
Chapter 8
Dynamic Multi-Objective Optimization
Using PSO

Mardé Helbig and Andries P. Engelbrecht

Abstract. Dynamic multi-objective optimization problems occur in many situations
in the real world. These optimization problems do not have a single goal to solve,
but many goals that are in conflict with one another - improvement in one goal
leads to deterioration of another. Therefore, when solving dynamic multi-objective
optimization problem, an algorithm attempts to find the set of optimal solutions,
referred to as the Pareto-optimal front. Each dynamic multi-objective optimization
problem also has a number of boundary constraints that limits the search space.
When the particles of a particle swarm optimization (PSO) algorithm move outside
the search space, an approach should be followed to manage violation of the bound-
ary constraints. This chapter investigates the effect of various approaches to manage
boundary constraint violations on the performance of the dynamic Vector Evaluated
Particle Swarm optimization (DVEPSO) algorithm when solving DMOOP. Further-
more, the performance of DVEPSO is compared against the performance of three
other state-of-the-art dynamic multi-objective optimization algorithms.

8.1 Introduction

Many problems in the real-world change over time and require more than one goal
to be optimized. However, these goals, or objectives, are normally in conflict with
one another, where an improvement in one objective results in deterioration of an-
other objective. Therefore, a single solution does not exist and the goal becomes
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to find the set of optimal trade-off solutions. These problems are called dynamic
multi-objective optimization problem (DMOOP). Each DMOOP has a number of
objective functions to optimize and each variable within an objective function has a
range of values that are valid, referred to as the search space. These bounds of valid
values of the decision variable are called boundary constraints.

A multi-swarm algorithm, called Dynamic Vector Evaluated Particle Swarm op-
timization (DVEPSO) [10], is presented. The effect that various approaches to man-
age boundary constraints have on the performance of DVEPSO is investigated.
Furthermore, DVEPSO is compared against three other state-of-the-art dynamic
multi-objective optimization (DMOO) algorithms.

The rest of the chapter’s layout is as follows: Section 8.2 presents theory and
background information with regard to particle swarm optimization (PSO) and
DMOO. The DVEPSO algorithm is presented in Section 8.3, as well as the app-
roaches that can be used to manage boundary constraints. Section 8.4 provides in-
formation about the experiments that were run, including the benchmark functions,
performance metrics and statistical analysis that were used to measure the perfor-
mance of the various algorithms. The results that were obtained from the experi-
ments are discussed in Section 8.5. Conclusions about this research are presented in
Section 8.6.

8.2 Background

This section presents background information on PSO, as well as the theory on
multi-objective optimization (MOO) and DMOO. Furthermore, some issues when
solving DMOOP are presented.

8.2.1 Particle Swarm Optimization

Inspired by the social behaviour of bird flocks, Eberhart and Kennedy introduced
PSO [15]. The PSO algorithm maintains a swarm of particles, where each particle
represents a solution of the optimisation problem. Each particle moves through the
search space and its position is updated based on its own experience (cognitive in-
formation), as well as the experience of the its neighbours (social information). The
particle’s position that produced the best solution so far is referred to as its personal
best or pbest. The position that leads to the best overall solution by all particles in a
pre-defined neighbourhood, is called the neighbourhood best or nbest. If the neigh-
bourhood is defined as the whole swarm, the neighbourhood best is referred to as
the global best or gbest.

In general, the PSO algorithm can be described as indicated in Algorithm 8.1.
Every optimisation problem has boundary constraints and therefore a particle

should be prevented from drifting outside the boundary constraints of the problem.
In some cases it may be beneficiary to allow a particle to move somewhat outside
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Algorithm 8.1. PSO Algorithm
1. Create and initialise a swarm
2. while stopping condition has not been reached
3. for each particle in swarm do
4. set pbest
5. set gbest
6. for each particle in swarm do
7. calculate new velocity
8. calculate new position

the bounds when the solution is in close proximity of the bounds. However, once a
particle has moved outside the bounds, it should not be allowed to roam outside the
boundary constraints indefinitely and should be pulled back within the valid bounds
of the decision space. Furthermore, if a particle’s position is outside the bounds, the
position should not be used as the particle’s pbest.

According to Chu et al, there are three basic boundary handling techniques that
are widely used, namely [4]:

• Random, where if a particle moves outside the search space, a random value from
a uniform distribution between the lower and upper boundaries of the violating
dimension is assigned to the violating dimension of the particle’s position.

• Absorbing, where if a particle moves outside the search space, the dimension that
is violating the bounds are set to the boundary of that dimension, so that it seems
as though the particle has been absorbed by the boundary.

• Reflection, where if a particle moves outside the search space, the boundary acts
like a mirror that reflects the projection of the particle’s displacement.

Recently, studies have been done on the effect of boundary constraint violation
approaches on the performance of PSO. Helwig and Wanka investigated four app-
roaches for managing boundary constraints when solving high-dimensional single-
objective optimization problem (SOOP) [13]. Chu et al. investigated the effect of the
three boundary handling techniques mentioned above for high dimensional SOOP
and high dimensional composite SOOP. However, in this chapter various boundary
handling approaches are investigated to determine their effect on the performance
of VEPSO when solving DMOOP.

8.2.2 Multi-Objective Optimization Theory

When dealing with a MOOP, the various objectives are normally in conflict with
one another, i.e. improvement in one objective leads to a worse solution for another
objective. Therefore, for MOOP, the definition of optimality has to be adjusted from
the one that is used for SOOP. When solving a MOOP the goal is to find a set of
trade-off solutions where for each of these solutions no objective can be improved
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without causing a worse solution for at least one of the other objectives. These
solutions are referred to as non-dominated solutions and the set of such solutions
is called the non-dominated set or Pareto-optimal set (POS). The corresponding
objective vectors in the objective space that lead to the non-dominated solutions are
referred to as the Pareto-optimal front (POF) or Pareto-front.

For MOOP, when one decision vector dominates another, the dominating deci-
sion vector is considered as a better decision vector. Therefore, only non-dominated
decision vectors are included in the POS. Decision vector domination is defined as
follows:

Definition 8.1. Decision Vector Domination: A decision vector x1 dominates an-
other decision vector x2, denoted by x1 ≺ x2, if and only if

• x1 is at least as good as x2 for all the objectives, i.e. fm(x1) ≤ fm(x2), ∀m =
1, . . . ,nm; and

• x1 is strictly better than x2 for at least one objective, i.e. ∃i = 1, . . . ,nm : fm(x1)<
fm(x2) .

The best decision vectors are called Pareto-optimal, defined as follows:

Definition 8.2. Pareto-optimal: A decision vector x∗ is Pareto-optimal if there does
not exist a decision vector x �= x∗ ∈ F that dominates it, i.e. �m : fm(x)< fm(x∗). If
x∗ is Pareto-optimal, the objective vector, f(x∗), is also Pareto-optimal.

Together, all the Pareto-optimal decision vectors form the POS, defined as:

Definition 8.3. Pareto-optimal Set: The POS, P∗, is formed by the set of all Pareto-
optimal decision vectors, i.e.

P∗ = {x∗ ∈ F |�x ∈ F : x≺ x∗}, (8.1)

The POS contains the best trade-off solutions for the MOOP. The corresponding
objective vectors form the POF, which is defined as follows:

Definition 8.4. Pareto-optimal Front: For the objective vector f(x) and the POS P,
the POF, PF∗ ⊆ O is defined as

PF∗ = {f = ( f1(x∗), f2(x∗), . . . , fnm(x
∗)) |x∗ ∈ P}, (8.2)

Therefore, the POF contains the set of objective vectors that corresponds to the POS,
i.e. the set of decision vectors that are non-dominated. The POF can have various
shapes, e.g. a convex POF or a concave POF.

8.2.3 Dynamic Multi-Objective Optimisation Theory

Let the nx-dimensional search space (also referred to as the decision space) be rep-
resented by S ⊆ R

nx and the feasible space represented by F ⊆ S, where F = S for
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unconstrained optimisation problems. Let x = (x1,x2, . . . ,xnx)∈ S represent a vector
of the decision variables, i.e. the decision vector, and let a single objective function
be defined as fm : Rnx → R. Then f(x) = ( f1(x), f2(x), . . . , fnm(x)) ∈ O ⊆ R

nm rep-
resents an objective vector containing nm objective function evaluations, and O is
the objective space.

Using the notation above, mathematically, a DMOOP can be defined as:

minimise f(x,W(t)), x = (x1, . . . ,xnx),W(t) = (w1(t), . . . ,wnm(t))

sub ject to gi(x)≤ 0, i = 1, . . . ,ng

h j(x) = 0, j = ng + 1, . . . ,nh

x ∈ [xmin , xmax]
nx , (8.3)

where W(t) is a vector of time-dependent control parameters of an objective func-
tion at time t, nx is the number of decision variables, x ∈ R

nx , ng is the num-
ber of inequality constraints, g, nh is the number of equality constraints, h, and
x ∈ [xmin , xmax]

nx refers to the boundary constraints.
Unlike DSOOP with only one objective function, DMOOP has many objective

functions. Therefore, in order to solve the DMOOP the goal is to track the POF over
time, i.e.

PF∗(t) = {f(t) = ( f1(x
∗,w1(t)), f2(x

∗,w2(t)), . . . , fnm(x
∗,wnm(t))) |x∗ ∈ P},

(8.4)
Farina et al. [7] classified dynamic environments for DMOOP into four types,
namely:

• Type I environment where the POS (optimal set of decision variables) changes,
but the POF (corresponding objective function values) remains unchanged.

• Type II environment where both the POS and the POF change.
• Type III environment where the POS remains unchanged, but the POF changes.
• Type IV environment where both the POS and the POF remain unchanged, even

though the problem can change.

8.2.4 Dynamic Multi-Objective Optimization Issues

In order to solve a DMOOP, an algorithm has to be able to detect when a change
in the environment has occurred and then respond to the change. A change in the
environment can be detected through the use of sentry particles [2] where a random
number of sentry particles are selected after each iteration. Just before the next iter-
ation is performed, these particles are re-evaluated, and if their current fitness value
differs more than a specified value from their fitness value just after the previous
iteration, the swarm is alerted that a change has occurred in the environment.

In order to test whether an algorithm can solve DMOOPs, benchmark functions
are developed that test an algorithm’s ability to manage certain difficulties, such as
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local POF and a POF that changes shape (such as from convex to concave) over
time. Benchmark functions are representative of typical real-world problems. An
approach to reformulate a three-objective optimisation test function to define a dy-
namic two-objective optimisation problem was presented by Jin and Sendhof [14].
Guan et al. [11] presented an approach to create DMOOPs by replacing objective
functions with new ones at specific times. DMOOPs based on the static MOO two-
objective ZDT functions [26] and the scalable DTLZ functions [5] was presented by
Farina et al. [7]. Some adaptions to these test functions were proposed in [19, 25].

However, when algorithms’ performances are compared against each other, per-
formance measures are required [1, 7, 8, 18]. Two main categories of performance
metrics for DMOOP exist, namely metrics that require knowledge about the true
POF and metrics that do not require any prior knowledge about the DMOOP. Various
performance metrics were developed to measure the performance of an algorithm
with regard to two main goals when solving a DMOOP, namely finding solutions
that are as close as possible to the true POF and finding a diverse set of solutions.

