors proposed a mixture-
based multi-objective iterated density-estimation evolutionary algorithm
(MIDEA) with both discrete and continuous representations. The mixture prob-
ability distribution in MIDEA was constructed using the univariate factorization.
MIDEA is well-known for its simplicity, speed, and effectiveness. Furthermore, it
can also serve as a baseline algorithm for other MOEDAs. The simulation results
indicated that MIDEA is able to generate a set of diverse solutions that is close
to the Pareto optimal front.

In [11], Laumanns and Ocenasek examined the effect of incorporating mu-
tual dependencies between the decision variables in approximating the set of
Pareto optimal solutions. The mutual dependencies were captured using the
Bayesian optimization algorithm with binary decision trees. The experimental
results showed that the proposed Bayesian multi-objective optimization algo-
rithm (BMOA) is effective in approximating the Pareto front for simple test
instances. In order to deal with harder test instances, an additional computa-
tional time is required.

In [12], MOEDA based on the Parzen estimator was introduced. The Parzen
estimator, a non-parametric technique, was used to estimate the kernel density
through the learning of the multivariate dependencies among the decision vari-
ables. The Parzen estimator was also used in the objective space to enhance the
diversity preservation of the algorithm. The empirical results indicated that the
proposed algorithm has better convergence rate and is able to obtain a set of
well spread solutions.

Li et al. [13] suggested a hybrid binary EDA with mixture distribution
(MOHEDA) for solving the multi-objective 0/1 knapsack problems. One of the
simplest EDA, the univariate marginal distribution algorithm (UMDA), was hy-
bridized with a weighted sum local search method. This hybridization enable
MOHEDA took advantage of both local and global information to guide the
search towards optimality. Furthermore, the population was clustered into sev-
eral groups using a proposed stochastic clustering algorithm before the mixture
distribution was constructed. In [14], Okabe et al. proposed an EDA that uses
Voronoi diagram (VEDA) as its probabilistic modeling method. The Voronoi
diagram takes into account the problem structure in estimating the most ap-
propriate probability distribution. Instead of determining the distribution from
individuals in the selected population, the implementation also makes use of
those that are not selected. The experimental results showed that VEDA per-
forms better than NSGA-II [15] for a limited number of fitness evaluations.
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In [16], Pelikan et al. modified the Bayesian optimization algorithm and
introduced a hierarchical Bayesian optimization algorithm (hBOA) to solve multi-
objective decomposable problems. hBOA adapted the NSGA-II’s domination-
based framework and used k-mean clustering for modeling purpose. hBOA were
used to solve scalable deceptive problems. The simulation results demonstrated
that hBOA successes to obtain the optimal solutions and has faster conver-
gence rate. They inferred that the clustering and linkage learning are the main
criteria that contribute to the success of the algorithm in solving decompos-
able multi-objective problems. In [17], Sastry et al. proposed another MOEDA,
called extended compact genetic algorithm (ECGA), to solve the scalable de-
ceptive problems. The paper analyzed the characteristics of the algorithm on
a class of bounding adversarial problems with scalable decision variables. m-k
deceptive trap problems [16] were used to investigate the performance of the
proposed algorithm.

In [18], Soh and Kirley proposed a parameter-less MOEA, which combines
the ECGA with external ε-Pareto archive, clustering, and competent muta-
tion to deal with scalable problems. Two types of scalable problems were stud-
ied, including deceptive problems with scalable decision variables and DTLZ
problems with scalable objective functions. The proposed algorithm showed
promising results in those test problems due to the incorporation of linkage
learning, clustering, and local search. In [19], the authors examined the lim-
itation of maximum-likelihood estimators in the problems which may lead to
the prematurely vanishing variance. Using the framework of MIDEA, the au-
thors combined the normal mixture distribution with adaptive variance scaling
to remedy the vanishing variance problem. Under this scheme, the premature
convergence was prevented in the condition that the estimated probability dis-
tribution is enlarged beyond its original maximum likelihood estimation. Zhong
and Li [20] presented a decision-tree-based multi-objective estimation of distri-
bution algorithm (DT-MEDA) for global optimization in the continuous-valued
representation. The conditional dependencies among the decision variables are
learned by the decision tree. The children solutions are generated through the
sampling of the constructed conditional probability distribution.

Zhang et al. [21] proposed a regularity model-based multi-objective estimation
of distribution algorithm (RM-MEDA) for solving continuous multi-objective
optimization problems with linkage dependencies. A local principle component
analysis (PCA) was used to model the probability distribution of promising indi-
viduals. The experimental results showed that RM-MEDA has good scalability
in terms of decision variables and less sensitive to algorithmic parameter settings.
In order to further improve the algorithm, Zhou et al. [22] generalized the idea of
RM-MEDA and proposed a probabilistic model-based multi-objective evolution-
ary algorithm, named as MMEA, which is able to simultaneously approximate
both the Pareto set and Pareto front of an MOP. Mart́ı et al. [23] developed an-
other MOEDA using growing neural gas (GNG) network - multi-objective neural
EDA (MONEDA). GNG network is a self-organizing neural network based on
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neural gas model. This model creates an ordered cluster of input data set; a new
cluster will then be inserted based on the topology and cumulative errors. WFG
problems [24] were used to evaluate the search capability of the MONEDA.

In [25], an MOEDA, which uses Gaussian model as its modeling technique,
was used to optimize the radio frequency identification (RFID) network design.
In order to enhance the search capability of the algorithm, a particle swarm op-
timization (PSO) [26] algorithm was hybridized with the MOEDA. A number of
children solutions are generated by the EDA while the rest of them are produced
by the velocity-free PSO. The algorithm succeeded to obtain a set of tradeoff
solutions in RFID network design.

3 Restricted Boltzmann Machine (RBM)

The RBM [27–29] is an energy-based binary stochastic neural network. The ar-
chitecture of the network is illustrated in Fig. 1. The network consists of two
layers of neurons - a visible layer and a hidden layer. The visible layer, denoted
as vi, is an input layer of the network. The hidden layer, denoted as hj , is a
latent layer that determines the capability of the network in modeling the prob-
ability distribution of the input stimuli. The network does not have the output
layer. Instead, the output information is represented by the energy values of the
network. wij is the weight that connecting visible unit i and hidden unit j. bi
is the bias of the visible unit i and dj is the bias of hidden unit j. Both of the
layers are fully connected to one another and the weights are symmetric. In this
way, the information can flow from one layer to another, increasing the learning
capability of the network. Furthermore, there is no interconnection among the
neurons within the same layer. Thus, the hidden units are conditionally inde-
pendent. Besides, the visible units can be updated in parallel given the hidden
states. This behavior improves the training speed of the network. The weights
and biases of an RBM define the energy function of the network. The energy
function is presented as follows.

E(v, h) = −
∑
i

∑
j

vihjwij −
∑
i

vibi −
∑
j

hjdj (2)
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Using the energy function of the network, the probability distribution of any
global state can be derived as follows

P (v, h) =
exp(−E(v, h))

Z =
∑

x,y exp(−E(x, y))
(3)

where Z is the normalizing constant, which is defined by the energy of all the
global states while the numerator of the equation is the energy of a particular
state. By summing all the configurations of the hidden units, the probability
distribution of a visible state can be clamped to be

P (v) =

∑
h exp(−E(v, h))∑
x,y exp(−E(x, y))

(4)

3.1 Training

The training is one of the main issues in the RBM. In the literature, the con-
trastive divergence (CD) training method [30, 31] is the most well-known training
mechanism for the RBM. In the CD training, two phases (positive phase and
negative phase) are carried out. In the positive phase, the input stimuli or in-
put data are rendered into the visible units of the network. Subsequently, the
hidden states, given the visible states, are constructed by performing the Gibbs
sampling as follows

P (hj |v) = ϕ(
∑
i

wijvi − dj) (5)

where ϕ(x) = 1
1+e−x is the logistic function. In the negative phase, given the

hidden states, the visible states are reconstructed using the same logistic func-
tion. The process of these two phases is repeated S times. Next, the weights and
biases of the network are updated as follows

w
′
ij = wij + ε(< vihj >0 − < vihj >1) (6)

b
′
i = bi + ε(< vi >0 − < vi >1) (7)

d
′
j = dj + ε(< hj >0 − < hj >1) (8)

where ε is the learning rate, <>0 is the original states of the neurons, and <>1

is the states of the neurons after a single step of reconstruction. The overall CD
training is repeated until a stopping criterion is met. The process of CD training
is further demonstrated in Fig. 2.
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3.2 Modeling

This paper will only study a restrcited Boltzmann machine-based estimation of
distribution algorithm for multi-objective optimization (REDA). In the imple-
mentation stage, the alleles of the decision variables in the cost function are the
input data that will be rendered to the visible layer of an RBM. Therefore, the
RBM has n visible units if an MOP has n decision variables to be optimized.
The setting of the number of hidden units is to be determined by users. The
complexity of the network is directly proportional to the setting of the number
of visible and hidden units. Since the probability distribution of the population
needs to be constructed at every generation, it is essential for the model to be
kept simple. Therefore, the number of hidden units is set to as small as possible
as long as the probability model is representative.

After performing the CD training, a set of trained weights, biases, and hidden
states are obtained. Subsequently, in binary representation, the joint probability
distribution with n decision variables in generation g is formulated as follows.

Pg(v) =

n∏
i=1

pg(vi) (9)

where pg(vi) is the marginal probability of decision variable i (vi) at generation
g. The marginal probability of each decision variable is obtained through (4).
Expanding the equation,

pg(vi = 1) =

∑N
l=1 δl(v

+
i )∑N

l=1 δl(v
+
i ) +

∑N
l=1 δl(v

−
i )

(10)

δl(v
+
i ) =

H∑
h=1

e−E(vi=1,h) (11)

δl(v
−
i ) =

H∑
h=1

e−E(vi=0,h) (12)

where δl(v
+
i ) is the marginal cost of vi when the cardinality of vi = 1, δl(v

−)
is the marginal cost of vi when the cardinality cost of vi = 0, N is the number
of selected solutions or parent solutions, and H is the number of hidden units.
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Direct sampling from the above probabilistic model reaches a limit in progress
when the probability reaches a maximum value of 1.0 or a minimum value of 0.0.
Therefore, the lower and upper bounds are added to the probability distribution
based on the average cost of cardinality. The modified version of the marginal
probability is given as below

pg(vi = 1) =

∑N
l=1 δl(v

+
i ) + avg(

∑N
l=1 δl(vi))∑N

l=1 δl(v
+
i ) +

∑N
l=1 δl(v

−
i ) + ri × avg(

∑N
l=1 δl(vi))

(13)

where avg(
∑N

l=1 δl(vi)) =
∑N

l=1 δ(vi)

N and ri is the number of different values that
vi may take. In binary case, ri is 2.

3.3 Sampling

The children solutions are generated through the sampling of the constructed
probabilistic model as follows

vi =

{
1 if random(0, 1) ≤ pg (vi = 1)
0 otherwise

(14)

where random (0,1) is a randomly generated value between [0, 1].

3.4 Learning Capability of REDA

In this section, a detailed description of the behaviors of the RBM in the evolu-
tionary perspective is presented. Three main issues will be covered: (1) How and
what information is captured in an RBM (2) How to effectively train the RBM in
the evolutionary perspective (3) What can be elucidated from the energy values
of the RBM in the fitness landscape perspective.

How and What Information Is Captured in an RBM. In an RBM, the
neurons between two layers are fully connected via weighted synaptic connec-
tions, and there is no intra-layer connection. These weight connections are used
by the neurons to communicate their activations to one another. The quality
of training of the network corresponds directly to the effectiveness at which the
algorithm learns the probability distribution. Whenever the number of hidden
units is sufficiently large, the network can represent any discrete distribution.
This behavior that a sufficient number of hidden units in the network would
guarantee improvement in the training error has been proven mathematically in
[31]. During the training process, the aim is to minimize the energy equilibrium
of the network such that the implicit correlations as well as the probability dis-
tribution of the input stimuli is captured and stored in the synaptic weights of
the network. This distribution-based model allows the RBM to globally learn
the probability distribution of the decision variables by considering the interde-
pendencies of the data.



130 V.A. Shim and K.C. Tan

How to Effectively Train an RBM in the Evolutionary Perspective.
The weight update process in an RBM requires calculating the gradient of log-
likelihood of the input data. The gradient is minimal when the reconstructed
data is exactly similar to the input stimuli. Contrastive divergence training [31]
method aims to minimize the energy level and training error of the network.
The primary understanding is that the minimal energy level and training error
can be achieved when sufficient number of hidden units and training epochs are
applied. This is because the learning capability of the network is determined
by the number of hidden units. A larger number of hidden units gives extra
flexibility for the network to model the global distribution of the input stimuli,
and thus could yield better convergence. On the other hand, CD training will
require a large number of training epochs to train the network well. When the
RBM is modeled as EDA (REDA), another factor that can reduce the energy
level and training error is the number of generations of an optimization process.
Over generations, the training error and energy level of the network are reduced.
This is most likely due to the reduction in the size of more promising search
space when the search converges to near optimal points. By taking this into
consideration, the computational time of the algorithm can be improved by
eliminating unnecessary training of the network in each generation.

What Can Be Elucidated from the Energy Values of an RBM in the
Fitness Landscape Perspective. In EDAs, the two main mechanisms that
determine the success of the algorithms are probabilistic model construction and
sampling technique. The core purpose of probabilistic modeling is to learn the
probability distribution of the candidate solutions and to capture the dependen-
cies among the decision variables. By using the linkage information of known
solutions, the characteristics of the unknown solutions can be studied. In EDAs,
the sampled solutions are the unknown solutions. If the characteristics of these
solutions are known, this additional information can be taken into consideration
during the optimization process. In an RBM, the energy-based model captures
the dependencies of the decision variables by associating a scalar energy value
from the network to each solution. Thus, it can be inferred that sampled solu-
tions may have higher energy if the solutions are outside the boundary modeled
by the RBM. In pattern recognition, a lower energy level suggests that a test
sample is more likely to belong to a certain class of patterns. However, this is
not the case in EDAs as a lower energy level does not mean that the solutions
are fitter, and vice versa. The choice of a solution outside the boundary of the
modeled energy distribution may imply an increase in the exploration capability,
while focusing on the solutions inside the boundary may imply an increase in
the exploitation capability of the algorithm.

3.5 Algorithmic Process Flow

The general evolutionary process flow of REDA is presented in Fig. 3.
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Begin 
 Initialization: At generation g=0, randomly generate N solutions as the 

initial population, ����� � �� 
 Evaluation: Evaluate all solutions 

Do While (“maximum generation is not reached”) 
1. Fitness Assignment: Perform Pareto ranking and crowding 

distance over the population 
2. Selection: Select �  promising individuals based on the binary 

tournament selection 
3. Training: Train the RBM by using CD training method to obtain 

the weights, biases, and hidden states 
4. Probabilistic model: Compute the probability of the joint 

configuration ����  by using the trained weights, biases, and 
hidden states of the RBM 

5. Reproduction: Generate new set of N solutions (��from����� 
6. Evaluation: Calculate the fitness values of all offspring 
7. Elitism: Select N individuals from � � ������ to form������ �

��. � � �� � 
End Do 

End 

Fig. 3. Pseudo-code of REDA

4 Restricted Boltzmann Machine-Based Estimation of
Distribution Algorithm for Solving Multi-objective
Optimization Problems

4.1 REDA with Clustering for Solving High Dimensional Problems

Many real-world optimization problems are challenged by the different charac-
teristics and difficulties. The problems may be non-linear, restricted to several
constraints, has complex relationships within the decision variables, has a large
number of variables, and even consists of several conflicting objectives [32, 33].
High dimensional problems with many decision variables and conflicting objec-
tive functions to be optimized simultaneously are hard problems which may
challenge the algorithm in finding the global optimal solutions. In the problems
with many decision variables, the complexity of the problems increase with an
increase in the number of decision variables. This is due to the enlargement of
the search space and an increase in the number of possible moves towards opti-
mality. In the problems with many conflicting objective functions, the selection
pressure in selecting fitter individuals is reduced when the number of conflicting
objective functions is increased. This is due to the high rate of non-dominance
among individuals during the evolutionary process. This may hinder the search
towards optimality or result in the population getting trapped in a local optimal.
One of the ideas to overcome these issues is to exploit extra information (e.g.
linkage dependencies) from within the selected population. This information is
hypothesized to provide valuable guidance in driving the search process.

In order to solve MOPs with scalable number of decision variables, the algo-
rithm presented in Fig. 3 is implemented directly. The simulation results pre-
sented in [34] indicated that REDA performs equally well or slightly inferior
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to NSGA-II in ZDT and DTLZ problems with a smaller number of decision
variables. This may be attributed to the fact that, REDA does not directly
use location information of the selected solutions in exploiting the new solu-
tions. Furthermore, REDA, which models the global probability of the selected
individuals, is not able to effectively escape from local optima. REDA shows
superior convergence performances in problems with a larger number of decision
variables. Besides, REDA also able to produce more non-dominated solutions
compared to NSGA-II. The increase in number of decision variables increases
the size of the search space, and thus increases the complexity of the problems.
The stochastic behavior of NSGA-II prevents the algorithm from evolving a good
set of solutions since the number of possible combinations towards optimality is
increased. The incorporation of dependency information as well as the use of the
global probability distribution of solutions enables REDA to effectively explore
the huge search space.

In problems with many objective functions, clustering is incorporated into
REDA in order to build a probabilistic model from different regions in the
search space. For sake of simplicity, the number of cluster, k, is determined
by the user. In the implementation stage, a probabilistic model is built for each
cluster, L1, L2, ..., Lk. Subsequently, the new population Pop(g+1) is generated
by sampling the probabilistic model constructed from each cluster L, where N
new solutions are generated and equal number of individuals is sampled from
each cluster.

In problems with three objective functions, the performance of REDA is com-
parable to NSGA-II. In a higher number of objective functions, REDA gives
the superior performance in converging to the Pareto optimal front as well as
maintaining a set of diverse solutions. The superior performance of REDA may
be due to the incorporation of linkage information in driving the search. This
information is learned by the network and is clamped into the probability distri-
bution before the sampling takes place. Some flexibility is given to the algorithm
in exploring the search space by allowing the training to stop before the energy
reaches the minimum. The good performance of REDA in these test instances
supports the claim that REDA scales well with the number of objective functions
compared to NSGA-II. Clustering is important for problems with solutions that
are hard to represent by a single probabilistic model.

Most of the probabilistic modeling techniques for learning the linkage depen-
dencies of the solutions incur additional computational cost and time. In an
RBM, the most time consuming part is the network training. Training is con-
ducted at each generation and stops when the maximum number of training
epochs is reached. This training process is more complicated than the genetic
operators in standard MOEAs, and thus incurs additional simulation time. Even
though REDA may spend more simulation time, it has a faster convergence rate
compared to NSGA-II. This is one of the strengths of REDA, especially when
dealing with real-world problems where the fitness evaluations are computation-
ally expensive. Detailed information of the implementation and experimental
results can be referred to [34].
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Even though REDA showed promising results in solving scalable problems, it
still suffers several flaws which requires further investigation. Firstly, univariate
sampling in REDA may limit its ability to generate new solutions. This is be-
cause univariate sampling does not consider the correlation between the decision
variables when performing the sampling. A more sophisticated sampling mecha-
nism that is able to take into account the multivariate dependencies between the
decision variables may enhance the search capability of REDA. Secondly, REDA
fails to converge to the global Pareto optimal front in problems with many local
optima. This is because REDA in particular and MOEDAs in general will model
the probability distribution of the solutions even though they are trapped at lo-
cal optima, and subsequently use the constructed probabilistic information as a
reference model to produce offspring. Hybridization with local search algorithms
may be one of the approaches in dealing with problems with many local optima.
Thirdly, REDA is sensitive to bias. This is because the modeling in EDAs only es-
timates the probability distribution of the current best solutions. In other words,
only global information is used. Whenever the maintained solutions are biased
towards certain search regions, EDAs may consider the maintained solutions
are the promising one, thus, construct their probability distribution accordingly.
Therefore, it is necessary to enhance the diversity preservation of REDA espe-
cially the ability to produce a set of diverse solutions. This can be achieved by
combining EDAs with other search algorithms which use location information in
producing offspring, including genetic algorithms, differential evolution, particle
swarm optimization algorithms, or any other algorithms with similar features.

4.2 An Energy-Based Sampling Mechanism of REDA

In our another study, the sampling mechanism of REDA was investigated [35].
In [34], the simple probability sampling is employed in REDA. This sampling
technique may, however, limit the production of appropriate solutions if the de-
cision variables are highly correlated or have a high dimension. This is because,
during sampling, marginal probability distribution considers the distribution of
the particular decision variable but not the correlation between the decision vari-
ables. As a result, the sampled solutions have difficulties following the correlated
distribution. One way to tackle this problem is to sample an infinite number
of solutions. This may increase the number of possible combinations of the so-
lutions and thus increase the chance of producing fitter individuals. However,
sampling of an infinitely large number of solutions may lead to an increase in
the number of fitness evaluations and computational time. It is known that some
real world problems are very time consuming and such an algorithm would not
be practical. To deal with this problem, energy value can be taken into consid-
eration. Firstly, N ×M solutions are generated. Then, the energy value serves
as the main criterion for forming new N solutions from the alleles of the N ×M
solutions, where M > 1 is a multiplier. A lower energy level implies that the
solution is in a more stable state while a higher energy level means that the so-
lution is not in energy equilibrium. The energy-based sampling mechanism will,
therefore, prefer the alleles of solutions with lower energy levels.
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As probabilistic modeling only models the previous best topology, the so-
lutions that are located inside the modeled topology are stable (lower energy
levels) in terms of energy equilibrium and are generally fit. On the other hand,
the solutions outside the modeled topology (higher energy levels) may be con-
sidered unstable but not unfit. This means that the solutions with higher energy
levels may be the promising solutions that are not modeled by the network and
thus will be worth preserving to the next generation. Therefore, it is required
to give the algorithm the flexibility of choosing the alleles of solutions with high
energy levels in order to achieve a more explorative search.

By incorporating the above-mentioned approach (energy-based sampling ap-
proach) into REDA, the simulation results in [35] indicated that the modified
REDA, which models the probability distribution of the solutions by applying
the energy information to detect the dependencies, is able to perform well on
epistatic problems. The results also showed that the incorporation of the energy-
based sampling mechanism enhances the exploration and exploitation capability
of REDA. However, the limitation of REDA in escaping from local optima has
not been significantly improved through this mechanism. REDA with energy-
based sampling mechanism is able to escape the local optima in some simulation
runs, however, is trapped in local optima in most of the runs. Therefore, it can
be concluded that the REDA with energy-based sampling mechanism is sensitive
to different initializations for problem with multi-modality.

4.3 REDA in Noisy Environments

In [36], we have extended the study of REDA in dealing with MOPs with noisy
objective functions. In noisy environments, the presence of noise in the cost func-
tions may affect the ability of the algorithms to drive the search process towards
optimality. Beyer [37] carried out an investigation and found that the presence
of noise may reduce the convergence rate, resulting in suboptimal solutions. In
another study by Goh and Tan [38], it was reported that the low level of noise
helps an MOEA to produce better solutions for some problems, but a higher
noise level may degenerate the optimization process into a random search. Dar-
wen and Pollack [39] concluded that re-sampling can reduce the effect of noise
for a small population, but may not be as helpful for a larger population.

EDAs surpass the standard MOEAs in handling noisy information by con-
structing a noise handling feature in the built probabilistic model. In order to
show this advantage, a likelihood correction feature was proposed in [36] in order
to tune the error in the constructed probabilistic model. The previous studies
showed that REDA has its limitations in exploiting the search space and may
be trapped at any local optimum [34]. In order to overcome these limitations,
REDA was hybridized with a particle swarm optimization (PSO) algorithm.
This hybridization is expected to improve the performance since the particles
may now move out of the regions modeled by REDA, and thus provide extra
solutions that REDA alone was not able to tap on.

In the likelihood correction feature, the concept of probability dominance,
proposed in [40], was employed. This concept is implemented to determine the
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probability error of each selected individual. This probability error is then used
to group the population into several clusters before a probabilistic model is
built. Assume that fi(A) and fi(B) are two solutions in the objective space with
m objective functions (i = 1, ...,m). In a noise free situation, fi(A) is said to
strictly dominate fi(B) if fi(A) is smaller than fi(B) in all the objective values
in minimization case. On the other hand, fi(A) and fi(B) are mutually non-
dominated only if not all the objective values in one solution are lower than
that of the other. In a noisy domain, the above statements may not correctly
represent the true domination behavior. Even through fi(A) appears to strictly
dominate fi(B), the noise may distort the actual fitness values where fi(B) is
supposed to dominate fi(A). In the selection process, the selection error occurs
when the less fit individual is chosen. Therefore, the probability to make an error
in the selection process could be utilized to improve the decision making process.

The likelihood correction feature is based on the heuristic that if the distribu-
tion can be approximated as close to the real distribution of the best solutions,
the detrimental effect of the noise can then reduced. To approximate the real dis-
tribution, the probability of making an error in the selection process is adapted
in the probabilistic modeling. In binary tournament selection, if two solutions
in the tournament have a huge distinction in their objective values, for exam-
ple fi(A) dominates fi(B) by far, then the selection error for selecting fi(A)
is small. On the other hand, if two individuals in the tournament are near to
each other in the objective space, then the selection error is larger. Therefore, if
the probabilistic model built by REDA is only based on individuals with small
selection error, then, the model may avoid distortions caused by those solutions
with a large selection error. However, the probability distribution may not come
close to the real distribution if the number of individuals with smaller selection
error is too little. Thus, a method to combine the distribution between solutions
with small selection error and those with large selection error was designed. This
combination was based on the penalty approach where individuals with smaller
selection error will be penalized less while solutions with larger selection error
will be more heavily penalized. This is because the real distribution is more
likely to follow the distribution of the population with smaller selection error
than those with larger selection error.

The simulation results in [36] demonstrated that the hybridization between
REDA and PSO may slightly deteriorate the search ability of REDA in some
noiseless circumstances. However, its performance was outstanding in noisy en-
vironments. The results also showed that REDA is more robust than NSGA-II
because the performance of REDA is better than NSGA-II in noisy conditions.
REDA, which performs the search by modeling the global probability distri-
bution of the population, is more responsive since the reproduction is based
on the global information and not individual solutions. Furthermore, likelihood
correction is able to tune the probability distribution so that the distribution
of the solutions is more likely to follow the one with a smaller selection er-
ror. The hybridization has further enhanced the ability of REDA in exploring
the search space, especially in noisy conditions. This hybridization is utterly
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important when REDA fails to model the promising regions in the search space.
In that case, the hybridization could provide opportunities to explore those
regions, thus, improving the search ability.

The scalability issue was also investigated. The results indicated that the
hybrid REDA obtained the most promising results in the noisy test problems
with different number of decision variables. This result demonstrated that the
hybridization with PSO has enhanced the search ability of REDA. This is im-
portant as PSO provides a directional search which may explore the promising
regions where probabilistic model may fail to explore. It can be concluded that
the hybrid REDA scaled well with the number of decision variables compared
to NSGA-II.

In order to study the potential of other hybridizations, REDA was hybridized
with a genetic algorithm (GA) and a differential evolution (DE). The simplest
and most common GA is applied, where single point crossover and bit-flip mu-
tation are implemented. For DE, the standard recombination proposed in [41]
is applied. The results indicated that all hybridizations are able to improve the
performance of REDA, in most of the test problems, under both noiseless and
noisy environments. Among them, hybridization with PSO gave the best results
followed by DE and then GA. The function of hybridization is to provide extra
search ability for REDA as REDA performs the search by using only global sta-
tistical information. This hybridization therefore enhances the ability for REDA
in exploring the search space, especially in the early stage of evolutions where
the search space is huge. The search using position information (GA, PSO, DE)
is also essential and useful especially to explore and exploit certain promising
regions. Thus, hybridization is an important mechanism to improve the search
performance of EDAs.

4.4 REDA for Solving the Multi-objective Multiple Traveling
Salesman Problem

In [42], REDA was implemented to solve the multi-objective multiple traveling
salesman problem (MmTSP). The multiple travelling salesman problem (mTSP)
is a generalization of the classical travelling salesman problem (TSP). In the
mTSP, Ω salesmen are involved in a routing to visit Ψ cities (Ω < Ψ) in order
to achieve a common goal. In the routing, all the salesmen will start from and
end at the single depot after visiting the ordered cities. Each city can only be
visited once, and the total cost for all salesmen is required to be minimized.
The cost can be defined as distance, time, expense, risk, etc. The complexity
of the mTSP is higher than the TSP since it is required to allot a set of cities
to each salesman in an optimal ordering while minimizing the total travelling
cost for all salesmen. Furthermore, the mTSP is more appropriate for real life
scheduling or logistic problems than the TSP because more than one salesman is
usually involved. Over the past few decades, research on the TSP has attracted
a great deal of attention. However, the mTSP has not received the same amount
of research effort compared to the TSP.
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In an MOP, no single point is an optimal solution. Instead, the optimal solu-
tion is a set of non-dominated solutions, which represents the tradeoff between
the multiple objectives. In this case, fitness assignment to each solution in the
evolutionary multi-objective evolutionary optimization is an important feature
for the assurance of the survival of fitter and less crowded solutions to the next
generation. Much research has been carried out over the past few decades to ad-
dress this issue, and fitness assignment based on the domination approach is one
of the most popular approaches. However, the fitness assignment in the domina-
tion approach is less efficient in solving many-objective problems. This is because
the strength of the domination among the solutions in a population is weakened
with the increase in the number of objective functions. This phenomenon results
in poor decision making in the selection of promising solutions.

Recently, the classical method for multi-objective optimization based on de-
composition has been re-formularized into a population-based approach [43, 44].
The decomposition approach decomposes an MOP into several subproblems and
subsequently optimizes all the subproblems concurrently. Under this approach,
it is not required to differentiate the domination behaviors of the solutions. In-
stead, the subproblems are constructed using any aggregation approach, and the
superiority of the solutions is determined using the aggregated values.

Problem Formulation. The aim of the mTSP is to minimize the total traveling
cost of all the salesmen under the condition that each city must be visited strictly
once by any salesman, and all the salesmen must return to the starting depot
after visiting their final ordered city. The traveling cost could be defined as the
traveling distance, traveling time, traveling expense, traveling risk, etc incurred.
Each salesman will have his own route and there should be no repeated visit on
any city in the route of the salesman.

In the literature, the aim of the mTSP is specified to be either minimizing the
total traveling cost of all salesmen or the highest traveling cost incurred by any
single salesman [45]. In [42], the focus is tailored specifically for the mTSP with
single depot; considering the minimization of the total traveling cost and the
balancing of the workload among all salesmen. This is achieved by formularizing
the objective function to be the weighted sum of the total traveling cost of all
salesmen and the highest traveling cost of any single salesman. In the context of
multi-objective optimization (MmTSP), more than one objective is subject to
be minimized, which is formulated as follows.

Minimize:

F (x) = (F1(x), ..., Fm(x))

F1(x) = ω1 × TC1 + ω2 ×MC1

...

Fm(x) = ω1 × TCm + ω2 ×MCm
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where

TCk(x) =

Ω∑
j=1

ICk
j (x)

MCk(x) = max
1≤j≤Ω

(ICk
j (x))

ICk
j (x) =

nj−1∑
i=1

Dk(ai,j , ai+1,j) +Dk(anj ,j , a1,j)

In the above formulation, x ∈ φ, φ is the decision space, ai,j is the ith visiting
city by salesman j, m is the number of objective functions, ω1 and ω2 are the
weights to balance between total cost and highest cost (ω1 + ω2 = 1.0), TC is
the total traveling cost of all salesmen, MC is the highest traveling cost of any
single salesman, IC is the individual traveling cost, Ω is the number of salesmen,
nj is the number of cities traveled by salesman j, Dk(ai,j , ai+1,j) is the traveling
cost (for the kth objective function) between cities at locations i and i + 1 for
salesman j. In a chromosome, two conditions should be met, which are all the
cities must be visited exactly once and each salesman must be assigned at least
one city in his traveling route.

REDA in this section was developed in the decomposition-based framework
of multi-objective optimization. Furthermore, REDA was also hybridized with
the evolutionary gradient search [46] (hREDA). In the mTSP, integer number
representation is used to represent the permutation of the cities. The modeling
and sampling steps of REDA or hREDA is illustrated as follows.

1. Modeling. Decode the integer representation of the cities into the binary
representation. Train the network. Compute the δ(xji ) as (11) and (12). Encode

the binary representation of δ(xji ) into integer representation. Construct the
probabilistic model Pg(x) by computing the marginal probability of each city
(c1, ..., cβ), where β = Ψ +Ω − 1, in each permutation location as follows.

pg(x) =

⎡
⎢⎣
pg(x1 = c1) . . . pg(xβ = c1)

...
. . .

...
pg(x1 = cβ) . . . pg(xβ = cβ)

⎤
⎥⎦

pg(xi = cj) =

∑N
l=1 δl(xi = cj) +

Zi

β×N

Zi +
Z2

i

β×N

where pg(xi) is the probability distribution of the cities at the position xi of the
chromosomes at generation g, pg(xi = cj) is the probability of city j to be located
at the ith position of the chromosomes, cj is the city j (c1 = 2− Ω, ..., cβ = Ψ)
and Zi is the normalizing constant.

2. Sampling. Sample the constructed probabilistic model, pg(x), to generate N
children solutions as follows.
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yi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1 if random(0, 1) ≤ pg (xi = c1)

c2 if pg(xi = c1) < random(0, 1) ≤
∑2

j=1 pg(xi = cj))
...

cβ if
∑β−1

j=1 pg(xi = cj) < random(0, 1) ≤
∑β

j=1 pg(xi = cj)

where yi is a newly generated city at ith position of a chromosome.

The formulation of the MmTSP takes into account the weighted sum of total
traveling cost of all salesmen and the highest traveling cost of any single sales-
man. The weight setting is dependent on the preference of the manager whether
he wants to achieve the lowest total traveling cost of all salesmen or he wants
to achieve the balancing of workload of all salesmen. If the aim is to obtain the
lowest total traveling cost, the weights will be set to ω1 = 1.0, ω2 = 0.0. On
the other hand, if the final objective is to balance the workload of all salesmen,
the weights will then be set to ω1 = 0.0, ω2 = 1.0. However, if the aim is to
achieve tradeoff between the two aims, then different weight settings should be
employed.

The simulation results reported in [42] indicated that the hybrid REDA with
decomposition (hREDA) is able to produce a set of diverse solutions but it is
slightly inferior in terms of proximity to MOEA/D [44] in problems with small
number of cities. In problems with a large number of cities, the simulation results
showed that the decomposition algorithms (hREDA, REDA, and MOEA/D)
achieve better Pareto front than the domination algorithms (NSGA-II). For the
decomposition algorithms, hREDA generates a better set of diverse solutions
than REDA and MOEA/D. However, the solutions generated by REDA have a
better proximity than hREDA. Shim et al. [42] concluded that the decomposi-
tion algorithms scale well with the increase in the number of decision variables
compared to the algorithms using the concept of domination. REDA uses global
distribution of the parent solutions to guide the search process. The results
showed that REDA have good proximity results, but poor solution diversity.
Introducing local information into the evolutionary process, which helps the al-
gorithm to further explore and exploit the search space, rectifies this limitation
of REDA.

