Chapter 14

From the TSP to the Dynamic VRP: An
Application of Neural Networks in Population
Based Metaheuristic

Amir Hajjam, Jean-Charles Créput, and Abderrafida Koukam

Abstract. In this paper, we consider the standard dynamic and stochastic vehi-
cle routing problem (dynamic VRP) where new requests are received over time and
must be incorporated into an evolving schedule in real time. We identify the key fea-
tures which make the dynamic problem different from the static problem. The app-
roach presented to address the problem is a hybrid method which manipulates the
self-organizing map (SOM) neural network similarly as a local search into a popu-
lation based memetic algorithm, it is called memetic SOM. The approach illustrates
how the concept of intermediate structure provided by the original SOM algorithm
can naturally operate in a dynamic and real-time setting of vehicle routing. A set of
operators derived from the SOM algorithm structure are customized in order to per-
form massive and distributed insertions of transport demands located in the plane.
The goal is to simultaneously minimize the route lengths and the customer waiting
time. The experiments show that the approach outperforms the operations research
heuristics that were already applied to the Kilby et al. benchmark of 22 problems
with up to 385 customers, which is one of the very few benchmark sets commonly
shared on this dynamic problem. Our approach appears to be roughly 100 times
faster than the ant colony algorithm MACS-VRPTW, and at least 10 times faster
than a genetic algorithm also applied to the dynamic VRP, for a better solution
quality.

14.1 Introduction

The vehicle routing problem (VRP) is one of the most widely studied problems in
combinatorial optimization. In the standard VRP, a fleet of vehicles must be routed
to visit a set of customers at minimum cost, subject to vehicle capacity constraint
and route duration constraint. In the static version of the problem, it is assumed that
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all customers are known in advance to the planning process. However, many real
world routing problems include some dynamic elements. The information data of-
ten tends to be uncertain or even unknown at the time of the planning. It may be the
case that customers, driving times or service times, are unknown before the day of
operation has begun, but become available in real-time. Due to the recent advances
in information and communication technologies, such as geographic information
systems (GIS), global positioning systems (GPS) and mobile phones, companies
are now able to manage vehicle routes in real-time. Hence, with the increased ac-
cess to these services, the need for robust real-time optimization procedures will be
of critical importance, for small to big distribution companies, whose logistics are
based on a high reactivity to the customer demand.

Depending on the application area, some authors propose to classify problems
by their degree of dynamism and the objectives and constraints of the problem. As
introduced by Larsen [26], the degree of dynamism may vary between 0 and 1,
and has to be computed considering a given period of observation called a working
day or planning horizon. The simplest measure is the ratio between the number of
dynamic requests, which arrive during the working day, and the total number of re-
quests including the static requests which are known in advance. For instance, if the
degree of dynamism is 0.4, then 4 customers out of 10 arrive while the working day
has begun. Other measures of dynamism are also introduced by Larsen in order to
take into account both dynamic request occurrence times and time windows. In the
standard dynamic VRP case, the author argues that a problem is more dynamic if
immediate requests occur at the end of the working day and less dynamic as soon
as immediate requests are received relatively early during the planning horizon. For
example, two problem instances respectively with all arrivals at the beginning of
the day or all arrivals at the end of the day have different degrees of dynamism,
the latter being highly dynamic whereas the former being static. But we could ar-
gue that the crucial point is that customers would have to be served as quickly as
possible regardless of the moment of the day they sent their demands. For example,
the problem of fire fighting is highly dynamic whenever the disaster appears at the
beginning or at the end of the day. Hence, it is necessary to look at the importance
given to the real-time objectives and constraints.