One of the problems when working with DMOOP is that there are no standard
benchmark functions or performance metrics that are used when research on an
algorithm’s performance is presented.

8.3 Dynamic Vector Evaluated Particle Swarm Optimization
Approach

This section discusses the Vector Evaluated Particle Swarm Optimization (VEPSO)
algorithm and how it has been adapted to solve DMOOPs. One type of constraint
that forms part of a DMOOP is the bounds for each decision variable, also referred
to as boundary constraints. This section presents approaches that can be used to
manage boundary constraint violations when solving DMOOPs.

8.3.1 Vector Evaluated Particle Swarm Optimization

The Vector Evaluated Particle Swarm Optimization (VEPSO) algorithm, inspired
by the Vector Evaluated Genetic Algorithm (VEGA) [21], was introduced by Par-
sopoulos et al. [22]. With VEPSO, each swarm solves only one objective function
and then shares its knowledge with the other swarms.

v j
i (t + 1) = wjv j

i (t)+ c j
1r1(y

j
i (t)− x j

i (t))+ c j
2r2(ŷ

s
i (t)− x j

i (t)) (8.5)

x j
i (t + 1) = x j

i (t)+ v j
i (t + 1), (8.6)

where n represents the dimension with i = 1, . . . ,n; m represents the number of
swarms with j = 1, . . . ,m as the swarm index; ŷs

i is the global best of the s-th
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swarm with s �= j; c j
1 and c j

2 are the cognitive and social parameters of the j-th
swarm respectively; r1,r2 ∈ [0,1]; wj is the inertia weight of the j-th swarm; and
s ∈ [1, . . . , j−1, j+1, . . . ,M] represents the index of a respective swarm. The index
s can be set up in various ways, affecting the topology of the swarms in VEPSO.

In Equation (8.5) the global best of another swarm (indexed by s) is used to
update the velocity of the particles of the j-th swarm. In this way the knowledge of
the s-th swarm is shared with the j-th swarm.

8.3.2 Dynamic Vector Evaluated Particle Swarm Optimization

When solving DMOOPs, in order to track the changing POF, an algorithm must be
able to detect that a change has occurred in the environment and then respond to the
change appropriately. The VEPSO algorithm adapted to solve DMOOPs (DVEPSO)
is presented in Algorithm 8.2.

Algorithm 8.2. VEPSO for DMOO problems
1. for number of iterations do
2. check whether a change has occurred
3. if change has occurred
4. respond to change
5. remove dominated solutions from archive
6. perform iteration
7. if new solutions are non-dominated
8. if space in archive
9. add new solutions to archive
10. else
11. remove solutions from archive
12. add new solutions to archive
13. select sentry particles

The default configuration of DVEPSO algorithm that is used for this research is
as follows:

• Each swarm has 20 particles.
• The non-dominated solutions found so far is stored in an archive and the archive

size is set to 100.
• If a particle’s new position is non-dominant with regard to its current pbest, one

of these two positions is randomly selected as the particle’s new pbest.
• If a particle’s new position is non-dominant with regard to the swarm’s current

gbest, one of these two positions is randomly selected as the swarm’s new gbest.
• Sentry particles are used for change detection (refer to lines 2 and 13 in Algo-

rithm 8.2).
• If a change has been detected, 30% of the particles of the swarm(s) whose

objective function changed is re-initialised (refer to line 4 in Algorithm 8.2).
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The non-dominated solutions in the archive is re-evaluated and the solutions that
have become dominated are removed from the archive (refer to line 5 in Algo-
rithm 8.2).

• If the archive is full, the distance between the solution and the other non-
dominated solutions in the archive is calculated, and the one with the lowest
average distance is removed. This ensures that a solution from a crowded region
in the found POF is removed (refer to line 11 in Algorithm 8.2).

• For knowledge sharing between the various swarms, a ring topology is used.
Therefore, s in Equation (8.5) is selected using

s =

{
M for j = 1

j− 1 for j = 2, . . . ,M,
(8.7)

The next section discusses approaches that can be followed to appropriately respond
to a violation of the boundary constraints.

8.3.3 Management of Boundary Constraints

This section presents the various approaches that are used in the experiments to man-
age boundary constraint violations. Below, xmax and xmin refer to the upper bounds
and lower bounds of the decision variables of the DMOOP respectively.

The following approaches to handle boundary constraints are investigated to de-
termine their effect on the performance of DVEPSO when solving DMOOPs:

8.3.3.1 Clamping Approach

With the clamping approach, any particle that violates a specific boundary of the
search space is placed on or close to the violated boundary of the search space [20].
This approach is used for the default configuration of DVEPSO as discussed in
Section 8.3.2. Mathematically, clamping is defined as:

if x(t + 1) > xmax then x(t + 1) = xmax− ε
if x(t + 1) < xmin then x(t + 1) = xmin (8.8)

with ε a very small positive number.

8.3.3.2 Deflection Approach

With the deflection approach, if a particle moves outside the bounds of the search
space, the velocity’s direction of the violated dimension is inverted, thereby caus-
ing a bouncing effect of the bounds. Mathematically, the deflection approach is
defined as:
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if xi(t + 1)> xmaxi then xi(t + 1) = xi
max− (xi(t + 1)− xi

max)%(xi
max− xi

min) and

vi(t + 1) = −vi(t)

if xi(t + 1)< xmini then xi(t + 1) = xi
min +(xi

min− xi(t + 1))%(xi
max− xi

min) and

vi(t + 1) = −vi(t), (8.9)

where xi, xi
min and xi

max are the i-th dimension of x, xmax and xmin respectively.

8.3.3.3 Per Element Re-initialization Approach

With per element re-initialisation, if a particle moves outside the search space,
each dimension of the particle’s position that violates the boundary constraint is
re-initialized to a random valid value [20]. Therefore, the dimensions of the posi-
tion that is valid remain the same. Mathematically, per element re-initialization is
defined as:

if xi(t + 1) > xi
max then xi(t + 1) = rand(xi

min,x
i
max)

if xi(t + 1) < xi
min then xi(t + 1) = rand(xi

min,x
i
max), (8.10)

8.3.3.4 Periodic Approach

The periodic approach is similar to the deflection approach. However, if a particle’s
position violates the upper boundary for a specific dimension, it is placed near the
lower boundary for that dimension and vice versa [24]. Mathematically, the periodic
approach is defined as:

if xi(t + 1) > xi
max then xi(t + 1) = xi

min− (xi(t + 1)− xi
max)%(xi

max− xi
min)

if xi(t + 1) < xi
min then xi(t + 1) = xi

max− (xi
min− xi(t + 1))%(xi

max− xi
min).

(8.11)

8.3.3.5 Random Approach

The random approach re-initializes a particle’s position to a valid position within
the search space if it violates the boundaries of the search space [13, 24]. There-
fore, in contrast to the per element re-initialization approach, all dimensions are
re-initialized and not only the violating dimensions. Mathematically, it is defined
as:

if x(t + 1) > xmax then x(t + 1) = rand(xmin,xmax)

if x(t + 1) < xmin then x(t + 1) = rand(xmin,xmax). (8.12)
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8.3.3.6 Re-initialization Approach

With the re-initialisation approach, a particle that violates the bounds of the search
space has its position re-initialised to a valid position within the search space, its
velocity set to zero and its pbest set to the particle’s new position [20].

8.3.3.7 Unconstrained Approach

With the unconstrained approach, no clamping is performed and particles are free
to move outside the search space. However, only valid positions are selected as the
pbest of a particle.

8.4 Experiments

This section describes experiments that were conducted, using benchmark functions
and performance metrics discussed in Sections 8.4.1 and 8.4.2, respectively, to test:

• the effect of various approaches to manage boundary constraints on the perfor-
mance of DVEPSO (refer to Section 8.3.3); and

• the performance of DVEPSO compared to three other state-of-the-art DMOO
algorithms (refer to Section 8.4.3).

All experiments consisted of 30 independent runs and each run consisted of 1,000
iterations. For all benchmark functions the severity of change (nt) is set to 10 and
the frequency of change (τt ) is set to either 5, 25 or 50. This will cause the DMOOP
to change every τt iteration with nt distinct steps in time t.

The PSO parameters were set to values that lead to convergent behaviour [23],
namely w = 0.72 and c1 = c2 = 1.49.

All codes are implemented in the Computational Intelligence Library (CIlib) [20].
All simulations were run on the Sun Hybrid System’s Nehalem System of the Center
for High Performance Computing [3]. The SUN Nehalem system has an Intel Ne-
halem Processor of 2.93 GHz, 2304 CPU cores, 3465 GB of Memory and produces
24 TFlops at peak performance.

8.4.1 Benchmark Functions

This section presents the benchmark functions that were used to test whether the
algorithms can track a POF that changes over time. Three functions presented by
Farina et al. [7] and three functions of Goh and Tan [8] were used. Additionally,
two functions that are based on the ZDT3 function of Deb [26] that were adapted
to become DMOOPs were used [12]. Below, τ is the generation counter, τt is the
number of iterations for which t remains fixed, and nt is the number of distinct steps
in t.
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FDA1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = ( f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+∑xi∈xII
(xi−G(t))2

h( f1,g) = 1−
√

f1
g

where :

G(t) = sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xI ∈ [0,1]; xII = (x2, . . . ,xn) ∈ [−1,1]

,

(8.13)

As suggested by [7], the dimension, n, was set to 20. Function FDA1’s values in
the decision variable space change over time, but its values in the objective space
remain the same. Therefore, it is a Type I DMOOP. It has a convex POF with POF =
1−√ f1.

FDA2=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = ( f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+∑xi∈xII
x2

i

h( f1,g) = 1− f1
g

(H(t)+∑xi∈xIII
(xi−H(t))2)−1

where :

H(t) = 0.75+ 0.75sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xI ∈ [0,1];xII,xIII ∈ [−1,1]

.

(8.14)

For FDA2 the parameters |XII| and |XIII| were set to: |XII|= |XIII|= 15 (as suggested
by [7]). Function FDA2 has a POF that changes from a convex to a non-convex
shape. It is a Type III DMOOP, since the values in the objective space change while
the values in the decision variable space remain the same. For FDA2, POF = 1−
f H(t)−1

1 .

FDA3=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = ( f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = ∑xi∈xI
xF(t)

i
g(xII) = 1+G(t)+∑xi∈xII

(xi−G(t))2

h( f1,g) = 1−
√

f1
g

G(t) = |sin(0.5πt)|
F(t) = 102sin(0.5πt), t = 1

nt

⌊
τ
τt

⌋
xI ∈ [0,1];xII ∈ [−1,1]

.

(8.15)
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As suggested by [7], the function parameters |XII| and |XIII| were set to: |XI| = 5
and |XII| = 25. Function FDA3 has a convex shaped POF and both the values in
the decision variable space, as well as the objective space, change. Therefore, it is

called a Type II DMOOP. For FDA3, POF = (1+G(t))(1−
√

f1
1+G(t) ).

dMOP1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = ( f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+ 9∑xi∈xII
(xi)

2

h( f1,g) = 1− f1
g

H(t)

where :

H(t) = 0.75sin(0.5πt)+ 1.25, t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)

.

