
Chapter 6
Hybrid Metaheuristics for the Graph
Partitioning Problem

Una Benlic and Jin-Kao Hao

Abstract. The Graph Partitioning Problem (GPP) is one of the most studied NP-
complete problems notable for its broad spectrum of applicability such as in VLSI
design, data mining, image segmentation, etc. Due to its high computational com-
plexity, a large number of approximate approaches have been reported in the lit-
erature. Hybrid algorithms that are based on adaptations of popular metaheuristic
techniques have shown to provide outstanding performance in terms of partition
quality. In particular, it is the hybrids between well-known metaheuristics and mul-
tilevel strategies that report partitions of the minimal cut-size value. However, meta-
heuristic hybrids generally require more computing time than those based on greedy
heuristics which can generate partitions of acceptable quality in a matter of seconds
even for very large graphs. This chapter is dedicated to a review on some representa-
tive hybrid metaheuristic approaches including genetic local search, basic multilevel
search and recent development on hybrid multilevel search.

6.1 Introduction

The Graph Partitioning Problem (GPP) is one of the fundamental combinatorial op-
timization problems which is notable for its applicability to a wide range of domains,
such as VLSI design [1, 43], data mining [49], image segmentation [42], etc. Since
the general GPP is NP-complete, approximate methods constitute a natural and use-
ful approach to address this problem. In the past several decades, many efforts have
been made in devising a number of heuristic approaches such as graph growing and
greedy algorithms, spectral methods, multilevel approaches, as well as algorithms
based on well-known metaheuristics like tabu search, ant colony, simulated anneal-
ing, genetic and memetic algorithms. However, the application of these partitioning
algorithms depends on several factors. An important factor is the trade-off between
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computation time and solution quality. Some algorithms run fast but deliver solu-
tions of medium quality while others require significantly longer time but produce
excellent quality partitions and even other that can be tuned between both extremes.
This preference of time vs. quality is problem dependent. For instance, in the con-
text of network layout or VLSI design, even a slight improvement of partition quality
can be of significant importance. For these applications, it is worthwhile to employ a
partition algorithm able to obtain excellent quality solutions even if the algorithm is
computationally intensive. On the other hand, in other cases like sparse matrix-vector
multiplication, a very fast algorithm is indispensable since the computing time re-
quired for the partitioning task has to be less than the time needed by a fast vector
multiplication algorithm. Another factor that has to be considered when designing an
appropriate partitioning algorithm is the partition balance. While some applications
require partitions of perfect balance, others tolerate imbalance up to a certain degree
in order to obtain a partition of better cut-size. All of these imply that there is no
single best algorithm for all the cases, and that each one of them has its applications.

Hybrid metaheuristic approaches for GPP have shown to provide excellent
performance in terms of solution quality. In particular, it is the hybrids between
classical metaheuristics and multilevel methods that report partitions of the mini-
mal cut-size value. However, these hybrids are generally more time consuming than
those based on greedy iterative methods, which can produce partitions even for very
large graphs in a matter of seconds.

This chapter is devoted to an overview of the most popular and effective hybrid
metaheuristic approaches proposed in the literature for the k-way graph partition-
ing problem. We first provide a general definition of the graph partitioning prob-
lem and an overview of the benchmark instances, followed by a brief review on
the most common heuristic approaches for GPP. In Section 6.4, we first describe
the Kernighan-Lin (KL) heuristic and its improvement by Fiduccia and Matthey-
ses, and then review some of the most popular hybrids between KL-like algorithms
and population-based methods. Before concluding, the multillevel paradigm for GP
is detailed in Section 6.5 and some of the best multilevel metaheuristic hybrids
are presented. Moreover, we try to provide an answer, based on a landscape anal-
ysis performed on a number of GP instances, to what makes these algorithms so
effective.

6.2 Problem Definition and Bechmark Instances

6.2.1 Problem Description and Notations

The nature of a partitioning problem can greatly vary depending on the intended
application. In this chapter we only focus on the partitioning approaches devised
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to tackle the general multi-way graph partitioning problem (also called k-way
partitioning).

Consider an undirected graph G = (V,E) consisting of a set of vertices (i.e.
nodes) V = {v1,v2, ...,vn} and a set of edges E , such that each vertex and edge
is associated with a non-negative weight that we denote by w(v) and w(e) respec-
tively. Then, a k-partition of G can then be defined as a mapping (partition func-
tion) π : V → {1,2, ...,k} that distributes the vertices of V among k disjoint subsets
S1∪S2∪ ...∪Sk =V . The particular partitioning case when k is set to two is known
as the Graph Bisection Problem (GBP).

Let {S1,S2, ...,Sk} be a partition of V obtained by π , Ec the set of all the cutting
edges of G induced by π , i.e., Ec = {{x,y} ∈ E | x ∈ Si and y ∈ S j and i �= j },
and let ϕ be the set of all the partition functions of G. The k-way graph partitioning
problem consists in determining π∗ ∈ ϕ such that the partition {S1,S2, ...,Sk} given
by π∗ minimizes the sum of weight of edges in Ec, while ensuring that each Si,
i ∈ {1,2, ...,k} is of roughly equal weight. Here, the weight of a subset Si is equal
to the sum of weights of the vertices in Si, W (Si) = ∑v∈Si

w(v).
For some applications, perfect partition balance is required. On the other hand,

some applications tolerate partition imbalance up to a certain limit, since allowing
more imbalance may lead to partitions of better quality in terms of the total weight
of edges in the cut. This notion of partition balance is defined as follows. Let Wopt =
�|V |/k� be the optimal subset weight, where �x� represents the first integer≥ x, then
the quantity ε = maxi∈{1..k}W (Si)/Wopt defines the degree of imbalance among the
k subsets of a partition {S1,S2, ...,Sk}. ε = 1 means that the partition is perfectly
balanced while ε > 1 indicates an imbalanced partition with larger ε corresponding
to greater imbalance.

6.2.2 Benchmark Instances

In the context of various existing research studies on the graph partitioning problem
defined in Section 6.2.1, a large number of benchmark instances have been used.

A well known source of graph instances that has been frequently used to compare
and evaluate algorithm performance is proposed by Johnson et al. [25] and by Bui
and Moon [14]. These benchmark graphs are classified into five following types
where the first two classes are from [25]:

1. Gn.d: A random graph with n vertices, where an edge e is placed between any
two vertices with probability p, such that p is chosen so that the expected vertex
degree, p(n− 1), is d.

2. Un.d: A random geometric graph with n vertices uniformly distributed in a unit
square. An edge is placed between two vertices if their Euclidean distance is less
than or equal to

√
d/(nπ), where d is the expected vertex degree.

3. breg.n.b: A random regular graph with n vertices of degree 3, whose optimal
bisection size is b with probability 1− o(1).
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4. cat.n: A caterpillar graph with n vertices. Starting with a spine in which every
vertex is of degree 2 (except the two ending vertices), each vertex of the spine is
connected to six new vertices. Given an even number of vertices in the spine, the
optimal bisection size is 1. Another group of caterpillar graphs are denoted with
rcat.n where each vertex on the spine is connected to

√
n new vertices.

5. grid.n.b: A grid graph with n vertices whose optimal bisection size is known to
be b. The same grid graph but with the boundaries wrapped around is denoted by
w-grid.n.b.

The graph instances proposed in [25] and [14] are of rather small size (up to 1000
and 5252 vertices respectively), and as such do not represent a real challenge for
recent algorithms that are designed to tackle large partitioning problems steaming
from real-life applications. Another important source of GP instances is provided
by the Walshaw’s Graph Partitioning Archive ( http://staffweb.cms.gre.
ac.uk/˜c.walshaw/partition/). These benchmark graphs represent sam-
ples of small to medium scale problems arising in different applications. Compared
to the graphs provided in [25] and [14], these are of significantly larger dimensions
with the biggest graph auto comprising 448695 vertices and 3314611 edges.

