
Chapter 13
A VNS-Based Heuristic
for Feature Selection in Data Mining

A. Mucherino and L. Liberti

Abstract. The selection of features that describe samples in sets of data is a typi-
cal problem in data mining. A crucial issue is to select a maximal set of pertinent
features, because the scarce knowledge of the problem under study often leads to
consider features which do not provide a good description of the corresponding
samples. The concept of consistent biclustering of a set of data has been introduced
to identify such a maximal set. The problem can be modeled as a 0–1 linear frac-
tional program, which is NP-hard. We reformulate this optimization problem as a
bilevel program, and we prove that solutions to the original problem can be found by
solving the reformulated problem. We also propose a heuristic for the solution of the
bilevel program, that is based on the meta-heuristic Variable Neighborhood Search
(VNS). Computational experiments show that the proposed heuristic outperforms
previously proposed heuristics for feature selection by consistent biclustering.

13.1 Introduction

Nowadays technologies are able to produce a large quantity of data which needs to
be analyzed. Data mining is a well-established field whose aim is to discover hidden
patterns in the data for acquiring novel knowledge. A classic example is given by
the huge quantity of data that is contained in DNA molecules of living beings. The
relationships among the different genes of a DNA molecule, under different con-
ditions, can provide important information regarding diseases and the functioning
of life.

Data can be collected from different resources. Samples represent a single mea-
surement of what is under study, and features are employed for describing the
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LIX, École Polytechnique, Palaiseau, France
e-mail: liberti@lix.polytechnique.fr

E.-G. Talbi (Ed.): Hybrid Metaheuristics, SCI 434, pp. 353–368.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

antonio.mucherino@irisa.fr
liberti@lix.polytechnique.fr


354 A. Mucherino and L. Liberti

samples. In the example of the DNA molecule, a sample can represent the patients’
condition, such as “healthy” and “sick”, which is monitored through the expression
levels of each gene in his DNA. In other words, each feature represents the expres-
sion level of a gene, and a list of feature measurements represents a sample. In many
applications, the number of samples is scarce (only a few measurements are avail-
able), while the number of features is usually large (many factors are involved in the
phenomenon under study).

In this context, feature selection is the problem of extracting only important and
pertinent features from a set of data. Some considered features, indeed, may not be
adequate for describing the samples, and, in such a case, they should be removed
from the set of data. This brings two important consequences. First, if only pertinent
features are used and all the others are rejected, the memory space necessary for
storing this set in databases is optimized. Secondly, a strict relationship between
samples and features may be identified, which could be exploited for discovering
important information.

If a set of data contains n samples which are described by m features, then the
whole set can be represented by a m× n matrix A, where the samples are organized
column by column, and the features are organized row by row. In this context, we
refer to a bicluster of A as a submatrix of A, whose elements are a subset of samples
and features. Equivalently, a bicluster can be seen as a pair of subsets (Sr,Fr), where
Sr is a class (or cluster) of samples, and Fr is a class (or cluster) of features.

Definition 13.1. A biclustering is a partition of A in k biclusters:

B= {(S1,F1),(S2,F2), . . . ,(Sk,Fk)},

such that the following conditions are satisfied:

k⋃

r=1

Sr = A, Sζ ∩Sξ = /0 1≤ ζ �= ξ ≤ k,

k⋃

r=1

Fr = A, Fζ ∩Fξ = /0 1≤ ζ �= ξ ≤ k,

where k ≤min(n,m) is the number of biclusters [2, 6].

If a classification for the samples of A is available, as well as a classification for its
features, a biclustering B can be trivially constructed. Inversely, classifications of
samples and features can be extracted from B.

In some data mining applications, there exist sets of data for which a classifica-
tion of its samples is already given. In the example of the DNA molecules, samples
may be taken from patients affected by different diseases, so that their classification
is already known. In this case, the set A is named training set. However, the classifi-
cation of the features used for describing the samples is not known, or, equivalently,
there is no biclusteringB associated to A. Therefore, we have no a priori information
about possible relationships between samples and features.
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A way to obtain a classification for the features from a training set A is to assign
each feature to the class where it is “mostly expressed” (see Section 13.2 for more
details). Then, once a classification for the features is also available, a biclusteringB
for A can be obtained by simply applying Definition 13.1. If the found biclustering
is consistent (in the sense stated in Section 13.2), then the selected features are most
likely the ones that better describe the samples.

