
Chapter 12
Application of Large Neighborhood Search to
Strategic Supply Chain Management in the
Chemical Industry

Pedro J. Copado-Méndez, Christian Blum,
Gonzalo Guillén-Gosálbez, and Laureano Jiménez

Abstract. Large neighborhood search is a popular hybrid metaheuristic which re-
sults from the use of a complete technique—such as dynamic programming, con-
straint programming or MIP solvers—for finding the best neighbor within a large
neighborhood of the incumbent solution. In this work we present an application of
large neighborhood search to a strategic supply chain management problem from
the Chemical industry, namely the configuration of a three-echelon hydrogen net-
work for vehicle use with the goal of minimizing the total cost. Traditionally, these
large-scale combinatorial optimization problems have been solved by means of
mathematical programming techniques. Our experimental results show that large
neighborhood search has the potential to be a viable alternative, especially when the
complexity of the problem grows.

12.1 Introduction

Supply chain management (SCM) problems [18, 15] can be classified into strate-
gic, tactical and operational according to the temporal and spatial scales consid-
ered in the analysis [7]. In this work we will focus on the strategic level, which
deals with decisions that have a long lasting effect on the firm, such as those related
with the establishment of new facilities and transportation links between the supply
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chain entities. Spatially explicit models have recently gained wider interest in SCM.
These formulations are particularly suited for strategic SCM problems in which the
supply chain performance shows a strong geographical dependence. They give rise
to large-scale MILP models with three types of variables: (1) integers representing
the number of facilities opened in a given location, (2) binary variables denoting
the existence of transportation links between two sub-regions, and (3) continuous
variables that quantify the materials flows and inventory levels. In this work we will
deal with a spatially explicit model that concerns the strategic planning of hydrogen
supply chains for vehicle use [1, 9, 10, 12, 19].

In spatially explicit SCM models a trade-off exists between modelling accuracy
and computational burden. Realistic models require the definition of a large number
of discrete variables. Mathematical programming is probably the prevalent approach
for solving SCM problems. Hereby, decomposition strategies that exploit the mathe-
matical structure of the problem are sometimes used to make the problem tractable.
A general review on the application of mathematical programming techniques in
SCM can be found in [14], whereas more specific reviews devoted to process in-
dustries have been presented in [8, 16]. Apart from mathematical programming,
metheuristics have also been applied so strategic SCM problems. In [21], for exam-
ple, a method to solve the vehicle routing problem (VRP) is proposed that combines
genetic algorithms with mathematical programming. The authors of [5] examine the
open vehicle routing problem with time windows (OVRPTW) using tabu search.
Several evolutionary algorithms for the application fo SCM models have been pro-
posed in [2], while in [6] the authors employed genetic algorithms for solving the
coordinated scheduling of production and air transportation. Other applications can
be found in [24, 3].

The goal of this work is the application of a popular algorithm from the field
of hybrid metaheuristics to the above mentioned SCM problem. Hybrid meta-
heuristics [4] are algorithms for optimization that combine metaheuristics with
components of other techniques for optimization. Examples are combinations of
metaheuristics with dynamic programming, contraint programming, and branch &
bound. The specific algorithm that is applied in this work is known as large neigh-
borhood search (LNS) [17]. The characteristic feature of LNS algorithms is the use
of complete techniques for searching large neighborhoods within a metaheuristic
framework. Our method, as shown by means of numerical examples, produces near
optimal solutions in a fraction of the computational time required by stand-alone de-
terministic branch and cut techniques applied to the original full-space MILP. The
same approach can be easily extended to tackle similar engineering problems with
large numbers of discrete decisions, expediting current solution approaches for a
certain class of process systems engineering models.

The remainder of this chapter is organized as follows. In Section 12.2, we provide
a generic formulation of spatially explicit supply chain models. The full description
of the mathematical model of the hydrogen supply chains for vehicle use is given
in Appendix A. In Section 12.3 we describe the proposed LNS approach, whereas in
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Section 13.5 the experimental results are outlined in detail. Finnally, the conclusions
of the work are presented in Section 12.5.