Since circuit partitioning is one of the most important applications of the GPP,
the ISPD circuit benchmark suites are also used to evaluate the performance of
partitioning algorithms. The circuit benchmark suite is regularly being updated with
new circuits that are directly derived from real industrial designs, and that represent
today’s mixed-size physical design constraints in terms of size and complexity. The
most recent circuit instances are presented at the ISPD-2011 placement contest [46].
These instances are large with the total number of nodes ranging from 483452 to
1293433 and the total number of nets from 468918 to 1293436. Their format can
easily be converted into the standard format used by the current state-of-art k-way
graph partitioning packages.

6.3 Classical Approaches for the Graph Partitioning Problem

Many different approaches have been proposed in the literature for the GPP. Some of
these algorithms only take a local view of the graph and try to ameliorate the given
partition, while others consider the problem globally. Some are purely deterministic
always producing the same partition, while others rely on random decisions. Some
operate on the graph itself, while others use some mathematical representations of
it. Some are very time consuming, while others can find a partition even of very
large graphs in a matter of seconds. In this section, we provide a brief review of the
most common heuristic approaches applied to GPP.

Greedy graph partitioning methods are quite simple. The basic idea of these
deterministic approaches is to accumulate in some way vertices into subsets, one
subset at a time or alternating between subsets. Battiti and Bertossi propose two
popular greedy procedures for graph bisection, the Min-Max-Greedy [7] and the
Diff-Greedy [6], that assign one randomly chosen seed vertex to each bisection
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subset and subsequently add vertices to them alternatively. While the Min-Max-
Greedy [7] method adds each time a vertex that will produce the smallest increase
in the cut size of the partition, the vertex selection criterion is slightly modified in
the Diff-Greedy [6] to choose vertices that have the minimum difference between
the number of new external and internal edges. Another kind of greedy partition-
ing algorithm is proposed by Ciarlet and Lamour [15]. All of these algorithms are
very fast, and have an additional advantage of being able to directly divide a graph
into the desired number of subsets. This avoids applying recursive bisection that can
give arbitrarily worse results than direct k-way partitioning [41]. On the other hand,
the quality of partitions in terms of cut-size is not always great. Therefore, greedy
partitioning algorithms are often used to generate an initial partition which is then
refined with a local improvement algorithm.

The Kernighan-Lin (KL) algorithm [29] is one of the earliest and most popu-
lar local improvement heuristic for graph partitioning. It improves iteratively the
quality of an existing partition obtained by other partitioning approaches. Origi-
nally, the KL procedure was intended to be applied several times starting from a
different random partition. While this produces reasonable results on small graphs,
it is quite ineffective on larger problem instances. Nowadays, the KL heuristic is
used to complement algorithms that have a more global view of the problem but
are likely to ignore local characteristics. Numerous improvements and adaptations
of the basic KL procedure have been proposed in the literature. The most important
improvement of the KL algorithm for graph bisection is the one proposed by Fiduc-
cia and Mattheyses [21], which reduces the time per KL pass to linear. Both KL and
Fiduccia-Mattheyses (FM) algorithms are devised to tackle only the graph bisection
problem. Several adaptations of the KL and FM procedures have been proposed in
the literature for the k-way partitioning. Among these is an extended FM algorithm
by Sanchis [38, 39], and an adaptation of FM proposed by Hendrickson and Le-
land [23]. A description of the KL procedure and its modification by Fiduccia and
Mattheyses is provided in Section 6.4.1.

More sophisticated vertex move based approaches for graph partitioning rely on
well-known metaheuristics such as tabu search, simulated annealing, ant colony
algorithms and evolutionary approaches. Moreover, Chardaire et al. [15] apply to
the partitioning problem the Population Reinforced Optimization Based Exploration
(PROBE) heuristic, which has been presented as a new metaheuristic [3] inspired by
genetic algorithms. Although adaptations of metaheuristic algorithms are generally
more time consuming than greedy iterative methods, they often yield an improve-
ment on solution quality. In particular, the best performing approaches for the graph
partitioning problem are often hybrids between a classical metaheuristic and a mul-
tilevel method. Indeed, a great number of the current best balanced partitions for the
set of benchmark graphs from Walshaw’s Graph Partitioning Archive are obtained
with two multilevel hybrid approaches proposed by Benlic and Hao, based on an
iterative tabu search algorithm [9] and a memetic algorithm [10, 11] respectively.
Section 6.4 and 6.5 review respectively some of the most effective hybrid evolution-
ary approaches and multilevel metaheuristic hybrids.
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Spectral heuristic approaches have also been extensively used. An advantage of
these approaches is the possibility of defining lower bounds for the objective func-
tion of the partitioning problem. Spectral methods are based on computing eigen-
values and eigenvectors of the Laplacian matrix associated with the graph in order
to construct various geometric representations of the graph. A fundamental spec-
tral algorithm is the spectral bipartitioning (SB) based on the linear ordering repre-
sentation. The SB uses the second eigenvector of the Laplacian (called the Fiedler
vector), which contains important directional information about the graph G. The
components of the Fiedler vector are weights associated to vertices of G, such that
the differences between the components provide information about the distances be-
tween the vertices. A bisection with SB is obtained by sorting the vertices according
to the sizes of the components of the Fiedler vector, and then distributing half of the
vertices to each subset of the bisection. Spectral algorithms for k-way graph parti-
tioning can be classified according to two approaches: recursive spectral bisection
algorithm and direct spectral k-way partitioning algorithm. The former consists in
finding the Fiedler eigenvector of a Laplacian matrix of graph G, and recursively
partitioning G until the desired number of partitions is obtained. The latter uses
p ≥ k eigenvectors and directly partitions G into k subsets with some heuristic. For
a recent survey on algorithms based on these two approaches see [34]. Since spec-
tral partitioning is a computationally intensive process, the first papers on multilevel
methods for graph partitioning [4] propose multilevel implementations of spectral
algorithms to simplify the calculation for a spectral method. Spectral methods are
global approaches for partitioning graphs. Therefore, it is useful to improve the ob-
tained partition with a local optimization algorithm. These are often called partition
refinement algorithms. The algorithms for refinement of partitions found by spectral
methods are most often of Kernighan-Lin type.

To handle very large graphs, multilevel algorithms prove to be quite useful. Var-
ious adaptations of the general multilevel technique have been tried on a number of
combinatorial optimization problems including the traveling salesman, graph col-
oring, and the vehicle routing problem [47]. For graph partitioning, the multilevel
approach has been very successful. The multilevel method was initially proposed
to accelerate the performance of existing partitioning approaches. However, it was
shortly recognized to be extremely effective and to have a more global vision of a
graph than standard refinement procedures. The multilevel approach thus imposed
itself as a global strategy using local partitioning algorithms. The basic idea of a
multilevel graph partitioning approach is to successively create a sequence of pro-
gressively smaller graphs by grouping vertices into clusters. A partition of the coars-
est graph is generated and then successively projected back towards the original
graph followed by partition refinement. Hybrid algorithms that combine a multi-
level method with a metaheuristic approach shortly became very popular for solv-
ing the partitioning problem. Section 6.5 is dedicated to the multilevel schemes for
partitioning as well as to the best metaheuristic algorithms for multilevel partition
refinement.
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Although the current partitioning approaches are able to produce high quality
partitions in reasonable time, performing partitioning in parallel is very important
and has received a lot of attention. A great deal of work has been focused on par-
allelizing geometric graph partitioning and spectral bisection algorithms. Parallel
formulations of multilevel graph partitioning schemes have also been proposed in
the literature, although their development is quite challenging. Moreover, parallel
versions of the three well known partition packages Jostle [48], Metis [40] and
Scotch [36], based on the multilevel paradigm, have also been developed. Perhaps
the fastest available parallel code is the parallel version of Metis (parMatis). It pro-
duces partitions which are worse that those obtained with the sequential version of
Metis (kMetis). In general, parallelization of graph partitioning algorithms induces
some penalty in terms of solution quality. However, Holtgrewe et al. [24] demon-
strate in their recent work that high quality graph partitioning can be obtained in
parallel in a scalable way. Moreover, their parallelization approach even seems to
ameliorate partition quality, and in some cases improves the best-known partitions
reported in the literature.

