
Chapter 8
HydroCM: A Hybrid Parallel Search Model
for Heterogeneous Platforms

Julián Domı́nguez and Enrique Alba

Abstract. Here we present HydroCM (HydroCarbon inspired Metaheuristic), a par-
allel metaheuristic model specifically designed for its execution on heterogeneous
hardware environments. With HydroCM we actually propose a schema for describ-
ing a family of parallel hybrid metaheuristics inspired by the structure of hydro-
carbons in Nature, establishing a resemblance between atoms and computers, and
between chemical bonds and communication links. Our goal is to gracefully match
computers of different computing power to algorithms of different behavior (GA
and SA in this study), all them collaborating to solve the same problem. The analy-
sis will show that our proposal, though simple, can solve search problems in a faster
and more robust way than well-known panmictic and distributed algorithms very
popular in the literature.

8.1 Introduction

Metaheuristics are an important branch of research since they provide a fast an effi-
cient way for solving problems. In many cases, parallelism is necessary, not only to
reduce the computation time, but to enhance the quality of the solutions obtained.
Many parallel models exist, both for local search methods (LSMs) and evolution-
ary algorithms (EAs), and even parallel hybrid models combining both methods are
present in the literature [4] [6].

In a modern lab, it is very common the coexistence of many different hardware
architectures. It has been proven that such heterogeneous resources can also be used
efficiently to solve optimization problems with standard parallel algorithms [7] [20]

Julián Domı́nguez · Enrique Alba
Universidad de Málaga, Spain
e-mail: {julian,eat}@lcc.uma.es

E.-G. Talbi (Ed.): Hybrid Metaheuristics, SCI 434, pp. 219–235.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{julian,eat}@lcc.uma.es


220 J. Domı́nguez and E. Alba

[21], but there exist few works about the design of specific parallel models for an
heterogeneous environment.

Here we present HydroCM, a hybrid parallel metaheuristic model. With this work
we propose a general model for describing a family of hybrid metaheuristics specif-
ically designed for their execution in heterogeneous hardware environments, being
inspired in the structure of the hydrocarbons that can be found in Nature.

Our contribution is not only methodological, but we also have carried out an
analysis in order to study the behavior of our proposal. For our analysis, we have
implemented two versions of the model making use of two well-known metaheuris-
tics: steady state Genetic Algorithm (ssGA) and Simulated Annealing(SA). We
have compared our proposal against the panmictic versions of these algorithms and
against a unidirectional ring of ssGA islands executed on the same hardware infras-
tructure. Our results show that the running times of our proposal are faster in some
cases and more robust in the rest than the reference ssGA ring.

We will here present an overview of the proposed model as well as the results
of the analysis of the implemented algorithms. Previously, we will start with a brief
review on the background concepts used in this chapter.

8.2 Decentralized, Heterogeneous and Hybrid Parallel
Metaheuristics

In this section we include a quick review on the existing implementations of decen-
tralized and parallel metaheuristics, as well as on heterogeneity. We also include a
description of the metaheuristics used in our hybrid algorithm and how they classify
as hybrid metaheuristics.

Many parallel implementations exist for different groups of metaheuristics. We
will focus in two of the more common families of metaheuristics: Evolutionary Al-
gorithms (EAs) and Local Search Metaheuristics (LSMs). On the one hand, EAs
are population based methods, where a random population is created and further
enhanced through a Nature-like evolution process. On the other hand, only one
candidate solution is used in LSMs, and it is enhanced by moving through its neigh-
borhood replacing the candidate solution by another one, usually one with a better
quality (fitness) value. EAs commonly provide a good exploration of the search
space, so they are also called exploration-oriented methods. On the contrary, LSMs
allow to find a local optima solution and subsequently they are called exploitation-
oriented methods. Many different parallel models have been proposed for each
method, and here we present the more representative ones.

8.2.1 Parallel EA Models

A panmictic EA applies its stochastic operators over a single population, which
makes them easily parallelizable. A first strategy for its parallelization is the use of



8 HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms 221

Fig. 8.1 A panmictic EA (a), and two structured EAs: distributed (b) and cellular (c)

a master-slave approach where evaluations are performed in parallel but the popu-
lation, unless divided, is treated as a whole, maintaining its panmictic behavior. It
could be interesting for many tasks, but it does not offer the benefits of a structured
population. Therefore, we are going to focus in structured populations, which leads
to a distinction: cellular versus distributed EAs [3] (Figure 8.1).

