
Chapter 1
A Unified Taxonomy of Hybrid Metaheuristics
with Mathematical Programming, Constraint
Programming and Machine Learning

El-Ghazali Talbi

Abstract. Over the last years, interest on hybrid metaheuristics has risen consider-
ably in the field of optimization. The best results found for many real-life or classical
optimization problems are obtained by hybrid algorithms. Combinations of algo-
rithms such as metaheuristics, mathematical programming, constraint programming
and machine learning techniques have provided very powerful search algorithms.
Four different types of combinations are considered in this chapter:

• Combining metaheuristics with (complementary) metaheuristics.
• Combining metaheuristics with exact methods from mathematical programming

approaches which are mostly used in operations research.
• Combining metaheuristics with constraint programming approaches developed

in the artificial intelligence community.
• Combining metaheuristics with machine learning and data mining techniques.

1.1 Introduction

This chapter deals with the design of hybrid metaheuristics and their implemen-
tation. A taxonomy of hybrid algorithms is presented in an attempt to provide a
common terminology and classification mechanisms. The goal of the general taxon-
omy given here is to provide a mechanism to allow comparison of hybrid algorithms
in a qualitative way. In addition, it is hoped the categories and their relationships to
each other have been chosen carefully enough to indicate areas in need of future
work as well as to help classify future work. Among existing classifications in other
domains, one can find examples of flat and hierarchical classifications schemes [74].
The taxonomy proposed here is a combination of these two schemes - hierarchical
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as long as possible in order to reduce the total number of classes, and flat when the
descriptors of the algorithms may be chosen in an arbitrary order. The same clas-
sification is used for all types of combinations. For each type of hybrids, the main
ideas in combining algorithms are detailed. Each class of hybrids is illustrated with
some examples. A critical analysis is also carried out.

In fact, the taxonomy could usefully be employed to classify any hybrid opti-
mization algorithm (specific heuristics, exact algorithms). The basic classification is
extended by defining the space of hybrid metaheuristics as a grammar, where each
sentence is a method that describes a combination of metaheuristics, mathematical
programming and constraint programming. In this chapter, a “high-level” descrip-
tion of hybrid metaheuristics is proposed. The internal working and the algorithmic
aspects of a given metaheuristic are not considered.

The chapter is organized as follows. First, in section 1.2, our concern is hybrid
algorithms combining metaheuristics. The design and implementation issues of hy-
brid metaheuristics are detailed. A taxonomy is presented to encompass all pub-
lished work up to date in the field and to provide a unifying view of it. A grammar
which generalizes the basic hybridization schemes is proposed. In section 1.3, the
combination of metaheuristics with mathematical programming approaches is con-
sidered. Section 1.4 deals with the combination of metaheuristics with constraint
programming techniques. Then, in section 1.5 the combination of metaheuristics
with machine learning and data mining algorithms is addressed. Hybrid metaheuris-
tics for multi-objective optimization are addressed in section 1.6.

1.2 Hybrid Metaheuristics

Hybridization of metaheuristics involves a few major issues which may be classified
as design and implementation. The former category concerns the hybrid algorithm
itself, involving issues such as functionality and architecture of the algorithm. The
implementation consideration includes the hardware platform, programming model
and environment on which the algorithm is to be run. In this chapter, a difference is
made between the design issues used to introduce hybridization and implementation
issues that depend on the execution model of the algorithms.

1.2.1 Design Issues

The taxonomy will be kept as small as possible by proceeding in a hierarchical way
as long as possible, but some choices of characteristics may be made independent
of previous design choices, and thus will be specified as a set of descriptors from
which a subset may be chosen.



1 A Unified Taxonomy of Hybrid Metaheuristics 5

1.2.1.1 Hierarchical Classification

the structure of the hierarchical portion of the taxonomy is shown in figure 1.1. A
discussion about the hierarchical portion then follows. At the first level, one may dis-
tinguish between low-level and high-level hybridizations. The low-level hybridiza-
tion addresses the functional composition of a single optimization method. In this
hybrid class, a given function of a metaheuristic is replaced by another metaheuris-
tic. In high-level hybrid algorithms, the different metaheuristics are self-contained.
There is no direct relationship to the internal workings of a metaheuristic.
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Fig. 1.1 Classification of hybrid metaheuristics in terms of design issues

In relay hybridization, a set of metaheuristics is applied one after another, each
using the output of the previous as its input, acting in a pipeline fashion. Teamwork
hybridization represents cooperative optimization models, in which many cooperat-
ing agents evolve in parallel; each agent carries out a search in a solution space.

Four classes are derived from this hierarchical taxonomy:

• LRH (Low-level Relay Hybrid): this class of hybrids represents algorithms in
which a given metaheuristic is embedded into a S-metaheuristic (Single solution
based metaheuristic) [?]. Few examples of hybrid metaheuristics belong to this
class.

Example 1.1. Embedding local search into simulated annealing: the main idea
is to incorporate deterministic local search techniques into simulated annealing
so that the Markov chain associated to simulated annealing explores only local
optima [124]. The algorithm proceeds as follows: suppose the configuration is
currently locally optimal. This is labeled Start in figure 1.2. A perturbation
or a “kick” is applied to this configuration which significantly changes the cur-
rent solution Start. After the kick, the configuration labeled Intermediate
in the figure is reached. It is much better to first improve Intermediate by
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a local search and apply the accept/reject test of simulated annealing only af-
terwards. The local search takes us from Intermediate to the configuration
labeled Trial, and then the accept/reject test is applied. If Trial is accepted,
one has to find an interesting large change to Start. If Trial is rejected, re-
turn to Start. Many of the barriers (the “ridges”) of the fitness landscape are
jumped over in one step by the hybrid metaheuristic.

O b j e c t i v e

I n t e r m e d i a t e
  so lu t i on

 S ta r t

K i c k

L o c a l  s e a r c h

C o n f i g u r a t i o n

T r i a l

Fig. 1.2 An example of LRH hybridization embedding local search into simulated annealing.
The figure gives a schematic representation of the objective function and the configuration
modification procedure used in the LRH hybrid algorithm.

To implement the above hybridization, the choice for an appropriate “kick”
should be adapted to both the optimization problem and the local search method
used. For the traveling salesman problem, if the local search algorithm used is the
2-opt local search heuristic, the “kick” move must apply a k-change with k > 2
to prevent cycles. The “kick” operator must attain solutions which are always
outside the neighborhood associated to the local search algorithm.

• LTH (Low-level Teamwork Hybrid): two competing goals govern the design
of a metaheuristic: exploration and exploitation. Exploration is needed to ensure
that every part of the space is searched enough to provide a reliable estimate of
the global optimum. Exploitation is important since the refinement of the current
solution will often produce a better solution. P-metaheuristics (Population based
metaheuristics) [?] (e.g. evolutionary algorithms, scatter search, particle swarm,
ant colonies) are powerful in the exploration of the search space, and weak in the
exploitation of the solutions found.

Therefore, most efficient P-metaheuristics have been coupled with
S-metaheuristics such as local search, simulated annealing and tabu search,
which are powerful optimization methods in terms of exploitation. The two
classes of algorithms have complementary strengths and weaknesses. The S-
metaheuristics will try to optimize locally, while the P-metaheuristics will try to
optimize globally. In LTH hybrid, a metaheuristic is embedded into a
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P o p u l a t i o n  b a s e d  m e t a h e u r i s t i c
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.  .  .

Fig. 1.3 Low-level Teamwork Hybrid (LTH). S-metaheuristics are embedded into P-
metaheuristics.

P-metaheuristic1 (Fig. 1.3). This class of hybrid algorithms is very popular and
has been applied successfully to many optimization problems. Most of the state-
of-the art of P-metaheuristics integrate S-metaheuristics.

Example 1.2. Embedding S-metaheuristics into evolutionary algorithms:
when an evolutionary algorithm is used as a global optimizer, its standard op-
erators may be augmented with the ability to perform local search. Instead of
using a blind operator acting regardless of the fitness of the original individual
and the operated one, an operator which is a heuristic that considers an indi-
vidual as the origin of its search applies itself, and finally replaces the original
individual by the enhanced one (see figure 1.4). The use of local search with
evolutionary algorithms is also inspired by biological models of learning and
evolution. EAs take many cues from mechanisms observed in natural evolution.
Similarly, models of learning are often equated with techniques for local opti-
mization [148]. Research on the interaction between evolution and learning had
naturally led computer scientists to consider interactions between evolutionary
algorithms and local optimization [20].

The genetic operators replaced or extended are generally mutation2 and
crossover.

– mutation: the local search algorithm may be a simple local search [157] [174]
[100], tabu search [70] [111] [171], simulated annealing algorithm [36] [180]
or any S-metaheuristic (e.g. threshold accepting, guided local search). This
kind of operators is qualified lamarckian3. In the lamarckian model, an indi-
vidual is replaced by the local optima found, contrary to the baldwin model
where the local optima is just used to evaluate the individual. In several oc-
casions, LTH has provided better results than other methods on difficult prob-
lems. For instance, good results have been obtained on the graph coloring
problem combining a genetic algorithm with tabu search [71]. A local search
algorithm which uses problem-specific knowledge may be incorporated into

1 This class of hybrid metaheuristics includes memetic algorithms.
2 Also known as evolutionary local search algorithms.
3 The name is an allusion to Jean Batiste de Lamarck’s contention that phenotype character-

istics acquired during lifetime can become heritable traits.
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E v o l u t i o n a r y  a l g o r i t h m

I n d i v i d u a l s
T a b u  s e a r c h

M u t a t i o n
C r o s s o v e r
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Fig. 1.4 Illustration of a LTH hybrid. For instance, a tabu search is used as a mutation oper-
ator and a greedy heuristic as a crossover operator into a genetic algorithm.

the genetic operators [37]. Questions concerning the best use of local search
with a genetic algorithm have been addressed in [86].

– Crossover: classical crossover operators do not use any heuristic informa-
tion about a specific application domain. They are blind operators. One can
introduce heuristic crossover in order to account for problem-specific infor-
mation [82]. For instance, greedy heuristics for the crossover operator have
shown to improve EAs results when applied to job-shop scheduling, set cov-
ering, and traveling salesman problems [52].

Many crossover operators including heuristic information have been pro-
posed for continuous optimization:
· Heuristic crossover where the offspring has the following form x′ = u(x2−

x1)+ x2 where u is a uniform random value in [0,1], x1 and x2 are the two
parents with the condition that x2 is better than x1 [181]. This heuristic
crossover uses the objective function in determining the direction of the
search.

· Simplex crossover where more than two parents are selected, the worst
(resp. the best) individuals x2 (resp. x1) are determined. The centroid of the
group c is then computed without taking into account the solution x2. The
offspring has the following form x′ = c+(c− x2) [143].

This hybrid model can be used to improve any P-metaheuristic: ant colonies
[161] [156], genetic programming [135], particle swarm optimization, and so
forth. The S-metaheuristic has been introduced to intensify the search. Let us no-
tice that the scatter search metaheuristic already includes an improvement proce-
dure which is based on S-metaheuristics [49].

The main problem encountered in this class of hybrids is premature conver-
gence. Indeed, if the hybridization is applied at each iteration, very competitive
solutions will be generated in the beginning of the search which will cause an
eventual premature convergence. Conditional hybridization is carried out to pre-
vent this phenomenon by applying the combination:

– Static manner: for instance the combination is performed at a given fre-
quency. The hybridization is applied once for a given number of iterations.
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– Adaptive manner: when a given event occurs during the search the hybridiza-
tion is performed. For instance, if there is no improvement of the search for a
given number of iterations.

• HRH (High-level Relay Hybrid): in HRH hybrids, self-contained metaheuris-
tics are executed in a sequence. For example, the initial solution of a given S-
metaheuristic may be generated by another optimization algorithm. Indeed, the
initial solution in S-metaheuristics has a great impact on their performances. A
well known combination scheme is to generate the initial solution by greedy
heuristics which are in general of less computing complexity than iterative
heuristics (Fig. 1.5).

This scheme may be also applied to P-metaheuristics, but a randomized greedy
heuristic must be applied to generate a diverse population (Fig. 1.5). Greedy
heuristics are in general deterministic algorithms and then they generate always
the same solution. On the other hand, the diversity of the initial population has
a great impact on the performance of P-metaheuristics. This hybrid scheme is
carried out explicitly in the scatter search metaheuristic.

G r e e d y  h e u r i s t i c R a n d o m i z e d  g r e e d y  h e u r i s t i c

S - m e t a h e u r i s t i c P - m e t a h e u r i s t i c

I n i t i a l  s o l u t i o n I n i t i a l  p o p u l a t i o n

Fig. 1.5 High-level Relay Hybridization. (Left) Generation of the initial solution of a S-
metaheuristic by a greedy algorithm. (Right) Generation of the initial population of a P-
metaheuristic by a randomized greedy heuristic.

Combining in the HRH scheme P-metaheuristics with S-metaheuristic is also
largely applied. It is well known that P-metaheuristics are not well suited for fine-
tuning structures which are very close to optimal solutions. Indeed, the strength
of P-metaheuristics is in quickly locating the high performance regions of vast
and complex search spaces. Once those regions are located, it may be useful
to apply S-metaheuristics to the high performance structures evolved by the P-
metaheuristic.

A fundamental practical remark is that after a certain amount of time, the pop-
ulation is quite uniform and the fitness of the population is no longer decreasing.
The odds to produce fitter individuals are very low. That is, the process has fallen
into a basin of attraction from which it has a low probability to escape.

The exploitation of the already found basin of attraction to find as efficiently as
possible the optimal point in the basin is recommended. It is experimentally clear
that the exploitation of the basin of attraction that has been found may be more
efficiently performed by another algorithm than by a P-metaheuristic. Hence, it
is much more efficient to use a S-metaheuristic such as a hill-climbing or tabu
search (see figure 1.6). The HRH hybridization may use a greedy heuristic to
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generate a good initial population for the P-metaheuristic (see figure 1.6). At the
end of a simulated annealing search, it makes sense to apply local search on the
best found solution to ensure that it is a local optima.

S - m e t a h e u r i s t i c

P - m e t a h e u r i s t i c

 P o p u l a t i o n ,  s u b - p o p u l a t i o n ,  b e s t  s o l u t i o n ,  . . .

F i n a l  ( s u b ) p o p u l a t i o n

F i n a l  ( s u b ) p o p u l a t i o n  i m p r o v e d

Fig. 1.6 High-level Relay Hybridization. There may be more than two algorithms to be
pipelined.

In this hybrid scheme, the S-metaheuristics may be applied to:

– The whole population: this will leads to the best final solutions but with a
more important computational cost of the search.

– A sub-population: the selection of the subpopulation may be based on the
diversity of the solutions. This is a good compromise between the complexity
of the search and the quality of the final results.

– The best solution of the population: the S-metaheuristic is applied once on
the best solution of the obtained population. This procedure will reduce the
search time but does not ensure to find the best solution.

A path relinking strategy may be applied to a population or a set of elite solutions
found by a metaheuristic [6]. Path relinking may be seen as an intensification task
over a given population of solutions.

Example 1.3. HRH hybrid evolutionary algorithms: many research works of
the literature have used the idea of HRH hybridization for EAs. In [121] [166],
the considered hybrid scheme introduces respectively simulated annealing and
tabu search to improve the population obtained by a GA. In [132], the author
introduces hill-climbing to improve the results obtained by an ES. In [118], the
algorithm proposed starts from simulated annealing and uses GAs to enrich the
solutions found. Experiments performed on the graph partitioning problem using
the tabu search algorithm exploiting the result found by a GA give better results
than a search performed either by the GA, or the tabu search alone [166].
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• HTH (High-level Teamwork Hybrid): the HTH4 scheme involves several self-
contained algorithms performing a search in parallel, and cooperating to find an
optimum. Intuitively, HTH will ultimately perform at least as well as one algo-
rithm alone, more often perform better, each algorithm providing information to
the others to help them.

