
Chapter 9
Ant Colony Based Algorithms
for Dynamic Optimization Problems

Guillermo Leguizamón and Enrique Alba

Abstract. The use of metaheuristic approaches to deal with dynamic optimization
problems has been largely studied, being evolutionary techniques the more widely
used and assessed techniques. Nevertheless, successful applications coming from
other nature-inspired metaheuristics, e.g., ant algorithms, have also shown their ap-
plicability in dynamic optimization problems, but received a limited attention un-
til now. Different from perturbative techniques, ant algorithms use a set of agents
which evolve in an environment to construct one solution. They cooperate by means
of asynchronous communications based on numerical information laid on an en-
vironment. This environment is often modeled by a graph which constitutes a for-
malism with a great expressiveness, specially well-suited for dynamic optimization
problems. A solution could be a structure like a subgraph, a route, a short path, a
spanning tree, or even a partition of vertices. In this chapter we present a general
overview of the more relevant works regarding the application of ant colony based
algorithms for dynamic optimization problems. We will also highlight the mecha-
nisms used in different implementations found in the literature, and thus show the
potential of this kind of algorithms for research in this area.

9.1 Introduction

Metaheuristic techniques have widely proved to be suitable approaches for dynamic
environments. In this regard, it should be noticed that Evolutionary Algorithms
(AEs) are without any doubt the pioneer and more widely used metaheuristic [30].
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However, Ant Colony Optimization (ACO) metaheuristic has also shown to be an
efficient candidate to deal with this kind of problem [35]. In a broad sense, ACO [17]
refers to a class of algorithms whose design is mainly based on the foraging beha-
vior of real ants, being the more representative ACO algorithms those designed for
solving a certain type of combinatorial optimization problem: those problems for
which a solution is obtained by simulating a walk through a construction graph.
One of the more studied problems under the above (original) vision of ACO al-
gorithms is the Traveling Salesperson Problem (TSP), a well-known and classical
NP-complete problem that owns important features that can be easily exploited to
show the applicability of this metaheuristic. Several ACO algorithms were designed
since the publication of the first ACO, the so-called Ant System (AS) by Dorigo et
al. [16]. These algorithms include (see Figure 9.1 where each algorithm name in-
cludes the main keyword that respectively defines it) [17]: elitist-AS (an AS with an
elitist strategy for updating the pheromone trail levels), AS rank (a rank-based ver-
sion of Ant System), MAX-MIN Ant System (an AS that incorporates a mechanism
to control the pheromone levels), the Ant Colony System (ACS) (a more advanced
ACO algorithm with a modified transition rule, with local and global pheromone
update), the Best-Worst Ant System (an extended AS characterized by integrating
some components taken from evolutionary computation), ANTS (an AS that uses
lower bounds on the completion of a partial solution to derive the heuristic desira-
bility), and ANT-Q (a version of an AS that combines concepts of the reinforce-
ment learning theory). Many of them were initially applied to TSP and also to the
Quadratic Assignment Problem (QAP) [34]. After that, many other variants of these
algorithms have been proposed in the literature. However, not all of them strictly fo-
llow the standard design principles given for the ACO metaheuristic in [17]. Instead,
these algorithms follow in many different ways the metaphor of the ants behavior
(foraging or some other) as a general framework which let the researcher broaden
the field of application of this nature-inspired approach. In a more general sense,
algorithms that follow in some way the above mentioned metaphor could be called
Ant Colony Based algorithms (ACB).

Ant colony based algorithms have proven to be successfully applied to many
different real world and academic problems that include combinatorial optimization
problems, continuous domains, and also dynamic optimization problems (DOPs),
the kind of problems and applications considered in the current chapter.

The rest of the chapter is organized as follows. The next section describes the
ACO metaheuristic as the more representative ant colony based algorithm. Sec-
tion 9.3 gives a general description of the type of dynamic problems usually found in
the literature, as well as in real-world applications. Section 9.4 presents the mech-
anisms used in ACB algorithms to deal with dynamic problems, and a survey of
the works in the literature. The last section contains some conclusions and outlines
some future challenges.
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Fig. 9.1 The most representative and widely used algorithms based on the ACO
metaheuristic.

9.2 Ant Colony Optimization

As mentioned earlier in this chapter, ant colony based algorithms involve a broad
class of optimization algorithms designed under the metaphor of real ants behavior.
More precisely, ant colonies are social insect societies that can be considered dis-
tributed systems composed of simple interacting individuals. From the interaction
between those individuals, a complex and highly structured social organization
arises. Different types of ant colonies self-organize according to a particular beha-
vior, e.g., foraging, division of labor, brood sorting, and cooperative transport. In
the case of foraging ants, as well for the remaining behaviors, the activities are co-
ordinated through indirect communication known as stigmergy [23]. A foraging ant
deposits a chemical substance (pheromone trail) on the ground to communicate to
other ants the desirability of following a particular path. At the same time, as more
intense is the pheromone trail sensed on the ground, more amount of the chemical
substance is deposited by a particular ant. From this autocatalytic or positive feed-
back process emerges a self-organized system in which the shortest paths connect-
ing the nest and the food source remain candidates to follow by the whole colony.
In addition to the above, it is worth noticing that an evaporation process occurs in
the environment which helps the colony to keep the exploration capabilities during
the search of alternative paths to the food source.