Here, an ideal application field would be medical services. An application exam-
ple would be medical interventions of doctors that require a high to moderate level
of dynamicity, which would be constrained by the limited amount of doctors and
resources available to perform the service. Hence, the degree of dynamism consi-
dered in this paper will be measured by a waiting time of roughly 15% to 30% of
the working day. We assume that no information is available about requests loca-
tions prior to optimization. Only the overall capacity of the system and hence the
total number of requests that the system could serve within a day are supposed to be
known. We argue that this is a reasonable assumption since real-time performance
mainly depends on the vehicle resources available.
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In this paper, we propose a heuristic approach performing empirical evaluations
by discrete time simulation on the standard benchmarks of Kilby et al. [24]. We shall
focus on a hybrid method which follows metaphors of biologic systems, and hence
naturally exhibits intrinsic parallelism and which may be considered intuitive and
easy to implement. The approach presented in this paper is based on the concept of
the “intermediate structure” pointed out by Glover [20] about applications of neural
networks to optimization. The intermediate structure, called the network, represents
transport lines that continuously distort and modify their shapes in the plane accord-
ing to the demand distribution. Such paradigm that we called ”adaptive meshing” in
earlier papers [9,[13] partially has its origin from the Kohonen selforganizing map
(SOM) [25]. Starting from the SOM, we define insertion and deformation operators
that are applied to the network, and managed inside a population based metaheuris-
tic similarly as in a memetic algorithm [29], which is an evolutionary algorithm em-
bedding a local search process and mutation operators. The standard SOM is used
similarly as a local search process combined with a mapping operator, responsible
for the massive insertions of customers to the network, a fitness evaluation, a selec-
tion operator, and a specific operator dedicated to customer insertions according to
the maximum duration constraint. Such operators perform elementary moves in the
plane and a particular point is that almost all operators are based on the nearest point
findings implemented on the top a cellular decomposition of the plane by a spiral
search algorithm [[1]].

Successive generations of construction heuristics, improvement heuristics, and
metaheuristics were developed by the operations research (OR) community to solve
the static traveling salesman problem (TSP) [1]] and the VRP [5, [18]. Metaheuris-
tics often encapsulate a construction method followed by the application of one or
more improvement heuristics performing local search. From stage to stage, such
heuristics were enriched reusing the past enhancements to build new sophisticated
neighborhood search structures, which operate on graphs. Then, a question is how
the complex data structures of the very powerful OR heuristics for the TSP or VRP,
often based on k-d-trees for nearest point search, managing neighborhood lists, ’do
not look bit” tables or various solution coding schemes, should be reused in a dy-
namic setting and be implemented in a distributed and parallel way. In our approach,
there is no distinction between a construction phase and an improvement phase, as
usual in metaheuristics, but rather a distinction between a deployment phases fol-
lowed by an improvement phase with different intensities. The deployment phase is
only responsible to deploy the network from scratch using a high intensity for the
network moves. Tour construction and tour improvement are performed simultane-
ously at any moment, on both phases, based on closest point finding insertions and
deformations. Hence, there is no need to introduce new insertion procedures to deal
with the on-line arrivals of new demands, or to restart the algorithm, as we would
do in order to apply traditional methods into a dynamic setting. As they arrive, new
demands are simply inserted on-line in a buffer of requests, in constant time, leading
to a very weak impact on the internal data structures and thus to the course of the
optimization process. One of the goals of our work is to exploit the natural proper-
ties of the on-line SOM algorithm to be applied in a dynamic setting. An important
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point of using an evolutionary framework is to allow simplicity and flexibility when
designing the algorithm. We already applied the approach, which is called memetic
SOM, to the static TSP [|11], the static VRP [14] and VRPTW [10], and to several
other extensions of these problems considering combination of clustering k-median
and vehicle routing problems [11, [14]. Also, we link the approach to further pos-
sible parallel implementations by considering two strategic levels for the parallel
computation: the population based “metaheuristic level” which corresponds to the
cooperation of many autonomous local search processes, each one embedding a
complete solution, and the “heuristic level” which corresponds to a cellular decom-
position of the data, each cell possibly being associated with a processor and a part
of the data. Also, the Euclidean nature of the problem is directly reflected into the
Euclidean nature of the algorithm, thus allowing application to large instances, as
this was done for the TSP [11] on instances with up to 85900 cities.

