
Chapter 5
Hybridizations of GRASP with Path-Relinking

Paola Festa and Mauricio G.C. Resende

Abstract. A greedy randomized adaptive search procedure (GRASP) is a meta-
heuristic for combinatorial optimization. GRASP heuristics are multistart proce-
dures which apply local search to a set of starting solutions generated with a
randomized greedy algorithm or semi-greedy method. The best local optimum
found over the iterations is returned as the heuristic solution. Path-relinking is a
search intensification procedure that explores paths in the neighborhood solution
space connecting two good-quality solutions. A local search procedure is applied
to the best solution found in the path and the local optimum found is returned as
the solution of path-relinking. The hybridization of path-relinking and GRASP adds
memory mechanisms to GRASP. This chapter describes basic concepts of GRASP,
path-relinking, and the hybridization of GRASP with path-relinking.

5.1 Introduction

A combinatorial optimization problem can be defined by a finite ground set E =
(1, . . . ,n), a set of feasible solutions F ⊆ 2E , and an objective function f : 2E �→
R. In this chapter, we consider optimization problems in their minimization form,
where an optimal solution S∗ ∈ F is sought such that f (S∗) ≤ f (S), for all S ∈ F .
The ground set E , the set of feasible solutions F , and the objective function f are
defined for each specific problem. Many combinatorial optimization problems are
computationally intractable, i.e. they fall into the category of NP-hard problems [32].
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Much progress has been made in the direction of exact methods for combinato-
rial optimization, such as branch and bound, branch and cut, and dynamic program-
ming [72, 76]. These methods, however, suffer from the curse of dimensionality, i.e.
they tend to break down as the size of the instance being solved increases. Like-
wise, approximation algorithms [74, 75], which provide a guaranteed suboptimal
solution to hard combinatorial optimization problems, have also experienced signif-
icant progress. Although interesting in theory, approximation algorithms are often
outperformed in practice by more straightforward heuristics with no particular per-
formance guarantees.

Metaheuristics [33, 36] are general high-level procedures that coordinate simple
heuristics and rules to find good (often optimal) approximate solutions to combina-
torial optimization problems. They include genetic algorithms, simulated annealing,
tabu search, scatter search, ant colonies, variable neighborhood search, GRASP,
and path-relinking . There are many ways to classify metaheuristics. These in-
clude, trajectory-based versus population-based, nature-inspired versus non-nature
inspired, memoryless versus memory-based, etc. Genetic algorithms, for example,
are nature-inspired, population-based, with memory. Tabu search are trajectory-
based with memory. GRASP is trajectory-based.

Hybrid metaheuristics combine one or more algorithmic ideas from different
metaheuristics and sometimes even from outside the traditional field of meta-
heuristics. The main motivation to hybridize metaheuristics is to make up for the
shortcomings of one metaheuristic with special characteristics of the other. In
this chapter, we consider the hybridization of two metaheuristics: GRASP and
path-relinking.

GRASP, or greedy randomized adaptive search procedures [25, 26, 30, 31, 59],
is a metaheuristic for combinatorial optimization. GRASP heuristics are multistart
procedures which apply local search to a set of starting solutions generated with
a randomized greedy algorithm or semi-greedy method. The best local optimum
found over the iterations is returned as the heuristic solution. Since GRASP itera-
tions are independent of one another, GRASP heuristics do not make use of solutions
produced throughout the search, i.e. they do not have any memory mechanism.

One way to add memory to GRASP is its hybridization with path-relinking. Path-
relinking [35, 60, 63] is a search intensification procedure that explores paths in the
neighborhood solution space connecting two good-quality solutions. A local search
procedure is applied to the best solution found in the path and the local optimum
found is returned as the solution of path-relinking.

This chapter describes basic concept of GRASP, path-relinking, and the hy-
bridization of GRASP with path-relinking. In Section 5.2 we describe the main
building blocks of GRASP. In Section 5.3 we consider path-relinking and, in Sec-
tion 5.4, address issues related to the hybridization of GRASP with path-relinking
and evolutionary path-relinking. A hybridization of GRASP with path-relinking and
Lagrangean relaxation is discussed in Section 5.5. In Section 5.6 we consider par-
allel implementation of GRASP with path-relinking heuristics. Finally, concluding
remarks are made in Section 5.7.
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5.2 GRASP

Given a feasible solution S ∈ F of a combinatorial optimization problem, a neigh-
borhood N(S) of S is a subset of F such that each element in N(S) is “close” to S
and can be obtained applying some elementary operation (or move) to S that changes
one or more components of S. Consider the search space graph G = (F,M), where
the node set F is the set of feasible solutions and the edges in the set M correspond
to moves in the neighborhood structure, i.e. (S,S′) ∈ M if and only if S,S′ ∈ F ,
S ∈ N(S′), and S′ ∈ N(S).

