
Chapter 17
Boosting Metaheuristic Search Using
Reinforcement Learning

Tony Wauters, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe

Abstract. Many techniques that boost the speed or quality of metaheuristic search
have been reported within literature. The present contribution investigates the rather
rare combination of reinforcement learning and metaheuristics. Reinforcement learn-
ing techniques describe how an autonomous agent can learn from experience. Previ-
ous work has shown that a network of simple reinforcement learning devices based
on learning automata can generate good heuristics for (multi) project scheduling
problems. However, using reinforcement learning to generate heuristics is just one
method of how reinforcement learning can strengthen metaheuristic search. Both
existing and new methodologies to boost metaheuristics using reinforcement learn-
ing are presented together with experiments on actual benchmarks.

17.1 Introduction

Researchers developing search methods to solve combinatorial optimization prob-
lems are faced with a number of challenges. An important challenge is to avoid
convergence to a local optimum. A second challenge is to create a method appli-
cable to different problems of various sizes and properties, while still being able to
produce good quality solutions in a short amount of time. Metaheuristics [17, 30]
and the more recently introduced hyper-heuristics [6] try to address these issues.
Hybrid systems and their various perspectives cope with these challenges even bet-
ter. One possible hybridization, which is the main topic of this contribution, involves
the inclusion of a Reinforcement Learning (RL) [19, 29] component to these meta-
and hyper-heuristic methods. This idea fits in the area of intelligent optimization [2],

Tony Wauters
CODeS, KAHO Sint-Lieven, Gebroeders Desmetstraat 1, 9000 Gent, Belgium
e-mail: tony.wauters@kahosl.be

E.-G. Talbi (Ed.): Hybrid Metaheuristics, SCI 434, pp. 433–452.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

tony.wauters@kahosl.be

434 T. Wauters et al.

where some intelligent (learning) component aids the optimization method in order
to obtain a better informed search. During the search process a learning component
can adjust parameters or support the optimization method in making decisions. Intel-
ligent optimization can be defined as a combination of techniques from Operations
Research and Artificial Intelligence.

In what follows, several arguments for combining RL and metaheuristics are en-
listed. Reinforcement learning causes the algorithm to be adaptive, and as such it
minimizes the weaknesses of strongly parameterized methods. As long as the al-
gorithm is granted enough time facilitating the learning of valuable information.
Reinforcement learning offers interesting advantages. It does not require a complete
model of the underlying problem. RL methods learn the model by gathering expe-
rience, often referred to as trial-and-error. Many model free RL methods exist. This
is noteworthy since ordinarily no model is available for most combinatorial opti-
mization problems. Some reinforcement learning methods can handle incomplete
information, although this is obviously a much harder learning task. Reinforcement
learning permits applying independent learning agents, and thus, it is applicable for
fully decentralized problems. Furthermore, it is computationally cheap, i.e. often it
uses only a single update formula at each step. Additionally, if only general prob-
lem features and no instance specific features are used, then the learned information
can possibly be transfered to other instances of the same problem. Recently some
type of RL algorithms that are well suited for this task have been introduced, these
are called transfer learning [32, 31]. Lastly, one can build on theoretical properties
showing that many RL methods converge to optimal state-action pairs under certain
conditions (e.g. the policy for choosing the next action is ergodic) [29]. In this chap-
ter we will show that these interesting theoretical properties show good results in
practice.

The remainder of the chapter describes the combination of reinforcement learn-
ing and search in more detail. Section 17.2 gives a short introduction to reinforce-
ment learning and some common RL algorithms. Section 17.3 discusses different
opportunities for combining these two methods. Section 17.4 gives an extensive
literature overview of the combination of learning and search. An example of a suc-
cesfull application of RL is presented in Sect. 17.5. A conclusion and some future
prospects are described in Sect. 17.6.

17.2 Reinforcement Learning

Reinforcement Learning (RL) [19, 29] is the computational task of learning what
action to take in a given situation (state) to achieve one or more goal(s). The learn-
ing process takes place through interaction with an environment (Fig. 17.1), and is
therefore different from supervised learning methods which require a teacher. At
each discrete time step an RL agent receives observations, i.e. an indication of the
current state s. In each state s the agent can take some action a from the set of ac-
tions available in that state. An action a can cause a transition from state s to another
state s′, based on transition probabilities . The environment’s model contains these

17 Boosting Metaheuristic Search Using Reinforcement Learning 435

transition probabilities. A numerical reward signal r is returned to the agent to in-
form the RL agent about the ‘goodness’ of its actions or the intrinsic desirability
of a state. The reward signal is also a part of the model of the environment. An RL
agent searches for the optimal policy. A policy π maps states to actions or action
probabilities. π (s,a) denotes the probability that action a is selected in state s. An
RL agent wants to maximize the expected sum of future rewards. When an infinite
horizon is assumed, the discount factor γ is used to discount these future rewards.
As such, less importance is given to rewards further into the future.

RL agent Environment

Action a

Reward signal r

Observation of current state s

Fig. 17.1 The basic reinforcement learning model

One of the main issues in RL is balancing exploration and exploitation, i.e.
whether to use the already gathered experience or to gather new experience. An-
other important issue is the credit assignment problem, where one have to deal with
delayed rewards, and thus which action should receive credit for a given reward.
The latter property is currently getting few attention in hybrid RL inspired search
methods.