6.4 Evolutionary Hybrids for Graph Partitioning

Many hybrid evolutionary algorithms have been proposed in the literature for the
graph partitioning problem. The success of these approaches lies in combining ad-
vantages of both recombination operator that discovers unexplored promising re-
gions of the search space, and local search that finds good solutions by concentrating
the search around these regions. Most of the popular population-based graph parti-
tioning algorithms use the well-known Fiduccia-Mattheyses (FM) improvement of
the Kernighan-Lin (KL) algorithm (or some slight modification of it) for fast iter-
ative local improvement of partitions created in the recombination process. Before
reviewing the current state-of-art hybrid population-based approaches, we thus de-
scribe the KL heuristic and its FM modification.

6.4.1 Kernighan-Lin Bisection Algorithm, Improvement and
Adaptation

The Kenighan-Lin (KL) heuristic [29] improves upon a given initial bisection by
exchanging two equal-size vertex subsets of the bisection. Let (A,B) be a graph
bisection, i.e., A∪B = V and A∩B = /0. We denote by g(a,b) the reduction in the
cut size when two vertices a ∈ A and b ∈ B exchange their subsets, and by g(v) the
reduction when vertex v is moved to the opposite subset. The gain g(a,b) can then
be computed as

g(a,b) = ga + gb− 2δ (a,b),
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where

δ (a,b) =
{

1 if (a,b) ∈ E
0 otherwise.

The KL algorithm selects a pair of vertices (a,b) which maximizes gain g(a,b).
Once a and b are selected, they are not considered any more for further exchange.
This process is repeated to form a sequence of pairs (a1,b1), ...,(an/2−1,bn/2−1).
The algorithm then exchanges vertices in X = {a1, ...,ak} from one bisection
subset with vertices in Y = {b1, ...,bk} from another bisection subset, such that
∑k

i=1 g(ai,bi) is maximized. The above constitutes one KL pass of complexity
O(n3). This process is repeated until no improvement on the bisection is possible.

To reduce the total running time per pass, Kernighan and Lin [29] suggest con-
sidering only several highest gain vertices in each subset and then selecting the pair
with the maximum gain among all the combinations. This reduces the running time
per pass to O(n2) and introduces only a slight degradation in solution quality.

Fiduccia and Mattheyses [21] modify the KL bisection heuristic by suggesting
to move one vertex at a time instead of exchanging two vertices. Moreover, the
authors propose an effective bucket data structure that reduces the time per pass
to linear O(|E|) by avoiding unnecessary search for the highest gain vertex and
by minimizing the time needed for updating the gains of vertices affected by each
move. The idea of the bucket data structure consists in placing all vertices with the
same gain g in a bucket that is ranked g. Finding a vertex with the maximum gain
simply consists in finding the non-empty bucket with the highest rank, and selecting
a vertex from the bucket. After a vertex v has been moved to another subset, the
bucket structure is updated by recomputing gains of vertex v and its neighbours, and
transferring these vertices to appropriate buckets.

The bucket data structure consists of two arrays of buckets, one for each subset
of a bisection, where each bucket of an array is represented by a doubly linked list.
The arrays are indexed by the possible gain values for a move, ranging from gmax to
gmin. A special pointer maxgain points to the highest index in the array whose bucket
is not empty. The structure also keeps an additional array of vertices where each
element (vertex) points to its corresponding vertex in the doubly linked lists. This
enables direct access to the vertices in buckets and their transfer from one bucket
to another in constant time. An example of the bucket data structure is illustrated
in Fig 6.1.

Both KL and FM heuristics are devised only for the Graph Bisection Problem
(GBP). Several adaptations of the FM algorithm have been proposed for the k-way
partitioning. In [38], Sanchis proposes maintaining k(k− 1) previously described
bucket structures, one for each of the k(k−1) possible directions to move a cell (i.e.,
vertex) between partition subsets. The author also adopts the notion of level gain [31]
that enables the algorithm to better distinguish between cells whose first level gains
(regular gains) are the same. However, Sanchis suggests a more space efficient way
to maintain level gains than that proposed in [31]. Moreover, making k2 comparisons
to determine the next legal cell move (i.e., move which preserves partition balance)
is avoided by keeping a sorted list of the maxgain pointers corresponding to legal
move directions. This is done by using a binary heap whose entries are maxgain
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Fig. 6.1 The bucket sorting data structure [21] for graph bisection

pointers for the currently legal move directions. The pointer with the highest value is
located at the root of the tree, and an array indexed by move directions is maintained
holding pointers to the elements in the heap. The complexity involved in maintaining
the heap is O(lk|E|logk), where l is the number of gain levels.

6.4.2 Selected Evolutionary Approaches for Graph Partitioning

6.4.2.1 Hybrid Genetic Algorithm by Bui and Moon

A classical approach for GBP is the Breadth First Search Genetic Bisection Algo-
rithm (BFS-GBA), proposed by Bui and Moon [14], that can easily be adapted for
the k-way partitioning problem .

The approach uses a standard solution encoding that represents a partition as a bit
string (or integer string in case of k-way partitioning), where the ith element in the
string indicates the partition subset of vertex i. Although this solution representation
is widely used for the GPP, it is not the most suitable because of the high redundancy
which grows exponentially with the number of partition subsets k. That is, each so-
lution can be represented in k! possible ways which deteriorates the performance of
traditional crossovers by introducing severe inconsistencies in an offspring partition.

In each iteration, BFS-GBA picks from the population two parents for recombi-
nation, such that the probability of selecting the best individual for recombination
is four times as high as the probability of selecting the worst parent. Two offspring
partitions are then created by recombining the selected parents using the standard
multi-point (MP) crossover and a variation of MP (call it VMP) respectively. The
VMP crossover is the same as MP except that it copies to the child the complement
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values from the second parent. Therefore, it can only be applied in the case of bi-
section. BFS-GBA selects the better of the two offspring solutions and passes it to
a local optimization procedure. The motivation for using the two crossovers is the
following. If two partitions are exactly (or almost exactly) the complement of each
other, the MP crossover will cause much stronger perturbation in an offspring par-
tition than the VMP, probably resulting a partition of poor quality. The algorithm
reinforces the diversification by applying a mutation to offspring I0 that selects at
random m positions in the chromosome and changes their values. This generally
leads to an infeasible solution which is repaired by using a simple scheme of flip-
ping bits.

For fast improvement of offspring, Bui and Moon propose a variation of Fiduccia–
Mattheyses linear time KL implementation (see Section 6.4.1). Only one pass of the
local optimizer is allowed, and the size of the sets to be swapped is restricted. This
decreases even more the computation time of the local serach phase by about an
order of 10. In case of the k-way partitioning, the KL extension [29] for the k-way
partitioning is used.

Finally, BFS-GBA applies a replacement strategy that first tries to replace I0

with the more similar parent based on the Hamming distance measure, and if it
fails, it tries to replace the other parent (replacement is carried out only when I0 is
better than one of the parents). Although this scheme preserves longer a diversified
population, it is very time consuming since with large diversity the algorithm takes
more time to converge. For this reason, the BFS-GBA scheme replaces offspring I0

with the worst individual from the population in case when I0 is worse than both of
the parents.

The algorithm stops when 80% of the population is occupied by solutions of the
same quality, which are not necessarily identical solutions.

An important component of this hybrid genetic algorithm is the preprocessing
phase that can dramatically improve the performance on some types of graphs (ge-
ometric and caterpillar graphs) at very little cost in time. The rational behind this
preprocessing scheme is to reorder vertices on the chromosome in an attempt to
ensure that clusters of highly connected vertices are included in short schemas that
have more chance to survive in a crossover. It consists in performing a breadth first
search (BFS) on the input graph starting at a random vertex. The order in which
vertices are visited by the BFS is used to reorder vertices on the chromosome. That
is, the ith vertex in the BFS ordering takes the position i in the chromosome. This
preprocessing phase is carried out only once before the start of the hybrid genetic
algorithm.

