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Abstract. Many real-world optimization problems involve objectives, constraints,
and parameters which constantly change with time. However, to avoid complica-
tions, such problems are usually treated as static optimization problems demanding
the knowledge of the pattern of change a priori. If the problem is optimized in its
totality for the entire duration of application, the procedure can be computationally
expensive, involving a large number of variables. Despite some studies on the use of
evolutionary algorithms in solving single-objective dynamic optimization problems,
there has been a lukewarm interest in solving dynamic multi-objective optimization
problems. In this paper, we discuss two different approaches to dynamic optimiza-
tion for single as well as multi-objective problems. Both methods are discussed and
their working principles are illustrated by applying them to different practical opti-
mization problems. The off-line optimization approach in arriving at a knowledge
base which can then be used for on-line applications is applicable when the change
in the problem is significant. On the other hand, an off-line approach to arrive at a
minimal time window for treating the problem in a static manner is more appropri-
ate for problems having a slow change. Further approaches and applications of these
two techniques remain as important future work in making on-line optimization task
a reality in the coming years.
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6.1 Introduction

A dynamic optimization problem involves objective functions, dynamic optimiza-
tion constraint functions, and problem parameters which can change with time. Such
problems often arise in real-world problem solving, particularly in optimal control
problems or problems requiring an on-line optimization. There are two computa-
tional procedures usually followed. In one approach, optimal control laws or rules
(more generally a knowledge base) are evolved by solving an off-line optimization
problem formed by evaluating a solution on a number of real scenarios of the dy-
namic problem [10, 11]. This approach is useful in solving problems which change
frequently and are also computationally expensive for any optimization algorithm
to be applied on-line. The other approach is a direct optimization procedure on-line
in which an off-line study is suggested for finding a minimal time window within
which the problem will be treated as unchanged. In the latter case, the problem is
considered stationary for some time period and an optimization algorithm can be
allowed to find optimal or near-optimal solution(s) within the time span in which
the problem remains stationary. Thereafter, a new problem is constructed based on
the current problem scenario and a new optimization is performed for the new time
period. Although this procedure is approximate due to the static consideration of the
problem during the time for optimization, efforts are made to develop efficient opti-
mization algorithms which can track the optimal solution(s) within a small number
of iterations so that the required time period for fixing the problem is small and the
approximation error is reduced.

Both approaches are applicable for single as well as multi-objective optimization
problems. In the case of single-objective dynamic optimization problems, the opti-
mal solution changes during the optimization procedure and the task of an efficient
optimization algorithm would be to track the optimum solution as closely as possible
with a minimal computational effort. Although single-objective dynamic optimiza-
tion has received some attention in the past [2], the dynamic multi-objective opti-
mization is yet to receive significant attention. When a multi-objective optimization
problem changes with time, the task of a dynamic evolutionary multi-objective op-
timization (EMO) procedure is to find or track the Pareto-optimal front as and when
there is a change. Since a front of trade-off solutions changes with time, dynamic
multi-objective optimization is expected to be harder than dynamic single-objective
optimization. A previous study [6] illustrated different possibilities of a change in
the optimal front. But since this study, there has been a lukewarm interest on this
topic [7, 8].

In the remainder of this paper, we discuss in details the philosophies of both
approaches in Section 6.2. The first approach in which an off-line optimization study
is needed to obtain an optimal knowledge base for on-line optimization is described
next in Section 6.3. This section also shows how the procedure can be applied to a
dynamic robot navigation problem for a single-objective function of minimizing the
overall time of travel and satisfying constraints related to avoidance of collision with
moving obstacles. Due to the uncertain and imprecision nature of the associated
variables, a fuzzy knowledge base is developed by an off-line application of an
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evolutionary algorithm. Later, the obtained fuzzy rule base is used to navigate on-
line in unseen test scenarios. Section 6.4 then describes the second approach, in
which an idea of the minimal time window for considering the problem as a static
problem is determined based on an off-line study. The approach is applied to a
hydro-thermal power dispatch problem in which power demand is considered as
a changing parameter with time. The study shows how the obtained minimal time
window allows the approach to be used on-line in a multi-objective version of the
problem. The issue of automated decision-making required in the case of dynamic
multi-objective optimization is discussed in Section 6.4.4. Conclusions are drawn in
Section 6.5.