17.2.1 Policy Iteration Methods

When an RL method searches directly for the optimal policy in the space of policies
it is called a policy iteration method. Learning Automata (LA) [24, 33] belong to
this category. Other methods belonging to this type of RL algorithms are the policy
gradient methods, like the REINFORCE algorithm [39]. LA are simple reinforce-
ment learning devices that take actions in single state environments. A single learn-
ing automaton maintains an action probability distribution p, which it updates using
some specific learning algorithm or reinforcement scheme. Several reinforcement
schemes are available in the literature with varying convergence properties. These
schemes use information from a reinforcement signal provided by the environment,
and thus the LA operates with its environment in a feedback loop. Examples of

436 T. Wauters et al.

linear reinforcement schemes are linear reward-penalty, linear reward-inaction and
linear reward-ε-penalty. The philosophy of these schemes is to increase the proba-
bility of selecting an action in the event of success and decrease it when the response
is a failure. The general update scheme is given by:

pm(t + 1) = pm(t)+αreward(1−β (t))(1− pm(t))

− αpenaltyβ (t)pm(t) (17.1)

if am is the action taken at time t

p j(t + 1) = p j(t)−αreward(1−β (t))p j(t)

+ αpenaltyβ (t)[(r− 1)−1− p j(t)] (17.2)

if a j �= am

With pi(t) the probability of selecting action i at time step t. The constants αreward

en αpenalty are the reward and penalty parameters. When αreward =αpenalty, the algo-
rithm is referred to as linear reward-penalty (LR−P), when αpenalty = 0, it is referred
to as linear reward-inaction (LR−I) and when αpenalty is small compared to αreward ,
it is called linear reward-ε-penalty (LR−εP). β (t) is the reward received by the rein-
forcement signal for an action taken at time step t. r is the number of actions.

17.2.2 Value Iteration Methods

Value iteration methods are more common than policy iteration methods. Value it-
eration methods do not directly search for optimal policy, instead they are learning
evaluation functions for states or state-action pairs. Evaluation functions, as in the
popular Q-learning algorithm [35, 34], can be used to evaluate the quality of a state-
action pair. The Q-learning algorithm maintains an action-value function called Q-
values. The Q-learning update rule is defined by

Q(s,a) = Q(s,a)+α
[

r+ γ max
a′

Q(s′,a′)−Q(s,a)

]

, (17.3)

where s is the previous state, s′ the new state, a the action taken in state s, a′ a
possible action in state s′, r the received reward, α the learning rate or step size,
and γ the discount rate which indicates the importance of future rewards. In many
cases the number of states or state-action pairs is too large to store, and thus the
(action)-value function must be approximated. Often an artificial neural network is
used to accomplish this task, but any linear or nonlinear function approximation
can be used. Q-learning is known as a Temporal Difference (TD) learning method,
because the update rule uses the difference between the new estimate and the old
estimate of the value function. Other common TD methods are SARSA [27, 28] and
TD(λ) [35].

17 Boosting Metaheuristic Search Using Reinforcement Learning 437

17.2.3 Relationships between Reinforcement Learning and
Metaheuristics

The link between reinforcement learning and search algorithms is not tenuous.
Given a state space, an action space and a reward function, then the reinforcement
learning problem can be reduced to a search in the space of policies. Thus similar
issues like exploration and exploitation are faced, often called diversification and
intensification in metaheuristic literature.

Unlike the subject of the present chapter where (reinforcement) learning methods
are used to support metaheuristic search, there are methods which do exactly the
opposite, and thus are using metaheuristic methods to improve learning. [3] show
this interplay between optimization and machine learning.

17.3 Opportunities for Learning

Reinforcement learning methods can be utilized in a variety of ways to boost meta-
heuristic or hyper-heuristic search. Learning may help to find good settings for var-
ious parameters or components. For example, RL methods can learn properties of
good starting solutions or an objective function that guides a metaheuristic towards
good quality solutions. Such an approach is adopted in [4, 5], where a function is
learned that is able to guide the search to good starting solutions. Another compo-
nent on which learning can be applied is the neighborhood or heuristic selection.
A learning method can learn which ones are the best neighborhoods or heuristics
to construct or change a solution at any time during the search, such that in the
end good quality solutions can be generated. Such an approach is applied in [40]
and [25]. When a classical hyper-heuristic with acceptance and selection mecha-
nism is used learning can be applied to both mechanisms. A learning method can
learn to select the low-level heuristics (e.g. in [7] and [22]), or it can ascertain when
to accept a move. To summarize, the possible involved components include but are
not limited to:

• starting solution,
• objective function,
• neighborhoods or heuristics selection,
• acceptance of new solutions/moves.

All these parameters or components can be updated by the RL algorithm in an adap-
tive way.

Alternatively RL methods can also be applied directly to solve optimization prob-
lems. In other words, they are not hybridized but are themselves used as a meta-
heuristic. The RL method learns and directly assigns the values of the variables.
Such approaches are investigated in [16], [21], [36] and [37].

A possible indication for the inclusion of RL in a search algorithm is the pres-
ence of a random component. By replacing this random component with an RL

438 T. Wauters et al.

component the algorithm develops a more intelligent decision mechanism. For ex-
ample in a hyper-heuristic with a simple-random selection step, the selection can be
replaced by some RL method like the one presented by [22].

Yet another opportunity for learning arises both when either the problem is in-
trinsically distributed or can be split into several subproblems. Examples of such
include distributed scheduling and planning problems such as the decentralized
resource-constrained multi-project scheduling problem (DRCMPSP) [9] and [18].
This problem considers scheduling multiple projects simultaneously, with each
project having multiple jobs. A job requires local or global resources, which are
available for either all jobs in the project or have to be shared among all projects
respectively. Some local objectives can be optimized, for example the makespan of
the individual projects, whereas global objectives, such as the average project delay
or the total makespan, can be minimized. For this kind of problems multi-agent re-
inforcement learning methods are appropriate. When one or more global objectives
need to be optimized the agents share a common goal and can thus be cooperative.
The agents have to coordinate to jointly improve their decisions. Using a common
reward one can simply but effectively coordinate the agents’ decisions. Through
sharing one reward signal the agents coordinate their decisions. This approach is
applied in [36] for the DRCMPSP.