The findings also revealed that the total traveling cost increases with the
increase in the number of salesmen. This is because when more salesmen are
involved, the task gets more difficult since the algorithms need to determine
the route for each salesman while maintaining the minimum total traveling cost
at the same time. Since all salesmen need to return to the home city and the
final assigned city could be far from the depot, additional traveling cost may
be incurred. For hREDA, the gradient information weakens with the increase in
the number of salesmen, resulting in the algorithm not being able to exploit the
information as effectively. However, its performance was the best compared to
the other algorithms.
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Overall, the performances of algorithms using the decomposition framework
(hREDA, REDA and MOEA/D) were superior to those of the algorithms based
on the concept of domination (NSGA-II) in most of the problem settings. The
superiority of the decomposition algorithms is attributed to the aggregation prin-
ciple used for fitness assignment. The tournament could be carried out by simply
comparing the aggregated fitness values of solutions. Solutions with higher fitness
values will always be selected to survive and reproduce. On the other hand, the
concept of domination requires that fitness be assigned to each solution based
on their rank of domination. In many-objective problems, most of the solutions
are non-dominated and are given lower ranks. This may prevent the tournament
process from selecting promising solutions to survive. Thus, NSGA-II performed
poorly compared to the decomposition algorithms.

4.5 Hybrid Adaptive MOEAs for Solving Continuous MOPs

In our recent work [47], we introduced two versions of hybrid adaptive MOEAs
for solving continuous MOPs. The motivation of this study is as follows. Many
multi-objective evolutionary algorithms (MOEAs) have been designed to solve
MOPs. For example, MOEAs that use genetic algorithms (GAs) as the search
technique are NSGA-II [15] and MOEA/D [44], among others. MOEAs that use
differential evolutions (DE) as the search technique are Pareto differential evolu-
tion (PDE) [48], generalized differential evolution3 (GDE3) [49], and MOEA/D
with DE [50], among others. Next, MOEAs that use estimation of distribution
algorithms (EDAs) as the search approach are as discussed in Section II. Each
of the above-mentioned algorithms is efficient in solving certain MOPs and has
their own strengths and weaknesses. Furthermore, no evidence indicates that one
of the EAs is superior to the others. Thus, it is possible that the synergy among
the EAs can complement their weaknesses while maintaining their strengths.

In [47], an adaptive feature, which determines the proportion of the number
of solutions to be produced by each EA in a generation, was proposed. Initially,
each EA is given an equal chance to produce the initial solutions. After the repro-
duction processes, a number of promising solutions are selected and stored in an
archive. Then, the proportion of the number of solutions to be generated by each
optimizer in the next generation is calculated according to the proposed adaptive
mechanism as illustrated in Fig. 4. Let ψ as the solutions in an archive. First, cal-
culate the number of solutions in ψ that are generated by each EA. Afterward, the
adaptive proportion rate (ArEAi

g ) at generation g for each EA is calculated accord-
ing to Step 2. A learning rate (ε < 0) is incorporated to the updating rule in Step
2 in order to moderate the influences of the proportion of the number of selected
solutions in generation g to the whole evolutionary processes. This is because the
optimizers that are able to generate a more number of promising solutions in the
current generation may not be the superior optimizers in the next generation. In
Step 3, a lower bound is set to the adaptive proportion rate. This is necessary since
an optimizer may dominate other EAs and finally the adaptive proportion rate of
this optimizer will become 1.0 while the adaptive proportion rate of other EAs will
become 0.0. When this happens, all children solutions will only be generated by
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%%Given a set of selected solutions that are stored in an archive (�) 
1. Calculate the number of solutions in � that are generated by each EA, denoted 

as �����  where � � ��� ��, � is the number of EAs that are involved in the 
hybridization. In this paper, three EAs are involved. Thus, the number of 
solutions in �  that are generated by each EA are denoted as ������ � ���� , 

������ � ����  and ������ � ����� . 
2. Calculate the adaptive proportion rate for each EA as follows. 
����� � 	�
 

 ������� � ��������� � � � ������� , where  ������� ��������	� 
������� 

 where �������  is the adaptive proportion rate at generation � for ���  EA,  is the 

learning rate, �������  is the current proportion rate and � is the archive size or 
the number of solutions in an archive. 

3. Check for the lower bound of the adaptive proportion rate 
����� � 	�
 
���������� 
 ������� 

������� � ������� 
������� 

4. Normalize the adaptive proportion rate so that the sum of the adaptive 
proportion rates is equal to 1.0 
����� � 	�
 

������� ��������� �	�� �������
�

���

� 

������� 

Fig. 4. Pseudo-code of the adaptive mechanism

this optimizer till the end of the evolutionary processes. Thus, it is necessary to
set a lower bound to the adaptive proportion rate to guarantee that the problem
would not exist. Since the summation of all the adaptive proportion rates should
be equal to 1.0, the final adaptive proportion rates should be normalized espe-
cially when Step 3 is applied (Step 4). Afterward, a typical evolutionary process
is continued. Through this hybridization, the hybrid algorithms showed the best
results in most of the MOPs.

5 Conclusion

This paper presented our recent works on synergy between PMGs and MOEAs.
More specifically, a literature review focused on the existing work on MOEDAs
has been outlined. Next, the possibility of constructing an EDA based on RBM
has also been demonstrated. Next, five studies that implement REDA for solving
different MOPs were given. The case studies are:(1) REDA with clustering in
solving scalable MOPs (2) sampling study of REDA and its implementation in
solving epistatic MOPs (3) synergy between REDA and PSO in tackling noisy
MOPs (4) hybrid REDA with the EGS in evolving a set of permutation of cities
in MmTSP problems and (5) hybrid adaptive MOEAs in solving various types of
MOPs. The simulation results indicated that REDA is weak in addressing multi-
modality problems, inferior to NSGA-II in exploiting the near optimal solutions,
and mediocre in generating a set of diverse solutions. The positive aspects are
that REDA can perform well in high dimensional problems and many objective
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problems, REDA is more robust than NSGA-II in noisy MOPs, and REDA has
a faster convergence rate than NSGA-II even though it takes a higher computa-
tional time. The performance of REDA was improved through the hybridization
with local search algorithms and the synergy with other evolutionary algorithms.
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Abstract. We present several relational frameworks for expressing sim-
ilarities and preferences in a quantitative way. The main focus is on the
occurrence of various types of transitivity in these frameworks. The first
framework is that of fuzzy relations; the corresponding notion of transi-
tivity is C-transitivity, with C a conjunctor. We discuss two approaches
to the measurement of similarity of fuzzy sets: a logical approach based
on biresidual operators and a cardinal approach based on fuzzy set car-
dinalities. The second framework is that of reciprocal relations; the cor-
responding notion of transitivity is cycle-transitivity. It plays a crucial
role in the description of different types of transitivity arising in the
comparison of (artificially coupled) random variables in terms of win-
ning probabilities. It also embraces the study of mutual rank probability
relations of partially ordered sets.

1 Introduction

Comparing objects in order to group together similar ones or distinguish better
from worse is inherent to human activities in general and scientific disciplines in
particular. In this overview paper, we present some relational frameworks that
allow to express the results of such a comparison in a numerical way, typically
by means of numbers in the unit interval. A first framework is that of fuzzy
relations and we discuss how it can be used to develop cardinality-based, i.e.
based on the counting of features, similarity measurement techniques. A second
framework is that of reciprocal relations and we discuss how it can be used
to develop methods for comparing random variables. Rationality considerations
demand the presence of some kind of transitivity. We therefore review in detail
the available notions of transitivity and point out where they occur.

This contribution is organised as follows. In Section 2, we present the two
relational frameworks mentioned, the corresponding notions of transitivity and
the connections between them. In Section 3, we explore the framework of fuzzy
relations and its capacity for expressing the similarity of fuzzy sets. Section 4
is dedicated to the framework of reciprocal relations and its potential for the
development of methods for the comparison of random variables. We wrap up
in Section 5 with a short conclusion.
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2 Relational Frameworks and Their Transitivity

2.1 Fuzzy Relations

Transitivity is an essential property of relations. A (binary) relation R on a
universeX (the universe of discourse or the set of alternatives) is called transitive
if for any (a, b, c) ∈ X3 it holds that (a, b) ∈ R ∧ (b, c) ∈ R implies (a, c) ∈ R.
Identifying R with its characteristic mapping, i.e. defining R(a, b) = 1 if (a, b) ∈
R, and R(a, b) = 0 if (a, b) /∈ R, transitivity can be stated equivalently as
R(a, b) = 1∧R(b, c) = 1 implies R(a, c) = 1. Other equivalent formulations may
be devised, such as

(R(a, b) ≥ α ∧R(b, c) ≥ α)⇒ R(a, c) ≥ α , (1)

for any α ∈ ]0, 1]. Transitivity can also be expressed in the following functional
form

min(R(a, b), R(b, c)) ≤ R(a, c) . (2)

Note that on {0, 1}2 the minimum operation is nothing else but the Boolean
conjunction.

A fuzzy relation R on X is an X2 → [0, 1] mapping that expresses the degree
of relationship between elements of X : R(a, b) = 0 means a and b are not related
at all, R(a, b) = 1 expresses full relationship, while R(a, b) ∈ ]0, 1[ indicates a
partial degree of relationship only. In fuzzy set theory, formulation (2) has led
to the popular notion of T -transitivity, where a t-norm is used to generalize
Boolean conjunction. A binary operation T : [0, 1]2 → [0, 1] is called a t-norm if
it is increasing in each variable, has neutral element 1 and is commutative and
associative. The three main continuous t-norms are the minimum operator TM,
the algebraic product TP and the �Lukasiewicz t-norm TL (defined by TL(x, y) =
max(x + y − 1, 0)). For an excellent monograph on t-norms and t-conorms, we
refer to [39].

However, we prefer to work with a more general class of operations called con-
junctors. A conjunctor is a binary operation C : [0, 1]2 → [0, 1] that is increasing
in each variable and coincides on {0, 1}2 with the Boolean conjunction.

Definition 1. Let C be a conjunctor. A fuzzy relation R on X is called C-
transitive if for any (a, b, c) ∈ X3 it holds that

C(R(a, b), R(b, c)) ≤ R(a, c) . (3)

Interesting classes of conjunctors are the classes of semi-copulas, quasi-copulas,
copulas and t-norms. Semi-copulas are nothing else but conjunctors with neutral
element 1 [30]. Where t-norms have the additional properties of commutativ-
ity and associativity, quasi-copulas are 1-Lipschitz continuous [33,44]. A quasi-
copula is a semi-copula that is 1-Lipschitz continuous: for any (x, y, u, v) ∈ [0, 1]4

it holds that |C(x, u)−C(y, v)| ≤ |x−y|+|u−v|. If instead of 1-Lipschitz continu-
ity, C satisfies the moderate growth property (also called 2-monotonicity): for any
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(x, y, u, v) ∈ [0, 1]4 such that x ≤ y and u ≤ v it holds that C(x, v) + C(y, u) ≤
C(x, u) + C(y, v), then C is called a copula.

Any copula is a quasi-copula, and therefore is 1-Lipschitz continuous; the
converse is not true. It is well known that a copula is a t-norm if and only if it
is associative; conversely, a t-norm is a copula if and only if it is 1-continuous.
The t-norms TM, TP and TL are copulas as well. For any quasi-copula C it holds
that TL ≤ C ≤ TM. For an excellent monograph on copulas, we refer to [44].

2.2 Reciprocal Relations

Another interesting class of X2 → [0, 1] mappings is the class of reciprocal
relations Q (also called ipsodual relations or probabilistic relations) satisfying
Q(a, b) +Q(b, a) = 1, for any a, b ∈ X . For such relations, it holds in particular
that Q(a, a) = 1/2. Reciprocity is linked with completeness: let R be a complete
({0, 1}-valued) relation onX , which means that max(R(a, b), R(b, a)) = 1 for any
a, b ∈ X , then R has an equivalent {0, 1/2, 1}-valued reciprocal representation
Q given by Q(a, b) = 1/2(1 +R(a, b)− R(b, a)).

Stochastic Transitivity. Transitivity properties for reciprocal relations rather
have the logical flavor of expression (1). There exist various kinds of stochastic
transitivity for reciprocal relations [3,42]. For instance, a reciprocal relation Q
on X is called weakly stochastic transitive if for any (a, b, c) ∈ X3 it holds that
Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2 implies Q(a, c) ≥ 1/2, which corresponds to
the choice of α = 1/2 in (1). In [11], the following generalization of stochastic
transitivity was proposed.

Definition 2. Let g be an increasing [1/2, 1]2 → [0, 1] mapping such that
g(1/2, 1/2) ≤ 1/2. A reciprocal relation Q on X is called g-stochastic transi-
tive if for any (a, b, c) ∈ X3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) .

Note that the condition g(1/2, 1/2) ≤ 1/2 ensures that the reciprocal represen-
tation Q of any transitive complete relation R is always g-stochastic transitive.
In other words, g-stochastic transitivity generalizes transitivity of complete rela-
tions. This definition includes the standard types of stochastic transitivity [42]:

(i) strong stochastic transitivity when g = max;
(ii) moderate stochastic transitivity when g = min ;
(iii) weak stochastic transitivity when g = 1/2 .

In [11], also a special type of stochastic transitivity has been introduced.

Definition 3. Let g be an increasing [1/2, 1]2 → [0, 1] mapping such that
g(1/2, 1/2) = 1/2 and g(1/2, 1) = g(1, 1/2) = 1. A reciprocal relation Q on
X is called g-isostochastic transitive if for any (a, b, c) ∈ X3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = g(Q(a, b), Q(b, c)) .



148 B. De Baets

The conditions imposed upon g again ensure that g-isostochastic transitivity
generalizes transitivity of complete relations. Note that for a given mapping g,
the property of g-isostochastic transitivity is much more restrictive than the
property of g-stochastic transitivity.

FG-Transitivity. The framework of FG-transitivity, developed by Swital-
ski [51,52], formally generalizes g-stochastic transitivity in the sense that Q(a, c)
is now bounded both from below and above by [1/2, 1]2 → [0, 1] mappings.

Definition 4. Let F and G be two [1/2, 1]2 → [0, 1] mappings such that
F (1/2, 1/2) ≤ 1/2 ≤ G(1/2, 1/2), and G(1/2, 1) = G(1, 1/2) = G(1, 1) = 1
and F ≤ G. A reciprocal relation Q on X is called FG-transitive if for any
(a, b, c) ∈ X3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2)

⇓
F (Q(a, b), Q(b, c)) ≤ Q(a, c) ≤ G(Q(a, b), Q(b, c)) .

Cycle-Transitivity. For a reciprocal relation Q, we define for all (a, b, c) ∈ X3

the following quantities [11]:

αabc = min(Q(a, b), Q(b, c), Q(c, a)) ,

βabc = median(Q(a, b), Q(b, c), Q(c, a)) ,

γabc = max(Q(a, b), Q(b, c), Q(c, a)) .

Let us also denote Δ = {(x, y, z) ∈ [0, 1]3 | x ≤ y ≤ z}. A function U : Δ → R

is called an upper bound function if it satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;
(ii) for any (α, β, γ) ∈ Δ:

U(α, β, γ) + U(1− γ, 1− β, 1− α) ≥ 1 . (4)

The function L : Δ→ R defined by L(α, β, γ) = 1−U(1−γ, 1−β, 1−α) is called
the dual lower bound function of the upper bound function U . Inequality (4)
then simply expresses that L ≤ U . Condition (i) again guarantees that cycle-
transitivity generalizes transitivity of complete relations.

Definition 5. A reciprocal relation Q on X is called cycle-transitive w.r.t. an
upper bound function U if for any (a, b, c) ∈ X3 it holds that

L(αabc, βabc, γabc) ≤ αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) , (5)

where L is the dual lower bound function of U .
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Due to the built-in duality, it holds that if (5) is true for some (a, b, c), then this is
also the case for any permutation of (a, b, c). In practice, it is therefore sufficient
to check (5) for a single permutation of any (a, b, c) ∈ X3. Alternatively, due
to the same duality, it is also sufficient to verify the right-hand inequality (or
equivalently, the left-hand inequality) for two permutations of any (a, b, c) ∈ X3

(not being cyclic permutations of one another), e.g. (a, b, c) and (c, b, a). Hence,
(5) can be replaced by

αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) .

Note that a value of U(α, β, γ) equal to 2 is used to express that for the given
values there is no restriction at all (as α+ β + γ − 1 is always bounded by 2).

Two upper bound functions U1 and U2 are called equivalent if for any (α, β, γ) ∈
Δ it holds that α + β + γ − 1 ≤ U1(α, β, γ) is equivalent to α + β + γ − 1 ≤
U2(α, β, γ).

If it happens that in (4) the equality holds for all (α, β, γ) ∈ Δ, then the upper
bound function U is said to be self-dual, since in that case it coincides with its
dual lower bound function L. Consequently, also (5) and (2.2) can only hold with
equality. Furthermore, it then holds that U(0, 0, 1) = 0 and U(0, 1, 1) = 1.

Although C-transitivity is not intended to be applied to reciprocal relations,
it can be cast quite nicely into the cycle-transitivity framework.

Proposition 1. [11] Let C be a commutative conjunctor such that C ≤ TM.
A reciprocal relation Q on X is C-transitive if and only if it is cycle-transitive
w.r.t. the upper bound function UC defined by

UC(α, β, γ) = min(α+ β − C(α, β), β + γ − C(β, γ), γ + α− C(γ, α)) .

Moreover, if C is 1-Lipschitz continuous, then UC is given by

UC(α, β, γ) = α+ β − C(α, β) .

Consider the three basic t-norms (copulas) TM, TP and TL:

(i) For C = TM, we immediately obtain as upper bound function the median
(the simplest self-dual upper bound function):

UTM(α, β, γ) = β .

(ii) For C = TP, we find

UTP(α, β, γ) = α+ β − αβ .

(iii) For C = TL, we obtain

UTL(α, β, γ) =

{
α+ β , if α+ β < 1 ,
1 , if α+ β ≥ 1 .

An equivalent upper bound function is given by U ′
TL

(α, β, γ) = 1.
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Cycle-transitivity also incorporates stochastic transitivity, although the latter
fits more naturally in the FG-transitivity framework; in particular, isostochastic
transitivity corresponds to cycle-transitivity w.r.t. particular self-dual
upper bound functions [11]. We have shown that the cycle-transitivity and FG-
transitivity frameworks cannot easily be translated into one another, which un-
derlines that these are two essentially different approaches [6].

One particular form of stochastic transitivity deserves our attention. A prob-
abilistic relation Q on X is called partially stochastic transitive [31] if for any
(a, b, c) ∈ X3 it holds that

(Q(a, b) > 1/2 ∧ Q(b, c) > 1/2) ⇒ Q(a, c) ≥ min(Q(a, b), Q(b, c)) .

Clearly, it is a slight weakening of moderate stochastic transitivity. Interestingly,
also this type of transitivity can be expressed elegantly in the cycle-transitivity
framework [24] by means of a simple upper bound function.

Proposition 2. Cycle-transitivity w.r.t. the upper bound function Ups defined
by

Ups(α, β, γ) = γ

is equivalent to partial stochastic transitivity.

A Frequentist Interpretation. Finally, we provide an interesting interpreta-
tion of some important types of upper bound functions [23].

Definition 6. Let C be a conjunctor and Q be a reciprocal relation on X. A
permutation (a, b, c) ∈ X3 is called a C-triplet if

C(R(a, b), R(b, c)) ≤ R(a, c) .
Let ΔC(Q) denote the greatest number k such that any subset {a, b, c} ⊆ X has
k C-triplets. Obviously, Q is C-transitive if and only if ΔC(Q) = 6.

Proposition 3. For any conjunctor C ≤ TM and any reciprocal relation Q on
X it holds that 3 ≤ ΔC(Q) ≤ 6. More specifically, it holds that

(i) ΔTM(Q) ∈ {3, 5, 6};
(ii) ΔTP(Q) ∈ {3, 4, 5, 6};
(iii) ΔTL(Q) ∈ {3, 6}.
Proposition 4. Let C be a commutative quasi-copula. A reciprocal relation Q
on X is cycle-transitive w.r.t.

(i) U(α, β, γ) = β + γ − C(β, γ) if and only if ΔC(Q) ≥ 4;
(ii) U(α, β, γ) = α+ γ − C(α, γ) if and only if ΔC(Q) ≥ 5;
(iii) U(α, β, γ) = α+ β − C(α, β) if and only if ΔC(Q) = 6.

Statement (iii) is nothing else but a rephrasing of Proposition 1. According
the above proposition (statement (ii) applied to C = TM), partial stochastic
transitivity of a reciprocal relation implies that it is ‘at least 5/6’ TM-transitive.

For ease of reference, we will refer to cycle-transitivity w.r.t. U(α, β, γ) = β+
γ−C(β, γ) as weak C-transitivity, to cycle-transitivity w.r.t. U(α, β, γ) = α+γ−
C(α, γ) as moderate C-transitivity, and to cycle-transitivity w.r.t. U(α, β, γ) =
α+ β − C(α, β) as (strong) C-transitivity.
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3 Similarity of Fuzzy Sets

3.1 Basic Notions

Recall that an equivalence relation E onX is a reflexive, symmetric and transitive
relation on X and that there exists a one-to-one correspondence between equiv-
alence relations on X and partitions of X . In fuzzy set theory, the counterpart
of an equivalence relation is a T -equivalence: given a t-norm T , a T -equivalence
E on X is a fuzzy relation on X that is reflexive (E(x, x) = 1), symmetric
(E(x, y) = E(y, x)) and T -transitive. A T -equivalence is called a T -equality if
E(x, y) implies x = y.

For the prototypical t-norms, it is interesting to note that (see e.g. [15,17]):

(i) A fuzzy relation E on X is a TL-equivalence if and only if d = 1 − E is a
pseudo-metric on X .

(ii) A fuzzy relation E on X is a TP-equivalence if and only if d = − logE is a
pseudo-metric on X .

(iii) A fuzzy relation E on X is a TM-equivalence if and only if d = 1 − E is
a pseudo-ultra-metric on X . Another interesting characterization is that a
fuzzy relation E on X is a TM-equivalence if and only if for any α ∈ [0, 1]
its α-cut Eα = {(x, y) ∈ X2 | E(x, y) ≥ α} is an equivalence relation on
X . The equivalence classes of Eα become smaller for increasing α leading
to the concept of a partition tree (see e.g. [26]).

3.2 A Logical Approach

To any left-continuous t-norm T , there corresponds a residual implicator IT :
[0, 1]2 → [0, 1] defined by

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} ,

which can be considered as a generalization of the Boolean implication. Note that
IT (x, y) = 1 if and only if x ≤ y. In case y < x, one gets for the prototypical t-
norms: IM(x, y) = y, IP(x, y) = y/x and IL(x, y) = min(1−x+y, 1). An essential
property of the residual implicator of a left-continuous t-norm is related to the
classical syllogism:

T (IT (x, y), IT (y, z)) ≤ IT (x, z)) ,

for any (x, y, z) ∈ [0, 1]3. The residual implicator is the main constituent of the
biresidual operator ET : [0, 1]2 → [0, 1] defined by

ET (x, y) = min(IT (x, y), IT (y, x)) = IT (max(x, y),min(x, y)) ,

which can be considered as a generalization of the Boolean equivalence. Note that
ET (x, y) = 1 if and only if x = y. In case x 
= y, one gets for the prototypical
t-norms: EM(x, y) = min(x, y), EP(x, y) = min(x, y)/max(x, y) and EL(x, y) =
1− |x− y|.
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Of particular importance in this discussion is the fact that ET is a T -equality
on [0, 1]. The biresidual operator obviously serves as a means for measuring
equality of membership degrees. Any T -equality E on [0, 1] can be extended in
a natural way to F(X), the class of fuzzy sets in X :

E′(A,B) = inf
x∈X

E(A(x), B(x)) .

It then holds that E′ is a T -equality on F(X) if and only if E is a T -equality on
[0, 1]. Starting from ET we obtain the T -equality ET . A second way of defining
a T -equality on F(X) is by defining

ET (A,B) = T ( inf
x∈X

IT (A(x), B(x)), inf
x∈X

IT (B(x), A(x))) .

The underlying idea is that in order to measure equality of two (fuzzy) sets
A and B, one should both measure inclusion of A in B, and of B in A. Note
that in general ET ⊆ ET , while EM = EM. These T -equivalences can be used
as a starting point for building metrics on F(X). The above ways of measuring
equality of fuzzy sets are very strict in the sense that the “worst” element decides
upon the value.

Without going into detail, it is worth mentioning that there exist an ap-
propriate notion of fuzzy partition, called T -partition [16], so that there exists a
one-to-one correspondence between T -equalities onX and T -partitions ofX [17].

3.3 A Cardinal Approach

Classical Cardinality-Based Similarity Measures. A common recipe for
comparing objects is to select an appropriate set of features and to construct
for each object a binary vector encoding the presence (1) or absence (0) of
each of these features. Such a binary vector can be formally identified with the
corresponding set of present features. The degree of similarity of two objects is
then often expressed in terms of the cardinalities of the latter sets. We focus
our attention on a family of [0, 1]-valued similarity measures that are rational
expressions in the cardinalities of the sets involved [12]:

S(A,B) =
xαA,B + t ωA,B + y δA,B + z νA,B

x′ αA,B + t′ ωA,B + y′ δA,B + z′ νA,B
,

with A,B ∈ P(X) (the powerset of a finite universe X),

αA,B = min(|A \B|, |B \A|) ,
ωA,B = max(|A \B|, |B \A|) ,
δA,B = |A ∩B| ,
νA,B = |(A ∪B)c| ,

and x, t, y, z, x′, t′, y′, z′ ∈ {0, 1}. Note that these similarity measures are sym-
metric, i.e. S(A,B) = S(B,A) for any A,B ∈ P(X).
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Reflexive similarity measures, i.e. S(A,A) = 1 for any A ∈ P(X), are char-
acterized by y = y′ and z = z′. We restrict our attention to the (still large)
subfamily obtained by putting also t = x and t′ = x′ [5,14], i.e.

S(A,B) =
x�A,B +y δA,B + z νA,B

x′ �A,B +y δA,B + z νA,B
, (6)

with �A,B = |A� B| = |A \ B| + |B \ A|. On the other hand, we allow more
freedom by letting the parameters x, y, z and x′ take positive real values. Note
that these parameters can always be scaled to the unit interval by dividing
both numerator and denominator of (6) by the greatest among the parameters.
In order to guarantee that S(A,B) ∈ [0, 1], we need to impose the restriction
0 ≤ x ≤ x′. Since the case x = x′ leads to trivial measures taking value 1 only, we
consider from here on 0 ≤ x < x′. The similarity measures gathered in Table 1
all belong to family (6); the corresponding parameter values are indicated in the
table.

Table 1. Some well-known cardinality-based similarity measures

Measure expression x x′ y z T

Jaccard [34] |A∩B|
|A∪B| 0 1 0 1 TL

Simple Matching [50] 1− |A�B|
n

0 1 1 1 TL

Dice [29] 2|A∩B|
|A�B|+2|A∩B| 0 1 2 0 –

Rogers and Tanimoto [46] n−|A�B|
n+|A�B| 0 2 1 1 TL

Sneath and Sokal 1 [49] |A∩B|
|A∩B|+2|A�B| 0 2 1 0 TL

Sneath and Sokal 2 [49] 1− |A�B|
2n−|A�B| 0 1 2 2 –

The TL- or TP-transitive members of family (6) are characterized in the fol-
lowing proposition.

Proposition 5. [14]

(i) The TL-transitive members of family (6) are characterized by the necessary
and sufficient condition x′ ≥ max(y, z).

(ii) The TP-transitive members of family (6) are characterized by the necessary
and sufficient condition xx′ ≥ max(y2, z2).

Fuzzy Cardinality-Based Similarity Measures. Often, the presence or ab-
sence of a feature is not clear-cut and is rather a matter of degree. Hence, if
instead of binary vectors we have to compare vectors with components in the
real unit interval [0, 1] (the higher the number, the more the feature is present),
the need arises to generalize the aforementioned similarity measures. In fact, in
the same way as binary vectors can be identified with ordinary subsets of a finite
universe X , vectors with components in [0, 1] can be identified with fuzzy sets
in X .
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In order to generalize a cardinality-based similarity measure to fuzzy sets,
we clearly need fuzzification rules that define the cardinality of a fuzzy set and
translate the classical set-theoretic operations to fuzzy sets. As to the first, we
stick to the following simple way of defining the cardinality of a fuzzy set, also
known as the sigma-count of A [55]: |A| =

∑
x∈X A(x). As to the second, we

define the intersection of two fuzzy sets A and B in X in a pointwise manner
by A ∩ B(x) = C(A(x), B(x)), for any x ∈ X , where C is a commutative con-
junctor. In [14], we have argued that commutative quasi-copulas are the most
appropriate conjunctors for our purpose. Commutative quasi-copulas not only
allow to introduce set-theoretic operations on fuzzy sets, such as A \ B(x) =
A(x)−C(A(x), B(x)) and A�B(x) = A(x)+B(x)− 2C(A(x), B(x)), they also
preserve classical identities on cardinalities, such as |A \B| = |A| − |A ∩B| and
|A� B| = |A \ B| + |B \ A| = |A| + |B| − 2|A ∩ B|. These identities allow to
rewrite and fuzzify family (6) as

S(A,B) =
x(a+ b− 2u) + yu+ z(n− a− b+ u)

x′(a+ b− 2u) + yu+ z(n− a− b+ u)
, (7)

with a = |A|, b = |B| and u = |A ∩B|.

Bell-Inequalities and Preservation of Transitivity. Studying the transi-
tivity of (fuzzy) cardinality-based similarity measures inevitably leads to the
verification of inequalities on (fuzzy) cardinalities. We have established several
powerful meta-theorems that provide an efficient and intelligent way of verify-
ing whether a classical inequality on cardinalities carries over to fuzzy cardi-
nalities [13]. These meta-theorems state that certain classical inequalities are
preserved under fuzzification when modelling fuzzy set intersection by means of
a commutative conjunctor that fulfills a number of Bell-type inequalities.

In [35], we introduced the classical Bell inequalities in the context of fuzzy
probability calculus and proved that the following Bell-type inequalities for
commutative conjunctors are necessary and sufficient conditions for the cor-
responding Bell-type inequalities for fuzzy probabilities to hold. The Bell-type
inequalities for a commutative conjunctor C read as follows:

B1 : TL(p, q) ≤ C(p, q) ≤ TM(p, q)

B2 : 0 ≤ p− C(p, q)− C(p, r) + C(q, r)

B3 : p+ q + r − C(p, q)− C(p, r) − C(q, r) ≤ 1

for any p, q, r ∈ [0, 1]. Inequality B2 is fulfilled for any commutative quasi-copula,
while inequality B3 only holds for certain t-norms [36], including the members
of the Frank t-norm/copula family TF

λ with λ ≤ 9 + 4
√
5 [45]. Also note that

inequality B1 follows from inequality B2.

Theorem 1. [13] Consider a commutative conjunctor I that satisfies Bell in-
equalities B2 and B3. If for any ordinary subsets A, B and C of an arbitrary
finite universe X it holds that

H(|A|, |B|, |C|, |A ∩B|, |A ∩ C|, |B ∩ C|, |X |) ≥ 0 ,
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where H denotes a continuous function which is homogeneous in its arguments,
then it also holds for any fuzzy sets in an arbitrary finite universe Y .

If the function H does not depend explicitly upon |X |, then Bell inequality
B3 can be omitted. This meta-theorem allows us to identify conditions on the
parameters of the members of family (7) leading to TL-transitive or TP-transitive
fuzzy similarity measures. As our fuzzification is based on a commutative quasi-
copula C, condition B2 holds by default. The following proposition then is an
immediate application.

Proposition 6. [13]

(i) Consider a commutative quasi-copula C that satisfies B3. The TL-transitive
members of family (7) are characterized by x′ ≥ max(y, z).

(ii) The TL-transitive members of family (7) with z = 0 are characterized by
x′ ≥ y.

(iii) Consider a commutative quasi-copula C that satisfies B3. The TP-transitive
members of family (7) are characterized by xx′ ≥ max(y2, z2).

(iv) The TP-transitive members of family (7) with z = 0 are characterized by
xx′ ≥ y2.

However, as our meta-theorem is very general, it does not necessarily always pro-
vide the strongest results. For instance, tedious and lengthy direct proofs allow
to eliminate condition B3 from the previous theorem, leading to the following
general result.

Proposition 7. [13] Consider a commutative quasi-copula C.

(i) The TL-transitive members of family (7) are characterized by the necessary
and sufficient condition x′ ≥ max(y, z).

(ii) The TP-transitive members of family (7) are characterized by the necessary
and sufficient condition xx′ ≥ max(y2, z2).

4 Comparison of Random Variables

4.1 Dice-Transitivity

Consider three dice A, B and C which, instead of the usual numbers, carry the
following integers on their faces:

A = {1, 3, 4, 15, 16, 17}, B = {2, 10, 11, 12, 13, 14}, C = {5, 6, 7, 8, 9, 18} .

Denoting by P(X,Y ) the probability that dice X wins from dice Y , we have
P(A,B) = 20/36, P(B,C) = 25/36 and P(C,A) = 21/36. It is natural to say
that dice X is strictly preferred to dice Y if P(X,Y ) > 1/2, which reflects that
dice X wins from dice Y in the long run (or that X statistically wins from Y ,
denoted X >s Y ). Note that P(Y,X) = 1 − P(X,Y ) which implies that the
relation >s is asymmetric. In the above example, it holds that A >s B, B >s C
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and C >s A: the relation >s is not transitive and forms a cycle. In other words,
if we interpret the probabilities P(X,Y ) as constituents of a reciprocal relation
on the set of alternatives {A,B,C}, then this reciprocal relation is even not
weakly stochastic transitive.

This example can be generalized as follows: we allow the dice to possess any
number of faces (whether or not this can be materialized) and allow identical
numbers on the faces of a single or multiple dice. In other words, a generalized
dice can be identified with a multiset of integers. Given a collection of m such
generalized dice, we can still build a reciprocal relation Q containing the winning
probabilities for each pair of dice [28]. For any two such dice A and B, we define

Q(A,B) = P{A wins from B}+ 1

2
P{A and B end in a tie} .

The dice or integer multisets may be identified with independent discrete random
variables that are uniformly distributed on these multisets (i.e. the probability of
an integer is proportional to its number of occurrences); the reciprocal relation
Q may be regarded as a quantitative description of the pairwise comparison of
these random variables.

In the characterization of the transitivity of this reciprocal relation, a type of
cycle-transitivity, which can neither be seen as a type of C-transitivity, nor as
a type of FG-transitivity, has proven to play a predominant role. For obvious
reasons, this new type of transitivity has been called dice-transitivity.

Definition 7. Cycle-transitivity w.r.t. the upper bound function UD defined by

UD(α, β, γ) = β + γ − βγ ,

is called dice-transitivity.

Dice-transitivity is nothing else but a synonym for weak TP-product transitivity.
According to Proposition 4, dice-transitivity of a reciprocal relation implies that
it is ‘at least 4/6’ TP-transitive. Dice-transitivity can be situated between TL-
transitivity and TP-transitivity, and also between TL-transitivity and moderate
stochastic transitivity.

Proposition 8. [28] The reciprocal relation generated by a collection of gener-
alized dice is dice-transitive.