The feature selection problem related to consistent biclustering can be formulated
as a 0–1 linear fractional optimization problem, which is NP-hard [9]. In this paper,
we propose a new heuristic for solving the feature selection problem, that is based
on a bilevel reformulation of the 0–1 linear fractional optimization problem. The
proposed heuristic is based on the meta-heuristic Variable Neighborhood Search
(VNS) [5, 10] and on the idea of solving exactly, at each iteration, the inner problem
of the bilevel program, which is linear. Preliminary studies regarding the proposed
heuristic for features selection have been previously presented in [12].

The rest of the paper is organized as follows. In Section 13.2, we develop the
concept of consistent biclustering in more details, and we present the correspond-
ing feature selection problem. In Section 13.3, we reformulate this feature selection
problem as a bilevel optimization problem and we formally prove that solutions to
the original problem can be found by solving this bilevel program. In Section 13.4,
we introduce a new VNS-based heuristic for an efficient solution of the bilevel pro-
gram. Computational experiments on real-life sets of data are presented in Sec-
tion 13.5, as well as a comparison to the heuristic presented in [17]. Conclusions are
given in Section 13.6.

13.2 Consistent Biclustering

Let A = (ai j) ∈ℜm×n be a matrix representing a certain set of data, where samples
a j are organized column by column, and their features ai are organized row by
row. In the following, k is the number of biclusters (known a priori) forming the
biclustering, and the index r ∈ {1,2, . . . ,k} will refer to the generic class of samples
or features.

If the set of data A is a training set, then the classification of its samples in k
classes is known:

BS = {S1,S2, . . . ,Sk}.
Let sir be a binary vector which indicates if the ith sample belongs to the class Sr of
samples (sir = 1) or not (sir = 0). Since A is a training set, the vector sir is known a
priori. From the classification BS, we can use the following procedure to construct a
classification of the features in k classes:

BF = {F1,F2, . . . ,Fk}.

The basic idea is to assign each feature to the class Fr̂ (with r̂ ∈ {1,2, . . . ,k}) such
that it is mostly expressed (i.e. it has higher value), in average, in the class of
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Algorithm 13. Procedure for constructing BF from BS.
1: for (each feature i, i ∈ {1,2, . . . ,n}) do

2: let r̂ = argmax
r

(
∑m

j=1 ai jsir

∑m
j=1 sir

)

;

3: for each class r, r ∈ {1,2, . . . ,k} do
4: let fir = 0;
5: end for
6: let fir̂ = 1;
7: end for

samples Sr̂. Let fir be a binary vector which indicates if the ith feature belongs
to the class Fr of features ( fir = 1) or not ( fir = 0), which is not known a priori. In
order to define it and hence to give a classification BF to the features in A, we can
employ Algorithm 13 [2, 17].

We remark that the same procedure can be used for finding a classification of the
samples from a known classification of its features. Let

B̂S = {Ŝ1, Ŝ2, . . . , Ŝk}

be the classification of samples obtained from BF . A biclustering B for A can be
defined by combining the two classifications BS and BF (see Definition 13.3). More-
over, if the classifications of samples BS and B̂S are equivalent, then the biclustering
B has a particular property that we call consistency.

Definition 13.2. Let A be a training set with classification of samples BS. Let BF be
the classification of its features obtained by Algorithm 13 from BS, and let B̂S the
classification of samples obtained by Algorithm 13 from BF . If BS = B̂S, then the
biclustering B of A obtained by combining BS and BF is consistent [2].

By definition, when a biclustering is consistent, the classification of the samples
can be correctly reconstructed from the classification of its features, and vice versa.
Therefore, the features are all able to describe accurately the samples of the set of
data.

