
Chapter 4
SRCS: A Technique for Comparing Multiple
Algorithms under Several Factors in Dynamic
Optimization Problems

Ignacio G. del Amo and David A. Pelta

Abstract. Performance comparison among several algorithms is an essential task.
This is already a difficult process when dealing with stationary problems where the
researcher usually tests many algorithms, with several parameters, under different
problems. The situation is even more complex when dynamic optimization prob-
lems are considered, since additional dynamism-specific configurations should also
be analyzed (e.g. severity, frequency and type of the changes, etc). In this work,
we present a technique to compact those results in a visual way, improving their
understanding and providing an easy way to detect algorithms’ behavioral patterns.
However, as every form of compression, it implies the loss of part of the informa-
tion. The pros and cons of this technique are explained, with a special emphasis
on some statistical issues that commonly arise when dealing with random-nature
algorithms.

4.1 Introduction

An essential task in the optimization area is to evaluate an algorithm against vari-
ations of different factors, either to determine the best combination of parameters
for it (step size, population, etc) or to verify its robustness over several settings of a
problem (number of local optima, dimensionality, etc). When dealing with Dynamic
Optimization Problems (DOPs) [6], this situation is even harder, since these prob-
lems have some extra features that need to be analyzed (frequency of changes in
the environment, severity of the change, etc). Moreover, it is also usual to compare
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multiple algorithms at the same time, for example to verify if a new proposal outper-
forms previous state-of-the-art techniques (1-vs-all), or to determine the best one of
a set of methods in a competition when no prior knowledge about their performance
exists (all-vs-all).

Apart from that, if metaheuristics and non-exact algorithms are used to solve
these problems, their random nature will make it necessary to perform several in-
dependent repetitions of each experiment in order to obtain a set of result sam-
ples representative enough of its underlying distribution. There are several ways of
presenting these samples, ranging from giving the mean or the median, to include
statistics like the standard deviation, the first and third quartile, etc. In general, the
more the information provided of the sample, the better the analysis that can be per-
formed on the results. On the other hand, if there is too much information, it will be
more complex to present it to the reader, and also, it will be increasingly difficult to
manage it and grasp its meaning. Furthermore, this set of result samples is a random
variable, and it is no longer a question of comparing two single values for deciding
which algorithm is better; it is necessary to use statistical tools. One of the most used
techniques is hypothesis testing, where a null hypothesis is stated (for example, that
the underlying distribution of the results of two algorithms is the same) against an
alternative hypothesis (that the distributions are not the same), and it is checked if
the data from the samples support the null hypothesis at a certain significance level.
If the data are too unlikely at that level, the null hypothesis is rejected.

Depending on the approach used for the design of the experiments (fractional, 2k,
full-factorial, etc. [1, 2]), the amount of obtained results can vary greatly. There are
several techniques commonly used when presenting these data, ranging from the
traditional numerical tables to specifically designed graphs (line charts, barplots,
boxplots, qqplots, etc). When there are few results, the use of numerical tables is
probably one of the best options, since they provide a complete and precise descrip-
tion of the data. However, if the amount of results increases, tables become rapidly
intractable, due to their extension, along with the difficulty of comprehending the
meaning of so much numerical data. Graphs allow to alleviate this situation, sum-
marizing the data in a visual way. But again, if several factors are analyzed at the
same time in a single experiment, it may be necessary to further compress the in-
formation, since the number of plots may grow to unsustainable levels (an example
of this will be shown in Sect. 4.2). Several special-purpose graphs can be used in
this situation to cope with high amounts of data (dendograms, combinations of pie-
charts and scatter plots at the same time), although the type of graph that better suits
each case tends to be dependent on the specific problem at hand. For an extensive
showcase of visualization techniques, the interested reader is referred to [5].