Example 1.4. Island model for genetic algorithms: the first HTH hybrid model
has been proposed for genetic algorithms (GAs). This is the well known island
model5. The population in this model is partitioned into small subpopulations by
geographic isolation. A GA evolves each subpopulation and individuals can mi-
grate between subpopulations (Fig. 1.7). This model is controlled by several pa-
rameters: the topology that defines the connections between subpopulations, the
migration rate that controls the number of migrant individuals, the replacement
strategy used, and a migration interval that affects how often migration occurs.
In some island models, the individuals really migrate and therefore leaves empty
space in the original population. In general, the migrated individuals remain in
the original population (i.e. pollination model [155]).

Let us present some pioneering island models for GAs. Tanese proposed a
GA based HTH scheme that used a 4-D hypercube topology to communicate
individuals from one subpopulation to another [170]. Migration is performed at
uniform periods of time between neighbor subpopulations along one dimension
of the hypercube. The migrants are chosen probabilistically from the best individ-
uals of the subpopulation and they replace the worst individuals in the receiving
subpopulation.

Cohoon, Hedge, Martin and Richards proposed a HTH based on the theory of
“punctuated equilibria” [41]. A linear placement problem was used as a bench-
mark and experimented using a mesh topology. They found that the algorithm
with migration outperforms the algorithm without migration and the standard
GA. This work was later extended using a VLSI design problem (graph parti-
tioning) on a 4-D hypercube topology [42] [43].

Belding in [19] attempted to extend the Tanese’s work using the Royal Road
continuous functions. Migrants individuals are sent to a random selected subpop-
ulation, rather than using a hypercube topology. The global optimum was found
more often when migration (i.e. cooperating GAs) occurred than in completely
isolated cases (i.e. non-cooperating GAs).

Afterwards, the HTH hybrid model has been generalized to other P-metaheuristics
and S-metaheuristics. Indeed, the HTH hybrid model has also been applied to
simulated annealing [61], genetic programming [114], evolution strategies [178],
ant colonies [123], scatter search [50], tabu search [62], and so on.

4 HTH hybrids is referred as multiple interacting walks [176] multi-agent algorithms [24],
and cooperative search algorithms [40] [39] [90] [92] [172].

5 Also known as migration model, diffusion model, and coarse grain model.
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Fig. 1.7 The island model of genetic algorithms as an example of High-level Teamwork Hy-
brid (HTH). The same model has been used with different topologies for simulated anneal-
ing, genetic programming, evolution strategy, ant colony, tabu search, bee colony, artificial
immune system, etc.

1.2.1.2 Flat Classification

Homogeneous/Heterogeneous: in homogeneous hybrids , all the combined algo-
rithms use the same metaheuristic. Hybrid algorithms such as the island model for
GAs belong to this class of hybrids. The homogeneous metaheuristics may differ in
the initialization of their (Fig. 1.8):

• Parameters: in general, different parameters are used for the algorithms. For
instance, in the HTH hybrid scheme which is based on tabu search, the algorithms
may be initialized with different tabu list sizes [179]; different crossover and
mutation probabilities may be used in evolutionary algorithms, etc.

• Search components: given a metaheuristic, one can use different strategies for
any search component of the metaheuristic, such as the representation of solu-
tions, objective function approximations [59] [151], initial solutions, search op-
erators (neighborhood, mutation, crossover, ...), termination criteria, etc.

Using different parameters or search components into a given metaheuristic will
increase the robustness of the hybrid algorithm.

Example 1.5. Heterogeneous hybrids: in heterogeneous algorithms , different
metaheuristics are used (Fig. 1.9). A heterogeneous HTH algorithm based on ge-
netic algorithms and tabu search has been proposed in [46] to solve a network de-
sign problem. The population of the GA is asynchronously updated by multiple tabu
search algorithms. The best solutions found by tabu search algorithms build an elite
population for the GA.

The GRASP method (Greedy Randomized Adaptive Search Procedure) may be
seen as an iterated heterogeneous HRH hybrid, in which local search is repeated
from a number of initial solutions generated by a randomized greedy heuristic [66]
[65]. The method is called adaptive because the greedy heuristic takes into account
the decisions of the precedent iterations [64].
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Fig. 1.8 Homogeneous versus heterogeneous hybrid metaheuristics. Some illustrative exam-
ples of parameters and search components are illustrated.

P - m e t a h e u r i s t i c

S - m e t a h e u r i s t i c

G r e e d y  h e u r i s t i c s

C o m m u n i c a t i o n  m e d i u m

Fig. 1.9 High-level Teamwork Hybridization HTH (heterogeneous, global, general). Several
search algorithms cooperate, co-adapt, and co-evolve a solution.

Global/Partial: from another point of view, one can also distinguish two kinds of
cooperation: global and partial. In global hybrids , all the algorithms explore the
same whole search space. The goal is here to explore the space more thoroughly.
All the above mentioned hybrids are global hybrids, in the sense that all the al-
gorithms solve the whole optimization problem. A global HTH algorithm based on
tabu search has been proposed in [47], where each tabu search task performs a given
number of iterations, then broadcasts the best solution. The best of all solutions be-
comes the initial solution for the next phase.

In partial hybrids, the problem to be solved is decomposed a priori into sub-
problems, each one having its own search space (Fig. 1.10). Then, each algorithm
is dedicated to the search in one of these sub-spaces. Generally speaking, the sub-
problems are all linked with each others, thus involving constraints between optima
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Pa r t i a l  so l u t i ons
S y n c h r o n i s a t i o n

Fig. 1.10 Partial hybrid schemes. Several search algorithms cooperate in solving sub-
problems. A synchronization is performed to build a global solution from the partial solutions
found.

found by each algorithm. Hence, the algorithms communicate in order to respect
these constraints and build a global viable solution to the problem.

Example 1.6. Partial hybrids: this approach has been applied for many specific
metaheuristics such as simulated annealing and tabu search algorithms [158]. It is
also a part of more general search framework such as POPMUSIC (Partial OPti-
mization Metaheuristic Under Special Intensification Conditions [160] and VNDS
(Variable Neighborhood Decomposition Search) [85].

Asynchronous teams (A-Teams) represent a general model for a HTH hetero-
geneous partial hybrid strategy [168]. They manipulate a set of solutions, which
may be global or partial solutions. A set of agent cooperate via a blackboard sys-
tem, a shared memory structure. An agent may be any search algorithm or operator,
which consists in picking a (partial) solution from the blackboard, transforming it
and sending back the result.

An example of application of partial homogeneous HTH has been done for the
job-shop scheduling problem [93]. The search algorithm is a GA. Each GA evolves
individuals of a specie which represent the process plan for one job. Hence, there are
as many cooperating GAs as there are jobs. The communication medium collects
fitted individuals from each GA, and evaluates the resulting schedule as a whole,
rewarding the best process plans.

Decomposition techniques based on partitioning time have been used to solve
many problems such as the production lot-sizing (partitioning of time) [63]. Decom-
position techniques based on partitioning a geographical region have been largely
applied to optimization problems associated with Euclidean distances such as the
TSP [110], the VRP, and the P-median problem [159].

Example 1.7. Partitioning a continuous objective function : a function f is sepa-
rable if:
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(argminx1 f (x1, ...), ...,argminxn f (...,xn)) = argmin( f (x1,x2, ...,xn))

It follows that the function f can be optimized in a parallel way using n independent
algorithms. Each algorithm will solve a 1-D optimization problem.

Generalist/Specialist: all the above mentioned hybrids are general hybrids , in the
sense that all the algorithms solve the same target optimization problem. Special-
ist hybrids combine algorithms which solve different problems. The COSEARCH
generic model belongs to this class of hybrids (Fig. 1.11). COSEARCH manages the
cooperation of a search agent (a local search), a diversifying agent and an intensi-
fying agent. The three agents exchange information via a passive coordinator called
the adaptive memory6. A main key point of the COSEARCH approach is the design
of this memory which focus on high quality regions of the search and avoid attractive
but deceptive areas. The adaptive memory contains a history of the search; it stores
information about the already visited areas of the search space and about the intrin-
sic nature of the good solutions already found. When diversifying, the local search
agent receives starting solutions in unexplored regions; when intensifying, the search
agent receives an initial solution in a promising region. The diversifying agent refers
to the adaptive memory (information about the explored areas) to yield a solution
from an unexplored region. The intensifying agent refers to the adaptive memory
(information about promising regions) to produce a promising starting solution.
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Fig. 1.11 The COSEARCH HTH specialist hybrid model for metaheuristics. Several search
algorithms solve different problems.

Example 1.8. COSEARCH for the quadratic assignment problem: an example
of the application of the COSEARCH approach has been developed in [164] to solve
the quadratic assignment problem (QAP). A parallel tabu search is used to solve the
QAP, while a genetic algorithm makes a diversification task, which is formulated as

6 The concept of adaptive memory has been proposed in the domain of combinatorial
optimization [162]. It is similar to the concept of blackboard in the field of Artificial In-
telligence [60].
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another optimization problem. The frequency memory stores information relative to
all the solutions visited during the tabu search. The genetic algorithm refers to the
frequency memory to generate solutions being in unexplored regions.

Another approach of specialist hybrid HRH heuristics is to use a heuristic to opti-
mize another heuristic, i.e. find the optimal values of the parameters of the heuristic
(Fig. 1.12). This approach is known as meta-optimization. For instance, it has been
used to optimize simulated annealing and noisy methods (NM) by GA [115], ant
colonies (AC) by GA [1], simulated annealing based algorithms by a GA [79], and
a GA by a GA [153]7. In [153], the three parameters optimized are the crossover
rate, inversion rate, and mutation rate. The individuals of the population associated
to the optimizer consist of three integers representing the mutation rate, inversion
rate, and crossover rate. The fitness of an individual is taken to be the fitness of the
best solution that the GA can find in the entire run, using these parameters.

M e t a - l e v e l  o f
o p t i m i z a t i o n

M e t a h e u r i s t i c

-  E A :  p o p u l a t i o n  s i z e ,  c r o s s o v e r  p r o b a b i l i t y ,  
mu ta t i on  p robab i l i t y ,  . . .

-  Tabu  sea rch :  t abu  l i s t ,  . . .

S o l u t i o n  =  E n c o d i n g  o f  t h e  p a r a m e t e r s  o f  t h e  m e t a h e u r i s t i c
                 used  to  so l ve  a  g i ven  ta rge t  op t im iza t i on  p rob lem

T a r g e t  o p t i m i z a t i o n
          p rob lem

S o l u t i o n  =  E n c o d i n g  o f  t h e  t a r g e t  p r o b l e m

P - m e t a h e u r i s t i c : S - m e t a h e u r i s t i c :

Fig. 1.12 Meta-level of optimization in metaheuristics. Metaheuristics are used to optimize
the parameters of another metaheuristic.

1.2.2 Implementation Issues

The structure of the taxonomy concerning the implementation issues is shown in
figure 1.13. A discussion about this taxonomy then follows.

1.2.2.1 Dedicated versus General-Purpose Computers

Application specific computers differ from general purpose ones in that they usually
only solve a small range of problems, but often at much higher rates and lower cost.

7 This procedure is also called meta-evolution.
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Their internal structure is tailored for a particular problem, and thus can achieve
much higher efficiency and hardware utilization than a processor which must handle
a wide range of tasks.

In the last years, the advent of programmable logic devices has made easier to
build specific computers for metaheuristics such as simulated annealing [3] and ge-
netic algorithms [149]. A general architecture acting as a template for designing
a number of specific machines for different metaheuristics (SA, TS, etc) may be
constructed [2]. The processor is built with XILINX FPGAs and APTIX intercon-
nection chips. Experiments evaluating a simulated annealing algorithm to solve the
traveling salesman problem achieved a speedup of about 37 times over an IBM
RS6000 workstation. To our knowledge, this approach has not been yet proposed
for hybrid metaheuristics.

Nowadays, the use of GPU (Graphical Processing Unit) devices is more and more
popular in many application domains. Indeed, those devices are integrated into many
workstations to deal with visualization tasks. The idea is to exploit those available
resources to improve the effectiveness of hybrid metaheuristics.

1.2.2.2 Sequential versus Parallel

Most of the proposed hybrid metaheuristics are sequential programs. According to
the size of problems, parallel implementations of hybrid algorithms have been con-
sidered. The easiness to use a parallel and distributed architecture has been acknowl-
edged for the HTH hybrid model.
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 H i e r a r c h i c a l

c l a s s i f i c a t i o n

H y b r i d  M e t a h e u r i s t i c s

Fig. 1.13 Classification of hybrid metaheuristics (implementation issues)

1.2.3 A Grammar for Extended Hybridization Schemes

Given a set of metaheuristics Ai, a classification of basic hybridizations has been
presented, in which the following notations can be described:

• LRH(A1(A2)) (homogeneous, heterogeneous) (partial, global) (specialist, gen-
eral): the metaheuristic A2 is embedded into the single-solution metaheuristic A1.

• HRH(A1 +A2) (homogeneous, heterogeneous) (partial, global) (specialist, gen-
eral): the self-contained metaheuristics A1 and A2 are executed in sequence.
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• LTH(A1(A2)) (homogeneous, heterogeneous) (partial, global) (specialist, gen-
eral): the metaheuristic A2 is embedded into the population-based metaheuristic
A1.

• HTH(A1,A2) (homogeneous, heterogeneous) (partial, global) (specialist, gen-
eral): the self-contained metaheuristics A1 and A2 are executed in parallel and
cooperate.

These hybridizations should be regarded as primitives that can be combined in dif-
ferent ways. The grammar given in figure 1.14 generalizes the basic hybridization
schemes. One of the practical importance of the grammar is to specify the hybrid
heuristic to use, if a metaheuristic problem solving tool is used.

<hybrid-metaheuristic> −→ <design-issues><implementation-issue>
<design-issues> −→ <hierarchical><flat>
<hierarchical> −→ <LRH> | <LTH> | <HRH> | <HTH>
<LRH> −→ LRH(<S-metaheuristic>(<metaheuristic>))
<LTH> −→ LTH(<P-metaheuristic>(<metaheuristic>))
<HRH> −→ HRH(<metaheuristic> + <metaheuristic>)
<HTH> −→ HTH(<metaheuristic>)
<HTH> −→ HTH(<metaheuristic>, <metaheuristic>)
<flat> −→ (<type> , <domain> , <function>)
<type> −→ homogeneous | heterogeneous
<domain> −→ global | partial
<function> −→ general | specialist
<implementation-issue> −→ <specific computers> | <general-purpose computers>
<specific computers> −→ FPGA | GPU | ...
<general-purpose computers> −→ sequential | parallel
< metaheuristic > −→ <S-metaheuristic> | <P-metaheuristic>
<S-metaheuristic> −→ LS | TS | SA | TA | NM | GDA | ILS | GRASP | ...
<P-metaheuristic> −→ EA | SS | ACO | PSO | AIS | BC | EDA | CA | CEA | ...
<metaheuristic> −→ <hybrid-metaheuristic>

Fig. 1.14 A grammar for extended hybridization schemes

Example 1.9. Extended hybridization schemes: let us present some examples of
extended hybridization schemes (Fig. 1.15). Boese et al. [25] suggested an adaptive
multi-start (AMS) approach, which may be seen as a HRH(LS + LTH(GA(LS)))
scheme. First, AMS generates a set of random starting solutions and runs an LS
algorithm for each solution to find corresponding local optima. Then, AMS gener-
ates new starting solutions by combining features of the T best local optima seen so
far, with T being a parameter of the approach. This mechanism bears some resem-
blance to GAs, but differs in that many solutions (instead of just two) are used to
generate the new starting solutions. New local optima are obtained by running the
LS algorithm from these new starting solutions, and the process iterates until some
stop criterion is met.