(8.16)

As suggested by [8], the dimension was set to n= 10. Function dMOP1 has a convex
POF where the values in the objective space change, but the values in the decision

space remain the same. Therefore, it is a Type III problem, with POF = 1− f H(t)
1 .

dMOP2=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = ( f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+ 9∑xi∈xII
(xi−G(t))2

h( f1,g) = 1− f1
g

H(t)

where :
H(t) = 0.75sin(0.5πt)+ 1.25,

G(t) = sin(0.5πt)t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)

.

(8.17)

The dimension, n, was set 10 (as suggested by [8]). Function dMOP2 has a con-
vex POF where the values in both the decision space and objective space change.

Therefore, dMOP2 is a Type II problem, with POF = 1− f H(t)
1 .

dMOP3=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = ( f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xr

g(xII) = 1+ 9∑xi∈xII\xr(xi−G(t))2

h( f1,g) = 1−
√

f1
g

where :

G(t) = sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0,1];r =

⋃
(1,2, . . . ,n)

.

(8.18)
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As suggested by [8], the dimension, n, was set to 10. Function dMOP3 has a convex
POF where the values in the objective space change, but the values in the decision
space remain the same, and is therefore a Type I DMOOP, but the spread of the POF
changes over time. For dMOP3, POF = 1−√ f1.

The following two functions, HE1 and HE2, are based on the function ZDT3 [26],
and adapted to be dynamic.

HE1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = ( f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+ 9
n−1 ∑xi∈xII

xi

h( f1,g) = 1−
√

f1
g − f1

g sin(10πt f1)

where :

t = 1
nt

⌊
τ
τt

⌋
; xi ∈ [0,1]

xI = (x1); xII = (x2, . . . ,xn)

.

(8.19)

HE2=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = ( f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+ 9
n−1 ∑xi∈xII

xi

h( f1,g) = 1−
√

f1
g

H(t)
− f1

g
H(t)

sin(10π f1)

where :

H(t) = 0.75sin(0.5πt)+ 1.25; t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)

.

(8.20)

The dimension, n, was set to 30 (as suggested by [26]) for both HE1 and HE. Both
functions have a discontinuous POF. For HE1, POF = 1−√ f1− f1 sin(10πt f1),

and, for HE2, POF = 1−√ f 1H(t)− f H(t)
1 sin(0.5π f1).

8.4.2 Performance Metrics

This section discusses the performance metrics that were used to measure the perfor-
mance of the various algorithms. Each metric is calculated every time just before a
change occurs in the environment. The average of all these values is then calculated
for each of the runs. However, if it is unknown when a change will occur, the per-
formance metrics can be calculated over all iterations instead of only the iterations
just before a change occurs in the environment.
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To determine the algorithm with the best performance for a specific function,
the algorithm’s overall rank is calculated. For each of the performance metrics the
algorithm is ranked according to its performance with regards to the specific metric.
The algorithm’s average rank value is calculated and then the algorithm is ranked
accordingly. Two average ranks are calculated, namely: (a) the sum of all ranks
divided by the number of performance metrics (indicated in Tables 8.1-8.8 as R1);
and (b) the sum of all ranks (but the ranks of performance metrics that rely on
the true POF, namely HV R, VD and MS counted double) divided by the adjusted
number of performance metrics (indicated in Tables 8.1-8.8 as R2).

8.4.2.1 Spacing

Measuring how evenly the non-dominated solutions are distributed along the found
POF (POF∗) can be done using the metric of spacing [9], defined as:

S
i
=

1
nc

nc

∑
j=1

Si
j, S =

1
nPF

[
1

nPF

nPF

∑
i=1

(di− d)2

] 1
2

, d =
1

nPF

nPF

∑
i=1

di, (8.21)

where nc is the number of changes that occurred in the environment, nPF is the
number of non-dominated solutions found at time t and di is the Euclidean distance,
in the objective space, between non-dominated solution i and its nearest solution in
POF∗.

8.4.2.2 Hypervolume Ratio

The hypervolume (HV ) or S-metric [26] computes the size of the region that is
dominated by a set of non-dominated solutions, based on a reference vector. Ac-
cording to Li et al., comparing the HV averaged over a number of runs may not
be as meaningful when dealing with dynamic environments [17]. Therefore, they
suggest using the HV ratio (HV R) to overcome this problem, since the HV of the
found POF (POF∗) is computed in relation to the HV of the true POF (POF) [17].
Mathematically, HVR is defined as:

HVR =
1
nc

nc

∑
i=1

HVR(t), HVR(t) =
HV (POF∗(t))
HV (POF(t)

. (8.22)

Prior knowledge about POF is required to calculate the HVR, POF and the value
of the metric will depend on the distribution of sampling points on POF and the
selection of the reference vector. For this research the reference vector is selected as
the maximum value for each objective.
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8.4.2.3 Accuracy

A measure of accuracy that measures the quality of the solutions as a relation be-
tween the HV of POF∗ and the maximum HV that has been found so far was intro-
duced by Cámara et al. [1]. Mathematically, it is defined as:

acc =
1
nc

nc

∑
i=1

acc(t), acc(t) =
HV (POF∗(t))

HVmax(POF∗(t))
, (8.23)

8.4.2.4 Stability

The effect of the changes in the environment on the accuracy (acc defined above)
of the algorithm can be measured by the measure of stability that was introduced by
Cámara et al. [1]. Mathematically, stability is defined as:

stab =
1
nc

nc

∑
i=1

stab(t), stab(t) = max{0,acc(t− 1)− acc(t)} (8.24)

8.4.2.5 Variable Space Generational Distance

The static generational distance (GD) metric was adapted for dynamic environments
by Goh and Tan [8]. It measures the distance between POF∗ and POF , i.e. the
proximity of POF∗ to POF . The variable space GD (VGD) metric calculates the
GD just before a change occurs in the environment, and is mathematically expressed
as:

VD(t) =
1
τ

τ

∑
t=0

VD(t)I(t)

VD(t) =
1

nPOF∗(t)

√√√√nPOF∗(t)

nPOF∗(t)

∑
i=1

di(t)2

I(t) =

{
1, if t%τt = 0
0, otherwise

, (8.25)

where nPOF(t)∗ is the number of non-dominated solutions in POF∗ at time t and di

is the Euclidean distance between the i-th solution of POF∗ and the nearest solution
solution of POF . Goh and Tan calculate di in the decision space [8]. However, for
this research it is calculated in the objective space.

8.4.2.6 Maximum Spread

Goh and Tan adapted the maximum spread (MS) metric for dynamic environ-
ments [8]. MS measures how well POF∗ covers the POF , i.e. how well the
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non-dominated solutions of POF∗ are spread along POF . MS for dynamic envi-
ronments calculates the MS just before a change occurs in the environment, and is
defined mathematically as:

MS(t) =
1
τ

τ

∑
t=0

MS(t)I(t)

MS(t) =

√√√√√ 1
M

M

∑
i=1

⎡
⎣min

[
POF∗i (t),POFi(t)

]−max
[
POF∗i (t),POFi(t)

]
POFi(t)−POFi(t)

⎤
⎦

I(t) =

{
1, if t%τt = 0
0, otherwise

(8.26)

where M is the number of objectives, nPOF(t)∗ is the number of non-dominated so-
lutions in POF∗ at time t, POF∗i and POF∗i refer to the maximum and minimum

of the i-th objective of non-dominated solutions in POF∗ and POFi and POFi refer
to the maximum and minimum of the i-th objective of non-dominated solutions in
POF respectively.

8.4.3 Comparison

The performance of DVEPSO is compared against three those of the other state-of-
the-art DMOO algorithms, namely:

• DNSGA-II-A algorithm, an NSGA-II algorithm adapted for DMOO and pro-
posed by Deb et al. [6]. If a change in the environment is detected, a percentage
of individuals are randomly selected and replaced with newly created individuals.

• DNSGA-II-B algorithm, an NSGA-II algorithm that selects a percentage of in-
dividuals randomly and replaces them with individuals that are mutated from
existing individuals when a change is detected. DNSGA-II-B was proposed by
Deb et al. [6].

• dCOEA algorithm, a dynamic competitive-cooperative coevolutionary algorithm
proposed by Goh and Tan [8].

The source code of the dCOEA algorithm was obtained from the first author of [8].
The source code of the static NSGA-II algorithm was obtained from [16] and was
adapted for DMOO according to [6].

8.4.4 Statistical Analysis

A Kruskal-Wallis test was performed for each function for each τt to determine
whether there is a difference in performance with respect to the performance met-
rics. If this test indicated that there was a difference, pairwise Mann-Whitney U tests
were performed.
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8.5 Results

This section discusses the results that were obtained from the experiments. The val-
ues of the performance metrics that were obtained, are presented in Tables 8.1- 8.8.
In all tables, DVEPSOc, DVEPSOd, DVEPSOpe, DVEPSOp, DVEPSOr, DVEPSOre

and DVEPSOu refer to the clamping, deflection, per element re-initialisation, peri-
odic, random, re-initialisation and unconstrained approaches respectively (refer to
Section 8.3.3 for the definitions of these approaches).

8.5.1 Managing Boundary Constraints

This section discusses the results that were obtained by the various boundary con-
straint management approaches. The values of the performance metrics are pre-
sented in Tables 8.1- 8.8.

When comparing the POF that was found by the various approaches to the true
POF, the VD and MS metrics provide a good indication of the algorithms’ perfor-
mance. These tables show that for a change frequency of 10, DVEPSOc, DVEPSOpe

and DVEPSOd obtained the best overall VD value for two, one and one function(s)
respectively, DVEPSOp, DVEPSOu and DVEPSOre each obtained the best MS
value for one function and DVEPSOr, DVEPSOd and DVEPSOu obtained the best
rank over all performance measures for one, two and two function(s) respectively.

For a change frequency of 25, DVEPSOr obtained the best overall VD value
for three functions, DVEPSOp, DVEPSOd and DVEPSOpe each obtained the best
MS value for one function, and DVEPSOpe, DVEPSOc, DVEPSOu and DVEPSOre

each obtained the best overall rank for one function.
For a change frequency of 50, DVEPSOpe, DVEPSOu and DVEPSOr obtained

the best VD value for two, one and one function(s) respectively, DVEPSOu and
DVEPSOr obtained the best MS value for one function each and DVEPSOu ob-
tained the best overall rank for three functions.

Figure 8.1 illustrates the found POF of the various boundary handling app-
roaches for FDA2. Figure 8.1 shows that good results were obtained by DVEPSOc,
DVEPSOr, DVEPSOu and DVEPSOpe, but DVEPSOd and DVEPSOp struggled to
find the POF.

The results obtained by the various boundary handling techniques for dMOP2
can be seen in Figure 8.2. Good results were obtained by all approaches, but the
approximated POFs of DVEPSOp and DVEPSOpe had a worse spread or coverage
than the other DVEPSO approaches.

