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Preface

Importance of This Book

Applications of optimization is countless. Every process has a potential to be opti-
mized. There is no company which is not involved in solving optimization problems.
Indeed, many challenging applications in science and industry can be formulated as
optimization problems. Optimization occurs in the minimization of time, cost, risk,
or the maximization of profit, quality, efficiency. For instance, there are many pos-
sible ways to design a network to optimize the cost and the quality of service; there
are many ways to schedule a production to optimize the time; there are many ways
to predict a 3D structure of a protein to optimize the potential energy, and so on.

A large number of real-life optimization problems in science, engineering, eco-
nomics and business are complex and difficult to solve. They cannot be solved in an
exact manner within a reasonable amount of time. Using hybrid algorithms is the
main alternative to solve this class of problems.

Purpose of This Book

The main goal of this book is to provide a state of the art of hybrid metaheuristics.
The book provides a complete background that enables readers to design and im-
plement hybrid metaheuristics to solve complex optimization problems in a diverse
range of application domains. Readers learn to solve large scale problems quickly
and efficiently. Numerous real-world examples of problems and solutions demon-
strate how hybrid metaheuristics are applied in such fields as telecommunication,
logistics and transportation, bioinformatics, engineering design, scheduling, etc.



VIII Preface

Audience

One of the main audience of this book is advanced undergraduate and graduate
students in computer science, operations research, applied mathematics, control,
business and management, engineering, etc. Many undergraduate courses on op-
timization throughout the world would be interested in the contents thanks to the
introductory part of the book.

In addition, the postgraduate courses related to optimization and complex prob-
lem solving will be a direct target of the book. Hybrid metaheuristics are present in
more and more postgraduate studies (computer science, business and management,
mathematical programming, engineering, control, etc).

The intended audience is also researchers in different disciplines. Researchers
in computer science and operations research are developing new optimization algo-
rithms. Many researchers in different application domains are also concerned by the
use of hybrid metaheuristics to solve their problems.

Many engineers are also dealing with optimization in their problem solving. The
purpose of the book is to help engineers to use hybrid metaheuristics for solving
real-world optimization problems in various domains of application. The applica-
tion part of the book will deal with many important and strategic domains such
as computational biology, telecommunication, engineering design, data mining and
machine learning, transportation and logistics, production systems, etc.

Outline

The book is organized following 17 different chapters organized in 5 parts :

• Unified view of hybrid metaheuristics for mono and multi-objective optimiza-
tion, and optimization under uncertainty.

• Combining metaheuristics with (complementary) metaheuristics.
• Combining metaheuristics with exact methods from mathematical programming

approaches which are mostly used in operations research.
• Combining metaheuristics with constraint programming approaches developed

in the artificial intelligence community.
• Combining metaheuristics with machine learning and data mining techniques.

Lille, Prof. Dr. El-Ghazali Talbi
March 2012 University of Lille 1, CNRS, INRIA, France
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delle Scienze 208, I-33100, Udine, Italy
e-mail: cipriano@dimi.uniud.it

Pedro J. Copado-Méndez
Departament d’Enginyeria Quimica, Universitat Rovira Virgili, Tarragona, Spain
e-mail: pedrojesus.copado@urv.cat

Frederico R. B. Cruz
Departamento de Estatı́stica - ICEx - UFMG, Av. Antônio Carlos, 6627, 31270-901
- Belo Hori-zonte - MG, Brazil
e-mail: fcruz@est.ufmg.br

eat@lcc.uma.es
falvelos@dps.uminho.pt
salmuhaideb@acm.org
benlic@info.univ-angers.fr
cblum@lsi.upc.edu
cipriano@dimi.uniud.it
pedrojesus.copado@urv.cat
fcruz@est.ufmg.br


XXII List of Contributors

Patrick De Causmaecker
Katholieke Universiteit Leuven Campus Kortrijk Etienne Sabbelaan 53 8500
Kortrijk, Belgium
e-mail: Patrick.DeCausmaecker@kuleuven-kortrijk.be

Amaro de Sousa
Instituto de Telecomunicações / DETI, Universidade de Aveiro, 3810-193 Aveiro,
Portugal
e-mail: asou@ua.pt

Luca Di Gaspero
Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, Università degli
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Part I
Hybrid Metaheuristics for Mono and

Multi-objective Optimization, and
Optimization under Uncertainty



Chapter 1
A Unified Taxonomy of Hybrid Metaheuristics
with Mathematical Programming, Constraint
Programming and Machine Learning

El-Ghazali Talbi

Abstract. Over the last years, interest on hybrid metaheuristics has risen consider-
ably in the field of optimization. The best results found for many real-life or classical
optimization problems are obtained by hybrid algorithms. Combinations of algo-
rithms such as metaheuristics, mathematical programming, constraint programming
and machine learning techniques have provided very powerful search algorithms.
Four different types of combinations are considered in this chapter:

• Combining metaheuristics with (complementary) metaheuristics.
• Combining metaheuristics with exact methods from mathematical programming

approaches which are mostly used in operations research.
• Combining metaheuristics with constraint programming approaches developed

in the artificial intelligence community.
• Combining metaheuristics with machine learning and data mining techniques.

1.1 Introduction

This chapter deals with the design of hybrid metaheuristics and their implemen-
tation. A taxonomy of hybrid algorithms is presented in an attempt to provide a
common terminology and classification mechanisms. The goal of the general taxon-
omy given here is to provide a mechanism to allow comparison of hybrid algorithms
in a qualitative way. In addition, it is hoped the categories and their relationships to
each other have been chosen carefully enough to indicate areas in need of future
work as well as to help classify future work. Among existing classifications in other
domains, one can find examples of flat and hierarchical classifications schemes [74].
The taxonomy proposed here is a combination of these two schemes - hierarchical
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as long as possible in order to reduce the total number of classes, and flat when the
descriptors of the algorithms may be chosen in an arbitrary order. The same clas-
sification is used for all types of combinations. For each type of hybrids, the main
ideas in combining algorithms are detailed. Each class of hybrids is illustrated with
some examples. A critical analysis is also carried out.

In fact, the taxonomy could usefully be employed to classify any hybrid opti-
mization algorithm (specific heuristics, exact algorithms). The basic classification is
extended by defining the space of hybrid metaheuristics as a grammar, where each
sentence is a method that describes a combination of metaheuristics, mathematical
programming and constraint programming. In this chapter, a “high-level” descrip-
tion of hybrid metaheuristics is proposed. The internal working and the algorithmic
aspects of a given metaheuristic are not considered.

The chapter is organized as follows. First, in section 1.2, our concern is hybrid
algorithms combining metaheuristics. The design and implementation issues of hy-
brid metaheuristics are detailed. A taxonomy is presented to encompass all pub-
lished work up to date in the field and to provide a unifying view of it. A grammar
which generalizes the basic hybridization schemes is proposed. In section 1.3, the
combination of metaheuristics with mathematical programming approaches is con-
sidered. Section 1.4 deals with the combination of metaheuristics with constraint
programming techniques. Then, in section 1.5 the combination of metaheuristics
with machine learning and data mining algorithms is addressed. Hybrid metaheuris-
tics for multi-objective optimization are addressed in section 1.6.

1.2 Hybrid Metaheuristics

Hybridization of metaheuristics involves a few major issues which may be classified
as design and implementation. The former category concerns the hybrid algorithm
itself, involving issues such as functionality and architecture of the algorithm. The
implementation consideration includes the hardware platform, programming model
and environment on which the algorithm is to be run. In this chapter, a difference is
made between the design issues used to introduce hybridization and implementation
issues that depend on the execution model of the algorithms.

1.2.1 Design Issues

The taxonomy will be kept as small as possible by proceeding in a hierarchical way
as long as possible, but some choices of characteristics may be made independent
of previous design choices, and thus will be specified as a set of descriptors from
which a subset may be chosen.
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1.2.1.1 Hierarchical Classification

the structure of the hierarchical portion of the taxonomy is shown in figure 1.1. A
discussion about the hierarchical portion then follows. At the first level, one may dis-
tinguish between low-level and high-level hybridizations. The low-level hybridiza-
tion addresses the functional composition of a single optimization method. In this
hybrid class, a given function of a metaheuristic is replaced by another metaheuris-
tic. In high-level hybrid algorithms, the different metaheuristics are self-contained.
There is no direct relationship to the internal workings of a metaheuristic.

F u n c t i o n  :

-  G e n e r a l i s t

-  Spec ia l i s t

D o m a i n  :

-  G l o b a l

-  Par t i a l

L e v e l  :

M o d e  :

L o w - l e v e l

R e l a y

H i g h - l e v e l

T e a m w o r kR e l a yT e a m w o r k

 H i e r a r c h i c a l
c l a s s i f i c a t i o n

H y b r i d  M e t a h e u r i s t i c s

      F lat
c l a s s i f i c a t i o n

T y p e  :

-  H e t e r o g e n e o u s

-  H o m o g e n e o u s

L R H L T H H T HH R H

Fig. 1.1 Classification of hybrid metaheuristics in terms of design issues

In relay hybridization, a set of metaheuristics is applied one after another, each
using the output of the previous as its input, acting in a pipeline fashion. Teamwork
hybridization represents cooperative optimization models, in which many cooperat-
ing agents evolve in parallel; each agent carries out a search in a solution space.

Four classes are derived from this hierarchical taxonomy:

• LRH (Low-level Relay Hybrid): this class of hybrids represents algorithms in
which a given metaheuristic is embedded into a S-metaheuristic (Single solution
based metaheuristic) [?]. Few examples of hybrid metaheuristics belong to this
class.

Example 1.1. Embedding local search into simulated annealing: the main idea
is to incorporate deterministic local search techniques into simulated annealing
so that the Markov chain associated to simulated annealing explores only local
optima [124]. The algorithm proceeds as follows: suppose the configuration is
currently locally optimal. This is labeled Start in figure 1.2. A perturbation
or a “kick” is applied to this configuration which significantly changes the cur-
rent solution Start. After the kick, the configuration labeled Intermediate
in the figure is reached. It is much better to first improve Intermediate by
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a local search and apply the accept/reject test of simulated annealing only af-
terwards. The local search takes us from Intermediate to the configuration
labeled Trial, and then the accept/reject test is applied. If Trial is accepted,
one has to find an interesting large change to Start. If Trial is rejected, re-
turn to Start. Many of the barriers (the “ridges”) of the fitness landscape are
jumped over in one step by the hybrid metaheuristic.

O b j e c t i v e

I n t e r m e d i a t e
  so lu t i on

 S ta r t

K i c k

L o c a l  s e a r c h

C o n f i g u r a t i o n

T r i a l

Fig. 1.2 An example of LRH hybridization embedding local search into simulated annealing.
The figure gives a schematic representation of the objective function and the configuration
modification procedure used in the LRH hybrid algorithm.

To implement the above hybridization, the choice for an appropriate “kick”
should be adapted to both the optimization problem and the local search method
used. For the traveling salesman problem, if the local search algorithm used is the
2-opt local search heuristic, the “kick” move must apply a k-change with k > 2
to prevent cycles. The “kick” operator must attain solutions which are always
outside the neighborhood associated to the local search algorithm.

• LTH (Low-level Teamwork Hybrid): two competing goals govern the design
of a metaheuristic: exploration and exploitation. Exploration is needed to ensure
that every part of the space is searched enough to provide a reliable estimate of
the global optimum. Exploitation is important since the refinement of the current
solution will often produce a better solution. P-metaheuristics (Population based
metaheuristics) [?] (e.g. evolutionary algorithms, scatter search, particle swarm,
ant colonies) are powerful in the exploration of the search space, and weak in the
exploitation of the solutions found.

Therefore, most efficient P-metaheuristics have been coupled with
S-metaheuristics such as local search, simulated annealing and tabu search,
which are powerful optimization methods in terms of exploitation. The two
classes of algorithms have complementary strengths and weaknesses. The S-
metaheuristics will try to optimize locally, while the P-metaheuristics will try to
optimize globally. In LTH hybrid, a metaheuristic is embedded into a
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P o p u l a t i o n  b a s e d  m e t a h e u r i s t i c

I nd i v idua l s ,  pa r t i c l es ,  an ts ,  so lu t i ons ,  . . .

S i n g l e - s o l u t i o n  b a s e d  m e t a h e u r i s t i c

.  .  .

Fig. 1.3 Low-level Teamwork Hybrid (LTH). S-metaheuristics are embedded into P-
metaheuristics.

P-metaheuristic1 (Fig. 1.3). This class of hybrid algorithms is very popular and
has been applied successfully to many optimization problems. Most of the state-
of-the art of P-metaheuristics integrate S-metaheuristics.

Example 1.2. Embedding S-metaheuristics into evolutionary algorithms:
when an evolutionary algorithm is used as a global optimizer, its standard op-
erators may be augmented with the ability to perform local search. Instead of
using a blind operator acting regardless of the fitness of the original individual
and the operated one, an operator which is a heuristic that considers an indi-
vidual as the origin of its search applies itself, and finally replaces the original
individual by the enhanced one (see figure 1.4). The use of local search with
evolutionary algorithms is also inspired by biological models of learning and
evolution. EAs take many cues from mechanisms observed in natural evolution.
Similarly, models of learning are often equated with techniques for local opti-
mization [148]. Research on the interaction between evolution and learning had
naturally led computer scientists to consider interactions between evolutionary
algorithms and local optimization [20].

The genetic operators replaced or extended are generally mutation2 and
crossover.

– mutation: the local search algorithm may be a simple local search [157] [174]
[100], tabu search [70] [111] [171], simulated annealing algorithm [36] [180]
or any S-metaheuristic (e.g. threshold accepting, guided local search). This
kind of operators is qualified lamarckian3. In the lamarckian model, an indi-
vidual is replaced by the local optima found, contrary to the baldwin model
where the local optima is just used to evaluate the individual. In several oc-
casions, LTH has provided better results than other methods on difficult prob-
lems. For instance, good results have been obtained on the graph coloring
problem combining a genetic algorithm with tabu search [71]. A local search
algorithm which uses problem-specific knowledge may be incorporated into

1 This class of hybrid metaheuristics includes memetic algorithms.
2 Also known as evolutionary local search algorithms.
3 The name is an allusion to Jean Batiste de Lamarck’s contention that phenotype character-

istics acquired during lifetime can become heritable traits.
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E v o l u t i o n a r y  a l g o r i t h m

I n d i v i d u a l s
T a b u  s e a r c h

M u t a t i o n
C r o s s o v e r

G r e e d y  h e u r i s t i c

Fig. 1.4 Illustration of a LTH hybrid. For instance, a tabu search is used as a mutation oper-
ator and a greedy heuristic as a crossover operator into a genetic algorithm.

the genetic operators [37]. Questions concerning the best use of local search
with a genetic algorithm have been addressed in [86].

– Crossover: classical crossover operators do not use any heuristic informa-
tion about a specific application domain. They are blind operators. One can
introduce heuristic crossover in order to account for problem-specific infor-
mation [82]. For instance, greedy heuristics for the crossover operator have
shown to improve EAs results when applied to job-shop scheduling, set cov-
ering, and traveling salesman problems [52].

Many crossover operators including heuristic information have been pro-
posed for continuous optimization:
· Heuristic crossover where the offspring has the following form x′ = u(x2−

x1)+ x2 where u is a uniform random value in [0,1], x1 and x2 are the two
parents with the condition that x2 is better than x1 [181]. This heuristic
crossover uses the objective function in determining the direction of the
search.

· Simplex crossover where more than two parents are selected, the worst
(resp. the best) individuals x2 (resp. x1) are determined. The centroid of the
group c is then computed without taking into account the solution x2. The
offspring has the following form x′ = c+(c− x2) [143].

This hybrid model can be used to improve any P-metaheuristic: ant colonies
[161] [156], genetic programming [135], particle swarm optimization, and so
forth. The S-metaheuristic has been introduced to intensify the search. Let us no-
tice that the scatter search metaheuristic already includes an improvement proce-
dure which is based on S-metaheuristics [49].

The main problem encountered in this class of hybrids is premature conver-
gence. Indeed, if the hybridization is applied at each iteration, very competitive
solutions will be generated in the beginning of the search which will cause an
eventual premature convergence. Conditional hybridization is carried out to pre-
vent this phenomenon by applying the combination:

– Static manner: for instance the combination is performed at a given fre-
quency. The hybridization is applied once for a given number of iterations.
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– Adaptive manner: when a given event occurs during the search the hybridiza-
tion is performed. For instance, if there is no improvement of the search for a
given number of iterations.

• HRH (High-level Relay Hybrid): in HRH hybrids, self-contained metaheuris-
tics are executed in a sequence. For example, the initial solution of a given S-
metaheuristic may be generated by another optimization algorithm. Indeed, the
initial solution in S-metaheuristics has a great impact on their performances. A
well known combination scheme is to generate the initial solution by greedy
heuristics which are in general of less computing complexity than iterative
heuristics (Fig. 1.5).

This scheme may be also applied to P-metaheuristics, but a randomized greedy
heuristic must be applied to generate a diverse population (Fig. 1.5). Greedy
heuristics are in general deterministic algorithms and then they generate always
the same solution. On the other hand, the diversity of the initial population has
a great impact on the performance of P-metaheuristics. This hybrid scheme is
carried out explicitly in the scatter search metaheuristic.

G r e e d y  h e u r i s t i c R a n d o m i z e d  g r e e d y  h e u r i s t i c

S - m e t a h e u r i s t i c P - m e t a h e u r i s t i c

I n i t i a l  s o l u t i o n I n i t i a l  p o p u l a t i o n

Fig. 1.5 High-level Relay Hybridization. (Left) Generation of the initial solution of a S-
metaheuristic by a greedy algorithm. (Right) Generation of the initial population of a P-
metaheuristic by a randomized greedy heuristic.

Combining in the HRH scheme P-metaheuristics with S-metaheuristic is also
largely applied. It is well known that P-metaheuristics are not well suited for fine-
tuning structures which are very close to optimal solutions. Indeed, the strength
of P-metaheuristics is in quickly locating the high performance regions of vast
and complex search spaces. Once those regions are located, it may be useful
to apply S-metaheuristics to the high performance structures evolved by the P-
metaheuristic.

A fundamental practical remark is that after a certain amount of time, the pop-
ulation is quite uniform and the fitness of the population is no longer decreasing.
The odds to produce fitter individuals are very low. That is, the process has fallen
into a basin of attraction from which it has a low probability to escape.

The exploitation of the already found basin of attraction to find as efficiently as
possible the optimal point in the basin is recommended. It is experimentally clear
that the exploitation of the basin of attraction that has been found may be more
efficiently performed by another algorithm than by a P-metaheuristic. Hence, it
is much more efficient to use a S-metaheuristic such as a hill-climbing or tabu
search (see figure 1.6). The HRH hybridization may use a greedy heuristic to
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generate a good initial population for the P-metaheuristic (see figure 1.6). At the
end of a simulated annealing search, it makes sense to apply local search on the
best found solution to ensure that it is a local optima.

S - m e t a h e u r i s t i c

P - m e t a h e u r i s t i c

 P o p u l a t i o n ,  s u b - p o p u l a t i o n ,  b e s t  s o l u t i o n ,  . . .

F i n a l  ( s u b ) p o p u l a t i o n

F i n a l  ( s u b ) p o p u l a t i o n  i m p r o v e d

Fig. 1.6 High-level Relay Hybridization. There may be more than two algorithms to be
pipelined.

In this hybrid scheme, the S-metaheuristics may be applied to:

– The whole population: this will leads to the best final solutions but with a
more important computational cost of the search.

– A sub-population: the selection of the subpopulation may be based on the
diversity of the solutions. This is a good compromise between the complexity
of the search and the quality of the final results.

– The best solution of the population: the S-metaheuristic is applied once on
the best solution of the obtained population. This procedure will reduce the
search time but does not ensure to find the best solution.

A path relinking strategy may be applied to a population or a set of elite solutions
found by a metaheuristic [6]. Path relinking may be seen as an intensification task
over a given population of solutions.

Example 1.3. HRH hybrid evolutionary algorithms: many research works of
the literature have used the idea of HRH hybridization for EAs. In [121] [166],
the considered hybrid scheme introduces respectively simulated annealing and
tabu search to improve the population obtained by a GA. In [132], the author
introduces hill-climbing to improve the results obtained by an ES. In [118], the
algorithm proposed starts from simulated annealing and uses GAs to enrich the
solutions found. Experiments performed on the graph partitioning problem using
the tabu search algorithm exploiting the result found by a GA give better results
than a search performed either by the GA, or the tabu search alone [166].
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• HTH (High-level Teamwork Hybrid): the HTH4 scheme involves several self-
contained algorithms performing a search in parallel, and cooperating to find an
optimum. Intuitively, HTH will ultimately perform at least as well as one algo-
rithm alone, more often perform better, each algorithm providing information to
the others to help them.

Example 1.4. Island model for genetic algorithms: the first HTH hybrid model
has been proposed for genetic algorithms (GAs). This is the well known island
model5. The population in this model is partitioned into small subpopulations by
geographic isolation. A GA evolves each subpopulation and individuals can mi-
grate between subpopulations (Fig. 1.7). This model is controlled by several pa-
rameters: the topology that defines the connections between subpopulations, the
migration rate that controls the number of migrant individuals, the replacement
strategy used, and a migration interval that affects how often migration occurs.
In some island models, the individuals really migrate and therefore leaves empty
space in the original population. In general, the migrated individuals remain in
the original population (i.e. pollination model [155]).

Let us present some pioneering island models for GAs. Tanese proposed a
GA based HTH scheme that used a 4-D hypercube topology to communicate
individuals from one subpopulation to another [170]. Migration is performed at
uniform periods of time between neighbor subpopulations along one dimension
of the hypercube. The migrants are chosen probabilistically from the best individ-
uals of the subpopulation and they replace the worst individuals in the receiving
subpopulation.

Cohoon, Hedge, Martin and Richards proposed a HTH based on the theory of
“punctuated equilibria” [41]. A linear placement problem was used as a bench-
mark and experimented using a mesh topology. They found that the algorithm
with migration outperforms the algorithm without migration and the standard
GA. This work was later extended using a VLSI design problem (graph parti-
tioning) on a 4-D hypercube topology [42] [43].

Belding in [19] attempted to extend the Tanese’s work using the Royal Road
continuous functions. Migrants individuals are sent to a random selected subpop-
ulation, rather than using a hypercube topology. The global optimum was found
more often when migration (i.e. cooperating GAs) occurred than in completely
isolated cases (i.e. non-cooperating GAs).

Afterwards, the HTH hybrid model has been generalized to other P-metaheuristics
and S-metaheuristics. Indeed, the HTH hybrid model has also been applied to
simulated annealing [61], genetic programming [114], evolution strategies [178],
ant colonies [123], scatter search [50], tabu search [62], and so on.

4 HTH hybrids is referred as multiple interacting walks [176] multi-agent algorithms [24],
and cooperative search algorithms [40] [39] [90] [92] [172].

5 Also known as migration model, diffusion model, and coarse grain model.
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G A

G AG A

G A

S i m u l a t e d  a n n e a l i n g
G e n e t i c  p r o g r a m m i n g
E v o l u t i o n  s t r a t e g i e s
A n t  c o l o n i e s
T a b u  s e a r c h
B e e  c o l o n y
S c a t t e r  s e a r c h
A r t i f i c i a l  i m m u n e  s y s t e m
...

Fig. 1.7 The island model of genetic algorithms as an example of High-level Teamwork Hy-
brid (HTH). The same model has been used with different topologies for simulated anneal-
ing, genetic programming, evolution strategy, ant colony, tabu search, bee colony, artificial
immune system, etc.

1.2.1.2 Flat Classification

Homogeneous/Heterogeneous: in homogeneous hybrids , all the combined algo-
rithms use the same metaheuristic. Hybrid algorithms such as the island model for
GAs belong to this class of hybrids. The homogeneous metaheuristics may differ in
the initialization of their (Fig. 1.8):

• Parameters: in general, different parameters are used for the algorithms. For
instance, in the HTH hybrid scheme which is based on tabu search, the algorithms
may be initialized with different tabu list sizes [179]; different crossover and
mutation probabilities may be used in evolutionary algorithms, etc.

• Search components: given a metaheuristic, one can use different strategies for
any search component of the metaheuristic, such as the representation of solu-
tions, objective function approximations [59] [151], initial solutions, search op-
erators (neighborhood, mutation, crossover, ...), termination criteria, etc.

Using different parameters or search components into a given metaheuristic will
increase the robustness of the hybrid algorithm.

Example 1.5. Heterogeneous hybrids: in heterogeneous algorithms , different
metaheuristics are used (Fig. 1.9). A heterogeneous HTH algorithm based on ge-
netic algorithms and tabu search has been proposed in [46] to solve a network de-
sign problem. The population of the GA is asynchronously updated by multiple tabu
search algorithms. The best solutions found by tabu search algorithms build an elite
population for the GA.

The GRASP method (Greedy Randomized Adaptive Search Procedure) may be
seen as an iterated heterogeneous HRH hybrid, in which local search is repeated
from a number of initial solutions generated by a randomized greedy heuristic [66]
[65]. The method is called adaptive because the greedy heuristic takes into account
the decisions of the precedent iterations [64].
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H o m o g e n e o u s

P a r a m e t e r s :
-  TS:  tabu  l i s t ,  . . .
-  E A :  c r o s s o v e r  p r o b ,  . . .
-  SA :  i n i t i a l  t empera tu re ,  . . .

H e t e r o g e n o u s

S e a r c h  c o m p o n e n t s :
  -  In i t ia l  so lu t ion
  -  E n c o d i n g  
  -  S e a r c h  o p e r a t o r s :  
       -  LS :  ne ighbo rhood ,  ne ighbo r  se lec t i on ,  . . .  
       -  EA :  c rossove r ,  mu ta t i on ,  se lec t i on  s t ra tegy ,  . . .  
       -  A C O :  s o l u t i o n  c o n s t r u c t i o n ,  p h e r o m o n e  u p d a t e ,  . . .
       -  . . .

H y b r i d  M e t a h e u r i s t i c s

S a m e  m e t a h e u r i s t i c D i f f e r e n t  m e t a h e u r i s t i c s

Fig. 1.8 Homogeneous versus heterogeneous hybrid metaheuristics. Some illustrative exam-
ples of parameters and search components are illustrated.

P - m e t a h e u r i s t i c

S - m e t a h e u r i s t i c

G r e e d y  h e u r i s t i c s

C o m m u n i c a t i o n  m e d i u m

Fig. 1.9 High-level Teamwork Hybridization HTH (heterogeneous, global, general). Several
search algorithms cooperate, co-adapt, and co-evolve a solution.

Global/Partial: from another point of view, one can also distinguish two kinds of
cooperation: global and partial. In global hybrids , all the algorithms explore the
same whole search space. The goal is here to explore the space more thoroughly.
All the above mentioned hybrids are global hybrids, in the sense that all the al-
gorithms solve the whole optimization problem. A global HTH algorithm based on
tabu search has been proposed in [47], where each tabu search task performs a given
number of iterations, then broadcasts the best solution. The best of all solutions be-
comes the initial solution for the next phase.

In partial hybrids, the problem to be solved is decomposed a priori into sub-
problems, each one having its own search space (Fig. 1.10). Then, each algorithm
is dedicated to the search in one of these sub-spaces. Generally speaking, the sub-
problems are all linked with each others, thus involving constraints between optima
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P r o b l e m
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B u i l d  a  g l o b a l  v i a b l e  s o l u t i o n

Pa r t i a l  so l u t i ons
S y n c h r o n i s a t i o n

Fig. 1.10 Partial hybrid schemes. Several search algorithms cooperate in solving sub-
problems. A synchronization is performed to build a global solution from the partial solutions
found.

found by each algorithm. Hence, the algorithms communicate in order to respect
these constraints and build a global viable solution to the problem.

Example 1.6. Partial hybrids: this approach has been applied for many specific
metaheuristics such as simulated annealing and tabu search algorithms [158]. It is
also a part of more general search framework such as POPMUSIC (Partial OPti-
mization Metaheuristic Under Special Intensification Conditions [160] and VNDS
(Variable Neighborhood Decomposition Search) [85].

Asynchronous teams (A-Teams) represent a general model for a HTH hetero-
geneous partial hybrid strategy [168]. They manipulate a set of solutions, which
may be global or partial solutions. A set of agent cooperate via a blackboard sys-
tem, a shared memory structure. An agent may be any search algorithm or operator,
which consists in picking a (partial) solution from the blackboard, transforming it
and sending back the result.

An example of application of partial homogeneous HTH has been done for the
job-shop scheduling problem [93]. The search algorithm is a GA. Each GA evolves
individuals of a specie which represent the process plan for one job. Hence, there are
as many cooperating GAs as there are jobs. The communication medium collects
fitted individuals from each GA, and evaluates the resulting schedule as a whole,
rewarding the best process plans.

Decomposition techniques based on partitioning time have been used to solve
many problems such as the production lot-sizing (partitioning of time) [63]. Decom-
position techniques based on partitioning a geographical region have been largely
applied to optimization problems associated with Euclidean distances such as the
TSP [110], the VRP, and the P-median problem [159].

Example 1.7. Partitioning a continuous objective function : a function f is sepa-
rable if:
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(argminx1 f (x1, ...), ...,argminxn f (...,xn)) = argmin( f (x1,x2, ...,xn))

It follows that the function f can be optimized in a parallel way using n independent
algorithms. Each algorithm will solve a 1-D optimization problem.

Generalist/Specialist: all the above mentioned hybrids are general hybrids , in the
sense that all the algorithms solve the same target optimization problem. Special-
ist hybrids combine algorithms which solve different problems. The COSEARCH
generic model belongs to this class of hybrids (Fig. 1.11). COSEARCH manages the
cooperation of a search agent (a local search), a diversifying agent and an intensi-
fying agent. The three agents exchange information via a passive coordinator called
the adaptive memory6. A main key point of the COSEARCH approach is the design
of this memory which focus on high quality regions of the search and avoid attractive
but deceptive areas. The adaptive memory contains a history of the search; it stores
information about the already visited areas of the search space and about the intrin-
sic nature of the good solutions already found. When diversifying, the local search
agent receives starting solutions in unexplored regions; when intensifying, the search
agent receives an initial solution in a promising region. The diversifying agent refers
to the adaptive memory (information about the explored areas) to yield a solution
from an unexplored region. The intensifying agent refers to the adaptive memory
(information about promising regions) to produce a promising starting solution.
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Fig. 1.11 The COSEARCH HTH specialist hybrid model for metaheuristics. Several search
algorithms solve different problems.

Example 1.8. COSEARCH for the quadratic assignment problem: an example
of the application of the COSEARCH approach has been developed in [164] to solve
the quadratic assignment problem (QAP). A parallel tabu search is used to solve the
QAP, while a genetic algorithm makes a diversification task, which is formulated as

6 The concept of adaptive memory has been proposed in the domain of combinatorial
optimization [162]. It is similar to the concept of blackboard in the field of Artificial In-
telligence [60].
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another optimization problem. The frequency memory stores information relative to
all the solutions visited during the tabu search. The genetic algorithm refers to the
frequency memory to generate solutions being in unexplored regions.

Another approach of specialist hybrid HRH heuristics is to use a heuristic to opti-
mize another heuristic, i.e. find the optimal values of the parameters of the heuristic
(Fig. 1.12). This approach is known as meta-optimization. For instance, it has been
used to optimize simulated annealing and noisy methods (NM) by GA [115], ant
colonies (AC) by GA [1], simulated annealing based algorithms by a GA [79], and
a GA by a GA [153]7. In [153], the three parameters optimized are the crossover
rate, inversion rate, and mutation rate. The individuals of the population associated
to the optimizer consist of three integers representing the mutation rate, inversion
rate, and crossover rate. The fitness of an individual is taken to be the fitness of the
best solution that the GA can find in the entire run, using these parameters.

M e t a - l e v e l  o f
o p t i m i z a t i o n

M e t a h e u r i s t i c

-  E A :  p o p u l a t i o n  s i z e ,  c r o s s o v e r  p r o b a b i l i t y ,  
mu ta t i on  p robab i l i t y ,  . . .

-  Tabu  sea rch :  t abu  l i s t ,  . . .

S o l u t i o n  =  E n c o d i n g  o f  t h e  p a r a m e t e r s  o f  t h e  m e t a h e u r i s t i c
                 used  to  so l ve  a  g i ven  ta rge t  op t im iza t i on  p rob lem

T a r g e t  o p t i m i z a t i o n
          p rob lem

S o l u t i o n  =  E n c o d i n g  o f  t h e  t a r g e t  p r o b l e m

P - m e t a h e u r i s t i c : S - m e t a h e u r i s t i c :

Fig. 1.12 Meta-level of optimization in metaheuristics. Metaheuristics are used to optimize
the parameters of another metaheuristic.

1.2.2 Implementation Issues

The structure of the taxonomy concerning the implementation issues is shown in
figure 1.13. A discussion about this taxonomy then follows.

1.2.2.1 Dedicated versus General-Purpose Computers

Application specific computers differ from general purpose ones in that they usually
only solve a small range of problems, but often at much higher rates and lower cost.

7 This procedure is also called meta-evolution.
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Their internal structure is tailored for a particular problem, and thus can achieve
much higher efficiency and hardware utilization than a processor which must handle
a wide range of tasks.

In the last years, the advent of programmable logic devices has made easier to
build specific computers for metaheuristics such as simulated annealing [3] and ge-
netic algorithms [149]. A general architecture acting as a template for designing
a number of specific machines for different metaheuristics (SA, TS, etc) may be
constructed [2]. The processor is built with XILINX FPGAs and APTIX intercon-
nection chips. Experiments evaluating a simulated annealing algorithm to solve the
traveling salesman problem achieved a speedup of about 37 times over an IBM
RS6000 workstation. To our knowledge, this approach has not been yet proposed
for hybrid metaheuristics.

Nowadays, the use of GPU (Graphical Processing Unit) devices is more and more
popular in many application domains. Indeed, those devices are integrated into many
workstations to deal with visualization tasks. The idea is to exploit those available
resources to improve the effectiveness of hybrid metaheuristics.

1.2.2.2 Sequential versus Parallel

Most of the proposed hybrid metaheuristics are sequential programs. According to
the size of problems, parallel implementations of hybrid algorithms have been con-
sidered. The easiness to use a parallel and distributed architecture has been acknowl-
edged for the HTH hybrid model.

N a t u r e  :

T y p e  :

S p e c i f i c  c o m p u t e r s

F P G A ,  . . .

G e n e r a l - p u r p o s e  c o m p u t e r s

P a r a l l e lS e q u e n t i a lG P U ,  . . .

 H i e r a r c h i c a l

c l a s s i f i c a t i o n

H y b r i d  M e t a h e u r i s t i c s

Fig. 1.13 Classification of hybrid metaheuristics (implementation issues)

1.2.3 A Grammar for Extended Hybridization Schemes

Given a set of metaheuristics Ai, a classification of basic hybridizations has been
presented, in which the following notations can be described:

• LRH(A1(A2)) (homogeneous, heterogeneous) (partial, global) (specialist, gen-
eral): the metaheuristic A2 is embedded into the single-solution metaheuristic A1.

• HRH(A1 +A2) (homogeneous, heterogeneous) (partial, global) (specialist, gen-
eral): the self-contained metaheuristics A1 and A2 are executed in sequence.
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• LTH(A1(A2)) (homogeneous, heterogeneous) (partial, global) (specialist, gen-
eral): the metaheuristic A2 is embedded into the population-based metaheuristic
A1.

• HTH(A1,A2) (homogeneous, heterogeneous) (partial, global) (specialist, gen-
eral): the self-contained metaheuristics A1 and A2 are executed in parallel and
cooperate.

These hybridizations should be regarded as primitives that can be combined in dif-
ferent ways. The grammar given in figure 1.14 generalizes the basic hybridization
schemes. One of the practical importance of the grammar is to specify the hybrid
heuristic to use, if a metaheuristic problem solving tool is used.

<hybrid-metaheuristic> −→ <design-issues><implementation-issue>
<design-issues> −→ <hierarchical><flat>
<hierarchical> −→ <LRH> | <LTH> | <HRH> | <HTH>
<LRH> −→ LRH(<S-metaheuristic>(<metaheuristic>))
<LTH> −→ LTH(<P-metaheuristic>(<metaheuristic>))
<HRH> −→ HRH(<metaheuristic> + <metaheuristic>)
<HTH> −→ HTH(<metaheuristic>)
<HTH> −→ HTH(<metaheuristic>, <metaheuristic>)
<flat> −→ (<type> , <domain> , <function>)
<type> −→ homogeneous | heterogeneous
<domain> −→ global | partial
<function> −→ general | specialist
<implementation-issue> −→ <specific computers> | <general-purpose computers>
<specific computers> −→ FPGA | GPU | ...
<general-purpose computers> −→ sequential | parallel
< metaheuristic > −→ <S-metaheuristic> | <P-metaheuristic>
<S-metaheuristic> −→ LS | TS | SA | TA | NM | GDA | ILS | GRASP | ...
<P-metaheuristic> −→ EA | SS | ACO | PSO | AIS | BC | EDA | CA | CEA | ...
<metaheuristic> −→ <hybrid-metaheuristic>

Fig. 1.14 A grammar for extended hybridization schemes

Example 1.9. Extended hybridization schemes: let us present some examples of
extended hybridization schemes (Fig. 1.15). Boese et al. [25] suggested an adaptive
multi-start (AMS) approach, which may be seen as a HRH(LS + LTH(GA(LS)))
scheme. First, AMS generates a set of random starting solutions and runs an LS
algorithm for each solution to find corresponding local optima. Then, AMS gener-
ates new starting solutions by combining features of the T best local optima seen so
far, with T being a parameter of the approach. This mechanism bears some resem-
blance to GAs, but differs in that many solutions (instead of just two) are used to
generate the new starting solutions. New local optima are obtained by running the
LS algorithm from these new starting solutions, and the process iterates until some
stop criterion is met.

D. Levine has used a HTH(HRH(GH+LTH(GA(LS)))) hierarchical scheme in his
PhD to solve set partitioning problems. Efficient results have been obtained with a
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parallel static implementation in solving big sized problems in real world applica-
tions (airline crew scheduling) [117]. At the first level, a HTH hybrid based on the
island model of parallel genetic algorithms is used. The initial population of each
GA was generated by a greedy heuristic (the Chvatal heuristic [38]), and a local
search algorithm was used to improve the solutions at each generation of the GA.
The same hybrid scheme with a sequential implementation has been used in [26] to
solve the traveling salesman problem. The local search algorithms used are the well
known 2-opt and or-opt heuristics. The author reported some interesting results on
the 442 and 666-city problems. He found the optimum of the 442-city problem, and
a solution within 0.04% of the optimum for the 666-city problem.

L o c a l  s e a r c h

L o c a l  s e a r c h

 G e n e t i c
a l g o r i t h m

         H R H ( L S  +  L T H ( G A ( L S ) )  
( h e t , g l o , g e n ) ( s e q ) ) ( h e t , g l o , g e n ) ( s e q )

G r e e d y  h e u r i s t i c

L o c a l  s e a r c h

 G e n e t i c
a l g o r i t h m

        H T H ( H R H ( G H + L T H ( G A ( L S ) ) ) )  

Fig. 1.15 Extended hybridization schemes

The objective of this chapter is far from providing an exhaustive list of research
works using hybrid metaheuristics. Following this grammar, more than 125 anno-
tated hybrid metaheuristics may be found in [163]. This shows the usefulness of the
taxonomy.

1.3 Combining Metaheuristics with Mathematical
Programming

Metaheuristics and exact algorithms are complementary optimization strategies in
terms of the quality of solutions and the search time used to find them. In the last
few years, solving exactly important optimization problems using for example inte-
ger programming techniques has improved dramatically. Moreover, the availability
of efficient optimization software, libraries and frameworks for mathematical pro-
gramming and high-level modeling languages will lead to more hybrid approaches
combining metaheuristics and exact optimization algorithms. In the next section,
the main mathematical programming exact approaches that can be used to solve
optimization problems are presented. Then, an instantiation and extension of our
classification to hybrid schemes combining mathematical programming approaches
and metaheuristics is presented.
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1.3.1 Mathematical Programming Approaches

The main mathematical programming approaches may be classified as follows:

• Enumerative algorithms: this class of algorithms contains tree search algo-
rithms such as branch and bound and dynamic programming. They are based
on a divide and conquer strategy to partition the solution space into subproblems
and then optimizing individually each subproblem.

• Relaxation and decomposition methods: this class of methods are based on
relaxation techniques such as the Lagrangian relaxation [69], and decomposition
methods such as the Bender’s decomposition and the continuous semi-definite
programming .

• Cutting plane and pricing algorithms: this class of algorithms is based on poly-
hedral combinatorics in which the search space is pruned.

1.3.1.1 Enumerative Algorithms

Enumerative methods include branch and bound, dynamic programming, A*, and
other tree search algorithms. The search is carried out over the whole search space,
and the problem is solved by subdividing it in simpler subproblems.

Branch and bound algorithm is one of the most popular method to solve opti-
mization problems in an exact manner. The algorithm is based on an implicit enu-
meration of all solutions of the considered optimization problem. The search space
is explored by dynamically building a tree whose root node represents the problem
being solved and its whole associated search space. The leaf nodes are the potential
solutions and the internal nodes are subproblems of the total solution space. The
size of the subproblems is increasingly reduced as one approaches the leaves.

The construction of such a tree and its exploration are performed using two
main operators: branching and pruning (Fig. 1.16). The algorithm proceeds in sev-
eral iterations during which the best found solution is progressively improved. The

1 4 0 1 4 31 4 3

1 3 0

1 3 0

9 0

5 0

1 3 4

Fig. 1.16 The branch and bound algorithm. This figure shows the nodes actually explored
in the example problem, assuming a depth-first and left-to-right search strategy. The subtree
rooted at the second node on level 2 is pruned because the cost of this node (134) is greater
than that of the cheapest solution already found (130).
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generated nodes and not yet treated are kept in a list whose initial content is limited
to only the root node. The two operators intervene at each iteration of the algorithm.
The branching strategy determines the order in which the branches are explored.
Many branching strategies may be applied such as the depth-first, the breadth-first,
and the best-first strategies. The pruning strategy eliminates the partial solutions that
do not lead to optimal solutions. This is done by computing the lower bound asso-
ciated to a partial solution. If the lower bound of a node (partial solution) is greater
than the best solution found so far or a known upper bound of the problem, the ex-
ploration of the node is not needed. The algorithm terminates if there are no more
nodes to branch or all nodes are eliminated. Hence, the most important concepts in
designing an efficient branch and bound algorithm are the quality of the bounds and
the branching strategy.

Example 1.10. Branch and bound algorithm on the TSP: let us consider the TSP
problem. A straightforward method for computing a lower bound on the cost of any
solution may be the following:

1
2 ∑

v∈V

sum of the costs of the two least cost edges adjacent to v

For the example shown in figure 1.17, the lower bound is associated to the edges
(A,D),(A,B),(B,A),(B,E),(C,B),(C,A),(D,A),(D,C),(E,B),(E,D) and then is
equal to 17.5. In the search tree (Fig. 1.17), each node represents a partial solution.
Each partial solution is represented by the set of associated edges (i.e. edges that
must be in the tour) and the non associated edges (i.e. set of edges that must not be
on the tour). The branching consists in generating two children nodes. A set of addi-
tional excluding and including edges is associated to each child. Two rules may be
applied. An edge (a,b) must be included if its exclusion makes it impossible for a or
b to have two adjacent edges in the tour. An edge (a,b) must be excluded if its inclu-
sion causes for a or b to have more than two adjacent edges in the tour or would com-
plete a non-tour with edges already included. The pruning consists first in computing
the lower bounds for each child. For instance, if the edge (A,E) is included and the
edge (B,C) is excluded, the lower bound will be associated to the following selected
edges (A,D),(A,E),(B,A),(B,E),(C,D),(C,A),(D,A),(D,C),(E,B),(E,A) and is
equal to 20.5. If the lower bound associated to a node is larger than the known upper
bound, the node is proved to be unable to generate an optimal solution and then is
not explored. A best-first search heuristic is considered in which the child with the
smaller lower bound is explored first. The upper bound is updated each time a new
complete solution is found with a better cost.

The dynamic programming (DM) approach is based on the recursive division
of a problem into simpler subproblems. This procedure is based on the Bellman’s
principle which says that “the sub-policy of an optimal policy is itself optimal with
regard to the start and end states” [21].
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Fig. 1.17 Illustration of the branch and bound algorithm on the traveling salesman problem

Designing a dynamic programming procedure for a given problem needs the def-
inition of the following components [23]:

• Define the stages and the states. A problem can be divided into a number of
stages N. A number of states are associated to each stage.

• Define the cost of the initial stage and states. There is an initial state of the system
x0.

• Define the recursive relation for a state at stage k in terms of states of previous
stages. The system takes the state xk at the stage k. At the k stage, the state of the
system change from xk to xk+1 using the following equation

xk+1 = fk(xk,uk)

where uk is a control that takes values from a given finite set, which may depends
on the stage k. The transition from the state k to k+ 1 involves a cost gk(xk,uk).
The final transition from N− 1 to N involves the terminal cost G(xN). The func-
tions fk, gk and G must be determined.

Given a control sequence (u1,u2, ...,uN−1), the corresponding state sequence will
be (x0, ...,xN) which is determined from the initial state x0 using the equation
below. In dynamic programming, the objective is to find the optimal control se-
quence minimizing the total cost:

G(xN)+
N−1

∑
k=0

gk(xk,uk)

DP have been successfully applied to knapsack, planning and routing-type prob-
lems, in which it is easy to define efficient recursive relationships between stages.
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Example 1.11. Dynamic programming for the {0,1}−knapsack problem: let us
consider the following instance for the knapsack problem with a total capacity equal
to 5 (see table 1.1).

Table 1.1 An instance for the knapsack problem with a capacity of 5

Item (i) Weight (wi) Utility (ui)
1 2 65
2 3 80
3 1 30

The stages are represented by the items. The number of stages are then equal to
the number of items (3). The state yi at stage i represents the total weight of items i
and all following items in the knapsack. The decision at stage i corresponds to how
many items i to place in the knapsack. Let us call this value k j. This leads to the
following recursive formulas: let f j(y j) be the value of using y j units of capacity for
items j and following. Let �a� represents the largest integer less than or equal to a.

f3(yi) = 30.yi

f j(yi) = maxki≤� yi
wi
�{uiki + fi+1(yi−wiki)}

1.3.1.2 Relaxation and Decomposition Methods

Relaxation methods consist in relaxing a strict requirement in the target optimization
problem. In general, a given strict requirement is simply dropped completely or
substituted by another one which is more easily satisfied. The most used relaxation
techniques are the LP-relaxation and the Lagrangian relaxation. In addition to their
use on solving optimization problems, relaxation methods are also used to generate
bounds.

Linear programming relaxation: linear programming relaxation (LP-relaxation)
is a straightforward approach which consists in ignoring the integrity constraints of
an integer program (IP). Once the integrity constraints are dropped, the problem can
be solved using LP solvers. This gives a lower bound for the problem. If the solution
found satisfies the integer constraints (generally not true), it will be considered as
the optimal solution for the IP program. If the relaxed problem is infeasible, then so
is the IP program. LP-relaxation is widely used in branch and bound algorithms to
solve IP problems in which the branching is performed over the fractional variables.

Lagrangian relaxation: Lagrangian relaxations are widely used to generate tight
lower bounds for optimization problems. The main idea is to remove some con-
straints and incorporate them in the objective function. For each constraint, a penalty
function is associated. The choice of which constraints are handled in the objective
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function is important. More complicated constraints to satisfy are preferable as they
generate an easiest problem to solve. Given the following LP problem:

Max cT x
s.t. Ax≤ b
with x ∈ R

n and A ∈ R
m,n

The set of constraints A is split into two sets: A1 ∈ Rm1,n and A2 ∈ Rm2,n, where
m1 + m2 = m. Then, the subset of constraints A2 is integrated into the objective
function which gives the following Lagrangian relaxation of the original problem:

Max cT x+λ T (b2−A2x)
s.t. A1x ≤ b1

with x ∈ Rn, A1 ∈ Rm1,n and A2 ∈ Rm2,n

where λ = (λ1, ...,λm2) are non negative weights which penalize the violated con-
straints A2. The efficiency of Lagrangian relaxation depends on the structure of the
problem; there is no general theory applicable to all problems. Lagrangian relax-
ation may find bounds which are tighter than the LP-relaxation. The problem is
solved iteratively until optimal values for the multipliers are found. One of the main
issues in the Lagrangian relaxation is the generation of the optimal multipliers. This
difficult problem can be solved by metaheuristics.

In practice, decomposition methods are used to solve large IP problems. Among
the numerous decomposition approaches one can refer to Bender’s decomposition
and Dantzig-Wolfe decomposition.

Bender’s decomposition: the Bender’s decomposition algorithm is based on the
notion of complicated variables. It consists in fixing the values of complicated
variables and solves the resulting reduced problem iteratively [22]. Given a MIP
problem :

Max cT x+ hT y
s.t. Ax+Gy≤ b
with x ∈ Zn

+ and y ∈R
p
+

If the set of variables x is fixed, the following linear program is obtained

zLP(x) = max{hy/Gy≤ b−Ax}

and its dual
min{u(b−Ax)/uG≥ h,u ∈ Rm

+}
If the dual polyhedron is assumed to be not empty and bounded, the MIP model can
be formulated as follows:

z = maxx∈Zn
+
(cx+mini∈1,...,T (u

i(b−Ax)))

This model can be reformulated as:

z = max{η/η ≤ ui(b−Ax), i ∈ 1, ...T,x ∈ Zn
+}
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Then, the algorithm finds cutting planes based on the dual problem. The cutting
planes are added to the problem and the problem is re-solved.

1.3.1.3 Branch and Cut and Price Algorithms

The objective of the following popular techniques is to generate tighter IP
relaxations.

Cutting plane: cutting plane approaches have been proposed in 1958 by Gomory
[81]. The use of cuts can improve greatly branch and bound algorithms. In general,
cutting plane algorithms consist in iteratively adding some specific constraints to the
LP-relaxation of the problem. Those constraints represent restrictions to the prob-
lem so that the linear programming polytope closely approximates the polyhedron
represented by the convex hull of all feasible solutions of the original IP problem.
A good survey of branch and cut algorithms and their use for different families of
optimization problems may be found in [108] [131].

Column generation: column generation has been first applied by Gilmore and Go-
mory [77]. Column generation (i.e. Dantzig-Wolfe decomposition) generates a de-
composition of the problem into a master and subproblems (Fig. 1.18). A good
survey may be found in [12].

M a s t e r

S u b - p r o b l e m

D u a l s N e w  c o l u m n s

Fig. 1.18 Branch and price approach

1.3.2 Classical Hybrid Approaches

Exact MP algorithms are known to be time and/or memory consuming. In general
they cannot be applied to large instances of difficult optimization problems. On
one hand their combination with metaheuristics may improve the effectiveness of
heuristic search methods (i.e. getting better solutions). On the other hand, this type
of combination allows the design of more efficient exact methods (i.e. finding op-
timal solutions in shorter time). The following sections illustrate, for each class of
hybrids belonging to the presented taxonomy, some hybridization schemes combin-
ing exact MP algorithms and metaheuristics.
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1.3.2.1 Low-Level Relay Hybrids (LRH)

This class of algorithms represents hybrid schemes in which a metaheuristic ap-
proach (resp. exact approach) is embedded into an exact approach (resp.
S-metaheuristic approach) to improve the search strategy. In this usual combina-
tion, a given metaheuristic or exact algorithm solves a problem of a different nature
of the considered optimization problem.

Embedding S-metaheuristics into exact algorithms: indeed, metaheuristics may
solve many search problems involved in the design of an exact method such as the
node selection strategy, upper bound generation, column generation (Fig. 1.19):

• Bounding: providing an upper bound associated to a node of the branch and
bound algorithm can be designed using a metaheuristic. Indeed, the partial so-
lution is completed by a given metaheuristic and then a local upper bound is
provided.

• Cutting: in the branch and cut algorithm, the cutting plane generation problem
is a crucial part of the algorithm: the part that looks for valid inequalities that cut
off the current non-feasible linear program (LP) solution. Metaheuristics may be
used in this separation procedure. For instance, this approach has been proposed
for the CVRP (Capacitated Vehicle Routing Problem) [10]. Some metaheuristics
(e.g. tabu search, greedy heuristics) have been designed to extract a set of violated
capacity constraints of the relaxed problem.

• Pricing: in the branch and price algorithm, the pricing of columns may be car-
ried out by a metaheuristic [67].

Some metaheuristic ingredients may also be used in tree search algorithms such as
the concepts of tabu lists and aspiration criteria [139].

B r a n c h  a n d  X  a l g o r i t h m

T r e e  e x p l o r a t i o n  s t r a t e g y

B o u n d i n g C u t t i n gB r a n c h i n g P r i c i n g

Fig. 1.19 LRH cooperation in which a metaheuristic can be used in the design of some search
components of branch and X family of algorithms (e.g. branch and bound, branch and cut,
branch and price): selection of the node to explore, generation of an upper bound, cutting
plane generation, column generation selection, etc.).
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Embedding exact algorithms into S-metaheuristics: many combinations may
be designed in which exact algorithms are embedded into search components of
S-metaheuristics.

Very large neighborhoods: S-metaheuristics may be improved using very large
neighborhoods. The concept of large neighborhoods is also used in the ILS (per-
turbation operator [120]) and the VNS metaheuristics. Mathematical programming
approaches may be used to search efficiently those large neighborhoods to find the
best or an improving solution in the neighborhood (Fig. 1.20). Algorithms such as
branch and bound, dynamic programming [138], network flow algorithms [56], and
matching algorithms [83] have been used to explore large neighborhoods defined
for different important optimization problems. Some hybrid schemes explore the
whole neighborhood while other neighborhood search algorithms explore a subset
of the neighborhood. If no polynomial time algorithm exists to search the whole
neighborhood, a partial search is generally performed.

S - m e t a h e u r i s t i c

-  G e n e r a t e  a n d  s e a r c h
   l a r g e  n e i g h b o r h o o d s
       ( fu l l  or  par t ia l )

M a t h e m a t i c a l  p r o g r a m m i n g

-  E x p o n e n t i a l  t i m e :
   -  B r a n c h  a n d  b o u n d
   -  . . .
-  P o l y n o m i a l  t i m e :
   -  D y n a s e a r c h  ( D P )
   -  N e t w o r k  f l o w  a l g o r i t h m s
   -  . . .

Fig. 1.20 LRH cooperation where a mathematical programming approach can be used for
the efficient search of a very large neighborhood into S-metaheuristics.

Example 1.12. Hyperopt: the hyperopt S-metaheuristic explores only a subset of
a very large neighborhood [27]. The hybrid algorithm has been used to solve the
asymmetric traveling salesman problem. The move operator is based on hyper-
edges which represent subpaths of the tour. A hyperedge H(i, j) is represented by
its start node i, end node j and length k. A k-hyperopt move consists in delet-
ing two hyperedges H(i1, ik+1) and H( j1, jk+1) of length k. It is supposed that
H(i1, ik+1)

⋂
H( j1, jk+1) = φ , i.e. the hyperedges share no common edges. Then,

the move operator adds edges to the hyperedges H(ik+1, j1) and H( jk+1, i1) to con-
struct a feasible tour (Fig. 1.21). The size of the hyperedge neighborhood grows
exponentially with k. The neighborhood search algorithm is reduced to a smaller
TSP problem. The algorithms used are based on enumeration for small k and a dy-
namic programming algorithm for medium values of k.

Some search concepts of exact algorithms may be used in S-metaheuristics. Efficient
mathematical programming approaches that generate “good” lower bounds exist
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Fig. 1.21 Large neighborhood based on hyperedge for the asymmetric traveling salesmen
problem

for many optimization problems. Information related to lower bounds, obtained for
example by Lagrangian relaxation, can be exploited into a metaheuristic to intensify
the search in promising regions of the search space. For instance, information based
on Lagrangian multipliers are exploited to guide the metaheuristic in solving the set
covering problem [17]. Lower bounds have been used in S-metaheuristics such as
tabu search to improve the search [88] [56].

1.3.2.2 Low-Level Teamwork Hybrids (LTH)

Recall that in this class of hybrid algorithms, a search component of a
P-metaheuristic is replaced by another optimization algorithm. Concerning the com-
bination of P-metaheuristics and MP algorithms, two main hybrid approaches may
be considered: exact search hybrid algorithms in which a P-metaheuristic is em-
bedded into an exact algorithm, and heuristic search algorithms in which an exact
algorithm is embedded into a P-metaheuristic.
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Embedding a P-metaheuristic into an Exact Algorithm: as mentioned previously
in this chapter, the questions arising in designing a branch and bound algorithm are:

• Branch ordering: how the problem to solve (node of the tree) is decomposed
into subproblems? On which variable the next branching is applied? Indeed, near-
optimal solutions obtained by metaheuristics may guide the branch and bound to
apply an efficient branch ordering by giving preference to branches which share
common values with near-optimal solutions.
The node selection problem in tree search based on branch and bound may be
solved by metaheuristics. For instance, genetic programming approaches have
been used to deal with the node selection problem [113].

• Variable selection: in which subproblem (child node) the search will be per-
formed in the next step? What value should first be assigned to the branch-
ing variable? Information obtained from branch and bound tree can be used by
heuristic algorithms to determine a better strategy for variable selection [113].

An exact algorithm constructs partial solutions which are used to define a search
space for a metaheuristic. Then, the obtained results are exploited in order to refine
the bounds or generate the columns into a branch and cut algorithm.

Example 1.13. Local branching : the local branching exact approach has been pro-
posed in [68]. It uses the principle of local search heuristics. The search space is
partitioned by introducing branching conditions expressed through (invalid) lin-
ear inequalities called local branching cuts. Let us consider a MIP problem with
{0,1} variables. The k−opt neighborhood is considered. The main principle of the
local branching method is to iteratively solve a subproblem corresponding to the
neighborhood k− opt of a partial solution s. Two partitions are then considered:
p1 = {x ∈ {0,1}n/Δ(x,s) ≤ k} and p2 = {x ∈ {0,1}n/Δ(x,s) ≥ k+ 1}, where Δ
represents the Hamming distance, and n the size of the problem. The problem as-
sociated to p1 is solved. A new subproblem is generated if an improved solution is
found. Otherwise, the other problem is solved using the standard procedure.

Embedding an exact algorithm into P-metaheuristic: in this hybrid scheme,
some search components of a P-metaheuristic induce optimization problems which
are solved by exact algorithms (Fig. 1.23).

Example 1.14. Exact algorithms into recombination operators: exact algorithms
may be integrated into recombination operators of P-metaheuristics such as evolu-
tionary algorithms to find the best offspring from a large set of possibilities. The
induced problem Recombination(S1,S2) is defined to generate the best off-
springs from the parents S1 and S2. A common idea is to keep the common elements
of the parents and explore all the other possibilities to generate better offsprings
(Fig. 1.22). For instance, a branch and bound algorithm (resp. dynamic program-
ming) has been used into the crossover operator of a genetic algorithm in solving
permutation problems [48] (resp. [182]). For some specific problems, polynomial
exact algorithms may also be used such as minimum spanning tree algorithms [95],
matching algorithms in a bipartite graph [4] [11] for optimized crossover operators.
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A   B   C   D   E   F   A   C   B
 

C   B   F   D   E   F   D   E   A  

P a r e n t  S 1 P a r e n t  S 2

C o m m o n  e l e m e n t s *   B   *   D   E   F   *   *   *

                               Recombina t ion(S1,S2)
                                              = 
           Exac t  sea rch  fo r  t he  f ree  va r i ab les  1 ,  3 ,  7 ,  8  and  9 .
             Va r i ab les  2 ,  4  5  and  6  a re  f i xed  to  B ,  D ,  E  and  F .

Fig. 1.22 Using exact algorithms into recombination operators (e.g. crossover) of
P-metaheuristics

Large neighborhood search algorithms integrated in P-metaheuristics belong typi-
cally to the LTH class of hybrids. For instance, the mutation operator in EAs can also
be substituted by MP algorithms which explore large neighborhoods (Fig. 1.23).

Exact decoding: exact algorithms can also be used as decoders of incomplete solu-
tions carried out by metaheuristics. This hybrid strategy is applied in the case where
metaheuristics use an incomplete encoding for the problem. Once a good incom-
plete solution is found, exact algorithms complete optimally the missing part of the
encoding.

Exact search ingredients: some search ingredients of exact algorithms can also be
used in P-metaheuristics:

• Lower bounds: the use of lower bounds into a P-metaheuristic can improve
the search. Lower bounds have been used in the construction phase of the ant
colonies P-metaheuristic to solve the quadratic assignment problem (QAP) [122].
The well known Gilmore-Lawler lower bound and the values of the dual variables
are used to order the locations during the construction phase. The impact of the
location in a given QAP instance depends on the value of its associated dual
variable. The concept of bounds has been used into evolutionary algorithms for
the mutation and the crossover operators [169] [57]. Indeed, partial solutions that
exceed a given bound are deleted. The bounds are computed using the linear and
Lagrangian relaxation, and tree search methods.

• Partial solutions : the evaluated partial solutions (subproblems) maintained
by the branch and bound family of algorithms may provide interesting initial
solutions to improve. The evaluation of those partial solutions will guide the
metaheuristics to more promising regions of the search space [122]. The partial
solution with the least cost lower bound suggests a promising region by giving
additional information.
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-  B r a n c h  a n d  b o u n d
-  D y n a m i c  p r o g r a m m i g
- . . .

P - m e t a h e u r i s t i c

   c r o s s o v e r ,  m u t a t i o n

M a t h e m a t i c a l  p r o g r a m m i n g

E x p l o r i n g  l a r g e  
se t s  o f  o f f p r i ngs

Fig. 1.23 LTH heuristic cooperation: exact algorithms are used as search components of a
P-metaheuristic (e.g. recombination, mutation).

1.3.2.3 High-Level Relay Hybrids (HRH)

This class of cooperation, where self-contained algorithms are used in sequence,
is the most popular in practice. This may be seen as a pre-processing or a post-
processing step. Some information is provided in sequential between the two fami-
lies of algorithms (metaheuristics and MP algorithms) (Fig. 1.25).

M P  a l g o r i t h m s

  M e t a h e u r i s t i c

U p p e r - b o u n d

I n c o m p l e t e  s o l u t i o n

S u b p r o b l e m

C o l u m n  g e n e r a t i o n ,  . . .

-  IP  so l ve r s
-  B r a n c h  a n d  b o u n d ,  c u t ,  p r i c e
- . . .

Fig. 1.24 HRH cooperation: information provided by metaheuristics to MP algorithms

Information provided by metaheuristics: in the case where the information is
provided by the metaheuristics, the most natural and trivial hybrid approach is to
start with a metaheuristic to find a “good” upper bound which will be used by a
MP algorithm in the bounding phase (Fig. 1.25). Indeed, the efficiency of the search
(pruning phase) is largely dependent on the quality of the upper bound.

Using the characteristics of generated high quality solutions, metaheuristics can
be used to reduce the size of the original problem. Then, the exact method can be
applied to solve the reduced problem. This approach is interesting for optimization
problems where “good solutions” share many components [8]. This allow to reduce
the problem into a much smaller problem which can be solved exactly by state-of-
the-art mathematical programming algorithms. The reduction phase may concern:
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• Partitioning of decision variables: in this strategy, the decision variables are
partitioned into two sets X and Y . The metaheuristic will fix the variables of the
set X and the exact method will optimize the problem over the set Y . Hence,
the generated subproblems are subject to free variables in the set Y and freezed
variables in the set X . Those subproblems are solved exactly.

A set of high quality solutions may be obtained by a P-metaheuristic or an
iterated S-metaheuristic. The characteristics of this set can be exploited to define
smaller problems by fixing some variables and solve the resulting subproblems
by exact algorithms. An example of such strategy is the Mimausa method for
the quadratic assignment problem [125]. The method builds at each iteration a
subproblem by fixing k decision variables and solves it by a branch and bound
algorithm.

Example 1.15. Reducing problems by metaheuristics to be solved by MP
algorithms: analyzing the landscape for the TSP problem, one can observe
that local optimum solutions share many edges with the global optimum and
they are concentrated in the same region of the search space (big valley struc-
ture) [165]. This characteristic has been exploited in [44] to design one of the
most efficient heuristic for the TSP: the tour merging heuristic. The tour merg-
ing heuristic consists of two phases: the first phase generates a set T of “good”
tours using the Lin-Kernigham algorithm on the input graph G = (V,E). Then,
a dynamic programming algorithm is applied on a restricted graph G

′
= (V,E ′),

where E ′ = {e ∈ E/∃t ∈ T,e ∈ t}. The exact algorithm solves instances up to
5000 cities.

For the p-median problem, the same remark holds in the analysis of its land-
scape [146]. The first phase is based on an iterated S-metaheuristic using dif-
ferent random initial solutions. The problem is reduced in terms of the number
of nodes (location facilities) using the concentration set (CS) concept. The in-
teger programming model of the restricted problem is solved using respectively
a linear programming relaxation (CPLEX solver) and a branch and bound. The
authors exploit the fact that more than 95% of linear programming relaxation
optimal solutions are integers.

For continuous optimization, HRH hybrid schemes are very popular. For in-
stance, a hybrid method combining tabu search and the simplex algorithm pro-
vides interesting results in solving complex continuous functions [35].

• Domain reduction: this strategy consists in reducing the domain of values that
the decision variables can take. The metaheuristic will perform a domain reduc-
tion for the decision variables and then an exact method is used over the reduced
domains. For instance, a GA may be used to find promising ranges for decision
variables and then tree search algorithms are considered to find the optimal solu-
tion within those ranges [129].

Information provided by exact algorithms: in the case where the information is
provided by an exact algorithm, many hybrid approaches may be designed:

• Partial solutions: partial solutions are first provided by an exact algorithm which
are then completed by a metaheuristic.
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• Problem reduction: in this strategy, a problem reduction is carried out by an
exact algorithm. For instance, a tree search algorithm has been used to reduce the
size of a nurse scheduling problem [58]. Then, a tabu search strategy is applied
to solve the problem within a simplified objective function [58].

• Relaxed optimal solutions and their duals: the optimal solutions for relaxed
formulation (e.g. LP-relaxation, Lagrangian relaxation) of the problem and its
duals may be exploited by metaheuristics.

  M e t a h e u r i s t i c

Par t i a l  so l u t i on

L o w e r  b o u n d s

M P  a l g o r i t h m s

-  IP  so l ve r s
-  B r a n c h  a n d  b o u n d ,  c u t ,  p r i c e
- . . .

S u b p r o b l e m

R e l a x e d  o p t i m a l  s o l u t i o n  ( L P ,  L a g r a n g i a n ,  . . . )
a n d  i t s  d u a l s

Fig. 1.25 HRH cooperation: information provided by MP algorithms to metaheuristics

Example 1.16. LP-relaxations as an input for metaheuristics: information gath-
ered from solutions obtained by LP-relaxations of MIP problems may be used as
an input for a metaheuristic. A straightforward approach is the “dive and fix” strat-
egy, where the value of a subset of the integer variables are fixed and the resulting
LP problem is solved. This strategy iterates until the LP finds an integer solution.
This will restrict the search space of metaheuristics in promising regions. This idea
has been used to design an efficient hybrid approach for the 0-1 multidimensional
knapsack problem [175]. Many linear relaxation of the MIP formulation of the prob-
lem including different constraints on the number of elements of the knapsack are
solved exactly. The obtained solutions are exploited to generate initial solutions for
multiple tabu search metaheuristics.

1.3.2.4 High-Level Teamwork Hybrids (HTH)

Few strategies belong to this class of hybrids which combines metaheuristics and
MP algorithms in a parallel cooperative way. However this is a promising class of
hybrids. A set of agents representing metaheuristics and MP algorithms are solving
global, partial or specialist optimization problems and exchanging useful informa-
tions. The majority of proposed approaches fall in the class of partial and specialist
hybrids. Indeed, the search space is generally too large to be solved by an exact ap-
proach. One of the main issues in the HTH hybrid is the information exchanged
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between metaheuristics and MP algorithms. The different complementary algo-
rithms solving different problems may exchange any information gathered during
the search to improve the efficiency and the effectiveness of the hybrid approach: so-
lution(s), subproblems, relaxed optimal solutions and its duals, upper bounds, lower
bounds, optimal solutions for subproblems, partial solutions, etc.

B r a n c h  a n d  b o u n d  a l g o r i t h m S - m e t a h e u r i s t i c

    B e s t  f o u n d  s o l u t i o n
    ( n e w  u p p e r  b o u n d )

    Pa r t i a l  so lu t i on
(new in i t i a l  so lu t i on )

In i t i a l  so lu t ion
N o n  e x p l o r e d  n o d e s

U p p e r  b o u n d

B e s t  s o l u t i o n

Fig. 1.26 HTH cooperation between metaheuristics and MP algorithms

Example 1.17. Parallel cooperation between a branch and bound and a
S-metaheuristic: in a parallel cooperation between branch & bound algorithms and
a S-metaheuristic, the following information may be exchanged (Fig. 1.26):

• From a branch & bound algorithm to a S-metaheuristic: a subproblem of
the branch and bound (node of the tree, partial solution) with least-cost lower
bound may be used by a S-metaheuristic to generate an initial solution. The lower
bound is used to predict potential interesting search regions. This process may be
initiated as a diversification search, when the classical “intensification” process
is terminated. Indeed, this partial solution provides a promising area for a S-
metaheuristic to explore. The non explored node list maintained by a branch and
bound provides a metaheuristic with new initial solutions.

• From a S-metaheuristic to a branch & bound algorithm: the best solution
identified so far by a metaheuristic may be used in branch and bound algorithms
for a better pruning of the search tree. Indeed, better is the upper bound, more
efficient is the pruning of the search tree. This information is exchanged each
time the best solution found is improved.

In generalist and global hybrids, where all the algorithms are solving the same target
problem, the space of design is reduced. For instance, a parallel HTH hybrid which
consists in combining a branch and bound algorithm with simulated annealing has
been designed [134]. The SA algorithm sends improved upper bounds to the exact
algorithm. Any integer bound obtained by the B&B execution is passed to SA and
used as an alternative reheated solution.

In specialist hybrids, where the algorithms are solving different problems, many
strategies may be proposed (Fig. 1.27). For instance, a parallel cooperation between
a local search metaheuristic and a column generation (branch and price) algorithm
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B r a n c h  a n d  X

I P  S o l v e r

P - m e t a h e u r i s t i c

C o m m u n i c a t i o n  m e d i u m

S - m e t a h e u r i s t i c

S u b p r o b l e m s
U p p e r  B o u n d
...

O p t i m a l  s o l u t i o n s  f o r  s u b p r o b l e m s
L o w e r  b o u n d s

O p t i m a l  s o l u t i o n s  f o r  r e l a x e d  p r o b l e m s  a n d  d u a l s
Pa r t i a l  so l u t i ons ,
.. .

S u b p o p u l a t i o n  o f  s o l u t i o n s

Fig. 1.27 Specialist HTH cooperation between S-metaheuristics and MP algorithms

to solve the VRP problem has been proposed [33]. The local search algorithm is
used to generate new columns for a branch and cut algorithm.

Extending the grammar, presented in section 1.14, with hybrid schemes combin-
ing metaheuristics with exact optimization algorithms has been presented in [102].
More than 60 annotated hybrid approaches are detailed in the paper. Other exam-
ples of combining metaheuristics with exact algorithms may be found in the survey
papers [140] [55] [102].

1.4 Combining Metaheuristics with Constraint Programming

Constraint programming (CP) is a modeling and an exact8 search paradigm based
on constraint satisfaction techniques which are largely used in the artificial intel-
ligence community [9]. CP has been applied successfully to many combinatorial
optimization problems with tightly-constrained search problems, while metaheuris-
tics perform well for under-constrained optimization problems.

Nowadays, more and more hybrid approaches combining metaheuristics and con-
straint programming are used to solve optimization problems. Indeed, metaheuristics
and constraint programming are complementary search and modeling approaches,
which may be combined naturally to solve optimization problems in a more effi-
cient manner [72]. One of the main advantages of using constraint programming is
its flexibility. Models are based on a declarative programming paradigm. Hence, the
addition/deletion of new constraints in the model is straightforward.

8 The term complete is always used in the CP community.
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1.4.1 Constraint Programming

Optimization problems in constraint programming are modeled by means of a set of
variables linked by a set of constraints. The variables take their values on a finite do-
main of integers. The constraints may have mathematical or symbolic forms. Global
constraints refer to a set of variables of the problem. An example of such global
constraints is all different(x1,x2, ...,xn) which specifies that all the variables
x1,x2, ...,xn must be different.

Solving a feasibility problem in CP is based on interleaving the propagation and
the search processes in order to find a feasible solution for the problem. Minimiz-
ing an objective function may be reduced to solve a given number of feasibility
problems.

A propagation algorithm is associated to each (or a set of) constraint(s). It con-
sists in filtering (or reducing) from variable domains the values that cannot lead to
feasible solutions. The propagation algorithm is terminated once no more values can
be eliminated from the variable domains.

Once the propagation phase is finished, there may remain some inconsistent val-
ues in the variable domains. Therefore, a search algorithm is launched. The search
algorithm is based on a tree search procedure where a branching step is applied
by partitioning the current problem into subproblems. Branching may be done by
instantiating a given variable to a feasible value of its domain or adding a new
constraint.

The questions arising in designing a search algorithm in CP are more or less
similar to those of branch and bound algorithms:

• Branch ordering: how the problem to solve (node of the tree) is splitted into
subproblems when the propagation algorithm is inconclusive? On which variable
the branching is applied next?

• Variable selection: in which subproblem (child node) the search continue next?
What value should be first assigned to the branching variable?

Example 1.18. A CP model for Sudoku: nowadays, the Sudoku logic game is very
popular. The principle of the game is to fill a 9× 9 grid so that each row and
each column contains the numbers from 1 to 9. Moreover, each of the nine 3× 3
boxes contains the numbers from 1 to 9. A partially completed grid is provided as
an input for each game setting. A CP model using the Gecode solver may be the
following:

The must be distinct constraint has been used to model the three constraints
of the problem (row, column, 3*3 boxes). The rest of the model represents the input
setting of the game. It assigns the predefined values to squares of the grid (otherwise
by default it is 0). Figure 1.28 illustrates a solution for a given game input.
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Algorithm 1. CP model for Sudoku
class Sudoku < Gecode::Model
def initialize(predefined values)
# Create the squares representing the integer variables
@squares = int var matrix(9, 9, 1..9)
# Distinctness constraint
9.times do |i|
# All rows must contain distinct numbers
@squares.row(i).must be.distinct
# All columns must contain distinct numbers
@squares.column(i).must be.distinct
# All 3x3 boxes must contain distinct numbers
@squares.minor((i % 3) * 3, 3, (i / 3) * 3, 3).must be.distinct
end
# Place the constraints from the predefined squares on them
predefined values.row size.times do |i|
predefined values.column size.times do | j|
unless predefined values[i,j].zero?
@squares[i,j].must == predefined values[i,j]
end
end

Fig. 1.28 Illustration of the Sudoku game

1.4.2 Classical Hybrid Approaches

Many combination schemes show that the hybridization of metaheuristics and CP is
fruitful for some optimization problems. The following sections illustrate, for each
class of hybrids belonging to the presented taxonomy, some hybridization schemes
between constraint programming algorithms and metaheuristics. Some illustrative
examples may also be found in [72].
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1.4.2.1 Low-Level Relay Hybrids (LRH)

As within mathematical programming approaches, constraint programming may be
used to explore large neighborhoods in S-metaheuristics (full or partial). Indeed,
when the propagation tends to reduce the search space, CP is an efficient approach in
modeling the expression of neighborhoods and exploring very large neighborhoods
with side constraints [154]. Two different types of exploration may be applied:

• Neighborhoods with expensive testing of feasibility: neighborhoods around
the current solution are defined by adding side constraints to the original prob-
lem. Checking the feasibility for all side constraints by CP may be efficient. In-
deed, the feasibility test of solutions may be an expensive task. The propagation
algorithms of CP reduce the size of neighborhoods.

• Large neighborhoods: optimizing the exploration of the neighborhood with in-
lined constraint checks. For instance, the problem of searching very large neigh-
borhoods is tackled with a constraint programming solver in the resolution of
vehicle routing problems [137]. A CP model has been proposed for the neigh-
borhood, where every feasible solution represents a neighbor. A given subset of
decision variables may also be fixed [8]. A CP search has been carried out over
the uninstantiated variables to solve a scheduling problem. A similar approach
has been proposed in [154] for a vehicle routing problem, and in [30] for a job-
shop scheduling problem.

1.4.2.2 Low-Level Teamwork Hybrids (LTH)

In this class of LTH hybrids between metaheuristics and CP, two main categories
may be distinguished: exact search hybrid algorithms in which a metaheuristic is
embedded into constraint programming, and heuristic search algorithms in which
constraint programming is embedded into a P-metaheuristic.

Embedding metaheuristics into constraint programming: metaheuristics may
be used to improve the search algorithm in CP. The following hybrid approaches
may be applied to converge more quickly to the optimal solution or approximating
“good” solutions:

• Node improvement: metaheuristics may be applied to partial solutions of the
tree to improve or repair the nodes of the search tree. A greedy approach may also
explore a set of paths from a node of the search tree. Then, CP search continue
from the improved solutions [31].

• Discrepancy-based search algorithms: this approach generates near-greedy
paths in a search tree. This approach has been used in limited discrepancy search
[87] and dynamic backtracking [78]. Lookahead evaluation of greedy algorithms
may also be used over the nodes of the search tree [31].

• Branch ordering: metaheuristics may be applied to answer the following ques-
tion: which child node to investigate first when diving deeper into the node.
Metaheuristics may be used to give a preference to a branch that is consistent
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with the near-optimal solution. Indeed, the use of metaheuristics produces a bet-
ter variable ordering and then will speedup the tree search. This approach has
been used for solving satisfiability problems [152].

Metaheuristics may also be considered to solve relaxed problem. At each
node, the subproblem is relaxed by removing some constraints. The violated con-
straints in the obtained solution will form the basis for branching. for instance,
this approach has been used to solve a scheduling problems [109] [130].

• Variable selection: metaheuristics are used for variable selection at each node
of the tree. This strategy consists in reducing the list of candidates. A straightfor-
ward strategy has been used in [64]. Let v1,v2, ...,vn be the possible branches in
a decreasing order of preference (lower bound h(vi)). The strategy consists in se-
lecting the vi branches such as h(vi)≤ h(v1)+α(h(vn)−h(v1)) where α ∈ [0,1]
is a parameter. Those branches constitute the RCL list (Restricted Candidate
Lists), whereas the other branches are not explored.

• Branching restriction: metaheuristics may be used to filter the branches of the
tree-search node. This hybrid scheme has been proposed to solve a scheduling
problem [32].

CP can construct partial solutions which are used to define a search space for a
metaheuristic. Then, the results obtained are used in order to refine the bounds or
columns to generate in a branch and cut algorithm.

Embedding constraint programming into P-metaheuristics: some search
components of a P-metaheuristic induce optimization problems which are solved
by CP. For instance, some recombination operators such as crossover in EAs may
be optimized using CP. In addition to the recombination operators, large neigh-
borhood search algorithms based on CP can be integrated into unary operators of
P-metaheuristics such as the mutation in EAs.

Some search ingredients of constraint programming algorithms can also be used
into P-metaheuristics. For instance, the use of lower bounds into a P-metaheuristic
can improve the search. The partial solutions (subproblems) maintained by CP may
provide to metaheuristics interesting initial solutions to metaheuristics. The eval-
uation of those partial solutions will guide the metaheuristics to more promising
regions of the search space. The partial solution with the least cost lower bound
suggests a promising region.

CP algorithms can also be used as decoders of indirect representations carried
out by metaheuristics. This strategy may be applied once the metaheuristics use in-
direct encoding which represent incomplete solutions of the problem. This strategy
is efficient when the decoding involves complex constraints to satisfy.

1.4.2.3 High-Level Relay Hybrids (HRH)

In this class of hybrids, self-contained metaheuristics are used in conjunction with
CP in a pipeline manner. Metaheuristics are considered as a pre-processing or a
post-processing step for CP.
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Information provided by metaheuristics: in the case where the informations are
provided by metaheuristics, similar information exchanges as with mathematical
programming algorithms may be used: upper bounds, incomplete solutions, sub-
problems, etc.

Information provided by constraint programming: in the case where the infor-
mation is provided by CP, the same information as with mathematical program-
ming9 may be considered: partial solutions (i.e. subproblems), optimal solutions for
relaxed problems, etc.

For instance, heuristic search-based hybrid scheme may be applied in solving
some generated subproblems by CP. A subset of variables are assigned values us-
ing a complete search approach. This approach has been used for scheduling prob-
lems [133] and routing problems [154]. This hybrid scheme has been also proposed
to solve satisfiability (SAT) problems, where a depth-bounded tree search is carried
out and a local search procedure is applied at nodes reaching the depth-limit [84].
CP can be also applied to an incomplete formulation of the problem. For instance,
all (or a set of) feasible solutions are generated by a CP strategy. Then, a metaheuris-
tic will be applied to improve feasible solutions represented by the leaves of the CP
tree.

1.4.2.4 High-Level Teamwork Hybrids (HTH)

Few hybrid HTH strategies combining CP and metaheuristics have been investi-
gated. This class constitutes a promising way to develop efficient solvers and opti-
mization algorithms. The architecture of this class of hybrids may be viewed as a
set of agents implementing different strategies (CP, metaheuristics, MP) in solving
the target problem, and different subproblems and relaxed problems. Those agents

   C P

  M P

C o m m u n i c a t i o n  m e d i u m M e t a h e u r i s t i c
S u b p r o b l e m s
U p p e r  B o u n d
C o n s t r a i n t s
.. .

O p t i m a l  s o l u t i o n s  f o r  s u b p r o b l e m s
D o m a i n  r e d u c t i o n s
  . . .

O p t i m a l  s o l u t i o n s  f o r  r e l a x e d  p r o b l e m s  a n d  d u a l s
Pa r t i a l  so l u t i ons
L o w e r  b o u n d s
...

     So lu t i on (s )

B e s t  n e i g h b o r

Fig. 1.29 HTH cooperation between metaheuristics, MP and CP strategies

9 However, the duals cannot be considered.
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will exchange information on the search. For an exact approach, the objective is
to speedup the search in obtaining an optimal solution (efficiency). For a heuris-
tic strategy, the objective is also to improve the quality of the obtained solutions
(effectiveness). The information exchanged may include: solution(s), subproblems,
relaxed optimal solutions, upper bounds , lower bounds , optimal solutions for sub-
problems, partial solutions, etc (Fig. 1.29).

1.5 Hybrid Metaheuristics with Machine Learning and Data
Mining

Combining metaheuristics with data mining and machine learning techniques rep-
resents another way to improve the efficiency and effectiveness of the optimization
algorithms based on metaheuristics.

1.5.1 Data Mining Techniques

Data mining (DM), also known as knowledge discovery in databases (KDD), is the
process of automatically exploring large volumes of data (e.g. instances described
according to several attributes), to extract interesting knowledge (patterns). In or-
der to achieve this goal, data mining uses computational techniques from statistics,
machine learning and pattern recognition .

Various data mining tasks can be used depending on the desired outcome of the
model. Usually a distinction is made between supervised and unsupervised learning.
Classical tasks of supervised learning are (Fig. 1.30):

• Classification: examining the attributes of a given instance to assign it to a pre-
defined category or class.

• Classification rule learners: discovering a set of rules from the data which
forms an accurate classifier.

The most common tasks of unsupervised learning are:

• Clustering: partitioning the input data set into subsets (clusters), so that data
in each subset share common aspects. The partitioning is often indicated by a
similarity measure implemented by a distance.

• Association rule learners: discovering elements that occur in common within a
given data set.

The feature selection task objective consists in reducing the number of attributes (i.e.
dimensionality of the data set). Feature selection is often considered as a necessary
preprocessing step to analyze data characterized by a large number of attributes. It
allows to improve the accuracy of the extracted models. Two models of feature se-
lection exist depending on whether the selection is coupled with a learning scheme
or not. The first one, the filter model , which carries out the feature subset selec-
tion and the learning (e.g. classification, clustering) in two separate phases, uses a
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Fig. 1.30 Some data mining tasks and associated algorithms

measure that is simple and fast to compute. The second one, the wrapper method,
which carries out the feature subset selection and learning in the same process, en-
gages a learning algorithm to measure the accuracy of the extracted model. From
the effectiveness point of view, wrapper methods are clearly advantageous, since
the features are selected by optimizing the discriminate power of the finally used
learning algorithm. However, their drawback is a more important computational
cost.

Metaheuristics have been largely used to solve data mining tasks with a great
success. However, using data mining techniques to improve the efficiency and ef-
fectiveness of metaheuristics, which is our concern in this chapter, is less studied.
This hybridization scheme can be viewed as knowledge extraction and integration
into metaheuristics. This knowledge may take different forms. Figure 1.31 describes
some ways to integrate knowledge into metaheuristics.

T i m e  o f  h y b r i d i z a t i o n A i m  o f  t h e  h y b r i d i z a t i o n I n v o l v e d  c o m p o n e n t

-  O f f - l i ne  s ta teg ies
-  O n - l i n e  s t r a t e g i e s

-  E f f i c i ency
-  E f f e c t i v e n e s s

-  O p t i m i z a t i o n  m o d e l
-  S e a r c h  c o m p o n e n t s
-  P a r a m e t e r s
-  e tc .

Fig. 1.31 Some ways integrating knowledge into metaheuristics

Three criteria will be used to refine our classification [104]:

• Time of extracting the knowledge: two kinds of hybridizations can be distin-
guished depending on the time of extracting the used knowledge. Hybridizations
which extract the knowledge before the search starts are called off-line knowl-
edge strategies and combinations where the knowledge is extracted dynamically
during the search are described as on-line knowledge strategies.

• Aim of the hybridization: either the combination allows to improve the effi-
ciency of the algorithm by reducing the search time, or the combination is used
to improve the effectiveness of the algorithm leading to better quality of solu-
tions. The efficiency may be carried out by approximating the objective function
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or reducing the size of the search space. The effectiveness may be improved
by incorporating some knowledge into the search components or by updating
the parameters of the metaheuristics in an adaptive way. Of course, a given hy-
bridization may improve both criteria: efficiency and effectiveness.

• Involved component: a metaheuristic is composed of different search compo-
nents. Hybridization can occur in any search component such as encoding of
solutions, initialization of solutions, search variation operators (e.g. mutation,
crossover, neighborhood), etc. It may also be used to fix the parameters of the
algorithm or defining the optimization problem to solve (e.g. objective function).

1.5.2 Main Schemes of Hybridization

In the following sections, some hybridization schemes between metaheuristics
and data mining techniques are presented according to each class of the general
taxonomy.

1.5.2.1 Low-Level Relay Hybrid (LRH)

Traditional S-metaheuristics, greedy or multi-start strategies (e.g. GRASP algo-
rithm) do not use any information on the search of previous iterations to initialize
the next search even if the tabu search algorithm uses the concept of memory to
guide the search. Hence, some knowledge may be introduced in those families of
metaheuristics.

Optimization model: the extracted knowledge may be used to transform the target
optimization problem. For instance, in the ART (Adaptive Reasoning Technique)
on-line approach, the search memory is used to learn the behavior of a greedy al-
gorithm [136]. Some constraints are added to the problem. Those constraints are
generated from the non interesting visited solutions according to the values associ-
ated to their decision variables. Similar to the tabu list strategy, those constraints are
dropped after a given number of iterations.
Parameters setting: another LRH hybrid approach provides a dynamic and adap-
tive setting of the parameters of a S-metaheuristic. Indeed, knowledge extracted
during the search may serve to change dynamically at run time the values of some
parameters such as the size of the tabu list in tabu search, the temperature in simu-
lated annealing.

This dynamic setting may also concern any search component of a S-metaheuristic
such as the neighborhood and the stopping criteria.

1.5.2.2 Low-Level Teamwork Hybrids (LTH)

This hybrid scheme is very popular in P-metaheuristics.
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Search components: a straightforward LTH hybrid approach consists in using data
mining techniques in recombination operators of P-metaheuristics. In this class of
hybrids, the knowledge extracted during the search is incorporated into the recombi-
nation operators for the generation of new solutions (Fig. 1.32). From a set of solu-
tions (e.g. current population, elite solutions), some models are extracted which may
be represented by classification rules, association rules, decision trees, etc. Those
models (patterns) will participate in the generation of new solutions to intensify or
diversify the search.

  

 -  E l i t e  so lu t i ons
 -  C u r r e n t  p o p u l a t i o n
 - . . .

-  A s s o c i a t i o n  r u l e s ,
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- . . .  

 -  C r o s s o v e r
 -  R e c o m b i n a t i o n
 -  Ve loc i t y ,
 -  . . .

H i s t o r y  o f  t h e  s e a r c h
D a t a  m i n i n g

S e a r c h  o p e r a t o r s

Fig. 1.32 Extracting knowledge from the history of the search and its use into search opera-
tors.

Example 1.19. Integrating knowledge into recombination operators: in this hy-
brid scheme, a set of decision rules describing the generated solutions are extracted.
For instance, classification rules describing the best and worst individuals of the cur-
rent population are extracted [127]. Those rules are generated using the AQ learn-
ing algorithm, a general decision rules learning algorithm (Fig. 1.33). The extracted
rules are incorporated into the crossover operator of an evolutionary algorithm to
reduce the search space for the offsprings (Fig. 1.34). The obtained results indicate
that those learnable evolution models allow to speedup the search and improve the
quality of solutions [127].

F i r s t  g e n e r a t i o n S e c o n d  g e n e r a t i o n T h i r d  g e n e r a t i o n

S e a r c h  s p a c e

Fig. 1.33 Reduction of the search space for the offsprings using a learnable evolution model
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R u l e  :  I F  X 4 = 5  A N D  X 6  <  2  T H E N  C l a s s = B e s t  

P a t t e r n

*  *   *   5   *   1   *   *

 2   1   7    2   1   3   4   3

 3   2   5    7   8   0   7   4

P a r e n t s

O f f s p r i n g s
5      1   2   1   7 7   48

            5      13   2   5 4   31

Fig. 1.34 Crossover operator using the induced rule as a pattern. For instance, the extracted
pattern (...5.1..) is included into the offsprings.

EDA (Estimation of Distribution Algorithms) can also be considered as LTH hy-
brids using estimated probability distributions to generate new solutions. Similarly,
cultural algorithms use high quality individuals to develop beliefs constraining the
way in which individuals are transformed by genetic operators [144]. In cultural
algorithms, beliefs are formed based on each entity’s individual experiences. The
reasoning behind this is that cultural evolution allows populations to learn and adapt
at a rate faster than pure biological evolution. Importantly, the learning which takes
place individually by each entity is passed on the remainder of the group, allowing
learning to take place at a much faster rate.

Civilized genetic algorithms constitute another LTH hybrid approach integrating
concepts from machine learning [150]. They differ from Darwinian evolution as
they keep information of the population in order to avoid doing the same errors. The
knowledge is dynamically updated during the successive generations. They have
been applied to binary encodings in which a preprocessing step using a genetic
algorithm is carried out to obtain a diverse population.

Parameter setting: a dynamic setting of the parameters of a P-metaheuristic can
be carried out by a data mining task. Any parameter of a P-metaheuristic, such as
the mutation and crossover probabilities in evolutionary algorithms, the pheromone
update in ant colonies, and the velocity update in particle swarm optimization, can
be modified dynamically during the search. Indeed, knowledge extracted during the
search may serve to change dynamically at run time the values of those parameters.
For instance, the initialization of the mutation rate may be adjusted adaptively by
computing the progress of the last applications of the mutation operator [173] [91].
Hence, it becomes possible to determine the probabilities of application of a given
operator in an adaptive manner where more efficient an operator is, more important
its probability of application will be. Another approach could be to analyze in details
the new individuals generated by operators (in terms of quality and diversity) using
clustering algorithms. This would give valuable information that can help to set the
new application probabilities.

Optimization model: many optimization problems such as engineering design
problems are concerned by expensive objective functions. In this hybrid scheme,
supervised classification algorithms can be used to approximate the objective func-
tion during the search. The number of solutions to evaluate according to the real
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objective function can also be reduced. In this case, already evaluated solutions will
represent the predefined classes. A non evaluated solution is classified, using for
example the k-nearest neighbor classification algorithm. The objective function of
a given solution is then approximated using the evaluated solution of the associated
class.

This process may be also carried out by clustering algorithms using fitness imita-
tion. A clustering algorithm is applied on a population of solutions to be evaluated.
Each cluster will have a representative solution. Only the solution that represents the
cluster is evaluated [142] [112] [99]. Then, the objective function of other solutions
of the cluster is estimated in respect to its associated representative10 (Fig. 1.35).
Different clustering techniques may be used such as K-means and fuzzy c-means.

( a )  P o p u l a t i o n  o f  s o l u t i o n s  t o  e v a l u a t e

C o m p l e t e  e v a l u a t i o n

I n d i r e c t  e v a l u a t i o n

C l u s t e r

( b )  C o m p l e t e  e v a l u a t i o n  o f  r e p r e s e n t a t i v e s  

Fig. 1.35 Evaluating a solution by using the representative of its cluster (fitness imitation)

1.5.2.3 High-Level Relay Hybrid (HRH)

In this HRH hybrid approach, a priori knowledge is first extracted from the target
optimization problem. Then, this knowledge is used into the metaheuristic for a
more efficient search. The previously acquired knowledge may be obtained from
previous experimentations, an expert, landscape analysis, etc. Many schemes may
be introduced into this traditional hybrid class.

Search components: for instance, data mining algorithms may be applied for the
initialization of solutions. Instead of generating the initial solutions randomly, prob-
lem knowledge can be used to generate solutions which integrate “good” patterns.

10 This scheme is called fitness imitation or fitness inheritance.
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Example 1.20. Any-time learning algorithm in dynamic optimization: a genetic
algorithm has been initialized with a case-based reasoning in a tracker / target sim-
ulation with a periodically changing environment [141]. Case-based initialization
(learning agent) allows the system to automatically bias the search of the GA toward
relevant areas of the search space in a changing environment (dynamic optimization
problem). This scheme may be seen as a general approach to continuous learning in
a changing environment. The learning agent continuously tests search strategies us-
ing different initial solutions. This process allows the update of the knowledge base
on the basis of the obtained results. This knowledge base generated by a simulation
model will be used by any search agent.

Parameter setting: the same hybrid scheme may be used within the initialization
of the parameters of any metaheuristic. A difficult part in designing metaheuristics
deals with the setting of their parameters. Indeed, many parameters compose meta-
heuristics such as the probability of application of a given operator, the tabu list, the
size of the population or the number of iterations? An empirical approach consists
in both running several times the metaheuristic with different parameters values and
trying to select the best values. If the number of trials or the number of parameters
is important, determining the best set of parameters may require some statistical
analysis. This may be seen as a data mining help (Fig. 1.36).

D a t a  m i n i n g  a p p r o a c h

  M e t a h e u r i s t i c

O p t i m a l  p a r a m e t e r s

Fig. 1.36 Setting the parameters of a metaheuristic using a data mining approach

Optimization model: data mining techniques can also be used in decomposing
the optimization problem handled by a metaheuristic. For instance, in optimiza-
tion problems dealing with Euclidean distances, such as vehicle routing and the
P-median optimization problems, clustering algorithms may be used to decompose
the input space into subspaces. Metaheuristics are then used to solve those subprob-
lems associated to the subspaces. Finally, a global solution is built using partial final
solutions.

Example 1.21. Clustering routing problems: some efficient techniques in solving
routing problems (e.g. TSP, VRP) decompose the operational space into subspaces
using clustering algorithms such as the K-means or the EM (Expectation Maximiza-
tion) algorithm (Fig. 1.37). Indeed, a metaheuristic is then used to solve the different
subproblems. This approach is interesting for very large problems instances.
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c u s t o m e r s

C l u s t e r s

Fig. 1.37 Decomposing an optimization problem using clustering algorithms. (a) Instance of
the VRP problem. (b) Clustering the customers and then applying a TSP metaheuristic to the
subproblems.

A popular off-line hybrid scheme for expensive objective function consists in
approximating the objective function of the problem. Indeed, in many complex real-
life applications, the objective function is very expensive to compute. The main
objective of this hybrid approach is to improve the efficiency of the search. The
approximation can be used either for expensive objective functions or multi-modal
functions. A comprehensive survey on objective function approximations may be
found in [98]. Data mining approaches are used to build approximate models of the
objective function. In this context, previously evaluated solutions are learned by a
data mining algorithm to approximate the objective function of other individuals
(Fig. 1.38). Many learning algorithms may be used such as neural networks (e.g.
multi-layer perceptrons, radial-basis-function networks). The main issue here is to
obtain a “good” approximation in terms of maximizing the quality and minimizing
the computing time. Many questions arise in the design of this hybrid scheme such
as: which proportion of the visited solutions are evaluated using the approximation,
and at what time or in which component of the search algorithm the approximation
is used.

N o n  e v a l u a t e d
    so lu t ion

S e t  o f  e v a l u a t e d  
      so lu t ions

L e a r n i n g
a l g o r i t h m

  A p p r o x i m a t e d
o b j e c t i v e  f u n c t i o n

Fig. 1.38 Data mining approach to approximate the objective function
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1.5.2.4 High-Level Teamwork Hybrid (HTH)

A HTH approach is a hybrid scheme in which a dynamically acquired knowl-
edge is extracted in parallel during the search in cooperation with a metaheuristic
(Fig. 1.39). Any on-line learning algorithms can be used to extract knowledge from
informations provided by metaheuristics such as elite solutions, diversified set of
good solutions, frequency memory, recency memory, etc. From this input, the data
mining agent extracts useful information to be used by metaheuristics to improve
the search. Any statistical indicator for landscape analysis of a problem may also be
used.

D a t a  m i n i n g  a p p r o a c h
  M e t a h e u r i s t i c

P a r a m e t e r  s e t t i n g
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D a t a  m i n i n g  a p p r o a c h

 S e a r c h
m e m o r y

O p t i m i z a t i o n  m o d e l s
( o b j e c t i v e  f u n c t i o n s ,  s u b - p r o b l e m s ,  c o n s t r a i n t s ,  . . ; )

D a t a  m i n i n g  a p p r o a c h

S e a r c h  m e m o r y
(e l i te  so lu t ions ,  . . . )

P a t t e r n s  f o r  g u i d i n g  
s e a r c h  c o m p o n e n t s

Fig. 1.39 On-line knowledge extraction and its use by a metaheuristic

Example 1.22. Data mining in population management of a P-metaheuristic: us-
ing the same scheme of cooperation, data mining approaches can be used to manage
the population of a P-metaheuristic. Managing a population deals with the intensifi-
cation and the diversification tasks of a metaheuristic. Diversification may be carried
out by injecting new individuals into the population during the search. In order to
lead the search to promising search spaces it could be also interesting to regularly
introduce individuals that are built based on information of the past encountered
high-quality solutions.