Local search seeks a locally optimum solution in G, i.e. a solution Ŝ ∈ F such
that f (Ŝ)≤ f (S), for all S ∈ N(Ŝ). It starts from some solution S0 ∈ F . At any iter-
ation k, it seeks an improving solution Sk+1 ∈ N(Sk) such that f (Sk+1)< f (Sk). On
one hand, if a first-improving strategy is used, any improving solution Sk+1 can be
accepted. On the other hand, when a best-improving strategy is adopted, the improv-
ing solution Sk+1 is the best-valued in the neighborhood, i.e. f (Sk+1) = min{ f (S) :
S ∈ N(Sk)}. Local search terminates when a locally optimum solution is found. The
effectiveness of local search depends strongly on the structure of the solution space
graph G = (F,M), the objective function f , and the starting solution S0 ∈ F .

When designing a local search algorithm, one has the flexibility to design dif-
ferent neighborhoods and to select different starting solutions. Usually there is less
flexibility in selecting an objective function. Some attention is needed in the de-
sign of neighborhoods since the complexity of each iteration k of local search is
O(|N(Sk)|). A neighborhood that is exponentially large will result in a local search
with exponentially large computational complexity. Another cause of exponential
computational complexity in local search is an exponentially small reduction in the
objective function value when moving from a solution to a neighbor.

Since it is possible to select the starting solution S0, a possible strategy is a
multi-start algorithm, where local search is applied to a series of starting solutions
S0

1,S
0
2, . . . ,S

0
q and the best local optimum found by the procedure is returned.

A straightforward way to implement such a multi-start algorithm is to generate
each starting solution at random. A drawback to this approach is the fact that the
quality of randomly-generated solutions is not very good and the number of moves
needed to reach a global optimum is usually large. Not only does this result in long
running times, it also increases the chance that local search will encounter a sub-
optimal local optimum along the way and get trapped there. The number of local
optima with better cost than a randomly generated solution is usually larger than the
number of local optima with better cost than a greedy solution.

A greedy algorithm builds a solution to a combinatorial optimization problem,
one element of the ground set at a time. Given a partial solution, all possible candi-
date elements of the ground set (i.e. those elements that can be added to the partial
solution without causing infeasibility) are ranked according to a myopic benefit as-
sociated with their inclusion in the solution and the next element to be added to the
solution is one among the best-valued. Using a greedy algorithm to generate start-
ing solutions for a multi-start algorithm is not recommended since the generated
solutions would differ very little one from another. However, a good characteristic
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Fig. 5.1 Pseudo-code of a
generic GRASP

begin GRASP
1 f ∗ ← ∞;
2 while stopping criterion not satisfied do
3 S ← RandomizedGreedy(·);
4 if S is not feasible then
5 S← Repair(S);
6 end-if
7 S ← LocalSearch(S);
8 if f (S)< f ∗ then
9 S∗ ← S;
10 f ∗ ← f (S);
11 end-if
12 end-while
13 return S∗;
end

of greedy solutions is their quality. Usually, fewer moves are needed to go from a
greedy solution to a locally optimum than what is needed to go to a local optimum
from a randomly generated solution.

A tradeoff between a greedy solution and a random solution is a semi-greedy
or randomized greedy solution [38]. A semi-greedy heuristic is also a constructive
procedure that builds a solution, one element of the ground set at a time. Like a
greedy algorithm, in a semi-greedy algorithm, all possible candidate elements are
ranked according to a myopic benefit associated with their inclusion in the solution.
Instead of selecting one among the best-valued elements as the next one to be added
to the solution, a restricted candidate list (RCL) is built with a set of good-valued
candidates. One element from the RCL is selected at random and is added to the
partial solution.

Hart and Shogan [38] proposed a multi-start procedure that uses a semi-greedy
method but without local search. GRASP is a multi-start procedure which uses a
semi-greedy method to generate starting solutions for local search. Since solutions
produced by the algorithm of Hart and Shogan are not necessarily local optima,
GRASP solutions are almost always better than semi-greedy solutions.