If a consistent biclustering exists for a certain set of data A, then A is said to
be biclustering-admitting. However, sets of data admitting consistent biclusterings
are very rare in real-life applications. In other words, the situation BS ≡ B̂S is very
difficult to be verified in practice, because some of the features used for describing
the samples may not be actually pertinent. As a consequence, non-pertinent features
should be removed from the set of data with the aim of finding a consistent biclus-
tering for submatrices of A in which some rows have been removed [2]. Note that
it is very important to remove the least number of features, in order to preserve the
information in the set of data.

Let us suppose that only a subset of features is considered: let

x = (x1,x2, . . . ,xm)
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be a binary vector of variables, where xi is 1 if the ith feature is selected, and it is 0
otherwise. Let A[x] be the submatrix of A obtained by removing all the rows ai for
which xi = 0. We give the following definition.

Definition 13.3. A biclustering for A[x] is consistent if and only if, ∀r̂,ξ ∈{1,2, . . . ,k},
r̂ �= ξ , j ∈ Sr̂, the following inequality is satisfied [2]:

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

>

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

. (13.1)

Note that the two fractions in (13.1) are used for computing the centroids of the
considered biclusters (for each sample in Sr̂, the average over the features belonging
to same class is computed). On the left hand side of (13.1), the jth component of
the centroid of the bicluster (Sr̂,Fr̂) is computed. On the right hand side of (13.1),
the jth component of the centroid of the bicluster (Sr̂,Fξ ) is computed. In order to
have a consistent biclustering for A[x] (i.e. BS ≡ B̂S), all components of the centroid
of (Sr̂,Fr̂) must have a value that is larger than any other. This condition on the
classification BF of features allows Alg. 13 to generate a classification of samples
B̂S that is equivalent to the original classification BS.

In order to overcome issues related to sets of data containing noisy data and er-
rors, the concepts of α-consistent biclustering and β -consistent biclustering have
been introduced in [17]. The basic idea is to artificially increase the margin be-
tween the centroids of the different biclusters in the constraints (13.1). In this way,
small variations due to noisy data and errors should not be able to spoil the feature
selection.

Definition 13.4. Given a real parameter α > 0, a biclustering for A[x] is α-consistent
if and only if, ∀r̂,ξ ∈ {1,2, . . . ,k}, r̂ �= ξ , j ∈ Sr̂, the following inequality is satis-
fied [17]:

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

> α +

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

. (13.2)

The additive parameter α > 0 is used to guarantee that the margin between the
centroid of (Sr̂,Fr̂) and any other bicluster concerning Sr̂ is at least greater than
α , independently from the considered data. Similarly, in the case of β -consistent
biclustering, a multiplicative parameter β is employed.

Definition 13.5. Given a real parameter β > 1, a biclustering for A[x] is β -consistent
if and only if, ∀r̂,ξ ∈ {1,2, . . . ,k}, r̂ �= ξ , j ∈ Sr̂, the following condition is satis-
fied [11]:



358 A. Mucherino and L. Liberti

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

> β

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

ifc > 0

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

> (2−β )

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

ifc < 0

(13.3)

where

c =

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

.

We remark that the concept of β -consistent biclustering was firstly introduced
in [17], but the given definition was only suitable for sets of data containing non-
negative entries. In general, different values for the parameters α and β could be
used for each j in Definitions 13.4 and 13.5. Usually, however, only one value is set
up for all components of the centroids.