The goal of this chapter is to introduce a technique named SRCS (Statistical
Ranking Color Scheme) specifically designed to analyze the performance of multi-
ple algorithms in DOPs over variations of several factors. This technique is based
on the creation of a ranking of the results for each algorithm using statistical tests,
and then presents this ranking using a color scheme that allows to compress it.
It should be noted that other authors have already addressed this topic in related
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areas with similar approaches. For example, in the machine learning field, Demšar
[8] uses statistical tests for comparing several classifiers over multiple data sets,
proposing also a graphical way for presenting statistically non-differentiable clas-
sifiers by means of connected lines. And in the multi-objective optimization area,
Fonseca et al. [9] devise a technique based on statistical tests to determine the level
of attainment of each objective by several algorithms, while López-Ibáñez et al. [17]
use this technique along with a graphical color-plotting scheme to visually remark
the differences of the algorithms along their obtained Pareto-front.

Before giving the details of the SRCS technique, we will illustrate the application
scenario with a practical example.

4.2 Typical Research Case: Comparing Multiple Algorithms
over Several Configurations of a Problem

Let us suppose that we want to compare the performance of a set of metaheuristic
algorithms over a DOP, for example, the Moving Peaks Benchmark (MPB ).

The MPB is a test benchmark for DOP’s originally proposed in [3]. It is a maxi-
mization problem consisting in the superposition of m peaks, each one characterized
by its own height (h), width (w), and location of its centre (p). The fitness function
of the MPB is defined as follows: Moving Peaks Benchmark

MPB(x) = max j

(
h j−wj

√
∑n

i=1(xi− p j
i )

2

)
, j = 1, ...,m, (4.1)

where n is the dimensionality of the problem. The highest point of each peak corre-
sponds to its centre, and therefore, the global optimum is the centre of the peak with
the highest parameter h.

Dynamism is introduced in the MPB by periodically changing the parameters of
each peak j after a certain number of function evaluations (ω):

h j(t + 1) = h j(t)+hs·N(0,1) (4.2)

w j(t + 1) = w j(t)+ws·N(0,1) (4.3)

p j(t + 1) = p j(t)+ v j(t + 1) (4.4)

v j(t + 1) = s
|r+v j(t)| ((1−λ )r+λ v j(t)). (4.5)

Changes to both width and height parameters depend on a given severity for each of
them (ws and hs). Changes to the centre position depend on a shift vector v j(t +1),
which is a linear combination of a random vector r and the previous shift vector
v j(t) for the peak, normalized to length s (position severity, shift distance, or simply
severity). Finally, parameter λ indicates the linear correlation with respect to the
previous shift, where a value of 1 indicates ”total correlation” and a value of 0 ”pure
randomness”.
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The MPB has been widely used as a test suite for different algorithms in the pres-
ence of dynamism. One of the most used configurations for this purpose is Scenario
2, which consists of the set of parameters indicated in Table 4.1.

Table 4.1 Standard settings for Scenario 2 of the Moving Peaks Benchmark

Parameter Value
Number of peaks (m) ∈ [10,200]

Number of dimensions (d) 5
Peaks heights (hi) ∈ [30,70]
Peaks widths (wi) ∈ [1,12]

Change frequency (ω) 5000
Height severity (hs) 7.0
Width severity (ws) 1.0
Shift distance (s) ∈ [0.0,3.0]

Correlation coefficient (λ ) ∈ [0.0,1.0]

Once the problem has been defined, we need to decide which performance mea-
sures are we going to use for evaluating and comparing the algorithms. There are
different options, like using directly the fitness of the algorithm at every moment in
time, or the absolute error in case the optimum is known. However, these measures
have the problem that they are expressed in absolute units, and they do not give an
idea of how close was an algorithm of reaching the optimum, nor allow us to easily
compare the results between changes in the environment. For example, if at a given
instant in time the fitness of an algorithm can be in the interval [0,10], an absolute
error of 9 units is a very bad result, while if, in another instant, the fitness can be in
the interval [0,1000], the same absolute error of 9 units is a remarkably good result.
In order to allow an easier comparison of the results, a relative performance measure
would be desirable.