The performance of BFS-GBA was tested on the set of graphs from [25], as
well as on a number of instances specially designed for this evaluation [14]. In this
study, BFS-GBA competes very favourably with the multi-start KL algorithm and
the simulated annealing proposed by Johnson et al [25]. Moreover, it is considerably
faster then the simulated annealing approach [25]. Unfortunately, the performance
of BFS-GBA has not been demonstrated on larger instances (|V |> 10000).
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6.4.2.2 A Memetic Algorithm by Merz and Freisleben

Merz and Freisleben [32] propose a memetic algorithm for GBP, which is based on
the observations made from an exhaustive landscape analysis on a set of local optima
sampled with the KL and greedy heuristics respectively for the instances proposed
in [14, 25]. The results of this analysis showed that the landscape of the GBP is
highly dependent on the graph structure and that some landscapes have slightly more
correlated local optima than others. However, all these analysed graphs generally
have a rather structured landscape (fitness-distance correlation coefficient ρ f dc >
0.15), and local optima that are concentrated within a limited region of the search
space (see Section 6.5.4.1). Therefore, the authors propose a memetic algorithm
(MA) that attempts to exploit the landscape structure of the problem.

The algorithm uses the same solution encoding as BFS-GBA. For the local
search phase, MA employs the standard KL algorithm which runs in O(|E|) in-
stead of O(n2) time by means of the bucket data structure proposed by Fidducia and
Mattheyses.

Instead of generating the initial population randomly, the algorithm uses the ran-
domized Diff-Greedy heuristic by Battiti and Bertossi [6] since it is one of the best
constructive heuristics for the GBP and is able to generate a wide range of high
quality solutions. The idea of the Diff-Greedy algorithm consists in generating a
partition by adding vertices alternatively to partition subsets in a greedy way. Let S0

and S1 be two subsets of the bisection. At each stage, the vertex selected to enter a
subset, say S0, is the vertex for which the number of neighbour vertices in S0 mi-
nus the number of neighbour vertices in S1 is maximized. The rationale behind this
selection criterion is that a bisection that minimizes the cut size maximizes at the
same time the number of internal edges.

The Diff-Greedy heuristic thus exploits the structure of the search space that has
shown to be very effective for instances of the GPP. The authors therefore propose
a new crossover called greedy crossover (GC) which is based on the same idea as
the Diff-Greedy heuristic. In the first phase of the GC, all vertices that are contained
in the same partition subset in both parents are placed in the same subset in the
offspring. Then, the rest of vertices is assigned to both subsets according to the
selection strategy used in the Diff-Greedy algorithm. If |S0|< |S1| a vertex is added
to subset S0, else to S1.

Selection for recombination in MA is done uniformly at random without bias
to fitter individuals, while selection for survival is performed by choosing the best
individuals from the union of parents and children by taking care that there is no
duplicate in the population.

Due to the computing time required by the local search phase, the population size
is kept very small (up to 40) compared to genetic algorithms. This leads to prema-
ture convergence, especially in the absence of mutation. To overcome this problem,
MA triggers a restart mechanism that has shown to be very effective for combina-
torial optimization problems, including the QAP and the TSP. Upon convergence
(the average Hamming distance has dropped below a threshold (d = 10) or there was
no changes in the population for more than 30 generations), the whole population
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except the best individual is mutated by exchanging subsets of randomly chosen
pairs of vertices (v1,v2) such that v1 ∈ S and v2 /∈ S . After mutation, each indi-
vidual is improved with the KL local search and MA proceeds with performing the
crossover as usual.

This memetic algorithm shows to be effective, scalable and very robust on differ-
ent types of graphs, and is able to produce better average cut size than any previous
heuristic search method including tabu search, simulated annealing, and hybrid ge-
netic algorithms.

6.4.2.3 A PROBE Based Heuristic by Chardaire et al.

In [15], the authors propose an adaptation of a new population-based metaheuristic
technique named PROBE (Population Reinforced Optimization Based Exploration)
for the GBP. The PROBE method is conceptually much simpler than genetic algo-
rithms as it does not include selection, replacement, and mutation procedures. The
basic idea of PROBE is to find optimized solutions by exploring promising search
subspaces, starting from solutions in which common characteristics found in both
parents are preserved. These optimized solutions then constitute a new population
in the next generation.

As in [14], the PROBE bisection algorithm (PROBE-BA) uses the bit string solu-
tion encoding where the ith bit indicates the subset of vertex i. Although this scheme
is quite intuitive, the authors note that a less redundant encoding might improve the
partition quality.

PROBE-BA uses standard graph partitioning approaches for exploration
and exploitation of the search space, namely the Diff-Greedy heuristic by Battiti
and Bertossi [6] (see Section 6.4.2.2) and the variation of the KL algorithm by Bui

and Moon [14] (see Section 6.4.2.1) . Given a population POP = {I1
q , I

2
q , ..., I

|POP|
q }

of feasible solutions at generation q, the next generation of solutions is obtained
as follows. For each i = 1, ..., |POP|, a partial bisection Ii

q+1 is computed from the

pairs (Ii
q, I

i+1
q ) (where the superscript is taken modulo POP+ 1) by fixing the ver-

tices corresponding to the bits shared by the two parent solutions Ii
q and Ii+1

q . This
partial solution is then used as input to the Diff-Greedy algorithm to obtain a com-
plete bisection of the given graph. Note that this recombination process is exactly
the same as with the previously described greedy crossover devised by Merz and
Freisleben [32], which tries to exploit the landscape structure. Once solution Ii

q+1
has been constructed, its quality is improved with the fast KL local optimizer de-
signed by Bui and Moon [14].

The performance of PROBE-BA has extensively been evaluated on a large
number of graphs of different sizes (the largest graph auto has |V | = 448695
and |E| = 331461). The results show that PROBE-BA can compete with other
population-based algorithms, reactive tabu search, or more specialized multilevel
partitioning approaches. Moreover, it was able to improve, in reasonable time, the
previous best cut values for a number of real world instances.
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6.5 Multilevel Graph Partitioning

As illustrated in [47], the multilevel paradigm is a useful approach to solving com-
binatorial optimization problems that even appears to impart a ‘global’ quality to
local search heuristics. Basically, the approach allows one to approximate the initial
problem by approximating successively smaller (and easier) problems. Moreover,
the coarsening helps filter the solution space by placing restrictions on which so-
lutions the refinement algorithm can visit. We dedicate this section to some of the
best performing and most popular multilevel hybrids that combine a refinement al-
gorithm based on a metaheuristic approach. After a formal definition of the general
multilevel procedure, we provide a review on two basic types of multilevel schemes
and on the most effective adaptations of metaheuristic techniques that have been
proposed for partition refinement of coarsened graphs.

6.5.1 Formal Definition of the Multilevel Paradigm

Let G0 = (V0,E0) be the initial graph, and let k denote the number of partition
subsets. The multilevel paradigm can be summarized by the following steps.

1. Coarsening phase: The initial graph G0 is transformed into a sequence of smaller
graphs G1,G2, ...,Gm such that |V0|> |V1|> |V2|> ... > |Vm|. Each coarse graph
represents the original problem, but with fewer degrees of freedom. Coarsening
stops when |Vm| reaches a fixed threshold (coarsening threshold).

2. Initial partitioning phase: A k-partition Pm of the coarsest graph Gm = (Vm,Em)
is generated. It allows to get the first approximation of the problem.

3. Uncoarsening phase: Partition Pm is progressively projected back to each inter-
mediate Gi (i = m− 1,m− 2, ...,0). Before each projection, the partition is first
refined (improved) by a refinement algorithm.

This process leads thus to a sequence of partitions Pm,Pm−1,Pm−2, ...P0. The last
one, i.e., P0 is returned as the final partition of the original graph G0.

In Figure 6.2, we illustrate this multilevel procedure for the 4-way partitioning
problem.

6.5.2 Multilevel Schemes

Two main classes of multilevel schemes have been proposed in the graph partition-
ing literature. In general, any coarsening can be defined as a process of aggregation
of graph vertices to form the vertices of the next coarser graph. In the following,
we describe the strict aggregation scheme, as well as the more effective weighted
aggregation which has recently been proposed for the partition problem. While
the former scheme makes hardened local decisions at each graph level, the latter
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Fig. 6.2 The coarsening, initial partitioning and the uncoarsening (projection/refinement)
phases for the 4-way partitioning problem. During the uncoarsening phase, the dashed lines
represent projected partitions and the dark ones indicate partitions refined after projection.

introduces more freedom in solving the coarser levels and avoids making local de-
cision before gathering the pertinent global information.