Such an approach has been proposed in the CIGAR (Case Injected Genetic Algo-
Rithm) algorithm [119]. The aim of CIGAR is to provide periodically to the genetic
algorithm solutions that suit to similar instances / problems. Hence, a classifica-
tion task is carried out to find similar instances in a case base. CIGAR has been
successfully applied to several problems such as the job-shop scheduling and circuit
modeling. For instance, a combination of a GA with the A-priori algorithm has been
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used to discover interesting subroutines for the oil collecting vehicle routing prob-
lem [51]. The obtained sub-routes are inserted into the new individuals of the popu-
lation. Another illustrative example is the combination of the GRASP heuristic with
A-priori like algorithms to extract promising patterns from elite solutions [145].

1.6 Hybrid Metaheuristics for Multi-objective Optimization

The taxonomy for hybrid metaheuristics presented in this chapter holds in solv-
ing multi-objective optimization problems (MOPs). However, the design of hybrid
metaheuristics for MOP needs an adaptation for the reason that in multi-objective
optimization the main goal consists in generating an approximated set of Pareto so-
lutions whereas in mono-objective optimization a unique “good” solution is aimed
to be generated.

1.6.1 Combining Metaheuristics for MOPs

Until the 1990’s, the main focus in the metaheuristic field was on the application
of pure metaheuristics to MOPs. Nowadays, the use of pure multi-objective meta-
heuristics is more and more seldom. A skilled combination of concepts of different
metaheuristics can provide a more efficient behavior and a higher flexibility when
dealing with real-world and large-scale MOPs.

1.6.1.1 Low-Level Relay Hybrids (LRH)

This class of hybrids represents multi-objective hybrid metaheuristics in which a
given metaheuristic is embedded into a S-metaheuristic. Few examples belong to
this class since S-metaheuristics are not well adapted to approximate the whole
Pareto set of a MOP into a single run.

Example 1.23. An adaptive hybrid metaheuristic: a multi-objective tabu search
hyper-heuristic may be used to optimize the use of different S-metaheuristics [29].
This hybrid approach, tested on timetabling and space allocation, uses a tabu list of
S-metaheuristics which is updated by adding the last used S-metaheuristic and/or
the worst one, in terms of performance. Hence, this hybrid approach will adapt
dynamically the search according to the performance of various S-metaheuristics.
More efficient multi-objective S-metaheuristics will be more frequently used during
the search.

1.6.1.2 Low-Level Teamwork Hybrids (LTH)

P-metaheuristics (e.g. evolutionary algorithms, scatter search, particle swarm, ant
colonies) are powerful in the approximation of the whole Pareto set while
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S-metaheuristics are efficient in the intensification of the search around the obtained
approximations. Indeed, S-metaheuristics need to be guided to solve MOPs.

Therefore, most efficient multi-objective P-metaheuristics have been coupled
with S-metaheuristics such as local search, simulated annealing and tabu search,
which are powerful optimization methods in terms of exploitation of the Pareto sets
approximations. The two classes of metaheuristics have complementary strengths
and weaknesses. Hence, LTH hybrids in which S-metaheuristics are embedded into
P-metaheuristics have been applied successfully to many MOPs. Indeed, many state-
of-the art hybrid schemes are P-metaheuristics integrating S-metaheuristics.

Example 1.24. Multi-objective evolutionary local search algorithm: many multi-
objective hybrid metaheuristics proposed in the literature deal with hybridization
between P-metaheuristics (e.g. evolutionary algorithms) and S-metaheuristics (e.g.
local search). For instance, the well-known genetic local search11 algorithms are
popular in the multi-objective optimization community [167] [96] [94] [75]. The
basic principle consists of incorporating a local search algorithm during an evo-
lutionary algorithm search. The local search part could be included by replacing
the mutation operator, but it can also be added after each complete generation of
the evolutionary algorithm [15]. The classical structure of a multi-objective genetic
local search (MOGLS) algorithm is shown in figure 1.40, which depicts the rela-
tionships between the evolutionary multi-objective (EMO) component and the local
search one.

The local search algorithm can be applied in a given direction (i.e. weighted
aggregation of the objectives) [94]. In order to adapt the basic local search algorithm
to the multi-objective case, one may take into account the Pareto dominance relation
[15]. The algorithm works with a population of non-dominated solutions PO. The
hybridization process consists in generating the neighborhood of each solution of
the Pareto set approximation PO. The new generated non dominated neighbors are
inserted into the approximation Pareto set PO. Solutions belonging to the Pareto
set PO and dominated by a new introduced solution are deleted. This process is
reiterated until no neighbor of any Pareto solution is inserted into the Pareto set PO.
The Pareto local search algorithm is described below:

Algorithm 2. Template of the Pareto guided local search (PLS) algorithm.

Input: an approximated Pareto set PO;
repeat

S′ = PO ;
Generate the neighborhood PNx for each solution x of S′ ;
Let PO be the set of non-dominated solutions of S′ ∪PNx ;

until PO=S′ (the population has reached the local optima)
Output: Pareto set PO

11 Called also memetic.
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Fig. 1.40 Generic form of multi-objective genetic local search algorithms (MOGLS)

1.6.1.3 High-Level Relay Hybrids (HRH)

In HRH hybrids, self-contained multi-objective metaheuristics are executed in a se-
quence. A classical HRH for MOP is the application of an intensification strategy
(e.g. path relinking, S-metaheuristic) on the approximation of the Pareto set obtained
by a P-metaheuristic [53] [106].

Example 1.25. Target aiming Pareto search - the TAPAS algorithm:
S-metaheuristics can be combined with any multi-objective metaheuristic to im-
prove the quality of a Pareto approximation. First, a multi-objective metaheuristic
(e.g. any P-metaheuristic) is used to generate a good approximation P of the Pareto
set in terms of diversity. The design of the TAPAS algorithm was motivated by the
need to improve the approximation P in terms of convergence towards the optimal
Pareto set. Indeed, any S-metaheuristic algorithm can be applied to improve the
quality of this approximation [105].

In the TAPAS algorithm, a S-metaheuristic li (e.g. tabu search12) is applied to
each solution si of the initial Pareto set P. A specific mono-objective function oi

is defined for each search li. The defined objective function oi must take into ac-
count the multiplicity of the S-metaheuristics invoked. Indeed, two S-metaheuristics
should not examine the same region of the objective space, and the entire area that
dominates the Pareto approximation P should be explored in order to converge to-
wards the optimal Pareto front. The definition of the objective oi is based on the
partition of the objective space O according to the approximation P (see figure 1.41):

AD = {s ∈ O/∃s′ ∈ P,s′ ≺ s}
AND = {s ∈ O/∀s′ ∈ P,(s′ ⊀ s) and (s ⊀ s′)}

AS = {s ∈ O/�s′ ∈ P,s≺ s′}
AP = {s ∈ O/∃s1,s2 ∈ P,(s≺ s1) and (s≺ s2)}

12 An efficient S-metaheuristic for the target problem should be selected.
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Each solution si ∈ P is associated with a part Ai
S of AS. If li is able to generate a

feasible solution in Ai
S, then the approximation is improved according to the conver-

gence, without decreasing the diversity.
To guide the search, a goal gi is given to each S-metaheuristic li, with gi being the

point that dominates all points of Ai
S. In cases where certain coordinates of gi cannot

be defined (e.g. the extremities of P), a lower bound for the missing coordinates
should be used. For an objective fm, the goal gp is computed as follows:

fm(gp) = arg min{ fm(s′)/(s′∈P) and ( fm(s′)< fm(s))}( fm(s
′)− fm(s))

Then, the objective oi is stated as follows:

min(
M

∑
j=1
| f j(s)− f j(gi)|r)1/r

When a S-metaheuristic li reaches the goal gi or when it finds a solution that dom-
inates gi, it stops and produces an archive ai which contains all the current solu-
tions that are non-dominated. When all the S-metaheuristics li are terminated, a
new Pareto approximation set P′ is formed by the Pareto union of all ai. Because P′
might be improved by another application of S-metaheuristics, the complete process
is iterated until P′ does not differ from P.
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Fig. 1.41 The hybrid TAPAS algorithm for multi-objective optimization: the goal gi of a
solution si is defined in function of si neighbors in the objective space.

Example 1.26. Filling the gap of a Pareto approximation with path-relinking:
path relinking can be combined with any multi-objective metaheuristic to intensify
the search around a Pareto approximation. First, a multi-objective metaheuristic (e.g.
any P-metaheuristic) is used to generate a good approximation of the Pareto set.
Then, path relinking concept can be applied to connect the non-dominated solutions
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of the approximated Pareto set [16] [18] [97]. The design questions which must be
considered are:

• Selection of the initial and the guiding solutions: this design question concerns
the choice of the pair of solutions to connect. For instance, a random selection
from the approximated Pareto set may be applied [16]. Otherwise, some criteria
must be used to choose the initial and the guiding solutions: distance between
solutions (e.g. distance in the decision or the objective space), quality of the
solutions (e.g. best solution according to a reference point or weighted aggrega-
tion), etc.

• Path generation: many paths may be generated between two solutions. One has
to establish which path(s) has to be explored and selected. Among other concepts,
a neighborhood operator and a distance measure in the decision space have to
be defined. For instance, the shortest paths may be generated according to the
selected neighborhood operator [16]. Let us consider x as the current solution
and y as the guiding solution. The neighborhood N of x is generated with the
following constraint: ∀z ∈ N,d(z,x) < d(y,x). From this neighborhood, only the
non-dominated solutions may be selected to be potential solutions of the future
paths (see figure 1.42). The process is iterated, until a complete path from x to y is
generated. Many paths may also be considered. However, generating all possible
paths may be computationally expensive. Moreover, the non-dominated solutions
may also be selected to participate to a Pareto local search algorithm as shown in
figure 1.43 [16].

f1

f2

solution A

Neighborhood

solution A

Eligible solutions

Aggregation plane

Objective spaceDecision space

Feasible solutions

Neighborhood

solution
Selected 

Fig. 1.42 Path Relinking algorithm filling the gap between two non-dominated solutions of
an approximation Pareto set: neighborhood exploration
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solution A
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solution A
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path
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Feasible solutions

Solution on the path
Solution selected for PLS
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Fig. 1.43 Path relinking algorithm combined with a Pareto local search (PLS) algorithm

1.6.1.4 High-Level Teamwork Hybrid (HTH)

As previously shown in this chapter, HTH hybrids scheme involves several self-
contained multi-objective metaheuristics performing a search in parallel and coop-
erating to find a Pareto set approximation.

Example 1.27. Cooperative multi-objective evolutionary algorithms: a growing
interest is dedicated to design and implement parallel cooperative metaheuristics to
solve multi-objective problems. The majority of designed parallel models in the
literature are evolutionary algorithms [80] [101] [126] [147]. In multi-objective
evolutionary algorithms, the individuals are selected from either the population,
the Pareto archive or both of them. In the multi-objective island model, different
strategies are possible. For instance, the newcomers replace individuals selected
randomly from the local population that do not belong to the local Pareto archive.
Another strategy consists in ranking and grouping the individuals of the local pop-
ulation into Pareto fronts using the non-dominance relation. The solutions of the
worst Pareto front are thus replaced by the new arrivals. One can also make use of
the technique that consists in merging the immigrant Pareto front with the local one,
and the result constitutes the new local Pareto archive. The number of emigrants
can be expressed as a fixed or variable number of individuals, or as a percentage
of individuals from the population or the Pareto archive. The choice of the value
of such parameter is crucial. Indeed, if it is low the migration process will be less
efficient as the islands will have the tendency to evolve in an independent way. Con-
versely, if the number of emigrants is high, the EAs will likely to converge to the
same solutions (premature convergence).

Although most of works on parallel multi-objective metaheuristics are related
to evolutionary algorithms, there are also proposals related to alternative methods,
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such us tabu search [7], simulated annealing [5] [34], ant colonies [54] and memetic
algorithms [15].

1.6.2 Combining Metaheuristics with Exact Methods for MOP

Another recent popular issue is the cooperation between multi-objective metaheuris-
tics and exact optimization algorithms. Some hybrid schemes mainly aim at provid-
ing Pareto optimal sets in shorter time, while others primarily focus on getting better
Pareto set approximations. In a multi-objective context, only few studies tackle this
type of approaches. The main interest is to adapt the classical mono-objective hy-
brids presented in sections 1.3 and 1.4 to multi-objective optimization.

Example 1.28. Combining branch and bound with multi-objective metaheuris-
tics: an investigation of several cooperative approaches combining multi-objective
branch and bound [177] and multi-objective metaheuristics can be considered for
MOPs [13]. Let us consider the bi-objective flow-shop scheduling problem, a multi-
objective metaheuristic which approximates the Pareto set of the problem [14], and
a bi-objective branch and bound which has been designed to solve the bi-objective
flow-shop scheduling problem [116].

Three hybrid schemes combining an exact algorithm with a multi-objective meta-
heuristic may be considered [13]:

• Metaheuristic to generate an upper bound: the first HRH hybrid exact scheme
is a multi-objective exact algorithm (e.g. branch and bound) in which the Pareto
set approximation is used to speedup the algorithm (Fig. 1.44). The Pareto set
approximation is considered as a good upper bound approximation for the multi-
objective exact algorithm. Hence, many nodes of the search tree can be pruned
by the branch and bound algorithm. This is a multi-objective adaptation of a clas-
sical cooperation found in the mono-objective context (see section 1.3). The time
required to solve a given problem instance is smaller if the distance between the
Pareto front approximation and the Pareto optimal front is small. If the distance
is null, the exact algorithm will serve to prove the optimality of the Pareto set
approximation. Even if this hybrid approach reduces the search time needed to
find the Pareto optimal set, it does not allow to increase considerably the size of
the solved instances.

• Exact algorithm to explore very large neighborhoods: in this hybrid heuristic
approach, the exact multi-objective algorithm is used to explore large neighbor-
hoods of a Pareto solution. The main idea is to reduce the search space explored
by the exact algorithm by pruning nodes when the solution in construction is too
far from the initial Pareto solution.

Let us consider a permutation based representation for the bi-objective flow-
shop scheduling problem, and an insertion neighborhood operator. The exact al-
gorithm is allowed to explore the neighborhood of the initial Pareto solution in
which the solutions are within a distance less or equal to δmax (Fig. 1.45). The
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Fig. 1.44 A HRH exact hybrid scheme in which a multi-objective metaheuristic generates an
upper bound Pareto set to an exact multi-objective algorithm (e.g. branch and bound).

size of the insertion-based neighborhood is Θ(n2), where n represents the num-
ber of jobs. Hence, the size of the search space explored by the exact algorithm
is exponential and may be approximated by Θ(n2δmax). Then, the distance δmax

must be limited, especially for instances with large number of jobs.

Fig. 1.45 A hybrid heuristic scheme in which an exact algorithm explores very large neigh-
borhoods of the multi-objective metaheuristic

• Exact algorithm to solve subproblems: in this hybrid heuristic approach, the
exact multi-objective algorithm solve subproblems which are generated by the
multi-objective metaheuristic. A given region of the decision space is explored
by the exact algorithm. Figure 1.46 shows an example of such hybridization. Let
us consider an initial Pareto solution composed of 10 jobs (a,b, ..., i, j) which is
obtained by the multi-objective metaheuristic. Subproblems of a given size (e.g.
4) are explored by the exact algorithm (e.g. the subproblem defined by the non-
freezed jobs d,e, f ,g). The first phase consists in placing the three first jobs at the
beginning of the schedule. Moreover, the branch and bound algorithm places the
three last jobs at the end of the schedule (a job j placed in queue is symbolized
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Fig. 1.46 A hybrid heurisitic scheme in which an exact algorithm solves subproblems gener-
ated by a multi-objective metaheuristic

by − j). Then, the branch and bound multi-objective algorithm is applied on the
remaining non-freezed jobs to generate all Pareto solutions in this subspace.

The main parameters which have to be defined for an efficient hybrid scheme
are:

– Partition sizes: the cardinality of the Pareto set approximation obtained by a
multi-objective metaheuristic varies according to the target MOP and instance.
For the BOFSP problem, the size of the Pareto set approximation varies be-
tween several tens and two hundred solutions. Moreover, the size of partitions
must be also limited according to the efficiency of the exact method at hand.
For the BOFSP, it may be fixed to 25 jobs for 10 machines instances and 12
jobs for the 20 machines instances, so each exact method can be performed in
several seconds or some minutes [13].

– Number of partitions for each solution: enough partitions of the complete
schedule have to be considered to treat each job at least once by the exact
method. Moreover, it is interesting to superpose consecutive partitions to al-
low several moves of a same job during optimization. Then, a job which is
early scheduled could be translated at the end of the schedule by successive
moves. On the other side, more partitions are considered, more important
the computational time is. For instance, for the BOFSP, 8 partitions for the
50−jobs instances, 16 partitions for the 100−jobs and 32 partitions for the
200−jobs instances may be considered [13].

Example 1.29. Combining branch and cut with multi-objective metaheuristics:
this example investigates the solution of a multi-objective routing problem, namely
the bi-objective covering tour problem (BOCTP), by means of a hybrid HRH strat-
egy involving a multi-objective metaheuristic and a single-objective branch-and-cut
algorithm. The BOCTP aims to determine a minimal length tour for a subset of
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nodes while also minimizing the greatest distance between the nodes of another
set and the nearest visited node. The BOCTP can be formally described as follows
(Fig. 1.48): let G = (V ∪W,E) be an undirected graph, where V ∪W is the vertex
set, and E = {(vi,v j)/vi,v j,V ∪W, i < j} is the edge set. Vertex v1 is a depot, V
is the set of vertices that can be visited, T ⊆ V is the set of vertices that must be
visited (v1 ∈ T ), and W is the set of vertices that must be covered. A distance ma-
trix C = (ci j), satisfying triangle inequality, is defined for E . The BOCTP consists
of defining a tour for a subset of V, which contains all the vertices from T, while
at the same time optimizing the following two objectives: (i) the minimization of
the tour length and (ii) the minimization of the cover. The cover of a solution is
defined as the greatest distance between a node w ∈W , and the nearest visited node
v ∈V .

The BOCTP problem has been extended from the mono-objective covering tour
problem (CTP). The CTP problems consists in determining a minimum length tour
for a subset of V that contains all the vertices from T , and which covers every vertex
w from W that is covered by the tour (i.e. w lies within a distance c from a vertex of
the tour, where c is a user defined parameter). A feasible solution for a small instance
is provided in figure 1.48. One generic application of the CTP involves designing
a tour in a network whose vertices represent points that can be visited, and from
which the places that are not on the tour can be easily reached. In the bi-objective
covering tour problem BOCTP, the constraint on the cover has been replaced by an
objective in which the covering distance is minimized [107].

Let us consider a multi-objective metaheuristic to solve the BOCTP problem
which approximates the Pareto set [107], and a branch and cut algorithm to solve
the mono-objective CTP problem [76]. The branch and cut algorithm may be con-
sidered as a black box optimization tool whose inputs are a subset of V , the set W ,
and a cover, and whose output is the optimal tour for the CTP. The branch and cut
algorithm first relaxes the integrality conditions on the variables and the connectiv-
ity constraints of the integer linear programming model. Integrality is then gradually
restored by means of a branch and bound mechanism. Before initiating branching
at any given node of the search tree, a search is conducted for violated constraints,
including the initially relaxed connectivity constraints and several other families of
valid constraints. Several classes of valid inequalities have been considered such as
dominance constraints, covering constraints, sub-tour elimination constraints, and
2-matching inequalities [76].

In the hybrid approach, the multi-objective metaheuristic generates a Pareto set
approximation, which is used to build subproblems; these subproblems are then
solved using the branch and cut algorithm (Fig. 1.48). Subproblem construction is a
key point of the cooperative design, given that prohibitive computational times result
if the subsets of V are too large. By limiting their size and giving the branch and cut
algorithm access to the information extracted from the Pareto set approximation,
the method makes solving the subproblems relatively easy for the branch-and-cut
algorithm. Two procedures for building the subproblems can be considered [107]:

• One objective improvement by an exact algorithm: the main purpose of the
first construction procedure is to improve the solutions found by the multi-
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Fig. 1.47 The covering tour problem: an example of a solution

objective metaheuristic in terms of the tour length objective without modify-
ing the cover value. It accomplishes this goal by investigating the possibility
that some elements of the set of visited vertices Ṽ can be replaced by sets of
vertices R ⊆ V\Ṽ so that the cover value c̃ provided by the couple (vt ,vc) re-
mains unchanged (Fig. 1.48a). A vertex vk ∈ Ṽ can be replaced by a set R if and
only if: (i) No subset of R can replace vk; (ii) No vertex from R can provide a
better cover: ∀vi ∈ R,ctc ≤ cic; (iii) There must be a vertex from Ṽ or from R
that can replace vk for every vertex of W that can be covered by vk. Therefore,
∀vl ∈ W\{vc}, such that ckl ≤ c̃, where the following condition must be true:
∃vn ∈ R∪ (Ṽ\{vk}),cnl ≤ c̃.

Replacing a node of Ṽ by a subset R tends to become easier as the cardinality
of R increases. However, in practice, condition (i) limits the candidate subsets.
The larger the R set, the higher the cost of the test. Certainly, if the size of the set
used for the branch and cut algorithm is very large, the algorithm will require too
much computational time. Therefore, in practice, the cardinality of R is limited
to one or two elements.

For each solution s of the Pareto set approximation, a problem is built as fol-
lows. The set VI of vertices that can be visited is created by the union of Ṽ and
all subsets of V with a cardinality of 1 or 2 that can replace a vertex of Ṽ . The set
W of vertices that must be covered remains unchanged. Here, the parameter c is
equal to the cover of s.

• Region exploration by an exact algorithm: in the first construction procedure
it is unlikely that all the feasible covers corresponding to Pareto optimal solutions
will be identified. These unidentified solutions must always be situated between
two solutions of the approximation, although not always between the same two
solutions. Thus, it is reasonable to assume that new Pareto optimal solutions may
be discovered by focusing searches in the area of the objective space between
two neighboring solutions. The second procedure aims to build sets of vertices
in order to identify potentially Pareto optimal solutions whose cover values were
not found by the multi-objective metaheuristic. Let A and B be two neighboring
solutions in the approximation sets found by the evolutionary algorithm (i.e. there
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are no other solutions between A and B). A (resp. B) is a solution with a cover cA

(resp. cB) which visits the vertices of the set VA (resp. VB). Assuming that cA < cB,
the branch and cut algorithm can be executed on a set VII , built according to both
VA and VB, with the first cover c̃ which is strictly smaller than cB as a parameter
(Fig. 1.48b). If c̃ is equal to cA, there is no need to execute the branch and cut
algorithm.

It appears that neighboring solutions in the Pareto set have a large number of
vertices in common. Thus, VII contains VA and VB. This inclusion insures that
the branch and cut algorithm will at least be able to find the solution A, or a
solution with the same cover but a better tour length in cases for which the tour
on VA is not optimal. The following process is used to complete VII : for every
feasible cover c, so that cA < c < cB, vertices are added to VII in order to obtain
a subset of VII with c as a cover. The algorithm below provides the procedure for
constructing the set VII .

Algorithm 3. Construction of the set VII .
VII = VA∪VB ;
for all c so that cA < c < cB do

for vl ∈W do
VII = ∪VII{vk ∈V\VII/ckl ≤ c}

end for
end for
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Fig. 1.48 Combining a mono-objective branch and cut algorithm and a multi-objective meta-
heuristic to solve the bi-objective covering tour problem
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1.6.3 Combining Metaheuristics with Data Mining for MOP

Most of the classical combinations of metaheuristics with machine learning and
data mining techniques (e.g. feature selection, classification, clustering, association
rules) which have been applied to mono-objective optimization (see section 1.5) can
be generalized to multi-objective optimization:

• Search operators (e.g. recombination operators in P-metaheuristics, neighbor-
hoods in S-metaheuristics).

• Optimization models (e.g. approximation of the objectives functions, generation
of sub-problems, new constraints).

• Parameter setting of the metaheuristics.

Example 1.30. Search operators: integrating knowledge into search operators is
the most popular scheme in this class of hybrids. For instance, in a P-metaheuristic
(e.g. evolutionary algorithm), a set of decision rules describing the best and worst
individuals of the current population may be extracted. The extracted rules are in-
corporated into the crossover operator of an evolutionary algorithm to generate so-
lutions sharing the characteristics of non-dominated solutions and avoiding those of
dominated solutions.

This principle can be applied to multi-objective optimization in the following
way [103]: a set of rules that describes why some individuals dominate others (pos-
itive rules) and why some individuals are dominated by others (negative rules13) are
extracted using the C4.5 classifier. Offsprings that match the positive rules and do
not match the negative rules are generated. The obtained results indicate that those
learnable evolution models allow to speedup the search and improve the quality of
solutions.

Parameter setting: in a multi-objective metaheuristic, the efficiency of an operator
may change during the execution of the algorithm: an operator may offer a better
convergence at the beginning of the metaheuristic, but this convergence may be im-
proved later with another operator. The success of an operator may also depend on
the instance of the problem. This motivates the use of adaptive operator probabili-
ties to automate the selection of efficient operators. The adaptation can be done by
exploiting information gained, either implicitly or explicitly, regarding the current
ability of each operator to produce solutions of better quality [173]. Other meth-
ods adjust operator probabilities based on other criteria, such as the diversity of the
population [45]. A classification of adaptation on the basis of the used mechanisms,
and the level at which adaptation operates may be found in [89].

Example 1.31. Adaptive mutation in multi-objective evolutionary algorithms:
let us consider a multi-objective evolutionary algorithm in which the choice of the
mutation operators is done dynamically during the search. The purpose is to use
simultaneously several mutation operators during the EA, and to change automati-
cally the probability selection of each operator according to its effectiveness [15].

13 Negative knowledge.
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So the algorithm always uses more often the best operators than the others. Let us
remark that a similar approach could be defined with other operators (e.g. crossover,
neighborhoods, hybrid strategies).

Initially, the same probability is assigned to each mutation operator: Mu1, . . . ,
Muk. Those probabilities are equal to the same ratio PMui = 1/(k ∗PMu), where k
is the number of mutation operators, and PMu is the global mutation probability.
At each iteration, the probabilities associated to the mutation operators are updated
according to their average progress. To compute the progress of the operators, each
mutation Mui applied to the individual I is associated with a progress value:

Π(IMui) =

⎧
⎨

⎩

1 if I is dominated by IMui

0 if I dominates IMui
1
2 otherwise (non comparable solutions)

where IMui is the solution after mutation (Fig. 1.49).
At the end of each generation of the EA, an average progress Progress(Mui) is

assigned to each operator Mui. Its value is the average progress of Π(IMui) computed
with each solution modified by the mutation Mui:

Progress(Mui) =
∑Π(IMui)

‖Mui‖
where ‖Mui‖ is the number of applications of the mutation Mui on the population.
The new selection probabilities are computed proportionally to these values:

PMui =
Progress(Mui)

∑k
j=1 Progress(Mu j)

× (1− k× δ )+ δ

where δ is the minimal selection probability value of the operators.
This approach of progress computation compares two solutions with their dom-

inance relation. However, a comparison only between I and IMui is not sufficient.
Firstly, if the two individuals I and IMui are non comparable, the quality of the mu-
tation cannot be evaluated. For instance, in figure 1.50, the progress Π of the two
mutation operators applied on the solution� is the same (1/2). However, the obser-
vation of the whole Pareto front shows that the second mutation operator performs
better since the generated solution by the second mutation operator is Pareto optimal
whereas the solution generated by the first is not.

Secondly, if the generated individual dominates the initial individual, the progress
realized cannot be measured with precision. For instance, in figure 1.51, the progress
Π of the two mutation operators applied on the solution� is the same (1). However,
the observation of the whole population shows that the second mutation operator
performs much better than the first one.

These problems can be tackled in the case of evolutionary algorithms using se-
lection by ranking. The progress value can be replaced by:
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Fig. 1.49 Progress value of Π(IMui) for mutation operators
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Solution        after mutation 1

Solution        after mutation 2
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Fig. 1.50 Evaluation of the quality of the mutation operators

Π(IMui) =

(
RkI

RkIMui

)β

where RkIMui is the rank of the solution after mutation, RkI is the rank of the solution
before mutation, and β is how much the progress made by mutation operators is
encouraged (e.g. β = 2).

The evaluation of the progress of the mutation operators can be still improved by
supporting the progresses realized on good solutions. In fact, these progresses are
generally more interesting for the front progression than progresses made on bad
solutions (Fig. 1.52). So an elitist factor E f IMui has been introduced into the last
progress indicator to favor progresses made on good solutions:
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Fig. 1.51 Computing the progress realized by different mutation operators
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Fig. 1.52 Progress realized by mutation operators on good quality solutions

Π(IMui) = E f IMui ×
(

RkIMui

RkI

)β

with E f IMui = (RkIMui)
−1. Then, the average progress of a mutation Mui is defined

as follows:

Progress(Mui) =
∑Π(IMui)

∑E f IMui

Some hybrid schemes are specific to multi-objective metaheuristics such as intro-
ducing data mining tasks in the search component dealing with elitism.
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Example 1.32. Clustering archives in multi-objective metaheuristics: a classical
approach using data mining approaches in the population management of multi-
objective metaheuristics is the application of clustering algorithms on the archive.
The objective is to produce a set of well diversified representatives Pareto solutions
in a bounded archive. An archive is often used to store Pareto solutions and the clus-
tering is then performed to avoid a bias towards a certain region of the search space
and to reduce the number of Pareto solutions. Such a bias would lead to an unbal-
anced distribution of the Pareto solutions. For instance, a hierarchical clustering can
be applied using the average linkage method [183].

1.7 Conclusions and Perspectives

The efficient solving of complex problems must involve ideas from different
paradigms: metaheuristics, mathematical programming, constraint programming,
machine learning, graph theory, parallel and distributed computing, and so on.
Pure metaheuristics are not generally well suited to search in high-dimensional and
complex landscapes. Hybrid metaheuristics represent actually the most efficient al-
gorithms for many classical and real-life difficult problems. This is proven by the
huge number of efficient hybrid metaheuristics proposed to solve a large variety of
problems.

Nowadays, combining metaheuristics becomes a common strategy to solve op-
timization problems. Hybrid algorithms will constitute competitive candidates for
solving difficult optimization problems in the future years. As we have developed
a unified view of metaheuristics which is based on their key search components,
one can say that designing a mono-objective or multi-objective metaheuristic can
be reduced to select the most suited search components and combining them. This
design approach is naturally a hybrid one, and it is not under the control of a single
paradigm of metaheuristics14.

A unified taxonomy, based on a hierarchical (low level versus high level, relay
versus teamwork) and flat classification (homogeneous/heterogeneous, global/par-
tial, general/specialist), has been developed to describe in terms of design and im-
plementation the different hybridization schemes of metaheuristics with:

• Metaheuristics: combining P-metaheuristics with S-metaheuristics has provided
very powerful search algorithms. Pure P-metaheuristics such as evolutionary al-
gorithms, scatter search, and ant colonies are generally not well suited to fine-
tuned search in highly combinatorial spaces. P-metaheuristic are more efficient
in terms of diversification (i.e. exploration) in the search space. Hence, they need
to be combined with more intensification-based (i.e. exploitation-based) search
algorithms which are generally based on S-metaheuristics (e.g. local search, tabu
search).

14 Using this design approach, it is worthwhile to speak about hybrid metaheuristics as any
metaheuristic will be a hybrid one!.
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• Mathematical programming: in the last decade, there has been an important
advance in designing efficient exact methods in the operations research commu-
nity (e.g. integer programming). There are many opportunities to design hybrid
approaches combining metaheuristics and exact methods. Indeed, the two ap-
proaches have complementary advantages and disadvantages (e.g. efficiency and
effectiveness).

• Constraint programming: over the last years, interest on combining meta-
heuristics and constraint programming has risen considerably. The availability of
high-level modeling languages and software solvers for constraint programming
will lead to more hybrid approaches which capture the most desirable features of
each paradigm.

• Data mining: nowadays, using metaheuristics to solve data mining and machine
learning problems becomes common. But the challenge is the incorporation of
machine learning and data mining techniques into metaheuristics. The major in-
terest in using machine learning and data mining techniques is to extract useful
knowledge from the history of the search in order to improve the efficiency and
the effectiveness of metaheuristics. Both positive and negative knowledge must
be extracted. In fact, most of the actual works focus only on positive knowl-
edge [128].

The main drawback of hybridization is the introduction of new parameters which
define the hybrid scheme. The setting of those parameters is non trivial. A cru-
cial question that has to be addressed in the future is an aid for the efficient de-
sign of hybrid metaheuristics, in which the automatic setting of parameters must
be investigated [73] [25]. Indeed, it will be interesting to guide the user to define
the suitable hybrid scheme to solve a given problem. It will be also interesting to
define “adaptive” cooperation mechanisms which allows to select dynamically the
optimization methods according to convergence or other criteria such as diversity.
Some approaches such as the COSEARCH [164] or “hyper-heuristics” [28] have
been proposed to deal with this problem. Those approaches are dedicated to choose
the right heuristic for the right operation at the right time during the search. It must
be noted that the those hybrid approaches operate in the heuristic space, as opposed
to most implementations of meta-heuristics, which operate in the solution space.
This principle is relatively new, although the concept of “optimizing heuristics” is
not a recent one.

Using the software framework ParadisEO, it is natural to combine metaheuristics
which have been developed under the framework to design S-metaheuristics (un-
der ParadisEO-MO), P-metaheuristics (under ParadisEO-EO), and multi-objective
metaheuristics (under ParadisEO-MOEO). Still a work to do for combining meta-
heuristics with exact optimization and machine learning algorithms. The coupling of
software frameworks dealing with the three classes of algorithms (i.e. metaheuris-
tics, exact and machine learning algorithms) is an important issue for the future. This
enables to reduce the complexity of designing and implementing hybrid approaches
and make them more and more popular.

It will be also interesting to deeply explore parallel models for hybrid meth-
ods. Parallel schemes ideally provide novel ways to design and implement hybrid
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algorithms by providing parallel models of the algorithms. Hence, instead of merely
parallelizing and finely tuning a sequential hybrid algorithm which has limited capa-
bilities to be parallelized, teamwork hybrid schemes are inherently suited to parallel
environments.
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Nationales sur la Résolution de Problèmes NP-Complets, JNPC 2002, Nice, France
(May 2002)

34. Chang, C.S., Huang, J.S.: Optimal multiobjective SVC planning for voltage stability
enhancement. IEE Proceedings on Generation, Transmission and Distribution 145(2),
203–209 (1998)

35. Chelouah, R., Siarry, P.: A hybrid method combining continuous tabu search and
Nelder-Mead simplex algorithms for the global optimization of multiminima functions.
European Journal of Operational Research 161(3), 636–654 (2004)

36. Chen, H., Flann, N.S.: Parallel simulated annealing and genetic algorithms: A space
of hybrid methods. In: Davidor, Y., Schwefel, H.-P., Manner, R. (eds.) Third Conf. on
Parallel Problem Solving from Nature, PPSN 1994, Jerusalem, Israel, pp. 428–436.
Springer (October 1994)

37. Chu, P.C.: A genetic algorithm approach for combinatorial optimization problems. PhD
thesis. University of London, London, UK (1997)

38. Chvatal, V.: A greedy heuristic for the set covering problem. Mathematics of Operations
Research 4(3), 233–235 (1979)



70 E.-G. Talbi

39. Clearwater, S.H., Hogg, T., Huberman, B.A.: Cooperative problem solving. In: Hu-
berman, B.A. (ed.) Computation: The Micro and the Macro View, pp. 33–70. World
Scientific (1992)

40. Clearwater, S.H., Huberman, B.A., Hogg, T.: Cooperative solution of constraint satis-
faction problems. Science 254, 1181–1183 (1991)

41. Cohoon, J., Hedge, S., Martin, W., Richards, D.: Punctuated equilibria: A parallel ge-
netic algorithm. In: Grefenstette, J.J. (ed.) Second Int. Conf. on Genetic Algorithms,
pp. 148–154. MIT, Cambridge (1987)

42. Cohoon, J.P., Martin, W.N., Richards, D.S.: Genetic Algorithms and Punctuated Equi-
libria. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 134–141.
Springer, Heidelberg (1991)

43. Cohoon, J.P., Martin, W.N., Richards, D.S.: A multi-population genetic algorithm for
solving the k-partition problem on hypercubes. In: Belew, R.K., Booker, L.B. (eds.)
Fourth Int. Conf. on Genetic Algorithms, pp. 244–248. Morgan Kaufmann, San Mateo
(1991)

44. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS Journal on
Computing 15(3), 233–248 (2003)

45. Coyne, J., Paton, R.: Genetic Algorithms and Directed Adaptation. In: Fogarty, T.C.
(ed.) AISB-WS 1994. LNCS, vol. 865, pp. 103–114. Springer, Heidelberg (1994)

46. Crainic, T.G., Nguyen, A.T., Gendreau, M.: Cooperative multi-thread parallel tabu
search with evolutionary adaptive memory. In: 2nd Int. Conf. on Metaheuristics, Sophia
Antipolis, France (July 1997)

47. Crainic, T.G., Toulouse, M., Gendreau, M.: Synchronous tabu search parallelization
strategies for multi-commodity location-allocation with balancing requirements. OR
Spektrum 17, 113–123 (1995)

48. Crainic, T.G., Toulouse, M.: Parallel strategies for metaheuristics. In: Glover, F.W.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 475–513. Springer (2003)

49. Cung, V.-D., Mautor, T., Michelon, P., Tavares, A.: A scatter search based approach for
the quadratic assignment problem. In: IEEE Int. Conf. on Evolutionary Computation,
ICEC 1997, Indianapolis, USA (April 1997)

50. Cung, V.-D., Mautor, T., Michelon, P., Tavares, A.: Recherche dispersée parallèle. In:
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Chapter 2
Hybrid Metaheuristics for Dynamic and
Stochastic Vehicle Routing

Ulrike Ritzinger and Jakob Puchinger

Abstract. Recent developments in telematics, such as the wide spread use of po-
sitioning services and mobile communication technologies, allow the exact mon-
itoring of vehicles. These advances build the basis for automatic real-time fleet
management systems. To be successful such systems have to rely on optimiza-
tion algorithms for solving dynamic and stochastic vehicle routing problems based
on ingredients such as historical data, stochastic modeling, machine learning, fast
shortest-path calculation, fast construction heuristics, and exact and (meta)heuristic
optimization methods. This book documents the growing interest in and success of
hybrid metaheuristics. They are often used to solve complex and large real-world
optimization problems, combining advantages from various fields of computer sci-
ence and mathematical optimization. Within this chapter the application of such
methods for the dynamic and stochastic vehicle routing problem is studied. After a
general introduction in this field, the main commonalities of dynamic and stochastic
vehicle routing problems are described and a short overview of classical algorithms
for these problems is given. Then, in the third part hybrid metaheuristics for dy-
namic problems vehicle routing problems are be described. The third part focusses
on stochastic problems. The fourth part examines the combination of dynamic and
stochastic problems. The chapter is concluded with an outlook towards future de-
velopments in the field as well as promising open research areas.

2.1 Introduction

In todays globalized economy fast, reliable but also flexible supply chains are among
the main factors for successful enterprises. In real-world applications it is most of-
ten the case that some information about the future is available (stochastic informa-
tion) and that known information is revealed over time (dynamic information). For
example, an estimation for the customer demand is given at the beginning, whereas
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the actual demand will be revealed at a later date. Additionally, recent develop-
ments in telematics, such as the wide spread use of positioning services and mobile
communication technologies, allow the exact monitoring of vehicles [33]. These ad-
vances build the basis for automatic real-time fleet management systems and exten-
sive and detailed data collection. To be successful such systems have to rely on op-
timization algorithms for solving dynamic and stochastic vehicle routing problems
based on ingredients such as historical data, stochastic models, machine learning,
fast shortest-path calculation, fast construction and insertion heuristics, and exact
and (meta)heuristic optimization methods.

In dynamic real-world vehicle routing applications it is fundamental that short-
term decisions are accurate and made quickly, while long-term decision need to
ensure a certain quality standard. Moreover, stochastic models based on previously
collected data can be used in order to provide some information about upcoming
events. The combination of the dynamic and stochastic problem further extends the
high complexity of their static and deterministic counterparts. Therefore, such prob-
lems are especially amenable to hybrid optimization approaches, combining the ad-
vantages of different techniques. The growing interest in hybrid metaheuristics and
their success is well documented in [13]. They are often used to solve complex and
large real-world optimization problems, combining advantages from various fields
of computer science and mathematical optimization. In the recent vehicle routing
literature there is an increasing number of successful application of hybrid meta-
heuristics [32].

Here, we examine the application of hybrid methods to dynamic and stochastic
vehicle routing problems (VRP). In a first part, we give a short overview of ve-
hicle routing variants and a classification depending on the nature of the available
data. Additionally, it includes a short summary of various algorithms for solving dy-
namic and stochastic VRPs. In the second part, we examine hybrid metaheuristics
for dynamic problem variants, where not all information is available in advance. In
the third part of this chapter, we focus on problems that consider a priori stochas-
tic information about possible future events and progresses. The fourth part of this
chapter, examines dynamic problems where some stochastic information about fu-
ture events is available. We conclude with an outlook towards future developments
in the field as well as promising open research areas.

2.2 Dynamic and Stochastic Vehicle Routing Problems

The Vehicle Routing Problem (VRP) is a well-known and extensively studied com-
binatorial optimization problem [79], [35]. In the last years, the interest in solving
real world applications of the VRP has grown tremendously as information tech-
nologies now allow the gathering of relevant information about available vehicles
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and scheduled requests in real time. This new problem class, where information is
handled at the time it arrives, known as dynamic VRP (DVRP), has recently re-
ceived increased attention from the research community [52], [27]. In the DVRP
not all relevant information is known at the time of route construction and the infor-
mation may change during the execution of the planned routes. Recent summaries
about current developments in DVRP can be found in [75] and [66]. Additionally, in
real world applications it is often the case, that some information about the future,
for example about travel times or arising requests or demand, is available. This infor-
mation can be incorporated into the route planning process by modeling stochastic
VRPs [31], [81], [47].

2.2.1 Vehicle Routing Problem Variants and Available
Information

The literature discerns various classical VRP variants that are further complemented
by numerous real-world applications with additional requirements and constraints.
A detailed description of numerous VRP variants can be found in [79] and [35].

In the classic VRP formulation, a set of vertices representing customers or cities,
a set of arcs where each arc is associated with travel costs and a set of vehicles,
stationed at a depot are considered. The aim is to construct vehicle routes where
each vertex is visited exactly once, all vehicle routes start and end in the depot
and the total travel costs are minimized. A more detailed definition of the classic
VRP can be found in [49]. In the following, the most important VRP variants are
presented.

The simplest and most studied variant is the Capacitated VRP (CVRP). It is
known to be NP-hard and generalizes the well known Traveling Salesman Problem
(TSP) [79]. In the CVRP, the aim is to serve all customer demands with a given fleet
of vehicles located at a single depot where the capacity of the vehicles is restricted.

A related variant is the distance-constrained VRP where the route length is re-
stricted by a maximum tour length and the VRP with Time Windows (VRPTW) is
an extension of the CVRP in which the service at the customer has to start within a
given time window.

Another variant is the VRP with Backhauls (VRPB) where the customer set is
split into two subsets. The first subset contains of customers which require a product
to be delivered (linehaul), whereas the second subset contains customers where a
given quantity of a product has to be picked up (backhaul). Here, the precedence of
the customers must be considered.

In the VRP with Pickup and Delivery (PDP) each customer is split into two dif-
ferent locations, where the goods have to be picked-up at one location and delivered
to the other one. Another variant of the PDP, where people are transported instead of
goods, is called the Dial-a-Ride Problem (DARP). In this problem class, additional
constraints for user convenience are introduced [19].
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2.2.1.1 Information Availability

In the literature, problem variants are discerned according to the availability and
certainty of information [75]. A problem can be seen as static or dynamic depend-
ing on the availability of information before the start of the optimization process.
Depending on the certainty of the available information problems can be considered
as deterministic or stochastic. The combination of these characteristics yields four
categories of routing problems.

The first category are static and deterministic problems. Here, all relevant infor-
mation is completely known at the beginning of the route planning process and no
changes take place during the execution of the routes. This leads to the classic static
VRPs and solution methods ranging from exact methods to metaheuristics. These
problems have been extensively studied in the literature [79], [20], [50], [63].

The next category encompasses static and stochastic problems, the relevant infor-
mation is known a priori, but some parts of it are afflicted with a given uncertainty.
Some information is given as random variables, and the aim is to generate solu-
tions optimizing the expected value of the objective function. Commonly, stochastic
programming methods are applied to such problems [69].

In dynamic and deterministic problems, the available information at the begin-
ning of the planning process is incomplete and there is no information about future
events. In the literature, these problems are often referred to as real-time or online
optimization problems. Most commonly, some information is already known before
the planning horizon starts, but other parts of the information are revealed or change
during the execution phase. Solution methods for the dynamic VRP can range from
reoptimization algorithms over fast insertion heuristics to queuing theory based al-
gorithms, depending on the degree of dynamism [54], [55], [27].

In the forth category, dynamic and stochastic problems, relevant information is
revealed throughout the planning horizon, but additionally stochastic information
about the future, most commonly gathered from historical data, is available. To
deal with stochastic information, solution methods are either based on sampling
approaches where possible future scenarios are included [6], [7] or considering
stochastic information explicitly [26], [76].

2.2.1.2 Stochastic Information

As described above, there are problem categories which have some information
about future events available. This means, there exists an estimation about the occur-
rence of possible future events. This often happens in real world applications where
stochastic information can be obtained from historical data. There are several types
of stochastic information which can be incorporated in the optimization process of
VRPs [31]. In the following section, a differentiation about the most common types
of stochastic information is given.

Travel times are elementary data in VRPs, thus, it is important to provide au-
thentic travel times for the considered network. Stochastic Travel Times are random
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variables and can be used to deal with uncertainties occurring in real world environ-
ment, like time dependent travel times, seasonal effects, car accidents, bad weather
or working zones. In [49], the VRP with stochastic travel times is described in detail.
Sometimes time dependent travel times defined in [27] and stochastic travel times
are combined as proposed in [29].

Another extensively studied problem is the VRP with Stochastic Demand [10].
Here, the actual demand of customers is not known in advance, but it is known as
a random variable which follows a known probability distribution. This problem
arises in practical applications where unknown amount of goods have to be either
delivered or collected. Commonly, this problem is solved by a two stage approach
where first, all routes are constructed a priori,and later, when the demand becomes
known, the returns to the depot for refilling are planned. The aim is to construct
routes with minimum expected routing costs, comprising the costs of the route and
the return trips to the depot.

The next problem class, VRP with Stochastic Customers, mainly arises in a dy-
namic environment where not all customer requests are known a priori, but reveal
during the day of operation. In this case, stochastic information about the expected
number of customer requests is considered and incorporated into the optimization
algorithm, as for example shown in [7] or [42]. Another possibility of stochastic cus-
tomer requests in the DARP is presented in [74] where the requests for the return
trips of patients are stochastic.

The last category considers problems with multiple uncertainties where lots of
information is assumed to be uncertain and modeled as stochastic variables. Thus,
not only travel times or requests are stochastic, but also the location and time of
requests, as well as, cancellation of requests, vehicle break downs or traffic jams.
In [6] and [40] problems with rich stochastic information are described, and in [26]
and [3] practical applications using stochastic information are presented.

2.2.2 Algorithms for Solving Dynamic Vehicle Routing Problems

In the dynamic VRP (DVRP), not all relevant information is known at the time
the routes are planned, but it is revealed throughout the execution of the scheduled
routes. An extensive overview on DVRP can be found in [75].

One common strategy for solving DVRPs is to apply a static algorithm to the
already known data at the beginning for computing an initial solution, and when-
ever new information becomes known the current solution is updated. In order to
solve the static problem, solution concepts based on exact procedures, like Linear
Assignment [28] or Column Generation [18], can be applied. Another concept is
rule based decision making where decision rules are defined and applied whenever
dynamic events occur [70], [53]. Local Search (LS) approaches compute a feasible
starting solution first, usually by repeated insertion operations, and then apply some
improvement techniques. For example, best insertion is used to add a request to the
current solution and after this cross-exchange, or-opt or interroute exchange moves
are applied to improve the solution, as in [67], [17], [15].
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The most widely applied methods for solving DVRPs are metaheuristics [61], [80].
They include Ant Colony Optimization Algorithms applied in [62], Evolutionary
Algorithms used in [37] or Variable Neighborhood Search implemented in [14]. A
very popular metaheuristic for the DVRP is Tabu Search as shown in [56] and [57].
In many cases, a parallel implementation is used to improve computational time of
reoptimization, as presented in [4] and [30].

2.2.3 Algorithms for Solving Stochastic Vehicle Routing Problems

In stochastic optimization problems knowledge about the uncertainty of certain as-
pects is known a priori. This can be knowledge about future requests or travel times.
In this section the focus is on different methods dealing with stochastic information.

Markov Decision Processes (MDP) are often used to model stochastic VRPs, for
example in [23], a VRP with stochastic demand is formulated as a MDP. In [78],
a MDP is used as well to solve a VRP with customer requests which arise with
a certain probability. Other approaches use an approximate dynamic programming
approach [68], [76] for solving VRP or fleet management problems.

In Stochastic Programming , mathematical programming and stochastic models
are combined for solving optimization problems with uncertainties. The aim is to
determine a feasible solution for all possible outcomes and the optimization of the
expected value of the objective function [12]. A detailed introduction to stochastic
programming in the context of transportation and logistics is given in [69].

Another method to deal with stochastic information is Sampling. This strategy
considers already known and stochastic information and generates possible future
scenarios by drawing them from a given probability distribution. A novel approach,
using Sampling is described in [7], where a VRP with stochastic customer requests
is solved. Further approaches using Sampling can be found in [6] and [26].

2.3 Hybrid Metaheuristics for Dynamic Problems

Dynamic problems have usually been solved using reoptimization or fast insertion
techniques depending on the amount of time available for reacting to new events.
One of the earliest works presenting a reoptimization based hybrid metaheuristic in
the dynamic vehicle routing context is the algorithm by Jih and Hsu [44] combin-
ing a Dynamic Programming (DP) algorithm and a Genetic Algorithm (GA) for the
single-vehicle PDP with time windows and capacity constraints. The dynamic pro-
gramming component is executed for a certain amount of time. It will either return
an optimal solution or multiple partially constructed routes. Those partial solutions
are used as initial population of a genetic algorithm. The hybrid approach was able
to improve the results of the non-hybrid methods.
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More recent algorithms combine fast insertion heuristics with background opti-
mization techniques, allowing an almost immediate response to dynamic events but
utilizing possibly available time for improving solution quality. Another
promising hybridization technique for dynamic problems are various paralleliza-
tion variants in general. Depending on the specific problem characteristics such as
the degree of dynamism [52], and response time requirements either of the variants
makes sense.

2.3.1 Parallelization Approaches

Parallel optimization methods are often applied to complex large scale VRPs, a
recent survey on parallel solution methods in the context of vehicle routing can be
found in [21].

Several variants of a parallel Tabu Search (TS) heuristic for the dynamic multi-
vehicle Dial-a-Ride Problem (DARP) are proposed in Attanasio et al. [4]. The au-
thors motivate the use of a parallel approach with high running times of classical
methods. The objective of the dynamic DARP to fulfill as many requests as pos-
sible with the available number of vehicles. Whenever a request can be added to
the current solution without violating the problem constraints, it is accepted. There-
fore a fast mechanism for checking the possible acceptance of a request is required.
The parallel TS approach is applied to generate a starting solution based on already
known requests and to perform a background optimization after a new request has
been inserted. The fast insertion procedure is performed randomly inserting the new
request in the current solution for every thread. If a feasible solution is found, the
insertion is possible. If this is not the case the parallel TS with independent thread is
run with parameters set to focus on feasibility. The presented computational experi-
ments show that parallelization significantly increases the amount of served requests
in real-world instances.

Khouadjia et al. [48] present a multi-swarm based optimization algorithm for the
VRP with dynamic requests. The method consists of a particle swarm optimization
approach with interacting swarms, thereby maintaining population diversity. New
customers are inserted into existing routes using a method resembling the ejection
chain approach. In addition to parallelization a low-level hybridization using 2-opt
as local improvement heuristic is implemented. The results of the novel approach
are significantly better than the ones obtained by the current state of the art for the
dynamic vehicle routing problem.

The main advantage of applying parallel optimization methods in a dynamic con-
text is speed. Especially in the case when new information becomes available a fast
reaction is of great importance and the ability to guarantee fast response times will
decide over the applicability of the optimization approaches.
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2.3.2 Other Hybridization Approaches

Most other hybridization approaches are based on the principle of combining fast in-
sertion techniques with longer running, usually metaheuristic background optimiza-
tion methods. In some of these approaches further hybridizations are developed in
order to achieve higher quality results in comparison to more classical algorithms.

Alvarenga et al. [1] extend a hybrid Column Generation Genetic Algorithm ap-
proach for solving the static VRP [2] towards the dynamic case. The algorithm is
based on a set partitioning formulation of the VRP. In such an integer programming
formulation, every vehicle route is explicitly modeled and an optimal solution is a
set of those routes minimizing the objective function. Explicitly representing VRP
instances of realistic sizes as set packing problems would require enormous com-
putational resources, therefore techniques such as Column Generation and Branch
and Price are often used [65]. Alvarenga et al. are generating and iteratively refin-
ing a subset of the routes using a Genetic Algorithm (GA). The resulting restricted
set partitioning problem is finally solved using an integer programming solver. This
hybrid approach is extended to the dynamic case by applying a fast insertion heuris-
tic to integrate new requests in all the individuals of the GA before restarting the
integer programming solver. Computational experiments show the effectiveness of
this approach and the advantages over reoptimization using the static version of the
algorithm.

Fabri and Recht [24] solve a capacitated DARP where all customers are occurring
dynamically using a combination of an A∗-algorithm and Tabu Search (TS). Their
approach extends a hybrid heuristic proposed by Caramia et al. [16]. New requests
are inserted by applying a fast procedure. First, single vehicle routes are created by
representing the single vehicle DARP as Shortest Path Problem (SPP) and solving
it using the A∗-algorithm. In a second step, the routes are then heuristically assigned
to the vehicles. Several TS variants are then presented for optimizing the routes
between two-occurring requests. The presented computational results show that the
additional optimization significantly increases the solution quality.

Creput et al. [22] propose a novel approach combining a Self Organizing Map
(SOM) with an Evolutionary Algorithm (EA) for solving the VRP with dynamic
requests. Creput et al. describe the SOM as a center-based clustering algorithm pre-
serving the density and the topology of the data distribution. The approach is based
on applying SOM to the Travelling Salesman Problem (TSP). Cities of the TSP are
mapped to the SOM network, local moves increasingly approach the vertices of the
SOM network to the cities. By mapping the SOM vertices to the closest city a solu-
tion to the TSP is generated. This approach is extended to the VRP by embedding
it into an solution pool based iterative improvement algorithm. New customers are
added to the existing routes by simple insertion satisfying the relative route duration
constraints. Extensive computational results show the advantages of the presented
approach.

Berbeglia et al. [8] consider a dynamic dial-a-ride problem (DARP) in which
some requests are static and the others arrive in real time. In this work, a hybrid
algorithm is introduced which combines an exact constraint programming (CP)
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algorithm and a tabu search (TS) heuristic. A crucial point in dynamic DARP is
to determine whether a new incoming request can be accepted and satisfied or not.
Generally, the TS algorithm manages the insertion of new requests well when the
problem is not too tightly constrained and CP is fairly effective in proving infea-
sibility in tight settings. Thus, the idea is to combine the advantages of these two
methods. In their approach, the CP algorithm returns either a feasible solution for a
given instance or proves that none exists. To tackle the dynamic aspects, the CP al-
gorithm for the static DARP in [9] is extended by additional constraints to state that
the solution must consider the partial routes followed up to now. The TS algorithm
constructs a feasible starting solution, continually optimizes the current solution
and also tries to insert new requests. Thus, when a new request arrives the CP and
TS algorithm run in parallel for insertion. The TS algorithm uses three scheduling
schemes determining the arrival times, begin of service times and departure times
for each request vertex, which has a considerable impact on the algorithm perfor-
mance. Concluding, it is shown that the hybrid algorithm clearly outperforms each
of the two algorithms when executed separately.

2.4 Hybrid Metaheuristics with Stochastic Information

There are several examples of hybrid metaheuristics incorporating stochastic in-
formation. Similar to methods for other problem classes, many of the proposed
methods combination different search algorithms. Another possibility is to combine
approximated and exact stochastic models for computing the expected value of the
objective function.

2.4.1 Hybridization of Search Techniques

Hvattum and Løkketangen [38] consider the stochastic Inventory Routing Problem
(IRP). This problem is a combination of inventory management, vehicle routing,
and stochastic demands. The problem is solved by applying the progressive hedging
algorithm to a scenario tree representation of the problem. The problem is origi-
nally modeled using a Markov Decision Process (MDP). Based on the observation
that most probably it is sufficient to consider a finite horizon, the authors propose
to approximate the MDP by using a scenario tree based integer programming for-
mulation (STP). The authors adapt the Progressive Hedging Algorithm (PHA) [73]
to the STP. The PHA decomposes the scenario tree and solves the scenarios sepa-
rately as subproblems and iteratively joins them using penalty terms in the adapting
the respective objective functions. The subproblems are solved using a Greedy Ran-
domized Adaptive Search Procedures (GRASP) based approach [41]. Although cal-
ibration of the PHA is reportedly difficult, results of the combined PHA and GRASP
approach are more robust than the ones by any of the presented methods examined
separately.
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In Laporte et al. [51], a capacitated Arc-Routing Problem with stochastic demand
(CARPSD) is considered. This problem arises for example in practical applications
like garbage collection. Here, the customer locations are known in advance but the
demand is random and not known until the location is reached. Thus, a capacity
constraint violation can happen at some point in the planned solution. In this case,
the vehicle has to interrupt its route and empty the vehicle by going to the dump site
early and returns to the point of failure to restart its route. The objective is to min-
imize the costs of the planned route and the expected costs of the recourse action.
The CARPSD is conventionally formulated as a stochastic program, where a first-
stage solution is computed, realization of random variables are revealed and then a
recourse action is applied. In contrast to that, an alternative approach is proposed
where a first-stage solution is constructed which will take the expected cost of the
recourse action into account. This is realized by an Adaptive Large Neighborhood
Search (ALNS) heuristic. The garbage quantities are assumed to be independent
random variables with known probability distribution and expected costs of recourse
are defined for the discrete and continuous case. A construction heuristic, stochastic
path scanning, is proposed. Several removal and insertion heuristics, destroying and
repairing the current solution are also used. At each iteration one of these heuristics
is selected based on the roulette-wheel selection principle. The acceptance criterion
for a new solution and the stopping criterion are obtained by using an annealing-
based search framework. The approach was tested on self generated instances, based
on instances for CARP from Golden et al. [34]. The comparison between the deter-
ministic and stochastic case shows clearly that improved results could be computed
with the presented approach.

Another significant stochastic routing problem is the Probabilistic Traveling
Salesman Problem (PTSP) [43], and since nature inspired intelligence became in-
creasingly popular, Marinakis and Marinaki present a hybrid algorithm based on
nature inspired approaches in [58]. Here, a hybrid scheme incorporating Parti-
cle Swarm Optimization (PSO) [46] and two further metaheuristics, Greedy Ran-
domized Adaptive Search Procedure (GRASP) [72] and Expanding Neighborhood
Search (ENS) [59] is introduced. The combination of PSO and GRASP is used to
produce as good as possible initial populations, and the ENS strategy, speeds up the
optimization process. The performed computational experiments demonstrate that
the proposed approach leads to an effective handling of the PTSP, resulting in fast
computational run-times and good results for very large problem instances.

Rei et al. [71] solve the single VRP with stochastic demands by combining
Monte-Carlo sampling and local branching [25]. The authors consider an a priori
optimization setting based on a two-stage stochastic programming model of the
problem. In the first stage of the stochastic program a route visiting all customers
once is constructed. In the second stage the route is executed with the actual de-
mands and possibly necessary predetermined recourse actions. Starting from an op-
timal solution to the original first stage problem, the approach partitions the search
space using the local branching principle in an iterative multi-descent search. The
subproblems are solved to optimality or until a certain time limit is reached using
the L-shaped method. The expected value of the recourse action is approximated
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using Monte-Carlo sampling. The computational results show the competitiveness
of the presented approach, yielding comparable solution quality in significantly less
run-time than an exact solution approach.

Mendoza et al. [60] solve the multi-compartment vehicle routing problem with
stochastic demands (MC-VRPSD) using a Memetic Algorithm (MA) combining a
genetic algorithm with local search including novel evaluation and repair procedures
taking into account the stochastic nature of the problem. In a first step the problem is
modeled as two-stage stochastic program, where the recourse actions consist of trips
back to depot in order to reload the vehicle. The authors then propose an MA for
solving the problem using an approximation of the expected cost as objective func-
tion. The initial solutions are created using a stochastic best insertion heuristic. A
combination of relocate and 2-opt moves are used as local improvement operators.
Finally, the repair and evaluation of individuals is done by applying a stochastic
extension of the split algorithm [5]. The presented algorithm is evaluated on ran-
dom test instances as well as benchmark instances from the literature, showing an
improved performance compared to the state of the art.

2.4.2 Objective Function Hybridization

Bianchi et al. [11] focus on the most commonly studied problem in this class, the
VRP with stochastic demand (VRPSD). The idea is, to analyze the hybridization of
different approximations of the objective function (minimizing the expected costs
of the tour) with well known metaheuristics for this problem. The aim is to test the
impact of interleaving the exact VRPSD objective function with the a priori tour
length as an approximation. Therefore, five well known metaheuristics, Simulated
Annealing, Iterated Local Search (ILS), Tabu Search (TS), Ant Colony Optimiza-
tion (ACO) and Evolutionary Algorithms (EA) are presented. All considered meta-
heuristics use the common OrOpt Local search (LS) as proposed in [81], in order
to obtain meaningful comparisons. The basic operator in the OrOpt LS considers
a starting tour and moves sets of consecutive customers from one position in the
tour to another one. For the computation of the moving costs two types of approx-
imation schemes are described. In the VRPSD approximation scheme the costs are
composed of the savings from extracting the customers from the tour and the costs
of inserting them back, whereas the TSP approximation scheme only computes the
length difference of the tour. The starting solution for all metaheuristics are gener-
ated by the Farthest Insertion Construction Heuristic [45]. The first hybridization
shows the impact of using approximate move costs in local search, by running each
proposed metaheuristic with the VRPSD approximation scheme and the TSP ap-
proximation scheme. The tests show that metaheuristics which use the local search
as a black box (EA, ACO, ILS) perform better with the TSP approximation, while
the other perform better with the VRPSD approximation. The second hybridization
further explores the TSP objective function. Therefore, they expand the best algo-
rithms determined in the first hybridization (ILS, EA) with the 3-opt LS for TSP [77]
and show significant improvements of the performance. The proposed approach is
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evaluated on self generated instances, where four factors are considered: the cus-
tomer position, the capacity over demand ratio, variance of the stochastic demand
and the number of customer, where the size of the instances is between 50 and 200
customers, with the customers uniformly distributed or grouped in clusters. As a
conclusion it is shown, that the new hybrid approach clearly outperforms the state
of the art.

2.5 Hybrid Metaheuristics for Dynamic and Stochastic
Problems

In most dynamic real-world application, data is gathered and stored allowing to
develop stochastic models for predicting future events. The hybrid approaches de-
veloped here can be discerned in two groups. On the one hand those working with
single solutions and incorporating the stochastic knowledge directly in the opti-
mization procedure. On the other hand approaches relying on solution pools, where
multiple solutions are generated based on sampling, which are then further recon-
ciled into a single solution. Such approaches can also be used to provide multiple
solutions as suggestions to human dispatchers responsible for taking final decisions.

2.5.1 Single Solution Approaches

Hvattum et al. [39] consider a dynamic and stochastic VRP, based on a case from a
large distribution company. Stochastic information about customer requests, like the
location and its demand and the frequency of appearance, is gathered from histori-
cal data. It is shown how this problem can be formulated as a multistage stochastic
programming problem with recourse. Dynamic events are captured by dividing the
time horizon into a specified number of intervals and construct a plan for each inter-
val using the currently known requests, in contrast to [7], who proposed an event-
driven model. They developed a dynamic stochastic hedging heuristic which uses
sample scenarios. In each time interval the solution from the previous interval plus
the requests which became known during the past interval are considered and a plan
for the current time interval is constructed. Sample scenarios are solved as static
VRPs and the customers which are visited most frequently are determined itera-
tively. Then, the solution is built by assigning the request to the vehicles according
to a ranking which states which customer is serviced first most often. The algo-
rithm was tested against a myopic dynamic heuristic and was able to reduce travel
distances significantly. In [40], they present a branch-and-regret heuristic which
is based on the approach described above to additionally tackle the stochastic de-
mand of customer, thus, the customer location is already known, but not its demand.
Improvements with this new approach are shown as well as the capability to cope
with different stochastic information.
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Attanasio et al. [3] present a real-time fleet management system for a same-day
courier service, describing forecast and optimization methodologies. A forecast and
an allocation module are introduced, where the forecast module generates reliable
near future predictions of travel times and demand and hands this information to the
allocation module which is responsible for the assignment of customer requests to
the couriers and the relocation of idle couriers. In order to make reliable predictions
they divided the service area into geographical zones and time periods, which show
typical traffic and demand patterns. Both, demand and travel time forecasting are
based on a classical decomposition approach followed by an artificial neural net-
works which incorporates real time information. The demand forecasting specifies
the number of requests from one region to another one at a given time period and
the travel time forecasting provides expected travel times from one address to an-
other address during a time period. The methodology for the travel time forecasting
also takes traffic and real time information into account and is trained through artifi-
cial neural networks. When a new request passes the feasibility check the algorithm
post optimization procedure tries to improve the current solution in the background.
Therefore a parallel implementation of the Tabu Search (TS) algorithm is proposed.
As a result of applying this system the efficiency of the couriers raised and less
dispatchers for the fleet management are needed.

Schilde et al. [74] investigate whether using stochastic information about future
requests can improve the solution quality of a dynamic stochastic Dial-a-Ride Prob-
lem (DSDARP). Here, a special type of customer request is considered as with a
certain probability, a request for patient transportation to the hospital creates a cor-
responding transportation request to return the patient back home on the same day.
In order to investigate the benefit of using stochastic information about return trips
two approaches for the dynamic DARP are implemented and extended to deal with
stochastic information. The Variable Neighborhood Search (VNS) approach intro-
duced by [64] is adapted for the dynamic case (DVNS) and then extended to a
dynamic S-VNS due to the S-VNS concept proposed in [36], and the Multiple Plan
Approach (MPA) and Multiple Scenario Approach (MSA) described by [7] are ap-
plied. Computational results show that incorporating stochastic information about
return trips yields better solution quality than the myopic methods, and that it is
most beneficial to consider possible return transports in the very near future (up to
20 minutes).

2.5.2 Algorithms Based on Solution Pools

Bent et al. [7] consider a dynamic VRP with time windows (VRPTW) with stochas-
tic customers. The aim is, to investigate how to exploit stochastic information about
customers to accept and serve as many requests as possible, thus to miss fewer
requests. This is achieved with a Multiple Plan Approach (MPA) dealing with
dynamic customer request. Then, a related approach, called Multiple Scenario Ap-
proach (MSA) is introduced. It significantly outperforms the MPA by exploiting
stochastic information about customers. The MPA is an event driven approach where
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a pool of plans is maintained. Because only one specific plan can be executed, just
one plan is chosen from the pool and routing plans that correspond to the current sit-
uation are generated. The selection is done by a consensus function that selects the
plan most similar to the other plans in the pool. To take advantage of the stochastic
information, the MSA generates new routing plans for scenarios that include a pri-
ori known requests and possible future events, which are obtained by sampling their
probability distributions. Experimental results show that using stochastic informa-
tion yields significantly better results and that selecting plans by consensus function
brings benefits for problems with many stochastic customers.

In a subsequent paper, Bent et al. [6] examine the MSA, described in [7], for
a dynamic VRP with stochastic information about customer requests. In contrast
to [7], the behavior of the MSA on a less constrained but more stochastic problem is
studied, in order to capture long-distance mail services. The difference is, that now
customer, customer locations and service times are random variables and that the
focus is on the objective function, i.e., the aim is to minimize the total travel dis-
tance. Additionally, the MSA is improved by using stochastic information to delay
the departure of vehicles in order to place new stochastic requests. To optimize the
plans a large neighborhood search is used basically. In the case Large Neighborhood
Search (LNS) does not find any improvements also a nearest neighbor heuristic is
applied. Experimental results on a variety of models show that with this approach
travel distance could be reduced scientifically.

2.6 Conclusion

Dynamic and stochastic VRPs are currently the most challenging class of problems
in the vehicle routing area, especially if they are tackled in the real-world context
where instances are often much larger than those usually considered in the literature.
In most cases it is not possible to solve such problems in an exact way due to the lim-
itation of computational resources and time. Furthermore, only partial, incomplete,
and uncertain information is available, thereby making the quest for optimality im-
possible. The surveyed literature shows that in recent years hybrid metaheuristics
have been increasingly successfully applied to such complex problems. Most often
the diverse aspects of the problems can be solved by applying a combination of
methods sometimes even requiring an interdisciplinary approach.

In our survey, we have discerned between hybrid metaheuristics for solving ve-
hicle routing problems with three different types of available information: dynamic,
stochastic, dynamic and stochastic. These three variants have then been further di-
vided according to predominant hybridization principles. In the case of dynamic
problems, where the major challenge is the realization of quick response times, par-
allelization approaches and fast insertion combined with background optimization
were the most commons patterns of hybridization. When only a priori stochas-
tic information is considered, we found that most commonly different comple-
menting search algorithms are combined. Another form of hybridization was the
combination of exact and approximate computation of the objective function. The
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combination of dynamic and stochastic information is most often addressed using
sampling based approaches, the proposed algorithms are most often working with a
single solution, but important results have also been obtained with methods based on
solution pools where the diversity comes from solving multiple scenarios. Usually
a single solution is then recommended, but such approaches can become neces-
sary when multiple solutions have to be recommended to a human decision maker.
Depending on application specific requirements and the nature of the available in-
formation an appropriate approach will have to be chosen.

The area of dynamic and stochastic optimization in general and vehicle routing
in particular is recently getting increasing attention. This is mainly due to techno-
logical advances in fields such as telematics and computing but also in algorithmic
advances in the vehicle routing area. In our opinion, multi-disciplinary approaches
combining strong stochastic modeling and combinatorial optimization skills will
gain importance able to solve complex academic and real-world problems.
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31. Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. European Journal of
Operational Research 88(1), 3–12 (1996)
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Chapter 3
Combining Two Search Paradigms for
Multi-objective Optimization: Two-Phase and
Pareto Local Search

Jérémie Dubois-Lacoste, Manuel López-Ibáñez, and Thomas Stützle

Abstract. In this chapter, we review metaheuristics for solving multi-objective com-
binatorial optimization problems, when no information about the decision maker’s
preferences is available, that is, when problems are tackled in the sense of Pareto
optimization. Most of these metaheuristics follow one of the two main paradigms to
tackle such problems in a heuristic way. The first paradigm is to rely on Pareto dom-
inance when exploring the search space. The second paradigm is to tackle several
single-objective problems to find several solutions that are non-dominated for the
original problem; in this case, one may exploit existing, efficient single-objective
algorithms, but the performance depends on the definition of the set of scalarized
problems. There are also a number of approaches in the literature that combine both
paradigms. However, this is usually done in a relatively ad-hoc way. In this chapter,
we review two conceptually simple methods representative of each paradigm: Pareto
local search and Two-phase local search. The hybridization of these two strategies
provides a general framework for engineering stochastic local search algorithms that
can be used to improve over the state-of-the-art for several, widely studied problems.

3.1 Introduction

Optimization problems appear in many different real-world situations of high social,
environmental or economic relevance. Often, such problems are evaluated accord-
ing to various conflicting objectives. Not surprisingly, multi-objective optimization
is attracting significant efforts from researchers, such that nowadays it has become a
mature field of research. Many early studies on the development of methods and
algorithms for multi-objective problems use an a priori approach where several
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objectives are aggregated into a single objective function. However, when no in-
formation is known about the decision maker’s preferences one must rely on an a
posteriori approach . In this case, the possible solutions to the problem are evalu-
ated in the Pareto sense, using what is called Pareto dominance (see Section 3.2).
When optimizing a multi-objective problem in the Pareto sense, the goal is to return
a set of mutually non-dominated solutions, among which the decision maker can
then choose the final solution to implement.

In this chapter, we focus on problems that are combinatorial. Solutions for such
problems are made of discrete components and analytical methods cannot be used
to solve them. For many relevant problems, no algorithm is known to find the op-
timum in polynomial time w.r.t. the size of the problem. Formally speaking, these
problems are NP-hard [29]. Multi-objective combinatorial optimization problems
(MCOPs) are always at least as hard as their single-objective counterparts. Often,
multi-objective versions of a problem are NP-hard even if the single-objective ver-
sion of the problem is not. An example is the shortest path problem, where the
single-objective variant can be solved in polynomial time but the multi-objective
version is NP-hard [28]. When dealing with such NP-hard problems, the typical
sizes of the instances prevent the use of exact algorithms, and one must rely on
heuristic algorithms. A heuristic algorithm is designed to return solutions in poly-
nomial time (better said, quickly enough to be practical), without ensuring that they
are optimal.

We discuss heuristic methods for tackling MCOPs with an a posteriori approach.
From a very abstract perspective, most algorithms follow one of two main search
paradigms: algorithms can be dominance-based or scalarization-based. Dominance-
based methods tackle multi-objective problems by using some form of Pareto dom-
inance relationship among solutions. Scalarization-based methods transform the
multi-objective problem into a set of single-objective problems. By solving these
single-objective problems, scalarization-based algorithms can provide solutions to
the original multi-objective problem. In addition, several algorithms also combine
some elements from these two search paradigms, that is, they are hybrid search
methods.

For each of the two search paradigms, we present a representative local search
framework. As a representative of dominance-based methods we discuss Pareto lo-
cal search (PLS) [51], and as a representative of scalarization-based methods we
present two-phase local search (TPLS) [53]. We describe these two methods to-
gether with their latest associated developments as well as similar methods from the
literature; we show that their hybridization provides a general framework for multi-
objective combinatorial optimization that leads to high performing algorithms.

This chapter is structured as follows. We introduce in Section 3.2 the basics of
multi-objective optimization in the Pareto sense. Next, we present the two different
search paradigms and the PLS and TPLS frameworks, in Sections 3.3 and 3.4, re-
spectively. In Section 3.5, we explain how TPLS and PLS can be hybridized into
a general framework and we review some hybrid algorithms in the literature. Sec-
tion 3.6 reviews results that have been obtained by this framework. We conclude
and highlight some directions for future research in Section 17.6.
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3.2 Preliminaries

When tackling a multi-objective problem in the Pareto sense, the notion of optimal
solution from single-objective optimization does not apply anymore. A solution s
in the multi-objective case is better than another solution r if s is better than r for
at least one objective and not worse for any of the remaining ones. If none of the
two solutions is better than the other, they represent two different trade-offs of the
objectives values that, without knowledge of the decision maker’s preferences, are
considered to be indifferent. The goal of an algorithm tackling a multi-objective
problem in the Pareto sense is then to return all solutions representing different
trade-offs among which the decision maker can choose the preferred one.

More formally, let us consider an MCOP with p objectives, all to be minimized.
We call f(s) the vector of the objective function values of solution s; fk(s) denotes
the specific value of objective k, that is, the k-th component of the objective function
vector f(s). We call N(s) the set of all neighbors of solution s.

Definition 3.1 (Dominance). A solution s1 is said to dominate a solution s2 (s1≺ s2)
if and only if fk(s1) ≤ fk(s2)∀k = 1, . . . , p and ∃ j ∈ {1, . . . , p} such that f j(s1) <
f j(s2).

Definition 3.2 (Weak dominance). A solution s1 is said to weakly dominate a so-
lution s2 (s1 � s2) if and only if fk(s1)≤ fk(s2)∀k = 1, . . . , p.

Definition 3.3 (Incomparable solutions). Solutions s1 and s2 are said to be incom-
parable (s1 ‖ s2) if and only if neither s1 � s2 nor s2 � s1, and s1 �= s2.

The fact that solutions can be incomparable is a fundamental difference to single-
objective optimization, where a total ordering of the solutions exists.

Definition 3.4 (Pareto global optimum solution). Let S denote the set of all feasi-
ble solutions. A solution s1 ∈ S is a Pareto global optimum if and only if � s2 ∈ S
such that s2 ≺ s1. Such solutions are also called efficient.

Definition 3.5 (Pareto local optimum set). A set S′ of solutions is a Pareto local
optimum if ∀s ∈ S′,∀ s1 ∈ N(s), ∃s2 ∈ S′ verifying s2 � s1.

Definition 3.6 (Pareto front). Let S denote the set of all feasible solutions. A set
S′ is a Pareto global optimum set if and only if it contains all the Pareto global
optimum solutions of S and only these solutions. The set of objective vectors of the
Pareto global optimum is called the Pareto front.

Several Pareto global optimum solutions can have the same objective vector in the
Pareto front. In practice, it is common to return only one solution for each objective
vector. Such a set is also called strict Pareto global optimum set [52] or strictly
Pareto optimal set [21].

The dominance relations can be extended to sets of solutions. We present here
the weak dominance relation on sets, which we use in this chapter. In the following,
A and B denote two sets of solutions.
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Definition 3.7 (Weak dominance on sets). A set A is said to weakly dominate a set
B (A � B) if and only if ∀ si ∈ B, ∃ s j ∈ A,such that s j � si, and A �= B.

Definition 3.8 (Incomparable sets). A and B are said to be incomparable (A ‖ B) if
and only if neither A � B nor B � A, and A �= B.

In the next two sections we present the two search paradigms more in detail and we
review representative methods in the literature, focusing on PLS and TPLS.

3.3 Dominance-Based Multi-objective Optimization

We say that algorithms are dominance-based if they use some form of Pareto dom-
inance for acceptance decisions on solutions. When comparing solutions using
Pareto dominance, solutions may be mutually non-dominated; thus, there is only a
partial order defined over solutions, which is a fundamental difference to the single-
objective case. Also for this reason, dominance-based algorithms keep an archive of
solutions instead of only a single solution as the best one found so far.

There are many algorithms for MCOPs that are purely dominance-based. We
restrict our discussion to methods that are based on the iterative improvement of the
set of non-dominated solutions by performing local search (or mutation) of solutions
one at a time. We do not consider here population-based algorithms such as multi-
objective evolutionary algorithms [10, 8] or multi-objective ant colony optimization
algorithms [5, 27]. However, it should be noted that these algorithms also often make
direct or indirect use of Pareto dominance for directing the search, in particular, in
acceptance or selection decisions on solutions.

Pareto local search (PLS) [51] is a paradigmatic representative of dominance-
based multi-objective algorithms that improve solutions one at a time by use of
neighborhood search [52]. While the original motivation for proposing PLS was to
study the connectedness of solutions [51], PLS turned out to be also an effective
local search method for multi-objective problems. Independently, a very similar al-
gorithm was proposed by Angel et al. [4].

PLS extends iterative improvement procedures from the single-objective case to
the multi-objective case by changing the acceptance criterion. While in the single-
objective case an iterative improvement algorithm accepts a new solution if it is
better than the current one, in the multi-objective case PLS accepts a new solution
to enter the archive only if it is not dominated by any solution in the archive. PLS
takes care that the archive contains only non-dominated solutions by filtering out
dominated ones.

Algorithm 4 illustrates the general framework of PLS. It is initialized by an
initial set A of mutually non-dominated solutions, called archive. These solutions
are initially marked as unexplored (line 2). PLS then iteratively applies the follow-
ing steps. First, a solution s is selected among all unexplored ones (selection step,
line 5). Then, some (or all) of the neighbors of s, are explored (neighborhood ex-
ploration) and all the neighbors that are accepted (acceptance criterion) w.r.t. the
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Algorithm 4. Pareto Local Search
1: Input: An initial set of non-dominated solutions A
2: explored(s) := FALSE ∀s ∈ A
3: A0 := A
4: repeat
5: s := SelectSolution(A0)
6: repeat
7: s′ := NeighborhoodExploration(s)
8: if AcceptSolution(A,s′) then
9: explored(s′) := FALSE

10: A := Update(A,s′)
11: end if
12: until (termination criterion)
13: explored(s) := TRUE
14: A0 := {s ∈ A |explored(s) = FALSE}
15: until A0 = /0
16: Output: A

archive A are added to A (lines 8 to 11). Solutions in A that are dominated by the
newly added solutions are removed (procedure Update in line 10). Once the ter-
mination criterion for the exploration of the neighborhood of s is met, s is marked
as explored (line 13). When all solutions have been explored, and no more new
non-dominated solutions can be discovered, the algorithm stops in a Pareto local
optimum. Algorithm 4 is a generic outline and different variants of PLS can be ob-
tained by different instantiations of the components SelectSolution, AcceptSolution
and NeighborhoodExploration. In the original PLS algorithm, as proposed in [51],
the three main components are implemented as follows.

Selection step. The next solution to be explored is selected uniformly at random
from the unexplored ones in the archive.

Neighborhood exploration. The neighborhood of a solution is always explored
entirely. This corresponds to the “best-improvement” neighborhood exploration
in single-objective local search, i.e., all neighborhood solutions are explored be-
fore exploring the neighborhood of a new solution.

Acceptance criterion. The original PLS accepts any non-dominated solution for
inclusion in the archive.

The method proposed by Angel et al. [4] is very similar to PLS. The difference lies in
the selection step: in the method of Angel et al., contrary to PLS, the neighborhoods
of all unexplored solutions are explored before updating the archive. It has a stronger
exploration capability than PLS because the archive is not updated immediately after
the neighborhood of a single solution has been explored. Due to this, neighbors of
solutions that otherwise would have become dominated can be examined in addition
to those of non-dominated solutions.

Liefooghe et al. [43, 42] study the performance of some variants of the PLS al-
gorithm. They test variants of the selection step that are obtained by restricting the
overall exploration with a limit on the number of solutions to be selected, and vari-
ants of the neighborhood exploration itself, combining different ways of scanning
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the neighborhood and different acceptance criteria. The several variants are com-
pared experimentally by the authors. In their experimental setup, they choose the
same, predefined computation time limit for all variants. Variants that would finish
before this computation time limit are then restarted from scratch and a variant is
judged by the final aggregate non-dominated set found across the multiple restarts.
As a result, they highlight variants that are the most effective if the computation
time is known a priori and the PLS algorithms is launched several times.

Another recent study of PLS is carried out by Dubois-Lacoste et al. [20]. The aim
is to examine variants for the algorithmic components of PLS with a main focus on
their impact on the anytime behavior [64] of PLS. Several variants are tested for
the three main components of PLS. It is shown that some of the resulting combina-
tions can significantly speed-up the convergence of PLS towards good Pareto front
approximations.

The fact that PLS stops upon finding a Pareto local optimum set can be a disad-
vantage if the algorithm finishes while there is still computation time available. A
possibility is to keep the non-dominated solutions found in an external archive and
to restart PLS “from scratch” (as done in [42]). There were other extensions that aim
at obtaining a more efficient search. Alsheddy and Tsang [1] proposed an extension
of PLS that continues the search when a Pareto local optimum set is found without
restarting from different solutions. The idea is based on the guided local search [63]
strategy in the single-objective case: a penalty is applied to worsen the components
of the objective vectors of solutions in the current archive, allowing the algorithm to
escape from a Pareto local optimum set. Other strategies to continue the search focus
on generating good solution(s) to restart the search. In particular, solutions mutated
from the ones in the Pareto local optimum set can be used, resulting, in some sense
in an extension of iterated local search [47] for single-objective problems. A study
of such strategies was done by Drugan and Thierens [12]. In that paper, the authors
showed that the best results on the bi-objective quadratic assignment problem are
attained when restarting PLS from new solutions on a “path” between two solutions
in the Pareto local optimum set (this path is constructed in a manner similar to path-
relinking [32]). Geiger [30] proposed to apply a different neighborhood operator
(w.r.t. the one used during the search) when PLS converges to a Pareto local opti-
mum, allowing PLS to find possibly new non-dominated solutions. This idea can be
seen as an extension of variable neighborhood search [36].

Some evolutionary algorithms are similar to PLS. PAES has been proposed by
Knowles and Corne [40] as an algorithm whose simplicity should make it a baseline
for comparison to more complex evolutionary algorithms. In PAES, a solution is
selected in the current archive of non-dominated solutions and a mutation operator is
applied to obtain a new candidate solution. This new candidate is potentially inserted
in the archive, which is then updated to keep only non-dominated solutions. The
archive size is kept limited by using an archive bounding strategy. Contrary to PLS,
this algorithm does not have a natural stopping criterion since solutions are never
marked as explored. Laumanns et al. proposed the SEMO algorithm [41], which
is similar to PAES but solutions are selected from an archive whose size is not
limited. Differently from PAES, SEMO marks solutions as explored analogously to
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PLS. The authors also test variants of SEMO that differ in the selection step. These
variants tend to balance the number of times solutions are selected for mutation, or
they try to focus on the most recently found solutions.

An advantage of dominance-based algorithms is that they deal with an archive
of solutions rather than a single solution. Therefore, they can return quickly numer-
ous non-dominated solutions to the problem. However, this can also be a drawback
since dealing with possibly many solutions can make the exploration of the search
space slower in terms of the closeness to the Pareto front. In the next section, we
present the scalarization-based search paradigm for multi-objective optimization,
whose aim is to provide quickly few high-quality solutions whose objective vectors
are close to the Pareto front.

3.4 Scalarization-Based Multi-objective Optimization

Scalarization-based algorithms rely on solving several single-objective problems in
order to find various non-dominated solutions for a multi-objective problem. To do
so, the multiple objective functions are aggregated into a single scalar function. In
this way, the solutions can be compared by scalar values, resulting in a total ordering
of solutions. In other words, an aggregation transforms the multi-objective problem
into a (scalarized) single-objective problem, often called simply scalarization.

There are many ways of scalarizing multi-objective problems. However, most
commonly few standard methods are used for their simplicity and desirable proper-
ties. We present here the most common methods in use in the context of heuristic
algorithms; for other possibilities, we refer the interested reader to [21, 8].

• Linear aggregation. The weighted sum method defines a linear aggregation of
the objectives that is commonly used to define the preferences of the decision
maker with an a priori approach. It is also used to define scalarizations for tack-
ling problems with an a posteriori approach and we also use it in this chapter
in the experimental part. A weight vector is used to give a relative importance
to each objective. Let us consider a solution s whose objective function vector
is f(s) = ( f1(s), f2(s), . . . , fp(s)), and a weight vector λ = (λ1,λ2, . . . ,λp). We
assume, without loss of generality, that the components of f(s) are non-negative.
The scalar value for this solution and this weight is then:

fλ (s) = ∑
1≤i≤p

λi · fi(s).

Since the different components of the weight vector have an effect that is relative
to the value of each other, there exist infinitely many different weight vectors
that define the same scalarization. Therefore, it is common to use normalized
weight vectors, whose components sum up to one. The advantage of consider-
ing a weighted sum is that an optimal solution for the scalarized problem is a
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supported non-dominated solution, that is, its objective vector is located on the
convex hull of the Pareto front.

• Tchebycheff aggregation. The Tchebycheff method requires to define a refer-
ence point, r, that dominates any feasible solution. Some weights, additionally,
can be assigned to each objective with a weight vector λ = (λ1,λ2, . . . ,λp). The
scalar value for a solution s is then:

fλ (s) = max{λi · | fi(s)− fi(r)|}, i = 1 . . . p.

Hence, the goal becomes to find a solution as close as possible to the reference
point r, using the Tchebycheff distance as a measure of “closeness”.

• Lexicographic ordering. This method requires to define an order of the objec-
tives, in decreasing importance, and, thus, it defines a total order of the solutions:
If some solutions have the same value for objectives 1 to k, objective k + 1 is
used to break ties. The number of different orders of the objectives is limited, and
therefore is also the number of solutions that can be obtained with this method.
For instance, for bi-objective problems there are only two possible orderings of
the objectives and thus only two different scalarized problems can be defined,
preventing to return more than two solutions. Thus, when tackling a problem in
the Pareto sense, a lexicographic ordering can be used to provide some initial
solutions only, and must be used in combination with another technique.

Solving scalarized problems is often done when the multi-objective problem is tack-
led a priori, that is, the decision maker is able to define the components of the weight
vector before the optimization. If the problem is considered using an a posteriori
approach, multi-objective algorithms can make use of scalarizations, but the weight
vector must be varied during the optimization process by the algorithm. An advan-
tage of scalarization-based algorithms is that they can make use of any algorithm
known to solve the scalarized problems effectively, and make use of its effective-
ness in the multi-objective context. The drawback is that solutions are found one
at a time, and the total number of non-dominated solutions returned is at most the
number of scalarizations considered, which may be small compared to what is de-
sirable.

Two-phase local search (TPLS) is a representative example of a scalarization-
based algorithm [53]. TPLS is a general algorithmic framework that, as the name
suggests, is composed of two phases. In the first phase, a single-objective algorithm
generates a high-quality solution for one or all objectives, and then one of these
high-quality solutions serves as the starting point of the second phase, where a se-
quence of scalarizations is tackled. Each scalarization uses the best solution found
by the previous scalarization as the solution to start from. TPLS will be successful
if the underlying single-objective algorithms are high-performing, and if solutions
that are close to each other in the solution space have also objective function vectors
that are close to each other in the objective space.

Algorithm 5 presents the general framework of TPLS for a bi-objective problem.
First, high-quality solutions are generated for each objective (lines 1 and 2) us-
ing dedicated single-objective algorithms SLS1 and SLS2, and added to the archive
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Algorithm 5. General Framework for Two-Phase Local Search
1: s1 := SLS1()
2: s2 := SLS2()
3: A := Update(A,s1)
4: A := Update(A,s2)
5: repeat
6: λ := ChooseWeight(A)
7: s′ := ChooseSeed(λ ,A)
8: s′ := SLSΣ (s′,λ )
9: A := Update(A,s′)

10: until termination criterion
11: Filter(A)
12: Output: A

(lines 3 and 4). Then, a sequence of scalarizations is solved (lines 5 to 10), based
on strategies to generate a weight vector (procedure ChooseWeight on line 6) and
to define how the previous solutions can be used as seed for further scalarizations
(procedure ChooseSeed on line 7). Solutions are generated using a single-objective
algorithm that tackles scalarized problems, SLSΣ . The archive is updated with the
solutions obtained for each scalarization (line 9). Note that the archive could include
more information than just the solutions themselves, e.g., it could also include the
fact that solutions have already been used as seeds, for which scalarization they have
been obtained, etc.

Algorithm 5 is a generic outline that covers both the original TPLS and recent
developments, depending on how the procedures ChooseWeight and ChooseSeed
are implemented. TPLS in its original form considers a regular sequence of weights.
Two main weight-setting strategies have been originally proposed to define the order
in which these weights are selected. The simplest way to define a sequence of scalar-
izations is to use a regular sequence of weight vectors from the first objective to the
second (for instance λ1 = (1,0.8,0.6,0.2,0) with λ2 = 1−λ1) or from the second
objective to the first one. However, this introduces a bias towards the region of the
objective space where the first scalarizations are performed, and against the region
where the last ones are performed [53]. To avoid this effect, a double weight setting
strategy has been proposed: first a sequence of scalarizations is performed from one
objective to the other and then a second sequence of scalarizations is performed in
the opposite direction.

Recently, an adaptive anytime strategy (AA-TPLS) has been proposed [16, 19]
to further improve the TPLS method. Inspired by the dichotomic scheme of Aneja
and Nair [3], AA-TPLS has been shown to lead to better results by adapting to the
shape of the Pareto front. Moreover, AA-TPLS shows a very good anytime behav-
ior, providing a high-quality approximation to the Pareto front at any time without
requiring a predefined computation time limit, as the original TPLS does. To do so,
the selection of the next scalarization to be performed is based on the optimistic
hypervolume improvement, which measures the potential improvement that can be
expected in terms of hypervolume [66].
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TPLS is a general framework that relies on a simple idea: run several times a
single-objective algorithm on weighted sum scalarizations and obtain several non-
dominated solutions, one for each weight. Another general-purpose method based
on scalarizations has been proposed by Borges [7]. This method uses the Tcheby-
cheff distance, but not in the standard way explained earlier in this section. Instead,
the goal for each single-objective problem is to find a new solution that maxi-
mizes the Tchebycheff distance between this new solution and the closest one in
the archive. The idea is, as in TPLS, to obtain a set of well-spread solutions in the
objective space.

Other methods have been proposed in the literature, more specific than the gen-
eral idea behind TPLS. They are, however, general-purpose and can be applied to
many different problems. These are extensions of single-objective metaheuristics
to the multi-objective case. An example is Multi-Objective Tabu Search (MOTS),
which is an extension of tabu search [31] to multi-objective problems proposed by
Hansen [35]. MOTS keeps a set of non-dominated solutions and tries to improve
each solution in a direction that moves its objective vector away from other non-
dominated solutions. To do so, it updates the weights for a given solution based on
all other non-dominated solutions (the closer solutions are, the higher is their mutual
influence). The purpose of this behavior is to obtain a set of solutions as spread as
possible in the objective space along the Pareto front. The optimization of solutions
toward different directions is performed using tabu search principles, each solution
dealing with its own tabu list.

There have been several adaptations of the Simulated Annealing (SA) principle to
the multi-objective case. They usually use several runs of single-objective SA algo-
rithms, and mainly differ by the acceptance rules of new solutions. The first SA for
multi-objective algorithm, proposed by Serafini [58], uses the following acceptance
criterion. If the new solution dominates the current one, this new solution is accepted
to replace the current one. Otherwise, the acceptance probability is computed on a
weighted sum of the objectives. Several runs are performed using different weight
vectors, and some small random variations are applied to them each time a solution
is considered. A similar method is MOSA, proposed by Ulungu et al. [61]. MOSA
uses the same type of rule for the acceptance criterion and a similar set of predefined
weight vectors to define the single-objective problems. However, MOSA is not only
returning one solution per weight vector: every time a solution is accepted as the
new current one, it is potentially inserted in a set of non-dominated solutions. Each
run of the single-objective SA maintains its own set of non-dominated solutions,
and the sets are merged and filtered in a last step. Suppapitnarm et al. [59] proposed
another adaptation of the SA principle to the multi-objective case. The acceptance
criterion is different from other SA adaptations. Their proposal uses a multiplicative
function of the objectives, instead of a weighted sum, and a different temperature for
each objective. The setting of the temperature does not follow a pre-scheduled de-
crease, but is automatically updated based on the variance of each objective among
already accepted solutions. The algorithm is then restarted several times to provide
several solutions.
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Finally, various population-based methods such as evolutionary algorithms, have
used scalarizations to direct the search towards the Pareto front. An early example
is VEGA [57]; other examples include the algorithms proposed by Ishibuchi and
Murata [37] and MOGLS of Jaszkiewicz [38]. Also ACO algorithms frequently use
some form of scalarized aggregation, for example, for combining pheromone (or
heuristic) information specific to each objective [5, 27, 46]. However, an overview
of such population-based methods is beyond the scope of this chapter.

3.5 Hybridization of Search Paradigms

We have presented in Sections 3.3 and 3.4 two search paradigms for multi-objective
optimization. Each of them has its particular advantages and drawbacks. Dominance-
based algorithms can return quickly a large number of non-dominated solutions;
however, they progress rather slowly towards the Pareto front and they may re-
quire a long computation time before reaching high-quality approximations to the
Pareto front. Scalarization-based algorithms can exploit effective single-objective
algorithms and they find quickly high-quality approximations to the Pareto front.
However, they return only relatively few solutions and they may not be able to ap-
proximate well certain types of solutions. For example, heuristic algorithms based
on weighted-sum scalarizations are not designed to identify non-supported solutions
and, thus, they may leave “gaps” in the Pareto front approximation. Thus, combining
both search paradigms can be profitable, in order to exploit their respective advan-
tages and to avoid as much as possible their respective disadvantages.

Hybrid algorithms combining TPLS and PLS elements have been considered in
the literature and have shown high performance. (Examples on the performance of
such hybrids are given in Section 3.6.) The natural way of combining TPLS and
PLS is to first use TPLS to generate a set S′ of (few) non-dominated solutions that
are a high-quality approximations to the Pareto front and then use the solutions in
S′ to seed PLS. In fact, such a hybrid TP+PLS algorithm is straightforwardly ob-
tained from existing TPLS and PLS algorithms. A rudimentary form of a TP+PLS
algorithm has been studied by Paquete and Stützle [53]; they use a restricted form
of PLS, the component-wise step. Later, Lust and Teghem apply a TP+PLS algo-
rithm that runs the PLS phase to completion [49]. More recently, Dubois-Lacoste et
al. [15, 18] have presented applications of TP+PLS algorithms to bi-objective flow-
shop problems and also considered the automatic configuration of TP+PLS [17]. In
their applications, PLS is terminated based on a bound on the available computation
time.

TP+PLS is an example of a sequential hybridization of algorithms from the
dominance-based and the scalarization-based search paradigms. A second class of
hybridizations considers iterative hybridizations where elements of the two search
paradigms are alternately applied. In the following, we give a concise overview of
some representative examples of sequential and iterative hybrids. For a more com-
plete review, we refer the interested reader to [23].
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3.5.1 Sequential Hybridization

Combining a scalarization-based and a dominance-based component by switching
from one to the other is the most straightforward way of hybridizing the two search
paradigms. This switching forms the basis of a sequential hybridization. A com-
mon usage of sequential hybrids is to first use an exact algorithm to solve scalarized
problems to optimality and, thus, to provide some (or all) of the supported solu-
tions. Then, in a second phase, a dominance-based component aims at finding some
non-supported solutions. In the heuristic case, a scalarization-based components can
provide a small set of high-quality solutions (not necessarily supported ones), and in
a second step, a dominance-based component improves this set of solutions further.
We describe next some representative examples of such sequential hybrids.

Hamacher and Ruhe [34] combined the two search paradigms to tackle the bi-
objective minimum spanning tree problem. A sequence of scalarizations is solved
to optimality in the first phase; this is well feasible given that the minimum spanning
tree problem is polynomially solvable. In a second phase, the neighborhood of all
solutions obtained from the scalarizations is explored to search for additional non-
dominated solutions. Andersen et al. [2] proposed a similar approach. They tested
restrictions that consider only solutions that are neighbors of two different solutions
in the set, and show that it may be useful for large scale problems since the number
of solutions to consider is small.

Ulungu and Tehgem [60] proposed the two-phases method. This is a scheme for
exactly solving MCOPs that works as follows. In a first phase, the whole set of
supported solutions is determined using weighted sum scalarizations defined by the
dichotomic scheme of Aneja and Nair [3]. In a second phase, this set of supported
solutions is used to provide bounds to algorithms such as branch & bound, to find all
non-dominated solutions. Despite being developed for exact solving, this approach
has also inspired developments for heuristic solvers [49, 19].

Gandibleux et al. [26] proposed an algorithm for the bi-objective assignment
problem that combined the two search paradigms as follows. First, an exact algo-
rithm finds several supported solutions (a polynomial-time algorithm is known for
the scalarized problems), and then the set of solutions obtained is improved further
by seeding with this set a dominance-based evolutionary algorithm, which is run for
few iterations.