17.3.1 States and Actions

Before applying RL to a problem, the set of possible states and the set of possible
actions available in each state, have to be defined. Many possible ways exist to
accomplish this. First of all we can make a distinction between search-dependent,
problem-dependent and instance-dependent state space definitions. A search-
dependent state space definition uses observations of the search process itself, such
as the current iteration, the number of successive non-improving iterations, or the
total improvement over the initial solution. A problem-dependent setting is de-
fined by the usage of generic problem features, like the Resource Dilation Factor
for scheduling problems, as defined by [14]. An instance-dependent setting uses
instance-specific features, like the number of tardy jobs in a scheduling problem,
or the number of full bins in a bin-packing problem. Combinations of these three
settings are also possible. When a problem-dependent or a search-dependent state
space definition is used, the learned information can possibly be transfered to other
instances of the same problem, or even to other problems. In many cases the prop-
erties of the solutions to the optimization problem itself cannot be used directly,
due to the curse of dimensionality. Better is to use some extracted problem features.
Take for example a TSP problem. If one should use the encoding of a complete tour
directly as the state, then the number of states grows exponentially, i.e. n! with n the
number of states.

The set of possible actions in each state is defined by the set of parameters or
components of the metaheuristic that one wants to learn.

17 Boosting Metaheuristic Search Using Reinforcement Learning 439

17.3.2 Reward Function

Experience gathering is a prerequisite to learning, which can be achieved either on-
line or offline. Experience in combinatorial optimization problems is scarce. Often
only a single numerical value is available, indicating the quality of a complete so-
lution. However, reward functions are very important for an RL method in order
to learn some valuable information. As stated in [14], there are three requirements
that a reward function should satisfy. First of all, it should give higher rewards to
better solutions. Secondly, it should encourage the reinforcement learning system
to find efficient search policies, i.e. search policies that involve only a few steps.
Thirdly, it should be a normalized measure, in order to be transferred to new prob-
lem instances. A fourth requirement may be added; that it should be computationally
efficient. When designing a reward function for a hybrid RL-metaheuristic method
we do take into account these four requirements.

17.4 Literature Overview

The combination of metaheuristics or hyper-heuristics and (reinforcement) learning
is relatively new. Only a limited number of papers describe a combination of the two
domains. Applied problem domains include scheduling, packing and routing. Table
17.1 compares these methods by the used RL-method, metaheuristic and involved
component.

One of the first papers covering the combination of learning and metaheuristic
search is [40]. A reinforcement learning method is applied to learn domain-specific
heuristics for the NASA space shuttle payload processing problem, which is mod-
eled as a job shop scheduling problem. A value function is learned offline using a
temporal difference algorithm TD(λ) together with a neural network. General fea-
tures of the schedules (solutions) such as the percentage of the time units with a
violation are used to represent a state. The possible actions are taken from a set of
repair heuristics. After learning the value function on a number of small problem in-
stances, it is used over multiple instances of the same problem. The TD algorithm is
compared to an existing method for the problem, i.e. an iterative repair method with
simulated annealing. The reinforcement learning based method outperforms the it-
erative repair method. It is noteworthy that the value functions that were learned
on small problem instances also have a very good performance on larger instances.
In [14] a more detailed description and application of this approach is given.

Another early contribution to the application of RL for solving combinatorial
optimization problems can be found in [16]. The paper describes the Ant-Q al-
gorithm, which combines the Ant System and the Q-Learning algorithm, and has
been successfully applied to the Asymmetric Traveling Salesman Problem (ATSP).
Ant System is based on the observation of ant colonies behaviour. Each ant from a
colony constructs a solution for the ATSP, called a tour. The method uses a mod-
ified version of Q-values, called AQ-values. These AQ-values are updated using

440 T. Wauters et al.

a Q-learning update rule. The delayed reward, which is calculated when each ant
completes a tour, is based on the best tour of the current iteration or on the best tour
from all past iterations, taking into account each ant. The Ant-Q algorithm shows
an interesting property. It was observed that the Ant-Q agents do not make the same
tour, demonstrating the explorative character of the search method.

[21] present an algorithm that combines reinforcement learning with genetic
algorithms for the Asymmetric Traveling Salesman Problem (ATSP) and Quadratic
Assignment Problem (QAP). For the ATSP a Q-learning [35, 34] method is used to
both express and update the desirability of choosing city a after city b. A state is
a city, and an action is another city following the aforementioned city in the tour.
A population of RL agents with desirability values (Q-values) is formed, with each
agent holding one solution. The offspring is constructed by replicating solution parts
from one parent and filling in the other parts using the desirability values (updated
by a q-learning update rule) of the other parent, rather than the traditional genetic
crossover operators method. As a reward a weighted combination of immediate and
global rewards based on the tour lengths of the new solution and the solutions of
the parents is used. The QAP is solved using a simplified update rule, that does
not require a particular order as opposed to the q-learning update rule. Competitive
results are shown for both addressed problems.

[4] and [5] describe the STAGE algorithm, which searches for good quality so-
lution using two alternating phases. The first phase runs a local search method, e.g.
hillclimbing or simulated annealing from a starting solution until a local optimum is
reached. During this phase, the search trajectory is analyzed and used for learning
an evaluation function. This is achieved by training a linear or quadratic regression
method using the properties or features of the visited solutions and the objective
function value of the local optimum. The authors point out that in some conditions
a reinforcement learning method like TD(λ) of the temporal-difference algorithms
may make better use of the training data, converge faster, and use less memory
during training. The second phase performs hillclimbing on the learned evaluation
function to reach a new starting solution for the first phase. This phase enables the al-
gorithm to learn to find good starting solutions for a local search method. Empirical
results are provided on seven large-scale optimization domains, e.g. bin-packing,
channel routing, . . . This demonstrates the ability of the STAGE algorithm to per-
form well on many problems.