The following Section II states the dynamic VRP considered in this paper with its
constraints and objectives and considered as a straightforward extension of the static
VRP. Section III illustrates the philosophy of the intermediate structure concept on
previous applications that were presented in earlier papers. We will find the details
of the memetic SOM approach in Section I'V. In Section V we shall present the real-
time simulator able to gauge the efficiency of the method. Then, Section VI reports
experiments carried out on the Kilby ef al. benchmark and the comparisons made
with a state-of-the-art ant colony approach and a genetic algorithm already studied
on these benchmarks. It also presents a summary of the memetic SOM performances
against classical heuristics on the TSP, VRP, and the dynamic VRP. The last section
is devoted to the conclusion and further research.

14.2 Dynamic Euclidean Vehicle Routing Problem

As for static vehicle routing problems, a lot of versions of the dynamic problem ex-
ist depending on the application areas. For an overview and classification of the nu-
merous versions of realftime routing and dispatching problems, we refer the reader
to the general surveys and classifications given in [18, [19, 126, [31], 32]. One of the
simplest versions is the standard dynamic VRP with capacity and time duration
constraints [24], called “dynamic VRP” in this paper, which is a straightforward ex-
tension of the classical static VRP [3]. In this problem, the customers are the only
elements who have a dependence on time. Customers are not known in advance but
arrive as the day progresses, and the system has to incorporate them into the already
designed routes in real time. Problems fitting this model appear frequently in in-
dustry. Most parcel delivery services, replenishment of stocks in a manufacturing
context, waste collection, and dispatch of emergency services can be modeled in
this way. Geographically dispersed failures to be serviced by a mobile repairman
also fit this model.
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In the different versions of the dynamic VRP presented, there are a very few dy-
namic routing problems except the dynamic VRPTW or dynamic PDPTW that are
recognized as standard problems well suited to allow comparative evaluations of
heuristics and metaheuristics on a common set of benchmarks. For example, we only
found two papers on the dynamic VRP that shared detailed results on a common test
set. They are first an adaptation of the ant colony approach MACS-VRPTW [17] by
Montemanni et al. [28], and second a genetic algorithm by Goncalves et al. [21].
They shared results on the Kilby et al. [24] test set with 22 problems of sizes from
50 with up to 385 customers. This paper tries to go one step further in that direc-
tion considering the dynamic VRP as a standard dynamic problem, and yielding a
comparative study with these two methods on the Kilby et al. test set. Then, we re-
strict the scope of our work to the dynamic VRP, with capacity and time duration
constraints.

Demands
reception
Static Optimization
case i :
Service
Demands reception i
Optimization ;
Dynamic Service 5 X
case : "
Working day (D) min max

i i i >
I time

Fig. 14.1 Static vs dynamic VRP.

In the static VRP, vehicles must be routed to visit a set of customers at minimum
cost, assuming that all orders for all customers are known in advance. In the dynamic
VRP however, new tasks enter the system and must be incorporated into the vehi-
cle schedules and served as the day progresses. In real-time distribution systems,
demands arrive randomly in time and the dispatching of vehicles is a continuous
process of collecting demands, forming and optimizing tours, and dispatching re-
quests to vehicles in order to process requests at the required geographic locations.
In the case of the static VRP, the three phases of demands reception, routes opti-
mization, and vehicles traveling are clearly separated and sequentially performed,
the output of a given phase being the input of the subsequent one. At the opposite, as
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illustrated in Figure[I4.1l we can see the dynamic VRP as an extension of the static
VRP where these three time-dependent processes are merged into an approximately
same period of time. This period of time is called the working day or planning hori-
zon of length D. Here, we precisely define the working day length D as the length of
the collecting period, knowing that the optimization period and the vehicle traveling
period would have to be of approximately the same length.

The static VRP is defined on a set V = vy, vy,...,vy of vertices, where vertex
v —0 is a depot at which are based m identical vehicles of capacity O, while the
remaining N vertices represent customers, also called requests, orders, or demands.
A non-negative cost, or travel time, is defined for each edge (v;,v j) €V x V. Each
customer has a non-negative load ¢(v;) and a non-negative service time s(v;). A
vehicle route is a circuit on vertices. The VRP consists of designing a set of m
vehicle routes of least total cost, each starting and ending at the depot, such that
each customer is visited exactly once by a vehicle, the total demand of any route
does not exceed Q, and the total duration of any route does not exceed a preset
bound T'. As it is mostly done in practice [3], we address the Euclidean VRP where
each vertex vi has a location in the plane, and where the travel cost is given by the
Euclidean distance d(v;,v;) for each edge (v;,v;) € V x V. Then, the objective for
the static problem is the total route length (Length) defined by