Parragh et al. [55] designed an hybrid algorithm to solve the multi-objective
dial-a-ride problem. A variable-neighborhood search algorithm is used to tackle
weighted sum scalarizations defined by a regular sequence of weight vectors. In
a second, dominance-based phase, a path-relinking step is used to further improve
the set of solutions.

Delorme et al. [11] combined a greedy randomized adaptive search procedure
(GRASP) [24] with the strength Pareto evolutionary algorithm (SPEA) [67] to
tackle the bi-objective set packing problem. GRASP is used to tackle a sequence
of weighted sum scalarized problems, and then SPEA is used to improve further the
set of solutions returned by the GRASP.
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3.5.2 Iterative Hybridization

The second possibility is to use both search paradigms in an iterative way. In that
case, typically a scalarization-based component is used for a specific step within
a dominance-based algorithm. Such iterative algorithms are often implicit hybrids
of the two search paradigms: researchers seek the best possible performance and
include a scalarization-based component within a dominance-based algorithm (or
vice-versa), without making explicit the general concept behind this combination.

Gandibleux et al. [25] proposed an algorithm called MOTS (not to be confused
with the MOTS algorithm mentioned in the previous section) that uses the tabu
search principle to push solutions towards local ideal points. Once a solution be-
comes the new current one in the tabu search process, its neighborhood is explored
using Pareto dominance to add possible non-dominated solutions to the archive.

Czyzzak and Jaszkiewicz [9] proposed the Pareto Simulated Annealing (PSA).
Several runs of a single-objective SA are performed in parallel. Each run of the
single-objective SA is tackling a problem defined by a weight vector and when a
new solution is accepted to be the current one, its neighborhood is explored to search
for non-dominated solutions. The weight vectors that define the scalarized problems
are updated to “escape” from the current solutions of the other runs (taking only the
closest ones into account).

López-Ibáñez et al. [44] tested the combination of a tabu search algorithm with
a multi-objective ACO, and another combination with an evolutionary algorithm
(SPEA2 [65]). The ACO and the SPEA2 algorithms use the tabu search algorithm
at each iteration to improve individual solutions by tackling scalarized problems
defined from a regular sequence of weight vectors.

3.6 Experimental Results of TP+PLS

In this section, we present some exemplary computational results with a TP+PLS
algorithm for bi-objective flowshop scheduling problems and we give an overview
of other recent experimental results. The flow-shop scheduling problem [39] is of
high relevance since it models a common type of machine scheduling environment
in industry. In the flow-shop scheduling problem, a set of n jobs is processed on m
machines. The most common objective is to minimize the makespan (denoted by
Cmax), that is, the completion time of the last job on the last machine. Other com-
mon objectives are the minimization of the total completion time (denoted by SFT)
and the minimization of the total tardiness, denoted by TT, or the total weighted
tardiness, denoted by WT. The bPFSP is NP-hard and it is one of the most widely
studied scheduling problems. (To be more exact, minimizing makespan is NP-hard
for three or more machines, minimizing the total completion time is NP-hard for
two or more machines, and minimizing the total tardiness is NP-hard already for a
single machine [13, 29].) For more details on this problem we refer to [18, 50].
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In our research, we have developed a TP+PLS algorithm for five bi-objective
permutation flowshop scheduling problems (bPFSP) [14, 15, 18] that correspond to
all combinations of the above mentioned objectives with the exception of for the
combination of TT and WT. We have carefully engineered the various algorithmic
components of TPLS and PLS. The TPLS part of the algorithm exploits an under-
lying iterated greedy algorithm that is state-of-the-art for the PFSP with makespan
minimization [56] and that has been adapted to tackle efficiently the other objectives
and weighted sum problems. The TPLS version that we used is the most recent one:
AA-TPLS [16, 19]. We showed that its adaptive behavior yields better results than
the classical TPLS since it can adapt the search to the shape of the Pareto front,
rather irregular for bPFSPs. The PLS version that we used is the original one [51], it
uses two different types of neighborhood operators; we have shown in earlier stud-
ies [14] that it is profitable for bPFSPs. For more details on the TP+PLS framework
for bPFSP, the interested reader can refer to [18].

The TP+PLS framework has been extensively compared to MOSA, a multi-
objective SA proposed by Varadharajan and Rajendran [62]. MOSA was shown to
outperform other algorithms on bPFSPs for several combinations of objectives [50].
The experimental comparison between MOSA and TP+PLS has been done based
on a re-implementation of MOSA under equal computation times. Exemplary re-
sults are given in Table 3.1, which shows the percentage of runs where the output
set of the TP+PLS algorithm weakly dominates in the Pareto sense (see Def. 3.7;
hereafter we say that a set that weakly dominates another is “better”) the output set
obtained by a run of MOSA, and, conversely, the average percentage of runs that
the output set of MOSA is better than TP+PLS. These percentages are computed
for each instance over 625 pairwise comparisons obtained from 25 runs for each
algorithm, and averaged over the 10 instances of each size. The results given are
clearly in favor of TP+PLS. While TP+PLS is better than MOSA for a large per-
centage of the comparisons, the opposite is very rarely the case. Note that a value
of 0 means that MOSA is not able to produce in any run a non-dominated set better
than the worst non-dominated set produced by TP+PLS in any of the 25 runs of
the 10 instances of a given size. The percentages given in Table 3.1 show that for
small instances of 20 jobs, MOSA and the TP+PLS algorithm are difficult to com-
pare. The low percentages are explained by the fact that both algorithms often find
the same non-dominated set, which is probably the optimal Pareto front. For these
small instances, differences are not consistent across instances and combinations of
objectives, and it cannot be said that any algorithm is clearly better than the other.
Nevertheless, for all the remaining instances, Table 3.1 shows that TP+PLS clearly
outperforms MOSA.

Despite the fact that the TP+PLS algorithm often dominates MOSA, it is inter-
esting to study how different the Pareto front approximations provided by the two
algorithms are. To do so we use a graphical tool, the empirical attainment func-
tion (EAF). The EAF gives the, empirically estimated, probability that an algorithm
dominates an arbitrary area of the objective space [33]. By plotting the differences
of the EAFs of two algorithms, one can graphically show where in the objective
space, and how frequently, an algorithm performs better relative to the other. A more
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Table 3.1 For each bi-objective problem (denoted by the two objectives in parenthesis), the
left column shows the percentage of runs (computed over 25 runs per instance and averaged
over 10 instances of the same size) in which an output set obtained by TP+PLS is better in the
Pareto sense than an output set obtained by MOSA. The right column shows the percentage
of runs for which an output set of MOSA is better than an output set of TP+PLS .

PFSP-(Cmax, SFT) PFSP-(Cmax, TT) PFSP-(Cmax, WT) PFSP-(SFT, TT) PFSP-(SFT, WT)
nxm TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA TP+PLS MOSA

20x5 4.66 5.83 6.1 1.34 14.95 0.18 10.19 26.31 0.02 20.15
20x10 1.87 9.2 0.07 0.26 0.02 0.06 0.19 0.63 0.03 0.07
20x20 0.13 1.23 1.27 1.57 1.99 2.32 3.63 5.55 4.2 10.09

50x5 89.49 0 84.33 0 79.22 0 98.13 0.08 33.67 0
50x10 72.92 0 63.17 0 63.24 0 94.07 0 20.53 0
50x20 75.94 0 61.11 0 63.01 0 5.79 0 14.72 0

100x5 84.97 0 70.5 0 67.12 0 93.66 2.54 9.72 0
100x10 76.94 0.05 69.86 0 37.49 0 95.38 0.58 16.84 0
100x20 73.17 0 63.29 0 23.81 0 97.35 0 15.31 0

200x10 18.04 0.16 24.5 0 4.15 0 91.77 3.72 0.02 0
200x20 15.16 0 37.83 0 0.25 0 78.23 6.28 1.04 0.02

detailed explanation of this graphical tool can be found in [45]. Fig. 3.1 shows the
differences between the EAFs obtained by the hybrid TP+PLS algorithm and the
MOSA algorithm, for one instance with makespan and total completion time min-
imization. A large gap is observed in favor of the TP+PLS algorithm over the one
obtained by MOSA, indicating a clearly superior performance. Other instances and
combinations of objectives show similar trends.

Table 3.1, Fig. 3.1 and additional results available in [18] show that the hybrid
TP+PLS algorithm clearly outperforms the previously best-known algorithm, by a
large gap, and for all combinations of makespan minimization, total completion time
minimization, total and weighted tardiness minimization.

TP+PLS algorithms were also applied to the bi-objective traveling salesman
problem (bTSP). The TSP and the bi-objective version of it are well-known NP-
hard combinatorial problems widely used to assess the performance of optimization
algorithms and metaheuristics [22, 54]. The goal in the bTSP is to find a Hamilto-
nian tour that minimizes the sum of the edge costs in the tour. In the bi-objective
variant of the TSP, two cost values are assigned to each edge of a graph, and each
of the two objective functions is computed with respect to the corresponding cost
value.

Paquete and Stützle [53] proposed the Pareto double two-phase local search (PD-
TPLS method) and applied it to the bTSP. In this sequential hybrid algorithm, the
first phase uses the TPLS method (in its original form, that is, with a regular se-
quence of weights) to return a set of non-dominated solutions, and in the second
phase the neighborhood of all these solutions is explored to find additional non-
dominated solutions. In a sense, this so-called component-wise step implements a
restricted version of PLS. The single-objective algorithm used to tackle the scalar-
ized problems is an iterated local search algorithm, and the neighborhood operator
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3900 4000 4100 4200 4300
Cmax

1.
26

e+
05

1.
3e

+
05

1.
34

e+
05

1.
38

e+
05

∑
C

i

TP+PLS

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3900 4000 4100 4200 4300
Cmax

1.
26

e+
05

1.
3e

+
05

1.
34

e+
05

1.
38

e+
05

∑
C

i

MOSA

Fig. 3.1 Differences of the empirical attainment functions obtained over 25 runs in favor
of the hybrid TP+PLS algorithm (left) and in favor of the MOSA algorithm (right), for the
bPFSP with minimization of the makespan and of the total completion time, on an instance
with 50 jobs and 20 machines.

is based on 2-opt moves. This hybrid algorithm has been compared favorably to the
best algorithm known at that time, the MOGLS algorithm from Jaszkiewicz [38]. A
more in-depth experimental study of PD-TPLS and other TPLS variants has been
presented by Paquete and Stützle [54].

More recently, another TP+PLS algorithm has been applied to the bTSP by Lust
and Teghem [49]. This algorithm is reported to outperform the PD-TPLS of Paquete
and Stützle. The main differences are that (i) the single-objective algorithm used to
tackle the scalarized problems is an effective implementation of the chained Lin-
Kernighan heuristic [6], which is presumably more effective than the iterated local
search algorithm used by the PD-TPLS, and (ii) a full version of PLS is used (more
precisely, the version of Angel et al. [4]) instead of the restricted one in the PD-
TPLS method. This algorithm is nowadays, to the best of our knowledge, the state
of the art for the bTSP.

Finally, Lust and Teghem [48] tackled multi-objective multi-dimensional knap-
sack problems. In these problems, two or more types of profits are associated to
each item, each type of profit representing a different objective, and the goal is to
determine a subset of items to place in a knapsack that maximizes, in the Pareto
sense, the sum of profits for each objective. In the multi-dimensional version, the
knapsack has more than one capacity constraint, and a feasible solution needs to
satisfy all capacity constraints. The TPLS phase of the algorithm finds solutions
for each weighted sum scalarization using a greedy constructive heuristic. In the
second phase, PLS uses a very-large neighborhood search that starts from the set
of solutions obtained by TPLS. They consider the bi-objective variant using regu-
larly distributed weights for the scalarizations, and a three-objective variant using
random weights for the scalarizations. For the bi-objective multi-dimensional knap-
sack problem the proposed TP+PLS algorithm is a new state-of-the-art approach,
clearly outperforming its competitors on widely tested benchmark instances.
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3.7 Conclusion

In this chapter, we have reviewed heuristic methods for solving multi-objective
combinatorial optimization problems in the Pareto sense. In particular, we re-
viewed methods rooted in the scalarization-based and the dominance-based search
paradigms. For each of the two search paradigms, we presented a representative
method, namely Pareto local search (PLS) as a dominance-based method and two-
phase local search (TPLS) as a scalarization-based method. We have detailed the
main algorithmic components that are required to define PLS and TPLS algorithms,
and discussed how PLS and TPLS can be combined into hybrid TP+PLS algo-
rithms. Some exemplary computational results have illustrated the high potential
of TP+PLS algorithms. In fact, for several well-known multi-objective problems,
including various bi-objective flowshop problems, the traveling salesman problem
with two and three objectives and the bi-objective knapsack problem, TP+PLS al-
gorithms are currently state of the art.

An important direction for future research is certainly to extend the current gen-
eration of TPLS, PLS and TP+PLS algorithms to three and more objectives. We
also believe that an iterative hybridization instead of a sequential one could be ben-
eficial in terms of flexibility and performance. The TP+PLS framework is also a
clear candidate for the automatic configuration of high-performing multi-objective
algorithms. The feasibility of such an endeavor has already been proven [17]. Re-
garding applications, we believe the hybrid TP+PLS framework could be applied
to other well-known and widely studied problems, providing high-quality results
without requiring a large implementation effort.
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Chapter 4
Hybridizing Cellular GAs with Active
Components of Bio-inspired Algorithms

E. Alba and A. Villagra

Abstract. Cellular Genetic Algorithm (cGA) and Particle Swam Optimization
(PSO) are two powerful metaheuristics being used successfully since their creation
for the resolution of optimization problems. In this work we present two hybrid
algorithms based on a cGA with the insertion of components from PSO. We aim
to achieve significant numerical improvements in the results obtained by a cGA in
combinatorial optimization problems. We here analyze the performance of our hy-
brids using a set of different problems. The results obtained are quite satisfactory in
efficacy and efficiency.

4.1 Introduction

Research in exact algorithms, heuristics, and metaheuristics for solving combinato-
rial optimization problems is nowadays highly on the rise. Evolutionary Algorithms
(EAs) are very popular optimization techniques [2], [4], [5]. They work by evolving
a population of individuals (potential solutions), emulating the biological processes
of selection, mutation, and recombination found in Nature, so that individuals (i.e.,
solutions) are improved. This family of techniques apply an iterative and stochastic
process on a set of individuals (population), and are well-known good algorithms
for exploring complex and large search spaces.
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Most EAs in the classical literature are panmictic, although restricting the mat-
ing among individuals has appeared as an important research line. To this end, some
kind of structure is added to panmictic (unrestricted) mating by defining neighbor-
hoods among them. Among the many types of structured EAs (where the population
is somehow decentralized), distributed and cellular algorithms are the most popular
optimization tools [2], [6], [15], [21].

A cGA, is a class of a decentralized population in which the tentative solutions
evolve in overlapped neighborhoods [19], [21]. In a cGA individuals are conceptu-
ally set in a toroidal mesh, and are allowed to recombine with nearby individuals.
The overlaping of neighborhoods provides to cEA an implicit slow diffusion mech-
anism. The slow dispersion of the best solutions over the population is the cause
of a good balance between the exploitation and the exploration efficacy, something
really sought when an efficient and accurate algorithm is designed. Nevertheless,
this characteristic produces a slow convergence to the optimum and thus decreases
the efficiency of the algorithm. An open research line then consists in creating new
algorithmic models which try to improve the efficiency of cEA by incorporating
active components of other algorithms. This is not the only means to leverage the
efficiency of a cEA, but it is a structured and novel way of approaching it. In this
work we are introducing “active components” of PSO in a CGA, as an extension of
a previous preliminary study [3].

PSO was introduced by Kennedy and Eberhart [11] in 1995 as a population-based
stochastic search and optimization process. It originated from computer simulation
of individuals (particles or living organisms) in a bird flock or fish school [22]. Over
the last years, interest in hybrid metaheuristics has risen considerably in the field
of optimization [9]. Combinations of algorithms such as several metaheuristics in
a single technique have provided very powerful search procedures in the past. In
this work we intend to generate new functional and efficient hybrid algorithms in a
methodological and structured way. Thus, we will take out of PSO its very special
particle movement equation and plug it into a canonical cGA, to get exploitation and
exploration at the same time in one single algorithm. We propose two algorithms
based on cGA by adding to it a mutation based on PSO. We test our algorithms with
a set of combinatorial problems and compare our results with the canonical cGA.
Results are quite satisfactory in efficacy and efficiency.

This chapter is organized as follows. In Section 4.2 we show basic concepts of
cGA. In Section 4.3 we present the classic PSO algorithm. In Section 4.4 we de-
scribe our hybrid algorithms. In Section 4.5 we show the experiments and results,
and finally in Section 4.6 we describe some conclusions and suggest future research
lines.

4.2 Characterizing Cellular Genetic Algorithms

Genetic Algorithms (GAs) are a particular class of EAs. In turn, cGAs are a sub-
class of Genetic Algorithms (GAs) with a spatially structured population, i.e. the
individuals can only mate with their neighboring individuals [1]. These overlapped
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small neighborhoods help in exploring the search space because the induced slow
diffusion of solutions through the population provides a kind of exploration, while
the exploitation takes place inside each neighborhood by genetic operators. In cGAs
the population is usually structured in a 2D toroidal grid. The most commonly used
neighborhood is called L5 [15], [21]. This neighborhood always contains five in-
dividuals: the considered one (position(x,y)) plus the North, East, West, and South
individuals shown in Figure 4.1.

Fig. 4.1 Population arrangement (cGA)

In Algorithm 6 we present the pseudo-code of a canonical cGA. It starts by gen-
erating and evaluating an initial population. After that, genetic operators (selection,
recombination, mutation, and replacement) are iteratively applied to each individual
until the termination condition is met.

The population is structured in a two-dimensional (2-D) toroidal grid, and the
neighborhood defined on it (line 6) contains five individuals. The considered

Algorithm 6. Pseudocode of a cGA
1: /∗ Algorithm parameters in ’cga’ ∗/
2: Steps-Up(cga)
3: for s←− 1 to MAX ST EPS do
4: for x←− 1 to WIDT H do
5: for y←− 1 to HEIGHT do
6: nList ←− ComputeNeigh (cga,position(x,y));
7: parent1 ←− IndividualAt(cga,position(x,y));
8: parent2 ←− LocalSelect(nList);
9: /∗ Recombination ∗/

10: DPX1(cga.Pc,nList[parent1],nList[parent2],auxInd.chrom);
11: /∗ Mutation ∗/
12: BitFlip(cga.Pm,auxInd.chrom);
13: auxInd.fit ←− cga.Fit(Decode(auxInd.chrom));
14: InsertNewInd(position(x,y),auxInd,[ if not worse ], cga, auxPop);
15: end for
16: end for
17: cga.pop ←− auxPop;
18: UpdateStatistics(cga)
19: end for
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individual itself is always selected for being one of the two parents (line 7). The
second parent is selected by Tournament Selection (line 8). Genetic operators are
applied to individuals in lines 10 and 12. We use in this chapter a two point crossover
operator (DPX1) and traditional binary mutation operator - bit-flip.

After applying these operators, the algorithm calculates the fitness value of the
new individual (line 13) and inserts it on its equivalent place in the new population
(line 14) only if its value is better or equal than the old one (always adding the new
individual to the next population). After applying the above mentioned operators
to the individuals we replace the old population by the new one (line 17), and we
calculate some statistics (line 18).

4.3 Classic PSO

The PSO algorithm was developed by Kennedy and Eberhart in 1995 [11]. This is
a population-based technique inspired by social behavior of the movement of flocks
of birds or schools of fish. In PSO the potential solutions, called particles, “fly”
through the problem space. All of the particles have fitness values based on their
position and have velocities which direct the flight of the particles. PSO is initial-
ized with a group of random particles (solutions) and then searches for the optima by
updating generations. In every iteration, each particle updates its information (veloc-
ity and position) based on personal and social knowledge. The personal knowledge
is obtained from the best solution (fitness) the particle has achieved so far. This
value is called pbest. The social knowledge comes from the best value obtained so
far for any particle in the population. This best value is a global best and called
gbest.

After finding these values, the particle updates its velocity and position according
to the following equations:

vn+1 = ωivn +ϕ1 ∗ rand ∗ (pbestn− xn)+ϕ2 ∗ rand ∗ (gbestn− xn) (4.1)

xn+1 = xn + vn+1 (4.2)

ωi is the inertia coefficient which slows velocity over time; vn is the particle velocity;
xn is the current particle position in the search space; pbestn and gbestn are defined
as the “personal” best and “global” best; rand is a random number between (0,1);
ϕ1, ϕ2 are learning factors.

PSO was originally developed to solve real-value optimization problems. To ex-
tend the real-value version of PSO to a binary/discrete space, Kennedy and Eber-
hart [12] proposed a binary PSO (BPSO) method. In their model a particle will
decide on “yes” or “no”, “true” or “false”, etc. also this binary values can be a
representation of a real value in binary search space. In this binary version, the par-
ticle’s personal best and global best is updated as in the continuous version. The
velocities of the particles are defined in terms of probabilities that a bit will change
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to one. Using this definition, a velocity must be restricted within the range [0,1]. So
a transformation is used to map all real valued of velocity to the range [0,1] [12].
The normalization function used here is a sigmoid function s:

s(vn) =
1

1+ exp(−vn)
(4.3)

Also, the equation 7.1 is used to update the velocity vector of the particle. And the
new position of the particle is obtained using the equation below:

xn+1 =

{
1 if r < s(vn)
0 otherwise

(4.4)

where r is a uniform number in the range [0,1].

4.4 Our Hybrid cGA Algorithms

We propose to insert concepts of PSO into the canonical cGA with the intention of
improving its performance. The basic idea is to capture the positive main character-
istics of a metaheuristic, PSO in this case, and inserted them into cGA.
To do this, we propose two hybrid algorithms called hyCP-local and hyCP-global. In
both algorithms we will treat each individual as a particle. We maintain its velocity,
position and information about its personal (pbest), and social (gbest) knowledge to
update the information (velocity and position). Then a mutation based on PSO is
used and the line 12 ( mutation in the canonical cGA Algorithm 6) is replaced with
the following lines:

1: UpdateVelocity;
2: UpdateIndividual (cga.Pm, auxInd.chrom);

The first line updates the velocity of the particle using equation 7.1. The second line
modifies the individual taking into account the mechanism with the sigmoid function
using equation 4.4. The pseudo-code of the algorithms proposed is described in
Algorithm 7.

Both algorithms will apply this mutation based on PSO, with the difference that
hyCP-local uses the local neighborhood (L5), and then selects one neighbor from
there as gbest. For hyCP-global the global optimum of the all population is used as
gbest.

4.5 Experiments and Analysis of Results

In this section we present the set of problems chosen for this study. We have cho-
sen a representative set of problems to better study our proposal. The benchmarks
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Algorithm 7. Pseudocode of hyCP-local and hyCP-global
1: /∗ Algorithm parameters ∗/
2: Steps-Up(cga)
3: for s←− 1 to MAX ST EPS do
4: for x←− 1 to WIDT H do
5: for y←− 1 to HEIGHT do
6: nList ←− ComputeNeigh (cga,position(x,y));
7: parent1 ←− IndividualAt(cga,position(x,y));
8: parent2 ←− LocalSelect(nList);

/∗ Recombination ∗/
9: DPX1(cga.Pc,nList[parent1],nList[parent2],auxInd.chrom);

/∗ Mutation based on PSO ∗/
10: UpdateVelocity;
11: UpdateIndividual (cga.Pm, auxInd.chrom);
12: auxInd.fit ←− cga.Fit(Decode(auxInd.chrom));
13: InsertNewInd(position(x,y),auxInd,[ if not worse ] , cga, auxPop);
14: end for
15: end for
16: cga.pop ←− auxPop;
17: UpdateStatistics(cga)
18: end for

contains many different interesting features in optimization, such as epistasis, multi-
modality, and deceptiveness. The problems used are Massively Multimodal Decep-
tive Problem (MMDP) [8], Frequency Modulation Sounds (FMS) [20] , Multimodal
Problem Generator (P-PEAKS) [10], COUNTSAT [7] (an instance of MAXSAT
[16]), Error Correcting Code Design (ECC) [14], and Maximum Cut of a Graph

(MAXCUT) [13]; The minimum tardy task problem (MTTP) [18]. Finally the One-
Max Problem [17](or BitCounting). The problems selected for this bechmark are
explained bellow:

Massively Multimodal Deceptive Problem (MMDP): made up of k deceptive sub-
problems (si) of 6 bits each one, whose value depends on the number of ones
(unitation) a binary string has. The global optimum has a value of k and it is
attained when every subproblem is composed of zero or six ones. We use here a
instance of k = 40 subproblems, and its maximum value is 40.

Frequency Modulation Sounds problem (FMS): is defined as determining six real-
parameters of frequency modulated sound model. The parameters are defined in
the range [−6.4,+6.35], and we encode each parameter into a 32 bit substring in
the individual. The optimum value for this problem is 0.0.

Multimodal Problem Generator (P-PEAKS): the idea is to generate P random
N−bit string that represent the location of P peaks in the search space. In this
chapter, we have used an instance of P = 100 peaks of length N = 100 bits each.
The maximum fitness value for this problem is 1.0.

COUNTSAT problem: is an instance of MAXSAT. In this problem the solution
value is the number of clauses that are satisfied by n−bit input string. The opti-
mum value is having all the variables set to 1. In this work, an instance of n = 20
variables has been used, with the optimum value of 6860.
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Error Correcting Code Design Problem (ECC): we will consider a three-tuple
(n,M,d), where n in the length of each codeword (number of bits), M is the
number of codewords, and d is the minimum Hamming distance between any
pair of codewords. We consider in the present chapter an instance where M = 24
and n = 12 which has a fitness value of 0.0674.

Maximum Cut of a Graph (MAXCUT): for coding the problem we use a binary
string of length n. We have considered three different graph examples in this
study. Two of them are randomly generated graphs of moderate sizes: a sparse
one “cut20.01” and a dense one “cut20.09”, both of them are made up of 20 ver-
tices. The other instance is a scalable weighted graph of 100 vertices. The glob-
ally optimal solutions for this instances are 10.119812 for “cut20.01”, 56.740
064 in the case of “cut20.09”, and 1077 for “cut100”.

Minimum tardy task problem (MTTP): we have used three different instances for
analyzing the behavior of our algorithms with this function: “mttp20”, “mttp100”
and “mttp200” with sizes 20, 100, and 200, and known maximum fitness values
of 0.02439, 0.005, and 0.0025, respectively.

OneMax problem (OneMax): is a simple problem that consists of maximizing the
number of ones containing a string of bits. We consider an instance with a string
length of n (n = 100). The optimum solution is a string of n ones, i.e. all bits of
the string are fixed into one.

Table 4.1 Parameterization used in our algorithms

Population Size 400 individuals
Selection of Parents itself + Tournament Selection
Recombination DPX1, pc = 1.0
Bit Mutation (Bit-flip for cGA), pm = 1/L
Replacement Replace If Not Worse
Inertia coefficient w = 1
Leaning factors ϕ1,ϕ2 = 1
Random value rand = UN(0,1)

The common parameterization used for all algorithms is described in Table 4.1,
where L is the length of the string representing the chromosome of the individuals.
One parent is always the individual itself while the other one is obtained by using
Tournament Selection (TS). The two parents are forced to be different in the same
neighborhood.

In the recombination operator, we obtain just one offspring from two parents.
The DPX1 recombination is always applied (probability pc = 1.0). The bit mutation
probability is set to pm = 1/L. The exceptions are COUNTSAT, where we use pm =
(L−1)/L and the FMS problem, for which a value of pm = 1/(2∗L) is used. These
two values are needed because the algorithms had a negligible solution rate with
the standard pm = 1/L probability in our preliminary set of experiments. We here
measure hit rate as the number of experiments.
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Table 4.2 Percentage of Success obtained by hyCP-local, hyCP-global, and cGA for a set of
problems

Problem hyCP-local hyCP-global cGA
ECC 100% 100% 100%
P-PEAKS 100% 100% 100%
MMDP 58% 61% 54%
FMS 83% 81% 25%
COUNTSAT 80% 36% 0%
“cut20.01” 100% 100% 100%
“cut20.09” 100% 100% 100%
“cut100” 38% 48% 45%
“mttp20” 100% 100% 100%
“mttp100” 100% 100% 100%
“mttp200” 100% 100% 100%
OneMax 100% 100% 100%

We will replace the considered individual on each generation by the newly cre-
ated individual in the same neighborhood only if the offspring fitness is not worse
than the selected individual. The cost of solving a problem is analyzed by measur-
ing the number of evaluations of the objective function made during the search. The
stop condition for all algorithms is to find a solution or to achieve a maximum of
one millon function evaluations. The last three rows of Table 4.1 represent the val-
ues used only for the algorithms based on PSO. Throughout the paper all best values
are bolded.

All algorithms are implemented in Java, and run on a 2.53 GHz Intel i5 processor
under Windows 7.

In Table 4.2 we show the percentage of success in 150 independent runs for the
three algorithms.

We can observe that the success rate for our hybrids is higher (or equal in some
cases) than for cGA algorithm. Moreover, cGA obtained a very undesirable (0%) hit
rate for the COUNTSAT problem.

In Table 4.3 the following information is shown. The first column (Problem) rep-
resents the name of the problem resolved, the second column (Best) the better found
solution and then for each algorithm (hyCP-local, hyCP-global, and cGA) the num-
ber of evaluations (columns Evals) needed to solve each problem, and the time in ms
consumed (columns Time). Finally, the last column (ANOVA|K-W) represents the
p-values computed by performing ANOVA or Kruskal-Wallis tests as appropriate,
on the time and evaluations results, in order to assess the statistical significance of
them (columns Evals and Time). We will consider a 0.05 level of significance. Sta-
tistical significant differences among the algorithms are shown with symbols “(+)”,
while non-significance is shown with “(-)”.

We can observe that our hybrid algorithms reduce the number of evaluations re-
quired to reach the optimum value and also in three problems (FMS, COUNTSAT,
and “mttp20”) these differences are statistical significant. Meanwhile, for the time
required to obtain the optimum in general, cGA obtained the minimum values
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Table 4.3 Results obtained by cGA and our hybrid algorithms for a set of problems

hyCP-local hyCP-global cGA ANOVA|K-W
Problem Best Evals Time Evals Time Evals Time Evals Time
ECC 0.07 141400 3369 157600 4370 150000 2512 (-) (+)
P-PEAKS 1.00 39600 3126 38200 3376 39200 3283 (-) (+)
MMDP 40 182000 5051 211200 6457 144000 2295 (+) (+)
FMS 0.00 462800 24269 367400 22183 646800 29326 (+) (-)
COUNTSAT 6860 348200 1848 577200 3468 1000000 2342 (+) (+)
“cut20.01” 10.12 4800 31 5200 33 5200 26 (-) (-)
“cut20.09” 56.74 7600 41 7000 51 8000 49 (-) (-)
“cut100” 1077 210800 5936 220800 6031 180800 3742 (-) (+)
“mttp20” 0.0244 4800 31 4600 27 5600 28 (+) (-)
“mttp100” 0.005 150200 1905 141000 1759 152800 1084 (-) (-)
“mttp200” 0.0025 440400 10228 450800 10265 459600 5487 (-) (+)
OneMax 500 199200 10236 228000 11683 128200 3581 (+) (+)

(a) ECC (b) MMDP

(c) FMS (d) COUNTSAT

Fig. 4.2 Box-plots of the number of evaluations required for the algorithms considering: (a)
ECC, (b) MMDP, (c) FMS, and (d) COUNTSAT problems

being slightly faster than the hybrids, who have a slight overhead compared to the
canonical algorithm. This is an expected behavior since the mutation based on PSO
requires some additional calculations to keep updated the particles, and to be able
of using individual and social knowledge as appropriate.
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(a) P-PEAKS (b) FMS

(c) COUNTSAT (d) OneMax

Fig. 4.3 Box-plots of the Time required for the algorithms considering: (a)P-PEAKS,
(b)FMS, (c) COUNTSAT, and (d) OneMax problems

Figure 4.2 shows the number of evaluations needed for each algorithm to reach
the optimum value in four representative problems (ECC, MMDP, FMS, and
COUNTSAT). We can observe the median values and how the results are distributed
for four problems. In Figure 4.2(a) the minimum values are obtained by hyCP-local;
nevertheless, the difference among the results are not statically significant. In Figure
4.2(b) cGA obtained the minimum median, and in this case the difference among
the results are statistical significant. In Figure 4.2(c) we can observe that the me-
dian value is obtained by hyCP-global and also in this case the difference among
the results are statistical significant. Finally, in Figure 4.2(d) we can see a marked
difference in favor of hyCP-local. Recall that for this problem cGA never found the
optimal value, while our hybrids did so.

Figure 4.3 shows the Time (ms) needed for each algorithm to reach the opti-
mum value in four representative problems (P-PEAKS, FMS, COUNTSAT, and
OneMax). In Figures 4.3(a) and (c) we can observe that our hybrid hyCP-local ob-
tained the minimum median values in this two cases and also in both cases the
difference among the results are statically significant. In Figure 4.3(b) hyCP-global
obtained the minimum median values but the difference among the results are not
statically significant. Finally, in Figure 4.3(d) cGA obtained the minimum values
and the difference among the results are statically significant.
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(a) Start -gen. 1- (b) Middle -gen. 350- (c) Final -gen. 700-

Fig. 4.4 Evolution of the search with hyCP-local on a 20x20 grid for COUNTSAT at different
moments: (a)Start, (b)Middle, and (c) Final

(a) Start -gen. 1- (b) Middle -gen. 25- (c) Final -gen. 50-

Fig. 4.5 Evolution of the search with cGA on a 20x20 grid for COUNTSAT at different
moments: (a)Start, (b)Middle, and (c) Final

Now we analyze the evolution from the point of view of the phenotype diversity.
The images in the Figures 4.4(a), (b), and (c) are taken from the beginning, the
middle, and the final of a typical execution of our hybrid hyCP-local when solving
COUNTSAT, and the images in the Figures 4.5(a), (b), and (c) are taken from the
beginning, the middle, and the final of a typical execution of cGA when solving the
same instance.

Figure 4.4, and Figure 4.5 show three snapshots of the fitness distribution in the
population in different stages of the search. The different scales of grey represent
different fitness values and, the darker the better. We can observe how the diversity
(different scales of grey) decreases during the execution as expected, but in a very
smooth manner, allowing reaching the global optimum.

In Figure 4.4(a) the generation number is 1 and the best found value is 6806,
for Figure 4.4 (b) the generation number is 350 and the best found value is 6841.
Finally, in Figure 4.4(c) the generation number is 700, and in this case, best found
value is 6860.

In Figure 4.5(a) the generation number is 1 and the best found value is 6806,
for Figure 4.4 (b) the generation number is 25 and the best found value is 6841.
Finally, in Figure 4.4(c) the generation number is 50, and in this case, best found
value is 6841. We can observe that the cGA algorithm loses genetic diversity much
faster than hyCP-local. This was the reason for plotting just what happens in the
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first 50 generations for cGA, while hyCP-local keeps diversity along convergence
to optimal solutions much better.

4.6 Conclusions and Further Work

In this work we present two hybrid algorithms, called hyCP-local and hyCP-global.
The motivation for this work was to improve the performance of a basic cGA
with the addition of components that make efficient other metaheuristics, with
the idea of getting even better results than those already obtained by the core
technique.

In nine out of the twelve problems analyzed the best performance in terms of the
number of evaluations was obtained by our hybrids. This means that our hybridiza-
tion framework can effectively improve the efficiency of the basic cGA. Meanwhile,
in all problems where the percentage of success in achieving the optimum is differ-
ent, our hybrid algorithms obtained the highest success percentage (so they are also
very accurate). As regards the time required to reach the optimum values, only in
five of the twelve problems discussed our hybrids obtain the minimum values. This
behavior is expected because the introduction of the PSO concepts into cGA also
introduces more processing time and this affects the time required to reach the opti-
mum values.

In this chapter we used concepts of PSO, but other metaheuristics will be con-
sidered in further works like ACO (Ant Colony Optimization), SA (Simulated An-
nealing), and VNS (Variable Neighborhood Search), among others. Thus, what we
have created is really a framework on how a family of techniques (cGA) can be hy-
bridized in a structured manner. In fact, this framework could be used on other pairs
of algorithms to ease the construction of new techniques of higher unseen efficiency
and accuracy.
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Chapter 5
Hybridizations of GRASP with Path-Relinking

Paola Festa and Mauricio G.C. Resende

Abstract. A greedy randomized adaptive search procedure (GRASP) is a meta-
heuristic for combinatorial optimization. GRASP heuristics are multistart proce-
dures which apply local search to a set of starting solutions generated with a
randomized greedy algorithm or semi-greedy method. The best local optimum
found over the iterations is returned as the heuristic solution. Path-relinking is a
search intensification procedure that explores paths in the neighborhood solution
space connecting two good-quality solutions. A local search procedure is applied
to the best solution found in the path and the local optimum found is returned as
the solution of path-relinking. The hybridization of path-relinking and GRASP adds
memory mechanisms to GRASP. This chapter describes basic concepts of GRASP,
path-relinking, and the hybridization of GRASP with path-relinking.

5.1 Introduction

A combinatorial optimization problem can be defined by a finite ground set E =
(1, . . . ,n), a set of feasible solutions F ⊆ 2E , and an objective function f : 2E �→
R. In this chapter, we consider optimization problems in their minimization form,
where an optimal solution S∗ ∈ F is sought such that f (S∗) ≤ f (S), for all S ∈ F .
The ground set E , the set of feasible solutions F , and the objective function f are
defined for each specific problem. Many combinatorial optimization problems are
computationally intractable, i.e. they fall into the category of NP-hard problems [32].
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Much progress has been made in the direction of exact methods for combinato-
rial optimization, such as branch and bound, branch and cut, and dynamic program-
ming [72, 76]. These methods, however, suffer from the curse of dimensionality, i.e.
they tend to break down as the size of the instance being solved increases. Like-
wise, approximation algorithms [74, 75], which provide a guaranteed suboptimal
solution to hard combinatorial optimization problems, have also experienced signif-
icant progress. Although interesting in theory, approximation algorithms are often
outperformed in practice by more straightforward heuristics with no particular per-
formance guarantees.

Metaheuristics [33, 36] are general high-level procedures that coordinate simple
heuristics and rules to find good (often optimal) approximate solutions to combina-
torial optimization problems. They include genetic algorithms, simulated annealing,
tabu search, scatter search, ant colonies, variable neighborhood search, GRASP,
and path-relinking . There are many ways to classify metaheuristics. These in-
clude, trajectory-based versus population-based, nature-inspired versus non-nature
inspired, memoryless versus memory-based, etc. Genetic algorithms, for example,
are nature-inspired, population-based, with memory. Tabu search are trajectory-
based with memory. GRASP is trajectory-based.

Hybrid metaheuristics combine one or more algorithmic ideas from different
metaheuristics and sometimes even from outside the traditional field of meta-
heuristics. The main motivation to hybridize metaheuristics is to make up for the
shortcomings of one metaheuristic with special characteristics of the other. In
this chapter, we consider the hybridization of two metaheuristics: GRASP and
path-relinking.

GRASP, or greedy randomized adaptive search procedures [25, 26, 30, 31, 59],
is a metaheuristic for combinatorial optimization. GRASP heuristics are multistart
procedures which apply local search to a set of starting solutions generated with
a randomized greedy algorithm or semi-greedy method. The best local optimum
found over the iterations is returned as the heuristic solution. Since GRASP itera-
tions are independent of one another, GRASP heuristics do not make use of solutions
produced throughout the search, i.e. they do not have any memory mechanism.

One way to add memory to GRASP is its hybridization with path-relinking. Path-
relinking [35, 60, 63] is a search intensification procedure that explores paths in the
neighborhood solution space connecting two good-quality solutions. A local search
procedure is applied to the best solution found in the path and the local optimum
found is returned as the solution of path-relinking.

This chapter describes basic concept of GRASP, path-relinking, and the hy-
bridization of GRASP with path-relinking. In Section 5.2 we describe the main
building blocks of GRASP. In Section 5.3 we consider path-relinking and, in Sec-
tion 5.4, address issues related to the hybridization of GRASP with path-relinking
and evolutionary path-relinking. A hybridization of GRASP with path-relinking and
Lagrangean relaxation is discussed in Section 5.5. In Section 5.6 we consider par-
allel implementation of GRASP with path-relinking heuristics. Finally, concluding
remarks are made in Section 5.7.
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5.2 GRASP

Given a feasible solution S ∈ F of a combinatorial optimization problem, a neigh-
borhood N(S) of S is a subset of F such that each element in N(S) is “close” to S
and can be obtained applying some elementary operation (or move) to S that changes
one or more components of S. Consider the search space graph G = (F,M), where
the node set F is the set of feasible solutions and the edges in the set M correspond
to moves in the neighborhood structure, i.e. (S,S′) ∈ M if and only if S,S′ ∈ F ,
S ∈ N(S′), and S′ ∈ N(S).

Local search seeks a locally optimum solution in G, i.e. a solution Ŝ ∈ F such
that f (Ŝ)≤ f (S), for all S ∈ N(Ŝ). It starts from some solution S0 ∈ F . At any iter-
ation k, it seeks an improving solution Sk+1 ∈ N(Sk) such that f (Sk+1)< f (Sk). On
one hand, if a first-improving strategy is used, any improving solution Sk+1 can be
accepted. On the other hand, when a best-improving strategy is adopted, the improv-
ing solution Sk+1 is the best-valued in the neighborhood, i.e. f (Sk+1) = min{ f (S) :
S ∈ N(Sk)}. Local search terminates when a locally optimum solution is found. The
effectiveness of local search depends strongly on the structure of the solution space
graph G = (F,M), the objective function f , and the starting solution S0 ∈ F .

When designing a local search algorithm, one has the flexibility to design dif-
ferent neighborhoods and to select different starting solutions. Usually there is less
flexibility in selecting an objective function. Some attention is needed in the de-
sign of neighborhoods since the complexity of each iteration k of local search is
O(|N(Sk)|). A neighborhood that is exponentially large will result in a local search
with exponentially large computational complexity. Another cause of exponential
computational complexity in local search is an exponentially small reduction in the
objective function value when moving from a solution to a neighbor.

Since it is possible to select the starting solution S0, a possible strategy is a
multi-start algorithm, where local search is applied to a series of starting solutions
S0

1,S
0
2, . . . ,S

0
q and the best local optimum found by the procedure is returned.

A straightforward way to implement such a multi-start algorithm is to generate
each starting solution at random. A drawback to this approach is the fact that the
quality of randomly-generated solutions is not very good and the number of moves
needed to reach a global optimum is usually large. Not only does this result in long
running times, it also increases the chance that local search will encounter a sub-
optimal local optimum along the way and get trapped there. The number of local
optima with better cost than a randomly generated solution is usually larger than the
number of local optima with better cost than a greedy solution.

A greedy algorithm builds a solution to a combinatorial optimization problem,
one element of the ground set at a time. Given a partial solution, all possible candi-
date elements of the ground set (i.e. those elements that can be added to the partial
solution without causing infeasibility) are ranked according to a myopic benefit as-
sociated with their inclusion in the solution and the next element to be added to the
solution is one among the best-valued. Using a greedy algorithm to generate start-
ing solutions for a multi-start algorithm is not recommended since the generated
solutions would differ very little one from another. However, a good characteristic
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Fig. 5.1 Pseudo-code of a
generic GRASP

begin GRASP
1 f ∗ ← ∞;
2 while stopping criterion not satisfied do
3 S ← RandomizedGreedy(·);
4 if S is not feasible then
5 S← Repair(S);
6 end-if
7 S ← LocalSearch(S);
8 if f (S)< f ∗ then
9 S∗ ← S;
10 f ∗ ← f (S);
11 end-if
12 end-while
13 return S∗;
end

of greedy solutions is their quality. Usually, fewer moves are needed to go from a
greedy solution to a locally optimum than what is needed to go to a local optimum
from a randomly generated solution.

A tradeoff between a greedy solution and a random solution is a semi-greedy
or randomized greedy solution [38]. A semi-greedy heuristic is also a constructive
procedure that builds a solution, one element of the ground set at a time. Like a
greedy algorithm, in a semi-greedy algorithm, all possible candidate elements are
ranked according to a myopic benefit associated with their inclusion in the solution.
Instead of selecting one among the best-valued elements as the next one to be added
to the solution, a restricted candidate list (RCL) is built with a set of good-valued
candidates. One element from the RCL is selected at random and is added to the
partial solution.

Hart and Shogan [38] proposed a multi-start procedure that uses a semi-greedy
method but without local search. GRASP is a multi-start procedure which uses a
semi-greedy method to generate starting solutions for local search. Since solutions
produced by the algorithm of Hart and Shogan are not necessarily local optima,
GRASP solutions are almost always better than semi-greedy solutions.

Figure 5.1 shows pseudo-code for a generic GRASP. GRASP iterations are car-
ried out in lines 2 to 12. In line 3, the procedure attempts to build a feasible semi-
greedy solution. Since this is not always possible because there is no backtracking in
the greedy algorithm, a repair procedure may have to be applied in line 5 to achieve
feasibility. An example of such a case can be seen in the GRASP for the generalized
quadratic assignment problem of Mateus et al. [46]. A feasible solution S is used as
the starting solution for the local search in line 7. If the local optimum S is better
than the incumbent, then, in lines 9 and 10, it is saved as S∗ and its objective function
value as f ∗. In line 13, the best solution found over all GRASP iterations is returned
as the GRASP solution.
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Fig. 5.2 Pseudo-code of
the semi-greedy GRASP
construction phase

begin GreedyRandomized
1 S ← /0;
2 Initialize set of candidates C;
3 Evaluate the incremental cost of candidates;
4 while C �= /0 do
5 Build the RCL;
6 Select s ∈ RCL at random;
7 S ← S∪{s};
8 Update C;
9 Reevaluate the incremental costs;
10 end-while
11 return S or indication that S is infeasible;
end

5.2.1 GRASP Construction

The GRASP construction phase in line 3 of the pseudo-code of Figure 5.1 com-
bines greedy and randomized characteristics. The first implementations of GRASP
made use of the semi-greedy algorithms of Hart and Shogan [38]. Figure 5.2 shows
pseudo-code for a generic version of the semi-greedy algorithm of Hart and Shogan.

The semi-greedy construction builds a solution S, one element at a time. In line 1
of the pseudo-code, solution S is initialized empty. The elements of the ground set
than can be feasibly added to the solution are called candidates. This set is initialized
in line 2 and the costs of adding each candidate element to the solution is determined
in line 3. The solution is built in the loop in lines 4 to 10. This loop is repeated while
there remain candidate elements. When C = /0, solution S can be either feasible or
not. In the case that S is infeasible, a repair procedure will need to be called in the
main GRASP procedure. Otherwise S is returned in line 11. In line 5, a restricted
candidate list (RCL) is set up from which an element s is selected at random in
line 6. This element is added to the partial solution in line 7. In line 8 the candidate
set C is updated to reflect the inclusion of s in S. Finally, in line 9 the incremental
costs are computed for each element of C.

Hart and Shogan [38] proposed two ways to construct the RCL. The first, called
cardinality based , takes as input a parameter k and places the k elements with best
incremental cost in the RCL. The second scheme is called value based. Let cmin

and cmax denote, respectively, the minimum and maximum incremental cost of the
candidate elements and let α be a real number in the interval [0,1]. A threshold
τ = cmin +α · (cmax − cmin) is computed and all candidate elements having incre-
mental cost at most τ are placed in the RCL. Notice that the parameter α controls
the amount of randomness and greediness in the construction process. If α = 0,
the construction is purely greedy. If α = 1, the construction is random. By control-
ling the value of α , the algorithm designer can control how much greediness and/or
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randomness characterizes the construction which in turn controls the intensification
and diversification of the search.

One way to mix intensification and diversification is to randomly generate a
different α at each GRASP iteration. Prais and Ribeiro [54] proposed a scheme
they call Reactive GRASP in which the parameter α is self-tuned to favor values
which resulted in better quality solutions in previous GRASP iterations. They de-
fine Ψ = {α1, . . . ,αm} to be the set of possible values for α . Initially, the probability
of choosing a value αi is pi = 1/m, i= 1, . . . ,m. Furthermore, let f ∗ be the objective
function value of the incumbent solution and let Ai be the average value of all solu-
tions found using α = αi, i = 1, . . . ,m. The selection probabilities are periodically
recomputed by taking pi = qi/∑m

j=1 q j, with qi = f ∗/Ai for i = 1, . . . ,m. The value
of qi will be larger for values of α = αi that lead, on average, to the best solutions.
Larger values of qi correspond to more suitable values for the parameter α . The
probabilities associated with these more appropriate values will then increase when
they are reevaluated. This reactive strategy is not limited to semi-greedy procedures
where membership in the RCL depends on relative quality. It can be extended to
the other greedy randomized construction schemes, all of which need to balance
greediness with randomization.

In addition to the semi-greedy construction scheme, other alternative greedy ran-
domized construction criteria have been proposed. Three such alternatives are the
random plus greedy, the sampled greedy [61], and the construction by cost pertur-
bation [15] schemes.

In random plus greedy, the first p components of the constructed solution are
selected at random, one at a time. The remaining components are then added to the
solution in a greedy fashion. In this scheme, parameter p controls the amount of
randomness and/or greediness in the solution. Small values of p result in a greedy-
like construction while large values of p correspond to a random-like construction.

Sampled greedy also makes use of a parameter p to control the amount of greedi-
ness and/or randomness in the construction process. At each step of sampled greedy
construction process the procedure builds a RCL by sampling min{p, |C|} elements
of the candidate set C. The incremental cost associated with adding each element of
the RCL into the solution is evaluated. An element with the best-valued incremental
cost is added to the partial solution. The balance between greediness and random-
ness is controlled by the value of parameter p. Small values of p lead to solutions
constructed in a more random fashion while large values of p lead to solutions con-
structed in a more greedy fashion.

Construction by cost perturbation makes use of the problem data to balance the
amount of randomness and greediness in the construction process. Some construc-
tion algorithm, such as, for example, an approximation algorithm, is applied to the
problem where the data is randomly perturbed. The constructed solution is then eval-
uated using the original data. This way, by controlling the amount of perturbation,
the construction will result in either a more random construction or a more greedy
one.
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5.2.2 Other Local Search Strategies

In addition to the first-improvement and best-improvement local search scheme
described earlier in Section 5.2, other hybrid schemes have been proposed. These
involve the replacement of the above mentioned local search schemes with more so-
phisticated local improvement methods, such as variable neighborhood descent [7,
23, 44, 67, 68], variable neighborhood search [15, 29], tabu search [16, 19, 40, 73],
simulated annealing [18, 42], iterated local search [69], and very large scale neigh-
borhood search [34].

5.2.3 Stopping Criteria

As any multi-start procedure, GRASP iterates until some stopping criterion is sat-
isfied. Such criteria could be maximum number of iterations, maximum number of
iterations without improvement of the incumbent solution, maximum running time,
or solution quality at least as good as a given target value. With the exception of the
last criterion, all other rules suffer from the same drawback, i.e. they cannot provide
any information regarding the quality of the solution returned.

Stochastic-based stopping rules for GRASP and similar stochastic local search
algorithms have been proposed, e.g. [9, 13, 21, 39, 49], but computational studies
with these proposals are lacking.

Ribeiro et al. [66] study the distribution of solution values obtained by two
GRASP procedures. For both procedures, the authors show that these solution val-
ues fit a normal distribution. With this observation they propose a probabilistic stop-
ping rule for GRASP.

Let f1, f2, . . . , fk be a sample formed by the first k solution values generated
by GRASP. Furthermore, let μk and σ k be, respectively, the estimated mean and
the standard deviation of the sample. Define X to be the random variable repre-
senting the value of the local minimum found at each iteration. We assume that
X ∼ N(μk,σ k), i.e. X is normally distributed with mean μk and standard deviation
σ k. Let f k

X (·) and Fk
X(·) be, respectively, the probability density and the cumulative

probability distribution function of X . If UBk is the smallest solution value over the
first k GRASP iterations, the probability of finding a solution at least as good UBk

in the next iteration can be estimated as Fk
X(UBk) =

∫ UBk

−∞ f x
N(τ)dτ . This probability

is always reevaluated when the incumbent solution improves. It is reevaluated pe-
riodically even if no change in the value of the incumbent is observed. For a given
threshold value β , the Ribeiro et al. probabilistic stopping rule is to stop the GRASP
iterations whenever Fk

X (UBk)≤ β . The pseudo-code in Figure 5.3 shows a GRASP
with the probabilistic stopping rule.
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Fig. 5.3 Pseudo-code of
a generic GRASP with a
probabilistic stopping rule

begin GRASP(β )
1 f ∗ ← ∞; k ← 0;
2 repeat
3 S ← RandomizedGreedy(·);
4 if S is not feasible then
5 S ← Repair(S);
6 end-if
7 S ← LocalSearch(S);
8 if f (S)< f ∗ then
9 S∗ ← S;
10 f ∗ ← f (S);
11 end-if
12 k ← k+1;
13 fk ← f (S);
14 UBk ← f (S∗);
15 Update μk and σ k of f1, . . . , fk;

16 Compute Fk
X(UBk) =

∫UBk

−∞ f x
N(τ)dτ;

17 until Fk
X(UBk)< β

18 return S∗;
end

5.3 Path-Relinking

From Section 5.2 recall the search space graph G = (F,M), where the node set F
is the set of feasible solutions and the edges in the set M correspond to moves in
the neighborhood structure, i.e. (S,S′) ∈ M if and only if S,S′ ∈ F , S ∈ N(S′), and
S′ ∈ N(S). Given two solutions S,T ∈ F , the path-relinking operator [35] explores
a path P(S,T ) in G connecting S and T with the objective of finding solutions
S∗ ∈P(S,T ) for which f (S∗)< min{ f (S), f (T )}. If both S and T are good-quality
solutions, then one can think of path-relinking as a search intensification procedure,
which explores regions of the solution space spanned by both S and T .

Suppose path-relinking is to be done between two solutions S ∈ F and T ∈ F .
Let S be called the initial solution and T the guiding solution. One or more paths
connecting these solutions in G can be explored. Local search can be applied to
the best solution in each of these paths since there is no guarantee as to the local
optimality of the best solution in the path.

Let S′ ∈ F be some solution in P(S,T ). During path-relinking not all solutions
in N(S′) are allowed to follow S′ on the path P(S,T ). Path-relinking restricts the
choice to those solutions in N(S′) that share more attributes, or elements, with T
than S′ does. We denote by NT (S′) this restricted neighborhood which consists of
all neighbors of S′ obtained by introducing into S′ attributes of T not present in S′.
To select the solution that follows S′ on P(S,T ), the most common choice is the
greedy choice, i.e. the best-valued solution in NT (S′).
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Fig. 5.4 Pseudo-code of a
greedy path-relinking op-
erator

begin PathRelinking(S,T )
1 f ∗ ← min{ f (S), f (T )};
2 S∗ ← argmin{ f (S), f (T )};
3 S′ ← S;
4 while |Δ (S′,T )|> 1 do
5 Sδ = argmin{ f (Ŝ) | Ŝ ∈ NT (S′)};
6 if f (Sδ )< f ∗ then
7 S∗ ← Sδ ;
8 f ∗ ← f (Sδ );
9 end-if
10 S′ ← Sδ ;
11 end-while
12 S∗ ← LocalSearch(S∗);
13 return S∗;
end

Let Δ(S′,T ) be the set of attributes present in T but not in S′. Introducing in S′
any element δ ∈ Δ(S′,T ) leads to a solution Sδ ∈ NT (S′) that can be reached by
traversing edge (S′,Sδ ) ∈ M. Figure 5.4 shows a pseudo-code for a basic greedy
path-relinking operator. This operator scans a path from the initial solution S to the
guiding solution T . In the first two lines, the best solution S∗ and its value f ∗ are
initialized and in line 3 the current solution S′ is initialized to the initial solution S.
The loop from line 4 to line 11 is repeated while there are attributes in the guiding
solution that are not present in the current solution S′. Among all solutions in the
restricted neighborhood NT (S′) of S′, a best-valued solution Sδ is selected in line 5.
If this solution is the best seen so far, it and its value are recorded in lines 7 and 8.
The current solution S′ is updated in line 10 to Sδ . After examining the entire path
from S to T , local search is applied to the best solution in line 12 and the resulting
local optimum is returned as the solution of path-relinking in line 13.

5.3.1 Flavors of Path-Relinking

The scheme shown in the pseudo-code of Figure 5.4 can be implemented as different
variants of path-relinking, including forward, backward, back and forward, mixed,
and greedy randomized. In forward path-relinking, the starting solution S′ is such
that S′ = argmax{ f (S), f (T )}. Conversely, in backward path-relinking, the starting
solution S′ is such that S′ = argmin{ f (S), f (T )}. When carrying out path-relinking,
the neighborhood of the initial solution is explored more thoroughly than that of the
guiding solution. Since the quality of the initial solution in backward path-relinking
is better than that of the initial solution in forward path-relinking, backward path-
relinking usually performs better than forward path-relinking. Better yet is back
and forward path-relinking, where a backward path-relinking is applied first and
then a forward path-relinking follows. Back and forward path-relinking finds, by
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Fig. 5.5 Pseudo-code of
mixed path-relinking op-
erator

begin MixedPathRelinking(S,T )
1 f ∗ ← min{ f (S), f (T )};
2 S∗ ← argmin{ f (S), f (T )};
3 S′ ← S;
4 while |Δ (S′,T )|> 1 do
5 Sδ = argmin{ f (Ŝ) | Ŝ ∈ NT (S′)};
6 if f (Sδ )< f ∗ then
7 S∗ ← Sδ ;
8 f ∗ ← f (Sδ );
9 end-if
10 T ′ ← Sδ ;
11 S′ ← T ;
12 T ← T ′;
13 end-while
14 S∗ ← LocalSearch(S∗);
15 return S∗;
end

definition, solutions that are at least as good as either backward or forward path-
relinking, but at the expense of taking about twice as long as either.

In contrast to back and forward path-relinking, a less expensive way to ex-
plore the neighborhoods of the initial and guiding solutions is with mixed path-
relinking [35, 65]. In mixed path-relinking, the roles of initial and guiding solutions
are exchanged after each move. This way, two paths are generated, one emanating
from the initial solution and the other from the guiding solution. The paths even-
tually meet at some solution about half way between the two input solutions. A
pseudo-code for mixed path-relinking is shown in Figure 5.5.

If ties are broken deterministically in greedy path-relinking, the procedure will
always generate the same path when applied to a given input pair {S,T}. Since the
number of paths connecting the input pair grows exponentially with |Δ(S,T )|, ex-
ploring a single path can be limiting. Greedy randomized adaptive path-relinking
[12, 24] uses a semi-greedy move selection strategy that enables exploration of dif-
ferent paths when applied to the same input pair. Instead of making the greedy move
choice as in line 5 of the pseudo-code in Figure 5.4, greedy randomized adaptive
path-relinking builds a restricted candidate list of moves, one of which is selected at
random to lead to the next solution along the path.

Good-quality solutions tend to be located near other good-quality solutions. Con-
sequently good solutions found by path-relinking are usually found near S or T . Re-
sende et al. [56] showed this was the case for the max-min diversity problem (see
Figure 5.6). In truncated path-relinking, only a partial path is explored. The search
is limited to solutions where only a small portion of the attributes of the guiding
solution are introduced and consequently the running time to apply path-relinking
is reduced.

Mateus et al. [46] observed that path-relinking can fail when NT (S′) = /0 in line 5
of the pseudo-code of Figure 5.4. In such a case a repair procedure is applied to S′
in an attempt to move from S′ to some solution S′′ such that NT (S′′) �= /0.
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Fig. 5.6 Average number
of best solution found at
different depths of the path
from the initial solution
to the guiding solution on
instances of the max-min
diversity problem [56].
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5.3.2 Path-Relinking and Elite Sets

An elite set or pool E of solutions is a fixed-size set of good-quality and diverse
solutions. The quality of a solution S is with respect to its objective function value
f (S) while the diversity between two solutions S and T is with respect to Δ(S,T ).
When initially populating E , a candidate solution S is inserted into E if it differs
from all other solutions already in E , i.e. if |Δ(S,T )| �= 0, for all T ∈ E .

If a solution S is inserted into E when it is already full, it must replace some
solution T ∈ E . A candidate solution S is inserted into E if one of the following two
conditions is satisfied:

1. f (S)< f (T ) for all T ∈ E ;
2. Condition (1) does not hold but f (S) < f (T ) for some T ∈ E and |Δ(S,T )| > ε

for all T ∈ E , where ε is an input parameter used to control the diversity of the
elite solutions.

Once a solution S is accepted to enter the elite set, it must replace a solution T ∈ E .
T should be such that its replacement by S in E results in an elite set with smaller
average objective function value and minimizes the impact on diversity of E . A
strategy [61] that achieves this goal is to select, among all solutions T ∈ E that have
worse objective function value than S, the one that is most similar to S, i.e. select

T = argmin
T ′∈E

{|Δ(S,T ′)| such that f (T ′)> f (S)}.

One way to combine path-relinking and elite sets is through evolutionary path-
relinking [61]. Given an initial elite set, evolutionary path-relinking evolves the
elite set applying the path-relinking operator among pair of elite set solutions. Two
variants of evolutionary path-relinking have been proposed. The first, proposed in
Resende and Werneck [61], works with a series of elite sets. At step k, pairs of
solutions in Ek are relinked one pair at a time. The resulting solution of each path-
relinking operation is a candidate for inclusion in elite set Ek+1. The acceptance and
replacement selection rules described above are used to determine if a candidate
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is accepted by Ek+1 and to determine which elite solution in Ek+1 it will replace.
The procedure stops when the best solution in elite set Ek+1 has the same objective
function value as the best solution in elite set Ek. The second scheme, proposed by
Resende et al. [56] works with a single elite set E . While there remain pairs of so-
lutions in E that have not yet been relinked, the path-relinking operator is applied
to the pair and the resulting solution is a candidate to enter E . The acceptance and
replacement selection rules are applied as described above.

5.4 GRASP with Path-Relinking and Evolutionary
Path-Relinking

Laguna and Martı́ [41] proposed the first hybridization of GRASP with path-
relinking. In their implementation, the elite set is made up of only three solutions.
Each GRASP solution (local minimum obtained by the local search procedure) is
relinked with a randomly chosen elite set solution. If the solution resulting from
the path-relinking operator is better than the best elite solution, it replaces the worst
elite solution.

Since 1999, much work has been done to improve the hybridization of GRASP
with path-relinking [58, 59]. The pseudo-code in Figure 5.7 is a template for im-
plementation of GRASP with path-relinking heuristics. The iterations of GRASP
with path-relinking are carried out in lines 2 to 17. Lines 3 to 7 comprise the two
phases of GRASP, producing a locally optimal solution S. In the case that the elite
set E is not yet full, then in lines 9 to 11 S is added to E if it is different from all
elite set solutions. In the case that the elite set is full, an elite solution T is selected
in line 13 and path-relinking is applied to the pair S,T in line 14, and finally, in
line 15, the elite set E is updated, i.e. solution S is considered for inclusion in E
and if accepted, it will replace some existing solution in E . In line 18, the GRASP
with path-relinking procedure returns the best-quality solution S∗ among all elite
solutions.

GRASP with path-relinking maintains a elite set of diverse good-quality solu-
tions found during the search. Periodically evolutionary path-relinking can be ap-
plied to the elite set with the objective of improving the quality of some of the
elite set solutions. The pseudo-code in Figure 5.8 shows how to modify GRASP
with path-relinking in order to obtain GRASP with evolutionary path-relinking. If a
criterion for evolutionary path-relinking is triggered (line 3) then evolutionary path-
relinking is applied to the current elite set in line 4. This criterion is usually a num-
ber of iterations since the last call to evolutionary path-relinking. Since the same
pair of elite solutions may be relinked several times (in different calls to evolu-
tionary path-relinking), evolutionary path-relinking is usually implemented in the
inner loop (line 4) using the greedy randomized adaptive path-relinking operator.
That way if a pair is relinked more than once, a different solution can result from
the path-relinking operator. Finally, at the conclusion of the GRASP iterations,
evolutionary path-relinking is applied a final time in line 20 to possibly improve
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Fig. 5.7 Pseudo-code of a
GRASP with path-relinking begin GRASP+PR

1 E ← /0;
2 while stopping criterion not satisfied do
3 S ← RandomizedGreedy(·);
4 if S is not feasible then
5 S← Repair(S);
6 end-if
7 S ← LocalSearch(S);
8 if E is not full then
9 if Δ (S,T) �= 0, for all T ∈ E then
10 E ← E ∪{S};
11 end-if
12 else
13 Select T ∈ E ;
14 S← PathRelinking(S,T );
15 E ← UpdateElite(E ,S);
16 end-if
17 end-while
18 return S∗ = argmin{ f (S) | S ∈ E };
end

the elite set and allow the algorithm to output a potentially better solution S∗ in
line 21.

In a paper on GRASP with path-relinking for the three-index assignment prob-
lem, Aiex et al. [2] applied path-relinking between all pairs of the elite set as search
intensification and as post-processing. Resende and Werneck [61, 62] applied evo-
lutionary path-relinking in a post-processing phase in GRASP with path-relinking
heuristics for the p-median and uncapacitated facility location problems. Andrade
and Resende [2] applied evolutionary path-relinking between the two best elite so-
lutions and all other elite solutions as a search intensification in a GRASP with
path-relinking for a network migration problem. Resende et al. [56] showed through
experimental results that a GRASP with evolutionary path-relinking for a max-min
diversity problem could outperform heuristics based on pure GRASP with path-
relinking, simulated annealing, and tabu search.

5.5 Hybrid GRASP Lagrangean Heuristic

Pessoa et al. [51, 52] proposed LAGRASP, a hybrid heuristic combining GRASP
with path-relinking and subgradient optimization to solve the set k-covering prob-
lem . Their algorithm extends the Lagrangean heuristic for set covering of Beasley
[11] to the case of set k-covering. In addition, instead of following Beasley and us-
ing a simple greedy heuristic as the primal heuristic, Pessoa et al. use a GRASP with
path-relinking heuristic in which Lagrangean reduced costs are used in place of the
original costs.
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Fig. 5.8 Pseudo-code of a
GRASP with evolutionary
path-relinking

begin GRASP+evPR
1 E ← /0;
2 while stopping criterion not satisfied do
3 if evPR criterion triggered then
4 E ← evPathRelinking(E );
5 S← RandomizedGreedy(·);
6 if S is not feasible then
7 S← Repair(S);
8 end-if
9 S← LocalSearch(S);
10 if E is not full then
11 if Δ (S,T) �= 0, for all T ∈ E then
12 E ← E ∪{S};
13 end-if
14 else
15 Select T ∈ E ;
16 S← PathRelinking(S,T );
17 E ← UpdateElite(E ,S);
18 end-if
19 end-while
20 E ← evPathRelinking(E );
21 return S∗ = argmin{ f (S) | S ∈ E };
end

The comparison of LAGRASP with pure GRASP with path-relinking showed
that LAGRASP was able to find much better quality solutions than the pure GRASP
with path-relinking. Furthermore, the comparison of different variants of LAGRASP
showed that, by properly tuning its parameters, it is possible to obtain a good trade-
off between solution quality and running time. Extensive experiments on 135 in-
stances showed that LAGRASP can take advantage of randomization to make better
use of dual information provided by subgradient optimization than Beasley’s al-
gorithm. As a consequence, LAGRASP is able to discover better solutions and to
escape from locally optimal solutions after the stabilization of the lower bounds,
whereas the greedy Lagrangean heuristic of Beasley [11] fails to find new improv-
ing solutions.

5.6 Parallel GRASP with Path-Relinking

Multiple-walk independent-thread parallel implementations distribute the GRASP
with path-relinking iterations over the processors. Each thread performs imax/p iter-
ations, where imax is the total number of iterations and p is the number of processors.
As opposed to pure GRASP, were linear speedup is usually observed, multiple-walk
independent-thread parallel implementations of GRASP with path-relinking have
had mixed results. For example, Aiex et al. [2] showed linear speedups for the 3-
index assignment problem whereas for the job-shop scheduling problem, Aiex et
al. [1] showed sublinear speedups.
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In this section, we focus on multiple-walk cooperative-thread schemes for im-
plementing GRASP with path-relinking in parallel. In multiple-walk cooperative-
thread schemes superlinear speedups have been observed (see, e.g. [1, 2, 3]). Two
basic mechanisms have be used to implement multiple-walk cooperative-thread
GRASP with path-relinking heuristics.

In distributed strategies [1, 3], each thread maintains its own pool of elite so-
lutions. Each iteration of each thread consists initially of a GRASP construction,
followed by local search. Then, the local optimum is combined with a randomly
selected element of the thread’s pool using path-relinking. The output of path-
relinking is then tested for insertion into the pool. If accepted, the solution is sent to
the other threads, where it is tested for insertion into the other pools. Collaboration
takes place at this point. Though there may be some communication overhead in the
early iterations, this tends to ease up as pool insertions become less frequent.

The second mechanism is the one used in centralized strategies [45, 64, 65],
in which a single pool of elite solution is used. As before, each GRASP iteration
performed at each thread starts by the construction and local search phases. Next,
an elite solution is requested and received from the centralized pool. Once path-
relinking is performed, the solution obtained as the output is sent to the pool and
tested for insertion. Collaboration takes place when elite solutions are sent from the
pool to other processors different from the one that originally computed it.

In both the distributed and the centralized strategies each processor has a copy
of the sequential algorithm and a copy of the data. One processor acts as the mas-
ter, reading and distributing the problem data, generating the seeds which will be
used by the pseudo-random number generators at each processor, distributing the
iterations, and collecting the best solution found by each processor. In the case of a
distributed strategy, each processor has its own pool of elite solutions and all avail-
able processors perform GRASP iterations. In the case of a centralized strategy, one
processor does not perform GRASP iterations and is used exclusively to store the
pool and to handle all operations involving communication requests between the
pool and the slaves.

5.7 Concluding Remarks

This chapter reviewed the hybridization of greedy randomized adaptive search pro-
cedures (GRASP) and path-relinking. As originally proposed in Feo and Resende
[25, 26], GRASP does not make use of any memory structures. The hybridization of
path-relinking with GRASP, proposed in Laguna and Martı́ [41], introduced mem-
ory structures in GRASP. Though path-relinking adds extra work to each iteration
of GRASP (maintenance of the elite set and the path-relinking operation itself), the
total number of iterations required to find a solution of a given quality more than
compensates for this additional work, resulting in a higher probability that a target
solution will be found in a given amount of search time. Figure 5.9 shows runtime
distributions (time to target plots [4]) comparing implementations of pure GRASP
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Fig. 5.9 Time to target plots comparing running times of pure GRASP and GRASP with path-
relinking on four instances of distinct problem types: three index assignment [2], maximum
satisfiability [27], bandwidth packing [57], and quadratic assignment [48].
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and GRASP with path-relinking on four instances of distinct problem types: three
index assignment [2], maximum satisfiability [27], bandwidth packing [57], and
quadratic assignment [48]. The four plots are typical in the comparison of GRASP
and GRASP with path-relinking in that:

• For a fixed running time, the probability that GRASP with path-relinking finds
a solution at least as good as the target value is greater than the probability that
pure GRASP will;

• For a fixed probability, the running time for GRASP with path-relinking to find
a solution at least as good as the target value with that probability is smaller than
the running time need for pure GRASP to find such a solution with the same
probability.

Hybridization with path-relinking is now the standard approach to implementing
GRASP.

We conclude this chapter with a list of applications of GRASP with path-
relinking (which we do not intend to be exhaustive):

• Graph drawing [41];
• Job-shop scheduling [1], PBX migration scheduling [6], broadcast schedul-

ing [17], network migration scheduling [7], machine scheduling [37], flowshop
scheduling [70];

• Two-path network design [64], rural road network design [71], capacitated min-
imum spanning tree [73];

• Bandwidth packing [57], matrix bandwidth minimization [53], antibandwidth
[22];

• Quadratic assignment [48], generalized quadratic assignment [46], three-index
assignment [2], SONET ring assignment [10];

• Max-SAT [28], max-cut [29];
• p-median [61], uncapacitated facility location [62], health care facility location

[50], capacitated clustering [20];
• Capacitated arc routing with time windows [55], traveling salesman problem

[43];
• Production-distribution planning [14], assembly line sequencing [5], capacitated

lot sizing [47];
• Maximum diversity [8], max-min diversity [56].
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16. Colomé, R., Serra, D.: Consumer choice in competitive location models: Formulations
and heuristics. Papers in Regional Science 80, 439–464 (2001)

17. Commander, C.W., Butenko, S.I., Pardalos, P.M., Oliveira, C.A.S.: Reactive GRASP
with path relinking for the broadcast scheduling problem. In: Proceedings of the 40th
Annual International Telemetry Conference, pp. 792–800 (2004)

18. de la Peña, M.G.B.: Heuristics and metaheuristics approaches used to solve the ru-
ral postman problem: A comparative case study. In: Proceedings of the Fourth Inter-
national ICSC Symposium on Engineering of Intelligent Systems, EIS 2004 (2004),
http://www.x-cd.com/eis04/22.pdf

19. Delmaire, H., Dı́az, J.A., Fernández, E., Ortega, M.: Reactive GRASP and tabu search
based heuristics for the single source capacitated plant location problem. INFOR 37,
194–225 (1999)

20. Deng, Y., Bard, J.F.: A reactive GRASP with path relinking for capacitated clustering. J.
of Heuristics 17, 119–152 (2011)

21. Dorea, C.C.Y.: Stopping rules for a random optimization method. SIAM J. on Control
and Optimization 28, 841 (1990)

22. Duarte, A., Martı́, R., Resende, M.G.C., Silva, R.M.A.: GRASP with path relinking
heuristics for the antibandwidth problem. Networks 58, 171–189 (2011)

23. Ribeiro, C.C., Vianna, D.S.: A GRASP/VND heuristic for the phylogeny problem using
a new neighborhood structure. International Transactions in Operational Research 12,
325–338 (2005)

24. Faria Jr., H., Binato, S., Resende, M.G.C., Falcão, D.J.: Transmission network design
by a greedy randomized adaptive path relinking approach. IEEE Transactions on Power
Systems 20, 43–49 (2005)

http://www.x-cd.com/eis04/22.pdf


5 Hybrid GRASP with Path-Relinking 153

25. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters 8, 67–71 (1989)

26. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. of
Global Optimization 6, 109–133 (1995)

27. Festa, P., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: GRASP with path-relinking
for the weighted MAXSAT problem. ACM J. of Experimental Algorithmics 11, 1–16
(2006)

28. Festa, P., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: GRASP with path relinking
for the weighted MAXSAT problem. J. of Experimental Algorithmics 11(2.4) (2007)

29. Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics for the
MAX-CUT problem. Optimization Methods and Software 7, 1033–1058 (2002)

30. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP, Part I: Algorithms.
International Transactions in Operational Research 16, 1–24 (2009)

31. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP, Part II: Applications.
International Transactions in Operational Research 16, 131–172 (2009)

32. Garey, M.R., Johnson, D.S.: Computers and intractability - A guide to the theory of NP-
completeness. W.H. Freeman and Company (1979)

33. Gendreau, M., Potvin, J.-Y. (eds.): Handbook of Metaheuristics, 2nd edn. International
Series in Operations Research & Management Science, vol. 146. Springer (2010)

34. Geng, Y., Li, Y., Lim, A.: A very large-scale neighborhood search approach to capaci-
tated warehouse routing problem. In: 17th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2005), pp. 58–65 (2005)

35. Glover, F.: Tabu search and adaptive memory programming – Advances, applications and
challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer
Science and Operations Research, pp. 1–75. Kluwer Academic Publishers (1996)

36. Glover, F., Kochenberger, G. (eds.): Handbook of Metaheuristics. Kluwer Academic
Publishers (2003)

37. Gupta, S.R., Smith, J.S.: Algorithms for single machine total tardiness scheduling with
sequence dependent setups. European J. of Operational Research 175, 722–739 (2006)

38. Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: An empirical study. Operations Re-
search Letters 6, 107–114 (1987)

39. Hart, W.E.: Sequential stopping rules for random optimization methods with applications
to multistart local search. SIAM J. on Optimization, 270–290 (1998)
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Chapter 6
Hybrid Metaheuristics for the Graph
Partitioning Problem

Una Benlic and Jin-Kao Hao

Abstract. The Graph Partitioning Problem (GPP) is one of the most studied NP-
complete problems notable for its broad spectrum of applicability such as in VLSI
design, data mining, image segmentation, etc. Due to its high computational com-
plexity, a large number of approximate approaches have been reported in the lit-
erature. Hybrid algorithms that are based on adaptations of popular metaheuristic
techniques have shown to provide outstanding performance in terms of partition
quality. In particular, it is the hybrids between well-known metaheuristics and mul-
tilevel strategies that report partitions of the minimal cut-size value. However, meta-
heuristic hybrids generally require more computing time than those based on greedy
heuristics which can generate partitions of acceptable quality in a matter of seconds
even for very large graphs. This chapter is dedicated to a review on some representa-
tive hybrid metaheuristic approaches including genetic local search, basic multilevel
search and recent development on hybrid multilevel search.

6.1 Introduction

The Graph Partitioning Problem (GPP) is one of the fundamental combinatorial op-
timization problems which is notable for its applicability to a wide range of domains,
such as VLSI design [1, 43], data mining [49], image segmentation [42], etc. Since
the general GPP is NP-complete, approximate methods constitute a natural and use-
ful approach to address this problem. In the past several decades, many efforts have
been made in devising a number of heuristic approaches such as graph growing and
greedy algorithms, spectral methods, multilevel approaches, as well as algorithms
based on well-known metaheuristics like tabu search, ant colony, simulated anneal-
ing, genetic and memetic algorithms. However, the application of these partitioning
algorithms depends on several factors. An important factor is the trade-off between
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computation time and solution quality. Some algorithms run fast but deliver solu-
tions of medium quality while others require significantly longer time but produce
excellent quality partitions and even other that can be tuned between both extremes.
This preference of time vs. quality is problem dependent. For instance, in the con-
text of network layout or VLSI design, even a slight improvement of partition quality
can be of significant importance. For these applications, it is worthwhile to employ a
partition algorithm able to obtain excellent quality solutions even if the algorithm is
computationally intensive. On the other hand, in other cases like sparse matrix-vector
multiplication, a very fast algorithm is indispensable since the computing time re-
quired for the partitioning task has to be less than the time needed by a fast vector
multiplication algorithm. Another factor that has to be considered when designing an
appropriate partitioning algorithm is the partition balance. While some applications
require partitions of perfect balance, others tolerate imbalance up to a certain degree
in order to obtain a partition of better cut-size. All of these imply that there is no
single best algorithm for all the cases, and that each one of them has its applications.

Hybrid metaheuristic approaches for GPP have shown to provide excellent
performance in terms of solution quality. In particular, it is the hybrids between
classical metaheuristics and multilevel methods that report partitions of the mini-
mal cut-size value. However, these hybrids are generally more time consuming than
those based on greedy iterative methods, which can produce partitions even for very
large graphs in a matter of seconds.

This chapter is devoted to an overview of the most popular and effective hybrid
metaheuristic approaches proposed in the literature for the k-way graph partition-
ing problem. We first provide a general definition of the graph partitioning prob-
lem and an overview of the benchmark instances, followed by a brief review on
the most common heuristic approaches for GPP. In Section 6.4, we first describe
the Kernighan-Lin (KL) heuristic and its improvement by Fiduccia and Matthey-
ses, and then review some of the most popular hybrids between KL-like algorithms
and population-based methods. Before concluding, the multillevel paradigm for GP
is detailed in Section 6.5 and some of the best multilevel metaheuristic hybrids
are presented. Moreover, we try to provide an answer, based on a landscape anal-
ysis performed on a number of GP instances, to what makes these algorithms so
effective.

6.2 Problem Definition and Bechmark Instances

6.2.1 Problem Description and Notations

The nature of a partitioning problem can greatly vary depending on the intended
application. In this chapter we only focus on the partitioning approaches devised
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to tackle the general multi-way graph partitioning problem (also called k-way
partitioning).

Consider an undirected graph G = (V,E) consisting of a set of vertices (i.e.
nodes) V = {v1,v2, ...,vn} and a set of edges E , such that each vertex and edge
is associated with a non-negative weight that we denote by w(v) and w(e) respec-
tively. Then, a k-partition of G can then be defined as a mapping (partition func-
tion) π : V → {1,2, ...,k} that distributes the vertices of V among k disjoint subsets
S1∪S2∪ ...∪Sk =V . The particular partitioning case when k is set to two is known
as the Graph Bisection Problem (GBP).

Let {S1,S2, ...,Sk} be a partition of V obtained by π , Ec the set of all the cutting
edges of G induced by π , i.e., Ec = {{x,y} ∈ E | x ∈ Si and y ∈ S j and i �= j },
and let ϕ be the set of all the partition functions of G. The k-way graph partitioning
problem consists in determining π∗ ∈ ϕ such that the partition {S1,S2, ...,Sk} given
by π∗ minimizes the sum of weight of edges in Ec, while ensuring that each Si,
i ∈ {1,2, ...,k} is of roughly equal weight. Here, the weight of a subset Si is equal
to the sum of weights of the vertices in Si, W (Si) = ∑v∈Si

w(v).
For some applications, perfect partition balance is required. On the other hand,

some applications tolerate partition imbalance up to a certain limit, since allowing
more imbalance may lead to partitions of better quality in terms of the total weight
of edges in the cut. This notion of partition balance is defined as follows. Let Wopt =
�|V |/k� be the optimal subset weight, where �x� represents the first integer≥ x, then
the quantity ε = maxi∈{1..k}W (Si)/Wopt defines the degree of imbalance among the
k subsets of a partition {S1,S2, ...,Sk}. ε = 1 means that the partition is perfectly
balanced while ε > 1 indicates an imbalanced partition with larger ε corresponding
to greater imbalance.

6.2.2 Benchmark Instances

In the context of various existing research studies on the graph partitioning problem
defined in Section 6.2.1, a large number of benchmark instances have been used.

A well known source of graph instances that has been frequently used to compare
and evaluate algorithm performance is proposed by Johnson et al. [25] and by Bui
and Moon [14]. These benchmark graphs are classified into five following types
where the first two classes are from [25]:

1. Gn.d: A random graph with n vertices, where an edge e is placed between any
two vertices with probability p, such that p is chosen so that the expected vertex
degree, p(n− 1), is d.

2. Un.d: A random geometric graph with n vertices uniformly distributed in a unit
square. An edge is placed between two vertices if their Euclidean distance is less
than or equal to

√
d/(nπ), where d is the expected vertex degree.

3. breg.n.b: A random regular graph with n vertices of degree 3, whose optimal
bisection size is b with probability 1− o(1).
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4. cat.n: A caterpillar graph with n vertices. Starting with a spine in which every
vertex is of degree 2 (except the two ending vertices), each vertex of the spine is
connected to six new vertices. Given an even number of vertices in the spine, the
optimal bisection size is 1. Another group of caterpillar graphs are denoted with
rcat.n where each vertex on the spine is connected to

√
n new vertices.

5. grid.n.b: A grid graph with n vertices whose optimal bisection size is known to
be b. The same grid graph but with the boundaries wrapped around is denoted by
w-grid.n.b.

The graph instances proposed in [25] and [14] are of rather small size (up to 1000
and 5252 vertices respectively), and as such do not represent a real challenge for
recent algorithms that are designed to tackle large partitioning problems steaming
from real-life applications. Another important source of GP instances is provided
by the Walshaw’s Graph Partitioning Archive ( http://staffweb.cms.gre.
ac.uk/˜c.walshaw/partition/). These benchmark graphs represent sam-
ples of small to medium scale problems arising in different applications. Compared
to the graphs provided in [25] and [14], these are of significantly larger dimensions
with the biggest graph auto comprising 448695 vertices and 3314611 edges.

Since circuit partitioning is one of the most important applications of the GPP,
the ISPD circuit benchmark suites are also used to evaluate the performance of
partitioning algorithms. The circuit benchmark suite is regularly being updated with
new circuits that are directly derived from real industrial designs, and that represent
today’s mixed-size physical design constraints in terms of size and complexity. The
most recent circuit instances are presented at the ISPD-2011 placement contest [46].
These instances are large with the total number of nodes ranging from 483452 to
1293433 and the total number of nets from 468918 to 1293436. Their format can
easily be converted into the standard format used by the current state-of-art k-way
graph partitioning packages.

6.3 Classical Approaches for the Graph Partitioning Problem

Many different approaches have been proposed in the literature for the GPP. Some of
these algorithms only take a local view of the graph and try to ameliorate the given
partition, while others consider the problem globally. Some are purely deterministic
always producing the same partition, while others rely on random decisions. Some
operate on the graph itself, while others use some mathematical representations of
it. Some are very time consuming, while others can find a partition even of very
large graphs in a matter of seconds. In this section, we provide a brief review of the
most common heuristic approaches applied to GPP.

Greedy graph partitioning methods are quite simple. The basic idea of these
deterministic approaches is to accumulate in some way vertices into subsets, one
subset at a time or alternating between subsets. Battiti and Bertossi propose two
popular greedy procedures for graph bisection, the Min-Max-Greedy [7] and the
Diff-Greedy [6], that assign one randomly chosen seed vertex to each bisection
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subset and subsequently add vertices to them alternatively. While the Min-Max-
Greedy [7] method adds each time a vertex that will produce the smallest increase
in the cut size of the partition, the vertex selection criterion is slightly modified in
the Diff-Greedy [6] to choose vertices that have the minimum difference between
the number of new external and internal edges. Another kind of greedy partition-
ing algorithm is proposed by Ciarlet and Lamour [15]. All of these algorithms are
very fast, and have an additional advantage of being able to directly divide a graph
into the desired number of subsets. This avoids applying recursive bisection that can
give arbitrarily worse results than direct k-way partitioning [41]. On the other hand,
the quality of partitions in terms of cut-size is not always great. Therefore, greedy
partitioning algorithms are often used to generate an initial partition which is then
refined with a local improvement algorithm.

The Kernighan-Lin (KL) algorithm [29] is one of the earliest and most popu-
lar local improvement heuristic for graph partitioning. It improves iteratively the
quality of an existing partition obtained by other partitioning approaches. Origi-
nally, the KL procedure was intended to be applied several times starting from a
different random partition. While this produces reasonable results on small graphs,
it is quite ineffective on larger problem instances. Nowadays, the KL heuristic is
used to complement algorithms that have a more global view of the problem but
are likely to ignore local characteristics. Numerous improvements and adaptations
of the basic KL procedure have been proposed in the literature. The most important
improvement of the KL algorithm for graph bisection is the one proposed by Fiduc-
cia and Mattheyses [21], which reduces the time per KL pass to linear. Both KL and
Fiduccia-Mattheyses (FM) algorithms are devised to tackle only the graph bisection
problem. Several adaptations of the KL and FM procedures have been proposed in
the literature for the k-way partitioning. Among these is an extended FM algorithm
by Sanchis [38, 39], and an adaptation of FM proposed by Hendrickson and Le-
land [23]. A description of the KL procedure and its modification by Fiduccia and
Mattheyses is provided in Section 6.4.1.

More sophisticated vertex move based approaches for graph partitioning rely on
well-known metaheuristics such as tabu search, simulated annealing, ant colony
algorithms and evolutionary approaches. Moreover, Chardaire et al. [15] apply to
the partitioning problem the Population Reinforced Optimization Based Exploration
(PROBE) heuristic, which has been presented as a new metaheuristic [3] inspired by
genetic algorithms. Although adaptations of metaheuristic algorithms are generally
more time consuming than greedy iterative methods, they often yield an improve-
ment on solution quality. In particular, the best performing approaches for the graph
partitioning problem are often hybrids between a classical metaheuristic and a mul-
tilevel method. Indeed, a great number of the current best balanced partitions for the
set of benchmark graphs from Walshaw’s Graph Partitioning Archive are obtained
with two multilevel hybrid approaches proposed by Benlic and Hao, based on an
iterative tabu search algorithm [9] and a memetic algorithm [10, 11] respectively.
Section 6.4 and 6.5 review respectively some of the most effective hybrid evolution-
ary approaches and multilevel metaheuristic hybrids.
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Spectral heuristic approaches have also been extensively used. An advantage of
these approaches is the possibility of defining lower bounds for the objective func-
tion of the partitioning problem. Spectral methods are based on computing eigen-
values and eigenvectors of the Laplacian matrix associated with the graph in order
to construct various geometric representations of the graph. A fundamental spec-
tral algorithm is the spectral bipartitioning (SB) based on the linear ordering repre-
sentation. The SB uses the second eigenvector of the Laplacian (called the Fiedler
vector), which contains important directional information about the graph G. The
components of the Fiedler vector are weights associated to vertices of G, such that
the differences between the components provide information about the distances be-
tween the vertices. A bisection with SB is obtained by sorting the vertices according
to the sizes of the components of the Fiedler vector, and then distributing half of the
vertices to each subset of the bisection. Spectral algorithms for k-way graph parti-
tioning can be classified according to two approaches: recursive spectral bisection
algorithm and direct spectral k-way partitioning algorithm. The former consists in
finding the Fiedler eigenvector of a Laplacian matrix of graph G, and recursively
partitioning G until the desired number of partitions is obtained. The latter uses
p ≥ k eigenvectors and directly partitions G into k subsets with some heuristic. For
a recent survey on algorithms based on these two approaches see [34]. Since spec-
tral partitioning is a computationally intensive process, the first papers on multilevel
methods for graph partitioning [4] propose multilevel implementations of spectral
algorithms to simplify the calculation for a spectral method. Spectral methods are
global approaches for partitioning graphs. Therefore, it is useful to improve the ob-
tained partition with a local optimization algorithm. These are often called partition
refinement algorithms. The algorithms for refinement of partitions found by spectral
methods are most often of Kernighan-Lin type.

To handle very large graphs, multilevel algorithms prove to be quite useful. Var-
ious adaptations of the general multilevel technique have been tried on a number of
combinatorial optimization problems including the traveling salesman, graph col-
oring, and the vehicle routing problem [47]. For graph partitioning, the multilevel
approach has been very successful. The multilevel method was initially proposed
to accelerate the performance of existing partitioning approaches. However, it was
shortly recognized to be extremely effective and to have a more global vision of a
graph than standard refinement procedures. The multilevel approach thus imposed
itself as a global strategy using local partitioning algorithms. The basic idea of a
multilevel graph partitioning approach is to successively create a sequence of pro-
gressively smaller graphs by grouping vertices into clusters. A partition of the coars-
est graph is generated and then successively projected back towards the original
graph followed by partition refinement. Hybrid algorithms that combine a multi-
level method with a metaheuristic approach shortly became very popular for solv-
ing the partitioning problem. Section 6.5 is dedicated to the multilevel schemes for
partitioning as well as to the best metaheuristic algorithms for multilevel partition
refinement.
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Although the current partitioning approaches are able to produce high quality
partitions in reasonable time, performing partitioning in parallel is very important
and has received a lot of attention. A great deal of work has been focused on par-
allelizing geometric graph partitioning and spectral bisection algorithms. Parallel
formulations of multilevel graph partitioning schemes have also been proposed in
the literature, although their development is quite challenging. Moreover, parallel
versions of the three well known partition packages Jostle [48], Metis [40] and
Scotch [36], based on the multilevel paradigm, have also been developed. Perhaps
the fastest available parallel code is the parallel version of Metis (parMatis). It pro-
duces partitions which are worse that those obtained with the sequential version of
Metis (kMetis). In general, parallelization of graph partitioning algorithms induces
some penalty in terms of solution quality. However, Holtgrewe et al. [24] demon-
strate in their recent work that high quality graph partitioning can be obtained in
parallel in a scalable way. Moreover, their parallelization approach even seems to
ameliorate partition quality, and in some cases improves the best-known partitions
reported in the literature.

6.4 Evolutionary Hybrids for Graph Partitioning

Many hybrid evolutionary algorithms have been proposed in the literature for the
graph partitioning problem. The success of these approaches lies in combining ad-
vantages of both recombination operator that discovers unexplored promising re-
gions of the search space, and local search that finds good solutions by concentrating
the search around these regions. Most of the popular population-based graph parti-
tioning algorithms use the well-known Fiduccia-Mattheyses (FM) improvement of
the Kernighan-Lin (KL) algorithm (or some slight modification of it) for fast iter-
ative local improvement of partitions created in the recombination process. Before
reviewing the current state-of-art hybrid population-based approaches, we thus de-
scribe the KL heuristic and its FM modification.

6.4.1 Kernighan-Lin Bisection Algorithm, Improvement and
Adaptation

The Kenighan-Lin (KL) heuristic [29] improves upon a given initial bisection by
exchanging two equal-size vertex subsets of the bisection. Let (A,B) be a graph
bisection, i.e., A∪B = V and A∩B = /0. We denote by g(a,b) the reduction in the
cut size when two vertices a ∈ A and b ∈ B exchange their subsets, and by g(v) the
reduction when vertex v is moved to the opposite subset. The gain g(a,b) can then
be computed as

g(a,b) = ga + gb− 2δ (a,b),



164 U. Benlic and J.-K. Hao

where

δ (a,b) =
{

1 if (a,b) ∈ E
0 otherwise.

The KL algorithm selects a pair of vertices (a,b) which maximizes gain g(a,b).
Once a and b are selected, they are not considered any more for further exchange.
This process is repeated to form a sequence of pairs (a1,b1), ...,(an/2−1,bn/2−1).
The algorithm then exchanges vertices in X = {a1, ...,ak} from one bisection
subset with vertices in Y = {b1, ...,bk} from another bisection subset, such that
∑k

i=1 g(ai,bi) is maximized. The above constitutes one KL pass of complexity
O(n3). This process is repeated until no improvement on the bisection is possible.

To reduce the total running time per pass, Kernighan and Lin [29] suggest con-
sidering only several highest gain vertices in each subset and then selecting the pair
with the maximum gain among all the combinations. This reduces the running time
per pass to O(n2) and introduces only a slight degradation in solution quality.

Fiduccia and Mattheyses [21] modify the KL bisection heuristic by suggesting
to move one vertex at a time instead of exchanging two vertices. Moreover, the
authors propose an effective bucket data structure that reduces the time per pass
to linear O(|E|) by avoiding unnecessary search for the highest gain vertex and
by minimizing the time needed for updating the gains of vertices affected by each
move. The idea of the bucket data structure consists in placing all vertices with the
same gain g in a bucket that is ranked g. Finding a vertex with the maximum gain
simply consists in finding the non-empty bucket with the highest rank, and selecting
a vertex from the bucket. After a vertex v has been moved to another subset, the
bucket structure is updated by recomputing gains of vertex v and its neighbours, and
transferring these vertices to appropriate buckets.

The bucket data structure consists of two arrays of buckets, one for each subset
of a bisection, where each bucket of an array is represented by a doubly linked list.
The arrays are indexed by the possible gain values for a move, ranging from gmax to
gmin. A special pointer maxgain points to the highest index in the array whose bucket
is not empty. The structure also keeps an additional array of vertices where each
element (vertex) points to its corresponding vertex in the doubly linked lists. This
enables direct access to the vertices in buckets and their transfer from one bucket
to another in constant time. An example of the bucket data structure is illustrated
in Fig 6.1.

Both KL and FM heuristics are devised only for the Graph Bisection Problem
(GBP). Several adaptations of the FM algorithm have been proposed for the k-way
partitioning. In [38], Sanchis proposes maintaining k(k− 1) previously described
bucket structures, one for each of the k(k−1) possible directions to move a cell (i.e.,
vertex) between partition subsets. The author also adopts the notion of level gain [31]
that enables the algorithm to better distinguish between cells whose first level gains
(regular gains) are the same. However, Sanchis suggests a more space efficient way
to maintain level gains than that proposed in [31]. Moreover, making k2 comparisons
to determine the next legal cell move (i.e., move which preserves partition balance)
is avoided by keeping a sorted list of the maxgain pointers corresponding to legal
move directions. This is done by using a binary heap whose entries are maxgain
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Fig. 6.1 The bucket sorting data structure [21] for graph bisection

pointers for the currently legal move directions. The pointer with the highest value is
located at the root of the tree, and an array indexed by move directions is maintained
holding pointers to the elements in the heap. The complexity involved in maintaining
the heap is O(lk|E|logk), where l is the number of gain levels.

6.4.2 Selected Evolutionary Approaches for Graph Partitioning

6.4.2.1 Hybrid Genetic Algorithm by Bui and Moon

A classical approach for GBP is the Breadth First Search Genetic Bisection Algo-
rithm (BFS-GBA), proposed by Bui and Moon [14], that can easily be adapted for
the k-way partitioning problem .

The approach uses a standard solution encoding that represents a partition as a bit
string (or integer string in case of k-way partitioning), where the ith element in the
string indicates the partition subset of vertex i. Although this solution representation
is widely used for the GPP, it is not the most suitable because of the high redundancy
which grows exponentially with the number of partition subsets k. That is, each so-
lution can be represented in k! possible ways which deteriorates the performance of
traditional crossovers by introducing severe inconsistencies in an offspring partition.

In each iteration, BFS-GBA picks from the population two parents for recombi-
nation, such that the probability of selecting the best individual for recombination
is four times as high as the probability of selecting the worst parent. Two offspring
partitions are then created by recombining the selected parents using the standard
multi-point (MP) crossover and a variation of MP (call it VMP) respectively. The
VMP crossover is the same as MP except that it copies to the child the complement
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values from the second parent. Therefore, it can only be applied in the case of bi-
section. BFS-GBA selects the better of the two offspring solutions and passes it to
a local optimization procedure. The motivation for using the two crossovers is the
following. If two partitions are exactly (or almost exactly) the complement of each
other, the MP crossover will cause much stronger perturbation in an offspring par-
tition than the VMP, probably resulting a partition of poor quality. The algorithm
reinforces the diversification by applying a mutation to offspring I0 that selects at
random m positions in the chromosome and changes their values. This generally
leads to an infeasible solution which is repaired by using a simple scheme of flip-
ping bits.

For fast improvement of offspring, Bui and Moon propose a variation of Fiduccia–
Mattheyses linear time KL implementation (see Section 6.4.1). Only one pass of the
local optimizer is allowed, and the size of the sets to be swapped is restricted. This
decreases even more the computation time of the local serach phase by about an
order of 10. In case of the k-way partitioning, the KL extension [29] for the k-way
partitioning is used.

Finally, BFS-GBA applies a replacement strategy that first tries to replace I0

with the more similar parent based on the Hamming distance measure, and if it
fails, it tries to replace the other parent (replacement is carried out only when I0 is
better than one of the parents). Although this scheme preserves longer a diversified
population, it is very time consuming since with large diversity the algorithm takes
more time to converge. For this reason, the BFS-GBA scheme replaces offspring I0

with the worst individual from the population in case when I0 is worse than both of
the parents.

The algorithm stops when 80% of the population is occupied by solutions of the
same quality, which are not necessarily identical solutions.

An important component of this hybrid genetic algorithm is the preprocessing
phase that can dramatically improve the performance on some types of graphs (ge-
ometric and caterpillar graphs) at very little cost in time. The rational behind this
preprocessing scheme is to reorder vertices on the chromosome in an attempt to
ensure that clusters of highly connected vertices are included in short schemas that
have more chance to survive in a crossover. It consists in performing a breadth first
search (BFS) on the input graph starting at a random vertex. The order in which
vertices are visited by the BFS is used to reorder vertices on the chromosome. That
is, the ith vertex in the BFS ordering takes the position i in the chromosome. This
preprocessing phase is carried out only once before the start of the hybrid genetic
algorithm.