6.2 Solving Dynamic Optimization Problems

Many search and optimization problems in practice change with time and therefore
must be treated as on-line optimization problems. The change in the problem with
time t can be either in its objective functions or in its constraint functions or in its
variable boundaries or in any problem parameters or in any combination of above.
Such an optimization problem ideally must be solved instantly at every time instant
t or whenever there is a change in any of the above functions with t. However, prac-
tically speaking, an optimization task requires a finite amount of computational time
(τopt) to arrive at a solution reasonably close to the true optimum. In such problems,
there are two time frames which are intertwined: (i) computational time in arriv-
ing at a solution (denoted as τ) and (ii) real time in which the problem undergoes
a change (denoted as t). While an optimization run is underway in the time frame
of τ , the problem gets also changed in the time frame of t. Here, we shall assume
equivalence of both time frames and any time spent in one frame affects the same
amount in the other time frame.

It now becomes obvious that in an on-line optimization task, as an optimization
task is performed (taking a finite time) the optimization problem gets changed and
the optimization task is not solving the same problem with which it started. The
relevance and accuracy of the obtained optimum in the current context largely de-
pends on the rate at which the problem changes with time. If the rate of change
in the problem is fast compared to the time taken by the optimization algorithm
in arriving at the optimal solution, the relevance of the optimal solution of earlier
problem to the current context may be questionable. In such a situation, performing
an optimization task on-line may not make much sense. On the other hand, if the
rate in change is slow, an optimization task can be performed and the obtained opti-
mal solution can still be meaningful. Based on these two scenarios, we suggest two
different techniques for a possible on-line optimization task:

1. Develop an optimal rule base off-line and use it for on-line application, and
2. Develop an on-line optimization procedure by considering the problem to be

static for a minimal time window.

We discuss each of these techniques in the following sections.
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6.3 Approach 1: Off-Line Development of an Optimal Rule
Base

This approach is more suitable to problems which change quickly with time or
which require a computationally expensive evaluation procedure. In this approach, a
number of instantiations of the dynamically changed problem are first collected. An
off-line optimization task is then used to find a set of optimal rules (other classifier
based approaches can also be adopted here) that would correctly work in the chosen
instantiations. It is then believed that since the obtained optimal rule base worked
on a number of cases in solving the task optimally, it would also work on new cases
on-line. Thus, the obtained optimal rule base can be used to quickly find a reason-
able solution to the changing problem. Since new instantiations can be somewhat
different from the earlier chosen instantiations, the optimization task of finding the
optimal rule base can be repeated in a regular interval during the on-line application
process. For this purpose, the new and structurally different instantiations can be
stored in an archive. The optimization task can continue in the background without
disturbing the on-line application process. We describe one such application through
an optimization based approach applied to dynamic robot navigation problem [4].

6.3.1 Off-Line Optimization Approach Applied to a Robot
Navigation Problem

Figure 6.1 shows the suggested off-line optimization based approach. On a set of
instantiations, an optimization algorithm is applied to find a knowledge base using
rules or by other means. The optimization task would find a set of rules or classifiers
which will determine the nature of the outcome based on the variable values at any
time instant. In the following, we describe the procedure in the context of an on-line
robot navigation problem.

The purpose of the dynamic motion planning (DMP) problem of a robot is to find
an obstacle-free path which takes a robot from a point A to a point B with minimum
time. There are essentially two parts of the problem:

1. Learn to find any obstacle-free path from point A to B, and
2. Learn to choose that obstacle-free path which takes the robot in a minimum

possible time.

Both these problems are somewhat similar to the learning phases a child would go
through while solving a similar obstacle-avoidance problem. If a child is kept in
a similar (albeit hypothetical) situation (that is, a child has to go from one corner
of a room to another by avoiding a few moving objects), the child learns to avoid
incoming obstacle by taking detour from his/her path. It is interesting that while
taking the detour he/she never calculates the precise angle of deviation. This process
of avoiding an object can be thought as if the child is using a rule of the following
sort:
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If an object is very near and is approaching, then turn right to the original path.

Because of the imprecise definition of the deviation in this problem, it seems natural
to use a fuzzy logic technique here.