Figure 5.1 shows pseudo-code for a generic GRASP. GRASP iterations are car-
ried out in lines 2 to 12. In line 3, the procedure attempts to build a feasible semi-
greedy solution. Since this is not always possible because there is no backtracking in
the greedy algorithm, a repair procedure may have to be applied in line 5 to achieve
feasibility. An example of such a case can be seen in the GRASP for the generalized
quadratic assignment problem of Mateus et al. [46]. A feasible solution S is used as
the starting solution for the local search in line 7. If the local optimum S is better
than the incumbent, then, in lines 9 and 10, it is saved as S∗ and its objective function
value as f ∗. In line 13, the best solution found over all GRASP iterations is returned
as the GRASP solution.
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Fig. 5.2 Pseudo-code of
the semi-greedy GRASP
construction phase

begin GreedyRandomized
1 S ← /0;
2 Initialize set of candidates C;
3 Evaluate the incremental cost of candidates;
4 while C �= /0 do
5 Build the RCL;
6 Select s ∈ RCL at random;
7 S ← S∪{s};
8 Update C;
9 Reevaluate the incremental costs;
10 end-while
11 return S or indication that S is infeasible;
end

5.2.1 GRASP Construction

The GRASP construction phase in line 3 of the pseudo-code of Figure 5.1 com-
bines greedy and randomized characteristics. The first implementations of GRASP
made use of the semi-greedy algorithms of Hart and Shogan [38]. Figure 5.2 shows
pseudo-code for a generic version of the semi-greedy algorithm of Hart and Shogan.

The semi-greedy construction builds a solution S, one element at a time. In line 1
of the pseudo-code, solution S is initialized empty. The elements of the ground set
than can be feasibly added to the solution are called candidates. This set is initialized
in line 2 and the costs of adding each candidate element to the solution is determined
in line 3. The solution is built in the loop in lines 4 to 10. This loop is repeated while
there remain candidate elements. When C = /0, solution S can be either feasible or
not. In the case that S is infeasible, a repair procedure will need to be called in the
main GRASP procedure. Otherwise S is returned in line 11. In line 5, a restricted
candidate list (RCL) is set up from which an element s is selected at random in
line 6. This element is added to the partial solution in line 7. In line 8 the candidate
set C is updated to reflect the inclusion of s in S. Finally, in line 9 the incremental
costs are computed for each element of C.

Hart and Shogan [38] proposed two ways to construct the RCL. The first, called
cardinality based , takes as input a parameter k and places the k elements with best
incremental cost in the RCL. The second scheme is called value based. Let cmin

and cmax denote, respectively, the minimum and maximum incremental cost of the
candidate elements and let α be a real number in the interval [0,1]. A threshold
τ = cmin +α · (cmax − cmin) is computed and all candidate elements having incre-
mental cost at most τ are placed in the RCL. Notice that the parameter α controls
the amount of randomness and greediness in the construction process. If α = 0,
the construction is purely greedy. If α = 1, the construction is random. By control-
ling the value of α , the algorithm designer can control how much greediness and/or
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randomness characterizes the construction which in turn controls the intensification
and diversification of the search.

One way to mix intensification and diversification is to randomly generate a
different α at each GRASP iteration. Prais and Ribeiro [54] proposed a scheme
they call Reactive GRASP in which the parameter α is self-tuned to favor values
which resulted in better quality solutions in previous GRASP iterations. They de-
fine Ψ = {α1, . . . ,αm} to be the set of possible values for α . Initially, the probability
of choosing a value αi is pi = 1/m, i= 1, . . . ,m. Furthermore, let f ∗ be the objective
function value of the incumbent solution and let Ai be the average value of all solu-
tions found using α = αi, i = 1, . . . ,m. The selection probabilities are periodically
recomputed by taking pi = qi/∑m

j=1 q j, with qi = f ∗/Ai for i = 1, . . . ,m. The value
of qi will be larger for values of α = αi that lead, on average, to the best solutions.
Larger values of qi correspond to more suitable values for the parameter α . The
probabilities associated with these more appropriate values will then increase when
they are reevaluated. This reactive strategy is not limited to semi-greedy procedures
where membership in the RCL depends on relative quality. It can be extended to
the other greedy randomized construction schemes, all of which need to balance
greediness with randomization.

In addition to the semi-greedy construction scheme, other alternative greedy ran-
domized construction criteria have been proposed. Three such alternatives are the
random plus greedy, the sampled greedy [61], and the construction by cost pertur-
bation [15] schemes.

In random plus greedy, the first p components of the constructed solution are
selected at random, one at a time. The remaining components are then added to the
solution in a greedy fashion. In this scheme, parameter p controls the amount of
randomness and/or greediness in the solution. Small values of p result in a greedy-
like construction while large values of p correspond to a random-like construction.

Sampled greedy also makes use of a parameter p to control the amount of greedi-
ness and/or randomness in the construction process. At each step of sampled greedy
construction process the procedure builds a RCL by sampling min{p, |C|} elements
of the candidate set C. The incremental cost associated with adding each element of
the RCL into the solution is evaluated. An element with the best-valued incremental
cost is added to the partial solution. The balance between greediness and random-
ness is controlled by the value of parameter p. Small values of p lead to solutions
constructed in a more random fashion while large values of p lead to solutions con-
structed in a more greedy fashion.