• Distributed EAs (dEA): In the case of distributed EAs, the population is divided
into a number of islands that run an isolated instance of the EA (Figure 8.1b).
Although there is not a single population the sub-populations are not completely
isolated: some individuals are sent from one population to another following a
migration scheme. It is common that in this model there only exist a few sub-
algorithms, loosely coupled among them.

• Cellular EAs (cEA): In the cellular model, there exists only one population
which is structured into neighborhoods, so that an individual can only interact
with the individuals inside its neighborhood (Figure 8.1c). Different neighbor-
hood structures can lead to a different behavior. With the cellular model there
exists a large number of sub-algorithms and they are tightly coupled [5].

8.2.2 Parallel LSM Models

Many different parallel models have been proposed for LSMs, but there exist three
models that are widely extended in the literature: parallel multistart model, parallel
moves model, and move acceleration model (Figure 8.2).

• Parallel multistart model: In this model, several independent instances of the
LSM are launched simultaneously (Figure 8.2a). They can exchange individuals
following a migration scheme. This model can usually compute better and more
robust solutions than the panmictic version.

• Parallel moves model: This model is a kind of master-slave model where the
master runs a sequential LSM but, at the beginning of each iteration, the current
solution is distributed among all the slaves (Figure 8.2b). The slaves perform a



222 J. Domı́nguez and E. Alba

Fig. 8.2 Parallel multistart model (a), parallel moves model (b), and move acceleration model
(c)

move and return the candidate solution to the master, which selects one of them.
This model does not alter the behavior of the sequential algorithm.

• Move acceleration model: The quality of each candidate solution is evaluated
in a parallel centralized way (Figure 8.2c). It is useful when the evaluation func-
tion can be itself parallelized. The move acceleration model does not alter the
behavior of the sequential algorithm.

In both, EAs and LSMs parallel models, each sub-algorithm includes a phase for
communication with a neighborhood according to some topology. This communica-
tion can be carried out in a synchronous or asynchronous manner. Many works have
found advantages in using an asynchronous execution model [8] [11]. Addition-
ally, asynchronism is essential in our study because of the heterogeneous hardware,
which could easily produce bottlenecks, so our communications will be carried out
in an asynchronous way.

8.2.3 Being Heterogeneous

In the models presented above, all the sub-algorithms share the same search
features. But we could modify the behavior of a parallel metaheuristic by chang-
ing the search features between sub-algorithms, obtaining a globally heteroge-
neous hybrid metaheuristic. Also the hardware being used to run the algorithm
can be homogeneous or heterogeneous, so we have not to be confused between the
hardware platform heterogeneity and the heterogeneous software model. Parallel
heterogeneous metaheuristics can be classified into four levels depending on the
source of heterogeneity [3]:

• Parameter level: At this level, the same algorithm is used in each node, but the
configuration parameters are different in one or more of them.

• Operator level: At operator level, heterogeneity is achieved by using different
mechanisms for exploring the search space, such as different operators.



8 HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms 223

• Solution level: Heterogeneity is obtained using a different encoding for the solu-
tions in each component.

• Algorithm level: At this level, each component can run a different algorithm. This
level is the most widely used.

Here we present an algorithm level parallel heterogeneous metaheuristic which is
later run in heterogeneous hardware. This solver is based in two different methods.
We have chosen one method of each of the two well-known families, LSMs and
EAs, in order to obtain a good balance between exploitation and exploration. The
used methods are a Genetic Algorithm (GA) and a Simulated Annealing (SA).

GAs are one of the more popular EAs present in the literature. In Algorithm 8
we can see an outline of a panmictic GA. A GA starts by randomly generating an
initial population P(0), with each individual encoding a candidate solution for the
problem and its associated fitness value. At each iteration, a new population P′′′(t) is
generated using simple stochastic operators, leading the population towards regions
with better fitness values.