Table 8.9 presents the overall rank that the various algorithms obtained for each
performance measure, as well as their overall rank for the various frequencies of
change. Table 8.9 shows that with regard to the various boundary constraint man-
agement approaches, for a change frequency of 10 the best overall rank for VD
was obtained by DVEPSOr and DVEPSOc, the best MS rank was obtained by
DVEPSOr and the best overall rank for all DVEPSO approaches was obtained by
DVEPSOc. For a change frequency of 25 the best overall rank for VD was ob-
tained by DVEPSOcl and DVEPSOr, the best overall rank for MS was obtained by



164 M. Helbig and A.P. Engelbrecht

Table 8.1 Performance Measure Values for FDA1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.4 0.00043 0.99658 0.9967 0.00154 0.06593 0.9761 2 2

10 DVEPSOd 99.4 0.00074 0.99361 0.99373 0.00217 0.12731 0.92471 6 6

10 DVEPSOpe 99.2 0.00051 0.99589 0.99601 0.00133 0.08515 0.92806 3.5 3.5

10 DVEPSOp 99.5 0.00053 0.99538 0.9955 0.00163 0.08932 0.95041 3.5 3.5

10 DVEPSOr 99.5 0.00043 0.99701 0.99713 0.00116 0.07035 0.94377 1 1

10 DVEPSOre 99.4 0.00053 0.9953 0.99541 0.00143 0.07855 0.89446 5 5

10 DVEPSOu 99.3 0.00077 0.99391 0.99403 0.00191 0.14115 0.91986 7 7

10 DNSGAII-A 22.8 0.00494 0.97425 0.97436 0.00339 0.83219 0.78693 10 10

10 DNSGAII-B 21.1 0.00612 0.95019 0.9503 0.00543 1.13392 1.19478 9 9

10 dCOEA 33.7 0.00132 0.90528 0.90538 0.01328 1.13184 2.48561 8 8

25 DVEPSOc 99.9 0.0008 0.99857 0.99858 0.00034 0.18913 0.91448 3 4

25 DVEPSOd 99.9 0.00042 0.98439 0.9763 0.00397 0.12891 0.86929 6 8

25 DVEPSOpe 99.9 0.00046 0.99928 0.99016 0.00032 0.12982 0.90767 1 1

25 DVEPSOp 99.9 0.00045 0.98084 0.97189 0.00485 0.10817 0.89605 9 9

25 DVEPSOr 99.8 0.00047 0.99856 0.98944 0.00049 0.10446 0.90257 4.5 3

25 DVEPSOre 99.9 0.00057 0.99922 0.9901 0.00035 0.13211 0.86428 4.5 5

25 DVEPSOu 98.5 0.00068 1.00377 0.99409 0.0013 0.24299 0.88969 7 6

25 DNSGAII-A 37.8 0.00056 0.99903 0.98891 0.00014 0.29491 0.9446 8 7

25 DNSGAII-B 38.3 0.00046 0.99913 0.98901 0.00014 0.28079 0.94903 2 2

25 dCOEA 39.8 0.00053 0.96001 0.95028 0.00428 1.32408 2.93453 10 10

50 DVEPSOc 100.0 0.00039 0.99865 0.99866 0.00035 0.19331 0.93334 6 7

50 DVEPSOd 99.8 0.00048 0.96771 0.96395 0.00616 0.17621 0.87048 10 10

50 DVEPSOpe 99.9 0.00044 0.99915 0.99456 0.0004 0.09639 0.86153 7 6

50 DVEPSOp 99.9 0.00037 0.97749 0.97285 0.00541 0.14417 0.83086 9 9

50 DVEPSOr 100.0 0.00046 0.99888 0.9941 0.00038 0.24311 0.89013 8 8

50 DVEPSOre 100.0 0.00033 0.99917 0.99439 0.00041 0.1331 0.87969 4 4

50 DVEPSOu 99.9 0.00033 1.00125 0.9957 0.00126 0.15148 0.91074 2 1.5

50 DNSGAII-A 40.0 0.00032 0.99985 0.99419 3.016x10−05 0.1716 0.98858 2 1.5

50 DNSGAII-B 40.0 0.00033 0.99986 0.9942 2.245x10−05 0.17261 0.98778 2 3

50 dCOEA 39.9 0.00026 0.99965 0.994 0.00017 0.1515 0.95904 5 5

DVEPSOr, and the approach that ranked the best over all performance measures
was DVEPSOcl . For a change frequency of 50 the best overall rank for VD was ob-
tained by DVEPSOpe, the best overall rank for MS was obtained by DVEPSOr and
the approach that ranked the best over all performance measures was DVEPSOu. It
is interesting to note that DVEPSOr consistently provided the best overall MS value.
Furthermore, DVEPSOc and DEVPSOr obtained the best rank for VD for change
frequencies of 10 and 25. Therefore, for the lower change frequencies of 10 and
25, DVEPSOc and DVEPSOr outperformed the other approaches and for a change
frequency of 50 DVEPSOu performed the best of the DVEPSO approaches.
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Table 8.2 Performance Measure Values for FDA2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 63.3 0.00367 0.99525 0.99191 0.00049 0.43937 0.87783 7.5 7

10 DVEPSOd 73.4 0.00118 0.99533 0.97848 0.00049 0.45824 0.90878 7.5 8

10 DVEPSOpe 63.0 0.00391 0.99905 0.98157 0.00029 0.43234 0.88916 5 3

10 DVEPSOp 68.5 0.002 0.99846 0.98098 0.00034 0.45147 0.91258 3 2

10 DVEPSOr 68.6 0.00372 0.99634 0.9789 0.00043 0.44453 0.90914 6 5

10 DVEPSOre 63.3 0.00297 0.99554 0.97812 0.00037 0.45008 0.87382 9.5 9

10 DVEPSOu 71.5 0.00283 1.00171 0.98418 0.00019 0.44998 0.90757 1 1

10 DNSGAII-A 39.4 0.00044 1.0044 0.98681 9.565x10−06 0.71581 0.77096 4 6

10 DNSGAII-B 39.6 0.00042 1.00441 0.98683 9.206x10−06 0.71681 0.77866 2 4

10 dCOEA 38.4 0.00051 1.00209 0.98454 0.00122 0.70453 0.61923 9.5 10

25 DVEPSOc 78.5 0.0023 0.99644 0.99421 0.00037 0.43181 0.86647 7 7

25 DVEPSOd 77.2 0.00204 0.99354 0.98997 0.00058 0.43196 0.86884 9.5 8.5

25 DVEPSOpe 76.7 0.00221 0.99882 0.99493 0.00024 0.43695 0.85983 4 4

25 DVEPSOp 79.3 0.00166 0.99701 0.9893 0.0004 0.4421 0.89688 6 4

25 DVEPSOr 78.0 0.00114 0.9968 0.98855 0.00036 0.42211 0.87893 2.5 1

25 DVEPSOre 78.5 0.00251 0.99684 0.98859 0.00028 0.42642 0.82876 9.5 8.5

25 DVEPSOu 76.0 0.00145 1.00077 0.99249 0.00021 0.43903 0.86418 5.0 4

25 DNSGAII-A 39.7 0.00043 1.00314 0.99484 7.579x10−06 0.72841 0.78969 2.5 6

25 DNSGAII-B 39.7 0.00051 1.00314 0.99484 6.707x10−06 0.7268 0.83159 1 2

25 dCOEA 39.9 0.00099 1.00265 0.99436 0.00017 0.74606 0.78319 8 10

50 DVEPSOc 93.7 0.00031 0.99961 0.9979 0.00017 0.50599 0.95397 3 3

50 DVEPSOd 93.3 0.00028 0.99491 0.99166 0.00173 0.49882 0.94 4.5 5

50 DVEPSOpe 93.1 0.00031 1.001 0.99732 7.344x10−05 0.4994 0.95325 2 2

50 DVEPSOp 94.0 0.00031 0.99524 0.99158 0.00161 0.51161 0.93862 9 9

50 DVEPSOr 93.0 0.00032 1.00035 0.99668 0.00012 0.50096 0.92995 8 7

50 DVEPSOre 93.7 0.00036 0.99904 0.99537 0.00012 0.49984 0.95716 6.5 4

50 DVEPSOu 91.4 0.00031 1.00155 0.99787 9.68x10−05 0.49669 0.95937 1 1

50 DNSGAII-A 40.0 0.0005 1.00287 0.99918 2.804x10−06 0.67584 0.75404 4.5 6

50 DNSGAII-B 40.0 0.00039 1.00287 0.99918 2.778x10−06 0.67736 0.74332 6.5 8

50 dCOEA 40.0 0.00207 1.00268 0.999 4.575x10−05 0.69043 0.86612 10 10

8.5.2 Comparison

This section discusses the results that were obtained by the various DMOO algo-
rithms. The results are presented in Tables 8.1- 8.8. These tables show that for
a change frequency of 10, dCOEA and DNSGAII-A each obtained the best over-
all VD value for 2 functions and with regard to the MS value, DNSGAII-A and
dCOEA obtained the best overall value for two and three functions respectively a
change frequency of 25, dCOEA obtained the best overall VD value for two func-
tions and DNSGAII-A and DNSGAII-B each obtained the best overall VD value for
one function; dCOEA and DNSGAII-A obtained the best MS value for two and three
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Table 8.3 Performance Measure Values for FDA3

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 100.0 0.00109 1.00221 0.99889 0.00013 0.95943 0.83848 4 1.5