Length = 2( > d(v;i,v;i+1)+d(v07v{)+d(v,ﬁ[7v0)>7 (14.1)
j=1, 1

i=1,...m

where vlj € V,0<j<k;,0<ki <N, are the ordered set of demands served by the
vehicle i, 1 <i < m, i.e. the vehicle route. The capacity constraint is defined by:

> q(Vi)<Qiel,..m (14.2)
ki

then, assuming without loss of generality that the vehicle speed has value 1 the time
duration constraint is given by:

> os(vi)+ Y d(Vivig)+d (o, vi)+d (Vi vo) S Tyi€l,..m
=1, ki j=1 ki1
(14.3)

The problem is NP-hard. Then, for large instances, using heuristics is encouraged
in that they have statistical or empirical guaranty to find good solutions possibly for
large scale problems with several hundreds of customers.

It is argued in the literature that in a real-life situation the objective function of-
ten consists of a mixture of customers, waiting time costs, or system response time,
and travel (or routing) costs. The analysis made by several authors [2,/19] confirms
that there is a trade-off between travel costs and system time in a dynamic rout-
ing system and that the travel costs can be reduced in return for an increase in the
system time. In weakly dynamic systems the focus is on minimizing routing costs.
On the other hand, when operating a strongly dynamic system, minimizing the ex-
pected system response time is the main objective. In dynamic settings, the waiting
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time is often more important than the travel cost. We will then define the dynamic
VRP as a multiobjective problem, since the “interesting” or ’good” solutions are
always a compromise between these two criteria. For example, the static problem
case can be seen as a particular case of the dynamic problem where the waiting time
is completely discarded, the optimization process starting whenever all requests to
be served are known. We define the dynamic VRP as a bi-objective problem by
adding to the classical objective and constraints of the standard VRP a supplemen-
tary objective which consists of minimizing the average customer waiting time. The
customer waiting time is the delay between the occurrence time of a demand and
the instant the service of the demand begins. It is often called “response time” or
’system time” (Bertsimas and Simchi-Levi 1996). Hence, in addition to the classi-
cal objective and constraints defined above, we add a supplementary criterion to be
considered when evaluating solutions. This criterion is the average customer waiting

time (WT):
wr= Y% W,-/N (14.4)
ie{1,...,N}

where W; is the waiting time of demand i, defined by W; = sti —ti where #; € [0, D]
is the demand occurrence time, and sti is the time when the service starts for that
demand.

In order to evaluate the customer waiting time we need to, not only consider travel
distances and service times, but also consider the real time” at which the service
is really performed. Real time includes the possible extra times during which the
vehicle may be waiting or driving back to the depot before some new requests are
dispatched to it. Only the evaluation of (I4.4) depends on a real-time realization.
The evaluation of ([I4.1)-([I4.3)) only depends on the ordering of demands in a route,
the same way as for the static VRP. We consider the waiting time as the essential
criterion to gauge the dynamicity of the system. Hence, it is an important criterion
to evaluate the effectiveness of algorithms on this problem.

14.3 Method Principle

In this section, we illustrate the ”philosophy” of the neural network based approach
proposed to address the Dynamic VRP. We present the main characteristics of the
approach and explain why it may naturally deal with the dynamic and stochastic
version of the VRP, without changing quite nothing in its implementation when
passing from a static to a dynamic context. There is no need to introduce new in-
sertion procedures or to design new mechanisms to deal with the on-line arrivals of
new demands along the working day since the approach is already based on mas-
sive insertions to an “intermediate” independent structure representing routes. While
the very powerful OR heuristics to the static VRP are often based on internal data
structures difficult to implement and to modify dynamically, the advantage of our
approach would be on the simplicity of updating the evolving internal data struc-
tures. Furthermore, we argue that a promising characteristic concerns its potential
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for a parallel and distributed implantation on multi-processors or grid systems. We
can distinguish two levels for the parallel computation that are, the heuristic level
which deals with the problem dependent operations distributed in the plane and
the metaheuristic level which deals with a population of independent local search
processes.