In real-life applications, there are usually no biclusterings which are consistent,
α-consistent or β -consistent if all features are selected (this situation corresponds to
a binary vector x with all its components equal to 1). As already mentioned before,
this happens because some of the considered features may actually be inadequate.
Such features must therefore be removed from the set of data, while the total num-
ber of considered features must be maximized in order to preserve as much infor-
mation as possible. The following combinatorial optimization problem is therefore
considered:

max
x

(

f (x) =
m

∑
i=1

xi

)

, (13.4)

subject to constraints (13.1), (13.2) or (13.3) depending on the fact that a consis-
tent, α-consistent or β -consistent biclustering, respectively, is searched. The three
problems are linear with fractional constraints and binary variables. The solution of
this kind of optimization problems could be attempted by general-purpose solvers,
such as Baron [19, 20] or Couenne [1], but the large size of real-life sets of data
can make their converge very slow and the computational experiments too expen-
sive. The three optimization problems are in fact all NP-hard [9]. In [2] and [17],
two heuristics have been proposed. The heuristic we propose in this paper is able to
provide better solutions with respect to the ones previously obtained.
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13.3 A Bilevel Reformulation

In the following discussion, only the optimization problem (13.1)-(13.4) will be
considered, because similar observations can be made for the other two problems.
The computational experiments reported in Section 13.5, however, will be related to
all three optimization problems.

We propose a reformulation of the problem (13.1)-(13.4) as a bilevel optimization
problem. To this aim, we substitute the denominators in the constraints (13.1) with
new continuous variables yr, r = 1,2, . . . ,k, where each yr is related to the bicluster
(Sr,Fr). We can rewrite the constraints (13.1) as follows:

1
yr̂

m

∑
i=1

ai j fir̂xi >
1
yξ

m

∑
i=1

ai j fiξ xi, (13.5)

where yr̂ and yξ replace the original fractional parts. The constraints (13.5) must
be satisfied ∀r̂,ξ ∈ {1,2, . . . ,k}, r̂ �= ξ and j ∈ Sr̂, in order to have a consistent
biclustering.

Let us consider ȳr = δyr, where δ > 0. It is easy to see that, given certain values
for the variables xi, the constraints (13.5) are satisfied with ȳr if and only if they
are satisfied with yr. As an example, if k = 3 and there is a consistent biclustering
in which 20, 30 and 50 features are selected in the k biclusters, then the constraints
(13.5) are also satisfied if 0.20, 0.30 and 0.50, respectively, replace the actual num-
ber of features (in this example, the proportional factor δ is 0.01). For this reason,
the variables yr can be used for representing the proportions among the cardinalities
of the classes of features. In the previous example, 20% of the selected features are
in the first bicluster, 30% of the features in the second one, and 50% in the last one.
As a consequence, the variables yr can be bound in the real interval [0,1], so that we
can consider the following constraint:

k

∑
r=1

yr ≤ 1.

A percentage of features is not selected when this sum is smaller than 1.
We introduce the function:

c(x, r̂,ξ ) = ∑
j∈Sr̂

∣
∣
∣
∣
∣
∣
∣
∣
∣

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

−

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

∣
∣
∣
∣
∣
∣
∣
∣
∣
+

,

where x = (x1,x2, . . . ,xm) and r̂,ξ ∈ {1,2, . . . ,k}, with r̂ �= ξ , and where the symbol
| · |+ represents the function which returns its argument if it is positive, and it returns
0 otherwise. As a consequence, the value of c(x, r̂,ξ ) is positive if and only if at
least one constraint (13.1) is not satisfied.
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We reformulate the optimization problem (13.1)-(13.4) as the following bilevel
optimization problem:

min
y

(

g(x,y) =
k

∑
r=1

[

(1− yr)+
k

∑
ξ=1:ξ �=r

c(x,r,ξ )

])

(13.6)

subject to:

x = argmax
x

(

f (x) =
m

∑
i=1

xi

)

subject to

⎧
⎨

⎩

m

∑
i=1

firxi = �yr

m

∑
i=1

fir� ∀r ∈ {1, . . . ,k}
constraint (5)

k

∑
r=1

yr ≤ 1.

(13.7)

The objective function g of the outer problem depends on both variables xi, with i ∈
{1,2, . . . ,m}, and yr, with r ∈ {1,2, . . . ,k}. For each class Sr, the generic term of g is
the sum of two parts, one depending on the vector y and the other one depending on
the vector x. The first part is simply the difference (1− yr), that must be minimized
in order to maximize the value for yr, which represents the percentage of selected
features in the class Fr (recall that yr ≤ 1). The second part is the sum over all the
other classes Sξ , with ξ �= r, of the function c(x,r,ξ ) (when its value is positive).
The minimization of this second part allows to minimize the number of constraints
(13.1) that are not satisfied.