10 DVEPSOd 100.0 0.00084 1.963x10+44 0.00773 0.00334 0.98365 0.82782 2 3

10 DVEPSOpe 100.0 0.00095 1.00169 5.124x10−48 7.62x10−52 0.99045 0.80762 7.5 8

10 DVEPSOp 100.0 0.00084 5.822x10+40 2.977x10−07 2.96x10−07 1.0308 0.86383 2 4

10 DVEPSOr 100.0 0.00087 1.00164 5.124x10−48 8.014x10−52 0.99326 0.82882 7.5 7

10 DVEPSOre 100.0 0.00091 1.0017 5.124x10−48 7.63x10−52 0.99818 0.8472 6 6

10 DVEPSOu 100.0 0.00081 4.767x10+45 0.00068 0.00068 0.97488 0.81679 2 1.5

10 DNSGAII-A 32.8 0.00318 0.99967 7.171x10−50 2.796x10−53 1.32639 1.09947 9 9.5

10 DNSGAII-B 27.3 0.00498 0.99796 7.158x10−50 5.576x10−53 1.31649 1.18386 10 9.5

10 dCOEA 39.3 0.00076 1.00182 7.186x10−50 1.503x10−53 1.08503 1.30535 5 5

25 DVEPSOc 100.0 0.00076 1.00045 0.99981 2.746x10−05 1.0931 0.95493 1.5 2

25 DVEPSOd 100.0 0.00087 7.955x10+41 0.01251 0.0025 1.14336 1.02693 5 4

25 DVEPSOpe 100.0 0.00069 1.00037 1.053x10−45 2.484x10−50 1.08436 0.91634 6.5 6

25 DVEPSOp 100.0 0.00071 4.334x10+41 0.00046 0.00045 1.10933 0.96636 4 5

25 DVEPSOr 100.0 0.00066 1.00036 1.053x10−45 2.646x10−50 1.11311 0.99296 6.5 7

25 DVEPSOre 100.0 0.00069 1.00037 1.053x10−45 2.5x10−50 1.10671 0.95784 8 8

25 DVEPSOu 100.0 0.0008 1.508x10+35 1.588x10−10 1.586x10−10 1.10233 0.97723 1.5 1

25 DNSGAII-A 38.2 0.00124 1.00039 1.053x10−45 4.373x10−50 1.27408 1.1752 10 9.5

25 DNSGAII-B 39.1 0.0011 1.00041 1.053x10−45 3.612x10−50 1.27814 1.17337 9 9.5

25 dCOEA 39.9 0.00052 1.00044 1.053x10−45 3.221x10−50 1.22933 1.37518 3 3

50 DVEPSOc 100.0 0.00103 1.01768 0.98517 0.00231 0.70117 0.98572 6 6

50 DVEPSOd 100.0 0.00098 5.573x10+41 0.02758 0.00885 0.68577 0.97358 5 5

50 DVEPSOpe 100.0 0.00076 1.00645 6.998x10−45 1.587x10−47 0.67082 0.98334 2.5 4

50 DVEPSOp 100.0 0.00115 1.969x10+43 0.00167 0.00167 0.68958 0.98313 4 2

50 DVEPSOr 100.0 0.00077 1.00532 8.548x10−47 2.067x10−49 0.66911 0.9844 2.5 3

50 DVEPSOre 100.0 0.00092 1.00664 8.559x10−47 1.935x10−49 0.70841 0.97215 10 10

50 DVEPSOu 100.0 0.00088 4.341x10+41 3.674x10−05 3.674x10−05 0.68476 0.98049 1 1

50 DNSGAII-A 40.0 0.00137 1.02952 8.753x10−47 3.248x10−50 1.15409 0.99744 7 7

50 DNSGAII-B 40.0 0.00141 1.02976 8.755x10−47 2.781x10−50 1.16742 0.99743 8.5 8

50 dCOEA 40.0 0.00065 1.01787 8.654x10−47 2.083x10−49 0.75373 0.9469 8.5 9

functions respectively; and dCOEA, DNSGAII-A and DNSGAII-B obtained the best
overall rank for one, two and two functions respectively.

For a change frequency of 50, dCOEA and DNSGAII-B obtained the best VD
value for two and three functions respectively; DNSGAII-A and DNSGAII-B ob-
tained the best MS value for four and one function(s) respectively; and DNSGAII-A
and DNSGAII-B obtained the best overall rank for four and three functions
respectively.

Figure 8.3 illustrates the found POF of the various DMOO algorithms for FDA2.
Figure 8.3 shows that DVEPSO was tracking the changing POF well over time, but
DNSGAII-A and dCOEA struggled to track the changing POF once it changed from
convex to concave.



8 Dynamic Multi-Objective Optimization Using PSO 167

Table 8.4 Performance Measure Values for dMOP1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.9 0.00407 0.99962 0.99962 0.00035 0.26344 0.87907 2 3

10 DVEPSOd 99.9 0.00452 0.99821 0.99796 7.232x10−05 0.29477 0.89326 8 9.5

10 DVEPSOpe 99.9 0.00484 0.9991 0.99885 0.00046 0.29445 0.89736 7 6

10 DVEPSOp 99.9 0.00405 0.9983 0.99805 6.998x10−05 0.28384 0.89884 5 5

10 DVEPSOr 99.9 0.00431 0.99841 0.99816 0.00083 0.29631 0.90964 9 8

10 DVEPSOre 99.9 0.00365 0.99921 0.99896 0.00041 0.23362 0.88294 4 4

10 DVEPSOu 99.9 0.00386 0.99866 0.99817 0.00086 0.23642 0.86045 6 7

10 DNSGAII-A 38.8 0.00577 0.99991 0.99933 3.603x10−05 0.15212 0.9834 1 1

10 DNSGAII-B 38.7 0.00497 0.99991 0.99933 5.904x10−05 0.15351 0.93976 3 2

10 dCOEA 39.8 0.00045 0.99582 0.99524 0.00253 0.03892 0.86235 10 9.5

25 DVEPSOc 100.0 0.00361 0.9936 0.99343 0.00148 0.68678 0.76746 4 4

25 DVEPSOd 100.0 0.00352 0.99097 0.97202 0.00091 0.77566 0.75222 8 8

25 DVEPSOpe 100.0 0.00395 0.99877 0.96826 0.00055 0.71365 0.73278 6 6.5

25 DVEPSOp 100.0 0.00351 0.99056 0.96029 0.00105 0.70929 0.74939 9 9

25 DVEPSOr 100.0 0.00358 0.99347 0.96311 0.00177 0.80396 0.76349 10 10

25 DVEPSOre 100.0 0.00386 0.99892 0.9684 0.00049 0.72382 0.72943 6 6.5

25 DVEPSOu 100.0 0.00361 1.0082 0.94919 0.00276 0.72882 0.75882 6 5

25 DNSGAII-A 39.3 0.0004 0.9998 0.93468 7.896x10−06 0.15351 0.97874 1 1

25 DNSGAII-B 39.3 0.0004 0.99976 0.93464 1.998x10−05 0.13231 0.9755 2 2

25 dCOEA 40.0 0.0003 0.99887 0.93381 0.00064 0.0686 0.95086 3 3

50 DVEPSOc 100.0 0.00136 0.97142 0.9714 0.00117 1.43242 0.56964 7 9.5

50 DVEPSOd 100.0 0.00146 0.97285 0.91286 0.00368 1.48468 0.58482 9 9.5

50 DVEPSOpe 100.0 0.00164 0.9977 0.90593 0.00074 1.27847 0.5732 6 6

50 DVEPSOp 100.0 0.00112 0.97275 0.88327 0.00248 1.40793 0.6043 8 7

50 DVEPSOr 100.0 0.00148 0.97523 0.88553 0.00208 1.4258 0.60255 10 8

50 DVEPSOre 100.0 0.00194 0.99825 0.90643 0.00068 1.26249 0.56443 5 5

50 DVEPSOu 100.0 0.00126 1.01387 0.91444 0.00885 1.60305 0.66245 4 4

50 DNSGAII-A 40.0 0.00034 0.99967 0.89645 1.349x10−05 0.11787 0.98323 2 2

50 DNSGAII-B 40.0 0.00032 0.99967 0.89646 1.246x10−05 0.121 0.98338 1 1

50 dCOEA 40.0 0.00023 0.99942 0.89624 0.00021 0.09572 0.97838 3 3

Although all DMOO algorithms tracked the changing POF of dMOP1 very well
over time, Figure 8.4 shows that DNSGAII-A and dCOEA struggled to track the
changing POF of dMOP2 over time. However, DVEPSO had no problem tracking
the changing POF of dMOP2. The VD value that is obtained by the DVEPSO app-
roaches for dMOP1 is high compared to the evolutionary algorithms. The DVEPSO
approaches find much more solutions than the evolutionary algorithms, and most of
the these solutions are on or very close to the true POF. However, a few outlier so-
lutions in the archive of the DVEPSO approaches lead to the high VD values, even
though they have tracked the changing POF.

Table 8.9 presents the overall rank that the various algorithms obtained for each
performance measure, as well as their overall rank for the various frequencies of
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Table 8.5 Performance Measure Values for dMOP2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.9 0.00073 0.99962 0.99951 0.00027 0.07904 0.97647 2 2

10 DVEPSOd 99.9 0.00062 1.00667 0.98227 0.00042 0.07402 0.97937 1 1

10 DVEPSOpe 99.9 0.00083 0.99915 0.9732 0.00039 0.09291 0.97288 5 7

10 DVEPSOp 99.9 0.00067 1.00603 0.97887 0.00045 0.07467 0.9744 3 3

10 DVEPSOr 99.9 0.00076 0.99891 0.97127 0.00047 0.08269 0.97518 6.5 6

10 DVEPSOre 99.9 0.00067 0.99903 0.97138 0.00046 0.0855 0.97567 4 4

10 DVEPSOu 99.9 0.0008 1.00709 0.95911 0.00197 0.08911 0.9689 6.5 5

10 DNSGAII-A 33.5 0.00095 0.99321 0.93715 0.00064 0.90415 1.45643 8 8

10 DNSGAII-B 28.7 0.00212 0.99216 0.93616 0.00068 1.03746 1.43973 9.5 9.5

10 dCOEA 33.7 0.00112 0.98988 0.93401 0.00213 0.81297 1.40996 9.5 9.5

25 DVEPSOc 100.0 0.00078 0.998 0.9978 0.00097 0.17631 0.91634 3 4

25 DVEPSOd 100.0 0.00085 0.99396 0.96988 0.00188 0.1772 0.93172 6 5

25 DVEPSOpe 100.0 0.00076 0.99874 0.96992 0.00056 0.18783 0.94799 2 2

25 DVEPSOp 100.0 0.00085 0.99719 0.96842 0.00163 0.17535 0.91477 6 6.5

25 DVEPSOr 100.0 0.00054 0.99767 0.96888 0.00096 0.17112 0.93158 4 3

25 DVEPSOre 100.0 0.00079 0.99867 0.96986 0.00064 0.17207 0.93278 1 1

25 DVEPSOu 100.0 0.00099 1.0045 0.96771 0.00241 0.18725 0.91586 9 9

25 DNSGAII-A 39.9 0.00043 0.98884 0.95201 0.00101 0.93768 1.63537 8 6.5

25 DNSGAII-B 39.9 0.00041 0.98885 0.95203 0.001 0.94214 1.63414 6 8

25 dCOEA 39.8 0.0004 0.98775 0.95096 0.00144 0.93822 1.61199 10 10

50 DVEPSOc 100.0 0.00016 0.97296 0.97124 0.00629 0.19285 0.84654 9 10

50 DVEPSOd 100.0 0.00017 1.05717 0.71632 0.01254 0.1688 0.85856 2.5 4

50 DVEPSOpe 100.0 0.00016 0.99637 0.62876 0.00077 0.16929 0.85865 4 6.5

50 DVEPSOp 100.0 0.00017 1.13016 0.61318 0.01325 0.20012 0.88857 6 5

50 DVEPSOr 100.0 0.00016 0.98452 0.49138 0.0024 0.16467 0.87944 6 8

50 DVEPSOre 100.0 0.00018 0.99619 0.4972 0.00065 0.14661 0.85065 6 6.5

50 DVEPSOu 100.0 0.00016 1.23115 0.61117 0.04407 0.15933 0.87335 2.5 2

50 DNSGAII-A 40.0 0.00032 0.99845 0.45172 0.00014 0.15645 0.9955 8 3

50 DNSGAII-B 40.0 0.00032 0.99863 0.45181 0.00012 0.14069 0.99639 1 1

50 dCOEA 39.8 0.00027 0.98953 0.44769 0.00229 0.15248 0.95434 10 9

change. Table 8.9 shows that for a change frequency of 10 the best overall rank for
VD was obtained by DVEPSOc and DVEPSOr and the best overall rank for MS was
obtained by DNSGAII-A. DNSGAII-B obtained the best rank over all performance
measures and DVEPSOc obtained the best rank over all performance measures when
the measures that use the true POF count more towards the overall rank average.