The performance of BFS-GBA was tested on the set of graphs from [25], as
well as on a number of instances specially designed for this evaluation [14]. In this
study, BFS-GBA competes very favourably with the multi-start KL algorithm and
the simulated annealing proposed by Johnson et al [25]. Moreover, it is considerably
faster then the simulated annealing approach [25]. Unfortunately, the performance
of BFS-GBA has not been demonstrated on larger instances (|V |> 10000).
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6.4.2.2 A Memetic Algorithm by Merz and Freisleben

Merz and Freisleben [32] propose a memetic algorithm for GBP, which is based on
the observations made from an exhaustive landscape analysis on a set of local optima
sampled with the KL and greedy heuristics respectively for the instances proposed
in [14, 25]. The results of this analysis showed that the landscape of the GBP is
highly dependent on the graph structure and that some landscapes have slightly more
correlated local optima than others. However, all these analysed graphs generally
have a rather structured landscape (fitness-distance correlation coefficient ρ f dc >
0.15), and local optima that are concentrated within a limited region of the search
space (see Section 6.5.4.1). Therefore, the authors propose a memetic algorithm
(MA) that attempts to exploit the landscape structure of the problem.

The algorithm uses the same solution encoding as BFS-GBA. For the local
search phase, MA employs the standard KL algorithm which runs in O(|E|) in-
stead of O(n2) time by means of the bucket data structure proposed by Fidducia and
Mattheyses.

Instead of generating the initial population randomly, the algorithm uses the ran-
domized Diff-Greedy heuristic by Battiti and Bertossi [6] since it is one of the best
constructive heuristics for the GBP and is able to generate a wide range of high
quality solutions. The idea of the Diff-Greedy algorithm consists in generating a
partition by adding vertices alternatively to partition subsets in a greedy way. Let S0

and S1 be two subsets of the bisection. At each stage, the vertex selected to enter a
subset, say S0, is the vertex for which the number of neighbour vertices in S0 mi-
nus the number of neighbour vertices in S1 is maximized. The rationale behind this
selection criterion is that a bisection that minimizes the cut size maximizes at the
same time the number of internal edges.

The Diff-Greedy heuristic thus exploits the structure of the search space that has
shown to be very effective for instances of the GPP. The authors therefore propose
a new crossover called greedy crossover (GC) which is based on the same idea as
the Diff-Greedy heuristic. In the first phase of the GC, all vertices that are contained
in the same partition subset in both parents are placed in the same subset in the
offspring. Then, the rest of vertices is assigned to both subsets according to the
selection strategy used in the Diff-Greedy algorithm. If |S0|< |S1| a vertex is added
to subset S0, else to S1.

Selection for recombination in MA is done uniformly at random without bias
to fitter individuals, while selection for survival is performed by choosing the best
individuals from the union of parents and children by taking care that there is no
duplicate in the population.

Due to the computing time required by the local search phase, the population size
is kept very small (up to 40) compared to genetic algorithms. This leads to prema-
ture convergence, especially in the absence of mutation. To overcome this problem,
MA triggers a restart mechanism that has shown to be very effective for combina-
torial optimization problems, including the QAP and the TSP. Upon convergence
(the average Hamming distance has dropped below a threshold (d = 10) or there was
no changes in the population for more than 30 generations), the whole population
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except the best individual is mutated by exchanging subsets of randomly chosen
pairs of vertices (v1,v2) such that v1 ∈ S and v2 /∈ S . After mutation, each indi-
vidual is improved with the KL local search and MA proceeds with performing the
crossover as usual.

This memetic algorithm shows to be effective, scalable and very robust on differ-
ent types of graphs, and is able to produce better average cut size than any previous
heuristic search method including tabu search, simulated annealing, and hybrid ge-
netic algorithms.

6.4.2.3 A PROBE Based Heuristic by Chardaire et al.

In [15], the authors propose an adaptation of a new population-based metaheuristic
technique named PROBE (Population Reinforced Optimization Based Exploration)
for the GBP. The PROBE method is conceptually much simpler than genetic algo-
rithms as it does not include selection, replacement, and mutation procedures. The
basic idea of PROBE is to find optimized solutions by exploring promising search
subspaces, starting from solutions in which common characteristics found in both
parents are preserved. These optimized solutions then constitute a new population
in the next generation.

As in [14], the PROBE bisection algorithm (PROBE-BA) uses the bit string solu-
tion encoding where the ith bit indicates the subset of vertex i. Although this scheme
is quite intuitive, the authors note that a less redundant encoding might improve the
partition quality.

PROBE-BA uses standard graph partitioning approaches for exploration
and exploitation of the search space, namely the Diff-Greedy heuristic by Battiti
and Bertossi [6] (see Section 6.4.2.2) and the variation of the KL algorithm by Bui

and Moon [14] (see Section 6.4.2.1) . Given a population POP = {I1
q , I

2
q , ..., I

|POP|
q }

of feasible solutions at generation q, the next generation of solutions is obtained
as follows. For each i = 1, ..., |POP|, a partial bisection Ii

q+1 is computed from the

pairs (Ii
q, I

i+1
q ) (where the superscript is taken modulo POP+ 1) by fixing the ver-

tices corresponding to the bits shared by the two parent solutions Ii
q and Ii+1

q . This
partial solution is then used as input to the Diff-Greedy algorithm to obtain a com-
plete bisection of the given graph. Note that this recombination process is exactly
the same as with the previously described greedy crossover devised by Merz and
Freisleben [32], which tries to exploit the landscape structure. Once solution Ii

q+1
has been constructed, its quality is improved with the fast KL local optimizer de-
signed by Bui and Moon [14].

The performance of PROBE-BA has extensively been evaluated on a large
number of graphs of different sizes (the largest graph auto has |V | = 448695
and |E| = 331461). The results show that PROBE-BA can compete with other
population-based algorithms, reactive tabu search, or more specialized multilevel
partitioning approaches. Moreover, it was able to improve, in reasonable time, the
previous best cut values for a number of real world instances.
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6.5 Multilevel Graph Partitioning

As illustrated in [47], the multilevel paradigm is a useful approach to solving com-
binatorial optimization problems that even appears to impart a ‘global’ quality to
local search heuristics. Basically, the approach allows one to approximate the initial
problem by approximating successively smaller (and easier) problems. Moreover,
the coarsening helps filter the solution space by placing restrictions on which so-
lutions the refinement algorithm can visit. We dedicate this section to some of the
best performing and most popular multilevel hybrids that combine a refinement al-
gorithm based on a metaheuristic approach. After a formal definition of the general
multilevel procedure, we provide a review on two basic types of multilevel schemes
and on the most effective adaptations of metaheuristic techniques that have been
proposed for partition refinement of coarsened graphs.

6.5.1 Formal Definition of the Multilevel Paradigm

Let G0 = (V0,E0) be the initial graph, and let k denote the number of partition
subsets. The multilevel paradigm can be summarized by the following steps.

1. Coarsening phase: The initial graph G0 is transformed into a sequence of smaller
graphs G1,G2, ...,Gm such that |V0|> |V1|> |V2|> ... > |Vm|. Each coarse graph
represents the original problem, but with fewer degrees of freedom. Coarsening
stops when |Vm| reaches a fixed threshold (coarsening threshold).

2. Initial partitioning phase: A k-partition Pm of the coarsest graph Gm = (Vm,Em)
is generated. It allows to get the first approximation of the problem.

3. Uncoarsening phase: Partition Pm is progressively projected back to each inter-
mediate Gi (i = m− 1,m− 2, ...,0). Before each projection, the partition is first
refined (improved) by a refinement algorithm.

This process leads thus to a sequence of partitions Pm,Pm−1,Pm−2, ...P0. The last
one, i.e., P0 is returned as the final partition of the original graph G0.

In Figure 6.2, we illustrate this multilevel procedure for the 4-way partitioning
problem.

6.5.2 Multilevel Schemes

Two main classes of multilevel schemes have been proposed in the graph partition-
ing literature. In general, any coarsening can be defined as a process of aggregation
of graph vertices to form the vertices of the next coarser graph. In the following,
we describe the strict aggregation scheme, as well as the more effective weighted
aggregation which has recently been proposed for the partition problem. While
the former scheme makes hardened local decisions at each graph level, the latter
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Fig. 6.2 The coarsening, initial partitioning and the uncoarsening (projection/refinement)
phases for the 4-way partitioning problem. During the uncoarsening phase, the dashed lines
represent projected partitions and the dark ones indicate partitions refined after projection.

introduces more freedom in solving the coarser levels and avoids making local de-
cision before gathering the pertinent global information.

6.5.2.1 Strict Aggregation Scheme (SAG)

Strict aggregation (SAG) [11, 23, 28, 44], also called edge contraction or matching
of vertices, is employed by most multilevel partitioning algorithms. The idea of the
SAG is to form a new vertex v∈Vi+1 of a coarser graph Gi+1 by merging a subset of
vertices V c

i ⊂Vi of Gi that (usually) have a strong local coupling (i.e., connectivity).
The weights of the resulting vertices and edges of the coarsened graph Gi+1 =

(Vi+1,Ei+1) are set accordingly. The weight of the new vertex v ∈ Gi+1 becomes
equal to the sum of weights of the vertices that are aggregated to form v. Simi-
larly, let va,vb ∈ Vi+1 be two vertices formed by collapsing {v1,v2,v3} ∈ V a

i and
{v4,v5,v6} ∈ V b

i . All the edges incident to {v1,v2,v3} and {v4,v5,v6} are merged
to form a new edge {va,vb} ∈ Ei+1 with a weight that is set equal to the sum of
weights of the edges incident to {v1,v2,v3} and {v4,v5,v6}. Updating of vertex and
edge weights is illustrated in Fig 6.3. For simplicity, the cardinality of the vertex
subset that is merged to form a new vertex of a coarser graph is set to two.
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Fig. 6.3 An example of updating weights of new vertices and edges formed after vertex
aggregation. For each vertex v, we indicate its corresponding weight w separated by a dot
(e.g., v.w). For each newly formed vertex vn, we also indicate the subset of vertices that are
aggregated to form vn.

Two main SAG schemes have been proposed for coarsening graphs. The first
scheme is based on finding an independent subset of edges (matching) Γ ⊂ Ei, and
then collapsing the two vertices of each edge in Γ to form a new vertex of a coars-
ened graph G = (Vi+1,Ei+1) [11, 27, 28, 44]. Any vertex that is not part of Γ is
simply copied over to Gi+1. The second scheme is based on finding c-cliques for
c > 2, and then collapsing the vertices of the cliques to form new vertices of the
coarsened graph [19, 22]. We concentrate on the matching scheme, since it is the
most commonly used coarsening method.

The key issue for the matching scheme is the selection of the independent sub-
set of graph edges Γ to be collapsed at each step of the coarsening phase. This
can be achieved by finding a maximal matching of the graph [35]. That is, the ob-
jective is to find the maximal number of edges no two which are incident on the
same vertex. There exist polynomial time algorithms for tackling this problem, with
running time of at least O(|V |2.5). Unfortunately, this is too slow to be applica-
ble to the partitioning problem. Therefore, several fast heuristic approaches have
been proposed to compute an approximate maximal matching such as the heavy-
edge matching heuristic (HEM), which has O(|E|) time complexity [27]. The HEM
considers vertices in random order, matching each unmatched vertex v with its un-
matched neighbor u, if any, such that the weight of edge {u,v} is maximal among
all the edges incident to v. Other similar heuristics for computing an approximate
maximal matching of a graph include Random Matching (RM), Light Edge Match-
ing (LEM), and Heavy Clique Matching (HCM). If time is not a issue, metaheuristic
algorithms might be used to approximate maximal matchings of a graph at the ex-
pense of running time. In [30], the authors propose a genetic algorithm to determine
an approximate maximal matching that has shown to provide a significant improve-
ment on solution quality.

The projection in case of the SAG is a trivial process. If a vertex v ∈ Vi is in
subset Sm, then the matched pair of vertices v1,v2 ∈ Vi−1 which represents vertex
v ∈Vi will also be in subset Sm.
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6.5.2.2 Weighted Aggregation Scheme (WAG)

Another class of multilevel schemes that has been applied to several combinatorial
optimization problems [37] (including the graph partitioning [17]) is based on the
algebraic multigrid (AMG) method [12, 13]. The essential difference between this
and the previously described SAG scheme is in the coarsening phase. While the SAG
is based on grouping of vertices into small disjoint subsets, the AMG coarsening is
a weighted aggregation where each vertex is divided in fractions, and different frac-
tions belong to different subsets of vertices (i.e., aggregates). That is, the vertices
that belong to more than one vertex subset will be divided among the corresponding
aggregates. Like with the SAG scheme, all the vertices from a subset are merged to
form a vertex of the coarser level, where they will be blocked into larger aggregates,
forming vertices of a still coarser graph, and so on. Weighted instead of strict aggre-
gations is important to express a likelihood of vertices to belong to the same subset.
These likelihoods are accumulated at the coarser levels, indicating tendencies of
vertices to be associated together. In that way, weighted coarsening avoids mak-
ing hardened local decisions, such as edge contractions, before gathering important
global information.

The WAG coarsening scheme for graph partitioning first starts by selecting a set
C ⊂ Vi of seed vertices of the finer graph Gi, that will constitute the vertices of the
coarser graph Gi+1. This process is guided by the principal that each vertex from
F =V\C should have a strong dominant connection to C. Then, starting from C = /0
and F =V , vertices are being transferred from F to C until all the remaining vertices
from F satisfy the following condition:

∑
j∈C

wi j/ ∑
j∈V

wi j ≥ Q,

where Q is a parameter (usually Q≈ 0.5).
Each vertex from C becomes a seed of one aggregate that will form one vertex of

the coarser graph. Define for each i ∈ F a coarse neighborhood Ni = { j ∈C,wi j ≥
αi}, where αi is a parameter that limits the nighborhood size in order to control
complexity. The AMG interpolation matrix is then defined by

Pi j =

⎧
⎨

⎩

wi j/∑k∈Ni
wik for i ∈ F, j ∈ Ni

1 for i ∈C, j = i
0 otherwise,

where each entry Pi j of the matrix represents the likelihood of vertex i to belong
to the jth aggregate. Let I(k) be the order number in the coarser graph Gi+1 of a
vertex that constitutes an aggregate around a seed vertex whose order number in the
finer graph Gi is k. The weight of an edge that connects two aggregates p = I(i) and
q = I( j) in Gi+1 becomes equal to wpq = ∑k �=l PkiwklPl j. As in the case of the SAG
scheme, the total sum of vertex weights is conserved throughout each graph level.
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The projection process of the WAG scheme is more complex than in the case
of the SAG. One of the simpler ways to project a partition consists in computing
the probability that a fine vertex belongs to a particular subset of the partition. In
the case of a graph bisection, only the probability of being part of subset 0 (or 1)
matters. Then, the probability that vertex i belongs to subset 0 can be determined
with the following relation:

P0(i) = ∑
k∈N,I(k)∈S0

PiI(k).

With this strategy, vertex i is assigned to subset 0 if the probability P0(i)≥ 0.5, and
to subset 1 otherwise.

Although the SAG scheme has been used by most multilevel partitioning ap-
proaches, experimental evaluations have shown that the usage of WAG can signif-
icantly improve the quality of a partition. For a comparison between the two types
of schemes for the graph partition problem, the reader is referred to a recent paper
by Chevalier and Safro [17].

6.5.3 Effective Refinement Strategies Based on Metaheuristics

Partition refinement approaches that are used in conjunction with the multilevel
paradigm are most often based on the KL linear-time complexity improvement by
Fiduccia and Mattheyses. The KL heuristic has shown to be efficient in finding lo-
cally optimal partitions when it starts with a fine initial partition. Since the projected
partition is already of fairly good quality, the KL considerably decreases the cut-size
within a small number of iterations [27]. For that reason, four out of five public-
domain graph partitioning packages (Chaco, Jostle, Metis, and Scotch), whose aim
is to find reasonably good partitions in very short computing time, use a multilevel
KL hybrid as the default setting. However, it has been shown that, given a longer
computing time, other multilevel refinement algorithms that are based on well-
known metaheuristic techniques, such as tabu search or evolutionary approaches,
are able to largely improve on the solution quality in terms of cut-size.

We next review some of the best performing metaheuristic refinement approaches
for the k-way partitioning. Note that each refinement procedure of a multilevel strat-
egy can solely be applied to solve the partitioning problem. The multilevel paradigm
is integrated since it can often either accelerate the convergence of the local serach
or even improve the asymptotic convergence in solution quality [47].

6.5.3.1 Perturbation-Based Tabu Search by Benlic and Hao

A recently proposed perturbation-based iterated tabu search (ITS) procedure [9],
combined with the multilevel matching scheme (see Section 6.5.2.1), has shown to
be extremely effective in finding balanced (ε = 1.0) k-way partitions. Perfect parti-
tion balance for this algorithm is thus imposed as a constraint and is progressively
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established during the search, while the objective is to minimize the total sum of
cutting edge weights.

The ITS employs two neighborhood relations (call them N1 and N2) which are
explored in a token-ring way. That is, one neighborhood search is repeatedly applied
to the best local optimum produced by the other neighborhood. Given a subset Si

of a k-partition p = {S1,S2, ...,Sk}, the basic idea of the neighborhood relations N1

and N2 is to move a vertex v from its current subset to subset Si, under the constraint
that v must be a border vertex relative to Si, i.e., v /∈ Si has at least one adjacent
vertex in Si. Note that in this way, the size of the neighborhoods is limited, since
the set of border vertices relative to Si is generally of small size. In addition, such a
neighborhood allows the search to concentrate around these critical vertices.

Let I = {S1,S2, ...,Sk} be a k-partition, V (Si) the set of border vertices relative to
subset Si, and Smax = {Si|maxi∈{1..k}{W (Si)}} the subset with the maximum vertex
weight. The neighborhood relations N1 and N2 can be explained by the two move
operators given below.

Move 1: Move one highest gain vertex vm. Choose randomly a subset Sm ∈
{S1,S2, ...,Sk}−{Smax}. Then, select the highest gain vertex vm ∈ V (Sm) whose
current subset is Sc, such that Sc ∈ {S ∈ I|W (S) > W (Sm)}. Move the selected
vertex vm to subset Sm.
Move 2: Move two highest gain vertices vm and vn. Choose vertex vm and its
new subset Sm as with the first move operator. Choose randomly a new subset
Sn ∈ {S1,S2, ...,Sk}−{Smax,Sm}. Then, select vertex vn ∈ V (Sn) whose current
subset is Sc, such that Sc ∈ {S ∈ I|S �= Sn}. Move vm to Sm, and vn to Sn.

As defined in Section 6.4.1, the gain for moving vertex v to subset Sm is the reduction
in the cut size. The selection of the vertex with the highest gain, as well as the
updates needed after each move, are achieved efficiently by using a new adaptation
of Fiduccia-Mattheyses bucket sorting [21] for the k-way partitioning that maintains
k arrays of buckets, one for each partition subset.

It is important to note that these move operators progressively lead the search
toward a balanced partition since they basically constraint (partially with Move 2)
vertex migration from heavy weight subsets to light weight subsets.

Let Vcand ⊂ V (Sm) be the set of the highest gain vertices which are considered
for migration to subset Sm. The selection of vertex v, which is moved to Sm, is based
on several pieces of history information. This selection strategy is first conditioned
by the tabu status. It also employs two additional criteria which are based on vertex
move frequency and vertex weight. The move frequency is a long term memory
that records, for each vertex v, the number of times v has been moved to a different
subset. It gives priority to moves that have been applied less often. If there is more
than one vertex with the same move frequency in the set Vcand , the second criterion
is used to distinguish them and prefer a vertex v which, when moved to subset
Sm, minimizes the weight difference between the target subset Sm and the original
subset Sc.
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Each time a vertex v is moved from a subset Sc to another subset Sm, it is forbid-
den to move v back to its original subset Sc for the next tt iterations (tabu tenure),
where tt is tunded adaptively.

The described TS procedure applies a very aggressive search procedure since it
focuses only around border (critical) vertices. Therefore, to avoid getting trapped
in a local optimum, the algorithm periodically triggers a simple perturbation which
consists in moving a fixed number of vertices γ , including non-border ones, such
that the partition balance is not degraded.

This multilevel ITS algorithm (MITS) is designed to produce excellent quality
partitions with the possibility to generate solutions of various qualities depending
on the amount of computing time allowed. Indeed, experimental studies on a set
of graphs from Walshaw’s graph partitioning archive have shown that partitions
generated with MITS within short computation time (from 1 second up to several
minutes for a graph with |V | = 143437 and |E| = 409593) are generally far better
than those produced by the current public-domain partitioning packages. When the
running time is prolonged up to one hour, the described algorithm often outperforms
the existing state-of-art graph partitioning algorithms in terms of solution quality.

6.5.3.2 An Evolutionary Approach by Soper et al.

A popular approach for generating high quality graph partitions, proposed by Soper
et al. [44], is a combination of an evolutionary search algorithm and a multilevel
partitioner.

The employed multilevel partitioner, known as JOSTLE, is based on the match-
ing scheme with the HEM heuristic (see Section 6.5.2.1) and the linear-time KL
improvement by Fiduccia and Mattheyses that the authors extend for use with non-
integer gains by integer scaling. The fitness function used by the evolutionary ap-
proach is defined to be − f λ , where f is the number of edges in the cut and λ the
degree of imbalance. The partition imbalance is thus not considered as a constraint,
but induces a heavy penalty in case of greater imbalance. In this way, partitions
within the balance constraint eventually dominate the population as the search pro-
gresses.

The basic idea of the approach is to assign a bias (≥ 0) to each vertex, and a
weight to each edge that is equal to one plus the sum of the biases of its incident
vertices. When applying JOSTLE to a graph with biased vertex and edge weights,
vertices with a small bias are more likely to appear as boundary vertices than those
with a larger one, and edges of a lower weight have higher probability to be cut.
In this way, JOSTLE concentrates its search to a rather limited region of the search
space just like the ITS from Section 6.5.3.1.

Each new offspring is obtained with a crossover or a mutation operator by de-
termining a set of biased values from one or more parents from the population and
than applying JOSTLE to generate a partition. The crossover creates a new set of
biases from a given number of partitions in the following way. For each vertex v
in the graph, check whether v appears as a border vertex (ends a cut edge) in two
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or more of the parent partitions. If so, assign to v a bias value selected uniformly
at random from the range [0, 0.1]. Otherwise, assign to vertex v a bias value of 0.1
plus a random number chosen in the same range.

The mutation operator generates a new set of biases by considering information
from only one parent in the following way. For each vertex v in the graph, check
whether v is a border vertex, the neighbour of a border vertex, or the neighbour of
a neighbour of a border vertex. If so, assign to v a bias value selected uniformly at
random from the range [0, 0.1]. Otherwise, assign to vertex v a bias value of 2.0 plus
a random number chosen in the same range.

After an offspring partition has been created, the associated biased values are
removed.

The population size |POP| is kept quite small (around 50) due to size of graphs
and the time required to execute JOSTLE. Each new generation is produced as fol-
lows. |POP| new offspring are created by either crossover or mutation at a given
ratio. Mating groups of individuals for crossover and candidates for mutation are
randomly selected from the current generation, such that each individual partici-
pates in at least one trial. The union of parent and offspring individuals are ranked
by fitness, and the best |POP| individuals are then selected to form the new gen-
eration. The proposed algorithm is thus a simplified version of the CHC Adaptive
Search Algorithm [18] that lacks incest prevention and restarts.

Each run of this evolutionary approach consist of 50,000 calls to JOSTLE, and
therefore requires very long execution time of hours and even days for large graphs.
As expected, it thus provides higher quality partitions than any of the existing pack-
age that usually take less than a minute (and often less than a second) to generate a
partition.

6.5.3.3 The Memetic Algorithm by Benlic and Hao

In [11], Benlic and Hao extend their MITS algorithm for balanced k-way partition-
ing from Section 6.5.3.1 to a multilevel memetic approach (MMA) by integrating
a dedicated multi-parent crossover operator based on the notion of backbone and
a distance-preserving pool updating strategy that maintains a healthily diversified
population. To avoid high solution redundancy introduced by the standard string
solution encoding, an individual I = {S1, ...,Sk} for MMA corresponds to a parti-
tion of V into k disjoint groups or subsets, such that each subset S j, j ∈ {1, ...,k} is
composed of vertices that are assigned to the jth subset.

The success of the MMA partly lies in the dedicated backbone-based multi-parent
crossover operator (BBC) that exploits an existing structure of a problem by preserv-
ing the elements which hopefully belong to the optimal partition, while permitting
limited perturbations within offspring solutions. It thus provides high quality par-
titions for instances with exploitable global structure and search landscapes with
highly correlated local optima.
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Given the set P = {I1, ..., I p} of p parent individuals chosen with the well-known
tournament selection strategy, the BBC constructs the offspring I0 = {S0

1, ...,S
0
k} in k

passes (one for each subset of the partition). In each pass μ it performs the following
steps:

1. Select a subset Si
j of Ii such that the weight W (Si

j) is maximal across the subsets
j ∈ {1..k} of each individual Ii ∈ P, i.e. maxi∈{1..p}, j∈{1..k}{W (Si

j)}, with the
constraint that at most �k/p� subsets can be chosen from each individual Ii ∈ P.

2. Given Ii and Si
j determined in Step 1, for each individual It ∈P (t �= i), let ∏t con-

tain the largest number of vertices that are shared by the subset Si
j of Ii and a sub-

set St
η of It , i.e. ∏t = {Si

j ∩St
η |maxη∈{1..k}|Si

j ∩St
η |}. Then, ∏ = {∏1, ..,∏p−1}

forms a set of these vertex subsets.
3. Set S0

μ = ∏1∩ ∏2∩...∩∏p−1. S0
μ is the largest subset of vertices that are shared

by all the parent individuals. For each vertex v ∈ Si
j and v �= S0

μ , v is assigned to

subset S0
μ of I0 if c(v)/p−1 is greater than or equal to some random real number

in the range [0,1], where c(v) is the number of subsets of ∏ in which v occurs.
4. When a vertex v is assigned to subset S0

μ of I0 in the μ th pass, v is removed
from all the parent individual subsets in which it occurs, and the weights of these
subsets are adjusted accordingly.

After the previous four steps, the last step handles the unassigned vertices. Any
vertex v missing from I0 is placed at random to a subset Sr of I0 such that W (Sr ∪
{v}) ≤Wopt , where Wopt is defined in Section 6.2.1. This step introduces a degree
of diversification in the crossover process.

Notice that the proposed BBC operator never degrades the balance with respect
to the set of parent individuals P, since given a subset Si

j of individual Ii which

is chosen in the μ th pass, at most |Si
j| vertices can be transmitted to the subset S0

μ
of offspring I0. In addition, an unassigned vertex v in I0 is assigned to a subset S0

r
only if adding v to S0

r does not exceed the expected optimal subset weight Wopt . An
example of this crossover with three parent individuals (p = 3) for k = 3 is provided
in Figure 6.4.

After offspring I0 has been generated with the BBC operator, it is improved with
the ITS from Section 6.5.3.1. The MMA then decides whether I0 should be inserted
into the population by considering both the solution quality and the set-theoretic
partition distance [20] (call it d) between individuals from the population. Offspring
I0 is inserted into POP if it is of the best quality relative to the population, or if the
minimum distance between I0 and any other individual in the population is greater
than the minimum distance between any two individuals in the population. To deter-
mine the individual that is to be replaced by I0, the authors adopt a strategy proposed
in [33] that uses the following quality-and-distance scoring function H to rank the
individuals of the population:

Hi,POP = f (Ii)+β/Di,POP
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Fig. 6.4 An illustration of the BBC crossover with three parents taken from [11]. A circled
subset of a parent corresponds to the subset chosen in the μ th pass, i.e. the subset of maximal
weight across all the parent individuals with the constraint that at most �k/p� subsets can be
chosen from each individual.

where f is the objective function (i.e., the sum of cutting edge weights), β a parame-
ter, and Di,POP the minimum distance between individual Ii and any other individual
from the population.

An extensive experimental evaluation of MMA has been performed on a set of
benchmark instances from Walshaw’s archive. It has been shown that the MMA
can provide even better partitions in terms of solution quality than the ITS from
Section 6.5.3.1. Moreover, the authors compare two version of MMAs integrating
respectively the BBC and a standard uniform crossover where the diversification
is further reinforced by a random mutation operator. The results show that there is
no significant statistical difference between the solution sets generated by the two
MMA versions for lower values of k, i.e., k ∈ {4,8}. However, as k increases, the
BBC operator visibly outperforms the uniform crossover in almost each case for
k ∈ {16,32}. One explanation is that intuitively, given the semantics of the BBC
crossover, it favours the preservation of backbone information for larger k whereas
the number of parts has a weak influence for the uniform crossover operator as to
backbone preservation.
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6.5.3.4 Other Partition Refinement Approaches

Beside the aforementioned multilevel refinement partitioning procedures, some
other approaches are also worth mentioning.

In [8], Battiti et al. propose a multilevel algorithm for the balanced bipartitioning
which integrates the Diff-Greedy algorithm [6], used in the initial partitioning phase,
and a tabu search algorithm [7] employed as a partition refinement procedure. The
TS algorithm is related to the KL heuristic [29]. However, the main differences are
that each selected move is applied immediately to the current solution, and that
worsening moves are also accepted. The authors consider two alternative choices to
adjust the prohibition parameter T (i.e., the tabu tenure) of the TS algorithm. The
first choice is to maintain T fixed during the search with a value that is selected
by a preliminary off-line tuning phase for different types of graphs (FIXED-TS or
FTS). The other choice is to determine the right value of T in a dynamic and on-
line way depending on the past search history (Reactive Randomized Tabu Search
RRTS). In this way, the tedious task of tuning by the user is avoided and the T
value can automatically change during the search depending on the properties of a
specific task.

A refinement procedure based on a mixture of simulated annealing and tabu
search algorithm (RLrMSATS) is presented by Baños et al [5]. The idea of this
hybrid approach is to employ the simulated annealing procedure to escape from lo-
cal optima, while preventing the occurrence of cycles by means of a tabu search
mechanism. A move with the proposed approach consist in moving a vertex v from
its current to another partition subset. To jump from a local optimum, RMSATS
accepts worsening moves as in simulated annealing. Once a move increasing the
evaluation function cost is accepted, it is forbidden to apply the reverse move dur-
ing a certain number of iterations as in tabu search in order to avoid cycling. A
similar hybrid refinement approach inspired by RMSATS is proposed in [45].

6.5.4 The Key to Effectiveness of Partition Refinement Procedures

The success of a multilevel algorithm is greatly dependent on its two main compo-
nents: the coarsening scheme and the solution refinement procedure. Since vertex
aggregation filters the solution space by putting restrictions on which solutions the
algorithm can visit, it is obvious that the way coarsening decisions are made is of
an extreme importance for the quality of resulting solutions. As pointed out pre-
viously, most of the graph partitioning approaches are based on the same or very
similar coarsening schemes. However, given the same amount of computing time,
some of these algorithms perform better than others highlighting the importance of
a refinement procedure.

In the previous sections, we described the three best performing partition re-
finement procedures in terms of partition quality. A common characteristic of
these refinement algorithms is that they are based on stronger intensification and
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concentrate the search only around a limited region of the search space. In ITS [9],
this is done by performing (most of the time) moves with only border (critical) ver-
tices according to a selection strategy. A similar idea is also used in [44], where a
smaller bias is assigned to vertices that appear as border vertices in one or more par-
ent partitions, which results higher probability that these vertices will remain border
in successive generations. In [11], besides the ITS, the BBC crossover also limits
the region of explored search space by preserving vertex groupings that are common
to a number of population individuals. Moreover, the intensification plays a major
role in other popular graph partitioning approaches.

We next provide an explanation, based on observation made from a landscape
analysis [11, 32], to why a more pronounced intensification mechanism constitutes
a highly effective search in case of the graph partitioning problem.

6.5.4.1 Landscape Analysis for the Graph Partitioning Instances

The performance of a stohastic algorithm crucially depends on the characteristics
of search landscape like the average distance between local optima and the relative
distance of local optima to the nearest global optimum. The fitness distance correla-
tion (FDC) coefficient ρ f dc [26] is a well-known tool for landscape analysis and can
provide useful indications about the problem hardness, even if such an analysis has
some known shortcomings and limits. FDC estimates how closely related are the
fitness and distance to the nearest optimum. For a minimization problem, if the fit-
ness of a solution decreases with the decrease of distance from the optimum, then it
would be easy to reach the target optimum for an algorithm that concentrates around
the best candidate solutions found so far, since there is a “path” to the optimum via
solutions with decreasing (better) fitness. A value of ρ f dc = 1 indicates perfect cor-
relation between fitness and distance to the optimum. For correlation of ρ f dc =−1,
the fitness function is completely misleading. FDC can also be visualized with the
FD plot, where the same data used for estimating ρ f dc is displayed graphically.

A landscape analysis for the GPP has been performed in two works. In [32], Merz
and Freisleben provide a thorough analysis of the landscape for the GBP on a set
of instances introduced in [14, 25], and perform a fitness distance correlation anal-
ysis (FDA) [26] based on solutions samples with the KL [29] and Diff-Greedy [6]
heuristics respectively. In [11], Benlic and Hao make a FDA for the k-way partition-
ing problem (for k ∈ {4,8,16,32}) on a set of graphs from the Walshaw’s graph par-
titioning archive (used for performance evaluation in [9, 11, 44]), based on a sample
of local optima obtained after 1500 independent runs of the ITS [9]. While Merz and
Freisleben use the Hamming distance, Benlic and Hao use the set-theoretic distance
to perform the landscape analysis.

Tables 6.1 and 6.2 show the results from [32] and [11] respectively. Column
‘ρ f dc’ of the two tables reports FDC coefficients ρ f dc for the analysed graphs. For
illustrative purpose, FD plots of only two graphs (3elt and vibrobox) are given in
Figure 6.5 for k ∈ {4,8,16,32}. As it can be seen from Tables 6.1 and 6.2, there
is a signification fitness distance correlation in many cases. However, the FDA
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Table 6.1 Analytical results for graph bisection, taken from [32], for graph partitioning in-
stances provided in [14, 25]. Columns ‘dlo’ and ‘dgo’ report respectively the average distance
between local optima and the average distance of local optima from the best local optimum,
expressed as a percentage of |V |. Column ‘ρ f dc’ shows the correlation coefficients with re-
spect to fitness and distance.

KL heuristic Diff-Greedy heuristic
Graph avg dlo avg dgo ρ f dc avg dlo avg dgo ρ f dc

G1000.0025 22.53 21.29 0.37 22.09 20.86 0.34
G1000.005 22.79 21.97 0.22 22.36 21.68 0.18
G1000.01 22.6 21.54 0.37 22.21 21.36 0.29
G1000.02 22.47 21.24 0.47 22.2 20.86 0.41
U1000.05 22.47 21.62 0.28 14.44 11.15 0.63
U1000.10 20.65 19.16 0.36 15.39 12.81 0.58
U1000.20 15.76 12.94 0.63 14.94 13.53 0.58
U1000.40 13.02 9.45 0.82 13.6 10.47 0.66
Breg5000.16 3.95 2.08 0.99 17.9 11.98 0.99
Cat.5252 24.14 23.91 0.02 14.58 11.52 0.21
Rcat.5114 22.79 22.36 0.07 14.46 11.45 0.7
Grid5000.50 4.3 2.4 0.91 15.07 12.09 0.7
W-grid5000.100 14.43 13.56 0.66 14.43 13.55 0.7

Table 6.2 Analytical results, taken from [11], for seven graph partitioning instances from
Walshaw’s graph partitioning archive when k ∈ {4,8,16,32}. Columns ‘dlo’ and ‘dgo’ report
respectively the average distance between local optima and the average distance of local
optima from the best local optimum, expressed as a percentage of |V |. Column ‘ρ f dc’ shows
the correlation coefficients with respect to fitness and distance.

k=4 k=8 k=16 k=32
Graph avg dlo avg dgo ρ f dc avg dlo avg dgo ρ f dc avg dlo avg dgo ρ f dc avg dlo avg dgo ρ f dc

data 30.5 34.8 0.57 17.8 16.0 0.68 22.5 23.7 0.08 24.9 23.1 0.6
3elt 19.1 18.7 0.7 17.2 14.6 0.53 14.0 12.1 0.75 20.5 17.1 0.53
uk 18 14.3 0.61 26.3 25.7 0.24 26.9 25.1 0.33 27.4 24.9 0.44
crack 3.5 2.2 0.89 22.5 19.6 0.51 27.7 22.9 0.74 28.1 26.3 0.58
wing-nodal 26.1 21.6 0.81 17.1 13.6 0.91 31.0 27.3 0.56 37.5 35.6 0.4
fe-4elt2 9.8 6.7 0.74 26.0 24.4 0.68 16.4 14.7 0.51 28.7 25.5 0.51
vibrobox 40.1 41.4 -0.02 22.4 19.7 0.03 41.5 45.5 0.65 49.7 46.8 0.21

analysis also reveals the existence of several cases among the selected instances for
which there is virtually no correlation between fitness and distance, i.e., cases where
ρ f dc < 0.15. Indeed, from plots in Figure 6.5, it is clear that there is practically no
correlation for ‘vibrobox’ when k ∈ {4,8}. On the other hand, the plots indicate
the strongest correlation for the graph ‘3elt’ when k ∈ {4,16} and ‘vibrobox’ when
k = 16.

The existence of a strong correlation between solution quality and its distance to
the nearest global optimum, as observed from the FDC analysis in [11, 32], is often
refered to as a big valley structure of the landscape. Intuitively, in this structure a
global optimum is surrounded by local optima with evaluation values that deteriorate
with the increase of distance to the global optimum. In case of landscapes with a big
valley structure, stronger intensification leads to algorithms of better performance.

Additionally, tables 6.1 and 6.2 report the average distance between local optima
(column ‘avg dlo’) and the average distance of local optima from the best local opti-
mum (column ‘avg dgo’ ), expressed as a percentage of |V |. Given that the maximum
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Fig. 6.5 FD correlation plots with respect to the normalized solution fitness and distance to
the optimum for 3elt and vibrobox when k ∈ {4,8,16,32}. The first four plots are related to
the elt graph, while the last four are related to the vibrobox. The plots are taken from [11].

distance between any two solutions is |V |, these results imply that local optima are
not uniformly distributed, but are rather concentrated within a limited number of
regions in the search space.

These observations constitute an explanation to why algorithms that perform a
stronger intesification do so well on these GP instances.
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6.6 Conclusion

In this chapter, we provided a review on hybrid metaheuristics for solving the well-
known k-way partitioning problem (GPP). GPP is an NP-complete problem with
a broad spectrum of applicability. Therefore, many efforts have been made in de-
vising a number of different heuristic approaches such as spectral methods, graph
growing and greedy heuristics, multilevel approaches, as well as algorithms based
on popular metaheuristics. The application of these methods depends on several fac-
tors including time vs. quality and the degree of imbalance. The most popular graph
bisection heuristic is the linear time implementation of the Kernighan-Lin algorithm
by Fiduccia and Mattheyses, which improves iteratively the quality of an existing
partition. Different adaptations and modifications of its basic procedure have been
proposed in the literature. These KL-like algorithms are often hybridized with other
approaches such as multilevel and genetic algorithms. The current best performing
GPP algorithms in terms of solution quality are hybrids between classical meta-
heuristic techniques and multilevel methods. Indeed, the three most effective algo-
rithms reviewed in this chapter, that were able to produce state-of-art partitions, are
hybrids between multilevel methods and adaptations of well-known metaheuristics.
We noted that a common characteristic of these approaches is that they are based on
a strong intensification mechanism which seems to work well on most GP instances
whose landscapes generally display the big valley structure.
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Chapter 7
Hybrid Metaheuristics
for Medical Data Classification

Sarab Al-Muhaideb and Mohamed El Bachir Menai

Abstract. Medical data exhibit certain features that make their classification stand
out as a distinct field of research. Several medical classification tasks exist, among
which medical diagnosis and prognosis are most common. Deriving a medical clas-
sification is a complex task. In particular, the rule–discovery problem is NP-hard.
Identifying the most suitable strategy for a particular medical classification problem
along with its optimal parameters is no less difficult. Heuristics and meta-heuristics
are normally applied to approximate its solution. This chapter reviews hybrid meta-
heuristics for medical data classification task, particularly diagnosis and prognosis,
and their application to model selection, including parameter optimization and fea-
ture subset selection.

Keywords: Medical data classification, medical data complexity, evolutionary com-
putation, swarm intelligence, model selection, model optimization, hybrid meta-
heuristics, artificial neural networks.

7.1 Introduction

Modern clinical information systems store extensive amount of data in medical
databases. This encourages the extraction of useful knowledge from these databases
providing valuable insight for medical decision support. A branch of data mining,
known as medical data mining, is currently considered one of the most popular
research subjects in the data mining community [68]. This, in part, is due to the
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societal significance of the subject and also to the computational challenge it
presents. Normally, there exist a dataset of historic data describing a particular med-
ical disorder. Such datasets consist of records of patients’ data relating to demo-
graphic, clinical and pathological data, along with results of particular investigations
that were collected for the diagnosis and prognosis of a particular medical disorder.
These medical datasets are typically incomplete, noisy, imbalanced and inexact [55].
Developing a computational diagnostic or a prognostic system is thus a challenging
task.

This chapter is not intended to present a review of medical data classification
techniques, but rather to introduce a snapshot of data mining techniques used to aid
medical decision making. Several computational techniques have been proposed
including machine learning, evolutionary computation and statistical techniques.
Since each of these techniques have their own advantages and drawbacks, they are
commonly hybridized in search of a more robust solution. Metaheuristics can be
effective and efficient tools. They are well known for solving various optimization
problems, for their adaptation ability and for their ability to produce good solu-
tions in reasonable time and memory requirements. The chapter starts with a brief
introduction of the classification problem in general, followed by medical data clas-
sification in particular. Next, features and challenges of medical datasets that make
their classification stand out as a separate domain are explored. Based on that, the
computational complexity of medical data classification is analyzed. Next, light is
shed on some state-of-the-art solutions for medical data classification, in particular,
hybrid meta-heuristics. It is possible to classify the hybrid metaheuristic techniques
used for medical data classification into two broad categories according to their
purpose:

1. Model learning and optimization; where the objective is to learn the classification
hypothesis.

2. Model selection; that is selecting the model that best describes a dataset. This
may include parameter and hyper-parameter optimization, neural network weight
optimization, or feature subset selection, etc.

Each of these categories is illustrated by published work.

7.2 The Classification Problem

Classification aims at capturing hidden regulations and/or relations between the
attributes (predictor features) in a set of class-labeled instances. These relations
and/or regulations are modeled producing a general hypothesis. The resulting hy-
pothesis is next applied to unseen future instances, with known predictor features
and unknown class labels.The goal is to automatically make predictions about the
class of those future instances [49]. Formally, given a set of training instances Dn

with the form {(x1,y1),(x2,y2), . . . ,(xn,yn)}, the task is to approximate or project
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a function; f (x) , where x ∈ ℜm is a vector of attributes or predictor features of
the form 〈xi1,xi2, . . . ,xim〉, and y is the expected output (i.e. class) for the given
x vector. Normally, y is drawn from a discrete set of classes [71]. The discov-
ered model can be represented in different forms. Production rules in the form of
(IF〈condition〉THEN〈class〉) are often used. Other forms include decision trees
(DTs) and artificial neural networks (ANNs).

Errors in classification may be in one of three cases [68]. Type-I error (false-
positive) occurs when the system erroneously classifies a case as positive when in
fact, it is not. For example, in a diagnosis scenario, a patient is wrongly labeled
with a certain disease. Type-II error (false-negative), on the other hand, describes
missing an existent positive. For example, a patient who is affected by a certain
disease is diagnosed as disease-free. Usually, improving one type of error comes
on the expense of the other [16]. In practice, the significance of these error costs
vary with the application itself. For example, in life threatening medical conditions
that require prompt intervention, missing a diagnosis (a false-negative) might result
in a waste of time that may lead to life losses or at least cases that are not treated
properly. On the other hand, a false-positive may result in unnecessary procedures,
anxiety and financial costs [68]. The last type of error is the unclassifiable error.
In this case, the system is unable to classify a case, possibly due to the lack of
historic data.

There are many approaches to estimate the expected error of the classification
model. Computing the error on the training set itself is an optimistic estimator of
the true error [54]. In the training–testing method, the data set is normally split
into two partitions called training and testing sets respectively. The most common
technique is called the k-fold cross-validation [83]. Here, the whole data set Dn is
partitioned into k disjoint folds, each of size k/n. Cross-validation is done k times
each using k−1 folds for training the model and the one fold left out of the training
phase is used as a test set. Each time a different fold is used as a test set. Results are
then averaged over the k iterations.

Different performance metrics are used to measure the effectiveness of a classifier
with respect to a given data set. The prior and posterior probabilities, also known
as the Sensitivity (Sn), Specificity (Sp) and Precision (P) [71] are among the most
commonly used.

Let the number of positive instances correctly classified be denoted TP, the num-
ber of positive instances incorrectly classified into negative FN. Similarly, the num-
ber of negative instances correctly classified as negative TN and those falsely clas-
sified into positive as FP. Sensitivity measures the proportion of positive samples
being correctly classified as positive (7.1).

Sn =
TP

TP+FN
(7.1)

Specificity, on the other hand, measures the proportion of negative samples being
correctly recognized as negative (7.2).
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Sp =
TN

TN +FP
(7.2)

Precision (classification accuracy [26, 55] measures the proportion of samples being
correctly classified (7.3).

P =
TP+TN

TP+TN +FP+FN
(7.3)

Using Bayes theorem , it can be shown that P is entirely dependent on the values of
Sp and Sn only if the data set is balanced [71]. A tradeoff between the hit rate (Sn,
plotted on the Y -axis) and false alarm rate (1− Sp, plotted on the X-axis) can be
illustrated by the receiver operating characteristic curve. Each classification algo-
rithm has a parameter, for instance, a threshold of decision, which can be fine-tuned
to balance the tradeoff between hit rates and false alarms. Increasing the hit rate
leads to an increase in false alarms as well. Different applications exhibit differ-
ent significance levels of these two factors leading to the selection of a different
point on the curve. Another performance measure used by classification algorithms
is the area under the ROC curve (AUC). AUC index values range from 0.5 (random
behavior) to 1.0 (perfect classification performance). For more detail see [12, 45].

7.3 Features and Challenges of Medical Data Classification

Several medical classification tasks exist, among which diagnosis and prognosis are
most common. Other medical classification tasks include medical imaging, signal
processing and scheduling [65]. In a diagnosis process, the patient’s information is
selectively collected and interpreted based on previous knowledge as evidence for or
against the existence or nonexistence of disorders [58]. In the case of prognosis, the
patient’s information is selectively gathered and analyzed to predict the “course and
outcome of disease process” [59]. Prognosis is considered an important instrument
for medical management [59, 65]. For example, in the case of cancer prognosis, the
intention is to predict cancer susceptibility, recurrence or survivability [19].

Medical diagnosis and prognosis can be modeled as classification problems. An
instance is a patient’s case. The predictor features are the patient’s medical data.
These might include demographic, clinical and pathological data. The class in case
of diagnosis is the medical disorder. In case of prognosis, the class is the course
and outcome of disease process. Production rules and decision trees are particu-
larly attractive representation forms for the classification model in the medical field
due to their comprehensibility. Using these forms, extracted models can be verified
by medical experts and can enhance understanding the problem in-hand [84]. For
example, in [47], a consultant pathologist in the domain of primary breast cancer
evaluated the resulting rules for primary breast cancer diagnosis and classified them
into three types; interesting new knowledge that could be further investigated, rules
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that are useful for the diagnosis and confirm medical knowledge, and those that
contradict existing medical knowledge.

A physician relies on medical knowledge and personal experience to perform the
desired classification task (diagnosis and/or prognosis). In many cases, physicians
find difficulty in deciding the correct diagnosis or prognosis of a patient [11]. Patient
presentation of disease varies significantly. It is a qualitative perception of symptoms
that is difficult to quantify. The fluid representation is also perceived by qualitative
receptors, i.e. physicians. These two factors; patient presentation and physician re-
ception, are usually variable which participate significantly in understanding the
medical case. The subjective interpretation results in variable output in terms of di-
agnosis and/or prognosis. For example, heart attack may be represented with pain
in both arms; that can be interpreted as different diagnosis, some of which are not
cardiac [76]. In addition, medical field experts are scarce and do not cooperate in
converting their unique knowledge and art into a practical decision tool [65]. Also,
the medical literature grows at a speed the physicians cannot cope with. Computer-
aided diagnosis and/or prognosis systems bridge the knowledge gap in the era of
evidence-based medicine [76]. The development of an adaptive model that learns
from experience is more desirable than a best-fit solution for inherently complex
and non-linear systems like the human body [92].

There are difficulties associated with medical data as well. Medical data includes
demographic data, clinical observations, laboratory tests and radiology exams. Med-
ical decisions are based on patient’s medical records. Health care institutions are
maintaining permanent patient medical records. Modern medical screening and di-
agnostic methods generate high volume of heterogeneous data. This data is contin-
ually accumulating. Mining such data requires intelligent methods [65, 88].

In addition to the high dimensionality, medical data exhibit unique features in-
cluding noise resulting from human as well as systematic errors, missing values
and even sparseness [88]. To illustrate, Table 7.1 presents medical data set ex-
amples. Most of these datasets are obtained from the UCI repository of machine
learning databases, University of California-Irvine, Department of Information and
Computer Science1. For example, some datasets like Dermatology, consist of dif-
ferent types of attributes. The high dimensionality is a feature of the Ovarian 8-7-02
dataset. Thyroid dataset contains more than 7000 instances. The Hepatitis dataset is
imbalanced. The percentage of missing values in the Hungarian Heart dataset ex-
ceeds 20%. Finally, the Chest Pain dataset exhibits the multiclass problem featuring
12 different classes. Due to this nature, Tanwani et al. [88] calls for the classifi-
cation of medical data as a separate domain, of which is currently considered one
of the most popular research subjects in the data mining community [68]. This, in
part, is due to the societal significance of the subject and also to the computational
challenge it possess.

Tanwani and Farooq [85, 86, 87] performed an extensive study to present the
challenges associated with biomedical data and approximate the classification po-
tential of a biomedical dataset using qualitative measure of this complexity. The

1 Address=”http://archive.ics.uci.edu/ml/datasets.html”

http://archive.ics.uci.edu/ml/datasets.html
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complexity of biomedical datasets was found to be highly associated with a new
factor; the correlation-based feature selection subset merit. This factor measures the
quality of attributes in terms of how much they are correlated with the outcome class
and not correlated with each other. Several empirical studies involving various evo-
lutionary computing and machine learning classification algorithms were performed
on UCI biomedical datasets. The classification accuracy was found to be dependent
on the complexity of the biomedical dataset - not on the classifier choice. The two
main effectors are noise and correlation-based feature selection subset merit. Sec-
ond, the number and type of attributes has no noticeable effect on the classification
accuracy as compared to the quality of the attributes. It is shown that biomedical
datasets are noisy and that noise is the dominant factor that affects the resulting
classification accuracy. Only high percentages of missing values severely degrade
the classification accuracy. Third, evolutionary algorithms tend to overfit for small-
sized datasets and are not much affected by the imbalanced classes’ problem. A
meta-study was performed consisting of the complexity measures as attributes. Us-
ing a decision tree and rule learner classifiers, the datasets were categorized into
having good, satisfactory, or bad classification potential, according to their complex-
ity factors. An equation is presented to find the classification potential of a dataset
based on the level of its’ noise and correlation-based feature selection subset merit.

Table 7.1 Example medical data sets and their associated complexity

Data Source No. No. No. Missing Input Data
set Instances Attributes Classes Values Type

Chest Pain [10] 138 165 12 No Binary
Hungarian Heart UCI; [88] 294 13 5 20.46% 3 Binary, 10 real
Dermatology UCI; [88] 366 34 6 0.06% 1 Categorical, 1

binary, 32 integer
Wisconsin breast UCI; [84] 569 32 2a No Real
cancer (WDBC)
Hepatitis UCI; [84]; [88] 155 19 2b 5.67% 13 Integer,6 real
Ovarian 8-7-02 CCRc; [88] 253 15, 154 2 No Real
Thyroid UCI; [88] 7200 21 3 No 15 Binary, 6 real

aBenign (62.7%)/Malignant (37.3%)
bLive (79.35)/Die (20.65%)
cOvarian cancer studies, Center for Cancer Research, National Cancer Institute, USA,
address=”http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.
asp”

In light of all of this, deriving a medical classification is a complex task [11, 65].
In particular, the rule-discovery problem is NP-hard [18]. This task involves search-
ing for the hypothesis that models the diagnosis and/or prognosis concept, over
all possible patient instances, in the space of all possible hypotheses. Penã-Reyes
and Sipper [65] state “the medical search space is usually very large and complex”
The Chest pain dataset [10] is a simple example to show the complexity of the
search space. It consists of 165 binary attributes. The instance space |X | contains

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
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exactly 2165 = 4.6768E49 distinct instances. Therefore, the target hypothesis space
includes 2|X | possible hypothesis. That is, the target space includes 2|4.6768E49| possi-
ble hypothesis. Execution time and memory demands grow rapidly with the number
of instances and attributes of the problem at hand. Exact methods cannot be applied
in this case.

Various classification paradigms exist, each with a related decision surface that
decides the type of problems the classifier is suitable for. Machine learning algo-
rithms like decision trees (DTs) suffer from trapping in local optima for a problem
with a large number of attributes [18]. The back propagation algorithm (BP) [74]
for training ANNs exhibit local search ability and can similarly get trapped into
the nearest local optima [43]. A single run of BP is normally unrepeatable, unreli-
able and suboptimal, particularly on multi-local optima decision surfaces [43]. The
main problem with machine learning methods is scalability especially when dealing
with huge data [75]. In this respect, Provost and Kolluri [70] present a survey of
methods for scaling up these algorithms. Statistical methods such as logistic regres-
sion (LR) and linear discriminant analysis (LDA) are widely used for classification.
However, they do not produce accurate models when the relationship between the
inputs and outputs of the dataset are non-linear and/or complex [25]. There exists
no best classifier over all possible problem types [54]. Each technique has its own
set of capabilities and limitations.

One way to deal with this shortage is to combine the properties of intelligent
techniques so that each technique complements the capabilities and covers the lim-
itations of the other. Combining or hybridizing various methods including heuris-
tics and metaheuristics such as soft computing methods can significantly improve
an analysis in terms of tractability, robustness, solution cost, and accuracy [25].
Metaheuristics in particular such as genetic algorithms (GA) [36], tabu search
(TS) [29, 30], memetic algorithms (MA) [62], and simulated annealing (SA) [48],
perform heuristic local search rather than exhaustive search producing good solu-
tions within reasonable time and memory requirements [18]. Early hybrid systems,
like evolutionary–neural hybrid systems [65] appeared in the early 90’s. For in-
stance, GAs were used to select predictor variables for the neural network [63] used
to predict patient’s response to Warafin. GAs were also used to optimize weights of
ANNs in the prognosis for ICU patients [23]. Penã-Reyes and Sipper [64] used an
evolutionary–fuzzy hybrid system for breast cancer diagnosis. In this study, a rule-
based classifier that uses fuzzy logic called a ‘fuzzy inference system’ is used for the
medical classification model learning. GAs are used to search for the parameters of
the fuzzy inference system. A similar evolutionary–fuzzy hybrid was used by Jain
et al. [44] for the diagnosis of coronary artery disease and breast cancer.

The next sections provide a snapshot of the state-of-the-art approaches in medical
data classification. Section 7.4 demonstrates a sample of the literature that applies
hybrid Metaheuristics for the problem of learning and optimizing medical data clas-
sification models. Section 7.5 illustrates the use of hybrid metaheuristics for model
selection in medical data classification.
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7.4 Hybrid Metaheuristics for Model Learning and
Optimization in Medical Data Classification

This section starts with the use of learning classifier systems and their variants for
model learning [5, 28, 38, 39, 40, 41, 47, 66, 77, 78, 84, 89, 91, 94, 97]. Other
hybrid systems for model learning are next exemplified including the combina-
tion of genetic programming (GP) [51] with genetic algorithms [84], the blend-
ing of self-organized maps (SOMs) with ANNs and sUpervised Classifier Systems
(UCSs) [73], the combination of TS with SA [18], and MAs [9]. Finally, two exam-
ples illustrate the use of metaheuristics for enhancing classifier accuracy as in the
use of GA to enhance the classifier model generated by a decision tree classifier [75]
and the use of homogeneity-based algorithm (HGA) [67] for optimizing the classi-
fier models generated by support vector machines (SVMs), DTs and ANNs [68].
Table 7.2 presents a summary of these systems.

7.4.1 Learning Classifier Systems

Learning Classifier Systems (LCSs) [37, 95, 96] represent the merger of different
fields of research including evolutionary computing and machine learning (rein-
forcement and supervised learning). They are adaptive systems that learn rules to
direct their performance in a certain environment. In these rule-based systems, evo-
lutionary methods (mainly GAs) are used to search the solution space while the
reinforcement part from machine learning is used to guide the search to improved re-
sults. Their first appearance, Cognitive System One (CS-1) [37] seemed to be “com-
plex and difficult to realize” [14]. The mid-1990s witnessed the birth of new models
and new applications which revived this area. The ‘zeroth-level’ classifier system,
ZCS [95] is a striped-down version of Holland’s LCS that has better performance
and comprehensibility. Wilson’s ZCS was parameter-sensitive but has demonstrated
optimal performance on several well-known test problems [13]. Not much later,
Wilson introduced a variant of LCS with a new fitness measure, XCS [96]. Wil-
son’s XCS has obtained more success and acceptance in the LCS community [14].
Stolzmann introduced a new line in the LCS research that stems from the theory
of anticipatory behavioral control and cognitive psychology; Anticipatory Classifier
Systems (ACSs) [82]. Rules in ACS aim at predicting action consequences in all
possible cases in an environment. The models evolved in ACS direct the system to
the most promoted action and also provide anticipation on what will happen next.
On the other extreme, sUpervised Classifier Systems (UCSs) [8] replace the rein-
forcement learning component that was basic in all previous systems by supervised
learning. That is, immediate reward system is used as the correct action is known in
advance.

There are two styles of learning classifier systems. The first follows Holland’s
original model [37] developed at the University of Michigan and is thus termed
‘Michigan-Style’. The solution is represented by the whole population. Rules
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Table 7.2 Hybrid Metaheuristics for Model Learning and Optimization

System Medical Purpose Method Rival Algorithms Performance Metric

Learning Classifier Systems

EpiCS Epidemiologic LCS C4.5, LR Sn, Sp, P, AUC, . . . etc.
[38, 40, 41] surveillance

EpiXCS Epidemiologic XCS See5 DT Sn, Sp, P, AUC, . . . etc.
[39] surveillance

ClaDia Breast cancer LCS (fuzzy) — P
[94] diagnosis
[47] Breast cancer XCS Bayesian, P, medical expert

diagnosis SVM, C4.5
[77, 78] EEG signal XCS NB, SMO, k-NN, Sn, Sp, P

classification PART
XCSI Breast cancer XCSI Best on UCI cite, P, rule quality
[97] diagnosis other published work

LCSE Diabetes LCS ensemble LCS, DT, ANN P
[28] classification
[91] Mixed ACS XCS, XCSL, C4.5 P, no. rules

ZCS-DM Mixed ZCS DT, C4.5, XCS, P
[89] HIDAR
[66] Mixed Pitt-style LCS — P, rule quality

Other Hybrid Metaheuristics

[57] Breast cancer ensemble: SVM, — AUC
diagnosis AdaBoost, and GA

[3] Mixed Hybrid BN–k-NN–GA Bayesian (EM) P
[9] Cancer cell MA-optimized — No. colors (cell graph)

diagnosis cell graph coloring
[18] Mixed Hybrid TS–SA Ant Miner, CN2 Sn×Sp, P, no. rules
[73] Mixed SOANN, SOUCS UCS, ANN, other P, computational time

published work
[84] Mixed Hybrid GA–GP C4.5, PART, NB, other P

published work

Enhancing Classification Accuracy

[75] Mixed GA UCS, C4.5 P
[68] Mixed HBA and GA DT, SVM, ANN, other P

published work

compete under GA which operates at the individual rule level. In Smith’s Pitt-
style [79] developed at the University of Pittsburg, each individual in the population
represents a complete solution. In Pitt-style, GA operates at the rule-set level. Both
styles have their own advantages and shortcomings. However, since entire solutions
are simultaneously being evolved and compared in pitt-style, it is computationally
heavier than Michigan-style LCS. This favors Michigan-style LCS in terms of popu-
larity in the LCS community [92]. For interested readers, the survey by Urbanowicz
and Moore [92] is recommended.

Learning Classifier Systems exhibit several attractive features. First of all, their
rule-based nature leads to comprehensible hypothesis, as opposed to black-box so-
lutions presented by ANNs for example. This implies that physicians can validate
if the resulting classification hypothesis is clinically plausible. This also means that
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there is room for discovering new interesting relations. Second, LCSs tackle com-
plex learning problems [42], and this is particularly important when dealing with the
medical domain. LCSs are also on-line learners that avoid local minima due to the
EC component [6]. Different kinds of representation can be used for LCSs [6, 52].
Other advantages include adaptability, robustness [6], and good generalization abil-
ity [96]. These features are especially interesting when dealing with medical data.

The main weaknesses of LCSs include overfitting for small data [5, 28] and dif-
ficulty with imbalanced classes [6]; as they tend to bias towards the majority class.

The use of learning classifier systems and their variants for the purpose of
model learning in medical data classification has been well established. LCSs were
applied with considerable results in medical data classification field. For exam-
ple, learning classifier systems for epidemiologic surveillance EpiCS [38, 40, 41],
EpiXCS [39],LCS with fuzzy rule representation [94], XCS [5, 47, 77, 78, 97],
learning classifier system ensembles [28], ACS [91], ZCS for data mining (ZCS-
DM) [89], and Pitt-style LCS [66]. Below a summary is presented for medical data
classification solutions that are based on learning classifier systems.

EpiCS [38] was the first specialized LCS in the medical field; a learning clas-
sifier system for epidemiologic surveillance data. EpiCS predicts risk of disease;
the probability of developing a disease. The estimate is given by the proportion of
the matching classifiers that classify the case as positive. Using synthetic epidemi-
ologic data generated such that one variable is associated with the outcome, EpiCS
was compared to logistic regression-derived probability of disease and has shown
significant advantage in terms of classification performance measured using the area
under the receiver-operating characteristic curve (AUC).

The study by Holmes et al. [40, 41] was performed on epidemiologic surveil-
lance data obtained from the Partners for Child Passenger Safety (PCPS). The aim
of the study was reducing child automobile crash-associated morbidity and mortal-
ity through discovering patterns associated with head injury (head-injury/no-head
injury classification task) [40], with inappropriate child restraint (appropriate/inap-
propriate child restraint classification), and the associated risk analysis [41]. Epi-
demiologic data are characterized by their large size and number of features that
may result in huge number of relations. These relations can be modeled using the
IF-THEN format. 47 numeric features [40] were selected out of over 500 available
variables. Data were equally partitioned into testing and training sets with posi-
tive and negative classes equally distributed. Missing data were treated as don’t-
cares. Performance was evaluated in terms of sensitivity, specificity and AUC. All
of these evaluation metrics were modified by the indeterminate rate (IR); cases that
the model could not classify. EpiCS significantly outperformed the decision tree
classifier algorithm C4.5 and LR in terms of AUC (0.97%) [40]. The number of
rules produced by C4.5 was significantly lower. Based on that, the authors suggest
that the use of C4.5 to initialize the EpiCS population might be advantageous. The
authors also point out the need to improve LCS in terms of macrostate reduction,
dealing with numeric data in native form and dealing with noisy data. The paper
addresses the limitations of decision trees and linear regression models with respect
to clinical and epidemiologic data.
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In 2005, Holmes and Sager [39] introduced a new LCS for the epidemiologic
community, EpiXCS. EpiXCS is an XCS classifier application tailored to the needs
of epidemiologic research. The main feature is an interface workbench that allows
researchers to set different parameters in a user-friendly manner. Using EpiXCS,
researchers can watch the performance in terms of parameters like sensitivity, speci-
ficity, AUC, learning rate, and indeterminate rate. These parameters are updated in
frames of 100 iterations. In addition, EpiXCS views resulting rules both in textual
(IF–THEN format) and graphical forms. The graphical rule display option enables
researchers to see possible clustering of features and their values forming a certain
outcome. EpiXCS was compared to the See5 decision tree classifier in forming rules
that discover the features associated with teenage automobile fatality in the cen-
sus of all fatal United States and Puerto Rico automobile crashes ;FARS database.
Results show that while classification accuracy of both classifiers was compara-
ble, EpiXCS produced far fewer rules making the analysis much more manageable.
Also, EpiXCS has discovered several features that were missed by See5.

For the diagnosis of breast cancer, Walter and Mohan present a classifier system
for disease diagnosis, ClaDia [94]. A fuzzy rule representation was used where the
attribute values were mapped to the ranges (low, medium and high). Instance-rule
match degree correspond to the median membership degree of the instance’s con-
stituent attributes. Rule fitness was computed as the difference between the number
of correctly classified instances and those incorrectly classified. Rule fitness was
later reinforced by correct classifications and penalized otherwise. Niching was ap-
plied such that recombination is only allowed among individuals in the same niche
(benign/malignant). Unlike the original LCS, mutation is performed on rule an-
tecedent as well as consequent. That is, the rule consequent of weak rules may be
mutated (reversed) as these may result in good rules for the opposite class. ClaDia
was applied to Wisconsin Breast Cancer (WBC) database from the UCI repository
and achieved over 90% accuracy.

Bacardit and Butz [5] compared the performance and generality level of two LCS
classifiers, namely the on-line XCS and the off-line GAssist [4]. The comparison is
done over thirteen different data sets. While GAssist is a Pitt-style classifier, XCS
is a Michigan-style classifier that basis fitness on rule accuracy and applies GA
selection to the currently active classifier subsets. Six types of problem difficulty
are considered in this study. These include the input data volume, size and type
of the search space, concept complexity, input noise and missing data in addition
to the overfitting problem. The goal is to achieve a maximum level of generality.
Results show that while both systems perform well on all data sets, the produced
solutions are quite different. XCS has a weaker strategy in handling missing data and
tends to over-fit training data especially in small data sets. XCS thus requires a large
training set. GAssist on the other hand tends to ignore additional complexity and
struggles when facing problems with multiple classes or those featuring large search
spaces. Two conclusions are drawn: XCS needs to address its generality difficulty
and GAssist needs to address its problem handling data sets with multiple classes.

In Kharbat et al. [47] primary breast cancer data from the Franchay Breast Can-
cer (FBC) data set is mined using XCS. Results are compared to other classifying
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techniques including Bayesian network classifier, SVM and C4.5 decision trees.
As a preprocessing step, numeric values were normalized and data in nominal and
Boolean attributes were decoded. The imbalance problem is handled by random
over-sampling. Missing data were treated with Wild-to-Wild method; in which miss-
ing values are replaced with don’t-cares for nominal data and general intervals for
numerical data. Results showed that XCS outperformed other methods. The num-
ber of rules produced with XCS was much more than those produced by the C4.5
algorithm. However, these rules were described by a medical expert to be more in-
formative and useful. Clustering and rule compaction were applied on the resulting
rules.

Skinner et al. [77, 78] also use XCS but for EEG signal classification. EEG sig-
nals are characterized by their high dimensionality and noisy nature. This study in-
vestigates the efficacy of XCS in the classification of mental tasks based on human
multi-channel EEG signals. In particular, the binary classification of four diverse
mental tasks for three individuals. The significance of this investigation lies in the
potential to use EEG classification results to control wheelchairs or similar devices
for paralyzed individuals. The novelty of the approach is in the investigation of using
XCS to process large and noisy condition strings. EEG signals were preprocessed
to reduce the number of channels and their associated frequencies. Data was then
segmented. The results were compared with four ML classification methods; naı̈ve
Bayes (NB), SMO, k-nearest-neighbor (k-NN with k=3), and PART which combines
the learning strategies of decision trees and rule learners. Results were compared in
terms of classification accuracy and showed that XCS significantly outperformed
PART and k-NN. XCS was comparable to the SMO but inferior to naı̈ve Bayes.

The study by Skinner et al. [78] investigates the effect of different migration poli-
cies on distributed and parallel XCS classifier population with different topologies
and parameters. The study was performed on the single-step classification for human
EEG signals associated with two mental tasks; Mental Counting and Figure Rota-
tion for two persons. Three topologies were examined; fully connected, and uni- and
bi-directional rings with different number of demes (2, 4 and 8). Migration policies
are based on the selection and replacement criteria for the immigrant rules; based
on their fitness, numerosity, or random. The study concludes that lower migration
frequencies and rates produce better classification performance. High degree of con-
nectivity speeds up the learning process. All policies result in a significant classifica-
tion accuracy improvement with respect to XCS alone. Random immigrant selection
results in a slower learning. Also, fitness-based migration selection increases the se-
lection pressure and thus degrades the classification performance. As for population
size, it is entirely dependent on the immigrant selection policy. Fitness-based im-
migrant selection policy gives better results for the fully connected topology while
random-based immigrant selection is more beneficial for the uni- and bi-directional
rings.

Also in the field of breast cancer is the study by Wilson [97]. The classifier
predicates of XCS describe logical problems by defining hyper-rectangles in the
decision space. In [97], XCS was modified to handle integer input spaces. The mod-
ified version, XCSI, was tested on oblique data. The study started with a simple
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2-dimensional synthetic oblique data for which XCS achieved 100% (training) clas-
sification accuracy. A second experiment was conducted also with synthetic oblique
data that resembles the UCI WBC dataset in terms of the number and type of
attributes, their data ranges and the number of instances. Again 100% (training)
performance was achieved although slightly slower. The final experiment used the
UCI WBC dataset with a 10-fold cross-validation technique. Accuracies averaging
95.56% were reached. Results further show that the hyper-rectangles modeled by
XCS predicates were good at approximating the oblique discrimination surface of
the data. Also, results suggest the presence of logical patterns in WBC dataset that is
evident by the presence of several accurate classifiers showing logical dependencies
on one or a few attributes. Classifiers describing regions close to the discrimination
surface feature a match set with strong evidence on both directions that can be used
for risk of disease analysis instead of a concrete diagnosis.

The first LCS ensemble was introduced by Gao et al. [28]. The Learning
Classifier System Ensemble (LCSE) [28] is an extension of LCS that aims at achiev-
ing better generality through using several sub-LCSs. Diabetes data input is dis-
tributed over these sub-LCSs. Each sub-LCS may then produce different rules even
for the same input data. Results are then aggregated by means of a popularity voting
method. Overfitting problem is managed with a 10-fold cross-validation approach.
Results of LCSE outperform LCS, DTs and ANNs as well. Experiments also show
that the accuracy of results increases with the number of sub-LCSs.

Unold and Tuszynski [91] applied ACS to three data mining data sets from the
UCI repository; Monks, Voting-record and WBC. Results show that ACS achieve
results no less than 97% except for the Monk’s 2 data set, were the accuracy was
limited to 75%. A comparison with XCS, XCS with s-expression (XCSL) [52, 53]
and C4.5 shows that overall; XCS and XCSL achieved best results. XCSL have
succeeded in producing the least rule set size. C4.5 was far behind. Future research
aims at developing ACS to enable the handling of attributes of continuous type.

A modified version of ZCS for data mining applications named ZCS-DM is pre-
sented and applied to several UCI repository datasets including WBC, Hepatitis,
Pima Indiana Diabetes and Bupa Liver Disorder benchmark sets [89]. The main
changes include evolving the action part as well as the condition part and using
user-tunable reward/penalty for the different class combinations (predicted and ac-
tual classes). In their model, users decide the number of individuals in the population
and whether the action selection mechanism is deterministic or stochastic. A pre-
processing step involves removing all duplicate rules after adjusting their strength.
Rules are ordered based on their strength and either the first matching rule is se-
lected or a voting scheme is employed. Missing values were treated by setting their
corresponding predicates in the rule’s condition part to true. Experiments were done
using a 10-fold cross-validation and results show the classification accuracy advan-
tage of the proposed model in 11 out of 12 UCI datasets over the DT algorithm
C4.5, XCS and HIDAR [2]; which is a hierarchical decision rule that uses a sequen-
tial covering GA. C4.5 was the fastest algorithm.

An improved Pitt-style LCS is introduced by Peroumalnaik and Enee [66]. The
training set is equally partitioned among the individual classifiers following the
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divide-and-conquer approach. Since prediction is performed by the whole popu-
lation, and GA combines the genetic material of different individuals, the authors
argue that the partitioning would eventually lead to a segmentation of the cogni-
tive space. The proposed algorithm was tested on four medical UCI data sets with
various parameters for the population size, number of rules per individual and rule
selection strategy (random, most general or most specific). The proposed method
has produced good results for the Wisconsin Diagnostic Breast Cancer (WDBC)
dataset using a 10-fold cross-validation. No comparison with other methods was
performed.

7.4.2 Other Hybrid Metaheuristics

Applying multiple classifiers is analogues to consulting a team of specialists. Each
specialist considers the problem from a different perspective thus allowing the ex-
ploration of different regions of the search space. Multiple classifiers usually result
in higher accuracy compared to a single classifier [88]. This is because the strengths
of one method are utilized to complement the weaknesses of another [49]. The use
of multiple classifiers is particularly useful for imbalanced data sets [88]. In ad-
dition, using multiple classifiers usually feature a strong generalization ability [28].
As classification model learners, there are endless possibilities for hybridizing meta-
heuristics together or with other classification methods in seek for a better classifier.
However, using multiple classifiers comes in one of two forms. The first form is
the ensemble classifier [28, 57]. Classifier ensembles achieve model diversification
by using different subsets of training data with a single learning method, differ-
ent training parameters with a single learning method, or using different learning
methods [49].The second form for using multiple classifiers is employing a hy-
bridization of metaheuristics with machine learning and/or evolutionary computing
methods [3, 9, 18, 73, 84].

Like employing a team of specialists, the cost of using multiple classifiers is more
than that of a single classifier. First, since all component classifiers need to be stored
after training, the storage requirement increases accordingly. Second, all component
classifiers need to be processed adding to the computational cost. Finally, it is more
difficult when using multiple classifiers to comprehend the underlying reasoning
and conclude a classification, particularly for non-experts [49].

An ensemble method for the detection of breast cancer from x-ray images is in-
vestigated by the authors in Lo et al. [57]. The proposed classifier was chosen as
the joint winner in KDD Cup 2008. The data set is characterized by being highly
imbalanced. The ratio of positive samples to negative samples is 163. Each patient
is represented by a set of data points. The evaluation criterion was to minimize the
AUC per patient rather than per data point. This was intended to minimize over-
fitting. The ensemble consisted of four classifiers; AdaBoost, Class-based SVM
(CB-SVM), Patient-based SVM (PB-SVM), and GA. In CB-SVM, the intention
was to balance the positive and negative classes. A class-sensitive loss function was
employed where the weight of positive samples was 163 times more than that of
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negative ones. The problem faced was that patients with fewer positive instances
were more difficult to identify than those with more positive instances. To resolve
this problem, PB-SVM was designed such that the sum of weights of positive sam-
ples was equal to the sum of weights of negative ones. In addition, for each patient
i, the sum of positive sample weights is equal to that of patient j. A slight improve-
ment was obtained over the CB-SVM. AdaBoost was based on 50 weak learners,
were Classification and Regression Tree (CART) was chosen as a weak learner. As
for GA, the fitness was based on the AUC itself and resulted in better recognition of
patients with fewer positive instances. The best ensemble outcome was obtained by
averaging the two best classifiers.

The study by [3] focuses on randomly generating data sets based on the observed
data and that will maximize classification accuracy. This technique is particularly
useful in cases featuring missing data, small training data set size or noisy data.
The study suggests an iterative hybrid model that starts with applying the Bayesian
method based on the expected maximization algorithm (EM). Misclassifications are
recorded. Next, a new data set twice as large as the observed data is randomly gen-
erated. A k-NN classifier is trained on this data and tested on the observed data set.
This process is repeated until a lower misclassification rate is observed. Then, GA
is used to further improve the generated instances. Bayesian classification based on
EM is applied on the resulting data and new data generations are evolved and tested
until an improved misclassification number is obtained. The algorithm was applied
to five UCI data sets including Iris, Breast Cancer, Wine, Yeast and Glass. Results
were compared against using the Bayesian classification based on EM alone. Im-
provements up to about 75% were recorded for the Breast cancer data set. On the
other hand, Wine dataset resulted in a slight retrogression. The algorithm involves
several iteration cycles resulting in an increased computational time. Also, results
were not compared to other algorithms that are not based on data set generation.

Bhattacharyya et al. [9] present an introductory work for the diagnosis of can-
cerous cells from human-extracted low-resolution biopsy BMP images. Currently
the diagnosis is based on the subjective pathologist evaluation of the tissue sam-
ple. The authors introduce a new automated diagnostic method that is based on the
generic organizational structure of tissue cells. Two phases are implemented. The
first is constructing the Cell Graph. This step transforms the BMP image into a
monochrome graph; where nodes correspond to cells or cell clusters depending on
the resolution used. Edges are assigned on a probability based on the Euclidian dis-
tance between the nodes. The second phase is graph coloring using the minimum
number of colors such that nodes within the same range of Euclidian distance obtain
the same color. Memetic algorithms (MAs) are used to optimize graph coloring. In
this work, MAs are composed of a heuristic search; sequential graph coloring algo-
rithm, and a genetic algorithm with a modified mutation operator. The output of the
program was the number of colors used for the sample image. It was not clarified
how cancerous cell diagnosis can be derived from this information. However, the
work provides more formalism about the density/organizational characteristics of
the tissue cells that aid in the diagnosis process.
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A hybrid tabu search–simulated annealing rule induction algorithm for classifica-
tion tasks is presented by Chorbev et al. [18]. Continuous attributes were discretized.
Classification rules are created incrementally and pruned for better readability and
higher predictive value. The probability of an addition of a term to a classification
rule depends on the entropy of the attribute’s value as opposed to entropy in deci-
sion trees that is computed for attributes as a whole. Tabu timeouts aim at reducing
the probability that a particular attribute value is selected twice; therefore increasing
the search diversity. The quality of a rule computed as the product of sensitivity and
specificity serves as the energy parameter for SA. An initial high temperature in SA
allows low quality solutions to be accepted in the beginning for better exploration of
the search space. As the search proceeds and the temperature cools down, only high
quality rules will be accepted into the final rule list thus intensifying the search in
promising areas. The proposed classification algorithm was compared against Ant
Miner and the rule induction algorithm CN2 on four UCI medical datasets. In terms
of predictive accuracy, Ant Miner was in the lead. However, in terms of the number
of rules and terms per rule, SA Tabu Miner achieved good results that outperformed
CN2 and was highly comparable to that for Ant Miner.

Rojanavasu et al. [73] present the use of self-organized maps (SOMs) as a pre-
gate. That is, the SOM is used to cluster the data on-line and thus decomposing
the search space into smaller sub-problems that are conceptually simpler. Class
labels for the data are masked in this phase. Separate classifiers are then used to
learn each sub-problem. The paper investigates the utility of connecting the pre-
gate to two different classifies; a set of sUpervised Classifier Systems (UCSs) thus
forming Self-Organized UCS or SOUCS; and an artificial neural network (ANN)
thus forming SOANN. ANN layout is fixed for each dataset. The authors experi-
ment with three data sets; the first is a group of five synthetic problems of increas-
ing complexity. The second is a set of UCI datasets, and the third is a large and
complex Forest-Cover-Type dataset from the Roosevelt National Forest in north-
ern Colorado. Experiments have been applied with varying number of SOM sizes
(2× 2, 3× 3,and 4× 4); which implies a different number of UCS classifiers, and
varying the number of individual UCS populations. All experiments are done us-
ing 10-fold cross-validation. In comparison with UCS alone and other published
work, SOUCS showed an equivalent or better results in terms of classification accu-
racy except for the Forest-Cover-Type data set. The complexity of this dataset was
not properly addressed by the smaller population sizes in the individual constituent
UCSs. The SOUCS was superior in terms of computational time. The reason is the
smaller population size in each UCS. Experiments also show the high sensitivity of
the outcome to the population size and number of SOM cells as well as the problem
type. This was suggested as a future research line. The ANN/SOANN environment
obtained better results for the Forest-Cover-Type dataset but no better in the rest.

Finally, in Tan et al. [84], a two-phase strategy is presented as follows: the first
phase uses a hybrid Michigan GA and GP, to produce per-class single rule poles
in the form of: 〈IF X1 and X2 and · · · Xn THEN class = Y 〉. Michigan GA is ap-
plied to numeric data while the GP is applied to nominal data sets. The second phase
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involves applying Pittsburgh GA to find an optimal combination of the result-
ing rules with the OR operator. The population is divided into a number of sub-
populations evolving simultaneously and corresponding to different number of rules
in a single solution (rule set). Results of applying the algorithm to hepatitis prog-
nosis (live/die) and breast cancer diagnosis (benign/malignant) were very encourag-
ing and outperformed other classification methods like the DT algorithm C4.5 and
trained neural networks. However, the system is computationally expensive and is
suited for off-line classification.

7.4.3 Hybrid Metaheuristics for Enhancing Classification
Accuracy in Medical Data Classification

Metaheuristics like GA that are well known for solving complex optimization prob-
lems can be used to optimize classification models obtained using other data mining
techniques. The idea is to evolve a population of individuals (classification mod-
els or classification model components) that compete on the basis of their fitness.
This ‘fitness’ measure can be defined in terms of their classification accuracy, com-
pactness, computational complexity, or some other similar or compound measure.
For example, a two-stage hybrid machine learning classifier approach is proposed
by [75]. The first phase involves creating an initial classification rule set by the
C4.5 decision tree classifier. 3-Fold cross-validation is used and the best accuracy
generated rule set out of the three is used for the second stage. In the second
stage, a genetic algorithm with one-point cross-over and optional mutation is ap-
plied to improve the generated rule set. Rules having invalid class type and resulting
from crossover operation are omitted. Invalid attribute values in rules resulting also
from crossover operator are replaced with don’t-cares. In comparison with accuracy
scores of the C4.5 alone and the accuracy-based learning classifier UCL, the pro-
posed approach produced better classification results over most of the eight UCI
data sets used in the study.

The second example on the use of hybrid metaheuristics for enhancing classifi-
cation accuracy in medical data classification is the work by Pham and Triantaphyl-
lou [68]. While most studies assign equal weight to the different types of error for
a classifier; FP, FN, and UC (un-classifiable), the study by Pham and Triantaphyl-
lou [68] focuses on the optimization problem of the penalty costs for those three
error types. The study investigated the use of three traditional machine learning
classification algorithms; DT, SVM and ANN in combination with a metaheuristic
termed Homogeneity Based Algorithm (HBA) [67], to optimize the penalty costs
of the three error types. HBA works on defragmenting the decision surface space
resulting from the classifiers into homogeneous regions according to their density.
In addition, GA is also applied to optimize the parameters for HBA. The proposed
hybrid system was tested on five medical datasets from the UCI repository. Results
were compared to using the three classification algorithms alone and with other
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published studies. It is shown that using HBA significantly improves the classifica-
tion accuracy for all five datasets. The shortage of HBA is its high complexity as it
cannot deal with datasets with a high number of attributes (greater than 10). This is
currently the research focus of the authors.

7.5 Hybrid Metaheuristics for Model Selection in Medical Data
Classification

There is a recent trend to use optimization techniques, including mainly EC meth-
ods, for parameter selection, feature subset selection, class representative selection
and even for preprocessing and classifier selection. These factors highly affect the
quality of the resulting classifier. For example, there is no rule of thumb on how to
guide parameter setting for ANNs. Usually these are determined experimentally for
each problem. Also, the high dimensionality of the data set not only slows down
the classification process, but also confuses the classification algorithm and may
lead to poor results [33]. The main benefit is the achievement of competitive classi-
fiers without using background knowledge, careful data analysis, long experimental
trials, or even knowledge about the classification model being employed [24].

Model selection is defined as “estimating the performance of different models
in order to choose the best one” in describing a dataset [35]. There are many in-
terpretations for model selection, these include parameter selection and optimiza-
tion [15, 17, 25, 60], feature subset selection [90, 93], artificial neural network mod-
eling including learning the weights of the neural nets [61, 80, 81], or optimizing
the architecture of the neural net [16, 43]. Reference [24] have extended this def-
inition and introduced the so called full model selection (FMS). In this system, a
pool of preprocessing methods, feature subset selection and learning algorithms is
introduced and the task is to select the best combination that would yield the lowest
classification error for a given problem. In addition, the parameters for these meth-
ods are being selected as well. Stochastic optimization algorithms are well suited
for dealing with the vast search space introduced by such problems. This section
samples published work that utilize hybrid metaheuristics for model selection in
medical data classification. Section 7.5.1 focuses on their use for feature subset se-
lection. Section 7.5.2 illustrates the use of hybrid metaheuristics for ANN model
selection in medical data classification. Finally, sect. 7.5.3 exemplifies their use for
FMS. Table 7.3 presents a summary of these systems.

The work by Candelieri [15] is derived from the author’s PhD thesis. The paper
investigates and compares the hybridization of several metaheuristics including GA,
TS and ACO to perform model selection for an SVM classifier both as a single clas-
sifier and as an ensemble. In this framework, SVM is used for learning the classifica-
tion model. In the case of single classifier, the metaheuristic is either used to search
for the best performing kernel function (linear, Normalized Polynomial, or Radial
Basis Function) and its associated parameter(s); of which the author calls Model
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Selection. The second feature, Multiple Kernel Learning, is to use the metaheuristic
to optimize the n kernels along with their related parameters and coefficients. In
the case of Ensemble Learning, the metaheuristic is used to find the best m SVM
classifiers and their associated weights for combination. ACO was only applied to
Multiple Kernel Learning. The framework was tested on 8 datasets of which several
were medical. Balanced classification accuracy using 10-fold cross-validation was
used for evaluation. Results show that the three models were highly competitive.
GA was generally faster and more effective than TS. As for ACO, results were
comparable to the others and promising as a new application.

In a study by Chen et al. [17]; classifier parameters and data features are stochas-
tically chosen and evolved independently using scatter search [31]. The parameters
were for an ensemble of three classifiers; SVM, BP-ANNs and DT (C4.5). Data
instances with missing values were removed from all classifiers except for the DT.
Each classifier was run three times and a majority voting was obtained to combine
the 9 runs. Experiments were conducted on 18 UCI datasets and were compared
to four similar studies of which some involve using ensembles of a larger number
of classifiers. The proposed approach achieved the highest classification accuracy.
Also, in comparison with results of individual component classifiers, the average
performance of the ensemble outperformed the single classifiers.

Fan et al. [25] introduce a four-stage model for medical data classification that
utilizes data preprocessing and clustering techniques for improved classification ac-
curacy. Comprehensibility of the generated model was a main objective. First stage
involved feature subset selection using step-wise regression. Selected features are
then weighted by the gradient method. The next step involves case-based reasoning
(CBR) clustering of the input data. Next, the fuzzy Triangle member ship function
is applied to discretize the data and ID3 decision tree is applied to build a classi-
fication tree for each cluster. The last step involves evolving the fuzzy terms used
in the decision tree by means of genetic algorithms to further improve the classi-
fication accuracy. The model was applied to two UCI datasets; WDBC and liver
disorder. Comparisons against several ML classification methods including k-NN,
naı̈ve Bayes, SVM, fuzzy decision tree, and to other similar studies were done. Re-
sults show the consistent advantage of the proposed model. Average accuracy rate
achieved was 99.5% and 85% for breast cancer and liver disorder respectively. The
paper does not show clearly how GA encoding is done to allow for different number
of fuzzy terms for each feature.

Also to demonstrate the advantage of using evolutionary computation methods
to guide the parameter and class representatives’ choice is the study by Luukka
and Lampinen [60]. This study assess the effect on classification accuracy of
adding noise to dataset features, adding extra noisy variables, and adding all two-
component variables . A simple minimum distance classifier (instance based) was
applied to four UCI data sets; New Thyroid, Hungarian Heart, Heart–Statlog and
Lenses. Minkowsky distance metric parameter and individual class representatives
were stochastically chosen and evolved by using differential evolution (DE) [69].
Three sets of experiments were conducted to study the effect of adding noise di-
rectly to data set feature values or as independent variables as well as adding all
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two-component terms on the classification accuracy. Noise variance and the number
of noisy variables added were varied. Experimental results show improvements in
classification accuracy up to 8% in the case of adding all component terms. Perfor-
mance was degraded in the other cases. However, a comparison with k-NN, SVM,
Discriminant analysis and BP-ANNs showed that the DE-enhanced classifier ob-
tained higher classification accuracy in all experiments. Particularly, BP-ANNs and
the DE-enhanced classifier showed the best results in the extra noise parameters and
the two-component terms experiments.

7.5.1 Hybrid Metaheuristics for Feature Subset Selection in
Medical Data Classification

Many of the feature attributes in a typical medical dataset are collected for reasons
other than data classification. Some of the features are redundant while others are
irrelevant adding more noise to the dataset. The Feature Subset Selection problem
(FSS) consists in selecting the minimum subset of feature that represents the dataset
without loss in classification accuracy [93]. FSS not only reduces storage and com-
putational complexity, but also enhances comprehensibility and classification ac-
curacy particularly in small sample size datasets. FSS also reduce the overfitting
effect [50]. In medical diagnosis, it is desirable to select the clinical tests that have
the least cost and risk and that are significantly important in determining the class of
the disease. There are two approaches for solving the FSS problem. In the filter ap-
proach, features are selected independently of the classifier. In wrapper approach, a
classifier is used to test each feature subset candidate and thus is classifier-dependent
and computationally heavier than the filter approach. FSS problem is NP-hard [50].
Using exhaustive search to find all the possible feature subsets is computationally
impractical, even for a medium sized feature set. This requires the use of heuristics
and meta-heuristics. A recent survey of feature selection problem for machine learn-
ing classification can be found in [50]. What is needed is an algorithm with good
global and local search abilities, that can converge to a near optimal solution in rea-
sonable time, and that is computationally efficient [50]. Nature inspired methods
like Particle Swarm Optimization (PSO) [46] Ant Colony Optimization (ACO) [22]
have been successfully applied for many combinatorial optimization problems in-
cluding FSS. These swarm intelligence search algorithms are based on the collective
behavior of intelligent agents that use both direct and indirect interaction.

For example, in Unler and Murat [90], a Discrete PSO method is applied as wrap-
per feature subset selection methodology for a (binary) classification problem. Lin-
ear regression was chosen as the learning algorithm. Features are considered on
an individual basis and the decision for inclusion combines the feature’s predictive
contribution, independent likelihood as well as the stochastic factor. The feature is
added to the so-far collected feature subset if it results in improved classification ac-
curacy. Computational complexity is managed by restricting the number of features
considered in every iteration. PSO parameters are based on earlier empirical and
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theoretical research. Experiments were conducted on 10 UCI datasets and compar-
isons were made to exhaustive search and Random Subset Generation. Results show
that PSO produced identical or near identical accuracy to exhaustive search accom-
panied with a significant time advantage. Results further show that PSO accuracy
was competitive to Random Subset Generation. Other comparisons were done with
other wrapper feature subset selection methods introduced in published research and
using the same learning algorithm and data sets. These studies include tabu search
and scatter search. Results show the superiority of the proposed algorithm in terms
of both classification accuracy and computational cost.

The ACO metaheuristic was used by Vieira et al. [93] in conjunction with fuzzy
rule-based classifiers. Fuzzy rule-based classifiers perform model learning while
the ACO selects feature subsets. This specialized feature selection ACO is termed
(AFS). It consists of two colonies; the first is assigned the determination of the num-
ber of features to be selected. The second, selects the features themselves. Choos-
ing the cardinality of features is based on Fisher discriminant criterion. The fitness
function is based on minimizing the number of selected features and the classifica-
tion accuracy of the obtained model as evaluated using the fuzzy rule-based classi-
fier. Experiments were conducted using 5 UCI benchmark datasets among which 2
are medical. Results for the medical data sets show a significant improvement over
fuzzy rule-based classifiers alone and also over other published studies that use PSO
and rough set-based feature selection.

7.5.2 Hybrid Metaheuristics for Artificial Neural Network Model
Selection in Medical Data Classification

ANNs are capable of learning complex, non-linear decision surfaces with multiple
classes [43]. A recent survey about machine learning in cancer prediction and prog-
nosis [19] shows that more than half of the surveyed papers were using or referring
to ANNs. The idea was derived from human biological neural system where multiple
neurons are interconnected to each other. The basic unit is called a neuron. The sim-
plest ANN is called a perceptron and is able to do a binary classification task that has
a linear discriminate function. Neurons are organized in layers; producing a structure
called a multilayer perceptron (MLP). The first layer is connected to the inputs. Each
input predictor is normally connected to an input neuron. The last layer produces the
output(s). There is usually one output neuron per class in the dataset [81]. With a
certain precision, a two layer MLP can approximate any classification region [54].
In feed-forward ANNs, the most popular ANNs, there are no backward connections
and no loops. Each node in a hidden layer has connections coming from the nodes
in the previous layer, and others going to nodes in the next layer. Assuming that the
weights of neuron connections are available, the features of an instance are fed to
the input layer, and is propagated through the hidden layer(s), until it reaches the
output layer. Each output neuron is associated with a class. The output neuron that
generates the highest signal wins in determining the class of that instance.
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There is no universal ANN architecture. The architectural design of ANNs should
be optimized for each application [19]. In order to generate an ANN classifier, the
weights of the network’s connections needs to be determined. As these weights
are real-valued, the problem of determining ANN weights (the optimization of the
network training error, or in short training ANNs [61]) can be casted as a continuous
optimization problem [81]. Back-propagation (BP) optimization algorithm [74] is
normally used for tuning the values of the set of weights. It follows a gradient-
decent technique on the error surface and exhibits a local search ability that causes
it to get trapped into the nearest local minima [43].

The problem of simultaneous optimization of the network’s training error and
its architecture can be modeled as a multi-objective optimization problem [1]. Ab-
bas [1] found that combining back-propagation algorithm with an evolutionary
multi-objective optimization algorithm leads to a considerable drop in computa-
tional cost. In the following, an illustration is presented of literature that substitutes
or combines traditional ANN training algorithms with hybrid metaheuristics. The
last two examples use hybrid metaheuristics for the task of optimizing both ANN
architecture and training error.

The use of Estimation of Distribution Algorithms (EDAs) [7] is investigated by
Madera and Dorronsoro [61] for the training of ANNs. The ANNs are used for
the medical classification task of four PROBIN1 benchmark datasets. EDAs are
evolutionary stochastic search techniques that base the construction of a new gen-
eration on estimations of the probability distribution of current population, rather
than by means of variation operators. In this study, six different EDAs are being
tested. These algorithms cover discrete and continuous search spaces and in each
type of search space, three different correlation types of input variables are tested:
those without dependencies, with bivariate dependencies and multiple dependen-
cies. Training–testing method was used rather than the cross-validation. The per-
formance was compared against other famous ANN training techniques; namely
BP and Levenberg–Marquardt (LM) [32] algorithm. Performance was also com-
pared to few ANN training techniques based on EAs; including those using GAs,
MAs, or evolutionary programming (EP) [26, 27]. In general, EDAs performance
was comparable to the others. This initial result is promising as further parameter
tuning might likely improve the findings. EDAs for discrete domains were gener-
ally slower and less accurate than those for continuous domains. This is due to the
large search space resulting from the discretization of the input variables. In addi-
tion, EDAs based on higher degrees of dependencies are better suited for the more
complex problems as they exhibit slow convergence.

The study by Smithies et al. [80] aims at predicting the recurrence of colorec-
tal cancer. In particular, the study tests the efficacy of a type of chemotherapy
termed FUFA in preventing cancer recurrence. The data set obtained from NHS
hospitals in the UK features different types of attributes and a considerable amount
of missing data. The classification process started with a relaxed linear regres-
sion stage to remove irrelevant attributes and those with markedly missing data.
Next, data is clustered to better deal with the different data types and allow a bet-
ter inference mechanism for missing data rather than statistical methods. A new
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clustering methodology is introduced that is tailored to data with mixed attribute
types. Each cluster is then fed to a three-layer feed-forward ANN ensemble. The
members of each ensemble differ only in the number of hidden nodes. For training
the neural nets, local search is combined with a modified form of back propagation
algorithm known as the batched error back propagation with an enhanced Resilient
Propagation for learning rate adaptation (iRPROP). The combination of gradient-
independent local search with the gradient-based enhanced iRPROP has shown to
enhance the classification performance. In addition, the proposed search algorithm
utilizes the forbidden neighborhood region idea from tabu search. Given that previ-
ous studies focus on statistical models, the 66% of patients being correctly predicted
forms a promising result and encourages further enhancements.

Reference [81] extends the ACO algorithm to tackle unconstrained continuous
optimization problems; ACOR. It is then used to optimize the weights for a feed-
forward ANN used in a medical classification task. Classification is applied on
three PROBIN benchmark medical datasets. The resulting performance was com-
pared against two neural network training algorithms; BP and LM. Training–testing
method was used rather than the cross-validation. As a general optimization algo-
rithm and unlike BP and LM, ACOR does not require that the neuron function is
known and is differentiable. However, ACOR does not exploit additional informa-
tion, such as the gradient information. Results show that the performance of ACOR
was inferior to the other two. A hybrid approach was also tested where ACOR was
combined with BP (ACOR-BP) and with LM (ACOR-LM). In the hybrid approach,
each solution of ACOR is enhanced by running a single iteration of the BP or LM
methods respectively. The performance of the hybrid approached was comparable to
BP and LM and in some cases outperformed them. The proposed algorithms where
also compared to GA and its’ hybrids (GA-BP and GA-LM) on the same data sets,
and have significantly outperformed them.

Castillo et al. [16] and Ince et al. [43] investigate the optimization of ANN ar-
chitecture and training error. Castillo et al. [16] used a multi-objective evolutionary
algorithm called MG-Prob for the simultaneous optimization of three objectives; the
reduction of type-I and type-II errors as well as minimizing the artificial neural net-
work’s size. MG-Prob is based on the Single Front Genetic Algorithm (FSGA) [20]
that builds on the Pareto optimality principle. Elite set represents the non-dominated
individuals and in FSGA only a diverse part of this set that is spread across the
search space is copied into the next generation. Individuals are multi-layer percep-
trons (MLPs). The resulting non-dominated individuals in the population are used
as an ensemble to perform the classification. Three methods were used to combine
the ensemble results; voting, average and largest activation among all outputs. Ex-
periments on breast cancer dataset from the UCI repository demonstrate the effec-
tiveness of this method as compared to other methods obtaining slightly better clas-
sification error with a minimal difference between the two type errors, and smaller
network size for individual MLPs.