14.3.1 Biologic Metaphor and the Intermediate Structure
Paradigm

One way to explain the ’philosophy” of the approach may be by referring the reader
to some well known concepts in the Artificial Intelligence domain like emergent
computation, bio-inspired methods, and soft-computing concepts including neural
network, evolutionary algorithms, or hybrid systems. The approach can be seen as
following a biologic metaphor where customers constitute external stimuli to which
a “’biologic organism”, the network of transport lines, may respond dynamically
adapting its shape continuously to absorb, neutralize, or satisfy the external stimuli.
More generally, we can exploit this metaphor to address a large class of spatially
distributed problems of terrestrial transportation and telecommunications, such as
facility location problems, vehicle routing problems, or dimensioning mobile com-
munication networks [12, [13]. These problems involve the distribution of a set of
entities over an area (the demand) and a set of physical systems (the suppliers)
which have to respond optimally relatively to the demand. This optimal response
constitutes the solution to the optimization problem. Thus, a distributed bioinspired
heuristic to address such problems is a simulation process of such spatially dis-
tributed entities (vehicles, antenna, customers) interacting in an environment which
produces the “emergence” of a solution by the many local and distributed inter-
actions. The approach presented involves an “intermediate structure”, which is a
network or a graph in the plane, representing the transport lines that continuously
distort and modify their shapes according to a demand distribution. The important
point is that tour construction and tour improvement operations are all based on
massive and distributed insertions and line deformations. Customers are chosen ran-
domly in the plane and are repeatedly presented online and many times to a simple
insertion procedure based on nearest point search. The closest point search in the
network structure is performed on the top of a cellular decomposition of the plane
by a spiral search algorithm that is known to perform in constant time for bounded
distributions [f]. This paradigm of ”intermediate structure’ and quite “instantaneous
adaptation”, that we called ”adaptive meshing” in previous applications, has from a
part its origin and inspiration from the Kohonen self-organizing map (SOM) neural
network, which was applied to the TSP since a long time and which can address
large size problems with up to 85900 cities [11]. The SOM algorithm is a neural
network approach dealing, when applied in the plane, with visual patterns moving
and adapting to distributed data. Its main “emergent” property is to allow adaptation
by density and topology preservation of a planar graph (the transport network) to
an underlying data distribution (demand set). It can also be seen as a center based
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clustering algorithm with topological relationships between cluster centers. Here,
we generalize the SOM algorithm giving rise to a class of “’closest point findings”
based operators that are embedded into a population based metaheuristic frame-
work. The structure of the metaheuristic is similar to the memetic algorithm, which
is an evolutionary algorithm incorporating a local search [29]. The SOM is a (long)
stochastic gradient descent performed during the many generations allowed, and
used as a "local search” similarly as in a classical memetic algorithm. This is why
the approach has been called memetic SOM in previous work and we will maintain
the name in this paper. The approach follows two types of metaphors. It follows
a self-organization metaphor at the level of the interacting problem components, or
heuristic level, and an evolution based metaphor at the population based metaheuris-
tic level. Since demands are conceptually separated from the routes representation,
which is an independent network or graph in the plane which continuously adjusts
itself to the data, this leads to a straightforward application from a static to a dy-
namic setting. As they arrive, new demands are simply inserted on-line in a buffer
of demands, in constant time, leading to a very weak impact on the course of the
optimization process.