Construction by cost perturbation makes use of the problem data to balance the
amount of randomness and greediness in the construction process. Some construc-
tion algorithm, such as, for example, an approximation algorithm, is applied to the
problem where the data is randomly perturbed. The constructed solution is then eval-
uated using the original data. This way, by controlling the amount of perturbation,
the construction will result in either a more random construction or a more greedy
one.
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5.2.2 Other Local Search Strategies

In addition to the first-improvement and best-improvement local search scheme
described earlier in Section 5.2, other hybrid schemes have been proposed. These
involve the replacement of the above mentioned local search schemes with more so-
phisticated local improvement methods, such as variable neighborhood descent [7,
23, 44, 67, 68], variable neighborhood search [15, 29], tabu search [16, 19, 40, 73],
simulated annealing [18, 42], iterated local search [69], and very large scale neigh-
borhood search [34].

5.2.3 Stopping Criteria

As any multi-start procedure, GRASP iterates until some stopping criterion is sat-
isfied. Such criteria could be maximum number of iterations, maximum number of
iterations without improvement of the incumbent solution, maximum running time,
or solution quality at least as good as a given target value. With the exception of the
last criterion, all other rules suffer from the same drawback, i.e. they cannot provide
any information regarding the quality of the solution returned.

Stochastic-based stopping rules for GRASP and similar stochastic local search
algorithms have been proposed, e.g. [9, 13, 21, 39, 49], but computational studies
with these proposals are lacking.

Ribeiro et al. [66] study the distribution of solution values obtained by two
GRASP procedures. For both procedures, the authors show that these solution val-
ues fit a normal distribution. With this observation they propose a probabilistic stop-
ping rule for GRASP.

Let f1, f2, . . . , fk be a sample formed by the first k solution values generated
by GRASP. Furthermore, let μk and σ k be, respectively, the estimated mean and
the standard deviation of the sample. Define X to be the random variable repre-
senting the value of the local minimum found at each iteration. We assume that
X ∼ N(μk,σ k), i.e. X is normally distributed with mean μk and standard deviation
σ k. Let f k

X (·) and Fk
X(·) be, respectively, the probability density and the cumulative

probability distribution function of X . If UBk is the smallest solution value over the
first k GRASP iterations, the probability of finding a solution at least as good UBk

in the next iteration can be estimated as Fk
X(UBk) =

∫ UBk

−∞ f x
N(τ)dτ . This probability

is always reevaluated when the incumbent solution improves. It is reevaluated pe-
riodically even if no change in the value of the incumbent is observed. For a given
threshold value β , the Ribeiro et al. probabilistic stopping rule is to stop the GRASP
iterations whenever Fk

X (UBk)≤ β . The pseudo-code in Figure 5.3 shows a GRASP
with the probabilistic stopping rule.
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Fig. 5.3 Pseudo-code of
a generic GRASP with a
probabilistic stopping rule

begin GRASP(β )
1 f ∗ ← ∞; k ← 0;
2 repeat
3 S ← RandomizedGreedy(·);
4 if S is not feasible then
5 S ← Repair(S);
6 end-if
7 S ← LocalSearch(S);
8 if f (S)< f ∗ then
9 S∗ ← S;
10 f ∗ ← f (S);
11 end-if
12 k ← k+1;
13 fk ← f (S);
14 UBk ← f (S∗);
15 Update μk and σ k of f1, . . . , fk;

16 Compute Fk
X(UBk) =

∫UBk

−∞ f x
N(τ)dτ;

17 until Fk
X(UBk)< β

18 return S∗;
end

5.3 Path-Relinking

From Section 5.2 recall the search space graph G = (F,M), where the node set F
is the set of feasible solutions and the edges in the set M correspond to moves in
the neighborhood structure, i.e. (S,S′) ∈ M if and only if S,S′ ∈ F , S ∈ N(S′), and
S′ ∈ N(S). Given two solutions S,T ∈ F , the path-relinking operator [35] explores
a path P(S,T ) in G connecting S and T with the objective of finding solutions
S∗ ∈P(S,T ) for which f (S∗)< min{ f (S), f (T )}. If both S and T are good-quality
solutions, then one can think of path-relinking as a search intensification procedure,
which explores regions of the solution space spanned by both S and T .

Suppose path-relinking is to be done between two solutions S ∈ F and T ∈ F .
Let S be called the initial solution and T the guiding solution. One or more paths
connecting these solutions in G can be explored. Local search can be applied to
the best solution in each of these paths since there is no guarantee as to the local
optimality of the best solution in the path.