Algorithm 8. Standard Genetic Algorithm
Generate(P(0));
Evaluate(P(0));
t := 0;
while not stop condition(P(t)) do

P′(t) := Selection(P(t));
P′′(t) := Recombination(P′(t));
P′′(t) := Mutation(P′′(t));
Evaluate(P′′′(t));
P(t +1) := Replace(P(t),P′′′(t));
t := t+1;

end while

In our algorithm, we have actually used a special variant of the generic GA called
steady state Genetic Algorithm (ssGA) [22]. The difference between a common
generational GA and a ssGA is the replacement policy: while in a generational GA
a full new population replaces de old one, in a ssGA only a few individuals, usually
one here, are generated at each iteration and merged with the existing population.

Because of its easy utilization SA has become one of the most popular LSMs.
SA is an stochastic algorithm which explores the search space using a hill-climbing
process. A panmictic SA is outlined in Algorithm 9. SA starts with a randomly gen-
erated solution S. At each step, a new candidate solution S′ is generated. If the fitness
value of S′ is better or equal than the old value, S′ is accepted and replaces S. As
the temperature Tk decreases, the probability of accepting a lower quality solution S′
decays exponentially towards zero according to the Boltzmann probability distribu-
tion. The temperature is progressively decreased following an annealing schedule.

Based on the classic SA, many different versions have been implemented by
using a different annealing schedule. In our algorithm we have used the New Simu-
lated Annealing (NSA) [26], which uses a very fast annealing schedule.



224 J. Domı́nguez and E. Alba

Algorithm 9. Standard Simulated Annealing
Generate(S);
Evaluate(S);
Initialize(T0);
k := 0;
while not stop condition(S) do

S′ := Generate(S,Tk);
if Accept(S,S′,Tk) then

S := S′;
end if
Tk+1:= Update(Tk);
k := k+1;

end while

8.2.4 Classifying Hybrid Metaheuristics

Attending to the classification proposed by E.-G. Talbi [23] (Figure 8.3), we can
classify a hybrid metaheuristic attending to its structure (hierarchical) or to the fea-
tures of the algorithms involved in the hybrid (flat). Four classes are derived from
the hierarchical taxonomy:

• LRH (Low-level Relay Hybrid). This class of hybrids represents algorithms in
which a given metaheuristic is embedded into a single-solution algorithm. We
can find some examples of LRH in the literature [1] [19].

• LTH (Low-level Teamwork Hybrid). This class comprises combinations of meta-
heuristics with strong exploring capabilities (like most EAs) with exploitation-
oriented metaheuristics (most single-solution metaheuristics). Usually, exploitation-
oriented methods replace or extend genetic operator such as mutation or crossover.
There are numerous examples of this strategy, for example [17] [14] [10].

• HRH (High-level Relay Hybrid). In this class of algorithms, self-contained meta-
heuristics are executed in a sequence. In HRH, an algorithm is used for improving
the results obtained by another one. Many authors have used this idea [24] [18].

• HTH (High-level Teamwork Hybrid). Self-contained algorithms perform a search
in parallel, and cooperating to find an optimum. This model has been widely used
in the literature [12] [25].

As to the flat classification, we can distinguish between:

• Homogeneous/heterogeneous. In homogeneous hybrids, all the combined algo-
rithms use the same metaheuristic, while in heterogeneous algorithms different
metaheuristics are used.

• Global/partial. In global hybrids, all the algorithms search in the whole search
space. However, the search space is decomposed into subspaces in the partial
hybrids.

• Specialist/general. In a general hybrid, all the algorithms solve the same problem,
while specialist hybrids combine algorithms which solve different problems.



8 HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms 225

Fig. 8.3 Talbi’s classification of hybrid metaheuristics

Attending to this taxonomy, our model can be classified as a High-level Teamwork
Hybrid metaheuristic, while several self-contained algorithms cooperate in order to
find a solution. HydroCM can be classified as well as heterogeneous, global and
general, because two different metaheuristics search in the whole search space try-
ing to solve the same problem.

8.3 Description of Our Proposal

In this section we present the particularities of HydroCM, as well as we briefly
outline the algorithm that we have implemented in our tests, which has been called
Ethane [13].