Therefore, for the examples of this chapter, we will assume that the optimum
is known, and we will use Weicker’s definition [21] of the accuracy performance
measures!accuracy of an algorithm A over a function F at a given instant in time t,
as the basic performance measure:

accuracy(t)F,A =
F(sol(t)A )−Min(t)F

Max(t)F −Min(t)F

, (4.6)

where sol(t)A is the solution generated by the algorithm A at the instant t, and Min(t)F

and Max(t)F are, respectively, the minimum and maximum values of the function F
at the instant t. This measure has the advantage of always being bounded between
0 and 1, 0 being the worst possible value, and 1 the best (note that this is true in-
dependently of whether the problem is of the maximization or minimization type).

In Weicker’s original definition, best(t)A is used instead of sol(t)A , referring to the best
value of the algorithm at time t. This definition assumes that the algorithm is of an
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evolutionary type, where a population of solutions is evaluated at once, and best(t)A
refers to the best individual in that population. However, this cannot be always as-
sumed, since the algorithm may not be population-based, or the problem may not
allow that type of concurrent evaluation, thus forcing us to evaluate each solution
sequentially. With the aim of not restricting the study to any given implementation

of the algorithm nor the problem, we will use sol(t)A without loss of generality over
the accuracy. In return, we will define, independently of the algorithm, the bestAc-
curacy measure performance measures!best accuracy as:

bestAccuracy(t, t0) =

{
accuracy(t) if t = t0
max{accuracy(t),bestAccuracy(t− 1)} if t > t0

(4.7)

where t = t0 indicates the instant of time immediately after a change in the environ-
ment (variable t is “reset” in every change), such that the bestAccuracy refers only
to the time elapsed since the last change.

We will now extend the accuracy to its offline and average offline perfor-
mance measures!offline accuracy versions for several consecutive performance
measures!average offline accuracy changes in the environment, using De Jong [7]
and Branke [4] definitions:

o f f lineAccuracy(t0,T ) =
1

T − t0

T

∑
t=t0

bestAccuracy(t, t0) (4.8)

avgO f f lineAccuracy(Nc) =
1

Nc

Nc

∑
n=0

o f f lineAccuracy(τ0(n),τT (n)), (4.9)

where Nc is the total number of changes considered, and τ0(n) and τT (n) are func-
tions that return, respectively, the first and last instant of time t of the station-
ary period n. A graphical explanation of these measures can be seen in Figs. 4.1
and 4.2.

At this point we can summarize an execution or run of an algorithm with the avg.
offline accuracy. However, as it has been mentioned in the previous section, when
dealing with stochastic algorithms it is necessary to perform a series of independent
repetitions of the experiments in order to obtain a representative sample of its per-
formance. Therefore, we will execute Nr runs of the algorithm, thus obtaining Nr

measurements of the avg. offline accuracy.
Now that we have already defined how are we going to measure the performance,

let us suppose that we want to compare 4 hypothetical algorithms for a given config-
uration of the MPB (for example, the widely used Scenario 2). In Sect. 4.4 we will
analyze in more detail the influence of Nr in the results of the statistical tests, but
for the moment, let us just assume that we perform a fixed amount of independent
repetitions, say Nr = 30, for each algorithm. An example of the results that could be
obtained is presented in Table 4.2 and Fig. 4.3.

In order to determine the existence of statistically significant differences in the
results, we need to perform a series of hypothesis tests. Several authors have already
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Fig. 4.1 Performance measure of an algorithm using different versions of accuracy