[23] combine aspects taken from the research by [40], [4] and [5]. A reinforce-
ment learning algorithm TD(λ) is applied to learn a value function in an offline
training phase, and then uses this learned value function to solve other instances
of the same problem. This method also uses features of solutions for representing
a state. A linear function approximation algorithm is used. The method is applied
to the dial-a-ride problem, and was compared to both the STAGE algorithm, and a
2-opt and 3-opt local search method. The method performs better than 2-opt and
STAGE if the same calculation time is used. It was not as performant as 3-opt, but
was a lot faster.

17 Boosting Metaheuristic Search Using Reinforcement Learning 441

[25] describes a non-stationary reinforcement learning method for choosing
search heuristics. At each decision point weights are used to select the search heuris-
tics via a probabilistic selection rule (softmax) or by randomly selecting among the
choices with maximal value. Based on the increase/decrease of the objective func-
tion the weights of the search heuristics are updated using simple positive/negative
reinforcement rules (e.g. incrementing/decrementing the weight value). Different
selection and reinforcement method combinations are tested on two types of prob-
lems - the Orc Quest problem and problems from the Logistics Domain bench-
mark. The author concludes that a weak positive reinforcement rule combined with
a strong negative reinforcement rule works best on the tested problems.

[7] present a hyper-heuristic in which the selection of low-level heuristics
makes use of basic reinforcement learning principles combined with a tabu-search
mechanism. The reinforcements are performed by increasing/decreasing the rank
of the low-level heuristics when the objective function value improves/worsens.
The hyper-heuristic was evaluated on various instances of two distinct timetabling
and rostering problems and showed to be competitive with the state-of-the-art ap-
proaches. The paper states that a key ingredient in implementing a hyper-heuristic
is the learning mechanism.

An interesting study on memory length in learning hyper-heuristics is performed
in [1]. Utility values or weights are used to select the low-level heuristics, similar
to [25] and [7]. A dsicount factor is added to this mechanism to discount rewards
later on in the search process, and thus obtaining a short term memory. The results
obtained on a course timetabling problem show that a short term memory can pro-
duce better results than both no memory and infinite memory.

[15] gives an extensive overview of single and multi-agent RL approaches for
distributed job-shop scheduling problems. Both value function-based and policy
search-based RL methods are discussed, including policy gradient RL methods and
Q-learning.

[26] present a hyper-heuristic with an RL selection mechanism and a great-
deluge acceptance method for the examination timetabling problem. A set of exams
must be assigned a timeslot and possibly a room while respecting a number of hard
and soft constraints, such as the room capacity. An RL method based on utility val-
ues with simple update rules is used, similar to what was presented in [25]. The
idea is that a heuristic is selected when it results in a lot of improving moves, and
thus has a higher utility value. When a heuristic i results in an improving move the
utility value ui of that heuristic is incremented, and in case of a worsening move the
utility value is lowered using three different rules, namely subtractive (ui = ui− 1),
divisional (ui = ui/2) and root (ui =

√
ui). Upper and lower bounds are applied to

the utility values to encourage exploration in further steps. Experiments are per-
formed with different settings for the selection of the heuristics, the upper and lower
bound, and the negative utility adaptation mechanism. The setting with a maximal
selection (i.e. selecting the heuristic with a maximal utility value) and subtractive
negative utility adaption mechanism performed the best. The method improves the
performance of a non learning simple-random great-deluge hyper-heuristic on the
examination timetabling problem.

442 T. Wauters et al.

Ta
bl

e
17

.1
C

om
pa

ri
so

n
of

hy
br

id
R

L
-m

et
ah

eu
ri

st
ic

m
et

ho
ds

M
et

ho
d

R
L

m
et

ho
d

M
et

ah
eu

ri
st

ic
In

vo
lv

ed
co

m
po

ne
nt

P
ro

bl
em

(s
)

[4
0]

T
D

(λ
)

C
on

st
ru

ct
iv

e
M

et
ho

d
H

eu
ri

st
ic

se
le

ct
io

n
Jo

b
sc

he
du

li
ng

[1
6]

Q
-l

ea
rn

in
g

A
nt

sy
st

em
D

ir
ec

t
A

T
S

P
[2

1]
Q

-l
ea

rn
in

g
G

A
D

ir
ec

t
A

T
S

P
an

d
Q

A
P

[4
,5

]
N

o
R

L
(r

eg
re

ss
io

n)
L

oc
al

se
ar

ch
(e

.g
.S

A
)

O
bj

.f
un

ct
io

n,
st

ar
ti

ng
so

lu
ti

on
B

in
pa

ck
in

g,
ch

an
ne

lr
ou

ti
ng

,S
A

T,
..
.

[2
3]

T
D

(λ
)

2-
op

tl
oc

al
se

ar
ch

O
bj

.f
un

ct
io

n
D

ia
l-

a-
ri

de
[2

5]
U

ti
li

ty
va

lu
es

C
S

P
so

lv
er

H
eu

ri
st

ic
se

le
ct

io
n

O
rc

Q
ue

st
an

d
L

og
is

ti
cs

D
om

ai
n

[7
]

U
ti

li
ty

va
lu

es
H

yp
er

-h
eu

ri
st

ic
H

eu
ri

st
ic

se
le

ct
io

n
T

im
et

ab
li

ng
an

d
ro

st
er

in
g

[1
]

U
ti

li
ty

va
lu

es
+

di
sc

ou
nt

H
yp

er
-h

eu
ri

st
ic

H
eu

ri
st

ic
se

le
ct

io
n

C
ou

rs
e

ti
m

et
ab

li
ng

[2
2]