D. Levine has used a HTH(HRH(GH+LTH(GA(LS)))) hierarchical scheme in his
PhD to solve set partitioning problems. Efficient results have been obtained with a
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parallel static implementation in solving big sized problems in real world applica-
tions (airline crew scheduling) [117]. At the first level, a HTH hybrid based on the
island model of parallel genetic algorithms is used. The initial population of each
GA was generated by a greedy heuristic (the Chvatal heuristic [38]), and a local
search algorithm was used to improve the solutions at each generation of the GA.
The same hybrid scheme with a sequential implementation has been used in [26] to
solve the traveling salesman problem. The local search algorithms used are the well
known 2-opt and or-opt heuristics. The author reported some interesting results on
the 442 and 666-city problems. He found the optimum of the 442-city problem, and
a solution within 0.04% of the optimum for the 666-city problem.

L o c a l  s e a r c h

L o c a l  s e a r c h

 G e n e t i c
a l g o r i t h m

         H R H ( L S  +  L T H ( G A ( L S ) )  
( h e t , g l o , g e n ) ( s e q ) ) ( h e t , g l o , g e n ) ( s e q )

G r e e d y  h e u r i s t i c

L o c a l  s e a r c h

 G e n e t i c
a l g o r i t h m

        H T H ( H R H ( G H + L T H ( G A ( L S ) ) ) )  

Fig. 1.15 Extended hybridization schemes

The objective of this chapter is far from providing an exhaustive list of research
works using hybrid metaheuristics. Following this grammar, more than 125 anno-
tated hybrid metaheuristics may be found in [163]. This shows the usefulness of the
taxonomy.

1.3 Combining Metaheuristics with Mathematical
Programming

Metaheuristics and exact algorithms are complementary optimization strategies in
terms of the quality of solutions and the search time used to find them. In the last
few years, solving exactly important optimization problems using for example inte-
ger programming techniques has improved dramatically. Moreover, the availability
of efficient optimization software, libraries and frameworks for mathematical pro-
gramming and high-level modeling languages will lead to more hybrid approaches
combining metaheuristics and exact optimization algorithms. In the next section,
the main mathematical programming exact approaches that can be used to solve
optimization problems are presented. Then, an instantiation and extension of our
classification to hybrid schemes combining mathematical programming approaches
and metaheuristics is presented.
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1.3.1 Mathematical Programming Approaches

The main mathematical programming approaches may be classified as follows:

• Enumerative algorithms: this class of algorithms contains tree search algo-
rithms such as branch and bound and dynamic programming. They are based
on a divide and conquer strategy to partition the solution space into subproblems
and then optimizing individually each subproblem.

• Relaxation and decomposition methods: this class of methods are based on
relaxation techniques such as the Lagrangian relaxation [69], and decomposition
methods such as the Bender’s decomposition and the continuous semi-definite
programming .

• Cutting plane and pricing algorithms: this class of algorithms is based on poly-
hedral combinatorics in which the search space is pruned.

1.3.1.1 Enumerative Algorithms

Enumerative methods include branch and bound, dynamic programming, A*, and
other tree search algorithms. The search is carried out over the whole search space,
and the problem is solved by subdividing it in simpler subproblems.

Branch and bound algorithm is one of the most popular method to solve opti-
mization problems in an exact manner. The algorithm is based on an implicit enu-
meration of all solutions of the considered optimization problem. The search space
is explored by dynamically building a tree whose root node represents the problem
being solved and its whole associated search space. The leaf nodes are the potential
solutions and the internal nodes are subproblems of the total solution space. The
size of the subproblems is increasingly reduced as one approaches the leaves.

The construction of such a tree and its exploration are performed using two
main operators: branching and pruning (Fig. 1.16). The algorithm proceeds in sev-
eral iterations during which the best found solution is progressively improved. The

1 4 0 1 4 31 4 3

1 3 0

1 3 0

9 0

5 0

1 3 4

Fig. 1.16 The branch and bound algorithm. This figure shows the nodes actually explored
in the example problem, assuming a depth-first and left-to-right search strategy. The subtree
rooted at the second node on level 2 is pruned because the cost of this node (134) is greater
than that of the cheapest solution already found (130).
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generated nodes and not yet treated are kept in a list whose initial content is limited
to only the root node. The two operators intervene at each iteration of the algorithm.
The branching strategy determines the order in which the branches are explored.
Many branching strategies may be applied such as the depth-first, the breadth-first,
and the best-first strategies. The pruning strategy eliminates the partial solutions that
do not lead to optimal solutions. This is done by computing the lower bound asso-
ciated to a partial solution. If the lower bound of a node (partial solution) is greater
than the best solution found so far or a known upper bound of the problem, the ex-
ploration of the node is not needed. The algorithm terminates if there are no more
nodes to branch or all nodes are eliminated. Hence, the most important concepts in
designing an efficient branch and bound algorithm are the quality of the bounds and
the branching strategy.

Example 1.10. Branch and bound algorithm on the TSP: let us consider the TSP
problem. A straightforward method for computing a lower bound on the cost of any
solution may be the following:

1
2 ∑

v∈V

sum of the costs of the two least cost edges adjacent to v

For the example shown in figure 1.17, the lower bound is associated to the edges
(A,D),(A,B),(B,A),(B,E),(C,B),(C,A),(D,A),(D,C),(E,B),(E,D) and then is
equal to 17.5. In the search tree (Fig. 1.17), each node represents a partial solution.
Each partial solution is represented by the set of associated edges (i.e. edges that
must be in the tour) and the non associated edges (i.e. set of edges that must not be
on the tour). The branching consists in generating two children nodes. A set of addi-
tional excluding and including edges is associated to each child. Two rules may be
applied. An edge (a,b) must be included if its exclusion makes it impossible for a or
b to have two adjacent edges in the tour. An edge (a,b) must be excluded if its inclu-
sion causes for a or b to have more than two adjacent edges in the tour or would com-
plete a non-tour with edges already included. The pruning consists first in computing
the lower bounds for each child. For instance, if the edge (A,E) is included and the
edge (B,C) is excluded, the lower bound will be associated to the following selected
edges (A,D),(A,E),(B,A),(B,E),(C,D),(C,A),(D,A),(D,C),(E,B),(E,A) and is
equal to 20.5. If the lower bound associated to a node is larger than the known upper
bound, the node is proved to be unable to generate an optimal solution and then is
not explored. A best-first search heuristic is considered in which the child with the
smaller lower bound is explored first. The upper bound is updated each time a new
complete solution is found with a better cost.

The dynamic programming (DM) approach is based on the recursive division
of a problem into simpler subproblems. This procedure is based on the Bellman’s
principle which says that “the sub-policy of an optimal policy is itself optimal with
regard to the start and end states” [21].
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Fig. 1.17 Illustration of the branch and bound algorithm on the traveling salesman problem

Designing a dynamic programming procedure for a given problem needs the def-
inition of the following components [23]:

• Define the stages and the states. A problem can be divided into a number of
stages N. A number of states are associated to each stage.

• Define the cost of the initial stage and states. There is an initial state of the system
x0.

• Define the recursive relation for a state at stage k in terms of states of previous
stages. The system takes the state xk at the stage k. At the k stage, the state of the
system change from xk to xk+1 using the following equation

xk+1 = fk(xk,uk)

where uk is a control that takes values from a given finite set, which may depends
on the stage k. The transition from the state k to k+ 1 involves a cost gk(xk,uk).
The final transition from N− 1 to N involves the terminal cost G(xN). The func-
tions fk, gk and G must be determined.

Given a control sequence (u1,u2, ...,uN−1), the corresponding state sequence will
be (x0, ...,xN) which is determined from the initial state x0 using the equation
below. In dynamic programming, the objective is to find the optimal control se-
quence minimizing the total cost:

G(xN)+
N−1

∑
k=0

gk(xk,uk)

DP have been successfully applied to knapsack, planning and routing-type prob-
lems, in which it is easy to define efficient recursive relationships between stages.
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Example 1.11. Dynamic programming for the {0,1}−knapsack problem: let us
consider the following instance for the knapsack problem with a total capacity equal
to 5 (see table 1.1).

Table 1.1 An instance for the knapsack problem with a capacity of 5

Item (i) Weight (wi) Utility (ui)
1 2 65
2 3 80
3 1 30

The stages are represented by the items. The number of stages are then equal to
the number of items (3). The state yi at stage i represents the total weight of items i
and all following items in the knapsack. The decision at stage i corresponds to how
many items i to place in the knapsack. Let us call this value k j. This leads to the
following recursive formulas: let f j(y j) be the value of using y j units of capacity for
items j and following. Let �a� represents the largest integer less than or equal to a.

f3(yi) = 30.yi

f j(yi) = maxki≤� yi
wi
�{uiki + fi+1(yi−wiki)}

1.3.1.2 Relaxation and Decomposition Methods

Relaxation methods consist in relaxing a strict requirement in the target optimization
problem. In general, a given strict requirement is simply dropped completely or
substituted by another one which is more easily satisfied. The most used relaxation
techniques are the LP-relaxation and the Lagrangian relaxation. In addition to their
use on solving optimization problems, relaxation methods are also used to generate
bounds.

Linear programming relaxation: linear programming relaxation (LP-relaxation)
is a straightforward approach which consists in ignoring the integrity constraints of
an integer program (IP). Once the integrity constraints are dropped, the problem can
be solved using LP solvers. This gives a lower bound for the problem. If the solution
found satisfies the integer constraints (generally not true), it will be considered as
the optimal solution for the IP program. If the relaxed problem is infeasible, then so
is the IP program. LP-relaxation is widely used in branch and bound algorithms to
solve IP problems in which the branching is performed over the fractional variables.

Lagrangian relaxation: Lagrangian relaxations are widely used to generate tight
lower bounds for optimization problems. The main idea is to remove some con-
straints and incorporate them in the objective function. For each constraint, a penalty
function is associated. The choice of which constraints are handled in the objective
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function is important. More complicated constraints to satisfy are preferable as they
generate an easiest problem to solve. Given the following LP problem:

Max cT x
s.t. Ax≤ b
with x ∈ R

n and A ∈ R
m,n

The set of constraints A is split into two sets: A1 ∈ Rm1,n and A2 ∈ Rm2,n, where
m1 + m2 = m. Then, the subset of constraints A2 is integrated into the objective
function which gives the following Lagrangian relaxation of the original problem:

Max cT x+λ T (b2−A2x)
s.t. A1x ≤ b1

with x ∈ Rn, A1 ∈ Rm1,n and A2 ∈ Rm2,n

where λ = (λ1, ...,λm2) are non negative weights which penalize the violated con-
straints A2. The efficiency of Lagrangian relaxation depends on the structure of the
problem; there is no general theory applicable to all problems. Lagrangian relax-
ation may find bounds which are tighter than the LP-relaxation. The problem is
solved iteratively until optimal values for the multipliers are found. One of the main
issues in the Lagrangian relaxation is the generation of the optimal multipliers. This
difficult problem can be solved by metaheuristics.

In practice, decomposition methods are used to solve large IP problems. Among
the numerous decomposition approaches one can refer to Bender’s decomposition
and Dantzig-Wolfe decomposition.

Bender’s decomposition: the Bender’s decomposition algorithm is based on the
notion of complicated variables. It consists in fixing the values of complicated
variables and solves the resulting reduced problem iteratively [22]. Given a MIP
problem :

Max cT x+ hT y
s.t. Ax+Gy≤ b
with x ∈ Zn

+ and y ∈R
p
+

If the set of variables x is fixed, the following linear program is obtained

zLP(x) = max{hy/Gy≤ b−Ax}

and its dual
min{u(b−Ax)/uG≥ h,u ∈ Rm

+}
If the dual polyhedron is assumed to be not empty and bounded, the MIP model can
be formulated as follows:

z = maxx∈Zn
+
(cx+mini∈1,...,T (u

i(b−Ax)))

This model can be reformulated as:

z = max{η/η ≤ ui(b−Ax), i ∈ 1, ...T,x ∈ Zn
+}
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Then, the algorithm finds cutting planes based on the dual problem. The cutting
planes are added to the problem and the problem is re-solved.

1.3.1.3 Branch and Cut and Price Algorithms

The objective of the following popular techniques is to generate tighter IP
relaxations.

Cutting plane: cutting plane approaches have been proposed in 1958 by Gomory
[81]. The use of cuts can improve greatly branch and bound algorithms. In general,
cutting plane algorithms consist in iteratively adding some specific constraints to the
LP-relaxation of the problem. Those constraints represent restrictions to the prob-
lem so that the linear programming polytope closely approximates the polyhedron
represented by the convex hull of all feasible solutions of the original IP problem.
A good survey of branch and cut algorithms and their use for different families of
optimization problems may be found in [108] [131].

Column generation: column generation has been first applied by Gilmore and Go-
mory [77]. Column generation (i.e. Dantzig-Wolfe decomposition) generates a de-
composition of the problem into a master and subproblems (Fig. 1.18). A good
survey may be found in [12].

M a s t e r

S u b - p r o b l e m

D u a l s N e w  c o l u m n s

Fig. 1.18 Branch and price approach

1.3.2 Classical Hybrid Approaches

Exact MP algorithms are known to be time and/or memory consuming. In general
they cannot be applied to large instances of difficult optimization problems. On
one hand their combination with metaheuristics may improve the effectiveness of
heuristic search methods (i.e. getting better solutions). On the other hand, this type
of combination allows the design of more efficient exact methods (i.e. finding op-
timal solutions in shorter time). The following sections illustrate, for each class of
hybrids belonging to the presented taxonomy, some hybridization schemes combin-
ing exact MP algorithms and metaheuristics.
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1.3.2.1 Low-Level Relay Hybrids (LRH)

This class of algorithms represents hybrid schemes in which a metaheuristic ap-
proach (resp. exact approach) is embedded into an exact approach (resp.
S-metaheuristic approach) to improve the search strategy. In this usual combina-
tion, a given metaheuristic or exact algorithm solves a problem of a different nature
of the considered optimization problem.

Embedding S-metaheuristics into exact algorithms: indeed, metaheuristics may
solve many search problems involved in the design of an exact method such as the
node selection strategy, upper bound generation, column generation (Fig. 1.19):

• Bounding: providing an upper bound associated to a node of the branch and
bound algorithm can be designed using a metaheuristic. Indeed, the partial so-
lution is completed by a given metaheuristic and then a local upper bound is
provided.

• Cutting: in the branch and cut algorithm, the cutting plane generation problem
is a crucial part of the algorithm: the part that looks for valid inequalities that cut
off the current non-feasible linear program (LP) solution. Metaheuristics may be
used in this separation procedure. For instance, this approach has been proposed
for the CVRP (Capacitated Vehicle Routing Problem) [10]. Some metaheuristics
(e.g. tabu search, greedy heuristics) have been designed to extract a set of violated
capacity constraints of the relaxed problem.

• Pricing: in the branch and price algorithm, the pricing of columns may be car-
ried out by a metaheuristic [67].

Some metaheuristic ingredients may also be used in tree search algorithms such as
the concepts of tabu lists and aspiration criteria [139].

B r a n c h  a n d  X  a l g o r i t h m

T r e e  e x p l o r a t i o n  s t r a t e g y

B o u n d i n g C u t t i n gB r a n c h i n g P r i c i n g

Fig. 1.19 LRH cooperation in which a metaheuristic can be used in the design of some search
components of branch and X family of algorithms (e.g. branch and bound, branch and cut,
branch and price): selection of the node to explore, generation of an upper bound, cutting
plane generation, column generation selection, etc.).
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Embedding exact algorithms into S-metaheuristics: many combinations may
be designed in which exact algorithms are embedded into search components of
S-metaheuristics.

Very large neighborhoods: S-metaheuristics may be improved using very large
neighborhoods. The concept of large neighborhoods is also used in the ILS (per-
turbation operator [120]) and the VNS metaheuristics. Mathematical programming
approaches may be used to search efficiently those large neighborhoods to find the
best or an improving solution in the neighborhood (Fig. 1.20). Algorithms such as
branch and bound, dynamic programming [138], network flow algorithms [56], and
matching algorithms [83] have been used to explore large neighborhoods defined
for different important optimization problems. Some hybrid schemes explore the
whole neighborhood while other neighborhood search algorithms explore a subset
of the neighborhood. If no polynomial time algorithm exists to search the whole
neighborhood, a partial search is generally performed.