The foraging ants behavior just described as well as other types of behavior are
taken as useful metaphors to design optimization and search algorithms under diffe-
rent names. In this work we adopted the definition of the Ant Colony Optimiza-
tion (ACO) metaheuristic, as given by Dorigo and Stützle [17], which is the clas-
sical and more widely used formulation for this type of algorithms. Nevertheless,
other ant colony based algorithms that not strictly follow the definition of the ACO
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Fig. 9.2 A general overview of the behavior of an ACO algorithm: pheromone trail plus
heuristic information are used to find the probabilistic distribution to generate new solutions.
These new solutions are then used to update pheromone trails to bias the search for the next
iterations.

metaheuristic will be also described in further sections. It is well-known that ACO
is one of the most representative metaheuristics derived from the broad concept
known as swarm intelligence, where the behavior of social insects is the main source
of inspiration. As a typical swarm intelligence approach, the ACO metaheuristic
is mainly characterized by its distributiveness, flexibility, capacity of interaction
among simple agents, and its robustness.

ACO algorithms (in the standard version) generate solutions for an optimization
problem by a construction mechanism where the selection of the solution compo-
nent to be added at each step is probabilistically influenced by pheromone trails and
(in most of the cases) heuristic information. Thus, the solution construction process
is mainly influenced by pheromone trails and heuristic information1 from which a
probabilistic model is evolved to guide to exploration of the search space.

This means that the construction process probabilistically builds step by step the
problem solutions and the probabilistic model has a feedback for its modification
based on the solutions found. Figure 9.2 displays a general overview of an ACO
algorithm. Heuristic information plus pheromone values are used to find a proba-
bility distribution over the search space. Initial pheromone values are in general set
to a constant value, thus, at the first iterations the algorithm is highly explorative.

1 The use of heuristic information is not mandatory, if used, this information is also taken
into account to build a probabilistic model.
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The probability distribution is then used to sample new solutions to the problem at
hand. According to some criterion, all or a subset of these new solutions are involved
in the pheromone update process. As the cycle displayed in Figure 9.2 is repeated,
the pheromone values will bias the search to specific regions of the search space as
it directly influences the probability distribution.

Although the application domains of ACO algorithms are certainly diverse, the
more and well-known field is that related to combinatorial optimization problems
like TSP [15, 16], QAP [21, 44], and Vehicle Routing Problem (VRP) [12, 41].
Thus, we present in the following some important considerations when applying
this kind of algorithm to discrete problems as the mentioned above.

First of all, it is necessary to define an appropriate problem representation. In the
jargon of ACO metaheuristic, this means to properly define:

(i) the construction graph and the way this represents the different problem com-
ponents and connections among them,

(ii) the definition (if any) of the problem information to be exploited,
(iii) the behavior of the artificial ants, in the sense of how each ant will walk

through the construction graph to build the corresponding solutions.

Algorithm 9.1. ACO algorithm
1: Init();
2: while not (termination-condition) do
3: Build-Sols-Step-by-Step();
4: Pheromone-Update();
5: Daemon-Actions(); // Optional step
6: end while

A general design of an ACO algorithm (as showed in Algorithm 9.1) includes
a set of four main activities (or steps) that define this iterative search technique. It
must be noticed that variations of the way these activities are implemented define
the kind of ACO Algorithm. For example, a variation on the activity Pheromone-
Update() will mainly define Algorithm 9.1 as an Ant System (AS), elitist-AS, AS-
rank, MAX-MIN Ant System, or an ACS (in this last case, Build-Sols-Step-by-Step()
activity also involves a local pheromone update step). Also, any other ant colony
based algorithm not necessarily fitting exactly in the canonical definition of those
algorithms could be included in the family of ACO algorithms. Nevertheless, the
activities in Algorithm 9.1 can be described in a general way in the following. To
do that we assume an Ant System applied to TSP, thus the problem components are
cities and connections (routes) between them. The connections have an associated
value, e.g., distance between cities or cost to travel from one city to another:

• Init(): As in any typical population-based algorithm, some basic tasks need to be
done before starting the exploration of the search space. In this case, the initia-
lization of pheromone trail matrix which at time 0 is:
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τi j(0) = τ0, for i, j ∈ {1, . . . ,n}, (9.1)

where n represents the problem size and τ0 is a small constant value (e.g., the fol-
lowing value is suggested for TSP in [17]: τ0 = m/Cnn, where m is the number
of ants, and Cnn is the length of a tour generated by the nearest-neighbor heuris-
tic). Also the heuristic values (represented by η symbol) are calculated (when
available and used) and any other structure, necessary to complete the problem
representation, is initialized.

• Build-Sols-Step-by-Step(): This activity involves the release of an independent
colony of artificial ants in charge of incrementally building a solution to the prob-
lem. Each ant, at each step of the construction process, makes a local stochastic
decision about the next component to be included in the solution under construc-
tion. For example, for an Ant System applied to TSP, the decision of adding city
j (problem component) to the solution under construction when city i was the
last visited is given by:

pk
i j =

⎧⎨
⎩

τi j(t)α ηβ
i j

∑h∈N k(i)
τih(t)α ηβ

ih

if j ∈N k(i)

0 otherwise,
(9.2)

where α and β are the parameters that, respectively represent the importance
of the pheromone trail (τi j(t)) and the heuristic information (ηi j), and N k(i)
represents the set of cities that can be visited by ant k, i.e., the feasible or unvisited
cities.