L
A

H
yp

er
-h

eu
ri

st
ic

H
eu

ri
st

ic
se

le
ct

io
n

T
T

P
[3

8]
L

A
G

A
D

ir
ec

t
P

ro
je

ct
sc

he
du

li
ng

(M
R

C
P

S
P

)
[2

6]
U

ti
li

ty
va

lu
es

H
yp

er
-h

eu
ri

st
ic

H
eu

ri
st

ic
se

le
ct

io
n

E
xa

m
in

at
io

n
ti

m
et

ab
li

ng
[3

6]
L

A
(+

D
is

pe
rs

io
n

G
am

e)
-

D
ir

ec
t

P
ro

je
ct

sc
he

du
li

ng
(D

R
C

M
P

S
P

)
[3

7]
L

A
-

D
ir

ec
t

P
ro

je
ct

sc
he

du
li

ng
(M

R
C

P
S

P
)

17 Boosting Metaheuristic Search Using Reinforcement Learning 443

Fig. 17.2 Multi-agent system employed to solve the decentralized resource-constrained
multi-project scheduling problem

Recently, learning automata have been introduced to solve combinatorial opti-
mization problems. [22] present a heuristic selection method for hyper-heuristics,
which they have applied to the traveling tournament problem. Instead of using sim-
ple reinforcement rules, a learning automaton was used for the selection. [38] de-
scribe the combination of a genetic algorithm and learning automata to solve the
Multi-Mode Resource-Constrained Project Scheduling Problem (MRCPSP). The
GA is applied to find good activity orders, while the LA are used to find good modes,
a mode being an important decision variable of the scheduling problem. This work is
extended in [37] where the GA is replaced by a network of learning automata [33].
All decision variables (i.e. activity order and modes) of the scheduling problem
(MRCPSP) are now directly chosen by multiple LA. The method produces state-of-
the-art results for the MRCPSP. [36] follow a very similar approach for the Decen-
tralized Resource-Constrained Multi-Project Scheduling Problem (DRCMPSP). In
the DRCMPSP multiple projects are scheduled factoring in the availability of both
private and shared resources, while a global objective, i.e. the average project delay,
is optimized. A network of learning automata searches for activity orders result-
ing in good schedules for each single project, while a dispersion game is employed
to coordinate the projects. Figure 17.2 shows the multi-agent system with project
managers and network of LA for solving the DRCMPSP, as applied by [36]. One
motivating factor for organizing the activities in a project as learning automata is that
theoretical convergence properties hold in both single and multi automata environ-
ments. One of the foundations for LA theory is that a set of decentralized learning

444 T. Wauters et al.

automata using the reward-inaction update scheme is able to control a finite Markov
Chain with unknown transition probabilities and rewards. In [20], this result was ex-
tended to the framework of Markov Games. That is a straightforward extension of
single-agent markov decision problems (MDP’s) to distributed multi-agent decision
problems. However, the convergence properties fail to hold here since the activity-
on-node model does not bear the Markov property. Good results can be achieved
with the network of LA in the single project scheduling scheme [37]. The methods
aforementioned are added to the bottom of Table 17.1.

One might notice that most early hybrid RL-metaheuristic methods use RL al-
gorithms as Q-learning and TD(λ) which make use of delayed rewards. Recent
methods, most of them applied to hyper-heuristics, are using a more simple RL
mechanism based on utility values operating in a single state environment, and thus
they do not benefit the full power of RL which deals with the problem of delayed
rewards and the credit assignment problem.

17.5 Best Practices

As a simple illustration of hybrid RL based systems we introduce a new learning
method (LA-ILTA) using RL and show how to boost an exiting acceptance mech-
anism (ILTA), which was recently published [22]. We discuss possible overheads,
such as extra parameters belonging to the learning components and time overhead.

17.5.1 LA-ILTA

Iteration Limited threshold acceptance (ILTA) is an acceptance mechanism for
meta- and hyper-heuristics, introduced by [22]. ILTA is based on the improving
or equal (IE) acceptance criterion, which only accepts non-worsening moves. Like
every good acceptance criterion, ILTA tries to efficiently balance intensification and
diversification. In addition to IE, ILTA accepts worsening moves under certain con-
ditions, i.e. it accepts a move if k consecutive worsening moves are generated, and
the new solution’s fitness is within a certain range R of the current best solution’s
fitness. These two parameters k and R are fixed during the complete search. We now
propose a method, called LA-ILTA, which uses RL and more specifically Learning
Automata to adaptively change and learn good parameter values for ILTA. We have
chosen to learn the R values, based on the place in the search process (e.g. beginning,
middle or end of the search). The method thus belongs to the category of methods
that use a search-dependent state space representation. We first define the state and
action spaces for the RL component. We divide the search process into 10 separate
periods, each one lasting 10% of the search duration. The start of each period is a
state. We define the R values to be the actions possibly in each state. Thus a chosen R
value is used for the next 10% of the search. The chosen discrete R values (and thus
actions) are {1.0,1.1,1.2,1.3,1.4,1.5}. In total we have 10 states and 6 actions. The

17 Boosting Metaheuristic Search Using Reinforcement Learning 445

reward function, which expresses the learning goal, is the percentage improvement
realized by using the chosen R value in the past search moment. In each state we use
one learning automaton with LRI update scheme to select the R values. LA-ILTA is
applied to the Patient Admission Scheduling (PAS) problem [12, 13]. Current best
results are presented in [8]. Patients in a hospital have to be assigned to beds such
that multiple hard and soft constraints regarding hospital regulations and patient
preferences are met. A weighted objective function including a term for each soft
constraint must be minimized. Thirteen problem instances are available [11].