S - m e t a h e u r i s t i c

-  G e n e r a t e  a n d  s e a r c h
   l a r g e  n e i g h b o r h o o d s
       ( fu l l  or  par t ia l )

M a t h e m a t i c a l  p r o g r a m m i n g

-  E x p o n e n t i a l  t i m e :
   -  B r a n c h  a n d  b o u n d
   -  . . .
-  P o l y n o m i a l  t i m e :
   -  D y n a s e a r c h  ( D P )
   -  N e t w o r k  f l o w  a l g o r i t h m s
   -  . . .

Fig. 1.20 LRH cooperation where a mathematical programming approach can be used for
the efficient search of a very large neighborhood into S-metaheuristics.

Example 1.12. Hyperopt: the hyperopt S-metaheuristic explores only a subset of
a very large neighborhood [27]. The hybrid algorithm has been used to solve the
asymmetric traveling salesman problem. The move operator is based on hyper-
edges which represent subpaths of the tour. A hyperedge H(i, j) is represented by
its start node i, end node j and length k. A k-hyperopt move consists in delet-
ing two hyperedges H(i1, ik+1) and H( j1, jk+1) of length k. It is supposed that
H(i1, ik+1)

⋂
H( j1, jk+1) = φ , i.e. the hyperedges share no common edges. Then,

the move operator adds edges to the hyperedges H(ik+1, j1) and H( jk+1, i1) to con-
struct a feasible tour (Fig. 1.21). The size of the hyperedge neighborhood grows
exponentially with k. The neighborhood search algorithm is reduced to a smaller
TSP problem. The algorithms used are based on enumeration for small k and a dy-
namic programming algorithm for medium values of k.

Some search concepts of exact algorithms may be used in S-metaheuristics. Efficient
mathematical programming approaches that generate “good” lower bounds exist
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Fig. 1.21 Large neighborhood based on hyperedge for the asymmetric traveling salesmen
problem

for many optimization problems. Information related to lower bounds, obtained for
example by Lagrangian relaxation, can be exploited into a metaheuristic to intensify
the search in promising regions of the search space. For instance, information based
on Lagrangian multipliers are exploited to guide the metaheuristic in solving the set
covering problem [17]. Lower bounds have been used in S-metaheuristics such as
tabu search to improve the search [88] [56].

1.3.2.2 Low-Level Teamwork Hybrids (LTH)

Recall that in this class of hybrid algorithms, a search component of a
P-metaheuristic is replaced by another optimization algorithm. Concerning the com-
bination of P-metaheuristics and MP algorithms, two main hybrid approaches may
be considered: exact search hybrid algorithms in which a P-metaheuristic is em-
bedded into an exact algorithm, and heuristic search algorithms in which an exact
algorithm is embedded into a P-metaheuristic.
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Embedding a P-metaheuristic into an Exact Algorithm: as mentioned previously
in this chapter, the questions arising in designing a branch and bound algorithm are:

• Branch ordering: how the problem to solve (node of the tree) is decomposed
into subproblems? On which variable the next branching is applied? Indeed, near-
optimal solutions obtained by metaheuristics may guide the branch and bound to
apply an efficient branch ordering by giving preference to branches which share
common values with near-optimal solutions.
The node selection problem in tree search based on branch and bound may be
solved by metaheuristics. For instance, genetic programming approaches have
been used to deal with the node selection problem [113].

• Variable selection: in which subproblem (child node) the search will be per-
formed in the next step? What value should first be assigned to the branch-
ing variable? Information obtained from branch and bound tree can be used by
heuristic algorithms to determine a better strategy for variable selection [113].

An exact algorithm constructs partial solutions which are used to define a search
space for a metaheuristic. Then, the obtained results are exploited in order to refine
the bounds or generate the columns into a branch and cut algorithm.

Example 1.13. Local branching : the local branching exact approach has been pro-
posed in [68]. It uses the principle of local search heuristics. The search space is
partitioned by introducing branching conditions expressed through (invalid) lin-
ear inequalities called local branching cuts. Let us consider a MIP problem with
{0,1} variables. The k−opt neighborhood is considered. The main principle of the
local branching method is to iteratively solve a subproblem corresponding to the
neighborhood k− opt of a partial solution s. Two partitions are then considered:
p1 = {x ∈ {0,1}n/Δ(x,s) ≤ k} and p2 = {x ∈ {0,1}n/Δ(x,s) ≥ k+ 1}, where Δ
represents the Hamming distance, and n the size of the problem. The problem as-
sociated to p1 is solved. A new subproblem is generated if an improved solution is
found. Otherwise, the other problem is solved using the standard procedure.

Embedding an exact algorithm into P-metaheuristic: in this hybrid scheme,
some search components of a P-metaheuristic induce optimization problems which
are solved by exact algorithms (Fig. 1.23).

Example 1.14. Exact algorithms into recombination operators: exact algorithms
may be integrated into recombination operators of P-metaheuristics such as evolu-
tionary algorithms to find the best offspring from a large set of possibilities. The
induced problem Recombination(S1,S2) is defined to generate the best off-
springs from the parents S1 and S2. A common idea is to keep the common elements
of the parents and explore all the other possibilities to generate better offsprings
(Fig. 1.22). For instance, a branch and bound algorithm (resp. dynamic program-
ming) has been used into the crossover operator of a genetic algorithm in solving
permutation problems [48] (resp. [182]). For some specific problems, polynomial
exact algorithms may also be used such as minimum spanning tree algorithms [95],
matching algorithms in a bipartite graph [4] [11] for optimized crossover operators.
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Fig. 1.22 Using exact algorithms into recombination operators (e.g. crossover) of
P-metaheuristics

Large neighborhood search algorithms integrated in P-metaheuristics belong typi-
cally to the LTH class of hybrids. For instance, the mutation operator in EAs can also
be substituted by MP algorithms which explore large neighborhoods (Fig. 1.23).

Exact decoding: exact algorithms can also be used as decoders of incomplete solu-
tions carried out by metaheuristics. This hybrid strategy is applied in the case where
metaheuristics use an incomplete encoding for the problem. Once a good incom-
plete solution is found, exact algorithms complete optimally the missing part of the
encoding.

Exact search ingredients: some search ingredients of exact algorithms can also be
used in P-metaheuristics:

• Lower bounds: the use of lower bounds into a P-metaheuristic can improve
the search. Lower bounds have been used in the construction phase of the ant
colonies P-metaheuristic to solve the quadratic assignment problem (QAP) [122].
The well known Gilmore-Lawler lower bound and the values of the dual variables
are used to order the locations during the construction phase. The impact of the
location in a given QAP instance depends on the value of its associated dual
variable. The concept of bounds has been used into evolutionary algorithms for
the mutation and the crossover operators [169] [57]. Indeed, partial solutions that
exceed a given bound are deleted. The bounds are computed using the linear and
Lagrangian relaxation, and tree search methods.

• Partial solutions : the evaluated partial solutions (subproblems) maintained
by the branch and bound family of algorithms may provide interesting initial
solutions to improve. The evaluation of those partial solutions will guide the
metaheuristics to more promising regions of the search space [122]. The partial
solution with the least cost lower bound suggests a promising region by giving
additional information.
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Fig. 1.23 LTH heuristic cooperation: exact algorithms are used as search components of a
P-metaheuristic (e.g. recombination, mutation).

1.3.2.3 High-Level Relay Hybrids (HRH)

This class of cooperation, where self-contained algorithms are used in sequence,
is the most popular in practice. This may be seen as a pre-processing or a post-
processing step. Some information is provided in sequential between the two fami-
lies of algorithms (metaheuristics and MP algorithms) (Fig. 1.25).

M P  a l g o r i t h m s

  M e t a h e u r i s t i c

U p p e r - b o u n d

I n c o m p l e t e  s o l u t i o n

S u b p r o b l e m

C o l u m n  g e n e r a t i o n ,  . . .

-  IP  so l ve r s
-  B r a n c h  a n d  b o u n d ,  c u t ,  p r i c e
- . . .

Fig. 1.24 HRH cooperation: information provided by metaheuristics to MP algorithms

Information provided by metaheuristics: in the case where the information is
provided by the metaheuristics, the most natural and trivial hybrid approach is to
start with a metaheuristic to find a “good” upper bound which will be used by a
MP algorithm in the bounding phase (Fig. 1.25). Indeed, the efficiency of the search
(pruning phase) is largely dependent on the quality of the upper bound.

Using the characteristics of generated high quality solutions, metaheuristics can
be used to reduce the size of the original problem. Then, the exact method can be
applied to solve the reduced problem. This approach is interesting for optimization
problems where “good solutions” share many components [8]. This allow to reduce
the problem into a much smaller problem which can be solved exactly by state-of-
the-art mathematical programming algorithms. The reduction phase may concern:
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• Partitioning of decision variables: in this strategy, the decision variables are
partitioned into two sets X and Y . The metaheuristic will fix the variables of the
set X and the exact method will optimize the problem over the set Y . Hence,
the generated subproblems are subject to free variables in the set Y and freezed
variables in the set X . Those subproblems are solved exactly.

A set of high quality solutions may be obtained by a P-metaheuristic or an
iterated S-metaheuristic. The characteristics of this set can be exploited to define
smaller problems by fixing some variables and solve the resulting subproblems
by exact algorithms. An example of such strategy is the Mimausa method for
the quadratic assignment problem [125]. The method builds at each iteration a
subproblem by fixing k decision variables and solves it by a branch and bound
algorithm.

Example 1.15. Reducing problems by metaheuristics to be solved by MP
algorithms: analyzing the landscape for the TSP problem, one can observe
that local optimum solutions share many edges with the global optimum and
they are concentrated in the same region of the search space (big valley struc-
ture) [165]. This characteristic has been exploited in [44] to design one of the
most efficient heuristic for the TSP: the tour merging heuristic. The tour merg-
ing heuristic consists of two phases: the first phase generates a set T of “good”
tours using the Lin-Kernigham algorithm on the input graph G = (V,E). Then,
a dynamic programming algorithm is applied on a restricted graph G

′
= (V,E ′),

where E ′ = {e ∈ E/∃t ∈ T,e ∈ t}. The exact algorithm solves instances up to
5000 cities.

For the p-median problem, the same remark holds in the analysis of its land-
scape [146]. The first phase is based on an iterated S-metaheuristic using dif-
ferent random initial solutions. The problem is reduced in terms of the number
of nodes (location facilities) using the concentration set (CS) concept. The in-
teger programming model of the restricted problem is solved using respectively
a linear programming relaxation (CPLEX solver) and a branch and bound. The
authors exploit the fact that more than 95% of linear programming relaxation
optimal solutions are integers.

For continuous optimization, HRH hybrid schemes are very popular. For in-
stance, a hybrid method combining tabu search and the simplex algorithm pro-
vides interesting results in solving complex continuous functions [35].

• Domain reduction: this strategy consists in reducing the domain of values that
the decision variables can take. The metaheuristic will perform a domain reduc-
tion for the decision variables and then an exact method is used over the reduced
domains. For instance, a GA may be used to find promising ranges for decision
variables and then tree search algorithms are considered to find the optimal solu-
tion within those ranges [129].

Information provided by exact algorithms: in the case where the information is
provided by an exact algorithm, many hybrid approaches may be designed:

• Partial solutions: partial solutions are first provided by an exact algorithm which
are then completed by a metaheuristic.
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• Problem reduction: in this strategy, a problem reduction is carried out by an
exact algorithm. For instance, a tree search algorithm has been used to reduce the
size of a nurse scheduling problem [58]. Then, a tabu search strategy is applied
to solve the problem within a simplified objective function [58].

• Relaxed optimal solutions and their duals: the optimal solutions for relaxed
formulation (e.g. LP-relaxation, Lagrangian relaxation) of the problem and its
duals may be exploited by metaheuristics.

  M e t a h e u r i s t i c

Par t i a l  so l u t i on

L o w e r  b o u n d s

M P  a l g o r i t h m s

-  IP  so l ve r s
-  B r a n c h  a n d  b o u n d ,  c u t ,  p r i c e
- . . .

S u b p r o b l e m

R e l a x e d  o p t i m a l  s o l u t i o n  ( L P ,  L a g r a n g i a n ,  . . . )
a n d  i t s  d u a l s

Fig. 1.25 HRH cooperation: information provided by MP algorithms to metaheuristics

Example 1.16. LP-relaxations as an input for metaheuristics: information gath-
ered from solutions obtained by LP-relaxations of MIP problems may be used as
an input for a metaheuristic. A straightforward approach is the “dive and fix” strat-
egy, where the value of a subset of the integer variables are fixed and the resulting
LP problem is solved. This strategy iterates until the LP finds an integer solution.
This will restrict the search space of metaheuristics in promising regions. This idea
has been used to design an efficient hybrid approach for the 0-1 multidimensional
knapsack problem [175]. Many linear relaxation of the MIP formulation of the prob-
lem including different constraints on the number of elements of the knapsack are
solved exactly. The obtained solutions are exploited to generate initial solutions for
multiple tabu search metaheuristics.

1.3.2.4 High-Level Teamwork Hybrids (HTH)

Few strategies belong to this class of hybrids which combines metaheuristics and
MP algorithms in a parallel cooperative way. However this is a promising class of
hybrids. A set of agents representing metaheuristics and MP algorithms are solving
global, partial or specialist optimization problems and exchanging useful informa-
tions. The majority of proposed approaches fall in the class of partial and specialist
hybrids. Indeed, the search space is generally too large to be solved by an exact ap-
proach. One of the main issues in the HTH hybrid is the information exchanged
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between metaheuristics and MP algorithms. The different complementary algo-
rithms solving different problems may exchange any information gathered during
the search to improve the efficiency and the effectiveness of the hybrid approach: so-
lution(s), subproblems, relaxed optimal solutions and its duals, upper bounds, lower
bounds, optimal solutions for subproblems, partial solutions, etc.

B r a n c h  a n d  b o u n d  a l g o r i t h m S - m e t a h e u r i s t i c

    B e s t  f o u n d  s o l u t i o n
    ( n e w  u p p e r  b o u n d )

    Pa r t i a l  so lu t i on
(new in i t i a l  so lu t i on )

In i t i a l  so lu t ion
N o n  e x p l o r e d  n o d e s

U p p e r  b o u n d

B e s t  s o l u t i o n

Fig. 1.26 HTH cooperation between metaheuristics and MP algorithms

Example 1.17. Parallel cooperation between a branch and bound and a
S-metaheuristic: in a parallel cooperation between branch & bound algorithms and
a S-metaheuristic, the following information may be exchanged (Fig. 1.26):

• From a branch & bound algorithm to a S-metaheuristic: a subproblem of
the branch and bound (node of the tree, partial solution) with least-cost lower
bound may be used by a S-metaheuristic to generate an initial solution. The lower
bound is used to predict potential interesting search regions. This process may be
initiated as a diversification search, when the classical “intensification” process
is terminated. Indeed, this partial solution provides a promising area for a S-
metaheuristic to explore. The non explored node list maintained by a branch and
bound provides a metaheuristic with new initial solutions.

• From a S-metaheuristic to a branch & bound algorithm: the best solution
identified so far by a metaheuristic may be used in branch and bound algorithms
for a better pruning of the search tree. Indeed, better is the upper bound, more
efficient is the pruning of the search tree. This information is exchanged each
time the best solution found is improved.

In generalist and global hybrids, where all the algorithms are solving the same target
problem, the space of design is reduced. For instance, a parallel HTH hybrid which
consists in combining a branch and bound algorithm with simulated annealing has
been designed [134]. The SA algorithm sends improved upper bounds to the exact
algorithm. Any integer bound obtained by the B&B execution is passed to SA and
used as an alternative reheated solution.