Let S′ ∈ F be some solution in P(S,T ). During path-relinking not all solutions
in N(S′) are allowed to follow S′ on the path P(S,T ). Path-relinking restricts the
choice to those solutions in N(S′) that share more attributes, or elements, with T
than S′ does. We denote by NT (S′) this restricted neighborhood which consists of
all neighbors of S′ obtained by introducing into S′ attributes of T not present in S′.
To select the solution that follows S′ on P(S,T ), the most common choice is the
greedy choice, i.e. the best-valued solution in NT (S′).
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Fig. 5.4 Pseudo-code of a
greedy path-relinking op-
erator

begin PathRelinking(S,T )
1 f ∗ ← min{ f (S), f (T )};
2 S∗ ← argmin{ f (S), f (T )};
3 S′ ← S;
4 while |Δ (S′,T )|> 1 do
5 Sδ = argmin{ f (Ŝ) | Ŝ ∈ NT (S′)};
6 if f (Sδ )< f ∗ then
7 S∗ ← Sδ ;
8 f ∗ ← f (Sδ );
9 end-if
10 S′ ← Sδ ;
11 end-while
12 S∗ ← LocalSearch(S∗);
13 return S∗;
end

Let Δ(S′,T ) be the set of attributes present in T but not in S′. Introducing in S′
any element δ ∈ Δ(S′,T ) leads to a solution Sδ ∈ NT (S′) that can be reached by
traversing edge (S′,Sδ ) ∈ M. Figure 5.4 shows a pseudo-code for a basic greedy
path-relinking operator. This operator scans a path from the initial solution S to the
guiding solution T . In the first two lines, the best solution S∗ and its value f ∗ are
initialized and in line 3 the current solution S′ is initialized to the initial solution S.
The loop from line 4 to line 11 is repeated while there are attributes in the guiding
solution that are not present in the current solution S′. Among all solutions in the
restricted neighborhood NT (S′) of S′, a best-valued solution Sδ is selected in line 5.
If this solution is the best seen so far, it and its value are recorded in lines 7 and 8.
The current solution S′ is updated in line 10 to Sδ . After examining the entire path
from S to T , local search is applied to the best solution in line 12 and the resulting
local optimum is returned as the solution of path-relinking in line 13.

5.3.1 Flavors of Path-Relinking

The scheme shown in the pseudo-code of Figure 5.4 can be implemented as different
variants of path-relinking, including forward, backward, back and forward, mixed,
and greedy randomized. In forward path-relinking, the starting solution S′ is such
that S′ = argmax{ f (S), f (T )}. Conversely, in backward path-relinking, the starting
solution S′ is such that S′ = argmin{ f (S), f (T )}. When carrying out path-relinking,
the neighborhood of the initial solution is explored more thoroughly than that of the
guiding solution. Since the quality of the initial solution in backward path-relinking
is better than that of the initial solution in forward path-relinking, backward path-
relinking usually performs better than forward path-relinking. Better yet is back
and forward path-relinking, where a backward path-relinking is applied first and
then a forward path-relinking follows. Back and forward path-relinking finds, by
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Fig. 5.5 Pseudo-code of
mixed path-relinking op-
erator

begin MixedPathRelinking(S,T )
1 f ∗ ← min{ f (S), f (T )};
2 S∗ ← argmin{ f (S), f (T )};
3 S′ ← S;
4 while |Δ (S′,T )|> 1 do
5 Sδ = argmin{ f (Ŝ) | Ŝ ∈ NT (S′)};
6 if f (Sδ )< f ∗ then
7 S∗ ← Sδ ;
8 f ∗ ← f (Sδ );
9 end-if
10 T ′ ← Sδ ;
11 S′ ← T ;
12 T ← T ′;
13 end-while
14 S∗ ← LocalSearch(S∗);
15 return S∗;
end

definition, solutions that are at least as good as either backward or forward path-
relinking, but at the expense of taking about twice as long as either.

In contrast to back and forward path-relinking, a less expensive way to ex-
plore the neighborhoods of the initial and guiding solutions is with mixed path-
relinking [35, 65]. In mixed path-relinking, the roles of initial and guiding solutions
are exchanged after each move. This way, two paths are generated, one emanating
from the initial solution and the other from the guiding solution. The paths even-
tually meet at some solution about half way between the two input solutions. A
pseudo-code for mixed path-relinking is shown in Figure 5.5.

If ties are broken deterministically in greedy path-relinking, the procedure will
always generate the same path when applied to a given input pair {S,T}. Since the
number of paths connecting the input pair grows exponentially with |Δ(S,T )|, ex-
ploring a single path can be limiting. Greedy randomized adaptive path-relinking
[12, 24] uses a semi-greedy move selection strategy that enables exploration of dif-
ferent paths when applied to the same input pair. Instead of making the greedy move
choice as in line 5 of the pseudo-code in Figure 5.4, greedy randomized adaptive
path-relinking builds a restricted candidate list of moves, one of which is selected at
random to lead to the next solution along the path.