6.5.2.1 Strict Aggregation Scheme (SAG)

Strict aggregation (SAG) [11, 23, 28, 44], also called edge contraction or matching
of vertices, is employed by most multilevel partitioning algorithms. The idea of the
SAG is to form a new vertex v∈Vi+1 of a coarser graph Gi+1 by merging a subset of
vertices V c

i ⊂Vi of Gi that (usually) have a strong local coupling (i.e., connectivity).
The weights of the resulting vertices and edges of the coarsened graph Gi+1 =

(Vi+1,Ei+1) are set accordingly. The weight of the new vertex v ∈ Gi+1 becomes
equal to the sum of weights of the vertices that are aggregated to form v. Simi-
larly, let va,vb ∈ Vi+1 be two vertices formed by collapsing {v1,v2,v3} ∈ V a

i and
{v4,v5,v6} ∈ V b

i . All the edges incident to {v1,v2,v3} and {v4,v5,v6} are merged
to form a new edge {va,vb} ∈ Ei+1 with a weight that is set equal to the sum of
weights of the edges incident to {v1,v2,v3} and {v4,v5,v6}. Updating of vertex and
edge weights is illustrated in Fig 6.3. For simplicity, the cardinality of the vertex
subset that is merged to form a new vertex of a coarser graph is set to two.
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Fig. 6.3 An example of updating weights of new vertices and edges formed after vertex
aggregation. For each vertex v, we indicate its corresponding weight w separated by a dot
(e.g., v.w). For each newly formed vertex vn, we also indicate the subset of vertices that are
aggregated to form vn.

Two main SAG schemes have been proposed for coarsening graphs. The first
scheme is based on finding an independent subset of edges (matching) Γ ⊂ Ei, and
then collapsing the two vertices of each edge in Γ to form a new vertex of a coars-
ened graph G = (Vi+1,Ei+1) [11, 27, 28, 44]. Any vertex that is not part of Γ is
simply copied over to Gi+1. The second scheme is based on finding c-cliques for
c > 2, and then collapsing the vertices of the cliques to form new vertices of the
coarsened graph [19, 22]. We concentrate on the matching scheme, since it is the
most commonly used coarsening method.

The key issue for the matching scheme is the selection of the independent sub-
set of graph edges Γ to be collapsed at each step of the coarsening phase. This
can be achieved by finding a maximal matching of the graph [35]. That is, the ob-
jective is to find the maximal number of edges no two which are incident on the
same vertex. There exist polynomial time algorithms for tackling this problem, with
running time of at least O(|V |2.5). Unfortunately, this is too slow to be applica-
ble to the partitioning problem. Therefore, several fast heuristic approaches have
been proposed to compute an approximate maximal matching such as the heavy-
edge matching heuristic (HEM), which has O(|E|) time complexity [27]. The HEM
considers vertices in random order, matching each unmatched vertex v with its un-
matched neighbor u, if any, such that the weight of edge {u,v} is maximal among
all the edges incident to v. Other similar heuristics for computing an approximate
maximal matching of a graph include Random Matching (RM), Light Edge Match-
ing (LEM), and Heavy Clique Matching (HCM). If time is not a issue, metaheuristic
algorithms might be used to approximate maximal matchings of a graph at the ex-
pense of running time. In [30], the authors propose a genetic algorithm to determine
an approximate maximal matching that has shown to provide a significant improve-
ment on solution quality.

The projection in case of the SAG is a trivial process. If a vertex v ∈ Vi is in
subset Sm, then the matched pair of vertices v1,v2 ∈ Vi−1 which represents vertex
v ∈Vi will also be in subset Sm.
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6.5.2.2 Weighted Aggregation Scheme (WAG)

Another class of multilevel schemes that has been applied to several combinatorial
optimization problems [37] (including the graph partitioning [17]) is based on the
algebraic multigrid (AMG) method [12, 13]. The essential difference between this
and the previously described SAG scheme is in the coarsening phase. While the SAG
is based on grouping of vertices into small disjoint subsets, the AMG coarsening is
a weighted aggregation where each vertex is divided in fractions, and different frac-
tions belong to different subsets of vertices (i.e., aggregates). That is, the vertices
that belong to more than one vertex subset will be divided among the corresponding
aggregates. Like with the SAG scheme, all the vertices from a subset are merged to
form a vertex of the coarser level, where they will be blocked into larger aggregates,
forming vertices of a still coarser graph, and so on. Weighted instead of strict aggre-
gations is important to express a likelihood of vertices to belong to the same subset.
These likelihoods are accumulated at the coarser levels, indicating tendencies of
vertices to be associated together. In that way, weighted coarsening avoids mak-
ing hardened local decisions, such as edge contractions, before gathering important
global information.

The WAG coarsening scheme for graph partitioning first starts by selecting a set
C ⊂ Vi of seed vertices of the finer graph Gi, that will constitute the vertices of the
coarser graph Gi+1. This process is guided by the principal that each vertex from
F =V\C should have a strong dominant connection to C. Then, starting from C = /0
and F =V , vertices are being transferred from F to C until all the remaining vertices
from F satisfy the following condition:

∑
j∈C

wi j/ ∑
j∈V

wi j ≥ Q,

where Q is a parameter (usually Q≈ 0.5).
Each vertex from C becomes a seed of one aggregate that will form one vertex of

the coarser graph. Define for each i ∈ F a coarse neighborhood Ni = { j ∈C,wi j ≥
αi}, where αi is a parameter that limits the nighborhood size in order to control
complexity. The AMG interpolation matrix is then defined by

Pi j =

⎧
⎨

⎩

wi j/∑k∈Ni
wik for i ∈ F, j ∈ Ni

1 for i ∈C, j = i
0 otherwise,

where each entry Pi j of the matrix represents the likelihood of vertex i to belong
to the jth aggregate. Let I(k) be the order number in the coarser graph Gi+1 of a
vertex that constitutes an aggregate around a seed vertex whose order number in the
finer graph Gi is k. The weight of an edge that connects two aggregates p = I(i) and
q = I( j) in Gi+1 becomes equal to wpq = ∑k �=l PkiwklPl j. As in the case of the SAG
scheme, the total sum of vertex weights is conserved throughout each graph level.
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The projection process of the WAG scheme is more complex than in the case
of the SAG. One of the simpler ways to project a partition consists in computing
the probability that a fine vertex belongs to a particular subset of the partition. In
the case of a graph bisection, only the probability of being part of subset 0 (or 1)
matters. Then, the probability that vertex i belongs to subset 0 can be determined
with the following relation:

P0(i) = ∑
k∈N,I(k)∈S0

PiI(k).

With this strategy, vertex i is assigned to subset 0 if the probability P0(i)≥ 0.5, and
to subset 1 otherwise.

Although the SAG scheme has been used by most multilevel partitioning ap-
proaches, experimental evaluations have shown that the usage of WAG can signif-
icantly improve the quality of a partition. For a comparison between the two types
of schemes for the graph partition problem, the reader is referred to a recent paper
by Chevalier and Safro [17].

6.5.3 Effective Refinement Strategies Based on Metaheuristics

Partition refinement approaches that are used in conjunction with the multilevel
paradigm are most often based on the KL linear-time complexity improvement by
Fiduccia and Mattheyses. The KL heuristic has shown to be efficient in finding lo-
cally optimal partitions when it starts with a fine initial partition. Since the projected
partition is already of fairly good quality, the KL considerably decreases the cut-size
within a small number of iterations [27]. For that reason, four out of five public-
domain graph partitioning packages (Chaco, Jostle, Metis, and Scotch), whose aim
is to find reasonably good partitions in very short computing time, use a multilevel
KL hybrid as the default setting. However, it has been shown that, given a longer
computing time, other multilevel refinement algorithms that are based on well-
known metaheuristic techniques, such as tabu search or evolutionary approaches,
are able to largely improve on the solution quality in terms of cut-size.