The second task of finding an optimal obstacle-free path arises from a simile of
solving the same problem by an experienced versus an inexperienced child. An in-
experienced child may take avoidance of each obstacle too seriously and deviate by
a large angle each time he/she faces an obstacle. This way, this child may lead away
from the target and take a long winding distance to reach the target. Whereas, an
experienced child may deviate barely from each obstacle, thereby taking the quick-
est route. If we think of how the experienced child has learned this trick, the answer
is through experience of solving many such problems in the past. Previous efforts
helped us to find a set of good rules to do the task efficiently. This is precisely the
task of an optimizer which needs to discover the optimal set of rules needed to avoid
obstacles and reach the target point in a minimum possible time. This is where the
genetic algorithm (GA) is a natural choice.
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Fig. 6.1 Approach 1 is illustrated.
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Fig. 6.2 A schematic showing condition
and action variables for the robot navigation
problem.

In the proposed genetic-fuzzy approach, a GA is used to create the knowledge
base comprising of fuzzy rules for navigating a robot off-line. For on-line applica-
tion, the robot uses its optimal fuzzy rule base to find an obstacle-free path for a
given input of parameters depicting the state of moving obstacles and the state of
the robot.

6.3.2 Representation of a Solution in a GA

A solution to the DMP problem is represented by a set of rules which a robot will
use to navigate from point A to point B (Fig. 6.2). Each rule has three conditions:
distance, angle, and relative velocity. The distance is the distance of the near-
est obstacle forward from the robot. Four fuzzy values of distance are chosen:
very near (VN), near (N), far (F), and very far (VF). The angle is the relative angle
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between the path joining the robot and the target point and the path to the nearest
obstacle forward. The corresponding fuzzy values are left (L), ahead left (AL), ahead
(A), ahead right (AR), and right (R). The relative velocity is the relative velocity
vector of the nearest obstacle forward with respect to the robot. In our approach, we
eliminate this variable by using a practical incremental procedure. Since a robot can
sense the position and velocity of each obstacle at any instant of time, the critical
obstacle ahead of the robot can always be identified. In such a case (Fig. 6.2), even if
an obstacle O1 is nearer compared to another obstacle O2, and the relative velocity
v1 of O1 directs away from robot’s path toward the target point B, whereas the
relative velocity v2 of O2 directs toward the robot (Position P), the obstacle O2 is
assumed to be the critical obstacle forward.

The action variable is deviation of the robot from its path toward the target
(Fig. 6.2). This variable is considered to have five fuzzy values: L, AL, A, AR, and
R. Triangular membership functions are considered for each membership function
(Fig. 6.3). Using this rule base, a typical rule will look like the following:

If distance is VN and angle is A, then deviation is AL.

With four choices for distance and five choices for angle, there could be a total
of 4× 5 or 20 valid rules possible. For each combination of condition variables, a
suitable action value (author-defined) is associated, as shown in Table 6.1.

Table 6.1 All possible rules are shown.

di
st
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angle
L AL A AR R

VN A AR AL AL A
N A A AL A A
F A A AR A A

VF A A A A A
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Fig. 6.3 Author-defined membership functions.

The task of GA is to find which rules (out of 20) should be present in the optimal
rule base. We represent the presence of a rule by a 1 and the absence by a 0. Thus,
a complete solution will have a 20-bit length string of 1 and 0. The value of i-th
position along the string marks the presence or absence of the i-th rule in the rule
base.
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6.3.3 Evaluating a Solution in the GA

A rule base (represented by a 20-bit binary string) is evaluated by simulating a
robot’s performance on a number of scenarios and keeping track of the travel time,
T . Since a robot may not reach the destination using a lethal rule base, the robot is
allowed a maximum travel time. An average of travel times in all scenarios is used
as the fitness of the solution.

Now, we shall discuss some details which will be necessary to calculate the actual
travel time T . As mentioned earlier, the robot’s total path is a collection of a number
of small straight line paths traveled for a constant time ΔT in each step. To make
the matter as practical as possible, we have assumed that the robot starts from zero
velocity and accelerates during the first quarter of the time ΔT and then maintains a
constant velocity for the next one-half of ΔT and decelerates to zero velocity during
the remaining quarter of the total time ΔT . For constant acceleration and decelera-
tion rates (a), the total distance covered during the small time step ΔT is 3aΔT 2/16.
At the end of the constant velocity travel, the robot senses the position and velocity
of each obstacle and decides whether to continue moving in the same direction or to
deviate from its path. This is achieved by first determining the predicted position of
each obstacle, as follows:

Ppredicted = Ppresent +(Ppresent−Pprevious). (6.1)

The predicted position is the linearly extrapolated position of an obstacle from its
current position Ppresent along the path formed by joining the previous Pprevious and
present positions. Thereafter, the nearest obstacle forward is determined based on
Ppredicted values of all obstacles and the fuzzy logic technique is applied to find
the obstacle-free direction using the rule base dictated by the corresponding 20-
bit string. If the robot has to change its path, its velocity is reduced to zero at the
end of the time step; otherwise the robot does not decelerate and continues in the
same direction with the same velocity aΔT/4. It is interesting to note that when the
latter case happens (the robot does not change its course) in two consecutive time
steps, there is a saving of ΔT/4 second in travel time per such occasion. Overall
time of travel (T ) is then calculated by summing all intermediate time steps needed
for the robot to reach its destination. This approach of robot navigation can be easily
incorporated in a real-world scenario1.