4.2 A Method for Comparing Random Variables

Many methods can be established for the comparison of the components (random
variables, r.v.) of a random vector (X1, . . . , Xn), as there exist many ways to ex-
tract useful information from the joint cumulative distribution function (c.d.f.)
FX1,...,Xn that characterizes the random vector. A first simplification consists in
comparing the r.v. two by two. It means that a method for comparing r.v. should
only use the information contained in the bivariate c.d.f. FXi,Xj . Therefore, one
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can very well ignore the existence of a multivariate c.d.f. and just describe mu-
tual dependencies between the r.v. by means of the bivariate c.d.f. Of course one
should be aware that not all choices of bivariate c.d.f. are compatible with a mul-
tivariate c.d.f. The problem of characterizing those ensembles of bivariate c.d.f.
that can be identified with the marginal bivariate c.d.f. of a single multivariate
c.d.f., is known as the compatibility problem [44].

A second simplifying step often made is to bypass the information contained
in the bivariate c.d.f. to devise a comparison method that entirely relies on the
one-dimensional marginal c.d.f. In this case there is even not a compatibility
problem, as for any set of univariate c.d.f. FXi , the product FX1FX2 · · ·FXn is a
valid joint c.d.f., namely the one expressing the independence of the r.v. There
are many ways to compare one-dimensional c.d.f., and by far the simplest one is
the method that builds a partial order on the set of r.v. using the principle of
first order stochastic dominance [40]. It states that a r.v. X is weakly preferred
to a r.v. Y if for all u ∈ R it holds that FX(u) ≤ FY (u). At the extreme end
of the chain of simplifications, are the methods that compare r.v. by means
of a characteristic or a function of some characteristics derived from the one-
dimensional marginal c.d.f. The simplest example is the weak order induced by
the expected values of the r.v.

Proceeding along the line of thought of the previous section, a random vector
(X1, X2, . . . , Xm) generates a reciprocal relation by means of the following recipe.

Definition 8. Given a random vector (X1, X2, . . . , Xm), the binary relation Q
defined by

Q(Xi, Xj) = P{Xi > Xj}+
1

2
P{Xi = Xj}

is a reciprocal relation.

For two discrete r.v. Xi and Xj , Q(Xi, Xj) can be computed as

Q(Xi, Xj) =
∑
k>l

pXi,Xj (k, l) +
1

2

∑
k

pXi,Xj (k, k) ,

with pXi,Xj the joint probability mass function (p.m.f.) of (Xi, Xj). For two
continuous r.v. Xi and Xj , Q(Xi, Xj) can be computed as:

Q(Xi, Xj) =

∫ +∞

−∞
dx

∫ x

−∞
fXi,Xj (x, y) dy ,

with fXi,Xj the joint probability density function (p.d.f.) of (Xi, Xj).
For this pairwise comparison, one needs the two-dimensional marginal distri-

butions. Sklar’s theorem [44,48] tells us that if a joint cumulative distribution
function FXi,Xj has marginals FXi and FXj , then there exists a copula Cij such
that for all x, y:

FXi,Xj (x, y) = Cij(FXi (x), FXj (y)) .

If Xi and Xj are continuous, then Cij is unique; otherwise, Cij is uniquely
determined on Ran(FXi)× Ran(FXj ).
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As the above comparison method takes into account the bivariate marginal
c.d.f. it takes into account the dependence of the components of the random
vector. The information contained in the reciprocal relation is therefore much
richer than if, for instance, we would have based the comparison of Xi and Xj

solely on their expected values. Despite the fact that the dependence structure is
entirely captured by the multivariate c.d.f., the pairwise comparison is only apt
to take into account pairwise dependence, as only bivariate c.d.f. are involved.
Indeed, the bivariate c.d.f. do not fully disclose the dependence structure; the
r.v. may even be pairwise independent while not mutually independent.

Since the copulas Cij that couple the univariate marginal c.d.f. into the bi-
variate marginal c.d.f. can be different from one another, the analysis of the
reciprocal relation and in particular the identification of its transitivity prop-
erties appear rather cumbersome. It is nonetheless possible to state in general,
without making any assumptions on the bivariate c.d.f., that the probabilistic
relation Q generated by an arbitrary random vector always shows some minimal
form of transitivity.

Proposition 9. [7] The reciprocal relation Q generated by a random vector is
TL-transitive.

4.3 Artificial Coupling of Random Variables

Our further interest is to study the situation where abstraction is made that the
r.v. are components of a random vector, and all bivariate c.d.f. are enforced to
depend in the same way upon the univariate c.d.f., in other words, we consider
the situation of all copulas being the same, realizing that this might not be
possible at all. In fact, this simplification is equivalent to considering instead
of a random vector, a collection of r.v. and to artificially compare them, all in
the same manner and based upon a same copula. The pairwise comparison then
relies upon the knowledge of the one-dimensional marginal c.d.f. solely, as is the
case in stochastic dominance methods. Our comparison method, however, is not
equivalent to any known kind of stochastic dominance, but should rather be
regarded as a graded variant of it (see also [8]).

The case C = TP generalizes Proposition 8, and applies in particular to a
collection of independent r.v. where all copulas effectively equal TP.

Proposition 10. [27,28] The reciprocal relation Q generated by a collection of
r.v. pairwisely coupled by TP is dice-transitive.

Next, we discuss the case when using one of the extreme copulas to artificially
couple the r.v. In case C = TM, the r.v. are coupled comonotonically. Note
that this case is possible in reality. Comparing with Proposition 9, the follow-
ing proposition expresses that this way of coupling does not lead to a gain in
transitivity.

Proposition 11. [24,25] The reciprocal relation Q generated by a collection of
r.v. pairwisely coupled by TM is TL-transitive.
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In case C = TL, the r.v. are coupled countermonotonically. This assumption can
never represent a true dependence structure for more than two r.v., due to the
compatibility problem.

Proposition 12. [24,25] The reciprocal relation Q generated by a collection of
r.v. pairwisely coupled by TL is partially stochastic transitive.

The proofs of these propositions were first given for discrete uniformly dis-
tributed r.v. [25,28]. It allowed for an interpretation of the values Q(Xi, Xj) as
winning probabilities in a hypothetical dice game, or equivalently, as a method
for the pairwise comparison of ordered lists of numbers. Subsequently, we have
shown that as far as transitivity is concerned, this situation is generic and there-
fore characterizes the type of transitivity observed in general [24,27].

The above results are special cases of a more general result [7,9].

Proposition 13. Consider a Frank copula TF
λ , then the reciprocal relation Q

generated by a collection of random variables pairwisely coupled by TF
λ is cycle-

transitive w.r.t. to the upper bound function Uλ defined by:

Uλ(α, β, γ) = β + γ − TF
1/λ(β, γ) .

4.4 Comparison of Special Independent Random Variables

Dice-transitivity is the generic type of transitivity shared by the reciprocal re-
lations generated by a collection of independent r.v. If one considers indepen-
dent r.v. with densities all belonging to one of the one-parameter families in
Table 2, the corresponding reciprocal relation shows the corresponding type of
cycle-transitivity listed in Table 3 [27].

Note that all upper bound functions in Table 3 are self-dual. More striking is
that the two families of power-law distributions (one-parameter subfamilies of the
two-parameter Beta and Pareto families) and the family of Gumbel distributions,
all yield the same type of transitivity as exponential distributions, namely cycle-
transitivity w.r.t. the self-dual upper bound function UE defined by:

UE(α, β, γ) = αβ + αγ + βγ − 2αβγ .

Table 2. Parametric families of continuous distributions

Name Density function f(x)

Exponential λe−λx λ > 0 x ∈ [0,∞[

Beta λx(λ−1) λ > 0 x ∈ [0, 1]

Pareto λx−(λ+1) λ > 0 x ∈ [1,∞[

Gumbel μe−μ(x−λ)e−e−μ(x−λ)

λ ∈ R, μ > 0 x ∈ ]−∞,∞[

Uniform 1/a λ ∈ R, a > 0 x ∈ [λ, λ+ a]

Laplace (e−|x−λ|/μ))/(2μ) λ ∈ R, μ > 0 x ∈ ]−∞,∞[

Normal (e−(x−λ)2/2σ2

)/
√
2πσ2 λ ∈ R, σ > 0 x ∈ ]−∞,∞[
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Table 3. Cycle-transitivity for the continuous distributions in Table 1

Name Upper bound function U(α, β, γ)

Exponential

Beta

Pareto αβ + αγ + βγ − 2αβγ

Gumbel

Uniform

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β + γ − 1 +
1

2
[max(

√
2(1− β) +

√
2(1− γ)− 1, 0)]2

β ≥ 1/2

α+ β − 1

2
[max(

√
2α+

√
2β − 1, 0)]2 β < 1/2

Laplace

{
β + γ − 1 + f−1(f(1− β) + f(1− γ)) β ≥ 1/2

α+ β − f−1(f(α) + f(β)) β < 1/2

with f−1(x) = 1
2

(
1 + x

2

)
e−x

Normal

{
β + γ − 1 + Φ(Φ−1(1− β) + Φ(1− γ)) β ≥ 1/2

α+ β − Φ(Φ−1(α) + Φ−1(β)) β < 1/2

with Φ(x) = (
√
2π)−1

∫ x

−∞ e−t2/2dt

Cycle-transitivity w.r.t. UE can also be expressed as

αabcβabcγabc = (1 − αabc)(1− βabc)(1 − γabc) ,

which is equivalent to the notion of multiplicative transitivity [53]. A reciprocal
relation Q on X is called multiplicatively transitive if for any (a, b, c) ∈ X3 it
holds that

Q(a, c)

Q(c, a)
=
Q(a, b)

Q(b, a)
· Q(b, c)

Q(c, b)
.

In the cases of the unimodal uniform, Gumbel, Laplace and normal distributions
we have fixed one of the two parameters in order to restrict the family to a one-
parameter subfamily, mainly because with two free parameters, the formulae
become utmost cumbersome. The one exception is the two-dimensional family
of normal distributions. In [27], we have shown that the corresponding reciprocal
relation is in that case moderately stochastic transitive.

4.5 Mutual Rank Transitivity in Posets

Partially ordered sets, posets for short, are witnessing an increasing interest in
various fields of application. They allow for incomparability of elements and
can be conveniently visualized by means of a Hasse diagram. Two such fields
are environmetrics and chemometrics [1,2]. In these applications, most methods
eventually require a linearization of the poset. A standard way of doing so is
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to rank the elements on the basis of their averaged ranks, i.e. their average
position computed over all possible linear extensions of the poset. Although the
computation of these averaged ranks has become feasible for posets of reasonable
size [19], they suffer from a weak information content as they are based on
marginal distributions only, as explained further. For this reason, interest is
shifting to mutual rank probabilities instead.

The mutual rank probability relation is an intriguing object that can be asso-
ciated with any finite poset. For any two elements of the poset, it expresses the
probability that the first succeeds the second in a random linear extension of that
poset. Its computation is feasible as well for posets of reasonable size [19,21], and
approximation methods are available for more extensive posets [18]. However,
exploiting the information contained in the mutual rank probability relation to
come up with a ranking of the elements is not obvious. Simply ranking one el-
ement higher than another when the corresponding mutual rank probability is
greater than 1/2 is not appropriate, as it is prone to generating cycles (called lin-
ear extension majority cycles in this context [22,38]). A solution to this problem
requires a better understanding, preferably a characterization, of the transitivity
of mutual rank probability relations, coined proportional probabilistic transitiv-
ity by Fishburn [32], and, for the sake of clarity, renamed mutual rank transitivity
here. A weaker type of transitivity (called δ∗-transitivity, expression not shown
here) has been identified by Kahn and Yu [37] and Yu [54]. We have identified a
weaker type of transitivity, yet enabling us to position mutual rank transitivity
within the cycle-transitivity framework.

Consider a finite poset (P,≤). The discrete random variable Xa denotes the
position (rank) of an element a ∈ P in a random linear extension of P . The
mutual rank probability pa>b of two different elements a, b ∈ P is defined as the
fraction of linear extensions of P in which a succeeds b (a is ranked higher than
b), i.e., pa>b = Prob{Xa > Xb}. The [0, 1]-valued relation QP : P 2 → [0, 1]
defined by QP (a, b) = pa>b, for all a, b ∈ P with a 
= b, and QP (a, a) = 1/2,
for all a ∈ P , is a reciprocal relation. Note that in the way described above,
with any finite poset P = {a1, . . . , an} we associate a unique discrete random
vector X = (Xa1 , . . . , Xan) with joint distribution function FXa1 ,...,Xan

. The
mutual rank probabilities pai>aj are then computed from the bivariate marginal
distributions FXai

,Xaj
.

Note that, despite the fact that the joint distribution function FXa1 ,...,Xan

does not lend itself to an explicit expression, a fair amount of pairwise couplings
are of a very simple type. If it holds that a > b, then a succeeds b in all linear
extensions of P , whence Xa and Xb are comonotone. For pairs of incomparable
elements, the bivariate couplings can vary from pair to pair. Certainly, these
couplings cannot all be counter-monotone. Despite all this, it is possible to obtain
transitivity results on mutual rank probability relations [10].

Definition 9. The mutual rank probability relation QP associated with a finite
poset (P,≤) is cycle-transitive w.r.t. the upper bound function UP defined by

UP(α, β, γ) = α+ γ − αγ .
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Proposition 4 implies that the mutual rank probability relation of a poset it is
‘at least 5/6’ TP-transitive.

5 Conclusion

We have introduced the reader to two relational frameworks and the wide variety
of types of transitivity they cover. When considering different types of transi-
tivity, we can try to distinguish weaker or stronger types. Obviously, one type is
called weaker than another, if it is implied by the latter. Hence, we can equip a
collection of types of transitivity with this natural order relation and depict it
graphically by means of a Hasse diagram.

The Hasse diagram containing all types of transitivity of reciprocal relations
encountered in this contribution is shown in Figure 1. At the lower end of
the diagram, TM-transitivity and multiplicative transitivity, two types of cycle-
transitivity w.r.t. a self-dual upper bound function, are incomparable and can
be considered as the strongest types of transitivity. At the upper end of the
diagram, also TL-transitivity and weak stochastic transitivity are incomparable
and can be considered as the weakest types of transitivity. Furthermore, note
that the subchain consisting of partial stochastic transitivity, moderate product
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Fig. 1. Hasse diagram with different types of transitivity of reciprocal relations (weak-
est types at the top, strongest types at the bottom
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transitivity and weak product transitivity, bridges the gap between g-stochastic
transitivity and T -transitivity.

Anticipating on future work, in particular on applications, we can identify
two important directions. The first direction concerns the use of fuzzy similarity
measures. Moser [43] has shown recently that the T -equality ET , with T = TP or
T = TL, is positive semi-definite. This question has not yet been addressed for the
fuzzy cardinality-based similarity measures. Results of this type allow to bridge
the gap between the fuzzy set community and the machine learning community,
making some fuzzy similarity measures available as potential kernels for the
popular kernel-based learning methods, either on their own or in combination
with existing kernels (see e.g. [41] for an application of this type).

The second direction concerns the further exploitation of the results on the
comparison of random variables. As mentioned, the approach followed here can
be seen as a graded variant of the increasingly popular notion of stochastic dom-
inance. Future research will have to clarify how these graded variants can be
defuzzified in order to come up with meaningful partial orderings of random
variables that are more informative than the classical notions of stochastic dom-
inance. Some results into that direction can be found in [8,20].

Acknowledgement. This chapter is a slightly updated version of [4].

References
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Abstract. This chapter presents different notions used for fuzzy mod-
elling that formalize fundamental concepts used in cognitive psychology.
From a cognitive point of view, the tasks of categorization, pattern recog-
nition or generalization lie in the notions of similarity, resemblance or
prototypes. The same tasks are crucial in Artificial Intelligence to repro-
duce human behaviors. As most real world concepts are messy and open-
textured, fuzzy logic and fuzzy set theory can be the relevant framework
to model all these key notions.

On the basis of the essential works of Rosch and Tversky, and on the
critics formulated on the inadequacy of fuzzy logic to model cognitive
concepts, we study a formal and computational approach of the notions of
similarity, typicality and prototype, using fuzzy set theory. We propose a
framework to understand the different properties and possible behaviors
of various families of similarities. We highlight their semantic specifics
and we propose numerical tools to quantify these differences, considering
different views. We propose also an algorithm for the construction of
fuzzy prototypes that can be extended to a classification method.

Keywords: similarity, typicality, prototype, fuzzy logic, prototype-based
learning.

1 Introduction

Artificial Intelligence drew large parts of its inspiration in psychological and
cognitive sciences. From a cognitive point of view, the tasks of categorization,
pattern recognition, or generalization lie in the notions of similarity [47], resem-
blance [49] or prototypes [43]. The same tasks are crucial in Artificial Intelligence
to reproduce human behaviors, especially in machine learning or in information
retrieval.

In this chapter, two fundamental notions will be investigated: the notion of
typicality (or prototype) and the notion of similarity. These notions are crucial
and linked in cognitive science. In machine learning or in information retrieval,
most of the tasks rely on a similarity measure. Then, it is natural to deeply study
how assess similarity between objects, on which criteria, for which purpose, etc.
Two main approaches can be distinguished: an approach coming from statistical
analysis, called geometric model, and another approach coming from cognitive
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science. In the latter point of view, Tversky’s contrast model [47] is considered as
a reference for the framework of similarity measures we propose. Each approach
implies a set of properties that a similarity has to satisfy. Because of the various
possible properties and because of the large amount of existing measures, our aim
is to propose tools enabling to compare them. We proposed a framework [5] that
exhibits various families of similarities. Their semantic specifics are highlighted
and numerical tools to quantify these differences, considering different views, are
proposed.

The notion of typicality or prototype is less studied in machine learning or in
information retrieval. However, the cognitive principle as categorization principle
as Rosch [43] explained can be applied for a classification task, as we will show
it in the following. The proposed construction of fuzzy prototype fully rely on
her vision.

Moreover, in cognitive science, concepts are considered as graded, messy, open-
textured, imprecise, uncertain. All these terms evoke the fuzzy set theory which
aims at representing such concepts. Hence, fuzzy set theory is our formal frame-
work for dealing with imprecision and graduality, inherent in natural categories.

This chapter is organised as follows: the first section is devoted to present
the two main approaches for the issue of similarity judgments by means of a
similarity measure: geometric approach and cognitive approach, with a particular
attention to Tversky’s model. The second section addresses the comparison of
measures of similarity: a proposed framework aiming at classifying measures in
different families of similarity measures is presented. Besides, numerical tools are
given in order to quantify the differences existing between similarity measures,
even from a same family. The third section presents the prototype theory as well
as the link between graduality, conceptual combination and fuzzy logic. In the
last section, an automatic method for constructing fuzzy prototypes is presented
as well as its extension to complex classes and its use in machine learning tasks.

2 Similarity Judgments

Similarity playing a key role in the human learning ability to constitute knowl-
edge, many studies, theoretical and experimental, in cognitive psychology [17]
have been dedicated to better understand how it can be modeled to be as close as
possible to human similarity judgments. In this section, two main approaches are
presented: first, the geometric one, and then the cognitive one. Lastly, Tversky’s
model is described.

2.1 Geometric Approach: Metric Properties

Similarity is fundamental in statistics and data analysis especially in classifica-
tion that lies in the hypothesis that objects that are similar belong to a same
cluster. Distance measure is often used to evaluate the proximity among objects.
Its semantics is nothing than a reversed notion of the similarity measure: similar-
ity value can be deduced from the distance value. A distance d is a mathematical
concept and follows precise laws: X denoting universe, for all x, y, z ∈ X :



168 M. Rifqi

– Reflexivity: d(x, x) = 0
– Separation: d(x, y) = 0 implies x = y
– Symmetry: d(x, y) = d(y, x)
– Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

2.2 Cognitive Approach: Experimental Critics

Metric models have been the main approaches for analyzing similarity [46]. Each
property satisfied by a distance can appear reasonable. However, Tversky showed
[47] that all of them are empirically violated by human similarity judgments.
Reflexivity and separation properties are experimentally not observed: an object
is identified as another object more frequently than it is identified as itself. The
violation of symmetry may appear as a surprising observation. Tversky argued
that it is because we forget that the meaning behind the similarity implies a
directional comparison. A statement of the form “x is like y” implies that x is
a subject and y the referent. Metaphors are typical examples illustrating this
asymmetry of similarity: we say “Turks fight like tigers” and not “tigers fight
like Turks” or “my love is as deep as the ocean”, not “the ocean is as deep as my
love” [47]. In all these examples, the subject is compared to a prototype and not
the converse. Lastly, the triangular inequality of a distance or the transitivity
of a similarity measure “should not be accepted as a cornerstone of similarity
models” as many examples do not satisfy this constraint. Later, Hampton [18]
demonstrated intransitivities in human similarity judgments.

2.3 Feature-Based Approach: Cognitive Properties

Hence, as “minimality is somewhat problematic, symmetry is apparently false,
and the triangle inequality is hardly compelling”, Tversky rejected the idea that
a similarity measure should lie on a distance measure.

Contrast Model. Against the geometric model, he proposed the contrast model.
In broad outline, this model is usually presented as follows. Considering an object
x described by means of a set of features X , the similarity between x and y,
S(x, y), is expressed as a linear combination (contrast) of the measure of the
common features, ie X ∩ Y , and distinctive features, ie X − Y and Y −X :

S(x, y) = θf(X∩Y )−αf(X−Y )−βf(Y−X), θ, α, β ≥ 0 and f an interval scale

The contrast model lies on restrictive axioms, coming from decision theory, like
the properties of independence, solvability and invariance. In particular, the
independence axiom is difficult to interpret in terms of human similarity judg-
ments, and thus, is difficult to see cognitive justification. But it implies useful
mathematical properties on the similarity measure: it can not be expressed as a
ratio function.
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Ratio Model. However, the axioms required in the contrast model are often
omitted. This has an important consequence on the generality of the contrast
model because the existing similarity measures are often also a combination of
common and distinctive features but they are generally not linear. So, it is a
mistake that several authors present the contrast model as:

S(x, y) =
f(X ∩ Y )

f(X ∩ Y ) + αf(X − Y ) + βf(Y −X)
, α, β ≥ 0

This formulation exists in Tversky’s paper and he called it the ratio model. This
model, of course, violates the independence axiom as it is defined as a ratio
function, but encompasses many existing measures. For instance, if α = β = 1,
S(x, y)) = f(X ∩ Y )/f(X ∪ Y ) was a measure proposed by Gregson [17], if
α = β = 1/2, then S(x, y) = 2f(X ∩ Y )/(f(X) + f(Y )) was proposed by Eisler
and Ekman [10] and for α = 1 and β = 0, S(x, y) = f(X ∩ Y )/f(X), which is
not symmetric, was proposed by Bush and Mosteller [6].

3 Comparison of Measures of Similarity

The contrast model being a reference as a model of similarity measures, several
authors [45,35,44,4] proposed to extend it for the comparison of fuzzy sets. Ba-
sically, the generalization omits the axioms of the contrast model (except in [4]),
and focuses on how the final resulting measure of similarity can be generalized
to fuzzy sets: definition of intersection, difference, interval scale f of the contrast
model,...

3.1 Families of Measures of Similarity

When a similarity measure is needed, and we have seen this situation often
occurs, it is difficult to make a choice among the numerous and various existing
measures (and the number of measures keeps increasing). First, is it not trivial
to see the particular properties of each measure and to understand the impact
of the properties in the behaviors of the similarity. Second, it is important to
characterize the application where the similarity is needed to match the expected
properties with the existing similarities in literature.

In [5], we have proposed a general framework that organises the main fami-
lies of measures of comparison according to the properties they satisfy and the
purpose of their utilisation.

Formally, for any set Ω of elements, let F (Ω) denote the set of fuzzy subsets of
Ω, equipped with a fuzzy set measureM : F (Ω)→ R

+ such that M(∅) = 0 and
Y ⊆ X implies M(Y ) ≤ M(X). The general form of a measure of comparison
is:

S(X,Y ) = FS(M(X ∩ Y ),M(Y −X),M(X − Y ))

with FS : R3 → [0, 1].
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,

FS v and wu and minimality

FS independent of w
FS(0, v, w) = 0 ∀ v and w

FS(u, 0, .) = 1 ∀ u �= ∅ FS independent of v
reflexivity
FS(0, v, w) = 0 ∀ v and w

symmetry

reflexivity

Measures of similitude Measures of dissimilarity

Measures of satisfiability Measures of inclusion Measures of resemblance

Measures of comparison
FS(M(A ∩B),M(B −A),M(A−B))

v et wFS independent of u,

Fig. 1. General framework of measures of comparisons of fuzzy sets [5]

Either we want to evaluate the extent to which two objects are similar and
in this case, the measures of similitude are devoted to this evaluation, either we
want to measure to which extent they are different and then we have to look at
the measures of dissimilarity.

Among measures of similitude, all the measures do not have the same behav-
iors. They are measures that are not symmetric, as Tversky’s study showed the
reality of this property: these measures suppose a subject and a referent when
comparing two objects. Inside the similitude family, the measures of satisfiability
evaluate to which extent Y is compatible with X and it can be used in decision
tree algorithms or case-based reasoning for instance. The measures of inclusion
are also measures of similitude and enable to evaluate to which extent a descrip-
tion can be considered as a particular case of another description, and it is useful
when working on databases, semantic networks or relations between properties
for instance.

Lastly, we consider that the property of symmetry can be desirable for some
situations like in clustering. That is the reason that measures of similitude can be
symmetric. They are called measures of resemblance. Figure 1 gives the complete
hierarchy of comparison measures with the particular properties satisfied by each
class of measures.

This general framework gives a way to distinguish measures regarding their
properties and their purpose of use, but within a given class of measures, the
problem of the choice of a measure is still present, even if it is reduced.

Two main points of view can be adopted to select a measure among a family
of measures: either the values of similarity provided are important, either the
order induced by a measure is important.



Cognition-Inspired Fuzzy Modelling 171

3.2 Value-Based Comparison

In the case where a value is in itself important, we have proposed to consider
the power of discrimination of a measure [38,40]. It evaluates the sensitivity
of the similarity measures with respect to the values of their arguments: the
question is whether small variations of the input values, i.e. small variations in
the configurations of the two objects to compare, lead to small differences in the
similarity values or large ones. Moreover, this question is considered locally, i.e.
the discrimination power studies whether such variations occur for high similarity
values or for small ones.

In order to control the discrimination power, we have proposed [38,40] a new
parametrized measure of similarity: the Fermi-Dirac measure. This measure gen-
erates different behaviors regarding its power of discrimination thanks to its
parameter.

3.3 Order-Based Comparison

The case where the values provided by a similarity measure are less important
than the order it induces, is always the situation in information retrieval: the
results of a search engine take the form of a list of documents ranked by de-
creasing relevance, often calculated as the similarity between the document and
the request. If two search engines give the same ordered list of documents, they
are considered as equivalent, even if the relevance values are not the same: the
search engines are compared on the basis of their precision and recall which also
only depend on the order of the retrieved list.

The theoretical comparison of measures of comparison has been studied by
several authors [22,3,2,32]. It leads to the notion of equivalence, defined as:

two measures m1 and m2 are equivalent iff

∀x, y, z, t
{
m1(x, y) < m1(z, t)⇐⇒ m2(x, y) < m2(z, t)
m1(x, y) = m1(z, t)⇐⇒ m2(x, y) = m2(z, t)

This definition can also be formulated as follows [2,32].

two measures m1 and m2 are equivalent iff
∃f : Im(m1)→ Im(m2) strictly increasing such that m2 = f ◦m1

where Im(m) ⊂ R is the set of the values taken by m.
Denoting a = |X ∩ Y |, b = |X − Y |, c = |Y − X |, and d = |X̄ ∩ Ȳ | and

considering the measures of Table 1, the following classes of equivalence can be
established:

– {Jaccard, Dice, all the symmetric Tversky’s ratio measures}
– {Sokal and Sneath 1, Rogers et Tanimoto, Simple Matching},
– {Yule Q, Yule Y},
– each remaining measure is a class in itself.
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Table 1. Classical measures of similarity, normalised to [0, 1]

Similarity measure Notation Definition

Jaccard Jac a
a+b+c

Dice Dic 2a
2a+b+c

Kulczynski 2 Kul 1
2

(
a

a+b
+ a

a+c

)

Ochiai Och a√
a+b

√
a+c

Rogers and Tanimoto RT a+d
a+2(b+c)+d

Russel and Rao RR a
a+b+c+d

Simple Matching SM a+d
a+b+c+d

Sokal and Sneath 1 SS1 a+d

a+ 1
2
(b+c)+d

Yule Q Y uQ ad
ad+bc

Yule Y Y uY
√

ad√
ad+

√
bc

In order to make distinctions among the measures that are not equivalent, a
degree of equivalence has been proposed [41] to quantify to which extent two
measures are in agreement regarding the order they induce. This degree is based
on the Kendall coefficient generalized to top-k lists and to ties [12,11].

More formally, for two orders induced by two similarity measures r1 and r2:
r(i) indicates the rank of the i-th object according to r.

The Kendall coefficient associates to each pair of objects a penalty Pr1,r2(i, j),
and then is computed as the sum of the penalties normalised by the total number
of comparisons. The generalized Kendall coefficient distinguishes two particular
pairs: the tied pairs and the missing pairs (because of the top-k lists). For the
first kind of pairs, a penalty p in [0, 1] is associated, and for the second pairs, a
penalty p′ in [0, 1] is associated.

Kp,p′(r1, r2) =
2

n(n− 1)

∑
i	=j

Pr1,r2(i, j)

The degree of equivalence is then defined as:

dk(m1,m2) = 1−Kp,p′(rk1 , r
k
2 ).

Usually, p = 0.5 meaning that for tied pairs, the penalty is equal to the proba-
bility to have the same rank by forcing arbitrarily the measure to a strict order;
and p′ = 1 for the missing pairs, they are considered as a discordant pair.

The experiments detailed in [28] showed that:

– when considering the totality of the objects, some measures, although not
satisfying the definition of equivalence, have very high equivalence degrees:
Jaccard/Ochiai, Kulczynski 2/Ochiai, and Jaccard/Kulczynski 2. Actually,



Cognition-Inspired Fuzzy Modelling 173

Fig. 2. Screen shot of the platform for the comparison of different types of similarity
measures

measures expressed by means of a, b, c lead to very few differences and can
thus be considered as quasi-equivalent and then redundant.

– when considering partial lists, the degrees of equivalence appear globally
lower than for the full rank comparison: this decrease indicates that the
global agreement observed when comparing the full rankings is actually
mainly due to the last ranked data. This underlines that a study of the inver-
sion positions, besides their number, is necessary, especially when it comes
to selecting non equivalent measures in an information retrieval framework.
Still, this decrease does not occur for all measures.

We have developed a platform, for the French project INFOM@GIC, under the
umbrella of the business cluster for digital content, CAP DIGITAL, enabling the
comparison of different types of similarity measures. Figure 2 is a screen shot
of this platform: the top image is the request and the top-4 lists of 3 similarity
measures are displayed vertically. It is then possible to see the differences in the
rankings of the 3 chosen measures.
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4 Prototype-Based Categorization

In this section, the basic principles of Rosch’s vision [43] of human categorization
are given. Then, the notions of graduality, fuzziness and conceptual combination
are examined. Special attention to Osherson and Smith’s [33] critics will then
be about. Lastly, answerss to their critics are reviewed.

4.1 Basic Principles

In Principles of Categorization [43], Rosch proposed a new cognitive vision of
the human categorization process. Indeed, the classical theory (Aristotelician
one) supposes that categories are well defined and that an object belongs or not
to a category because it satisfies necessary and sufficient conditions. However,
many natural categories are not characterized by an explicit definition [19]. In
Rosch’s theory, categories are organised around a core meaning, the prototypes.
Objects do not represent in the same manner the category they belong to: they
are spread on a scale, the degree of typicality. The category of birds is a classical
illustration of this principle: penguins are less representative than robins. More
precisely, Rosch considers that the more an object is typical, the more it shares
features with the members of its category and the less it shares features with
the members of the other categories. The prototypes are those that maximize
this degree of typicality. The prototype then serves as a reference to judge if an
object belongs to a category by means of its similarity to the prototypes.

Prototype theory is founded on three fundamental concepts: typicality, pro-
totype and similarity. The essential claims are:

1. all members of a category do not represent it equally: they differ by their
degree of typicality regarding the category.

2. a category has internal structure based on “focal examples” [42] or proto-
types. They best represent their category and maximize the degree of typi-
cality.

3. a category possesses one or more prototypes.
4. an object is categorized by assessing its similarity to the prototypes.

4.2 Typicality, Graduality, Conceptual Combination and Fuzzy
Logic

As Rosch’s approach naturally mentions the notion of graduality by means of
typicality, fuzzy logic can naturally be the theory to formalize the concept of
prototype.

But, as many authors have noticed [50,1,33,21,20], the notion of typicality
differs from the notion of membership: even if penguins are less typical than
robins to represent birds (typicality(penguin) < typicality(robin)), they are all
birds (membership(penguin) = membership(robin) = 1). This difference of in-
formation between typicality and membership is even the core of the principle
of categorisation proposed by Rosch: a prototype of a category can be described
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by typical properties but these properties are not necessary conditions to cate-
gorize objects in this category. Then, it is more relevant and even necessary to
distinguish these two degrees, degree of typicality and degree of membership.

However, Osherson and Smith [33] raised several problems both for prototype
theory to adequately model the theory of concepts and for fuzzy logic to ade-
quately model concepts. These problems are all related to the problem of concep-
tual combination. Tversky and Kahneman [48] also have devoted experimental
study to the problem of “conjunction fallacy”: human thinking apparently vio-
lates logical and probabilistic laws. These debates both concerns the prototype
theory and the similarity judgments as we have seen in Introduction.

4.3 Osherson and Smith’s Critics

In the following, the four points on which Osherson and Smith rejected prototype
theory formalised by fuzzy logic are examined. They suppose that the basic
operations in fuzzy set theory are formalised by the minimum for the intersection,
the maximum for the union and 1− x for the complement.

Conjunctive Concepts. The first problem, and certainly the problem that
sparked off the most debate, is the problem known as “the striped apple”, that
illustrates the fact that the typicality of an object for a category that is a con-
junction of categories, can be higher than its typicality to one of the elementary
category of this combined category. In the example considered by Osherson and
Smith (see Figure 3), the apple (a) is more typical of the concept “striped apple”
than of the concept “apple”.

If typicality is modeled by fuzzy logic and denoted T , then one has to expect
that:

∀x, Tstriped apple(x) = min(Tstriped fruit(x), Tapple(x))

which contradicts the example shown in Figure 3, where:

Tstriped apple(a) > Tapple(a)

Fig. 3. Conceptual combination: the striped apple case [33]
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Logically Empty and Logically Universal Concepts. The second problem
lies in the fact that the concept “an apple that is not an apple” should be
logically empty, and the concept “a fruit that is or is not an apple” should be
logically universal. The properties required by Osherson and Smith are known
as “law of contradiction” and “law of excluded middle” in the classical logic.
These concepts can not be modeled by fuzzy logic, because, in general:

∀x, Tapple that is not an apple’(x) = min(Tapple(x), 1 − Tapple(x)) 
= 0

and

∀x, Tfruit that is or is not an apple(x) = max(Tapple(x), 1 − Tapple(x)) 
= 1

Disjunction of Concepts. The third problem is due to the fuzzy union: a
prototype of a category C is necessarily a prototype of the union of the category
C and a category C ′. Osherson and Smith gave an example but we do not take
it up because it doesn’t illustrate correctly the problem as noticed by [7,8].