We next review some of the best performing metaheuristic refinement approaches
for the k-way partitioning. Note that each refinement procedure of a multilevel strat-
egy can solely be applied to solve the partitioning problem. The multilevel paradigm
is integrated since it can often either accelerate the convergence of the local serach
or even improve the asymptotic convergence in solution quality [47].

6.5.3.1 Perturbation-Based Tabu Search by Benlic and Hao

A recently proposed perturbation-based iterated tabu search (ITS) procedure [9],
combined with the multilevel matching scheme (see Section 6.5.2.1), has shown to
be extremely effective in finding balanced (ε = 1.0) k-way partitions. Perfect parti-
tion balance for this algorithm is thus imposed as a constraint and is progressively
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established during the search, while the objective is to minimize the total sum of
cutting edge weights.

The ITS employs two neighborhood relations (call them N1 and N2) which are
explored in a token-ring way. That is, one neighborhood search is repeatedly applied
to the best local optimum produced by the other neighborhood. Given a subset Si

of a k-partition p = {S1,S2, ...,Sk}, the basic idea of the neighborhood relations N1

and N2 is to move a vertex v from its current subset to subset Si, under the constraint
that v must be a border vertex relative to Si, i.e., v /∈ Si has at least one adjacent
vertex in Si. Note that in this way, the size of the neighborhoods is limited, since
the set of border vertices relative to Si is generally of small size. In addition, such a
neighborhood allows the search to concentrate around these critical vertices.

Let I = {S1,S2, ...,Sk} be a k-partition, V (Si) the set of border vertices relative to
subset Si, and Smax = {Si|maxi∈{1..k}{W (Si)}} the subset with the maximum vertex
weight. The neighborhood relations N1 and N2 can be explained by the two move
operators given below.

Move 1: Move one highest gain vertex vm. Choose randomly a subset Sm ∈
{S1,S2, ...,Sk}−{Smax}. Then, select the highest gain vertex vm ∈ V (Sm) whose
current subset is Sc, such that Sc ∈ {S ∈ I|W (S) > W (Sm)}. Move the selected
vertex vm to subset Sm.
Move 2: Move two highest gain vertices vm and vn. Choose vertex vm and its
new subset Sm as with the first move operator. Choose randomly a new subset
Sn ∈ {S1,S2, ...,Sk}−{Smax,Sm}. Then, select vertex vn ∈ V (Sn) whose current
subset is Sc, such that Sc ∈ {S ∈ I|S �= Sn}. Move vm to Sm, and vn to Sn.

As defined in Section 6.4.1, the gain for moving vertex v to subset Sm is the reduction
in the cut size. The selection of the vertex with the highest gain, as well as the
updates needed after each move, are achieved efficiently by using a new adaptation
of Fiduccia-Mattheyses bucket sorting [21] for the k-way partitioning that maintains
k arrays of buckets, one for each partition subset.

It is important to note that these move operators progressively lead the search
toward a balanced partition since they basically constraint (partially with Move 2)
vertex migration from heavy weight subsets to light weight subsets.

Let Vcand ⊂ V (Sm) be the set of the highest gain vertices which are considered
for migration to subset Sm. The selection of vertex v, which is moved to Sm, is based
on several pieces of history information. This selection strategy is first conditioned
by the tabu status. It also employs two additional criteria which are based on vertex
move frequency and vertex weight. The move frequency is a long term memory
that records, for each vertex v, the number of times v has been moved to a different
subset. It gives priority to moves that have been applied less often. If there is more
than one vertex with the same move frequency in the set Vcand , the second criterion
is used to distinguish them and prefer a vertex v which, when moved to subset
Sm, minimizes the weight difference between the target subset Sm and the original
subset Sc.
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Each time a vertex v is moved from a subset Sc to another subset Sm, it is forbid-
den to move v back to its original subset Sc for the next tt iterations (tabu tenure),
where tt is tunded adaptively.

The described TS procedure applies a very aggressive search procedure since it
focuses only around border (critical) vertices. Therefore, to avoid getting trapped
in a local optimum, the algorithm periodically triggers a simple perturbation which
consists in moving a fixed number of vertices γ , including non-border ones, such
that the partition balance is not degraded.

This multilevel ITS algorithm (MITS) is designed to produce excellent quality
partitions with the possibility to generate solutions of various qualities depending
on the amount of computing time allowed. Indeed, experimental studies on a set
of graphs from Walshaw’s graph partitioning archive have shown that partitions
generated with MITS within short computation time (from 1 second up to several
minutes for a graph with |V | = 143437 and |E| = 409593) are generally far better
than those produced by the current public-domain partitioning packages. When the
running time is prolonged up to one hour, the described algorithm often outperforms
the existing state-of-art graph partitioning algorithms in terms of solution quality.

6.5.3.2 An Evolutionary Approach by Soper et al.

A popular approach for generating high quality graph partitions, proposed by Soper
et al. [44], is a combination of an evolutionary search algorithm and a multilevel
partitioner.

The employed multilevel partitioner, known as JOSTLE, is based on the match-
ing scheme with the HEM heuristic (see Section 6.5.2.1) and the linear-time KL
improvement by Fiduccia and Mattheyses that the authors extend for use with non-
integer gains by integer scaling. The fitness function used by the evolutionary ap-
proach is defined to be − f λ , where f is the number of edges in the cut and λ the
degree of imbalance. The partition imbalance is thus not considered as a constraint,
but induces a heavy penalty in case of greater imbalance. In this way, partitions
within the balance constraint eventually dominate the population as the search pro-
gresses.

The basic idea of the approach is to assign a bias (≥ 0) to each vertex, and a
weight to each edge that is equal to one plus the sum of the biases of its incident
vertices. When applying JOSTLE to a graph with biased vertex and edge weights,
vertices with a small bias are more likely to appear as boundary vertices than those
with a larger one, and edges of a lower weight have higher probability to be cut.
In this way, JOSTLE concentrates its search to a rather limited region of the search
space just like the ITS from Section 6.5.3.1.

Each new offspring is obtained with a crossover or a mutation operator by de-
termining a set of biased values from one or more parents from the population and
than applying JOSTLE to generate a partition. The crossover creates a new set of
biases from a given number of partitions in the following way. For each vertex v
in the graph, check whether v appears as a border vertex (ends a cut edge) in two
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or more of the parent partitions. If so, assign to v a bias value selected uniformly
at random from the range [0, 0.1]. Otherwise, assign to vertex v a bias value of 0.1
plus a random number chosen in the same range.

The mutation operator generates a new set of biases by considering information
from only one parent in the following way. For each vertex v in the graph, check
whether v is a border vertex, the neighbour of a border vertex, or the neighbour of
a neighbour of a border vertex. If so, assign to v a bias value selected uniformly at
random from the range [0, 0.1]. Otherwise, assign to vertex v a bias value of 2.0 plus
a random number chosen in the same range.

After an offspring partition has been created, the associated biased values are
removed.

The population size |POP| is kept quite small (around 50) due to size of graphs
and the time required to execute JOSTLE. Each new generation is produced as fol-
lows. |POP| new offspring are created by either crossover or mutation at a given
ratio. Mating groups of individuals for crossover and candidates for mutation are
randomly selected from the current generation, such that each individual partici-
pates in at least one trial. The union of parent and offspring individuals are ranked
by fitness, and the best |POP| individuals are then selected to form the new gen-
eration. The proposed algorithm is thus a simplified version of the CHC Adaptive
Search Algorithm [18] that lacks incest prevention and restarts.

Each run of this evolutionary approach consist of 50,000 calls to JOSTLE, and
therefore requires very long execution time of hours and even days for large graphs.
As expected, it thus provides higher quality partitions than any of the existing pack-
age that usually take less than a minute (and often less than a second) to generate a
partition.