The bilevel program is subject to two constraints. The first one is based on the
solution of another optimization problem, to which we refer as inner problem. The
inner problem can be seen as a linear simplification of the original problem (13.1)-
(13.4), where the fractional parts have been substituted by the variables yr, which
indicate the percentage of features to be selected in each bicluster. The solution of
the inner problem provides a set of values for the variables xi from the variables yr.
Therefore, whatever method is employed for the solution of the outer optimization
problem, the search can be reduced to the variables yr only, because the correspond-
ing values for the variables xi can be obtained by solving the inner problem. The
inner problem is subject to two constraints: the constraints (13.5), as well as another
constraint that forces the number of selected features in each bicluster to respect the
percentages given by the variables yr. The second constraint of the outer problem
requires that the sum of all variables yr must be smaller or equal to 1 (no more than
100% of features can be selected in total). We formally prove that solutions to the
proposed bilevel optimization problem are also solutions to the original problem
(13.1)-(13.4).

Proposition 1 If (x̂, ŷ) is solution for (13.6)-(13.7), then x̂ is solution for (13.1)-
(13.4).
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Proof. By contradiction, let us suppose that there is a solution x̄ such that f (x̄) >
f (x̂) and constraints (13.1) are satisfied. Let

ȳr =

n

∑
i=1

fir x̄i

n

∑
i=1

fir

∀r ∈ {1,2, . . . ,k}.

Since the constraints (13.1) are satisfied,

g(x̄, ȳ) =
k

∑
r=1

(1− ȳr) = k−
k

∑
r=1

ȳr.

Then,

f (x̄)> f (x̂) =⇒
k

∑
r=1

ȳr >
k

∑
r=1

ŷr =⇒ g(x̄, ȳ)< g(x̂, ŷ),

which brings to a contradiction. �

13.4 A VNS-Based Heuristic

The heuristic we propose for the solution of the bilevel program presented in Sec-
tion 13.3 is based on the meta-heuristic Variable Neighborhood Search (VNS)
[5, 10], which is one of the most successful heuristics for global optimization. The
VNS is based on the idea of exploring small neighbors of currently known solutions,
which are increased in size when no better solutions can be found. At each iteration
of the VNS, a local search algorithm is often employed, so that a path of local op-
tima can be defined, that may lead to the global optimum of the considered problem.
The local search can however be replaced by another VNS, which is nested in the
main one.

The proposed heuristic actually implements a VNS in two main steps with an
adaptive value for the percentage of unselected features unsel, which is small at
the beginning (unsel # 0), and then it increases when no better solutions can be
found in the current neighbor. In this way, the algorithm firstly tries to find solutions
where the number of selected features is high. Afterwards, solutions where fewer
features are selected are considered. For each neighbor of the first step of VNS,
there is a full execution of another step. The neighbors of the second step of VNS
are generated so that the set of variables yr can be slightly perturbed at the beginning
(range = starting range), and larger perturbations can be performed only when no
better solutions can be found by considering the current neighbor.

Algorithm 14 is a sketch of our heuristic for feature selection by consistent bi-
clustering. At the beginning, the variables xi are all set to 1, and the variables yr

are set so that they represent the distribution of all m features among the k classes.
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Algorithm 14. A VNS-based heuristic for feature selection.
1: let iter = 0;
2: let xi = 1, ∀i ∈ {1,2, . . . ,m};
3: let yr = ∑i fir/m, ∀r ∈ {1,2, . . . ,k};
4: let ybest

r = yr, ∀r ∈ {1,2, . . . ,k};
5: let range = starting range;
6: let unsel = 0;
7: while (constraints (13.1) unsatisfied and unsel ≤ max unsel) do
8: while (constraints (13.1) unsatisfied and range ≤max range) do
9: let iter = iter+1;