6.3.4 Results on Robot Navigation Problem

We consider five different techniques:

Technique 1: Author-defined fuzzy-logic controller. In this approach, a fixed set
of 20 rules and author-defined membership functions are used. No optimization

1 In all simulations here, ΔT = 4 sec and a = 1 m/s2 are chosen. These values make the
velocity of the robot in the middle portion of each time step equal to 1 m/sec.
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method is used to find optimal rule base or to find the optimal membership func-
tion distributions.

Technique 2: Optimizing membership functions alone. A set of all 20 author-
defined rule base is assumed and the membership function distributions of
condition and action variables are optimized. The shape of the membership
functions is assumed to be triangular. The bases of the membership functions
are considered as variables. The bases b1 and b2 (refer Fig. 6.3) are coded in 10
bit substrings each, thereby making a GA string equal to 20 bits. The base b1 is
decoded in the range (1.0, 4.0) cm and the base b2 is decoded in the range (25.0,
60.0) degrees. Symmetry is maintained in constructing other membership func-
tion distributions. In all simulations here, the membership function distribution
for deviation is kept the same as that in angle.

Technique 3: Optimizing rule base alone. The rule base is optimized in this study,
while using an author-defined membership function. Here, the GA string is a 20-
bit string (of 1 and 0 denoting the presence or absence of rules).

Technique 4: Optimizing membership functions and rule base. In this study, both
optimization of finding optimized membership functions and finding an opti-
mized rule base are achieved simultaneously. Here, a GA string is a 40-bit string
with first 20 bits denoting the presence or absence of 20 possible rules, next 10
bits are used to represent the base b1, and the final 10 bits are used to represent
the base b2.

In all runs, we use binary tournament selection (with replacement), the single-point
crossover operator with a probability pc of 0.98 and the bit-wise mutation operator
with a probability pm of 0.02. A maximum number of generations equal to 40 are
used. In every case, a population size of 100 is used. In all cases, 10 different author-
defined scenarios are used to evaluate a solution.

We now apply all five techniques to eight-obstacle problems (in a grid of 20×24
m2). The optimized travel distance and time for Techniques 1 to 4 are presented in
Table 6.2. Ideally multiple applications of a GA from different initial populations
must be used to make a comprehensive evaluation, but here, we show results from
a single simulation in each case. However, a visual inspection of multiple runs has
shown similar results. The first three rows in the table show the performance of all
approaches on scenarios that were used during the optimization process and the last
three rows show their performance on new test (unseen) scenarios. The table shows
that in all cases, Techniques 2, 3, and 4 have performed better than Technique 1
(no optimization). Paths obtained using all four approaches for scenario 4 (unseen)
are shown in Fig. 6.4. It is clear that the paths obtained by Techniques 3 and 4 are
shorter and quicker than those obtained by Techniques 1 and 2. The optimized rule
bases obtained using Techniques 3 and 4 are shown in Tables 6.3 and 6.4.

The optimized membership functions obtained using Techniques 2 and 4 are
shown in Figs. 6.5 and 6.6, respectively.

Here, Technique 4 (simultaneous optimization of rules and membership func-
tions) has elongated the membership function distribution, so that classification of
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Table 6.2 Travel distance D (in meter) and time T (in sec) obtained by five approaches for
the eight-obstacle problem.