In specialist hybrids, where the algorithms are solving different problems, many
strategies may be proposed (Fig. 1.27). For instance, a parallel cooperation between
a local search metaheuristic and a column generation (branch and price) algorithm
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Fig. 1.27 Specialist HTH cooperation between S-metaheuristics and MP algorithms

to solve the VRP problem has been proposed [33]. The local search algorithm is
used to generate new columns for a branch and cut algorithm.

Extending the grammar, presented in section 1.14, with hybrid schemes combin-
ing metaheuristics with exact optimization algorithms has been presented in [102].
More than 60 annotated hybrid approaches are detailed in the paper. Other exam-
ples of combining metaheuristics with exact algorithms may be found in the survey
papers [140] [55] [102].

1.4 Combining Metaheuristics with Constraint Programming

Constraint programming (CP) is a modeling and an exact8 search paradigm based
on constraint satisfaction techniques which are largely used in the artificial intel-
ligence community [9]. CP has been applied successfully to many combinatorial
optimization problems with tightly-constrained search problems, while metaheuris-
tics perform well for under-constrained optimization problems.

Nowadays, more and more hybrid approaches combining metaheuristics and con-
straint programming are used to solve optimization problems. Indeed, metaheuristics
and constraint programming are complementary search and modeling approaches,
which may be combined naturally to solve optimization problems in a more effi-
cient manner [72]. One of the main advantages of using constraint programming is
its flexibility. Models are based on a declarative programming paradigm. Hence, the
addition/deletion of new constraints in the model is straightforward.

8 The term complete is always used in the CP community.
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1.4.1 Constraint Programming

Optimization problems in constraint programming are modeled by means of a set of
variables linked by a set of constraints. The variables take their values on a finite do-
main of integers. The constraints may have mathematical or symbolic forms. Global
constraints refer to a set of variables of the problem. An example of such global
constraints is all different(x1,x2, ...,xn) which specifies that all the variables
x1,x2, ...,xn must be different.

Solving a feasibility problem in CP is based on interleaving the propagation and
the search processes in order to find a feasible solution for the problem. Minimiz-
ing an objective function may be reduced to solve a given number of feasibility
problems.

A propagation algorithm is associated to each (or a set of) constraint(s). It con-
sists in filtering (or reducing) from variable domains the values that cannot lead to
feasible solutions. The propagation algorithm is terminated once no more values can
be eliminated from the variable domains.

Once the propagation phase is finished, there may remain some inconsistent val-
ues in the variable domains. Therefore, a search algorithm is launched. The search
algorithm is based on a tree search procedure where a branching step is applied
by partitioning the current problem into subproblems. Branching may be done by
instantiating a given variable to a feasible value of its domain or adding a new
constraint.

The questions arising in designing a search algorithm in CP are more or less
similar to those of branch and bound algorithms:

• Branch ordering: how the problem to solve (node of the tree) is splitted into
subproblems when the propagation algorithm is inconclusive? On which variable
the branching is applied next?

• Variable selection: in which subproblem (child node) the search continue next?
What value should be first assigned to the branching variable?

Example 1.18. A CP model for Sudoku: nowadays, the Sudoku logic game is very
popular. The principle of the game is to fill a 9× 9 grid so that each row and
each column contains the numbers from 1 to 9. Moreover, each of the nine 3× 3
boxes contains the numbers from 1 to 9. A partially completed grid is provided as
an input for each game setting. A CP model using the Gecode solver may be the
following:

The must be distinct constraint has been used to model the three constraints
of the problem (row, column, 3*3 boxes). The rest of the model represents the input
setting of the game. It assigns the predefined values to squares of the grid (otherwise
by default it is 0). Figure 1.28 illustrates a solution for a given game input.
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Algorithm 1. CP model for Sudoku
class Sudoku < Gecode::Model
def initialize(predefined values)
# Create the squares representing the integer variables
@squares = int var matrix(9, 9, 1..9)
# Distinctness constraint
9.times do |i|
# All rows must contain distinct numbers
@squares.row(i).must be.distinct
# All columns must contain distinct numbers
@squares.column(i).must be.distinct
# All 3x3 boxes must contain distinct numbers
@squares.minor((i % 3) * 3, 3, (i / 3) * 3, 3).must be.distinct
end
# Place the constraints from the predefined squares on them
predefined values.row size.times do |i|
predefined values.column size.times do | j|
unless predefined values[i,j].zero?
@squares[i,j].must == predefined values[i,j]
end
end

Fig. 1.28 Illustration of the Sudoku game

1.4.2 Classical Hybrid Approaches

Many combination schemes show that the hybridization of metaheuristics and CP is
fruitful for some optimization problems. The following sections illustrate, for each
class of hybrids belonging to the presented taxonomy, some hybridization schemes
between constraint programming algorithms and metaheuristics. Some illustrative
examples may also be found in [72].
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1.4.2.1 Low-Level Relay Hybrids (LRH)

As within mathematical programming approaches, constraint programming may be
used to explore large neighborhoods in S-metaheuristics (full or partial). Indeed,
when the propagation tends to reduce the search space, CP is an efficient approach in
modeling the expression of neighborhoods and exploring very large neighborhoods
with side constraints [154]. Two different types of exploration may be applied:

• Neighborhoods with expensive testing of feasibility: neighborhoods around
the current solution are defined by adding side constraints to the original prob-
lem. Checking the feasibility for all side constraints by CP may be efficient. In-
deed, the feasibility test of solutions may be an expensive task. The propagation
algorithms of CP reduce the size of neighborhoods.

• Large neighborhoods: optimizing the exploration of the neighborhood with in-
lined constraint checks. For instance, the problem of searching very large neigh-
borhoods is tackled with a constraint programming solver in the resolution of
vehicle routing problems [137]. A CP model has been proposed for the neigh-
borhood, where every feasible solution represents a neighbor. A given subset of
decision variables may also be fixed [8]. A CP search has been carried out over
the uninstantiated variables to solve a scheduling problem. A similar approach
has been proposed in [154] for a vehicle routing problem, and in [30] for a job-
shop scheduling problem.

1.4.2.2 Low-Level Teamwork Hybrids (LTH)

In this class of LTH hybrids between metaheuristics and CP, two main categories
may be distinguished: exact search hybrid algorithms in which a metaheuristic is
embedded into constraint programming, and heuristic search algorithms in which
constraint programming is embedded into a P-metaheuristic.

Embedding metaheuristics into constraint programming: metaheuristics may
be used to improve the search algorithm in CP. The following hybrid approaches
may be applied to converge more quickly to the optimal solution or approximating
“good” solutions:

• Node improvement: metaheuristics may be applied to partial solutions of the
tree to improve or repair the nodes of the search tree. A greedy approach may also
explore a set of paths from a node of the search tree. Then, CP search continue
from the improved solutions [31].

• Discrepancy-based search algorithms: this approach generates near-greedy
paths in a search tree. This approach has been used in limited discrepancy search
[87] and dynamic backtracking [78]. Lookahead evaluation of greedy algorithms
may also be used over the nodes of the search tree [31].

• Branch ordering: metaheuristics may be applied to answer the following ques-
tion: which child node to investigate first when diving deeper into the node.
Metaheuristics may be used to give a preference to a branch that is consistent
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with the near-optimal solution. Indeed, the use of metaheuristics produces a bet-
ter variable ordering and then will speedup the tree search. This approach has
been used for solving satisfiability problems [152].

Metaheuristics may also be considered to solve relaxed problem. At each
node, the subproblem is relaxed by removing some constraints. The violated con-
straints in the obtained solution will form the basis for branching. for instance,
this approach has been used to solve a scheduling problems [109] [130].

• Variable selection: metaheuristics are used for variable selection at each node
of the tree. This strategy consists in reducing the list of candidates. A straightfor-
ward strategy has been used in [64]. Let v1,v2, ...,vn be the possible branches in
a decreasing order of preference (lower bound h(vi)). The strategy consists in se-
lecting the vi branches such as h(vi)≤ h(v1)+α(h(vn)−h(v1)) where α ∈ [0,1]
is a parameter. Those branches constitute the RCL list (Restricted Candidate
Lists), whereas the other branches are not explored.

• Branching restriction: metaheuristics may be used to filter the branches of the
tree-search node. This hybrid scheme has been proposed to solve a scheduling
problem [32].

CP can construct partial solutions which are used to define a search space for a
metaheuristic. Then, the results obtained are used in order to refine the bounds or
columns to generate in a branch and cut algorithm.

Embedding constraint programming into P-metaheuristics: some search
components of a P-metaheuristic induce optimization problems which are solved
by CP. For instance, some recombination operators such as crossover in EAs may
be optimized using CP. In addition to the recombination operators, large neigh-
borhood search algorithms based on CP can be integrated into unary operators of
P-metaheuristics such as the mutation in EAs.

Some search ingredients of constraint programming algorithms can also be used
into P-metaheuristics. For instance, the use of lower bounds into a P-metaheuristic
can improve the search. The partial solutions (subproblems) maintained by CP may
provide to metaheuristics interesting initial solutions to metaheuristics. The eval-
uation of those partial solutions will guide the metaheuristics to more promising
regions of the search space. The partial solution with the least cost lower bound
suggests a promising region.

CP algorithms can also be used as decoders of indirect representations carried
out by metaheuristics. This strategy may be applied once the metaheuristics use in-
direct encoding which represent incomplete solutions of the problem. This strategy
is efficient when the decoding involves complex constraints to satisfy.

1.4.2.3 High-Level Relay Hybrids (HRH)

In this class of hybrids, self-contained metaheuristics are used in conjunction with
CP in a pipeline manner. Metaheuristics are considered as a pre-processing or a
post-processing step for CP.
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Information provided by metaheuristics: in the case where the informations are
provided by metaheuristics, similar information exchanges as with mathematical
programming algorithms may be used: upper bounds, incomplete solutions, sub-
problems, etc.

Information provided by constraint programming: in the case where the infor-
mation is provided by CP, the same information as with mathematical program-
ming9 may be considered: partial solutions (i.e. subproblems), optimal solutions for
relaxed problems, etc.

For instance, heuristic search-based hybrid scheme may be applied in solving
some generated subproblems by CP. A subset of variables are assigned values us-
ing a complete search approach. This approach has been used for scheduling prob-
lems [133] and routing problems [154]. This hybrid scheme has been also proposed
to solve satisfiability (SAT) problems, where a depth-bounded tree search is carried
out and a local search procedure is applied at nodes reaching the depth-limit [84].
CP can be also applied to an incomplete formulation of the problem. For instance,
all (or a set of) feasible solutions are generated by a CP strategy. Then, a metaheuris-
tic will be applied to improve feasible solutions represented by the leaves of the CP
tree.

1.4.2.4 High-Level Teamwork Hybrids (HTH)

Few hybrid HTH strategies combining CP and metaheuristics have been investi-
gated. This class constitutes a promising way to develop efficient solvers and opti-
mization algorithms. The architecture of this class of hybrids may be viewed as a
set of agents implementing different strategies (CP, metaheuristics, MP) in solving
the target problem, and different subproblems and relaxed problems. Those agents

   C P

  M P

C o m m u n i c a t i o n  m e d i u m M e t a h e u r i s t i c
S u b p r o b l e m s
U p p e r  B o u n d
C o n s t r a i n t s
.. .

O p t i m a l  s o l u t i o n s  f o r  s u b p r o b l e m s
D o m a i n  r e d u c t i o n s
  . . .

O p t i m a l  s o l u t i o n s  f o r  r e l a x e d  p r o b l e m s  a n d  d u a l s
Pa r t i a l  so l u t i ons
L o w e r  b o u n d s
...

     So lu t i on (s )

B e s t  n e i g h b o r

Fig. 1.29 HTH cooperation between metaheuristics, MP and CP strategies

9 However, the duals cannot be considered.
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will exchange information on the search. For an exact approach, the objective is
to speedup the search in obtaining an optimal solution (efficiency). For a heuris-
tic strategy, the objective is also to improve the quality of the obtained solutions
(effectiveness). The information exchanged may include: solution(s), subproblems,
relaxed optimal solutions, upper bounds , lower bounds , optimal solutions for sub-
problems, partial solutions, etc (Fig. 1.29).

1.5 Hybrid Metaheuristics with Machine Learning and Data
Mining

Combining metaheuristics with data mining and machine learning techniques rep-
resents another way to improve the efficiency and effectiveness of the optimization
algorithms based on metaheuristics.

1.5.1 Data Mining Techniques

Data mining (DM), also known as knowledge discovery in databases (KDD), is the
process of automatically exploring large volumes of data (e.g. instances described
according to several attributes), to extract interesting knowledge (patterns). In or-
der to achieve this goal, data mining uses computational techniques from statistics,
machine learning and pattern recognition .

Various data mining tasks can be used depending on the desired outcome of the
model. Usually a distinction is made between supervised and unsupervised learning.
Classical tasks of supervised learning are (Fig. 1.30):

• Classification: examining the attributes of a given instance to assign it to a pre-
defined category or class.

• Classification rule learners: discovering a set of rules from the data which
forms an accurate classifier.

The most common tasks of unsupervised learning are:

• Clustering: partitioning the input data set into subsets (clusters), so that data
in each subset share common aspects. The partitioning is often indicated by a
similarity measure implemented by a distance.

• Association rule learners: discovering elements that occur in common within a
given data set.

The feature selection task objective consists in reducing the number of attributes (i.e.
dimensionality of the data set). Feature selection is often considered as a necessary
preprocessing step to analyze data characterized by a large number of attributes. It
allows to improve the accuracy of the extracted models. Two models of feature se-
lection exist depending on whether the selection is coupled with a learning scheme
or not. The first one, the filter model , which carries out the feature subset selec-
tion and the learning (e.g. classification, clustering) in two separate phases, uses a



42 E.-G. Talbi
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Fig. 1.30 Some data mining tasks and associated algorithms

measure that is simple and fast to compute. The second one, the wrapper method,
which carries out the feature subset selection and learning in the same process, en-
gages a learning algorithm to measure the accuracy of the extracted model. From
the effectiveness point of view, wrapper methods are clearly advantageous, since
the features are selected by optimizing the discriminate power of the finally used
learning algorithm. However, their drawback is a more important computational
cost.

Metaheuristics have been largely used to solve data mining tasks with a great
success. However, using data mining techniques to improve the efficiency and ef-
fectiveness of metaheuristics, which is our concern in this chapter, is less studied.
This hybridization scheme can be viewed as knowledge extraction and integration
into metaheuristics. This knowledge may take different forms. Figure 1.31 describes
some ways to integrate knowledge into metaheuristics.

T i m e  o f  h y b r i d i z a t i o n A i m  o f  t h e  h y b r i d i z a t i o n I n v o l v e d  c o m p o n e n t

-  O f f - l i ne  s ta teg ies
-  O n - l i n e  s t r a t e g i e s

-  E f f i c i ency
-  E f f e c t i v e n e s s

-  O p t i m i z a t i o n  m o d e l
-  S e a r c h  c o m p o n e n t s
-  P a r a m e t e r s
-  e tc .

Fig. 1.31 Some ways integrating knowledge into metaheuristics

Three criteria will be used to refine our classification [104]:

• Time of extracting the knowledge: two kinds of hybridizations can be distin-
guished depending on the time of extracting the used knowledge. Hybridizations
which extract the knowledge before the search starts are called off-line knowl-
edge strategies and combinations where the knowledge is extracted dynamically
during the search are described as on-line knowledge strategies.

• Aim of the hybridization: either the combination allows to improve the effi-
ciency of the algorithm by reducing the search time, or the combination is used
to improve the effectiveness of the algorithm leading to better quality of solu-
tions. The efficiency may be carried out by approximating the objective function
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or reducing the size of the search space. The effectiveness may be improved
by incorporating some knowledge into the search components or by updating
the parameters of the metaheuristics in an adaptive way. Of course, a given hy-
bridization may improve both criteria: efficiency and effectiveness.