We perform the following experiment. For each PAS problem instance we com-
pare the learning LA-ILTA method to the static ILTA. For the LA-ILTA method
we perform 1000 learning runs, each run from a different starting solution. Then
we perform 1000 validation runs also starting from different starting solutions. For
ILTA we perform only 1000 validation runs because ILTA does not include learning.
We run ILTA for each static R setting {1.0,1.1,1.2,1.3,1.4,1.5}. During these ex-
periments all runs perform 500,000 iterations and the k value was fixed to 100. The
LA use a learning rate αreward = 0.1 and a linear reward-inaction update scheme.
Table 17.2 shows the results of these experiments on the second problem instance
of the PAS problem. A comparison is made between LA-ILTA and six static ILTA
versions in terms of best, average and worst objective function value over 1000 val-
idation runs. It is clear that the static ILTA with R = 1.0 outperforms the other static
ILTA versions. However, the learning LA-ILTA method which learns a parameter
setting that is dependent on the current search progress performs even better, and
thus boosts the original ILTA method. All methods started from the same set of
1000 initial solutions. Similar results were obtained for the other problem instances.

Figure 17.3 shows the evolution of the objective function value over the 1000 val-
idation runs for LA-ILTA on the second PAS problem instance. A moving average
is also shown. The figure clearly shows that solutions with better objective values
are reached when more learning runs are performed.

When we examine the learned policy of the LA-ILTA method, we notice that it
favours higher R values (1.5) at the start of the search and lower R values (1.0) for
the rest of the search progress. A transition from 1.5 to 1.0 is observed early in the
search. In the beginning the learned policy allows for a lot of diversification, while
later on it chooses to have more intensification. We can find a similar diversifica-
tion/intensification strategy in the popular simulated annealing acceptance criterion.
Figure 17.4 shows the evolution of the selected R values for the first 10% (state 1),
middle 10% (state 5), and last 10% (state 10) of the search. The evolution in states
2, 3, 4, 6, 7 and 8 are ommitted from the figure for clarity. The R value for the first

Table 17.2 LA-ILTA compared to six static ILTA versions over 1000 validation runs on the
second PAS problem instance

LA-ILTA ILTA-1.0 ILTA-1.1 ILTA-1.2 ILTA-1.3 ILTA-1.4 ILTA-1.5
Best obj. 14898 14960 24168 24656 24998 25220 25884
Average obj. 16200.1 16233.9 26796.9 27732.1 27746.4 27964.4 28610.4
Worst obj. 17776 18100 29272 30448 30268 30300 30842

446 T. Wauters et al.

14000

16000

18000

20000

22000

24000

26000

28000

30000

0 100 200 300 400 500 600 700 800 900

Obj.

Run

Fig. 17.3 Learning curve for LA-ILTA on the second PAS problem instance

part of the search converges rapidly to a value of 1.5, which is the highest value in
the range. The middle and the last state move towards a value of 1.0, but the value
for the middle state converges faster than the last state, be it slower than the first
state. In general, learning in the first states goes faster than in the last states, because
more information is available in the beginning of the search than at the end. This
idea was also discussed in [1].

We also have applied LA-ILTA to other problems, such as the Edge Matching
Puzzle (EMP) problem [10]. The problem consists of placing n× n square tiles on
a board of size n× n. A tile has four edges, each edge containing a pattern from a
set of available patterns. All tiles must be rotated and placed on the board, such that
the shared edge between neighboring tiles has a matching pattern. A special pattern
(pattern 0) must only occur on the outer edges of the board. Figure 17.5 shows the
results of LA-ILTA over 1000 validation runs on an Edge Matching Puzzle problem
of size 10×10. Each run performing 100,000 iterations. The LA use a learning rate
αreward = 0.1 and a linear reward-inaction update scheme. Higher scores are better.
The LA-ILTA method is at least as good as the best static ILTA methods. The learned
policy shows similar characteristics as the learned policy on the PAS problems, i.e.
high diversification in the beginning of the search process and more intensification
at the end. However, unlike in the PAS experiments, the diversification does not fade
away completely.

17 Boosting Metaheuristic Search Using Reinforcement Learning 447

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

0 100 200 300 400 500 600 700 800 900

R

Run

20 per. Mov. Avg. (First 10%)

20 per. Mov. Avg. (Middle 10%)

20 per. Mov. Avg. (Last 10%)

Fig. 17.4 Evolution of the selected R value setting for the first, middle and last 10% of the
search on the second PAS problem instance

125

130

135

140

145

150

155

160

165

170

LA-ILTA ILTA1.0 ILTA1.1 ILTA1.2 ILTA1.3 ILTA1.4 ILTA1.5

Matching edges
Best

Average

Worst

Fig. 17.5 LA-ILTA compared to six static ILTA versions over 1000 validation runs on an
edge matching puzzle problem of size 10×10

448 T. Wauters et al.

17.5.2 Learning Rate

By using RL algorithms we introduce some new parameters, including for example
the learning rate, the update scheme, etc. In the following experiment we study the
influence of the learning rate. This parameter determines how fast the learning will
proceed.

Figure 17.6 shows the learning curve (as a moving average over 20 runs) for
LA-ILTA with different learning rates αreward = {0.5,0.1,0.05,0.01}. The second
PAS problem instance was used, but again similar results were observed on the
other instances. The figure shows, as expected, that a higher learning rate (αreward =
0.5) leads to much faster convergence than a low learning rate (αreward = 0.01). In
this example all except one learning methods converged to a similar strategy when
they were given enough time to converge. The highest learning rate (αreward = 0.5)
converged to a slightly different R value for the first phase. High learning rates can
converge too quickly and reach a suboptimal policy. In order to select an appropriate
learning rate one can count how many times each action was tried. If all actions
were performed a significant number of times, then the learning rate appears to be
low enough to avoid premature convergence. The influence of the learning rate on
the results of a hybrid RL-metaheuristic method has to be carefully examined in the
future.