6.5.3.3 The Memetic Algorithm by Benlic and Hao

In [11], Benlic and Hao extend their MITS algorithm for balanced k-way partition-
ing from Section 6.5.3.1 to a multilevel memetic approach (MMA) by integrating
a dedicated multi-parent crossover operator based on the notion of backbone and
a distance-preserving pool updating strategy that maintains a healthily diversified
population. To avoid high solution redundancy introduced by the standard string
solution encoding, an individual I = {S1, ...,Sk} for MMA corresponds to a parti-
tion of V into k disjoint groups or subsets, such that each subset S j, j ∈ {1, ...,k} is
composed of vertices that are assigned to the jth subset.

The success of the MMA partly lies in the dedicated backbone-based multi-parent
crossover operator (BBC) that exploits an existing structure of a problem by preserv-
ing the elements which hopefully belong to the optimal partition, while permitting
limited perturbations within offspring solutions. It thus provides high quality par-
titions for instances with exploitable global structure and search landscapes with
highly correlated local optima.
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Given the set P = {I1, ..., I p} of p parent individuals chosen with the well-known
tournament selection strategy, the BBC constructs the offspring I0 = {S0

1, ...,S
0
k} in k

passes (one for each subset of the partition). In each pass μ it performs the following
steps:

1. Select a subset Si
j of Ii such that the weight W (Si

j) is maximal across the subsets
j ∈ {1..k} of each individual Ii ∈ P, i.e. maxi∈{1..p}, j∈{1..k}{W (Si

j)}, with the
constraint that at most �k/p� subsets can be chosen from each individual Ii ∈ P.

2. Given Ii and Si
j determined in Step 1, for each individual It ∈P (t �= i), let ∏t con-

tain the largest number of vertices that are shared by the subset Si
j of Ii and a sub-

set St
η of It , i.e. ∏t = {Si

j ∩St
η |maxη∈{1..k}|Si

j ∩St
η |}. Then, ∏ = {∏1, ..,∏p−1}

forms a set of these vertex subsets.
3. Set S0

μ = ∏1∩ ∏2∩...∩∏p−1. S0
μ is the largest subset of vertices that are shared

by all the parent individuals. For each vertex v ∈ Si
j and v �= S0

μ , v is assigned to

subset S0
μ of I0 if c(v)/p−1 is greater than or equal to some random real number

in the range [0,1], where c(v) is the number of subsets of ∏ in which v occurs.
4. When a vertex v is assigned to subset S0

μ of I0 in the μ th pass, v is removed
from all the parent individual subsets in which it occurs, and the weights of these
subsets are adjusted accordingly.

After the previous four steps, the last step handles the unassigned vertices. Any
vertex v missing from I0 is placed at random to a subset Sr of I0 such that W (Sr ∪
{v}) ≤Wopt , where Wopt is defined in Section 6.2.1. This step introduces a degree
of diversification in the crossover process.

Notice that the proposed BBC operator never degrades the balance with respect
to the set of parent individuals P, since given a subset Si

j of individual Ii which

is chosen in the μ th pass, at most |Si
j| vertices can be transmitted to the subset S0

μ
of offspring I0. In addition, an unassigned vertex v in I0 is assigned to a subset S0

r
only if adding v to S0

r does not exceed the expected optimal subset weight Wopt . An
example of this crossover with three parent individuals (p = 3) for k = 3 is provided
in Figure 6.4.

After offspring I0 has been generated with the BBC operator, it is improved with
the ITS from Section 6.5.3.1. The MMA then decides whether I0 should be inserted
into the population by considering both the solution quality and the set-theoretic
partition distance [20] (call it d) between individuals from the population. Offspring
I0 is inserted into POP if it is of the best quality relative to the population, or if the
minimum distance between I0 and any other individual in the population is greater
than the minimum distance between any two individuals in the population. To deter-
mine the individual that is to be replaced by I0, the authors adopt a strategy proposed
in [33] that uses the following quality-and-distance scoring function H to rank the
individuals of the population:

Hi,POP = f (Ii)+β/Di,POP
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Fig. 6.4 An illustration of the BBC crossover with three parents taken from [11]. A circled
subset of a parent corresponds to the subset chosen in the μ th pass, i.e. the subset of maximal
weight across all the parent individuals with the constraint that at most �k/p� subsets can be
chosen from each individual.

where f is the objective function (i.e., the sum of cutting edge weights), β a parame-
ter, and Di,POP the minimum distance between individual Ii and any other individual
from the population.

An extensive experimental evaluation of MMA has been performed on a set of
benchmark instances from Walshaw’s archive. It has been shown that the MMA
can provide even better partitions in terms of solution quality than the ITS from
Section 6.5.3.1. Moreover, the authors compare two version of MMAs integrating
respectively the BBC and a standard uniform crossover where the diversification
is further reinforced by a random mutation operator. The results show that there is
no significant statistical difference between the solution sets generated by the two
MMA versions for lower values of k, i.e., k ∈ {4,8}. However, as k increases, the
BBC operator visibly outperforms the uniform crossover in almost each case for
k ∈ {16,32}. One explanation is that intuitively, given the semantics of the BBC
crossover, it favours the preservation of backbone information for larger k whereas
the number of parts has a weak influence for the uniform crossover operator as to
backbone preservation.
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6.5.3.4 Other Partition Refinement Approaches

Beside the aforementioned multilevel refinement partitioning procedures, some
other approaches are also worth mentioning.

In [8], Battiti et al. propose a multilevel algorithm for the balanced bipartitioning
which integrates the Diff-Greedy algorithm [6], used in the initial partitioning phase,
and a tabu search algorithm [7] employed as a partition refinement procedure. The
TS algorithm is related to the KL heuristic [29]. However, the main differences are
that each selected move is applied immediately to the current solution, and that
worsening moves are also accepted. The authors consider two alternative choices to
adjust the prohibition parameter T (i.e., the tabu tenure) of the TS algorithm. The
first choice is to maintain T fixed during the search with a value that is selected
by a preliminary off-line tuning phase for different types of graphs (FIXED-TS or
FTS). The other choice is to determine the right value of T in a dynamic and on-
line way depending on the past search history (Reactive Randomized Tabu Search
RRTS). In this way, the tedious task of tuning by the user is avoided and the T
value can automatically change during the search depending on the properties of a
specific task.

A refinement procedure based on a mixture of simulated annealing and tabu
search algorithm (RLrMSATS) is presented by Baños et al [5]. The idea of this
hybrid approach is to employ the simulated annealing procedure to escape from lo-
cal optima, while preventing the occurrence of cycles by means of a tabu search
mechanism. A move with the proposed approach consist in moving a vertex v from
its current to another partition subset. To jump from a local optimum, RMSATS
accepts worsening moves as in simulated annealing. Once a move increasing the
evaluation function cost is accepted, it is forbidden to apply the reverse move dur-
ing a certain number of iterations as in tabu search in order to avoid cycling. A
similar hybrid refinement approach inspired by RMSATS is proposed in [45].

6.5.4 The Key to Effectiveness of Partition Refinement Procedures

The success of a multilevel algorithm is greatly dependent on its two main compo-
nents: the coarsening scheme and the solution refinement procedure. Since vertex
aggregation filters the solution space by putting restrictions on which solutions the
algorithm can visit, it is obvious that the way coarsening decisions are made is of
an extreme importance for the quality of resulting solutions. As pointed out pre-
viously, most of the graph partitioning approaches are based on the same or very
similar coarsening schemes. However, given the same amount of computing time,
some of these algorithms perform better than others highlighting the importance of
a refinement procedure.

In the previous sections, we described the three best performing partition re-
finement procedures in terms of partition quality. A common characteristic of
these refinement algorithms is that they are based on stronger intensification and
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concentrate the search only around a limited region of the search space. In ITS [9],
this is done by performing (most of the time) moves with only border (critical) ver-
tices according to a selection strategy. A similar idea is also used in [44], where a
smaller bias is assigned to vertices that appear as border vertices in one or more par-
ent partitions, which results higher probability that these vertices will remain border
in successive generations. In [11], besides the ITS, the BBC crossover also limits
the region of explored search space by preserving vertex groupings that are common
to a number of population individuals. Moreover, the intensification plays a major
role in other popular graph partitioning approaches.

We next provide an explanation, based on observation made from a landscape
analysis [11, 32], to why a more pronounced intensification mechanism constitutes
a highly effective search in case of the graph partitioning problem.