• Involved component: a metaheuristic is composed of different search compo-
nents. Hybridization can occur in any search component such as encoding of
solutions, initialization of solutions, search variation operators (e.g. mutation,
crossover, neighborhood), etc. It may also be used to fix the parameters of the
algorithm or defining the optimization problem to solve (e.g. objective function).

1.5.2 Main Schemes of Hybridization

In the following sections, some hybridization schemes between metaheuristics
and data mining techniques are presented according to each class of the general
taxonomy.

1.5.2.1 Low-Level Relay Hybrid (LRH)

Traditional S-metaheuristics, greedy or multi-start strategies (e.g. GRASP algo-
rithm) do not use any information on the search of previous iterations to initialize
the next search even if the tabu search algorithm uses the concept of memory to
guide the search. Hence, some knowledge may be introduced in those families of
metaheuristics.

Optimization model: the extracted knowledge may be used to transform the target
optimization problem. For instance, in the ART (Adaptive Reasoning Technique)
on-line approach, the search memory is used to learn the behavior of a greedy al-
gorithm [136]. Some constraints are added to the problem. Those constraints are
generated from the non interesting visited solutions according to the values associ-
ated to their decision variables. Similar to the tabu list strategy, those constraints are
dropped after a given number of iterations.
Parameters setting: another LRH hybrid approach provides a dynamic and adap-
tive setting of the parameters of a S-metaheuristic. Indeed, knowledge extracted
during the search may serve to change dynamically at run time the values of some
parameters such as the size of the tabu list in tabu search, the temperature in simu-
lated annealing.

This dynamic setting may also concern any search component of a S-metaheuristic
such as the neighborhood and the stopping criteria.

1.5.2.2 Low-Level Teamwork Hybrids (LTH)

This hybrid scheme is very popular in P-metaheuristics.
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Search components: a straightforward LTH hybrid approach consists in using data
mining techniques in recombination operators of P-metaheuristics. In this class of
hybrids, the knowledge extracted during the search is incorporated into the recombi-
nation operators for the generation of new solutions (Fig. 1.32). From a set of solu-
tions (e.g. current population, elite solutions), some models are extracted which may
be represented by classification rules, association rules, decision trees, etc. Those
models (patterns) will participate in the generation of new solutions to intensify or
diversify the search.

  

 -  E l i t e  so lu t i ons
 -  C u r r e n t  p o p u l a t i o n
 - . . .

-  A s s o c i a t i o n  r u l e s ,
-  C lass i f i ca t i on ,
- . . .  

 -  C r o s s o v e r
 -  R e c o m b i n a t i o n
 -  Ve loc i t y ,
 -  . . .

H i s t o r y  o f  t h e  s e a r c h
D a t a  m i n i n g

S e a r c h  o p e r a t o r s

Fig. 1.32 Extracting knowledge from the history of the search and its use into search opera-
tors.

Example 1.19. Integrating knowledge into recombination operators: in this hy-
brid scheme, a set of decision rules describing the generated solutions are extracted.
For instance, classification rules describing the best and worst individuals of the cur-
rent population are extracted [127]. Those rules are generated using the AQ learn-
ing algorithm, a general decision rules learning algorithm (Fig. 1.33). The extracted
rules are incorporated into the crossover operator of an evolutionary algorithm to
reduce the search space for the offsprings (Fig. 1.34). The obtained results indicate
that those learnable evolution models allow to speedup the search and improve the
quality of solutions [127].

F i r s t  g e n e r a t i o n S e c o n d  g e n e r a t i o n T h i r d  g e n e r a t i o n

S e a r c h  s p a c e

Fig. 1.33 Reduction of the search space for the offsprings using a learnable evolution model
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R u l e  :  I F  X 4 = 5  A N D  X 6  <  2  T H E N  C l a s s = B e s t  

P a t t e r n

*  *   *   5   *   1   *   *

 2   1   7    2   1   3   4   3

 3   2   5    7   8   0   7   4

P a r e n t s

O f f s p r i n g s
5      1   2   1   7 7   48

            5      13   2   5 4   31

Fig. 1.34 Crossover operator using the induced rule as a pattern. For instance, the extracted
pattern (...5.1..) is included into the offsprings.

EDA (Estimation of Distribution Algorithms) can also be considered as LTH hy-
brids using estimated probability distributions to generate new solutions. Similarly,
cultural algorithms use high quality individuals to develop beliefs constraining the
way in which individuals are transformed by genetic operators [144]. In cultural
algorithms, beliefs are formed based on each entity’s individual experiences. The
reasoning behind this is that cultural evolution allows populations to learn and adapt
at a rate faster than pure biological evolution. Importantly, the learning which takes
place individually by each entity is passed on the remainder of the group, allowing
learning to take place at a much faster rate.

Civilized genetic algorithms constitute another LTH hybrid approach integrating
concepts from machine learning [150]. They differ from Darwinian evolution as
they keep information of the population in order to avoid doing the same errors. The
knowledge is dynamically updated during the successive generations. They have
been applied to binary encodings in which a preprocessing step using a genetic
algorithm is carried out to obtain a diverse population.

Parameter setting: a dynamic setting of the parameters of a P-metaheuristic can
be carried out by a data mining task. Any parameter of a P-metaheuristic, such as
the mutation and crossover probabilities in evolutionary algorithms, the pheromone
update in ant colonies, and the velocity update in particle swarm optimization, can
be modified dynamically during the search. Indeed, knowledge extracted during the
search may serve to change dynamically at run time the values of those parameters.
For instance, the initialization of the mutation rate may be adjusted adaptively by
computing the progress of the last applications of the mutation operator [173] [91].
Hence, it becomes possible to determine the probabilities of application of a given
operator in an adaptive manner where more efficient an operator is, more important
its probability of application will be. Another approach could be to analyze in details
the new individuals generated by operators (in terms of quality and diversity) using
clustering algorithms. This would give valuable information that can help to set the
new application probabilities.

Optimization model: many optimization problems such as engineering design
problems are concerned by expensive objective functions. In this hybrid scheme,
supervised classification algorithms can be used to approximate the objective func-
tion during the search. The number of solutions to evaluate according to the real
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objective function can also be reduced. In this case, already evaluated solutions will
represent the predefined classes. A non evaluated solution is classified, using for
example the k-nearest neighbor classification algorithm. The objective function of
a given solution is then approximated using the evaluated solution of the associated
class.

This process may be also carried out by clustering algorithms using fitness imita-
tion. A clustering algorithm is applied on a population of solutions to be evaluated.
Each cluster will have a representative solution. Only the solution that represents the
cluster is evaluated [142] [112] [99]. Then, the objective function of other solutions
of the cluster is estimated in respect to its associated representative10 (Fig. 1.35).
Different clustering techniques may be used such as K-means and fuzzy c-means.

( a )  P o p u l a t i o n  o f  s o l u t i o n s  t o  e v a l u a t e

C o m p l e t e  e v a l u a t i o n

I n d i r e c t  e v a l u a t i o n

C l u s t e r

( b )  C o m p l e t e  e v a l u a t i o n  o f  r e p r e s e n t a t i v e s  

Fig. 1.35 Evaluating a solution by using the representative of its cluster (fitness imitation)

1.5.2.3 High-Level Relay Hybrid (HRH)

In this HRH hybrid approach, a priori knowledge is first extracted from the target
optimization problem. Then, this knowledge is used into the metaheuristic for a
more efficient search. The previously acquired knowledge may be obtained from
previous experimentations, an expert, landscape analysis, etc. Many schemes may
be introduced into this traditional hybrid class.

Search components: for instance, data mining algorithms may be applied for the
initialization of solutions. Instead of generating the initial solutions randomly, prob-
lem knowledge can be used to generate solutions which integrate “good” patterns.

10 This scheme is called fitness imitation or fitness inheritance.
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Example 1.20. Any-time learning algorithm in dynamic optimization: a genetic
algorithm has been initialized with a case-based reasoning in a tracker / target sim-
ulation with a periodically changing environment [141]. Case-based initialization
(learning agent) allows the system to automatically bias the search of the GA toward
relevant areas of the search space in a changing environment (dynamic optimization
problem). This scheme may be seen as a general approach to continuous learning in
a changing environment. The learning agent continuously tests search strategies us-
ing different initial solutions. This process allows the update of the knowledge base
on the basis of the obtained results. This knowledge base generated by a simulation
model will be used by any search agent.

Parameter setting: the same hybrid scheme may be used within the initialization
of the parameters of any metaheuristic. A difficult part in designing metaheuristics
deals with the setting of their parameters. Indeed, many parameters compose meta-
heuristics such as the probability of application of a given operator, the tabu list, the
size of the population or the number of iterations? An empirical approach consists
in both running several times the metaheuristic with different parameters values and
trying to select the best values. If the number of trials or the number of parameters
is important, determining the best set of parameters may require some statistical
analysis. This may be seen as a data mining help (Fig. 1.36).

D a t a  m i n i n g  a p p r o a c h

  M e t a h e u r i s t i c

O p t i m a l  p a r a m e t e r s

Fig. 1.36 Setting the parameters of a metaheuristic using a data mining approach

Optimization model: data mining techniques can also be used in decomposing
the optimization problem handled by a metaheuristic. For instance, in optimiza-
tion problems dealing with Euclidean distances, such as vehicle routing and the
P-median optimization problems, clustering algorithms may be used to decompose
the input space into subspaces. Metaheuristics are then used to solve those subprob-
lems associated to the subspaces. Finally, a global solution is built using partial final
solutions.

Example 1.21. Clustering routing problems: some efficient techniques in solving
routing problems (e.g. TSP, VRP) decompose the operational space into subspaces
using clustering algorithms such as the K-means or the EM (Expectation Maximiza-
tion) algorithm (Fig. 1.37). Indeed, a metaheuristic is then used to solve the different
subproblems. This approach is interesting for very large problems instances.
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D e p o t D e p o t

(a ) (b )

c u s t o m e r s

C l u s t e r s

Fig. 1.37 Decomposing an optimization problem using clustering algorithms. (a) Instance of
the VRP problem. (b) Clustering the customers and then applying a TSP metaheuristic to the
subproblems.

A popular off-line hybrid scheme for expensive objective function consists in
approximating the objective function of the problem. Indeed, in many complex real-
life applications, the objective function is very expensive to compute. The main
objective of this hybrid approach is to improve the efficiency of the search. The
approximation can be used either for expensive objective functions or multi-modal
functions. A comprehensive survey on objective function approximations may be
found in [98]. Data mining approaches are used to build approximate models of the
objective function. In this context, previously evaluated solutions are learned by a
data mining algorithm to approximate the objective function of other individuals
(Fig. 1.38). Many learning algorithms may be used such as neural networks (e.g.
multi-layer perceptrons, radial-basis-function networks). The main issue here is to
obtain a “good” approximation in terms of maximizing the quality and minimizing
the computing time. Many questions arise in the design of this hybrid scheme such
as: which proportion of the visited solutions are evaluated using the approximation,
and at what time or in which component of the search algorithm the approximation
is used.

N o n  e v a l u a t e d
    so lu t ion

S e t  o f  e v a l u a t e d  
      so lu t ions

L e a r n i n g
a l g o r i t h m

  A p p r o x i m a t e d
o b j e c t i v e  f u n c t i o n

Fig. 1.38 Data mining approach to approximate the objective function
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1.5.2.4 High-Level Teamwork Hybrid (HTH)

A HTH approach is a hybrid scheme in which a dynamically acquired knowl-
edge is extracted in parallel during the search in cooperation with a metaheuristic
(Fig. 1.39). Any on-line learning algorithms can be used to extract knowledge from
informations provided by metaheuristics such as elite solutions, diversified set of
good solutions, frequency memory, recency memory, etc. From this input, the data
mining agent extracts useful information to be used by metaheuristics to improve
the search. Any statistical indicator for landscape analysis of a problem may also be
used.

D a t a  m i n i n g  a p p r o a c h
  M e t a h e u r i s t i c

P a r a m e t e r  s e t t i n g

o n - l i n e  s e a r c h
  i n f o r m a t i o n

D a t a  m i n i n g  a p p r o a c h

 S e a r c h
m e m o r y

O p t i m i z a t i o n  m o d e l s
( o b j e c t i v e  f u n c t i o n s ,  s u b - p r o b l e m s ,  c o n s t r a i n t s ,  . . ; )

D a t a  m i n i n g  a p p r o a c h

S e a r c h  m e m o r y
(e l i te  so lu t ions ,  . . . )

P a t t e r n s  f o r  g u i d i n g  
s e a r c h  c o m p o n e n t s

Fig. 1.39 On-line knowledge extraction and its use by a metaheuristic

Example 1.22. Data mining in population management of a P-metaheuristic: us-
ing the same scheme of cooperation, data mining approaches can be used to manage
the population of a P-metaheuristic. Managing a population deals with the intensifi-
cation and the diversification tasks of a metaheuristic. Diversification may be carried
out by injecting new individuals into the population during the search. In order to
lead the search to promising search spaces it could be also interesting to regularly
introduce individuals that are built based on information of the past encountered
high-quality solutions.

Such an approach has been proposed in the CIGAR (Case Injected Genetic Algo-
Rithm) algorithm [119]. The aim of CIGAR is to provide periodically to the genetic
algorithm solutions that suit to similar instances / problems. Hence, a classifica-
tion task is carried out to find similar instances in a case base. CIGAR has been
successfully applied to several problems such as the job-shop scheduling and circuit
modeling. For instance, a combination of a GA with the A-priori algorithm has been
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used to discover interesting subroutines for the oil collecting vehicle routing prob-
lem [51]. The obtained sub-routes are inserted into the new individuals of the popu-
lation. Another illustrative example is the combination of the GRASP heuristic with
A-priori like algorithms to extract promising patterns from elite solutions [145].

1.6 Hybrid Metaheuristics for Multi-objective Optimization

The taxonomy for hybrid metaheuristics presented in this chapter holds in solv-
ing multi-objective optimization problems (MOPs). However, the design of hybrid
metaheuristics for MOP needs an adaptation for the reason that in multi-objective
optimization the main goal consists in generating an approximated set of Pareto so-
lutions whereas in mono-objective optimization a unique “good” solution is aimed
to be generated.

1.6.1 Combining Metaheuristics for MOPs

Until the 1990’s, the main focus in the metaheuristic field was on the application
of pure metaheuristics to MOPs. Nowadays, the use of pure multi-objective meta-
heuristics is more and more seldom. A skilled combination of concepts of different
metaheuristics can provide a more efficient behavior and a higher flexibility when
dealing with real-world and large-scale MOPs.

1.6.1.1 Low-Level Relay Hybrids (LRH)

This class of hybrids represents multi-objective hybrid metaheuristics in which a
given metaheuristic is embedded into a S-metaheuristic. Few examples belong to
this class since S-metaheuristics are not well adapted to approximate the whole
Pareto set of a MOP into a single run.

Example 1.23. An adaptive hybrid metaheuristic: a multi-objective tabu search
hyper-heuristic may be used to optimize the use of different S-metaheuristics [29].
This hybrid approach, tested on timetabling and space allocation, uses a tabu list of
S-metaheuristics which is updated by adding the last used S-metaheuristic and/or
the worst one, in terms of performance. Hence, this hybrid approach will adapt
dynamically the search according to the performance of various S-metaheuristics.
More efficient multi-objective S-metaheuristics will be more frequently used during
the search.

1.6.1.2 Low-Level Teamwork Hybrids (LTH)

P-metaheuristics (e.g. evolutionary algorithms, scatter search, particle swarm, ant
colonies) are powerful in the approximation of the whole Pareto set while
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S-metaheuristics are efficient in the intensification of the search around the obtained
approximations. Indeed, S-metaheuristics need to be guided to solve MOPs.