Technique 1 Technique 2 Technique 3 Technique 4
Scenario D T D T D T D T

T
ra

in
in

g 1 27.203 28.901 26.077 27.769 26.154 27.872 26.154 27.872
2 26.957 28.943 25.966 27.622 26.026 26.564 26.026 26.546
3 29.848 36.798 28.623 35.164 26.660 34.547 27.139 35.000

Te
st

in
g 4 33.465 43.364 26.396 27.907 26.243 27.512 26.243 29.512

5 32.836 41.781 27.129 33.000 26.543 32.390 27.041 33.000
6 33.464 43.363 28.001 31.335 27.164 31.000 27.164 31.000
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Fig. 6.4 Optimized paths found by all four approaches for the eight-obstacle problem are
shown. There are seven obstacles and their movements are shown by an arrow. The location
of the critical obstacle (that is closest to the robot and is considered for the fuzzy logic analysis
at each time step) is shown by a dashed circle. In each case, the robot is clear from the critical
obstacle.

relative angle is uniform in the range of (−90,90) degrees. Because only 10 scenar-
ios are considered during the optimization process, it could have been that in most
cases the critical obstacles come in the left of the robot, thereby causing more rules
specifying L or AL to appear in the optimized rule base. By considering more sce-
narios during the optimization process, such bias can be avoided and equal number
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Table 6.3 Optimized rule base (having nine
rules only) obtained using Technique 3 for
eight-obstacle problem.

di
st

an
ce

angle
L AL A AR R

VN
N A A
F A A

VF A A A A A

Table 6.4 Optimized rule base (having five
rules only) obtained using Technique 4 for
eight-obstacle problem.

di
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Fig. 6.5 The optimized membership func-
tion obtained using Technique 2 for eight-
obstacle problem.
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0.0 42.1 84.2-42.1-84.2

1.0

0.0

Fig. 6.6 The optimized membership func-
tion obtained using Technique 4 for eight-
obstacle problem.

of rules specifying left and right considerations can be obtained. From Table 6.2, it
can be observed that Technique 3 (optimization of rule base only) has resulted in a
much quicker path than Technique 2 (optimization of membership function only).
This is because finding a good set of rules is more important for the robot than
finding a good set of membership functions. Thus, the optimization of rule base
is a rough-tuning process and the optimization of the membership function distri-
butions is a fine-tuning process. Among both tables, in only one case (Scenario 6
in Table 6.2) the optimization of membership function for a optimized rule base
has improved the solution slightly (Technique 4). In all other cases, the optimized
solutions are already obtained during the optimization of rule-base only and opti-
mization of membership function did not improve the solution any further.

Although the performance of Techniques 3 and 4 is more-or-less similar, we
would like to highlight that Technique 4 is a more flexible and practical approach.
The similarity in the performances of Techniques 3 and 4 reveals that optimizing
rule base has a significant effect and the optimization of the membership functions
is only a secondary matter. Since the membership functions used in Technique 3
are developed by the authors and are reasonably good in these two problems, the
performance of Technique 3 turns out to be good. However, for more complicated
problems, we recommend using Technique 4, since it optimizes both the rule base
and membership functions needed in a problem.
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6.4 Approach 2: On-Line Optimization with a Minimal Time
Window

For a steady change in a problem (which is most usual in practice), we suggest an
on-line optimization technique which we discuss next.

Let us assume that the change in the optimization problem is gradual in t. Let us
also assume that each optimization iteration requires a finite time G and that τT itera-
tions are needed to track the optimal frontier within an allowable performance level.
An assumption we make here is that the problem does not change (or is assumed to
be constant) within a time interval tT , such that GτT < tT . Thus, an initial GτT time
is taken up by the optimization algorithm to track the new trade-off frontier and to
make a decision for implementing a particular solution from the frontier. We expect
that only a fraction of overall time is taken by the optimization algorithm, that is,
α = GτT /tT is expected to be a small value (say 0.25). After the optimal frontier
is tracked, (1−α)tT time is spent on using the optimized solution for the rest of
the time period. Fig. 6.7 illustrates this dynamic procedure. The objective function
f (x), hence also the optimum of f (x), changes with time.

sampled at A

f(x,  ) time period of length t

A

f(x,0)

f*(t)
f(x,2  )

(window for
optimization)

assumed f(x) for

0 2tT Time, t

T

τT GτT
tT

tT

tT
tT

G

Fig. 6.7 The on-line optimization procedure adopted in this study. For simplicity, only one
objective is shown.