12.2 Spatially Explicit Supply Chain Models

As mentioned before, we address the solution of MILPs resulting from the formu-
lation of spatially explicit models used in SCM. The problem under study can be
formally stated as follows (see also Figure 12.1). Given are a set of available pro-
duction, storage and transportation technologies that can be adopted in different
locations of a region in order to fulfill the demand of a product of interest. We are
also given economic and environmental data associated with the establishment and
operation of these facilities. The goal of the analysis is to determine the optimal
supply chain configuration, including the type of technologies selected, the capacity
expansions over time, and their optimal location, along with the associated planning
decisions that optimize a predefined objective function.

The strategic planning problem presented above can be described in mathemati-
cal terms as an MILP of the following form:

min
x,Y,N

f (x,Y,N)

such that

h(x,Y,N) = 0
g(x,Y,N) ≤ 0
x ⊂ R, Y ⊂ {0,1}, N ⊂ Z+

This generic formulation includes three types of variables: continuous variables
x, denoting capacity expansions, production rates, inventory levels and materials
flows; discrete variables N, representing the number of transportation units and
production and storage facilities opened in a given region; and binary variables Y
employed for modelling the establishment of transportation links between two po-
tential locations within the overall region of interest. The inequality and equality
constraints, denoted by g(x,Y,N) and h(x,Y,N) respectively, represent mass bal-
ances, capacity limitations and objective function calculations. In this work, with-
out loss of generality, we address the solution of a spatially explicit SCM model
that was introduced in [13, 11, 9, 20]. The solution of this multi-period model pro-
vides the optimal supply chain structure along with the capacity expansions over
time required to follow a given demand pattern.

For the sake of brevity, a detailed description of the mathematical model for
the hydrogen supply chains problem for vehicle use can be found in Appendix A.
Moreover, further details on the complete MILP formulation can be found in the
original works. From now on, we will refer to this model as HYDROGEN.
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Fig. 12.1 Main sets of decision variables involved in spacially explicit supply chain manage-
ment

12.3 The Proposed LNS Algorithm

The difficulty in solving model exposed in the previous section is highly depen-
dent on the number of integer and binary variables since they are responsible for
the combinatorial complexity of the problem. The number of discrete variables re-
quired increases with the number of time periods and sub-regions considered in
the model. The MILP can be solved via standard branch-and-cut techniques imple-
mented in software packages such as CPLEX. Models accounting for a large number
of time periods and/or sub-regions may lead to branch-and-bound trees with a pro-
hibitive number of nodes, thus making the MILP computationally intractable. We
next present a hybrid method, LNS, that combines local search with standard branch
and cut for the efficient solution of the tackled problem. LNS was first introduced
by [22]. In LNS, an initial solution is gradually improved by alternately destroying
and repairing it. This approach combines components from different search tech-
niques, and has many potential applications in the fields of operations research and
artificial intelligence. Classifications, taxonomies and overviews on the subject can
be found in the work by [4, 23].