Fig. 4.2 Performance measure of an algorithm over several consecutive changes in the envi-
ronment using the offline accuracy (the best accuracy is displayed in the background). The
sudden drops of the best accuracy values indicate a change in the environment. The average
of all offline accuracy measures is displayed in the right

pointed out that these results, in general, do not follow a normal distribution [11],
therefore recommending the use of non-parametric tests for their analysis [13, 19].
We will use a significance level α = 0.05, meaning that we are willing to assume a
probability of mistakenly rejecting the null hypothesis of, at most, 0.05. The first is-
sue that needs to be addressed is the fact that we are comparing multiple algorithms
at the same time. Therefore, we need to use a test that allows to compare more than
2 groups simultaneously. For this example, we will perform a Kruskal-Wallis (KW)
test [15], among all the samples of the 4 algorithms to check if there are global
differences at the 0.05 significance level. If the KW test concludes that there are
statistically significant differences, we will then perform a series of pair-wise tests
between each pair of algorithms, to see if we can determine which are the ones that
are causing those differences. In this case, we will use the Mann-Whitney-Wilcoxon
test Mann-Whitney-Wilcoxon (MWW) [18, 22] test to compare each pair of algo-
rithms. The combination of these tests is suitable, since the KW test can be consi-
dered as the natural extension of the MWW test to multiple groups. It is important
to note that in order to guarantee the α-level achieved by the KW test (global), we
need to adjust the α-level of each MWW test (pair-wise) to a certain value, usually
much smaller than the first one. For this purporse, we will use Holm’shypothesis
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testing!Holm correction correction [14], although other techniques are also avail-
able (for example, Hochberg’s, Hommel’s, etc; for an in-depth comparison on the
use of these techniques, the interested reader is referred to [8, 10, 11]). The results
of the tests are shown in Table 4.3, where individual comparisons between each pair
of algorithms can be seen, along with the sign of the comparison.

Table 4.2 Performance results of several algorithms on a single problem configuration (mean
and standard deviation values of the avg. offline accuracy)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Avg. Offline Accuracy 0.78 ±0.05 0.84 ±0.02 0.95 ±0.01 0.89 ±0.03

Fig. 4.3 Graphical representation of the results in Table 4.2. The distributions are displayed
using a boxplot (dark lines) in combination with a kernel estimation of the distribution density
(light lines)

Until now, the way of presenting the results (numerical data tables, boxplot
graphs, and statistical tests tables) has been appropriated, and the data are com-
prehensible. We now contemplate extending the experimental framework. We want
to know if the conclusions obtained for the algorithms follow any kind of pattern
related to some characteristic of the problem (e.g., whether algorithm 3 is good only
for Scenario 2 of the MPB, or if this is a general behaviour linked to, for example,
low change frequencies). In order to answer this question, we perform more exper-
iments, keeping all problem parameters constant, except for the change frequency,
which we vary progressively.

We can see now that the number of results increases, and its presentation begins
to be a problem, both at a table level, because of its extension and difficulty to com-
prehend the data (Table 4.4), and at a graphical level, because of its complexity (Fig.
4.4). However, it is still feasible to show the results this way, since, although data are
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Table 4.3 Pairwise statistical differences among the avg. offline accuracy distribution of the
algorithms. A ’+’ sign indicates that there are statistically significant differences between the
algorithm in the row and the algorithm in the column, and that the sign of the comparison
favors the algorithm in the row (i.e., is “better”). A ’-’ sign indicates the opposite, that the
algorithm in the row is “worse”. Finally, the word ’no’ indicates no statistically significant
differences

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Algorithm 1 no - - -
Algorithm 2 + no - -
Algorithm 3 + + no +
Algorithm 4 + + - no

Table 4.4 Performance results of several algorithms on multiple problem configurations
(mean and standard deviation values of the avg. offline accuracy). The different configu-
rations are based on systematic variations of one factor, the problem’s change frequency,
expressed in the number of evaluations. Boldface values indicate the best algorithm for the
given configuration

Change Frequency Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
200 0.630 ±0.03 0.632 ±0.03 0.631 ±0.03 0.630 ±0.03
500 0.750 ±0.02 0.751 ±0.02 0.783 ±0.02 0.781 ±0.02