The choice of the time window is a crucial matter. If we allow a large value of
tT (allowing a proportionately large number of optimization iterations τT ), a large
change in the problem is expected, but the change occurs only after a large number
of iterations of the optimization algorithm. Thus, despite the large change in the
problem, the optimization algorithm may have enough iterations to track the trade-
off optimal solutions. On the other hand, if we choose a small τT , the change in
the problem is frequent (which approximates the real scenario more closely), but a
lesser number of iterations are allowed to track new optimal solutions for a problem
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which has also undergone a small change. Obviously, there lies a lower limit to τT

below which, albeit a small change in the problem, the number of iterations is not
enough for an optimization algorithm to track the new optimal solutions adequately.
Such a limiting τT will depend on the nature of the dynamic problem and the chosen
algorithm, but importantly allows the best scenario (and closest approximation to
the original problem) which an algorithm can achieve. We suggest using an off-line
study to find the limiting time window for an on-line optimization problem.

6.4.1 Dynamic NSGA-II for Handling Dynamic Multi-objective
Optimization Problems

Here, we illustrate the working of the above on-line optimization approach on a
dynamic multi-objective optimization problem. For this purpose, we suggested a
modified NSGA-II procedure in an earlier study [5].

First, we introduce a test to identify whether there is a change in the problem
at every generation. For this purpose, we randomly pick a few solutions from the
parent population (10% population members used here) and re-evaluate them. If
there is a substantial change in any of the objectives and constraint function values,
we establish that there is a change in the problem. In the event of a change, all parent
solutions are re-evaluated before merging parent and child population into a bigger
pool. This process allows both offspring and parent solutions to be evaluated using
the changed objectives and constraints.

In the dynamic NSGA-II, we introduce new randomly created solutions when-
ever there is a change in the problem. A ζ% of the new population is replaced
with randomly created solutions. This helps us to introduce new (random) solutions
whenever there is a change in the problem.

6.4.2 Application to Bi-objective Hydro-thermal Power
Scheduling

In a hydro-thermal power generation system, both the hydro-thermal and thermal
generating units are utilized to meet the total power demand. The optimum power
scheduling problem involves the allocation of power to all concerned units, so that
the total fuel cost of thermal generation and emission properties are minimized,
while satisfying all constraints in the hydraulic and power system networks [12].
The problem is dynamic due to the changing nature of power demand with time.
Thus, ideally the optimal power scheduling problem is truly an on-line dynamic op-
timization problem in which solutions must be found as and when there is a change
in the power demand. In such situations, what can be expected of an optimization
algorithm is that it tracks the new optimal solutions as quickly as possible, whenever
there is a change.

The original formulation of the problem was given in Basu [1]. Let us also as-
sume that the system consists of Nh number of hydro-thermal (Pht) and Ns number of
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thermal (Pst) generating units sharing the total power demand, such that x =
(Pht ,Pst). The bi-objective optimization problem is given as follows:

Minimize f1(x) = ∑M
t=1 ∑Ns

s=1 tT [as +bsPst +csP2
st + |ds sin{es(Pmin

s −Pst)}|],
Minimize f2(x) =

M
∑

t=1

Ns

∑
s=1

tT [αs +βsPst + γsP2
st +ηs exp(δsPst)],

subject to ∑Ns
s=1 Pst +∑Nh

h=1 Pht −PDt −PLt = 0, t = 1,2 . . . ,M,

∑M
t=1 tT (a0h +a1hPht +a2hP2

ht)−Wh = 0, h = 1,2, . . . ,Nh,
Pmin

s ≤ Pst ≤ Pmax
s , s = 1,2, . . . ,Ns, t = 1,2, . . . ,M,

Pmin
h ≤ Pht ≤ Pmax

h , h = 1,2, . . . ,Nh, t = 1,2, . . . ,M.

(6.2)

The transmission loss PLt term at the t-th interval is given as follows:

PLt =
Nh+Ns

∑
i=1

Nh+Ns

∑
j=1

PitBi jPjt . (6.3)

This constraint involves both thermal and hydro-thermal power generation units.
Due to its quadratic nature, it is handled directly to repair solution [5]. The problem
is dynamic due to changing nature of demand PDt . To make the demand varying in a
continuous manner, we make a piece-wise linear interpolation of power demand val-
ues with the following (t,Pdm) values: (0, 1300), (12, 900), (24, 1100), (36, 1000),
and (48, 1300) in (Hrs, MW). We keep the overall time window of T = 48 hours,
but increase the frequency of changes (that is, increase M from four to 192, so that
the time window tT for each demand level varies from 12 hours to 48/192 hours
or 15 minutes. It will then be an interesting task to find the smallest time window
for keeping the problem static, which our dynamic NSGA-II can handle adequately.
We run the dynamic NSGA-II procedure for 960/M (M is the number of changes in
the problem) generations for each change in the problem, so as to have the overall
number of function evaluations identical.