8.3.1 An Overview of HydroCM

In this work, we present a generic model for a complete family of parallel hybrid
metaheuristics. The goal of the model is to provide a schema for the islands and
communications of the parallel algorithm to efficiently perform a search over het-
erogeneous hardware architectures.



226 J. Domı́nguez and E. Alba

Fig. 8.4 Different hydrocar-
bon configurations that can
be found in Nature; their
structures are the basis of
HydroCM

Our model is inspired in the structure of hydrocarbons as we can find them in the
Nature (Figure 8.4). Hydrocarbons are based in only two different atoms, carbon
and hydrogen, and each of them can keep a given number of bounds, being one for
hydrogen and four for carbon.

In our model, we establish a resemblance between computers and atoms in the
hydrocarbon. The bonds between atoms have a correspondence to communication
channels, and double or triple bonds can be modeled as the amount of information
being migrated (intensity of the interaction) or, in the case of non-population based
algorithms, a higher migration rate. In our model, the fastest machines are associated
with central carbon atoms (because of the higher computational effort caused by the
migrations) and the slowest ones are associated with hydrogen atoms.

This model provides us with plenty of different schemes for designing a parallel
heterogeneous algorithm because of the amount of hydrocarbons present in Nature
and their different architectures: linear, ring, branches... obtaining a huge amount of
different combinations depending on the number of fast and slow available comput-
ers and the topology of the network.

Ethane [13] can be viewed as an instance of HydroCM for an environment com-
posed of eight nodes, where two of them are more powerful than the rest, and mak-
ing use of ssGA and SA as the composing atoms. As well as Ethane is such an
instance, we could instantiate many different algorithms depending on the underly-
ing hardware architecture following the model proposed by HydroCM.

8.3.2 Ethane

With Ethane we propose an instance of HydroCM model, based in the chemical
compound of the same name. The chemical compound called ethane consists of
two carbon atoms and six hydrogen atoms, joined together with single chemical



8 HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms 227

Fig. 8.5 Communication schema for Ethane G (a) and S (b)

bonds. In ethane, each carbon atom is bonded to three hydrogen atoms, and there is
another bond between both carbon atoms. In our Ethane algorithm, we propose the
same schema, using two basic algorithms resembling different atoms, and migration
channels resembling bonds.

For our study, we have implemented two different versions of the algorithm. In
Figure 8.5 we show the schema for the two instances of Ethane studied in this chap-
ter. Ethane G (Figure 8.5a) assigns a ssGA sub-algorithm to the central nodes, and
a SA sub-algorithm to the slave nodes. On the contrary, Ethane S (Figure 8.5b) al-
locates a SA sub-algorithm in each one of the central carbon nodes, and a ssGA
sub-algorithm in the slave nodes. With this schema, the most of the communication
load falls on the master nodes, which are provided with the best hardware, moving
some of the load out of the slowest nodes.

8.4 Performance Measures and Speedup

In this section we present the performance measures used for assessing the perfor-
mance of the studied algorithms. The measures that are going to be used are the
numerical effort, the total run time, and the speedup.

A widely accepted way of measuring the performance of a parallel metaheuristic
is to check the number of evaluations of the fitness function needed to locate an
optimum. This performance measure is called numerical effort. Numerical effort is
widely used in the field of metaheuristics because it removes the effects of the im-
plementation and the platform, but it could be misleading in many cases for parallel
methods. Furthermore, the goal of the parallelism is not the reduction of the number
of evaluations (this is a goal for decentralized algorithms) but the reduction of the
running time.

The most significant performance measure for a parallel algorithm is the total
run time needed to locate a solution. In a non-parallel algorithm, the use of the CPU
time is a common performance measure. While parallelizing an algorithm should



228 J. Domı́nguez and E. Alba

definitely include some overhead, for example for communications, we are not able
to use only the CPU time as a performance measure. Since the goal of parallelism
is to reduce the real time needed to solve the problem, for parallel algorithms it
becomes necessary to measure the real run time (wall-clock time) to find a solution.

Because of the non-deterministic behavior of metaheuristics, average values for
time and numerical effort are usually needed. Although 30 runs could provide us
a good estimation, we have executed the tests 100 times in this chapter in order to
perform a rigurous statistical analysis.