PSO was used by Ince et al. [43] to set the parameters for feed-forward fully-
connected ANNs and compared the results with those obtained by the traditional BP
training algorithm for different training depths (deep/shallow). Experiments were
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conducted on three UCI Probin1 medical datasets; breast cancer, heart disease and
diabetes. Classification Error Percentage (CEP) was used to measure performance
were CEP = 1−P. Other performance measures were used including mean square
error (MSE) and average processing time (ms). The study concluded that PSO has
better generalization ability and more stable performance with respect to changing
network architecture. On the other hand, BP resulted in better classification accuracy
for smaller networks. The accuracy for PSO and BP is otherwise comparable. BP
training however was consistently superior in terms of computational complexity.

7.5.3 Hybrid Metaheuristics for Full Model Selection in Medical
Data Classification

PSO is used to perform a full model selection (FMS) for a classification task [24].
No background knowledge about the problem is required. Full model selection in-
volves choosing and chaining preprocessing methods (zero or more), feature subset
selection method (zero or one), a learning algorithm and a post processing method
(zero or one). FMS includes the choice of all the associated parameters as well as
the order of preprocessing and feature subset selection (i.e. to perform FSS first or
else preprocessing first). The choice of these methods is made from objects available
at the CLOP machine learning package. This package includes three preprocessing
methods, twelve feature selection methods, ten ML classification algorithms and a
single post processing method. Each individual is encoded such that it represents a
definition to all the previous stages. Fitness is evaluated in terms of balanced error
rate (BER). The advantage of this evaluation criterion is that it considers classi-
fication errors in both classes and thus avoids rewarding an algorithm that favors
the majority class. Computational complexity is reduced by means of sub-sampling
heuristic. The proposed PSO-based FMS was compared to another FMS method
that is based on a simple direct search and optimization algorithm termed pattern
search (PS) [21]. Results show that the PSO alternative consistently outperformed
the PS-based FMS. The proposed algorithm was also challenged against other mod-
els that use background knowledge or are based on model selection for a single
learning algorithm in the framework of a model selection competition named Ag-
nostic Learning vs. Prior Knowledge Challenge. The proposed model has demon-
strated comparable results.

7.6 Conclusion

Medical data classification is a new field of research that will improve the cost,
accessibility, and quality of health care. The complexity associated with medi-
cal data classification prohibits the use of exact methods. This chapter overviews
the state-of-the-art approaches in medical data classification. Studies suggest the
use of fuzzy and hybrid meta-heuristic methods for model learning, selection, and
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optimization. Hybridizing different approximation algorithms, including metaheuris-
tics, is a promising approach. However, most of the studies choose their system com-
ponents arbitrarily, for example due to their success in other fields of study. Model
comprehensibility is an important factor in the selection of these components. There
exists a need for a meta-study that focuses on the basis of choosing hybrid system
components for medical data classification. Perhaps the work by Tanwani and his
team [85, 86, 87, 88] on formalizing medical data complexity forms a gateway to
this area.

The use of transparent comprehensible models enables physicians to validate the
clinical plausibility of the resulting classification hypothesis and allows discovering
new interesting relations. In some cases, obtaining explanations and conclusions
that enlighten and convince medical experts is more important than suggesting a
particular class. XCS particularly showed comprehensible results with high classifi-
cation accuracies. Several studies employing XCS were presented in this document.
However, there is still room for research and improvement. For example, the use of
XCS ensembles is an interesting line of research to be investigated.

Most of the studies highlighted in this document aim at the design of general
classification systems rather than systems that are geared towards a specific medical
disorder. It is true that medical data have many common characteristics. However,
each dataset has its own character (for example, see Table 7.1). Therefore, classi-
fication models that work well with one dataset may not exhibit the same level of
performance on another. Medical data classification may benefit more with focused
research.

Another issue is the evaluation metric. Most studies limit the evaluation metric
to precision (P). As this may be satisfactory in the machine learning and data min-
ing community, it may be not for the medical community. The inclusion of other
evaluation metrics that are routinely used in the medical field would certainly give
more value and depth to the results. For example, Holmes EpiXCS tailor XCS to the
epidemiologic community mainly by considering evaluation metrics needed by the
epidemiologic field.

Due to the societal significance of the subject and also to the computational chal-
lenge it presents, more research in the field of medical data classification is needed.
The papers introduced in this chapter only represent the tip of the iceberg in the
medical data classification field. Despite this wealth in literature, very few systems
are put into practical use. The inclusion of a medical professional in the study team
is a valuable asset that is most often ignored. Several authors have addressed the
clinical approval of intelligent systems before [34, 56, 72] and so they need to be
considered seriously.
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2008/2009. Lecture Notes in Computer Science (LNAI), vol. 6471, pp. 127–144.
Springer, Heidelberg (2010)

88. Tanwani, A., Afridi, J., Shafiq, M., Farooq, M.: Guidelines to Select Machine Learning
Scheme for Classification of Biomedical Datasets. In: Pizzuti, C., Ritchie, M.D., Gia-
cobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 128–139. Springer, Heidelberg
(2009)

89. Tzima, F., Mitkas, P.: ZCS Revisited: Zeroth-level Classifier Systems for Data Mining.
In: Proceedings of the 2008 IEEE International Conference on Data Mining Workshops,
pp. 700–709 (2008)

90. Unler, A., Murat, A.: Discrete Optimization: A discrete particle swarm optimization
method for feature selection in binary classification problems. European Journal of Op-
erational Research 206(3), 528–539 (2010)

91. Unold, O., Tuszynski, K.: Mining Knowledge from Data using Anticipatory Classifier
Systems. Knowledge-Based Systems 21(5), 363–370 (2008)

92. Urbanowicz, R., Moore, J.: Review Article: Learning Classifier Systems: A Complete
Introduction, Review and Roadmap. Journal of Artificial Evolution and Applications,
1–25 (2009)

93. Vieira, S.M., Sousa, J., Runkler, T.A.: Multi-Criteria Ant Feature Selection Using Fuzzy
Classifiers. In: Swarm Intelligence for Multi-objective Problems in Data Mining: Studies
in Computational Intelligence, vol. 242, pp. 19–36 (2009)

94. Walter, D., Mohan, C.: ClaDia: A Fuzzy Classifier System for Disease Diagnosis. In:
Proceedings of the 2000 Congress on Evolutionary Computation, CA, USA, vol. 2, pp.
1429–1435 (2000)

95. Wilson, S.W.: ZCS: A Zeroth-Level Learning Classifier System. Evolutionary Computa-
tion 2(1), 1–18 (1994)

96. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2),
149–175 (1995)

97. Wilson, S.W.: Mining Oblique Data with XCS. In: Lanzi, P.L., Stolzmann, W., Wilson,
S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 158–290. Springer, Heidelberg
(2001)



Chapter 8
HydroCM: A Hybrid Parallel Search Model
for Heterogeneous Platforms

Julián Domı́nguez and Enrique Alba

Abstract. Here we present HydroCM (HydroCarbon inspired Metaheuristic), a par-
allel metaheuristic model specifically designed for its execution on heterogeneous
hardware environments. With HydroCM we actually propose a schema for describ-
ing a family of parallel hybrid metaheuristics inspired by the structure of hydro-
carbons in Nature, establishing a resemblance between atoms and computers, and
between chemical bonds and communication links. Our goal is to gracefully match
computers of different computing power to algorithms of different behavior (GA
and SA in this study), all them collaborating to solve the same problem. The analy-
sis will show that our proposal, though simple, can solve search problems in a faster
and more robust way than well-known panmictic and distributed algorithms very
popular in the literature.

8.1 Introduction

Metaheuristics are an important branch of research since they provide a fast an effi-
cient way for solving problems. In many cases, parallelism is necessary, not only to
reduce the computation time, but to enhance the quality of the solutions obtained.
Many parallel models exist, both for local search methods (LSMs) and evolution-
ary algorithms (EAs), and even parallel hybrid models combining both methods are
present in the literature [4] [6].

In a modern lab, it is very common the coexistence of many different hardware
architectures. It has been proven that such heterogeneous resources can also be used
efficiently to solve optimization problems with standard parallel algorithms [7] [20]
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[21], but there exist few works about the design of specific parallel models for an
heterogeneous environment.

Here we present HydroCM, a hybrid parallel metaheuristic model. With this work
we propose a general model for describing a family of hybrid metaheuristics specif-
ically designed for their execution in heterogeneous hardware environments, being
inspired in the structure of the hydrocarbons that can be found in Nature.

Our contribution is not only methodological, but we also have carried out an
analysis in order to study the behavior of our proposal. For our analysis, we have
implemented two versions of the model making use of two well-known metaheuris-
tics: steady state Genetic Algorithm (ssGA) and Simulated Annealing(SA). We
have compared our proposal against the panmictic versions of these algorithms and
against a unidirectional ring of ssGA islands executed on the same hardware infras-
tructure. Our results show that the running times of our proposal are faster in some
cases and more robust in the rest than the reference ssGA ring.

We will here present an overview of the proposed model as well as the results
of the analysis of the implemented algorithms. Previously, we will start with a brief
review on the background concepts used in this chapter.

8.2 Decentralized, Heterogeneous and Hybrid Parallel
Metaheuristics

In this section we include a quick review on the existing implementations of decen-
tralized and parallel metaheuristics, as well as on heterogeneity. We also include a
description of the metaheuristics used in our hybrid algorithm and how they classify
as hybrid metaheuristics.

Many parallel implementations exist for different groups of metaheuristics. We
will focus in two of the more common families of metaheuristics: Evolutionary Al-
gorithms (EAs) and Local Search Metaheuristics (LSMs). On the one hand, EAs
are population based methods, where a random population is created and further
enhanced through a Nature-like evolution process. On the other hand, only one
candidate solution is used in LSMs, and it is enhanced by moving through its neigh-
borhood replacing the candidate solution by another one, usually one with a better
quality (fitness) value. EAs commonly provide a good exploration of the search
space, so they are also called exploration-oriented methods. On the contrary, LSMs
allow to find a local optima solution and subsequently they are called exploitation-
oriented methods. Many different parallel models have been proposed for each
method, and here we present the more representative ones.

8.2.1 Parallel EA Models

A panmictic EA applies its stochastic operators over a single population, which
makes them easily parallelizable. A first strategy for its parallelization is the use of
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Fig. 8.1 A panmictic EA (a), and two structured EAs: distributed (b) and cellular (c)

a master-slave approach where evaluations are performed in parallel but the popu-
lation, unless divided, is treated as a whole, maintaining its panmictic behavior. It
could be interesting for many tasks, but it does not offer the benefits of a structured
population. Therefore, we are going to focus in structured populations, which leads
to a distinction: cellular versus distributed EAs [3] (Figure 8.1).

• Distributed EAs (dEA): In the case of distributed EAs, the population is divided
into a number of islands that run an isolated instance of the EA (Figure 8.1b).
Although there is not a single population the sub-populations are not completely
isolated: some individuals are sent from one population to another following a
migration scheme. It is common that in this model there only exist a few sub-
algorithms, loosely coupled among them.

• Cellular EAs (cEA): In the cellular model, there exists only one population
which is structured into neighborhoods, so that an individual can only interact
with the individuals inside its neighborhood (Figure 8.1c). Different neighbor-
hood structures can lead to a different behavior. With the cellular model there
exists a large number of sub-algorithms and they are tightly coupled [5].

8.2.2 Parallel LSM Models

Many different parallel models have been proposed for LSMs, but there exist three
models that are widely extended in the literature: parallel multistart model, parallel
moves model, and move acceleration model (Figure 8.2).

• Parallel multistart model: In this model, several independent instances of the
LSM are launched simultaneously (Figure 8.2a). They can exchange individuals
following a migration scheme. This model can usually compute better and more
robust solutions than the panmictic version.

• Parallel moves model: This model is a kind of master-slave model where the
master runs a sequential LSM but, at the beginning of each iteration, the current
solution is distributed among all the slaves (Figure 8.2b). The slaves perform a
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Fig. 8.2 Parallel multistart model (a), parallel moves model (b), and move acceleration model
(c)

move and return the candidate solution to the master, which selects one of them.
This model does not alter the behavior of the sequential algorithm.

• Move acceleration model: The quality of each candidate solution is evaluated
in a parallel centralized way (Figure 8.2c). It is useful when the evaluation func-
tion can be itself parallelized. The move acceleration model does not alter the
behavior of the sequential algorithm.

In both, EAs and LSMs parallel models, each sub-algorithm includes a phase for
communication with a neighborhood according to some topology. This communica-
tion can be carried out in a synchronous or asynchronous manner. Many works have
found advantages in using an asynchronous execution model [8] [11]. Addition-
ally, asynchronism is essential in our study because of the heterogeneous hardware,
which could easily produce bottlenecks, so our communications will be carried out
in an asynchronous way.

8.2.3 Being Heterogeneous

In the models presented above, all the sub-algorithms share the same search
features. But we could modify the behavior of a parallel metaheuristic by chang-
ing the search features between sub-algorithms, obtaining a globally heteroge-
neous hybrid metaheuristic. Also the hardware being used to run the algorithm
can be homogeneous or heterogeneous, so we have not to be confused between the
hardware platform heterogeneity and the heterogeneous software model. Parallel
heterogeneous metaheuristics can be classified into four levels depending on the
source of heterogeneity [3]:

• Parameter level: At this level, the same algorithm is used in each node, but the
configuration parameters are different in one or more of them.

• Operator level: At operator level, heterogeneity is achieved by using different
mechanisms for exploring the search space, such as different operators.
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• Solution level: Heterogeneity is obtained using a different encoding for the solu-
tions in each component.

• Algorithm level: At this level, each component can run a different algorithm. This
level is the most widely used.

Here we present an algorithm level parallel heterogeneous metaheuristic which is
later run in heterogeneous hardware. This solver is based in two different methods.
We have chosen one method of each of the two well-known families, LSMs and
EAs, in order to obtain a good balance between exploitation and exploration. The
used methods are a Genetic Algorithm (GA) and a Simulated Annealing (SA).

GAs are one of the more popular EAs present in the literature. In Algorithm 8
we can see an outline of a panmictic GA. A GA starts by randomly generating an
initial population P(0), with each individual encoding a candidate solution for the
problem and its associated fitness value. At each iteration, a new population P′′′(t) is
generated using simple stochastic operators, leading the population towards regions
with better fitness values.

Algorithm 8. Standard Genetic Algorithm
Generate(P(0));
Evaluate(P(0));
t := 0;
while not stop condition(P(t)) do

P′(t) := Selection(P(t));
P′′(t) := Recombination(P′(t));
P′′(t) := Mutation(P′′(t));
Evaluate(P′′′(t));
P(t +1) := Replace(P(t),P′′′(t));
t := t+1;

end while

In our algorithm, we have actually used a special variant of the generic GA called
steady state Genetic Algorithm (ssGA) [22]. The difference between a common
generational GA and a ssGA is the replacement policy: while in a generational GA
a full new population replaces de old one, in a ssGA only a few individuals, usually
one here, are generated at each iteration and merged with the existing population.

Because of its easy utilization SA has become one of the most popular LSMs.
SA is an stochastic algorithm which explores the search space using a hill-climbing
process. A panmictic SA is outlined in Algorithm 9. SA starts with a randomly gen-
erated solution S. At each step, a new candidate solution S′ is generated. If the fitness
value of S′ is better or equal than the old value, S′ is accepted and replaces S. As
the temperature Tk decreases, the probability of accepting a lower quality solution S′
decays exponentially towards zero according to the Boltzmann probability distribu-
tion. The temperature is progressively decreased following an annealing schedule.

Based on the classic SA, many different versions have been implemented by
using a different annealing schedule. In our algorithm we have used the New Simu-
lated Annealing (NSA) [26], which uses a very fast annealing schedule.
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Algorithm 9. Standard Simulated Annealing
Generate(S);
Evaluate(S);
Initialize(T0);
k := 0;
while not stop condition(S) do

S′ := Generate(S,Tk);
if Accept(S,S′,Tk) then

S := S′;
end if
Tk+1:= Update(Tk);
k := k+1;

end while

8.2.4 Classifying Hybrid Metaheuristics

Attending to the classification proposed by E.-G. Talbi [23] (Figure 8.3), we can
classify a hybrid metaheuristic attending to its structure (hierarchical) or to the fea-
tures of the algorithms involved in the hybrid (flat). Four classes are derived from
the hierarchical taxonomy:

• LRH (Low-level Relay Hybrid). This class of hybrids represents algorithms in
which a given metaheuristic is embedded into a single-solution algorithm. We
can find some examples of LRH in the literature [1] [19].

• LTH (Low-level Teamwork Hybrid). This class comprises combinations of meta-
heuristics with strong exploring capabilities (like most EAs) with exploitation-
oriented metaheuristics (most single-solution metaheuristics). Usually, exploitation-
oriented methods replace or extend genetic operator such as mutation or crossover.
There are numerous examples of this strategy, for example [17] [14] [10].

• HRH (High-level Relay Hybrid). In this class of algorithms, self-contained meta-
heuristics are executed in a sequence. In HRH, an algorithm is used for improving
the results obtained by another one. Many authors have used this idea [24] [18].

• HTH (High-level Teamwork Hybrid). Self-contained algorithms perform a search
in parallel, and cooperating to find an optimum. This model has been widely used
in the literature [12] [25].

As to the flat classification, we can distinguish between:

• Homogeneous/heterogeneous. In homogeneous hybrids, all the combined algo-
rithms use the same metaheuristic, while in heterogeneous algorithms different
metaheuristics are used.

• Global/partial. In global hybrids, all the algorithms search in the whole search
space. However, the search space is decomposed into subspaces in the partial
hybrids.

• Specialist/general. In a general hybrid, all the algorithms solve the same problem,
while specialist hybrids combine algorithms which solve different problems.
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Fig. 8.3 Talbi’s classification of hybrid metaheuristics

Attending to this taxonomy, our model can be classified as a High-level Teamwork
Hybrid metaheuristic, while several self-contained algorithms cooperate in order to
find a solution. HydroCM can be classified as well as heterogeneous, global and
general, because two different metaheuristics search in the whole search space try-
ing to solve the same problem.

8.3 Description of Our Proposal

In this section we present the particularities of HydroCM, as well as we briefly
outline the algorithm that we have implemented in our tests, which has been called
Ethane [13].

8.3.1 An Overview of HydroCM

In this work, we present a generic model for a complete family of parallel hybrid
metaheuristics. The goal of the model is to provide a schema for the islands and
communications of the parallel algorithm to efficiently perform a search over het-
erogeneous hardware architectures.
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Fig. 8.4 Different hydrocar-
bon configurations that can
be found in Nature; their
structures are the basis of
HydroCM

Our model is inspired in the structure of hydrocarbons as we can find them in the
Nature (Figure 8.4). Hydrocarbons are based in only two different atoms, carbon
and hydrogen, and each of them can keep a given number of bounds, being one for
hydrogen and four for carbon.

In our model, we establish a resemblance between computers and atoms in the
hydrocarbon. The bonds between atoms have a correspondence to communication
channels, and double or triple bonds can be modeled as the amount of information
being migrated (intensity of the interaction) or, in the case of non-population based
algorithms, a higher migration rate. In our model, the fastest machines are associated
with central carbon atoms (because of the higher computational effort caused by the
migrations) and the slowest ones are associated with hydrogen atoms.

This model provides us with plenty of different schemes for designing a parallel
heterogeneous algorithm because of the amount of hydrocarbons present in Nature
and their different architectures: linear, ring, branches... obtaining a huge amount of
different combinations depending on the number of fast and slow available comput-
ers and the topology of the network.

Ethane [13] can be viewed as an instance of HydroCM for an environment com-
posed of eight nodes, where two of them are more powerful than the rest, and mak-
ing use of ssGA and SA as the composing atoms. As well as Ethane is such an
instance, we could instantiate many different algorithms depending on the underly-
ing hardware architecture following the model proposed by HydroCM.

8.3.2 Ethane

With Ethane we propose an instance of HydroCM model, based in the chemical
compound of the same name. The chemical compound called ethane consists of
two carbon atoms and six hydrogen atoms, joined together with single chemical
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Fig. 8.5 Communication schema for Ethane G (a) and S (b)

bonds. In ethane, each carbon atom is bonded to three hydrogen atoms, and there is
another bond between both carbon atoms. In our Ethane algorithm, we propose the
same schema, using two basic algorithms resembling different atoms, and migration
channels resembling bonds.

For our study, we have implemented two different versions of the algorithm. In
Figure 8.5 we show the schema for the two instances of Ethane studied in this chap-
ter. Ethane G (Figure 8.5a) assigns a ssGA sub-algorithm to the central nodes, and
a SA sub-algorithm to the slave nodes. On the contrary, Ethane S (Figure 8.5b) al-
locates a SA sub-algorithm in each one of the central carbon nodes, and a ssGA
sub-algorithm in the slave nodes. With this schema, the most of the communication
load falls on the master nodes, which are provided with the best hardware, moving
some of the load out of the slowest nodes.

8.4 Performance Measures and Speedup

In this section we present the performance measures used for assessing the perfor-
mance of the studied algorithms. The measures that are going to be used are the
numerical effort, the total run time, and the speedup.

A widely accepted way of measuring the performance of a parallel metaheuristic
is to check the number of evaluations of the fitness function needed to locate an
optimum. This performance measure is called numerical effort. Numerical effort is
widely used in the field of metaheuristics because it removes the effects of the im-
plementation and the platform, but it could be misleading in many cases for parallel
methods. Furthermore, the goal of the parallelism is not the reduction of the number
of evaluations (this is a goal for decentralized algorithms) but the reduction of the
running time.

The most significant performance measure for a parallel algorithm is the total
run time needed to locate a solution. In a non-parallel algorithm, the use of the CPU
time is a common performance measure. While parallelizing an algorithm should
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definitely include some overhead, for example for communications, we are not able
to use only the CPU time as a performance measure. Since the goal of parallelism
is to reduce the real time needed to solve the problem, for parallel algorithms it
becomes necessary to measure the real run time (wall-clock time) to find a solution.

Because of the non-deterministic behavior of metaheuristics, average values for
time and numerical effort are usually needed. Although 30 runs could provide us
a good estimation, we have executed the tests 100 times in this chapter in order to
perform a rigurous statistical analysis.

In our analysis we will also study the speedup. The speedup represents the
ratio between sequential and parallel average execution times (E[T1] and E[Tm] re-
spectively).

sm =
E[T1]

E[Tm]
(8.1)

For the speedup to be a meaningful metric, we have to take care of many aspects
for its analysis. Because of the aforementioned non-deterministic behavior of meta-
heuristics it is necessary to use average times, being these times the wall-clock
times. The algorithms run in the single and multiprocessor platform must be ex-
actly the same, thus panmictic algorithms can not be used for the analysis. The
algorithms have to be executed until they found the solution or a solution of the
same quality [2]. Since in our study we are working over a heterogeneous plat-
form, our reference point is the execution time of the program on the fastest single
processor.

8.5 Problems, Parameters, and Platform

In this section we include the basic information necessary to reproduce the exper-
iments that have been carried out for this work. First we will present the set of
benchmark problems used for assessing the performance of our proposal. Second
we will briefly explain the parameters used within the sub-algorithms, and then the
underlying hardware and software platform.

8.5.1 Benchmark Problems

In order to assess the performance of our algorithms, we have used two problems
in the analysis: the Subset Sum Problem (SSP) [16] and the Massively Multimodal
Deceptive Problem (MMDP) with 6 bits [15].

The SSP problem consists in finding a subset of values V ⊆W from a set of inte-
gers W = {w1,w2, ...,wn}, such that the subset sum approaches a constant C without
exceeding it. We have chosen an instance with 2048 random integer numbers in the
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Table 8.1 Bipolar deception (6 bits) sub-function value

#ONES sub-function value
0 1.000000
1 0.000000
2 0.360384
3 0.640576
4 0.360384
5 0.000000
6 1.000000

range [0..104] following a Gaussian distribution, being the value of the sum for the
optimum 3256234.

MMDP is one of so called deceptive problems. Deceptive problems are specifi-
cally designed to make the algorithm converge to wrong regions of the search space,
decorrelating the relationship between the fitness of a string and its genotype. In
MMDP a binary string encodes k 6-bit sub-problems which contribute with a partial
fitness depending on its number of 1’s (unitation) following Table 8.1. We have used
an instance with strings of 150 bits so that the global optimum is k = 25.

8.5.2 Parameters of the Algorithms and Platform

The parameters used in every ssGA sub-population are: a population size of 64
individuals, a crossover probability of 0.8 and a mutation probability of 4.0 divided
by the chromosome length. The genetic operators are a single point crossover and
a bit flip mutation. For the SA, we used the same mutation probability. For the SSP
the chromosome length is 2048 an in the case of MMDP its length is 150 for both
algorithms. In the case of the panmictic ssGA, the population size has been set to
64 individuals because larger populations have performed much worse than smaller
ones for the proposed problems in our tests, and they have been not able to find the
solution of the benchmark problems in a reasonable time.

We have chosen a migration frequency of 50 iterations for all the configurations
after several initial preliminary experiments. The number of individuals migrated are
1 in all cases. For the ssGA, the emigrant is randomly selected and the immigrant
always replaces the worst individual of the population. In the SA, the immigrant is
treated as a new move.

The hardware infrastructure used in our analysis 8.6 consists of 8 different ma-
chines: 2 of them have an Intel Core 2 Quad Q9400 @ 2.66GHz processor and
4GB of RAM (namely Type A, fast), the other 6 computers have an Intel Pentium
4 @ 2.4GHz processor and 1GB of RAM (namely Type B, slow). All the comput-
ers are managed by a GNU/Linux distribution, being Debian 5.0 for Type A, and
SuSE 8.1, Debian 3.1 and Ubuntu 6.10 for Type B. The computers are connected
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Fig. 8.6 Schema of the hardware infrastructure

by a Gigabit Ethernet Network. The algorithms have been implemented in Java in
order to support both hardware and software heterogeneity. For the purpose of the
analysis the version 1.6.0 01 of the Java Virtual Machine (JVM) is used in all the
nodes.

8.6 Tests and Analysis

In this section we analyze the behavior of Ethane, and compare it with the well-
known ssGA unidirectional ring. We have analyzed the aforementioned perfor-
mance measures, being numerical effort, total run time and speedup, as well as the
evolution of the fitness.

We have implemented two different algorithms based on Ethane. For the first
one, Ethane G, we have provided the Type A computers with a central ssGA is-
land, and Type B computers with a SA island. For the second algorithm, Ethane S,
the fastest machines run central SA islands and the slowest ones run ssGA. As we
mentioned above, the migration scheme resembles a molecule of ethane as repre-
sented in Figure 8.5. In the parallel ssGA used as reference, the islands have been
distributed over a unidirectional ring, placing the most powerful computers in the
first and fourth place in a sort of MaxSumSort [9]. As we do not know the statistical
distribution of the data, they have been statistically compared with Mann-Whitney
U test.
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Table 8.2 Number of evaluations for the tested models and panmictic algorithms

Algorithm
Subset Sum MMDP6

Average Std. Deviation Average Std. Deviation
Ethane G 146418 174433 1572735 919691
Ethane S 202815 198696 708231 430353
ssGA Ring 214824 239125 786583 805837
Panm. ssGA 179792 175177 * *
Panm. SA 81737 93627 * *

8.6.1 Numerical Effort

In Table 8.2 we show the numerical effort needed to find the optimum for each
algorithm. It can be seen that our proposals performed better than the panmictic
algorithms for both problems (in the case of MMPD, panmictic algorithms where
not even able to find the optimum in a reasonable time). For the SSP, both Ethane
versions performed numerically better than the reference ssGA ring, and one of the
instances (Ethane S) performed better even for the MMDP.

From the point of view of numerical effort, all the differences are statistically
significant according to the Mann-Whitney U test . Note that also the standard devi-
ation is better in our algorithms, so that its behavior is more robust. We can see how
the panmictic SA has reached the solution with less numerical effort because SA is a
fast converging trajectory method, but as we will see in the forthcoming analysis of
the run time, the time needed to find a solution is worse than for the studied parallel
models.

Since the objective of our model is the reduction of the total execution time let us
begin with the study of a more meaningful performance metric, the total run time.

8.6.2 Total Run Time

Table 8.3 shows the average execution time of each algorithm for each problem
until global optimum is reached. As we can see, our proposals performed clearly
better than the panmictic algorithms for both problems (remember that the panmictic
algorithms where not able to find the optimum for the MMDP in a reasonable time)
as well as better than the ssGA ring does.

As we can see in Table 8.3, Ethane G was the best performing algorithm for the
SSP problem. The Mann-Whitney U test gives a p-value of 0.0412 for the Ethane G
compared to the ssGA ring, so the difference is statistically significant. The average
time needed for Ethane G to find a solution is more than 30% better than for ssGA
ring.

Ethane S was the best algorithm solving the MMDP problem, with an average
time slightly better than the ssGA ring, but with a much lower standard deviation,
as Mann-Whitney U test confirms with a p-value of 0.007. The standard deviation
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Table 8.3 Time - ms - for the tested models and panmictic algorithms

Algorithm
Subset Sum MMDP6

Average Std. Deviation Average Std. Deviation
Ethane G 5318 6226 9195 4942
Ethane S 7155 6922 3052 1546
ssGA Ring 7453 8107 3194 3380
Panm. ssGA 30008 29387 * *
Panm. SA 13300 15443 * *

of ssGA is more than twice the standard deviation of Ethane S. This means that the
two representative instances of the Ethane family evaluated in this chapter can be
both more efficient and more robust/stable than standard sequential and distributed
popular algorithms.

8.6.3 Speedup

In Table 8.4, we can see a summary of the execution time of the studied algorithms
within a single processor and its speedup with respect to the execution in the eight
processors heterogeneous platform. As we can see, both versions of Ethane have
obtained a better speedup than the ssGA for the SSP, but only Ethane S has achieved
a better speedup for the MMDP.

As it is shown in Table 8.4, Ethane G has performed better than the reference
ssGA ring even in a single processor in the case of SSP. Even when its performance
over a single processor is still better, its speedup is the best of the three models.
However, in general, the value for the speedup is not good for any of the algorithms
for this problem, being the value for Ethane G a small 3×.

Ethane S still performed slightly better than the ssGA ring for a single processor
for both problems. Even the speedup is better in both cases, being the best of the
studied algorithms for the MMDP with a value of 6.76×. In the case of MMDP the
speedup of the three algorithms was quite good although linear speedup was not
reached.

In the case of SSP, Ethane G and S have not showed a very good speedup, and
ssGA has showed even a worse speedup. This fact could be explained by the huge
difference among the computational power of the different hardware configurations

Table 8.4 Time - ms - for the tested models in a single processor and its speedup

Algorithm
Subset Sum MMDP6

Avg. time Speedup Avg. time Speedup
Ethane G 15995 3.00× 41943 4.56×
Ethane S 17817 2.49× 20627 6.76×
ssGA Ring 18137 2.43× 21227 6.64×
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used (remember that the reference point for speedup is the best performing pro-
cessor). Heterogeneous hardware might not be expected of very high speedup as
homogeneous hardware.

8.6.4 Evolution of the Fitness

Figures 8.7 and 8.8 are showing, for each algorithm and each problem, the execution
whose value for the run time is the median of the results.

In the case of SSP, the Figure shows that the two Ethane versions clearly outper-
form the ssGA ring, converging quite faster. We can see how Ethane G performs
even better than Ethane S for this problem.

For the MMDP, Ethane S performed clearly better than Ethane G as we can see in
Figure 8.8. Ethane S outperformed the ssGA ring, but the difference is not as large
as with the SSP.

Fig. 8.7 Evolution of the fitness (time (ms) vs. fitness) for SSP

Fig. 8.8 Evolution of the fitness (time (ms) vs. fitness) for MMP
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8.7 Conclusions

In this chapter we have presented a general model for designing hybrid algorithms
depending on the underlying heterogeneous platform, inspired in the structures of
the hydrocarbons present in Nature. We have also analyzed an instance of Hy-
droCM: Ethane, a hybrid parallel search algorithm based on the structure of ethane.

We have performed a set of tests in order to assess the performance of our pro-
posal, and compared it with a well-known state-of-the-art model, the ssGA unidi-
rectional ring, and two well-known algorithms: SA and ssGA. Our tests have shown
that the hybrid model can perform better in terms of time and numerical effort than
the reference model, and Ethane is even able to find the solutions in a more ro-
bust/stable manner. Also the speedup of the proposed models is competitive with
that of the reference model, obtaining quite good values even with the huge differ-
ences between the performance of the computers of the heterogeneous platform.

With HydroCM, our goal is to offer a hybrid general model for gracefully match-
ing computers of different powers to run different algorithms for efficiently solve
the same problem, in a way that an heterogeneous platform does not constitute a
problem but, on the contrary, could be used as a target platform for specialized new
parallel algorithms.
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Chapter 9
A Multi-thread GRASPxELS for the
Heterogeneous Capacitated Vehicle Routing
Problem

Christophe Duhamel, Christophe Gouinaud,
Philippe Lacomme, and Caroline Prodhon

Abstract. This chapter focuses on the definition of an efficient parallel metaheuris-
tic which takes advantage of the multi-core design of recent processors. The ap-
proach is designed as a Greedy Randomized Adaptive Search Procedure (GRASP)
hybridized with a multi-threaded version of an Evolutionary Local Search (ELS)
metaheuristic scheme. Our approach is evaluated on an extension of the Vehicle
Routing Problem where a heterogeneous fleet of vehicles is available to service a
set of customers. The objective consists in designing a set of trips for a limited
heterogeneous fleet of vehicles located at a depot node which minimizes the total
transportation cost. Each type of vehicles is defined by a capacity and by the num-
ber of available vehicles. The efficiency of the parallel approach is evaluated on a
new set of real-life instances built out of data from the French districts. A fair com-
parative study, using a same implementation, is done to evaluate the impact of the
number of threads on the convergence rate. Thus, a better trade-off between solution
quality and computational time can be reached. The numerical experiments show
that the hybrid GRASPxparallel ELS outperforms the classical iterative version and
provides numerous new best solutions.

9.1 Introduction

The design of parallel implementations of metaheuritics has received a considerable
amount of attention in the last two decades with the development of new hardware
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technologies which provide several efficient and cheap opportunities. This chap-
ter focuses on the definition of a Greedy Randomized Adaptive Search Procedure
(GRASP) hybridized with a multi-threaded version of an Evolutionary Local Search
(ELS) metaheuristic scheme which takes advantage of the multi-core design of the
recent processors. Our approach is tested on the Heterogeneous Vehicle Routing
Problem (HVRP), an extension of the classical Vehicle Routing Problem (VRP)
where a heterogeneous fleet of vehicles is available to service a set of customers.

A brief reminder of the recent technological advances in parallel implementa-
tions of algorithms is presented in the next Section, with a state of the art on parallel
metaheuristics. Then, Section 9.3 introduces the problem under consideration in this
chapter, the HVRP. The parallel hybrid framework is stated in Section 9.4. Its imple-
mentation for the HVRP is explained in Section 9.5. Then, the details of the compo-
nents of the method are exposed in Section 9.6. Finally, a computational evaluation
of the method is proposed through Section 9.7 before concluding remarks.

9.2 Parallel Metaheuristics

Before presenting our hybrid metaheuristic based on a GRASP and a parallel im-
plementation of an ELS scheme, this first section gives an overview of the available
technologies and of the state of the art to justify our choice of a multi-thread imple-
mentation to solve the HVRP.

9.2.1 Technologies

Parallel computating environment offers various ways to implement parallelization.
More specifically, three main trends can be identified.

Historically, the first trend is based on computer cluster architectures and soft-
ware environment. It relies on communication frameworks as MPI (Message Pass-
ing Interface) and it usually requires a large communication bandwidth in order to
stay efficient. Such an approach provides a master-slave message passing paradigm
but it also requires a huge financial investment in order to build the cluster and the
high speed communication network.

The second trend is more recent. It consists in taking advantage of the capabilities
of the graphics processors included in modern computers (Graphics Processing Unit
- GPU ). Even if they were first developed to afford the computing requirements
of the visual effects in modern 3D games, it has been lately evidenced they could
be used for other purposes. For instance, NVIDIA provides a CUDA (Compute
Unified Device Architecture) library with a user-friendly C++ interface in order
to simplify the development of parallel algorithms. Their GPU can handle a huge
number of threads to be used but they are unfortunately gathered in blocks with a
slow shared memory. Depending on the GPU capability, the dedicated memory is
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limited to several kilobytes. This is a strong limitation, especially when one needs to
implement Operations Research algorithms in which the amount of required data is
large. Note also that GPU frequency is quite low when comparing to modern CPU
(Central Processing Unit). In the same trend, a new generation of parallel computing
architectures (as in Tesla workstations), designed by NVIDIA as well, delivers fast
data-parallel processing. It is however limited to dedicated and professional complex
supercomputing problems due to the price of such workstations.

The third trend consists in using the multi-core technologies available on every
recent processor to address the parallelization challenge. Those CPU typically of-
fer less parallel threads (from 2-cores for basic processors to 8-cores for high-end
processors, and even more on specific machines) than NVIDIA GPU. However, it
allows a high speed memory and higher frequencies. In addition, the large data ac-
cesses are convenient for Operations Research algorithms. These reasons prompt
us to develop a framework based on this trend even if the parallelization is limited
compared with the number of parallel threads offered in NVIDIA technology.

9.2.2 State of the Art for Operations Research Problems

Various optimization problems have been addressed for years using parallel meta-
heuristics. Literature is scarce and also confusing as papers address a wide range of
problems, propose different approaches and different criteria are used to analyze the
parallelization efficiency.

Experiments in parallelizing metaheuristic for Operations Research problems en-
compass both population-based metaheuristics, such as Genetic Algorithms, and
single solution-based metaheuristics including Tabu Search and GRASP (Greedy
Randomized Adaptive Search Procedure) for instance. The interest mainly comes
from many real-life applications, from scheduling to vehicle routing, when size is
too large to get high quality solutions in a reasonable time for sequential approaches.
Fiechter in 1994 [15] developed an efficient parallel Tabu Search algorithm for the
Traveling Salesman Problem (TSP), implemented on a network of transputers in
OCCAM language (concurrent programming language working on Communicat-
ing Sequential Processes - CSP). The author provided a thorough analysis of the
speed-up, i.e. the ratio of the average CPU time using one transputer and p trans-
puters. He also introduced a careful description of the algorithmic key points which
includes, among others, a diversification and an intensification strategy. Ten years
later, Berger and Barkaoui [24] introduced a parallel Hybrid Genetic Algorithm
(HGA) for the Vehicle Routing Problem with Time Windows (VRPTW) based on
the simultaneous evolution of two populations of solutions focusing on separate
objectives and subject to time windows constraints relaxation. The implementation
uses the PVM (Parallel Virtual Machine) library and the parallel procedure has been
implemented in C++ on a cluster of 19 computers. The master process manages
the execution of the algorithm at a high level. It synchronizes atomic genetic op-
erations and handles the parent selection process. The slave processes concurrently
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execute the reproduction and the mutation operators. Numerical experiments are
based on the medium-scale instances of Solomon. They include 56 instances with
up to 100 nodes. The authors provide a performance analysis of the parallel HGA
and a comparison with previous published methods. Their approach is proven to
be time efficient, cost effective and thus it is competitive as it matches the perfor-
mance of best-known heuristic routing procedures. Moreover RHGA provides six
new best-known solutions.

The Vehicle Routing Problem (VRP) is also addressed by Le Bouthilier and
Crainic [2] using a solution warehouse strategy, in which several search threads
cooperate by asynchronously exchanging information on the best solutions found
so far. The exchanges are performed through a mechanism, denoted solution ware-
house, which holds and manages a pool of solutions. The asynchronous communica-
tion ensures independence of the individual search processes. Each search process
implements a different metaheuristic including an Evolutionary Algorithm and a
Tabu Search procedure. The results obtained on an extended set of test problems
show that the parallel procedure achieves linear accelerations. This approach identi-
fies solutions of comparable quality to those obtained by the best sequential methods
in the literature. Caricato et al. [36] propose a parallel Tabu Search for the pickup
and delivery problem, i.e. a special VRP where each request (product) has to be
transported from an origin node to a destination node by means of vehicles. The
authors introduce two sequential heuristics and a parallel Tabu Search. The method
is run on a cluster of 4 PC, each one including two Pentium III processors. The
code is implemented in C using the MPI library. The Periodic VRP (PVRP) is ad-
dressed by Drummond et al. [32] with a parallel Genetic Algorithm (PGA) and local
search heuristics. The PGA relies on the Island model and includes periodic migra-
tion between islands (local pools) with low frequencies. Experiments are done on a
workstation with 4 RISC System/6000 processors and the methods are implemented
in C using MPI for parallelism. Numerical experiments let authors conclude that the
parallel implementation provides significant advantages not only in terms of run-
ning time but also in terms of search quality. The Heterogeneous VRP (HVRP) has
been addressed in 1998 by Ochi et al. [33] using a parallel Evolutionary Algorithm.
The authors combine a parallel Genetic Algorithm with a Scatter Search and they
apply decomposition procedures (petals decomposition).

Bortfeld et al. [1] introduce a parallel Tabu Search Algorithm for the container
loading problem. They propose a distributed parallel approach based on the concept
of multi-search threads developed by Toulouse et al. [35]. Several search paths are
explored in a concurrent way: cooperation is achieved by the exchange of solutions
at the end of the search phases. The parallel search processes are run on LAN (Local
Area Network) workstations. The efficiency of the parallel Tabu Search Algorithm
(TSA) is evidenced by an extensive comparative test including classical instances.
According to their test, the container volumes are already loaded at a high rate in the
solutions provided by the sequential TSA. Only slight improvements are achieved
by the parallelization. The authors also note that the communication between the
TSA processes weakly contribute to this effect, which corroborates previous similar
results. For instance, Crainic et al. [47] proposed the parallelization of a TSA for
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solving a warehouse location problem. They show that the best results were obtained
without communication between the concurrent processes. Previous experiences in
the field make them consider the parallelization of a method as a relevant methodical
extension, especially if other concepts for the improvement of a sequential method
are already exhausted. They conclude that such an approach provides only limited
enhancements in terms of solution quality.

Parallel hybrid metaheuristics have been proposed for the flexible job shop
problem by [26] including two major modules: the machine selection module is
sequential while the operation scheduling module is run in parallel. Numerical ex-
periments are provided using a NVIDIA GPU Tesla C870 GPU (512 GFLOPS) with
128 streaming processors cores. They use benchmark problems from literature. The
Hybrid Flow-Shop problem with multiprocessors tasks scheduling has recently been
addressed by [26] using a parallel greedy algorithm approach. The algorithm con-
sists on two phases: a destruction phase and a construction one. A similar problem
has been recently addressed by Bozejko [51].

The sequential ordering problem is addressed in a parallel environment by Guer-
riero and Mancini in 2003 [20]. They use a parallel version of the rollout algorithm
first proposed by [17]. It is based on a multi-thread parallelization strategy where
different regions of the solution space are explored by different threads. Informa-
tion exchange is done periodicaly. The implementation is done on a cluster of PC
and the authors conclude that parallelization both speeds up the convergence and
the solution quality. Lately, in 2009, the quadratic assignment problem has been
addressed by James et al. [45] using a Cooperative Parallel Tabu Search (CPTS).
The numerical experiments demonstrate the benefits that can be obtained with par-
allel computing in terms of convergence rate and of solution quality. CPTS provides
several new best solutions. A parallel Scatter Search metaheuristic for solving the
feature subset selection problem in classification is introduced by [22]. Two methods
are proposed to combine solutions in the Scatter Search (SS). The parallelization is
done by simultaneously running the two combination methods. The parallel Scatter
Search achieves values similar to both sequential SS algorithms, but uses a smaller
subset of features. Moreover, the parallel algorithm is more accurate than sequential
algorithms.

Speedups can strongly vary since they depend on the problem and on the meta-
heuristic used for parallelization. Sometimes a slight improvement in terms of solu-
tion quality can be achieved while the computational time remains stable. However
there are many ways to perform a relevant parallelization. For instance, Ribeiro and
Rosseti [13] investigate parallel strategies for GRASP metaheuristics. The experi-
ments they did for the 2-path Network Design Problem show that a speedup about
17 is obtained with the 32-processor cluster. Our aim is to provide a parallel method
that can be run on computers earned in any compagny, i.e. without investing in
expensive machines. Thus our choice goes to a multi-threaded strategy that takes
advantage of the multi-core processors available on any recent computer.

Independently to the parallel technology used and whatever the problem and the
metaheuristic used, the state of the art enable us to name key points for efficient
parallelization. They include the way to perform diversification and intensification,
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and the cooperation mode between threads. These three points are considered in
our approach as summarized in Table 1 from Section 9.4.3. Before detailing them,
next Section exposes the problem used to attest the performance of our GRASP
hybridized with a multi-threaded ELS.

9.3 Heterogeneous Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is a standard NP-hard node
routing problem which has received considerable attention in the last decades,
see [40, 39, 12] for instance. It consists in optimizing the delivery of goods required
by a set of customers. It can be fully defined by considering a depot and a set of
n customers which correspond to the nodes of a complete graph G = (V ;E). V is
the set of n+ 1 nodes, 0 being the depot and 1...n being the customers. Each edge
e ∈ E has a finite nonnegative routing cost ce ≥ 0 and each node v ∈ V \ {0} has a
demand dv ≥ 0. A fleet of homogenous vehicles of limited capacity Q is based at
the depot. The objective is to design a set of trips of minimal total cost to service
all customers. A trip is a circuit performed by one vehicle, starting at the depot,
sequentially visiting a subset of nodes and returning to the depot. The total trip load
must not exceed the vehicle capacity Q. Since split deliveries are not allowed, each
customer is serviced by exactly one vehicle. As stressed in [26], efficient resolution
of medium to large CVRP instances is currently limited to metaheuristics.

In its basic formulation, the CVRP is not realistic enough to accomodate real
features coming from companies. In this context, many extensions have been con-
sidered during the last decades. Thus, keeping track of CVRP development is really
difficult as node routing problems transcends several academic disciplines. In 2008,
Eksioglu et al. [5] have provided a methodology to classify the literature of the
VRP, i.e. a taxonomic framework. Their proposal extends the previous proposal of
Current and Marsh in 1993 [29]. Additional VRP constraints can be classified into
three sets: scenario characteristic, physical characteristics and information charac-
teristics. Scenario characteristics include, for instance, customer service demand
quantity (deterministic, stochastic), load splitting constraints (splitting allowed or
not), time windows (soft time windows, strict time windows), time horizon (single
period, multi period) or customer types (linehaul, backhaul, transfer). Physical char-
acteristics include the number of origin points (single or multiple origins), the time
window types (restrictions on customers, on roads), the number of vehicles (exact
number of vehicles, limited number of vehicles, and unlimited number of vehicles).
Information characteristics include the evolution of information (static or partially
dynamic) or the quality of information (stochastic, deterministic).

In this chapter, we consider the deterministic case in which a company owns a
limited heterogeneous fleet of vehicles. This is an extension of the Vehicle Fleet
Mix Problem (VFMP) for which the fleet is composed of an unlimited number of
vehicles of several types. In VFMP, each type k is defined by a vehicle capacity Qk,
a fixed cost fk, a variable cost vk and a travel cost between pairs of nodes that can
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be defined by a distance matrix (VFMP-F), by a variable (VFMP-V) or by a mix
of both (VFMP-FV). A trip of length L performed by a vehicle of type k has a cost
fk + L.vk. The goal is to compute a set of trips and to assign vehicles to trips to
minimize the total cost. The VFMP typically appears in situations where the fleet is
not yet purchased: it combines tactical decisions (selecting the number of vehicles
to be acquired) and operational decisions (computing the trips and the vehicles as-
signed to them). The Heterogeneous Fleet VRP (HFVRP or HVRP) shares the same
structure as the VFMP with a limited availability ak for vehicles of type k. Both the
VFMP and the HVRP are NP-hard, since they generalize the VRP.

The fleet composition induces a trip assignment to vehicle type and a limitation
on resources for the HVRP case. Thus, the latter is more restrictive. Published meth-
ods are, in most of the cases, dedicated to only one of the three VFMP versions or
to the HVRP. For instance, two articles have recently considered the HVRP only:
Li et al. [21] introduce a Memory Programming metaheuristic and Brandão [4] pro-
poses a Tabu Search algorithm. Prins [12] is the first to propose a single approach to
handle all the non-homogeneous fleet VRP versions. It is based on a Memetic Al-
gorithm specially tuned for each version of either the VFMP or the HVRP. Besides,
he presents a thorough review of the literature on the history of VFMP and HVRP.
Duhamel et al. [9] also handle both the VFMP and the HVRP. Besides, they propose
96 new realistic instances based on data from the real French counties.

Results provided by state-of-the-art methods on “classical” HVRP instances
(Taillard’s instances) are usually very close to the best-known solutions, and they
are obtained within a reasonable amount of time. Thus, these instances cannot be
used to compare the methods anymore. The situation is different on the recent large
instances proposed by Duhamel et al. [9]1. To the best of our knowledge, they are
the only recent large instances available. The aim of this chapter is to emphasize the
interest of a new parallel implementation of ELS to achieve good solutions and to
evaluate the performance on such large instances.

9.4 Hybrid GRASP x Parallel ELS

In this chapter, we propose a hybrid metaheuristic that focuses on the third paral-
lelization trend, i.e. taking advantage of the multi-thread capabilities of the modern
multi-core processors. This choice is motivated by two characteristics:

• first, algorithms dedicated to Operations Research problems typically require
large amount of data and can benefit from shared-memory machines;

• second, our goal is to propose a threaded cooperative search strategy to better
explore the solution space through a functional parallelism. In this context, fine-
grained application is not much useful and parallel programming languages are

1 http://www.isima.fr/˜duhamel, http://www.isima.fr/˜lacomme/
hvrp/hvrp.html or http://prodhonc.free.fr/

http://www.isima.fr/~duhamel
http://prodhonc.free.fr/
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not well-suited. An information synchronization done at a low or medium fre-
quency (medium- or coarse-grained application) is sufficient.

To achieve an efficient cooperative search, we propose a clever parallelization of
ELS embedded within a GRASP.

9.4.1 GRASPxELS Principle

ELS (Evolutionary Local Search) is an extension of ILS (Iterated Local Search). ILS
was introduced by Lourenço et al. [16]. It consists in applying a perturbation to the
current solution S before improving the resulting solution S′ through a local search.
The new solution becomes the new current solution. Note that the perturbation is
similar to the mutation operator found in Genetic Algorithms.

ELS was enhanced by Prins in 2009 [11] for routing problems. It is similar to ILS
except that nd “children” are generated from S at each iteration. Thus, each child
is a copy of S on which a mutation, then a local search, are applied. The best child
is selected to become the new ongoing solution S. The purpose of ELS is to better
explore the current local optimum neighborhood before leaving it.

In addition, to ensure some diversity along the search space exploration, a multi-
start scheme can be implemented. Using any randomized process ensuring diversity,
a set of initial solutions is built. ELS is applied to each initial solution generated in
this set. In this chapter, such a scheme is applied with some diversification brought
by a metaheuristic called GRASP (Greedy Randomized Adaptive Search Procedure)
developed by Feo and Resende [46].

A classical GRASP generates a solution thanks to a greedy randomized heuris-
tic. This solution is improved by a local search and the process is re-iterated until
a stopping criteria is reach. The best solution encountered during the iterations is
saved and returned at the end. In the hybrid version, the local search is replaced by
ELS, leading to the hybrid GRASP×ELS [11]. Both GRASP×ELS and multi-start
ELS have proven to be highly efficient on some optimization problems, including
but not limited to, VRP [11] and LRP [8].

9.4.2 Parallelization

The proposed hybrid metaheuristic is based on the GRASPxELS scheme. It is par-
allelized on the ELS part to bring several concurrent searches in the solution space
attempting to explore even wider regions of the search space. Thus, it belongs to
type 3 according to Guerriero’s classification [20]: several search threads that simul-
taneously perform an ELS with a given degree of synchronization and cooperation.
The whole framework we propose is illustrated in Figure 9.1 and the details of the
components are exposed in Section 9.6.
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Fig. 9.1 Multi-start parallel ELS principle

9.4.3 Key-Features of the GRASP x Parallel ELS

Increasing the number of threads allows more evaluations to be performed. How-
ever, this may not help improving the performances if no further bright strategy is
implemented. Our goal is first directed towards achieving a good speed-up while
keeping a natural and reasonable parallel implementation effort. Thus, the proposed
parallelization relies on an asynchronous cooperative search thread strategy (as seen
in Figure 9.1). On the other hand, a wrong equilibrium between diversification and
intensification may also lead to a premature convergence and trap the method on a
local optimum.

An equilibrium between diversification, intensification and cooperation is im-
portant and it is ensured by all the key-features we promote within our GRASP x
parallel ELS, which are:

• the greedy randomized heuristic through the GRASP scheme;
• the assignment of an initial solution to each thread through a Dispatch procedure;
• the parallel ELS scheme;
• the synchronization of the threads;
• the selection of the solutions to be dispatched;
• the shared memory management.
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Table 9.1 summarizes the impact of those features on the search process. The
next Section presents an effective exploration strategy, adapted to the HVRP. Then
Section 9.6 details the key features

Table 9.1 Parameter impact in diversification, cooperation and intensification

Key features Diversification Cooperation Intensification
GRASP X

Dispatch X X
Parallel ELS X X

Synchronization X
Selection X

Shared Memory Management X X X

9.5 GRASP x Parallel ELS for the HVRP

The solution space exploration should be proficient for the problem under consider-
ation to ensure the best possible efficiency. We consider here vehicle routing prob-
lems, and more specifically the heterogeneous VRP. An exploration that has been
proven effective for routing problems is based on the alternation between two solu-
tion representations: solutions encoded as giant tours (TSP tours on the n customers)
and solutions encoded as sets of trips (see Figure 9.2).

metaheuristic search space

solution space

local
search

split
thread 1 thread 1

thread 1 thread 1

local
search

concat

split
thread p thread p

thread p thread p

concat

Fig. 9.2 Combination of the two search spaces

The alternation between solution representations is based on the following
principle:

• Split: a giant tour T , made of the n customers to visit, is transformed by a split-
ting procedure into a HVRP solution S with respect to the given sequence and
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the vehicle fleet composition. This solution S can then be improved by a local
search. It can also be perturbed or left unchanged.

• Concat: a procedure transforms S into a giant tour T ′ by concatenating its trips.

The giant tour T ′ can be split again in order to get a new HVRP solution. This
process allows alternation between the giant tours space and the HVRP space.

Splitting was originally proposed by Beasley in 1983 [27] as the second phase
of a route-first cluster-second heuristic to solve the VRP. It has been successfully
applied to many routing problems within general optimization frameworks. A state
of the art [9] about Split approaches in routing problems surveys more than 40 re-
cent publications on the topic. It shows this strategy has proved its efficiency and
received a considerable amount of attention especially since 2001. It covers a large
area including node routing problems, arc routing problems and more complex rout-
ing problems with additional constraints as the Capacitated Arc Routing Problem
(CARP [38]), the Vehicle Routing Problem (VRP [10]) and the Location Routing
Problem (LRP [7, 8]). Moreover, the high quality solutions obtained by Prins [10]
are a suitable indication of the interest of such an approach. Our GRASP x parallel
ELS belongs to this line of research.

The transformation from T to S through the Split procedure proposed by Prins
[10] consists first in building an auxiliary acyclic graph H based on the sequence
of customers given by T . The auxiliary graph is composed of n+ 1 nodes num-
bered from 0 to n, 0 being the depot and T (i) being the customer at position i
in the sequence. An arc from node i to j corresponds to a subsequence ui j =
(T (i+ 1), . . . ,T ( j)) of T . The quantity to collect along ui j is denoted as Q(ui j).
Thus, the trip ui j consists in a route starting from a depot and going to node T (i+1),
from T (i+ 1) to T (i+ 2) and so on until T ( j) before coming back to the departure
depot node. Moreover, all the additional problem constraints have to be satisfied by
ui j for the arc (i, j) to belong to the graph. Then, optimally splitting T into routes
corresponds to computing the min-cost path from node 0 to node n in H. Since the
HVRP includes some resource constraints as the vehicle types (to each type is given
a limited number of available vehicles), several labels per node have to be handled
to compute the shortest path in H [34]. Thus, several strategies to perform the label
propagation can be used. Since the graph is acyclic, the original strategy consists in
iteratively considering the nodes from 0 to n− 1 to generate the labels in a greedy
way. A recent variation [9] uses a depth first search exploration of the graph to reach
the final node as fast as possible in order to get sharp bounds. The second strategy
is used in this chapter.

When dealing with resource constraints, the number of labels per node generated
by Split in H can be large [9]. A solution consists in limiting both the maximal
number of labels per node (mlpn) and the total number of labels generated during
the whole split procedure (mtl). The Split procedure becomes suboptimal since it
may discard the optimal label, but its computational time is greatly reduced. Thus,
it becomes compatible with an iterative metaheuristic scheme. The Split procedure
depends on these two parameters.
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The alternation between solution representations as giant tours and HVRP solu-
tions is applied in the core of the ELS we propose. At each iteration of the ELS, a
mutation operator is applied. It aims at modifying the solution to explore its neigh-
borhood. The obtained children are then improved by a local search.

For the HVRP, the mutation is defined on giant tour to generate new customer
sequences. A child is obtained by swapping two randomly selected nodes in the
giant tour. The resulting sequence is evaluated by the Split procedure and the local
search is called. Such a customer exchange would mostly be ineffective on HLRP
solutions, since the local search can cancel it in most cases. It is far more effective
on giant tours, since a basic customer exchange may force Split to radically modify
several trips.

The local search we implemented works on the HVRP solutions. It uses a
first improvement strategy combining several classical VRP neighborhoods: 2-Opt
within a trip, 2-Opt between two trips, Swap within a trip and Swap between two
trips. This kind of approach is commonly used in routing problems including the
CARP [37], the VRP [10], the HVRP [12] and the LRP [8].

9.6 Detailed Components of the GRASP x Parallel ELS

A detailed description of the key-features of the proposed method to solve the HVRP
is given in this Section. They include:

• the greedy randomized heuristic through the GRASP scheme;
• the assignment of an initial solution to each thread through a Dispatch procedure;
• the parallel ELS scheme;
• the synchronization of the threads;
• the selection of the solutions to be dispatched;
• the management of the shared memory.

9.6.1 Initial Solutions of the GRASP

The greedy randomized heuristic is the first step of the method. It is called at the
beginning of each iteration of the GRASP. It creates an initial solution S by gener-
ating a giant tour through a greedy randomized heuristic and splitting it into HVRP
trips. Then, the resulting solution is improved by local search. Such generation was
promoted by Prins in its genetic algorithm for the HVRP [12]: the initial population
is made of random trips and of a limited number of high-quality solutions computed
by randomly generating a giant tour and performing a local search on it.

Our greedy randomized heuristic is based on the nearest neighbor algorithm.
From the current node i (initially the depot), the nearest customer j is identified,
with ci j the distance between them. Then, the randomized version looks for the set
of nodes k such that cik ≤ f rac∗ ci j, f rac being a given percentage. The procedure
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chooses at random a customer s from this set and adds it to the giant tour. s becomes
the new current node and the algorithm goes on until it remains no customer.

Once the giant tour is completed, Split is called to evaluate the corresponding
HVRP solution S. However, due to resource constraints on the vehicle fleet, the
procedure might fail to compute a feasible solution. In this case, a new call to the
greedy randomized heuristic is called to generate a new giant tour. If after max try
attempts no feasible solution is built, another procedure is called to built a giant
tour T at random until the splitting of T provides a suitable solution S. Such a
strategy seems to be a suitable trade-off since generalization of well-know heuristics
(including Clarke and Wright [23] heuristic and Golden et al. [6] heuristic) is not
easy due to the limited heterogeneous fleet of vehicles.

The solution S is then improved by the local search detailed in Section 9.5 and
saved nt times in a pool P.

9.6.2 Dispatching: Threads Management

The Dispatch() procedure assigns an initial solution to each thread. These initial so-
lutions are selected from the pool P of eligible solutions, according to a dispatching
strategy R. Then, each ELS runs asynchronously on the threads.

It is possible to consider several dispatching strategies in order to promote di-
versification or, at the opposite, intensification, i.e. to focus on specific areas of the
solution space. For instance, one can consider the following strategies:

• BF (Best First) consists in assigning the best solution in P to every thread: this
dispatching strategy favours intensification;

• DF (Diversity First) consists in assigning one different solution to each proces-
sor: this dispatching strategy favours diversification.

• CBF (Couple Best First) consists in assigning the best solution to threads 1 and
2, the second best solution to threads 3 and 4 etc. Thus, this is a trade-of between
BF and DF .

9.6.3 Parallel ELS Scheme

The algorithm below describes the Parallel ELS() procedure in which each of the
nt thread performs simultaneously one ELS.

Each thread starts an ELS with its assigned solution S. At the first iteration of
the parallel part ( j = 1) P contains only one solution. Thus, Dispatch() assigns the
same initial solution to each thread. Then, ns ELS iterations, or nr unproductive ELS
iterations, i.e. iterations without improving the incumbent solution, are performed
(while loop lines 2-29).

The children generation (mutations and local search) is done lines 5-19. It pro-
duces nd children and updates the incumbent pair (S,T ) accordingly. From T , the
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Algorithm 10. Start ELS Thread
global parameters :
ns: maximum number of iterations per ELS
nd: number of children (mutations)
n f : number of solutions to save
nr: maximum number of iterations without improvement per ELS
nc max: maximal number of unproductive iterations during mutation
input parameters :
T : initial solution
i: thread identification
output parameters:
Fi: vector storing the nb best solutions of the ELS in this thread i
r := 0, nc:=0, S := call Split(T )
while (u < ns ) and (r < nr ) do

u := u+1; f ” := ∞ ; j := 1
// mutation loop
while ( j < nd) and (nc < nc max) do

T ′ := call Mutation(T )
S′ := call Split(T ′)
if S′ is a solution then

// HVRP feasible solution
S′ := call Local Search(S′)
if (S′ is not a clone) then

T ′ := call Concat(S′)
if ( f (S′)< f ”) then

f ” := f (S′); T ” := T ′; S” := S′

j := j+1

else
nc := nc + 1

else
nc := nc+1

// check the improvment
if f ”≥ f (S) then

r := r+1 // update the number iterations without improvement

else
Save T ′ into Fi //only keep the best n f solutions

// if a new best solution
if f ” < f ∗ then

S∗ := S” // update S∗
f ∗ := f ”

T := T ” // the best ELS solution becomes the new initial solution

mutation produces a new giant tour T ′. If splitting T ′ leads to a feasible solution S′,
a local search is applied on it line 10. Then, an efficient clone detection (detailed
in Section9.6.5) is included to avoid thread search to be done on the same solution
space area. Thus, if the S′ is not a clone (line 11), it is considered for the next ELS
iteration. Lines 13-15 are classical ELS steps: the best solution is saved into S′′.
Note the value nc is increased if S′ is unfeasible or if it is a clone. The value r is
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increased line 22 each time an ELS iteration does not improve the incumbent so-
lution. Otherwise S is considered to enter Fi, the ordered set keeping the n f best
solutions found during the ELS. Lines 26-28 consist in updating S∗ whenever re-
quired. Line 29 assigns T ′′ to T , providing the new starting giant tour required at
line 2.

9.6.4 Synchronization and Selection Procedure

Parallel ELS() simultaneously runs on the nt threads. However, each ELS can stop
asynchronously. A synchronization is necessary before beginning a next parallel it-
eration. At this point, the Selection() procedure recover information from the threads
by retrieving the set Fi of best solutions saved during each Parallel ELS() and se-
lecting a new pool P of nt solutions by considering both diversification and quality
of solutions.

Diversity is important to avoid premature convergence as it favours exploration
of new search space regions. Managing diversity requires the definition of a distance
between solutions in an approach similar to what was defined in MAPM (Memetic
Algorithm with Population Management) approach [31]. The distance depends on
the representation of a solution. For binary problems, the Hamming distance can
be used and several distances have been proposed for permutation problems [42,
43, 50]. The Wagner and Fischer’s distance (the edit distance) is commonly used
in many combinatorial problems [41, 30]. This way, a solution is stated as eligible
if and only if it is far enough to the best found solution, or to a set of high quality
solutions previously visited.

One can also consider that solutions of identical cost are quite similar in the sense
they are at the same distance from the optimal solution, if one considers a cost-based
distance. Thus, the cost-base distance has been considered sufficient to check if a
solution must be kept into the set F of n f best solutions.

9.6.5 Shared Memory Management

The shared memory management is the last key feature of the framework. In fact,
an efficient search strongly depends on the coordination between threads. The Dis-
patch() procedure does most of it, but one need another feature: the clone detection
to avoid as much as possible costly and unprofitable solution evaluation. A clone
can be defined as a solution that has already been visited.

Clones weaken the effectiveness of the parallel search and an option is to for-
bid clones to be considered during the search. Exact clone detection might be time
consuming and even a basic comparison between two giant tours runs in O(n). How-
ever, an efficient management be done by using hashing techniques [48]. Indeed, by
associating each solution to a key which depends on the solution cost and on the
number of trips (key(S) = (S.Cost × S.nbtrip)modK, with K a large integer), an
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approximate and fast system can be implemented. Each key is stored in an array
Clone such that Clone[x] gives the number of visited solutions whose key is x. Thus
the clone detection can be done in O(1). Using this array, one can control how many
time the parallel ELS search are allowed to consider a previously visited solution.

However, this is not sufficient as several threads may consider the same solution.
Thus, another policy has to be defined, leading to two ways to perform the detection:

• only consider solutions investigated by the thread;
• consider the whole set of solutions over the threads.

The latter policy increases the amount of communication between threads and
favours diversification while the former favours intensification. These policies ei-
ther impose one array Clone for each thread or a global Clone array over all the
threads. For convenience, these strategies are called:

• LCD (Local Clone Detection) when the clone detection is restricted to solutions
of the current thread;

• GCD (Global Clone Detection) when the clone detection is done over all the
solutions investigated by the threads.

Moreover, whatever the policy used (GCD or LCD), two memory management
strategies are defined:

• a Long Term Memory Strategy (LTMS) in which the memory is only initialized
at the beginning of the GRASP x parallel ELS. Such strategy favors diversifi-
cation by preventing identical solution investigation during two different ELS
iterations.

• a Short Term Memory Strategy (STMS) in which the memory is initialized at the
end of each ELS loop. This favors intensification since two ELS iterations can
lead to the exploration of similar regions.

Depending on the policy (LCD / GCD) and on the strategy (LT MS / STMS), the
shared memory management creates a cooperation by indirectly controlling the be-
haviour of the search threads during optimization. It also helps balancing between
diversification and intensification.

9.7 Computational Evaluation

As stressed before, parallelizing the search space investigation in combinatorial op-
timization problems should be made in order to both widen the search and enforce
the convergence, in addition to speed up the algorithm with parallel calculation.
In this ethic, our GRASP x parallel ELS takes advantage of multi-core processors
trying to make the threads collaborate. This section provides a computational evalu-
ation attesting whether the search strategy we promote does not only allow solving
larger problems but also finding improved solutions (with respect to the sequential
counterpart), and leading to a better convergence.
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9.7.1 Settings and Benchmarks

Our method has been implemented in Pascal using Delphi 6.0 package. The numeri-
cal experiments were run on a 2.3 GHz AMD Opteron quad-cores computer running
Windows 2003 with 256 Go of memory. Several sets of instances have been used.
They can be divided into two main categories: classical HVRP instances and new
HVRP instances.

9.7.1.1 Classical HVRP Instances

A classical set of HVRP instances has been used to assess the performance of the
proposed parallel approach. It has been proposed by Taillard [19]. It is made of 8
small instances with 50 to 100 nodes. They correspond to the VFMP-V transformed
into HVRP instances by limiting the vehicles availability.

We compare our results with 5 methods from the literature on these classical
HVRP instances. The first approach is a heuristic column generation [19] proposed
by the author [19]. Tarantilis et al. [14] designed a threshold accepting algorithm
(TA). Li et al. [21] published a record-to-record (RTR) travel metaheuristic. Prins
[12] proposed a memetic algorithm (SMA-D2). Finally, Brandão [4] developed a
tabu search algorithm (TSA).

To perform a fair comparison between methods that have been implemented on
different processors, Dongarra [25] provides scaling factors depending on the pro-
cessor speed. Thus we scale all the times with respect to the computer used in this
chapter. For each of the 5 previously mentioned methods, Table 9.2 gives the pro-
cessor used, the processor speed in Mflops and the scale factor applied in the next
Tables.

Table 9.2 Scale factors in numerical experiments

Publications Computers Mflops Scale factor
Taillard [19] 50MHz Sun Sparc 10 27 0.006

Prins [12] 1.8GHz Pentium 4M 1564 0.347
Tarantilis et al. [14] 400Mhz Pentium II 262 0.058

Li et al. [21] 1GHz Athlon 1168 0.259
Brandão [4] 1.4GHz Pentium 4M 1216 0.270

Our work 2.1 GHz Opteron 4500 1.000

9.7.1.2 New Realistic HVRP Instances (DLP HVRP)

To better evaluate the proposed method, we also use large size instances, denoted
DLP HVRP and available at http://www.isima.fr/ lacomme/hvrp/hvrp.html and at
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http://prodhonc.free.fr/. To the best of our knowledge, these instances
are the first ones based on real life district data.

Using the GIS software developed by Bajart and Charles [49], one instance is
built for each of the 96 French districts, and contains from 60 to more than 250
nodes. Nodes correspond to cities larger than 100 or 500 citizens. Costs between
nodes are computed as the shortest paths using the Google web service and thus
they correspond to the real distance in kilometers between cities. The fleet compo-
sition contains up to 10 types of vehicles and has been randomly generated. As a
consequence, some node demand can exceed the capacity of some types of vehicles
and it may also happen that the total fleet capacity is close to the total demand to
service. In addition, both fixed and variable vehicle costs are not dependant of the
vehicles capacity. Thus, for some instances the smallest vehicles have smallest fixed
cost while for some others the smallest vehicles are the most expensive in terms of
variable and/or fixed costs. These characteristics might lead to very hard instances
and be challenging for the metaheuristics.

9.7.1.3 Parameters

To have a fair comparison, two sets of parameters are defined: one for the classical
instances and another for the DLP HVRP instances. The parameters are detailed in
Tables 9.3 and 9.4.

Table 9.3 Parameter Definition

Parameter Definition
mtl Maximal labels generated in split

mlpn Maximal labels saved on each node in split
Nls Maximal number of iterations during local search
Ns Number of ELS iterations
Nr Maximal number of ELS without improvement
nd Number of diversifications

Nc max Maximal number of unproductive iterations during mutation
Ne Number of parallel ELS iterations
Nt Number of threads
Np Number of GRASP iterations
Nf Number of solutions to save by each thread in Fi

Strategy Dispatch strategy
Share Memory Policy Clone detection strategy and memory management strategy

The main difference from the two settings is the maximal number of labels gener-
ated in split, set to 50 000 for the DLP instances since those instances are larger than
the classical ones. For a similar reason, the number of labels per node is increased
from 3 to 100.

http://prodhonc.free.fr/
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Table 9.4 Parameter settings

Parameter Classical HVRP instances DLP HVRP instances
mtl 10 000 50 000

mlpn 3 100
Nls 500 100
Ns 3 3
Nr 3 3
nd 10 10

Nc max 10 10
Ne 15 15
Nt from 2 to 32 from 2 to 32
Np 50 50
Nf 1.15 1.15

Strategy DF DF
Share Memory Policy LCD + STMS LCD + STMS

9.7.2 Evaluation of the Communication Time

Before focusing on the results obtained on the sets of instances, it would be interest-
ing to check the communication time of our machine. Ideally, when increasing the
number of threads from 1 to k in our framework, the total running time should re-
main the same (except small variations due to the synchronization feature). Indeed,
the number of iterations does not depend on the number of threads. However, as al-
ready explained, if k threads, assigned to k cores, imply the use of a greater number
of processors than for p threads, then a slowdown occurs. It is due to communica-
tion through buses. In our experiments with quad-core processors, this is observed
with a factor r between 1 and 2 processors, 2r between 2 and 4 processors and 4r be-
tween 4 and 8 processors, with r = 1.55. If an extra convergence rate is obtained one
can state it is induced by an effective dispatch, synchronization and shared memory
management.

Thus, in the next Tables, Columns T T provide the average total computational
time in seconds on the instances. The time in seconds to the find the best solution is
given by T ∗ and this value can be corrected (Corrected T ∗) as explained above by
the value that T ∗ would have taken if the threads were associated to cores belonging
to a same processor (no extra time due to communication through buses).

9.7.3 Results on Classical HVRP Instances

Table 9.5 provides a comparative study of the last publications using the set from
Taillard. BKS refers to the value of the best-known solution for each instance. Avg.
dev corresponds to the average gap from a considered method to BKS in percent.
Avg. time is the average CPU time of the methods in seconds, and Scaled time pro-
vides the corresponding time that would be achieved on our computer using the
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scaling factors from Table 9.2. The line #Best expresses the number of BKS
achieved by the method. Asterisks indicate when the BKS is an optimal cost.

The best published method so far has been proposed by Li et al. [21] with a
deviation to the best-known solutions lower than 0.04%. This method provides 7
times the best solutions. The last two publications of Brandão [4] and Prins [12]
have a higher average deviation to the best-known solutions (about 0.08%) but they
get 6 BKS (vs. 7 for Li et al.) and they are twice faster (scaled).

Table 9.5 Performances of the last published methods on the HVRP instances from Taillard

Taillard [19] Tarantilis [14] Li [21] Prins [12] Brandão [4]
n BKS Cost Cost Cost Cost Cost

13 50 1517.84* 1518.05 1519.96 1517.84 1517.84 1517.84
14 50 607.53* 615.64 611.39 607.53 607.53 607.53
15 50 1015.29* 1016.86 1015.29 1015.29 1015.29 1015.29
16 50 1144.94* 1154.05 1145.52 1144.94 1144.94 1144.94
17 75 1061.96* 1071.79 1071.01 1061.96 1065.85 1061.96
18 75 1823.58* 1870.16 1846.35 1823.58 1823.58 1831.36
19 100 1117.51 1117.51 1123.83 1120.34 1120.34 1120.34
20 100 1534.17* 1559.77 1556.35 1534.17 1534.17 1534.17
Avg. dev 0.9310 0.6172 0.0317 0.0774 0.0850
Avg. time 2011.12 607.12 285.75 94.74 151.66
Scaled time 12.06 35.34 74.16 32.92 40.98
# Best 1 1 7 6 6

Tables 9.6 reports the performance of the GRASP x parallel ELS with 1 to 32
threads with the same statistical indicators as in Table 9.5, except the times that
are given in Table 9.7 providing the average CPU times to achieve the best found
solution and the corrected time due to the communication between processors.

While the parameters have not been especially tuned on these instances, the initial
performance (single thread) is at about 0.53% of the best-known solutions, which is
already better than both Taillard and Tarantilis et al. proposals. However, the single
thread performance is slower and it does not compete with Li et al., Brandão or
Prins methods.

The conclusion is totally different when the number of threads increases. On
these small instances, it clearly appears that going from 1 to 2 threads significantly
improves the results. The average deviation drops to 0.05%, becoming 10 times
lower than with a single thread, and the average time to get the best solution is
halved. Thus our proposed approach with 2 threads is only outperformed by Li et
al. in terms of solution cost. A first sign of a better convergence seems to appear.

Until 8 threads, no better solution is found (6 instances over 8 are already solved
to optimality). Then, with 16 and 32 threads, the methods provides results of the
same quality as the best published method of Li et al. with an average deviation of
0.0317%. Increasing the number of threads allows to enforce the search on the so-
lution space thanks to the balanced diversification, intensification and cooperation.
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Table 9.6 Performances of the GRASP x parallel ELS on the classical HVRP instances from
Taillard

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads
n BKS Cost Cost Cost Cost Cost Cost

13 50 1517.84* 1517.84 1517.84 1517.84 1517.84 1517.84 1517.84
14 50 607.53* 609.17 607.53 607.53 607.53 607.53 607.53
15 50 1015.29* 1015.29 1015.29 1015.29 1015.29 1015.29 1015.29
16 50 1144.94* 1144.94 1144.94 1144.94 1144.94 1144.94 1144.94
17 75 1061.96* 1065.2 1064.07 1064.07 1064.07 1061.96 1061.96
18 75 1823.58* 1823.58 1823.58 1823.58 1823.58 1823.58 1823.58
19 100 1117.51 1120.34 1120.34 1120.34 1120.34 1120.34 1120.34
20 100 1534.17* 1534.17 1534.17 1534.17 1534.17 1534.17 1534.17
Avg. dev 0.5313 0.0565 0.0565 0.0565 0.0317 0.0317
# Best 5 6 6 6 7 7

Table 9.7 Times of the GRASP x parallel ELS on the classical HVRP instances from Taillard

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads
n Time Time Time Time Time Time

13 50 60.7 80.7 5.8 14.3 17.9 38.7
14 50 46.6 353.1 153.9 230.7 79.0 111.7
15 50 17.7 62.0 18.4 10.7 10.9 22.9
16 50 109.0 2.1 1.1 2.5 3.8 7.7
17 75 182.6 109.7 49.2 37.2 123.8 482.0
18 75 287.8 68.3 72.3 32.9 25.5 38.9
19 100 702.0 16.0 142.8 22.4 31.4 10.3
20 100 297.7 190.3 434.2 116.8 27.5 249.5
Avg. T ∗ 213.0 110.3 109.7 58.5 40.0 120.2
Avg. corrected T ∗ 213.0 110.3 109.7 37.7 12.9 19.4

However, to really attest the performance, both the solution cost and the compu-
tational time have to be observed to confirm the convergence brought by the key-
features of the proposed method. Tables 9.7 helps us to focus on that aspect.

As already said, from 1 to 2 threads, both the solution cost and T ∗ decrease. The
same observation is made between 8 and 16 threads, reinforcing our thought about
a better convergence rate provided by a higher number of threads. Moreover with 8
and 16 threads, T ∗ reduces from around 110s to respectively 58s and 40s (the latter
also coming with better results) instead of experiencing a slow-down.

The small increase of corrected CPU time happens with 32 threads. It can be ex-
plained by two reasons. The first one is the synchronization time that can be longer
because of a large number of threads. The second one is the main ground. The man-
agement of the shared memory forbids the search on solution already visited among
the threads. However, the solution space is not so large on small instances, and many
solutions are discarded due to clone detection leading to many unproductive trials.

To conclude, our method is competitive with the literature on Taillard’s set, even
if this must be moderated since all the recent published methods provide less than



258 C. Duhamel et al.

1% deviation. This study exposes the significant impact of number of threads on the
convergence and therefore on the solution quality and the computational time. Next
Section is dedicated to larger instances to confirm the behavior brought by the bal-
anced diversification, intensification and cooperation between parallel calculations
thanks to the key-features provided in our framework.

9.7.4 Results on DLP HVRP Instances

These instances can be divided into the following subsets:

• DLP HVRP 1: 15 small instances with less than 100 nodes;
• DLP HVRP 2: 40 medium instances with 100 to 150 nodes;
• DLP HVRP 3: 33 large instances with 150 to 200 nodes;
• DLP HVRP 4: 11 very large instances with more than 200 nodes.

The two next Sections summarize the performance of our GRASP x parallel ELS.
Detailed results per instance are provided in Appendix, in which Cost, T∗ and T T
respectively mean the solution cost, the time to achieve the best found solution
and the total time of the method. The last line indicates the average values of the
columns.

9.7.4.1 DLP HVRP 1 Instances (Small Scale Instances with Less Than 100
Nodes)

This set encompasses 15 small-scale instances with less than 100 nodes. Table 9.8
summarizes the results obtained according to the number of threads. The meaning
of the indicators are the same as in Tables from Section 9.7.3, and % Best expresses
the percent number of BKS computed by the method.

Table 9.8 GRASP x parallel ELS performance with 1 to 32 threads on DLP HVRP 1

# Threads Avg. Cost Avg. dev # Best % Best Avg. T ∗ Corrected Avg. T ∗
1 thread 4391.37 0.11 7 46.7 109.1 109.1
2 threads 4389.96 0.10 7 46.7 92.6 92.6
4 threads 4390.30 0.10 8 53.3 105.9 105.9
8 threads 4387.30 0.05 9 60.0 182.6 117.8
16 threads 4386.14 0.03 11 73.3 193.4 62.4
32 threads 4386.10 0.01 13 86.7 409.0 66.0

The gap to the best-known solutions clearly decreases between 1 to 32 threads
while the average T ∗ is halved. Both reductions on cost and on computational time
illustrate an improvement on the convergence rate.

The quality of the solution is better stressed by an analysis of the percent of
best-known solutions found as shown in column % Best of Table 9.8. Even if the
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reduction of the average cost is not large (from 4391.37 to 4386.10), the number
of best-known solutions found is doubled between a single thread version of the
method and the parallelization on 32 threads.

9.7.4.2 DLP HVRP 2, DLP HVRP 3, DLP HVRP 4 Instances

Table 9.9 sums up the results obtained on the three subsets of medium and large-
scale DLP HVRP instances. Once again, the quality of the solution costs is clearly
improved with the number of threads used while the computational time increases
but not more than the expected extension due to the communication between
processors.

Table 9.9 Average solutions depending on the number of threads

DLP HVRP 2
# Threads Avg.Cost Avg. dev # Best % Best Avg. T ∗ Corrected Avg. T ∗
1 8712.516 0.52 4 10.5 427.1 427.1
2 8704.628 0.43 3 7.9 413.8 413.8
4 8696.673 0.35 6 15.8 429.8 429.8
8 8684.732 0.22 9 23.7 389.8 251.5
16 8675.003 0.13 13 34.2 498.4 160.8
32 8669.608 0.05 26 68.4 794.9 128.2

DLP HVRP 3
# Threads Avg.Cost Avg. dev # Best % Best Avg. T ∗ Corrected Avg. T ∗
1 11995.19 1.34 0 0.0 663.5 663.5
2 11954.47 0.99 1 3.2 693.3 693.3
4 11913.26 0.66 3 9.7 704.3 704.3
8 11897.53 0.52 4 12.9 704.8 454.7
16 11877.95 0.32 9 29.0 773.1 249.4
32 11856.20 0.14 16 51.6 1042.9 168.2

DLP HVRP 4
# Threads Avg.Cost Avg. dev # Best % Best Avg. T ∗ Corrected Avg. T ∗
1 14543.41 1.29 0 0.0 899.1 899.1
2 14509.72 1.02 0 0.0 1063.0 1063.0
4 14404.31 0.55 1 8.3 983.7 983.7
8 14389.63 0.36 1 8.3 1138.1 734.3
16 14398.82 0.37 5 41.7 1171.2 377.8
32 14365.49 0.23 6 50.0 1466.4 236.5

The full analysis of the DLP HVRP 1 subset (see Section 9.7.4.1), which encom-
passes small-scale instances with less than 100 nodes, defines a general trend which
is confirmed over the 3 last subsets. Depending on the instances set of interest the
percent of best-known solutions obtained varies from (Table 9.9):

• 10% with 1 thread to 68% with 32 threads for the instance set DLP HVRP 2;
• 0% with 1 thread to 51% with 32 threads for the instance set DLP HVRP 3;
• 0% with 1 thread to 50% with 32 threads for the instance set DLP HVRP 4.
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For the small-scale instances, the difference from the single thread program and
the 32 threads program is significant with a variation from 46% to 86% which
correspond to a factor 2 (see Section 3.3.1). This ratio is about 6 for the DLP HVRP 2
subset of instances (from 10% to 68%).

The last subsets (3 and 4) are interesting since the single thread version got no
best-known solution. For these large-scale instances, the improvement in percent of
the number of best-known solutions found is impressive when increasing the num-
ber of threads. On DLP HVRP 3 instances, it steadily grows from 2 to 32 threads.
On DLP HVRP 4 instances, it first grows for 4 threads. Then it increases to 41%
before stabilizing. This behavior points out the relationship between the size of the
solution space and the benefit of extra threads to search a good solution.

On the other hand, the corrected average T ∗ significantly decreases with the
number of threads. The double impact brought by the cooperative parallelization
(improvement of the solution costs plus reduction of the computational times) at-
tests the efficiency of proposed algorithm. The last Section of this experimental part
details the convergence rate provided by the multi-threads.

9.7.5 Convergence Rate of the Parallel ELS

From the results presented in the previous Sections, it seems clear that the paral-
lelization proposed in this chapter, with its key-features lending intensification, di-
versification and cooperation, leads to a convergence rate that is improved not only
because of the number of threads but also thanks to the threads policy management
during ELS synchronization, dispatch and selection (see Section 9.4).

Fig. 9.3 Computational time and time to the best evolution depending on the number of
threads - DLP HVRP 1
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The convergence rate is materialized by better results obtained within equivalent
or shorter computational times (columns called Corrected Avg. T ∗, see Tables 9.7,
9.8 and 9.9). Even when analysing the original value of T ∗, one can note a quasi-
linear evolution of the time to the best (T ∗) and an exponential trend of the total
time (see Figure 9.3).

The behavior of the convergence is also illustrated on Figure 9.4 representing the
percentage of BKS found by the algorithm. The first set of instances (DLP HVRP 1)
seems to be easier to solve: the single thread approach is able to get 50% of the best-
known solutions which can be compared with the 10% or 0% obtained for the last
three sets. The general curve for the set 2, 3 and 4 seems to be piecewise linear
especially for the last set.

We can now focus on the convergence through the evolution of the best found
solution over the iterations. Comparative study is not straightforward since the

Fig. 9.4 Percents of best solutions depending on the number of threads - DLP HVRP set

Fig. 9.5 Best solutions evolution with 1 and 32 threads
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meta-heuristic is stochastic. Trying to analyze the relative impact of the number
of threads, we introduce hereafter 5 runs with 1, 2, 4, 8, 16, 32 threads (for exactly
the same parameters) for the largest example of the benchmark i.e. instance 18 with
256 nodes and 5 types of vehicles. Each run starts with the same initial solution at
cost 13364.60.

After one iteration of the GRASP x parallel ELS, the best found solution varies
from 10048 to 9849 with a strong advantage to the 32 threads run. Figure 9.5 gives
the convergence curve over 20 iterations for 1 thread only and 32 threads. It tends
to show that both the convergence rate and the solution quality are better when
increasing the number of threads.

9.8 Concluding Remarks and Future Research

This article addresses a GRASP x parallel ELS framework for routing problems
taking advantages of the multi-core processors technologies. They offer less parallel
threads than computer cluster architectures for example (2 cores for entry point
processors and 8 for upmarket processors) but they allow to benefit from the high
speed memory and from the high processor frequencies. Large data accesses are
convenient but the parallelisation is strongly limited and cannot be compared to the
number of parallel threads offered in NVIDIA technology.

We introduce an algorithmic description of the GRASP x parallel ELS frame-
work and we highlight the key-features including the thread management through
intensification, diversification and cooperation. The GRASP x parallel ELS frame-
work is based on both the efficient local search of [11] and the Split with Depth First
Search Strategy [9].

Even if the key features are carefully set, increasing the number of threads may
lead to an increased computational time. Indeed, assuming the same number of it-
erations per thread, the search should be enlarged proportionally to the number of
threads while the computational time (from the user point of view) should remain
the same. In practice, the delay of information exchange depends on the thread lo-
cation. Exchange between threads located on two different processors requires the
use of bus and is a lot more time consuming than data exchange within a single pro-
cessor. Thus the communication is slower than information shared within a single
processor. The phenomenon gets worse as the number of processors increases and
overloading may appear if all the cores available on the computer are used.

Experiments on the heterogeneous vehicle routing problem show first that the
GRASP x parallel ELS framework is of great interest taking advantages of a wide
spread technology without any costly extra device like CUDA. Moreover, it shows
that multi-threads can lead to extra-convergence rate and that better solutions can be
obtained in the same computational time.

Future research is now directed towards new routing problems where the GRASP
x parallel ELS framework could be applied especially for large-scale instances. This
line of research could include the LRP with heterogonous fleet of vehicles.
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Appendix

Table 9.10 DLP HVRP 1 (small scale instances with less than 100 nodes)
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Table 9.11 DLP HVRP 2 (medium scale instances with a number of nodes from 100 to 150)
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Table 9.12 DLP HVRP 3 (large scale instances with a number of nodes from 150 to 200)
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Table 9.13 DLP HVRP 4 (strongly large scale instances with a number of nodes greater than
200)
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Chapter 10
The Heuristic (Dark) Side of MIP Solvers

Andrea Lodi

Abstract. The evolution of Mixed-Integer Linear Programming (MIP) solvers has
reached a very stable and effective level in which solving real-world problems is
possible. However, the computed solution is not always the optimal one also be-
cause optimality is often not of primary interest for day-by-day users. We show
some structural characteristics of MIP solvers and of computation for MIP prob-
lems that reveal the heuristic nature of the solvers. Moreover, we discuss the key
components of MIP solvers with special emphasis on the role of heuristic decisions
within the solution process. Finally, we present MIP solvers as “open” frameworks
whose flexibility can be exploited to devise sophisticated hybrid algorithms.

10.1 Introduction

We consider a general Mixed Integer Linear Programming problem (MIP) in the
form

min{cT x : Ax≥ b,x ≥ 0, x j integer, ∀ j ∈I } (10.1)

where I is the set of integer-constrained variables.
We assume that matrix A does not have a “clean” special structure to be exploited

through combinatorial algorithms, either exact or heuristic (and metaheuristic), but
instead is a collection of heterogenous groups of constraints, as it is often the case in
real-world applications. Of course, there are general-purpose heuristic approaches
in the literature for these problems that are not based on mathematical programming
techniques. However, in this paper we are interested in the case in which problem
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(10.1) is solved through a general-purpose MIP solver , i.e., through branch and
bound with bounds computed by iteratively solving the Linear Programming (LP)
relaxations, via a general-purpose LP solver.

The evolution of MIP solvers has reached a very stable and effective level in
which the solution of real-world problems is possible. The progress over the first
50 years has been impressive and it is discussed, for example, in [2, 15, 18]. For a
recent survey on MIP software the reader is referred to Linderoth and Lodi [16].

This general-purpose MIP setting is, apparently, far away from what one thinks
belongs to the context of (i) metaheuristic algorithms and (ii) hybrid approaches.
Indeed, common sense says an MIP solver implements a pure and exact algorithm,
in contrast to hybrid and heuristic ones. Thus, MIP solvers are mostly conceived as
exact black boxes, especially within the Metaheuristic community. This might be
the reason of a certain diffidence for the MIP solvers and, in general, for the MIP
technology, which is reflected by many papers in the Metaheuristic literature.

The goal of this short paper is to confute this viewpoint by showing that

1. MIP solvers are used for a large portion as heuristics;
2. MIP solvers are heuristic in nature;
3. the computation for N P-hard problems is intrinsically heuristic;
4. benchmarking is by design heuristic;
5. heuristic decisions and techniques are hidden everywhere in MIP solvers.

In other words, we aim at presenting MIP solvers as “open” frameworks whose
flexibility can be exploited in many ways. On the one side, we will show that it is
largely possible nowadays to develop all sorts of algorithms within an MIP solver
framework. On the other hand, the intrinsic presence of heuristic components within
the solvers suggests that ideas developed in contexts different from classical (exact)
Mixed Integer Programming are already and could be more and more fruitfully in-
corporated.

The remainder of the paper is organized as follows. In Section 10.2 we will dis-
cuss some natural characteristics of MIP solvers and of computation for Mixed In-
teger Linear Programming problems that reveal the heuristic nature of the solvers.
In Section 10.3 we will present the main components of MIP solvers and we will
show that in a number of crucial points the implemented algorithms heavily rely on
heuristic reasonings. Finally, in Section 10.4 we will outline two research directions:
(i) the use of MIP solvers as open frameworks for algorithmic development, and (ii)
the hybridization of the MIP solvers through ideas coming from different research
areas.

10.2 The Heuristic Nature of MIP Solvers

As anticipated in the introduction, modern MIP solvers are brilliant, stable and
effective pieces of code in which a flexible modeling is accompanied by pow-
erful algorithms and sophisticated software engineering. Most of the techniques
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implemented in the solvers originated from academia, where the emphasis is mainly
on theory and methodology. However, the move from theory to practice requires
some “painful” steps that make the solvers to appear much less clean than expected.
In the next two sections we will discuss a few facts, from trivial to slightly less so,
which highlight the heuristic nature of the solvers.

10.2.1 Some Trivial Facts

The first trivial reason for MIP solvers being “heuristic” is actually associated with
the way they are used in general. Indeed, the classical user of an MIP solver enforces
limits to the computation. The most classical of those is the time limit, i.e., the user
fixes a maximum amount of computing time he/she is willing to spend. Another (less
frequent) limit can be in the number of branch-and-bound nodes, or the computation
can be halted once the gap between the lower and the upper bounds1 has decreased
until a certain threshold or a prefixed number of feasible solutions (often only one)
has been found within the enumeration tree. The reason for imposing these limits
is that the computational resources are limited and sometimes solving the problems
does not require/allow searching for the optimal solution. This is true in several
circumstances two of which are.

• The overall decision system is highly complex and it has been split a priori into
pieces. In such a case it is not necessarily true that the optimal solution of a
specific piece if used as starting point for a subsequent optimization/simulation
phase would guarantee to provide an “optimal” decision for the complete system.
A classical example of complex systems of this type arises in public transporta-
tion where vehicle and crew scheduling must be solved, theoretically together
but in practice one after the other [7].

• The problem must be solved in (extremely) short computing times as part of a
quasi-online system like, for example, the transmission of data packets in wire-
less telecommunications [19].

The second trivial reason that makes MIP solvers somehow heuristic is that they
work with tolerances. More precisely, essentially all MIP solvers are based on
floating-point arithmetic and use tolerances to check solutions for feasibility and
to decide on optimality, i.e., to fathom nodes in the branch-and-bound tree. On the
one hand, feasibility is tested by MIP solvers with absolute tolerances for the inte-
grality constraints and relative ones for linear constraints. On the other side, nodes
with relative percentage gap between the incumbent solution and the lower bound
smaller than a certain threshold value are disregarded. A commonly-used default
value for such a threshold is 0.01%, a value that, for specific applications, might be
far from acceptable.

1 Note that for minimization problems of type (10.1), the lower bound is established by the
minimum objective of the unexplored nodes in the branch-and-bound tree, while the upper
bound, or incumbent solution value, is the value of the best (smallest) feasible solution
encountered in the enumeration.
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Of course, guaranteeing true feasibility/optimality comes with a price in terms of
computing time and MIP solvers have to establish a reasonable compromise on the
matter. The tolerance issue is deeply discussed in the work by Koch et al. [9], the
recent paper providing the fourth version of the library of MIP instances commonly
used for benchmarking. In addition to the library, the paper also provides, for the
first time, scripts to run automated tests in a predefined environment and a solution
checker to test the accuracy of the solutions using exact arithmetic. Examples in [9]
show that solutions provided by MIP solvers might fail a simple test in which (i) one
fixes all integer-constrained variables from a reported solution to the closest integer
value2 and (ii) recomputes the value of the continuous variables by solving the asso-
ciated LP with exact arithmetic. This fail does not happen because the MIP solvers
are mistaken. The reported solutions are (most likely) “feasible”: not within the re-
gion described by the input file, but within that obtained by reading the problem and
introducing tolerances.

Finally, to floating-point computation is associated a very small amount of error
incurred by a single operation, error that can accumulate and propagate significantly
for algorithms requiring millions of operations. This is deeply discussed in the sur-
vey by Goldberg [14].

10.2.2 Less Trivial Facts

It is well known that Mixed Integer Linear Programming is N P-hard [6], thus, by
definition, there is always a polynomial path to the optimal solution in the search
tree, but unless P =N P, in the worst case, the path followed by any enumerative
algorithm will be exponentially long. In other words, branch-and-bound algorithms
heuristically explore the search tree and such an exploration can be unlucky. This is
because of “bad” algorithmic decisions: an ineffective choice of the first branching
variable potentially leads to a search tree twice as big. (The algorithmic side of MIP,
i.e., the way MIP solvers explore the solution space taking those decisions will be
discussed in Section 10.3.3.)

However, ineffective algorithmic decisions are not the only reason for the compu-
tational effort to become high. Namely, while running computational experiments,
one often experiences a change in performance for the same problem (or problems
in the same “family”) created by a change in the solver or in the computational en-
vironment that seem performance neutral. This situation, quite commonly observed,
has been formalized for the first time by Danna [4] who reported the following en-
lightening example.

Example 10.1. CPLEX 11 solves the well-known MIPLIB 2003 [21] instance
“10teams” in 0 branch-and-bound nodes and 2,731 Simplex iterations in a computer
equipped by the Linux Operating System. The same version of CPLEX, i.e., exactly

2 Because of the mentioned tolerances, a solver might return a value for an integer-
constrained variable differing from a true integer of, say, 10−8.
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the same algorithm and computing code, needs 1,426 branch-and-bound nodes and
122,948 Simplex iterations in a computer running the AIX Operating System. ��
This phenomenon has been referred to as performance variability and has been sys-
tematically discussed in Section 5 of Koch et al. [9]. The variability observed in
Example 10.1 is associated with the difference of the computing platform, which,
however, does not explain it. This unstable behavior is intrinsically related to im-
perfect tie-breaking, i.e., to the fact that among a set of equivalent possibilities the
algorithm has to take a sort of “arbitrary” decision. Sets of this type are computed
throughout the entire solution process and vary in size and rank depending on ap-
parently unrelated reasons, like the mentioned change in computing environment
(due most probably to minor differences in floating-point computation) or the order
in which pieces of information, e.g., cutting planes, are stored.

Although some of the sources of variability are known, there is no cure yet to
avoid it. (An example will be discussed in Section 10.3.2.) Thus, it becomes clear
that benchmarking MIP solvers is a very delicate activity. Specifically, the testbeds
of MIP solvers, in particular the commercial ones, are composed of thousands of
instances. These instances are classified into categories: from very easy, to very
hard. Any new algorithmic idea is tested on the entire testbed and in order to “make
it into the solver” it must (i) improve on the subset of problems to which the idea
applies, and (ii) not deteriorate (too much) on the rest of the problems, generally the
easy ones. Because of MIP N P-hardness, it is theoretically difficult to recognize if
a problem is “easy”, and, more generally, deciding if an idea is useful for a particular
class of instances. Then, such an algorithmic idea must be heuristically “weakened”
to accomplish simultaneously the two given goals. Thus, benchmarking is complex
and heuristic, and, of course, the discussed variability strongly increase the difficulty
of the process.

10.3 Key Features of MIP Solvers

The current generation of MIP solvers incorporates key ideas developed continu-
ously during the first 50 years of Integer Programming [8]. Precisely, in this section
we will briefly present3 the basic components of an MIP solver, namely, preprocess-
ing, cutting plane generation, branching, and primal heuristics. The emphasis is on
showing the key role of heuristic decisions within each of these components, often
in contexts rather unexpected.

10.3.1 Preprocessing

In the preprocessing phase (often called presolve) an MIP solver tries to detect cer-
tain changes in the input that will probably lead to a better performance of the so-

3 For more details, the reader is referred to Achterberg [1] and Lodi [18].
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lution process. In general, this does not include removing feasible solutions, even if
that might happen in some special cases, as for example due to symmetry breaking
reductions, see, e.g., Margot [20].