Figure (a-c) illustrates the application from a static to a dynamic setting.
Figure [14.2)(a) presents a bus transportation system where vehicle routes, mod-
eled as paths with a common arrival point and depicted by lines in the figure, are
adapted to a given distribution of customers and represented by dots in the figure.
The application concerned a set of 780 employees of an enterprise located over a
geographic area of 73km x 51km around the towns of Belfort and Montbeliard in
the East of France [8]. Vehicle routes and customers are shown juxtaposed in the
figure over the underlying road network, represented by thin lines in the figure. The
problem tackled, called VRP-Cluster, is a combination of the Euclidean k-median
problem with a classical VRP. It consists of positioning bus stops, or cluster centers,
according to customer locations (k-median problem) and simultaneously generating
vehicle routes among bus-stops (VRP). Bus-stops define clusters where customers
are grouped and to which they have to walk to take the bus. As illustrated in Fig-
ure[14.2] (b-c), application to a dynamic context mainly results from considering an
evolving static VRP where the starting locations of the vehicles (the filled circles
in the figure) evolve step by step as the vehicles move in the plane and perform
their services along the working day. Hence, the system must monitor and update
the vehicle locations, their capacities, and the vehicle travel durations on a rate de-
fined by a decomposition of the day within many short time-slices. Figure[14.2] (b)
presents a version of the dynamic case where vehicles perform the service as soon
as possible, whereas Figure [14.2[c) presents a case where the vehicle starting times
are slightly delayed giving rise to a longer horizon for route optimization, hence to
longer vehicle paths in the figure. In this paper, we will experiment different de-
grees of dynamism and gauge different trade-offs between waiting time and length
minimization by simply delaying the departure of vehicles.
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Fig. 14.2 (a) VRP-Cluster, (b-c) Dynamic VRP.

14.4 The Metaheuristic Embedding Framework

When introduced into a population based metaheuristic frame-work, the SOM is a
long run process applied to a population of solutions. This process is interrupted at
each cycle, called a generation, by the application of problem dependent operators.
A generation occurs in such a way that at most O(N) basic iterations are performed
at each generation, N being the problem size. The main components of the method
which are intended for driving the search are:

e a self-organizing map procedure based on closest point findings and route defor-
mations as a low level stochastic process,

e problem-oriented insertion operators interleaving with SOM,
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a random perturbation with a decreasing intensity,

a mapping operator which massively assigns requests to their closest vehicle
route points,

a fitness function incorporating constraints evaluation,

a population based metaheuristic strategy with selection operators,

a search performed within two phases (deployment, improvement).

The optimization process is divided within two phases, that are, a deployment phase
followed by an improvement phase. It is worth noting that there is no distinction
between a ’construction” phase and an “improvement” phase, as usually done in OR
metaheuristics, where the construction phase builds admissible solutions whereas
improvement phase only improves the already constructed solution by swaps or
exchanges of customers. Here, the distinction is only based on the intensity of the
moves, since tour insertions and improvement operations operate simultaneously
at any moment during the deployment and improvement phases. Hence, there is
no need to add new specific insertion operators into the algorithm when passing
from a static to a dynamic setting. The approach can be said ”naturally on-line” and
intrinsically” customized for an application into a dynamic setting.

We claim that an interesting property of the approach is its intrinsic potential
for parallel and distributed implementations in multi-processors, multi-core, grids,
or P2P networks. The approach exhibits two strategic levels of parallel execution.
On the one hand, we can exploit the “metaheuristic level” that corresponds to the
cooperation of many autonomous local search processes, each one embedding a
complete solution. It is worth noting that since the communication times at the level
of the selection operators are relatively small, the long running times of independent
local search processes favor parallel execution of the method. Also, this is why the
optimization simulator has been structured as presented in Figure [[4.4] (b). A pop-
ulation of agent-solvers embeds local search processes applied to the encapsulated
solutions, whereas a meta-solver plays the role of a scheduler of the agent-solvers
and applies selection operators to the population of agents. On the other hand, we
could also exploit the “heuristic level” of the approach, which is problem dependent,
and based on a cellular decomposition of the data. Each cell is associated with a part
of the problem data and hence could be allocated to a given processor. Furthermore,
this should favor the application to very large size problems for which the actual
memory size of personal computers or workstations is notably insufficient.