10: solve inner optimization problem (linear & cont.);
11: if (constraints (13.1) unsatisfied) then
12: increase range;
13: if (g has improved) then
14: let ybest

r = yr, ∀r ∈ {1,2, . . . ,k};
15: let range = starting range;
16: end if
17: let yr = ybest

r , ∀r ∈ {1,2, . . . ,k};
18: let r′ = random in {1,2, . . . ,k};
19: choose randomly yr′ in [yr′ − range,yr′ + range];
20: let r′′ = random in {1,2, . . . ,k} : r′ �= r′′;
21: set yr′′ so that 1−unsel ≤ ∑r yr ≤ 1;
22: end if
23: end while
24: if (constraints (13.1) unsatisfied) then
25: increase unsel;
26: end if
27: end while

If the biclustering is already consistent, then all features can be selected, and the
algorithm stops.

For each neighbor defined by the second VNS step, the variables yr are randomly
modified. yr′ and yr′′ are chosen randomly so that r′ �= r′′. Then, yr′ is perturbed,
and its value is chosen randomly in the interval centered in ybest

r′ and with length
2× range. Then, a random value for yr′′ is chosen so that 1− unsel ≤ ∑r yr ≤ 1. In
this way, the new set of values for yr falls in the two current neighbors defined by
the VNS.

The inner optimization problem is solved for each random choice for the vari-
ables yr. It is a linear 0–1 optimization problem, and we consider its continuous
relaxation, i.e. we allow the variables xi to take any real value in the interval [0,1].
Therefore, after a solution has been obtained, we substitute the fractional values of
xi with 0 if xi ≤ 1/2, or with 1 if xi > 1/2. In our experiments, the equality of the
first constraint of the inner problem is relaxed to an inequality:

m

∑
i=1

firxi ≤ �yr

m

∑
i=1

fir� ∀r ∈ {1, . . . ,k}.
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The strict inequality of the constraints (13.5) is also relaxed, so that the domains
defined by the constraints are closed domains. Under these hypotheses, the inner
problem can be solved by commonly used solvers for mixed integer linear program-
ming (MILP), e.g. CPLEX [7].

After the solution of the inner problem, the original set of constraints (13.1) is
checked. If the obtained values for the variables xi, along with the used values for
the variables yr, define a consistent biclustering, then the algorithm stops. Other-
wise, some of the variables yr are modified and a new iteration of the algorithm is
performed.

We point out that heuristics offer no guarantee of optimality. One way to enhance
the algorithm is to restart it and to allow only values for the variables yr corre-
sponding to a larger number of selected features. Moreover, since the algorithm can
provide different solutions if it is executed more than once (with different seeds for
the generator of random numbers), it can be executed a certain number of times.
The best obtained solution is then taken into consideration.

13.5 Computational Experiments

We implemented the presented heuristic for feature selection in AMPL [4], from
which the ILOG CPLEX11 solver [7] is invoked for the solution of the inner opti-
mization problem. We also implemented in AMPL the heuristic previously proposed
in [17] (for more details about this heuristic, the reader is referred to the reference
paper). Experiments are carried out on an Intel Core 2 CPU 6400 @ 2.13 GHz with
4GB RAM, running Linux.

The following four subsections are devoted to four different training sets from
different real-life applications for which we selected a subset of pertinent features.
They are ordered by the increasing number of features originally contained in the
training set. We will briefly describe each considered training set and then we will
focus our attention on the presented experiments. The interested reader can find
more information about these sets of data in the provided references. The compari-
son of the two algorithms will be carried out by comparing the quality of the found
solutions. The heuristic in [17] is in general faster to converge (or to get stuck in
non-optimal solutions, see experiments), whereas our heuristic is generally able to
find better-quality solutions. CPU times range from a few seconds (wine fermenta-
tions) to about half an hour (ovarian cancer).

13.5.1 Wine Fermentations

Problems occurring during the fermentation process of wine can impact the produc-
tivity of wine-related industries and also the quality of wine [13, 14]. The fermen-
tation process of wine can be too slow or it can even become stagnant. Predicting
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Table 13.1 Wine fermentations. Total features: 450.