1000 0.811 ±0.02 0.798 ±0.02 0.886 ±0.02 0.886 ±0.02
1500 0.825 ±0.02 0.854 ±0.02 0.922 ±0.02 0.871 ±0.02
2000 0.840 ±0.02 0.859 ±0.01 0.939 ±0.01 0.862 ±0.02
2500 0.843 ±0.01 0.871 ±0.01 0.943 ±0.01 0.889 ±0.01
3000 0.852 ±0.01 0.880 ±0.01 0.950 ±0.01 0.913 ±0.01
3500 0.871 ±0.01 0.901 ±0.01 0.959 ±0.01 0.921 ±0.01
4000 0.860 ±0.01 0.906 ±0.01 0.964 ±0.01 0.932 ±0.01
4500 0.863 ±0.01 0.910 ±0.01 0.968 ±0.01 0.939 ±0.01
5000 0.869 ±0.01 0.911 ±0.01 0.970 ±0.01 0.941 ±0.01

now more difficult to grasp and manage, it is nevertheless still understandable (in
Fig. 4.4 it is reasonably easy to see which algorithm is the best, and this can also be
accomplished in Table 4.4 by enhancing the best algorithm’s result using a boldface
type). Anyway, it is worth noting that individual differences between each pair of
algorithms in the statistical tests are now too lengthy to be shown, since they imply
a comparison of the type all against all for each problem configuration, which, in
general, is not practical for a publication (we are talking of 11 tables like Table 4.3).

Finally, when we consider to simultaneously analyze several factors (e.g., change
frequency and severity of change), data grows exponentially, and the presentation in
the form of tables and figures becomes intractable. In the literature, some examples
of works can be found, where the magnitude of the study and the amount of obtained
results force the authors to use such a high number of tables and graphs that the
comprehension of the data gets obscured:
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Fig. 4.4 Graphical representation of the results in Table 4.4, where each point corresponds
to the results of an algorithm on a configuration of the problem. The results for each config-
uration are shown using a boxplot of the distribution

• In [23], the author uses 48 graphs and 45 tables of statistical comparisons to
analyze the behaviour of 8 different versions of algorithms.

• In [12] a huge number of results are presented in the form of boxplot graphs for
several algorithms on a single problem configuration, using 42 graphs for that
purpose, although without statistical comparisons tables.

• In [20], the authors compare up to 19 different techniques in 32 tables full of
numerical results, using for it an ad-hoc solution based in vectors that compress
the information, since they explicitly admit the difficulty in performing so many
comparisons.

These are only a small sample of the difficulties that a researcher may find when
presenting the results of comparing multiple algorithms, multiple versions of them,
multiple problem configurations, or combinations of all the previous. It should be
pointed out, however, that each particular case is different from the rest, and that not
always such a high number of tables and graphs must imply a bigger difficulty in
the understanding of the data. In many cases, the skill of the author for grouping and
presenting data is crucial to facilitate its comprehension. However, in general, it is
easier for the reader to understand some concise results than some extensive ones.

In order to better confront this situation, we are going to introduce a proposal for
compressing the information to be presented using color schemes obtained from the
results of the statistical tests.
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4.3 SRCS: Statistical Ranking Color Scheme

As it has already been justified in the previous sections, the presentation of the
results of several algorithms over variations of multiple factors in a DOP can be
problematic. It is necessary to somehow compress the information in order for the
reader to be able to capture it and understand it.

The technique we present here, SRCS (Statistical Ranking Color Scheme), has
been designed for those situations in which the main interest is to analyze the rel-
ative performance of the algorithms, rather than the absolute one. That is, when
we want to establish an ordering or ranking of the algorithms for a given problem
configuration.

The first obstacle appears precisely at the moment of establishing that ranking.
Ordering the algorithms would be easy if we had a single value to measure their per-
formance, but instead, we have a set of values (one for each independent execution).
In order to solve this, we use the output of the statistical tests that tells us if there are
significant differences between each pair of samples (for example, using the KW +
MWW tests combination of Sect. 4.2).