Therefore, most efficient multi-objective P-metaheuristics have been coupled
with S-metaheuristics such as local search, simulated annealing and tabu search,
which are powerful optimization methods in terms of exploitation of the Pareto sets
approximations. The two classes of metaheuristics have complementary strengths
and weaknesses. Hence, LTH hybrids in which S-metaheuristics are embedded into
P-metaheuristics have been applied successfully to many MOPs. Indeed, many state-
of-the art hybrid schemes are P-metaheuristics integrating S-metaheuristics.

Example 1.24. Multi-objective evolutionary local search algorithm: many multi-
objective hybrid metaheuristics proposed in the literature deal with hybridization
between P-metaheuristics (e.g. evolutionary algorithms) and S-metaheuristics (e.g.
local search). For instance, the well-known genetic local search11 algorithms are
popular in the multi-objective optimization community [167] [96] [94] [75]. The
basic principle consists of incorporating a local search algorithm during an evo-
lutionary algorithm search. The local search part could be included by replacing
the mutation operator, but it can also be added after each complete generation of
the evolutionary algorithm [15]. The classical structure of a multi-objective genetic
local search (MOGLS) algorithm is shown in figure 1.40, which depicts the rela-
tionships between the evolutionary multi-objective (EMO) component and the local
search one.

The local search algorithm can be applied in a given direction (i.e. weighted
aggregation of the objectives) [94]. In order to adapt the basic local search algorithm
to the multi-objective case, one may take into account the Pareto dominance relation
[15]. The algorithm works with a population of non-dominated solutions PO. The
hybridization process consists in generating the neighborhood of each solution of
the Pareto set approximation PO. The new generated non dominated neighbors are
inserted into the approximation Pareto set PO. Solutions belonging to the Pareto
set PO and dominated by a new introduced solution are deleted. This process is
reiterated until no neighbor of any Pareto solution is inserted into the Pareto set PO.
The Pareto local search algorithm is described below:

Algorithm 2. Template of the Pareto guided local search (PLS) algorithm.

Input: an approximated Pareto set PO;
repeat

S′ = PO ;
Generate the neighborhood PNx for each solution x of S′ ;
Let PO be the set of non-dominated solutions of S′ ∪PNx ;

until PO=S′ (the population has reached the local optima)
Output: Pareto set PO

11 Called also memetic.
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Fig. 1.40 Generic form of multi-objective genetic local search algorithms (MOGLS)

1.6.1.3 High-Level Relay Hybrids (HRH)

In HRH hybrids, self-contained multi-objective metaheuristics are executed in a se-
quence. A classical HRH for MOP is the application of an intensification strategy
(e.g. path relinking, S-metaheuristic) on the approximation of the Pareto set obtained
by a P-metaheuristic [53] [106].

Example 1.25. Target aiming Pareto search - the TAPAS algorithm:
S-metaheuristics can be combined with any multi-objective metaheuristic to im-
prove the quality of a Pareto approximation. First, a multi-objective metaheuristic
(e.g. any P-metaheuristic) is used to generate a good approximation P of the Pareto
set in terms of diversity. The design of the TAPAS algorithm was motivated by the
need to improve the approximation P in terms of convergence towards the optimal
Pareto set. Indeed, any S-metaheuristic algorithm can be applied to improve the
quality of this approximation [105].

In the TAPAS algorithm, a S-metaheuristic li (e.g. tabu search12) is applied to
each solution si of the initial Pareto set P. A specific mono-objective function oi

is defined for each search li. The defined objective function oi must take into ac-
count the multiplicity of the S-metaheuristics invoked. Indeed, two S-metaheuristics
should not examine the same region of the objective space, and the entire area that
dominates the Pareto approximation P should be explored in order to converge to-
wards the optimal Pareto front. The definition of the objective oi is based on the
partition of the objective space O according to the approximation P (see figure 1.41):

AD = {s ∈ O/∃s′ ∈ P,s′ ≺ s}
AND = {s ∈ O/∀s′ ∈ P,(s′ ⊀ s) and (s ⊀ s′)}

AS = {s ∈ O/�s′ ∈ P,s≺ s′}
AP = {s ∈ O/∃s1,s2 ∈ P,(s≺ s1) and (s≺ s2)}

12 An efficient S-metaheuristic for the target problem should be selected.
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Each solution si ∈ P is associated with a part Ai
S of AS. If li is able to generate a

feasible solution in Ai
S, then the approximation is improved according to the conver-

gence, without decreasing the diversity.
To guide the search, a goal gi is given to each S-metaheuristic li, with gi being the

point that dominates all points of Ai
S. In cases where certain coordinates of gi cannot

be defined (e.g. the extremities of P), a lower bound for the missing coordinates
should be used. For an objective fm, the goal gp is computed as follows:

fm(gp) = arg min{ fm(s′)/(s′∈P) and ( fm(s′)< fm(s))}( fm(s
′)− fm(s))

Then, the objective oi is stated as follows:

min(
M

∑
j=1
| f j(s)− f j(gi)|r)1/r

When a S-metaheuristic li reaches the goal gi or when it finds a solution that dom-
inates gi, it stops and produces an archive ai which contains all the current solu-
tions that are non-dominated. When all the S-metaheuristics li are terminated, a
new Pareto approximation set P′ is formed by the Pareto union of all ai. Because P′
might be improved by another application of S-metaheuristics, the complete process
is iterated until P′ does not differ from P.
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Fig. 1.41 The hybrid TAPAS algorithm for multi-objective optimization: the goal gi of a
solution si is defined in function of si neighbors in the objective space.

Example 1.26. Filling the gap of a Pareto approximation with path-relinking:
path relinking can be combined with any multi-objective metaheuristic to intensify
the search around a Pareto approximation. First, a multi-objective metaheuristic (e.g.
any P-metaheuristic) is used to generate a good approximation of the Pareto set.
Then, path relinking concept can be applied to connect the non-dominated solutions
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of the approximated Pareto set [16] [18] [97]. The design questions which must be
considered are:

• Selection of the initial and the guiding solutions: this design question concerns
the choice of the pair of solutions to connect. For instance, a random selection
from the approximated Pareto set may be applied [16]. Otherwise, some criteria
must be used to choose the initial and the guiding solutions: distance between
solutions (e.g. distance in the decision or the objective space), quality of the
solutions (e.g. best solution according to a reference point or weighted aggrega-
tion), etc.

• Path generation: many paths may be generated between two solutions. One has
to establish which path(s) has to be explored and selected. Among other concepts,
a neighborhood operator and a distance measure in the decision space have to
be defined. For instance, the shortest paths may be generated according to the
selected neighborhood operator [16]. Let us consider x as the current solution
and y as the guiding solution. The neighborhood N of x is generated with the
following constraint: ∀z ∈ N,d(z,x) < d(y,x). From this neighborhood, only the
non-dominated solutions may be selected to be potential solutions of the future
paths (see figure 1.42). The process is iterated, until a complete path from x to y is
generated. Many paths may also be considered. However, generating all possible
paths may be computationally expensive. Moreover, the non-dominated solutions
may also be selected to participate to a Pareto local search algorithm as shown in
figure 1.43 [16].

f1

f2

solution A

Neighborhood

solution A

Eligible solutions

Aggregation plane

Objective spaceDecision space

Feasible solutions

Neighborhood

solution
Selected 

Fig. 1.42 Path Relinking algorithm filling the gap between two non-dominated solutions of
an approximation Pareto set: neighborhood exploration
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solution A
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solution A

solution B

path

Decision space Objective space

f1

f2

Feasible solutions

Solution on the path
Solution selected for PLS

PLS

Fig. 1.43 Path relinking algorithm combined with a Pareto local search (PLS) algorithm

1.6.1.4 High-Level Teamwork Hybrid (HTH)

As previously shown in this chapter, HTH hybrids scheme involves several self-
contained multi-objective metaheuristics performing a search in parallel and coop-
erating to find a Pareto set approximation.

Example 1.27. Cooperative multi-objective evolutionary algorithms: a growing
interest is dedicated to design and implement parallel cooperative metaheuristics to
solve multi-objective problems. The majority of designed parallel models in the
literature are evolutionary algorithms [80] [101] [126] [147]. In multi-objective
evolutionary algorithms, the individuals are selected from either the population,
the Pareto archive or both of them. In the multi-objective island model, different
strategies are possible. For instance, the newcomers replace individuals selected
randomly from the local population that do not belong to the local Pareto archive.
Another strategy consists in ranking and grouping the individuals of the local pop-
ulation into Pareto fronts using the non-dominance relation. The solutions of the
worst Pareto front are thus replaced by the new arrivals. One can also make use of
the technique that consists in merging the immigrant Pareto front with the local one,
and the result constitutes the new local Pareto archive. The number of emigrants
can be expressed as a fixed or variable number of individuals, or as a percentage
of individuals from the population or the Pareto archive. The choice of the value
of such parameter is crucial. Indeed, if it is low the migration process will be less
efficient as the islands will have the tendency to evolve in an independent way. Con-
versely, if the number of emigrants is high, the EAs will likely to converge to the
same solutions (premature convergence).

Although most of works on parallel multi-objective metaheuristics are related
to evolutionary algorithms, there are also proposals related to alternative methods,
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such us tabu search [7], simulated annealing [5] [34], ant colonies [54] and memetic
algorithms [15].

1.6.2 Combining Metaheuristics with Exact Methods for MOP

Another recent popular issue is the cooperation between multi-objective metaheuris-
tics and exact optimization algorithms. Some hybrid schemes mainly aim at provid-
ing Pareto optimal sets in shorter time, while others primarily focus on getting better
Pareto set approximations. In a multi-objective context, only few studies tackle this
type of approaches. The main interest is to adapt the classical mono-objective hy-
brids presented in sections 1.3 and 1.4 to multi-objective optimization.

Example 1.28. Combining branch and bound with multi-objective metaheuris-
tics: an investigation of several cooperative approaches combining multi-objective
branch and bound [177] and multi-objective metaheuristics can be considered for
MOPs [13]. Let us consider the bi-objective flow-shop scheduling problem, a multi-
objective metaheuristic which approximates the Pareto set of the problem [14], and
a bi-objective branch and bound which has been designed to solve the bi-objective
flow-shop scheduling problem [116].

Three hybrid schemes combining an exact algorithm with a multi-objective meta-
heuristic may be considered [13]:

• Metaheuristic to generate an upper bound: the first HRH hybrid exact scheme
is a multi-objective exact algorithm (e.g. branch and bound) in which the Pareto
set approximation is used to speedup the algorithm (Fig. 1.44). The Pareto set
approximation is considered as a good upper bound approximation for the multi-
objective exact algorithm. Hence, many nodes of the search tree can be pruned
by the branch and bound algorithm. This is a multi-objective adaptation of a clas-
sical cooperation found in the mono-objective context (see section 1.3). The time
required to solve a given problem instance is smaller if the distance between the
Pareto front approximation and the Pareto optimal front is small. If the distance
is null, the exact algorithm will serve to prove the optimality of the Pareto set
approximation. Even if this hybrid approach reduces the search time needed to
find the Pareto optimal set, it does not allow to increase considerably the size of
the solved instances.

• Exact algorithm to explore very large neighborhoods: in this hybrid heuristic
approach, the exact multi-objective algorithm is used to explore large neighbor-
hoods of a Pareto solution. The main idea is to reduce the search space explored
by the exact algorithm by pruning nodes when the solution in construction is too
far from the initial Pareto solution.

Let us consider a permutation based representation for the bi-objective flow-
shop scheduling problem, and an insertion neighborhood operator. The exact al-
gorithm is allowed to explore the neighborhood of the initial Pareto solution in
which the solutions are within a distance less or equal to δmax (Fig. 1.45). The



1 A Unified Taxonomy of Hybrid Metaheuristics 57

M u l t i - o b j e c t i v e
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Fig. 1.44 A HRH exact hybrid scheme in which a multi-objective metaheuristic generates an
upper bound Pareto set to an exact multi-objective algorithm (e.g. branch and bound).

size of the insertion-based neighborhood is Θ(n2), where n represents the num-
ber of jobs. Hence, the size of the search space explored by the exact algorithm
is exponential and may be approximated by Θ(n2δmax). Then, the distance δmax

must be limited, especially for instances with large number of jobs.

Fig. 1.45 A hybrid heuristic scheme in which an exact algorithm explores very large neigh-
borhoods of the multi-objective metaheuristic

• Exact algorithm to solve subproblems: in this hybrid heuristic approach, the
exact multi-objective algorithm solve subproblems which are generated by the
multi-objective metaheuristic. A given region of the decision space is explored
by the exact algorithm. Figure 1.46 shows an example of such hybridization. Let
us consider an initial Pareto solution composed of 10 jobs (a,b, ..., i, j) which is
obtained by the multi-objective metaheuristic. Subproblems of a given size (e.g.
4) are explored by the exact algorithm (e.g. the subproblem defined by the non-
freezed jobs d,e, f ,g). The first phase consists in placing the three first jobs at the
beginning of the schedule. Moreover, the branch and bound algorithm places the
three last jobs at the end of the schedule (a job j placed in queue is symbolized
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Fig. 1.46 A hybrid heurisitic scheme in which an exact algorithm solves subproblems gener-
ated by a multi-objective metaheuristic

by − j). Then, the branch and bound multi-objective algorithm is applied on the
remaining non-freezed jobs to generate all Pareto solutions in this subspace.

The main parameters which have to be defined for an efficient hybrid scheme
are:

– Partition sizes: the cardinality of the Pareto set approximation obtained by a
multi-objective metaheuristic varies according to the target MOP and instance.
For the BOFSP problem, the size of the Pareto set approximation varies be-
tween several tens and two hundred solutions. Moreover, the size of partitions
must be also limited according to the efficiency of the exact method at hand.
For the BOFSP, it may be fixed to 25 jobs for 10 machines instances and 12
jobs for the 20 machines instances, so each exact method can be performed in
several seconds or some minutes [13].

– Number of partitions for each solution: enough partitions of the complete
schedule have to be considered to treat each job at least once by the exact
method. Moreover, it is interesting to superpose consecutive partitions to al-
low several moves of a same job during optimization. Then, a job which is
early scheduled could be translated at the end of the schedule by successive
moves. On the other side, more partitions are considered, more important
the computational time is. For instance, for the BOFSP, 8 partitions for the
50−jobs instances, 16 partitions for the 100−jobs and 32 partitions for the
200−jobs instances may be considered [13].

Example 1.29. Combining branch and cut with multi-objective metaheuristics:
this example investigates the solution of a multi-objective routing problem, namely
the bi-objective covering tour problem (BOCTP), by means of a hybrid HRH strat-
egy involving a multi-objective metaheuristic and a single-objective branch-and-cut
algorithm. The BOCTP aims to determine a minimal length tour for a subset of
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nodes while also minimizing the greatest distance between the nodes of another
set and the nearest visited node. The BOCTP can be formally described as follows
(Fig. 1.48): let G = (V ∪W,E) be an undirected graph, where V ∪W is the vertex
set, and E = {(vi,v j)/vi,v j,V ∪W, i < j} is the edge set. Vertex v1 is a depot, V
is the set of vertices that can be visited, T ⊆ V is the set of vertices that must be
visited (v1 ∈ T ), and W is the set of vertices that must be covered. A distance ma-
trix C = (ci j), satisfying triangle inequality, is defined for E . The BOCTP consists
of defining a tour for a subset of V, which contains all the vertices from T, while
at the same time optimizing the following two objectives: (i) the minimization of
the tour length and (ii) the minimization of the cover. The cover of a solution is
defined as the greatest distance between a node w ∈W , and the nearest visited node
v ∈V .

The BOCTP problem has been extended from the mono-objective covering tour
problem (CTP). The CTP problems consists in determining a minimum length tour
for a subset of V that contains all the vertices from T , and which covers every vertex
w from W that is covered by the tour (i.e. w lies within a distance c from a vertex of
the tour, where c is a user defined parameter). A feasible solution for a small instance
is provided in figure 1.48. One generic application of the CTP involves designing
a tour in a network whose vertices represent points that can be visited, and from
which the places that are not on the tour can be easily reached. In the bi-objective
covering tour problem BOCTP, the constraint on the cover has been replaced by an
objective in which the covering distance is minimized [107].