All LSN algorithms are based on the observation that searching a large neigh-
bourhood results in finding local optima of high quality. Specifically, LNS decom-
poses the original problem into a number of smaller sub-problems that are solved
in a sequential way. Each sub-problem emerges from a partial solution, in which
some decision variables are fixed and others released. A partial solution defines a
neighbourhood of solutions that can be explored rather fast by either tailored (e.g.,
another heuristic or meta-heuristic) or general purpose algorithms (e.g., branch and
cut MIP solvers). LNS is a general framework that must be adapted to the particu-
larities of the problem under study. Hence, the definition of the large neighbourhood
is highly dependent on the problem of interest. In the simplest case, an appropriate
portion of the decision variables is fixed to the values that they have in the current
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solution, and only the remaining “free” variables are considered by the optimization
algorithm (typically, a MIP-solver). If the MIP-solver finds an improved solution,
it becomes the new current solution, a new large neighbourhood is defined around
it, and the process is repeated in subsequent iterations. Obviously, the selection of
the variables that remain fixed and the ones that are subject to optimization, re-
spectively, plays a crucial role in the performance of the algorithm. Particularly,
the number of free variables directly defines the size of the neighbourhood. Too
restricted neighbourhoods—that is, sub-problems—are unlikely to yield improved
solutions, while too large neighbourhoods might result in excessive running times
for solving the sub-problems by the MIP-solver. Therefore, a strategy for dynam-
ically adapting the number of free variables is sometimes used. Furthermore, the
variables to be optimized might be selected either purely at random or in a more
sophisticated guided way by considering the variables with largest potential impact
on the objective function and their relatedness. The section that follows describes
the main features of our algorithm.

12.3.1 Algorithm

In this section we describe the LNS implementation for our particular problem. The
algorithm requires the following input data:

• tmax: a maximum execution time of the algorithm;
• nmax: a maximum number of variables to be released;
• mmax: a maximum number of attempts (the meaning of this parameter is de-

scribed below).

The algorithm works as follows (see Algorithm 11). First, the initial solution is
generated in function generate initial solution(). The HYDOGENE model includes
three main types of discrete variables that are relevant for our algorithm:

• Integer variables NPL
igpt: Number of facilities producing hydrogen in form i using

technology p established in location g at period t.
• Integer variables NST

gst : Number of storage facilities of type s opened in location
g at period t.

• Binary variables Xgg′lt : Equals 1 if there is a link between g and g′ using trans-
portation mode l in period t and 0 otherwise.

The initial solution is generated by solving the HYDROGENE model with the vari-
ables NPPL

igpt , NST
gst and Xgg′lt fixed to the values obtained from a reduced-space model

that considers a single time period with a demand equal to the average demands over
all the time periods. We have used CPLEX for this purpose. The pseudo-code of this
procedure is given in Algorithm 12).

After the generation of the initial solution, the main loop of the algorithm starts.
While the maximum computation time limit is not reached, in each trial m the fol-
lowing is done. First, a set V of n variables that are to be released is chosen in
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Algorithm 11. LNS for solving the HYDROGENE model
Require: The model HYDROGENE to be solved

AND tmax > 0 AND mmax > 0 AND nmax > 0
Ensure: s
1: s := generate initial solution()
2: while computation time limit tmax not reached do
3: n := 1
4: improved := FALSE
5: while n≤ nmax AND NOT improved do
6: m := 1;
7: while m≤ mmax AND NOT improved do
8: V := choose variables to be released(n)
9: s′ := release variables(s,V )

10: s′′ := MIP solve(s′)
11: if f (s′′ < f (s) then
12: s := s′′
13: improved := TRUE
14: end if
15: n := n+1;
16: end while
17: m := m+1;
18: end while
19: end while

Algorithm 12. Generating the initial solution
for all g do

Dg := ∑T
t Dgt
T

end for
Solve HYDROGENE considering one period (t = 1) with demand Dg
Solve HYDROGENE for all the time periods fixing
〈NPL

igpt ,N
ST
gst ,Xgg′lt〉 := 〈NPL

igp1,N
ST
gs1,Xgg′l1〉

function choose variables to be released(n). Second, solution s is copied, result-
ing in solution s′. Next, the n variables from V are released in s′. Third, the CPLEX
solver is invoked. The solver determines the best solution that can be obtained on the
basis of the partial solution s′. In case f (s′ < f (s)—where f (·) refers to the value
of the objective function—variable improved is assigned the value true.