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

0 100 200 300 400 500 600 700 800 900

Obj.

Run

20 per. Mov. Avg. (0.01)

20 per. Mov. Avg. (0.05)

20 per. Mov. Avg. (0.1)

20 per. Mov. Avg. (0.5)

Fig. 17.6 The learning curve (moving average over 20 runs) for LA-ILTA with different
learning rates αreward = {0.5,0.1,0.05,0.01} on the second PAS problem instance

17 Boosting Metaheuristic Search Using Reinforcement Learning 449

Table 17.3 Average calculation time overhead in percentage introduced by the LA-ILTA
method. Tested on 12 PAS problem instances and the eternity 2 puzzle problem.

PAS1 PAS2 PAS3 PAS4 PAS5 PAS6 PAS7 PAS8 PAS9 PAS10 PAS11 PAS12 EMP
0.41% 2.65% 1.45% 2.45% 0.38% 1.35% 4.68% 7.00% 5.40% 5.84% 9.58% 8.11% 0.31 %

17.5.3 Calculation Time Overhead

In this experiment we will investigate the calculation time overhead introduced by
the reinforcement learning component. Table 17.3 shows the average calculation
time overhead in % introduced by the reinforcement learning component in the LA-
ILTA method on 12 PAS problem instances and an edge matching puzzle (EMP)
problem instance of size 16 by 16. The LA-ILTA method uses 10 LRI learning au-
tomata, each having 6 actions. The results in the table show that the RL component
never introduces more than 10% overhead to the calculation time. The overhead
is hard to measure, since it is subject to various factors, such as implementation
details, the metaheuristic, the RL method, the problem type and the problem size.
The calculation time of the RL methods are mostly determined by the number of
actions which can be selected at each decision point. Figure 17.7 shows the calcu-
lation time in milliseconds to perform 1 million selections and updates for an LRI
learning automaton on a modern desktop pc with Intel Core I7-2600 3.4Ghz CPU.
The calculation time grows linearly with the number of actions. For good perfor-
mance, one should keep the number of actions as small as possible. The number of

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Calculation time
[ms]

Number of actions

Fig. 17.7 Calculation time in ms for an LRI learning automaton to perform 1 million selec-
tions and updates, for a varying number of actions

450 T. Wauters et al.

states has no impact on the calculation time, since only one state is being updated at
a time. However, the number of state transitions determines how many action selec-
tions and updates are performed, and thus affects the calculation time. The memory
requirements on the other hand are determined by the product of the number of
states and the number of actions.

17.6 Conclusion and Suggestions for Future Research

In the present chapter we have discussed the combination of reinforcement
learning and metaheuristic search. This hybridization of two well studied research
topics shows some promising methods and many opportunities for future research
directions. We have discussed some main reinforcement learning components in de-
tail, together with a literature overview on hybrid RL-metaheuristic methods. We
have illustrated some examples where learning automata are able to boost the per-
formance of metaheuristic search. An example of a new application of reinforce-
ment learning to meta- or hyper-heuristic methods is also given, i.e. a learning
acceptance method called LA-ILTA. LA-ILTA uses several learning automata to
learn a search-dependent parameter value, which was used in an existent accep-
tance method (ILTA). This simple method was able to boost the results of the orig-
inal ILTA on two tested benchmark problems, i.e. the patient admission scheduling
problem and the edge matching puzzle problem. The overhead in terms of calcu-
lation time and extra parameters introduced by the RL components was studied.
We have shown that simple RL methods, called learning automata, introduce little
overhead.

Academics in the metaheuristic community are searching for advanced meta-
heuristics which enforce a particular behaviour during search. This behaviour is
often determined by parameter settings which require extensive fine-tuning for each
different problem. Metaheuristics equipped with (reinforcement) learning are capa-
ble of finding such a well performing behaviour themselves. Reinforcement learning
methods are easy to apply. Because they make use of simple update rules, they re-
quire little extra calculation time.

Interesting directions for future research include; new RL-metaheuristic
hybridizations, the usage of transfer learning methods in metaheuristic search, si-
multaneous learning of multiple parameters/components, multi-agent RL for decen-
tralized problems, and RL for multi-objective optimization. To give a better boost to
metaheuristic search, the full power of RL should be used, i.e. incorporate a mech-
anism of delayed reward or go beyond single state learning.

Acknowledgements. We thank Erik Van Achter for his help on improving the quality of this
text. We also thank Wim Vancroonenburg for providing the basic setup for the PAS problem
experiments.

17 Boosting Metaheuristic Search Using Reinforcement Learning 451

References

1. Bai, R., Burke, E.K., Gendreau, M., Kendall, G., Mccollum, B.: Memory length in hyper-
heuristics: An empirical study. In: Proceedings of the 2007 IEEE Symposium on Com-
putational Intelligence in Scheduling, CI-Sched 2007 (2007)

2. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization. Oper-
ations research/Computer Science Interfaces, vol. 45. Springer (2008)

3. Bennett, K.P., Parrado-Hernández, E.: The interplay of optimization and machine learn-
ing research. J. Mach. Learn. Res. 7, 1265–1281 (2006)

4. Boyan, J.: Learning Evaluation Functions for Global Optimization. PhD thesis, Carnegie-
Mellon University (1998)

5. Boyan, J., Moore, A.W., Kaelbling, P.: Learning evaluation functions to improve opti-
mization by local search. Journal of Machine Learning Research 1, 2000 (2000)

6. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-heuristics:
An emerging direction in modern search technology. In: Handbook of Metaheuristics,
pp. 457–474. Kluwer Academic Publishers (2003)

7. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and
rostering. Journal of Heuristics 9, 451–470 (2003)