• Pheromone-Update(): The acquired experience achieved at each iteration by the
colony is considered in this activity. High quality solutions will positively affect
the amount of pheromone trail, i.e., those edges that are part of solutions found
will receive an increased amount of pheromone trail according to the goodness
of these solutions. This is known as the global pheromone update.

As in Nature [22], a process of pheromone evaporation takes place (usual im-
plementations of this metaheuristic decrease the amount of pheromone trail for
all edges in the construction graph) [9]. Thus, the amount of pheromone corres-
ponding to those edges that are not part of any solution at the current iteration
will show a gradually diminishing pheromone intensity. It should be noticed that
some ACO algorithms, such as ACS [15], apply a local pheromone update rule
which does not depend on the solution quality. Instead, a fixed amount is de-
posited as soon as an edge in the construction graph is selected to make the move
(the next component added to the solution under construction). The following
equation is a possible way of (global) updating pheromone values:

τi j(t + 1) = (1−ρ) · τi j(t)+Δτi j, (9.3)

where ρ is the evaporation rate and Δτi j represents the amount of pheromone
trail deposited in edge (i, j). That amount is calculated according to the quality
of the solutions, found by the whole colony, that include edge (i, j).
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• Daemon-Actions(): As single ants cannot carry out centralized actions, many
ACO algorithms include some specific activities called daemon actions. Exam-
ples of these activities are: activation of a local search procedure or a collection
of global information (e.g., use of a set of the best ranked solutions) that could
be employed to modify some entries in the pheromone trail matrix.

Based on the above description, several types of ACO algorithms can be ob-
tained [17]. In addition, many other algorithms that not necessarily follow the
standard design can be considered either for discrete problems [9], continuous do-
mains [43], and dynamic optimization problems [28] as we will show in the next
sections.

9.3 Dynamic Optimization Problems (DOPs)

Dynamic optimization problems (DOPs) involve any problem definition for which
at least one of its components varies with time. Thus, we can find problems where
the objective function changes over time or some problem constraints depend on
environmental conditions. These situations include many real-world tasks for which
changes in the environment affect the applied optimization process, as this has to
react to the new environmental conditions.

In this section we present the more relevant concepts involved in DOPs that are
usually considered when applying metaheuristic techniques2 for solving them. A
classical reference to the use of Evolutionary Algorithms (EAs) for dynamic prob-
lems is given in Branke [6] in which a widely referenced classification of dynamic
problems is presented, and the fundamentals of possible mechanisms to deal with
are also analyzed.

In order to obtain a fairly self-contained chapter we succinctly describe some im-
portant concepts regarding the mechanism to deal with certain dynamic optimiza-
tion problems. The interested reader can find a good source of information in this
regard in Branke [6, 30] and Morrison [37]. In addition, a complementary source of
information can be found in Leguizamón et al. [33] where alternative metaheuristic
techniques to deal with dynamic optimization problems under a unified perspective
are described.

Any change in a dynamic problem can be seen as the activation of a new opti-
mization problem (replacing the previous one) for which a new solution must be
provided as the quality of the current solution could be no longer acceptable for the
new environment. Therefore, the adaptation of the current solution to the new prob-
lem will be the main objective when a change occurs. The most primitive mecha-
nism to deal with dynamic problems is restarting from scratch, i.e., the optimization
algorithm does not consider any previous experience or information that could be
helpful under the new conditions. However, this approach is impractical for many
reasons and alternative mechanisms should be taken into account that consider in
different ways the past experience on the search. This is particularly desirable when

2 We are assuming through this chapter population-based metaheuristic techniques.
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the solution for the new problem should be not too different from the solution pre-
viously found for the (probably related) old problem. Also, the past experience is
a valuable element, as many dynamic problems are defined as a sequence of static
instances of a basic problem with slight variations from one instance to another, re-
sulting in a sequence that defines the complete dynamic problem. In that regard, it
is worth noticing that the quantity and quality of the past experience considered for
an optimization algorithm will determine the capacity of such algorithm to adapt to
a possibly continuously changing environment. In addition, the control of the pop-
ulation diversity is a key factor, as the adaptation to the changes could be harder if
the algorithm rapidly losses diversity.

The use of explicit or implicit memory to remember past experience is the typi-
cal approach implemented in metaheuristic techniques to guide the exploration of
the search space. However, some metaheuristics implement by definition some sort
of memory of the past experience as a mechanism to bias the search during the
incoming iterations; also this “natural” memory can be used to deal with dynamic
problems. This is the case of ant colony based algorithms, as will be described in
the next section.

Many types of dynamic features can be found in real-world problems. From ear-
lier application of evolutionary algorithms to dynamic problems (see for example,
Abdunnaser [1], Bianchi [7], Branke [6], and Psaraftis [31]) the following elements
and features are commonly considered when dealing with DOPs:

• the problem can change with time in such a way that future scenarios are
not completely known, yet the problem is completely known up to the current
moment;

• a solution that is optimal or near optimal at a certain time may reduce its quality
in the future, or may even become infeasible;

• the goal of the optimization algorithm is to track the shifting optima through time
as closely as possible;

• solutions cannot be determined ahead of time but should be found in response to
the incoming information; and

• solving the problem entails setting up a strategy that specifies how the algorithm
should react to environmental changes, e.g., to solve the problem from scratch or
adapt some parameters of the algorithm at every change.