12.4 Experimental Evaluation

In the following subsection we present numerical results that illustrate the perfor-
mance of LNS as compared to the commercial full-space branch and cut code im-
plemented in CPLEX. We have selected different instances of the HYDROGENE

model concerning the number of time periods. More specifically, we tested t ∈
{2,4,6,8,10,12,14,16}. As computation time limits for the resulting eight models
of HYDROGENE we chose {1000,2000,3000,4000,5000,6000,7000,8000}
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Fig. 12.2 Tuning of algorithm LNS. Note that n and m refer to parameters nmax and mmax.

seconds. All experiments were performed on a PC Intel (R) Core (TM) Quad CPU
Q9550@2.83 GHz and 3 GB of RAM.

12.4.1 Algorithm Tuning

In order to obtain reasonable values for parameters nmax and mmax, we applied LNS
for each combination of nmax and mmax 10 times to each of the eight different mod-
els (resulting from eight different time periods). The values considered for nmax are
taken from {4,6,8,10,20}, while the values considered for mmax are taken from
{4,6,8,10,12}. The results are shown for each combination of nmax and mmax in the
form of boxplots in Figure 12.2. This is a standard and convenient way of graph-
ically depicting sets of numerical data through their five-number summaries: the
smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper
quartile (Q3), and largest observation (sample maximum). A boxplot also indicates
which observations, if any, are to be considered as outliers. When observing these
results, the general impression is that the results become better when mmax grows.
Concerning nmax, no conclusions can be drawn. The final setting that we chose based
on these results is marked by a box. In particular, we chose the setting of nmax = 10
and mmax = 12.
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Fig. 12.3 Commparison of LNS with CPLEX (lower and upper bound) over time. The four
graphics show the results for a different number of periods (value of t). From top to down, t
takes values {2,4,6,8}). The vertical bars show the standard deviation of LNS over 10 runs.
In the cases in which CPLEX results are missing, CPLEX was not able to find any solution
within the given time.
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Fig. 12.4 Commparison of LNS with CPLEX (lower and upper bound) over time. The four
graphics show the results for a different number of periods (value of t). From top to down,
t takes values {10,12,14,16}). The vertical bars show the standard deviation of LNS over
10 runs. In the cases in which CPLEX results are missing, CPLEX was not able to find any
solution within the given time.
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Table 12.1 Results of LNS for the eight different HYDROGEN models

# time periods time limit avg obj function value std (obj) avg comp time std (time)
2 1000 1.050.707.800.000 18.860.894,29 477,97 248,27
4 2000 1.296.693.500.000 37.997.806,95 748,38 581,41
6 3000 1.543.836.900.000 42.019.704,37 1156,19 784,40
8 4000 1.786.516.900.000 58.333.238,10 1651,62 1196,73

10 5000 2.019.793.600.000 111.899.955,32 2751,97 1657,26
12 6000 2.239.906.300.000 128.670.164,03 2973,20 1508,65
14 7000 2.450.000.000.000 0,0 195,28 125,80
16 8000 2.640.000.000.000 0,0 227,95 116,70

Table 12.2 Optimality gaps of CPLEX and LNS. GAP’s are calculated with respect to the
best lower bound found by CPLEX when the 12h time limit was applied. No result indicates
that in the given time CPLEX was not able to obtain any feasible solution.

# time periods CPLEX (12h) CPLEX LNS (avg) LNS (best)
2 0.05 0.05 0.05 0.05
4 0.05 0.06 0.07 0.06
6 0.06 0.07 0.07 0.07
8 0.08 No result 0.08 0.08

10 0.10 No result 0.09 0.09
12 No result No result No result No result
14 No result No result No result No result
16 No result No result No result No result

12.4.2 Final Comparison

After the above-mentioned tuning procedure we applied CPLEX with the same com-
putation time limits (and additionally with the computation time limit of 12 hours)
to all eight HYDROGENE models. Figures 12.3 and 12.4 show—for all eight differ-
ent time periods—the evolution of the lower and upper bounds found by CPLEX as
a function of time, along with the performance of the proposed LNS algorithm. As
can be seen, for a rather low number of time periods (up to 6), CPLEX performs
slightly better than the proposed algorithm, finding better solutions in shorter CPU
times. For more than 6 time periods, CPLEX cannot find any solution within the
given time, whereas LNS is always able to provide at least one feasible solution.
Note that the variability of the results obtained with our algorithm is rather low.