Inclusion of Concepts. The last problem evoked by Osherson and Smith con-
cerns what they call “truth conditions of thoughts”. The considered proposition
is of the form “All A’s are B’s” like “All grizzly bears are inhabitants of North
America”. The authors interpret this proposition as an inclusion of concepts:
the concept of “grizzly bears” is included in the concept of “inhabitant of North
America”. In this case, they use the classical binary inclusion to state that it
leads to a contradiction with their intuitions.

4.4 Answers to Osherson and Smith’s Critics

Zadeh [50] has answered Osherson and Smith’s critics and proposed a new rep-
resentation of prototypes. Unfortunately, this paper had a limited impact in the
community of cognitivists. Remarkable critics are of two kinds: point by point
protest or global spirit protest.

Point by Point Protest. Bělohlávek et al. [7,8] proposed point by point answer
to Osherson and Smith’s critics. The main spirit of their response lies in that fact
that Osherson and Smith’s mistakes are due to their ignorance of the richness
of the theory of fuzzy set and fuzzy logic. For instance, they demonstrated that
it is possible to choose the right operators to be in agreement with Osherson
and Smith intuitions or just by adequately interpret some propositions, like
the ones dealing with the “truth conditions of thoughts”. Or, for instance, for
the inclusion of concepts, a wrong interpretation is the cause of the conclusion.
Instead of using inclusion to formalize the proposition “All A’s are B’s”, it should
be understood as a rule R: “for all objects x in the universe, if x is A then x is
B” and hence, in a fuzzy logic setting, the formalisation is:

fR(x, y) = φ(A(x), B(x))
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where the fuzzy implication φ is a function which generalizes the classical im-
plication, in the case where A and B are crisp sets. With this formalisation, the
result is the one expected by Osherson and Smith.

Global Spirit Protest. Maybe the most convincing answer comes from
Fuhrmann [16]. The problem of conceptual combination is an intricate issue in
prototype theory, according to the author: “The meanings of compounds cannot
be uniquely derived from that of their constituents by any universal operation”.
Also, a large amount of papers deals with this problem especially in linguistics
where an adjective combined with a noun (like “striped apple”) is not always the
conjonction of the properties of the adjective with those of the noun (an adjective
can be intersective, subsective or intensional [20]). Fuhrman claimed that one
“has to build on (element-to-element) similarity and on (category-to-category)
representativeness and only on the basis may infer any category-to-category con-
sequence”.

The main criticism of Furhman against Osherson and Smith’s paper concerns
their method for proving the inadequacy of fuzzy set theory for prototype the-
ory: each criteria is translated by choosing one mathematical formula of fuzzy
set theory and is then rejected mostly because of being “not compatible with
strong intuitions”, intuitions that are never really clear. Actually, as noticed by
Furhman, the intuitions they refer to are defined on the basis of the Aristotelician
logic. So, it is normal that fuzzy logic is not appropriate for their intuitions.

5 Fuzzy Prototypes Construction and Categorisation

Prototypes playing a key role in categorisation, Rifqi [37] proposed a compu-
tational model of Rosch’s notions of prototype and typicality. First, the basic
principles of the fuzzy prototype construction algorithm are given. Then, its
use for a classification task is detailed. Lastly, the extended algorithm of the
construction of fuzzy prototype is examined.

5.1 Basic Principles of Construction

To construct a fuzzy prototype in agreement with the previous cognitivist pro-
totype view, we consider that the degree of typicality of an object increases with
its total resemblance to other objects of its class (internal resemblance) and
with its total dissimilarity to objects of other classes (external dissimilarity).
This makes it possible to consider both the common features of the category
members, and their distinctive features as opposed to other categories. More
precisely, the fuzzy prototype construction principle consists in three steps [37]:

Step 1 Compute the internal resemblance degree of an object with the other
members of its category and its external dissimilarity degree with the
members of the outside categories.
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(a) (b)

Fig. 4. (a) Computation of the internal resemblance, as the resemblance to the other
members of the category, (b) computation of the external dissimilarity, as the dissimi-
larity to members of the other categories

Step 2 Aggregate the internal resemblance and the external dissimilarity degrees
to obtain the typicality degree of the considered object.

Step 3 Aggregate the objects that are typical “enough”, i.e. with a typicality
degree higher than a predefined threshold to obtain the fuzzy prototype.

Figure 4 [29] illustrates the first step of the fuzzy prototype construction. This
step requires the choice of a resemblance measure and a dissimilarity measure
as defined in Section 3.1. Formally, denoting them r and d respectively, and
denoting x an object belonging to a category C, x’s internal resemblance with
respect to C, R(x,C), and its external dissimilarity, D(x,C), are computed as:

R(x,C) = ⊗(r(x, y), y ∈ C) D(x,C) = ⊕(d(x, y), y 
∈ C)

i.e. as the aggregated resemblance (by an aggregation operator ⊗) to other mem-
bers of the category and the aggregated dissimilarity (by an aggregation operator
⊕) to members of other categories.

Step 2 requires the choice of an aggregation operator to express the depen-
dence of typicality on internal resemblance and external dissimilarity, that is
formally written as:

T (x,C) = ϕ(R(x,C), D(x,C))

where ϕ denotes an aggregation operator. Lesot et al. [27] showed how the ag-
gregation operator can rule the semantics of typicality and thus that of the
prototypes, determining the extent to which the prototype should be a central
or a discriminative element.

Originally, this fuzzy prototype construction method was proposed for fuzzy
data, described by means of attributes with fuzzy values. It was applied [39] for
the characterization and classification of microcalcifications in mammographies:
each microcalcification is described by means of 5 fuzzy attributes computed
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from its fuzzy contour [36] like the perimeter or the elongation. Experts have
classified microcalcifications into 2 classes: “round” microcalcifications and “not
round” ones, because this property is important to qualify the malignancy of
microcalcifications. The aim is then to give the fuzzy prototypes of the classes
“round” and “not round”.

In the case where the data are described by numerical values but not fuzzy
(and it usually the case), Lesot [23] proposed to generalize the previous method
to numerical data.

It is to be noticed that there exist other definitions for typicality, as for in-
stance the one used by [34] or the one underlying the Most Typical Value [15].
Yet these definitions are only based on the notion of a deviation with respect to
a center: they can be interpreted as internal resemblance measures that describe
only one aspect of the Rosch’s typicality.

5.2 Fuzzy Prototypes and Conceptual Combination

It is worth noticing that the principles of the construction of a fuzzy prototype
described previously can lead to a situation where the typicality of an object
for a combined concept (like “striped apple”) is higher than the minimum of its
typicalities to the constituents of the composite concept. Indeed, the prototype
of the combined concept will consider all the objects satisfying it and hence the
typicalities of all objectss are recalculated and not deduced from the typicalities
of basic concepts.

5.3 Fuzzy Prototypes for Classification

The typicality degrees aswell as the fuzzyprototype havebeen exploited toperform
a supervised learning task of classification. It is true that the main interest of a
prototype comes from its power of description thanks to its synthetic view of the
database. But, as Zadeh underlined [50], a fuzzy prototype can be seen as a schema
for generating a set of objects. Thus, in a classification task, when a new object
has to be classified, it can be compared to each fuzzy prototype and classified in
the class of the nearest prototype (a sort of nearest neighbor algorithm where the
considered neighbors are only the prototypes of the classes). Three classification
methods based on typicality and fuzzy prototypes can be envisaged:

1. The class of the object to be classified is given by the class of the nearest
prototype. The prototype is constructed with the fuzzy value maximizing
the typicality degree.

2. As for the first method, the class of the object to be classified is given
by the class of the nearest prototype, but the fuzzy prototype is obtained
aggregating by the union of the values with a high typicality degree whereas
the first one considers only one value.

3. A new object is compared to each object of the database. The comparison
is the aggregation of the attribute by attribute comparisons weighted by
the degree of typicality of the attribute value of the object in the learning



180 M. Rifqi

database. The class given to the unknown object is then the class of the
most similar object in the learning database.

The typicality degree framework was also used to perform clustering: the
typicality-based clustering algorithm [24] looks for a decomposition such that
each point is most typical of the cluster it is assigned to, and aims at maximizing
the typicality degrees. It was adapted [25,26] to take into account specific data
(non-vectorial data, such as sequences, trees or graphs) or cluster constraints
(ellipsoidal clusters are discovered instead of spherical clusters).

5.4 Extended Principle

In Section 4.1, the essential points for the construction of fuzzy prototypes were
given. Each of them was respected for the computational model of fuzzy proto-
type construction, except one: “a category possesses one or more prototypes”. In
the presented method, this reality was not exploited: essentially one prototype
per category (or class) is constructed.

In order to take into account the fact that a category can be represented
by prototypes with different descriptions, Forest et al. [13,14] proposed a pre-
processing step for the construction of fuzzy prototypes. This step consists in
identifying distinct sub-classes inside a same class.

To perform such a task, an algorithm automatically constructs weighted graphs
from the data. A graph of an example provides its friends, i.e. examples from
the same class that are close in such a way that there is no closer example from
another class (enemy). It means that the closest enemy of an example defines

Fig. 5. Identification of subclasses: A Database, B Hyperspheres of class of red trian-
gles, C Hyperspheres of class of blue crosses, D Graphs of subclasses [13]
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(a) (b)

(c) (d)

Fig. 6. (a) Artificial two dimensions database, (b) Graphs obtained by the segmenta-
tion process, (c) Typicality degrees for the first attribute without the class segmenta-
tion, (d) Typicality degrees for the first attribute with a segmentation [13]

the limit of its friends neighbourhood. Edges, representing the proximity, are
weighted by a distance between the two nodes (examples). The connex compo-
nents of the graph (see Figure 5 D), associated with the union of each graph
obtained from each example, define the subclasses.

To obtain these graphs, we let a hypersphere grow from an example of a class
until it encounters an enemy (Figure 5 B and 5 C). All the examples in this hy-
persphere are linked to the central example. This process (construction of a hyper-
sphere) is repeated for all the examples. Therefore, this stage of our method allows
to discover subclasses identifying the specific behaviours of the class.

Once the sub-classes identified, the algorithm of the construction of fuzzy
prototypes is performed on each subclass whose homogeneity is guaranteed and
justifies the unique prototype per subclass. The results on artificial data are
illustrated in Figure 6.

This segmentationalgorithmpreviouslydescribedwasusedbyMarsalaandRifqi
[31] to characterize sub-classes of ambiguous areas obtained by a forest of fuzzy
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decision trees [30]. Thanks to this characterization, it is easy to draw a taxonomy
of predictions and to highlight ambiguities between classes for undecided examples.

6 Conclusion

The main aim of this chapter is to show that cognitive studies and fuzzy logic
theory can successfully be combined, especially for assessing computational simi-
larity in agreement with human judgments, or for building fuzzy prototypes and
fuzzy-prototype based classification and clustering. The proposed approaches
consider at the same time cognitive results and machine learning constraints.

Thanks to the studies lead in cognitive psychology, it is possible to propose
rich computational models of similarity for fuzzy sets. There are several manners
to compare similarity measures according to their properties, their discrimina-
tion power, the order they induce, their purpose,... For each manner, we have
presented adapted tools.

Despite this natural link between real concepts and fuzzy set theory, several
critical views have been expressed on the adequacy of the latter to represent
the former [33,9]. But convincing papers [16,7,8] showed that it is possible to
reconcile prototype theory and fuzzy set theory. Our framework and tools for
the comparison of similarity measures as well as our method to construct fuzzy
prototype aims at achieving this reconciliation.
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Abstract. The invited lecture in 2012 IEEE World Congress on Com-
putational Intelligence (WCCI 2012) presents an overview of a unified
fuzzy model-based framework for modeling and control of complex sys-
tems. A number of practical applications, ranging from flying vehicles
control (including micro helicopter control) to brain-machine coopera-
tive control, are provided in the lecture. The theory and applications
have been developed in our laboratory [1] at the University of Electro-
Communications (UEC), Tokyo, Japan, in collaboration with Prof. Hua
O. Wang and his laboratory [2] at Boston University, Boston, USA. Due
to lack of space, this chapter focuses on a unified fuzzy model-based
framework for modeling and control of a micro helicopter that is a key
application in our research.

1 Introduction

Unmanned aerial vehicles (UAVs) have been an active area of research in recent
years. A large number of studies [3] on helicopter control have been conducted as
a typical application of UAVs over the last two decades. It is well known that heli-
copter control is a difficult and challenging problem due to its properties like insta-
bility, nonlinearity and coupling, etc. As be mentioned in [3], Sugeno and his group
have presented several pioneer and excellent works [4,5] in 1980s and 1990s.

In recent years, in parallel with researches on micro air vehicles (MAVs),
autonomous control of micro (small) helicopter (like palm-size helicopters) [6]-
[23] has been paid great attention. Due to its restricted payload, the studies
[6]-[9] utilize external sensors like CCD camera-type vision sensors. However,
use of external vision sensors makes autonomous flight so difficult. The main
disadvantage is that micro helicopters can not be controlled in outside vision
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and his laboratory [2] at Boston University, Boston, USA.
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sensing area. The study [24] deals with hovering of a micro helicopter carrying
vision sensors. However, to accomplish the hovering control, they set up external
markers outside the helicopter. As well as the external sensor problem, use of
external markers makes autonomous flight so difficult. In addition, the studies
[24]-[27] provide no theoretical guarantees of the stability of control system.

Our research targets are to achieve autonomous control of a micro helicopter
without any external sensors and markers and to design a controller (theoreti-
cally) guaranteeing some kinds of control performance in addition to global and
asymptotical stability of control system. The former and latter parts of this
chapter focus on the achievement of the second and first targets, respectively.

The pioneer and excellent works by Sugeno and co-workers [4,5] applied tra-
ditional model-free fuzzy control to a (large-size) RC helicopter. The author [6]
also applied model-free fuzzy control to a micro (palm-size) helicopter. Though
the works [4,5] by Sugeno and co-workers particularly achieve great flight con-
trol performance such as hovering, turning, taking off and landing by using
fuzzy control rules obtained from expert’s knowledge and operation manuals,
the model-free approaches provide no theoretical guarantees of the stability of
control system. In this chapter, to guarantee some kinds of control performance
in addition to global and asymptotical stability, we apply two innovative fuzzy
model-based control approaches to a micro helicopter. One is a linear matrix in-
equality (LMI) approach [28] that is a well-known approach and has been widely
used in control system design and analysis over the last decade. The other is a
sum of squares (SOS) approach [29]-[33] recently presented by the author and
co-workers. These [29]-[33] are completely different approaches from the existing
LMI approaches. To the best of our knowledge, the paper [29] presented the first
attempt at applying an SOS to fuzzy systems. Our SOS approach [29]-[33] pro-
vided more extensive results for the existing LMI approaches to Takagi-Sugeno
fuzzy model and control. SOS design conditions can be symbolically and numer-
ically solved via the SOSTOOLS [34] and the SeDuMi[35].

Section 2 presents our experimental system and micro helicopter dynamics. In
Section 3, we summarize a recent developed SOS design approach for polynomial
fuzzy control systems based on polynomial Lyapunov functions. Due to lack of
space, we will omit the explanation of LMI-based design approach to Takagi-
Sugeno fuzzy systems. For more details of the approach, see [28]. In Section
4, we present a comparison result of a micro helicopter via the LMI and SOS
approaches. The simulation result shows that the SOS approach provides better
results than the existing LMI approach. Finally, in Section 5, we apply one of the
control approaches discussed here to vision-based control of the micro helicopter
in real environments [36].

2 Micro Helicopter Dynamics

Fig. 2 shows the micro helicopter that we consider in this study. The helicopter
with coaxial counter-rotating blades has two features. One is that rotating torque
of yaw-direction of the main body can be canceled by rotating torques between
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the upper and lower rotors. In other words, the body-turn can be achieved by
generating a difference of rotating torques between the upper and lower rotors.
The other is that a mechanical stabilizer attached above the upper rotor has
a function of keeping the upper rotor horizontally. The two features will be
considered in the dynamic model construction. The dynamics of the helicopter
can be described as (1)-(6).

m(u̇(t) + q(t)w(t) − r(t)v(t)) = FX(t) (1)

m(v̇(t) + r(t)u(t)− p(t)w(t)) = FY (t) (2)

m(ẇ(t) + p(t)v(t)− q(t)u(t)) = FZ(t) (3)

ṗ(t)IX + q(t)r(t)(IZ − IY ) =MX(t) (4)

q̇(t)IY + r(t)p(t)(IX − IZ) =MY (t) (5)

ṙ(t)IZ + p(t)q(t)(IY − IX) =MZ(t) (6)

Table 1 shows the definition of variables used in the dynamic models. By con-
sidering its co-axial counter structure, the restitutive force (generated by a me-
chanical stabilizer attached on the helicopter) and gravity compensation, the
dynamics can be rewritten as

u̇(t) =r(t)v(t) +
1

m
UX(t), (7)

v̇(t) =− r(t)u(t) + 1

m
UY (t), (8)

ẇ(t) =
1

m
UZ(t), (9)

ψ̇(t) =
1

IZ
Uψ(t), (10)

Table 1. Definition of variables

x, u position and velocity (X-axis)
y, v position and velocity (Y-axis)
z,w position and velocity (Z-axis)
φ, p angle and angle velocity (X-axis)
θ, q angle and angle velocity (Y-axis)
ψ, r angle and angle velocity (Z-axis)
m mass
IX , IY , IZ moments of inertia with respect to X, Y and Z axes
FX , FY , FZ translational forces to X, Y and Z axes
MX ,MY ,MZ rotational forces around X, Y and Z axes

where m = 0.2 and Iz = 0.2857. UX(t), UY (t), UZ(t) and Uψ(t) denote new
control input variables. We can obtain the original control inputs (to the real
helicopter) from UX(t), UY (t), UZ(t) and Uψ(t).
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3 Polynomial Fuzzy Model and SOS-Based Designs

In general, LMI conditions can be solved numerically and efficiently by interior
point algorithms, e.g., by the Robust Control Toolbox of MATLAB1. On the
other hand, stability [29], stabilization conditions [30,31], guaranteed cost control
[32,33] for polynomial fuzzy systems and polynomial Lyapunov functions reduce
to SOS problems. Clearly, the problem is never solved by LMI solvers and can
be solved via the SOSTOOLS [34] and the SeDuMi[35].

SOSTOOLS [34] is a free, third party MATLAB toolbox for solving sum of
squares problems. The techniques behind it are based on the sum of squares
decomposition for multivariate polynomials, which can be efficiently computed
using semidefinite programming. SOSTOOLS is developed as a consequence of
the recent interest in sum of squares polynomials, partly due to the fact that
these techniques provide convex relaxations for many hard problems such as
global, constrained, and boolean optimization. For more details, see the manual
of SOSTOOLS [34].

3.1 Polynomial Fuzzy Model and Controller

In [29], we proposed a new type of fuzzy model with polynomial model conse-
quence, i.e., fuzzy model whose consequent parts are represented by polynomials.
Consider the following nonlinear system:

ẋ(t) = f (x(t),u(t)), (11)

where f is a nonlinear function. x(t) = [x1(t) x2(t) · · · xn(t)]T is the state
vector and u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector. Using the sector
nonlinearity concept [28], we exactly represent (11) with the following polynomial
fuzzy model (12). The main difference between the Takagi-Sugeno fuzzy model
[37] and the polynomial fuzzy model (12) is consequent part representation. The
fuzzy model (12) has a polynomial model consequence.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Ai(x(t))x̂(x(t)) +Bi(x(t))u(t), (12)

where i = 1, 2, · · · , r. r denotes the number ofModel Rules. zj(t) (j = 1, 2, · · · , p)
is the premise variable. The membership function associated with the ith
Model Rule and jth premise variable component is denoted by Mij . Each zj(t)
is a measurable time-varying quantity that may be states, measurable external
variables and/or time. Ai(x(t)) and Bi(x(t)) are polynomial matrices in x(t).
x̂(x(t)) is a column vector whose entries are all monomials in x(t). That is,
x̂(x(t)) ∈ RN is anN×1 vector of monomials in x(t). Therefore,Ai(x(t))x̂(x(t))
+Bi(x(t))u(t) is a polynomial vector. Thus, the polynomial fuzzy model (12)

1 A registered trademark of MathWorks, Inc.
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has a polynomial in each consequent part. The details of x̂(x(t)) will be given
in Proposition 1. We assume that

x̂(x(t)) = 0 iff x(t) = 0
throughout this chapter.

The computational method used in this chapter relies on the sum of squares
decomposition of multivariate polynomials. A multivariate polynomial f(x(t))
(where x(t) ∈ Rn) is a sum of squares (SOS) if there exist polynomials f1(x(t)),
· · · , fm(x(t)) such that f(x(t)) =

∑m
i=1 f

2
i (x(t)). It is clear that f(x(t)) being

an SOS naturally implies f(x(t)) > 0 for all x(t) ∈ Rn. This can be shown
equivalent to the existence of a special quadric form stated in the following
proposition.

Proposition 1. [38] Let f(x(t)) be a polynomial in x(t) ∈ Rn of degree 2d. In
addition, let x̂(x(t)) be a column vector whose entries are all monomials in x(t)
with degree no greater than d. Then f(x(t)) is a sum of squares iff there exists
a positive semidefinite matrix P such that

f(x(t)) = x̂T (x(t))Px̂(x(t)). (13)

Expressing an SOS polynomial using a quadratic form as in (13) has also been
referred to as the Gram matrix method.

A monomial in x(t) is a function of the form xα1
1 xα2

2 · · ·xαn
n , where α1, α2, · · · ,

αn are nonnegative integers. In this case, the degree of the monomial is given by
α1 + α1 + · · ·+ αn.

The defuzzification process of the model (12) can be represented as

ẋ(t) =
r∑

i=1

hi(z(t)){Ai(x(t))x̂(x(t)) +Bi(x(t))u(t)}, (14)

where

hi(z(t)) =

∏p
j=1Mij(zj(t))∑r

k=1

∏p
j=1Mkj(zj(t))

.

It should be noted from the properties of membership functions that hi(z(t)) ≥ 0
for all i and

∑r
i=1 hi(z(t)) = 1. Thus, the overall fuzzy model is achieved by fuzzy

blending of the polynomial system models. As shown in [29]-[31], the number of
rules in polynomial fuzzy model generally becomes fewer than that in T-S fuzzy
model, and our SOS approach to polynomial fuzzy models provides much more
relaxed stability and stabilization results than the existing LMI approaches to
T-S fuzzy model and control.

Since the parallel distributed compensation (PDC) [28] mirrors the structure
of the fuzzy model of a system, a fuzzy controller with polynomial rule conse-
quence can be constructed from the given polynomial fuzzy model (12).



190 K. Tanaka

Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then u(t) = −F i(x(t))x̂(x(t)) i = 1, 2, · · · , r (15)

The overall fuzzy controller can be calculated by

u(t) = −
r∑

i=1

hi(z(t))F i(x(t))x̂(x(t)). (16)

From (14) and (16), the closed-loop system can be represented as

ẋ(t) =

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))

× {Ai(x(t))−Bi(x(t))Fj(x(t))}x̂(x(t)). (17)

If x̂(x(t)) = x(t) and Ai(x(t)), Bi(x(t)) and Fj(x(t)) are constant matrices
for all i and j, then (14) and (16) reduce to the Takagi-Sugeno fuzzy model and
controller, respectively. Therefore, (14) and (16) are more general representation.

3.2 Stable Control

To obtain more relaxed stability results, we employ a polynomial Lyapunov
function [29] represented by

x̂T (x(t))P (x̃(t))x̂(x(t)), (18)

where P (x̃(t)) is a polynomial matrix in x(t). If x̂(t) = x(t) andP (x̃(t)) is a con-
stant matrix, then (18) reduces to the quadratic Lyapunov function xT (t)Px(t).
Therefore, (18) is a more general representation.

From now, to lighten the notation, we will drop the notation with respect to
time t. For instance, we will employ x, x̂(x) instead of x(t), x̂(x(t)), respectively.
Thus, we drop the notation with respect to time t, but it should be kept in mind
that x means x(t).

Let Ak
i (x) denotes the k-th row of Ai(x), K = {k1, k2, · · · km} denote the

row indices of Bi(x) whose corresponding row is equal to zero, and define x̃ =
(xk1 , xk2 , · · ·xkm).

Theorem 1. [30] The control system consisting of (14) and (16) is stable if
there exist a symmetric polynomial matrix X(x̃) ∈ RN×N and a polynomial
matrix Mi(x) ∈ Rm×N such that (19) and (20) are satisfied, where ε1(x) and
ε2ij(x) are non negative polynomials such that ε1(x) > 0 (x 
= 0) and ε2ij(x) ≥ 0
for all x.
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vT (X(x̃)− ε1(x)I)v is SOS (19)

−vT (T (x)Ai(x)X(x̃)− T (x)Bi(x)Mj(x)

+X(x̃)AT
i (x)T

T (x)−MT
j (x)BT

i (x)T
T (x)

+T (x)Aj(x)X(x̃)− T (x)Bj(x)Mi(x)

+X(x̃)AT
j (x)T

T (x)−MT
i (x)BT

j (x)T
T (x)

−
∑
k∈K

∂X

∂xk
(x̃)Ak

i (x)x̂(x)

−
∑
k∈K

∂X

∂xk
(x̃)Ak

j (x)x̂(x) + ε2ij(x)I

)
v is SOS i ≤ j, (20)

where v ∈ RN is a vector that is independent of x. T (x) ∈ RN×n is a poly-
nomial matrix whose (i, j)-th entry is given by T ij(x) = ∂x̂i

∂xj
(x). In addition,

if (20) holds with ε2ij(x) > 0 for x 
= 0, then the zero equilibrium is asymp-
totically stable. If X(x̃) is a constant matrix, then the stability holds globally.
A stabilizing feedback gain Fi(x) can be obtained from X(x̃) and Mi(x) as
Fi(x) = Mi(x)X

−1(x̃).

3.3 Guaranteed Cost Control

For the polynomial fuzzy model (14) and controller (16), we define the polyno-
mial fuzzy model output as

y =

r∑
i=1

hi(z)Ci(x)x̂(x), (21)

where Ci(x) is also a polynomial matrix. Let us consider the following perfor-
mance function to be optimized.

J =

∫ ∞

0

ŷT

[
Q 0
0 R

]
ŷdt, (22)

where

ŷ =

[
y
u

]
=

r∑
i=1

r∑
j=1

hi(z)hj(z)

[
Ci(x)
−F j(x)

]
x̂(x), (23)

Q and R are positive definite matrices.
Theorem 2 provides the SOS design condition that minimizes the upper bound

of the given performance function (22).

Theorem 2. [32] If there exist a symmetric polynomial matrix X(x̃) ∈ RN×N

and a polynomial matrix M i(x) ∈ Rm×N such that (24), (25), (26) and (27)
hold, the guaranteed cost controller that minimizes the upper bound of the given
performance function (22) can be designed as Fi(x) = Mi(x)X

−1(x̃).



192 K. Tanaka

minimize λ
X(x̃),Mi(x)

subject to

vT
1 (X(x̃)− ε1(x)I)v1 is SOS (24)

vT
2

[
λ x̂T (0)

x̂(0) X(x̃(0))

]
v2 is SOS (25)

− vT
3

⎡
⎣N ii(x) + ε2ii(x)I ∗ ∗

Ci(x)X(x̃) −Q−1 ∗
−M i(x) 0 −R−1

⎤
⎦v3 is SOS, (26)

− vT
4

⎡
⎢⎢⎣

N ij(x) +N ji(x) ∗ ∗(
Ci(x)X(x̃)
+Cj(x)X(x̃)

)
−2Q−1 0

−M i(x)−M j(x) 0 −2R−1

⎤
⎥⎥⎦v4 is SOS, i < j, (27)

where * denotes the transposed elements (matrices) for symmetric positions.

N ij(x) =T (x)Ai(x)X(x̃)− T (x)Bi(x)M j(x)

+X(x̃)AT
i (x)T

T (x)−MT
j (x)B

T
i (x)T

T (x)

−
∑
k∈K

∂X(x̃)

∂xk
Ak

i (x)x̂.

v1, v2, v3 and v4 are vectors that are independent of x. ε1(x) and ε2ii(x) are
non negative polynomials such that ε1(x) > 0 and ε2ii(x) > 0 at x 
= 0, and
ε1(x) = 0 and ε2ii(x) = 0 at x = 0.

Remark 1. Note that v1, v2, v3 and v4 are vectors that are independent of
x, because L(x) is not always a positive semi-definite matrix for all x even if
xT (x)L(x)x(x) is an SOS, where L(x) is a symmetric polynomial matrix in
x(t). However, it is guaranteed from Proposition 2 in [32] that if vTL(x)v is an
SOS, then L(x) ≥ 0 for all x.

Remark 2. To avoid introducing non-convex condition, we assume that X(x̃)
only depends on states x̃ whose dynamics is not directly affected by the control
input, namely states whose corresponding rows in Bi(x) are zero. In relation
to this, it may be advantageous to employ an initial state transformation to
introduce as many zero rows as possible in Bi(x).

Remark 3. When X(x̃) is a constant matrix and x̂(x) = x, the system rep-
resentation is the same as the Takagi-Sugeno fuzzy model and control used in
many of the references, e.g., [28,39]. Thus, our SOS approach to fuzzy model and
control with polynomial rule consequence contains the existing LMI approaches
to Takagi-Sugeno fuzzy model and control as a special case. Therefore, our SOS
approach provides much more relaxed results than the existing approaches to
Takagi-Sugeno fuzzy model and control.



A Unified Fuzzy Model-Based Framework for Modeling and Control 193

4 Controller Designs

For the dynamics of the helicopter (7)-(10), we consider the local linear feedback
control with respect to the yaw angle ψ(t). From the practical control points of
view, we design a local stable feedback controller Uψ(t) = −a ·ψ(t), where a is a
positive value. Clearly, the yaw dynamics can be stabilized by the local feedback
controller. As a result, we can focus on the remaining x(t), y(t) and z(t) position
control. Then, the dynamics can be rewritten as

u̇(t) =− a

Iz
ψ(t)v(t) +

1

m
UX(t), (28)

v̇(t) =
a

Iz
ψ(t)u(t) +

1

m
UY (t), (29)

ẇ(t) =
1

m
UZ(t). (30)

Based on the concept of sector nonlinearity [28], the nonlinear system can be
exactly represented by a Takagi-Sugeno fuzzy model for ψ(t) ∈ [−π π]. The
Takagi-Sugeno fuzzy model is obtained as

ẋ(t) =
2∑

i=1

hi(z(t)){Aix(t) +Biu(t)}, (31)

ẏ(t) =
2∑

i=1

hi(z(t))Cix(t), (32)

where z(t) = ψ(t) and

x(t) = [u(t) v(t) w(t) ex(t) ey(t) ez(t)]
T ,

u(t) = [UX(t) UY (t) UZ(t)]
T .

The elements ex(t), ey(t) and ez(t) are defined as ex(t) = x(t)−xref , ey(t) = y(t)−
yref , ez(t) = z(t) − zref , where xref , yref and zref are constant target positions.
Ai,Bi andCi matrices and the membership functions are given as follows.

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −aπ
IZ

0 0 0 0
aπ
IZ

0 0 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 aπ
IZ

0 0 0 0

−aπ
IZ

0 0 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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B1 = B2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
m 0 0
0 1

m 0
0 0 1

m
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, C1 = C2 =

⎡
⎣0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ ,

h1(ψ(t)) =
ψ(t) + π

2π
, h2(ψ(t)) =

π − ψ(t)
2π

.

Note that the Takagi-Sugeno fuzzy model exactly represents the dynamics (28) -
(30) for the range ψ(t) ∈ [−π π]. In addition, the local stable controller Uψ(t) =
−a ·ψ(t) guarantees ψ(t1) > ψ(t2) for t1 < t2. The asymptotic stability property
means that the helicopter describing by the dynamics (7) - (10) can be stabilized
if we can design a stable controller for (28) - (30).

4.1 LMI Design Approach

Consider the performance index (22) again. We can find feedback gains that
minimizes the upper bound of (22) by solving the following LMIs [28]. From
the solutions X and Mi, the feedback gains can be obtained as Fi = MiX

−1.
Then, the controller satisfies J < xT (0)Xx(0) < λ.

minimize
X,Mi,

λ

subject to

X > 0,

[
λ xT (0)

x(0) X

]
> 0, (33)

Û ii < 0 (34)

V̂ ij < 0 i < j, (35)

where

Ûii =

⎡
⎣ Hii XCT

i −MT
i

CiX −Q−1 0
−Mi 0 −R−1

⎤
⎦ ,

V̂ij =

⎡
⎢⎢⎢⎢⎣
Hij +Hji XCT

i −MT
j XCT

j −MT
i

CiX −Q−1 0 0 0
−Mj 0 −R−1 0 0
CjX 0 0 −Q−1 0
−Mi 0 0 0 −R−1

⎤
⎥⎥⎥⎥⎦ ,

H ij = XAT
i +AiX −BiM j −MT

j B
T
i .
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4.2 Simulation Results

The above LMI conditions are feasible. Both SOS design conditions in Theorems
1 and 2 are also feasible. We compare the LMI-based guaranteed-cost controller
(designed by solving the (33) - (35)) with the controller (designed by the SOS
conditions in Theorem 2), that is, with the SOS-based guaranteed-cost controller.
Table 2 shows comparison results of performance function values J for the LMI
controller and the SOS controller, where the initial positions are u(0) = 0.5,
v(0) = 0.5, w(0) = 0.5 ex(0) = −0.6, ey(0) = −0.4 and ez(0) = −1. In Table
2, Cases I, II and III denote three cases of selecting the weighting matrices
(Q,R) = (I, 0.1I), (Q,R) = (I, I), and (Q,R) = (I, 10I), respectively. In the
SOS controller design, the order of M(x) is one, i.e., all the elements of M(x)
are permitted to be a linear combination of one order with respect to state
variables (namely affine), and the order of X(x̃) is zero, i.e., X(x̃) is a constant
matrix.

Table 2. Comparison of performance function values J

Case I Case II Case III

LMI controller 0.57724 1.392 5.0064

SOS controller (Order of M is 1) 0.49951 0.84659 2.8677

Reduction rate of J [%] 13.4658 39.1818 42.7193

It is found from Table 2 that the performance index values of the SOS based
guaranteed-cost control (Theorem 2) are better than those of the LMI based
guaranteed-cost control ((33) - (35)) in all the cases. When the orders of X(x̃)
and M(x) are zero, that is, whenX(x̃) and M (x) are constant matrices instead
of polynomial matrices in x, the design conditions in Theorems 1 and 2 reduce to
the existing LMI design conditions. In other words, when X(x̃) and M(x) are
constant matrices, the polynomial fuzzy controller reduces to the Takagi-Sugeno
fuzzy controller. Thus, the SOS approach provides more relaxed results than the
existing LMI approach.

Fig. 1 shows the SOS control result in the following target trajectory:
[xref yref zref ] given as [0 0 0] at t = 0, [0 0 1] at 0 < t < 60, [1 0 1] at
60 ≤ t < 120, [1 1 1] at 120 ≤ t < 180, [0 1 1] at 180 ≤ t < 240, and [0 1 0]
at 240 ≤ t ≤ 300, where ψ = 0 for all t. The designed SOS controller perfectly
works even for the trajectory task since x(t) → 0 implies ex(t) → 0, ey(t) → 0
and ez(t)→ 0. Table 3 shows comparison results of performance function values
J in the above trajectory control. The SOS control result is better than the LMI
control result also in the trajectory control.
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Fig. 1. Trajectory control via SOS control (Case I)

Table 3. Comparison of performance function values J

Case I Case II Case III

LMI controller 0.0479 0.4733 8.0186

SOS controller (Order of M is 1) 0.0274 0.1614 5.1378

5 Vision-Based Micro Helicopter Control in Real
Environments

In the previous sections, we have mainly discussed LMI and SOS based fuzzy
control system design approaches for the micro helicopter. In this section, we
apply one of the approaches to vision-based control of the micro helicopter in
real environments [36].