Besides the described features, DOPs can be classified in different ways depending
on the sources of dynamism and its effects on the objective function. Simple ques-
tions will help us to determine the nature of the change: i) what? (i.e., aspects of
change), ii) when? (i.e., frequency of change), and iii) how? (i.e., severity of the
change, effect of the algorithm over the scenario, and presence of patterns).

Different descriptions for dynamic problems are given in the literature [6, 37] and
some of them were proposed having in mind certain type of metaheuristic algorithm
that could be used for solving them [8, 11, 28]. Nevertheless, before applying any
algorithm to solve a particular dynamic problem, the dynamic nature of the problem
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must be taken into account as well as the capability of the chosen algorithm to react
to the changes. Next section discusses different ant colony based algorithms and the
way they were applied to dynamic problems.

9.4 Solving DOPs with ACB algorithms

Different metaheuristic approaches have been applied to dynamic optimization
problems, being EAs the more widely used search technique to deal with this kind
of problems [6, 8, 28]. However, other well-known metaheuristics have also been in-
creasingly and successfully applied to DOPs. Some of them include Nature inspired
metaheuristics like the ACO and Particle Swarm Optimization (PSO). For example,
a recent short survey by Hendtlass et al. [28] examines some representative works
and methodologies to deal with DOPs by using Ant Colony Optimization, Particle
Swarm Optimization, and Extremal Optimization. Besides describing the applica-
tions based in these Nature inspired metaheuristics, the authors also analyzed some
limitations of the presented algorithms. Other short review in this regard (see the
technical report from Angus [2]) focuses on the ACO metaheuristic and describes
some relevant and related works. Besides the previous surveys on this topic, we give
here a unified and broad perspective of the different ant colony based algorithms to
deal with DOPs.

There are two concepts closely related in any algorithm dealing with DOPs: 1)
the mechanisms implemented to avoid stagnation and hence 2) the capacity of the
algorithm to react to the changes. Particularly in the ant colony based algorithms
the pheromone structure τ presented in Section 9.2 is the key algorithm compo-
nent that should mainly be taken into account, as this represents, on one hand, the
memory of the algorithm. On the other hand, the pheromone structure is built in the
solution search space by a graph and that dynamics modify this graph valuated by
variable amounts of pheromone. Thus, in any ant based algorithm an appropriate
strategy must be defined to let the algorithm adapt to the changes by modifying the
pheromone values, e.g., by resetting all or part of the pheromone values to reduce,
in some extent, the learnt experience. This is a classical strategy for increasing an
explorative behavior as the new scenario has been detected.

The seminal works of the ACO metaheuristic to deal with dynamic optimization
problems (see [24, 26, 27, 36]) were mostly devoted to the TSP, QAP, and VRP. All
the dynamic versions of these problems have the following characteritic: the changes
are produced by adding/eliminating problem components, i.e., cities in TSP, loca-
tions in QAP, and orders in VRP. However, other alternatives are also possible like
changing the problem data, e.g., distance between cities in TSP, cost of assignment
in QAP, or cost of delivery between the depot and customers in VRP.

In the following we present in three sections a short review of literature and a
global description of the respective mechanism used to deal with certain types of
DOPs in the past. The sections are divided according to the following criteria: Sec-
tion 9.4.1 presents the so-called standard versions of ACO algorithms, Section 9.4.2
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describes the class of population-based ACO (P-ACO) algorithms, and finally in
Section 9.4.3 some general algorithms based in the metaphor of ants behavior are
presented.

9.4.1 Standard ACO Algorithms

One of the seminal works regarding this type of algorithm is the proposal by
Guntsch et al. [27]. Authors there investigate several strategies for pheromone up-
dating in reaction to changes on the problem instance. In this case, the problem
instance is changed by adding/eliminating cities.

Regarding dynamic TSP, Angus and Hendtlass [3, 4] study another strategy to
modify the pheromone matrix when a change occurs. In this case, the strategy con-
sists in normalizing the pheromone values in a way that the past memory is main-
tained but avoiding extreme values.

Another proposal to solve dynamic TSP is presented by Eyckelhof and Snoek [18].
They study two different ways of modifying pheromone trails: local and global. In
the dynamic TSP studied, the distance between cities is seen as the time to travel
from one city to another one. Thus, the changes are obtained by modifying the trave-
ling times and hence, traffic jams could be produced in the paths as the ants are walk-
ing while solving the problem. The strategy proposed logarithmically smooths the
pheromone values (called shaking process) maintaining the relative ordering among
them before and after the modification. The global shaking produces a modification
on all over the edges while the local one only changes the pheromone values around
a certain distance where the traffic jam was produced. The strategy also avoids to
assign pheromone values below a certain lower bound.

Montemanni et al. [36] investigate the Dynamic Vehicle Routing Problem (DVRP)
through an Ant Colony System based algorithm. In the studied version of the DVRP
new orders can arrive at any time and they have to be dynamically incorporated in
the constantly evolving schedule. In the particular case of [36] new orders can be
assigned after the vehicle left the depot. The mechanism for pheromone updating
is inspired by the work by Guntsch and Middendorf [24, 25]. The strategy adopted
evaporates the old pheromone values and at the same time increases the amount of
pheromone values by a constant amount.