Numerical results of LNS are shown in Table 12.1. The first column of this table
indicates the number of periods, while the second table column states the computa-
tion time limit. The four remaining columns contain, respectively, the average of the
objective function values of the best solutions found in ten runs, the corresponding
standard deviation, the average computation times necessary to obtain these solu-
tions, and, again, the corresponding standard deviation.

Finally, Table 12.2 displays the optimality gaps obtained by the following algo-
rithms: the best solution calculated by CPLEX after 12 hours of CPU time (column
labelled CPLEX (12h)) and after the same CPU time limit applied to LNS (column
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labelled CPLEX), the average solution quality obtained by LNS (column labelled
LNS (avg)), and the value of the best solution found by LNS (column labelled LNS
(best)). The optimality gap is determined with respect to the best lower bound calcu-
lated by CPLEX within 12 hours. Note that in some cases (12, 14, and 16 periods),
CPLEX is unable to provide any bound even after 12 hours.

Summarizing, we can say that LNS appears to be a useful alternative to pure
mathematical programming for what concerns the application to large-scale models
from the Chemical industries.

12.5 Conclusions

In this work we have introduced an efficient hybrid algorithm for a spatially explicit
supply chain management model. Our algorithm combines mathematical program-
ming techniques with local search, and is known as large neighborhood search in
the literature. The capabilities of the proposed method were illustrated through its
application to the strategic planning of infrastructures for hydrogen production. Our
algorithm was shown to outperform the stand-alone branch and cut method imple-
mented in CPLEX especially for large-scale problems. Numerical examples have
demonstrated that our method is particularly suited for tackling large scale prob-
lems with a high number of time periods and potential locations (and, therefore, a
high number of integer and binary variables).

Future work will particularly focus on investigating how to incorporate the infor-
mation obtained after solving sub-problems of the mathematical program into the
original model in order to expedite the solution of the full space formulation.
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Appendix A

In this appendix we provide the complete mathematical model of the three-echelon
hydrogen network problem for vehicle use with the goal of minimizing the total
cost. Moreover, we give a brief description of its components. Further details may
be found in [20, 9, 11].

Notation

Indices

e scenarios
i hydrogen form
g potential locations
l transportation mode
p manufacturing technologies
s storage technologies
t time period

Sets

IL(l) set of hydrogen forms that can be transported via transportation mode
l

IS(s) set of hydrogen forms that can be stored via technology s
LI(i) set of transportation modes that can transport hydrogen form i
SI(i) set of storage technologies that can store hydrogen form i

Parameters

avl availability of transportation mode l
cclt capital cost of transport mode l in period t
cudlt maintenance cost of transportation mode l in period t per unit of dis-

tance traveled
Dgt total demand of hydrogen in location g in period t
distancegg′ average distance traveled between locations g and g′
dsat demand satisfaction level to be fulfilled
f uelcl fuel consumption of transportation mode l
f uelplt price of the fuel consumed by transportation mode l in period t
gelt general expenses of transportation mode l in period t
ir interest rate
lutimel loading/unloading time of transportation mode l
PCPL

p upper bound on the capacity expansion of manufacturing technology
p
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PCPL
p lower bound on the capacity expansion of manufacturing technology

p
QCgg′l upper bound on the flow of materials between locations g and g′ via

transportation model l
QCgg′l lower bound on the flow of materials between locations g and g′ via

transportation model l
SCST

s upper bound on the capacity expansion of storage technology s
SCST

s lower bound on the capacity expansion of storage technology s
speedl average speed of transportat mode l
tcapl capacity of transport mode l
upcigpte mean value of unit production cost of hydrogen form i produced via

technology p in location g in period t in scenario e
Vupcigpte Variance associated to the probability distribution of upcigpte

uscigst unit storage cost of hydrogen form i stored via technology s in location
g in period t

wagelt driver wage of transportation mode l in period t
αPL

gpt fixed investment term associated with manufacturing technology p in-
stalled in location g in period t