In our analysis we will also study the speedup. The speedup represents the
ratio between sequential and parallel average execution times (E[T1] and E[Tm] re-
spectively).

sm =
E[T1]

E[Tm]
(8.1)

For the speedup to be a meaningful metric, we have to take care of many aspects
for its analysis. Because of the aforementioned non-deterministic behavior of meta-
heuristics it is necessary to use average times, being these times the wall-clock
times. The algorithms run in the single and multiprocessor platform must be ex-
actly the same, thus panmictic algorithms can not be used for the analysis. The
algorithms have to be executed until they found the solution or a solution of the
same quality [2]. Since in our study we are working over a heterogeneous plat-
form, our reference point is the execution time of the program on the fastest single
processor.

8.5 Problems, Parameters, and Platform

In this section we include the basic information necessary to reproduce the exper-
iments that have been carried out for this work. First we will present the set of
benchmark problems used for assessing the performance of our proposal. Second
we will briefly explain the parameters used within the sub-algorithms, and then the
underlying hardware and software platform.

8.5.1 Benchmark Problems

In order to assess the performance of our algorithms, we have used two problems
in the analysis: the Subset Sum Problem (SSP) [16] and the Massively Multimodal
Deceptive Problem (MMDP) with 6 bits [15].

The SSP problem consists in finding a subset of values V ⊆W from a set of inte-
gers W = {w1,w2, ...,wn}, such that the subset sum approaches a constant C without
exceeding it. We have chosen an instance with 2048 random integer numbers in the



8 HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms 229

Table 8.1 Bipolar deception (6 bits) sub-function value

#ONES sub-function value
0 1.000000
1 0.000000
2 0.360384
3 0.640576
4 0.360384
5 0.000000
6 1.000000

range [0..104] following a Gaussian distribution, being the value of the sum for the
optimum 3256234.

MMDP is one of so called deceptive problems. Deceptive problems are specifi-
cally designed to make the algorithm converge to wrong regions of the search space,
decorrelating the relationship between the fitness of a string and its genotype. In
MMDP a binary string encodes k 6-bit sub-problems which contribute with a partial
fitness depending on its number of 1’s (unitation) following Table 8.1. We have used
an instance with strings of 150 bits so that the global optimum is k = 25.

8.5.2 Parameters of the Algorithms and Platform

The parameters used in every ssGA sub-population are: a population size of 64
individuals, a crossover probability of 0.8 and a mutation probability of 4.0 divided
by the chromosome length. The genetic operators are a single point crossover and
a bit flip mutation. For the SA, we used the same mutation probability. For the SSP
the chromosome length is 2048 an in the case of MMDP its length is 150 for both
algorithms. In the case of the panmictic ssGA, the population size has been set to
64 individuals because larger populations have performed much worse than smaller
ones for the proposed problems in our tests, and they have been not able to find the
solution of the benchmark problems in a reasonable time.

We have chosen a migration frequency of 50 iterations for all the configurations
after several initial preliminary experiments. The number of individuals migrated are
1 in all cases. For the ssGA, the emigrant is randomly selected and the immigrant
always replaces the worst individual of the population. In the SA, the immigrant is
treated as a new move.

The hardware infrastructure used in our analysis 8.6 consists of 8 different ma-
chines: 2 of them have an Intel Core 2 Quad Q9400 @ 2.66GHz processor and
4GB of RAM (namely Type A, fast), the other 6 computers have an Intel Pentium
4 @ 2.4GHz processor and 1GB of RAM (namely Type B, slow). All the comput-
ers are managed by a GNU/Linux distribution, being Debian 5.0 for Type A, and
SuSE 8.1, Debian 3.1 and Ubuntu 6.10 for Type B. The computers are connected



230 J. Domı́nguez and E. Alba

Fig. 8.6 Schema of the hardware infrastructure

by a Gigabit Ethernet Network. The algorithms have been implemented in Java in
order to support both hardware and software heterogeneity. For the purpose of the
analysis the version 1.6.0 01 of the Java Virtual Machine (JVM) is used in all the
nodes.

8.6 Tests and Analysis

In this section we analyze the behavior of Ethane, and compare it with the well-
known ssGA unidirectional ring. We have analyzed the aforementioned perfor-
mance measures, being numerical effort, total run time and speedup, as well as the
evolution of the fitness.