The way of doing this will be as follows: for a given DOP configuration, all the
algorithms begin with an initial ranking of 0. We first compare the results of all the
algorithms using a multiple comparison test (e.g., the KW test) in order to determine
if there are global differences. In case there are no differences among all, that would
be the end of the process, and the algorithms would finish with their initial 0 rank. If,
however, significant differences were found, an adjusted pair-wise test (e.g., MWW
+ Holm) would be performed between each pair of algorithms, in order to assess
individual differences. If the pair-wise test says there are significant differences for
a given pair of algorithms, the one with the best performance value (the median
of the sample) adds +1 to its ranking, and the one with the worst value, −1. If
there were no differences according to the pair-wise test (a tie), neither algorithm
adds anything, but both maintain their previous ranking. At the end, every algorithm
will have an associated ranking value, ranging in the interval [−(Na− 1),+(Na−
1)], where Na is the number of algorithms to be compared. A ranking value of +r
for a given algorithm indicates that its performance is significantly better than r
algorithms, and a value of −r, that it is significantly worse than r algorithms (at the
end of this chapter, in the Appendix, we provide an implementation of this ranking
calculation using the R programming language).

However, until now we have only shifted the problem, since we have a ranking,
but it is still numerical, and therefore, difficult to fully understand when presented
in the form of tables if there are too many data. The solution to this comes from
human’s ability to better manage images and colors than numbers. Starting off from
this ranking, we associate a color (for example white) to the maximum ranking
value that can be obtained, +(Na− 1), and another very different color (a dark one
preferably) to the minimum ranking value that can be obtained, −(Na− 1). All the
intermediate ranking values are associated to an interpolated color between the two
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Fig. 4.5 Rank explanation. The boxplot shows the distribution of the performance measures
of every algorithm, ordered by its median value. Dotted rectangles indicate those algorithms
for which no statistical differences were found at the specified significance level (algorithms
2-3 and 3-4). The table in the right displays, for every algorithm, how many times it shows
a significantly better performance (“better than”), no significant differences (“equal to”) or
significantly worse performance (“worse than”) when it is compared with respect to the other
3 algorithms, and its final rank with the correspondent color key.

previous ones. Figure 4.5 explains the calculation of the ranking and the color as-
sociation of the 4 algorithms we have been using previously, for a given problem
configuration.

Color codes obtained from the ranking can now be used to represent the relative
performance of each algorithm with respect to the others in a graphical way. This
representation allows us to visualize the results of many configurations at once, giv-
ing the researcher the possibility to identify behavioural patterns of the algorithms
more easily.

For example, let us suppose that we have the 4 algorithms of the previous ex-
amples, and we want to extend the study of their performance in the MPB with
different variations of two factors: severity, and change frequency. As it has already
been justified, presenting the results of these experiments in the form of tables may
not be feasible. However, using the SRCS technique, we can arrange the rank col-
ors of each configuration to create the images shown in Fig. 4.6. In this figure, the
same color scheme as the one appearing in the explanation in Fig. 4.5 has been used,
where a darker color indicates a worse performance, and a lighter one a better. Tak-
ing a quick glance at Fig. 4.6, and without having to examine any type of numerical
data, we can obtain valuable overall information, like:

• in general, algorithm 1 is the worst in almost all configurations
• algorithm 3 has, in almost all configurations, a good or very good performance
• for higher change frequencies (higher number of evaluations between changes),

algorithm 3 is the best
• for lower change frequencies, algorithm 4 is the best
• variations of the severity have, in general, less influence in the performance of

the algorithms than variations of the change frequency
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Fig. 4.6 An example of a graphical visualization of the rank-based color scheme for 4 hypo-
thetical algorithms. The visualization shows a comparison of the results of 4 algorithms for
different configurations of the factors severity and change frequency for a problem

Also, figures created using SRCS can be arranged to visualize variations of more
than 2 factors (see Fig. 4.7), depending on the practitioner’s creativity. These figures
can help us to further detect behavioral patterns of the algorithms, and increase our
understanding of them.