αST
gst fixed investment term associated with storage technology s installed in

location g in period t
β PL

gpt variable investment term associated with manufacturing technology p
installed in location g in period t

β ST
gst variable investment term associated with storage technology s installed

in location g in period t
θ average storage period
τ minimum desired percentage of the capacity that must be used
probe occurrence probability of scenario e

Variables

CPL
gpt capacity of manufacturing technology p in location g in period t

CST
gst capacity of storage technology s in location g in period t

CEPL
gpt capacity expansion of manufacturing technology p in location g in pe-

riod t
CEST

gst capacity expansion of storage technology s in location g in period t
Digt amount of hydrogen form i distributed in location g in period t
FCt fuel cost in period t
FCCt facility capital cost in period t
FOCte facility operating cost in period t in scenario e
GCt general cost in period t
LCt labor cost in period t
MCt maintenance cost in period t
T PIC capital cost of pipelines establishment (euros/km)
UTP unit transportation cost of pipelines (euros/kg day)
UTCB unit transportation cost of ship rental (euros/h kg)
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PICCt pipeline capital cost (euros/yr)
PICt pipeline operating cost (euros/yr)
TOCBt ship operating cost
NPL

gpt number of plants of type p installed in location g in period t (integer
variable)

NST
gst number of storage facilities of type s installed in location g in period t

(integer variable)
NT R

lt number of transportation units of type l purchased in period t (integer
variable)

PRigpt production of hydrogen mode i via technology p in period t in location
g

Qigg′lt flow of hydrogen mode i via transportation mode l between locations
g and g′ in period t

Sigst amount of hydrogen in physical form i stored via technology s in lo-
cation g in period t

TCte total amount of money spent in period t for scenario e
TCCt total transportation capital cost in period t
T DCe total discounted cost for scenario e
TOCt transportation operating cost in period t
Xgg′lt binary variable (1 if a link between locations g and g′ using transporta-

tion technology l is established, 0 otherwise)

Equation 12.1 defines the mass balance for the grids considered in the analysis,
whereas Equation 12.2 forces the model to fulfill a minimum demand satisfaction
level. Equation 12.3 limits the production capacity between lower and upper bounds.
Equation 12.4 determines the production capacity in a time period from the previous
one plus the expansion in capacity executed in the same period. Equation 12.5 limits
the capacity expansions within lower and upper bounds given by the number of
facilities opened.

∑
s∈SI(i)

Sigst−1 +∑
p

PRigpt + ∑
g′ �=g

∑
l

Qilg′glt

= ∑
s∈SI(i)

Sigst +Digt + ∑
g′ �=g

∑
l

Qilgg′lt∀i,g, t
(12.1)

Dgtdsat ≤∑
i

Digt ≤ Dgt∀g, t (12.2)

τCPL
gpt ≤∑

i
PRigpt ≤CPL

gpt∀g, p, t (12.3)

CPL
gpt =CPL

gpt−1 +CEPL
gpt ∀g, p, t (12.4)

PCPL
p NPL

gpt ≤CEPL
gpt ≤ PCPL

p NPL
gpt∀g, p, t (12.5)



350 P.J. Copado-Méndez et al.

Equations 12.6 to 12.9 are equivalent to equations 12.3 to 12.5, but apply to ware-
houses. Particularly, equation 12.6 limits the amount of materials stored to be lower
than the existing capacity. Equation 12.7 forces the average inventory level, which
is determined from the demand and turnover ratio, to be lower than the existing
capacity. Equation 12.8 provides the storage capacity in a time period from the pre-
vious one and the expansion in capacity in the previous period, whereas equation
12.9 limits the expansion in capacity between lower and upper limits given by the
number of storage facilities installed.