6.4.3 Results on Hydro-thermal Power Dispatch Problem

We apply a dynamic NSGA-II procedure – an elitist non-dominated sorting ge-
netic algorithm [3] – discussed above to solve the dynamic optimization problem.
In this case, we have considered α = 1, that is, the time window is equal to the
time required for completion of the NSGA-II optimization run. To evaluate the per-
formance of the dynamic NSGA-II procedure at the end of each time window, we
initially treat each problem as a static optimization problem and apply the origi-
nal NSGA-II procedure [3] for a large number (500) of generations so that no fur-
ther improvement is likely. We call these fronts as ideal fronts and compute the
hyper-volume measure using a reference point which is the nadir point of the ideal
front. Thereafter, we apply our dynamic NSGA-II procedure and find an optimized
non-dominated front after each time window. Then for each front, we compute the
hyper-volume using the same reference point and then compute the ratio of this
hyper-volume value with that of the ideal front. This way, the maximum value of
the ratio of hyper-volume for an algorithm is one and as the ratio becomes smaller
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than one, the performance of the algorithm gets poorer. In all runs here, a single
NSGA-II run from an initial random population is used in order to simulate an ac-
tual application.

Figures 6.8 to 6.11 show the hyper-volume ratio for different number of changes
(τT = 4 to 192) in the problem with different proportion of addition of random
solutions, ζ . The figures also mark the 50th, 90th, 95th, and 99th percentile of
hyper-volume ratio, meaning the cut-off hyper-volume ratio which is obtained
by the best 50, 90, 95, and 99 percent of M frontiers in a problem with M
changes in power demand. Figures reveal that as M increases, the performance
of the algorithm gets poorer due to the fact that a smaller number of generations
(τT = 960/M) were allowed to meet the time constraint. If a 90% hyper-volume
ratio is assumed to be the minimum required hyper-volume ratio for a reason-
able performance of the dynamic NSGA-II and if we base our confidence on the
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Fig. 6.8 3-hourly (M = 16) change with dy-
namic NSGA-II (Acceptable).
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Fig. 6.9 1-hourly (M = 48) change with dy-
namic NSGA-II (Acceptable).
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Fig. 6.10 30-min. (M = 96) change with
dynamic NSGA-II (Acceptable and mini-
mal).
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Fig. 6.11 15-min. (M = 192) change with
dynamic NSGA-II (Not acceptable).
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95-th percentile performance, the figures indicate that we can allow a maximum of
M = 96 changes (with a time window of 30 min.) in the problem. For this case,
about 20 to 70% random solutions can be added whenever there is a change in
the problem to start the next optimization and an acceptable performance of the
dynamic NSGA-II can be obtained. Too low addition of random points does not
introduce much diversity to start the new problem and too large addition of random
solutions destroys the population structure which would have helped for the new
problem. The wide range of addition for a successful run suggests the robustness of
the dynamic NSGA-II procedure for this problem.

6.4.4 Automated Decision Making in a Dynamic Multi-objective
Optimization

A decision-making task is essential in a multi-objective optimization task to choose
a single preferred solution from the obtained trade-off solution set. In a dynamic
multi-objective optimization problem, there is an additional problem with the deci-
sion making task. A solution is to be chosen and implemented as quickly as the
trade-off frontier is found, and before the next change in the problem has taken
place. This definitely calls for an automatic procedure for decision-making with
some pre-specified utility function or some other procedure. Automated decision-
making is not available even in the multi-criteria decision making (MCDM) litera-
ture and is certainly a matter of future research, particularly if dynamic EMO is to
be implemented in practice.

Here, we suggest a utility function based approach which works by providing
different importances to different objectives. First, we consider a case in which equal
importances to both cost and emission are given. As soon as a frontier is found for
the forthcoming time period, we compute the pseudo-weight w1 (for cost objective)
for every solution x using the following term:

w1(x) =
( f max

1 − f1(x))/( f max
1 − f min

1 )

( f max
1 − f1(x))/( f max

1 − f min
1 )+( f max

2 − f2(x))/( f max
2 − f min

2 )
. (6.4)

Thereafter, we choose the solution with w1(x) closest to 0.5. A little thought will
reveal that this task is different from performing a weighted-sum approach with
equal weights for each objective. The task here is to choose the middle point in the
trade-off frontier providing a solution equi-distant from individual optimal solutions
(irrespective of whether the frontier is convex or non-convex). Since the Pareto-
optimal frontier is not known a priori, getting the frontier first and then choosing
the desired solution is the only viable approach for achieving the task and such
information cannot be utilized a priori.