For a change frequency of 25 the best overall rank for VD was obtained by
DVEPSOcl and DVEPSOr, the best overall rank for MS was obtained by DNSGAII-A
and the approach that ranked the best over all performance measures was DNSGAII-B.
For a change frequency of 50 the best overall rank forVD was obtained by DNSGAII-B
and dCOEA. The best overall rank for MS was obtained by DNSGAII-A and the app-
roach that ranked the best over all performance measures was DNSGAII-A.
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Table 8.6 Performance Measure Values for dMOP3

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 5.1 0.07368 0.9973 0.99735 0.00045 1.35206 1.91012 2.5 2

10 DVEPSOd 5.1 0.0789 0.91942 0.91945 0.01367 1.38248 1.93216 10 10

10 DVEPSOpe 5.2 0.07884 0.99545 0.99548 0.00108 1.38861 1.93614 4 4

10 DVEPSOp 5.1 0.07866 0.91629 0.91632 0.01296 1.37957 1.92784 9 9

10 DVEPSOr 5.0 0.07815 0.99515 0.99519 0.00125 1.3581 1.90401 8 7

10 DVEPSOre 5.1 0.08445 0.99547 0.9955 0.00107 1.38452 1.93409 5 5.5

10 DVEPSOu 5.2 0.07905 0.99403 0.99406 0.00232 1.38136 1.94846 6.5 5.5

10 DNSGAII-A 36.7 0.00075 0.99744 0.99745 0.00086 0.84372 1.54286 1 1

10 DNSGAII-B 28.2 0.00146 0.97038 0.97039 0.00558 0.94898 1.27303 6.5 8

10 dCOEA 36.9 0.00078 0.99611 0.99612 0.00159 0.74777 1.34982 2.5 3

25 DVEPSOc 5.5 0.07858 0.98458 0.98515 0.00178 1.43742 2.08363 7 5

25 DVEPSOd 5.5 0.07596 0.88596 0.88644 0.01572 1.45526 2.12036 9 10

25 DVEPSOpe 5.5 0.08177 0.98197 0.9825 0.002 1.48467 2.14814 8 8

25 DVEPSOp 5.5 0.07608 0.89117 0.89164 0.01617 1.45777 2.1446 10 9

25 DVEPSOr 5.8 0.07085 0.98163 0.98215 0.00206 1.42254 2.10335 4 4

25 DVEPSOre 5.5 0.07123 0.98211 0.98263 0.00191 1.44345 2.12769 3 3

25 DVEPSOu 5.5 0.07527 0.98564 0.98583 0.00289 1.46414 2.10228 6 6

25 DNSGAII-A 40.0 0.00038 0.99017 0.99018 0.0014 0.90791 1.6252 2 2

25 DNSGAII-B 40.0 0.00035 0.9741 0.97411 0.00812 0.89235 1.49494 5 7

25 dCOEA 39.9 0.00042 0.99104 0.99106 0.00116 0.88038 1.52265 1 1

50 DVEPSOc 8.9 0.01957 0.99372 0.99612 0.00105 0.60082 0.83513 5 6

50 DVEPSOd 9.6 0.01643 0.86685 0.86849 0.0281 0.5848 0.86028 6 5

50 DVEPSOpe 9.3 0.01741 0.99347 0.99535 0.00123 0.59723 0.84383 4 4

50 DVEPSOp 9.0 0.01997 0.86521 0.86588 0.03018 0.60588 0.83987 9 9

50 DVEPSOr 9.2 0.01932 0.99301 0.99365 0.00154 0.58804 0.83986 7 7

50 DVEPSOre 8.9 0.02124 0.99359 0.99423 0.00114 0.61199 0.84182 8 8

50 DVEPSOu 8.7 0.02248 0.98684 0.98649 0.00439 0.61941 0.83323 10 10

50 DNSGAII-A 40.0 0.00032 0.99982 0.99912 3.1x10−05 0.11419 0.99401 1 1

50 DNSGAII-B 40.0 0.00029 0.99561 0.99491 0.00422 0.09471 0.97185 3 3

50 dCOEA 39.9 0.00025 0.99942 0.99871 0.00028 0.12694 0.968 2 2

With regard to the overall rank presented in Table 8.9 over all frequencies of
change, the DVEPSO approaches performed the best with regards to VD and the dy-
namic NSGA-II approaches performed the best with regards to MS and the overall
rank. The DVEPSO approaches obtained the best overall rank for VD on eleven oc-
casions, and the dynamic NSGA-II approaches and dCOEA on six occasions each.
With regards to MS, the DVEPSO approaches obtained the highest rank on 8 oc-
casions, the dynamic NSGA-II approaches on eleven occasions and dCOEA on 4
occasions. The dynamic NSGA-II approaches obtained the best overall rank on 15
occasions, the DVEPSO approaches on 12 occasions and dCOEA on no occasion.
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Table 8.7 Performance Measure Values for HE1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 13.5 0.01173 0.66388 0.85439 0.01399 1.55763 0.78202 7 9

10 DVEPSOd 12.6 0.01359 0.73684 0.67688 0.01324 1.51808 0.77148 8 6

10 DVEPSOpe 13.1 0.01518 0.68747 0.61666 0.00955 1.522 0.76341 10.0 10

10 DVEPSOp 13.3 0.01196 0.78513 0.70427 0.01191 1.53101 0.77698 4.5 4.5

10 DVEPSOr 14.4 0.0108 0.67781 0.608 0.00835 1.53891 0.76821 6 7.5

10 DVEPSOre 13.5 0.01411 0.70286 0.63047 0.01085 1.54639 0.78341 9 7.5

10 DVEPSOu 13.8 0.01429 0.89687 0.7716 0.01334 1.56948 0.78503 4.5 4.5

10 DNSGAII-A 40.0 0.00058 0.96747 0.80366 0.00827 0.13607 0.8044 1 1

10 DNSGAII-B 40.0 0.00033 0.90325 0.75031 0.00317 0.13917 0.42739 2 2

10 dCOEA 28.6 0.00326 0.92802 0.77089 0.01347 0.18269 0.60639 3 3

25 DVEPSOc 19.9 0.0069 0.66264 0.88732 0.01299 1.54781 0.77076 6.5 5.5

25 DVEPSOd 24.2 0.00558 0.8044 0.75121 0.02017 1.55831 0.76052 9.5 10

25 DVEPSOpe 18.3 0.00837 0.69068 0.63844 0.00961 1.51748 0.75548 9.5 9

25 DVEPSOp 21.1 0.0075 0.83401 0.74319 0.01696 1.53058 0.76397 8 7

25 DVEPSOr 25.0 0.00543 0.68311 0.60386 0.00915 1.57137 0.76668 4.5 5.5

25 DVEPSOre 19.9 0.00543 0.71364 0.63085 0.00988 1.57552 0.76542 6.5 8

25 DVEPSOu 17.3 0.009 0.87798 0.77612 0.01192 1.52789 0.77961 4.5 4

25 DNSGAII-A 40.0 0.00058 0.96607 0.85399 0.01143 0.15803 0.79656 1 1

25 DNSGAII-B 40.0 0.00038 0.90938 0.80388 0.00648 0.16232 0.47371 2 2

25 dCOEA 39.7 0.0011 0.94994 0.83974 0.0125 0.18167 0.72581 3 3

50 DVEPSOc 34.2 0.00367 0.71493 0.91246 0.01146 1.59845 0.76024 5 8.5

50 DVEPSOd 34.7 0.00401 0.87724 0.79065 0.01461 1.56689 0.7584 9 8.5

50 DVEPSOpe 29.0 0.00409 0.72615 0.64561 0.00899 1.56256 0.76148 6.5 5

50 DVEPSOp 29.4 0.00489 0.89416 0.79499 0.01309 1.54536 0.75448 10 6.5

50 DVEPSOr 33.4 0.00357 0.71771 0.63811 0.00863 1.5742 0.75946 6.5 10

50 DVEPSOre 34.2 0.00342 0.75603 0.67218 0.00934 1.56573 0.76762 4 4

50 DVEPSOu 32.4 0.00416 0.89113 0.7923 0.01105 1.56451 0.75721 8 6.5

50 DNSGAII-A 40.0 0.00058 0.96827 0.86088 0.01083 0.19626 0.78734 1 1

50 DNSGAII-B 40.0 0.00041 0.91908 0.81715 0.00778 0.19108 0.46374 3 3

50 dCOEA 40.0 0.00072 0.96564 0.85854 0.00961 0.18173 0.78317 2 2

8.5.3 Statistical Analysis

This section discusses the statistical analysis that was done on the performance
metrics values. Kruskal-Wallis tests were performed to determine whether there
was a statistically significant difference between the values obtained by the vari-
ous DMOO algorithms for a performance metric for a specific function at a specific
τt . The p-values that were obtained from the Kruskal-Wallis tests are presented in
Tables 8.10- 8.17. In these tables, p-values that are statistically significant are dis-
played in bold.

When the p-value of the Kruskal-Wallis test indicated that there was a statis-
tically significant difference, Mann-Whitney U tests were performed to determine
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Table 8.8 Performance Measure Values for HE2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 24.4 0.01986 0.48235 0.54748 0.01305 1.52451 0.98783 4.5 3.5

10 DVEPSOd 29.8 0.0115 0.46427 0.51349 0.0134 1.55614 1.02734 6.5 7

10 DVEPSOpe 27.8 0.0132 0.47364 0.52271 0.01315 1.52684 1.01328 4.5 5

10 DVEPSOp 28.1 0.01271 0.46458 0.51271 0.01325 1.56867 1.01558 10 10

10 DVEPSOr 23.3 0.02176 0.46844 0.51697 0.01302 1.53622 1.024 8.5 8

10 DVEPSOre 24.4 0.01208 0.46198 0.50984 0.01338 1.55797 1.03365 8.5 9

10 DVEPSOu 23.9 0.01354 0.47324 0.52226 0.01305 1.5348 1.01992 6.5 6

10 DNSGAII-A 40.0 0.00062 0.99071 0.94744 0.00213 0.20337 0.91933 2 2

10 DNSGAII-B 40.0 0.00061 0.99095 0.9474 0.00206 0.20331 0.92084 1 1

10 dCOEA 27.4 0.00452 0.9062 0.89176 0.01591 0.23457 0.6925 3 3.5

25 DVEPSOc 43.5 0.00478 0.6976 0.7411 0.00911 1.50652 0.89599 5 5

25 DVEPSOd 42.7 0.01078 0.98233 0.45845 0.00316 1.5213 0.90232 4 4

25 DVEPSOpe 34.1 0.01208 0.71057 0.18521 0.00214 1.48753 0.88314 9 9

25 DVEPSOp 39.5 0.00823 0.98768 0.25744 0.00207 1.49003 0.89328 3 3

25 DVEPSOr 32.0 0.01914 0.69406 0.18091 0.00235 1.50608 0.88741 10 10

25 DVEPSOre 43.5 0.01553 0.74847 0.19509 0.00181 1.51314 0.89228 8 8

25 DVEPSOu 33.6 0.01342 0.9345 0.24358 0.00187 1.52096 0.89767 7 7

25 DNSGAII-A 40.0 0.00065 0.9896 0.25794 0.00022 0.26994 0.88562 2 2

25 DNSGAII-B 40.0 0.00061 0.9896 0.25794 0.00022 0.26682 0.88501 1 1

25 dCOEA 39.4 0.00131 0.95101 0.24789 0.00204 0.2783 0.74454 6 6

50 DVEPSOc 33.2 0.0145 0.66815 0.89051 0.00519 1.75131 1.16669 9 10

50 DVEPSOd 24.4 0.02218 0.9366 0.72392 0.00342 1.71371 1.14846 7 7

50 DVEPSOpe 28.0 0.02009 0.68452 0.48548 0.00278 1.71787 1.18569 8 8

50 DVEPSOp 32.3 0.01708 0.94995 0.67374 0.00244 1.73754 1.1905 4 3.5

50 DVEPSOr 20.3 0.01837 0.67025 0.47536 0.00298 1.74609 1.1989 10 9

50 DVEPSOre 33.2 0.01405 0.72528 0.51439 0.00193 1.72075 1.1981 5 5

50 DVEPSOu 25.9 0.01376 0.86189 0.61128 0.00301 1.71865 1.17589 6 6

50 DNSGAII-A 40.0 0.00063 0.9985 0.70817 0.00048 0.19138 0.91808 1 1

50 DNSGAII-B 40.0 0.00062 0.99847 0.70815 0.00048 0.17538 0.91793 2 2

50 dCOEA 40.0 0.00146 0.97275 0.68991 0.00346 0.25389 0.81778 3 3

between which DMOO algorithms’ performance metric values there were a statis-
tically significant difference. Both the Kruskal-Wallis tests and the Mann-Whitney
U tests were performed using the statistical software package R and testing for a
confidence level of 95%. Due to a lack of space all results of the Mann-Whitney
U tests are not presented. However, Tables 8.18- 8.25 in the appendix present the
results of the Mann-Whitney U tests for the VD performance metric. In all these
tables “-” indicates that there was no statistically significant difference and “x” indi-
cates that according to the Mann-Whitney U test, there was a statistically significant
difference between the specific performance metric values.