8. Ceschia, S., Schaerf, A.: Local search and lower bounds for the patient admission
scheduling problem. Computers & Operartions Research 38, 1452–1463 (2011)

9. Confessore, G., Giordani, S., Rismondo, S.: A market-based multi-agent system model
for decentralized multi-project scheduling. Annals of Operational Research 150, 115–
135 (2007)

10. Demaine, E.D., Demaine, M.L.: Jigsaw puzzles, edge matching, and polyomino packing:
Connections and complexity. Graphs and Combinatorics 23, 195–208 (2007); Special
issue on Computational Geometry and Graph Theory: The Akiyama-Chvatal Festschrift

11. Demeester. P.: Patient admission scheduling website (2009),
http://allserv.kahosl.be/˜peter/pas/ (last visit August 15, 2011)

12. Demeester, P., De Causmaecker, P., Vanden Berghe, G.: Applying a local search algo-
rithm to automatically assign patients to beds. In: Proceedings of the 22nd Conference
on Quantitive Decision Making (Orbel 22), pp. 35–36 (2008)

13. Demeester, P., Souffriau, W., De Causmaecker, P., Vanden Berghe, G.: A hybrid tabu
search algorithm for automatically assigning patients to beds. Artif. Intell. Med. 48, 61–
70 (2010)

14. Dietterich, T.G., Zhang, W.: Solving combinatorial optimization tasks by reinforcement
learning: A general methodology applied to resource-constrained scheduling. Journal of
Artificial Intelligence Research (2000)

15. Gabel, T.: Multi-agent Reinforcement Learning Approaches for Distributed Job-Shop
Scheduling Problems. PhD thesis, Universität Osnabrück, Deutschland (2009)

16. Gambardella, L.M., Dorigo, M.: Ant-q: A réinforcement learning approach to the travel-
ing salesman problem, pp. 252–260. Morgan Kaufmann (1995)

17. Glover, F., Kochenberger, G.A.: Handbook of metaheuristics. Springer (2003)
18. Homberger, J.: A (μ , λ)-coordination mechanism for agent-based multi-project schedul-

ing. OR Spectrum (2009), doi:10.1007/s00291-009-0178-3
19. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal

of Artificial Intelligence Research 4, 237–285 (1996)
20. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning.

In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 157–
163. Morgan Kaufmann (1994)

21. Miagkikh, V.V., Punch III, W.F.: An approach to solving combinatorial optimization
problems using a population of reinforcement learning agents (1999)

22. Misir, M., Wauters, T., Verbeeck, K., Vanden Berghe, G.: A new learning hyper-heuristic
for the traveling tournament problem. In: Proceedings of Metaheuristic International
Conference (2009)

http://allserv.kahosl.be/~peter/pas/

452 T. Wauters et al.

23. Moll, R., Barto, A.G., Perkins, T.J., Sutton, R.S.: Learning instance-independent value
functions to enhance local search. In: Advances in Neural Information Processing Sys-
tems, pp. 1017–1023. MIT Press (1998)

24. Narendra, K., Thathachar, M.: Learning Automata: An Introduction. Prentice-Hall Inter-
national, Inc. (1989)

25. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In:
Metaheuristics: Computer Decision-Making, pp. 523–544. Kluwer Academic Publishers
(2001)

26. Özcan, E., Misir, M., Ochoa, G., Burke, E.K.: A reinforcement learning - great-deluge
hyper-heuristic for examination timetabling. Int. J. of Applied Metaheuristic Computing,
39–59 (2010)

27. Rummery, G.A., Niranjan, M.: On-line q-learning using connectionist systems. Techni-
cal Report CUED/F-INFENG/TR 166, Engineering Department, Cambridge University
(1994)

28. Richard, S., Sutton, R.S.: Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Ad-
vances in Neural Information Processing Systems: Proceedings of the 1995 Conference,
pp. 1038–1044. MIT Press, Cambridge (1996)

29. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press (1998)
30. Talbi, E.-G.: Metaheuristics: From Design to Implementation. John Wiley and Sons

(2009)
31. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey.

J. Mach. Learn. Res. 10, 1633–1685 (2009)
32. Taylor, M.E., Stone, P., Liu, Y.: Transfer learning via inter-task mappings for temporal

difference learning. Journal of Machine Learning Research 8(1), 2125–2167 (2007)
33. Thathachar, M.A.L., Sastry, P.S.: Networks of Learning Automata: Techniques for On-

line Stochastic Optimization. Kluwer Academic Publishers (2004)
34. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)
35. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, Cambridge University

(1989)
36. Wauters, T., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A game theoretic

approach to decentralized multi-project scheduling (extended abstract). In: Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2010, vol. R24
(2010)

37. Wauters, T., Verbeeck, K., Vanden Berghe, G., De Causmaecker, P.: Learning agents for
the multi-mode project scheduling problem. Journal of the Operational Research Soci-
ety 62(2), 281–290 (2011)

38. Wauters, T., Verstichel, J., Verbeeck, K., Vanden Berghe, G.: A learning metaheuristic
for the multi mode resource constrained project scheduling problem. In: Proceedings of
the Third Learning and Intelligent OptimizatioN Conference, LION3 (2009)

39. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 229–256 (1992)

40. Zhang, W., Dietterich, T.: A reinforcement learning approach to job-shop scheduling. In:
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
pp. 1114–1120. Morgan Kaufmann (1995)

	Boosting Metaheuristic Search Using Reinforcement Learning
	Introduction
	Reinforcement Learning
	Policy Iteration Methods
	Value Iteration Methods
	Relationships between Reinforcement Learning and Metaheuristics

	Opportunities for Learning
	States and Actions
	Reward Function

	Literature Overview
	Best Practices
	LA-ILTA
	Learning Rate
	Calculation Time Overhead

	Conclusion and Suggestions for Future Research
	References