6.5.4.1 Landscape Analysis for the Graph Partitioning Instances

The performance of a stohastic algorithm crucially depends on the characteristics
of search landscape like the average distance between local optima and the relative
distance of local optima to the nearest global optimum. The fitness distance correla-
tion (FDC) coefficient ρ f dc [26] is a well-known tool for landscape analysis and can
provide useful indications about the problem hardness, even if such an analysis has
some known shortcomings and limits. FDC estimates how closely related are the
fitness and distance to the nearest optimum. For a minimization problem, if the fit-
ness of a solution decreases with the decrease of distance from the optimum, then it
would be easy to reach the target optimum for an algorithm that concentrates around
the best candidate solutions found so far, since there is a “path” to the optimum via
solutions with decreasing (better) fitness. A value of ρ f dc = 1 indicates perfect cor-
relation between fitness and distance to the optimum. For correlation of ρ f dc =−1,
the fitness function is completely misleading. FDC can also be visualized with the
FD plot, where the same data used for estimating ρ f dc is displayed graphically.

A landscape analysis for the GPP has been performed in two works. In [32], Merz
and Freisleben provide a thorough analysis of the landscape for the GBP on a set
of instances introduced in [14, 25], and perform a fitness distance correlation anal-
ysis (FDA) [26] based on solutions samples with the KL [29] and Diff-Greedy [6]
heuristics respectively. In [11], Benlic and Hao make a FDA for the k-way partition-
ing problem (for k ∈ {4,8,16,32}) on a set of graphs from the Walshaw’s graph par-
titioning archive (used for performance evaluation in [9, 11, 44]), based on a sample
of local optima obtained after 1500 independent runs of the ITS [9]. While Merz and
Freisleben use the Hamming distance, Benlic and Hao use the set-theoretic distance
to perform the landscape analysis.

Tables 6.1 and 6.2 show the results from [32] and [11] respectively. Column
‘ρ f dc’ of the two tables reports FDC coefficients ρ f dc for the analysed graphs. For
illustrative purpose, FD plots of only two graphs (3elt and vibrobox) are given in
Figure 6.5 for k ∈ {4,8,16,32}. As it can be seen from Tables 6.1 and 6.2, there
is a signification fitness distance correlation in many cases. However, the FDA
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Table 6.1 Analytical results for graph bisection, taken from [32], for graph partitioning in-
stances provided in [14, 25]. Columns ‘dlo’ and ‘dgo’ report respectively the average distance
between local optima and the average distance of local optima from the best local optimum,
expressed as a percentage of |V |. Column ‘ρ f dc’ shows the correlation coefficients with re-
spect to fitness and distance.

KL heuristic Diff-Greedy heuristic
Graph avg dlo avg dgo ρ f dc avg dlo avg dgo ρ f dc

G1000.0025 22.53 21.29 0.37 22.09 20.86 0.34
G1000.005 22.79 21.97 0.22 22.36 21.68 0.18
G1000.01 22.6 21.54 0.37 22.21 21.36 0.29
G1000.02 22.47 21.24 0.47 22.2 20.86 0.41
U1000.05 22.47 21.62 0.28 14.44 11.15 0.63
U1000.10 20.65 19.16 0.36 15.39 12.81 0.58
U1000.20 15.76 12.94 0.63 14.94 13.53 0.58
U1000.40 13.02 9.45 0.82 13.6 10.47 0.66
Breg5000.16 3.95 2.08 0.99 17.9 11.98 0.99
Cat.5252 24.14 23.91 0.02 14.58 11.52 0.21
Rcat.5114 22.79 22.36 0.07 14.46 11.45 0.7
Grid5000.50 4.3 2.4 0.91 15.07 12.09 0.7
W-grid5000.100 14.43 13.56 0.66 14.43 13.55 0.7

Table 6.2 Analytical results, taken from [11], for seven graph partitioning instances from
Walshaw’s graph partitioning archive when k ∈ {4,8,16,32}. Columns ‘dlo’ and ‘dgo’ report
respectively the average distance between local optima and the average distance of local
optima from the best local optimum, expressed as a percentage of |V |. Column ‘ρ f dc’ shows
the correlation coefficients with respect to fitness and distance.

k=4 k=8 k=16 k=32
Graph avg dlo avg dgo ρ f dc avg dlo avg dgo ρ f dc avg dlo avg dgo ρ f dc avg dlo avg dgo ρ f dc

data 30.5 34.8 0.57 17.8 16.0 0.68 22.5 23.7 0.08 24.9 23.1 0.6
3elt 19.1 18.7 0.7 17.2 14.6 0.53 14.0 12.1 0.75 20.5 17.1 0.53
uk 18 14.3 0.61 26.3 25.7 0.24 26.9 25.1 0.33 27.4 24.9 0.44
crack 3.5 2.2 0.89 22.5 19.6 0.51 27.7 22.9 0.74 28.1 26.3 0.58
wing-nodal 26.1 21.6 0.81 17.1 13.6 0.91 31.0 27.3 0.56 37.5 35.6 0.4
fe-4elt2 9.8 6.7 0.74 26.0 24.4 0.68 16.4 14.7 0.51 28.7 25.5 0.51
vibrobox 40.1 41.4 -0.02 22.4 19.7 0.03 41.5 45.5 0.65 49.7 46.8 0.21

analysis also reveals the existence of several cases among the selected instances for
which there is virtually no correlation between fitness and distance, i.e., cases where
ρ f dc < 0.15. Indeed, from plots in Figure 6.5, it is clear that there is practically no
correlation for ‘vibrobox’ when k ∈ {4,8}. On the other hand, the plots indicate
the strongest correlation for the graph ‘3elt’ when k ∈ {4,16} and ‘vibrobox’ when
k = 16.

The existence of a strong correlation between solution quality and its distance to
the nearest global optimum, as observed from the FDC analysis in [11, 32], is often
refered to as a big valley structure of the landscape. Intuitively, in this structure a
global optimum is surrounded by local optima with evaluation values that deteriorate
with the increase of distance to the global optimum. In case of landscapes with a big
valley structure, stronger intensification leads to algorithms of better performance.

Additionally, tables 6.1 and 6.2 report the average distance between local optima
(column ‘avg dlo’) and the average distance of local optima from the best local opti-
mum (column ‘avg dgo’ ), expressed as a percentage of |V |. Given that the maximum
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Fig. 6.5 FD correlation plots with respect to the normalized solution fitness and distance to
the optimum for 3elt and vibrobox when k ∈ {4,8,16,32}. The first four plots are related to
the elt graph, while the last four are related to the vibrobox. The plots are taken from [11].

distance between any two solutions is |V |, these results imply that local optima are
not uniformly distributed, but are rather concentrated within a limited number of
regions in the search space.

These observations constitute an explanation to why algorithms that perform a
stronger intesification do so well on these GP instances.
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6.6 Conclusion

In this chapter, we provided a review on hybrid metaheuristics for solving the well-
known k-way partitioning problem (GPP). GPP is an NP-complete problem with
a broad spectrum of applicability. Therefore, many efforts have been made in de-
vising a number of different heuristic approaches such as spectral methods, graph
growing and greedy heuristics, multilevel approaches, as well as algorithms based
on popular metaheuristics. The application of these methods depends on several fac-
tors including time vs. quality and the degree of imbalance. The most popular graph
bisection heuristic is the linear time implementation of the Kernighan-Lin algorithm
by Fiduccia and Mattheyses, which improves iteratively the quality of an existing
partition. Different adaptations and modifications of its basic procedure have been
proposed in the literature. These KL-like algorithms are often hybridized with other
approaches such as multilevel and genetic algorithms. The current best performing
GPP algorithms in terms of solution quality are hybrids between classical meta-
heuristic techniques and multilevel methods. Indeed, the three most effective algo-
rithms reviewed in this chapter, that were able to produce state-of-art partitions, are
hybrids between multilevel methods and adaptations of well-known metaheuristics.
We noted that a common characteristic of these approaches is that they are based on
a strong intensification mechanism which seems to work well on most GP instances
whose landscapes generally display the big valley structure.
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