To demonstrate the utility of this automated decision-making procedure, we
consider the hydro-thermal problem with 48 time periods (meaning an hourly
change in the problem). Fig. 6.12 shows the obtained frontiers in solid lines and the
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Fig. 6.12 Operating solution marked with a
circle for 50-50% cost-emission case.
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Fig. 6.13 Variation of thermal power pro-
duction for 50-50% cost-emission case.

Table 6.5 Different emphasis between cost and emission used in the automated decision-
making process produces equivalent power generation schedules.

Case Cost Emission
50-50% 74239.07 25314.44
100-0% 69354.73 27689.08
0-100% 87196.50 23916.09

corresponding preferred (operating) solution with a circle. It can be observed that
due to the preferred importance of 50-50% to cost and emission, the solution comes
nearly in the middle of each frontier. To meet the water availability constraint, the
hydro-thermal units of Th1 = 219.76 MW and Th2 = 398.11 MW are computed and
kept constant over time. However, four thermal power units must produce power
to meet the remaining demand and these values for all 48 time periods are shown
in Fig. 6.13. The changing pattern in overall computation of thermal power varies
similar to that in the remaining demand in power. The figure also shows a slight
over-generation of power to meet the loss term PLt given in equation 6.3.

Next, we compare the above operating schedule of power generation with two
other extreme cases: (i) 100-0% importance to cost and emission and (ii) 0-100%
importance to cost and emission. Table 6.5 shows the trade-off between cost and
emission values for the three cases. Although this is one approach for executing
an automated decision-making task, further ideas of choosing a preferred solution
from an obtained set of trade-off solutions instantly using some previously defined
multi-criteria decision making principles [9] must be worked on.

6.5 Conclusions

In this paper, we have dealt with solving on-line optimization problems using evolu-
tionary optimization (EO) algorithms. Specifically, we have suggested and demon-
strated the working of two approaches: (i) an off-line optimization task in which a



6 Single and Multi-Objective Dynamic Optimization 115

set of optimal knowledge base is developed as guiding rules for handling changing
problems on-line, and (ii) an on-line optimization approach in which the problem
is considered static for a minimal amount of time windows. It has been argued that
for a problem having a rapid change in any of its parameters, objectives, and con-
straints, the first approach may be more suitable. For a slow changing problem, the
latter approach is more appropriate. Due to the flexibility in their operators and pop-
ulation approach, EO methods are potential for dynamic optimization.

The working of the first approach is demonstrated by solving a robot navigation
problem in which the obstacles move while the optimization is underway. A fuzzy
rule base system is used to store the knowledge of an optimal action based on two
given input parameters. The off-line optimization is able to find an optimal rule-
base for achieving the task adequately on on-line scenarios. Since it is an on-line
approach, the use of an EO with its flexibility and population approach can be fully
exploited.

The working of the second approach is demonstrated by solving a power dis-
patch problem that changes due to the ever-changing need of demand of power with
time. To illustrate the generic nature of the approach, a two-objective version of the
problem (minimizing cost and minimizing emission) has been considered. Based
on a permissible performance limit, a dynamic NSGA-II approach has been able to
identify a minimum time window (of 30 min.) for which the power demand can be
considered static. Any faster consideration in the change of the problem was found
to be too fast for the chosen algorithm to track the Pareto-optimal solutions of the
problem. An offline estimation of an optimal time window exploits an EO’s popu-
lation approach to handle multiple conflicting objectives in their true sense without
using any a priori and fixed decision-making principle.

Dynamic multi-objective optimization raises an important issue: an automated
decision making task that must be performed as soon as the optimized trade-off front
is found, as otherwise a delay in decision making may cause the problem to change
significantly before the next round of optimization is performed. This chapter has
demonstrated one such automated decision-making approach, but this remains to be
an open area of further research.

The approaches of this chapter clearly demonstrate the potential for applying
single and multi-objective evolutionary (or other) optimization techniques to on-
line optimization tasks. A true implementation of these ideas in practice and further
research for more sophisticated approaches would be the next step and way forward.

Acknowledgments. The results and some texts of this chapter are borrowed from author’s
earlier publications (references [4] and [5]). For details, readers are encouraged to refer these
papers.
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