Autonomous control (e.g., [4]-[16]) of helicopters has been conducted for out-
door helicopters with expensive inertial measurement units (IMU) including
GPS, 3D acceleration sensors, 3D gyro sensors, etc. On the other hand, it is
possible to control a small helicopter with inexpensive (reasonable price) sen-
sors. However, it is, in general, harder to stabilize smaller helicopters due to their
smaller moment of inertia in addition to the properties of unstable, nonlinear
and coupling.
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Fig. 2 shows the micro (palm-size) helicopter that is a co-axial counter rotating
helicopter produced by HIROBO. Table 4 shows the specification of helicopter.
The weight of the helicopter itself is 200g. It should be noted that the payload
is only 60 g due to micro (palm-size) helicopter. Thus, due to the payload re-
striction, it is difficult to put a 3D acceleration sensor, a 3D gyro sensor and a
3D geomagnetic sensor, etc., on the micro helicopter.

Fig. 2. R/C Micro Helicopter

Table 4. Specification of helicopter

Mass 0.20[kg] Length 0.40[m]
Width 0.23[m] Height 0.20 [m]
Blade diameter 0.35 [m] Payload 60 [g]

We put only a small-light wireless camera on the micro-helicopter. The cam-
era is employed for detecting the position and attitude and for gathering flight
visual information. The first point is accomplished by the so-called parallel track-
ing and mapping (PTAM) [40]. Thus, the PTAM technique using a small single
wireless camera on the helicopter is utilized to detect the position and attitude
of the helicopter. We construct the measurement system that is able to calibrate
the mapping between local coordinate system in the PTAM and world coordi-
nate system and is able to realize noise detection and elimination. In addition,
we design the guaranteed cost (stable) controller for the dynamics of the heli-
copter via an LMI approach. Although path tracking control only via the small
single wireless vision sensor is a quite difficult task, the control results demon-
strate the utility of our approach. We have verified in the previous sections that
the proposed SOS approach is better than the existing LMI approaches. The
SOS design for the micro helicopter is currently ongoing and is expected to be
presented elsewhere.
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Subsection 5.1 presents our experimental system and micro helicopter with a
wireless camera. We also discuss the PTAM as a visual SLAM to detect the po-
sition and attitude of the helicopter. In addition, we construct the measurement
system that is able to calibrate the mapping between local coordinate system in
the PTAM and world coordinate system and is able to realize noise detection
and elimination. In Subsection 5.2, we design the guaranteed cost (stable) con-
troller for the dynamics of the helicopter via an LMI approach. Subsection 5.3
demonstrates that the constructed system with the guaranteed cost controller
achieves path tracking control well even though stabilization of the indoor micro
helicopter only via the small single wireless vision sensor is a quite difficult task.

5.1 Experimental System

Fig. 3 shows the experimental system using the small-light wireless camera
(TINY-3H) produced by RFSystem Co.,Ltd. The weight is 55 g and is within the
payload limitation (60 g). Table 5 summarizes the specification of the wireless
camera. The six degree of freedom of the helicopter is calculated by the PTAM
based on vision obtained from the wireless camera. After the computation using
the PTAM, the control input determined by a stable controller (that will be
discussed later) is sent to the helicopter via an R/C transmitter. The sampling
rate is 30 [Hz].

In this research, an open-source software, parallel tracking and mapping
(PTAM) developed by Klein and Murray [40], is employed to detect the po-
sition and attitude of the indoor micro helicopter. The PTAM is a method of
estimating camera pose in an unknown scene. They proposed a system specifi-
cally designed to track a hand-held camera in a small augmented reality (AR)
workspace. For more details of the PTAM, see [40]-[45].

As mentioned before, the PTAM is supposed to use for tracking a hand-held
camera in a small AR workspace. Hence, we need to add two functions to achieve
stabilization of the micro helicopter.

– Accurate calibration of the mapping between world coordinate system and
PTAM coordinate system.

– Compensation of the vision noise contaminated by wireless vision transmis-
sion, electromagnetic devices, or body vibrations of the helicopter, etc.

Fig. 4 shows an example of the vision noise contaminated by transmission, elec-
tromagnetic devices, or body vibrations of the helicopter, etc., where i-th frame

Table 5. Specification of TINY-3H

Weight 55g

Image Sensor 270000 pixels 1/4 inch color CCD

Unobstructed Effective Range 100m (Transmission distance)

Size 117 18 75
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Fig. 3. Experimental System

Fig. 4. Vision contaminated by noise

is clear, but i+1-th frame is contaminated by noise. In the i+1-th frame, the po-
sition and attitude of the helicopter calculated using the PTAM for noise vision
suddenly change for the calculation result from the previous i-th frame. In this
case, we ignore the calculation result for the i+1-th frame and still utilizes the
calculation result for the previous i-th frame. The threshold of judging the noise
frame is ε % change of at least one of six variables in the position and attitude.
The value of ε is adjusted through experiments.
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5.2 Controller Design

In this section, we consider also yaw dynamics in addition to (28)-(30). Then,
by considering its co-axial counter structure, the restitutive force (generated by
a mechanical stabilizer attached on the helicopter) and gravity compensation,
the dynamics can be rewritten as

u̇(t) =r(t)v(t) +
1

m
FX(t), (36)

v̇(t) =− r(t)u(t) + 1

m
FY (t), (37)

ẇ(t) =
1

m
FZ(t), (38)

ψ̇(t) =
1

IZ
Uψ(t). (39)

The approximation is sometimes used in practical control field [46,47] and ac-
tually works well. Of course, these papers do not realize wireless vision-based
stabilization in addition to without external markers. UX(t), UY (t), UZ(t) and
Uψ(t)(U̇ψ(t) = Mz(t)) denote new control input variables. We can obtain the
original control inputs (to the real helicopter) from FX(t), FY (t), FZ(t) and
Uψ(t).

By taking time derivative of (36)-(39) and defining the state and control
vectors as

x(t) = [x(t) y(t) z(t) ψ(t) u(t) v(t) w(t)]T ,

u(t) = [FX(t) FY (t) FZ(t) Uψ(t)]
T ,

we arrive at the following state equation

d

dt
ẋ(t) = Aẋ(t) +Bu̇(t) (40)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 r(t) 0
0 0 0 0 −r(t) 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 1

IZ
v(t)

0 1
m 0 − 1

IZ
u(t)

0 0 1
m 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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C =

⎡
⎢⎢⎣
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎤
⎥⎥⎦ .

We consider reasonable assumption such that −ud ≤ u(t) ≤ ud, −vd ≤ v(t) ≤ vd
and −rd ≤ r(t) ≤ rd. Applying the sector nonlinearity procedure [28] to the
augmented system, we obtain the fuzzy model (41) that exactly represent the
dynamics (40) under the assumption. In this case, we set ud = 2, vd = 2 and
rd = π.

The Takagi-Sugeno fuzzy model for micro helicopter dynamics considering the
above two features can be represented as

dt

d
ẋ(t) =

8∑
i=1

hi(u(t), v(t), r(t)){Aiẋ(t) +Biu̇(t)}, (41)

where

x(t) = [x(t) y(t) z(t) ψ(t) u(t) v(t) w(t)]T ,

u(t) = [FX(t) FY (t) FZ(t) Uψ(t)]
T ,

A1 = A3 = A5 = A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 rd 0
0 0 0 0 −rd 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 = A4 = A6 = A8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 −rd 0
0 0 0 0 rd 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 = B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 vd

IZ
0 1

m 0 −ud

IZ
0 0 1

m 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,B3 = B4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 − vd

IZ
0 1

m 0 −ud

IZ
0 0 1

m 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B5 = B6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 vd

IZ
0 1

m 0 ud

IZ
0 0 1

m 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,B7 = B8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

IZ
1
m 0 0 − vd

IZ
0 1

m 0 ud

IZ
0 0 1

m 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

h1(u(t), v(t), r(t)) =
u(t) + ud

2ud
· v(t) + vd

2vd
· r(t) + rd

2rd
,

h2(u(t), v(t), r(t)) =
u(t) + ud

2ud
· v(t) + vd

2vd
· rd − r(t)

2rd
,

h3(u(t), v(t), r(t)) =
u(t) + ud

2ud
· vd − v(t)

2vd
· r(t) + rd

2rd
,

h4(u(t), v(t), r(t)) =
u(t) + ud

2ud
· vd − v(t)

2vd
· rd − r(t)

2rd
,

h5(u(t), v(t), r(t)) =
ud − u(t)

2ud
· v(t) + vd

2vd
· r(t) + rd

2rd
,

h6(u(t), v(t), r(t)) =
ud − u(t)

2ud
· v(t) + vd

2vd
· rd − r(t)

2rd
,

h7(u(t), v(t), r(t)) =
ud − u(t)

2ud
· vd − v(t)

2vd
· r(t) + rd

2rd
,

h8(u(t), v(t), r(t)) =
ud − u(t)

2ud
· vd − v(t)

2vd
· rd − r(t)

2rd
.

By defining the error e(t) = r−y(t), we have the following augmented system.

d

dt
x̂(t) =

8∑
i=1

hi(u(t), v(t), r(t)){Âix̂(t) + B̂iû(t)} (42)

y(t) =

8∑
i=1

hi(u(t), v(t), r(t))Ĉix̂(t), (43)

where û(t) = u̇(t),

x̂(t) =

[
ẋ(t)
e(t)

]
, Âi =

[
Ai 0

Ĉi 0

]
, B̂i =

[
Bi

0

]
,

Ĉi =

⎡
⎢⎢⎣
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎤
⎥⎥⎦ .
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We design the following dynamic fuzzy controller to stabilize the augmented
system.

û(t) =−
8∑

i=1

hi(u(t), v(t), r(t))Fix̂(t) (44)

Let us consider the following performance function to be optimized.

J =

∫ ∞

0

ŷT (t)

[
Q 0
0 R

]
ŷ(t)dt, (45)

where

ŷ(t) =

[
y(t)
û(t)

]
=

r∑
i=1

r∑
j=1

ĥi(t)ĥj(t)

[
Ĉi

−F j

]
x̂(t), (46)

Q and R are positive definite matrices, and ĥi(t) = hi(u(t), v(t), r(t)).
We can find feedback gains that minimizes the upper bound of (45) by solving

the following linear matrix inequalities (LMIs) (47)-(49) [28]. From the solutions
X and Mi, the feedback gains can be obtained as Fi = MiX

−1. Then, the
controller satisfies J < xT (0)Xx(0) < λ.

minimize
X,Mi,

λ

subject to

X > 0,

[
λ xT (0)

x(0) X

]
>0, (47)

Û ii <0 (48)

V̂ ij <0 i < j, (49)

where

Ûii =

⎡
⎣ Hii XĈT

i −MT
i

ĈiX −Q−1 0
−Mi 0 −R−1

⎤
⎦ ,

V̂ij =

⎡
⎢⎢⎢⎢⎣
Hij +Hji XĈT

i −MT
j XĈT

j −MT
i

ĈiX −Q−1 0 0 0
−Mj 0 −R−1 0 0

ĈjX 0 0 −Q−1 0
−Mi 0 0 0 −R−1

⎤
⎥⎥⎥⎥⎦ ,

H ij = XAT
i +AiX −BiM j −MT

j B
T
i .

It should be noted that the controller satisfying the LMIs (47)-(49) is a stable
controller.
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5.3 Experimental Results

Control experiment is performed from the take-off on the floor at the origin
(x(0), y(0), z(0)) = (0[mm], 0[mm], 0[mm]) and rectangular trajectory flight dur-
ing keeping z(t)=1000 [mm]. The vertex points of the rectangular trajectory are
Point A (0 [mm], 0 [mm], 1000 [mm]), Point B (2000 [mm], 0 [mm], 1000 [mm]),
Point C (2000 [mm], 1500 [mm], 1000 [mm]) and Point D (0 [mm], 1500 [mm],
1000 [mm]). The flight task is to make two circles around Points A, B, C and D
during keeping the altitude z(t)=1000 [mm].

Fig. 5. Experimental result of path tracking flight

Fig. 5 shows the trajectory control result (yaw, x, y and z) via the fuzzy con-
troller, where the target (green lines) and control result (red lines) are plotted.
It can be seen that the helicopter can follow the trajectory well even though
the impulse noises are sometimes caused by wireless vision transmission, elec-
tromagnetic devices, or body vibrations of the helicopter, etc. Thus, the control
result shows the utility of our wireless vision-based control system. Fig 6 shows
photographs of the experimental result, where the red boxes indicate the po-
sitions of the micro helicopter and the small window in each the photograph
shows vision views from the wireless camera on the micro helicopter. It should
be noted that the trajectory of the micro helicopter is stabilized only by using
the wireless vision sensor without 3D acceleration sensors, 3D gyro sensors and
3D geomagnetic sensors, etc., in addition to without external markers.
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Fig. 6. Experimental results (photos)
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6 Conclusions

The former of this chapter has presented a comparison result of micro helicopter
control via a typical linear matrix inequality (LMI) approach and a sum of
squares (SOS) approach. The SOS design approach discussed in this chapter is
more general than that based on the existing LMI design approaches to T-S
fuzzy control systems. The control results of a micro helicopter have shown that
the SOS design approach provides better control results than the LMI design
approach.

The latter of this chapter has presented wireless vision-based stabilization
of an indoor micro helicopter via visual simultaneous localization and mapping
(SLAM). The PTAM technique using a small single wireless camera on the he-
licopter has been utilized to detect the position and attitude of the helicopter.
We have also constructed the measurement system that is able to calibrate the
mapping between local coordinate system in the PTAM and world coordinate
system and is able to realize noise detection and elimination. In addition, we
have designed the guaranteed cost (stable) controller for the dynamics of the
helicopter via a linear matrix inequality (LMI) approach. The path tracking
control results only via the small single wireless vision sensor have demonstrated
the utility of our approach.

Our next target is to realize vision-based formation control of plural micro
helicopters.
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Abstract. Various disciplines, such as machine learning, statistics, data mining 
and artificial neural networks, are concerned with estimation of data-analytic 
models. A common theme among all these methodologies is estimation of pre-
dictive models from data. In our digital age, an abundance of data and cheap 
computing power offers hope of knowledge discovery via application of statis-
tical and machine learning algorithms to empirical data. This data-analytic 
knowledge has similarities and differences with classical scientific knowledge. 
For example, any scientific theory can be viewed as an inductive theory because 
it generalizes over a finite number of observations (or experiments). The philo-
sophical aspects of induction and knowledge discovery have been thoroughly 
explored in Western philosophy of science. This philosophical analysis dates 
back to Kant and Hume. Any knowledge involves a combination of hypothes-
es/ideas and empirical data. In the modern digital age, the balance between 
ideas (mental constructs) and observed data (facts) has completely shifted. 
Classical scientific knowledge was produced mainly by a stroke of genius (e.g., 
Newton, Maxwell, and Einstein). In contrast, much of modern knowledge in life 
sciences and social sciences is derived via data-analytic modeling. We argue 
that such data-driven knowledge can be properly described following the me-
thodology of predictive learning originally developed in VC-theory. This paper 
presents a brief survey of the philosophical concepts related to inductive infe-
rence, and then extends these ideas to predictive data-analytic knowledge dis-
covery. We contrast the differences between classical first-principle knowledge, 
data-analytic knowledge and beliefs. Several application examples are used to 
illustrate the differences between classical statistical and predictive learning ap-
proaches to data-analytic modeling. Finally, we discuss interpretation of data-
analytic models under predictive learning framework.  

1 Introduction 

We live in a world surrounded by data. With the advent of computer technology, most 
information now is digital, and its amount doubles every few years. This information, 
however, is useful for decision making only if there are associations and stable  
relationships present within the data. For example, it is easy to memorize a song or a 
poem, because it rhymes and has meaning, but it is difficult to remember 200  
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randomly chosen unrelated words. Learning, or making sense of observed data, is 
central to human intelligence. 

Much of human knowledge is based on observations of repeatable events. For ex-
ample, we ‘know’ that the Sun rises in the East every morning. People knew this fact 
thousands of years ago, before the advent of astronomy and physics. In essence, such 
knowledge is a result of generalization from many observed instances (of the Sun 
rising in the East every morning). This process of making a general statement from 
many regular observations is called ‘induction’ or ‘inductive inference’. It is also an 
example of ‘empirical knowledge’ that is purely data-driven. In contrast, ‘scientific 
knowledge’ provides much deeper insights into observed empirical data. For example, 
Kepler’s laws can be used to predict planets’ movement, and Newton’s law of gravity 
can be used to derive Kepler’s laws. Scientific laws explain and predict many see-
mingly unrelated events, such as the motion of planetary bodies, and the motion of a 
falling object, in the case of Newton’s law.  

For humans, it is not sufficient just to detect regularities from observations of re-
peatable events; these regularities need to be ‘explained’ in terms of a small number 
of basic concepts and causal relationships. This human desire for logical and determi-
nistic explanations is evident in the following quotations: 

• All men by nature desire knowledge (Aristotle); 
• Man has an intense desire for assured knowledge (Einstein). 

Such explanations of the external world (Nature) constitute scientific knowledge. 
However, present scientific understanding of the world is fairly recent (just a few 
hundred years old), and prior to that people used other ‘non-scientific’ explanations or 
‘beliefs’. Note that scientific theories and beliefs are inductive as they both explain 
repeatable events.  

The Philosophy of Science is concerned with the relationship between the objec-
tive world (Nature) and human ideas (mental models) describing this world. The main 
questions in Philosophy of Science (PS) are:  

(PS1) Is human knowledge formed mainly by experience (or sense-perceptions) or 
 by pure thought (or reasoning)? 
(PS2) What is the process of knowledge formation (knowledge discovery) from 
 empirical data (or sense-perceptions) and mental constructs? 
(PS3) The problem of induction or inductive inference: Is it possible to obtain as-
 sured knowledge from empirical data or observations? 
(PS4) What are general conditions (principles) for distinguishing between scientific 
 theories, and non-scientific explanations or beliefs? Such a criterion is 
 known as the ‘demarcation principle’ in philosophy. So when a new theory 
 is proposed, this demarcation principle would help to classify it as true scien-
 tific theory, or just a belief.   

These questions have been posed and discussed by philosophers over many centuries. 
However, only recently with the advent of computer technology, have these issues 
become increasingly relevant for engineers, biologists and scientists estimating  
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predictive models from data. The demarcation principle has become very relevant in 
modern life, where beliefs and opinions supported by observed correlations in the data 
are often presented as scientific findings. 

The growing use of digital technology in modern society is changing the nature of 
human knowledge. Knowledge can be broadly defined as a relationship between facts 
and ideas. Classical science aims at describing many facts (observations) using just a 
few fundamental principles. Typically, this first-principle knowledge is in the form of 
deterministic relationships between a few basic concepts. Such knowledge has several 
characteristic properties: 

• it describes well simple deterministic systems. Here ‘simple’ refers to concep-
tual simplicity, rather than ‘technical’ system complexity. For instance, a me-
chanical system may have many moving objects interacting with each other; 
however each object is described by simple equations that involve just a few va-
riables. 

• The number of facts (data samples, experimental observations) initially used to 
derive such knowledge is small. 

• The cost of collecting or generating these observations is high.  

In the modern world the classical balance between facts and ideas has totally shifted. 
Today, we are flooded with data and are expected to act upon it. With the advent of 
the Internet, the cost of acquiring, generating and transmitting information has be-
come negligible (practically zero). Nowadays, most data comes from digital devices 
and sensors, rather than human sense-perceptions as in classical philosophy. 

According to philosophical view of naïve realism, abundance of data should gener-
ate unprecedented growth of knowledge. This is reflected in a popular view: 

The data deluge makes the scientific method obsolete. We can stop looking for 
(scientific) models. We can analyze the data without hypotheses about what it might 
show. We can throw the numbers into the biggest computing clusters the world ever 
seen and let statistical algorithms find patterns where science cannot [1]. 

The reality is more sober, as usual. Fast accrual of new information (facts) has not 
translated into any significant growth of knowledge. Even worse, many ‘discovered 
patterns’ have questionable scientific value. Classical statistical estimation approaches 
proved to be inadequate for describing complex data-rich systems. Estimation of use-
ful dependencies in such systems requires new methodologies, where the goal of 
modeling is to act (or predict) well rather than accurate estimation of probabilistic 
data models. 

 

Fig. 1. Three types of knowledge 
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We may loosely define empirical knowledge as useful dependencies estimated 
from data or derived from experience. As argued later in this section, useful depen-
dencies usually have predictive (or generalization) capability. In contrast to first-
principle knowledge, empirical knowledge typically: 

• Describes certain properties of complex systems that lack credible first-principle 
models. Here ‘complexity’ usually refers to a large number of observed parame-
ters (variables);  

• is statistical in nature, i.e., allows to make non-deterministic predictions, at best; 
• has a quantifiable practical utility for a given application. 

We emphasize that our definition requires such knowledge to be useful in the context 
of a given application. This is consistent with general notion of learning, which im-
plies accomplishing a specific task, i.e. learning to drive, or learning to play piano. 
Empirical knowledge has been used by humans in medicine for centuries (i.e., herbal 
folk medicine), however its role has dramatically increased in our digital age.  

It is important to differentiate between three types of knowledge: first-principle, 
empirical and beliefs, as shown in Fig. 1. Here beliefs refer to mental models that are 
neither first-principle nor instrumental empirical knowledge. The distinction between 
first-principle knowledge and beliefs is usually easy to make. Examples of true scien-
tific theories versus pseudo-scientific beliefs are: chemistry vs. alchemy and astrono-
my vs. astrology. The distinction between empirical knowledge and beliefs is not so 
clear, as both are usually supported by statistical correlations in observed data. Yet 
this distinction is of great practical importance, because rational humans prefer to act 
upon knowledge rather than beliefs.  

Modern science and engineering are based on the first-principle models for physi-
cal, biological, and social systems.  Such an approach starts with a basic scientific 
model (e.g., Newton's laws of mechanics or Maxwell's laws) and then builds upon  
 

 
 

(a) Induction ~ function estimation from data 
 

 
 

(b) Deduction ~ prediction for new inputs 

Fig. 2. Learning or function estimation interpreted as induction-deduction process 
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it various applications (e.g., mechanical engineering or electrical engineering).  In 
classical science, the experimental data (measurements) are used to test (or verify) the 
underlying first-principle models and, sometimes, to estimate certain model parame-
ters that are difficult to measure directly.  However, in many applications the underly-
ing first principles are unknown or the systems under study are too complex to be 
mathematically described.  With the growing use of computers and low-cost sensors, 
there is a great amount of data being generated by such systems. In the absence of 
first-principle models, such readily available data can be used to derive models by 
estimating useful relationships between observed system variables (i.e., inputs and 
outputs).  Thus there is currently a paradigm shift from the classical modeling based 
on first principles to developing empirical (data-driven) models. 

All data-analytic models usually pursue two goals: explanation of available (train-
ing) data and prediction of future data. For most applications, the main practical goal 
is prediction. Estimation of predictive models with finite data is a challenging prob-
lem. It can be immediately related to the problem of induction and to inductive-
deductive reasoning in classical philosophy [2], [3].  See Figure 2. 

According to popular interpretation of data-analytic modeling, an estimated predic-
tive model (in Fig. 2a) represents new knowledge ‘discovered from data’. This view is 
rather simplistic, because there are thousands of learning algorithms that can be ap-
plied to the same data, resulting in millions of potentially plausible models. Of course, 
the pragmatic solution to this dilemma advocated by practitioners is to use many 
learning algorithms and then select the best predictive model, typically using resam-
pling for evaluating prediction (generalization) performance. Such a ‘solution’ is not 
very satisfactory because: 

• It is highly dependent on the experience of human modelers who are very expe-
rienced in tuning their favorite modeling technique. This explains a strange phe-
nomenon when researchers propose a new learning algorithm and present empirical 
comparisons to demonstrate its superiority over other methods. Typically, there are 
at least 5-10 such new superior learning algorithms routinely introduced at every 
neural network or machine learning conference. 

• modeling results may be quite sensitive to particular implementation of resam-
pling, especially for high-dimensional data.   

• there may be several good predictive models that have completely different para-
meterization (see examples discussed later in Section 3). 

Statistical data-analytic approach to knowledge discovery raises many important  
issues: 

1. What is the role/relative importance of the data vs. prior knowledge?  
2. What constitutes the prior knowledge and how it can be combined with data? 
3. Is it possible, in principle, to estimate models that generalize well, from finite 

number of samples? 
4. How to differentiate between several ‘good’ empirical models that explain well the 

same past data?  
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These issues are clearly similar to the main questions in the philosophy of science 
(PS1)-(PS4).    

This paper describes methodological aspects of predictive learning and relates pre-
dictive data-analytic modeling to important philosophical ideas. Section 2 describes 
several philosophical concepts important for knowledge discovery. Section 3 presents 
methodological framework of predictive learning and its philosophical interpretation. 
In particular, we emphasize methodological differences between classical statistical 
and predictive (VC-theoretical) approaches to data-analytic modeling. These differ-
ences are further illustrated in Section 4 describing understanding / interpretation of 
black-box predictive models. Section 5 presents summary and conclusions. 

2 Classical Philosophy of Science 

Western philosophy of science has been shaped by monumental advances in natural 
sciences (physics, chemistry, biology) and their practical applications that have totally 
transformed the human society. These advances are based on the first-principles 
scientific knowledge, such as Newton’s laws or Maxwell’s equations that completely 
define the state of a physical system. This knowledge is universal, causal and deter-
ministic, and it represents a perfect example of ‘assured knowledge’. For example, 
Newton’s laws should apply everywhere in the Universe. Newton’s law of gravity can 
explain and predict the movement of planets and asteroids. Moreover, Newton’s laws 
are interpretable, as they show deterministic relationships between just a few funda-
mental concepts. These first-principle laws in classical science are akin to axioms in 
mathematics. That is, classical science can be developed by applying logical reason-
ing to first-principle laws, in a manner similar to Euclidean geometry.  

Philosophy of science deals with the relationship between the external world, and 
the human mind. Connections between natural sciences and philosophy are very deep 
and profound. Many great scientists contemplated about philosophical implications of 
their discoveries. Sir Isaac Newton, the father of theoretical physics, considered his 
work as natural philosophy. Later scientific discoveries, such as Einstein’s relativity 
and the quantum mechanics, also had a profound effect on philosophy.  

The philosophical school known as ‘realism’ (or materialism) presumes an exis-
tence of objective physical reality, which is perceived via sensory inputs (facts, ob-
servations). This sensory data is processed in a human mind, to form some mental 
constructs (scientific models, beliefs, etc.). The primary role of physical reality is 
reflected in the ‘information flow’ shown in Fig. 3a. Note that according to realists, 
the physical world exists objectively and independently of human observers. Realism 
is essential to common sense, but it cannot be proven by logical arguments [4, 5]. 

An opposite view is taken by the school known as idealism, where the primary role 
belongs to ideas or mental constructs, and the physical reality is viewed just a by-
product of the mind. Idealism asserts that (scientific) knowledge can be attained by 
mere reflection and reasoning. In its extreme form, idealism dismisses the role of 
empirical observations and therefore is inconsistent with natural science. 
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(a) Realism 

 
(b)Idealism 

 

 

(c) Instrumentalism 

Fig. 3. Three main philosophical schools: (a) Realism, (b) Idealism, (c) Instrumentalism 

Even though Realism and Idealism are presented as mutually exclusive in Fig. 3a 
and Fig. 3b, there are also many intermediate philosophical views. For example, He-
gel (1770-1831) believed that reality and mind are parts of a complex system, and 
thus cannot be considered separately. According to Hegel:  

 

Fig. 4. Unknown system with observed inputs x and unobserved inputs z 

Whatever exists (is real) is rational, and whatever is rational is real. 

In this quotation, ‘rational’ refers to a mental construct of human mind, and ‘real’ 
refers to physical reality. 

Physical 
World 

Sensory 
Inputs 

Mental 
Models 
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An important philosophical position known as instrumentalism adopts the view 
that the goal of science is to produce useful theories. Instrumentalists intentionally 
leave out of discussion the question of truthfulness of such theories. Paraphrasing 
Hegel’s quotation, instrumentalists take a pragmatic view that: 

Whatever is useful is also rational and (hopefully) real. 

Newton’s theory was perhaps the first and most successful scientific theory in human 
history. It offered a mechanical ‘clockwork’ model of the World, which could explain 
the movements of planets in the sky, as well as the movement of bodies on earth and 
the tides. Due to its success, the classical science adopted a philosophical view called 
causal determinism. For example, the future state of a mechanical system (consisting 
of moving objects) is fully predictable if the current coordinates and velocities of each 
object are known. So assuming the current state of a system can be observed or meas-
ured, we can always predict its future state, and there is no room for uncertainty. 
Causal determinism expresses an extreme realistic position that every effect has a 
cause, so science can explain, in principle, all natural phenomena. Accordingly, un-
certainty simply reflects our lack of knowledge and/or inability to perform accurate 
measurements. Under this deterministic approach, any natural or social system can be 
described, in principle, by deterministic first-principle laws. In other words, uncer-
tainty is not an intrinsic property of physical or social systems. This view remains 
deeply rooted in modern science and society as a whole. It leads to a methodology 
known as ‘system identification’ where a system has observed inputs/outputs, but also 
unobserved inputs that reflect our ignorance (lack of knowledge), as shown in Fig. 4. 
Then the goal of data-driven system identification is to approximate a true model 
from observations. This approach also underlies classical statistical estimation which 
presumes a true probabilistic model that has to be estimated from data. For data-
analytic modeling, this conceptual approach has several important implications: 

1. There exists a single true (best) model of a system; 
2. this model can be accurately estimated from observed data; 
3. more data leads to better knowledge, i.e. closer approximation to the truth. 

The main issue in the philosophy of science was to explain the process of knowledge 
discovery, i.e. discovery of the first-principle laws. Newton himself believed that the 
basic concepts and laws of his system could be derived from experience (or observa-
tions), as evident from him saying: Hypotheses non fingo. However, this realistic view 
was immediately challenged by the philosophers and later, by other physicists in 19th 
and 20th century. As argued by Albert Einstein [6]: 

Experience may suggest the appropriate mathematical concepts, but they most cer-
tainly cannot be deduced from it. Experience remains, of course, the sole criterion of 
the physical utility of a theory… In a certain sense, I hold true that pure thought can 
grasp reality, as the ancients dreamed. 

Moreover, later physical theories such as quantum mechanics explicitly contradict 
Newton’s realistic position that physical reality can be modeled independent of a 
human observer. According to Werner Heisenberg: 
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What we observe is not nature itself, but nature exposed to our method of questioning. 

Similarly, many philosophers believe that scientific theories represent interpretation 
of observations in the light of theories invented by human mind. As Immanuel Kant 
put it: 

Our intellect does not draw its laws from nature, but tries – with varying degrees of 
success – to impose upon nature laws which it freely invents. 

These quotes suggest that first-principle scientific knowledge is a creation of human 
mind. However, this knowledge also reflects certain objective properties of the real 
world, so that it can be tested by experiments. This philosophical position is more 
akin to Instrumentalism (in Fig. 3c) where the ‘utility’ of our knowledge can be em-
pirically verified. Note that the instrumentalist view is quite different from system 
identification, as it: 

• rejects the notion of a single best (true) theory or model; 
• emphasizes the importance of a method of questioning, i.e., the idealistic com-

ponent of knowledge discovery; 
• allows for multiple good scientific models describing the same phenomenon.  

All of these properties also hold true for data-analytic knowledge discovery, as shown 
later in Sections 3 and 4.  

The growing importance of science and technology has also influenced philosophi-
cal understanding of inference. The main advantage of the Scientific Method pio-
neered by Galileo is its objectivity, so that scientific theories hold irrespective of the 
personal bias of an observer (scientist), and that scientific experiments can be re-
peated by other scientists. Science does not study any observable events, but only 
recurrent (repeatable) phenomena. This immediately brings up the traditional philo-
sophical problem of induction or inductive inference: 

─ How/why we can justify the belief (or scientific theory) that the future experiments 
(or observations) will be similar to the past? 

Ill-posed nature of empirical inference has been a subject of many lively discussions 
in philosophy over many centuries, dating back to Hume and Kant. David Hume 
(1711-1776) was interested in the question of whether our beliefs or knowledge can 
be justified by ‘sufficient reasons’. He noted that many important abstract concepts, 
such as the notion of causality, cannot be gained from empirical observations or 
sense-perceptions. So if sense-perceptions are the only source of human knowledge, 
as asserted by Newton, then our ‘knowledge’ simply represents beliefs and expecta-
tions, rather than ‘assured knowledge’ like Euclidean geometry. Further, Hume made 
an important distinction between a logical and a psychological problem of induction. 
The logical problem relates to logical justification of generalization (or inference) 
from repeated observed instances (events, experiments, facts) to other future in-
stances. According to Hume, the logical induction cannot be justified, even when the 
number of past observations is very large.  
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Yet people often form generalizations based on past observations of repeatable 
events. So Hume’s problem of psychological induction is: Why do most reasonable 
people believe in generalization based on frequent repetition of events? – His expla-
nation is that people are conditioned by repetitions (of observed events) and believe in 
such inference due to custom or habit. This is similar to inference mechanism in bio-
logical systems known as ‘learning by association’ or Pavlov’s conditional reflex.  

Hume’s ideas dominate modern philosophical views on empirical inference as 
nicely summarized by Ludwig Wittgenstein (1889-1951):  

The process of induction is the process of assuming the simplest law that can be made 
to harmonize with our experience. This process, however, has no logical foundation, 
but only a psychological one. It is clear that there are no grounds for believing that 
the simplest course of events will really happen. 

Philosophical treatment of the psychological induction does not differentiate between 
the instrumental empirical knowledge and beliefs (as shown in Fig.1). This is because 
the philosophy of science is concerned with classical first-principle knowledge, whe-
reas the empirical knowledge has become important only recently, in the past 10-15 
years. This empirical knowledge is formed by statistical dependencies which have 
useful predictive value. Estimation of such dependencies is provided by the metho-
dology of predictive learning discussed in the next section. 

3 Predictive Learning and Knowledge Discovery 

Knowledge discovery always involves inference, i.e. the process of deriving a conclu-
sion based on existing knowledge and/ or observations (or already known facts). Epis-
temological interpretation of inference clearly depends on the general philosophical 
framework (i.e., idealism vs. realism) and also on the philosophical interpretation of 
uncertainty. Classical philosophy adopts a deterministic view of ‘assured knowledge’ 
or ‘true Laws of Nature’. So it is mainly concerned with understanding and discovery 
of the first-principle knowledge. In contrast, most modern data-driven applications 
deal with estimation of predictive statistical models, or statistical inference. In spite 
of the multitude of existing machine learning and statistical algorithms for data-driven 
modeling, there is no credible philosophical treatment of these methods. This section 
describes application of philosophical concepts to predictive statistical inference. Our 
objective is to describe general conceptual framework for machine learning and statis-
tical methodologies for data-analytic predictive modeling. Our approach is largely 
based on the ideas from Vapnik-Chervonenkis (VC) theory [2, 7]. 