∑
i∈IS(s)

Sigst ≤CST
gst∀g,s, t (12.6)

2(θDigt)≤ ∑
s∈SI(i)

CST
gst∀i,g, t (12.7)

CST
gst =CST

gst−1 +CEST
gst∀g,s, t (12.8)

SCST
s NST

gst ≤CEST
gst ≤ SCST

s NST
gst ∀g,s, t (12.9)

Equation 12.10 limits the transportation links between lower and upper bounds pro-
vided the link is finally established. Equations 12.11 and 12.12 are defined for the
construction of pipelines. Equation 12.13 is a logic constraint that makes the formu-
lation tighter. Equations 12.14 and 12.15 avoid the transportation between certain
maritime grids, whereas equation 12.16 is a symetric cut. Finally, equations 12.17
to 12.31 allow to determine the cost of the network.

QClgg′Xgg′lt ≤∑
i

Qilgg′t ≤ QClgg′Xgg′lt

∀g,g′(g �= g′), l ∈ LI(i)∪NPL, t
(12.10)

∑
t′≤t+1

QClgg′Xgg′lt′ ≤∑
i

Qilgg′t ≤ ∑
t′≤t+1

QClgg′Xgg′lt

∀g,g′(g �= g′), l = pipeline, t
(12.11)

∑
t′≤t+1

Xgg′lt′ ≤ 1 ∀g,g′(g �= g′), l = pipeline, t (12.12)

Xgg′lt +Xg′glt ≤ 1 ∀g,g′(g �= g′), l ∈ LI(i, t (12.13)

Xlgg′t = 0 ∀l,g,g′ ∈ LG′

LG′ = {l,g,g′ : (l = ship)∧ ((g,g′) /∈ SGG(gg′))} (12.14)

Xlgg′t = 0 ∀l,g,g′ ∈ LG

LG = {l,g,g′ : (l �= ship)∧ ((g,g′) ∈ SGG′(gg′))} (12.15)
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Xlgg′t = 0 ∀l,g = g′ (12.16)

TDC = ∑
t

TC
(1+ ir)t−1 (12.17)

TCt = FCCt +TCCt +FOCt +TOCt ∀t (12.18)

FOCt = ∑
i

∑
g

∑
p

upcigptPRigpt

+∑
i

∑
g

∑
s
∈ SI(i)uscigst (θDigt) ∀t

(12.19)

FCCt = ∑
g

∑
p

(
αPL

gptN
PL
gpt +β PL

gptCEPL
gpt

)

+∑
g

∑
s

(
αST

gst NST
gst +β ST

gst CEST
gst

) ∀t
(12.20)

TCCt = ∑
l �=ship,pipeline

NT R
lt · cclt +PCCt (12.21)

PCC(t) =∑
g

∑
g′ �=g

∑
l∈LI(i)

upcctXlgg′tdistancegg′ ∀t (12.22)

∑
t′≤t+1

NT R
lt′ ≥ ∑

i∈IL(l)
∑
g

∑
g′ �=g

∑
t

Qigg′lt
avltcapl

(
2distancegg′

speedl
+ lutimel

)

∀l �= ship, pipeline

(12.23)

TOCt = ROCt +POCt + SOCt ∀t (12.24)

ROCt = FCt +LCt +MCt +GCt ∀t (12.25)

FCt = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

f uelplt
2distancegg′Qilgg′t

f uelcltcapl
∀t (12.26)

LCt = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

wagelt

×
[

Qilgg′t
tcapl

(
2distancegg′

speedl
+ lutimel

)]

∀t
(12.27)

MCt = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

cudl
2distancegg′Qilgg′t

tcapl
∀t (12.28)

GCt = ∑
l

∑
t′≤t

gltN
T R
lt′ ∀t (12.29)
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POC(t) = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

upoctQilgg′t ∀t (12.30)

SOCt = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

usoct

(
distancegg′

speedl

)

Qilgg′t ∀t (12.31)
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