Preprocessing is especially important for models originated from real-world ap-
plications and/or created by using modeling languages. Indeed, it is often the case
that MIP models of this type can be improved with respect to their initial formulation
by either removing redundant information (variables or constraints) or strengthening
the variable bounds generally by exploiting the integrality of variables in I .

Nowadays MIP solvers have the capability of “cleaning up” the models so as
to create a presolved version of the original instance to which the components dis-
cussed in the next sections are then applied. Many of the techniques used to create
such a prosolved instance are called in the Constraint Programming (CP) context
propagation algorithms [22]. Specifically, CP models are built through so-called
global constraints, i.e., combinatorial objects defining a portion of the feasible re-
gion and able to check feasibility of an assignment of values to variables. The in-
tersection of all global constraints defines the feasible region as pictorially shown
in Figure 10.1. Moreover, and more importantly here, a global constraint contains
an algorithm that prunes (filters) values from the variable domains so as to reduce
as much as possible the search space. In this way, large and combinatorially well-
defined structures are effectively exploited.

MIP technology does not explicitly include global constraints, thus, some sort of
propagation is applied by locally comparing and analyzing constraints and variables,
a structurally heuristic process highly dependent on the way the model has been
written. Indeed, random permutations of rows/columns of the MIP generally lead to
a performance deterioration of the solvers, mostly because of reduced preprocessing
effectiveness.

Fig. 10.1 Constraint Programming modeling through global constraints



10 The Heuristic (Dark) Side of MIP Solvers 279

10.3.2 Cutting Plane Generation

The chances of solving an MIP by a general-purpose solver are directly proportional
to the quality of its LP relaxation, i.e., the problem obtained by removing (relaxing)
the integrality requirements on the variables in I . However, such a relaxation, es-
pecially for real-world problems, might be not tight with respect to the convex hull
of mixed integer solutions. Therefore, MIP solvers apply a rather intense phase of
strengthening based on cutting plane generation. A tighter relaxation can be ob-
tained by adding new linear inequalities (cutting planes, or cuts, for short) obtained
by solving the so-called Separation problem:

Given a feasible solution x∗ of the LP relaxation that is not feasible for the MIP (10.1),
find a linear inequality αT x ≥ α0 that is valid for (10.1), i.e., satisfied by all feasible
solutions x̄ of the system (10.1), while it is violated by x∗, i.e., αT x∗ < α0.

The overall strengthening is achieved by (i) solving the LP relaxation, (ii) solving
the separation problem, (iii) amending the LP relaxation with the obtained cut(s),
and iterate. The effect of a cut in the LP relaxation of an MIP is shown in Figure
10.2, where the blue arrow indicates the optimal solution x∗ of the LP relaxation at a
given strengthening iteration, and the red line represents the cut. The role of cutting
planes in MIP technology is crucial: without the iterative strengthening described,
current enumerative schemes would fail in solving difficult MIP instances.

Fig. 10.2 Strengthening the LP relaxation by cutting planes

The arsenal of separation algorithms in the MIP solvers has been continuously ex-
tended over the years, and a large group4 of cuts, namely, Chvátal-Gomory cuts, Go-
mory mixed integer cuts, mixed integer rounding cuts, {0, 1

2} cuts, lift-and-project
cuts, and split cuts, are derived essentially in the same way. Precisely, all these in-
equalities are obtained in two steps:

4 This group of cuts is presented in a brilliant and unified way by Cornuéjols [3].
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1. heuristically aggregating the entire MIP into a mixed integer set of (only!) one
row, often referred to as base inequality, and

2. applying a cut generation procedure to such a mixed integer set, based on a dis-
junctive argument that exploits integrality.

The heuristic aggregation of Step 1 above is sometimes an implicit byproduct of
a sophisticated procedure, as in the case of Gomory mixed integer cuts, where the
base inequalities are the rows of the optimal Simplex tableau. Nevertheless, the
above procedure is intrinsically heuristic, and it is not the only heuristic decision
in the context of cutting plane generation. One of the hardest to settle among these
decisions is cut selection, i.e., the identification of which cuts, among all those sep-
arated within a cutting plane iteration, should be added to the next LP relaxation.
Another very intriguing decision recently emerged in the context of performance
variability (see Section 10.2.2), concerns the selection of a specific basis in the opti-
mal face of any LP relaxation. More precisely, it has been observed [9] that a crucial
source of variability is the basis to which the cutting plane phase is applied among
all equivalent ones5 in the optimal face. Currently, the Simplex algorithm returns
one of them at random, and a natural question is about the characterization of a
basis that, at least heuristically, would lead to a better cutting plane performance.

10.3.3 Sophisticated Branching Strategies

The branching phase is by construction (probably) the most delicate part of the
branch-and-cut (or, more appropriately, cut-and-branch) framework currently im-
plemented by commercial and non-commercial MIP solvers. Essentially, when the
strengthening of the LP relaxation by cutting planes reaches a steady point, either
because cuts are not effective anymore or because the resulting LP starts having
numerical troubles, then the problem is recursively split by fixing variables, and im-
plicit enumeration, effectively represented by a (decision) tree, is performed. The
splitting generally creates two MIP sub-problems by using the rounding of the so-
lution of the LP relaxation value of a fractional variable, say x j, constrained to be
integral ( j ∈I )

x j ≤ �x∗j�
∨

x j ≥ �x∗j�+ 1. (10.2)

The idea is to split the solution space into pieces that are easier to explore because
some of the decisions have already been taken. The selection of the variable x j

(whose domain must be split) among all those in I that are fractional at the current
decision point is not an issue for the theoretical convergence of the enumerative al-
gorithm6. However, in practice, decisions are dramatically not equivalent: branching

5 The existence of several optimal bases, i.e., an optimal face, for an LP is likely to happen
especially in case of degenerate LPs.

6 Note that the convergence and correctness of the algorithm does not require branching on
variables, but rather just branching on discrete expressions or objects in the model in a way
that splits the domains in a mutually exclusive way.
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decisions of type (10.2) are “good” if the created sub-MIPs are indeed easier, i.e.,
finding their optimal mixed integer solution is “fast”. In other words, the only strict
measure of the quality of a branching decision is the computational effort required
to solve the sub-MIPs it originates, i.e., the size of the search sub-trees. This mea-
sure is a posteriori, and, because of the N P-hardness of MIP discussed in Section
10.2.2, there is very little hope it can be theoretically anticipated. Thus, heuristic
approximations of that measure must be used and there is a flourishing literature in
the area (see, e.g., [17, 18]).

Almost all sophisticated techniques used to compute an a priori proxy of the
above quality measure of effectiveness of a branching decision are variations of the
so-called strong branching (see, e.g., Linderoth and Savelsbergh [17]). In its heav-
iest form strong branching solves (to optimality) the two LP relaxations associated
with the decision (10.2), for all possible j ∈I such that x∗j is fractional, and selects
the best variable x j to branch on according to (slightly) different scores. The un-
derlining idea is that the variable for which the lower bound of both sub-MIPs has
increased the most7 with respect to that of the father (sub-)MIP is the most promis-
ing one, because the smaller gap between lower and upper bound in the sub-MIPs
is likely to be closed “faster”.

However, the computational effort required by the “full” strong branching would
be way too high, and MIP solvers adopt two heuristics:

• only a subset of the variables is considered (candidate set), and
• each LP is not solved to optimality but within a given Simplex iteration limit.

In other words, not only heuristics are needed to overcome theoretically hard tasks
like the lack of an a priori measure of the quality of a branching decision, but MIP
solvers need to find a heuristic compromise for practical tasks too, specifically, in
the way the ideas are implemented.

10.3.4 Primal Heuristics

This is clearly the area in which it is trivial to recognize the impact of heuristics
within MIP solvers. The methods implemented in the solvers go from the so-called
rounding heuristics, where a fractional solution obtained from the LP relaxation is
converted into a mixed integer one trying to preserve the feasibility with respect
to the linear constraints, to local search and metaheuristic techniques to improve
feasible solutions (see, Fischetti and Lodi [12] for a recent survey).

From the one side, in the last decade we have seen a tremendous improvement
in the capability of primal8 heuristics to find very good (nearly-optimal) solutions

7 Generally, the difference of the bounds in the two sub-MIPs is multiplied in the score
associated with the variable.

8 It might be useful to recall that the term “primal” is used in MIP context to indicate the pes-
simistic approximation of the optimal solution value (corresponding to a feasible solution),
in opposition to the term “dual” used for the optimistic approximation.
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early in the tree. On the other hand, a meaningful experiment by Achterberg [1] has
shown that the knowledge of the optimal solution from the very beginning of the
search improves the running time of an MIP solver, on average, only by a factor
of 2.

In other words, heuristics dramatically impact on the user perception of the qual-
ity of a solver, although the current algorithmic framework, intrinsically dual, does
not benefit much from accurate primal (i.e., feasible) solutions to prove optimality.
Nevertheless, a solver is perceived to be weak for an instance if it does not “fill”
the log column reporting the primal bound almost immediately, one reason of this
perception being the sometimes minor need of the optimal solution discussed at the
beginning of Section 10.2.1.

However, the most surprising impact of primal heuristics in the MIP solvers is
on the so-called MIPping approach [10, 13], which consists in internally invoking
within the algorithmic process the MIP solver itself to “solve” other MIPs, so as to
find good feasible solutions [5] and/or to generate cutting planes [11].

The “surprise” comes from the fact that the MIPs solved internally in a black-box
fashion, i.e., without exploiting any a priori knowledge, are theoretically as difficult
as the original MIP for which one is “simply” trying to improve the incumbent so-
lution or strengthen the LP relaxation. In other words, at first, MIPping appears
way too expensive computationally to be effective. In fact, the MIP technology has
reached such an effective and stable performance to allow MIPping (especially if
used with a lot of care), mainly thanks to the integration in the solvers of sophisti-
cated primal heuristics able to generally produce feasible solutions quickly. Indeed,
none of those MIPs needs to be solved to optimality for providing useful pieces of
information: they are constructed in such a way that any of their feasible solutions
is either an improving primal solution or a cutting plane for the original instance.
Finally, the solution process of those additional MIPs can be controlled safely, for
example, by limiting the number of explored branch-and-bound nodes.

10.4 MIP Solvers, Metaheuristics and Hybrid Algorithms

We have shown that not only MIP solvers (i) are often used as heuristics9, (ii) are
developed and tested using heuristic criteria, and (iii) use heuristic decisions in each
of their basic components, but also they (iv) incorporate heuristic algorithms that
are not only used to find good solutions but also as building blocks of sophisticated
algorithmic strategies like MIPping, and (v) benefit from ideas originated in dif-
ferent communities like propagation algorithms from Constraint Programming and
neighborhood exploitation from Metaheuristics.

On the one side, this leads us to view MIP solvers as open frameworks for effec-
tive and sophisticated algorithmic development. In other words, we believe that it is

9 MIP solvers are, in several important cases, among the best heuristic approaches even for
combinatorial/structured problems, e.g., set covering type problems.
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worthwhile trying to use more and more the MIP solvers also for the implementa-
tion of dedicated heuristic approaches. Of course, this goes far beyond the simple
try to run an MIP solver on a naively constructed model. In fact, an MIP solver can
be effectively fed with the knowledge of the problem at hand in many forms, like re-
dundant constraints, symmetry breaking rules, priorities in the variable selection for
branching, good neighborhoods to explore. This can be done quite smoothly in some
of the MIP solvers, namely those providing the so-called callback functions, i.e.,
pieces of code that allow the flexibility of accommodating the user code for specific
algorithmic tasks like cut generation, primal heuristics, branching strategies, etc.
Moreover, several of these callbacks allow recovering information from the system
in the solution phase so as to favor a better understanding of the algorithm evolution.
However, what we are advocating here is the exploitation of an MIP solver (or, to
some extent, of the MIP technology) at an intermediate depth, possibly disregarding
some more theoretical features like polyhedral analysis or exhaustive enumeration,
but working within a framework that allows the user unexpected flexibility and free-
dom. We believe the discussion so far has shown that such an intermediate level of
depth exists, and that it is relatively natural to understand and use.

On the other hand, the previous sections have also shown that MIP solvers are
open to ideas originated in different areas, from the classically related ones like
Graph Theory to more recent connections in the contexts of Constraint Program-
ming, Artificial Intelligence, Metaheuristics. A lot of potentially very good work
remains to be done for effectively integrating those ideas in the solvers, thus leading
to sophisticated hybrid algorithms.
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18. Lodi, A.: MIP computation. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser,
G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer
Programming 1958-2008, pp. 619–645. Springer (2009)

19. Lodi, A., Martello, S., Monaci, M., Cicconetti, C., Lenzini, L., Mingozzi, E., Eklund, C.,
Moilanen, J.: Efficient two-dimensional packing algorithms for mobile WiMAX. Man-
agement Science (2011), doi:10.1287/mnsc.1110.1416

20. Margot, F.: Symmetry in Integer Linear Programming. In: Jünger, M., Liebling, T.M.,
Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A.
(eds.) 50 Years of Integer Programming 1958-2008, pp. 647–686. Springer (2009)

21. MIPLIB - Mixed Integer Problem Library, http://miplib.zib.de
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Chapter 11
Combining Column Generation and
Metaheuristics

Filipe Alvelos, Amaro de Sousa, and Dorabella Santos

Abstract. In this Chapter, we consider the hybridization of column generation (CG)
with metaheuristics (MHs) for solving integer programming and combinatorial opti-
mization problems. We describe a general framework entitled ”metaheuristic search
by column generation” (for short, SearchCol). CG is a decomposition approach in
which one linear programming master problem interacts with subproblems to ob-
tain an optimal solution to a relaxed version of a problem. The subproblems may
be solved by problem-specific algorithms. After CG is applied, a set of subprob-
lem’s solutions, optimal primal and dual values of the master problem variables
and a lower bound to the optimal value of the problem are available. In contrast
with enumerative approaches (e.g, branch-and-price), in SearchCol the information
provided by CG is used in a MH search. The search is based on representing a
solution (to the overall problem) as being composed by one solution from each sub-
problem. After a search is conducted, a perturbation for CG is defined and a new
iteration begins. The perturbation consists in forcing or forbidding attributes of the
subproblem’s solutions and, in general, leads to the generation of new subproblem’s
solutions and different optimal primal and dual values of the master problem vari-
ables. In this Chapter, we discuss (i) which models are suitable for decomposition
approaches as SearchCol, (ii) different alternatives for generating initial solutions
for the search (with different degrees of randomization, greediness and influence of
CG) (iii) different search approaches based on local search, (iv) different alterna-
tives for perturbing CG (influenced by CG, based on the incumbent, and based on
the memory of the search).
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11.1 Introduction

We describe a framework for obtaining approximate solutions for mixed integer pro-
gramming (MIP) and combinatorial optimization (CO) problems. The framework,
named metaheuristic search by column generation , or SearchCol for short, relies
on the combination of column generation (CG) and metaheuristic (MH) search.
The aim of a SearchCol algorithm is to obtain high quality solutions in reasonable
amounts of time for a wide range of problems.

The core ideas of this work were first proposed in [2] and have their roots in [4].
In this Chapter, we further develop some concepts, provide additional details on
others, and extend the SearchCol framework to a more general setting.

SearchCol is a decomposition approach in which a solution to a problem is com-
posed by several components, which are themselves solutions to smaller problems.
Its central idea is the exchange of information between CG and a MH. Basically, CG
provides subproblem solutions which define a search space for the MH. The MH
provides an incumbent solution and information on desired or avoidable attributes
of the subproblem solutions to CG. This exchange of information is repeated until a
stopping criterion is met.

A particular MH is not specified in SearchCol but a set of algorithmic compo-
nents are defined such that different (hybrid) MHs can be used in an actual Search-
Col algorithm. Those components use CG information, randomness, greediness,
neighborhoods, and memory for implementing different strategies of building and
improving solutions.

SearchCol can be applied in the vast majority of problems for which approaches
based on Dantzig-Wolfe decomposition [19] or Lagrangean relaxation [30] were
devised (even when the model to be solved does not result directly from those refor-
mulation methods). Dantzig-Wolfe decomposition and Lagrangean relaxation are
dual equivalent of each other and the corresponding solution approaches, CG and
Kelley’s cutting plane method [44], are also dual equivalent of each other (see [28]
for a clear explanation). Having present this equivalence, in the remainder of this
Chapter, we use the primal perspective of CG and Dantzig-Wolfe decomposition.

In Dantzig-Wolfe decomposition , it is assumed that an original model exists.
By defining a set of subproblems with some of the constraints of the original MIP
model, a reformulated model, the decomposition model, is obtained. In many appli-
cations, a decomposition model can be formulated directly. In this Chapter, although
we mention Dantzig-Wolfe decomposition when we think that this important partic-
ular case is worth to detail, we consider the more general decomposition model.

11.1.1 Motivations

Decomposition approaches are appealing for MIP and CO problems for several
reasons:
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• Decomposition models may capture the decomposable structure already present
in the problem (which in fact, seems to exist in most pratical problems [49])
being the simpler and more direct way to model it.

• Decomposition is attractive for large-scale problems when a non-decomposition
model is too large to be dealt with computationally.

• Decomposition approaches can be parallelized easier than direct approaches.
• A problem may involve complex constraints or objective functions which are

not easily addressed by MIP (where linearity is assumed - disregarding the in-
tegrality constraints of the variables) but can be efficiently addressed by other
modelling approaches such as dynamic programming [22] and constraint pro-
gramming [35]. These approaches can be used in subproblems, but still framed
by MIP / linear programming.

• Decomposition approaches can be faster than the other available approaches.
There are two main reasons for this:

– The Linear relaxation of a decomposition model may provide a better gap than
other models. In particular, when a Dantzig-Wolfe decomposition is applied,
if the subproblem does not possess the integrality property (i.e, not all its
extreme points are integers), the lower bound (assuming a minimization prob-
lem, as will be done throughout the Chapter) provided by the linear relaxation
of the decomposition model is greater than or equal to the one provided by
the linear relaxation of the original model. Good quality lower bounds are a
major factor of the quality of implicit enumeration algorithms, e.g. branch-
and-bound.

– Very efficient problem-specific algorithms can be used in solving subprob-
lems.

Decomposition approaches are usually applied in NP-hard problems. A MIP decom-
position model (which linear relaxation can be solved by CG), has an exponential
number of variables. Even when the set of variables is restricted, the restricted prob-
lem usually remains NP-hard (it is a general MIP). Therefore, the definition of a
combinatorial model to explore a search space in an approximate manner is an at-
tractive solution approach.

When using SearchCol, there is an implicit combinatorial model which is the
base for MH search. In this model a solution is represented by a set of subproblem
solutions, one from each subproblem. The rationale for using this combinatorial
decomposition model relies on the following three aspects:

• The decomposition naturally defines a search space in a higher level which is
easier to explore. In the combinatorial decomposition model, subproblems solu-
tions are combined to form a solution to the overall problem. These subproblems
solutions can be seen as higher level components when compared to subproblem
variables. Note that the feasibility in the subproblems constraints is assured in
subproblem solutions.

• If the linear relaxation of the MIP decomposition model associated with the
combinatorial decomposition model provides high quality lower bounds, it is
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reasonable to expect that the search space is of better quality (i.e. poor solutions
are excluded) than search spaces based on other models.

• The decomposition of the structure of a solution naturally leads to the definition
of operators for MH search.

11.1.2 Literature Review

SearchCol combines decomposition approaches mainly based on mathematical pro-
gramming and MHs. We now give a necessarily brief overview of relevant works
on the first type, on the second type, and also on the combination of both types of
approaches.

For providing approximate solutions (as in the so called Lagrangean heuristics)
or optimal solutions (as in branch-and-price), decomposition approaches based on
Dantzig-Wolfe decomposition [19] or Lagrangean relaxation [30] for MIP and CO
have been a major topic of research in the last decades [41]. For example, two of the
most influential ten papers in one of the most relevant journals of the Institute for
Operations Research and the Management Sciences [39] are papers in decomposi-
tion approaches: CG [27] and Lagrangean relaxation [24].

The roots of Lagrangean relaxation in MIP and CO lie in [37, 38, 30, 24]. More
recent references can be found in [10, 25]. The roots of Dantzig-Wolfe decompo-
sition and CG lie in [27, 19, 31, 32, 21]. A modern perspective on CG for integer
programming is given in the surveys [9, 65, 46, 64] and in the book [20].

MHs are the most successfull approaches for addressing large instances of many
CO problems. There is a vast literature since the 1980s where significant research
on this area begun (recent books are [33, 63, 29]). A comprehensive survey paper
is [14]. A landmark book is [34].

In recent years, hybrid MHs (taken as the combination of different MHs or taken
as the combination of MHs with other approaches) emerged as an important area
of research. In [62], a taxonomy of hybrid MHs is proposed and an annotated bib-
liography classifying several MHs according to the taxonomy is provided. Recent
surveys on hybrid MHs are [55, 13]. Surveys and applications of hybrid MHs are in
the book [11].

Among the hybrid MHs, the combination of heuristics and mathematical pro-
gramming , resulting in the so-called Matheuristics, has received an increasing in-
terest (see, for example, [56, 12, 47, 7] and sections 4 and 5 of [13]). SearchCol
belongs to this research stream.

SearchCol is a framework which combines a decomposition method (CG) and
MH search. The next two references also propose frameworks for this combination.

In [18], a framework for combining branch-and-price with local search is pro-
posed. In that work, local search is applied in the nodes of the branch-and-price
tree for attempting the improvement of the incumbent solution and generating new
columns. The resulting hybrid approach is applied to a vehicle routing problem
where the master problem is a set partitioning model. A central difference between
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this framework and Searchcol is that the latter intentionally avoids an implicit enu-
meration strategy, i.e. (heuristic) branch-and-price.

A framework based on Dantzig-Wolfe decomposition is proposed in [15] in
which the primal and dual solutions are used to construct a problem solution in a
problem-specific manner. In the same reference a framework for Lagrangean heuris-
tics is also provided. The central step (building a solution from the subproblem so-
lutions and from the dual variables values) is also problem dependent. In SearchCol,
the subproblems are also solved in different dual points (as in the frameworks of the
reference) given by the restricted master problems (RMPs) of CG (note that a sub-
gradient method could also be used), but then the solution is obtained in a problem
independent manner. Furthermore, this solution can be used to perturb CG leading
to the consideration of new subproblem solutions. This perturbation is also problem
independent.

Other examples and references on the combination of CG based approaches and
heuristics are provided in Section 11.4 after the description of the MIP decomposi-
tion model used in SearchCol.

We now classify SearchCol according to the classification of [54]. The kind of
algorithms that are hybridized define a first differentiation criterion in that classi-
fication scheme. In SearchCol, at least two types of algorithms are combined: a
linear programming algorithm for solving the RMP of CG and a (hybrid) MH for
the search. A problem-specific algorithm for solving the subproblem is also usual.
The second differentiation criterion is the strength of combination. In SearchCol,
CG influences a MH and the reverse is also true. As the algorithms retain their own
identities, there is a low level of hybridization. Note that this weak coupling is a
consequence of the generality of the approach. The order of execution is interleaved
and the combination is collaborative: the CG and the MH exchange information but
none is strongly subordinated to the other.

11.1.3 Contributions

Decomposition models are powerful modelling tools, but efficient solution methods
are required for their success in problem solving. The main contribution of this
work is the proposal of a framework, SearchCol, which has the purpose of solving
efficiently a wide range of decomposition models. The key issue is that SearchCol
explores the combinatorial structure of a problem which has been mostly tackled by
mathematical programming. Furthermore, the combinatorial perspective is rather
natural as we are given a number of sets, each one with a large number of elements,
and we are interested in selecting one element from each such that a function is
minimized.

There are two main strenghts in this framework. The first one is its ability to
deal with complex problems, since the subproblems of CG can be approached with
any optimization technique and their complexity is hidden from the search which
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is conducted in a higher level. The second one is its generality, since the problem-
specific components of a SearchCol algorithm are limited to a subproblem solver
and its interaction with a linear programming model. In fact, if the model results
from a Dantzig-Wolfe decomposition and the subproblems are solved with a general
purpose solver, SearchCol is totally problem-independent.

The type of models which may be addressed by SearchCol are the ones where
the linear relaxation may be solved by CG. In this sense, SearchCol is an alternative
to branch-and-price, not based on enumeration. Rigorously, we consider the case
where the coefficients of a column in the rows of the master problem are a function
of binary variables of the subproblem (the subproblem may have additional bina-
ry/integer/continuous variables but they are not used for this purpose). This is the
most usual case in CG based approaches.

Besides the usual variables associated with the subproblem solutions, our frame-
work also admits binary / general integer / continuous variables in the master prob-
lem, which provides flexibility when modelling a problem through decomposition.

Two related contributions of this work is the combinatorial model used in Search-
Col and the proposal of a large number of algorithmic components for the definition
of MHs to address it. These components can be combined originating particular
MHs. We provide the examples of (advanced) multi-start local search and variable
neighborhood search. Additional algorithmic components, which are easily con-
ceivable, allow the extension to other approaches, in particular, population-based
MHs.

11.1.4 Chapter Structure

This Chapter is organized as follows. In Section 2 we introduce the decomposition
MIP model and give examples for different problems. In Section 3 we describe CG
and perturbed CG which are base ingredients of SearchCol. CG is used to solve
the linear relaxation of the MIP model. In Section 4 we review solution methods
for the decomposition MIP model. In Section 5 we propose a different perspec-
tive on the problem being solved which is based on a combinatorial decomposition
model. We discuss the solution representation, the search space, and how solutions
are evaluated. We provide a description of Searchcol in Section 6. In Section 7,
the MH search phase is detailed and examples of actual SearchCol algorithms are
provided. In Section 8 we discuss the main conclusions of the Chapter.

11.2 A Decomposition Mixed Integer Programming Model

We consider problems where a set of decisions, each one from a finite but large set
of alternatives, must be taken. The alternatives are modelled through binary vari-
ables and a cost value might be associated with each one. In the most general case,
the relation between the decisions can be modelled by binary, general integer and
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continuous variables, linear constraints, and may imply additional costs. We intend
to minimize the total cost.

In subsection 11.2.1 a general decomposition model for these problems is intro-
duced. This model relies on associating a subproblem solution with each decision.
In the same subsection, we define the notation used and state the assumptions made.
The decomposition model is introduced independently of any solution method or
previous model, what we believe can be interesting as a starting point for a fresh
look to decomposition approaches.

In subsection 11.2.2 we provide several examples of decomposition models.

11.2.1 Model Statement

We consider the following MIP model (D), named decomposition model, which
may be derived directly for a problem or may be the result of the application of a
Dantzig-Wolfe decomposition or of a Lagrangean relaxation.

Min ∑
t∈T

ctyt + ∑
k∈K

∑
s∈Sk

ck
s yk

s (D)

subject to

∑
s∈Sk

yk
s = 1 k ∈ K (11.1)

∑
t∈T

aityt + ∑
k∈K

∑
s∈Sk

ak
isy

k
s{≤,=,≥}bi i ∈ I (11.2)

yt ∈ {0,1} t ∈ T b (11.3)

yt ≥ 0and integer t ∈ T i (11.4)

yt ≥ 0 t ∈ T c

yk
s ∈ {0,1} k ∈ K,s ∈ Sk (11.5)

The decomposition model (D) has two sets of decision variables. Variables yt , which
we name static variables, are not present in the first set of constraints and are
grouped by type: binary (t ∈ T b), general integer (t ∈ T i), and continuous (t ∈ T c).
The second set of decision variables, yk

s , k∈K, s∈ Sk, are the selection variables and
are partitioned in |K| subsets, indexed by k. Their general definition is the following.

yk
s =

{
1 if the s-th element of the subset k is selected
0 otherwise

k ∈ K, s ∈ Sk

Parameters ct , ck
s , ait , ak

is, and bi are coefficients of the variables in the objective
function, coefficients of the variables in some of the constraints and the right-hand
sides of some of the constraints, as can be seen directly in (D).
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Constraints (11.1) state that one element from each subset k must be selected,
therefore they are named selection constraints. Constraints (11.2) may include any
decision variable. We name them global constraints.

We are interested in the case where the number of selection variables is so large
that addressing model (D) directly, for reasonable size instances, is out of the ques-
tion. The growth of |Sk| with respect to the size of the data defining the problem
to be solved is not bounded by a polynomial. On the contrary, the number of static
variables and constraints is polynomial.

Furthermore, we consider that each partition k is associated with a subproblem,
which allows treating the selection variables implicitly as they become associated
with solutions of the subproblem. The subproblem is defined such that each sub-
problem solution, xk

s , is associated with one selection variable, yk
s . Each subproblem

k has a set Jk of binary decision variables represented by the vector xk with compo-
nents xk

j. We represent the s-th feasible solution by xk
s . The subproblem may have

auxiliary variables, wk
r not necessarily binary. Representing the set of indexes of

the auxiliary binary variables of subproblem k by Rbk, the set of indexes of general
integer variables by Rik, and the set of indexes of continuous variables by Rck, the
feasible region of the subproblem, which we represent by Qk, is defined by

(xk,wk) ∈W k (Qk)

xk ∈ {0,1}|Jk |

wk
r ∈ {0,1},r ∈ Rbk

wk
r ≥ 0 and integer,r ∈ Rik

wk
r ≥ 0,r ∈ Rck

where W k is the set of possible values for the decision variables xk and wk.
We represent the determination of the coefficients of the selection variables in

(D) for each subproblem solution xk
s , k ∈ K, s ∈ Sk, by the following functions:

ck
s = f k

0 (x
k
s ,w

k)

ak
is = f k

i (x
k
s) i ∈ I

Note that the variables wk
r do not appear in the f k

i functions which implies that they
do not participate in the definition of the feasible region of (D). If two solutions
have the same value in the xk variables but different values in the wk variables, then
a single selection variable is associated with solution xk, the one with a lower value
(given by f k

0 ).
A solution in terms of the selection variables can be translated into a subproblem

solution. In order to establish this relation we define xk
js as the value of the j-th

variable of the subproblem k in solution s (which takes values 0 or 1).
Given a set of values for the selection variables yk

s , the value of a subproblem
variable is given by:
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xk
j = ∑

s∈Sk

xk
jsy

k
s . (11.6)

There are other types of models closely related to model (D) and for which all the
approaches discussed and proposed in this Chapter can also be applied.

In the first type, there is only one subproblem and we want m different solutions
from it. The selection constraints (11.1) are replaced by a single constraint

∑
s∈S

ys = m

The second type of models are set covering, partitioning, and packing. In these
models a parameter m representing an upper bound to the number of sets in an
optimal solution is introduced (note that a trivial upper bound is the number of
elements). The selection constraints (11.1) are again replaced by a single constraint

∑
s∈S

ys ≤ m

In the most general case, the selection constraints take the form:

yk
0 + ∑

s∈Sk

yk
s = mk,k ∈ K

where mk is the number of different solutions required for subproblem k, which may
include null solutions as modelled by the slack (general integer) variables yk

0. If the
null solution of the subproblem is not feasible then yk

0 = 0.
In general, different decomposition models can be formulated for the same prob-

lem. As virtually all the solution approaches for solving (D) are based on linear
relaxations, a first criterion for the choice of a particular decomposition model in-
stead of another is the quality of the lower bound given by its linear relaxation. A
second criterion is the easiness of dealing with the subproblem. The third criterion
is the difficulty to solve the decomposition model itself: in principle, the less the
number of global constraints, the better.

In the next subsection, we give examples of decomposition models for different
types of problems.

11.2.2 Examples

11.2.2.1 Time Constrained Shortest Path Problem

We first consider the time constrained shortest path problem. In this problem, a
directed network is given. Associated with each arc there are two parameters: its
length and the time it takes to be traversed. The objective is to find the shortest path
between two nodes not exceeding a given time limit. We define c j as the length
of arc j, t j as the travel time in arc j, and T as the time limit. In order to obtain
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a decomposition model in the form of the general one introduced in the previous
subsection, we define the following decision variables.

ys =

{
1 if path s is the chosen path
0 otherwise

,s ∈ S

where S is the set of all paths. A decomposition model is:

Min ∑
s∈S

csys

subject to

∑
s∈S

ys = 1,

∑
s∈S

asys ≤ T , j ∈ A

ys ∈ {0,1} , s ∈ S

Note that in this model, there are no static variables and we only define one partition
(we do not use the index k).

As the number of paths in a network grows exponentially with the dimension of
the network, we define a subproblem where a solution corresponds to a path and
the decision variables are associated with arcs (J is the set of arcs of the network).
There are no auxiliary subproblem variables. The subproblem solution of path s is
given by

x js =

{
1 if arc j belongs to path s
0 otherwise

k ∈ K, j ∈ J

The coefficients of the selection variables in the objective function and in the con-
straint are given by

cs = f k
0 (x

k
s) = ∑

j∈J

c jx js

as = f k
1 (x

k
s) = ∑

j∈J

t jx js

In this model, the relation between the values of the selection variables and the
subproblem variables established by (11.6) let us obtain the flows on the arcs (the
values of the subproblem variables) based on the flows on paths (the values of the
selection variables). This is a well known result for network flow problems [1].

We give a numerical example with an instance from [1] in Figure 11.1 where the
values on each arc are the cost and time by that order. It is intended to obtain the
shortest path between nodes 1 and 6 with the time limit of 14 time units.

For this very small instance, all paths can be enumerated easily. The set of all
paths, S, their lenghs and times, are given in Table 11.1. Since the decomposition
model is very small, it can be solved directly by a general purpose solver. The opti-
mal solution corresponds to the path 1− 3− 2− 4−6 with length 13.
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Fig. 11.1 An instance of the time constrained shortest path problem

Table 11.1 Parameters of the decomposition model for the time constrained shortest path
example

s (1,2,4,6) (1,2,4,5,6) (1,2,5,6) (1,3,2,4,6) (1,3,2,4,5,6) (1,3,2,5,6) (1,3,4,6) (1,3,4,5,6) (1,3,5,6)
cs 3 14 5 13 24 15 16 27 24
as 18 14 15 13 9 10 17 13 8

11.2.2.2 Single Path Routing Problems

A single path routing problem is defined over a network in which a set of commodi-
ties, K, must be routed from their origin nodes to their destination nodes. We address
the problem in which each commodity has a given demand, dk, corresponds to an
origin/destination pair, and there are capacities associated with the arcs, bi j, i j ∈ A,
where A is the set of arcs of the network. Furthermore, each commodity must use
a unique path to route its demand. This problem is also known as the unsplittable
multicommodity flow problem. In here, we consider two variants of this problem:
in the first, there are costs (per unit of demand) associated with the arcs that may
vary by commodity and the objective is to minimize the total cost (min cost prob-
lem); in the second, the objective is to minimize the load (i.e, the used proportion
of the capacity of the arc) of the arc with the maximum load (min-max problem).
We discuss the cases of directed networks but the models and solution approaches
to be discussed later can be easily transformed for undirected ones. This problem
have been addressed in [8, 3, 4].

Min cost problem

A decomposition model for the minimum cost single path routing problem is known
as the arc-path formulation (see, for example, [1]). A selection variable, yk

s , is asso-
ciated with path s of commodity k, therefore it will take the value 1 if path s is the
path selected for commodity k, and 0, otherwise. There are no static variables and
there is one global constraint for each arc i j, i j ∈ A, stating that the capacity of the
arc cannot be exceeded:

∑
k∈K

∑
s∈Sk

ak
(i j)sy

k
s ≤ bi j
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As in the time constrained shortest path example, the subproblem variables are as-
sociated with arcs. For commodity k:

xk
(i j)s =

{
1 if arc i j belongs to path s of commodity k
0 otherwise

k ∈ K, i j ∈ A

Denoting the unitary cost for commodity k of arc i j by ck
i j, then cost of the selection

variable yk
s is given by

ck
s = f k

0 (x
k
(i j)s) = ∑

i j∈A

ck
i jx

k
(i j)s

The coefficients of the variables in the global constraints are given by:

ak
(i j)s = f k

i j(x
k
(i j)s) = dkxk

(i j)s

Min max problem

A decomposition model for the min max single path routing problem can be ob-
tained by considering one static continuous variable, y1, corresponding to the max-
imum load of an arc. The objective function becomes

Miny1

and the global constraint for arc i j, i j ∈ A:

−bi jy1 + ∑
k∈K

∑
s∈Sk

ak
(i j)sy

k
s ≤ 0

Note that, in this case, there are no costs associated with the subproblem solutions.

11.2.2.3 Vehicle Routing Problems

We consider the example of a decomposition model for a classical vehicle routing
problem [22, 43]. We consider a network with nodes associated with customers and
with the depot (one node is the origin depot and another is the destination depot).
We consider that each customer has a given demand and a given time window (the
demand of the client must be delivered not earlier than the beginning of the time
window and not later than its end). Associated with each arc there is a cost and a
time. We consider a fleet of homogeneous vehicles - all the vehicles have the same
capacity. The problem is to define the route of each vehicle such that all customers
are served within the time windows prescribed and minimizing the total distance
travelled by the fleet. The decomposition model has no static variables, each selec-
tion variable is associated with a specific route (a path starting at the origin depot and
ending at the destination depot), and the global constraints state that each customer
must be visited:
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∑
s∈Sk

ak
isy

k
s = 1.

The subproblem variables are associated with arcs:

x(i j)s =

{
1 if arc i j belongs to route s
0 otherwise

i j ∈ A

Denoting the length of arc i j by ck
i j, then the cost of the selection variable ys is given

by
ck

s = f k
0 (x

k
(i j)s) = ∑

i j∈A

ck
i jx

k
(i j)s

The coefficients of the selection variables in the global constraints are given by:

ak
is = f k

i (x
k
(i j)s) = ∑

i j∈A

xk
(i j)s

A subproblem solution is a path from the origin depot to the destination depot which
obeys the time windows of the customers associated with the nodes of the path. Aux-
iliary subproblem variables must be required to define feasible paths (paths obeying
the time windows).

11.2.2.4 Machine Scheduling Problems

We consider the example of decomposition models for parallel machine scheduling
where there are a given number of machines and a given number of jobs to be pro-
cessed on them with some time-related objective. For each job, a processing time
in each machine, a priority or weight, possibly a release date, and possibly a due
date, are given. Machines can be identical or different, if they process the jobs with
different speeds, or have different availabilities during the time horizon. Usual de-
composition models [5, 16, 6, 45] have no static variables, each selection variable
is related with a specific schedule, the selection constraints state that one schedule
for each machine must be selected (non-identical machines) or that a given number
of schedules must be selected (identical machines), and there is one global con-
straint for each job i stating that the job must be processed (in the case of identical
machines, we drop the superscript k):

∑
k∈K

∑
s∈Sk

ak
isy

k
s = 1.

As the number of schedules grows exponentially with the number of jobs, we define
a subproblem for each machine where a solution corresponds to a schedule and the
decision variables are associated with the assigment of jobs to the machine. The
subproblem solution of schedule s of machine k is given by
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xk
js =

{
1 if job j belongs to schedule s of machine k
0 otherwise

k ∈ K, j ∈ J

The coefficients of the selection variables in the global constraint of job i are:

ak
is = f k

i (x
k
s) = xk

js, with i = j.

The determination of the objective coefficient of the selection variables involves a
set of auxiliary subproblem variables which are related with the completion times
of the jobs. For example, in [5, 16], the objective is to minimize the total weighted
completion time and therefore, the cost of a schedule depends on the completion
time of the jobs it includes. Representing the completion time of job j in schedule s
of machine k by wk

rs, then

ck
s = f k

0 (x
k
s ,w

k
r ) = ∑

j∈J
Wjw

k
rsx

k
js

where Wj is the weight of job j. The completion time of a job depends on which
jobs are processed in the same machine. Therefore function f0 is non linear.

11.2.2.5 Multiple Spanning Tree Routing Problems

Multiple spanning tree routing is a particular case of single path routing. This prob-
lem is defined in undirected networks and is motivated by the spanning tree routing
protocol for switched Ethernet networks [40]. In multiple spanning tree routing, a
set of spanning trees is defined and each commodity is to be routed over the edges of
one of the spanning trees. Given the number of spanning trees that may be used, the
problem is to define the specific spanning trees to be used and which commodities
are assigned to each spanning tree. This problem and a related problem have been
addressed in [58, 59].

The tree and path decomposition models are based on selection variables corre-
sponding to paths and corresponding to spanning trees (other decompositions are
studied in [58]). We describe the min cost problem, noting that a min max problem
can be modelled in a similar way.

We divide partitions K in two subsets: K1 is related with paths and K2 is related
with spanning trees. Therefore, a variable yk

s with k ∈ K1 is associated with a path
and a variable yk

s with k ∈ K2 is associated with a spanning tree. Naturally, K =
K1∪K2. For k ∈ K1, we define xk

{i, j}s equal to 1 if path s, which is associated with
commodity, includes edge {i, j} and equal to 0, otherwise. For k ∈ K2, we define
xk
{i, j}s equal to 1 if spanning tree s, which is associated with k-th spanning tree,

includes edge {i, j} and equal to 0, otherwise.
As fixed variables, we define φ k2

k1 equal to 1 if path k1 ∈ K1 is assigned to span-
ning tree k2 ∈ K2.

A decomposition model based on paths and trees for the minimum cost multiple
spanning tree routing problem is:
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Min ∑
k∈K1

∑
s∈Sk

ck
syk

s (Dmctrp)

subject to

∑
s∈Sk

yk
s = 1 k ∈ K (11.7)

∑
s∈Sk1

xk1
{i, j}sy

k1
s ≤ ∑

s∈Sk2

xk2
{i, j}sy

k2
s +(1−φ k2

k1 ) {i, j} ∈ A, k1 ∈ K1, k2 ∈ K2 (11.8)

∑
s∈Sk2

φ k2
k1 = 1 k1 ∈ K1, k2 ∈ K2 (11.9)

∑
k∈K1

∑
s∈Sk

akxk
{i, j}sy

k
s ≤ b{i, j} {i, j} ∈ A

(11.10)

φ k2
k1 ∈ {0,1} k1 ∈ K1,k2 ∈ K2

yk
s ∈ {0,1} k ∈ K,s ∈ Sk

Constraints (11.7) force one path for each commodity and one spanning tree for each
allowed spanning tree to be selected. Constraints (11.8) state that if a commodity
uses edge {i, j} and is assigned to the t-th spanning tree then this spanning tree
must include edge {i, j}. Constraints (11.9) state that each commodity is assigned
to one spanning tree. Constraints (11.10) are the capacity constraints. Note that in
this problem the capacities are given by edge.

11.3 Column Generation

Column generation (CG) has been successfully applied in solving linear program-
ming problems with a huge number of variables (many of those being relaxations of
integer models). In this Section, we discuss how the linear relaxation of the decom-
position model introduced in the previous section can be solved by CG.

In subection 11.3.1 we provide a general overview of CG. In subsection 11.3.2
we address the subproblem in detail. In subsections 11.3.3 and 11.3.4 we provide
a CG algorithm and an example of its application. In subsection 11.3.5 we present
how subproblem variables can be fixed, which is an important topic to the solution
methods to be discussed in the remainder of this Chapter.

11.3.1 Overview

CG is a method that allows obtaining an optimal solution to the linear relaxation of
the decomposition model (D). The linear relaxation of (D) (LRD) is obtained by
replacing the integrality constraints, (11.3), (11.4), and (11.5) by:
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0≤ yt ≤ 1 t ∈ T b

yt ≥ 0 t ∈ T i

yk
s ≥ 0 k ∈ K,s ∈ Sk

Note that each yk
s cannot exceed 1 because of the selection constraints (11.1). In

many CG applications the (relaxed) static variables do not appear. However, their
presence extends the ability to model relevant problems with decomposition models,
as illustrated by some of the examples of subsection 11.2.2.

CG relies on the definition of restricted master problems (RMPs) which are lin-
ear programming problems where not all the variables of the overall problem are
considered. In the case of LRD, in a RMP, not all the selection variables are con-
sidered. Consider the case where LRD has only one subproblem, which is easily
extendable for |K| subproblems as will be done later. A CG algorithm begins with
the definition of a first RMP, which may include artificial variables for assuring fea-
sibility. In each iteration, the current RMP is optimized and its optimal dual solution
is used in evaluating the reduced costs of the selection variables outside the RMP.
This is done by solving the subproblem where the objective function is related with
the reduced costs of the selection variables. The smallest reduced cost is obtained
and, according to linear programming theory, if it is non negative the RMP solu-
tion is optimal for the overall problem LRD and the algorithm stops. Otherwise, the
selection variable associated with the subproblem solution (the one with the most
negative reduced cost) is introduced in the RMP (by using functions f0 and fi, i ∈ I)
and a new iteration begins.

11.3.2 Subproblem

11.3.2.1 General Considerations

In order to identify selection variables with negative reduced costs, a subproblem for
each k, k ∈ K, is solved. The subproblem k resolution aims at identifying a selection
variable yk

s with negative reduced cost.
By definition, representing the dual variables of constraints (11.1) by πk, k ∈ K,

and the dual variables of constraints (11.2) by ωi, i ∈ I, the reduced cost of variable
yk

s is given by
c̄k

s = ck
s −πk−∑

i∈I
ak

isωi.

The relation established between the selection variables and subproblem solutions
(given by the functions f0 and fi, i ∈ I), allows to obtain the selection variable yk

s
with the most negative reduced cost by solving an optimization subproblem for each
partition k:
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Min −πk + f k
0 (x

k,wk)−∑
i∈I

ωi f k
i (x

k)

subject to

(xk,wk) ∈ Qk

CG is of practical interest if there is an efficient exact algorithm able to solve this
(sub)problem. Typically, this algorithm is problem-specific as we are interested in
exploring the common structure of the selection variables of the same partition. In
many cases, such as the machine scheduling and vehicle routing models discussed in
11.2.2, those algorithms are based on dynamic programming which allows dealing
with non linear objective functions and non linear constraints. Examples of subprob-
lems solved by constraint programming can be found in [52, 23]. For the network
routing examples given in the previous subsection, shortest path algorithms (e.g.
Dijkstra’s) and minimum spanning tree algorithms (e.g. Kruskal’s or Primm’s) can
be used. Other usual subproblems are binary knapsacks (for example, [60]).

We now discuss two usual subproblem particular cases.

11.3.2.2 The Linear Case

In the linear case, the functions relating the subproblem solutions and the selection
variables f k

0 and f k
i , i ∈ I, k ∈ K, are linear. We define them, for k ∈ K, as

f k
0 (x

k,wk) = ∑
j∈Jk

dk
0 jx

k
j + ∑

r∈Rk

dk
r wk

r

f k
i (x

k) = ∑
j∈Jk

dk
i jx

k
j , i ∈ I

where dk
0 j, dk

i j, i ∈ I, j ∈ Jk, dr,r ∈ R are scalars.
Using the example of the time constrained shortest path problem, d0 j corresponds

to the cost of arc j and d1 j corresponds to the time of arc j (there is only one global
constraint). For min cost single path routing, dk

0 j is the cost of arc j for commodity

k and dk
i j is the demand of commodity k if i = j (the arc of the global constraint i is

the arc of the subproblem j) and is 0 otherwise. Xk is set the of all paths between
the origin and the destination of k.

Given the duals of the global constraints of the current RMP, πk, k ∈ K, and ωi,
i ∈ I, the subproblem k is:

c̄k = min ∑
j∈Jk

dk
0 jx

k
j −πk−∑

i∈I
ωi ∑

j∈Jk

dk
i jx

k
j + ∑

r∈R
dk

r wk
r

sub ject to

(xk,wk) ∈ Qk
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or, the objective function can be rearranged to

c̄k = min−πk + ∑
j∈Jk

(dk
0 j−∑

i∈I

ωid
k
i j)x

k
j + ∑

r∈R

dk
r wk

r

These decomposition models based on linear functions can be directly constructed
or may result from a Dantzig-Wolfe decomposition. When resulting from a Dantzig-
Wolfe decomposition, the subproblem variables are the original variables (the ones
of the compact model before the decomposition is applied) and the parameters dk

0 j

and dk
i j, i ∈ I,k ∈ K, j ∈ Jk, correspond to the coefficients of the original variables in

the compact model (in the objective function and in the constraints that are kept in
the master problem when the decomposition is applied). The auxiliary subproblem
variables correspond to original variables which do not appear in the linking con-
straints but only in constraints which were sent to the subproblem. Static variables
correspond to original variables which appear in the linking constraints but not in
constraints which were sent to the subproblem. In this context, it is relevant to note,
we are restricting ourselves to the case where the subproblem variables are binary
(the auxiliary variables may be of any type as they are not relevant for the definition
of the feasible region of (D)).

11.3.2.3 Fixed Costs for Non-null Subproblem Solutions

We also consider the particular case where a non null subproblem solution has an
additional cost. Its value may depend on the subproblem but is equal to all the non
null solutions of the same subproblem. We represent it by ek. As an example, let us
consider a decompositiom model for a vehicle routing problem where the decision
variable yk

s is associated with route s for vehicle k and the null solution for k cor-
responds to not using vehicle k. If we want to model the cost of using a vehicle, it
makes sense to consider it independently of the distance travelled by the vehicle, as
long as the vehicle is used (i.e., yk

s is not associated with the null solution). This cost
is represented by ek. Another component of the cost of route s may be a linear cost
associated with the arcs included in route s.

Another example is for bin packing problems where a subproblem is defined for
each bin and we intend to minimize the number of bins which are used to pack a
set of items. The decision variable yk

s is associated with packing pattern s for bin
k and the null solution for k corresponds to not using bin k. In this case, ek = 1,
k ∈ K. In general, for k ∈ K, the function for computing the objective coefficient of
the selection variable yk

s becomes:

f k′
0 (xk) =

{
0 if xk = 0
ek + f k

0 (x
k,wk) if xk �= 0

11.3.3 Algorithm

We now introduce the notation used in the presentation of a CG algorithm.
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Given that π is constant, the subproblem k, which we represent by SPk is

zSPk =Min f k
0 (x

k,wk)−∑
i∈I

ωi f k
i (x

k)

subject to

(xk,wk) ∈ Qk

(11.11)

If the optimal solution of SPk is the null solution, then

c̄k =−πk + zSPk

otherwise it is
c̄k = ek−πk + zSPk

Of course, c̄k < 0 means the current dual solution is not optimal to the overall prob-
lem LRD and the selection variable corresponding to the solution obtained when
solving the subproblem must be inserted in the RMP and this problem must be re-
optimized.

Initialize the RMP, possibly with artificial variables for assuring feasibility
Initialize the SPs SPk, k ∈ K
If the null solution is feasible for SPk, insert the corresponding selection variable in the
RMP
repeat

Optimize the RMP
π,ω ← optimal duals from the RMP
end ← true
for all k ∈ K do

Modify the objective function of SPk to f k
0 (x

k,wk)−∑i∈I ωi f k
i (x

k)

Optimize SP SPk

zSPk ← optimal value of SPk

if ek −πk− zSPk < 0 then
s← optimal solution of SPk

Obtain the RMP column associated with s by calculating the corresponding coef-
ficients ck

s = ek + f k
0 (x

k,wk) and ak
is = f k

i (x
k),∀i ∈ I

Update the RMP by adding that column
end ← f alse

end if
end for

until end = true

Fig. 11.2 Column generation algorithm

The CG algorithm is given in Figure 11.2. After the initializations, all the selec-
tion variables associated with null subproblem solutions are inserted in the RMP (if
they are feasible). This excludes the necessity during the rest of the algorithm to test
if the solution returned by the subproblem is the null solution or not. Then the main
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cycle begins: the RMP is optimized, all the subproblems are solved and for each of
them if the smaller reduced cost, given by ek−πk− zSPk , is negative the coefficients
of the selection variable are calculated and the RMP updated. If that happens for
any subproblem more iterations are required (end is false).

11.3.4 Example

We give an example of a CG algorithm for the linear relaxation of the instance of
the time constrained shortest path problem introduced in Subsection 11.2.2.1.

The subproblem is a shortest path problem in a network with modified costs. This
problem can be solved efficiently by a specific algorithm, e.g. Dijkstra, but here we
consider the linear programming model to turn explicit the relation between the
selection variables and the subproblem variables. A subproblem variable xi j is equal
to one if the arc i j is included in the path, and equal to 0 otherwise. The subproblem
is:

Min −π + ∑
i j∈A

(ci j −ωti j)xi j

sub ject to

x12 + x13 = 1

x12 + x32 = x24 + x25

x13 = x32 + x34 + x35

x24 + x34 = x45 + x46

x25 + x35 + x45 = x56

x46 + x56 = 1

xi j ∈ {0,1} , i j ∈ A

In order to initialize the RMP we consider path 1−3−5−6 (with index s = 1). The
first RMP is then:

Min24y1

sub ject to

y1 = 1

8y1 ≤ 14

y1 ≥ 0

The optimal primal solution of the RMP is y1 = 1 and an optimal dual solution of the
RMP is π = 24 and ω = 0. Using this dual solution in the subproblem, its optimal
solution is path 1− 2− 4− 6 with reduced cost −21. Given that the reduced cost is
negative, this path (s = 2) is inserted in the RMP and a new iteration begins. The
optimal primal solution of the RMP is y1 = 0.4,y2 = 0.6 and an optimal dual solution
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of the RMP is π = 40.8 and ω =−2.1. Using this dual solution in the subproblem,
its optimal solution is path 1−3−2−5−6 with reduced cost −4.8. Given that the
reduced cost is negative, this path (s = 3) is inserted in the RMP and a new iteration
begins. The optimal primal solution of the RMP is y1 = 0,y2 = 0.5,y3 = 0.5 and an
optimal dual solution of the RMP is π = 30 and ω =−1.5. Using this dual solution
in the subproblem, its optimal solution is path 1−2−5−6 with reduced cost −2.5.
Given that the reduced cost is negative, this path (s = 4) is inserted in the RMP and
a new iteration begins.

The current RMP is:

Min24y1 + 3y2 + 15y3+ 5y4

sub ject to

y1 + y2 + y3 + y4 = 1

8y1 + 18y2 + 10y3+ 15y4 ≤ 14

ys ≥ 0 ,s = 1,2,3,4

The optimal primal solution is y1 = y2 = 0,y3 = 0.2,y4 = 0.8. An optimal dual
solution is π = 35 and ω = −2. An optimal solution of the subproblem is path
1−3−2−5−6 with reduced cost 0. As the reduced cost is non negative the optimal
solution of the current RMP is an optimal solution to the overall (relaxed) problem.

11.3.5 Perturbed Column Generation

We now discuss how variables can be fixed without disrupting the CG algorithm,
which is a major issue in SearchCol and in branch-and-price algorithms.

We define perturbation as the fixing of a subproblem variable to 0 or 1. When
CG is applied to a model with perturbations, we use the term perturbed CG. The
implementation of perturbed CG is based on relation (11.6), which allows imposing
values on the subproblem variables without disrupting the CG method.

We implement perturbed CG by adding constraints to the RMP and modifying
accordingly the objective coefficients of the subproblem variables in the subprob-
lems. Although this is not the only way of doing it, it has the advantage that it does
modify the subproblem feasible region, being less demanding for the subproblem
than other types of perturbations.

In this type of perturbed CG, constraints that fix the desired subproblem vari-
ables are added to the RMP (named perturbation constraints). The subproblem is
not modified except for taking into account the duals of the perturbation constraints
in the objective coefficients of the subproblem variables.

We consider a perturbed CG RMP which differs from the regular RMP because
it has a set P of additional constraints (indexed by p). Each additional constraint
forces a subproblem variable to be 1 or 0:

xk
j = b,
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where b is 0 or 1, and appears in the RMP as

∑
s∈Sk

xk
jsy

k
s = b.

We associate a dual variable σp to each of these constraints, p ∈ P. The general
objective function of the subproblem becomes:

Min −πk + f k
0 (x

k,wk)−∑
i∈I

ωi f k
i (x

k)− ∑
p∈P

σpxk
j(p)

where j(p) represents the index of the subproblem variable in the additional con-
straint p.

As an example, consider that we want a solution to the linear relaxation of the
time constrained shortest path in which the arc 1−2 is not used and the arc 2−5 is
used. Adding the corresponding constraints to the last RMP, we obtain:

Min24y1 + 3y2 + 15y3+ 5y4

sub ject to

y1 + y2 + y3 + y4 = 1

8y1 + 18y2 + 10y3+ 15y4 ≤ 14

y2 + y4 = 0

y3 + y4 = 1

ys ≥ 0 ,s = 1,2,3,4

The objective function of the subproblem is now:

Min −π + ∑
i j∈A

(ci j −ωti j)xi j−σ1x12−σ2x25

The optimal primal solution is y1 = y2 = 0,y3 = 1,y4 = 0. An optimal dual solution
is π = 13, ω = 0, σ1 =−10, and σ2 = 2. An optimal solution of the subproblem is
path 1− 3− 2− 5− 6 with reduced cost 0. As the reduced cost is non negative the
optimal solution of the perturbed RMP is an optimal solution to the overall perturbed
problem.

Although this was not the case in this example, when perturbations are consid-
ered, additional solutions, generated by the subproblem, may be required to achieve
an optimal solution.

11.4 Solving the MIP Decomposition Model

In this Section we provide an overview of solution methods to the decomposition
MIP model. We first mention methods not based on column generation (CG) (sub-
section 11.4.1), then a usual heuristic which is based on applying CG once and
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then obtaining an integer solution based on the columns of the last restricted master
problem (RMP) solved (subsection 11.4.2). Then we describe the branch-and-price
method (subsection 11.4.3), branch-and-price heuristics (subsection 11.4.4), and, fi-
nally, Lagrangean heuristics (subsection 11.4.5). From all these approaches to solve
the decomposition MIP model of Section 11.2, only branch-and-price is an exact
method.

11.4.1 Static Approaches

So far, we have discussed the decomposition MIP model and CG methods to solve
its linear relaxation. We now describe an approach, which we name static ap-
proach, where the subproblem is used to generate a subset of selection variables,
S̄, |S̄| << |S| which defines a restricted problem - the problem restricted to the se-
lection variables of the subset S̄ ∈ S. This problem, or its linear relaxation, is then
optimized. If the integer restricted problem is considered then its optimal solution
is the one given by the static approach. If the linear relaxation is solved then an ad-
ditional procedure is needed to attempt an integer solution, for example, a rounding
procedure. Of course, in any case, the obtained solution is an approximate solution
to the overall problem (D).

A natural way of generating the subset of selection variables in a static approach
is the application of heuristics. For example, in [50], each selection variable is as-
sociated with a subset of rectangular items packed in a rectangular bin. In order
to generate the subset of selection variables, greedy procedures and fast construc-
tive heuristic algorithms from the literature are applied. Another example where
this type of approach was applied successfully is in airline crew scheduling prob-
lems [65]. In these problems, the subproblem is responsible for generating rota-
tions (series of flights) which must obey several types of legal restrictions and have
complex cost structures what makes difficult to turn it into an optimization prob-
lem with the dual variables of the RMP as parameters. However, more recent ap-
proaches usually model the subproblem through a network where the optimization is
possible [42].

In [7], partial CG is described. This is a general concept that includes solving the
subproblem such that only ”reasonable” columns are generated. It also includes the
case where columns are generated by fast heuristics executed multiple times (with
some different input).

11.4.2 MIP Based CG Heuristic

Instead of using a static set of selection variables, CG may be applied to define the
set of selection variables - the ones present in an optimal RMP (a RMP for which
its optimal solution is optimal for the overall linear problem). An integer solution
can then be found by solving the integer RMP or by a problem-specific procedure
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(again, rounding is the simplest example). We name the former as MIP based CG
heuristic.

11.4.3 Branch-and-Price

So far, we have discussed approximate methods to solve the decomposition model
(D). The previous methods are approximate because a selection variable with value
1 in an optimal solution to (D) may not be present in the set of selection variables
generated by a static procedure or by CG (as CG solves the linear relaxation of the
problem).

Branch-and-price is the combination of CG and branch-and-bound for obtaining
an optimal solution to (D). In branch-and-price, each node of the branch-and-bound
tree is solved by CG.

The main issue in a branch-and-price algorithm is how the branching is per-
formed. It is well known that branching strategies based on the subproblem variables
are preferable to branching strategies based on the selection variables.

A branching strategy based on the subproblem variables relies on the fact that
the integrality of the selection variables may be imposed through the integrality of
the subproblem variables. After a node of the (branch-and-price) search tree is opti-
mized, values for the selection variables, yk

s , are known. If they are not all integers,
then a solution in the subproblem variables can be obtained through (11.6). Note
that if all xk

j are integer then the solution yk
s was integer in the first place, because no

duplicate selection variables are allowed. Note also that if yk
s were all integers, then

the subproblem solution is also integer. If there is a fractional variable yk
s , there is at

least one fractional variable xk
j which may be used for creating the branches xk

j = 0

and xk
j = 1. Perturbed CG is used to solve the nodes of the search tree and the search

is performed as in standard branch-and-bound.

11.4.4 Branch-and-Price Heuristics

Assuming a branch-and-price algorithm exists for problem (D) which is based on
branching on the subproblem variables, the extension of branch-and-bound heuris-
tics to branch-and-price heuristics is straightforward.

For example, the only difference in dive-and-fix (for example, [66]), relax-and-
fix (for example, [66]), fix-and-relax [17], and beam search [51] heuristics, consists
in how the solution of the linear programming model with some variables fixed is
obtained - in a branch-and-price version of these heuristics, perturbed CG is used
(with the perturbations fixing subproblem variables). For other examples of heuris-
tics based on branch-and-bound that may be modified in a straightforward manner
to accomodate CG, see [7]. In the same reference, iterative CG is described. In this
approach the linear relaxation of a MIP is first solved by CG, then branch-and-bound
is applied but additional columns are generated only when an heuristic criterion says
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so (the example given is that the value of the node is too far from the optimum of
the linear relaxation). Combinations of decomposition approaches and MHs are pro-
posed in [53], where a review on integer programming and MHs hybrids is done and
hybrid approaches based on Lagrangean relaxation and CG are applied to the knap-
sack contrained maximum spanning tree problem and to a periodic vehicle routing
problem.

11.4.5 Lagrangean Heuristics

It is well known that Dantzig-Wolfe decomposition and Lagrangean relaxation can
be seen as dual decomposition techniques [28]. Therefore, for each problem in
which Lagrangean relaxation has been applied (and in which the variables present
in the subproblem and present in the dualized constraints are all binary), a decom-
position model (D) can be defined. Inversely, the linear relaxation of model (D) can
be approached by Lagrangean methods (e.g. subgradient methods) and problem (D)
by Lagrangean heuristics.

Lagrangean heuristics have been applied widely. In these approaches, the decom-
position model (D) is not considered explicitly. Subproblem solutions are generated
at different dual points (for example, by a subgradient method) and it is attempted
to modify them in such a way that the global constraints become feasible. This is
done in a problem-specific manner (for references on these approaches, see [7], for
a general description, see [15]).

11.5 A Combinatorial Decomposition Model

In this Section we introduce the combinatorial oprimization (CO) decomposition
model which is the base for the metaheuristic (MH) search conducted in SearchCol.
In subsection 11.5.1 we describe the CO decomposition model and the associated
concepts of how a solution is represented and what is the search space. In 11.5.2 we
describe how solutions are evaluated.

11.5.1 Solution Representation and Search Space

The general problem being addressed may be seen as a CO problem consisting in
selecting one element from each partition, such that the sum of the cost associated
with each element is minimum and the global constraints are satisfied. If this prob-
lem can be modelled through the decomposition MIP model (D) (see Section 11.2),
it can also be modelled through the following CO decomposition model (C):
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Min f (s)+λ g(s) (C)

sub ject to

s(k) ∈ Sk,k ∈ K

where s(k), k ∈ K, represents a subproblem solution of partition k. An overall
solution is represented by s, which is a vector s = (s(1),s(2), ...,s(|K|)), where
each component is a solution from a subproblem. A feasible solution s belongs to
S = S1× S2× ...× S|k|. The function f (s) is the cost of the solution with the most
favorable values for the static variables. Function g(s) provides a measure of the
infeasibility of solution s with respect to the global constraints (11.2). The param-
eter λ takes a value such that feasible solutions have a lower value than infeasible
solutions. Note that a solution s where g(s) > 0 is infeasible for the problem but is
feasible for this model and, in fact, can even be an incumbent solution at some point
in the execution of an algorithm to solve (C). We give the details on how solutions
are evaluted in the next subsection.

An important issue in (C) is that the representation of solutions is problem
independent. For example, for a problem with four subproblems, a solution s =
(2,4,1,1) means that the second subproblem solution is chosen for the first sub-
problem, the fourth subproblem solution is chosen for the second subproblem, the
first subproblem solution is chosen for the third subproblem, and the first subprob-
lem solution is chosen for the fourth subproblem. These subproblems solutions can
correspond to paths, trees, machine schedule, routes, ot others, depending on the
problem.

Three fundamental characteristics on the design of a MH [63] are assured by
this representation: completeness (all solutions can be represented), connexity (it
is possible to go from any solution to any other - see neighborhood structures in
Section 11.7), and efficiency of the search operators. A drawback is that when there
are static variables (in particular, binary or general integer) the evaluation (see next
subsection) may become too heavy.

A feasible solution in model (D) can be translated into a solution in model (C)
and vice-versa. A variable yk

s = 1 in a solution of (D) implies the component s(k) = s
in a solution of (C). A component s(k) = s in (C) implies that yk

s = 1, if s = s(k),
and yk

s = 0, otherwise, in (D).
The number of solutions in the search phase is n1× n2× ...×n|K| where nk is the

number of subproblem solutions associated with subproblem k, k ∈ K. The number
of solutions of the combinatorial model is exponential. Therefore, model (C) is
useful only if the search space S can be restricted, not excluding ”good” subproblem
solutions (the ones present in optimal or near optimal solutions). In SearchCol, CG
is used to restrict the search space of model (C). The search is conducted only over
subproblem solutions generated with (perturbed) CG.

We now extend the solution representation for the cases mentioned in the last
paragraphs of subsection 11.2.1. When the subproblems are identical, a solution
is represented by a set of subproblem solutions. For example, s = {7,4,1,3}. If
the number of subproblem solutions have an upper bound, empty positions / null
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subproblem solutions are considered. For example, for an upper bound of 4, a solu-
tion made of two subproblem solutions is s = {0,4,0,3}, where 0 is the index for
null subproblem solutions.

11.5.2 Evaluating Solutions and Moves

In this subsection, we describe how solutions (including partial solutions) and moves
are evaluated in SearchCol. A move corresponds to the addition or removal of a com-
ponent of a solution. We describe several alternatives which are controlled through
parameters which are detailed in subsection 11.6.2. All evaluations comprise two
values: the feasibility value and the infeasibility value. A solution/move with a lower
value of infeasibility is always better than a solution/move with a larger value. If the
infeasibility values of two solutions/moves are equal, the feasibility value is used
to compare them. In the next subsubsections, we detail what are the alternatives for
determining the feasibility and infeasibility values of a solutions and moves.

11.5.2.1 Models without Static Variables

Full Solutions

When there are no static variables, we evaluate the feasibility of a solution by using
one of three functions:

• evalNumberViolated(s) returns the number of violated constraints in solution s;
• evalAmountViolation(s) returns the total amount of violation of the constraints

in solution s;
• evalWeightedViolation(s)= 1000evalNumberViolated(s)+

evalAmountViolation(s).

The amount of violation of a constraint is calculated based on the value of the slack
which is defined as the right-hand side value minus the left-hand side value. If it
is an equality constraint, the amount of violation is the absolute value of the slack.
If it is a less han or equal to constraint, if the slack is negative than the amount of
violation is the symmetric of the slack, otherwise it is zero. If it is a greater-than or
equal to constraint, if the slack is positive than the amount of violation is the slack,
otherwise it is zero.

The feasibility value of a solution s is given by

evalOriginalCosts(s) = ∑
k∈K

ck
s(k).

Partial solutions

In a partial solution, the subproblem solutions of some subproblems are known (we
represent the set of these subproblems by K1) and the subproblem solutions of the
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other subproblems are unknown (we represent the set of these subproblems by K0).
Partial solutions are the building blocks of constructive heuristics.

Partial solutions can be evaluated by the four previous functions by considering
only the components that belong to the partial solution (replacing the K by K1).
Additionally, the feasibility value of a partial solution may also be obtained by

evalReducedCosts(s) = ∑
k∈K1

c̄k
s(k)

where c̄k
s(k) is the reduced cost of the selection variable yk

s(k).
The rationale behind the use of reduced costs is that when evaluating partial so-

lutions, a solution with a lower actual objective function but higher reduced cost
may be worse than one with higher actual objective function but lower reduced cost,
because the reduced cost takes into account the influence of the variable in the con-
straints. An evaluation based on reduced cost is less greedy than one based on the
actual cost. This idea was proposed in [26] for set covering and set partitioning
problems.

Moves

There are two elementary moves in SearchCol: adding a subproblem solution to a
partial solution and removing a subproblem solution from a partial or full solution.
The add move is represented by the function s′′ = addMove(s′,s(k)). Assuming s′
has not a subproblem solution associated with k. The remove move is represented
by the function s′′ = dropMove(s′,s(k)). Assuming s′ has a subproblem solution
associated with k.

In both moves, the feasibility value of the solution can be obtained by summing
(subtracting) the cost or reduced cost of the subproblem solution being added (re-
moved). The update of the infeasibilities value requires, for each global constraint
where the subproblem solution has a non zero coefficient, the calculation of the new
slack, if the constraint is violated, and its amount of violation.

Based on these two elementary moves another one can be defined which replaces
the solution of a subproblem by another:

s′′ = replaceMove(s,s(k)) = addMove(DropMove(s,s′(k)),s(k))

Where s′(k) is the solution of subproblem k in solution s. If s(k) = s′(k) the same
solution s is obtained, i.e. s′′ = s.

11.5.2.2 Models with Static Variables

Full solutions

In the most general decomposition model, a solution s is evaluated by solving the
MIP (E):
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Min ∑
t∈T

ctyt + ∑
k∈K

ck
s(k) +M ∑

i∈I=
(a+i + a−i )+M ∑

i∈I≤
a−i +M ∑

i∈I≥
a+i (E)

subject to

a+i − a−i + ∑
t∈T

ait yt = bi− ∑
k∈K

ak
is(k) i ∈ I=

− a−i + ∑
t∈T

aityt ≤ bi− ∑
k∈K

ak
is(k) i ∈ I≤

a+i + ∑
t∈T

ait yt ≥ bi− ∑
k∈K

ak
is(k) i ∈ I≥

yt ∈ {0,1} t ∈ T b

yt ≥ 0and integer t ∈ T i

yt ≥ 0 t ∈ T c

a+i ,a
−
i ≥ 0 i ∈ I=

a−i ≥ 0 i ∈ I≤

a+i ≥ 0 i ∈ I≥

Model (E) includes the artificial variables, represented by a+i and a−i , for equality
constraints (set I=), less than or equal to constraints (set I≤), and greater than or
equal to constraints (set I≥). Artificial variables have a large objective function co-
efficient, M. This allows still evaluating solution s even if it is not feasible in (D)
(if there are no values for the static variables such that all constraints are obeyed).
Value M must be such that that an optimal solution to (E) has all artificials with
value zero, unless there are no feasible solutions with all artificials with value zero.

The infeasibility value of a solution is given by the sum of the values of the
artificial variables. The feasibility value is defined only when the sum of the value
of the artificial variables is zero and is equal to the optimal value of (E).

Note that model (E) is much easier to solve than model (D) since it does not
have selection variables: ∑k∈K ck

s(k) and ∑k∈K ak
is(k) are constants. Model (E) is a

linear programming model if all static variables are continuous.
When there are static variables, it may be possible to evaluate a solution in a

more efficient manner if problem-specific characteristics are used. For example, in
the min-max problem for single path routing, given the set of paths (one for each
commodity) the maximum load of an arc can be obtained much more efficiently by
computing the highest value among all arc loads than by solving a linear program-
ming model.

Partial solutions

The evaluation of full solutions is easily extendable for partial solutions. In this case,
the selection variables associated with the subproblems belonging to K0 are set to 0.
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Moves

The two types of elementary moves, addMove and dropMove, defined for the case
when there are no static variables are not efficient for the case where there are static
variables. In this case, a MIP (or LP) must be solved for each move. To alleviate this
issue, we define the concept of optimal move. An optimal move is associated with
one subproblem k and results from the optimization of the MIP problem where the
selection variables associated with the other subproblems are fixed to 1 or 0. All the
the selection variables associated with subproblem solutions in the current solution
are fixed to 1 (subproblems in set K1). All the others selection variables, except the
ones associated with the subproblem defining the move, are fixed to 0 (subproblems
in set K0). After the optimization, the subproblem solution for subproblem k is ob-
tained directly from the values of the selection variables. We represent this function
by

s′ = optimalMove(s,k)

An extension of the optimal move concept for defining a set of subproblems solu-
tions is straighforward by defining the set K∗ of those subproblems instead of only
one subproblem.

11.6 SearchCol

In this Section, we detail the main concepts of the SearchCol framework. In subsec-
tion 11.6.1 we give an overview of SearchCol including the description of its main
parameters. In subsection 11.6.2, the parameters related with evaluating solutions
are introduced. In the following subsections, we detail the two components involved
in the exchange of information between column generation (CG) and metaheuris-
tic (MH) search: initial solutions (subsection 11.6.3) and perturbations (subsection
11.6.4). In the last subsection, subsection 11.6.5, we describe the stopping criteria.
A fundamental component of SearchCol is (perturbed) CG which was already de-
tailed in Section 11.3. The other fundamental component is the MH search which
will be detailed in Section 11.7.

11.6.1 Overview

The starting point for SearchCol is a MIP model with an exponential number of
decision variables, each of them associated with a solution of a subproblem, i.e. the
MIP decomposition model (D) of Section 11.2. The first step in a SearchCol algo-
rithm is solving the linear relaxation of the MIP model by CG. In the second step,
the subproblem solutions generated by CG are seen as the components of an over-
all solution in the combinatorial decomposition model (C). A MH search based on
the representation of a solution as being made of one solution from each subprob-
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lem is conducted. This representation, and all the algorithmic components defined
for the MH search, are problem independent. In the next step, a perturbation for
CG is defined. A perturbation consists in a set of additional constraints in the re-
stricted master problem (RMP) of CG, each one forcing one decision variable of
the subproblem to have the value 1 or 0. This is accomplished by representing the
subproblem variable through variables in the RMP as detailed in subsection 11.3.5.
The aim of the perturbated CG is the generation of new subproblem solutions, that,
hopefully, will improve the incumbent solution. After perturbed CG, a new search
begins and then another iteration starts with the definition of a perturbation for CG.
This cycle is repeated until one of the stopping criteria is met, as can be seen in
Figure 11.3.

1: Column generation
2: Search
3: repeat
4: Define column generation perturbation
5: Optimize perturbed column generation
6: Search
7: until Stopping criterion fullfilled

Fig. 11.3 SearchCol algorithm

In each iteration of SearchCol, a different search space is defined. The first search
space corresponds to the subproblem solutions obtained during the linear relaxation.
In each iteration, this search space is enlarged by the subproblem solutions gener-
ated through perturbed CG. After a perturbed CG step, the subproblem solutions
with higher reduced costs (in the linear relaxation and not in the current iteration)
may be removed from CG and from the search space. As many aspects of Search-
Col, the number of columns that triggers the removal of subproblem solutions is
given by a parameter, PARDECmaxnumcols. The dimension of the basis of the lin-
ear relaxation of (D), |K|+ |I| (the number of selection constraints plus the number
of global constraints), is used as the unit for this parameter. If the number of sub-
problem solutions exceeds PARDECmaxnumcols×(|K|+ |I|), a purge of columns is
performed. Parameter PARDECmaxnumcols must be ≥ 1. Note that if the reduced
cost of a variable (in CG with no perturbations) is greater than the difference be-
tween the value of the incumbent solution and the lower bound provided by CG,
any solution with the corresponding subproblem solution will always be worst than
the incumbent (by definition of reduced cost). Removal of these type of subprob-
lem solutions can only improve the efficiency of the search and never worsten its
effectiveness.

The search space of a given iteration is influenced by perturbations. The sub-
problem variables with value 1 can be seen as attributes (features) of a solution that
are desired or avoidable. If, in a perturbation, a subproblem variable is fixed to 1
then, in general, more subproblem solutions with the corresponding attribute will be
generated by (perturbed) CG. If a subproblem variable is fixed to 0 then, in general,
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subproblem solutions without the corresponding attribute will be generated by (per-
turbed) CG. All previous perturbations are disregarded when defining the perturbed
CG for an iteration.

In order to conduct the search in the overall search space, there are several al-
ternatives for defining perturbations. When the incumbent solution is infeasible, we
use perturbations based on subproblem variables which contribute to the constraints
being violated. When the incumbent solution is feasible there are the following al-
ternatives for perturbations: (i) some subproblem variables in the constraints with
higher (absolute) duals, (ii) some subproblem variables with values close to 1 in
the last (perturbed) CG step, (iii) some subproblem variables in the incumbent, (iv)
some subproblem variables based on the memory of the search.

To be used in memory perturbations, the search step keeps two types of mem-
ory. The recency memory value of a subproblem variable is incremented each time
the solution variable is present in a good quality solution (e.g. a local optimum).
The frequency memory of a subproblem variable is incremented each time the so-
lution variable is present in a representative solution (e.g. a current solution in local
search).

One way of achieving intensification and diversification is by applying different
perturbations at different iterations. We define two type of iterations: in a plus itera-
tion (related to intensification) the incumbent was improved in the previous iteration
and in a minus iteration (related to diversification) that did not happen. In a plus iter-
ation, good attributes are reinforced (for example, subproblem variables with value
1 in the incumbent, or with value 1 in many local optima are fixed to 1). In a minus
iteration, attributes already explored are forbidden (roughly speaking, solutions with
that attribute were already explored and the incumbent was not improved, therefore
the corresponding subproblem variable is set to 0). Perturbations are described in
detail in subsection 11.6.4.

Perturbations may be seen as an input for CG provided by the search. Information
for defining an initial solution may be seen as an input for search provided by CG
(of course, another input is the search space itself). In SearchCol, there are several
alternatives for defining how the initial solution is obtained: (i) randomly, (ii) based
on the values of the primal variables associated with the last RMP solved (determin-
istically or randomly), (iii) based on when the subproblem solutions were generated,
(iv) through constructive greedy heuristics (deterministic or randomized). The alter-
natives for obtaining initial solutions are described in detail in subsection 11.6.3.

SearchCol defines four stopping criteria: (i) a given time limit is reached, (ii) a
given number of iterations without incumbent improvement is reached, (iii) a de-
sired quality of the incumbent is achieved, (iv) a given number of search steps is
reached. Stopping criteria are described in detail in subsection 11.6.5.

Note that CG provides a lower bound (in minimization problems) that may be
used to calculate the quality of the incumbent solution to be used in the third stop-
ping criterion. This lower bound also allows the assessment of the quality of the
solution obtained, which is not usually possible with usual MHs.
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In Table 11.2, the main parameters of SearchCol and their purpose are provided.
The algorithm with a detail in which these parameters are present is given in Figure
11.4.

We remind that CG was already addressed in Section 11.3 and search (shaded in
Figure 11.4) will be detailed in the next Section. All the main parameters and other
parameters are detailed in the following subsections.

Table 11.2 Main parameters of SearchCol

Parameter Purpose
PARSCin f easob j Evaluation of infeasible solutions
PARSC f easob j Evaluation of feasible partial solutions

PARSCinitial f irst Determination of an initial solution
the first time a search is conducted

PARSCinitialother Determination of an initial solution
not in the first time a search is conducted

PARSCmake f easible Specification of the perturbation to
use when the incumbent is infeasible

PARSCperturbationplus Specification of the perturbation to
use when there was an improvement in the previous iteration

PARSCperturbationminus Specification of the perturbation
to use when there was no improvement in the previous iteration

11.6.2 Evaluating Solutions

In Table 11.3 and in Table 11.4 the possible values and corresponding functions,
introduced in subsection 11.5.2, used for the two parameters related with evaluating
solutions are given, parameters PARSCin f easob j and PARSC f easob j. These pa-
rameters define the evaluation of solutions only for models without static variables.
The parameter PARSC f easob j only influence the evaluation of partial solutions (in
particular in greedy procedures). For full solutions, the evaluation is based on the
real costs because it is the only meaningful value since it gives the true objective
function value. For models with static variables, the evaluation is done by solving a
MIP and a parameter PARSCevalmipmaxtime(> 0) sets the maximum time allowed
for its optimization.

Table 11.3 Possible values and associated functions for SearchCol parameter
PARSCin f easob j

Value Function
2 evalNumberViolated(s)
3 evalAmountViolation(s)
4 evalWeightedViolation(s)
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Table 11.4 Possible values and associated functions for SearchCol parameter
PARSC f easob j

Value Function
2 evalOriginalCosts(s)
3 evalReducedCosts(s)

Fig. 11.4 Detailed algorithm for SearchCol
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11.6.3 Initial Solutions

11.6.3.1 Uniform Random

In this alternative, a solution is defined randomly, based on the uniform distribution.
In this case, each subproblem picks a solution randomly with all the subproblem
solutions having the same probability of being chosen. We represent the associated
function by genSolutionRandomUni f orm().

11.6.3.2 Based on the CG Optimal Solution

In the first alternative, the subproblem solution selected is the one associated with
the selection variable with higher solution value in the last RMP solved. We repre-
sent the associated function by genSolutionRounding(). In the second alternative,
a solution is defined randomly, but now the probability of a subproblem solution
being chosen is given by its solution value in the last RMP solved. We represent the
associated function by genSolutionRandomBiased().

11.6.3.3 Based on the CG History

In the first alternative, the selected subproblem solution is the last one that was gen-
erated by the subproblem. Note that this subproblem solution may have a value 0 at
the last RMP. Since after this subproblem solution no more solutions from the sub-
problem were generated, the solution can be viewed as the one which stabilized the
subproblem. We represent the associated function by getLastCreatedCGSolution().
In the second alternative, the selected subproblem solution is the first one that was
generated by the subproblem. In general, this subproblem solution corresponds to
an optimal solution of the subproblem if the global constraints were removed from
the model. In that sense, is the best solution that the subproblem may provide. We
represent the associated function by getFirstCreatedCGSolution(). In the third al-
ternative, the selected subproblem solution is the one obtained when the subproblem
was solved for the last time, i.e. when the dual solution was optimal. For that reason,
most Lagrangean heuristics start from these subproblem solutions. We represent the
associated function by getCGSolution(). Note that the first and third alternatives
are different because the last subproblem solution generated by the subproblem is
not necessarily the one obtained in the last iteration of the RMP. In fact, in the last
iteration of CG no subproblem solutions are generated, otherwise at least one more
iteration was required.

11.6.3.4 Greedy Construction

A solution can be constructed based on greedy procedures. In the first alternative, a
deterministic greedy procedure is used. In each step, the subproblem solution which
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conducts to a better (partial) solution is chosen. Of course, solutions from subprob-
lems for which there are already a solution are excluded from this candidate list. We
represent the associated function by constructDeterministicGreedy(). The other al-
ternative is the randomized constructive phase of GRASP [57], where in each itera-
tion a subproblem solution is randomly chosen from a restricted candidate list which
size is controlled by a parameter α ∈ [0,1]. We represent the associated function by
constructRandomGreedy(α). For α = 1 the randomized greedy construction is the
same as genSolutionRandomUni f orm() and for α = 0, the the randomized greedy
construction is the same as constructDeterministicGreedy().

For models without static variables, the constructive step is straightforward
through the use of the functions addMove (for evaluating potential components and
perform the move) and dropMove (for restoring the current partial solution after an
add move was done for evaluation). For models with static variables, the elements of
the restricted candidate list are the best solution from each subproblem (with no so-
lution in the current iteration). The best solution from each subproblem is obtained
by applying the optimal move described in subsubsection 11.5.2.2.

11.6.3.5 Initial Solution Parameters

We make a distinction between how an initial solution is obtained for
the first search step and for the other search steps inside the loop (see Figure 11.4).
For example, getCGSolution() can be used in the first situation and
constructDeterministicGreedy() in the second. We define the parameters
PARSCinitial f irst and PARSCinitialother for each of these situations. For
PARSCinitialother an adiditional value, 8, is available, corresponding to use the
incumbent solution as the initial solution. In this case, CG was used in the last iter-
ation only for modifying the search space. Their possible values and corresponding
functions are given in Table 11.5.

Table 11.5 Possible values and associated functions for SearchCol parameters
PARSCinitial f irst and PARSCinitialother

Value Function
0 genSolutionRounding()
1 genSolutionRandomUniform()
2 genSolutionRandomBiased()
3 getLastCreatedCGSolution()
4 getFirstCreatedCGSolution()
5 getCGSolution()
6 constructDeterministicGreedy()
7 constructRandomGreedy(PARSCal pha)

In Table 11.5, PARSCalpha belongs to [0,1] and corresponds to the α parameter
of the constructive phase of GRASP.
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11.6.4 Defining Perturbations

As defined in subsection 11.3.5, a perturbation is a constraint inserted in the RMP
that fixes a subproblem variable to 0 or to 1. We define different alternatives for
defining perturbations depending on the feasibility of the incumbent solution.

11.6.4.1 Infeasible Incumbent

When the incumbent solution is infeasible, we define two alternatives for defining
the set of perturbations. In both of them, we identify the set of subproblem variables
that imply a non null coefficient in the constraints that are being violated. Then we
use Table 11.6 to decide if the subproblem variable is fixed to 0 or is fixed to 1. As an
example, consider the second and third lines of that table which correspond to less
than or equal to violated constraints. Since the constraint is violated, the slacks are
negative (by definition, the value of the slack is right-hand side minus the left-hand).
In the first line of the table, a subproblem variable has a positive coefficient (more
rigorously, the selection variables associated with subproblem solutions where the
variable has value 1 have a positive coefficient) in the constraint. Therefore, it has a
positive contribution to the violation of the constraint, which we attempt to avoid by
fixing its value to zero. In the second line of the table, a subproblem variable has a
negative coefficient in the constraint. Therefore, it has a negative contribution to the
violation of the constraint, which we attempt to reward by fixing its value to one.

Table 11.6 Determining if a subproblem variable is fixed to 0 or 1

Sense of the constraint Signal of the slack Sign of the coefficient Fixed to
of the subproblem variable

≤ - + 0
≤ - - 1
≥ + + 1
≥ + - 0
= - + 0
= - - 1
= + + 1
= + - 0

If a subproblem variable is forced to 0 and simultaneously to 1 by two different
perturbations, no perturbations on that variable are considered. In many models, this
situation does not occur because global constraints have some type of structure. For
example, in the min cost single path routing, all the constraints are less than or equal
to constraints and the contributions of the variables are always positive.

The subproblem variables considered can be the ones of the incumbent
solution or all the subproblem variables. The functions makeFeasibleInc() and
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makeFeasibleAll() represent these two alternatives. For example, if the capacity of
an arc is being violated in a min cost single path routing problem, and the second
perturbation is used, the arc will be forbidden for all the commodities. If the pertur-
bation based on the incumbent is used, the arc is forbidden only for the commodities
that use the arc in the incumbent solution.

When the incumbent is infeasible the perturbation to used is given by the param-
eter PARSCmake f easible with the possible values and associated functions given in
Table 11.7.

Table 11.7 Possible values and associated functions for SearchCol parameter
PARSCmake f easible

Value Function
0 makeFeasibleInc()
1 makeFeasibleAll()

11.6.4.2 Feasible Incumbent

If the current solution is feasible, we define the following perturbations.

Perturbation based on the duals

A parameter p ∈ [0,1] defines the proportion of global rows that will be considered
for the perturbation. The ones with higher duals in absolute value are selected. The
subproblem variables appearing on those rows and belonging to the incumbent are
fixed to 1 or 0 depending on argument b. The rationale behind the choice of the
rows with higher values of the duals is using the dual values to estimate the im-
portance of the rows, in the sense of the sensitivity analysis of linear programming.
For example, in the min cost single path routing problem, the dual of a row cor-
responds to the marginal value of the capacity associated with the arc (of course
in the linear relaxation of the problem). Arcs with higher duals are more attrac-
tive arcs for the commodities than the others, as the arcs may be seen as scarce
resources. In the limit, a row with a dual variable equal to zero could be removed
from the model without modifying the (linear relaxation) optimal solution. Function
perturbBasedDuals(p,b) represent this perturbation.

Perturbations based on column generation

In this type of perturbation the optimal solution of the last CG solved is used as
well as a real parameter p ∈ [0,1]. The subproblem variables with a value greater
than or equal to 1− p in the fractional solution given by the last CG are fixed to b,
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which may take value 1 or value 0. Function perturbBasedCG(p,b) represent this
perturbation.

Perturbation based on the incumbent

In this type of perturbation the incumbent solution is used. Some subproblem vari-
ables with value 1 in the incumbent solution are fixed to b, which may take value
1 or value 0. Function perturbBasedIncumbent(p,b) represents this perturbation
where p stands for the proportion of variables, randomly selected, to be fixed.

Perturbation based on memory

The memory for defining perturbations is based on subproblem variables. The re-
cency memory value of a subproblem variable is incremented each time the solution
variable is present in a good quality solution (e.g. a local optimum). The frequency
memory of a subproblem variable is incremented each time the solution variable is
present in a representative solution (e.g. a current solution in local search). The re-
cency memory is used for fixing to b, which may take the value 1 or the value 0, all
the variables with a recency value higher than a threshold (given as a proportion by
a parameter p). When using b = 1, we intend to preserve good quality attributes of
the subproblem solutions. The frequency memory is used for fixing to b, which may
take the value 1 or the value 0, all the variables with a frequency value higher than a
threshold (given as a proportion by a parameter p). When using b = 0, we intend to
avoid attributes of subproblem solutions that were already present in many portions
of the search space explored so far. We represent these perturbations by functions
by perturbBasedRecency(p,b) and perturbBasedFrequency(p,b)

Parameters for perturbations

The actual perturbation used in an iteration of SearchCol depends on two parame-
ters. If the there was an improvement in the last iteration, the perturbation is defined

Table 11.8 Possible values, associated functions and arguments for SearchCol parameters
PARSCperturbationplus and PARSCperturbationminus

Value Function p
1 perturbBasedDuals(p,1) PARSCproportionrows1
2 perturbBasedDuals(p,0) PARSCproportionrows0
3 perturbBasedCG(p,1) PARSCbinarythreshold1
4 perturbBasedCG(p,0) PARSCbinarythreshold0
5 perturbBasedIncumbent(p,1) PARSCproportionvariables1
6 perturbBasedIncumbent(p,0) PARSCproportionvariables0
7 perturbBasedRecency(p,1) PARSCrecencythreshold1
8 perturbBasedRecency(p,0) PARSCrecencythreshold0
9 perturbBasedFrequency(p,1) PARSCfrequencythreshold1
10 perturbBasedFrequency(p,0) PARSCfrequencythreshold0
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by the value of PARSCperturbationplus. Otherwise, the perturbation is defined by
PARSCperturbationminus. For example, perturbBasedMemory(0.5,1) can used in
the first situation and perturbBasedCG(0.1,0) in the second. The possible values,
corresponding functions and arguments (which are themselves SearchCol parame-
ters) are given in Table 11.8. The parameter p is a real belonging to the [0,1] interval.

11.6.5 Termination

SearchCol has four stopping criteria: if one of them is verified, the algorithm stops
and the best solution found so far is returned. The first criterion is a time limit. The
second criterion is a maximum number of iterations without improvement of the
incumbent solution. The third criterion is the maximum number of iterations. The
last criterion is the relative gap being less than a given parameter.

|zinc− zLR|/|zinc|

where zinc is the value of the incumbent solution and zLR is the value of the linear
relaxation given by CG (without perturbations).

In Table 11.9 the parameters used for implementing the stopping criteria and their
possible values are presented.

Table 11.9 Parameters and possible values for SearchCol stopping criteria

Parameter Possible values
PARSCmaxtime > 0

PARSCmaxnumiterwithoutimprov > 0
PARSCmaxnumtotaliter > 0

PARSCrelgap [0,1]

11.7 Metaheuristic Search in SearchCol

In this Section we detail how the search steps of SearchCol are performed and pro-
vide examples of actual SearchCol algorithms. In subsection 11.7.1 we introduce
additional algorithmic components that are used, together with the ones presented
in the last section, for the definition of (hybrid) metaheuristics (MHs) for the search
steps. Subsections 11.7.2, 11.7.3, and 11.7.4 are devoted to the description of Search
algorithms with three different search approaches: multi-start local search (MSLS),
variable neighborhood search (VNS) and MIP.
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11.7.1 Additional Algorithmic Components

11.7.1.1 Local Search

We define the k-neighborhood of a solution as the set of solutions which are obtained
by changing the subproblem solution of k or less subproblems. For example, in
single path routing, a 1-neighbor is a solution which is obtained by changing the
path of one commodity and a 2-neighbor is a solution which is obtained by changing
the paths of one commodity or the path of two commodities.

The size of the 1-neighborhood is ∑k∈K(nk − 1) where nk is the number of sub-
problem solutions for subproblem k. For 1-neighborhood we define the function
neighbor1(s,d) which returns the best solution in the neighborhood or the first
solution better than the current one found. The parameter d specifies the chosen
alternative.

The size of the 2-neighborhood is ∑k1∈K(nk1 − 1)∑k2∈K:k2>k1(nk2 − 1). For 2-
neighborhood we define the function neighbor2(s,d) which has a similar interpre-
tation to neighbor1(s,d).

Based on the functions neighbor1(s,d) and neighbor2(s,d) four different local
search algorithms can be defined according to the type of neighborhood
(1-neighborhood or 2-neighborhood) and the descent strategy (best or first improve-
ment). In Table 11.10 the value 0 to PARSCdescentstrat corresponds to best im-
provement and 1 to first improvement.

Table 11.10 Parameters and possible values for SearchCol local search functions

Parameter Possible values
PARSCneigh 1 and 2

PARSCdescentstrat 0 and 1

11.7.1.2 Initial Solution Based on Other Solution

In this subsubsection, we introduce how a solution can be obtained based on other
solution.

Random solution from the k-neigborhood

The first function of this type returns a randomly generated k-neigborhood solution.
A proportion of 1− p subproblem solutions are kept from the base solution, where
p ∈]0,1[. The solutions for the remaining subproblems are randomly chosen. We
represent this function by perturbRandomly(s, p).
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Solutions based on memory

The MH framework incorporates medium- and long-term memories based on sub-
problem solutions (note that this memory is different from the memory used in
defining perturbations, which is based in subproblem variables). Both are based
on having one integer (for each type of memory) associated with each subproblem
solution counting how many times it appeared in representative solutions of the de-
sired type of memory. For medium-term memory, we are interested in recording
good quality solutions. An example of a representative set of solutions is a set of
local optima solutions. For long-term memory, we are interested in recording solu-
tions representative of portions of the search space already explored. An example
of a representative set of solutions is the set of solutions that were current solutions
at some time in a local search algorithm. Functions perturbBasedRecencySols(s, p)
and perturbBasedFrequencySols(s, p) represent these two alternatives of getting a
solution based on another one. Both functions sort the subproblem solutions by non
increasing order of recency/frequency. For recency, the first p∈]0,1[ times the num-
ber of subproblems are kept. For frequency, the first p ∈]0,1[ times the number of
subproblems are changed. In both cases, the solutions to be changed are replaced
randomly.

Parameters

In Table 11.11 the functions used for creating a solution based on other solution
and its associated parameters are provided. Parameter p is a real belonging to the
interval [0,1].

Table 11.11 Functions and possible values for parameters for creating a solution based on
other solution

Alternative Function p
8 perturbRandomly(s, p) PARSCperturbintensityrand
9 perturbBasedRecencySols(s, p) PARSCperturbintensityrecency
10 perturbBasedFrequencySols(s, p) PARSCperturbintensity f requency

11.7.1.3 Path Relinking

Path relinking is a procedure that attempts to find a better solution in the path be-
tween two good quality solutions (a starting solution and a target solution) (see, for
example, [63]). A solution, we name it path solution, is initialized to be equal to
the starting solution. All the components of the path solution with a different value
in the target solution are evaluated in a greedy manner. The best one is fixed in the
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path solution and the procedure is repeated until all components of the path solution
are fixed. In the case of the Searchcol, a component of a solution is a subprob-
lem solution and the evaluation is based on the functions discussed in subsection
11.5.2. We represent the path relinking function by pathrelinking(s,s′). If parame-
ter PARSCpathrelinking is 1 path relinking is used, otherwise path relinking is not
used. Note that, as in the case of the other algorithmic components of this subsub-
section, it is up to the actual MH to define where and how path relinking is used.

11.7.2 SearchCol with Multi-start Local Search

In a MSLS algorithm, local search is applied from different initial solutions. In
Figure 11.5, an algorithm for SearchCol with MSLS is displayed. The shaded blocks
correspond to the MSLS and replace the search blocks in 11.4.

The local search can be performed by one of the four procedures described
in 11.7.1.1.

As in SearchCol main cycle, we distinguish between two types of iterations in
MSLS: iterations where the MSLS incumbent was improved in the previous iter-
ation and the others. Parameters PARMSLSinitialplus and PARMSLSinitialminus
define how the initial solution is obtained in those two types of iterations. Each of
these parameters can take values corresponding to the alternative 1, 2, or 7 presented
in subsubsection 11.6.3.5 (the ones involving randomness) or one of three alterna-
tives presented in subsubsection 11.7.1.2. The rationale behind the use of two pa-
rameters is exploring intensification and diversification concepts with the available
algorithmic components.

The stopping criterion of MSLS is a maximum number of iterations without im-
provement, represented by PARSCMSLSmaxiterwithoutimprov. At the end of each
local search step, a path relinking between the local optimum and the incumbent
solution is attempted (if PARSCpathrelinking= 1). This additional procedure is not
represented in Figure 11.5 for clarity.

According to [48], multi-start methods can be classified based on three key ele-
ments: memory, randomization, and degree of rebuild (related to the number of solu-
tions components that remain fixed from one iteration to the next start). MSLS based
on the available algorithmic components of SearchCol allows the implementation of
an actual algorithms in all the spectrum of each of these elements. Different settings
of parameters for SearchCol with MSLS result in different algorithms. For exam-
ple, GRASP with path relinking is obtained by setting PARMSLSinitialplus and
PARMSLSinitialminus to alternative 7 presented in subsubsection 11.6.3.5. MSLS
also can be seen as an adaptive memory programming technique [61]. In the main
cycle of this unifying perspective for MHs, a solution is generated using data in
memory, then this solution is improved and the memory is udpated.
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Fig. 11.5 Algorithm for SearchCol with multi-start local search
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Fig. 11.6 Algorithm for SearchCol with variable neighborhood search
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11.7.3 SearchCol with Variable Neighborhood Search

Variable neighborhood search (VNS) is a well known MH. For a recent description
of VNS, variants, and applications see [36]. In Figure 11.6, an algorithm for VNS is
displayed. In SearchCol with VNS, the search blocks in Figure 11.4 are replaced by
the shaded blocks in Figure 11.6. In VNS algorithm, a hierarchy of neighborhoods
are defined. For SearchCol with VNS, the hierarchy is given by k-neighborhoods
defined in subsubsection 11.7.1.1. The current neigborhood is set to the first of the
hierarchy (k = 1) and local search is applied from an initial solution (s′) in the cur-
rent neighborhood of the current solution (s). When the local optimum (s′′) is better
than the current solution (s) a new iteration starts from the k = 1 neighborhood,
otherwise a more distant neighborhood becomes the current (by incrementing k).
This cycle is repeated until k reaches parameter PARVNSkmax, ending an outer it-
eration. The stopping criterion is a maximum number of outer iterations without
improvement of the VNS incumbent solution (PARVNSiterwithoutimprov).