We have implemented two different algorithms based on Ethane. For the first
one, Ethane G, we have provided the Type A computers with a central ssGA is-
land, and Type B computers with a SA island. For the second algorithm, Ethane S,
the fastest machines run central SA islands and the slowest ones run ssGA. As we
mentioned above, the migration scheme resembles a molecule of ethane as repre-
sented in Figure 8.5. In the parallel ssGA used as reference, the islands have been
distributed over a unidirectional ring, placing the most powerful computers in the
first and fourth place in a sort of MaxSumSort [9]. As we do not know the statistical
distribution of the data, they have been statistically compared with Mann-Whitney
U test.



8 HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms 231

Table 8.2 Number of evaluations for the tested models and panmictic algorithms

Algorithm
Subset Sum MMDP6

Average Std. Deviation Average Std. Deviation
Ethane G 146418 174433 1572735 919691
Ethane S 202815 198696 708231 430353
ssGA Ring 214824 239125 786583 805837
Panm. ssGA 179792 175177 * *
Panm. SA 81737 93627 * *

8.6.1 Numerical Effort

In Table 8.2 we show the numerical effort needed to find the optimum for each
algorithm. It can be seen that our proposals performed better than the panmictic
algorithms for both problems (in the case of MMPD, panmictic algorithms where
not even able to find the optimum in a reasonable time). For the SSP, both Ethane
versions performed numerically better than the reference ssGA ring, and one of the
instances (Ethane S) performed better even for the MMDP.

From the point of view of numerical effort, all the differences are statistically
significant according to the Mann-Whitney U test . Note that also the standard devi-
ation is better in our algorithms, so that its behavior is more robust. We can see how
the panmictic SA has reached the solution with less numerical effort because SA is a
fast converging trajectory method, but as we will see in the forthcoming analysis of
the run time, the time needed to find a solution is worse than for the studied parallel
models.

Since the objective of our model is the reduction of the total execution time let us
begin with the study of a more meaningful performance metric, the total run time.

8.6.2 Total Run Time

Table 8.3 shows the average execution time of each algorithm for each problem
until global optimum is reached. As we can see, our proposals performed clearly
better than the panmictic algorithms for both problems (remember that the panmictic
algorithms where not able to find the optimum for the MMDP in a reasonable time)
as well as better than the ssGA ring does.

As we can see in Table 8.3, Ethane G was the best performing algorithm for the
SSP problem. The Mann-Whitney U test gives a p-value of 0.0412 for the Ethane G
compared to the ssGA ring, so the difference is statistically significant. The average
time needed for Ethane G to find a solution is more than 30% better than for ssGA
ring.

Ethane S was the best algorithm solving the MMDP problem, with an average
time slightly better than the ssGA ring, but with a much lower standard deviation,
as Mann-Whitney U test confirms with a p-value of 0.007. The standard deviation



232 J. Domı́nguez and E. Alba

Table 8.3 Time - ms - for the tested models and panmictic algorithms

Algorithm
Subset Sum MMDP6

Average Std. Deviation Average Std. Deviation
Ethane G 5318 6226 9195 4942
Ethane S 7155 6922 3052 1546
ssGA Ring 7453 8107 3194 3380
Panm. ssGA 30008 29387 * *
Panm. SA 13300 15443 * *

of ssGA is more than twice the standard deviation of Ethane S. This means that the
two representative instances of the Ethane family evaluated in this chapter can be
both more efficient and more robust/stable than standard sequential and distributed
popular algorithms.

8.6.3 Speedup

In Table 8.4, we can see a summary of the execution time of the studied algorithms
within a single processor and its speedup with respect to the execution in the eight
processors heterogeneous platform. As we can see, both versions of Ethane have
obtained a better speedup than the ssGA for the SSP, but only Ethane S has achieved
a better speedup for the MMDP.

As it is shown in Table 8.4, Ethane G has performed better than the reference
ssGA ring even in a single processor in the case of SSP. Even when its performance
over a single processor is still better, its speedup is the best of the three models.
However, in general, the value for the speedup is not good for any of the algorithms
for this problem, being the value for Ethane G a small 3×.