Good-quality solutions tend to be located near other good-quality solutions. Con-
sequently good solutions found by path-relinking are usually found near S or T . Re-
sende et al. [56] showed this was the case for the max-min diversity problem (see
Figure 5.6). In truncated path-relinking, only a partial path is explored. The search
is limited to solutions where only a small portion of the attributes of the guiding
solution are introduced and consequently the running time to apply path-relinking
is reduced.

Mateus et al. [46] observed that path-relinking can fail when NT (S′) = /0 in line 5
of the pseudo-code of Figure 5.4. In such a case a repair procedure is applied to S′
in an attempt to move from S′ to some solution S′′ such that NT (S′′) �= /0.
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Fig. 5.6 Average number
of best solution found at
different depths of the path
from the initial solution
to the guiding solution on
instances of the max-min
diversity problem [56].
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5.3.2 Path-Relinking and Elite Sets

An elite set or pool E of solutions is a fixed-size set of good-quality and diverse
solutions. The quality of a solution S is with respect to its objective function value
f (S) while the diversity between two solutions S and T is with respect to Δ(S,T ).
When initially populating E , a candidate solution S is inserted into E if it differs
from all other solutions already in E , i.e. if |Δ(S,T )| �= 0, for all T ∈ E .

If a solution S is inserted into E when it is already full, it must replace some
solution T ∈ E . A candidate solution S is inserted into E if one of the following two
conditions is satisfied:

1. f (S)< f (T ) for all T ∈ E ;
2. Condition (1) does not hold but f (S) < f (T ) for some T ∈ E and |Δ(S,T )| > ε

for all T ∈ E , where ε is an input parameter used to control the diversity of the
elite solutions.

Once a solution S is accepted to enter the elite set, it must replace a solution T ∈ E .
T should be such that its replacement by S in E results in an elite set with smaller
average objective function value and minimizes the impact on diversity of E . A
strategy [61] that achieves this goal is to select, among all solutions T ∈ E that have
worse objective function value than S, the one that is most similar to S, i.e. select

T = argmin
T ′∈E

{|Δ(S,T ′)| such that f (T ′)> f (S)}.

One way to combine path-relinking and elite sets is through evolutionary path-
relinking [61]. Given an initial elite set, evolutionary path-relinking evolves the
elite set applying the path-relinking operator among pair of elite set solutions. Two
variants of evolutionary path-relinking have been proposed. The first, proposed in
Resende and Werneck [61], works with a series of elite sets. At step k, pairs of
solutions in Ek are relinked one pair at a time. The resulting solution of each path-
relinking operation is a candidate for inclusion in elite set Ek+1. The acceptance and
replacement selection rules described above are used to determine if a candidate
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is accepted by Ek+1 and to determine which elite solution in Ek+1 it will replace.
The procedure stops when the best solution in elite set Ek+1 has the same objective
function value as the best solution in elite set Ek. The second scheme, proposed by
Resende et al. [56] works with a single elite set E . While there remain pairs of so-
lutions in E that have not yet been relinked, the path-relinking operator is applied
to the pair and the resulting solution is a candidate to enter E . The acceptance and
replacement selection rules are applied as described above.

5.4 GRASP with Path-Relinking and Evolutionary
Path-Relinking

Laguna and Martı́ [41] proposed the first hybridization of GRASP with path-
relinking. In their implementation, the elite set is made up of only three solutions.
Each GRASP solution (local minimum obtained by the local search procedure) is
relinked with a randomly chosen elite set solution. If the solution resulting from
the path-relinking operator is better than the best elite solution, it replaces the worst
elite solution.

Since 1999, much work has been done to improve the hybridization of GRASP
with path-relinking [58, 59]. The pseudo-code in Figure 5.7 is a template for im-
plementation of GRASP with path-relinking heuristics. The iterations of GRASP
with path-relinking are carried out in lines 2 to 17. Lines 3 to 7 comprise the two
phases of GRASP, producing a locally optimal solution S. In the case that the elite
set E is not yet full, then in lines 9 to 11 S is added to E if it is different from all
elite set solutions. In the case that the elite set is full, an elite solution T is selected
in line 13 and path-relinking is applied to the pair S,T in line 14, and finally, in
line 15, the elite set E is updated, i.e. solution S is considered for inclusion in E
and if accepted, it will replace some existing solution in E . In line 18, the GRASP
with path-relinking procedure returns the best-quality solution S∗ among all elite
solutions.