Philosophical ideas develop in response to scientific and technological advances. 
Data-analytic modeling has been influenced by two theoretical developments:  

• Classical statistics developed by R. Fisher in the first half of the 20th century [8]. 
• VC-theory developed in the 1970’s by Vapnik and Chervonenkis [2]. The VC-

theory provides the mathematical analysis and conditions for estimating predic-
tive models from data. 
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The two related technological advances are: 

• The field of applied statistics based on Fisher’s probabilistic modeling; 
• Various applied disciplines (machine learning, data mining, artificial neural 

networks) concerned with predictive data-analytic modeling. All these fields 
have been originally introduced as ad hoc learning algorithms. However, later it 
became clear that they fall under the predictive learning framework and hence 
can be conceptually described using VC-theoretical methodology [9]. 

Next we discuss two main philosophical aspects of predictive data modeling: 

• What is a proper philosophical interpretation of predictive modeling? Is it dif-
ferent from classical statistical modeling?  

• What is the philosophical interpretation of mathematical conditions for statistic-
al inference developed in VC-theory?  

The first question is a variation of the philosophical problem (PS1). What is primary 
in data-driven knowledge discovery: observation (data) or hypothesis (method of 
questioning)? Also, a more subtle related question: What is the meaning of ‘hypothe-
sis’ or ‘method of questioning’? According to Karl Popper [4,5], knowledge discov-
ery does not start from observations but always from problems. An observation is 
always preceded by a particular interest, a question, or something theoretical. This 
view is consistent with classical statistics where a parametric model (or ‘hypothesis’) 
is given a priori, and then available data is used to estimate model parameters.   

 

 

Fig. 5. Predictive Estimator uses (input, output) observations of the unknown System to  
approximate (or imitate) its output 

Philosophical interpretation of model-free estimation methods in machine learning 
is less straightforward, because these methods specify (infinitely) many parameteriza-
tions. In this case, ‘hypothesis’ refers to the existence of some unspecified predictive 
model that can be estimated from available data. Using mathematical notation, model-
free methods adopt flexible model parameterization, i.e., a set of admissible models or 

functions ( )ω,xf  where Ω∈ω denotes an abstract set of parameters. An estimated 

model is a function yf →x:  from this set, which predicts an output for future 

(test) inputs. Examples of flexible parameterizations include MLP networks, RBF 
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networks, decision trees and SVM methods [3, 10]. An important VC-theoretical 
result states that prediction (generalization) with finite data depends on the complexi-
ty of a set of admissible models ( )ω,xf , rather than on actual parameterization. 

Therefore, two different parameterizations, say MLP and RBF networks, or SVM 
classifiers using different types of kernels, may produce similar prediction accuracy, 
as long as their complexity is well controlled [3]. So, in contrast to classical statistics, 
actual model parameterization is not very important, relative to complexity control.   

An important aspect of predictive data modeling is the notion of the learning prob-
lem setting, which can be regarded as the ‘method of questioning’. The learning prob-
lem setting is an important methodological concept that reflects general assumptions 
underlying available data and the goals of modeling (or learning). For example, the 
inductive learning setting is shown in Fig. 5. Under this setting, unknown system that 
has observed inputs (shown as vector x) and an output y. Then past (or training) data 

is in the form ( ) niyii ,...,2,1,, =x , where n is the number of training samples. 

There may also exist unobserved inputs z, responsible for the random nature of un-
known system, so that it may produce different output values y, for the same values of 
inputs x. The goal of learning is to estimate unknown dependency between the input 
x( ) and output y( )  variables, from a set of past observations of x , y( ) values. The 

estimated model, or function, ( )xf  is later used for predicting the output for new 
(test) inputs. The quality of prediction is evaluated as expected test error (for future 
test data). The test error is specified via a loss function that measures the discrepancy 
between estimated model and the true output. This loss function is given a priori, and 
should reflect application requirements. 

As discussed earlier (in Fig. 2), model estimation from known training data can be 
viewed as an inductive step. There are two distinct interpretations of the predictive 
system shown in Fig.5. According to classical statistics, model estimation has a goal 
of estimating the true probabilistic model of observed data x , y( ) generated by un-

known system. That is, the goal of modeling is (statistical) system identification. This 
is analogous to the philosophical position of Realism, assuming that ‘unknown sys-
tem’ and ‘predictive model’ correspond, respectively, to ‘physical world’ and ‘mental 
model’ in Fig. 3a. However, for most practical problems, the goal of learning is accu-
rate imitation (prediction) of the System output, rather than identification of unknown 
system generating the data. This leads to another interpretation of predictive system in 
Fig. 5 where the goal of learning is to estimate certain properties of unknown data 
distribution which yield good generalization (or small test error). This system imita-
tion approach is adopted in VC-theory, and it corresponds to the philosophical view 
of Instrumentalism [2]. That is, Physical World, Mental Model and Utility in Fig. 3c 
correspond, respectively, to the System, Predictive Estimator and Loss Function in 
Fig. 5. For finite sample estimation problems, it can be shown, both theoretically and 
empirically, that the goal of system imitation often yields good predictive models, 
even when estimation of ‘true’ underlying probabilistic models is intrinsically im-
possible.  Specification of an appropriate learning problem setting is critical for most 
real-life applications [3, 11]. 
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Note that the two approaches, probabilistic system identification and predictive sys-
tem imitation, are fundamentally different, even though both estimate models from 
data. This distinction is clearly stated in VC-theory, but it has not been widely unders-
tood in statistics and machine learning at large. The difficulty stems from the fact that 
researchers in these fields focus on the development of constructive learning algo-
rithms (and omit the problem setting), and that such learning algorithms can be usual-
ly motivated under either approach [11]. For example, support vector machines 
(SVM) have been originally introduced under predictive (VC-theoretical) setting, but 
later presented and ‘explained’ by statisticians under probabilistic (Bayesian) setting. 
This lack of clarity often leads to methodological and conceptual confusion among 
practitioners applying predictive data-analytic tools. Simply stated, one cannot effec-
tively use these tools without understanding the ‘method of questioning’, i.e. the prob-
lem setting. A leading modern statistician Leo Breiman [12] refers to this distinction 
as the two cultures in data modeling: 

There are two cultures in the use of statistical modeling to reach conclusions from 
data. One assumes that the data are generated by a given stochastic data model. The 
other uses algorithmic models and treats the data mechanism as unknown. The statis-
tical community has been committed to the almost exclusive use of data models. This 
commitment has led to irrelevant theory, questionable conclusions and has kept sta-
tisticians from working on a large range of interesting current problems. 

As convincingly argued by Breiman [12], ‘algorithmic black-box’ models yield better 
prediction accuracy than classical statistical techniques. However, adoption of these 
new modeling methods requires understanding of a new data modeling culture by 
statisticians. Breiman’s term ‘new culture’ essentially refers to the instrumentalist 
philosophy of predictive learning. This new modeling philosophy raises new issues, 
such as the multiplicity of good predictive models and the resulting difficulties in 
interpreting black-box models. These issues are discussed later in Section 4. 

Next we present important assumptions underlying standard inductive learning set-
ting. This setting is used in most learning (or model estimation) algorithms developed 
in statistics, machine learning, artificial neural networks, signal processing etc. Induc-
tive learning system shown in Fig. 5 follows three steps: 

1. Observe a System, in order to collect training data samples. 
2. Estimate predictive model from the training data (inductive step). 
3. Apply the estimated model to make predictions (deductive step). 

Such an inductive inference process is very general and hides many important details. 
For one thing, a modeler chooses what to observe in Step 1. So we usually assume 
meaningful (informative) specification of the input and output variables. The second 
issue is the fundamental problem of inductive inference: is it possible to estimate a 
good predictive model from observed data? Note, that a model estimated during in-
ductive step tries to ‘explain’ the training data via some data fitting procedure; how-
ever this can also result in fitting the noise. In order to address the main question (is 
generalization possible?) we need to introduce certain modeling assumptions and 
theoretical concepts. These include: 
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• statistical assumptions about past (training) and future (test) data in the learning 
system shown in Fig. 5; 

• quantifiable (mathematical) definition of generalization. 

VC-theory provides such generic assumptions that make predictive learning possible. 
Specifically, standard inductive learning assumes that: 

• Training and future data samples ),( yx  are sampled independently from the 

same distribution ),( yP x . 

• This distribution ),( yP x  is unknown but fixed or ‘stationary’. 

The requirement that training and test data originate from the same (unknown) distri-
bution reflects a common-sense notion that the future is statistically similar to the 
past. An assumption about independent and identically distributed (i.i.d.) sampling 
guarantees that each new training sample yields maximum information.  

The goal of learning is to estimate a function yf →x:  which predicts an output 

for future (test) inputs. This function (or estimated model) is selected from the set of 
admissible functions ( )ω,xf  given a priori. The quality of estimated model is 

measured via non-negative loss function )),(,( ωxfyL , so that the best model is the 

one minimizing the ‘prediction risk’ functional: 

 ( ) ( )( ), , ( , )R L y f dP yω ω=  x x  (1) 

Commonly used loss functions include: squared loss (for regression problems with 
real-valued output y) and 0/1 loss for binary classification problems (where y is a 
binary class label). Prediction risk (1) can be evaluated using large test set.  

Note that under standard inductive learning setting: 

• Test samples are not known/used during model estimation. 
• The quality of learning (generalization) is evaluated using some loss function 

that should be specified a priori, before a predictive model is evaluated from da-
ta. This loss function has to be driven by application domain requirements.  

• Predictive black-box models generally do not assume causality [3,10]. Also, in-
terpretation/explanation of estimated models is outside the framework of predic-
tive learning. In particular, there may be several good predictive models esti-
mated from the same training data. 

The difficulty of learning is due to the fact that the distribution ( , )P yx is unknown, 

so the prediction risk (1) cannot be directly minimized. All that is known is finite 
training sample niy ii ,...2,1),( =x . So it reasonable to use model estimation pro-

cedures that choose a model that has the smallest fitting error on the training set. The 
VC-theory provides general conditions on a set of admissible models ( )ω,xf , under 

which such data fitting approach yields good generalization. The main idea is that we 
should favor ‘simple’ models describing training data. This is, of course, consistent 



 Predictive Learning, Knowledge Discovery and Philosophy of Science 223 

with old philosophical ideas such as Occam’s razor. However, the VC-theory pro-
vides a new measure of ‘complexity’ called the VC-dimension, which is different 
from statistical indices such as the number of free parameters or degrees-of-freedom. 

VC-theoretical inductive learning setting corresponds to a new type of statistical 
inference appropriate for many applications. This VC-inference is clearly different 
from the logical and psychological induction in classical philosophy. It is also differ-
ent from the probabilistic inference in classical statistics developed for large-sample 
(asymptotic) settings. VC-inference provides precise characterization of empirical 
knowledge that can be defined as a statistical predictive model estimated from data. 
This empirical knowledge is different from deterministic first-principle knowledge 
and from beliefs (see Fig. 1). In particular, ‘beliefs’ can be regarded as data-analytic 
models that describe well the past data, but cannot predict well. 

VC-theory also provides general mathematical conditions under which generaliza-
tion (prediction) with finite samples is possible. The main practical result of VC-
theory can be stated as follows: 

If a model explains well past (training) data, and it is simple, then it is likely to have 
good generalization for future (test) data. 

Or, in more technical terms: 

Good generalization (prediction) is possible if the training error is small and the VC-
dimension (of a set of admissible models) is small. 

Here model simplicity corresponds to low VC-dimension. This condition for generali-
zation has an interesting philosophical interpretation. Vapnik [2] interprets finite VC-
dimension, which is the main condition for model-free learning, using Popper’s falsi-
fiability. That is, available training data corresponds to "facts" or assertions known to 
be true. A set of admissible models ( )ω,xf  corresponds to all possible generaliza-

tions. Each function from this set is a model or hypothesis about unknown dependen-
cy. Generalization (from these known facts) amounts to selecting a particular model 
from the set of all admissible models. According to Popper’s notion of falsifiability, a 
true inductive theory cannot explain all possible facts. In data modeling, known facts 
are training samples, and their ‘explanation’ corresponds to data fitting. So the ability 
to explain (or fit) a given number of training samples is equivalent to the notion of 
shattering for binary classification [3, 7]. The finiteness of the VC-dimension implies 

that a set of functions ( )ω,xf  cannot explain an arbitrary large data set, so it can be 

interpreted as Popper’s falsifiability [7]. 
This leads to another interpretation of VC-theoretical conditions for generalization:  

If a model explains well the training data and can be easily falsified, then it has good 
generalization (for future data).  

This interpretation is sometimes stated as the principle of VC falsifiability for estimat-
ing predictive models from finite samples [2]:  

Select the model that explains available data and is easy to falsify.  

Note that VC falsifiability is a well-defined quantity (measured via VC-dimension). 
Popper has also defined a complexity index (that he called a characteristic number of 
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a theory) and, using this index, related the model simplicity (~ number of parameters) 
to falsifiability [13]. However, the VC-dimension is different from the number of free 
parameters, so Popper’s complexity index does not really ensure good generalization, 
except for a trivial case of linear estimators [2, 3].  

Philosophical interpretation of predictive modeling is important for understanding 
the difference between classical first-principle knowledge and empirical knowledge in 
Fig. 1. Classical first-principle knowledge is consistent with the causal deterministic 
view of a simple world developed in 18-th and 19-th centuries. Such simple determi-
nistic models may not be adequate for describing complex physical and social  
systems. However, it may be still possible to model certain properties of complex 
systems in a modern data-rich world. This leads to a new type of empirical know-
ledge, in the form of statistical models estimated from data. Practical utility of such 
models is usually related to their prediction capability, defined in the context of a 
particular application. VC-theory provides mathematical and methodological basis for 
estimating predictive models from finite samples. Now one can see that classical 
knowledge and empirical knowledge are two different concepts. Classical knowledge 
is universal and its growth is understood in terms of accumulation. Empirical  
knowledge is more conditional as it describes an empirical relationship derived from 
observations of a complex system. This knowledge is instrumental, and it is useful a 
limited application domain. In many cases, empirical knowledge is transient, because 
an underlying system itself changes with time (i.e., as in financial markets). Hence, 
understanding empirical knowledge requires understanding of the predictive learning 
methodology developed in VC-theory.  

4 Practical Aspects of Predictive Data-Analytic Modeling 

Philosophical and methodological aspects of predictive learning are very important 
for understanding and using data-analytic models. The main issue is that empirical 
data-driven knowledge is qualitatively different from the classical first-principle 
knowledge and from beliefs, as shown in Fig.1. Yet, this distinction is often over-
looked by practitioners and users of data-analytic tools. Two prominent application 
areas where this commonly happens are economics (financial engineering) and life 
sciences. Economists often design mathematical models for social systems (such as 
financial markets). Even though such models employ sophisticated math, they fail to 
reflect the complexity of social systems, and usually have questionable predictive 
value. In many cases, these models can be regarded as beliefs. The main philosophical 
dilemma is a popular view (among economists) that in economic systems all uncer-
tainty about the future is quantifiable. This assumption clearly contradicts the metho-
dology of predictive learning.  

In life sciences, a similar fallacy occurs when researchers apply classical statistical 
methodology for estimating data-analytic models, and interpreted them as causal first-
principle models. This is evident in a glut of reported studies in medicine, bioinfor-
matics and cognitive science, where scientists ‘discover’ knowledge via uncritical 
application of classical statistical techniques to real-life data. Often, these studies 
arrive to conclusions using goodness-of-fit tests and residual analysis. Unfortunately, 
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just because a study can claim the statistical significance does not mean it can be re-
produced by others, i.e. it has little predictive value [14].This occurs because classical 
statistical assumptions do not hold true for real-life applications [3,12]. These as-
sumptions include unbiasedness, large sample size (relative to model complexity) etc. 
In classical statistics, these ‘favorable’ assumptions are typically ensured by a good 
experimental design, which is not possible with high-dimensional observational data. 

This paper makes clear distinction between different types of knowledge: 

• first-principle knowledge describes universal causal relationships. These  
relationships (laws) are deterministic and they have both the predictive and ex-
planatory value, as they involve just a few concepts (variables). In philosophy, 
knowledge discovery is related to the problem of logical induction.  

• empirical knowledge describes statistical dependencies (derived from observed 
data) that have predictive properties. According to VC-theoretical methodology, 
explanation of such empirical models is outside the scope of predictive model-
ing. 

• beliefs are statistical dependencies (derived from observed data) that have ex-
planatory (or descriptive) value but little predictive value. In philosophical 
terms, beliefs can be regarded as a form of psychological induction. 

Classical science has both explanatory and predictive value. However, in natural 
sciences it is well-understood that prediction (rather than interpretability) is the main 
property of scientific theory. This point is stated by a famous physicist R. Feynman: 

It is whether or not the theory gives predictions that agree with experiment. It is not a 
question of whether a theory is philosophically delightful, or easy to understand, or 
perfectly reasonable from the point of view of common sense. 

In contrast, in social and life sciences statistical models explaining observations (or 
empirical data) are often regarded as scientific knowledge, even when such models 
are not used for prediction. These explanatory models are simple, and they usually 
refer to statistical correlations discovered from data. For example, many studies report 
discovery of a single gene associated with a particular type of cancer. Such studies 
naively presume the intelligibility (simplicity) of complex biological phenomena. 

Classical parametric statistics is methodologically biased towards simple interpret-
able data-analytic models. In real-life applications, prediction accuracy and simplicity 
(interpretability) are usually in conflict [12]. Traditional approach to reducing model 
complexity is reducing the number of prediction variables (via feature selection) lead-
ing to the final low-dimensional model. Modern machine learning approaches (SVMs, 
random forests [15] etc.) using all input variables, achieve better prediction, but are 
not easily interpretable. This poses a real challenge for many applications. For exam-
ple, physicians are accustomed to simple logistic regression, because it produces a 
linear model with weights that give an indication of the variable importance. Howev-
er, they cannot interpret a black-box predictive model, even if it achieves superior 
prediction. In fact, doctors and practitioners in many other fields often do not even 
understand the assumptions underlying classical statistical and modern predictive data 
modeling approaches. So, interpretation of predictive data-analytic models should be 
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always preceded with understanding modeling assumptions (e.g., standard inductive 
learning setting). 

Next we present two examples illustrating potential difficulties in interpreting pre-
dictive models. The first example is concerned with interpretation of high-
dimensional SVM models. The second example shows the multiplicity of predictive 
models, which is possible even with low-dimensional data. These examples reinforce 
the point that interpretability is closely related to the methodological/philosophical 
aspects of data-analytic modeling, rather than its technical aspects. 

Both examples assume standard binary classification problem under inductive 
learning setting described in Section 3. The first example uses MNIST digit recogni-
tion data set, where the goal is to classify handwritten digits ‘5’ vs. ‘8’, where each 
digit is represented as 784 (28x28) grey-scale pixels encoded as 784-dimensional 
input. Nonlinear SVM classifier is estimated using 1,000 training samples (500 per 
class). The nonlinear SVM uses RBF kernel of the form

2
( , ) exp( )K γ′ ′= − −x x x x . The SVM approach is known to yield very good 

generalization (prediction) performance for this data set. The problem, however, is to 
provide simple interpretation of a high-dimensional nonlinear SVM model. Most 
existing SVM model interpretation methods [16] represent nonlinear SVM decision 
boundary via some interpretable parameterization, such as a set of if … then …else 
rules. Each rule is defined over a small number of input features (e.g., pixels, in this 
example). Actual methods adopt different approaches for such rule extraction tech-
niques. For example, see [16, 17] for a survey of SVM rule extraction techniques.  

There are three critical issues for such SVM interpretation approaches: 

• Large number of input variables adversely affects interpretation. Complex SVM 
models with thousands of input variables can be only approximated by a large 
number of rules. So interpretability often requires some form of feature selec-
tion or dimensionality reduction, at the expense of prediction accuracy [12]. 

• Multiplicity of good predictive models estimated from the same data. This 
makes model interpretation questionable.  

• Interpretable approximations (of black-box SVM models) often provide signifi-
cantly lower generalization performance. This becomes especially critical for 
modeling High-Dimensional Low Sample Size (HDLSS) data. 

 

Fig. 6. Top 10 most informative features (pixels) selected using Fisher’s criterion 
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Table 1. Test/Training errors averaged over 10 random realizations of the data (std. deviation 
shown in parenthesis) 

Method Test Error (%) Training Error (%) 
SVM 1.08(0.23) 0(0) 

FISHER+SVM 7.28(0.85) 4.93(1.35) 
PCA+SVM 6.22(1.45) 6.18(1.97) 

 
Next we elaborate on the trade-off between feature selection and the prediction ac-

curacy. The goal is to compare three SVM-based modelling approaches: 

• RBF SVM – where the model is estimated using all 784 input features. 
• FISHER+RBF SVM - for this method, as a part of pre-processing, we select the 

top 10 features using the Fisher criterion [18] on the training data, and discard 
the others. Then the RBF SVM model is estimated in this 10-dimensional re-
duced feature space.   

• PCA+RBF SVM – for this method the preprocessing step involves selecting the 
first 3 principal components from (unlabeled) training data [10]. Then the RBF 
SVM model is estimated in this 3-dimensional reduced feature space.  

Clearly, SVM models using small number of features are easier to interpret. For ex-
ample, ten most informative features (pixels) selected using the Fisher index are 
shown in Fig.6. Then it may be possible to construct a simple set of rules that ‘ex- 
plain’ the SVM model in terms of these 10 pixel values. However, the generalization 
performance of these three methods will be quite different. Table 1 shows the test 
error rate evaluated on independent test set (1,866 test samples). The SVM model 
parameters (for all methods) are tuned using an independent validation data set (1,000 
samples). The experimental comparisons are performed 10 times using different reali-
zations of the training and validation data, and average training/test error rates are 
shown in Table 1. As expected, SVM model using all 784 input features yields much 
better prediction accuracy than low-dimensional (interpretable) models. 

Cherkassky and Dhar [17, 19, 20] argue that interpretation of high-dimensional 
SVM models cannot be separated from understanding SVM-related concepts respon-
sible for generalization, such as margin. So they advocate presentation of a complex 
SVM model, in a simple graphical form using the univariate histogram of projections 
technique [17, 19, 20]. This technique provides simple graphical representation of the 
training data and the estimated SVM decision boundary for binary classification:  

Univariate Histogram of Projections is the histogram of the projection values of 
the data samples onto the normal direction of the trained SVM decision boundary. 

For the MNIST data set used in this example, the 784-dimensional nonlinear SVM 
model is represented as a univariate histogram of projections shown in Fig. 7a. This 
figure displays projections of the training data for the RBF SVM with optimal pa-
rameters (e.g., C and RBF kernel parameter) tuned using an independent validation 
set of 1,000 samples. As evident from Fig. 7a, the training samples are well separable 
in the optimally chosen RBF kernel space. Also, the histogram of projections clearly 
illustrates the clustering of data samples at the margin borders. This effect, called data 
piling, is typical for high-dimensional data [3, 21].  
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       (a)          (b) 

 
(c) 

Fig. 7. Univariate histogram of projections for MNIST data set (a) training data; (b) validation 
data (validation error 1.7%); (c) test data (test error 1.23%). Note that SVM decision boundary 
is marked as 0, and SVM margin borders are labelled as -1 and +1 on the histogram axis. 

However, this separability of the high-dimensional training data does not imply the 
separability of validation or test data. This can be seen from the projections of valida-
tion and test samples in Fig.7b and Fig. 7c. The SVM optimization algorithm tries to 
achieve high separability of the training data by penalizing the samples that are inside 
the soft margin. Hence the histogram in Fig. 7a where many training samples are 
outside the soft margin is typical. However, during model selection we are only con-
cerned with validation samples that are correctly classified by the model. Hence we 
may select a model that allows the validation/test samples to be within the soft-margin 
as long as it provides small validation error. This explains the overlapping histogram 
regions for validation and test data, as shown in Fig. 7b and Fig. 7c. Hence, the histo-
gram of projections technique enables better understanding of the SVM decision mak-
ing procedure and its model selection strategy. Such an understanding, however, does 
not require traditional model parameterization in the form of if … then …else rules 
using individual input features (pixels). 

Another potential advantage is that the histogram of projections technique helps a 
general user to quantify the confidence in SVM predictions, according to the distance 
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from the margin border. For instance, referring to Fig. 7c, if a test input is projected 
inside the margin borders, the confidence is low. Alternatively, if a test input is out-
side the margin borders, the confidence in SVM predictions is high. 

Second example illustrates the multiplicity of predictive black-box models. This 
problem arises due to predictive setting where the goal is to estimate a model yielding 
good generalization performance, rather than to estimate the ‘true model’ of observed 
data [12, 17]. This is illustrated next using a real-life financial application called tim-
ing (or daily trading) of mutual funds [22, 23]. The practice of timing mutual funds 
tries to profit from daily price changes, under the assumption that the next-day price 
change can be statistically predicted from today’s market indices. For international 
mutual funds (investing in foreign stocks) this assumption turns out to be true, due to 
(a) different closing time for US, European and Asian markets, and (b) the fact that 
foreign markets tend to follow US markets. In early 2000’s, this practice of timing 
international mutual funds, has resulted in scandals in the mutual fund industry [22]. 

Empirical validation of market timing is presented next for an international mutual 
fund called American Century International Fund (symbol TWIEX), using predictive 
data-analytic modeling [24]. A trading strategy generates a BUY or SELL signal at 
the end of each trading day, i.e. right before US market close at 4 p.m Eastern Stan-
dard Time. Effectively, a BUY order today is a bet that the price of this mutual price 
will go up tomorrow. Such a trading strategy can be formalized as a binary classifier. 
The two input indicators used for prediction are the daily percentage price changes of: 

• SP 500 stock index (symbol ^GSPC); 
• Euro-to-dollar exchange rate (symbol EURUSD). 

There are practical reasons for choosing these predictor variables for trading interna-
tional mutual funds. Namely, the first input reflects an assumption that foreign  
markets closely follow US market. The second input is chosen because international 
mutual funds are priced in US dollars. The predictive model uses today’s values of 
these two inputs to predict tomorrow’s price change (UP or DOWN) of this interna-
tional fund. In this study, a predictive model was estimated using Year 2004 data, and 
then tested on Year 2005 data. 

 
     (a)       (b) 

Fig. 8. Linear and quadratic decision boundaries estimated from training data (Year 2004). (a) 
Fisher Linear Discriminant Analysis. (b) Quadratic Discriminant Analysis.  
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   (a)      (b) 

Fig. 9. Performance of the linear and quadratic decision models for test period (Year 2005). (a) 
Fisher Linear Discriminant Analysis. (b) Quadratic Discriminant Analysis.  

Two parametric models used in this study [24] include Fisher’s Linear Discrimi-
nant Analysis (LDA) and a Quadratic Discriminant Analysis (QDA). Estimated deci-
sion boundaries are shown, along with Year 2004 training data, in Fig. 8. Clearly, 
these two models look very different. Yet, they provide very similar performance for 
the test period (Year 2005), as shown in Fig. 9. The performance of trading strategies 
is compared to the benchmark ‘Buy-and-Hold’ scenario, when an account is 100% 
invested in TWIEX all the time. This figure shows that both models yield very good 
performance, i.e. consistently outperform the Buy-and-Hold strategy. This superior 
performance is achieved at lower risk, since the trading account is out of the market 
(in cash) about 40% of the time. So the usual question (posed by classical statisti-
cians) which model most accurately describes the training data is difficult to resolve 
[12]. In fact, these models reflect two different successful trading strategies. Both 
strategies can be explained and probably make sense to financial experts and traders. 
However, understanding and explanation of these models requires application domain 
knowledge, and cannot rely only on a data-analytic model alone. 

Similar difficulties, of course, may be expected for SVM models that are usually 
applied under predictive setting. In particular, it is well-known that nonlinear SVM 
using different kernels, say polynomial and RBF, may yield the same prediction accu-
racy. Yet the form of estimated SVM decision boundary will be quite different. 

Two trading strategies implemented by classifiers in Fig. 8 can be interpreted as 
simple rules, because the model is simple and it has only two input variables. The 
linear decision boundary in Fig. 8a corresponds to the rule: ‘Buy if SP500 is up today, 
otherwise sell’. This rule has simple interpretation: the next-day direction of foreign 
markets follows today’s change of the US stock market.  The second-order decision 
boundary in Fig. 8b has the following interpretation: ‘Buy if today’s change in SP500 
is not_large AND the change in the EURO exchange rate is not_large, otherwise sell’. 
This rule is more complex, but it also has common-sense interpretation: large (ex-
treme) changes of the input variables usually occur in response to the news (such as 
earnings reports, economic statistics), that are released in the morning when European 
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markets are still open. Hence, such information should be already reflected in the 
closing prices of European equities. Further, during training and test periods (2004-
2005), the two input variables have low correlation and can be regarded as indepen-
dent. So the first (linear) model can have causal interpretation, i.e. foreign markets 
follow the direction of US stock market. Note that all these interpretations are based 
on understanding of the problem at hand, i.e. knowledge of financial markets, open-
ing/closing time of the US and European markets etc. This knowledge cannot be de-
rived from a black-box predictive model alone [17, 24].  

Traditional model interpretation techniques originate from the classical probabilis-
tic setting that has an ultimate goal of quantifying the effect (or importance) of indi-
vidual input variables of the output. In many studies, the effect of individual inputs on 
the output is presented under causal setting, as the final objective of data modeling. 
This often leads to considerable confusion, since black-box models may not be causal 
[3, 12]. We argue that interpretation of predictive models should reflect understanding 
of an application domain and a good grasp of predictive modeling methodology, ra-
ther than just the technical analysis of the functional form of estimated models. Under 
predictive setting, the ‘importance’ of each input variable should be measured in 
terms of its effect on model’s generalization performance. 

5 Summary and Conclusions 

We presented the philosophical interpretation of predictive data-analytic modeling. 
This interpretation is closely related to the methodological aspects of machine learn-
ing. Hence, it may be useful for practitioners who apply learning algorithms to data 
and interpret the resulting models. This paper makes an important distinction between 
classical first-principle knowledge, empirical knowledge and (empirical) beliefs. In 
particular, we emphasize the predictive aspects of empirical knowledge and the im-
portance of predictive methodology. Predictive (VC-theoretical) framework also has a 
clear philosophical (instrumentalist) interpretation which is different from the causal 
deterministic position adopted in classical science. This distinction leads to major 
methodological differences for users of data-analytic tools. For most practical applica-
tions, this paper advocates the predictive learning (system imitation) view of data-
analytic modeling. 

The analysis presented in this paper contradicts the popular view that ‘the data de-
luge makes the scientific method obsolete’ [1].  However, the data deluge does, in 
fact, lead to a new type of (empirical) knowledge which is different from classical 
first-principle knowledge. Therefore, it is increasingly important to differentiate be-
tween first-principle knowledge, empirical knowledge and beliefs. This distinction is 
commonly missing in application studies that interpret data-analytic models as first-
principle knowledge. 

Let us recall an earlier quotation from Section 1: 

Man has an intense desire for assured knowledge (Einstein). 

Here ‘assured knowledge’ refers to the first-principle scientific knowledge. In our 
digital age, the human desire for ‘assured knowledge’ does not change. However, the 
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meaning of what constitutes ‘assured knowledge’ has changed dramatically. That is, 
the main property of empirical data-analytic knowledge is its prediction (generaliza-
tion) capability. In many cases, this data-analytic knowledge lacks simple interpreta-
bility, due to large number of variables and/or multiplicity of good predictive models.  

An important aspect of ‘assured’ data-driven knowledge is a set of general mathe-
matical assumptions about available data and the goals of learning/modeling. These 
assumptions are collectively known as ‘the learning problem setting’. It corresponds 
to the ‘method of questioning’ in the philosophy of science. In particular, classical 
statistics and predictive learning use different underlying assumptions and pursue 
different goals of data-analytic modeling [2, 3, 15]. 

Selecting or specifying an appropriate learning problem setting (for a given appli-
cation) is a creative part of predictive modeling which cannot be formalized. This 
paper describes the standard inductive learning setting which is used by most machine 
learning and statistical algorithms. However, there also exist several powerful non-
standard learning settings, e.g. transduction, semi-supervised learning, multi-task 
learning, Universum learning, and learning using hidden information [2, 3, 7, 11]. 

Acknowledgement. This work was supported, in part, by NSF grant ECCS-0802056. 
Parts of this paper are adapted from [11]. Empirical results presented in this paper are 
based on a joint work with Sauptik Dhar from the University of Minnesota.  

References 

1. The End of Science. Wired Magazine 16 (2007), 
http://www.wired.com/wired/issue/16-07 

2. Vapnik, V.N.: Estimation of Dependencies Based on Empirical Data. In: Empirical Infe-
rence Science: Afterword of 2006. Springer, New York (2006) 

3. Cherkassky, V., Mulier, F.: Learning from Data: Concepts, Theory and Methods. Wiley, 
NY (2007) 

4. Popper, K.: Objective Knowledge. An Evolutionary Approach. Oxford University Press 
(1979) 

5. Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge 
Press, London (2000) 

6. Einstein, A.: Ideas and Opinions. Bonanza Books, New York (1988) 
7. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998) 
8. Fisher, R.A.: Contributions to Mathematical Statistics. Wiley, New York (1952) 
9. Cherkassky, V., Muller, F.: Learning from Data: Concepts, Theory, and Methods. Wiley, 

NY (1998) 
10. Hastie, T.J., Tibshirani, R.J., Friedman, J.: The Elements of Statistical Learning. Springer, 

New York (2001) 
11. Cherkassky, V.: Introduction to Predictive Learning (to appear, 2012)  
12. Breiman, L.: Statistical Modeling: the Two Cultures. Statistical Science 16(3), 199–231 

(2001) 
13. Popper, K.: The Logic of Scientific Discovery, 2nd edn. Harper Torch Books, New York 

(1968) 



 Predictive Learning, Knowledge Discovery and Philosophy of Science 233 

14. Ioannidis, J.P.A.: Contradicted and initially stronger effects in highly cited clinical re-
search. JAMA 294(2), 218–228 (2005) 

15. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001) 
16. Diederich, J.: Rule Extraction from Support Vector Machines. Springer (2008) 
17. Dhar, S., Cherkassky, V.: Understanding Black Box Data-Analytic Models. Neural  

Networks (2011) (submitted)  
18. Fisher, R.: The use of multiple measurements in Taxonomic problems. Annals of Eugen-

ics 7, 179–188 (1936) 
19. Cherkassky, V., Dhar, S.: Simple Method for Interpretation of High-Dimensional Nonlin-

ear SVM Classification Models. In: The 6th International Conference on Data Mining  
(July 2010) 

20. Cherkassky, V., Dhar, S., Dai, W.: Practical Conditions for Effectiveness of the Univer-
sum Learning. IEEE Trans. on Neural Networks 22, 1241–1255 (2011) 

21. Ahn, J., Marron, J.S.: The Maximal Data Piling Direction for Discrimination. Biometri-
ka 97, 254–259 (2010) 

22. Zitzewitz, E.: Who cares about shareholders? Arbitrage proofing mutual funds. Journal of 
Law, Economics and Organization 19(4), 245–280 (2003) 

23. Frankel, T., Cunningham, L.A.: The mysterious ways of mutual funds: market timing.  
Annual Review of Banking and Financial Law 25(1) (2006) 

24. Cherkassky, V., Dhar, S.: Market Timing of International Mutual Funds: A Decade after 
the Scandal. In: Proc. CIFEr (2012) 



J. Liu et al. (Eds.): WCCI 2012 Plenary/Invited Lectures, LNCS 7311, pp. 234–260, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Evolving Spiking Neural Networks and Neurogenetic 
Systems for Spatio- and Spectro-Temporal Data 

Modelling and Pattern Recognition  

Nikola Kasabov 

Knowledge Engineering and Discovery Research Institute - KEDRI, 
 Auckland University of Technology, 

and Institute for Neuroinformatics, INI, ETH and University of Zurich 
nkasabov@aut.ac.nz, www.kedri.info, 

ncs.ethz.ch/projects/evospike 

Abstract. Spatio- and spectro-temporal data (SSTD) are the most common 
types of data collected in many domain areas, including engineering, bioinfor-
matics, neuroinformatics, ecology, environment, medicine, economics, etc. 
However, there is lack of methods for the efficient analysis of such data and for 
spatio-temporal pattern recognition (STPR). The brain functions as a spatio-
temporal information processing machine and deals extremely well with spatio-
temporal data. Its organisation and functions have been the inspiration for the 
development of new methods for SSTD analysis and STPR. The brain-inspired 
spiking neural networks (SNN) are considered the third generation of neural 
networks and are a promising paradigm for the creation of new intelligent ICT 
for SSTD. This new generation of computational models and systems are poten-
tially capable of modelling complex information processes due to their ability to 
represent and integrate different information dimensions, such as time, space, 
frequency, and phase, and to deal with large volumes of data in an adaptive and 
self-organising manner. The paper reviews methods and systems of SNN for 
SSTD analysis and STPR, including single neuronal models, evolving spiking 
neural networks (eSNN) and computational neuro-genetic models (CNGM). 
Software and hardware implementations and some pilot applications for audio-
visual pattern recognition, EEG data analysis, cognitive robotic systems, BCI, 
neurodegenerative diseases, and others are discussed.  