Finally, although the examples in this chapter used the avg. offline accuracy as
performance measure, and the KW + MWW combination as statistical tests, the
SRCS technique is not restricted to these methods. Other performance measures
(avg. offline error, reactivity, etc.) and statistical tests (Friedman, Iman-Davenport,
etc) are also valid, as long as their usage is appropriated. In-depth examples of the
use of non-parametric statistical tests for comparing optimization algorithms can be
found in [8, 10, 11].
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Fig. 4.7 An arrangement of the graphical color scheme of the rankings for visualizing varia-
tions of 3 different factors: severity, change frequency, and dimensionality.

4.4 Some Considerations on Statistical Tests

In a statistical hypothesis test, some of the main parameters that determine its out-
come are:

• n, the sample size used.
• α , the significance level, or the probability of making a Type I error (false posi-

tive), i.e., rejecting the null hypothesis H0 when it is true.
• θ , the effect size, or the minimum difference that can be detected by the test in

order to be considered significant, in absolute units.
• π , the power of the test or the sensitivity level, equal to 1− β , where β is the

probability of making a Type II error (false negative), i.e., accepting the null
hypothesis H0 when it is false.

These parameters are interrelated, and the values of some of them are usually de-
termined from those of the rest, which may be fixed as a result of the experiment’s
requirements. For example, in a clinical essay for a drug, it could be determined that
a minimum increase in blood pressure of 15 mm Hg must be observed in order to
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consider its effect of practical significance, with a 99% confidence. Although not
explicitely stated, in these types of experiments a minimum power is usually ex-
pected (a typical value is 80%). Therefore, in this case, the effect size (θ = 15), the
significance level (α = 0.01), and the power (π = 0.8) are fixed, and the sample size
should be adjusted in order to obtain those values.

However, when comparing the performance of some algorithms in a synthetic
problem (like the MPB used in the examples of previous sections), there is usually
no concern about the effect size, since, in practice, it has no real meaning. With
no additional information, it cannot be determined if a difference of 0.1 fitness units
between two algorithms is significant or not, and therefore, the sample size (Nr in the
examples) is not constrained. In this case, unless some external requirements limit
the maximun amount of executions, we recommend to use the higher Nr possible,
as it will increase the power of the test.

For a more detailed introduction to the use of non-parametric tests and questions
on the factors that determine them, the interested reader is referred to [13, 16, 19].

4.5 Conclusions

In this chapter we have presented a new technique, SRCS (Statistical Ranking Color
Scheme), specifically designed to analyze the performance of multiple algorithms
in DOPs over variations of several factors (e.g., change frequency, severity, dimen-
sionality, etc). This technique is especially well-suited when we want to compare
algorithms in a all-vs-all manner, for example, when we want to determine which
are the best performing ones in a wide range of scenarios.

SRCS uses statistical tests to compare the performance of the algorithms for
a given problem configuration, producing a ranking. Since the results of meta-
heuristics and non-exact algorithms do not generally follow a normal distribution,
non-parametric tests are usually preferred. As a practical guideline, a multiple-
comparison test must be performed first, like the Kruskal-Wallis test, in order to
determine if there are global differences in the performance of the algorithms. Then,
a pair-wise test is used, in order to assess individual differences between algorithm
pairs, like the Mann-Whitney-Wilcoxon test. This pair-wise test must be adjusted
in order to compensate for the family-wise error derived from the performance of
multiple comparisons, using, for example, Holm’s method. However, these tests are
only suggestions that do not affect the way in which SRCS works, and other options
can be used (Friedman’s test, Iman-Davenport, etc).

The ranking produced is later used to associate color codes to each algorithm
result, such that the relative performance of each algorithm with respect to the others
can be represented in a graphical way. This representation allows us to visualize the
results of many algorithms on many configurations in a much more compact way
by enhancing differences between the results, and giving thus the researcher the
possibility of identifying behavioural patterns more easily.
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Like any information compressing technique, SRCS left out part of the infor-
mation, so its use, either isolated or as a complement to other traditional ways for
displaying results (tables and plots), should be evaluated in each case. With SRCS,
using rankings for stressing out the differences among algorithms implies not dis-
playing absolute performance values.
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Appendix

In this Appendix we provide an implementation of the ranking method of Sect. 4.3,
using the R programming language 1.