VNS-based heuristic Heuristic in [17]
α 0 0.20 0.40 0.60 0.80 1.00 1.20 0 0.20 0.40 0.60 0.80 1.00 1.20

f (x) 431 430 427 427 424 421 415 425 424 424 420 stuck stuck stuck

β 1 1.01 1.02 1.04 1.06 1.08 1.10 1 1.01 1.02 1.04 1.06 1.08 1.10
f (x) 431 430 429 425 422 411 401 425 424 423 420 415 400 386

how good the fermentation process is going to be may help enologists who can
then take suitable steps to make corrections when necessary and to ensure that the
fermentation process concludes smoothly and successfully.

We present some analysis performed on a set of data obtained from a winery in
Chile’s Maipo Valley, which is the result of 24 measurements of industrial vinifica-
tions of Cabernet sauvignon [22, 23]. The data are related to the harvest of 2002.
The level of 30 compounds are analyzed during time: the whole set of data consists
of approximately 22000 data points. In this paper, the considered set of data con-
tains 24 fermentations described by 15× 30 = 450 features: the first class contains
normal fermentations (9 in total), whereas the second class contains problematic
fermentations (15 in total).

Table 13.1 shows some computational experiments. Note that α-consistent bi-
clusterings with α = 0 and β -consistent biclusterings with β = 1 correspond to
consistent biclusterings (see Definition 13.3). We executed Algorithm 14 with dif-
ferent choices for the two parameters α and β . In the table, the number of selected
features f (x) is given in correspondence with each experiment. We can remark that
the number of selected features decreases as the values of α or β increases. This
was expected, because fewer features should be selected when the required mar-
gin between the centroids of the biclusters is enlarged. Only the features that better
describe the samples in the set of data should be contained in the biclustering we
found that contain fewer features (in particular, the α-consistent biclustering with
α = 1.20 and the β -consistent biclustering with β = 1.10).

Table 13.1 also shows some results obtained by using the heuristic presented
in [17] (the reader is referred to the reference paper for a sketch of the algorithm).
The comparison with the VNS-based heuristic proposed in this paper shows that
our heuristic was able to find better solutions for all experiments, i.e. it was able to
find biclusterings having the desired consistency property where a larger number of
features are selected. Moreover, in some experiments, the heuristic in [17] got stuck
and was not able to provide any solution. This heuristic is based on the solution of a
sequence of linear optimization problems, where some parameters are modified on
the basis of partial found solutions. The algorithm got stuck when such parameters
stopped changing iteration after iteration.

By using the found biclusterings, we were able to identify a subset of compounds
that are most likely the cause of problematic wine fermentations [15]. For example,
among the organic acids, the features related to lactic, malic, succinic, and tartaric
acids are always preserved during the feature selection. Moreover, all the features
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Table 13.2 Colon cancer, set I. Total features: 2000.

VNS-based heuristic Heuristic in [17]
α 0 1 2 3 5 8 0 1 2 3 5 8

f (x) 1700 1698 1617 1596 1583 1352 1700 1531 1590 1590 1530 1211

β 1 1.02 1.03 1.05 1.08 1.10 1 1.02 1.03 1.05 1.08 1.10
f (x) 1700 1593 1577 1566 1432 1269 1700 1578 1509 1108 1082 stuck

related to each of these organic acids are assigned to only one bicluster, showing that
they can play a very important role for the classification of the fermentations. Fea-
tures related to the same compound can also be always discarded, or they can show
some regular patterns. The study of all these features in the biclusterings can give
some insights on fermentation process of wine. Moreover, the found biclusterings
can also be exploited for performing supervised predictions of new fermentations
from which the selected compounds have been monitored [16].

13.5.2 Colon Cancer – Set I

This set of data contains 62 samples collected from colon-cancer patients [21].
Among them, 40 tumor biopsies are from tumors and 22 normal biopsies are from
healthy parts of the colons of the same patients. 2000 out of around 6500 genes were
selected based on the confidence in the measured expression levels. This set of data,
along with the known classification of its samples, is available on the Kent Ridge
Database [8].