Keywords: spatio-temporal data, spectro-temporal data, pattern recognition, 
spiking neural networks, gene regulatory networks, computational neuro-
genetic modeling, probabilistic modeling, personalized modeling, EEG data.   

1 Spatio- and Spectro-Temporal Data Modelling and Pattern 
Recognition 

Most problems in nature require spatio- or/and spectro-temporal data (SSTD) that 
include measuring spatial or/and spectral variables over time. SSTD is described by a 



 Evolving Spiking Neural Networks and Neurogenetic Systems 235 

triplet (X,Y,F), where: X is a set of independent variables measured over consecutive 
discrete time moments t; Y is the set of dependent output variables, and F is the asso-
ciation function between whole segments (‘chunks’) of the input data, each sampled 
in a time window dt, and the output variables belonging to Y:    

F:  X(dt) -> Y, where: X(t) =  (x1(t),x2(t),…,xn(t)), t=1,2,…;            (1) 

It is important for a computational model to capture and learn whole spatio- and spec-
tro-temporal patterns from data streams in order to predict most accurately future 
events for new input data. Examples of problems involving SSTD are: brain cognitive 
state evaluation based on spatially distributed EEG electrodes [70, 26, 51, 21, 99, 
100] (fig.1a); fMRI data [102] (fig.1b); moving object recognition from video data 
[23, 60, 25] (fig.15); spoken word recognition based on spectro-temporal audio data 
[93, 107]; evaluating risk of disease, e.g. heart attack [20]; evaluating response of a 
disease to treatment based on clinical and environmental variables, e.g. stroke [6]; 
prognosis of outcome of cancer [62]; modelling the progression of a neuro-
degenerative disease, such as Alzheimer’s Disease [94, 64]; modelling and prognosis 
of the establishment of invasive species in ecology [19, 97]. The prediction of events 
in geology, astronomy, economics and many other areas also depend on accurate 
SSTD modelling.    
 

 
(a) 

 
(b) 

Fig. 1. (a) EEG SSTD recorded with the use of Emotive EEG equipment (from McFarland, 
Anderson, MÜller, Schlögl, Krusienski, 2006); (b) fMRI data (from http://www.fmrib.ox.ac.uk) 

The commonly used models for dealing with temporal information based on Hid-
den Markov Models (HMM) [88] and traditional artificial neural networks (ANN) 
[57] have limited capacity to achieve the integration of complex and long temporal 
spatial/spectral components because they usually either ignore the temporal dimen-
sion or over-simplify its representation. A new trend in machine learning is currently 
emerging and is known as deep machine learning [9, 2-4, 112]. Most of the proposed 
models still learn SSTD by entering single time point frames rather than learning 
whole SSTD patterns. They are also limited in addressing adequately the interaction 
between temporal and spatial components in SSTD. 
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The human brain has the amazing capacity to learn and recall patterns from SSTD 
at different time scales, ranging from milliseconds to years and possibly to millions of 
years (e.g. genetic information, accumulated through evolution). Thus the brain is the 
ultimate inspiration for the development of new machine learning techniques for 
SSTD modelling. Indeed, brain-inspired Spiking Neural Networks (SNN) [32, 33, 68] 
have the potential to learn SSTD by using trains of spikes (binary temporal events) 
transmitted among spatially located synapses and neurons. Both spatial and temporal 
information can be encoded in an SNN as locations of synapses and neurons and time 
of their spiking activity respectively. Spiking neurons send spikes via connections that 
have a complex dynamic behaviour, collectively forming an SSTD memory. Some 
SNN employ specific learning rules such as Spike-Time-Dependent-Plasticity (STDP) 
[103] or Spike Driven Synaptic Plasticity (SDSP) [30]. According to the STDP a 
connection weight between two neurons increases when the pre-synaptic neuron 
spikes before the postsynaptic one. Otherwise, the weight decreases.     

Models of single neurons as well as computational SNN models, along with their 
respective applications, have been already developed [33, 68, 73, 7, 8, 12], including 
evolving connectionist systems and evolving spiking neural networks (eSNN) in par-
ticular, where an SNN learns data incrementally by one-pass propagation of the data 
via creating and merging spiking neurons [61, 115]. In [115] an eSNN is designed to 
capture features and to aggregate them into audio and visual perceptions for the pur-
pose of person authentification. It is based on four levels of feed-forward connected 
layers of spiking neuronal maps, similarly to the way the cortex works when learning 
and recognising images or complex input stimuli [92]. It is an SNN realization of 
some computational models of vision, such as the 5-level HMAX model inspired by 
the information processes in the cortex [92].    

However, these models are designed for (static) object recognition (e.g. a picture 
of a cat), but not for moving object recognition (e.g. a cat jumping to catch a mouse). 
If these models are to be used for SSTD, they will still process SSTD as a sequence of 
static feature vectors extracted in single time frames. Although an eSNN accumulates 
incoming information carried in each consecutive frame from a pronounced word or a 
video, through the increase of the membrane potential of output spike neurons, they 
do not learn complex spatio/spectro-temporal associations from the data. Most of 
these models are deterministic and do not allow to model complex stochastic SSTD. 

In [63, 10] a computational neuro-genetic model (CNGM) of a single neuron and 
SNN are presented that utilize information about how some proteins and genes affect 
the spiking activities of a neuron, such as fast excitation, fast inhibition, slow excita-
tion, and slow inhibition. An important part of a CNGM is a dynamic gene regulatory 
network (GRN) model of genes/proteins and their interaction over time that affect the 
spiking activity of the neurons in the SNN. Depending on the task, the genes in a 
GRN can represent either biological genes and proteins (for biological applications) 
or some system parameters including probability parameters (for engineering applica-
tions).  Recently some new techniques have been developed that allow the creation of 
new types of computational models, e.g.: probabilistic spiking neuron models [66, 
71]; probabilistic optimization of features and parameters of eSNN [97, 96]; reservoir 
computing [73, 108]; personalized modelling frameworks [58, 59]. This paper  
reviews methods and systems for SSTD that utilize the above and some other con-
temporary SNN techniques along with their applications.  



 Evolving Spiking Neural Networks and Neurogenetic Systems 237 

2 Single Spiking Neuron Models 

2.1 A Biological Neuron 

A single biological neuron and the associated synapses is a complex information 
processing machine, that involves short term information processing, long term in-
formation storage, and evolutionary information stored as genes in the nucleus of the 
neuron (fig.2).   

 

Fig. 2. A single biological neuron with the associated synapses is a complex information 
processing machine (from Wikipedia) 

2.2 Single Neuron Models 

Some of the-state-of-the-art models of a spiking neuron include: early models by 
Hodgkin and Huxley [41] 1952; more recent models by Maas, Gerstner, Kistler, Izhi-
kevich and others, e.g.: Spike Response Models (SRM) [33, 68]; Integrate-and-Fire 
Model (IFM) [33, 68]; Izhikevich models [52-55], adaptive IFM, and others. 

The most popular for both biological modelling and engineering applications is the 
IFM. The IFM has been realised on software-hardware platforms for the exploration 
of patterns of activities in large scale SNN under different conditions and for different 
applications. Several large scale architectures of SNN using IFM have been devel-
oped for modelling brain cognitive functions and engineering applications. Fig. 3a 
and b illustrate the structure and the functionality of the Leaky IFM (LIFM) respec-
tively. The neuronal post synaptic potential (PSP), also called membrane potential 
u(t), increases with every input spike at a time t multiplied to the synaptic efficacy 
(strength) until it reaches a threshold. After that, an output spike is emitted and the 
membrane potential is reset to an initial state (e.g. 0). Between spikes, the membrane 
potential leaks, which is defined by a parameter.    

An important part of a model of a neuron is the model of the synapses. Most of the 
neuronal models assume scalar synaptic efficacy parameters that are subject to learn-
ing, either on-line or off-line (batch mode). There are models of dynamics synapses 
(e.g. [67, 71, 72]), where the synaptic efficacy depends on synaptic parameters that 
change over time, representing both long term memory (the final efficacy after learn-
ing) and short term memory – the changes of the   synaptic efficacy over a shorter 
time period not only during learning, but during recall as well.    
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One generalization of the LIFM and the dynamic synaptic models is the probabilis-
tic model of a neuron [66] as shown in fig.4a, which is also a biologically plausible 
model [45, 68, 71]. The state of a spiking neuron ni is described by the sum PSPi(t) of 
the inputs received from all m synapses. When the PSPi(t) reaches a firing threshold 
ϑi(t), neuron ni fires, i.e. it emits a spike. Connection weights (wj,i, j=1,2,...,m) asso-
ciated with the synapses are determined during the learning phase using a learning 
rule. In addition to the connection weights wj,i(t), the probabilistic spiking neuron 
model has the following three probabilistic parameters:        

-  A probability pcj,i(t) that a spike emitted by neuron nj will reach neuron ni at a 
time moment t  through the connection between nj and ni. If pcj,i(t)=0, no con-
nection and no spike propagation exist between neurons nj and ni.  If pcj,i(t) = 1 
the probability for propagation of spikes is 100%.    

-  A probability psj,i(t) for  the synapse sj,i to contribute to the PSPi(t) after it has 
received a spike from neuron nj.  

-  A probability pi(t) for the neuron ni to emit an output spike at time t once the to-
tal PSPi (t) has reached a value above the PSP threshold (a noisy threshold).  

The total PSPi(t) of the probabilistic spiking neuron ni is now calculated using the 
following formula [66]: 

PSPi(t) =   ∑    (∑ejf1(pcj,i(t-p))f2(psj,i(t-p))wj,i(t)+η(t-t0))           (2) 
                         p=t0,.,t   j=1,..,m         

where:  ej is 1, if a spike has been emitted from neuron nj, and 0 otherwise; f1(pcj,i(t)) 
is 1 with a probability pcji(t), and 0 otherwise;  f2(psj,i(t)) is 1 with a probability psj,i(t), 
and 0 otherwise; t0 is the time of the last spike emitted by ni; η(t-t0) is an additional 
term representing decay in the PSPi. As a special case, when all or some of the proba-
bility parameters are fixed to “1”, the above probabilistic model will be simplified and 
will resemble the well known IFM. A similar formula will be used when a leaky IFM 
is used as a fundamental model, where a time decay parameter is introduced.   

 
Fig. 3. (a) Example of a LIFM. (b) Input spikes, output spikes and PSP dynamics of a LIFM.  
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Fig. 4. (a) A simple probabilistic spiking neuron model (from [66]); (b) Different types of noisy 
thresholds have different effects on the output spikes (from [99, 98])   

It has been demonstrated that SNN that utilise the probabilistic neuronal model can 
learn better SSTD than traditional SNN with simple IFM, especially in a nosy environ-
ment [98, 83]. The effect of each of the above three probabilistic parameters on the 
ability of a SNN to process noisy and stochastic information was studied in [98]. Fig. 4b 
presents the effect of different types of nosy thresholds on the neuronal spiking activity. 

2.3 A Neurogenetic Model of a Neuron 

A neurogenetic model of a neuron is proposed in [63] and studied in [10].  It utilises 
information about how some proteins and genes affect the spiking activities of a neu-
ron such as fast excitation, fast inhibition, slow excitation, and slow inhibition. Table 
1 shows some of the proteins in a neuron and their relation to different spiking activi-
ties. For a real case application, apart from the GABAB receptor some other me-
tabotropic and other receptors could be also included. This information is used to 
calculate the contribution of each of the different synapses, connected to a neuron ni, 
to its post synaptic potential PSPi(t):   
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where: 
synapse

risedecay /τ  are time constants representing the rise and fall of an individual 
synaptic PSP; A is the PSP's amplitude; εij

synapse represents the type of activity of the 
synapse between neuron j and neuron i that can be measured and modelled separately 
for a fast excitation, fast inhibition, slow excitation, and slow inhibition (it is affected 
by different genes/proteins). External inputs can also be added to model background 
noise, background oscillations or environmental information.  
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Table 1. Neuronal action potential parameters and related proteins and ion channels in the 
computational neuro-genetic model of a spiking neuron: AMPAR - (amino- methylisoxazole- 
propionic acid) AMPA receptor; NMDR - (N-methyl-D-aspartate acid) NMDA receptor;  
GABAAR - (gamma-aminobutyric acid) GABAA receptor, GABABR - GABAB receptor; SCN  
-  sodium voltage-gated channel, KCN - kalium (potassium) voltage-gated channel; CLC - 
chloride channel (from Benuskova and Kasabov, 2007) 

 

Different types of action potential  
of a spiking neuron used as parameters  
for its computational model  

Related neurotransmitters and ion 
channels   

Fast excitation PSP AMPAR 
Slow excitation PSP NMDAR 
Fast inhibition PSP GABAAR 
Slow inhibition PSP 
Modulation of PSP 

GABABR 
mGluR 

Firing threshold Ion channels SCN, KCN, CLC 
  

 
An important part of the model is a dynamic gene/protein regulatory network 

(GRN) model of the dynamic interactions between genes/proteins over time that af-
fect the spiking activity of the neuron. Although biologically plausible, a GRN model 
is only a highly simplified general model that does not necessarily take into account 
the exact chemical and molecular interactions. A GRN model is defined by:  

(a) A set of genes/proteins, G= (g1,g2,…, gk);  
(b) An initial state of the level of expression of the genes/proteins G(t=0); 
(c) An initial state of a connection matrix L = (L11,…, Lkk), where each element Lij 

defines the known level of interaction (if  any) between genes/proteins gj and gi;   
(d) Activation functions fi  for each gene/protein gi from G. This function defines the 

gene/protein  expression value at time (t+1) depending on the current values G(t), 
L(t) and some external information E(t):  

                  gi(t+1)= fi (G(t), L(t), E(t))                            (4) 

3 Learning and Memory in a Spiking Neuron 

3.1 General Classification  

A learning process has an effect on the synaptic efficacy of the synapses connected to 
a spiking neuron and on the information that is memorized. Memory can be: 

- Short-term, represented as a changing PSP and temporarily changing synaptic 
efficacy; 

- Long-term, represented as a stable establishment of the synaptic efficacy; 
- Genetic (evolutionary), represented as a change in the genetic code and the gene/ 

protein expression level as a result of the above short-term and long term memory 
changes and evolutionary processes.      
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Learning in SNN can be: 

- Unsupervised -  there is no desired output signal provided; 
-  Supervised – a desired output signal is provided; 
- Semi-supervised. 

Different tasks can be learned by a neuron, e.g: 

 -   Classification; 
 -   Input-output spike pattern association.   

Several biologically plausible learning rules have been introduced so far, depending 
on the type of the information presentation: 

- Rate-order learning, that is based on the average spiking activity of a neuron over 
time [18, 34, 43];   

- Temporal learning, that is based on precise spike times [44, 104, 106, 13, 42];  
- Rank-order learning, that takes into account the order of spikes across all synapses 

connected to a neuron [105, 106].   

Rate-order information representation is typical for cognitive information processing 
[18]. Temporal spike learning is observed in the auditory [93], the visual [11] and the 
motor control information processing of the brain [13, 90]. Its use in neuro-prosthetics 
is essential, along with applications for a fast, real-time recognition and control of 
sequence of related processes [14]. Temporal coding accounts for the precise time of 
spikes and has been utilised in several learning rules, most popular being Spike-Time 
Dependent Plasticity (STDP) [103, 69] and SDSP [30, 14]. Temporal coding of in-
formation in SNN makes use of the exact time of spikes (e.g. in milliseconds). Every 
spike matters and its time matters too.  

3.2 The STDP Learning Rule 

The STDP learning rule uses Hebbian plasticity [39] in the form of long-term poten-
tiation (LTP) and depression (LTD) [103, 69]. Efficacy of synapses is strengthened or 
weakened based on the timing of post-synaptic action potential in relation to the pre-
synaptic spike (example is given in fig.5a).  If the difference in the spike time be-
tween the pre-synaptic and post-synaptic neurons is negative (pre-synaptic neuron 
spikes first) than the connection weight between the two neurons increases, otherwise 
it decreases. Through STDP, connected neurons learn consecutive temporal  
associations from data. Pre-synaptic activity that precedes post-synaptic firing can 
induce long-term potentiation (LTP), reversing this temporal order causes long-term 
depression (LTD).  
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3.3  Spike Driven Synaptic Plasticity (SDSP)  

The SDSP is an unsupervised learning method [30, 14], a modification of the STDP, 
that directs the change of the synaptic plasticity Vw0 of a synapse w0 depending on the 
time of spiking of the pre-synaptic neuron and the post-synaptic neuron. Vw0 increases 
or decreases, depending on the relative timing of the pre- and post-synaptic spikes.  

If a pre-synaptic spike arrives at the synaptic terminal before a postsynaptic spike 
within a critical time window, the synaptic efficacy is increased (potentiation). If the 
post-synaptic spike is emitted just before the pre-synaptic spike, synaptic efficacy is 
decreased (depression). This change in synaptic efficacy can be expressed as: 
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where: spktΔ is the pre- and post-synaptic spike time window. 

The SDSP rule can be used to implement a supervised learning algorithm, when a 
teacher signal, that copies the desired output spiking sequence, is entered along with 
the training spike pattern, but without any change of the weights of the teacher input.     

The SDSP model is implemented as an VLSI analogue chip [49]. The silicon syn-
apses comprise bistability circuits for driving a synaptic weight to one of two possible 
analogue values (either potentiated or depressed). These circuits drive the synaptic-
weight voltage with a current that is superimposed on that generated by the STDP and 
which can be either positive or negative. If, on short time scales, the synaptic weight 
is increased above a set threshold by the network activity via the STDP learning me-
chanism, the bi-stability circuits generate a constant weak positive current. In the 
absence of activity (and hence learning) this current will drive the weight toward its 
potentiated state. If the STDP decreases the synaptic weight below the threshold, the 
bi-stability circuits will generate a negative current that, in the absence of spiking 
activity, will actively drive the weight toward the analogue value, encoding its de-
pressed state. The STDP and bi-stability circuits facilitate the implementation of both 
long-term and short term memory.  

3.4 Rank-Order Learning  

The rank-order learning rule uses important information from the input spike trains – 
the rank of the first incoming spike on each synapse (fig.5b). It establishes a priority 
of inputs (synapses) based on the order of the spike arrival on these synapses for a 
particular pattern, which is a phenomenon observed in biological systems as well as 
an important information processing concept for some STPR problems, such as com-
puter vision and control [105, 106]. 
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(a)  (b)  

Fig. 5. a,b: (a) An example of synaptic change in a STDP learning neuron [103]; (b) Rank-
order LIF  neuron  

This learning makes use of the extra information of spike (event) order. It has sev-
eral advantages when used in SNN, mainly: fast learning (as it uses the extra informa-
tion of the order of the incoming spikes) and asynchronous data entry (synaptic inputs 
are accumulated into the neuronal membrane potential in an asynchronous way). The 
learning is most appropriate for AER input data streams [23] as the events and their 
addresses are entered into the SNN ‘one by one’, in the order of their happening. 

The postsynaptic potential of a neuron i at a time t is calculated as: 

 
                              (7)

  

where: mod  is a modulation factor; j is the index for the incoming spike at synapse 
j,i and wj,i is the corresponding synaptic weight; order(j) represents the order (the 
rank) of the spike at the synapse j,i among all spikes arriving from all m synapses to 
the neuron i. The order(j) has a value 0 for the first spike and increases according to 
the input spike order. An output spike is generated by neuron i if the PSP (i,t) be-
comes higher than a threshold PSPTh (i). 

During the training process, for each training input pattern (sample, example) the 
connection weights are calculated based on the order of the incoming spikes [105]:  

∆wj,i (t)= mod order (j,i (t))                                 (8)        

3.5 Combined Rank-Order and Temporal Learning  

In [25] a method for a combined rank-order and temporal (e.g. SDSP) learning is 
proposed and tested on benchmark data. The initial value of a synaptic weight is set 
according to the rank-order learning based on the first incoming spike on this synapse. 
The weight is further modified to accommodate following spikes on this synapse with 
the use of a temporal learning rule – SDSP. 

4 STPR in a Single Neuron 

In contrast to the distributed representation theory and to the widely popular view that 
a single neuron cannot do much, some recent results showed that a single neuronal 
model can be used for complex STPR.  
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A single LIF neuron, for example, with simple synapses can be trained with the 
STDP unsupervised learning rule to discriminate a repeating pattern of synchronised 
spikes on certain synapses from noise (from: T. Masquelier, R. Guyonneau and S. 
Thorpe, PlosONE, Jan2008) – see fig. 6.  

 
Fig. 6. A single LIF neuron with simple synapses can be trained with the STDP unsupervised 
learning rule to discriminate a repeating pattern of synchronised spikes on certain synapses 
from noise (from: T. Masquelier, R. Guyonneau and S. Thorpe, PlosONE, Jan2008))  

Single neuron models have been introduced for STPR, such as: Temportron [38]; 
Chronotron [28]; ReSuMe [87]; SPAN [76, 77]. Each of them can learn to emit a 
spike or a spike pattern (spike sequence) when a certain STP is recognised. Some of 
them can be used to recognise multiple STP per class and multiple classes [87, 77, 
76].   Fig.7c,d shows the use of a single SPAN neuron for the classification of 5 STP 
belonging to 5 different classes [77]. The accuracy of classification is rightly lower 
for the class 1 (the neuron emits a spike at the very beginning of the input pattern) as 
there is no sufficient input data - fig.7d) [77]. 

(a)  

 
Fig. 7. (a) The SPAN model [77] 
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(b) 

Fig. 7. (b) The Widrow-Hoff Delta learning rule applied to learn to associate an output spike 
sequence to an input STP  [77, 30]  

 

 

Fig. 7. c,d. The use of a single SPAN neuron for the classification of 5 STP belonging to 5 
different classes [77]. The accuracy of classification is rightly lower for the class 1 – spike at 
the very beginning of the input pattern as there is no sufficient input data - fig.7d).  

5 Evolving Spiking Neural Networks 

Despite the ability of a single neuron to conduct STPR, a single neuron has a limited 
power and complex STPR tasks will require multiple spiking neurons.   

One approach is proposed in the evolving spiking neural networks (eSNN) frame-
work  [61, 111]. eSNN evolve their structure and functionality in an on-line manner, 
from incoming information. For every new input pattern, a new neuron is dynamically 
allocated and connected to the input neurons (feature neurons). The neurons  
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connections are established for the neuron to recognise this pattern (or a similar one) 
as a positive example. The neurons represent centres of clusters in the space of the 
synaptic weights. In some implementations similar neurons are merged [61, 115]. 
That makes it possible to achieve a very fast learning in an eSNN (only one pass may 
be necessary), both in a supervised and in an unsupervised mode.  

In [76] multiple SPAN neurons are evolved to achieve a better accuracy of spike 
pattern generation than a single SPAN – fig.8a.     

In [14] the SDSP model from [30] has been successfully used to train and test a 
SNN for 293 character recognition (classes). Each character (a static image) is 
represented as 2000 bit feature vector, and each bit is transferred into spike rates, with 
50Hz spike burst to represent 1 and 0 Hz to represent 0. For each class, 20 different 
training patterns are used and 20 neurons are allocated, one for each pattern (altogeth-
er 5860) (fig.8b) and trained for several hundreds of iterations. 

(a)  
(b)  

Fig. 8. a,b: (a) Multiple SPAN neurons [76]; (b) Multiple SDSP trained neurons [14]   

A general framework of eSNN for STPR is shown in fig.9. It consists of the fol-
lowing blocks: 

- Input data encoding block; 
- Machine learning block (consisting of several sub-blocks); 
- Output block.     

 
Fig. 9. The eSNN framework for STPR (from: http://ncs.ethz.ch/projects/evospike) 
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In the input block continuous value input variables are transformed into spikes. 
Different approaches can be used:   

-  population rank coding [13] – fig.10a;   
-  thresholding the input value, so that a spike is generated if the input value (e.g. 

pixel intensity) is above a threshold;  
-  Address Event Representation (AER) -  thresholding the difference between 

two consecutive values of the same variable over time as it is in the artificial 
cochlea [107] and artificial retina devices [23] – fig.10b.  

The input information is entered either on-line (for on-line, real time applications) or 
as a batch data. The time of the input data is in principal different from the internal 
SNN time of information processing.           

 
(a) 

 
(b) 

Fig. 10. a,b: (a) Population rank order coding of input information; (b) Address Event Repre-
sentations (AER) of the input information [23]    

Long and complex SSTD cannot be learned in simple one-layer neuronal structures 
as the examples in fig.8a,b. They require neuronal ‘buffers’ as shown in fig.11a. In 
[82] a 3D buffer was used to store spatio-temporal ‘chunks’ of input data before the 
data is classified. In this case the size of the chunk (both in space and time) is fixed by 
the size of the reservoir. There are no connections between the layers in the buffer. 
Still, the system outperforms traditional classification techniques as it is demonstrated 
on sign language recognition, where eSNN classifier was applied [61, 115].  Reser-
voir computing [73, 108] has already become a popular approach for SSTD modelling 
and pattern recognition.  In the classical view a ‘reservoir’ is a homogeneous, passive 
3D structure of probabilistically connected and fixed neurons that in principle has no 
learning and memory, neither it has an interpretable structure – fig.11b. A reservoir, 
such as a Liquid State Machine (LSM) [73, 37], usually uses small world recurrent 
connections that do not facilitate capturing explicit spatial and temporal components 
from the SSTD in their relationship, which is the main goal of learning SSTD. De-
spite difficulties with the LSM reservoirs, it was shown on several SSTD problems 
that they produce better results than using a simple classifier [95, 73, 99, 60]. Some 
publications demonstrated that probabilistic neurons are suitable for reservoir compu-
ting especially in a noisy environment [98, 83].   In [81] an improved accuracy of 
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LSM reservoir structure on pattern classification of hypothetical tasks is achieved 
when STDP learning was introduced into the reservoir. The learning is based on com-
paring the liquid states for different classes and adjusting the connection weights so 
that same class inputs have closer connection weights. The method is illustrated on 
the phone recognition task of the TIMIT data base phonemes – spectro-temporal 
problem. 13 MSCC are turned into trains of spikes. The metric of separation between 
liquid states representing different classes is similar to the Fisher’s t-test [27].  

After a presentation of input data example (or a ‘chunk’ of data) the state of the 
SNN reservoir S(t) is evaluated in an output module and used for classification pur-
poses (both during training and recall phase). Different methods can be applied to 
capture this state:  

- Spike rate activity of all neurons at a certain time window: The state of the re-
servoir is represented as a vector of n elements (n is the number of neurons in 
the reservoir), each element representing the spiking probability of the neuron 
within a time window. Consecutive vectors are passed to train/recall an output 
classifier.  

-  Spike rate activity of spatio-temporal clusters C1, C2, … Ck of close  (both in 
space and time) neurons: The state SCi(t) of each cluster Ci is represented by a 
single number, reflecting on the spiking activity of the neurons in the cluster in a 
defined time window (this is the internal SNN time, usually measured in 
‘msec’). This is interpreted as the current spiking probability of the cluster. The 
states of all clusters define the current reservoir state S(t). In the output function, 
the cluster states SCi(t) are used differently for different tasks.  

-  Continuous function representation of spike trains: In contrast to the above two 
methods that use spike rates to evaluate the spiking activity of a neuron or a 
neuronal cluster, here the train of spikes from each neuron within a time win-
dow, or a neuronal cluster, is transferred into a continuous value temporal func-
tion using a kernel (e.g. α-kernel). These functions can be compared and a con-
tinuous value error measured.  

In [95] a comparative analysis of the three methods above is presented on a case study 
of Brazilian sign language gesture recognition (see fig.18) using a LSM as a reservoir.   

    

 
         (a)                                       (b) 

Fig. 11. a,b. (a) An eSNN architecture for STPR using a reservoir; (b) The structure and con-
nectivity of a reservoir 
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Different adaptive classifiers can be explored for the classification of the reservoir 
state into one of the output classes, including: statistical techniques, e.g. regression 
techniques; MLP; eSNN; nearest-neighbour techniques; incremental LDA [85]. State 
vector transformation can be done with the use of adaptive incremental transformation 
functions, such as incremental PCA [84].      

6 Computational Neurogenetic Models (CNGM) 

Here, the neurogenetic model of a neuron [63, 10] is utilized. A CNGM framework is 
shown in fig.12 [64].   

 
Fig. 12. A schematic diagram of a CNGM framework, consisting of: input encoding module; 
output function for SNN state evaluation; output classifier; GRN (optional module). The 
framework can be used to create concrete models for STPR or data modelling (from [64]).    

The CNGM framework comprises a set of methods and algorithms that support the 
development of computational models, each of them characterized by:   

- Two-tire, consisting of an eSNN at the higher level and a gene regulatory network 
(GRN) at the lower level, each functioning at a different time-scale and continuous-
ly interacting between each other; 

- Optional use of probabilistic spiking neurons, thus forming an epSNN; 
- Parameters in the epSNN model are defined by genes/proteins from the GRN; 
- Can capture in its internal representation both spatial and temporal characteristics 

from SSTD streams;  
- The structure and the functionality of the model evolve in time from incoming data; 
- Both unsupervised and supervised learning algorithms can be applied in an on-line 

or in a batch mode. 
- A concrete model would have a specific structure and a set of algorithms depending 

on the problem and the application conditions, e.g.: classification of SSTD; model-
ling of brain data.   
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The framework from fig.12 supports the creation of a multi-modular integrated sys-
tem, where different modules, consisting of different neuronal types and genetic pa-
rameters, represent different functions (e.g.: vision; sensory information processing; 
sound recognition; motor-control) and the whole system works in an integrated mode.      

The neurogenetic model from fig.12 uses as a main principle the analogy with bio-
logical facts about the relationship between spiking activity and gene/protein dynam-
ics in order to control the learning and spiking parameters in a SNN when SSTD is 
learned. Biological support of this can be found in numerous publications (e.g. [10, 
40, 117, 118]).  

The Allen Human Brain Atlas (www.brain-map.org) of the Allen Institute for 
Brain Science (www.alleninstitute.org) has shown that at least 82% of the human 
genes are expressed in the brain. For 1000 anatomical sites of the brains of two indi-
viduals 100 mln data points are collected that indicate gene expressions of each of the 
genes and underlies the biochemistry of the sites.  

In [18] it is suggested that both the firing rate (rate coding) and spike timing as spa-
tiotemporal patterns (rank order and spatial  pattern coding) play a role in fast and 
slow, dynamic and adaptive sensorimotor responses, controlled by the cerebellar nuc-
lei. Spatio-temporal patterns of population of Purkinji cells are shaped by activities in 
the molecular layer of interneurons.  In [40] it is demonstrated that the temporal spik-
ing dynamics depend on the spatial structure of the neural system (e.g. different for 
the hippocampus and the cerebellum). In the hippocampus the connections are scale 
free, e.g. there are hub neurons, while in the cerebellum the connections are regular. 
The spatial structure depends on genetic pre-determination and on the gene dynamics. 
Functional connectivity develops in parallel with structural connectivity during brain 
maturation. A growth-elimination process (synapses are created and eliminated) de-
pend on gene expression [40], e.g. glutamatergic neurons issued from the same pro-
genitors tend to wire together and form ensembles, also for the cortical GABAergic 
interneuron population. Connections between early developed neurons (mature net-
works) are more stable and reliable when transferring spikes than the connections 
between newly created neurons (thus the probability of spike transfer). Postsynaptic 
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic 
transmissions and are crucial for many aspects of brain function, including learning, 
memory and cognition [10, 31].  

[65] shows the dramatic effect of a change of single gene, that regulates the τ pa-
rameter of the neurons, on the spiking activity of the whole SNN of 1000 neurons – 
see fig.13.  

The spiking activity of a neuron may affect as a feedback the expressions of genes 
[5]. As pointed in [118] on a longer time scales of minutes and hours the function of 
neurons may cause the changes of the expression of hundreds of genes transcribed 
into mRNAs and also in microRNAs, which makes the short-term, the long-term and 
the genetic memories of a neuron linked together in a global memory of the neuron 
and further - of the whole neural system. 

A major problem with the CNGM from fig.12 is how to optimize the numerous pa-
rameters of the model. One solution could be using evolutionary computation, such as 
PSO [75, 83] and the recently proposed quantum inspired evolutionary computation 
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techniques [22, 97, 96]. The latter can deal with a very large dimensional space as 
each quantum-bit chromosome represents the whole space, each point to certain prob-
ability. Such algorithms are faster and lead to a close solution to the global optimum 
in a very short time. In one approach it may be reasonable to use same parameter 
values (same GRN) for all neurons in the SNN or for each of different types of neu-
rons (cells) that will results in a significant reduction of the parameters to be opti-
mized. This can be interpreted as ‘average’ parameter value for the neurons of the 
same type. This approach corresponds to the biological notion to use one value (aver-
age) of a gene/protein expression for millions of cells in bioinformatics.   

Another approach to define the parameters of the probabilistic spiking neurons,  
especially when used in biological studies, is to use prior knowledge about the associ-
ation of spiking parameters with relevant genes/proteins (neuro-transmitter, neuro-
receptor, ion channel, neuro-modulator) as described in [64]. Combination of the two 
approaches above is also possible. 

 

Fig. 13. A GRN interacting with a SNN reservoir of 1000 neurons. The GRN controls a single 
parameter, i.e. the τ parameter of all 1000 LIF neurons, over a period of five seconds. The top 
diagram shows the evolution of   τ. The response of the SNN is shown as a raster plot of spike 
activity.  A black point in this diagram indicates a spike of a specific neuron at a specific time 
in the simulation. The bottom diagram presents the evolution of the membrane potential of a 
single neuron from the network (green curve) along with its firing threshold ϑ (red curve). 
Output spikes of the neuron are indicated as black vertical lines in the same diagram  
(from [65]).  