Table 8.10 shows that for FDA1 there is a statistically significant difference be-
tween almost all of the algorithms for a change frequency of 10 and for almost half
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Fig. 8.1 Results of various boundary constraint management approaches solving FDA2, with
(a) DVEPSOc, (b) DVEPSOd , (c) DVEPSOpe, (d) DVEPSOp, (e) DVEPSOr, (f) DVEPSOre

and (g) DVEPSOu. The numbering is from top to bottom on the left, and then from top to
bottom on the right.

of the algorithm combinations for a change frequency of 50. However, for a change
frequency of 25 there is no statistically significant difference when comparing the
evolutionary algorithms against each other, but there is a statistically significant dif-
ference for almost all combinations when comparing the evolutionary algorithms
against the DVEPSO approaches.
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Fig. 8.2 Results of various boundary constraint management approaches solving dMOP2,
with (a) DVEPSOc, (b) DVEPSOd , (c) DVEPSOpe, (d) DVEPSOp, (e) DVEPSOr, (f)
DVEPSOre, (g) DVEPSOu. The numbering is from top to bottom on the left, and then from
top to bottom on the right.

For FDA2 with a change frequency of 10 and 25, only a few of the DVEPSO app-
roaches have statistically significant differences when compared to other DVEPSO
approaches, but almost all combinations of comparisons between DVEPSO
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Table 8.9 Overall Ranking of Algorithms

τt Algorithm RNS RS RHVR RAcc RStab RV D RMS RO1 RO2

10 DVEPSOc 1 9 8 1 8 1.5 4 3 1

10 DVEPSOd 3 6 9 2 10 9.5 3 10 9

10 DVEPSOpe 4.5 7.5 6 3 4 3.5 9 6 6

10 DVEPSOp 4.5 5 7 8 9 3.5 7 9 4

10 DVEPSOr 6 4 10 10 6 1.5 2 6 7

10 DVEPSOre 2 7.5 5 6.5 3 6.5 10 8 8

10 DVEPSOu 7 10 1 5 7 9.5 5.5 6 2

10 DNSGAII-A 10 3 2 4 1 6.5 1 2 3

10 DNSGAII-B 9 1.5 3 2 2 5 5.5 1 5

10 dCOEA 8 1.5 4 9 5 8 8 4 10

25 DVEPSOc 1 9 8 1 8 1.5 4 3 3

25 DVEPSOd 3 6 9 2 10 9.5 3 10 10

25 DVEPSOpe 4.5 7.5 6 3 4 3.5 9 6 6

25 DVEPSOp 4.5 5 7 8 9 3.5 7 9 9

25 DVEPSOr 6 4 10 10 6 1.5 2 6 5

25 DVEPSOre 2 7.5 5 6.5 3 6.5 10 8 8

25 DVEPSOu 7 10 1 5 7 9.5 5.5 6 4

25 DNSGAII-A 10 3 2 4 1 6.5 1.0 2 2

25 DNSGAII-B 9 1.5 3 6.5 2 5.0 5.5 1.0 1

25 dCOEA 8 1.5 4 9 5 8 8 4 7

50 DVEPSOc 1.5 5 10 1 7 10 8 7 9.5

50 DVEPSOd 1.5 9 7 4.5 10 7 10 8 8

50 DVEPSOpe 5.5 6 8 6.5 5 3 5.5 4 4

50 DVEPSOp 3.5 9 5 9 9 8 9 10 7

50 DVEPSOr 3.5 7 9 10 6 9 4 9 9.5

50 DVEPSOre 5.5 9 6 8 4 5 7 6 6

50 DVEPSOu 9 3 3 2 8 6 5.5 3 3

50 DNSGAII-A 7.5 4 1 3 2 4 1 1 1

50 DNSGAII-B 7.5 2 2 4.5 1 1.5 2 2 2

50 dCOEA 10 1 4 6.5 3 1.5 3 5 5

approaches and the evolutionary algorithms resulted in statistically significant dif-
ferences. This is shown in Table 8.11.

Table 8.12 shows that for FDA3 for a change frequency of 10 and 25 there is no sta-
tistically significant difference between the VD values of the DVEPSO approaches,
but almost all comparisons of DVEPSO approaches with an evolutionary algorithm
resulted in a statistically significant difference in VD values. For a change frequency
of 50, almost all comparisons resulted in statistically significant differences.

For dMOP1 with a change frequency of 10 most DVEPSO approaches com-
pared against each other resulted in statistically significant differences and for a
change frequency of 25 and 50 almost half of the DVEPSO approaches compar-
isons resulted in statistically significant differences. However, for all three change
frequencies all comparisons between the evolutionary algorithms and the DVEPSO
approaches resulted in statistically significant differences and the values obtained by
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Fig. 8.3 Results of various algorithms solving FDA2, with (a) DVEPSO, (b) dCOEA, (c)
DNSGAII-A and (d) DNSGAII-B.

DNSGAII-A and DNSGAII-B was statistically significantly different, but the com-
parison between DNSGAII-B and dCOEA was not statistically significantly diffe-
rent. This is shown in Table 8.13. Table 8.14 shows that for dMOP2 for a change
frequency of 10 all comparisons lead to statistically significant differences and for a
change frequency of 50 only the comparison between DNSGAII-A and DNSGAII-B
indicated a statistically significant difference. For a change frequency of 25 all
comparisons amongst the evolutionary algorithms, and all comparisons between
the evolutionary algorithms and the DVEPSO approaches, resulted in statistically
significant differences. However, only a few comparisons amongst the DVEPSO
approaches resulted in a statistically significant difference.

For dMOP3 no statistically significant difference was found for any comparisons
amongst the DVEPSO approaches for all frequencies of change. For a change fre-
quency of 10, all comparisons amongst the evolutionary algorithms indicated a sta-
tistically significant difference, but not for the change frequencies of 25 and 50. All
comparisons between the evolutionary algorithms and the DVEPSO approaches in-
dicated a statistically significant difference for all frequencies of change for dMOP3.
This is shown in Table 8.15.

Table 8.16 shows that for HE1 for a change frequency of 10, all comparisons
lead to a statistically significant difference, except the comparison of DNSGAII-B
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Fig. 8.4 Results of various algorithms solving dMOP2, with (a) DVEPSO, (b) dCOEA, (c)
DNSGAII-A and (d) DNSGAII-B.

and dCOEA. For a change frequency of 25, almost all DVEPSO comparisons and
all comparisons between DVEPSO and evolutionary computation algorithms lead to
a statistically significant difference and amongst the evolutionary algorithms only
the comparison between DNSGAII-B and dCOEA indicated VD values that were
not statistically significantly different. For a change frequency of 50, all compar-
isons between DVEPSO and the evolutionary algorithms, and a few of the compar-
isons amongst the DVEPSO approaches, indicated statistically significant different
values.

For HE2 for a change frequency of 10 and 50, amongst the evolutionary algo-
rithms only the comparison between DNSGAII-B and dCOEA indicated VD val-
ues that were not statistically significantly different and for a change frequency
of 25 none of the comparisons amongst the evolutionary algorithms indicated a
statistically significant difference. From the comparisons amongst the DVEPSO
approaches, approximately half indicated a statistically significant difference for
change frequencies of 10 and 50. For a change frequency of 25, none of the com-
parisons amongst the DVEPSO approaches indicated a statistically significant dif-
ference. However, for all frequencies of change, the comparisons between the evolu-
tionary algorithms and the DVEPSO approaches indicated a statistically significant
difference.
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Table 8.10 p-values of Kruskal-Wallis test for FDA1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 0.00045 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

50 0.01745 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.0001837 < 2.2x10−16

Table 8.11 p-values of Kruskal-Wallis test for FDA2

τt S HV R Acc Stab VD MS

10 3.509x10−14 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 0.003196 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 5.444x10−12

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 8.12 p-values of Kruskal-Wallis test for FDA3

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 9.382x10−14 0.01549

25 4.898x10−08 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.0182 0.08228

50 1.864x10−07 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.96x10−08

Table 8.13 p-values of Kruskal-Wallis test for dMOP1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 8.14 p-values of Kruskal-Wallis test for dMOP2

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 7.723x10−16

25 0.9811 < 2.2x10−16 < 2.2x10−16 3.127x10−16 2.888x10−08 7.932x10−08

50 2.564x10−15 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.9032 < 2.2x10−16
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Table 8.15 p-values of Kruskal-Wallis test for dMOP3

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.07x10−12

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.573x10−07 0.1925

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 8.16 p-values of Kruskal-Wallis test for HE1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.231x10−15 < 2.2x10−16 < 2.2x10−16

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.009434 < 2.2x10−16 1.158x10−06

Table 8.17 p-values of Kruskal-Wallis test for HE2

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 2.682x10−10

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 3.902x10−15 < 2.2x10−16 0.003448

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 2.815x10−05 < 2.2x10−16 < 2.2x10−16

8.6 Conclusions

This chapter discussed DMOO and issues that should be addressed when solving
DMOOP. The DVEPSO algorithm was presented and the effect that various bound-
ary handling approaches have on the performance of DVEPSO was investigated. It
could clearly be seen that the deflection and periodic boundary handling approaches
lead to bad performance with especially the FDA2 problem.