Table 13.2 shows the results of some experiments performed with the aim of find-
ing consistent, α-consistent and β -consistent biclusterings of this set of data. As in
the previous experiments, the two algorithms selected a smaller number of features
when the values for the parameters α or β were larger. In these experiments, the
two heuristics found two consistent biclusterings with the same number of features
only once (1700 out of 2000 features), when α = 0 and β = 1. In all other cases, our
VNS-based heuristic was able to provide better solutions. The heuristic in [17] got
stuck when β was set to 1.10. Moreover, in the experiments regarding α-consistent
biclustering, f (x) does not decrease regurarly with larger α values, showing that the
heuristic in [17] was not able to find the optimal solution.

13.5.3 Colon Cancer – Set II

The third set of data that we consider is a set of gene expressions related to human
tissues from sick patients (affected by colon cancer) and healthy patients [18]. This
set of data is available on the web site of the Princeton University (see the reference
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Table 13.3 Colon cancer, set II. Total features: 7457.

VNS-based heuristic Heuristic in [17]
α 0 1 2 5 10 0 1 2 5 10

f (x) 7450 7448 7444 7413 7261 7450 7430 7291 stuck stuck

β 1 1.10 1.50 2.00 3.00 1 1.10 1.50 2.00 3.00
f (x) 7450 7420 7107 6267 5365 7450 7349 7099 6054 5252

Table 13.4 Ovarian cancer. Total features: 15154.

VNS-based heuristic
α 0 0.001 0.005 0.009

f (x) 12701 12471 12198 11027

β 1 1.001 1.005 1.009
f (x) 12701 12519 12392 12233

for the web link). It contains 36 samples classified as normal or cancer, and each
sample is described through 7457 features.

Table 13.3 shows some computational experiments. Even in these experiments,
there is the tendency to select a smaller number of features when α or β are in-
creased in value. The number of features that are selected by the heuristic in [17] is
always smaller than the number of features selected by the VNS-based heuristic.

13.5.4 Ovarian Cancer

This set contains data collected from experiments performed with the aim of identi-
fying gene patterns that can distinguish ovarian cancer from non-cancer [3]. As the
authors of the reference paper remark, this study is significant to women who have
a high risk of ovarian cancer due to family or personal history of cancer. The set of
data includes 91 samples classified as normal and 162 samples classified as ovarian
cancer. The total number of considered features is 15154. After the experiments, the
intensity values of the raw data were normalized so that each intensity value can fall
within the interval [0,1]. More details on these experiments can be found in [3]. The
set of data can be downloaded from [8]: it is the largest set of data ever considered
for feature selection by consistent biclustering. Our VNS-based heuristic was able
to identify some consistent, α-consistent and β -consistent biclusterings by selecting
a subset of pertinent features. Table 13.4 shows some computational experiments.

13.6 Conclusions

We considered a problem of great interest in data mining, that is the one of the
identification of consistent biclusterings of sets of data, which are used to identify
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pertinent features describing the samples of a set of data. We presented a reformu-
lation of the problem, originally modeled as a 0–1 linear fractional optimization
problem, as a bilevel program and we proposed a new heuristic for its solution. This
heuristic is based on the meta-heuristic Variable Neighborhood Search. Computa-
tional experiments on various sets of data available in the literature show that the
proposed heuristic outperforms previously proposed ones and is promising for the
solution of large instances.

Data are nowadays obtained from many resources and they need to be efficiently
analyzed. The VNS-based heuristic we proposed represents a good step forward a
satisfactory solution of feature selection problems. However, a wider test analysis
of the algorithm on other training sets is needed in order to study possible improve-
ments. To this aim, we plan to implement the heuristic in C/C++, so that the CPLEX
solver can be invoked more efficiently and the overall execution can be optimized.

Acknowledgements. The authors are thankful to Sonia Cafieri for the fruitful discussions
on the bilevel reformulation presented in the paper.
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