#--------------------------------------------------------------------------------------------------------
# The function for calculating the rank of a set of algorithms using their performance results on a
# *single* problem configuration. Returns a list indexed by algorithm, with the corresponding rank value
# for each of them.
# Parameters:
# - data: a vector with the results of all the algorithms, that is, the ’n’ independent repetitions of
# the performance measure, for each algorithm.
# - group: a vector of factors for the data, indicating, for each corresponding entry of the data vector,
# the algorithm it belongs to.
# - alpha: the minimum p-value for the tests to assess a significant difference. Defaults to 0.05
# - max: TRUE or FALSE. TRUE means the higher the performance measure, the better. FALSE means the
# opposite. For example, if the performance measure is the error, set max = FALSE; if the performance
# measure is the accuracy, set max = TRUE. Defaults to TRUE.
# Example input:
# - data <- c( 2.5, 2.3, ..., 1.2, 0.7, ..., 3.5, 4.1 )
# - group <- factor( "alg1", "alg1", ..., "alg2", "alg2", ..., "alg3", "alg3" )
# Example output:
# - rankList : [ ["alg1"][0], ["alg2"][2], ["alg3"][-1] ]
#--------------------------------------------------------------------------------------------------------
rank <- function( data, group, alpha=0.05, max=TRUE ) {

# initialize the ranks to 0
algorithms <- unique( group )
rankList <- list()
for( algorithm in algorithms ) {

rankList[[algorithm]] <- 0
}

# calculate the vector of medians for all the algorithms’ measures
medians <- tapply( data, group, median )

# perform a Kruskal-Wallis test to assess if there are differences among all the results
dataframe <- data.frame( group, data )
kruskal <- kruskal.test( data ˜ group, data=dataframe )
if( !is.na( kruskal$p.value ) && kruskal$p.value < alpha ) {

# post-hoc test: perform a pairwise Mann-Whitney-Wilcoxon (MWW) rank sum test
# with Holm correction to assess individual differences
wilcoxon <- pairwise.wilcox.test( data, group, p.adj="holm", exact=FALSE )

for( algorithm1 in rownames( wilcoxon$p.value ) ) {
for( algorithm2 in colnames( wilcoxon$p.value ) ) {

if( !is.na( wilcoxon$p.value[algorithm1,algorithm2] ) &&
wilcoxon$p.value[algorithm1,algorithm2] < alpha ) {

# there is a significant difference between algorithm1 and algorithm2;
# we need to identify which one is the best and which one the worst,
# we’ll use the median for that purpose, since it is coherent with the
# use of the MWW method, which also uses medians
if( medians[algorithm1] > medians[algorithm2] ) {

best <- algorithm1
worst <- algorithm2

} else {
best <- algorithm2

1 http://www.r-project.org/

http://www.r-project.org/
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worst <- algorithm1
}

# if max==FALSE, swap best and worst
if( !max ) {

tmp <- best
best <- worst
worst <- tmp

}

# update ranks
rankList[[best]] <- rankList[[best]] + 1
rankList[[worst]] <- rankList[[worst]] - 1

}
}

}
}

return( rankList )
}
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2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002), doi:10.1007/3-540-
45712-7 7

[22] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6),
80–83 (1945), doi:10.2307/3001968

[23] Yang, S.: Explicit memory schemes for evolutionary algorithms in dynamic environ-
ments. In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic
and Uncertain Environments. SCI, vol. 51, pp. 3–28. Springer, Heidelberg (2007),
doi:10.1007/978-3-540-49774-5 1


	SRCS: A Technique for Comparing Multiple Algorithms under Several Factors in Dynamic Optimization Problems
	Introduction
	Typical Research Case: Comparing Multiple Algorithms over Several Configurations of a Problem
	SRCS: Statistical Ranking Color Scheme
	Some Considerations on Statistical Tests
	Conclusions
	References