Ethane S still performed slightly better than the ssGA ring for a single processor
for both problems. Even the speedup is better in both cases, being the best of the
studied algorithms for the MMDP with a value of 6.76×. In the case of MMDP the
speedup of the three algorithms was quite good although linear speedup was not
reached.

In the case of SSP, Ethane G and S have not showed a very good speedup, and
ssGA has showed even a worse speedup. This fact could be explained by the huge
difference among the computational power of the different hardware configurations

Table 8.4 Time - ms - for the tested models in a single processor and its speedup

Algorithm
Subset Sum MMDP6

Avg. time Speedup Avg. time Speedup
Ethane G 15995 3.00× 41943 4.56×
Ethane S 17817 2.49× 20627 6.76×
ssGA Ring 18137 2.43× 21227 6.64×



8 HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms 233

used (remember that the reference point for speedup is the best performing pro-
cessor). Heterogeneous hardware might not be expected of very high speedup as
homogeneous hardware.

8.6.4 Evolution of the Fitness

Figures 8.7 and 8.8 are showing, for each algorithm and each problem, the execution
whose value for the run time is the median of the results.

In the case of SSP, the Figure shows that the two Ethane versions clearly outper-
form the ssGA ring, converging quite faster. We can see how Ethane G performs
even better than Ethane S for this problem.

For the MMDP, Ethane S performed clearly better than Ethane G as we can see in
Figure 8.8. Ethane S outperformed the ssGA ring, but the difference is not as large
as with the SSP.

Fig. 8.7 Evolution of the fitness (time (ms) vs. fitness) for SSP

Fig. 8.8 Evolution of the fitness (time (ms) vs. fitness) for MMP



234 J. Domı́nguez and E. Alba

8.7 Conclusions

In this chapter we have presented a general model for designing hybrid algorithms
depending on the underlying heterogeneous platform, inspired in the structures of
the hydrocarbons present in Nature. We have also analyzed an instance of Hy-
droCM: Ethane, a hybrid parallel search algorithm based on the structure of ethane.

We have performed a set of tests in order to assess the performance of our pro-
posal, and compared it with a well-known state-of-the-art model, the ssGA unidi-
rectional ring, and two well-known algorithms: SA and ssGA. Our tests have shown
that the hybrid model can perform better in terms of time and numerical effort than
the reference model, and Ethane is even able to find the solutions in a more ro-
bust/stable manner. Also the speedup of the proposed models is competitive with
that of the reference model, obtaining quite good values even with the huge differ-
ences between the performance of the computers of the heterogeneous platform.

With HydroCM, our goal is to offer a hybrid general model for gracefully match-
ing computers of different powers to run different algorithms for efficiently solve
the same problem, in a way that an heterogeneous platform does not constitute a
problem but, on the contrary, could be used as a target platform for specialized new
parallel algorithms.

Acknowledgements. This work has been partially funded by the Spanish Ministry of Sci-
ence and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M* project). It
has also been partially funded by the Andalusian Government under contract P07-TIC-03044
(DIRICOM project).

References

1. Aarts, E.H.L., Verhoeven, M.G.A.: Genetic local search for the traveling salesman prob-
lem. In: Handbook of Evolutionary Computation, pp. G9.5:1–7. Institute of Physics Pub-
lishing and Oxford University Press (1997)

2. Alba, E.: Parallel evolutionary algorithms can achieve super-lineal performance. Infor-
mation Processing Letters 82, 7–13 (2002)

3. Alba, E.: Metaheuristics and Parallelism. In: Parallel Metaheuristics: A new Class of
Algorithms, pp. 79–103. Wiley-Interscience (2005)

4. Alba, E.: Parallel Heterogeneous Metaheuristics. In: Parallel Metaheuristics: A new
Class of Algorithms, pp. 395–422. Wiley-Interscience (2005)

5. Alba, E., Dorronsoro, B.: The State of the Art in Cellular Evolutionary Algorithms. In:
Cellular Genetic Algorithms, pp. 21–34. Springer, US (2008)

6. Alba, E., Luna, F., Nebro, A.J., Troya, J.M.: Parallel heterogeneous genetic algorithms
for continuous optimization. Parallel Computing 30(5-6), 699–719 (2004)

7. Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous Computing and Parallel Genetic Al-
gorithms. Journal of Parallel and Distributed Computing 62, 1362–1385 (2002)

8. Alba, E., Troya, J.M.: Analyzing synchronous and asynchronous parallel distributed ge-
netic algorithms. Future Generation Computer Systems 17, 451–465 (2001)

9. Branke, J., Kamper, A., Schmeck, H.: Distribution of Evolutionary Algorithms in Het-
erogeneous Networks. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp.
923–934. Springer, Heidelberg (2004)



8 HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms 235

10. Chen, H., Flann, N.S.: Parallel Simulated Annealing and Genetic Algorithms: A Space of
Hybrid Methods. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS,
vol. 866, Springer, Heidelberg (1994)

11. Crainic, T.G., Toulouse, M.: Parallel strategies for meta-heuristics. In: Handbook of
Metaheuristics, pp. 474–513. Kluwer (2003)

12. De Falco, I., Del Balio, R., Tarantino, E., Vaccaro, R.: Improving search by incorporating
evolution principles in parallel tabu search. In: Int. Conf. on Machine Learning, pp. 823–
828 (1994)

13. Domı́nguez, J., Alba, E.: Ethane: A Heterogeneous Parallel Search Algorithm for Het-
erogeneous Platforms. In: DECIE (2011), doi:arXiv:1105.5900v2

14. Fleurant, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research 63, 437–461 (1996)

15. Goldberg, D.E., Deb, K., Horn, J.: Massively multimodality, deception and genetic algo-
rithms. Parallel Problem Solving from Nature 2, 37–46 (1992)

16. Jelasity, M.: A wave analysis of the subset sum problem. In: Proceedings of the Seventh
International Conference on Genetic Algorithms, San Francisco, CA, pp. 89–96 (1997)

17. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with
crossover hill-climbing. Evolutionary Computation 12(3), 273–302 (2004)

18. Mahfoud, S.W., Goldberg, D.E.: Parallel recombinative simulated annealing: A genetic
algorithm. Parallel Computing 21, 1–28 (1995)

19. Martin, O.C., Otto, S.W., Felten, E.W.: Large-step markov chains for the TSP: Incorpo-
rating local search heuristics. Operation Research Letters 11, 219–224 (1992)

20. Salto, C., Alba, E.: Designing Heterogeneous Distributed GAs by Efficient Self-
Adapting the Migration Period. Applied Intelligence (2011), doi:10.1007/s10489-011-
0297-9

21. Salto, C., Alba, E., Luna, F.: Using Landscape Measures for the Online Tuning of Het-
erogeneous Distributed GAs. In: Proceedings of the GECCO 2011, pp. 691–694 (2011)

22. Syswerda, G.: A study of reproduction in generational and steady-state genetic algo-
rithms. In: Foundations of Genetic Algorithms, pp. 94–101. Morgan Kauffman (1991)

23. Talbi, E.-G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–564
(2002)

24. Talbi, E.-G., Muntean, T., Samarandache, I.: Hybridation des algorithmes génétiques
aveq la recherche tabou. In: Evolution Artificielle, EA 1994 (1994)

25. Voigt, H.-M., Born, J., Santibanez-Koref, I.: Modeling and simulation of distributed evo-
lutionary search processes for function optimization. In: Schwefel, H.-P., Männer, R.
(eds.) PPSN 1990. LNCS, vol. 496, pp. 373–380. Springer, Heidelberg (1991)

26. Yao, X.: A new Simulated Annealing Algorithm. International Journal of Computer
Mathematics 56, 161–168 (1995)


	HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms
	Introduction
	Decentralized, Heterogeneous and Hybrid Parallel Metaheuristics
	Parallel EA Models
	Parallel LSM Models
	Being Heterogeneous
	Classifying Hybrid Metaheuristics

	Description of Our Proposal
	An Overview of HydroCM
	Ethane

	Performance Measures and Speedup
	Problems, Parameters, and Platform
	Benchmark Problems
	Parameters of the Algorithms and Platform

	Tests and Analysis
	Numerical Effort
	Total Run Time
	Speedup
	Evolution of the Fitness

	Conclusions
	References