11.7.4 SearchCol with MIP

For problems where a general-purpose MIP solver is efficient in solving restricted
versions of (D), or the number and type of static variables make the evaluation of
solutions too heavy for a MH approach, a MIP solver can be used in the search
phase, i.e. in Figure 11.3 the search steps return the optimal (if a time limit set by a
parameter PARSCMIPmaxtimemip is not reached) solution of the problem with the
available subproblem solutions.

11.8 Conclusions

In this Chapter, we discussed a framework for the combination of column generation
(CG) and metaheuristics (MHs), named metaheuristic search by column generation
(SearchCol). A deep collaboration of CG and MHs is achieved through representing
a solution to the overall problem as a set of solutions from the subproblems of CG.
Basically, CG provides the search space to the MH and, in turn, the MH provides
information on desired or avoidable attributes of the subproblem solutions to be
generated by CG.

The combinatorial perspective suggested allows to define core algorithmic com-
ponents for different MHs. We proposed several alternatives for an actual SearchCol
algorithm, based on concepts as randomization, greediness, memory, duality, and
neighborhoods. We also detailed three examples of actual SearchCol algorithms:
SearchCol with multi-start local search, SearchCol with VNS, and SearchCol with
MIP.
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Although the uselfulness of heuristics based on decomposition models, as the
ones resulting from Lagrangean relaxation or the ones using CG, has been proved
for several decades in specific problems, their combination in a more general setting
seldom has been tried. In this Chapter, we discussed such a general framework for
combining CG and metaheuristics and highlighted its potential.
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41. Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt,
G., Rinaldi, G., Wolsey, L.A. (eds.): 50 Years of Integer Programming 1958-2008, From
the Early Years to the State-of-the-Art. Springer (2010)

42. Klabjan, D.: Large-scale models in the airline industry. In: Desaulniers, G., Desrosiers,
J., Solomon, M.M. (eds.) Column Generation, ch. 3, Springer (2005)

43. Kallehauge, B., Larsen, J., Madsen, O.B.G.: Vehicle Routing with Time Windows.
In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, ch. 3.
Springer (2005)

44. Kelley, J.E.: The cutting-plane method for solving convex programs. Journal of the
SIAM 8, 703–712 (1960)
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Chapter 12
Application of Large Neighborhood Search to
Strategic Supply Chain Management in the
Chemical Industry

Pedro J. Copado-Méndez, Christian Blum,
Gonzalo Guillén-Gosálbez, and Laureano Jiménez

Abstract. Large neighborhood search is a popular hybrid metaheuristic which re-
sults from the use of a complete technique—such as dynamic programming, con-
straint programming or MIP solvers—for finding the best neighbor within a large
neighborhood of the incumbent solution. In this work we present an application of
large neighborhood search to a strategic supply chain management problem from
the Chemical industry, namely the configuration of a three-echelon hydrogen net-
work for vehicle use with the goal of minimizing the total cost. Traditionally, these
large-scale combinatorial optimization problems have been solved by means of
mathematical programming techniques. Our experimental results show that large
neighborhood search has the potential to be a viable alternative, especially when the
complexity of the problem grows.

12.1 Introduction

Supply chain management (SCM) problems [18, 15] can be classified into strate-
gic, tactical and operational according to the temporal and spatial scales consid-
ered in the analysis [7]. In this work we will focus on the strategic level, which
deals with decisions that have a long lasting effect on the firm, such as those related
with the establishment of new facilities and transportation links between the supply
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chain entities. Spatially explicit models have recently gained wider interest in SCM.
These formulations are particularly suited for strategic SCM problems in which the
supply chain performance shows a strong geographical dependence. They give rise
to large-scale MILP models with three types of variables: (1) integers representing
the number of facilities opened in a given location, (2) binary variables denoting
the existence of transportation links between two sub-regions, and (3) continuous
variables that quantify the materials flows and inventory levels. In this work we will
deal with a spatially explicit model that concerns the strategic planning of hydrogen
supply chains for vehicle use [1, 9, 10, 12, 19].

In spatially explicit SCM models a trade-off exists between modelling accuracy
and computational burden. Realistic models require the definition of a large number
of discrete variables. Mathematical programming is probably the prevalent approach
for solving SCM problems. Hereby, decomposition strategies that exploit the mathe-
matical structure of the problem are sometimes used to make the problem tractable.
A general review on the application of mathematical programming techniques in
SCM can be found in [14], whereas more specific reviews devoted to process in-
dustries have been presented in [8, 16]. Apart from mathematical programming,
metheuristics have also been applied so strategic SCM problems. In [21], for exam-
ple, a method to solve the vehicle routing problem (VRP) is proposed that combines
genetic algorithms with mathematical programming. The authors of [5] examine the
open vehicle routing problem with time windows (OVRPTW) using tabu search.
Several evolutionary algorithms for the application fo SCM models have been pro-
posed in [2], while in [6] the authors employed genetic algorithms for solving the
coordinated scheduling of production and air transportation. Other applications can
be found in [24, 3].

The goal of this work is the application of a popular algorithm from the field
of hybrid metaheuristics to the above mentioned SCM problem. Hybrid meta-
heuristics [4] are algorithms for optimization that combine metaheuristics with
components of other techniques for optimization. Examples are combinations of
metaheuristics with dynamic programming, contraint programming, and branch &
bound. The specific algorithm that is applied in this work is known as large neigh-
borhood search (LNS) [17]. The characteristic feature of LNS algorithms is the use
of complete techniques for searching large neighborhoods within a metaheuristic
framework. Our method, as shown by means of numerical examples, produces near
optimal solutions in a fraction of the computational time required by stand-alone de-
terministic branch and cut techniques applied to the original full-space MILP. The
same approach can be easily extended to tackle similar engineering problems with
large numbers of discrete decisions, expediting current solution approaches for a
certain class of process systems engineering models.

The remainder of this chapter is organized as follows. In Section 12.2, we provide
a generic formulation of spatially explicit supply chain models. The full description
of the mathematical model of the hydrogen supply chains for vehicle use is given
in Appendix A. In Section 12.3 we describe the proposed LNS approach, whereas in
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Section 13.5 the experimental results are outlined in detail. Finnally, the conclusions
of the work are presented in Section 12.5.

12.2 Spatially Explicit Supply Chain Models

As mentioned before, we address the solution of MILPs resulting from the formu-
lation of spatially explicit models used in SCM. The problem under study can be
formally stated as follows (see also Figure 12.1). Given are a set of available pro-
duction, storage and transportation technologies that can be adopted in different
locations of a region in order to fulfill the demand of a product of interest. We are
also given economic and environmental data associated with the establishment and
operation of these facilities. The goal of the analysis is to determine the optimal
supply chain configuration, including the type of technologies selected, the capacity
expansions over time, and their optimal location, along with the associated planning
decisions that optimize a predefined objective function.

The strategic planning problem presented above can be described in mathemati-
cal terms as an MILP of the following form:

min
x,Y,N

f (x,Y,N)

such that

h(x,Y,N) = 0
g(x,Y,N) ≤ 0
x ⊂ R, Y ⊂ {0,1}, N ⊂ Z+

This generic formulation includes three types of variables: continuous variables
x, denoting capacity expansions, production rates, inventory levels and materials
flows; discrete variables N, representing the number of transportation units and
production and storage facilities opened in a given region; and binary variables Y
employed for modelling the establishment of transportation links between two po-
tential locations within the overall region of interest. The inequality and equality
constraints, denoted by g(x,Y,N) and h(x,Y,N) respectively, represent mass bal-
ances, capacity limitations and objective function calculations. In this work, with-
out loss of generality, we address the solution of a spatially explicit SCM model
that was introduced in [13, 11, 9, 20]. The solution of this multi-period model pro-
vides the optimal supply chain structure along with the capacity expansions over
time required to follow a given demand pattern.

For the sake of brevity, a detailed description of the mathematical model for
the hydrogen supply chains problem for vehicle use can be found in Appendix A.
Moreover, further details on the complete MILP formulation can be found in the
original works. From now on, we will refer to this model as HYDROGEN.
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Fig. 12.1 Main sets of decision variables involved in spacially explicit supply chain manage-
ment

12.3 The Proposed LNS Algorithm

The difficulty in solving model exposed in the previous section is highly depen-
dent on the number of integer and binary variables since they are responsible for
the combinatorial complexity of the problem. The number of discrete variables re-
quired increases with the number of time periods and sub-regions considered in
the model. The MILP can be solved via standard branch-and-cut techniques imple-
mented in software packages such as CPLEX. Models accounting for a large number
of time periods and/or sub-regions may lead to branch-and-bound trees with a pro-
hibitive number of nodes, thus making the MILP computationally intractable. We
next present a hybrid method, LNS, that combines local search with standard branch
and cut for the efficient solution of the tackled problem. LNS was first introduced
by [22]. In LNS, an initial solution is gradually improved by alternately destroying
and repairing it. This approach combines components from different search tech-
niques, and has many potential applications in the fields of operations research and
artificial intelligence. Classifications, taxonomies and overviews on the subject can
be found in the work by [4, 23].

All LSN algorithms are based on the observation that searching a large neigh-
bourhood results in finding local optima of high quality. Specifically, LNS decom-
poses the original problem into a number of smaller sub-problems that are solved
in a sequential way. Each sub-problem emerges from a partial solution, in which
some decision variables are fixed and others released. A partial solution defines a
neighbourhood of solutions that can be explored rather fast by either tailored (e.g.,
another heuristic or meta-heuristic) or general purpose algorithms (e.g., branch and
cut MIP solvers). LNS is a general framework that must be adapted to the particu-
larities of the problem under study. Hence, the definition of the large neighbourhood
is highly dependent on the problem of interest. In the simplest case, an appropriate
portion of the decision variables is fixed to the values that they have in the current



12 Large Neighborhood Search for Strategic Supply Chain Management 339

solution, and only the remaining “free” variables are considered by the optimization
algorithm (typically, a MIP-solver). If the MIP-solver finds an improved solution,
it becomes the new current solution, a new large neighbourhood is defined around
it, and the process is repeated in subsequent iterations. Obviously, the selection of
the variables that remain fixed and the ones that are subject to optimization, re-
spectively, plays a crucial role in the performance of the algorithm. Particularly,
the number of free variables directly defines the size of the neighbourhood. Too
restricted neighbourhoods—that is, sub-problems—are unlikely to yield improved
solutions, while too large neighbourhoods might result in excessive running times
for solving the sub-problems by the MIP-solver. Therefore, a strategy for dynam-
ically adapting the number of free variables is sometimes used. Furthermore, the
variables to be optimized might be selected either purely at random or in a more
sophisticated guided way by considering the variables with largest potential impact
on the objective function and their relatedness. The section that follows describes
the main features of our algorithm.

12.3.1 Algorithm

In this section we describe the LNS implementation for our particular problem. The
algorithm requires the following input data:

• tmax: a maximum execution time of the algorithm;
• nmax: a maximum number of variables to be released;
• mmax: a maximum number of attempts (the meaning of this parameter is de-

scribed below).

The algorithm works as follows (see Algorithm 11). First, the initial solution is
generated in function generate initial solution(). The HYDOGENE model includes
three main types of discrete variables that are relevant for our algorithm:

• Integer variables NPL
igpt: Number of facilities producing hydrogen in form i using

technology p established in location g at period t.
• Integer variables NST

gst : Number of storage facilities of type s opened in location
g at period t.

• Binary variables Xgg′lt : Equals 1 if there is a link between g and g′ using trans-
portation mode l in period t and 0 otherwise.

The initial solution is generated by solving the HYDROGENE model with the vari-
ables NPPL

igpt , NST
gst and Xgg′lt fixed to the values obtained from a reduced-space model

that considers a single time period with a demand equal to the average demands over
all the time periods. We have used CPLEX for this purpose. The pseudo-code of this
procedure is given in Algorithm 12).

After the generation of the initial solution, the main loop of the algorithm starts.
While the maximum computation time limit is not reached, in each trial m the fol-
lowing is done. First, a set V of n variables that are to be released is chosen in
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Algorithm 11. LNS for solving the HYDROGENE model
Require: The model HYDROGENE to be solved

AND tmax > 0 AND mmax > 0 AND nmax > 0
Ensure: s
1: s := generate initial solution()
2: while computation time limit tmax not reached do
3: n := 1
4: improved := FALSE
5: while n≤ nmax AND NOT improved do
6: m := 1;
7: while m≤ mmax AND NOT improved do
8: V := choose variables to be released(n)
9: s′ := release variables(s,V )

10: s′′ := MIP solve(s′)
11: if f (s′′ < f (s) then
12: s := s′′
13: improved := TRUE
14: end if
15: n := n+1;
16: end while
17: m := m+1;
18: end while
19: end while

Algorithm 12. Generating the initial solution
for all g do

Dg := ∑T
t Dgt
T

end for
Solve HYDROGENE considering one period (t = 1) with demand Dg
Solve HYDROGENE for all the time periods fixing
〈NPL

igpt ,N
ST
gst ,Xgg′lt〉 := 〈NPL

igp1,N
ST
gs1,Xgg′l1〉

function choose variables to be released(n). Second, solution s is copied, result-
ing in solution s′. Next, the n variables from V are released in s′. Third, the CPLEX
solver is invoked. The solver determines the best solution that can be obtained on the
basis of the partial solution s′. In case f (s′ < f (s)—where f (·) refers to the value
of the objective function—variable improved is assigned the value true.

12.4 Experimental Evaluation

In the following subsection we present numerical results that illustrate the perfor-
mance of LNS as compared to the commercial full-space branch and cut code im-
plemented in CPLEX. We have selected different instances of the HYDROGENE

model concerning the number of time periods. More specifically, we tested t ∈
{2,4,6,8,10,12,14,16}. As computation time limits for the resulting eight models
of HYDROGENE we chose {1000,2000,3000,4000,5000,6000,7000,8000}
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Fig. 12.2 Tuning of algorithm LNS. Note that n and m refer to parameters nmax and mmax.

seconds. All experiments were performed on a PC Intel (R) Core (TM) Quad CPU
Q9550@2.83 GHz and 3 GB of RAM.

12.4.1 Algorithm Tuning

In order to obtain reasonable values for parameters nmax and mmax, we applied LNS
for each combination of nmax and mmax 10 times to each of the eight different mod-
els (resulting from eight different time periods). The values considered for nmax are
taken from {4,6,8,10,20}, while the values considered for mmax are taken from
{4,6,8,10,12}. The results are shown for each combination of nmax and mmax in the
form of boxplots in Figure 12.2. This is a standard and convenient way of graph-
ically depicting sets of numerical data through their five-number summaries: the
smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper
quartile (Q3), and largest observation (sample maximum). A boxplot also indicates
which observations, if any, are to be considered as outliers. When observing these
results, the general impression is that the results become better when mmax grows.
Concerning nmax, no conclusions can be drawn. The final setting that we chose based
on these results is marked by a box. In particular, we chose the setting of nmax = 10
and mmax = 12.
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Fig. 12.3 Commparison of LNS with CPLEX (lower and upper bound) over time. The four
graphics show the results for a different number of periods (value of t). From top to down, t
takes values {2,4,6,8}). The vertical bars show the standard deviation of LNS over 10 runs.
In the cases in which CPLEX results are missing, CPLEX was not able to find any solution
within the given time.
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Fig. 12.4 Commparison of LNS with CPLEX (lower and upper bound) over time. The four
graphics show the results for a different number of periods (value of t). From top to down,
t takes values {10,12,14,16}). The vertical bars show the standard deviation of LNS over
10 runs. In the cases in which CPLEX results are missing, CPLEX was not able to find any
solution within the given time.
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Table 12.1 Results of LNS for the eight different HYDROGEN models

# time periods time limit avg obj function value std (obj) avg comp time std (time)
2 1000 1.050.707.800.000 18.860.894,29 477,97 248,27
4 2000 1.296.693.500.000 37.997.806,95 748,38 581,41
6 3000 1.543.836.900.000 42.019.704,37 1156,19 784,40
8 4000 1.786.516.900.000 58.333.238,10 1651,62 1196,73

10 5000 2.019.793.600.000 111.899.955,32 2751,97 1657,26
12 6000 2.239.906.300.000 128.670.164,03 2973,20 1508,65
14 7000 2.450.000.000.000 0,0 195,28 125,80
16 8000 2.640.000.000.000 0,0 227,95 116,70

Table 12.2 Optimality gaps of CPLEX and LNS. GAP’s are calculated with respect to the
best lower bound found by CPLEX when the 12h time limit was applied. No result indicates
that in the given time CPLEX was not able to obtain any feasible solution.

# time periods CPLEX (12h) CPLEX LNS (avg) LNS (best)
2 0.05 0.05 0.05 0.05
4 0.05 0.06 0.07 0.06
6 0.06 0.07 0.07 0.07
8 0.08 No result 0.08 0.08

10 0.10 No result 0.09 0.09
12 No result No result No result No result
14 No result No result No result No result
16 No result No result No result No result

12.4.2 Final Comparison

After the above-mentioned tuning procedure we applied CPLEX with the same com-
putation time limits (and additionally with the computation time limit of 12 hours)
to all eight HYDROGENE models. Figures 12.3 and 12.4 show—for all eight differ-
ent time periods—the evolution of the lower and upper bounds found by CPLEX as
a function of time, along with the performance of the proposed LNS algorithm. As
can be seen, for a rather low number of time periods (up to 6), CPLEX performs
slightly better than the proposed algorithm, finding better solutions in shorter CPU
times. For more than 6 time periods, CPLEX cannot find any solution within the
given time, whereas LNS is always able to provide at least one feasible solution.
Note that the variability of the results obtained with our algorithm is rather low.

Numerical results of LNS are shown in Table 12.1. The first column of this table
indicates the number of periods, while the second table column states the computa-
tion time limit. The four remaining columns contain, respectively, the average of the
objective function values of the best solutions found in ten runs, the corresponding
standard deviation, the average computation times necessary to obtain these solu-
tions, and, again, the corresponding standard deviation.

Finally, Table 12.2 displays the optimality gaps obtained by the following algo-
rithms: the best solution calculated by CPLEX after 12 hours of CPU time (column
labelled CPLEX (12h)) and after the same CPU time limit applied to LNS (column
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labelled CPLEX), the average solution quality obtained by LNS (column labelled
LNS (avg)), and the value of the best solution found by LNS (column labelled LNS
(best)). The optimality gap is determined with respect to the best lower bound calcu-
lated by CPLEX within 12 hours. Note that in some cases (12, 14, and 16 periods),
CPLEX is unable to provide any bound even after 12 hours.

Summarizing, we can say that LNS appears to be a useful alternative to pure
mathematical programming for what concerns the application to large-scale models
from the Chemical industries.

12.5 Conclusions

In this work we have introduced an efficient hybrid algorithm for a spatially explicit
supply chain management model. Our algorithm combines mathematical program-
ming techniques with local search, and is known as large neighborhood search in
the literature. The capabilities of the proposed method were illustrated through its
application to the strategic planning of infrastructures for hydrogen production. Our
algorithm was shown to outperform the stand-alone branch and cut method imple-
mented in CPLEX especially for large-scale problems. Numerical examples have
demonstrated that our method is particularly suited for tackling large scale prob-
lems with a high number of time periods and potential locations (and, therefore, a
high number of integer and binary variables).

Future work will particularly focus on investigating how to incorporate the infor-
mation obtained after solving sub-problems of the mathematical program into the
original model in order to expedite the solution of the full space formulation.
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Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS,
vol. 5484, pp. 798–807. Springer, Heidelberg (2009)

3. Baykasoglu, A., Gocken, T.: Multi-objective aggregate production planning with fuzzy
parameters. Advances in Engineering Software 41(9), 1124–1131 (2010)

4. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing Journal 11(6), 4135–4151 (2011)



346 P.J. Copado-Méndez et al.

5. Chiang, W., Russell, R., Xu, X., Zepeda, D.: A simulation/metaheuristic approach to
newspaper production and distribution supply chain problems. International Journal of
Production Economics 121(2), 752–767 (2009)

6. Delavar, M.R., Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S.: Genetic algo-
rithms for coordinated scheduling of production and air transportation. Expert Systems
with Applications 37(12) (2010)

7. Fox, M.S., Barbuceanu, M., Teigen, R.: Agent-oriented supply-chain management. In-
ternational Journal of Flexible Manufacturing Systems 12(2), 165–188 (2000)

8. Grossmann, I.: Enterprise-wide optimization: A new frontier in process systems engi-
neering. AICHE Journal 51(7), 1846–1857 (2005)

9. Guillén-Gosálbez, G., Mele, F.D., Grossmann, I.E.: A bi-criterion optimization approach
for the design and planning of hydrogen supply chains for vehicle use. AICHE Jour-
nal 56(3), 650–667 (2010)

10. Kim, J., Lee, Y., Moon, I.: Optimization of a hydrogen supply chain under demand un-
certainty. International Journal of Hydrogen Energy 33(18), 4715–4729 (2008)

11. Kostin, A.M., Guillén-Gosálbez, G., Mele, F.D., Bagajewicz, M.J., Jiménez, L.: A novel
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Appendix A

In this appendix we provide the complete mathematical model of the three-echelon
hydrogen network problem for vehicle use with the goal of minimizing the total
cost. Moreover, we give a brief description of its components. Further details may
be found in [20, 9, 11].

Notation

Indices

e scenarios
i hydrogen form
g potential locations
l transportation mode
p manufacturing technologies
s storage technologies
t time period

Sets

IL(l) set of hydrogen forms that can be transported via transportation mode
l

IS(s) set of hydrogen forms that can be stored via technology s
LI(i) set of transportation modes that can transport hydrogen form i
SI(i) set of storage technologies that can store hydrogen form i

Parameters

avl availability of transportation mode l
cclt capital cost of transport mode l in period t
cudlt maintenance cost of transportation mode l in period t per unit of dis-

tance traveled
Dgt total demand of hydrogen in location g in period t
distancegg′ average distance traveled between locations g and g′
dsat demand satisfaction level to be fulfilled
f uelcl fuel consumption of transportation mode l
f uelplt price of the fuel consumed by transportation mode l in period t
gelt general expenses of transportation mode l in period t
ir interest rate
lutimel loading/unloading time of transportation mode l
PCPL

p upper bound on the capacity expansion of manufacturing technology
p
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PCPL
p lower bound on the capacity expansion of manufacturing technology

p
QCgg′l upper bound on the flow of materials between locations g and g′ via

transportation model l
QCgg′l lower bound on the flow of materials between locations g and g′ via

transportation model l
SCST

s upper bound on the capacity expansion of storage technology s
SCST

s lower bound on the capacity expansion of storage technology s
speedl average speed of transportat mode l
tcapl capacity of transport mode l
upcigpte mean value of unit production cost of hydrogen form i produced via

technology p in location g in period t in scenario e
Vupcigpte Variance associated to the probability distribution of upcigpte

uscigst unit storage cost of hydrogen form i stored via technology s in location
g in period t

wagelt driver wage of transportation mode l in period t
αPL

gpt fixed investment term associated with manufacturing technology p in-
stalled in location g in period t

αST
gst fixed investment term associated with storage technology s installed in

location g in period t
β PL

gpt variable investment term associated with manufacturing technology p
installed in location g in period t

β ST
gst variable investment term associated with storage technology s installed

in location g in period t
θ average storage period
τ minimum desired percentage of the capacity that must be used
probe occurrence probability of scenario e

Variables

CPL
gpt capacity of manufacturing technology p in location g in period t

CST
gst capacity of storage technology s in location g in period t

CEPL
gpt capacity expansion of manufacturing technology p in location g in pe-

riod t
CEST

gst capacity expansion of storage technology s in location g in period t
Digt amount of hydrogen form i distributed in location g in period t
FCt fuel cost in period t
FCCt facility capital cost in period t
FOCte facility operating cost in period t in scenario e
GCt general cost in period t
LCt labor cost in period t
MCt maintenance cost in period t
T PIC capital cost of pipelines establishment (euros/km)
UTP unit transportation cost of pipelines (euros/kg day)
UTCB unit transportation cost of ship rental (euros/h kg)
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PICCt pipeline capital cost (euros/yr)
PICt pipeline operating cost (euros/yr)
TOCBt ship operating cost
NPL

gpt number of plants of type p installed in location g in period t (integer
variable)

NST
gst number of storage facilities of type s installed in location g in period t

(integer variable)
NT R

lt number of transportation units of type l purchased in period t (integer
variable)

PRigpt production of hydrogen mode i via technology p in period t in location
g

Qigg′lt flow of hydrogen mode i via transportation mode l between locations
g and g′ in period t

Sigst amount of hydrogen in physical form i stored via technology s in lo-
cation g in period t

TCte total amount of money spent in period t for scenario e
TCCt total transportation capital cost in period t
T DCe total discounted cost for scenario e
TOCt transportation operating cost in period t
Xgg′lt binary variable (1 if a link between locations g and g′ using transporta-

tion technology l is established, 0 otherwise)

Equation 12.1 defines the mass balance for the grids considered in the analysis,
whereas Equation 12.2 forces the model to fulfill a minimum demand satisfaction
level. Equation 12.3 limits the production capacity between lower and upper bounds.
Equation 12.4 determines the production capacity in a time period from the previous
one plus the expansion in capacity executed in the same period. Equation 12.5 limits
the capacity expansions within lower and upper bounds given by the number of
facilities opened.

∑
s∈SI(i)

Sigst−1 +∑
p

PRigpt + ∑
g′ �=g

∑
l

Qilg′glt

= ∑
s∈SI(i)

Sigst +Digt + ∑
g′ �=g

∑
l

Qilgg′lt∀i,g, t
(12.1)

Dgtdsat ≤∑
i

Digt ≤ Dgt∀g, t (12.2)

τCPL
gpt ≤∑

i
PRigpt ≤CPL

gpt∀g, p, t (12.3)

CPL
gpt =CPL

gpt−1 +CEPL
gpt ∀g, p, t (12.4)

PCPL
p NPL

gpt ≤CEPL
gpt ≤ PCPL

p NPL
gpt∀g, p, t (12.5)
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Equations 12.6 to 12.9 are equivalent to equations 12.3 to 12.5, but apply to ware-
houses. Particularly, equation 12.6 limits the amount of materials stored to be lower
than the existing capacity. Equation 12.7 forces the average inventory level, which
is determined from the demand and turnover ratio, to be lower than the existing
capacity. Equation 12.8 provides the storage capacity in a time period from the pre-
vious one and the expansion in capacity in the previous period, whereas equation
12.9 limits the expansion in capacity between lower and upper limits given by the
number of storage facilities installed.

∑
i∈IS(s)

Sigst ≤CST
gst∀g,s, t (12.6)

2(θDigt)≤ ∑
s∈SI(i)

CST
gst∀i,g, t (12.7)

CST
gst =CST

gst−1 +CEST
gst∀g,s, t (12.8)

SCST
s NST

gst ≤CEST
gst ≤ SCST

s NST
gst ∀g,s, t (12.9)

Equation 12.10 limits the transportation links between lower and upper bounds pro-
vided the link is finally established. Equations 12.11 and 12.12 are defined for the
construction of pipelines. Equation 12.13 is a logic constraint that makes the formu-
lation tighter. Equations 12.14 and 12.15 avoid the transportation between certain
maritime grids, whereas equation 12.16 is a symetric cut. Finally, equations 12.17
to 12.31 allow to determine the cost of the network.

QClgg′Xgg′lt ≤∑
i

Qilgg′t ≤ QClgg′Xgg′lt

∀g,g′(g �= g′), l ∈ LI(i)∪NPL, t
(12.10)

∑
t′≤t+1

QClgg′Xgg′lt′ ≤∑
i

Qilgg′t ≤ ∑
t′≤t+1

QClgg′Xgg′lt

∀g,g′(g �= g′), l = pipeline, t
(12.11)

∑
t′≤t+1

Xgg′lt′ ≤ 1 ∀g,g′(g �= g′), l = pipeline, t (12.12)

Xgg′lt +Xg′glt ≤ 1 ∀g,g′(g �= g′), l ∈ LI(i, t (12.13)

Xlgg′t = 0 ∀l,g,g′ ∈ LG′

LG′ = {l,g,g′ : (l = ship)∧ ((g,g′) /∈ SGG(gg′))} (12.14)

Xlgg′t = 0 ∀l,g,g′ ∈ LG

LG = {l,g,g′ : (l �= ship)∧ ((g,g′) ∈ SGG′(gg′))} (12.15)
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Xlgg′t = 0 ∀l,g = g′ (12.16)

TDC = ∑
t

TC
(1+ ir)t−1 (12.17)

TCt = FCCt +TCCt +FOCt +TOCt ∀t (12.18)

FOCt = ∑
i

∑
g

∑
p

upcigptPRigpt

+∑
i

∑
g

∑
s
∈ SI(i)uscigst (θDigt) ∀t

(12.19)

FCCt = ∑
g

∑
p

(
αPL

gptN
PL
gpt +β PL

gptCEPL
gpt

)

+∑
g

∑
s

(
αST

gst NST
gst +β ST

gst CEST
gst

) ∀t
(12.20)

TCCt = ∑
l �=ship,pipeline

NT R
lt · cclt +PCCt (12.21)

PCC(t) =∑
g

∑
g′ �=g

∑
l∈LI(i)

upcctXlgg′tdistancegg′ ∀t (12.22)

∑
t′≤t+1

NT R
lt′ ≥ ∑

i∈IL(l)
∑
g

∑
g′ �=g

∑
t

Qigg′lt
avltcapl

(
2distancegg′

speedl
+ lutimel

)

∀l �= ship, pipeline

(12.23)

TOCt = ROCt +POCt + SOCt ∀t (12.24)

ROCt = FCt +LCt +MCt +GCt ∀t (12.25)

FCt = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

f uelplt
2distancegg′Qilgg′t

f uelcltcapl
∀t (12.26)

LCt = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

wagelt

×
[

Qilgg′t
tcapl

(
2distancegg′

speedl
+ lutimel

)]

∀t
(12.27)

MCt = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

cudl
2distancegg′Qilgg′t

tcapl
∀t (12.28)

GCt = ∑
l

∑
t′≤t

gltN
T R
lt′ ∀t (12.29)
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POC(t) = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

upoctQilgg′t ∀t (12.30)

SOCt = ∑
i

∑
g

∑
g′ �=g

∑
l∈LI(i)

usoct

(
distancegg′

speedl

)

Qilgg′t ∀t (12.31)



Chapter 13
A VNS-Based Heuristic
for Feature Selection in Data Mining

A. Mucherino and L. Liberti

Abstract. The selection of features that describe samples in sets of data is a typi-
cal problem in data mining. A crucial issue is to select a maximal set of pertinent
features, because the scarce knowledge of the problem under study often leads to
consider features which do not provide a good description of the corresponding
samples. The concept of consistent biclustering of a set of data has been introduced
to identify such a maximal set. The problem can be modeled as a 0–1 linear frac-
tional program, which is NP-hard. We reformulate this optimization problem as a
bilevel program, and we prove that solutions to the original problem can be found by
solving the reformulated problem. We also propose a heuristic for the solution of the
bilevel program, that is based on the meta-heuristic Variable Neighborhood Search
(VNS). Computational experiments show that the proposed heuristic outperforms
previously proposed heuristics for feature selection by consistent biclustering.

13.1 Introduction

Nowadays technologies are able to produce a large quantity of data which needs to
be analyzed. Data mining is a well-established field whose aim is to discover hidden
patterns in the data for acquiring novel knowledge. A classic example is given by
the huge quantity of data that is contained in DNA molecules of living beings. The
relationships among the different genes of a DNA molecule, under different con-
ditions, can provide important information regarding diseases and the functioning
of life.

Data can be collected from different resources. Samples represent a single mea-
surement of what is under study, and features are employed for describing the
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samples. In the example of the DNA molecule, a sample can represent the patients’
condition, such as “healthy” and “sick”, which is monitored through the expression
levels of each gene in his DNA. In other words, each feature represents the expres-
sion level of a gene, and a list of feature measurements represents a sample. In many
applications, the number of samples is scarce (only a few measurements are avail-
able), while the number of features is usually large (many factors are involved in the
phenomenon under study).

In this context, feature selection is the problem of extracting only important and
pertinent features from a set of data. Some considered features, indeed, may not be
adequate for describing the samples, and, in such a case, they should be removed
from the set of data. This brings two important consequences. First, if only pertinent
features are used and all the others are rejected, the memory space necessary for
storing this set in databases is optimized. Secondly, a strict relationship between
samples and features may be identified, which could be exploited for discovering
important information.

If a set of data contains n samples which are described by m features, then the
whole set can be represented by a m× n matrix A, where the samples are organized
column by column, and the features are organized row by row. In this context, we
refer to a bicluster of A as a submatrix of A, whose elements are a subset of samples
and features. Equivalently, a bicluster can be seen as a pair of subsets (Sr,Fr), where
Sr is a class (or cluster) of samples, and Fr is a class (or cluster) of features.

Definition 13.1. A biclustering is a partition of A in k biclusters:

B= {(S1,F1),(S2,F2), . . . ,(Sk,Fk)},

such that the following conditions are satisfied:

k⋃

r=1

Sr = A, Sζ ∩Sξ = /0 1≤ ζ �= ξ ≤ k,

k⋃

r=1

Fr = A, Fζ ∩Fξ = /0 1≤ ζ �= ξ ≤ k,

where k ≤min(n,m) is the number of biclusters [2, 6].

If a classification for the samples of A is available, as well as a classification for its
features, a biclustering B can be trivially constructed. Inversely, classifications of
samples and features can be extracted from B.

In some data mining applications, there exist sets of data for which a classifica-
tion of its samples is already given. In the example of the DNA molecules, samples
may be taken from patients affected by different diseases, so that their classification
is already known. In this case, the set A is named training set. However, the classifi-
cation of the features used for describing the samples is not known, or, equivalently,
there is no biclusteringB associated to A. Therefore, we have no a priori information
about possible relationships between samples and features.
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A way to obtain a classification for the features from a training set A is to assign
each feature to the class where it is “mostly expressed” (see Section 13.2 for more
details). Then, once a classification for the features is also available, a biclusteringB
for A can be obtained by simply applying Definition 13.1. If the found biclustering
is consistent (in the sense stated in Section 13.2), then the selected features are most
likely the ones that better describe the samples.

The feature selection problem related to consistent biclustering can be formulated
as a 0–1 linear fractional optimization problem, which is NP-hard [9]. In this paper,
we propose a new heuristic for solving the feature selection problem, that is based
on a bilevel reformulation of the 0–1 linear fractional optimization problem. The
proposed heuristic is based on the meta-heuristic Variable Neighborhood Search
(VNS) [5, 10] and on the idea of solving exactly, at each iteration, the inner problem
of the bilevel program, which is linear. Preliminary studies regarding the proposed
heuristic for features selection have been previously presented in [12].

The rest of the paper is organized as follows. In Section 13.2, we develop the
concept of consistent biclustering in more details, and we present the correspond-
ing feature selection problem. In Section 13.3, we reformulate this feature selection
problem as a bilevel optimization problem and we formally prove that solutions to
the original problem can be found by solving this bilevel program. In Section 13.4,
we introduce a new VNS-based heuristic for an efficient solution of the bilevel pro-
gram. Computational experiments on real-life sets of data are presented in Sec-
tion 13.5, as well as a comparison to the heuristic presented in [17]. Conclusions are
given in Section 13.6.

13.2 Consistent Biclustering

Let A = (ai j) ∈ℜm×n be a matrix representing a certain set of data, where samples
a j are organized column by column, and their features ai are organized row by
row. In the following, k is the number of biclusters (known a priori) forming the
biclustering, and the index r ∈ {1,2, . . . ,k} will refer to the generic class of samples
or features.

If the set of data A is a training set, then the classification of its samples in k
classes is known:

BS = {S1,S2, . . . ,Sk}.
Let sir be a binary vector which indicates if the ith sample belongs to the class Sr of
samples (sir = 1) or not (sir = 0). Since A is a training set, the vector sir is known a
priori. From the classification BS, we can use the following procedure to construct a
classification of the features in k classes:

BF = {F1,F2, . . . ,Fk}.

The basic idea is to assign each feature to the class Fr̂ (with r̂ ∈ {1,2, . . . ,k}) such
that it is mostly expressed (i.e. it has higher value), in average, in the class of
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Algorithm 13. Procedure for constructing BF from BS.
1: for (each feature i, i ∈ {1,2, . . . ,n}) do

2: let r̂ = argmax
r

(
∑m

j=1 ai jsir

∑m
j=1 sir

)

;

3: for each class r, r ∈ {1,2, . . . ,k} do
4: let fir = 0;
5: end for
6: let fir̂ = 1;
7: end for

samples Sr̂. Let fir be a binary vector which indicates if the ith feature belongs
to the class Fr of features ( fir = 1) or not ( fir = 0), which is not known a priori. In
order to define it and hence to give a classification BF to the features in A, we can
employ Algorithm 13 [2, 17].

We remark that the same procedure can be used for finding a classification of the
samples from a known classification of its features. Let

B̂S = {Ŝ1, Ŝ2, . . . , Ŝk}

be the classification of samples obtained from BF . A biclustering B for A can be
defined by combining the two classifications BS and BF (see Definition 13.3). More-
over, if the classifications of samples BS and B̂S are equivalent, then the biclustering
B has a particular property that we call consistency.

Definition 13.2. Let A be a training set with classification of samples BS. Let BF be
the classification of its features obtained by Algorithm 13 from BS, and let B̂S the
classification of samples obtained by Algorithm 13 from BF . If BS = B̂S, then the
biclustering B of A obtained by combining BS and BF is consistent [2].

By definition, when a biclustering is consistent, the classification of the samples
can be correctly reconstructed from the classification of its features, and vice versa.
Therefore, the features are all able to describe accurately the samples of the set of
data.

If a consistent biclustering exists for a certain set of data A, then A is said to
be biclustering-admitting. However, sets of data admitting consistent biclusterings
are very rare in real-life applications. In other words, the situation BS ≡ B̂S is very
difficult to be verified in practice, because some of the features used for describing
the samples may not be actually pertinent. As a consequence, non-pertinent features
should be removed from the set of data with the aim of finding a consistent biclus-
tering for submatrices of A in which some rows have been removed [2]. Note that
it is very important to remove the least number of features, in order to preserve the
information in the set of data.

Let us suppose that only a subset of features is considered: let

x = (x1,x2, . . . ,xm)
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be a binary vector of variables, where xi is 1 if the ith feature is selected, and it is 0
otherwise. Let A[x] be the submatrix of A obtained by removing all the rows ai for
which xi = 0. We give the following definition.

Definition 13.3. A biclustering for A[x] is consistent if and only if, ∀r̂,ξ ∈{1,2, . . . ,k},
r̂ �= ξ , j ∈ Sr̂, the following inequality is satisfied [2]:

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

>

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

. (13.1)

Note that the two fractions in (13.1) are used for computing the centroids of the
considered biclusters (for each sample in Sr̂, the average over the features belonging
to same class is computed). On the left hand side of (13.1), the jth component of
the centroid of the bicluster (Sr̂,Fr̂) is computed. On the right hand side of (13.1),
the jth component of the centroid of the bicluster (Sr̂,Fξ ) is computed. In order to
have a consistent biclustering for A[x] (i.e. BS ≡ B̂S), all components of the centroid
of (Sr̂,Fr̂) must have a value that is larger than any other. This condition on the
classification BF of features allows Alg. 13 to generate a classification of samples
B̂S that is equivalent to the original classification BS.

In order to overcome issues related to sets of data containing noisy data and er-
rors, the concepts of α-consistent biclustering and β -consistent biclustering have
been introduced in [17]. The basic idea is to artificially increase the margin be-
tween the centroids of the different biclusters in the constraints (13.1). In this way,
small variations due to noisy data and errors should not be able to spoil the feature
selection.

Definition 13.4. Given a real parameter α > 0, a biclustering for A[x] is α-consistent
if and only if, ∀r̂,ξ ∈ {1,2, . . . ,k}, r̂ �= ξ , j ∈ Sr̂, the following inequality is satis-
fied [17]:

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

> α +

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

. (13.2)

The additive parameter α > 0 is used to guarantee that the margin between the
centroid of (Sr̂,Fr̂) and any other bicluster concerning Sr̂ is at least greater than
α , independently from the considered data. Similarly, in the case of β -consistent
biclustering, a multiplicative parameter β is employed.

Definition 13.5. Given a real parameter β > 1, a biclustering for A[x] is β -consistent
if and only if, ∀r̂,ξ ∈ {1,2, . . . ,k}, r̂ �= ξ , j ∈ Sr̂, the following condition is satis-
fied [11]:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

> β

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

ifc > 0

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

> (2−β )

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

ifc < 0

(13.3)

where

c =

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

.

We remark that the concept of β -consistent biclustering was firstly introduced
in [17], but the given definition was only suitable for sets of data containing non-
negative entries. In general, different values for the parameters α and β could be
used for each j in Definitions 13.4 and 13.5. Usually, however, only one value is set
up for all components of the centroids.

In real-life applications, there are usually no biclusterings which are consistent,
α-consistent or β -consistent if all features are selected (this situation corresponds to
a binary vector x with all its components equal to 1). As already mentioned before,
this happens because some of the considered features may actually be inadequate.
Such features must therefore be removed from the set of data, while the total num-
ber of considered features must be maximized in order to preserve as much infor-
mation as possible. The following combinatorial optimization problem is therefore
considered:

max
x

(

f (x) =
m

∑
i=1

xi

)

, (13.4)

subject to constraints (13.1), (13.2) or (13.3) depending on the fact that a consis-
tent, α-consistent or β -consistent biclustering, respectively, is searched. The three
problems are linear with fractional constraints and binary variables. The solution of
this kind of optimization problems could be attempted by general-purpose solvers,
such as Baron [19, 20] or Couenne [1], but the large size of real-life sets of data
can make their converge very slow and the computational experiments too expen-
sive. The three optimization problems are in fact all NP-hard [9]. In [2] and [17],
two heuristics have been proposed. The heuristic we propose in this paper is able to
provide better solutions with respect to the ones previously obtained.
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13.3 A Bilevel Reformulation

In the following discussion, only the optimization problem (13.1)-(13.4) will be
considered, because similar observations can be made for the other two problems.
The computational experiments reported in Section 13.5, however, will be related to
all three optimization problems.

We propose a reformulation of the problem (13.1)-(13.4) as a bilevel optimization
problem. To this aim, we substitute the denominators in the constraints (13.1) with
new continuous variables yr, r = 1,2, . . . ,k, where each yr is related to the bicluster
(Sr,Fr). We can rewrite the constraints (13.1) as follows:

1
yr̂

m

∑
i=1

ai j fir̂xi >
1
yξ

m

∑
i=1

ai j fiξ xi, (13.5)

where yr̂ and yξ replace the original fractional parts. The constraints (13.5) must
be satisfied ∀r̂,ξ ∈ {1,2, . . . ,k}, r̂ �= ξ and j ∈ Sr̂, in order to have a consistent
biclustering.

Let us consider ȳr = δyr, where δ > 0. It is easy to see that, given certain values
for the variables xi, the constraints (13.5) are satisfied with ȳr if and only if they
are satisfied with yr. As an example, if k = 3 and there is a consistent biclustering
in which 20, 30 and 50 features are selected in the k biclusters, then the constraints
(13.5) are also satisfied if 0.20, 0.30 and 0.50, respectively, replace the actual num-
ber of features (in this example, the proportional factor δ is 0.01). For this reason,
the variables yr can be used for representing the proportions among the cardinalities
of the classes of features. In the previous example, 20% of the selected features are
in the first bicluster, 30% of the features in the second one, and 50% in the last one.
As a consequence, the variables yr can be bound in the real interval [0,1], so that we
can consider the following constraint:

k

∑
r=1

yr ≤ 1.

A percentage of features is not selected when this sum is smaller than 1.
We introduce the function:

c(x, r̂,ξ ) = ∑
j∈Sr̂

∣
∣
∣
∣
∣
∣
∣
∣
∣

m

∑
i=1

ai j fiξ xi

m

∑
i=1

fiξ xi

−

m

∑
i=1

ai j fir̂xi

m

∑
i=1

fir̂xi

∣
∣
∣
∣
∣
∣
∣
∣
∣
+

,

where x = (x1,x2, . . . ,xm) and r̂,ξ ∈ {1,2, . . . ,k}, with r̂ �= ξ , and where the symbol
| · |+ represents the function which returns its argument if it is positive, and it returns
0 otherwise. As a consequence, the value of c(x, r̂,ξ ) is positive if and only if at
least one constraint (13.1) is not satisfied.
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We reformulate the optimization problem (13.1)-(13.4) as the following bilevel
optimization problem:

min
y

(

g(x,y) =
k

∑
r=1

[

(1− yr)+
k

∑
ξ=1:ξ �=r

c(x,r,ξ )

])

(13.6)

subject to:

x = argmax
x

(

f (x) =
m

∑
i=1

xi

)

subject to

⎧
⎨

⎩

m

∑
i=1

firxi = �yr

m

∑
i=1

fir� ∀r ∈ {1, . . . ,k}
constraint (5)

k

∑
r=1

yr ≤ 1.

(13.7)

The objective function g of the outer problem depends on both variables xi, with i ∈
{1,2, . . . ,m}, and yr, with r ∈ {1,2, . . . ,k}. For each class Sr, the generic term of g is
the sum of two parts, one depending on the vector y and the other one depending on
the vector x. The first part is simply the difference (1− yr), that must be minimized
in order to maximize the value for yr, which represents the percentage of selected
features in the class Fr (recall that yr ≤ 1). The second part is the sum over all the
other classes Sξ , with ξ �= r, of the function c(x,r,ξ ) (when its value is positive).
The minimization of this second part allows to minimize the number of constraints
(13.1) that are not satisfied.

The bilevel program is subject to two constraints. The first one is based on the
solution of another optimization problem, to which we refer as inner problem. The
inner problem can be seen as a linear simplification of the original problem (13.1)-
(13.4), where the fractional parts have been substituted by the variables yr, which
indicate the percentage of features to be selected in each bicluster. The solution of
the inner problem provides a set of values for the variables xi from the variables yr.
Therefore, whatever method is employed for the solution of the outer optimization
problem, the search can be reduced to the variables yr only, because the correspond-
ing values for the variables xi can be obtained by solving the inner problem. The
inner problem is subject to two constraints: the constraints (13.5), as well as another
constraint that forces the number of selected features in each bicluster to respect the
percentages given by the variables yr. The second constraint of the outer problem
requires that the sum of all variables yr must be smaller or equal to 1 (no more than
100% of features can be selected in total). We formally prove that solutions to the
proposed bilevel optimization problem are also solutions to the original problem
(13.1)-(13.4).

Proposition 1 If (x̂, ŷ) is solution for (13.6)-(13.7), then x̂ is solution for (13.1)-
(13.4).
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Proof. By contradiction, let us suppose that there is a solution x̄ such that f (x̄) >
f (x̂) and constraints (13.1) are satisfied. Let

ȳr =

n

∑
i=1

fir x̄i

n

∑
i=1

fir

∀r ∈ {1,2, . . . ,k}.

Since the constraints (13.1) are satisfied,

g(x̄, ȳ) =
k

∑
r=1

(1− ȳr) = k−
k

∑
r=1

ȳr.

Then,

f (x̄)> f (x̂) =⇒
k

∑
r=1

ȳr >
k

∑
r=1

ŷr =⇒ g(x̄, ȳ)< g(x̂, ŷ),

which brings to a contradiction. �

13.4 A VNS-Based Heuristic

The heuristic we propose for the solution of the bilevel program presented in Sec-
tion 13.3 is based on the meta-heuristic Variable Neighborhood Search (VNS)
[5, 10], which is one of the most successful heuristics for global optimization. The
VNS is based on the idea of exploring small neighbors of currently known solutions,
which are increased in size when no better solutions can be found. At each iteration
of the VNS, a local search algorithm is often employed, so that a path of local op-
tima can be defined, that may lead to the global optimum of the considered problem.
The local search can however be replaced by another VNS, which is nested in the
main one.

The proposed heuristic actually implements a VNS in two main steps with an
adaptive value for the percentage of unselected features unsel, which is small at
the beginning (unsel # 0), and then it increases when no better solutions can be
found in the current neighbor. In this way, the algorithm firstly tries to find solutions
where the number of selected features is high. Afterwards, solutions where fewer
features are selected are considered. For each neighbor of the first step of VNS,
there is a full execution of another step. The neighbors of the second step of VNS
are generated so that the set of variables yr can be slightly perturbed at the beginning
(range = starting range), and larger perturbations can be performed only when no
better solutions can be found by considering the current neighbor.

Algorithm 14 is a sketch of our heuristic for feature selection by consistent bi-
clustering. At the beginning, the variables xi are all set to 1, and the variables yr

are set so that they represent the distribution of all m features among the k classes.
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Algorithm 14. A VNS-based heuristic for feature selection.
1: let iter = 0;
2: let xi = 1, ∀i ∈ {1,2, . . . ,m};
3: let yr = ∑i fir/m, ∀r ∈ {1,2, . . . ,k};
4: let ybest

r = yr, ∀r ∈ {1,2, . . . ,k};
5: let range = starting range;
6: let unsel = 0;
7: while (constraints (13.1) unsatisfied and unsel ≤ max unsel) do
8: while (constraints (13.1) unsatisfied and range ≤max range) do
9: let iter = iter+1;

10: solve inner optimization problem (linear & cont.);
11: if (constraints (13.1) unsatisfied) then
12: increase range;
13: if (g has improved) then
14: let ybest

r = yr, ∀r ∈ {1,2, . . . ,k};
15: let range = starting range;
16: end if
17: let yr = ybest

r , ∀r ∈ {1,2, . . . ,k};
18: let r′ = random in {1,2, . . . ,k};
19: choose randomly yr′ in [yr′ − range,yr′ + range];
20: let r′′ = random in {1,2, . . . ,k} : r′ �= r′′;
21: set yr′′ so that 1−unsel ≤ ∑r yr ≤ 1;
22: end if
23: end while
24: if (constraints (13.1) unsatisfied) then
25: increase unsel;
26: end if
27: end while

If the biclustering is already consistent, then all features can be selected, and the
algorithm stops.

For each neighbor defined by the second VNS step, the variables yr are randomly
modified. yr′ and yr′′ are chosen randomly so that r′ �= r′′. Then, yr′ is perturbed,
and its value is chosen randomly in the interval centered in ybest

r′ and with length
2× range. Then, a random value for yr′′ is chosen so that 1− unsel ≤ ∑r yr ≤ 1. In
this way, the new set of values for yr falls in the two current neighbors defined by
the VNS.

The inner optimization problem is solved for each random choice for the vari-
ables yr. It is a linear 0–1 optimization problem, and we consider its continuous
relaxation, i.e. we allow the variables xi to take any real value in the interval [0,1].
Therefore, after a solution has been obtained, we substitute the fractional values of
xi with 0 if xi ≤ 1/2, or with 1 if xi > 1/2. In our experiments, the equality of the
first constraint of the inner problem is relaxed to an inequality:

m

∑
i=1

firxi ≤ �yr

m

∑
i=1

fir� ∀r ∈ {1, . . . ,k}.
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The strict inequality of the constraints (13.5) is also relaxed, so that the domains
defined by the constraints are closed domains. Under these hypotheses, the inner
problem can be solved by commonly used solvers for mixed integer linear program-
ming (MILP), e.g. CPLEX [7].

After the solution of the inner problem, the original set of constraints (13.1) is
checked. If the obtained values for the variables xi, along with the used values for
the variables yr, define a consistent biclustering, then the algorithm stops. Other-
wise, some of the variables yr are modified and a new iteration of the algorithm is
performed.

We point out that heuristics offer no guarantee of optimality. One way to enhance
the algorithm is to restart it and to allow only values for the variables yr corre-
sponding to a larger number of selected features. Moreover, since the algorithm can
provide different solutions if it is executed more than once (with different seeds for
the generator of random numbers), it can be executed a certain number of times.
The best obtained solution is then taken into consideration.

13.5 Computational Experiments

We implemented the presented heuristic for feature selection in AMPL [4], from
which the ILOG CPLEX11 solver [7] is invoked for the solution of the inner opti-
mization problem. We also implemented in AMPL the heuristic previously proposed
in [17] (for more details about this heuristic, the reader is referred to the reference
paper). Experiments are carried out on an Intel Core 2 CPU 6400 @ 2.13 GHz with
4GB RAM, running Linux.

The following four subsections are devoted to four different training sets from
different real-life applications for which we selected a subset of pertinent features.
They are ordered by the increasing number of features originally contained in the
training set. We will briefly describe each considered training set and then we will
focus our attention on the presented experiments. The interested reader can find
more information about these sets of data in the provided references. The compari-
son of the two algorithms will be carried out by comparing the quality of the found
solutions. The heuristic in [17] is in general faster to converge (or to get stuck in
non-optimal solutions, see experiments), whereas our heuristic is generally able to
find better-quality solutions. CPU times range from a few seconds (wine fermenta-
tions) to about half an hour (ovarian cancer).

13.5.1 Wine Fermentations

Problems occurring during the fermentation process of wine can impact the produc-
tivity of wine-related industries and also the quality of wine [13, 14]. The fermen-
tation process of wine can be too slow or it can even become stagnant. Predicting
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Table 13.1 Wine fermentations. Total features: 450.

VNS-based heuristic Heuristic in [17]
α 0 0.20 0.40 0.60 0.80 1.00 1.20 0 0.20 0.40 0.60 0.80 1.00 1.20

f (x) 431 430 427 427 424 421 415 425 424 424 420 stuck stuck stuck

β 1 1.01 1.02 1.04 1.06 1.08 1.10 1 1.01 1.02 1.04 1.06 1.08 1.10
f (x) 431 430 429 425 422 411 401 425 424 423 420 415 400 386

how good the fermentation process is going to be may help enologists who can
then take suitable steps to make corrections when necessary and to ensure that the
fermentation process concludes smoothly and successfully.

We present some analysis performed on a set of data obtained from a winery in
Chile’s Maipo Valley, which is the result of 24 measurements of industrial vinifica-
tions of Cabernet sauvignon [22, 23]. The data are related to the harvest of 2002.
The level of 30 compounds are analyzed during time: the whole set of data consists
of approximately 22000 data points. In this paper, the considered set of data con-
tains 24 fermentations described by 15× 30 = 450 features: the first class contains
normal fermentations (9 in total), whereas the second class contains problematic
fermentations (15 in total).

Table 13.1 shows some computational experiments. Note that α-consistent bi-
clusterings with α = 0 and β -consistent biclusterings with β = 1 correspond to
consistent biclusterings (see Definition 13.3). We executed Algorithm 14 with dif-
ferent choices for the two parameters α and β . In the table, the number of selected
features f (x) is given in correspondence with each experiment. We can remark that
the number of selected features decreases as the values of α or β increases. This
was expected, because fewer features should be selected when the required mar-
gin between the centroids of the biclusters is enlarged. Only the features that better
describe the samples in the set of data should be contained in the biclustering we
found that contain fewer features (in particular, the α-consistent biclustering with
α = 1.20 and the β -consistent biclustering with β = 1.10).

Table 13.1 also shows some results obtained by using the heuristic presented
in [17] (the reader is referred to the reference paper for a sketch of the algorithm).
The comparison with the VNS-based heuristic proposed in this paper shows that
our heuristic was able to find better solutions for all experiments, i.e. it was able to
find biclusterings having the desired consistency property where a larger number of
features are selected. Moreover, in some experiments, the heuristic in [17] got stuck
and was not able to provide any solution. This heuristic is based on the solution of a
sequence of linear optimization problems, where some parameters are modified on
the basis of partial found solutions. The algorithm got stuck when such parameters
stopped changing iteration after iteration.

By using the found biclusterings, we were able to identify a subset of compounds
that are most likely the cause of problematic wine fermentations [15]. For example,
among the organic acids, the features related to lactic, malic, succinic, and tartaric
acids are always preserved during the feature selection. Moreover, all the features
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Table 13.2 Colon cancer, set I. Total features: 2000.

VNS-based heuristic Heuristic in [17]
α 0 1 2 3 5 8 0 1 2 3 5 8

f (x) 1700 1698 1617 1596 1583 1352 1700 1531 1590 1590 1530 1211

β 1 1.02 1.03 1.05 1.08 1.10 1 1.02 1.03 1.05 1.08 1.10
f (x) 1700 1593 1577 1566 1432 1269 1700 1578 1509 1108 1082 stuck

related to each of these organic acids are assigned to only one bicluster, showing that
they can play a very important role for the classification of the fermentations. Fea-
tures related to the same compound can also be always discarded, or they can show
some regular patterns. The study of all these features in the biclusterings can give
some insights on fermentation process of wine. Moreover, the found biclusterings
can also be exploited for performing supervised predictions of new fermentations
from which the selected compounds have been monitored [16].

13.5.2 Colon Cancer – Set I

This set of data contains 62 samples collected from colon-cancer patients [21].
Among them, 40 tumor biopsies are from tumors and 22 normal biopsies are from
healthy parts of the colons of the same patients. 2000 out of around 6500 genes were
selected based on the confidence in the measured expression levels. This set of data,
along with the known classification of its samples, is available on the Kent Ridge
Database [8].

Table 13.2 shows the results of some experiments performed with the aim of find-
ing consistent, α-consistent and β -consistent biclusterings of this set of data. As in
the previous experiments, the two algorithms selected a smaller number of features
when the values for the parameters α or β were larger. In these experiments, the
two heuristics found two consistent biclusterings with the same number of features
only once (1700 out of 2000 features), when α = 0 and β = 1. In all other cases, our
VNS-based heuristic was able to provide better solutions. The heuristic in [17] got
stuck when β was set to 1.10. Moreover, in the experiments regarding α-consistent
biclustering, f (x) does not decrease regurarly with larger α values, showing that the
heuristic in [17] was not able to find the optimal solution.

13.5.3 Colon Cancer – Set II

The third set of data that we consider is a set of gene expressions related to human
tissues from sick patients (affected by colon cancer) and healthy patients [18]. This
set of data is available on the web site of the Princeton University (see the reference
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Table 13.3 Colon cancer, set II. Total features: 7457.

VNS-based heuristic Heuristic in [17]
α 0 1 2 5 10 0 1 2 5 10

f (x) 7450 7448 7444 7413 7261 7450 7430 7291 stuck stuck

β 1 1.10 1.50 2.00 3.00 1 1.10 1.50 2.00 3.00
f (x) 7450 7420 7107 6267 5365 7450 7349 7099 6054 5252

Table 13.4 Ovarian cancer. Total features: 15154.

VNS-based heuristic
α 0 0.001 0.005 0.009

f (x) 12701 12471 12198 11027

β 1 1.001 1.005 1.009
f (x) 12701 12519 12392 12233

for the web link). It contains 36 samples classified as normal or cancer, and each
sample is described through 7457 features.

Table 13.3 shows some computational experiments. Even in these experiments,
there is the tendency to select a smaller number of features when α or β are in-
creased in value. The number of features that are selected by the heuristic in [17] is
always smaller than the number of features selected by the VNS-based heuristic.

13.5.4 Ovarian Cancer

This set contains data collected from experiments performed with the aim of identi-
fying gene patterns that can distinguish ovarian cancer from non-cancer [3]. As the
authors of the reference paper remark, this study is significant to women who have
a high risk of ovarian cancer due to family or personal history of cancer. The set of
data includes 91 samples classified as normal and 162 samples classified as ovarian
cancer. The total number of considered features is 15154. After the experiments, the
intensity values of the raw data were normalized so that each intensity value can fall
within the interval [0,1]. More details on these experiments can be found in [3]. The
set of data can be downloaded from [8]: it is the largest set of data ever considered
for feature selection by consistent biclustering. Our VNS-based heuristic was able
to identify some consistent, α-consistent and β -consistent biclusterings by selecting
a subset of pertinent features. Table 13.4 shows some computational experiments.

13.6 Conclusions

We considered a problem of great interest in data mining, that is the one of the
identification of consistent biclusterings of sets of data, which are used to identify
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pertinent features describing the samples of a set of data. We presented a reformu-
lation of the problem, originally modeled as a 0–1 linear fractional optimization
problem, as a bilevel program and we proposed a new heuristic for its solution. This
heuristic is based on the meta-heuristic Variable Neighborhood Search. Computa-
tional experiments on various sets of data available in the literature show that the
proposed heuristic outperforms previously proposed ones and is promising for the
solution of large instances.

Data are nowadays obtained from many resources and they need to be efficiently
analyzed. The VNS-based heuristic we proposed represents a good step forward a
satisfactory solution of feature selection problems. However, a wider test analysis
of the algorithm on other training sets is needed in order to study possible improve-
ments. To this aim, we plan to implement the heuristic in C/C++, so that the CPLEX
solver can be invoked more efficiently and the overall execution can be optimized.

Acknowledgements. The authors are thankful to Sonia Cafieri for the fruitful discussions
on the bilevel reformulation presented in the paper.
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Chapter 14
Scheduling English Football Fixtures:
Consideration of Two Conflicting Objectives

Graham Kendall, Barry McCollum, Frederico R.B. Cruz,
Paul McMullan, and Lyndon While

Abstract. In previous work the distance travelled by UK football clubs, and their
supporters, over the Christmas/New Year period was minimised. This is important
as it is not only a holiday season but, often, there is bad weather at this time of
the year. Whilst searching for good quality solutions for this problem, various con-
straints have to be respected. One of these relates to clashes, which measures how
many paired teams play at home on the same day. Whilst the supporters have an
interest in minimising the distance they travel, the police also have an interest in
having as few pair clashes as possible. This is due to the fact that these fixtures are
more expensive, and difficult, to police. However, these two objectives (minimise
distance and minimise pair clashes) conflict with one another in that a decrease in
one intuitively leads to an increase in the other. This chapter explores this question
and shows that there are compromise solutions which allow fewer pair clashes but
does not statistically increase the distance travelled. We present a detailed set of
computational experiments, on datasets covering seven seasons. We conclude that it
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is sometimes possible to reduce the number of pair clashes whilst not significantly
increasing the overall distance that is travelled.

14.1 Introduction

The English Premier League is one of the most high profile, and successful, football
(soccer in the USA) leagues in the world. It comprises 20 teams which have to play
each other both home and away (i.e. a double round robin tournament), resulting in
380 fixtures that have to be scheduled. The other three main divisions in England
(the Championship, League One and League Two) each have 24 teams, resulting in
552 fixtures having to be scheduled for each division. Therefore, for the four main
divisions in England 2036 fixtures have to be scheduled every season. The divisions
operate a system of promotion and relegation such that the teams in each division
changes each year so it is not possible to simply use the same schedule every time.

Of particular interest are the schedules that need to be generated for the Christ-
mas/New Year period. At this time of the year it is a requirement that every team
plays two fixtures, one on Boxing Day (26th December) and one on New Years Day
(1st January). Whilst scheduling these two sets of fixtures the overriding aim is to
minimise the total distance that has to be travelled by the supporters. An analysis
of the fixtures that were actually used, and also following discussions with the foot-
ball authorities, confirm that this is a real world requirement and that the distances
travelled by the supporters are the minimum when compared against other fixtures
when all teams play. In addition, there are various other constraints that have to be
respected, which are described in sections 14.3 and 14.4.

The problem we address in this chapter is to attempt to minimise two competing
objectives to ascertain if there is a good trade off between them. The objectives
we minimise are the distances travelled by the supporters and the number of pair
clashes. Pairing matches two (or more) teams and dictates that these clubs should
not play at home on the same day. If they do, this is termed a pair clash. In fact,
a certain number of pair clashes are allowed. The exact number is taken from the
number that were present in the published fixtures for a given season. Importantly,
paired teams cannot play each other on the two days in question. This is treated as
a hard constraint. It is this constraint that causes a problem. If we allow Liverpool
and Everton (for example) to play each other, one set of supporters would only
travel four miles. If these teams are paired (as they are) then they cannot play each
other so the distances are likely to increase as either Liverpool or Everton would
have to travel more than four miles. As pair clashes usually involve teams which are
geographically close this gives rise to the conflicting objectives.

In [19], an initial study of the problem considered the 2003-2004 football season,
suggesting that it may be possible to minimise both of these competing objectives
but still produce results which are acceptable to both the supporters (who are inter-
ested in minimising the amount they travel) and the police (who are interested in
having fewer pair clashes). In this chapter, we carry out a more in depth study by
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considering more seasons and carrying out statistical analysis of the results in order
to draw stronger conclusions.

14.2 Related Work

Producing a double round robin tournament is relatively easy in that the algorithms
are well known, with the polygon construction method being amongst the most pop-
ular [9]. The problem with utlising such an algorithm is that the fixtures it generates,
although being a valid round robin tournament, will not adhere to all the additional
constraints for a particular problem. Moreover, every problem instance will be sub-
tly different and, often, a bespoke algorithm is required for each instance. This is
even the case when faced with seemingly the same problem. For example, the En-
glish Football League consists of four divisions and 92 teams. It would be easy to
assume that once an algorithm has been developed it can be used every season. This
may indeed be the case but due to the promotion/relegation system the problem
changes year on year and, perhaps, there are additional features/constraints in one
season that were not previously present. Rasmussen and Trick [21] provide an ex-
cellent overview of the issues, methods and theoretical results for scheduling round
robin tournaments.

The Travelling Tournament Problem (TTP) [11] is probably the most widely used
test bed in sports scheduling. The problem was inspired by work carried out for
Major League Baseball [11]. The aim of the TTP is to generate a double round robin
tournament, while minimising the overall distance travelled by all teams. Unlike the
problem studied in this paper, it is possible to minmise the overall travel distance as
teams go on road trips so, with a suitable schedule, the length of these trips can be
reduced. The TTP is further complicated by the introduction of two constraints. The
first says that no team can play more than three consecutive home or away games.
The second stipulates that if team i plays team j in round, r, then team j cannot play
team i in round r+1. These constraints add sufficient complexity to the problem so as
to make it challenging, but it still does not reflect all the constraints that are present
in the real world problem.

The TTP has received significant research attention. Some of the important pa-
pers being [12, 2, 8, 22, 25]. A recent annotated bibliography of TTP papers can be
found in [18]. An up to date list of the best known solutions, as well as details of all
the instances, can be found at the web site maintained by Michael Trick [23].

With respect to minimising travel costs/distances, previous studies have consid-
ered a variety of sports. Campbell and Chen [6] and Ball and Webster [3] both stud-
ied basketball, attempting to minimise the distance travelled. Bean and Birge [4] also
studied basketball, attempting to minimise airline travel costs. Minimising travel
costs was also the focus of [5], for baseball. Minimising travel distances for hockey
[16] and umpires for baseball [15] have also been studied. Wright [28], as one part
of the evaluation function, considered travel between fixtures for English cricket
clubs. Costa [7] considered the National Hockey League, where minimisation of
the distance travelled by the teams was just one factor in the objective function.



372 G. Kendall et al.

Urrutia and Ribeiro [24] have shown that minimising distance and maximising
breaks (two consecutive home games (home break) or two consecutive away games
(away break)) is equivalent. This followed previous work by de Werra [26, 27] and
Elf et al. [14] who showed how to construct schedules with the minimum number
of breaks.

The scheduling problem that we are considering in this chapter is minimising the
distance travelled for two complete fixtures (a complete fixture is defined as a set
of fixtures when every team plays) while, at the same time, minimising the number
of pair clashes. These two complete fixtures can then be used over the Christmas
holiday period when, for a variety of reasons, teams wish to limit the amount of
travelling undertaken. Note, that this is a different problem to the Travelling Tour-
nament Problem as the TTP assumes that teams go on road trips, and so the total
distance travelled over a season can be minimised. In English football, there is no
concept of road trips. Therefore, over the course of a season, the distance cannot be
minimised. However, we can minimise the distance on particular days. Kendall [17]
adopted a two-phase approach to produce two complete fixtures for this problem.
A depth first search was used to produce fixtures for one day, for each division. A
further depth first search created another set of fixtures for the second day. This pro-
cess produced eight separate fixtures (two sets of fixtures for each division) which
adhered to some of the constraints (e.g. a team plays at home on one day and away
on the other) but had not yet addressed the constraints with regards to pair clashes
(see [17] for a detailed description). The fixture lists from the depth first searches
were input to a local search procedure which aimed to satisfy the remaining con-
straints, whilst attempting to minimise the overall distance travelled. The output of
the local search, and a post-process operation to ensure feasibility, produced the
results presented in the paper.

Overviews of sports scheduling can be found in [13, 9, 10, 21, 29, 20, 18].

14.3 Problem Definition

In previous work [17] the only objective was to minimise the total distance trav-
elled by the teams/supporters. The aim of that study was to investigate if we were
able to generate better quality solutions than those used by the football league. We
demonstrated that it was possible. As stated in the Introduction, the police also have
an interest in the fixtures that are played at this time of the year. If we are able to
generate acceptable schedules, with fewer pair clashes then the policing costs would
be reduced.

The purpose of this chapter is to investigate if there is an acceptable trade off
between the minimisation of distance and the minimisation of pair clashes. In order
to do this we will utilise a multi-objective methodology.
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14.4 Experimental Setup

We use a two stage algorithm. In [17] a depth first search (DFS) was used, followed
by a local search . DFS was used as we wanted to carry out a preliminary study
just to see if this area was worthy of further study. As we were able to produce
superior solutions to the published fixtures we have now decided to utilise more
sophisticated methods, due to the large execution times of DFS which were typically
a few hours for each division. In this work we utilise CPLEX as a replacement for
DFS and simulated annealing [1] as a replacement for the local search. This reduces
the overall execution time from tens of hours to a few minutes.

14.4.1 Phase 1: CPLEX

The first phase uses CPLEX to produce an optimal solution to a relaxed version
of the problem. In generating relaxed optimal solutions we respect the following
constraints, whilst minimizing the overall distance.

1. Each of the 92 teams has to play on two separate days (i.e. 46 fixtures will be
scheduled on each day).

2. Each team has to play at home on one day and away on the other.
3. Teams are not allowed to play each other on both days.
4. A team is not allowed to play itself.

The CPLEX model is executed four times. Each run returns the Boxing Day and
New Years Day fixtures for a particular division. Each run takes less than 10 sec-
onds.

In solving the CPLEX model we do not take into account many of the constraints
that ultimately have to be respected. For example, pair clashes, geographical con-
straints such as the number of London or Manchester clubs playing at home on the
same day etc. (see [17] for details).

14.4.2 Phase 2: Simulated Annealing

The schedules from CPLEX are input to the second phase, where we utilise simu-
lated annealing . This operates across all the divisions in order to resolve any hard
constraint violations whilst still attempting to minimise the distance.

The simulated annealing parameters are as follows:

Start Temperature = 1000 The same value is used across all seven datasets and
was found by experimentation. We could have used different values for each
dataset but we felt that it was beneficial to be consistent across all the datasets.

Stop Temperature The algorithm continues while the temperature is > 0.1.
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Cooling Schedule CurTemp = CurTemp * 0.95.
Number of Iterations 2000 iterations are carried out at each temperature.

14.4.3 Evaluation Function

The evaluation function we use for simulated annealing is dynamic in that the hard
constraint violations are more heavily penalised as the search progresses. This en-
ables more exploration at the start of the search, which gets tighter as the tempera-
ture is reduced. The objective function is formulated as follows:

f (x) = d f b+ d f y+w× penalty (14.1)

where:

d f b = total distance travelled by teams on Boxing Day.
d f y = total distance travelled by teams on New Years Day.
w = is a weight for the penalty (see below). It is given by (Start Temperature

- CurTemp). Start Temperature is the maximum temperature for the simulated
annealing algorithm. CurTemp is the current temperature of the simulated an-
nealing algorithm. As the simulated annealing algorithm progresses, the weight
of the penalty gradually increases, driving the search towards feasible solutions,
but allowing it to search the infeasible region at the start of the search.

penalty = This is given by a summation of the following terms (the limits re-
ferred to are available in [17] and represent the values found by analyzing the
published fixtures):

ReverseFixtures The number of reverse fixtures (the same teams cannot meet
on both days).

Boxing Day Local Derby Clashes The number of paired teams playing each
other on Boxing Day.

New Years Day Local Derby Clashes The number of paired teams playing
each other on New Years Day.

Boxing Day London Clashes The number of London clubs playing at home
on Boxing Day, which exceed a given limit.

New Years Day London Clashes The number of London clubs playing at
home on New Years Day, which exceed a given limit.

Boxing Day Greater Manchester Clashes The number of Greater Manch-
ester based clubs playing at home on Boxing Day, which exceed a given limit.

New Years Day Greater Manchester Clashes The number of Greater Manch-
ester based clubs playing at home on New Years Day, which exceed a given
limit.

Boxing Day London Premier Clashes The number of Premiership London
clubs playing at home on Boxing Day, which exceed a given limit.

New Years Day London Premier Clashes The number of Premiership Lon-
don clubs playing at home on New Years Day, which exceed a given limit.
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Boxing Day Clashes The number of Boxing Day clashes greater than an al-
lowable limit.

New Years Day Clashes The number of New Years Day clashes greater than
an allowable limit.

14.4.4 Perturbation Operators

Simulated annealing often has a single neighborhood operator but we have defined
sixteen operators in order to match the hard constraints within the model. The oper-
ators are as follows:

1. Examines the Boxing Day fixtures and if the number of clashes exceeds an
upper limit, randomly select one of the clashing fixtures and swap the home
and away teams.

2. Same as 1 expect that it considers New Years Day fixtures.
3. Examines the Boxing Day fixtures and if the number of London based clubs

exceeds an upper limit, randomly select one of the fixtures that has a London
based club playing at home and swap the home and away teams.

4. Same as 3 except that it considers Greater Manchester based clubs.
5. Same as 3 except that it considers London based premiership clubs.
6. Same as 3 except that it considers the New Years Day fixtures.
7. Same as 4 except that it considers the New Years Day fixtures.
8. Same as 5 except that it considers the New Years Day fixtures.
9. Examines the Boxing Day and New Years Day fixture lists, returning the num-

ber of reverse fixtures (where team i plays team j and team j plays team i).
While there are reverse fixtures, one of the reverse fixtures on Boxing Day is
chosen and the home team is swapped with a randomly selected home team,
with the condition that the swaps must be made between teams in the same di-
vision. This operator iterates until all reverse fixtures have been removed from
the fixture list.

10. Same as 9 except the swaps are made in the New Years Day fixtures.
11. This operator examines the Boxing Day and New Years Day fixture lists, re-

turning the number fixtures where paired teams are playing each other. While
this is the case, one of the Boxing Day fixtures is chosen and the home team is
swapped with a randomly selected home team in the Boxing Day fixtures, with
the condition that the swaps must be made between teams in the same division.
This operator iterates until all local pair clashes have been removed from the
fixture lists.

12. Same as 11 except the swaps are made in the New Years Day fixtures.
13. This operator chooses a random fixture from a candidate list (we use a can-

didate list size of 250) which represents the potential fixtures that have the
shortest distances. Swaps are carried out in the Boxing Day fixtures in order to
allow the two teams from the selected item in the candidate list to play each
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other. The necessary swaps are also done in the New Years Day fixture to en-
sure feasibility.

14. Same as 13 except that it considers the New Years Day fixtures.
15. Selects a random fixture in the Boxing Day fixture list and swaps the home and

away teams.
16. Same as 15, but swaps a random fixture in the New Years Day fixture list.

At each iteration, one of the sixteen operators is chosen at random. Start Temperature
is initially set to enable infeasible solutions during the early stages of the algorithm,
but they are more heavily penalised at lower temperatures (eq. 14.1), ensuring that
the final solution is feasible.

14.4.5 Experimental Methodology

We are investigating this problem from a multi-objective perspective but rather than
using a multi-objective algorithm we run the same algorithm a number of times,
adjusting the parameters for each run. As an example, for the 2002-2003 season the
number of pair clashes, in the published fixtures, was 10 and 8 for Boxing Day and
New Years Day respectively. We denote this as 10-8 in the tables below. Therefore,
the first experiment fixes the values as 10 and 8 as the number of pair clashes that
cannot be exceeded. In this respect, these values represent hard constraints. The
next experiment reduces one of these values so that the next experiment uses 10-6.
We then reduce the other value to run a further experiment using 8-8. There are
two points worthy of note. Firstly, we reduce the value by two as a pair clash of,
say, Everton and Liverpool actually counts as two pair clashes as both teams are
considered to be clashing. Secondly, we do not reduce the total number of pair
clashes below 16.

14.5 Results

Tables 14.1 thru 14.7 shows the results of each of the seven seasons that we use.
The Clashes column shows the number of pair clashes (see section 14.4.5 for the
notation that we use). Min represents the best solution found. Max is worst solution
found and Average and Std Dev are self-explanatory. All experiments were runs 30
times.

In tables 14.8 and 14.9 we analyse the results from table 14.1. Table 14.8 shows
the results of independent two-tailed t-tests (at the 95% confidence level) to compare
the means of each experiment against every other experiment for that season. Where
two experiments are statistically significant the relevant cell shows “Yes”, otherwise
the cell is empty. As an example, if we compare 10-8 (column) with 10-6 (row) in
table 14.8 we see that the means (i.e. the travel distances from 30 independent runs)
are statistically different. By comparing the means in table 14.1, 5630 and 6183
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Table 14.1 2002-2003: Summary of results from 30 runs

Clashes Min Max Average Std Dev

10-8 5243 6786 5630 288.46
10-6 5674 7222 6183 410.71
8-8 5562 6797 6070 309.50

Table 14.2 2003-2004: Summary of results from 30 runs

Clashes Min Max Average Std Dev

8-14 5464 6173 5698 165.46
8-12 5412 6519 5827 228.66
8-10 5511 7093 6053 417.00
8-8 5887 7674 6535 433.83
6-14 5550 6334 5805 176.02
6-12 5559 6587 6036 289.75
6-10 5898 7416 6454 395.37
4-14 5592 6911 6059 274.61
4-12 5886 7848 6635 484.59
2-14 6028 7704 6704 448.87

Table 14.3 2004-2005: Summary of results from 30 runs

Clashes Min Max Average Std Dev

10-10 5365 6986 5644 318.33
10-8 5345 6348 5727 259.17
10-6 5812 7714 6431 421.63
8-10 5443 6982 5923 469.01
8-8 5645 7612 6428 550.67
6-10 5810 7824 6486 487.26

respectively, we conclude that reducing the number of pair clashes from 18 (10-8)
to 16 (8-8) the travel distances for the clubs/supporters increases by a significant
amount. Looking at 10-6 and 8-8, there is no statistical difference. However, as both
of these experiments represent 16 pair clashes it is, perhaps, not surprising that the
average distance travelled over the 30 runs is (statistically) the same.

Table 14.9 summarises the results from table 14.8 by only showing those exper-
iments where there are statistical differences, AND when the total number of pair
clashes is different (i.e. it will ignore 10-6 and 8-8). We can see from table 14.9 that
there are no experiments where we can reduce the number of pair clashes that leads
to no statistical difference in the distance travelled.
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Table 14.4 2005-2006: Summary of results from 30 runs

Clashes Min Max Average Std Dev

12-14 5234 6046 5575 184.74
12-12 5335 6002 5596 153.90
12-10 5240 6511 5641 238.58
12-8 5334 6423 5754 231.81
12-6 5481 6958 6010 339.63
12-4 6041 6989 6468 271.99
10-14 5171 6683 5606 304.33
10-12 5308 6322 5610 204.96
10-10 5460 6674 5846 359.65
10-8 5595 6380 5872 216.82
10-6 6027 7561 6660 421.25
8-14 5335 6674 5680 286.00
8-12 5334 6133 5722 211.02
8-10 5608 7078 5979 356.15
8-8 6146 7277 6587 302.48
6-14 5500 6694 5843 254.23
6-12 5528 6655 5951 233.54
6-10 5884 7291 6529 382.80
4-14 5713 7391 6161 331.25
4-12 6032 7904 6662 434.72
2-14 6084 7551 6682 399.34

Table 14.5 2006-2007: Summary of results from 30 runs

Clashes Min Max Average Std Dev

14-8 5713 7040 6077 300.71
14-6 5735 7065 6117 270.59
14-4 5872 7000 6259 227.84
14-2 6110 7778 6741 402.35
12-8 5721 6784 6084 244.28
12-6 5714 6894 6234 326.99
12-4 6195 7546 6791 405.86
10-8 5762 7671 6209 411.02
10-6 5894 7376 6618 423.94
8-8 6071 6958 6513 251.33
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Table 14.6 2007-2008: Summary of results from 30 runs

Clashes Min Max Average Std Dev

14-10 5366 5902 5595 145.26
14-8 5403 5975 5674 152.93
14-6 5425 7172 5870 372.17
14-4 5690 6995 6172 364.78
14-2 5905 7856 6698 435.98
12-10 5370 6506 5736 294.88
12-8 5321 7139 5850 338.15
12-6 5625 7394 6084 365.93
12-4 5961 7580 6575 411.41
10-10 5340 6552 5754 228.71
10-8 5616 6365 5944 183.52
10-6 6101 7468 6619 369.10
8-10 5536 7081 6056 369.47
8-8 6091 7884 6725 402.08
6-10 5951 7709 6647 381.12

Table 14.7 2008-2009: Summary of results from 30 runs

Clashes Min Max Average Std Dev

10-10 5564 6806 5833 246.11
10-8 5574 6235 5829 140.52
10-6 5736 6523 6106 208.78
8-10 5581 6817 5936 281.83
8-8 5790 6900 6148 230.42
6-10 5809 7194 6208 274.67

Table 14.8 2002-2003: Are the Results Statistically Different?

Clashes 10-8 10-6 8-8

10-8 X Yes Yes
10-6 X
8-8 X

Table 14.9 2002-2003: Are different total clashes significantly different?

Clashes 10-8 10-6 8-8

10-8 X
10-6 X
8-8 X
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Table 14.10 2003-2004: Are the Results Statistically Different?

Clashes 8-14 8-12 8-10 8-8 6-14 6-12 6-10 4-14 4-12 2-14

8-14 X Yes Yes Yes Yes Yes Yes Yes Yes Yes
8-12 X Yes Yes Yes Yes Yes Yes Yes
8-10 X Yes Yes Yes Yes Yes
8-8 X Yes Yes Yes
6-14 X Yes Yes Yes Yes Yes
6-12 X Yes Yes Yes
6-10 X Yes Yes
4-14 X Yes Yes
4-12 X
2-14 X

Table 14.11 2003-2004: Are different total clashes significantly different?

Clashes 8-14 8-12 8-10 8-8 6-14 6-12 6-10 4-14 4-12 2-14

8-14 X
8-12 X
8-10 X
8-8 X
6-14 X
6-12 X
6-10 X
4-14 X
4-12 X
2-14 X

Table 14.12 2004-2005: Are the Results Statistically Different?

Clashes 10-10 10-8 10-6 8-10 8-8 6-10

10-10 X Yes Yes Yes Yes
10-8 X Yes Yes Yes
10-6 X Yes
8-10 X Yes Yes
8-8 X
6-10 X

Table 14.13 2004-2005: Are different total clashes significantly different?

Clashes 10-10 10-8 10-6 8-10 8-8 6-10

10-10 X Yes
10-8 X
10-6 X
8-10 X
8-8 X
6-10 X
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Table 14.15 2006-2007: Are different total clashes significantly different?

Clashes 14-8 14-6 14-4 14-2 12-8 12-6 12-4 10-8 10-6 8-8

14-8 X Yes Yes Yes Yes
14-6 X Yes Yes
14-4 X
14-2 X
12-8 X Yes
12-6 X
12-4 X
10-8 X
10-6 X
8-8 X

Table 14.16 2007-2008: Are different total clashes significantly different?

Clashes 14-10 14-8 14-6 14-4 14-2 12-10 12-8 12-6 12-4 10-10 10-8 10-6 8-10 8-8 6-10

14-10 X
14-8 X Yes
14-6 X Yes Yes Yes
14-4 X
14-2 X
12-10 X Yes Yes
12-8 X Yes
12-6 X
12-4 X
10-10 X
10-8 X
10-6 X
8-10 X
8-8 X
6-10 X

Table 14.17 2008-2009: Are different total clashes significantly different?

Clashes 10-10 10-8 10-6 8-10 8-8 6-10

10-10 X Yes Yes
10-8 X
10-6 X
8-10 X
8-8 X
6-10

Tables 14.10 and 14.11 show similar analysis for the 2003-204 season. Again, it
is not possible to reduce the number of pair clashes without an (statistically) increase
in the distance travelled.
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Tables 14.12 and 14.13 are more interesting. Table 14.12 shows that there is no
statistical difference between the 10-10 (20 pair clashes) experiment and the 10-
8 (18 pair clashes) experiment. Removing all the noise from the table (see table
14.13) we can see that it is possible to reduce the number of pair clashes from 20
to 18 without a significant rise in the distance travelled (the respective means from
table 14.3 are 5644 and 5727).

For the remaining four seasons, we only present the summary tables. Where
a“Yes” appears in these tables (tables 14.14 thru 14.17) it indicates that it is pos-
sible to reduce the number of pair clashes and not have an (statistical) increase in
travel distance. The tables show that there are a number of opportunities to reduce
policing costs. We are probably most interested in the top rows as they represent the
fixtures that were actually used.

14.6 Conclusion

We have demonstrated that it is sometimes possible to reduce the number of pair
clashes without a statistical difference to the distance that has to be travelled by the
club/supporters. This provides the police with the ability to reduce their costs for
these two days, which might have included paying overtime. We hope that we are
able to discuss these results with the football authorities and the police in order for
them to validate our work and to provide us with potential future research directions.
We already recognise that some pair clashes might provide the police with more
problems than others and it might be worth prioritising certain clashes so that these
can be removed, rather than removing less high profile fixtures. As a longer term
research aim, we would like to include in our model details about public transport
as some routes might be more difficult than other routes, even if they are shorter.
We also plan to run our algorithms for every future season, as well as for previous
seasons. Executing the algorithm is not the main issue. Data collection provides the
real challenge due to the distance data that has to be collected. To date, this has
been carried out manually by using motoring organisation’s web sites but we have
recently started experimenting with services such as Google MapsTMand Multimap
which will speed up the data collection.
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Chapter 15
A Multi-paradigm Tool for Large Neighborhood
Search

Raffaele Cipriano, Luca Di Gaspero, and Agostino Dovier

Abstract. We present a general tool for encoding and solving optimization prob-
lems. Problems can be modeled using several paradigms and/or languages such
as: Prolog, MiniZinc, and GECODE. Other paradigms can be included. Solution
search is performed by a hybrid solver that exploits the potentiality of the Con-
straint Programming environment GECODE and of the Local Search framework
EasyLocal++ for Large Neighborhood Search . The user can modify a set of pa-
rameters for guiding the hybrid search. In order to test the tool, we show the develop-
ment phase of hybrid solvers on some benchmark problems. Moreover, we compare
these solvers with other approaches, namely a pure Local Search, a pure constraint
programming search, and with a state-of-the-art solver for constraint-based Local
Search.

15.1 Introduction

The number of known approaches for dealing with constraint satisfaction problems
(CSP) and constrained optimization problems (COP) is as huge as the difficulty of
these problems. They range from mathematical approaches (i.e., methods from Op-
erations Research, such as Integer Linear Programming, Column Generation, . . . )
to Artificial Intelligence approaches (such as Constraint Programming, Evolution-
ary Algorithms, SAT-based techniques, Local Search, just to name a few). It is also
well-known (and formally proved) that methods that are adequate for a given set of
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problem instances are often useless for others [20]. Notwithstanding, there is agree-
ment on the importance of developing tools for challenging these kind of problems
in an easy and effective way. In this paper we go in that direction providing a multi-
paradigm hybrid-search tool called GELATO (Gecode + Easy Local = A Tool for
Optimization).

The tool comprises three main components, each of them dealing with one spe-
cific aspect of the problem solution phase. In the modeling component the user de-
fines the problem at a high-level, and chooses the strategy for solving it. The transla-
tion component deals with the compilation of the model and the abstract algorithm
defined by the user into the solver frameworks supported by the tool. Finally, the
solving component runs the compiled program on the problem instance at hand,
interleaving the solution strategies decided at the modeling stage.

GELATO currently supports a number of programming paradigms/languages
for modeling. In particular, a declarative logic programming approach can be used
for modeling, supporting Prolog and MiniZinc, and exploiting the front-end trans-
lator of Prolog presented in [4] and the current support of MiniZinc in GECODE.
Moreover, an object-oriented approach can be used through the GECODE frame-
work. Additional paradigm/languages can be easily added to the system, for ex-
ample extending the front-end developed for the Haskell language [21] or other
front-ends to GECODE.

The solving phase makes use of pure Constraint Programming tree search as well
as a combination of Constraint Programming with Local Search. In particular, for
this combination we have implemented a parametric schema for Large Neighbor-
hood Search [14]. Large Neighborhood Search is a particular Local Search heuristic
that relies on a constraint solver for blending the inference capabilities of Constraint
Programming with the effectiveness of the Local Search techniques.

GELATO is based on two state-of-the-art, existing systems: the GECODE Con-
straint Programming environment [15] and the Local Search framework EasyLo-
cal++ [6]. Both these systems are free and open C++ systems with a growing com-
munity of users. The main contribution of this paper is to blend together these two
streams of works so as to generate a comprehensive tool, that allows to exploit the
multi-paradigm/multi-language modeling and the multi-technique solving.

We provide some examples of the effectiveness of this approach by testing
the solvers on three classes of benchmark problems (namely the Asymmetric
Traveling Salesman Problem, the Minimum Energy Broadcast, and the Course
Timetabling Problem) and comparing them against a pure Local Search approach, a
pure Constraint Programming search, and an implementation of the same models in
Comet [11], another language for hybrid systems.

We have defined a small set of few parameters that can be tuned by the user
against a particular problem. In the paper we also provide some tuning of these
parameters and show their default values.

A relevant aspect of our system is that the very same GECODEmodel (either
directly written in GECODE or obtained by translation from Prolog or Minizinc)
can be used either for pure Constraint Programming search or for LNS search (and
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by degenerating LNS with small neighborhoods, for Local Search). The resulting
system is available from http://www.dimi.uniud.it/GELATO.

We compare the solvers obtained from GECODE with other approaches, namely
a pure Local Search, a pure Constraint Programming search, and with Comet, a
state-of-the-art solver for constraint-based Local Search. The results of the experi-
mentation show that GECODE Large Neighborhood Search solver is able to out-
perform the Local Search and the Constraint Programming search on the set of
benchmark problems and it achieves the same performances as Comet.

15.2 Preliminaries

A Constraint Satisfaction Problem (CSP) (see, e.g., [2]) P = 〈X ,D ,C 〉 is mod-
eled by a set X = {x1, . . . ,xk} of variables, a set D = {D1, . . . ,Dk} of domains
associated to the variables (i.e., if xi = di then di ∈ Di), and a set C of constraints
(i.e., relations) over dom = D1 × ·· · ×Dk.1 A tuple 〈d1, . . . ,dk〉 ∈ dom satisfies a
constraint C ∈ C if and only if 〈d1, . . . ,dk〉 ∈C. d = 〈d1, . . . ,dk〉 ∈ dom is a solution
of a CSP P if d satisfies every constraint C ∈ C . The set of the solutions of P is
denoted by sol(P). P is said to be consistent if and only if If sol(P) �= /0.

A Constrained Optimization Problem (COP) O = 〈X ,D ,C , f 〉 is a CSP P =
〈X ,D ,C 〉 with an associated function f : sol(P) → E where 〈E,≤〉 is a well-
ordered set (typical instances of E are N, Z, or R). A feasible solution for O is
any d ∈ sol(P). When clear from the context, we use sol(O) for sol(P). A tuple
e ∈ sol(O) is a solution of the COP O if it minimizes the cost function f , namely if
it holds that ∀d ∈ sol(O) f (e)≤ f (d).

Constraint Programming (CP) solves a CSP P by alternating the following two
phases:

• a deterministic constraint propagation stage that reduces domains preserving
sol(P), typically based on a local analysis of each constraint, one at a time;

• a non-deterministic variable assignment, in which one variable is selected to-
gether with one value in its current domain.

The process is repeated until a solution is found or a domain becomes empty. In the
last case, the computation proceed by backtracking assignments, until possible. A
COP O is solved by exploring the set sol(O) obtained in the previous way and stor-
ing the best value of the function f found during the search. However, a constraint
analysis based on a partial assignment and on the best value already computed,
might allow to sensibly prune the search tree. This complete search heuristics is
called (with a slight of ambiguity with respect to Operations Research terminology)
branch and bound.

A Local Search (LS) algorithm (e.g. [1]) for a COP O is given by defining a
search space sol(O), a neighborhood relation N , a cost function f , and a stop

1 Constraints do not necessarily relate all the variables. For instance, x1 +x2 = 3 is a binary
constraint on the variables x1 and x2. This binary constraint, however, has a k-ary constraint
counterpart C = {〈d1,d2, . . . ,dk〉 : di ∈ Di,d1 +d2 = 3}.

http://www.dimi.uniud.it/GELATO
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criterion. The neighborhood relation N , i.e. a set N (d) ⊆ sol(O), is defined for
each element d ∈ sol(O). The set N (d) is called the neighborhood of d and each
d′ ∈ N (d) is called a neighbor of d. Commonly, N (d) is implicitly defined by
referring to a set of possible moves, which are transitions between feasible solutions
in the form of perturbations to be applied. Usually these perturbations insist on a
small part of the problem, involving only few variables.

Starting from an initial solution s0 ∈ sol(O), a LS algorithm iteratively nav-
igates the space sol(O) by stepping from one solution si to a neighboring one
si+1 ∈N (si), choosing si+1 using a rule M . The selection of the neighbor by M
might depend on the whole computation that leaded s0 to si and on the values of f
on N (si). Moreover, it depends on the specific LS technique considered.

The stop criterion depends on the technique at hand, but it is typically based
on stagnation detection (e.g., a maximum number of consecutive non improving
moves, called idle moves) or a timeout. Several techniques for effectively explor-
ing the search space have been presented in the literature (e.g., Montecarlo methods,
Simulated Annealing, Hill Climbing, Steepest descent, Tabu Search, just to name
a few).

LS algorithms can also be used to solve CSPs by relaxing some constraints and
using f as a distance to feasibility, which accounts for the number of relaxed con-
straints that are violated.

Large Neighborhood Search (LNS) (e.g., [14]) is a LS method that relies on a
particular definition of the neighborhood relation and on the strategy to explore the
neighborhood. Differently from classical Local Search moves, which are small per-
turbations of the current solution, in LNS a large part of the solution is perturbed
and searched for improvments. This part can be represented by a set FV ⊆ X
of variables, called free variables, that determines the neighborhood relation N .
More precisely, given a solution s = 〈d1, . . . ,dk〉 and a set FV⊆ {X1, . . . ,Xk} of free
variables

N (s,FV) = {〈e1, . . . ,ek〉 ∈ sol(O) : (Xi /∈ FV)→ (ei = di)}

Given FV, the neighborhood exploration can be performed with any searching tech-
nique, ranging from solution enumeration, to CP or Operations Research methods,
and so on. In this work we focus on CP techniques for this exploration. In this case,
the search technique is known as Constraint Based Local Search (CBLS) [11]. The
following aspects are crucial for the performance of this technique: which variables
have to be selected (i.e., the definition of FV), and how to perform the exploration on
these variables.

Once FV has been defined, the exploration of the neighborhood can be be made
searching for:

• the best neighbor: namely, given a solution s and a set FV⊆X , look for a tuple
e ∈N (s,FV) such that (∀d ∈N (s,FV))( f (e)≤ f (d)).

• the best neighbor within a certain exploration timeout: namely the point in
N (s,FV) that minimizes the value f found within a fixed timeout

• the first found neighbor point improving the value f (s)
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• the first found neighbor point improving the objective function of at least a given
value (e.g., below the 95% of f (s)).

Deciding how many variables will be free (i.e., |FV|) affects the time spent on every
large neighborhood exploration and the improvement of the objective function for
each exploration. A small FV will lead to very efficient and fast search but, possibly
at the price of very little improvement of the objective function. Otherwise, a big FV
can lead to big improvements at each step, but every single exploration can take a lot
of time. This trade-off should be investigated experimentally, looking at a size of FV
which is a compromise between fast enough explorations and good improvements.
Obviously, the choice of |FV| is strictly related to the search technique chosen (e.g.,
an efficient technique can manage more variables than a naı̈ve one) and the fact
that a timeout is used or not. The choice of which variables will be included in FV
is strictly related to the problem we are solving: for simple and not too structured
problems we can select the variables in a naı̈ve way (randomly, or iterating between
given sets of them); for complex and well-structured problems, we should define
FV cleverly, selecting the variables which are most likely to give an improvement
to the solution.

During the search of the new solution a portion of the neighborhood that does
not fit the requirements (e.g., that do not improve the last known solution) is visited.
Each of these neighbors is counted as a failure. The time spent on each exploration
and the corresponding improvement of the cost function depends on |FV| (and, of
course, on the structure of the problem) and a local stop criterion can be given either
as a timeout or by setting a maximum number of failures (briefly, maxF) for the
improving stage.

Experimental tests must be made for choosing values of |FV| and maxF that lead
to quick explorations and good improvements. This choice might depend from other
parameter choices. For instance, the choice of the order in which variables have
to be instantiated in the CP stage can be naı̈ve (e.g., choose the leftmost one) or
clever (e.g., the one involved in more constraints and in case of equality break a tie
choosing the one with smallest domain first). Usually, a clever technique allows to
manage more variables, but this is not a general rule (it can be the case that the extra
time for choosing a variable causes to exceed the timeout allowed).

15.2.1 A Working Example: The Simple Course Timetabling
Problem

Let us give the definition as a COP of a basic timetabling problem that we will use
as a working example in the rest of the paper. The problem is referred as the SCTT
problem in the rest of the paper.

Given a set of courses S = {c1, . . . ,cn}, each course ci requires a number of
weekly lectures l(ci) where l : S → N, and is taught by a teacher t(ci) where
t : S → T = {t1, . . . , tg}. Five teaching days (from Monday to Friday) and two
time slots for each day (Morning and Afternoon) are allowed, thus having a set
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P = {p1, . . . , p10} of ten possible time periods. Each teacher t j can be unavailable
for some periods u(t j) where u : T → 2P.

The problem consists in finding a schedule for all the courses, so that:

(C1) All the required lectures for each course are given.
(C2) Lectures of courses taught by the same teacher are scheduled in distinct

periods.
(C3) Teacher un-availabilities are taken into account.

Moreover, a cost function is defined on the basis of the following criterion: the
lectures of each course ci should be at least spread into a given minimum number of
days δ (ci), where δ : S →{1, . . . ,5}.

Let us consider the following toy instance, just to fix the ideas:

• S = {OS,PL,AI} (Operating Systems, Programming Languages, Artificial Intel-
ligence)

• l(OS) = 3, l(PL) = 4, l(AI) = 3
• t(OS) = Schroeder, t(PL) = Schroeder, t(AI) = Linus
• P = {MOm,MOa,TUm,TUa,W Em,WEa,T Hm,T Ha,FRm,FRa}
• δ (OS) = 3, δ (PL) = 4, δ (AI) = 3
• u(Schroeder) = {TUm,TUa}, u(Linus) = {THm,T Ha,FRm,FRa}
A possible model for this problem can be defined as follows:

• X consists of |S| · |P| boolean variables xc,p. The variable xc,p = 1 if and only if
course c is scheduled at period p (otherwise it is 0).