GRASP with path-relinking maintains a elite set of diverse good-quality solu-
tions found during the search. Periodically evolutionary path-relinking can be ap-
plied to the elite set with the objective of improving the quality of some of the
elite set solutions. The pseudo-code in Figure 5.8 shows how to modify GRASP
with path-relinking in order to obtain GRASP with evolutionary path-relinking. If a
criterion for evolutionary path-relinking is triggered (line 3) then evolutionary path-
relinking is applied to the current elite set in line 4. This criterion is usually a num-
ber of iterations since the last call to evolutionary path-relinking. Since the same
pair of elite solutions may be relinked several times (in different calls to evolu-
tionary path-relinking), evolutionary path-relinking is usually implemented in the
inner loop (line 4) using the greedy randomized adaptive path-relinking operator.
That way if a pair is relinked more than once, a different solution can result from
the path-relinking operator. Finally, at the conclusion of the GRASP iterations,
evolutionary path-relinking is applied a final time in line 20 to possibly improve
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Fig. 5.7 Pseudo-code of a
GRASP with path-relinking begin GRASP+PR

1 E ← /0;
2 while stopping criterion not satisfied do
3 S ← RandomizedGreedy(·);
4 if S is not feasible then
5 S← Repair(S);
6 end-if
7 S ← LocalSearch(S);
8 if E is not full then
9 if Δ (S,T) �= 0, for all T ∈ E then
10 E ← E ∪{S};
11 end-if
12 else
13 Select T ∈ E ;
14 S← PathRelinking(S,T );
15 E ← UpdateElite(E ,S);
16 end-if
17 end-while
18 return S∗ = argmin{ f (S) | S ∈ E };
end

the elite set and allow the algorithm to output a potentially better solution S∗ in
line 21.

In a paper on GRASP with path-relinking for the three-index assignment prob-
lem, Aiex et al. [2] applied path-relinking between all pairs of the elite set as search
intensification and as post-processing. Resende and Werneck [61, 62] applied evo-
lutionary path-relinking in a post-processing phase in GRASP with path-relinking
heuristics for the p-median and uncapacitated facility location problems. Andrade
and Resende [2] applied evolutionary path-relinking between the two best elite so-
lutions and all other elite solutions as a search intensification in a GRASP with
path-relinking for a network migration problem. Resende et al. [56] showed through
experimental results that a GRASP with evolutionary path-relinking for a max-min
diversity problem could outperform heuristics based on pure GRASP with path-
relinking, simulated annealing, and tabu search.

5.5 Hybrid GRASP Lagrangean Heuristic

Pessoa et al. [51, 52] proposed LAGRASP, a hybrid heuristic combining GRASP
with path-relinking and subgradient optimization to solve the set k-covering prob-
lem . Their algorithm extends the Lagrangean heuristic for set covering of Beasley
[11] to the case of set k-covering. In addition, instead of following Beasley and us-
ing a simple greedy heuristic as the primal heuristic, Pessoa et al. use a GRASP with
path-relinking heuristic in which Lagrangean reduced costs are used in place of the
original costs.
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Fig. 5.8 Pseudo-code of a
GRASP with evolutionary
path-relinking

begin GRASP+evPR
1 E ← /0;
2 while stopping criterion not satisfied do
3 if evPR criterion triggered then
4 E ← evPathRelinking(E );
5 S← RandomizedGreedy(·);
6 if S is not feasible then
7 S← Repair(S);
8 end-if
9 S← LocalSearch(S);
10 if E is not full then
11 if Δ (S,T) �= 0, for all T ∈ E then
12 E ← E ∪{S};
13 end-if
14 else
15 Select T ∈ E ;
16 S← PathRelinking(S,T );
17 E ← UpdateElite(E ,S);
18 end-if
19 end-while
20 E ← evPathRelinking(E );
21 return S∗ = argmin{ f (S) | S ∈ E };
end

The comparison of LAGRASP with pure GRASP with path-relinking showed
that LAGRASP was able to find much better quality solutions than the pure GRASP
with path-relinking. Furthermore, the comparison of different variants of LAGRASP
showed that, by properly tuning its parameters, it is possible to obtain a good trade-
off between solution quality and running time. Extensive experiments on 135 in-
stances showed that LAGRASP can take advantage of randomization to make better
use of dual information provided by subgradient optimization than Beasley’s al-
gorithm. As a consequence, LAGRASP is able to discover better solutions and to
escape from locally optimal solutions after the stabilization of the lower bounds,
whereas the greedy Lagrangean heuristic of Beasley [11] fails to find new improv-
ing solutions.