The Binary Ant Algorithm (BAA) proposed by Fernandes et al. [20] is designed
by using a particular construction graph to work on binary dynamic environments.
The main characteristic of BAA is that it stresses the role of the negative feedback
(i.e., give more relevance to the evaporation processes). BAA was tested on two
dynamic continuous functions: Oscillatory Royal Road and Dynamic Schaffer.

In summary, several strategies have been proposed in the literature to deal with
DOPs by applying the classical ACO algorithms (i.e., those which more closely
follow the principle of using a construction graph as earlier defined in [17]):



9 Ant Colony Based Algorithms for Dynamic Optimization Problems 199

• Global pheromone modification:

– Increase the values proportionally to their difference to the maximum
pheromone value.

– The new pheromone values are a combination of the old values and an incre-
ment of a constant small pheromone value. Those values are regulated by a
parameter 0≤ γr ≤ 1 that controls the relative importance of both values:

τnew
i, j = (1− γr) · τold

i, j + γr · τ0, (9.4)

where τ0 is a small constant value (usually used in the pheromone matrix initia-
lization process); and τnew

i, j and τold
i, j represent, respectively the pheromone value

on edge (i, j) before and after the change in the environment.

• Local pheromone modification:

– η-strategy (based on the heuristic information) and τ-strategy (based on
pheromone information). They both refer to connection problems, thus, prob-
lem components can be inserted/deleted. Consequently, only the edges con-
necting the problem components must be added/eliminated from the construc-
tion graph will influence (locally) the pheromone values.

– Combined strategies based on η-strategy and τ-strategy.
– Normalize the pheromone values regarding the maximum pheromone value

all over the current edges, i.e., τi j(t + 1) = τi j(t)/τi,max(t). The term “current
edges” is used here as the edges directly connecting component i with some
other component and τi,max(t) indicates the maximum pheromone value in the
neighborhood of component i. Thus, the normalization is local with respect to
each component i of the problem instance.

• Local and global pheromone modification:

– Using a mechanism to limit the lower pheromone values (similar to the
MAX-MIN Ant System) and smoothing the pheromone values keeping the
relative order before and after the change (this promote exploration without
losing information of the past experience). The modification can be applied
locally or globally (depending on an ad-hoc parameter).

• Other:

– Keeping elitist ant: in this case the best-so-far ant is modified after a change
has occurred (e.g., adding/eliminating solution components). Thus, the elimi-
nated components are deleted from the elitist solution, whereas the new added
components (if any) are located in the places left in the solution. The new com-
ponents could be added, for example, by using some heuristic procedure. This
is a possible way of remembering the past experience that will influence the
pheromone values when the usual step of pheromone updating takes place.

– Choosing only the ants with a quality value equal to or below3 the population’s
average fitness to generate new solutions. This strategy is combined with a
quick evaporation of pheromone trails.

3 For a maximization problem the value is above or equal to the average.
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Please notice that the above strategies could be adapted or enhanced in many
ways to deal with unseen dynamic problems. In this regards, the approach to use
and adapt the pheromone matrix is the more important issue in order to achieve an
efficient mechanism to react to the changes.

9.4.2 Population Based ACO Algorithms

Population based ACO algorithms (P-ACO) were first proposed by Guntsch and
Middendorf [26] as an alternative ACO in which a set of solutions is transferred
between the current iteration and the next one instead of the pheromone trail values
(or pheromone matrix). Thus the set of transferred solutions is used to calculate the
new pheromone values used later for building the new set of solutions. Although
not applied to dynamic problems, FIFO-Queue ACO ([26]) could be considered as
a preliminary work of P-ACO in this direction as the authors claimed about its ap-
plicability to create new metaheuristic algorithms, as well as to solve dynamic prob-
lems, since P-ACO could rapidly adapt the pheromone values as the environment
changes in comparison with standard ACO algorithms. In Guntsch and Middendorf
[25] FIFO-Queue was studied on dynamic versions of QAP and TSP, where diffe-
rent strategies for updating the population were investigated. More recently, Ho and
Ewe [29] proposed a P-ACO algorithm where three different mechanisms to adapt
the pheromone values are investigated to solve the dynamic load-balanced cluster-
ing problem in ad hoc networks. Although the proposed mechanisms are novel,
they only represent slight variations of the original P-ACO [26]. For that reason,
we describe first the main features of P-ACO, as proposed by Guntsch and Midden-
dorf [26] and then we give some highlights of the variations of P-ACO according to
Ho and Ewe [29].

It is important to note that P-ACO algorithms also adopt the principle of the con-
struction graph as in the standard ACO described in the previous section. However,
we have decided to describe them in a section apart. The reason for that is because
they differ from the standard ACO algorithms. On one side, ACO algorithms include
problem-based strategies in the pheromone updating process. On the other side, P-
ACO algorithms use the solutions themselves to define the strategies to calculate the
new pheromone values. Another interesting feature of P-ACO is that this algorithm
does not use any problem information to handle the changes. This makes it a con-
venient approach for different types of dynamic as the basic information needed is
that provided by the fitness function.

The following strategies are the alternatives implemented in [26] to manipulate
the set of solutions maintained (i.e., the population) in order to influence in different
ways the pheromone values:

1. Age strategy: Add the best solution found in the current iteration and remove
the oldest one.

2. Quality strategy: Add the best solution found in the current iteration and remove
the worst one.
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3. Prob strategy: Add the best solution found in the current iteration and remove
a solution randomly chosen. To do that a distribution probability is created in a
way that bad solutions have more chances to be removed; however, all solutions
are candidate to be eliminated.