• The required number of lectures is assigned to each course:

∑
p∈P

xc,p = l(c) ∀c ∈ S (C1)

• The constraints stating that lectures of courses taught by the same teacher are
scheduled in distinct periods can be modeled as:2

xc,p · xc′,p = 0 ∀c,c′ ∈ S s.t. (c �= c′ ∧ t(c) = t(c′)),∀p ∈ P (C2)

• The “un-available” constraints are modeled as follows:

xc,p = 0 ∀c ∈ S∀p ∈ u(t(c)) (C3)

• The objective function f is defined by summing, for each course c, the difference
between δ (c) and the actual number of days occupied by the lectures of c in a
feasible solution:

f (X ) = ∑
c∈S

max(0,δ (c)−|{d(p) : p ∈ P∧ xc,p > 0}|) (15.1)

2 A linear constraint such as: (xc,p + xc′,p ≤ 1) can be used here. We have employed a non-
linear constraint to point out the flexibility of Constraint Programming.
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where d : P→{MO,TU,WE,T H,FR} is a function assigning a period to a day.

In Figure 15.1 we report an assignment that is not a solution (on Monday morning
Prof. Schroeder has two different lectures in the same time slot and (moreover) Prof.
Linus gives a lecture on Thursday, when he is unavailable), a solution which is not
optimal, and an optimal solution. With γ , in Figure 15.1, we denote δ (c)−|{d(p) :
p ∈ P∧ xc,p > 0}|, where c is OS, PL, or AI.

P⇒ MO TU WE TH FR f
S ⇓ m a m a m a m a m a γ
OS 1 0 0 0 1 0 1 0 0 0 3-3
PL 1 0 0 0 0 1 0 1 0 1 4-4
AI 0 0 0 0 1 1 1 0 0 0 3-2

(1) Total f : 1

MO TU WE TH FR f
m a m a m a m a m a γ
1 0 0 0 1 0 1 0 0 0 3-3
0 0 0 0 0 1 0 1 1 1 4-3
1 1 1 0 0 0 0 0 0 0 3-2

(2) Total f : 2

MO TU WE TH FR f
m a m a m a m a m a γ
1 0 0 0 1 0 1 0 0 0 3-3
0 1 0 0 0 1 0 1 0 1 4-4
1 0 1 0 1 0 0 0 0 0 3-3

(3) Total f : 0

Fig. 15.1 An assignment which is not a solution (1), a solution (2), and an optimum solution
(3) for the given toy instance of SCTT

15.3 The Existing CP and LS Systems Used

The core of GELATO is based on two programming environments for CSPs/COPs,
namely GECODE and EasyLocal++. We briefly introduce them in this section (for
more details, see [15] and [6], respectively).

15.3.1 Gecode Overview

GECODE (GEneric COnstraint Development Environment) [15] is a programming
environment for developing constraint-based systems and applications developed
by a group led by Christian Schulte, and including Mikael Lagerkvist, and Guido
Tack. It is a modular and extensible C++ constraint programming toolkit, whose
development started in 2002 and that counts 28 improving versions.3

GECODE is open source and is distributed under the MIT license. All of its
parts (source code, example, documentation. . . ) are available for download from
http://www.gecode.org and anyone can modify the implementation of its
classes, extend or improve their functionalities, or interface GECODE to other
systems.

Being completely implemented in C++ and adhering to the language standards,
GECODE is portable, and it can be compiled and run on most current platforms.
Moreover, GECODE is documented in a tutorial [17] that explains its architecture
and some programming tricks, and in an on-line reference documentation [16] that
gives the technical specifications of each module/class/function implemented in the
framework.

3 At the time of writing, September 2011, the current version is 3.7.0.

http://www.gecode.org
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GECODE has excellent performance with respect to both runtime and memory
usage, it won severals competitions, such as the MiniZinc Challenge, in 2008–2011
and it can be considered a state-of-the-art constraint solver.

GECODE also implements parallel search by exploiting the multiple cores of
today’s hardware, giving to an already efficient base system an additional edge.

The discussion of GECODE architecture is out of the scope of this paper, we
refer the to [16] for the specific details.

15.3.2 Gecode Modeling

GECODE comes with extensive modeling support, that allows the user to encode
his/her problem using higher-level language facilities rather than rough low-level
statements. The modeling support includes: regular expressions for extensional con-
straints, arithmetic expressions, matrices, sets, and boolean constraints.

A GECODE model is implemented using spaces: a space is the repository for
variables, constraints, objective function, and searching options. Modeling exploits
the C++ notion of inheritance: a model must implement the class Space, and the
subclass constructor implements the actual model. In addition to the constructor, a
model must implement some other functions (e.g., those performing a copy of the
space, or returning the objective function, . . . ). A GECODE space can be asked to
perform the propagation of the constraints, to find the first solution (or the next one),
exploring the search tree, or to find the best solution in the whole search space.

We survey the description of GECODE modeling using the SCTT example de-
fined in Section 15.2.1. We recall that a problem encoded in GECODEcan be solved
by GELATO as well.

Every GECODE model is defined into a class that inherits from a GECODE
Space superclass. The superclasses available are Space for CSPs and Mini-
mizeSpace or MaximizeSpace for COPs. In our working example,
reported in Listing 15.1 we declare the class Timetabling to be a subclass of
MinimizeSpace (line 1).

Listing 15.1 SCTT encoding: model heading definition

1 class Timetabling : MinimizeSpace {
2 IntVarArray x;
3 IntVar fobj;
4 Timetabling(const Faculty& in ):
5 x(*this, in.Courses() * in.Periods(), 0, 1),
6 fobj(*this, 0, Int::Limits::max)
7 { ...

On line 2 the array x for the variables X of the problem is declared, and on line
3 we declare the variable fobj that will store the value of the objective function.
IntVarArray and IntVar are built-in GECODE data structures. Line 4 starts
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the constructor method. It takes as input an object of the class Faculty, that con-
tains all the information specific to the instance at hand. All these input information
are stored in the variable in. Line 5 sets variables and domains: the array x is con-
structed so to contain a number in.Periods()*in.Courses() of boolean
variables. At line 6, the interval between 0 and the largest allowed integer value is
set as the domain of the variable fobj.

Moving to modeling constraints, GECODE provides a Matrix support class
for accessing an array as a two dimensional matrix (matrices are, of course, very
common in modeling). Going back to our working example, in Listing 15.2, line
10 sets up a matrix interface to access the vector x, with the number of columns
equal to the number of time periods and the number of rows equal to the number of
courses.

Listing 15.2 SCTT modeling: main constraints

7 unsigned int cols = in.Periods() ;
8 unsigned int rows = in.Courses();

10 Matrix<IntVarArgs> mat(x, cols, rows);

12 for (int r = 0; r < rows; r++)
13 linear(*this, mat.row(r), IRT_EQ, in.

NumberOfLectures(r));

15 for (int p = 0; p < cols; p++)
16 for (int r1 = 0; r1 < rows - 1; r1++ )
17 for (int r2 = r1+1; r2 < rows; r2++ )
18 if (in.SameTeacher(r1,r2))
19 rel(*this, mat(c,r1) * mat(c,r2) == 0);

21 for (int p = 0; period < in.Periods(); p++)
22 for (int c = 0; c < in.Courses() ; c++ )
23 if (!in.Available(c,p))
24 rel(*this, mat(p,c) == 0);

The matrix has the same structure as those reported in Figure 15.1. Lines 12–13 post
the constraint (C1) (see, Section 15.2.1) on each row of the matrix. The constraint
linear is a built-in arithmetical operator of GECODE, and line 12 corresponds
to the formula

∑
col

mat.row(r)[col] = in.NumberOfLectures(r)

where in.NumberOfLectures(r) contains the value of function l (number
of weekly lectures) for each course (i.e., for each row). IRT_EQ is the built-in
predicate for equality between finite domain constraints.4

4 A similar syntax is used for �=,<,≤, etc.
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Lines 15–19 post the constraint (C2). Line 18 corresponds to the constraint
x(c,r1) · x(c,r2) = 0, applied to the variables of the same time periods sharing the
same teacher.

Lines 21–24 post the constraint (C3). In particular, at line 24, whenever x(p,c) is
a time slot unavailable for the given professor, the constraint x(p,c) = 0 is posted.

Objective Function and Branching

The formula computing the objective function is reported in Listing 15.3.

Listing 15.3 SCTT modeling: cost function

24 IntVarArgs vectorWD(*this, in.Courses(), 0, Int::
Limits::max);

25 IntVarArgs sumWD(*this, in.Courses(), 0, Int::Limits::
max);

26 IntVarArgs diff(*this, in.Courses(), Int::Limits::min,
Int::Limits::max);

28 for (int course = 0 ; course < in.Courses(); course++)
29 {
30 IntVarArgs workingDays(in.Days(), 0, 1);

32 for (int day = 0 ; day < in.Days(); day++)
33 {
34 IntVarArgs Day( in.PeriodsPerDay(), 0,1 );
35 for (unsigned int slot = 0; slot < in.

PeriodsPerDay(); slot++)
36 {
37 int period = day*in.PeriodsPerDay() + slot;
38 expr(*this, (mat(period, course) != 0) == (Day[

slot] == 1));
39 }
40 IntVar nLecturesPerDay(*this, 0, in.PeriodsPerDay

());
41 linear(*this, Day, IRT_EQ, nLecturesPerDay);
42 expr(*this, (nLecturesPerDay != 0) == (workingDays

[day] == 1));
43 }
44 linear(*this, workingDays, IRT_EQ, sumWD[course]);
45 diff[course] = post(*this,in.CourseVector(course).

MinWD()-sumWD[course]);
46 Gecode::max(*this, ZERO, diff[course], vectorWD[

course]);
47 }

49 linear(*this, vectorWD, IRT_EQ, fobj);

51 branch(*this,x,tiebreak(INT_VAR_DEGREE_MAX,
INT_VAR_SIZE_MAX),INT_VAL_MED);
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As for the objective function, some auxiliary arrays of temporary variables are
introduced. They are declared as IntVarArgs, a GECODE built-in data type for
array of temporary variables. At the end of this piece of code, the formula is bound
to the fobj variable.

During the search, a variable is selected and a value of its domain is attempted.
This operation is called branching, and the branching strategy is defined at line
51. The variables to branch are those in the array x and the variable selection
strategy is tiebreak(INT_VAR_DEGREE_MAX,INT_VAR_SIZE_MAX), i.e.,
the variable with the highest number of constraint on it is selected, breaking ties
choosing the variable with largest domain size. The values selection strategy is
INT_VAL_MED, i.e., the greatest value not greater than the median is selected.
Other choices are, of course, possible.

In order to use the model defined above in a constraint based branch and bound
search engine (see Section 15.2) the following functions need to be defined into the
Timetabling class (see Listing 15.4):

• The function cost, that returns the variable representing the cost of a solution,
i.e., the objective function of the model. This function is defined at lines 54–55
and simply returns the variable fobj.

• A branch and bound search engine needs to know what constraint to add every
time a new solution is found, in order to drive the search to better solutions and
cut the search space. The function constrain (lines 57–61) defines the desired
constraint to add: it takes in input a Space object, (i.e., a solution of the model),
and posts a constraint (line 60) stating that the value of the variable fobj has
to be less than the fobj value of the solution sol. The GECODE branch and
bound search engine calls this method, every time it finds a new solution, passing
the solution found as parameter.

Listing 15.4 SCTT modeling: branch and bound

54 IntVar Timetabling::cost(void) const
55 { return fobj; }

57 void Timetabling::constrain(const Space& sol)
58 {
59 const Timetabling& s = static_cast<const Timetabling&>(

sol);
60 rel(*this, fobj, IRT_LT, s.fobj.val());
61 }

15.3.3 EasyLocal++

EasyLocal++ [6] is an object-oriented framework that allows programmers to
design, implement and test LS algorithms in an easy, fast and flexible way. The
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underlying idea is to capture the essential features of most LS meta-heuristics, and
their possible compositions, allowing the user to address the design and implemen-
tation issues of new LS heuristics in a more principled way. EasyLocal++ has been
entirely developed in C++ with wide use of object-oriented patterns and currently it
is at its 2.0. release.

Modeling a problem using EasyLocal++ requires that the C++ classes represent-
ing the problem specific layers of the EasyLocal++ hierarchy to be defined. On the
other hand, the framework provides the full control structures for the invariant part
of the LS algorithms. Consequently, the user is required only to supply the problem
specific details by defining concrete classes and implementing concrete methods.

Going into the details of the EasyLocal++ development process is out of the
scope of this paper, therefore we refer the interested reader to [5].

15.4 GELATO: Gecode + Easy Local = A Tool for Optimization

The aim of GELATO is to allow the programmer to easily model a CSP/COP using
one of the three modeling languages: Prolog, MiniZinc, and GECODE, define or
select the meta-heuristics using a tiny meta-heuristics modeling language that will
allow to program search heuristics in a wide range.

15.4.1 High Level Modeling and Translation

The system is currently able to handle CSPs and COPs modeled in Prolog exploit-
ing the front-end translators of Prolog to GECODE presented in [4], and in MiniZ-
inc, exploiting the (two steps) translator of MiniZinc in GECODE available in the
GECODE distribution. Moreover, the modeling capabilities can benefit from the
front-end developed for the Haskell language [21] and, in general, from other front-
ends to GECODE, usually listed in the GECODE web-site [15].

We do not enter here in the translation details, but we just say that the translations
are based on the low-level modeling language FlatZinc. FlatZinc models are a list
of simple constraints, without other programming constructs. Basically, a model
is the unfolded version of a MiniZinc model, which can be interpreted directly by
GECODE.

In what follows, instead, we will show how to encode the SCTT problem (Section
15.2.1) in Prolog and in MiniZinc.

Prolog and Constraint Logic Programming.

According to [8], Logic Programming was the first community embedding con-
straint programming giving raise to the so-called Constraint Logic Programming
(CLP) paradigm. Nowadays all available Prolog system comes equipped with a
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constraints solver on finite domains (and on other domains, such as booleans, sets,
rational numbers, . . . ). Due to the slight differences in the syntax of some primitives,
we are focusing on one system, namely SICStus Prolog [13].

We are going to show the encoding of the SCTT problem in SICStus Prolog.
First, let us focus on the input format. L is a list storing the function � where courses
are assumed ordered as OS, PL, AI. T is a list storing the function t, and Unav
is a list of lists of unavailable time periods, given as numbers (precisely, Monday
morning is 1, . . . , Friday afternoon is 10), where the order of the teachers must be
the same in the two lists (Schroeder, then Linus). D is a list storing the minimum
desired duration of the courses. Our toy instance would be therefore represented by:

L = [3,4,3] T = [[os,pl],[ai]]
Unav = [[3,4],[7,8,9,10]] D = [3,4,3]

In Listing 15.5 we report the complete encoding of the problem in Prolog. If, on
the one side, one might appreciate the compactness of the code, on the other side
recursion is employed to implement the various “for loops” needed. Actually, most
Prolog interpreters now implements a foreach iterator. However, this is not (yet)
the standard way of encoding in Prolog. If the reader wants to run it, the libraries
lists and clpfd must be included.

The sketch of the code is as follows: at line 2 the matrix is generated row by row
and at line 3 the domains are assigned to its variables. Then the three predicates
adding the corresponding constraints are called (line 4) and the objective function
is defined, using constraints, by predicate build fobj at line 7. Search is called
at line 6 by the built-in predicate labeling with the option of minimizing the
function FOBJ.

The predicates c1, c2, and c3 called at line 4, implement the constraints (C1),
(C2), and (C3). They are defined at lines 10–13, 15–29, and 31–43, respectively. The
function fobj is defined by the code at lines 45–58.

Even though the code is mostly self-contained, we just focus on some points. At
line 11 the built-in sum predicate is used; this is similar to the use of linear in
Listing 15.2. At lines 40–41 the variables corresponding to an unavailable period are
set to 0, while the “iff” definition of line 56 states that the flag variable TD is set to
1 if and only if a class is held in that day (either in the morning or in the afternoon).

Listing 15.5 SICStus Prolog encoding of the SCTT problem

1 sctt(L, T, Unav, D, Mat):-
2 length(OS, 10), length(PL, 10), length(AI, 10), Mat=[OS,

PL,AI],
3 append([OS,PL,AI],Vars), domain(Vars, 0, 1),
4 c1(Mat, L),
5 c2(Mat, T),
6 c3(Mat, Unav, T),
7 build_fobj(Mat,D,FOBJ),
8 labeling([minimize(FOBJ)], Vars).

10 c1([Row|Tr],[L|Tl]):-
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11 sum( Row, #=, L ),
12 c1(Tr,Tl).
13 c1([],[]).

15 c2(MAT,[]).
16 c2(MAT,[[_]|T]) :- c2(MAT, T).
17 c2([OS,PL,AI],[[A,B|R]|T]) :-
18 c2_aux([OS,PL,AI], [A,B]),
19 c2([OS,PL,AI], [[A|R]|T]),
20 c2([OS,PL,AI], [[B|R]|T]).
21 c2_aux([OS,PL,AI],[A,B]) :-
22 (A=os,B=pl) -> c2_post(OS,PL);
23 (A=os,B=ai) -> c2_post(OS,AI);
24 (A=pl,B=ai) -> c2_post(PL,AI).

26 c2_post([X1|T1],[X2|T2]):-
27 X1 * X2 #= 0,
28 c2_post(T1, T2).
29 c2_post([], []).

31 c3(MAT, [], []).
32 c3(MAT, [_|UnAvailable], [[]|T]) :-
33 c3(MAT, UnAvailable, T).
34 c3([OS,PL,AI], [Un|Available], [[A|R]|T]) :-
35 (A = os -> c3_aux(OS,Un);
36 A = pl -> c3_aux(PL,Un);
37 A = ai -> c3_aux(AI,Un)),
38 c3([OS,PL,AI], [Un|Available], [R|T]).
39 c3_aux(Row, [Un|Tu]):-
40 nth1(Un, Row, X),
41 X#=0,
42 c3_aux(Row, Tu).
43 c3_aux(_, []).

45 build_fobj([Row|M], [D|Ds], FOBJ):-
46 build_fobj( M, Ds, FObjT),
47 single_contribution(Row, D, FObjR),
48 FObjT + FObjR #= FOBJ.
49 build_fobj([], _, 0).
50 single_contribution(Row, D, FObjR):-
51 number_of_days(Row, Days),
52 Days+Diff #= D,
53 max(Diff, 0 ) #= FObjR.
54 number_of_days([M,P|Row], TotalDays):-
55 number_of_days(Row, Days),
56 TD #<=> (M+P #> 0),
57 TD + Days #= TotalDays.
58 number_of_days([], 0).
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MiniZinc.

MiniZinc is a medium-level declarative constraint modeling language developed by
NICTA (National ICT Australia) designed for specifying constrained optimization
and decision problems over integers and real numbers [12]. MiniZinc is designed so
as to be easily interfaced to backend solvers, via compilation in a low level language
called FlatZinc. We refer to the MiniZinc manual [9] for details. We just report here
the encoding of the SCTT problem (Listing 15.6).

Listing 15.6 The SCTT problem encoded in MiniZinc.

1 int: courses = 3;
2 int: teachers = 2;
3 int: periods = 10;
4 int: weekdays = 5;
5 array[1..courses] of 1..periods: l = [3,4,3];
6 array[1..courses] of 1..teachers: t = [1,1,2];
7 array[1..teachers] of set of 1..periods: u =

[{3,4},{7,8,9,10}];
8 array[1..courses] of int: delta = [3,4,3];

10 array[1..courses,1..periods] of var 0..1: x;
11 var int: fobj;

13 constraint forall(c in 1..courses)
14 (sum(p in 1..periods)(x[c,p]) = l[c]);
15 constraint forall(ci, cj in 1..courses where ci<cj /\ t[ci

] = t[cj])
16 (forall (p in 1..periods) (x[ci,p] * x[cj,p] = 0));
17 constraint forall(c in 1..courses)
18 (forall (p in u[t[c]]) (x[c,p] = 0));

20 constraint fobj = sum(c in 1..courses)
21 (max(0,delta[c] - sum(d in 1..weekdays) (max(x[c,2*d],x[

c,2*d-1]))));

23 solve minimize fobj;

25 output ["x = ",show(x),"\n", "Fobj = ", show(fobj), "\n"];

Let us focus on the lines 1–8, which store the input data. Constants for the number
of courses, teachers, periods, and days are initialized and used in arrays (in particular
at line 7 an array of sets is initialized). Line 10 defines the boolean matrix and line 11
defines the objective function fobj. Constraints (C1), (C2), and (C3) are posted in
a very natural way at lines 13–18, while the objective function is initialized at lines
20–21. The predicate max (line 21, second occurrence) between the two periods per
day returns 1 if that day is used, 0 otherwise. The solver is colled at line 23 with the
minimize option (whereas solve satisfy is used for a CSP) while line 25
states how to output the result.
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Fig. 15.2 Structure of GELATO and interactions with GECODE and EasyLocal++

15.4.2 The Core of the GELATO Hybrid Solver

The core of the tool is constituted by a hybrid solver whose preliminary implemen-
tation has been presented in [3].

GELATO functionalities are divided into two main parts: an internal core, that
merges GECODE and EasyLocal++ together, and an external interface, that pro-
vides an easy way for the user to interact with the system. Figure 15.2 shows the
general architecture of the tool.

The internal core is a middle layer that defines the interaction between Ea-
syLocal++ and GECODE. In particular, these classes include the encodings of
GECODE models and CP search engines.

The external interface provides high level functions that can easily be called by
the user to access the inner functionalities, thus hiding all the internal GECODE
and EasyLocal++ calls. This external layer act as a Façade object-oriented pattern
(see [7]): the aim of the Façade pattern is to provide a simplified interface to a
larger body of code, making the subsystem easier to use. Thus, this external layer
transforms the overallGELATO tool into a black-box and allows the user to interact
with it just by passing the input (i.e., the problem model and the solving meta-
heuristic) and retrieving the output (i.e., the solution obtained), without caring about
complicated object interactions in the GELATO internal core.

In this scenario, the user is asked to:

1. model the CSP or COP with a modeling language supported by GELATO

2. specify the instance of the problem in a different file, since GELATO requires
the concepts of problem and instance to be separated;
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3. select the meta-heuristic to be used to find the solution (e.g., Hill Climbing, Tabu
Search, Large Neighborhood Search) and specify the desired parameters for its
execution.

It is important to note that GELATO does not require any modification of GECODE
and EasyLocal++. In this way GELATO does not affect the single development
of GECODE or EasyLocal++ and every improvement of the two basic tools, such
as new functionalities or performance improvements, is immediately inherited by
GELATO.

15.5 Benchmarks

In this section we briefly describe the three benchmark problems chosen to test our
tool. They are well-known COPs with several available sets of input instances.

15.5.1 Asymmetric Traveling Salesman Problem

This problem is taken from the TSPLib [18] and it is defined as follows.

Definition 15.1 (Asymmetric Traveling Salesman Problem (ATSP)). Given a
directed graph G = (V,E) and a function c that assigns a cost to each directed edge
(i, j), find a roundtrip of minimal total cost visiting each node exactly once.

Let us observe that the edge costs might be asymmetric, in the sense that c(i, j) and
c( j, i) can be different. The problem is therefore a generalization of the well-known
Traveling Salesman Problem problem.

The problem is modeled as follows: let X = {x1, . . . ,xn},n = |V | be the set
of variables with domains D1 = D2 = . . . = Dn = {1, . . . ,n}. The value of xi rep-
resents the successor of the vertex i in the tour. We exploit the global constraint
circuit([x1, . . . ,xn]) available in most CP frameworks, to constrain the solutions
that represent a tour. The cost function is defined as f = ∑n

i=1 c(i,xi).

15.5.2 Minimum Energy Broadcast

This problem is drawn from CSPLIB (available fromhttp://www.csblib.org,
problem number 48) and it is an optimization problem for the design of Wireless
Networks. Further information can be found in [19].

Definition 15.2 (MEB). Given a set of n nodes V = {1, . . . ,n} forming a complete
graph Kn, a source node s ∈V , and and a cost function p : V ×V →R, representing
the transmission cost between two nodes, the problem consists in finding a (directed)
spanning tree rooted at s that minimizes a cost function f that measures the energy

http://www.csblib.org
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needed by a node for broadcasting information, and defined as follows. Assume
a tree τ is given, and let us denote by children(i) the set of children nodes of
the node i in the tree τ (namely, children(i) = { j ∈ V |(i, j) ∈ τ}). Then f (τ) =
∑n

i=1 max{p(i, j) : j ∈ children(i)}.

We model the problem using a set X = {xi, j ∈ {0,1}| i, j ∈V} of n2 boolean vari-
ables, with the meaning that xi, j = 1 if and only if the edge (i, j) is in the solution τ .
Let us define the function δ : V →V as follows: δ (s) = s (s is the source node) and
δ ( j) = i if j �= s and xi, j = 1 (the parent node in the tree—the function is well-defined
as long as we know that for all j �= s exists exactly one i such that xi, j = 1). Then, for
k ∈N, δ k(i) is recursively defined as follows: δ 0( j) = j and δ k+1( j) = δ (δ k( j)).

The constraints added to the problem to ensure the tree structure of the output are
the following:

n

∑
i=1

xi, j = 1 j = 1, . . . ,n, j �= s (C1.1)

n

∑
i=1

xi,s = 0 (C1.2)

n

∑
i=1

n

∑
j=1

xi, j = n− 1 (C2)

δ n( j) = s j = 1, . . . ,n (C3)

and the objective function is: f = ∑n
i=1 maxn

j=1(xi, j p(i, j)).
As a minor implementation remark, we have multiplied the input data by 100 so

as to use (finite) integer values for p instead of the real values stored in the problem
instances used.

15.5.3 Course Timetabling

This problem has been introduced as Track 3 of the second International Timeta-
bling Competition held in 2007 [10]. It consists in the weekly scheduling of the
lectures of a set of university courses on the basis of a set of predefined curricula
published by the University.

Definition 15.3 (CTT). Given a set of courses C = {c1, . . . ,cn}, each course ci con-
sists of a set of lectures Li = {li1 , . . . , lia} ∈L , is taught by a teacher t : C → T =
{t1, . . . , tg}, it is attended by a number of students s : C → N, and belongs to one
or more curricula Q = {q1, . . . ,qb}, where qi ⊆ C, i = 1, . . . ,b, which are subset
of courses that have students in common. Moreover it is given a set of periods
P = {1, . . . , p}, each period belonging to a single teaching day d : P → {1, . . . ,h},
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and a set of rooms R = {r1, . . . ,rm}, each with a capacity w : R → N. Each teacher
ti can be unavailable for some periods u : T → 2P.

The problem consists in finding an assignment τ : L → R×P of a room and
period to each lecture of a course so that:

(H1) all lectures of courses are assigned;
(H2) for each (room, period) pair, only one lecture is assigned;
(H3.1) lectures of courses in the same curriculum are scheduled in distinct periods;
(H3.2) lectures of courses taught by the same teacher are scheduled in distinct

periods;
(H4) teacher unavailabilities are taken into account.

Moreover, a cost is defined for the following criteria (soft constraints):

(S1) each lecture should be scheduled in a room large enough for containing all
its students;

(S2) the lectures of each course should be spread into a given minimum number
of days δ : C → {1, . . . ,h};

(S3) lectures belonging to a curriculum should be adjacent to each other;
(S4) all lectures of a course would be preferably assigned to the same room.

We model the CTT problem by defining the set X of C ·P variables xc,p ∈{0, . . . ,r},
with the intuitive meaning that xc,p = r > 0 if and only if course c is scheduled
at period p in room r, and xc,p = 0 if course c is not scheduled at period p. The
constraints are modeled as follows:

∑
j∈P

(xci, j = 0) = p−|Li| i = 1, . . . ,n (H1)

n

∑
i=1

(xci, j = 0)≥ n−m j = 1, . . . , p (H2)

xc, j · xc′, j = 0 c,c′ ∈C s.t. t(c) = t(c′), j = 1, . . . , p (H3.1)

∑
c∈qi

xc, j ≤ 1 i = 1, . . . ,b, j = 1, . . . , p (H3.2)

xc, j = 0 j ∈ u(t(c)),c ∈C (H4)

The objective function f is the sum of the following four components:

s1 =
n

∑
i=1

p

∑
j=1

max(0,s(ci)−w(xci, j)) (S1)

s2 = 5 ·
n

∑
i=1

max(0,δ (ci)−|{d( j) : xci , j > 0}|) (S2)
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s3 = 2 ·
b

∑
i=1

∣
∣{k ∈ P : start(k)∧ ∑

c∈qi

xc,k �= 0∧ ∑
c∈qi

xc,k+1 = 0}∣∣+ (S3)

∣
∣{k ∈ P : end(k)∧ ∑

c∈qi

xc,k �= 0∧ ∑
c∈qi

xc,k−1 = 0}∣∣+
∣
∣{k ∈ P : mid(k)∧ ∑

c∈qi

xc,k �= 0∧ ∑
c∈qi

xc,k−1 = 0∧ ∑
c∈qi

xc,k+1 = 0}∣∣

s4 =
n

∑
i=1

(|{r : ∃p(xci,p = r)}|− 1) (S4)

where start, end, and mid are three boolean functions that state if a period is initial,
ending, or in the middle of a day, respectively.

15.6 Experiments and Comparison

We briefly explain how experiments drove us in tuning search parameters and show
that the performances of GELATO are comparable to those of an LNS solver imple-
mented in Comet. All computations were run on an AMD Opteron 2.2 GHz Linux
Machine. We used GECODE 3.1.0, EasyLocal++ 2.0, and Comet 2.0.1. Addi-
tional tests have shown that GELATO is fully compatible with GECODE 3.7.0,
the latest release at the time of writing.

15.6.1 Solving Techniques

The problem instances have been solved using:

1. a pure constraint programming approach in GECODE
2. a pure Local Search approach in EasyLocal++, and
3. LNS meta-heuristics encoded in GELATO.

We use the same model, the same meta-heuristics, and the same parameters used for
(3) in the Comet system to guarantee a fair comparison with that system.

We tested the ATSP on the following instances of growing size, taken from
the TSPLib [18]: br17 (that we call instance 0, with |V | = 17), ftv33 (inst. 1,
|V | = 34), ftv55 (inst. 2, |V | = 56), ftv70 (inst. 3, |V | = 71), kro124p (inst. 4,
|V | = 100), and ftv170 (inst. 5, |V | = 171). For the MEB problem we selected
the following six instances of size |V | = 20 (hence, |X | = 400) from the set used
in [19]: p20.02/03/08/14/24/29. For the CTT problem we selected from the website
http://tabu.diegm.uniud.it/ctt/ six instances with different features
(instance size, average number of conflicts, average teacher availability, average
room occupation, . . . ): comp01/04/07/09/11/14.

http://tabu.diegm.uniud.it/ctt/
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Pure CP Approach: GECODE.

The pure CP approach in GECODE exploits the straightforward encoding of the
models described in Sect. 15.5. For the sake of showing the possibility of using
GELATO starting from already available CP models in the case of ATSP we used
the model reported in the set of GECODE examples, slightly adapted for its integra-
tion. For MEB and CTT, instead, we encoded the GECODE models from scratch.
We tried different search strategies for each problem, and choose the ones with best
performances: for ATSP the variable with smallest domain is selected, and the val-
ues are chosen in increasing order; for MEB the variable with smallest domain is
selected and the values are chosen randomly; for CTT the most constrained variable
is selected, breaking ties randomly, and values are chosen randomly.

Pure LS Approach: EasyLocal++.

The pure LS approaches in EL are based on elementary move definitions. For ATSP
we use a swap-move: given a tour, two nodes are randomly selected and swapped.
For MEB we define a change-parent-move: given a directed rooted tree, two nodes
A and B are selected, so that B is not an ancestor of A; then A becomes the parent of
B. For CTT we use a time-and-room exchange move: given a timetable, we select
randomly a lesson scheduled at period p in room r and move it to another period p1

into another room r1, chosen from the empty ones.
In order to compare the algorithms based on pure LS with LNS on a fair base, we

decided to drive the Local Search by means of a Randomized Hill Climbing scheme.
Indeed, LNS actually perform a “large” hill climbing in a wider neighborhood, we
call mountain climbing. Developing LS strategies with more complex move defini-
tions and more elaborated meta-heuristics is out of the scope of the present work.

It is worth noticing that for LNS implementation we can directly reuse the ex-
isting GECODE models, whereas using EasyLocal++ we had to implement from
scratch the basic LS classes for the problem.

As a final note, all LS algorithms are stopped after 1000 iterations without im-
provement.

Large Neighborhood Search Approach: GELATO (and Comet).

The LNS meta-heuristic is composed by a deterministic CP search for the first so-
lution and then a LNS exploration based on a mountain climbing algorithm with a
maximum number of idle iteration.

Given a COP O = 〈X ,D ,C , f 〉, the first solution is obtained by a CP search
using GECODE without any pre-assigned value of the variables, and without any
timeout. The Large Neighborhood definition we have chosen is the following: given
a number N < |X | and given a solution in sol(O) we randomly choose a set
FV⊆X of free variables, so that |FV|=N. Therefore, the exploration of the neigh-
borhood consists in the possible assignments to the constrained variables FV and it
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is regulated by the value of N and by the number maxF of maximum number of
failures in an improving stage. At each stage variables and values selection are the
same used for the first solution.

15.6.2 Parameters Tuning and Data Analysis

For all instances of each problem we perform just one run of GECODE with a time-
out of one hour. Let us observe that even in MEB and CTT some random choices
for tie breaking are used, GECODE is in fact deterministic.

We tried several LNS approaches, that differs on the parameters N and maxF.
N is determined as a proportion of |X | (10%, 20%, 30%, etc.). For relating the
number maxF to the exponential growth of the search space w.r.t. the number N of
free variables, we calculate maxF = 2

√
N∗Mult, and allow to fix the values for the

parameter Mult. Reasonable values for Mult range from 0.01 to 2. Of course, these
values cannot be chosen independently of the size of the problem instance and of the
problem difficulty. These values are given by optional arguments of the command-
line call to the execution.

The range of parameter we have tested is the following:

ATSP: N ∈ {20%,25%,30%,35%,40%,45%} and Mult∈ {1,1.5,2}
MEB: N ∈ {35%,40%,45%,50%} and Mult ∈ {0.5,0.75,1}
CTT: N ∈ {2%,3%,4%,5%,10%,15%} and Mult ∈ {0.1,0.5,1}
Choosing a range to analyze can be done by few preliminary runs setting Mult= 1
and start by small N (e.g. 1% and then double it iteratively) in which the number k
of consecutive idle iterations is kept low (e.g., 20).

With small values of N the algorithm performs little improvements at each step
(and frequently a number of steps without improvements). Execution stops soon at
high values of the objective function.

With increasing values of N the running time become slower, but one might no-
tice the computation of better optima. At a certain point one notice that the algorithm
is slower and slower, but, even worse, the optimum is not improved. In the next sub-
section we will come back on this training stage.

Once an interval of “good” behavior is found, one might enlarge the number k
of consecutive idle iterations allowed before forcing the termination (in all our tests
k = 50) and starting tests with different values of Mult.

Since LNS and pure LS computations are stochastic in nature, we collect the
results of 20 runs in order to allow for basic statistical analyses. During each run,
we stored the values of the objective function that correspond to improvements of
the current solution, together with the running time spent. These data have been
aggregated in order to analyze the average behavior of the different LNS and pure
LS strategies on each sample. To this aim we performed a discretization of the data
in regular time intervals; subsequently, for each discrete interval we computed the
average value of the objective function.
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We experimentally determine that the best parameter combinations are: N = 35%
and Mult= 2 for ATSP; N = 50% and Mult= 0.5 for MEB; N = 5% and Mult=
0.5 for CTT. We show the plot representing the behavior of the various parameters in
the CTT problems (see also Figure 15.3). Diagrams for other problems are similar.
Further LNS experiments (either in GELATO or Comet) have been run with this
parameters setting.
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Fig. 15.3 Parameters and methods comparison (FObj is f )

15.6.3 Comparison

Let us briefly analyze the results of the comparison of GECODE, hill-climbing Ea-
syLocal++ , GELATO, and Comet. In Figure 15.3 we show an excerpt of these
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results.5 In those pictures, the horizontal dotted line represents the best known solu-
tion for the instance considered.

From the results, we can make some observations. First, it is clear that pure CP
(GECODE) is unsuitable to improve the objective function f and to reach a good
solution in reasonable time, while it is very useful to provide a good starting point
for LS/LNS approaches. Conversely, hill-climbing is very fast (providing large cost
improvements in few seconds) but for difficult instances it falls quickly in a local
minimum and stops improving the solution.

LNS seems to be the most effective approach: for difficult instances it finds better
solution than hill-climbing, because it can perform a deeper search and fall (later)
into higher quality local-optima. Moreover, within this class the GELATO imple-
mentation has a behavior comparable to those of Comet6. This happens also in the
majority of the other tests we omitted due to lack of space.

The fact that LNS does not work well with small values of N is due to the small
size of the neighborhood: even though GECODE is able to visit it within the al-
lowed time, it is difficult to make improvements when too few free variables are
allowed to change. Conversely, when N is large also the spaces to be analyzed are
bigger, allowing several variables to change. In these spaces it is easier to lead to
better solutions, but at the same time it might happen that an improving solution
is hidden within a huge space and it is not reached within the number of failures
allowed. Obviously this trade-off depends on the problem at hand and has to be in-
vestigated experimentally. However, on the basis of the analysis performed in this
paper, we find out that a set of reasonable values for the number of variables and the
size of the search spaces is N = 10%,mafF = 1. We set these value as default for
our tool.

The constraint models employed in these tests were obtained by a direct encod-
ing in GECODE. However, since GELATO is a multi-paradigm language other
modeling languages could be employed. To evaluate this possibility, we also encode
the CTT model in SICStus Prolog and compile it to GECODEusing the translator
presented in [4]. The outcoming GECODE model was tested in the same settings
as the previously presented solvers.

As one might expect, a direct encoding allows more efficient executions. How-
ever, running time has a behavior similar to those reported in Figure 15.3, but in
this case the performances (in terms of running times) are slightly worse than those
obtained by Comet.

15.7 Conclusions and Future Developments

We have presented a multi-language tool for combinatorial optimization, called
GELATO, which is able to deal with CSP/COP models expressed in different

5 An exhaustive comparison can be found at http://www.dimi.uniud.it/GELATO.
6 Somehow slightly better than Comet.

http://www.dimi.uniud.it/GELATO
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modeling languages and to use a combination of Local Search and Constraint Pro-
gramming techniques for solving them. Being built upon GECODE the user might
exploit the emerging literature of problems already encoded in GECODE and use
GELATO for speeding-up the search. Being also build upon EasyLocal++, the
user can inherit various Local Search techniques from EL, without the need of re-
formulating the model.

The immediate future work is the first release of the tool that will be made
available in the near future. We will improve the quality of the GECODE mod-
els obtained through the translation of the Prolog/MiniZinc models and to sim-
plify the compilation task (currently demanded to many routines written in different
languages).

We also plan to develop a more clever technique for determining good candidates
for the values of the tool parameters so as to allow the user to exploit the solver as a
black-box. However, being completely written in C++ the skilled programmer can
use it as a free fully configurable search engine.
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Chapter 16
Predicting Metaheuristic Performance on Graph
Coloring Problems Using Data Mining

Kate Smith-Miles, Brendan Wreford, Leo Lopes, and Nur Insani

Abstract. This chapter illustrates the benefits of using data mining methods to gain
greater understanding of the strengths and weaknesses of a metaheuristic across the
whole of instance space. Using graph coloring as a case study, we demonstrate how
the relationships between the features of instances and the performance of algo-
rithms can be learned and visualized. The instance space (in this case, the set of
all graph coloring instances) is characterized as a high-dimensional feature space,
with each instance summarized by a set of metrics selected as indicative of instance
hardness. We show how different instance generators produce instances with vari-
ous properties, and how the performance of algorithms depends on these properties.
Based on a set of tested instances, we reveal the generalized boundary in instance
space where an algorithm can be expected to perform well. This boundary is called
the algorithm footprint in instance space. We show how data mining methods can be
used to visualize the footprint and relate its boundary to properties of the instances.
In this manner, we can begin to develop a good understanding of the strengths and
weaknesses of a set of algorithms, and identify opportunities to develop new hybrid
approaches that exploit the combined strength and improve the performance across
a broad instance space.

16.1 Introduction

The quest to develop a powerful heuristic that performs well on all optimization
problems and classes of instances may appear quixotic, especially in light of the No
Free Lunch (NFL) Theorems [1, 2]. Without providing an algorithm with sufficient
knowledge of the properties of the problem and instance classes, there will always be
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some instances where its performance will suffer compared to tailored heuristics de-
signed to exploit problem-dependent knowledge. Hybrid metaheuristics [3, 4] hold
much potential to integrate problem-dependent knowledge with broadly applicable
search strategies. One successful example is the hyper-heuristic approach [5], which
automates the process of selecting or generating heuristics based on a portfolio of
heuristic components. Another approach is the algorithm portfolio concept [6, 7, 8],
whereby the algorithm best suited to a particular instance is predicted based on a
regression model that has already been trained based on past experience of the re-
lationship between measurable properties of the instances and the performance of
each algorithm in a portfolio. These are powerful ideas that help to circumvent the
NFL Theorems somewhat by enabling us to use some knowledge of the problem
and instance properties to ensure we adopt a search strategy well suited to the task.

Some of the key challenges though are to develop a greater understanding of the
true strengths and weaknesses of a given algorithm, or component of an algorithm.
Specifically, across the space of all possible instances that could be generated, where
do we expect an algorithm to perform well, and where is it likely to fail? Typically,
we see the performance of optimisation algorithms reported only on a chosen set
of benchmark test instances, with little discussion about how the performance of
the algorithm could be expected to generalize across a broader untested instance
space [9]. Our objective is to develop the tools to understand the boundaries of al-
gorithm performance across instance space so we will better placed to develop hy-
brid metaheuristics that exploit this knowledge to provide effective solution across
a useful breadth of problems and instances.

Corne and Reynolds [10] have recently introduced the idea of a footprint in in-
stance space as a means to visualise the generalized region where the algorithm
could statistically be expected to perform well, and noted that “understanding these
footprints, how they vary between algorithms and across instance space dimensions,
may lead to a future platform for wiser algorithm-choice decisions” [10]. The def-
inition of an instance space is critical to this approach, and Corne and Reynolds
chose two features that define an instance of an optimization problem, for ease of
visualization. For the vehicle routing problem they defined the instance space ac-
cording to a pair of time windows for regular and non-regular customers; for the
single machine tardiness problem the instance space was defined by the due dates
and processing times. All generated instances can be plotted in this two dimensional
instance space, and then the footprint of an algorithm can be depicted in the same
two-dimensional instance space to show where the algorithm performance is most
effective.

More recently, we have generalized these ideas to consider a higher-dimensional
instance space, generated by knowledge of what makes an optimization problem
hard [11]. The question of what makes an optimization problem (or even a particular
instance of an optimization problem) hard for an algorithm was originally posed by
Macready and Wolpert in 1996 [12], and the answer depends on both the algorithm
and the particular instance properties. For example, a travelling salesman problem
(TSP) involving cities arranged in a perfect circle will be trivial for all algorithms
to solve, yet if the cities were tightly clustered, some algorithms may struggle more



16 Predicting Metaheuristic Performance 419

than others [13, 14, 15]. A concrete measure for the hardness of an instance for a par-
ticular algorithm has been proposed [12] as the fraction of the search space that cor-
responds to a better solution than the algorithm was able to find. Other measures of
hardness have compared algorithm performance on the basis of the optimisation pre-
cision reached after a certain number of iterations, or the number of iterations taken
to reach the best solution [13]. However, defining the characteristics of the instance
that affect these hardness metrics has been much more complicated. While generic
properties of the landscape of the problem instance have been proposed, such as
autocorrelation structures and distributions of local minima [16, 17], many of the
characteristics that greatly affect hardness have been shown to be problem-specific.
Over many decades, numerous studies have reported on the effect of characteris-
tics or features of a particular problem, such as the cluster ratio in the TSP [13] or
the edge density in graph colouring [18], and demonstrated the contribution of such
features to problem hardness. These features frequently serve as phase transition
parameters [19], whereby some critical value of a feature serves as the boundary
between easy and hard instances for a particular algorithm. Our recent survey pa-
per [11] provides a review of metrics that have been shown to relate to instance
difficulty for a variety of common combinatorial optimization problems includ-
ing TSP, assignment, bin-packing and knapsack problems, timetabling and graph
problems.

Once we have suitable metrics to characterize the hardness of optimization prob-
lem instances, we are able to define an instance space, but this will typically be of
high-dimensionality requiring the use of dimension reduction methods to visualise
the algorithm footprint in the instance space. We have demonstrated the effective-
ness of this approach in a series of papers focused on the TSP [14, 15], schedul-
ing [20], quadratic assignment problem [21], and university course timetabling [22].
It has become clear though, that the quality of the instance space, and the de-
gree to which conclusive footprints can be determined to indicate the strengths and
weaknesses of an algorithm depends greatly upon the chosen instances. Randomly
generated instances often fail to generate instances of sufficient diversity, and con-
sequently they provide little assistance in providing a discriminating boundary of
where one algorithm outperforms another [14, 15]. Likewise, benchmark instances
reported in the literature are often lacking diversity in the spectrum of difficulty [23].

In this chapter we explore further these ideas of footprints and generalisation of
algorithm performance in high dimensional instance spaces. Using a case study of
graph coloring, we demonstrate how this view of the instance space is useful for
visualizing and defining the footprint of an algorithm, but is also revealing of the
relationship between the instance generation method and the resulting features of
the instances. We consider the performance of two heuristics across five classes of
instance generators, and reveal the footprint of each heuristic, defining its boundary
using data mining methods.

The remainder of this chapter is as follows: In Section 16.2 we describe the graph
coloring problem and the meta-data for our case study. In particular, we describe
the five classes of instance generators, we provide a comprehensive list of the graph
properties that we use to define the instance space, we discuss the two heuristics in
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our algorithm portfolio, and how we measure the performance of the heuristics on
the instances. Once our meta-data has been defined in this way, the analysis of the
relationship between features of the instances and algorithm performance can be-
gin. In Section 16.3 we present some data mining approaches to understanding the
relationships in the meta-data. We begin with a self-organising feature map to visu-
alise the high-dimensional feature space as a two-dimensional map of the instance
space. Each instance generator creates instances with restricted properties, and these
are revealed, along with the footprints of each algorithm in instance space. We also
partition the instance space using a decision tree to provide rules describing the
differences between the classes of instances, and the differences between the per-
formance of the two heuristics in terms of properties of the instances. In Section
16.4 we discuss these findings and draw conclusions.

16.2 Graph Coloring and Experimental Meta-data

A graph G = (V,E) comprises a set of vertices or nodes V and a set of edges E that
connect certain pairs of vertices. The graph coloring problem is to assign colors to
the vertices, minimizing the number of colors used, subject to the constraint that
two vertices connected by an edge (called adjacent vertrices) do not share the same
color. The optimal (minimal) number of colors needed to to solve this NP-complete
problem is called the chromatic number of the graph. Graph coloring finds impor-
tant applications in problems such as timetabling, where events to be scheduled are
represented as vertices, with edges representing conflicts between events, and the
color representing the time period.

16.2.1 Algorithms

Due to the NP-completeness of this problem, many heuristics have been designed
[24, 25]. One of the earliest heuristics was DSATUR [26], which was shown to be
exact for bipartite graphs. The saturation degree of a vertex is defined to be the
number of different colors to which it is adjacent. The DSATUR (degree saturation)
heuristic is a simple approach shown in Algorithm 15.

Algorithm 15. DSATUR
Step 1: Arrange the vertices by decreasing order of degrees.
Step 2: Color a vertex of maximal degree with color 1.
Step 3: Choose a vertex with a maximal saturation degree. If there is an equality,

choose any vertex of maximal degree in the uncolored subgraph.
Step 4: Color the chosen vertex with the least possible (lowest numbered) color.
Step 5: If all the vertices are colored, stop. Otherwise, return to 3
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For non-bipartite graphs though, the performance of DSATUR is not optimal, and
many more sophisticated search strategies have been employed to provide effective
heuristics for general graphs, including tabu search [27], simulated annealing [28],
iterated local search [29], scatter search [30], genetic algorithms [31], and hybrid
approaches [32, 33]. Just as the performance of DSATUR depends on the bipartiv-
ity of the graph, we should also expect the performance of any method to depend
on various properties of the graph, but the relationship between the properties of the
graph and the performance of various heuristics is not well understood. Empirical
analysis of algorithms is needed [34], particularly to understand the complex rela-
tionship between graph properties, instance generators, and algorithm performance.

Culberson’s web resources for graph coloring [35] provide a valuable starting
point for this kind of empirical analysis, providing a number of heuristics (such as
DSATUR and TABU) as well as a set of graph instance generators. In our empirical
analysis, we will compare the performance of DSATUR to the TABU algorithm pro-
vided on Culberson’s webpage [35], with no attempt made to fine-tune the perfor-
mance via parameter tuning. In that sense, we aim to understand how the properties
of the graphs generated using a variety of instance generators affect the performance
of two basic heuristics: DSATUR and TABU. The implementation of tabu search is
shown in Algorithm.

Algorithm 16. TABU Algorithm
Step 1: Estimate the number of colors (x) required to solve the problem.
Step 2: Generate a random solution using x color partitions.
Step 3: Move a conflicting vertex to a different color partition.
Step 4: if No conflicts, move vertex in smallest partition, to another partition that

won’t cause a conflict.
Step 5: Update tabu list, based on vertex moved.
Step 6: if After some maximum number of iterations there are still conflicts,

x = x+1
Step 7: else if No improvements found after maximum number of iterations, end

algorithm.
Step 8: else Go to step 3.

16.2.2 Instances

Culberson states about his resources for graph coloring, “My intention is to provide
several graph generators that will support empirical research into the characteristics
of various coloring algorithms. Thus, I want generators that will exhibit variations of
various characteristics of graphs, such as degree (expectation and variation), hidden
colorings, girth, edge distributions etc.” [35]. The five instance generators available
from Culberson’s website are described as [36]:

1. Uniform or IID: edges are assigned to vertex pairs with a fixed probability p
2. Girth and degree inhibited: Each graph is assigned a probability p, girth limit g;

and a degree limit δ . The girth limit indicates that no cycle will be created with
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girth less than g. Hence if an edge (v,w) is being considered as a new edge, every
pair of vertices (x,y) which will have a distance of less than g after the addition
is blocked, and will never be selected as a possible new edge. p is the probability
that a possible edge will be used. δ is a hard limit on the difference between the
average node degree and the maximum degree of any vertex.

3. Geometric: These graphs are generated by choosing a radius r and uniformly
distributing n pairs of numbers (x,y) in the range of 0 ≤ x,y < 1. Vertices in
the graph correspond to the points (x,y) in the plane, with edges included if the
distance between a pair of vertices is less than the radius r.

4. Weight-biased Graphs: These graphs contain cliques limited to a given size. Each
clique is generated by randomly creating h color partitions, then randomly select-
ing one of the vertices in each partition and joining every pair by an edge. Each
clique is generated independently. Such restrictions on the size of the cliques
reduces large variations in structure that might aid an algorithm like DSATUR.

5. Cycle Driven Graphs: Similar to the weight-biased graphs, this generator creates
cycles of a specified length. h color partitions are created, the algorithm then
generates a cycle by randomly generating a path with each vertex from a different
color partition than the last.

Empirical studies have already shown how the performance of some algorithms
depends on the source of the instances. Observations include the fact that DSATUR
seems to outperform other methods such as tabu search and simulated annealing on
geometric graphs [28]. This was conjectured to be due to the easiness of coloring
graphs with large cliques [36], with the girth and degree inhibited and weight-biased
graphs designed to prove more difficult for DSATUR.

16.2.3 Graph Properties or Features

While some properties of the generated instances are clear from the description
above, there are still many other properties that can be calculated, and whose re-
lationship to algorithm performance may be revealing. A recent survey of what
makes optimization problem instances difficult [11] shows that there are many fea-
tures of a graph that can be calculated in polynomial time, that could be used to
shed some light on the relationships between graph instances, instance generators,
and algorithm performance. In this study we consider the following features of a
graph G = (V,E) :,mostly of which were generated using software available from
igraph.sourceforge.net:

1. The number of nodes or vertices in a graph: n = |V |
2. The number of edges in a graph: m = |E|
3. The diameter of a graph: the greatest distance between any pair of vertices. To

find the diameter we find the shortest path between each pair of vertices and
take the greatest length of these paths.

4. The density of a graph: the ratio of the number of edges to the number of
possible edges.
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5. Average path length: the average number of steps along the shortest paths for
all possible pairs of nodes. It is a measure of the efficiency of traveling between
nodes.

6. The girth of a graph: the length of the shortest cycle in a graph. If a graph has
a girth greater than three, it is triangle free. If a graph has a girth of three, it
cannot possibly be bipartite.

7. Mean node degree: the degree of a node is the number of connections a node
has to other nodes.

8. Standard deviation of node degree: the average node degree and its standard
deviation can give us an idea of how connected a graph is.

9. The clustering coefficient: a measure of degree to which nodes in a graph tend
to cluster together. This is a ratio of the closed triplets to the total number of
triplets in a graph. A closed triplet is a triangle, while an open triplet is a triangle
without one side.

10. Mean eigenvector centrality: the eigenvector of the adjacency matrix, averaged
across all nodes.

11. Standard deviation of eigenvector centrality: together with the mean, the stan-
dard deviation of egenvector centrality gives us a measure of the importance of
a node inside a graph.

12. Mean betweenness centrality: the fraction of all shortest paths connecting all
pairs of vertices that pass through a given vertex, averaged over all nodes.

13. Standard deviation of betweenness centrality: together with the mean, the stan-
dard deviation gives us a measure of how central the nodes are in a graph. A
graph that has its nodes clustered together will have a high mean betweenness
centrality, while a spread out graph will have a low mean centrality.

14. Mean spectrum: the mean of the set of eigenvalues of the adjacency matrix.
The spectrum is known to be symmetric for bipartite graphs.

15. Standard deviation of the set of eigenvalues of the adjacency matrix:
16. Algebraic connectivity is the second smallest eigenvalue of the Laplacian ma-

trix [37]. This reflects how well connected a graph is. Cheeger’s constant, an-
other important graph property, is bounded by half the algebraic connectiv-
ity [38].

16.2.4 Experimental Meta-data

We are now in a position to describe the meta-data for our experimental analysis us-
ing the framework proposed in Rice [39], and adapted for the study of optimization
algorithm performance by Smith-Miles [40].

• The problem space P is a set of 5000 graph coloring instances, with 1000 in-
stances from each of the five generators described in section 16.2.2. The number
of nodes was randomly selected from the range [100,1000], with all other param-
eters randomly selected within default settings.
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• The algorithm space A comprises two heuristics: DSATUR and TABU de-
scribed in Algorithms 15 and 16.

• The performance space Y is the minimum number of colors found by an algo-
rithm after one run using default settings from the code provided by [35].

• The feature space F is defined by the 16 metrics listed in section 16.2.3.

The starting point for empirical analysis based on this meta-data is to use data min-
ing methods to endeavour to learn the relationships between the feature space defin-
ing the instances and the performance space.

16.3 Empirical Analysis of Instances and Algorithms

Our goal is to identify the various types of instances within the high-dimensional
feature space (which we will also call the instance space), and to understand the
effect of instance generation method on the properties of the instances. We also
seek to visualise the generalisation footprint of each algorithm’s performance be-
haviours, and to determine the parts of feature or instance space where one algo-
rithm dominates the other. In order to visualise the high dimensional instance space
(defined by the set of 16 features discussed in section 16.2.3) we will be employ-
ing self-organising maps that produce a topologically-preserved reduction to a two-
dimensional space for ease of visualization.

16.3.1 Self-organising Feature Maps

Self-Organising Feature Maps (SOFMs) are the most well known unsupervised neu-
ral network approach to clustering. Their advantage over traditional clustering tech-
niques such as the k-means algorithm lies in the improved visualisation capabilities
resulting from the two-dimensional map of the clusters. Often patterns in a high di-
mensional input space have a very complicated structure, but this structure is made
more transparent and simple when they are clustered in a lower dimensional feature
space. Kohonen [41] developed SOFMs as a way of automatically detecting strong
features in large data sets. SOFMs find a mapping from the high dimensional input
space to low dimensional feature space, so the clusters that form become visible in
this reduced dimensionality. They can be viewed as an approximation to a nonlinear
generalisation of principal component analysis.

The architecture of the SOFM is a feed-forward neural network with a single
layer of neurons arranged into a rectangular array. Figure 16.1 depicts the architec-
ture with n inputs connected via weights to a 3× 3 array of 9 neurons. The number
of neurons used in the output layer is determined by the user.

When an input pattern is presented to the SOFM, each neuron calculates how
similar the input is to its weights. The neuron whose weights are most similar (min-
imal distance d in input space) is declared the winner of the competition for the
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Fig. 16.1 Architecture of Self-Organising Feature Map

Fig. 16.2 Varying neighbourhood sizes around winning neuron m

input pattern, the weights of the winning neuron are strengthened to reflect the out-
come, and the learning is shared with neurons in the neighbourhood of the winning
neuron. This creates a process of global competition, followed by local cooperation.
Figure 16.2 provides an example of how a neighbourhood Nm can be defined around
a winning neuron m. Initially the neighbourhood size around a winning neuron is al-
lowed to be quite large to encourage the regional response to inputs. As the learning
proceeds however, the neighbourhood size is slowly decreased so that the response
of the network becomes more localised. The localised response, which is needed to
help clearly differentiate distinct input patterns, is also encouraged by varying the
amount of learning received by each neuron within the winning neighbourhood. The
winning neuron receives the most learning at any stage, with neighbours receiving
less the further away they are from the winning neuron. If we denote the size of
the neighbourhood around winning neuron m at time t by Nm(t), then the amount of
learning that every neuron i within the neighbourhood of m receives is determined
by:
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c = α(t)e
−‖ri−rm‖

σ2(t) (16.1)

where ri− rm is the physical distance (number of neurons) between neuron i and the
winning neuron m. The two functions α(t) and σ2(t) are used to control the amount
of learning each neuron receives in relation to the winning neuron. These functions
are usually slowly decreased over time. The amount of learning is greatest at the
winning neuron (where i = m and ri = rm) and decreases the further away a neuron
is from the winning neuron, as a result of the exponential function. Neurons outside
the neighbourhood of the winning neuron receive no learning.

Like all neural network models, the learning algorithm for the SOFM follows the
basic steps of presenting input patterns, calculating neuron outputs, and updating
weights. The weight update rule, for all neurons within the neighbourhood of the
winning neuron m for a given input pattern xi is:

wji(t + 1) = wji(t)+ c[xi−wji(t)]

with c as defined by equation (16.1). For neurons outside the neighbourhood of the
winning neuron, c = 0. The initialisation stage involves setting the weights to small
random values, setting the initial neighbourhood size Nm(0) to be large (but less than
the number of neurons in the smallest dimension of the array), and setting the values
of the parameter functions to be between 0 and 1. The algorithm iterates through all
of the input patterns repeatedly, with diminishing neighbourhood size and decaying
functions α(t) and σ2(t) each time, until eventual convergence of the weights.

16.3.2 Visualising the Instance Space

The instance space is characterised by a set of 5000 graph coloring instances,
each defined by a set of 16 features related to the graph properties. All features
were normalised to the range [0,1] using variance. The software package Viscovery
SOMine [42] was used to generate the SOFM, using a rectangular map of approxi-
mate ratio 100:40 based on the dimensions of the plane spanned by the two largest
eigenvectors of the correlation matrix of the features (i.e. the first two principal com-
ponents of the correlation matrix). The final map contains 2108 neurons arranged in
31 rows and 68 columns. 54 complete presentations of all 5000 feature vectors (in-
stances) were required to achieve convergence, with a decay factor of 0.5 applied to
the functions α(t) and σ2(t). The initial neighbourhood size was 7. While these val-
ues were chosen arbitrarily based on past experience, experimentation with different
values showed that the resulting maps were quite robust. The final quantization error
of the map was 0.005999.

Figure 16.3 shows the location of the instances in the 16-dimensional feature
space when projected onto a two-dimensional map of instance space. Instances that
are close to each other in the map are similar (according to Euclidean distance in
16-dimensional feature space) to each other, and significantly different from other
instances further away. It should be noted that the type of generator used to create



16 Predicting Metaheuristic Performance 427

Fig. 16.3 The distribution of the five classes of instances across instance space (16-
dimensional feature space projected onto 2-dimensional SOFM)

Fig. 16.4 The distribution of some of the features across instance space (white represents a
minimal value of the feature and black represents a maximal value of the feature)

an instance was not used as a feature and yet, based only on the measured properties
of the resulting graph instances, we can clearly see that a given generator creates a
group of instances that are quite similar to each other. Some of the generators are
capable of creating instances that are diverse (for example, pockets of weight-biased
and geometric instances are found across the map), whereas other generators appear
to create instances that are in the same region of instance space (for example, girth
and degree inhibited, and IID graphs). It is also clear that the feature vector of an
instance is determined to a large extent by the instance generator, with very few
regions containing instances coming from multiple generators.

In order to determine which features are dominant in the various classes of in-
stances, we can inspect the distribution of features across the map. A subset of the
features are shown in Figure 16.4. We see that the region of instance space cor-
responding to geometric graphs contains instances with a high density, high clus-
tering coefficient, and very low spectrum mean indicating a graph close to being
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bipartite. We expect to see DSATUR perform well on such instances, given it is ex-
act for bipartite graphs. We see that the region of instance space corresponding to
the weight-biased and girth and degree inhibited graphs contains instances with very
small density (sparse), small clustering coefficient, and with eigenvector centrality
mean very high. Recall that these instance generators were originally conjectured
to create instances that would be difficult for DSATUR to solve.

16.3.3 Visualising the Footprints of Algorithm Performance

Now that we have a representation of the instance space, we can superimpose ad-
ditional information such as the performance of algorithms on those instances. The
number of colors by which each algorithm wins is shown for all instances across the
map in Figure 16.5, with the footprint for TABU shown in the top map and DSATUR
shown in the bottom map. A dark region shows where the algorithm is superior to
the other algorithm. It is clear that DSATUR is superior compared to TABU only
for a small subset of the Geometric graphs close to the top left corner, with the
two algorithms achieving identical performance for the geometric graphs along the
left corner of the top edge. TABU outperforms DSATUR for the IID graphs and
mostly ties on the girth and degree inhibited and weight-biased graphs. DSATUR
is marginally better than TABU on the cycle-driven graphs. It is interesting to note
that, even though the SOFM was not given any algorithm performance data, only the

Fig. 16.5 The performance of each algorithm across instance space. The number of colors by
which TABU wins is shown in the top map, and DSATUR is shown in the bottom map. White
represents no difference in solution, with darker regions indicating graphs where a superior
performance is obtained for the given algorithm (small number of colors needed to color the
graph).
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16 features, we still find clear regions in instance space where the performance of
algorithms is similar. This confirms that the chosen features are well-suited to char-
acterizing the similarities between the instances, and the effect that their properties
have on algorithm performance.

16.3.4 Partitioning the Instance Space via Decision Trees

Decision trees can be very powerful tools for elucidating rules that can help explain
performance differences between algorithms. We randomly extract 80% of the in-
stances to form a training set, and use a decision tree with CHAID (chi-squared
automatic interaction detector) method in SPSS to find rules describing which in-
stances (in terms of the 16 features) are better solved with TABU. The resulting
rules are then evaluated on the remaining 20% test set of instances. The accuracy
of the rules, on both the training and test sets, are shown in Table 16.1. If TABU
and DSATUR achieve a tied result, then the instance is labelled as TABU not best.
The results enable us to claim a 93.7% accuracy in correctly identifying, based only
on the measurable graph features, if TABU will outperform DSATUR. Considering
that many of the instances incorrectly classified are actually tied results, this is a
highly accurate prediction of algorithm performance on the basis of graph features
alone.

Table 16.1 Classification accuracy of predicting when TABU will be better than DSATUR
on training set (top) and test set (bottom)

TRAINING SET predicted TABU best predicted TABU not best percent correct

actually TABU best 2951 133 95.7%
actually TABU not best 127 748 85.5%

95.9% 84.9% 93.4%

TEST SET predicted TABU best predicted TABU not best percent correct

actually TABU best 772 41 95.0%
actually TABU not best 22 171 88.6%

97.2% 80.6% 93.7%

An inspection of the rules generated by the decision tree reveals that TABU is
better suited to instances where the clustering coefficient is less than 0.5, and the
spectrum mean is greater than 9.18 (not bipartite graphs, and not geometric graphs).
In addition, TABU excels when the algebraic connectivity is between 83.7 and
246.9. These are just a few of the small pockets of the instance space that were
found to describe when TABU outperforms DSATUR. While these rules may not
be particularly interesting for the chosen heuristics (especially considering the de-
fault parameter setting used in TABU which made it not much more powerful than
DSATUR across many instances), we hope that the case study presented here il-
lustrates the benefits of the presented methodology for gaining insights into the
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relationships between features of instances and the performance of algorithms. It
is a straightforward extension of these ideas to consider the effect of parameter tun-
ing - for example, simulated annealing run with two different cooling schedules
could be considered as two different algorithms, and the footprint of each algorithm
(cooling schedule) can be identified and understood across instance space.

16.4 Conclusions

In this paper we have shown, through a case study of graph coloring, that data min-
ing techniques like self-organising feature maps and decision trees can be used to
explore the high-dimensional feature space that defines an instance space. Specif-
ically, the instance space can be visualised with a view to understanding the kind
of instances that different generators create, and examining the generalisation foot-
print of algorithm performance across a broad instance space. For our case study,
we have utilised a comprehensive set of features based on properties of graphs. We
have demonstrated that these features create an instance space where the differences
between instance generators are readily visualised. The effectiveness of different al-
gorithms can then be superimposed across the instance space and the footprint can
be visualised. For our chosen algorithms, DSATUR and TABU, we have been able to
partition the instance space to separate instances where one algorithm outperforms
the other. The chosen features have proven to be sufficient for discovering the prop-
erties of instances that make TABU outperform DSATUR, and vice versa, achiev-
ing over 93% accuracy in predicting when TABU will win. It remains for future
research to consider additional features of instances that could further distinguish
between these two competitive algorithms, and the relationship between landscape
metrics [43, 44, 45] and algorithm performance should also be considered.

The ability to generate instances that are discriminating of algorithm performance
is critical for progress in understanding the strengths and weaknesses of various
algorithms, so that improved hybrid algorithms can be designed. Analysis of the
kind presented in this paper provides a starting point to examine the characteristics
of a set of instances, and enables feedback into the instance generation process [46]
to develop a meaningful set of instances to drive future research developments.
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Chapter 17
Boosting Metaheuristic Search Using
Reinforcement Learning

Tony Wauters, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe

Abstract. Many techniques that boost the speed or quality of metaheuristic search
have been reported within literature. The present contribution investigates the rather
rare combination of reinforcement learning and metaheuristics. Reinforcement learn-
ing techniques describe how an autonomous agent can learn from experience. Previ-
ous work has shown that a network of simple reinforcement learning devices based
on learning automata can generate good heuristics for (multi) project scheduling
problems. However, using reinforcement learning to generate heuristics is just one
method of how reinforcement learning can strengthen metaheuristic search. Both
existing and new methodologies to boost metaheuristics using reinforcement learn-
ing are presented together with experiments on actual benchmarks.

17.1 Introduction

Researchers developing search methods to solve combinatorial optimization prob-
lems are faced with a number of challenges. An important challenge is to avoid
convergence to a local optimum. A second challenge is to create a method appli-
cable to different problems of various sizes and properties, while still being able to
produce good quality solutions in a short amount of time. Metaheuristics [17, 30]
and the more recently introduced hyper-heuristics [6] try to address these issues.
Hybrid systems and their various perspectives cope with these challenges even bet-
ter. One possible hybridization, which is the main topic of this contribution, involves
the inclusion of a Reinforcement Learning (RL) [19, 29] component to these meta-
and hyper-heuristic methods. This idea fits in the area of intelligent optimization [2],
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where some intelligent (learning) component aids the optimization method in order
to obtain a better informed search. During the search process a learning component
can adjust parameters or support the optimization method in making decisions. Intel-
ligent optimization can be defined as a combination of techniques from Operations
Research and Artificial Intelligence.

In what follows, several arguments for combining RL and metaheuristics are en-
listed. Reinforcement learning causes the algorithm to be adaptive, and as such it
minimizes the weaknesses of strongly parameterized methods. As long as the al-
gorithm is granted enough time facilitating the learning of valuable information.
Reinforcement learning offers interesting advantages. It does not require a complete
model of the underlying problem. RL methods learn the model by gathering expe-
rience, often referred to as trial-and-error. Many model free RL methods exist. This
is noteworthy since ordinarily no model is available for most combinatorial opti-
mization problems. Some reinforcement learning methods can handle incomplete
information, although this is obviously a much harder learning task. Reinforcement
learning permits applying independent learning agents, and thus, it is applicable for
fully decentralized problems. Furthermore, it is computationally cheap, i.e. often it
uses only a single update formula at each step. Additionally, if only general prob-
lem features and no instance specific features are used, then the learned information
can possibly be transfered to other instances of the same problem. Recently some
type of RL algorithms that are well suited for this task have been introduced, these
are called transfer learning [32, 31]. Lastly, one can build on theoretical properties
showing that many RL methods converge to optimal state-action pairs under certain
conditions (e.g. the policy for choosing the next action is ergodic) [29]. In this chap-
ter we will show that these interesting theoretical properties show good results in
practice.

The remainder of the chapter describes the combination of reinforcement learn-
ing and search in more detail. Section 17.2 gives a short introduction to reinforce-
ment learning and some common RL algorithms. Section 17.3 discusses different
opportunities for combining these two methods. Section 17.4 gives an extensive
literature overview of the combination of learning and search. An example of a suc-
cesfull application of RL is presented in Sect. 17.5. A conclusion and some future
prospects are described in Sect. 17.6.

17.2 Reinforcement Learning

Reinforcement Learning (RL) [19, 29] is the computational task of learning what
action to take in a given situation (state) to achieve one or more goal(s). The learn-
ing process takes place through interaction with an environment (Fig. 17.1), and is
therefore different from supervised learning methods which require a teacher. At
each discrete time step an RL agent receives observations, i.e. an indication of the
current state s. In each state s the agent can take some action a from the set of ac-
tions available in that state. An action a can cause a transition from state s to another
state s′, based on transition probabilities . The environment’s model contains these
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transition probabilities. A numerical reward signal r is returned to the agent to in-
form the RL agent about the ‘goodness’ of its actions or the intrinsic desirability
of a state. The reward signal is also a part of the model of the environment. An RL
agent searches for the optimal policy. A policy π maps states to actions or action
probabilities. π (s,a) denotes the probability that action a is selected in state s. An
RL agent wants to maximize the expected sum of future rewards. When an infinite
horizon is assumed, the discount factor γ is used to discount these future rewards.
As such, less importance is given to rewards further into the future.

RL agent Environment

Action a

Reward signal r

Observation of current state s

Fig. 17.1 The basic reinforcement learning model

One of the main issues in RL is balancing exploration and exploitation, i.e.
whether to use the already gathered experience or to gather new experience. An-
other important issue is the credit assignment problem, where one have to deal with
delayed rewards, and thus which action should receive credit for a given reward.
The latter property is currently getting few attention in hybrid RL inspired search
methods.

17.2.1 Policy Iteration Methods

When an RL method searches directly for the optimal policy in the space of policies
it is called a policy iteration method. Learning Automata (LA) [24, 33] belong to
this category. Other methods belonging to this type of RL algorithms are the policy
gradient methods, like the REINFORCE algorithm [39]. LA are simple reinforce-
ment learning devices that take actions in single state environments. A single learn-
ing automaton maintains an action probability distribution p, which it updates using
some specific learning algorithm or reinforcement scheme. Several reinforcement
schemes are available in the literature with varying convergence properties. These
schemes use information from a reinforcement signal provided by the environment,
and thus the LA operates with its environment in a feedback loop. Examples of
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linear reinforcement schemes are linear reward-penalty, linear reward-inaction and
linear reward-ε-penalty. The philosophy of these schemes is to increase the proba-
bility of selecting an action in the event of success and decrease it when the response
is a failure. The general update scheme is given by:

pm(t + 1) = pm(t)+αreward(1−β (t))(1− pm(t))

− αpenaltyβ (t)pm(t) (17.1)

if am is the action taken at time t

p j(t + 1) = p j(t)−αreward(1−β (t))p j(t)

+ αpenaltyβ (t)[(r− 1)−1− p j(t)] (17.2)

if a j �= am

With pi(t) the probability of selecting action i at time step t. The constants αreward

en αpenalty are the reward and penalty parameters. When αreward =αpenalty, the algo-
rithm is referred to as linear reward-penalty (LR−P), when αpenalty = 0, it is referred
to as linear reward-inaction (LR−I) and when αpenalty is small compared to αreward ,
it is called linear reward-ε-penalty (LR−εP). β (t) is the reward received by the rein-
forcement signal for an action taken at time step t. r is the number of actions.

17.2.2 Value Iteration Methods

Value iteration methods are more common than policy iteration methods. Value it-
eration methods do not directly search for optimal policy, instead they are learning
evaluation functions for states or state-action pairs. Evaluation functions, as in the
popular Q-learning algorithm [35, 34], can be used to evaluate the quality of a state-
action pair. The Q-learning algorithm maintains an action-value function called Q-
values. The Q-learning update rule is defined by

Q(s,a) = Q(s,a)+α
[

r+ γ max
a′

Q(s′,a′)−Q(s,a)

]

, (17.3)

where s is the previous state, s′ the new state, a the action taken in state s, a′ a
possible action in state s′, r the received reward, α the learning rate or step size,
and γ the discount rate which indicates the importance of future rewards. In many
cases the number of states or state-action pairs is too large to store, and thus the
(action)-value function must be approximated. Often an artificial neural network is
used to accomplish this task, but any linear or nonlinear function approximation
can be used. Q-learning is known as a Temporal Difference (TD) learning method,
because the update rule uses the difference between the new estimate and the old
estimate of the value function. Other common TD methods are SARSA [27, 28] and
TD(λ ) [35].
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17.2.3 Relationships between Reinforcement Learning and
Metaheuristics

The link between reinforcement learning and search algorithms is not tenuous.
Given a state space, an action space and a reward function, then the reinforcement
learning problem can be reduced to a search in the space of policies. Thus similar
issues like exploration and exploitation are faced, often called diversification and
intensification in metaheuristic literature.

Unlike the subject of the present chapter where (reinforcement) learning methods
are used to support metaheuristic search, there are methods which do exactly the
opposite, and thus are using metaheuristic methods to improve learning. [3] show
this interplay between optimization and machine learning.

17.3 Opportunities for Learning

Reinforcement learning methods can be utilized in a variety of ways to boost meta-
heuristic or hyper-heuristic search. Learning may help to find good settings for var-
ious parameters or components. For example, RL methods can learn properties of
good starting solutions or an objective function that guides a metaheuristic towards
good quality solutions. Such an approach is adopted in [4, 5], where a function is
learned that is able to guide the search to good starting solutions. Another compo-
nent on which learning can be applied is the neighborhood or heuristic selection.
A learning method can learn which ones are the best neighborhoods or heuristics
to construct or change a solution at any time during the search, such that in the
end good quality solutions can be generated. Such an approach is applied in [40]
and [25]. When a classical hyper-heuristic with acceptance and selection mecha-
nism is used learning can be applied to both mechanisms. A learning method can
learn to select the low-level heuristics (e.g. in [7] and [22]), or it can ascertain when
to accept a move. To summarize, the possible involved components include but are
not limited to:

• starting solution,
• objective function,
• neighborhoods or heuristics selection,
• acceptance of new solutions/moves.

All these parameters or components can be updated by the RL algorithm in an adap-
tive way.

Alternatively RL methods can also be applied directly to solve optimization prob-
lems. In other words, they are not hybridized but are themselves used as a meta-
heuristic. The RL method learns and directly assigns the values of the variables.
Such approaches are investigated in [16], [21], [36] and [37].

A possible indication for the inclusion of RL in a search algorithm is the pres-
ence of a random component. By replacing this random component with an RL
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component the algorithm develops a more intelligent decision mechanism. For ex-
ample in a hyper-heuristic with a simple-random selection step, the selection can be
replaced by some RL method like the one presented by [22].

Yet another opportunity for learning arises both when either the problem is in-
trinsically distributed or can be split into several subproblems. Examples of such
include distributed scheduling and planning problems such as the decentralized
resource-constrained multi-project scheduling problem (DRCMPSP) [9] and [18].
This problem considers scheduling multiple projects simultaneously, with each
project having multiple jobs. A job requires local or global resources, which are
available for either all jobs in the project or have to be shared among all projects
respectively. Some local objectives can be optimized, for example the makespan of
the individual projects, whereas global objectives, such as the average project delay
or the total makespan, can be minimized. For this kind of problems multi-agent re-
inforcement learning methods are appropriate. When one or more global objectives
need to be optimized the agents share a common goal and can thus be cooperative.
The agents have to coordinate to jointly improve their decisions. Using a common
reward one can simply but effectively coordinate the agents’ decisions. Through
sharing one reward signal the agents coordinate their decisions. This approach is
applied in [36] for the DRCMPSP.

17.3.1 States and Actions

Before applying RL to a problem, the set of possible states and the set of possible
actions available in each state, have to be defined. Many possible ways exist to
accomplish this. First of all we can make a distinction between search-dependent,
problem-dependent and instance-dependent state space definitions. A search-
dependent state space definition uses observations of the search process itself, such
as the current iteration, the number of successive non-improving iterations, or the
total improvement over the initial solution. A problem-dependent setting is de-
fined by the usage of generic problem features, like the Resource Dilation Factor
for scheduling problems, as defined by [14]. An instance-dependent setting uses
instance-specific features, like the number of tardy jobs in a scheduling problem,
or the number of full bins in a bin-packing problem. Combinations of these three
settings are also possible. When a problem-dependent or a search-dependent state
space definition is used, the learned information can possibly be transfered to other
instances of the same problem, or even to other problems. In many cases the prop-
erties of the solutions to the optimization problem itself cannot be used directly,
due to the curse of dimensionality. Better is to use some extracted problem features.
Take for example a TSP problem. If one should use the encoding of a complete tour
directly as the state, then the number of states grows exponentially, i.e. n! with n the
number of states.

The set of possible actions in each state is defined by the set of parameters or
components of the metaheuristic that one wants to learn.
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17.3.2 Reward Function

Experience gathering is a prerequisite to learning, which can be achieved either on-
line or offline. Experience in combinatorial optimization problems is scarce. Often
only a single numerical value is available, indicating the quality of a complete so-
lution. However, reward functions are very important for an RL method in order
to learn some valuable information. As stated in [14], there are three requirements
that a reward function should satisfy. First of all, it should give higher rewards to
better solutions. Secondly, it should encourage the reinforcement learning system
to find efficient search policies, i.e. search policies that involve only a few steps.
Thirdly, it should be a normalized measure, in order to be transferred to new prob-
lem instances. A fourth requirement may be added; that it should be computationally
efficient. When designing a reward function for a hybrid RL-metaheuristic method
we do take into account these four requirements.

17.4 Literature Overview

The combination of metaheuristics or hyper-heuristics and (reinforcement) learning
is relatively new. Only a limited number of papers describe a combination of the two
domains. Applied problem domains include scheduling, packing and routing. Table
17.1 compares these methods by the used RL-method, metaheuristic and involved
component.

One of the first papers covering the combination of learning and metaheuristic
search is [40]. A reinforcement learning method is applied to learn domain-specific
heuristics for the NASA space shuttle payload processing problem, which is mod-
eled as a job shop scheduling problem. A value function is learned offline using a
temporal difference algorithm TD(λ ) together with a neural network. General fea-
tures of the schedules (solutions) such as the percentage of the time units with a
violation are used to represent a state. The possible actions are taken from a set of
repair heuristics. After learning the value function on a number of small problem in-
stances, it is used over multiple instances of the same problem. The TD algorithm is
compared to an existing method for the problem, i.e. an iterative repair method with
simulated annealing. The reinforcement learning based method outperforms the it-
erative repair method. It is noteworthy that the value functions that were learned
on small problem instances also have a very good performance on larger instances.
In [14] a more detailed description and application of this approach is given.

Another early contribution to the application of RL for solving combinatorial
optimization problems can be found in [16]. The paper describes the Ant-Q al-
gorithm, which combines the Ant System and the Q-Learning algorithm, and has
been successfully applied to the Asymmetric Traveling Salesman Problem (ATSP).
Ant System is based on the observation of ant colonies behaviour. Each ant from a
colony constructs a solution for the ATSP, called a tour. The method uses a mod-
ified version of Q-values, called AQ-values. These AQ-values are updated using
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a Q-learning update rule. The delayed reward, which is calculated when each ant
completes a tour, is based on the best tour of the current iteration or on the best tour
from all past iterations, taking into account each ant. The Ant-Q algorithm shows
an interesting property. It was observed that the Ant-Q agents do not make the same
tour, demonstrating the explorative character of the search method.

[21] present an algorithm that combines reinforcement learning with genetic
algorithms for the Asymmetric Traveling Salesman Problem (ATSP) and Quadratic
Assignment Problem (QAP). For the ATSP a Q-learning [35, 34] method is used to
both express and update the desirability of choosing city a after city b. A state is
a city, and an action is another city following the aforementioned city in the tour.
A population of RL agents with desirability values (Q-values) is formed, with each
agent holding one solution. The offspring is constructed by replicating solution parts
from one parent and filling in the other parts using the desirability values (updated
by a q-learning update rule) of the other parent, rather than the traditional genetic
crossover operators method. As a reward a weighted combination of immediate and
global rewards based on the tour lengths of the new solution and the solutions of
the parents is used. The QAP is solved using a simplified update rule, that does
not require a particular order as opposed to the q-learning update rule. Competitive
results are shown for both addressed problems.

[4] and [5] describe the STAGE algorithm, which searches for good quality so-
lution using two alternating phases. The first phase runs a local search method, e.g.
hillclimbing or simulated annealing from a starting solution until a local optimum is
reached. During this phase, the search trajectory is analyzed and used for learning
an evaluation function. This is achieved by training a linear or quadratic regression
method using the properties or features of the visited solutions and the objective
function value of the local optimum. The authors point out that in some conditions
a reinforcement learning method like TD(λ ) of the temporal-difference algorithms
may make better use of the training data, converge faster, and use less memory
during training. The second phase performs hillclimbing on the learned evaluation
function to reach a new starting solution for the first phase. This phase enables the al-
gorithm to learn to find good starting solutions for a local search method. Empirical
results are provided on seven large-scale optimization domains, e.g. bin-packing,
channel routing, . . . This demonstrates the ability of the STAGE algorithm to per-
form well on many problems.

[23] combine aspects taken from the research by [40], [4] and [5]. A reinforce-
ment learning algorithm TD(λ ) is applied to learn a value function in an offline
training phase, and then uses this learned value function to solve other instances
of the same problem. This method also uses features of solutions for representing
a state. A linear function approximation algorithm is used. The method is applied
to the dial-a-ride problem, and was compared to both the STAGE algorithm, and a
2-opt and 3-opt local search method. The method performs better than 2-opt and
STAGE if the same calculation time is used. It was not as performant as 3-opt, but
was a lot faster.
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[25] describes a non-stationary reinforcement learning method for choosing
search heuristics. At each decision point weights are used to select the search heuris-
tics via a probabilistic selection rule (softmax) or by randomly selecting among the
choices with maximal value. Based on the increase/decrease of the objective func-
tion the weights of the search heuristics are updated using simple positive/negative
reinforcement rules (e.g. incrementing/decrementing the weight value). Different
selection and reinforcement method combinations are tested on two types of prob-
lems - the Orc Quest problem and problems from the Logistics Domain bench-
mark. The author concludes that a weak positive reinforcement rule combined with
a strong negative reinforcement rule works best on the tested problems.

[7] present a hyper-heuristic in which the selection of low-level heuristics
makes use of basic reinforcement learning principles combined with a tabu-search
mechanism. The reinforcements are performed by increasing/decreasing the rank
of the low-level heuristics when the objective function value improves/worsens.
The hyper-heuristic was evaluated on various instances of two distinct timetabling
and rostering problems and showed to be competitive with the state-of-the-art ap-
proaches. The paper states that a key ingredient in implementing a hyper-heuristic
is the learning mechanism.

An interesting study on memory length in learning hyper-heuristics is performed
in [1]. Utility values or weights are used to select the low-level heuristics, similar
to [25] and [7]. A dsicount factor is added to this mechanism to discount rewards
later on in the search process, and thus obtaining a short term memory. The results
obtained on a course timetabling problem show that a short term memory can pro-
duce better results than both no memory and infinite memory.

[15] gives an extensive overview of single and multi-agent RL approaches for
distributed job-shop scheduling problems. Both value function-based and policy
search-based RL methods are discussed, including policy gradient RL methods and
Q-learning.

[26] present a hyper-heuristic with an RL selection mechanism and a great-
deluge acceptance method for the examination timetabling problem. A set of exams
must be assigned a timeslot and possibly a room while respecting a number of hard
and soft constraints, such as the room capacity. An RL method based on utility val-
ues with simple update rules is used, similar to what was presented in [25]. The
idea is that a heuristic is selected when it results in a lot of improving moves, and
thus has a higher utility value. When a heuristic i results in an improving move the
utility value ui of that heuristic is incremented, and in case of a worsening move the
utility value is lowered using three different rules, namely subtractive (ui = ui− 1),
divisional (ui = ui/2) and root (ui =

√
ui). Upper and lower bounds are applied to

the utility values to encourage exploration in further steps. Experiments are per-
formed with different settings for the selection of the heuristics, the upper and lower
bound, and the negative utility adaptation mechanism. The setting with a maximal
selection (i.e. selecting the heuristic with a maximal utility value) and subtractive
negative utility adaption mechanism performed the best. The method improves the
performance of a non learning simple-random great-deluge hyper-heuristic on the
examination timetabling problem.
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Fig. 17.2 Multi-agent system employed to solve the decentralized resource-constrained
multi-project scheduling problem

Recently, learning automata have been introduced to solve combinatorial opti-
mization problems. [22] present a heuristic selection method for hyper-heuristics,
which they have applied to the traveling tournament problem. Instead of using sim-
ple reinforcement rules, a learning automaton was used for the selection. [38] de-
scribe the combination of a genetic algorithm and learning automata to solve the
Multi-Mode Resource-Constrained Project Scheduling Problem (MRCPSP). The
GA is applied to find good activity orders, while the LA are used to find good modes,
a mode being an important decision variable of the scheduling problem. This work is
extended in [37] where the GA is replaced by a network of learning automata [33].
All decision variables (i.e. activity order and modes) of the scheduling problem
(MRCPSP) are now directly chosen by multiple LA. The method produces state-of-
the-art results for the MRCPSP. [36] follow a very similar approach for the Decen-
tralized Resource-Constrained Multi-Project Scheduling Problem (DRCMPSP). In
the DRCMPSP multiple projects are scheduled factoring in the availability of both
private and shared resources, while a global objective, i.e. the average project delay,
is optimized. A network of learning automata searches for activity orders result-
ing in good schedules for each single project, while a dispersion game is employed
to coordinate the projects. Figure 17.2 shows the multi-agent system with project
managers and network of LA for solving the DRCMPSP, as applied by [36]. One
motivating factor for organizing the activities in a project as learning automata is that
theoretical convergence properties hold in both single and multi automata environ-
ments. One of the foundations for LA theory is that a set of decentralized learning
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automata using the reward-inaction update scheme is able to control a finite Markov
Chain with unknown transition probabilities and rewards. In [20], this result was ex-
tended to the framework of Markov Games. That is a straightforward extension of
single-agent markov decision problems (MDP’s) to distributed multi-agent decision
problems. However, the convergence properties fail to hold here since the activity-
on-node model does not bear the Markov property. Good results can be achieved
with the network of LA in the single project scheduling scheme [37]. The methods
aforementioned are added to the bottom of Table 17.1.

One might notice that most early hybrid RL-metaheuristic methods use RL al-
gorithms as Q-learning and TD(λ ) which make use of delayed rewards. Recent
methods, most of them applied to hyper-heuristics, are using a more simple RL
mechanism based on utility values operating in a single state environment, and thus
they do not benefit the full power of RL which deals with the problem of delayed
rewards and the credit assignment problem.

17.5 Best Practices

As a simple illustration of hybrid RL based systems we introduce a new learning
method (LA-ILTA) using RL and show how to boost an exiting acceptance mech-
anism (ILTA), which was recently published [22]. We discuss possible overheads,
such as extra parameters belonging to the learning components and time overhead.

17.5.1 LA-ILTA

Iteration Limited threshold acceptance (ILTA) is an acceptance mechanism for
meta- and hyper-heuristics, introduced by [22]. ILTA is based on the improving
or equal (IE) acceptance criterion, which only accepts non-worsening moves. Like
every good acceptance criterion, ILTA tries to efficiently balance intensification and
diversification. In addition to IE, ILTA accepts worsening moves under certain con-
ditions, i.e. it accepts a move if k consecutive worsening moves are generated, and
the new solution’s fitness is within a certain range R of the current best solution’s
fitness. These two parameters k and R are fixed during the complete search. We now
propose a method, called LA-ILTA, which uses RL and more specifically Learning
Automata to adaptively change and learn good parameter values for ILTA. We have
chosen to learn the R values, based on the place in the search process (e.g. beginning,
middle or end of the search). The method thus belongs to the category of methods
that use a search-dependent state space representation. We first define the state and
action spaces for the RL component. We divide the search process into 10 separate
periods, each one lasting 10% of the search duration. The start of each period is a
state. We define the R values to be the actions possibly in each state. Thus a chosen R
value is used for the next 10% of the search. The chosen discrete R values (and thus
actions) are {1.0,1.1,1.2,1.3,1.4,1.5}. In total we have 10 states and 6 actions. The
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reward function, which expresses the learning goal, is the percentage improvement
realized by using the chosen R value in the past search moment. In each state we use
one learning automaton with LRI update scheme to select the R values. LA-ILTA is
applied to the Patient Admission Scheduling (PAS) problem [12, 13]. Current best
results are presented in [8]. Patients in a hospital have to be assigned to beds such
that multiple hard and soft constraints regarding hospital regulations and patient
preferences are met. A weighted objective function including a term for each soft
constraint must be minimized. Thirteen problem instances are available [11].

We perform the following experiment. For each PAS problem instance we com-
pare the learning LA-ILTA method to the static ILTA. For the LA-ILTA method
we perform 1000 learning runs, each run from a different starting solution. Then
we perform 1000 validation runs also starting from different starting solutions. For
ILTA we perform only 1000 validation runs because ILTA does not include learning.
We run ILTA for each static R setting {1.0,1.1,1.2,1.3,1.4,1.5}. During these ex-
periments all runs perform 500,000 iterations and the k value was fixed to 100. The
LA use a learning rate αreward = 0.1 and a linear reward-inaction update scheme.
Table 17.2 shows the results of these experiments on the second problem instance
of the PAS problem. A comparison is made between LA-ILTA and six static ILTA
versions in terms of best, average and worst objective function value over 1000 val-
idation runs. It is clear that the static ILTA with R = 1.0 outperforms the other static
ILTA versions. However, the learning LA-ILTA method which learns a parameter
setting that is dependent on the current search progress performs even better, and
thus boosts the original ILTA method. All methods started from the same set of
1000 initial solutions. Similar results were obtained for the other problem instances.

Figure 17.3 shows the evolution of the objective function value over the 1000 val-
idation runs for LA-ILTA on the second PAS problem instance. A moving average
is also shown. The figure clearly shows that solutions with better objective values
are reached when more learning runs are performed.

When we examine the learned policy of the LA-ILTA method, we notice that it
favours higher R values (1.5) at the start of the search and lower R values (1.0) for
the rest of the search progress. A transition from 1.5 to 1.0 is observed early in the
search. In the beginning the learned policy allows for a lot of diversification, while
later on it chooses to have more intensification. We can find a similar diversifica-
tion/intensification strategy in the popular simulated annealing acceptance criterion.
Figure 17.4 shows the evolution of the selected R values for the first 10% (state 1),
middle 10% (state 5), and last 10% (state 10) of the search. The evolution in states
2, 3, 4, 6, 7 and 8 are ommitted from the figure for clarity. The R value for the first

Table 17.2 LA-ILTA compared to six static ILTA versions over 1000 validation runs on the
second PAS problem instance

LA-ILTA ILTA-1.0 ILTA-1.1 ILTA-1.2 ILTA-1.3 ILTA-1.4 ILTA-1.5
Best obj. 14898 14960 24168 24656 24998 25220 25884
Average obj. 16200.1 16233.9 26796.9 27732.1 27746.4 27964.4 28610.4
Worst obj. 17776 18100 29272 30448 30268 30300 30842
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Fig. 17.3 Learning curve for LA-ILTA on the second PAS problem instance

part of the search converges rapidly to a value of 1.5, which is the highest value in
the range. The middle and the last state move towards a value of 1.0, but the value
for the middle state converges faster than the last state, be it slower than the first
state. In general, learning in the first states goes faster than in the last states, because
more information is available in the beginning of the search than at the end. This
idea was also discussed in [1].

We also have applied LA-ILTA to other problems, such as the Edge Matching
Puzzle (EMP) problem [10]. The problem consists of placing n× n square tiles on
a board of size n× n. A tile has four edges, each edge containing a pattern from a
set of available patterns. All tiles must be rotated and placed on the board, such that
the shared edge between neighboring tiles has a matching pattern. A special pattern
(pattern 0) must only occur on the outer edges of the board. Figure 17.5 shows the
results of LA-ILTA over 1000 validation runs on an Edge Matching Puzzle problem
of size 10×10. Each run performing 100,000 iterations. The LA use a learning rate
αreward = 0.1 and a linear reward-inaction update scheme. Higher scores are better.
The LA-ILTA method is at least as good as the best static ILTA methods. The learned
policy shows similar characteristics as the learned policy on the PAS problems, i.e.
high diversification in the beginning of the search process and more intensification
at the end. However, unlike in the PAS experiments, the diversification does not fade
away completely.
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17.5.2 Learning Rate

By using RL algorithms we introduce some new parameters, including for example
the learning rate, the update scheme, etc. In the following experiment we study the
influence of the learning rate. This parameter determines how fast the learning will
proceed.

Figure 17.6 shows the learning curve (as a moving average over 20 runs) for
LA-ILTA with different learning rates αreward = {0.5,0.1,0.05,0.01}. The second
PAS problem instance was used, but again similar results were observed on the
other instances. The figure shows, as expected, that a higher learning rate (αreward =
0.5) leads to much faster convergence than a low learning rate (αreward = 0.01). In
this example all except one learning methods converged to a similar strategy when
they were given enough time to converge. The highest learning rate (αreward = 0.5)
converged to a slightly different R value for the first phase. High learning rates can
converge too quickly and reach a suboptimal policy. In order to select an appropriate
learning rate one can count how many times each action was tried. If all actions
were performed a significant number of times, then the learning rate appears to be
low enough to avoid premature convergence. The influence of the learning rate on
the results of a hybrid RL-metaheuristic method has to be carefully examined in the
future.
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Fig. 17.6 The learning curve (moving average over 20 runs) for LA-ILTA with different
learning rates αreward = {0.5,0.1,0.05,0.01} on the second PAS problem instance
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Table 17.3 Average calculation time overhead in percentage introduced by the LA-ILTA
method. Tested on 12 PAS problem instances and the eternity 2 puzzle problem.

PAS1 PAS2 PAS3 PAS4 PAS5 PAS6 PAS7 PAS8 PAS9 PAS10 PAS11 PAS12 EMP
0.41% 2.65% 1.45% 2.45% 0.38% 1.35% 4.68% 7.00% 5.40% 5.84% 9.58% 8.11% 0.31 %

17.5.3 Calculation Time Overhead

In this experiment we will investigate the calculation time overhead introduced by
the reinforcement learning component. Table 17.3 shows the average calculation
time overhead in % introduced by the reinforcement learning component in the LA-
ILTA method on 12 PAS problem instances and an edge matching puzzle (EMP)
problem instance of size 16 by 16. The LA-ILTA method uses 10 LRI learning au-
tomata, each having 6 actions. The results in the table show that the RL component
never introduces more than 10% overhead to the calculation time. The overhead
is hard to measure, since it is subject to various factors, such as implementation
details, the metaheuristic, the RL method, the problem type and the problem size.
The calculation time of the RL methods are mostly determined by the number of
actions which can be selected at each decision point. Figure 17.7 shows the calcu-
lation time in milliseconds to perform 1 million selections and updates for an LRI
learning automaton on a modern desktop pc with Intel Core I7-2600 3.4Ghz CPU.
The calculation time grows linearly with the number of actions. For good perfor-
mance, one should keep the number of actions as small as possible. The number of
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Fig. 17.7 Calculation time in ms for an LRI learning automaton to perform 1 million selec-
tions and updates, for a varying number of actions
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states has no impact on the calculation time, since only one state is being updated at
a time. However, the number of state transitions determines how many action selec-
tions and updates are performed, and thus affects the calculation time. The memory
requirements on the other hand are determined by the product of the number of
states and the number of actions.

17.6 Conclusion and Suggestions for Future Research

In the present chapter we have discussed the combination of reinforcement
learning and metaheuristic search. This hybridization of two well studied research
topics shows some promising methods and many opportunities for future research
directions. We have discussed some main reinforcement learning components in de-
tail, together with a literature overview on hybrid RL-metaheuristic methods. We
have illustrated some examples where learning automata are able to boost the per-
formance of metaheuristic search. An example of a new application of reinforce-
ment learning to meta- or hyper-heuristic methods is also given, i.e. a learning
acceptance method called LA-ILTA. LA-ILTA uses several learning automata to
learn a search-dependent parameter value, which was used in an existent accep-
tance method (ILTA). This simple method was able to boost the results of the orig-
inal ILTA on two tested benchmark problems, i.e. the patient admission scheduling
problem and the edge matching puzzle problem. The overhead in terms of calcu-
lation time and extra parameters introduced by the RL components was studied.
We have shown that simple RL methods, called learning automata, introduce little
overhead.

Academics in the metaheuristic community are searching for advanced meta-
heuristics which enforce a particular behaviour during search. This behaviour is
often determined by parameter settings which require extensive fine-tuning for each
different problem. Metaheuristics equipped with (reinforcement) learning are capa-
ble of finding such a well performing behaviour themselves. Reinforcement learning
methods are easy to apply. Because they make use of simple update rules, they re-
quire little extra calculation time.

Interesting directions for future research include; new RL-metaheuristic
hybridizations, the usage of transfer learning methods in metaheuristic search, si-
multaneous learning of multiple parameters/components, multi-agent RL for decen-
tralized problems, and RL for multi-objective optimization. To give a better boost to
metaheuristic search, the full power of RL should be used, i.e. incorporate a mech-
anism of delayed reward or go beyond single state learning.
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