14.5 The Evolutionary Algorithm Embedding Self-Organizing
Maps

14.5.1 Memetic SOM

The approach is similar to a memetic algorithm [29], that is, a hybrid evolutionary
algorithm embedding a local search. It is a simplified version of the approach pre-
sented in [[14] which was applied to the static VRP. As illustrated previously by Fig-
ure[I4.3b), a population of Pop independent processes, called agentsolvers, perform
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local search and other operations such as fitness evaluation and request insertions,
each on a single encapsulated solution. A main loop, called metasolver loop, man-
ages the scheduling of the local search processes and applies selection operators to
the population of agent-solvers, i.e. of solutions. Each agent-solver exactly encapsu-
lates one solution, which is defined by a graph of routes, called the network, where
each route is represented by an independent path with max(5N’/m,5) vertices, m
being the total number of vehicles available in the system, and N’ the current num-
ber of available demands at time 7, ¢ being the current real-time. Each route starts
at the vehicle location computed for the time ¢ 4+ Topt and ends at the depot, Topt
being the optimization time-slice duration. Each route ends at the depot letting the
vehicles go back to the depot each time they have no demand to be served in their
schedule. The number of vertices by route corresponds to the maximum number of
customers a vehicle can handle during a given optimization time-slice. It has been
adjusted empirically to allow a good trade-off between the number of customers vis-
ited, equilibration of route lengths, and computation speed. The main loop manages
two optimization phases, that are, a deployment phase followed by an improvement
phase, each one executing a fixed number of iterations (called generations) which is
set to the problem size N, N being the total number of demands received within a
day. It is worth noting that the knowledge of the problem size N is considered in this
paper as a reasonable assumption in order to adequately dimension the memory and
computational resources. The meta-solver and agent-solver behaviors can be stated
in pseudo-code as follows:

The deployment phase starts its execution with solutions having randomly gener-
ated vertex coordinates into a rectangle area containing the demands. The improve-
ment phase follows the deployment phase. Then, once the improvement phase has
finished, the algorithm restarts at the beginning. The main difference between the
deployment and improvement phases is that the former is responsible for creating
an initial ordering from random initialization. It follows that SOM processes em-
bedded in the deployment loop have a larger initial neighborhood, proportional to
N’, N’ being the number of demands that are currently in the system at the moment
of parameters initialization. However, the improvement loop is intended for simply
performing local improvements using SOM processes with smaller neighborhoods
and applying fewer iterations. The parameter values of the SOM operators are set
exactly as in [14], except that the tmax value and radius of neighborhoods ¢ final
and 0;,; depend on the instantaneous number of available demands N’ at the time
of parameters initialization, rather than on the total number of demands N.

An important operator is the SOM algorithm. At each generation, a predefined
number (niter) of basic SOM iterations, proportional to the current problem size N’,
are performed letting the long SOM decreasing run being interrupted and combined
with the application of other operators. Such operators can be also a specialization
of the SOM operator in order to perform request insertions, or to introduce perturba-
tions, a mapping/assignment operator for generating admissible solutions, a fitness
evaluation, and the selections at the population level. Below is a detailed description
of the operators:



14 From the TSP to the Dynamic VRP 321

1. Self-organizing map operator. It is the standard SOM applied to the graph net-
work.

It is denoted by its name and its parameters, as
SOM (Oinit, Ofinat s Oinit > O final s tmax) -

A SOM operator is executed performing niter basic iterations by solution,
at each generation. Parameter t,,,, is the number of iterations defining a long
decreasing run ideally performed within N generations and applied to a given
solution. When parameters initialization take place, it is stated as t,,,;x = N X
nite t, with niter adjusted depending on the number of available demands as
given in the pseudo-code above. Other parameters define the initial and final
intensity and neighborhood for the learning law. The operator is used to deploy
the network toward customers from scratch in deployment phase, or to introduce
punctual moves to exit from local minima during the improvement phase.

Algorithm 14.1. Meta-solver main loop

1: Initialize population with Pop agent-solvers with routes randomly generated.

2: Initialize agent-solvers and their SOM parameters for the deployment phase.
3: Gen=0
4: while not(a stop order is received from the company) do
5: Look at the received messages from the company and update vehicles and request
set according to the optimization protocol (see section 0).
6: if a “request” order is received then
7: add the new received demands to the end of the demand buffer
8: end if
9: if an “optimizer” order is received then
10: update the vehicle locations, their capacities, travel duration, and route sizes,
at the future time 7 4+ Topt, at the same time refresh the current request set
according to the future time ¢ + Topt
11: end if
12: Activate each agent-solver in turn, each one executing a single agent-solver
generation
13: Save the best solution encountered, and send it back to the company.