Combinations of two of the above three strategies also exist, as used and tested
in [26]. It must be noticed that the above strategies were designed for controlled
changes where the number of cities (problem components for the general case) that
are added is the same as the number of deleted ones, i.e., the problem size is kept
constant.

Under the population-based ACO the KeeepElite strategy, first defined in [27],
can also be applied to repair the solutions in the population regarding the changes
that took place in the environments, i.e., deleted problem components are eliminated
from the elite solution whereas the new inserted ones are added based on some
criterion.

Instances considered in [26] include two additional parameters regarding the dy-
namic features:

• c, which indicates the severity of the change, i.e., the number of components
deleted (respectively inserted) from (to) the problem instance.

• t, the time window that controls the occurrence of the change.

No overall definitive conclusion about the use of the different strategies in P-ACO
algorithms can be achieved according to the results presented in [26]. However,
strategy Prob was the worst performer for all the scenarios considered in the ex-
perimental study. Also, a small number of solutions in the population (size of the
population k = 3) was enough to perform fairly well on all the problems (TSP and
QAP) and considered instances.

Three variations of P-ACO (see Ho and Ewe [29]) were studied when solving the
dynamic load-balanced clustering problem in ad hoc networks. The changes here
operate on the problem structure. The variations presented are intended to adapt the
pheromone values as closely as possible to reflect the new problem structure after a
change has occurred by:

i) Applying a repairing process (based on the new problem structure) to the solu-
tions in the population.

ii) Adapting the parameters that control the importance of the pheromone and
heuristic values: parameters α and β as used in standard ACO algorithms (see
Equation 9.2). Thus, more importance is given to the heuristic values (they are
recalculated when the problem changes) and less importance to the pheromone
values (forgetting past experience). The adapted parameters are used by a per-
centage of ants of the whole colony.

iii) Combining two approaches to build new solutions: greedy and pheromone
based. Thus, a percentage of ants have a greedy behavior since they disregard
the accumulated pheromone values and only consider the new problem struc-
ture. The remaining ants follow the usual steps to find a solution based on the
accumulated pheromone values.
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The above P-ACO variations were called, respectively P-ACO, PAdapt, and
GreedyAnts. These algorithms were tested on 12 instances representing 4 ad hoc
networks. The best performer algorithms were P-ACO and GreedyAnts. The au-
thors highlight that all the algorithms experience some difficulties to react to the
first change, however, they improved the respective capacity of reaction in subse-
quent changes of the problems structure.

To finish this section we would like to remark that only a few applications of
P-ACO for dynamic problems were found in the literature. Nevertheless, it is in-
teresting to note, as claimed by Guntsch and Middendorf [26], that P-ACO has a
potential to solve other dynamic problems.

9.4.3 Other Ants Based Algorithms

In addition to the standard ACO algorithms (Section 9.4.1) and Population-based
ACO algorithms (Section 9.4.2), there exist other alternatives to implement algo-
rithms based on the metaphor of ants behavior which do not completely fit in the
mentioned two classes. In this section we describe some representative works in
this regard in order to show the reader the potential of following the ant behavior
metaphor to solve unseen dynamic problems. An earlier ant-based method to deal
with dynamic problems is the proposal by Schoonderwoerd et al. [42] where an
ant-based load balancing approach is applied to telecommunication networks. This
methodology considers the ants as mobile agents that can travel though the net-
work with similar abilities as the real ants, as they can deposit certain amount of
pheromone according to the distance between two pair of nodes and the congestion
found during the journey.

The implemented mechanism to route the call is fairly simple as the pheromone
value deposited on the route connecting two nodes is used to calculate a probabil-
ity distribution that will influence the decision maker to route a call. Based on the
experimental study accomplished, the authors claim that good load balance can be
reached due to the emergent organization of the proposed ant-based methodology
(thus, other related problems could also be solved).

Another methodology where the ants are seen as mobile agents is the AntNet [14],
maybe one of the more widely known ant based algorithms different from standard
ACO algorithms. This algorithm was designed as an alternative approach to the
adaptive learning tables in communication networks, an intrinsically dynamic prob-
lem. AntNet follows the core ideas of the ACO metaheuristic: a set of independent
ants (agents) try to find an optimal or near-optimal path by indirect communications.

Interestingly, there are two types of ants (forward and backward) which are dis-
tributed on the network (represented by small packages) to find paths from a source
node to a destination node (the task of forward ants) and propagate the collected
information on the routing tables (the task of backwards ants). In short, during their
travel ants collect information about the network traffic which is later used to adapt
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certain values (resembling pheromone values) used by the decision maker at the
time of routing the actual data packages. AntNet was thoroughly tested on real and
artificial IP datagram networks and achieved superior performance with respect to
the other algorithms tested for comparison. In the same mobile agent approaches as
AntNet and Schoonderwoerd’s ABC, Pigné and Guinand [39] consider the problem
of mobile ad hoc networks where, prior to the throughput and the quality of service,
the problem of energy consuming is the biggest issue in these wireless networks,
composed of small handheld devices. The authors propose a bi-objective model
where the length of communication paths is minimized and the selection of robust
(unlikely to fail) links is maximized. The approach is decentralized and only relies
on local rules for heuristics and pheromone updates.