The performance of DVEPSO were compared against those of three other state-
of-the-art DMOO algorithms. DVEPSO performed quite well with regards to the
VD metric that measures the closeness of the approximated POF to the true POF and
the MS metric that measures the spread of the found non-dominated solutions. The
DNSGAII approaches and dCOEA struggled to track the changing POF of the FDA2
and dMOP2 problems, but DVEPSO had no problem to track the changing POF
for these problems. However, the DNSGAII approaches and dCOEA outperformed
DVEPSO with the problems that have a discontiuous POF.
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Appendix

Tables 8.18- 8.25 present the results that were obtained with the Mann-Whitney U
tests that were performed on the performance metric values. In all tables below, Dd ,
Dpe, Dp, Dr, Dre, Du, N-A, N-B and C refers to DVEPSOd , DVEPSOpe, DVEPSOp,
DVEPSOr, DVEPSOre, DVEPSOu, DNSGAII-A and DNSGAII-B respectively. In
all tables “-” indicates that there was no statistically significant difference and “x”
indicates that according to the Mann-Whitney U test, there was a statistically sig-
nificant difference between the specific performance metric values.

Table 8.18 Results of Mann-Whitney U test for VD metric for FDA1

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x – n/a
10 Dr x x – x n/a
10 Dre x x – x – n/a
10 Du x – x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a
25 Dc n/a
25 Dd x n/a
25 Dpe x – n/a
25 Dp x – – n/a
25 Dr x x – – n/a
25 Dre x – – – x n/a
25 Du – x x x x x n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x – – – n/a
50 Dc n/a
50 Dd – n/a
50 Dpe x x xn/a
50 Dp – – x n/a
50 Dr – x – x n/a
50 Dre – – – – x n/a
50 Du – – x – x – n/a
50 N-A – – x – x – – n/a
50 N-B – – x x x x – x n/a
50 C – – x x – x – x – n/a
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Table 8.19 Results of Mann-Whitney U test for VD metric for FDA2

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe – x n/a
10 Dp – – x n/a
10 Dr – – – – n/a
10 Dre – – x – – n/a
10 Du – – – – – – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x – n/a
10 C x x x x x x x – – n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – x n/a
25 Dre – – – x – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a
50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x x x n/a
50 Dr x – – x n/a
50 Dre – – – x – n/a
50 Du x – – x – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x – – n/a
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Table 8.20 Results of Mann-Whitney U test for VD metric for FDA3

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd – n/a
10 Dpe – – n/a
10 Dp – – – n/a
10 Dr – – – – n/a
10 Dre – – – – – n/a
10 Du – – – – – – n/a
10 N-A – – – – – – – n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A – – – – – – – n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a
50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x – – n/a
50 Dr x – x – n/a
50 Dre x x x x x n/a
50 Du x x x x x – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x – n/a
50 C x x x x x x x x – n/a
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Table 8.21 Results of Mann-Whitney U test for VD metric for dMOP1

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x – n/a
10 Dp x – – n/a
10 Dr x – – x n/a
10 Dre x x x x x n/a
10 Du x x x x x – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a
25 Dc n/a
25 Dd x n/a
25 Dpe – – n/a
25 Dp – x – n/a
25 Dr x – x x n/a
25 Dre – x – – x n/a
25 Du – – – – x – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x – n/a
50 Dc n/a
50 Dd – n/a
50 Dpe x x n/a
50 Dp – x x n/a
50 Dr – – x – n/a
50 Dre x x – x x n/a
50 Du x x x x x x n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x x – n/a
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Table 8.22 Results of Mann-Whitney U test for VD metric for dMOP2

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x x n/a
10 Dr x x x x n/a
10 Dre x x x x x n/a
10 Du x x x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – x n/a
25 Dp – – x n/a
25 Dr – – x – n/a
25 Dre – – – – – n/a
25 Du x – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x x n/a
50 Dc n/a
50 Dd – n/a
50 Dpe – – n/a
50 Dp – – – n/a
50 Dr – – – – n/a
50 Dre – – – – n/a
50 Du – – – – – – n/a
50 N-A – – – – – – – n/a
50 N-B – – – – – – – x n/a
50 C – – – – – – – – – n/a
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Table 8.23 Results of Mann-Whitney U test for VD metric for dMOP3

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd – n/a
10 Dpe – – n/a
10 Dp – – – n/a
10 Dr – – – – n/a
10 Dre – – – – – n/a
10 Du – – – – – – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a
50 Dc n/a
50 Dd – n/a
50 Dpe – – n/a
50 Dp – – – n/a
50 Dr – – – – n/a
50 Dre – – – – – n/a
50 Du – – – – – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x – n/a
50 C x x x x x x x – – n/a
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Table 8.24 Results of Mann-Whitney U test for VD metric for HE1

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x x n/a
10 Dr x x x x n/a
10 Dre x x x x x n/a
10 Du x x x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a
25 Dc n/a
25 Dd x n/a
25 Dpe x x n/a
25 Dp x x x n/a
25 Dr x x x x n/a
25 Dre x x x x – n/a
25 Du x x – – x x n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x – n/a
50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x x x n/a
50 Dr x – – x n/a
50 Dre x – – x – n/a
50 Du x – – x – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x – – n/a
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Table 8.25 Results of Mann-Whitney U test for VD metric for HE2

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe – x n/a
10 Dp x – x n/a
10 Dr – x – x n/a
10 Dre x – x – x n/a
10 Du – x – x – x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a
50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp – x – n/a
50 Dr – x x – n/a
50 Dre x – – – – n/a
50 Du x – – – x – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x x – n/a
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[1] Cámara, M., Ortega, J., Toro, J.: Parallel Processing for Multi-objective Optimization
in Dynamic Environments. In: Proc. of IEEE International Parallel and Distributed Pro-
cessing Symposium, p. 243 (2007)

[2] Carlisle, A., Dozier, G.: Adapting Particle Swarm Optimization to Dynamic Environ-
ments. In: Proc. of International Conference on Artificial Intelligence (ICAI 2000), pp.
429–434 (2000)

[3] CHPC. Sun hybrid system, http://www.chpc.ac.za/sun (last accessed online
on March 15, 2011)

[4] Chu, W., Gao, X., Sorooshian, S.: Handling boundary constraints for particle swarm
optimization in high-dimensional search space. Information Sciences (2010) (in press)

[5] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization
test problems. In: Proc. of Congress on Evolutionary Computation (CEC 2002), vol. 1,
pp. 825–830 (2002)

[6] Deb, K., Udaya Bhaskara Rao, N., Karthik, S.: Dynamic Multi-objective Optimiza-
tion and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal
Power Scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.)
EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[7] Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test
cases, approximations, and applications. IEEE Transactions on Evolutionary Computa-
tion 8(5), 425–442 (2004)

[8] Goh, C.-K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic
multiobjective optimization. IEEE Transactions on Evolutionary Computation 13(1),
103–127 (2009)

[9] Goh, C.K., Tan, K.C.: An Investigation on Noisy Environments in Evolutionary Mul-
tiobjective Optimization. IEEE Transactions on Evolutionary Computation 11(3), 354–
381 (2007)

[10] Greeff, M., Engelbrecht, A.P.: Solving dynamic multi-objective problems with vector
evaluated particle swarm optimisation. In: Proc. of IEEE World Congress on Evolu-
tionary Computation: IEEE Congress on Evolutionary Computation, Hong Kong, pp.
2917–2924 (June 2008)

[11] Guan, S.-U., Chen, Q., Mo, W.: Evolving Dynamic Multi-Objective Optimization Prob-
lems with Objective Replacement. Artificial Intelligence Review 23(3), 267–293 (2005)

[12] Helbig, M., Engelbrecht, A.P.: Archive management for dynamic multi-objective opti-
misation problems using vector evaluated particle swarm optimisation. Submitted for
Review

[13] Helwig, S., Wanka, R.: Particle swarm optimization in high-dimensional bounded
search spaces. In: Proc. of IEEE Swarm Intelligence Symposium, Honululu (HI), pp.
198–205 (2007)

[14] Jin, Y., Sendhoff, B.: Constructing Dynamic Optimization Test Problems Using the
Multi-objective Optimization Concept. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne,
D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F.,
Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536.
Springer, Heidelberg (2004)

[15] Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. of IEEE Interna-
tional Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)

http://www.chpc.ac.za/sun


188 M. Helbig and A.P. Engelbrecht

[16] Deb, K.: Kanpur Genetic Algorithms Laboratory (2011),
http://www.iitk.ac.in/kangal/codes.shtml
(last accessed online on March 6, 2011)

[17] Li, X., Branke, J., Blackwell, T.: Particle Swarm with Speciation and Adaptation in a
Dynamic Environment. In: Proc. of 8th Conference on Genetic and Evolutionary Com-
putation (GECCO 2006), pp. 51–58 (2006)

[18] Li, X., Branke, J., Kirley, M.: On Performance Metrics and Particle Swarm Methods for
Dynamic Multiobjective Optimization Problems. In: Proc. of Congress of Evolutionary
Computation (CEC 2007), pp. 1635–1643 (2007)

[19] Mehnen, J., Wagner, T., Rudolph, G.: Evolutionary Optimization of Dynamic Muli-
Objective Test Functions. In: Proc. of 2nd Italian Workshop on Evolutionary Computa-
tion and 3rd Italian Workshop on Artificial Life (2006)

[20] Pampara, G., Engelbrecht, A.P., Cloete, T.: Cilib: A collaborative framework for com-
putational intelligence algorithms - part i. In: Proc. of IEEE World Congress on Com-
putational Intelligence (WCCI), Hong Kong, June 1-8, pp. 1750–1757 (2011), Source
code available at, http://www.cilib.net (last accessed on March 6, 2011)

[21] Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N.: Multiobjective Optimization using
Parallel Vector Evaluated Particle Swarm Optimization. In: Proc. of IASTED Interna-
tional Conference on Artificial Intelligence and Applications, Innsbruck Austria (2004)

[22] Parsopoulos, K.E., Vrahatis, M.N.: Recent Approaches to Global Optimization Prob-
lems through Particle Swarm Optimization. Natural Computing 1(2-3), 235–306 (2002)

[23] Bergh, F.V.D.: An analysis of particle swarm optimizers. PhD thesis, Department of
Computer Science, University of Pretoria (2002)

[24] Zhang, W.-J., Xie, X.-F., Bi, D.-C.: Handling boundary constraints for numerical op-
timization by particle swarm flying in periodic search space. In: IEEE Congress on
Evolutionary Computation, vol. 2, pp. 2307–2311 (June 2004)

[25] Zheng, B.: A New Dynamic Multi-Objective Optimization Evolutionary Algorithm. In:
Proc. of third International Conference on Natural Computation (ICNC 2007), vol. V,
pp. 565–570 (2007)

[26] Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms:
Emperical Results. Evolutionary Computation 8(2), 173–195 (2000)

http://www.iitk.ac.in/kangal/codes.shtml
http://www.cilib.net

	Dynamic Multi-Objective Optimization Using PSO
	Introduction
	Background
	Particle Swarm Optimization
	Multi-Objective Optimization Theory
	Dynamic Multi-Objective Optimisation Theory
	Dynamic Multi-Objective Optimization Issues

	Dynamic Vector Evaluated Particle Swarm Optimization Approach
	Vector Evaluated Particle Swarm Optimization
	Dynamic Vector Evaluated Particle Swarm Optimization
	Management of Boundary Constraints

	Experiments
	Benchmark Functions
	Performance Metrics
	Comparison
	Statistical Analysis

	Results
	Managing Boundary Constraints
	Comparison
	Statistical Analysis

	Conclusions
	References