7 SNN  Software and Hardware Implementations to Support 
STPR 

Software and hardware realisations of SNN are already available to support various 
applications of SNN for STPR. Among the most popular software/hardware systems 
are [24, 16, 29]: 

- jAER (http://jaer.wiki.sourceforge.net) [23]; 
- Software simulators, such as Brian  [16], NEST, NeMo [79],etc; 
- Silicon retina camera [23]; 
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- Silicon cochlea [107]; 
- SNN hardware realisation of LIFM and SDSP [47-50]; 
- The SpiNNaker hardware/software environment [89, 116]; 
- FPGA implementations of SNN [56]; 
- The IBM LIF SNN chip, recently announced. 

Fig.14 shows a hypothetical engineering system using some of the above tools (from 
[47, 25]).     

8 Current and Future Applications of eSNN and CNGM  
for STPR  

Numerous are the applications of eSNN for STPR. Here only few of them are listed: 

- Moving object recognition (fig. 15) [23, 60]; 
- EEG data modelling and pattern recognition [70, 1, 51, 21, 26, 99, 35, 36] directed 

to practical applications, such as: BCI [51], classification of  epilepsy [35, 36, 
109] - (fig.16); 

- Robot control through EEG signals [86] (fig.17) and robot navigation [80];  
- Sign language gesture recognition (e.g. the Brazilian sign language – fig.18) [95]; 
- Risk of event evaluation, e.g. prognosis of establishment of invasive species [97] – 

fig.19; stroke occurrence [6], etc.  
- Cognitive and emotional robotics [8, 64]; 
- Neuro-rehabilitation robots [110];   
- Modelling finite automata [17, 78]; 
- Knowledge discovery from SSTD [101]; 
- Neuro-genetic robotics [74];  
- Modelling the progression or the response to treatment of neurodegenerative dis-

eases, such as Alzheimer’s Disease [94, 64] – fig.20. The analysis of the obtained 
GRN model in this case could enable the discovery of unknown interactions be-
tween genes/proteins related to a brain disease progression and how these interac-
tions can be modified to achieve a desirable effect. 

- Modelling financial and economic problems (neuro-economics) where at a ‘lower’ 
level the GRN represents the dynamic interaction between time series variables 
(e.g. stock index values, exchange rates, unemployment, GDP, prize of oil), while 
the ‘higher’ level epSNN states represents the state of the economy or the system 
under study. The states can be further classified into pre-define classes (e.g. buy, 
hold, sell, invest, likely bankruptcy) [113];         

-  Personalized modelling, which is concerned with the creation of a single model 
for an individual input data [58, 59, 62]. Here as an individual data a whole SSTD 
pattern is taken rather than a single vector.         
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Fig. 14. A hypothetical neuromorphic SNN application system (from http://ncs.ethz.ch) 

 

 
Fig. 15. Moving object recognition with the use of AER [23] 

 
 
 

 

Fig. 16. EEG recognition system Fig. 17. Robot control and navigation 
through EEG signals 
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Fig. 18. A single sample for each of the 15 classes of the  LIngua BRAsileira de Sinais 
(LIBRAS) - the official Brazilian sign language  is shown. The colour indicates the time frame 
of a given data point (black/white corresponds to earlier/later time points) [95]. 

 

Fig. 19. A prognostic system for ecological modelling 
[97] 

Fig. 20. Fig.20.Hierarchical 
CNGM [64] 
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Uncovering the Neural Code Using a Rat Model
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Abstract. How neuronal firing activities encode meaningful behavior is an ul-
timate challenge to neuroscientists. To make the problem tractable, we use a
rat model to elucidate how an ensemble of single neuron firing events leads to
conscious, goal-directed movement and control. This study discusses findings
based on single unit, multi-channel simultaneous recordings from rats frontal ar-
eas while they learned to perform a decision and control task. To study neural
firing activities, first and foremost we needed to identify single unit firing ac-
tion potentials, or perform spike sorting prior to any analysis on the ensemble
of neural activities. After that, we studied cortical neural firing rates to charac-
terize their changes as rats learned a directional paddle control task. Single units
from the rat’s frontal areas were inspected for their possible encoding mechanism
of directional and sequential movement parameters. Our results entail both high
level statistical snapshots of the neural data and more detailed neuronal roles in
relation to rat’s learning control behavior.

1 Introduction

The neural events leading to a voluntary movement, or an intentional purposeful move-
ment, may be characterized by three complex processes: target identification, plan of
action, and execution. Several distinct regions of the cerebral cortex are believed to
be involved in governing these processes, including the posterior parietal cortex, the
premotor areas (PM) of the frontal cortex, and the primary motor cortex (M1) [Kan-
del et al. (2000)]. Adaptation represented in neural firing events has been observed in
motor cortical areas which correlate with improved behavioral parameters [Kargo et
al. (2004)]. Premotor and parietal areas appear to participate in a fundamental event
necessary to purposeful movement: the translation of sensory inputs into motor coor-
dinates needed to specify precise movements [Andersen et al. (2004)]. On the other
hand, there has been growing evidence of M1’s involvement in sequential tasks using a
monkey model [Ben-Shaul et al. (2004); Carpenter et al. (2004); Kakei et al. (1999); Li
et al. (1999); Lu et al. (1999); Shima et al. (2000)]. The study in [Shima et al. (2000)]
showed that supplementary (SMA) played roles in task execution but presupplemen-
tary (pre-SMA) area was responsible for learning new aspects of a task in memorized
tasks. In a rat model, existing studies were based on short-duration behavioral tasks
(e.g. 20ms). However, there is little anatomical or functional evidence that rats have a
well delineated pre-SMA.

Even though the frontal areas of a rat is not as elaborate as a primate, it is however
well observed, including our own data, that rats do have the capability to derive abstract
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control strategy via associative learning. Therefore, in this study, we aim to perform
a functional study to examine neural coding in the primary motor cortex (M1) and
the premotor cortex (PM) during a rat’s natural movement in response to a cognitive
control task that requires multiple presses at a control paddle. This study centers on
investigating the following three aspects. First, neural adaptation may be reflected in
the mean firing rate of a motor cortical neural ensemble during learning of a cognitive
control task. Second, a larger percentage of PM neurons may be involved in interpreting
sensory stimuli and motor planning than M1 neurons. Third, M1 neuronal responses
vary according to the movement context in a multiple press task.

In the following, we first introduce an automated action potential detection algorithm
which is an important first step to perform any analysis on single unit based analysis of
neuronal firing activities. Spike rate based analyses will then be carried out using the
sorted single unit spikes. The aims of the analyses are to characterize the rat’s behavioral
learning parameters by providing a neural substrate based on simultaneously recorded
multiple neurons in the rat’s motor cortical areas.

2 Single Unit Recording from Behaving Rats

In this section we provide details of our experimental set up, from behavioral training
to simultaneous electrophysiolocal recording of single unit neural activities from an
ensemble of neurons in the rat’s motor cortical areas.

2.1 Animal Handling and Training Procedures

All procedures involving animals were conducted according to the National Guidelines
on Animal Experiments and were approved by the Arizona State University Institutional
Animal Care and Use Committee.

Recording electrode implant surgeries were performed when the rats reached a weight
of 390-500 grams and they were proficient (with an accuracy of 90% or higher) at press-
ing the control paddle inside the Skinner training chamber for at least 3 consecutive
days. Once recording began, rats were food restricted to a daily diet of 12-15 grams
of food pellets including the amount of reward collected during the recording session.
Food restricted rats were monitored for their weights to be above 80% of the average
weight at their respective age.

2.2 Surgical Procedures

Figure 1(a) illustrates the craniotomy for the electrode array to be placed. Additionally,
3 anchor holes were drilled between bregma and lambda: 2 in the right hemisphere and
1 in the left hemisphere, for mounting bone screws which serve as signal ground and
also provide fixation to secure the head cap. A 16 channel microwire array (Omnetics or
ZIF-Clip, TDT Corporate, Florida) was then lowered slowly into the craniotomy while
neural signals were monitored in real time. The target depth was about 1.8-2.3 mm from
dura aiming for layer 5 pyramidal neurons. The final depth was determined by optimal
spiking activities on majority of the recording channels.
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2.3 Electrophysiology

Neural waveforms were recorded through 16-channel microwire arrays connected with
an omnetics headstage or a Zif-clip headstage by TDT (Medusa Connector LP16CH or
ZIF-Clip ZC16). Analog waveforms passed through a unity gain preamplifier (Medusa
PreAmp RA16PA, TDT Corporate), which also provides a band-pass filter (2.2 Hz to
7.5 kHz). The waveforms were digitally sampled at 24414 Hz and then sent over a
fiber optic link to a DSP device, where they were filtered (band-pass 300 Hz to 3
kHz), and processed (cross channel denoising) in real-time (RX5/RX7, TDT Corpo-
rate). The stored waveforms were spike sorted offline into single unit action potentials
using a multi-scale correlation of wavelet coefficients (MCWC) spike detection algo-
rithm [Yang et al. (2011)] followed by a template matching sorting procedure. Events
in the behavioral task such as cue on, paddle release, paddle press and food reward were
registered simultaneously and time stamped by the TDT system.

2.4 Behavioral Task

Rats were freely moving inside a Skinner box when not performing the designed task.
The task is self-paced, which is for the rat to associate light cues with control paddles.
The chamber is dark with a 0.5 watt infrared light illumination for video recording.
Figure 1(b) is a top view of the recording chamber. When working on the task, the rat
faced the front panel of the chamber where 5 red LED lights were placed. At most one
cue light was lit at any given time. The 3 control paddles were to be used by the rat to

(a) Implant site: a 16-channel array
was placed in the frontal area of the
rat with the center at 3 mm anterior
and 2 mm lateral from bregma. Num-
bered circles indicate electrode posi-
tions. Black area is the primary cortex,
and white area is the secondary motor
cortex, according to the rat brain atlas.

(b) The recording chamber. The rat
pressed the center paddle to signal the
start of a new trial. As one of the cue
light appeared, the rat had to make
a decision of pressing either the left
or right control paddle to control the
movement of the light. Each left/right
press of the control paddle moved the
light in the right/left direction by one
step.

Fig. 1. Experimental setup
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complete the association task. A center control paddle was placed for the rat to press as
a signal of a new trial start. The two control paddles on each side of the central paddle
were for controlling the movement of the light positions. A food pellet dispenser was
located in the center paddle for rewarding the rat. The goal of the task was to move
the light position to the center by pressing the control paddles and remain there for 1
second. The rat was not able to start a new trial until a lapse of 8 seconds for successful
trials and 15 seconds for failed or timed-out trials, respectively. Upon pressing of the
center paddle by the rat to start a new trial, one of the 5 cue lights was lit. Two seconds
later, both control paddles were released. Right paddle moved the light to the left by
one light position and similarly for the right side. The rats were naive initially and they
learned the task by trial and error. If they managed to keep the light remain in the center
position for 1 second, they would be rewarded with food pellets. If the rats did not
respond by pressing any paddle within the time allowance of 1 second or if the light
moved out of range, the trial was deemed a failure.

3 Spike Detection Based on Wavelet Transform

Extracellular chronic recordings have been used as important evidence in neuroscien-
tific studies to unveil the fundamental neural network mechanisms in the brain. Spike
detection is the very first step in the analysis of the recorded neural waveforms to de-
cipher useful information and to provide useful signals for brain machine interface ap-
plications. This multiscale correlation of wavelet coefficients (MCWC) is an automated
spike detection algorithm, which leverages a technique from wavelet based image edge
detection. It utilizes the correlation between wavelet coefficients at different sampling
scales to create a robust spike detector. The algorithm has one tuning parameter, which
potentially reduces subjectivity of detection results. Compared with other detection al-
gorithms, the proposed method has a comparable or better detection performance.

3.1 Introduction to Spike Detection

Neural action potentials, also known as nerve impulses or spikes, play an important role
in understanding the central nervous system. In chronic multichannel recordings from
behaving animals, action potentials are obtained by multichannel electrodes implanted
in brain areas of interest. As such, noise from brain tissues, muscle movement, and other
biological and instrumental interferences are inevitable [Musial et al. (2002)]. As the
first step of neuroscientific studies and engineering applications such as brain machine
interfaces, identifying real neural spikes from noisy recordings is essential.

The wavelet transform is a technique for representing a time domain signal by a
set of functions that are scaled and time-translated from a mother wavelet. Its charac-
teristics make it a natural candidate for transient signal representation and thus spike
detection applications. Several spike detection algorithms based on wavelet transforms
have been proposed [Yang et al. (1988),Kim et al. (2003),Hulat et al. (2000),Hulat et al.
(2002),Quiroga et al. (2004),Oweiss et al. (2002a), Oweiss et al. (2002b),Nenadic et al.
(2005), Benitez et al. (2008)].
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It is noticed that simple threshold based detection methods are intuitive in principle
and easy to implement. This is echoed by its popularity including commercial realiza-
tions of the algorithms. However as pointed out in [Wood et al. (2004)], the detection
results are variable and subjective to users, in addition to high false alarm rates. Other
than these direct thresholding of the recorded neural waveforms as a function of time,
the idea of thresholding was also an important part of several other approaches, such
as the threshold applied to wavelet coefficients in [Yang et al. (1988)] and [Kim et al.
(2003)], a higher than usual threshold to gather spikes as the ground truth in [Song et al.
(2006)], the threshold applied to the output of minimum average correlation energy
(MACE) filter in [Dedual et al. (2007)], the threshold for selecting potential neural
spikes in [Hulat et al. (2002)] and [Hulat et al. (2000)], two thresholds used in multi-
resolution generalized likelihood ratio test (MRGLRT) in [Oweiss et al. (2002a)] and
[Oweiss et al. (2002b)], and the threshold used for separating neural spikes from noise
in [Nenadic et al. (2005)]. It is worth pointing out that several algorithms rely on a
Gaussian noise assumption to make an optimal detection statement. On one hand, it
gives users some assurance of optimality, but unfortunately, noise profile is rarely Gaus-
sian in recorded neural waveforms.

The MCWC aims at providing robust detection performance with high detection rate
and low false alarm. The goal is to alleviate subjectivity and variability in detection re-
sults. In doing so, we made use of the observation that a sharp rise of neural waveform
signifying the onset of a neural spike in a 1-D neural signal is similar in characteristic to
an edge in a 2-D image. Therefore, the MCWC algorithm is a wavelet based approach,
inspired by image edge detection. In [Xu et al. (1994)], an edge detection algorithm
makes use of a property in wavelet transform coefficients that the wavelet transform
coefficients of image edges usually have higher magnitudes than the coefficients from
noise. As shown later in this study, the wavelet coefficient magnitudes of neural record-
ings preserve similar properties with a properly selected wavelet function: coefficients
of neural spikes have higher magnitudes than those coefficients of noise.

The MCWC utilizes continuous wavelet transform as that in wavelet detection method
(WDM) [Nenadic et al. (2005)] and [Benitez et al. (2008)], however with different
wavelet functions in the respective implementations. Another major difference between
the two algorithms is that while WDM performs detection at individual wavelet scales
prior to fusing the results from multiple levels for a final spike detection, our approach
fuses wavelet transforms from multiple scales first at each scale level and then perform
a single detection by hypothesis testing. We only introduce one free parameter, which
in turn helps reduce the subjectivity of the algorithm.

3.2 Working Principle of the Multiscale Correlation of Wavelet Coefficients
(MCWC)

We chose wavelet function “coiflets” based on the following considerations. When the
time support of the wavelet function matches the duration of a neural waveform, the
corresponding wavelet transform coefficients become high. But the waveforms of noise
usually do not resemble the wavelet function. Therefore the coefficients from noise
have small or close to zero magnitudes. By inspecting waveforms corresponding to
high wavelet transform coefficients, we can detect neural spikes.
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The MCWC spike detection algorithm is based on continuous wavelet transform. It
takes a multiscale approach by first calculating the wavelet coefficients at each scale,
and correlates (by multiplication) wavelet coefficients from multiple scales, and then
perform a hypothesis test for spike detection. It is motivated by a robust image edge
detection algorithm [Xu et al. (1994)] where in this case, a sharp spike is considered a
1-D edge. What follows is a step by step development of the MCWC algorithm.

3.2.1 Computing Normalized Correlation of Wavelet Coefficients. Consider a
neural waveform x(t). Let J be the width of the observation window of the wave-
form under consideration which is used as the integration interval in the calculation
of wavelet coefficients. And let N be the number of samples in the observation win-
dow J . With scale factor {ai} = {0.5, 0.6, · · · , 1.5ms}, and time translation {bj} =
{0, 1, 2, · · · , N − 1}, we obtain

Tx(ai, bj) =

∫
J

x(t)
1
√
ai
ψ(
t− bj
ai

)dt. (1)

rS(ai, bj) =

S−1∏
k=0

Tx(ai+k, bj). (2)

PrS (ai) =
∑
j∈J

rS(ai, bj)
2, (3)

PTx(ai) =
∑
j∈J

Tx(ai, bj)
2, (4)

r′S(ai, bj) = rS(ai, bj)×

√
PTx(ai)

PrS (ai)
. (5)

Where ψ(t) is wavelet function, Tx(a, b) denotes the wavelet transform of x(t), S is
the number of sampling scales in a continuous wavelet transform.

3.2.2 Spike Detection Using Hypothesis Testing.
H0: x(t) contains no spikes in the small window [t0, t1] belonging to J under consid-
eration (Fig. 2),

H1: x(t) contains a spike at bj in the small window [t0, t1] belonging to J under con-
sideration (Fig. 2).

Specifically, H0 holds, or no spike is detected if∣∣∣∣ r′S(ai, bj)Tx(ai, bj)

∣∣∣∣ ≤ 1 (6)

and H1 holds, or a spike is detected if (7) is satisfied,∣∣∣∣ r′S(ai, bj)Tx(ai, bj)

∣∣∣∣ > 1 (7)

Fig. 3 illustrates the principle of spike detection proposed in this study.
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Fig. 2. The integration window for computing wavelet coefficients and illustration of finding spike
instants: bj , j = 1, 2, · · · , s, represent the instants of neural spike peaks

Let H1 hold inside the small interval [t0, t1] at specific points of bj where there can
possibly be more than one bj’s. Let td be the instant of a spike within [t0, t1] (refer to
Fig. 3). Then a spike is detected at td within [t0, t1] from the following

td = arg max
bj∈[t0,t1]

ai∈{0.5,··· ,1.5}

|Tx(ai, bj)| . (8)

The width of the spike detected at td, τ , is estimated by

τ = argmax
ai∈{0.5,··· ,1.5}

|Tx(ai, td)| . (9)

This effectively implies that no other spikes exist within a distance of τ from td.

3.2.3 Detection Principle: Adaptive Thresholding. We are now ready to demon-
strate that the MCWC detection algorithm actually is an adaptive thresholding method.
The threshold level changes as the signal-to-noise ratio or the noise covariance varies.

First, consider the case of S = 2. Re-write (7) into the following by assuming that
Tx(ai, bj) is non-zero, which is commonly true.

∣∣∣∣Tx(ai, bj)Tx(ai+1, bj)

√√√√√√√√
∑
j∈J

Tx(ai, bj)
2

∑
j∈J

Tx(ai, bj)
2Tx(ai+1, bj)

2

∣∣∣∣ > |Tx(ai, bj)|. (10)

Define Tx(ai, S)|S=2 as in (11),

Tx(ai, S)|S=2 �

∑
j∈J

Tx(ai, bj)
2Tx(ai+1, bj)

2

∑
j∈J

Tx(ai, bj)
2

. (11)



268 C. Yang et al.

Fig. 3. Demonstration of MCWC detection principle: The multiplication of multi-scale wavelet
coefficients enhances the detection of a neural spike. Inequality |r′S(ai, bj)| > |Tx(ai, bj)|S=3

for t ∈ [t0, t1] indicates that hypothesis H1 passes the test in this interval. The detection of a
neural spike at time instant td is declared.

Re-arranging (10) by substituting the newly defined term Tx(ai, S)|S=2, we obtain
the following new form of spike detection criterion,

Tx(ai+1, bj)
2 > Tx(ai, S)|S=2. (12)

Under a similar assumption to that in [Nenadic et al. (2005)] at the ith scale level,
{Tx(ai, bj)} are independent Gaussian random variables and comply with the follow-
ing distributions,
Tx(ai, bj) ∼ N(0, σ2) given H0 holds, which implies that given H0, Tx(ai, bj)

complies with a Gaussian distribution with zero mean and σ2 as its variance.
Tx(ai, bj) ∼ N(μ, σ2) given H1 holds, which implies that given H1, Tx(ai, bj)

complies with a Gaussian distribution with μ as its mean and σ2 as its variance.
Define a weighting coefficient wi as shown below,

wi �
Tx(ai, bj)

2∑
j∈J

Tx(ai, bj)
2
=

Tx(ai, bj)
2/σ2∑

j∈J

[
Tx(ai, bj)

2/σ2
] . (13)

Let P (H0) be the prior probability associated with hypothesis H0 and P (H1) be that
with hypothesis H1. Then for real neural recordings, it is reasonable to assume that
P (H0)  P (H1) since majority of the time course of a neural recording corresponds
with noise [Nenadic et al. (2005)]. Given that H0 holds, then Tx(ai, bj) complies with
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N(0, σ2). Consequently the new variable Tx(ai, bj)2/σ2 complies with the chi-square
distribution with 1 degree of freedom, i.e., Tx(ai, bj)2/σ2 ∼ χ2

1(1). Therefore
E
[
Tx(ai, bj)

2/σ2
]
= 1 remains valid most of the time. It also is approximately true if

H1 holds but the mean μ in Tx(ai, bj) is relatively low. SinceE
[
Tx(ai, bj)

2/σ2
]
≈ 1,

then
∑

j∈J

[
Tx(ai, bj)

2/σ2
]
≈M , where M is the cardinalities of J . Thus the weight

wi ≈ 1/M .
Since Tx(ai, bj) for a given scale may be viewed as an independent Gaussian vari-

able with zero mean most of the time especially when it corresponds with noise, the
maximum likelihood estimate of the variance of the noise sequence {Tx(ai+1, bj)} is
1
M

∑
J Tx(ai+1, bj)

2. To see that, refer to (13) and that wi ≈ 1/M . Therefore the
threshold Tx(ai, S)|S=2 defined in (12) can be viewed as an approximation of the
maximum likelihood estimation of the noise variance since P (H0)  P (H1). When
Tx(ai+1, bj)

2 > Tx(ai, S)|S=2, it implies that the correlation between the neural
waveform and the wavelet is greater than the noise variance, and therefore, a neural
spike is likely to be present, and that H1 is true. For S ≥ 3 case, readers are referred to
[Yang et al. (2011)].

Fig. 4(a) and Fig. 4(b) illustrate how the adaptive threshold values vary as a function
of the SNR or the noise co-variance and the scale level S.

3.3 Detection Performance Evaluation

In this section, we provide detailed performance evaluation on the multiscale correlation
of wavelet coefficient (MCWC) algorithm. While comparisons are conducted for a few
algorithms including direct thresholding, our focus is on comparing MCWC and WDM

(a) Detection thresholds at two S lev-
els when neural signal has a low SNR
or high noise covariance

(b) Detection thresholds at two S lev-
els when neural signal has a high SNR
or low noise covariance

Fig. 4. Illustration of adaptive threshold in MCWC, which varies with SNRs or noise covariances
and S values. From (a) and (b), at a given SNR, when S is high, the threshold levels are high and
vice versa. The SNR in (a) is lower than that in (b), therefore at a given S, the threshold level is
higher when SNR is higher.
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since both are wavelet based, and WDM has been shown outperforming several other
approaches [Nenadic et al. (2005)] and [Santaniello et al. (2008)].

18 artificially generated neural waveforms span 50 seconds, and they are sampled
at 20KHz. Half of the 18 artificial data sets (A1-1 to A1-9) were obtained with 1dB
signal-to-noise ratio (SNR), while the other half (A2-1 to A2-9) with 10dB SNR.

Each artificial neural data set was generated the same way as in [Smith (2006)].
When applying the WDM algorithm, one is required to select a parameter L that

determines the cost ratio between the false alarms and missed detections.

3.3.1 Comparison of Detection Performance among Thresholding, MCWC, and
WDM Using Artificial Neural Data Sets
In this section, we compare detection performances among MCWC, WDM, and thresh-
olding provided in Plexon’s Offline Sorter. Eighteen artificial data sets, A1-1 to A1-9,
and A2-1 to A2-9 are used. The thresholding method used was the “Signal Energy” in
Offline Sorter as described below,

energy(i) =
1

W

i+W/2∑
j=i−W/2

v2(j), (14)

where v(j) is the raw neural recording at time j. W is the window width used in aver-
aging. In this study, W = 7 is used.

To make results comparable, we manually selected the threshold value in Offline
Sorter such that the total number of detected neural spikes was close to that of the
ground truth. The L and S parameters in WDM and MCWC, respectively, were chosen
similarly such that the total number of detected spikes by each algorithm was close
to the ground truth. To remove low frequency noise, the artificial data sets used in
thresholding detection were filtered with a band-pass butterworth filter, which usually
enhances its performance. The pass band is [100, 6000]Hz. However, the data used in
WDM and MCWC were not filtered. The receiver operating characteristics (ROC) as a
measure of detection performance are shown in Fig. 5(a) and Fig. 5(b). Based on the
ROCs, the MCWC outperformed WDM and thresholding at the two tested SNR levels.

4 Cortical Neural Modifications during a Cognitive Learning
Control Task

The neural events leading to a voluntary movement, or an intentional purposeful move-
ment, may be characterized by three complex processes: target identification, plan of
action, and execution. Several distinct regions of the cerebral cortex are believed to be
involved in governing these processes, including the posterior parietal cortex, the pre-
motor areas (PM) of the frontal cortex, and the primary motor cortex (M1) [Kandel et al.
(2000)]. Premotor and parietal areas appear to participate in a fundamental event neces-
sary to purposeful movement - the translation of sensory inputs into motor coordinates
needed to specify precise movements [Andersen et al. (2004)]. And adaptation repre-
sented in neural firing events has been observed in motor cortical areas which correlates
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(a) Detection performance with data
sets A1-1 to A1-9 (SNR=1dB)

(b) Detection performance with data
sets A2-1 to A2-9 (SNR=10dB)

Fig. 5. ROC performance for MCWC, WDM and Plexon thresholding: MCWC has a better per-
formance than WDM and Plexon thresholding in low and high SNR scenarios.

with improved behavioral parameters [Kargo et al. (2004)]. To investigate the neural
mechanism of cognitive control, here we studied various aspects of cortical neural fir-
ing rates to characterize their changes as rats learned a directional paddle control task.
Five rats learned to press one of two paddles (left or right) which extend at 2 seconds
after the onset of a directional light cue. By trial and error, most subjects improved their
behavioral accuracy to 85% or above in 5 weeks. Both primary motor (MI) and pre-
motor (PM) cortical neurons were recorded from rat’s left brain (Fig. 1(a)) during the
entire course of learning.

4.1 Characterizing Cortical Neural Modifications Using Firing Rates

The rat’s behavioral learning control process in our experiments was divided into 3
stages: Naive, Improving, and Stable according to the behavioral accuracy (Fig. 6(a),
rat W09 for example). As it usually takes the rat several weeks to improve the accuracy
to a high and stable level, the reaction time, in response to both the center ready paddle
(to start a trial) and the control paddle (to control the lights), became stabilized in only
a few days (Fig. 6(b)). This may indicate that it is the cognitive aspect of the behavioral
task, rather than the motor skill, that the rat learned in this experiment.

Correct trials were grouped as L and R trials, representing either left or right move-
ment directions. A task trial was sliced to form 4 epochs, which are cue on (CO),
movement onset (MO), getting ready (RE) (0-400ms, 400-800ms and 1400-1800ms,
respectively, after cue onset), and preparing to press (PP, 400-0ms before first press).

For MI neurons, significant mean firing rate changes (p < 0.001, ANOVA) through
the three learning stages were observed in right (contralateral to the recording sites) but
not left trials (Fig. 7). For example, the mean firing rates over the 3 stages in the CO
epoch of R trials are 33.5, 36.2 and 38.5 Hz, and the mean rates of L trials in the same
epoch are 37.7, 36.9 and 37.4 Hz. In PM neurons, there was statistically significant
firing rate change in all epochs. The rate changes were more pronounced in the first
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Fig. 6. Behavioral results: (a) accuracy and (b) reaction time

three epochs (e.g. PM neurons R trials, CO: 41.9 ±25.1, 39.9 ±23.9, 49.0 ±22.8 Hz)
than in PP (PM neurons R trials: 43.0 ±27.4, 41.0 ±25.5, 43.3 ±22.9 Hz). The PP
epoch is immediately before control paddle press, which had been a familiar motor skill
before the rat was recorded. But the first three epochs, during which the rat observed
the cue light and made decision of movement direction, were believed to involve more
cognitive effort. So the changes in mean firing rates found in the same period might be
associated with the cognitive learning process.

The mean Fano factor (FF, variance over mean of trial based firing rates) value of
both MI and PM neuron ensembles increased with learning (Fig. 8). Meanwhile, decre-
ment of the standard deviation of the FF values was observed in some cases (e.g. 2.05,
1.71 and 1.53, MI neurons in L trials and RE epoch). A potential explanation for this is
that single neurons increased their firing variability as a means of characterizing plas-
ticity during the acquisition of a new task.

Fig. 7. Mean firing rates of the three learning stages, Naive (red), Improving (green), and Stable
(blue), in four trial epochs for MI and PM neurons
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Fig. 8. Median Fano Factor value of the three learning stages, in four trial epochs for MI and PM
neurons

Fig. 9. An illustration of measuring statistical firing rate differences between L and R trials

The difference in firing rates between L and R trials was also measured. As shown in
Fig. 9, a 200ms window was moved at 10ms steps through the trial time. The number
of spikes within the window in each trial was counted and grouped for L and R trials.
Mann-Whitney U-test was then performed to evaluate the statistical difference between
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Fig. 10. The percentage of neurons showing significant difference (P < 0.01, Mann-Whitney
U-test) in firing rates between left and right movement.

the two groups. And this was done for all neurons in all recording sessions. As a result,
more PM neurons (7.5%, 8.1% and 5.7% in 3 stages) showed significant differences
(p < 0.01, Mann-Whitney U-test) than MI neurons (1.2%, 2.5% and 1.3%) during
the CO epoch (Fig. 10), when sensory information was processed and a decision of
movement direction was made.

To summarize, motor cortical neural firing rate modulations were observed during
the entire course of learning a cognitive control task. The mean firing rate change of
motor cortical neural ensemble may be an indication of cognitive development. The
increment of neuronal Fano factor value indicated that individual neurons fired more
differently between trials after learning the task. A higher percentage of PM neurons
responded differently in response to different cues during the preparation phase of the
task, which is very likely when subjects interpreted sensory cues and planned the move-
ment. These results suggested the followings, (1) neural adaptation may be reflected in
the mean firing rate of a motor cortical neural ensemble during learning of a cognitive
control task, and (2) a larger percentage of PM neurons may be involved in interpreting
sensory stimuli and motor planning than M1 neurons.

4.2 Role of Motor Cortical Neurons in a Directional and Sequential Control
Task

In order to examine the roles of neural coding in the primary motor cortex (M1) and
the premotor cortex (PM) [Paxinos et al. (2007)] of rats during natural movement, for
example cognitive control by multiple paddle presses in our experiment, we hypothesize
that M1 neuronal responses change as a function of the movement context.

There is growing evidence of M1’s involvement in sequential tasks using a monkey
model [Ben-Shaul et al. (2004); Carpenter et al. (2004); Kakei et al. (1999); Li et al.
(1999); Lu et al. (1999); Shima et al. (2000)] in memorized tasks and learning new as-
pects of a task [Shima et al. (2000)]. However, in a rat model, existing studies were
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only based on short-duration behavioral tasks (e.g. 20ms) and therefore unable to make
similar statements. Furthermore, little anatomical or functional evidence shows that rats
have a pre-SMA and it is still inconclusive that rats having a mixture of ventral premo-
tor (PMv) and SMA, and thus leaving the question open if rat’s motor cortical neurons
are present and encode sequential information.

In our experiment, the experiment apparatus provides five light cue positions at cen-
ter (C), single left (L), and double left (LL); similarly for the right side. A rat was
to press one of the two directional paddles to move the cue light to the center. As a
trial started, one of the five cues was lit for the rat to respond in 2s. In response to
the cue light position, the rat made a single or double presses on the paddle with each
press move the light to the respective direction once. The rat worked for food rewards
when he moved the light cue to the center position and kept there for 1s. Neural wave-
forms were recorded in the primary motor (M1) and the premotor (PM) areas while rats
learned to perform this control task from a naive state to finally mastering it in about 30
sessions (days) on average.

The motor cortical neurons displayed some unique patterns. Using three-way ANOVA
(direction (left or right) vs. task sequence length (single or double) vs. order (first or sec-
ond)) analysis on the neural firing rates (20ms bin). 26% of M1 neurons and 26% of
PM neurons were found to represent directional selectivity (p < 0.01 for left and right)
as shown in Fig. 11, and an example raster is shown in Fig. 12(a). However, only 5%
neurons showed significant difference between the L and LL trials (p < 0.01 for sin-
gle versus double presses) when the rat responded to the cue and made his first press.
Similar for R and RR trials. Among all recorded neurons, 28% of M1 neurons and 29%
of PM neurons showed order selectivity (p < 0.01 for the L, LL 1st press versus the
2nd press in LL), as shown in Fig. 12(b). Figure 12(c) is an example of another kind of
neurons, which has a tendency of both directional and sequential selectivity.

Fig. 11. 3-way ANOVA of M1 and PM neurons on 3 adjacent windows (length: 20ms) around
press on direction (left or right), task sequence length (single or double), and order (first or sec-
ond). (a) 26% of M1 neurons were found to represent directional selectivity, and 5% and 28%
were task sequence length and order selective, respectively. (b) 26% of PM neurons were found
to represent directional selectivity, and 6% and 29% were task sequence length and sequence
selective, respectively.
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(a) (b)

(c)

Fig. 12. (a) Raster for T10 channel 4, a M1 neuron on 1/15/2011 representing directional informa-
tion. Direction sensitive. (b) Raster for T10 channel 15, a PM neuron on 12/15/2010 representing
sequential information. Higher firing rates for single press and the first presses of LL and RR tri-
als before movement onset. (c) Raster for T10 channel 4, a M1 neuron on 1/6/2011 representing
directional and sequential information. Left: order sensitive; right: none.

Our results suggest that in addition to commonly believed roles for motor cortical
areas, they may also be useful in storing and representing sequential movements in rats.

5 Conclusion

The ultimate goal of our studies is to unveil the neural code in relation to cognitive
control behaviors. Toward this end, we made use of a rat model and recorded the rats’
motor cortical areas using multiple electrode to obtain single unit recordings while the
rats performed a directional control task through associative learning. We began our
study by introducing a new, automated spike detection algorithm, MCWC, which makes
use of correlation and comparison among continuous wavelet transform coefficients at
multiple scales. This algorithm provided us the freedom to conduct analysis on large
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volume of neural recordings with objective measures for spike detection and sorting.
Based on this result, we were able to conduct several further analysis using spike rates
to analyze spike firing patterns in association with the behavioral learning process and
the many aspects of the control task, such as directional control, sequential control, and
so on. We found that the role for M1 in a multiple press task is beyond that of controlling
movements; the context of a movement contributes to shaping M1 representations, and
that the PM is more actively involved in the learning aspect of the cognitive control
task.
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