In Cicirello and Smith [13] the so-called Ant Colony Control (AC2) is proposed
to an adaptive and dynamic shop floor scheduling problem. AC2 is a decentralized
algorithm conformed by a set of artificial ants which use indirect communication to
make all shop routing decisions. This is done by altering and reacting to a dynami-
cally changing common environment through the use of simulated pheromone trails.
Thus, the amount of pheromones will be used to control the reaction of the algo-
rithm to the changes, i.e., the decision about to which processing shop a job should
be assigned. Another interesting feature of AC2 is that, as the shop can process job
of different types, an ant associated to that job will have different pheromone type
from an ant associated to a different type of job. According to this, AC2 manages
many pheromone matrices such as the number of different types of jobs the shop
floor can process. From the experimental study (applied to different shop floors)
the authors claim that, for complex problems, AC2 evolves local decision making
policies that lead to near-optimal solutions with respect to its global performance.

A recent work by Fernandes et al. [19] proposed an extension of the Univariate
Marginal Distribution Algorithm (UMDA) (see Mühlenbein and Paas [38]) called
Reinforcement-Evaporation UMDA (RE UMDA). This new algorithm includes a
different update strategy for the probability model based on the equation of the
transition probability equations found in ACO algorithms. To do that, RE UMDA
uses two real vectors τ0 and τ1 that, respectively, represent the pheromone values
associated with the desirability of having a 0 or 1 at a particular position in the
solution (a binary search space it is assumed). These two vectors are then used to
calculate the probability of assigning 1 (respectively 0) to a particular solution com-
ponent, i.e., to generate new solutions. As mentioned before, the two pheromone
trail vectors are updated (reinforcement stage) according to the solutions found in
the current iteration before obtaining the probability to generate new solutions. The
evaporation stage, which uses an evaporation parameter as in the traditional ACO
algorithms, takes place when the new population has been completely generated.
This new approach delays (or avoids) the complete convergence of the population
which increases the chances to adaptation to a new environment when a change
occurs. RE UMDA was tested on dynamic versions of Onemax and Royal Road
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(R1) functions. In addition, several variations of specific parameters of UMDA were
studied under the dynamic functions considered.

Xi et al. [45] propose an Ant Colony System (ACS) based methodology to deal
with the curing of polymeric coating process, a complex and dynamic optimization
problem of great interest in the automotive industry. This is a large-scale multi-
stage dynamic optimization problem that involves a time variant objective function
(energy consumption for the coating process) and also time dependent linear and
nonlinear constraints. More precisely, the ACS-based methodology is called a dy-
namic model-embedded ACS-based optimization methodology. The solution search
space is represented by N trees (N is the problem dimension) where each of them is
traversed by a set of M ants in charge of cooperatively finding a complete solution
by building a tour on each of the N trees, i.e., when ant j traverses tree i, a value for
dimension i will be found by ant j. Pheromone and heuristic values are associated
to each branch tree to bias the probability values that will guide the ants when trave-
ling the respective trees from the root to the leaves. Each tree node is assumed to
have L possible branches (i.e., L possible values for each problem dimension). As in
a standard ACS, global and local pheromone updates are applied, as well as similar
transition rule as the originally defined in ACS. The authors claim that by building
the solutions in this way the algorithm can easily adapt the solutions to the cur-
rent state of the problem environment to reach the minimum energy consumption.
The proposed ACS-based methodology was successfully compared with a genetic
algorithm (GA) as the first one was capable of decreasing in about 9% the energy
consumption with respect a Genetic Algorithm. Although the reported results are
encouraging, it is still necessary to study in more detail the changes produced in the
values associated to the edges in the trees when a change occurs in the environment.

In a recent work, an ant-stigmergy based algorithm to solve dynamic optimiza-
tion problems (DASA) was proposed by Korošec and Šilc [31]. Interestingly, DASA
was first proposed to solve (static) problems in continuous domains (see [32]).
More precisely, it was applied on a benchmark suite from the Special Session on
Real Parameter Optimization of the International Congress on Evolutionary Com-
putation (CEC) 2005. Interestingly, the same algorithm DASA was applied without
any modification on the set of benchmark problems provided for CEC’ 2009 Spe-
cial Session on Evolutionary Computation in Dynamic and Uncertain Environments
with encouraging results. The main idea behind the DASA design is the construc-
tion of a special graph called differential graph used by ants to build a solution
(vector of real numbers) starting from a given solution called temporary best solu-
tion which is initially chosen at random. Each edge in the graph represents either an
increment or decrement (Δ value) that have to be applied to a particular dimension
as the ant walks through the graph. The decision to choose the next vertex to visit
is based on the pheromone values which are initialized according to the Cauchy
distribution. Although no exhaustive discussion is provided in this work concerning
the features of DASA, the results showed a natural capacity of the algorithm when
dealing with the kind of tested dynamic problems. In [5, 6] the authors propose to
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distribute agents or entities-based applications on a grid or network of computers
using several distinct colonies of ants. Each colony represents a distinct comput-
ing resource identified by a color. The colored ants compete to detect and colonize
evolving communities, or organizations in a dynamic graph representing the set of
entities (nodes) and their interactions one with another (edges). The importance of
the interaction can be used to weight the edges. Communities are commonly defined
as areas of a graph where nodes are more connected one with another than with the
other parts of the graph. Organizations are evolving communities, as the underlying
graph changes during time. Indeed, often, although individual nodes and edges of a
community appear, change, or disappear, the community remains stable for a longer
period of time. The proposed algorithm (called AntCO2) shows two important dif-
ferences with standard ACB: it does not use an explicit objective function, and it
uses several colonies of ants in competition one with another. The ants detect orga-
nizations of the evolving graph by laying down “colored” pheromone corresponding
to their colony. Pheromone of the same color as an ant probabilistically attracts it,
whereas other colors repulse it. Furthermore, the larger the weight on an edge, the
more this edge attracts ants, and strongly connected areas capture ants. These mech-
anisms act as positive feedback to create “colonized” areas on organizations.