5.6 Parallel GRASP with Path-Relinking

Multiple-walk independent-thread parallel implementations distribute the GRASP
with path-relinking iterations over the processors. Each thread performs imax/p iter-
ations, where imax is the total number of iterations and p is the number of processors.
As opposed to pure GRASP, were linear speedup is usually observed, multiple-walk
independent-thread parallel implementations of GRASP with path-relinking have
had mixed results. For example, Aiex et al. [2] showed linear speedups for the 3-
index assignment problem whereas for the job-shop scheduling problem, Aiex et
al. [1] showed sublinear speedups.
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In this section, we focus on multiple-walk cooperative-thread schemes for im-
plementing GRASP with path-relinking in parallel. In multiple-walk cooperative-
thread schemes superlinear speedups have been observed (see, e.g. [1, 2, 3]). Two
basic mechanisms have be used to implement multiple-walk cooperative-thread
GRASP with path-relinking heuristics.

In distributed strategies [1, 3], each thread maintains its own pool of elite so-
lutions. Each iteration of each thread consists initially of a GRASP construction,
followed by local search. Then, the local optimum is combined with a randomly
selected element of the thread’s pool using path-relinking. The output of path-
relinking is then tested for insertion into the pool. If accepted, the solution is sent to
the other threads, where it is tested for insertion into the other pools. Collaboration
takes place at this point. Though there may be some communication overhead in the
early iterations, this tends to ease up as pool insertions become less frequent.

The second mechanism is the one used in centralized strategies [45, 64, 65],
in which a single pool of elite solution is used. As before, each GRASP iteration
performed at each thread starts by the construction and local search phases. Next,
an elite solution is requested and received from the centralized pool. Once path-
relinking is performed, the solution obtained as the output is sent to the pool and
tested for insertion. Collaboration takes place when elite solutions are sent from the
pool to other processors different from the one that originally computed it.

In both the distributed and the centralized strategies each processor has a copy
of the sequential algorithm and a copy of the data. One processor acts as the mas-
ter, reading and distributing the problem data, generating the seeds which will be
used by the pseudo-random number generators at each processor, distributing the
iterations, and collecting the best solution found by each processor. In the case of a
distributed strategy, each processor has its own pool of elite solutions and all avail-
able processors perform GRASP iterations. In the case of a centralized strategy, one
processor does not perform GRASP iterations and is used exclusively to store the
pool and to handle all operations involving communication requests between the
pool and the slaves.

5.7 Concluding Remarks

This chapter reviewed the hybridization of greedy randomized adaptive search pro-
cedures (GRASP) and path-relinking. As originally proposed in Feo and Resende
[25, 26], GRASP does not make use of any memory structures. The hybridization of
path-relinking with GRASP, proposed in Laguna and Martı́ [41], introduced mem-
ory structures in GRASP. Though path-relinking adds extra work to each iteration
of GRASP (maintenance of the elite set and the path-relinking operation itself), the
total number of iterations required to find a solution of a given quality more than
compensates for this additional work, resulting in a higher probability that a target
solution will be found in a given amount of search time. Figure 5.9 shows runtime
distributions (time to target plots [4]) comparing implementations of pure GRASP
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Fig. 5.9 Time to target plots comparing running times of pure GRASP and GRASP with path-
relinking on four instances of distinct problem types: three index assignment [2], maximum
satisfiability [27], bandwidth packing [57], and quadratic assignment [48].
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and GRASP with path-relinking on four instances of distinct problem types: three
index assignment [2], maximum satisfiability [27], bandwidth packing [57], and
quadratic assignment [48]. The four plots are typical in the comparison of GRASP
and GRASP with path-relinking in that:

• For a fixed running time, the probability that GRASP with path-relinking finds
a solution at least as good as the target value is greater than the probability that
pure GRASP will;

• For a fixed probability, the running time for GRASP with path-relinking to find
a solution at least as good as the target value with that probability is smaller than
the running time need for pure GRASP to find such a solution with the same
probability.

Hybridization with path-relinking is now the standard approach to implementing
GRASP.

We conclude this chapter with a list of applications of GRASP with path-
relinking (which we do not intend to be exhaustive):

• Graph drawing [41];
• Job-shop scheduling [1], PBX migration scheduling [6], broadcast schedul-

ing [17], network migration scheduling [7], machine scheduling [37], flowshop
scheduling [70];

• Two-path network design [64], rural road network design [71], capacitated min-
imum spanning tree [73];

• Bandwidth packing [57], matrix bandwidth minimization [53], antibandwidth
[22];

• Quadratic assignment [48], generalized quadratic assignment [46], three-index
assignment [2], SONET ring assignment [10];

• Max-SAT [28], max-cut [29];
• p-median [61], uncapacitated facility location [62], health care facility location

[50], capacitated clustering [20];
• Capacitated arc routing with time windows [55], traveling salesman problem

[43];
• Production-distribution planning [14], assembly line sequencing [5], capacitated

lot sizing [47];
• Maximum diversity [8], max-min diversity [56].
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