Let us consider a multi-objective metaheuristic to solve the BOCTP problem
which approximates the Pareto set [107], and a branch and cut algorithm to solve
the mono-objective CTP problem [76]. The branch and cut algorithm may be con-
sidered as a black box optimization tool whose inputs are a subset of V , the set W ,
and a cover, and whose output is the optimal tour for the CTP. The branch and cut
algorithm first relaxes the integrality conditions on the variables and the connectiv-
ity constraints of the integer linear programming model. Integrality is then gradually
restored by means of a branch and bound mechanism. Before initiating branching
at any given node of the search tree, a search is conducted for violated constraints,
including the initially relaxed connectivity constraints and several other families of
valid constraints. Several classes of valid inequalities have been considered such as
dominance constraints, covering constraints, sub-tour elimination constraints, and
2-matching inequalities [76].

In the hybrid approach, the multi-objective metaheuristic generates a Pareto set
approximation, which is used to build subproblems; these subproblems are then
solved using the branch and cut algorithm (Fig. 1.48). Subproblem construction is a
key point of the cooperative design, given that prohibitive computational times result
if the subsets of V are too large. By limiting their size and giving the branch and cut
algorithm access to the information extracted from the Pareto set approximation,
the method makes solving the subproblems relatively easy for the branch-and-cut
algorithm. Two procedures for building the subproblems can be considered [107]:

• One objective improvement by an exact algorithm: the main purpose of the
first construction procedure is to improve the solutions found by the multi-
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Fig. 1.47 The covering tour problem: an example of a solution

objective metaheuristic in terms of the tour length objective without modify-
ing the cover value. It accomplishes this goal by investigating the possibility
that some elements of the set of visited vertices Ṽ can be replaced by sets of
vertices R ⊆ V\Ṽ so that the cover value c̃ provided by the couple (vt ,vc) re-
mains unchanged (Fig. 1.48a). A vertex vk ∈ Ṽ can be replaced by a set R if and
only if: (i) No subset of R can replace vk; (ii) No vertex from R can provide a
better cover: ∀vi ∈ R,ctc ≤ cic; (iii) There must be a vertex from Ṽ or from R
that can replace vk for every vertex of W that can be covered by vk. Therefore,
∀vl ∈ W\{vc}, such that ckl ≤ c̃, where the following condition must be true:
∃vn ∈ R∪ (Ṽ\{vk}),cnl ≤ c̃.

Replacing a node of Ṽ by a subset R tends to become easier as the cardinality
of R increases. However, in practice, condition (i) limits the candidate subsets.
The larger the R set, the higher the cost of the test. Certainly, if the size of the set
used for the branch and cut algorithm is very large, the algorithm will require too
much computational time. Therefore, in practice, the cardinality of R is limited
to one or two elements.

For each solution s of the Pareto set approximation, a problem is built as fol-
lows. The set VI of vertices that can be visited is created by the union of Ṽ and
all subsets of V with a cardinality of 1 or 2 that can replace a vertex of Ṽ . The set
W of vertices that must be covered remains unchanged. Here, the parameter c is
equal to the cover of s.

• Region exploration by an exact algorithm: in the first construction procedure
it is unlikely that all the feasible covers corresponding to Pareto optimal solutions
will be identified. These unidentified solutions must always be situated between
two solutions of the approximation, although not always between the same two
solutions. Thus, it is reasonable to assume that new Pareto optimal solutions may
be discovered by focusing searches in the area of the objective space between
two neighboring solutions. The second procedure aims to build sets of vertices
in order to identify potentially Pareto optimal solutions whose cover values were
not found by the multi-objective metaheuristic. Let A and B be two neighboring
solutions in the approximation sets found by the evolutionary algorithm (i.e. there
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are no other solutions between A and B). A (resp. B) is a solution with a cover cA

(resp. cB) which visits the vertices of the set VA (resp. VB). Assuming that cA < cB,
the branch and cut algorithm can be executed on a set VII , built according to both
VA and VB, with the first cover c̃ which is strictly smaller than cB as a parameter
(Fig. 1.48b). If c̃ is equal to cA, there is no need to execute the branch and cut
algorithm.

It appears that neighboring solutions in the Pareto set have a large number of
vertices in common. Thus, VII contains VA and VB. This inclusion insures that
the branch and cut algorithm will at least be able to find the solution A, or a
solution with the same cover but a better tour length in cases for which the tour
on VA is not optimal. The following process is used to complete VII : for every
feasible cover c, so that cA < c < cB, vertices are added to VII in order to obtain
a subset of VII with c as a cover. The algorithm below provides the procedure for
constructing the set VII .

Algorithm 3. Construction of the set VII .
VII = VA∪VB ;
for all c so that cA < c < cB do

for vl ∈W do
VII = ∪VII{vk ∈V\VII/ckl ≤ c}

end for
end for
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Fig. 1.48 Combining a mono-objective branch and cut algorithm and a multi-objective meta-
heuristic to solve the bi-objective covering tour problem
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1.6.3 Combining Metaheuristics with Data Mining for MOP

Most of the classical combinations of metaheuristics with machine learning and
data mining techniques (e.g. feature selection, classification, clustering, association
rules) which have been applied to mono-objective optimization (see section 1.5) can
be generalized to multi-objective optimization:

• Search operators (e.g. recombination operators in P-metaheuristics, neighbor-
hoods in S-metaheuristics).

• Optimization models (e.g. approximation of the objectives functions, generation
of sub-problems, new constraints).

• Parameter setting of the metaheuristics.

Example 1.30. Search operators: integrating knowledge into search operators is
the most popular scheme in this class of hybrids. For instance, in a P-metaheuristic
(e.g. evolutionary algorithm), a set of decision rules describing the best and worst
individuals of the current population may be extracted. The extracted rules are in-
corporated into the crossover operator of an evolutionary algorithm to generate so-
lutions sharing the characteristics of non-dominated solutions and avoiding those of
dominated solutions.

This principle can be applied to multi-objective optimization in the following
way [103]: a set of rules that describes why some individuals dominate others (pos-
itive rules) and why some individuals are dominated by others (negative rules13) are
extracted using the C4.5 classifier. Offsprings that match the positive rules and do
not match the negative rules are generated. The obtained results indicate that those
learnable evolution models allow to speedup the search and improve the quality of
solutions.

Parameter setting: in a multi-objective metaheuristic, the efficiency of an operator
may change during the execution of the algorithm: an operator may offer a better
convergence at the beginning of the metaheuristic, but this convergence may be im-
proved later with another operator. The success of an operator may also depend on
the instance of the problem. This motivates the use of adaptive operator probabili-
ties to automate the selection of efficient operators. The adaptation can be done by
exploiting information gained, either implicitly or explicitly, regarding the current
ability of each operator to produce solutions of better quality [173]. Other meth-
ods adjust operator probabilities based on other criteria, such as the diversity of the
population [45]. A classification of adaptation on the basis of the used mechanisms,
and the level at which adaptation operates may be found in [89].

Example 1.31. Adaptive mutation in multi-objective evolutionary algorithms:
let us consider a multi-objective evolutionary algorithm in which the choice of the
mutation operators is done dynamically during the search. The purpose is to use
simultaneously several mutation operators during the EA, and to change automati-
cally the probability selection of each operator according to its effectiveness [15].

13 Negative knowledge.
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So the algorithm always uses more often the best operators than the others. Let us
remark that a similar approach could be defined with other operators (e.g. crossover,
neighborhoods, hybrid strategies).

Initially, the same probability is assigned to each mutation operator: Mu1, . . . ,
Muk. Those probabilities are equal to the same ratio PMui = 1/(k ∗PMu), where k
is the number of mutation operators, and PMu is the global mutation probability.
At each iteration, the probabilities associated to the mutation operators are updated
according to their average progress. To compute the progress of the operators, each
mutation Mui applied to the individual I is associated with a progress value:

Π(IMui) =

⎧
⎨

⎩

1 if I is dominated by IMui

0 if I dominates IMui
1
2 otherwise (non comparable solutions)

where IMui is the solution after mutation (Fig. 1.49).
At the end of each generation of the EA, an average progress Progress(Mui) is

assigned to each operator Mui. Its value is the average progress of Π(IMui) computed
with each solution modified by the mutation Mui:

Progress(Mui) =
∑Π(IMui)

‖Mui‖
where ‖Mui‖ is the number of applications of the mutation Mui on the population.
The new selection probabilities are computed proportionally to these values:

PMui =
Progress(Mui)

∑k
j=1 Progress(Mu j)

× (1− k× δ )+ δ

where δ is the minimal selection probability value of the operators.
This approach of progress computation compares two solutions with their dom-

inance relation. However, a comparison only between I and IMui is not sufficient.
Firstly, if the two individuals I and IMui are non comparable, the quality of the mu-
tation cannot be evaluated. For instance, in figure 1.50, the progress Π of the two
mutation operators applied on the solution� is the same (1/2). However, the obser-
vation of the whole Pareto front shows that the second mutation operator performs
better since the generated solution by the second mutation operator is Pareto optimal
whereas the solution generated by the first is not.

Secondly, if the generated individual dominates the initial individual, the progress
realized cannot be measured with precision. For instance, in figure 1.51, the progress
Π of the two mutation operators applied on the solution� is the same (1). However,
the observation of the whole population shows that the second mutation operator
performs much better than the first one.

These problems can be tackled in the case of evolutionary algorithms using se-
lection by ranking. The progress value can be replaced by:
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Fig. 1.49 Progress value of Π(IMui) for mutation operators
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Fig. 1.50 Evaluation of the quality of the mutation operators

Π(IMui) =

(
RkI

RkIMui

)β

where RkIMui is the rank of the solution after mutation, RkI is the rank of the solution
before mutation, and β is how much the progress made by mutation operators is
encouraged (e.g. β = 2).

The evaluation of the progress of the mutation operators can be still improved by
supporting the progresses realized on good solutions. In fact, these progresses are
generally more interesting for the front progression than progresses made on bad
solutions (Fig. 1.52). So an elitist factor E f IMui has been introduced into the last
progress indicator to favor progresses made on good solutions:
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Fig. 1.51 Computing the progress realized by different mutation operators
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Fig. 1.52 Progress realized by mutation operators on good quality solutions

Π(IMui) = E f IMui ×
(

RkIMui

RkI

)β

with E f IMui = (RkIMui)
−1. Then, the average progress of a mutation Mui is defined

as follows:

Progress(Mui) =
∑Π(IMui)

∑E f IMui

Some hybrid schemes are specific to multi-objective metaheuristics such as intro-
ducing data mining tasks in the search component dealing with elitism.
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Example 1.32. Clustering archives in multi-objective metaheuristics: a classical
approach using data mining approaches in the population management of multi-
objective metaheuristics is the application of clustering algorithms on the archive.
The objective is to produce a set of well diversified representatives Pareto solutions
in a bounded archive. An archive is often used to store Pareto solutions and the clus-
tering is then performed to avoid a bias towards a certain region of the search space
and to reduce the number of Pareto solutions. Such a bias would lead to an unbal-
anced distribution of the Pareto solutions. For instance, a hierarchical clustering can
be applied using the average linkage method [183].

1.7 Conclusions and Perspectives

The efficient solving of complex problems must involve ideas from different
paradigms: metaheuristics, mathematical programming, constraint programming,
machine learning, graph theory, parallel and distributed computing, and so on.
Pure metaheuristics are not generally well suited to search in high-dimensional and
complex landscapes. Hybrid metaheuristics represent actually the most efficient al-
gorithms for many classical and real-life difficult problems. This is proven by the
huge number of efficient hybrid metaheuristics proposed to solve a large variety of
problems.

Nowadays, combining metaheuristics becomes a common strategy to solve op-
timization problems. Hybrid algorithms will constitute competitive candidates for
solving difficult optimization problems in the future years. As we have developed
a unified view of metaheuristics which is based on their key search components,
one can say that designing a mono-objective or multi-objective metaheuristic can
be reduced to select the most suited search components and combining them. This
design approach is naturally a hybrid one, and it is not under the control of a single
paradigm of metaheuristics14.

A unified taxonomy, based on a hierarchical (low level versus high level, relay
versus teamwork) and flat classification (homogeneous/heterogeneous, global/par-
tial, general/specialist), has been developed to describe in terms of design and im-
plementation the different hybridization schemes of metaheuristics with:

• Metaheuristics: combining P-metaheuristics with S-metaheuristics has provided
very powerful search algorithms. Pure P-metaheuristics such as evolutionary al-
gorithms, scatter search, and ant colonies are generally not well suited to fine-
tuned search in highly combinatorial spaces. P-metaheuristic are more efficient
in terms of diversification (i.e. exploration) in the search space. Hence, they need
to be combined with more intensification-based (i.e. exploitation-based) search
algorithms which are generally based on S-metaheuristics (e.g. local search, tabu
search).

14 Using this design approach, it is worthwhile to speak about hybrid metaheuristics as any
metaheuristic will be a hybrid one!.
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• Mathematical programming: in the last decade, there has been an important
advance in designing efficient exact methods in the operations research commu-
nity (e.g. integer programming). There are many opportunities to design hybrid
approaches combining metaheuristics and exact methods. Indeed, the two ap-
proaches have complementary advantages and disadvantages (e.g. efficiency and
effectiveness).

• Constraint programming: over the last years, interest on combining meta-
heuristics and constraint programming has risen considerably. The availability of
high-level modeling languages and software solvers for constraint programming
will lead to more hybrid approaches which capture the most desirable features of
each paradigm.

• Data mining: nowadays, using metaheuristics to solve data mining and machine
learning problems becomes common. But the challenge is the incorporation of
machine learning and data mining techniques into metaheuristics. The major in-
terest in using machine learning and data mining techniques is to extract useful
knowledge from the history of the search in order to improve the efficiency and
the effectiveness of metaheuristics. Both positive and negative knowledge must
be extracted. In fact, most of the actual works focus only on positive knowl-
edge [128].

The main drawback of hybridization is the introduction of new parameters which
define the hybrid scheme. The setting of those parameters is non trivial. A cru-
cial question that has to be addressed in the future is an aid for the efficient de-
sign of hybrid metaheuristics, in which the automatic setting of parameters must
be investigated [73] [25]. Indeed, it will be interesting to guide the user to define
the suitable hybrid scheme to solve a given problem. It will be also interesting to
define “adaptive” cooperation mechanisms which allows to select dynamically the
optimization methods according to convergence or other criteria such as diversity.
Some approaches such as the COSEARCH [164] or “hyper-heuristics” [28] have
been proposed to deal with this problem. Those approaches are dedicated to choose
the right heuristic for the right operation at the right time during the search. It must
be noted that the those hybrid approaches operate in the heuristic space, as opposed
to most implementations of meta-heuristics, which operate in the solution space.
This principle is relatively new, although the concept of “optimizing heuristics” is
not a recent one.

Using the software framework ParadisEO, it is natural to combine metaheuristics
which have been developed under the framework to design S-metaheuristics (un-
der ParadisEO-MO), P-metaheuristics (under ParadisEO-EO), and multi-objective
metaheuristics (under ParadisEO-MOEO). Still a work to do for combining meta-
heuristics with exact optimization and machine learning algorithms. The coupling of
software frameworks dealing with the three classes of algorithms (i.e. metaheuris-
tics, exact and machine learning algorithms) is an important issue for the future. This
enables to reduce the complexity of designing and implementing hybrid approaches
and make them more and more popular.

It will be also interesting to deeply explore parallel models for hybrid meth-
ods. Parallel schemes ideally provide novel ways to design and implement hybrid
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algorithms by providing parallel models of the algorithms. Hence, instead of merely
parallelizing and finely tuning a sequential hybrid algorithm which has limited capa-
bilities to be parallelized, teamwork hybrid schemes are inherently suited to parallel
environments.
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cycle et recherche locale appliquée au routage de véhicules. In: Huitièmes Journées
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