Both the evolution of the network (disappearance of edges and node) and the
evaporation of pheromone act as negative feedback to remove old solutions (old
colonized areas) that are no more valid when the environment changes, therefore
providing adaption to dynamics of the graph. Indeed, there is no need to evaluate
any objective function to use this algorithm, which allows it to be easily distributed,
since it uses only local information. Colonies can be of distinct sizes (number of
ants) to accommodate the difference in power of the corresponding computing re-
sources, and therefore colonize larger areas to distribute more entities or agents
on more powerful computers. Furthermore, colonies can be added or removed
as computing resources appear or disappear, therefore providing another level of
dynamism.

9.4.4 Summary of ACB Applications on DOPs

To finish the main section on ACB for DOPs, we show in Table 9.1 a summary
of the main applications commented in this chapter. Table 9.1 displays in the first
column the type of application considered (Application), the name and reference
of the ant colony based algorithm used (ACB), and finally some remarks about
the algorithm are given in the third column (Remarks). In column ACB the pro-
posal is called as: Standard ACO (Section 9.4.1), P-ACO (Section 9.4.2), and the
respective names found in the literature for other ant colony based algorithms
(Section 9.4.3).
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Table 9.1 Summary of the reviewed literature indicating the application, type of ACB or
algorithms’ names, and some additional remarks about the respective proposal.

Application ACB Remarks

Dynamic TSP Standard ACO [3, 4, 18, 24]
P-ACO [25, 26]

Mostly aimed to investigate different
strategies for pheromone updating on
dynamic problems where components
are added/eliminated at certain times.

Dynamic QAP P-ACO [25, 26]
Like the previous row.

Dynamic VRP Standard ACO [36]

Idem above with new orders arriving
when vehicles have already started their
tours.

Load balancing in
telecommunication
newtorks

Ant-Based Control [42]

Use of simple mobile agents (ants)
with abilities to laid pheromone trails.
Pheromone tables are used to balance
the load generated by calls between
nodes.

Ad hoc networks P-ACO, PAdapt, and
GreedyAnts [29]

Variations of P-ACO are studied to
manage in different ways the modifi-
cation of the pheromone matrix. The al-
gorithms use knowledge of the problem
structure (dynamic component) to carry
on the pheromone updating process.

Dynamic load balancing in
individual-based
simulations

AntCO2 [5, 6]

Use of several ant colonies in compe-
tition to colonize communities in an
evolving network of interacting entities.

Continuous functions DASA [31]

An ant-stigmergy based algorithm orig-
inally designed for static continuous
functions is successfully applied on
a benchmark of dynamic continuous
functions.

Shop floor scheduling
problem

AC2 [13]

Ants use only the stigmergy princi-
ple to make all shop routing deci-
sions by altering and reacting to their
dynamically changing common envi-
ronment through the use of simulated
pheromone trails.

Oscillatory Royal Road &
dynamic Schaffer’s
function

Standard ACO [20]

Optimization of dynamic binary land-
scapes by stressing the role of negative
feedback when modifying pheromone
values.

Routing tables in
communication networks

AntNet [14]

Tiny packages (ants) are used to collect
and distribute information from the net-
work to modify the routing tables.

Communications paths in
wireless mobile ad hoc
networks

Ant-based algorithm [39]

An ant colony constructs and maintains
communication paths trying to mini-
mize both, the length of the constructed
paths and the number of link reconnec-
tions.

Curing of Polymeric
Coating

ACS-based algorithm [45]

Utilization of tree structures to find
quality values for each problem dimen-
sion. The traversing from the root to
the leaves in the respective trees is gov-
erned by the deposited pheromone val-
ues. The pheromone updating is made
by rules resembling those used in Ant
Colony Systems.

OneMax & Royal Road RE UMDA [19]
Use of principles of pheromone trail to
keep diversity.
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9.5 Conclusions

Many real-world problems are dynamic by definition and the use of metaheuristic
techniques to solve them seems to be a good alternative, as those kind of algorithms
are robust and flexible. Ant colony based algorithms share these particular features
as they can be easily adapted to deal with dynamic problems.

In this chapter we presented a general perspective of the more relevant works
regarding the application of ant colony based algorithms for dynamic optimization
problems. The main mechanisms used in different implementations found in the
literature were described. Interestingly, the metaphor of ant colony behavior could
potentially be used in many different ways, which make ACB algorithms good can-
didates to solve known and unseen DOPs.

Promising research areas seem to be related with applications in which the
metaphor of ants behavior (basically stigmergy by pheromone trail) can be used
as a source of information to rapidly react to the changes. In that regard, it could
be interesting to define and thoroughly study general strategies to adapt pheromone
values on classes of dynamics problems as well as comparisons with other, more
studied and applied, metaheuristics for solving DOPs, e.g., evolutionary algorithms.
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