14: Apply selection operator SELECT to the agent-solver population
15: Apply elitist selection operator SELECTET.

16: Gen = Gen+1

17: if Gen = N then

18: swap agent-solvers and their SOM parameters to the improvement phase
19: end if

20: if Gen = 2N then

21: Gen=0

22: randomize population

23: reset the best solution

24: then swap agent-solvers and their SOM parameters to the deployment phase
25: end if

26: end while
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Algorithm 14.2. Agent-solver generation

1: In deployment mode only, apply a standard SOM operator, with parameters
((X,'m't, Oltinal ; Oinit » Gfinalatmax) = (O.S,O.S,max(Z X N’/m,S),4,N X niter), to the
network, performing niter = max(N'/4,5) iterations.

2: In improvement mode only, apply the derived SOM operator, denoted SOMVRP,
with parameters (i ; Clfinal , Oinit » Gfinalatmax) = (0.5,0.5,10,4,N x niter), to the
network, performing niter = max(N'/m,5) iterations.

3: In improvement mode only, apply the derived SOM operator, denoted SOMVRP,
with parameters
(Clinit» Ofinal s Oinit > O final » tmax) =
(0.9,0.5,max(2 x N' /m,5),max(2 x N' /m,5)/2,N X niter), to the network,
performing niter = max(N' /m,5) iterations.

4: Apply mapping operator MAPPING to the solution network to assign each demand
to its nearest vertex and move vertices to the demand locations.

5: Apply fitness evaluation operator FITNESS to the solution.

6: 5. Apply derived operator SOMDVREP, to perform greedy insertions of the residual
demands according to the time duration constraint.

2. SOM derived operators. Two operators are derived from the SOM algorithm for
dealing with the VRP. The first operator, denoted SOMVREP, is a standard SOM
restricted to be applied to a single randomly chosen vehicle/route at each gen-
eration, using customers already inserted into the route. It helps to eliminate the
remaining crossing edges in routes. While capacity constraint is greedily tack-
led by the mapping/assignment operator below, the second operator, denoted
SOMDVREP, deals specifically with the time duration constraint. It performs few
greedy insertion moves at each generation. Given a randomly chosen customer
that is not yet already assigned to a vehicle, the competitive step selects to be
the winner the vehicle vertex for which the route time increase is minimum, the
route time duration constraint for that vehicle being satisfied. The evaluation of
the route time increase is done moving the vertex to the customer location and
including the customer into the route.

3. Mapping/assignment operator. This operator, denoted MAPPING, generates a
VRP solution by inserting customers into routes and modifying the shape of
the network accordingly, at each generation. The operator first greedily maps
customers to their nearest vertex for which the corresponding vehicle capacity
constraint is satisfied, and to which no customer has been yet assigned. The
capacity constraint is then greedily tackled by the customer assignment. Then,
the operator moves the route vertices to the location of their assigned customer
(if exist) and regularly dispatches (by translation) other vertices along edges
formed by two consecutive customers in a route. The result is a vehicle route
where assigned vertices alternate with the many more not assigned vertices. At
this stage, few customers may not be inserted because of capacity constraint
violation.
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4. Fitness operator denoted FITNESS. Once the assignment of customers to
routes has been performed, this operator evaluates a scalar fitness value for a
given solution. This value has to be maximized, it is used by the selection oper-
ator at the population level. Taking care of time duration constraint, the fitness
value is sequentially computed following routes one by one and removing a
customer from the route if it leads to a violation of the time duration constraint.
The value returned is fitness = sat — 10 — 5 x Length, where sat is the number
of customers that are successfully assigned to routes, and Length is the length
of the routes defined by the ordering of such customers. The value sat is then
considered as a first objective and admissible solutions are such that sat = N/,
N’ being the current number of customers in the system at a given optimization
time-slice.

5. Selection operators. Based on fitness maximization, at each generation the op-
erator denoted SELECT replaces Pop/5 worst solutions, which have the lowest
fitness values in the population, by the same number of best solutions, which
have the highest fitness values in the population. An elitist version SELECTg 1
replaces Pop/10 worst individuals by the single best individual encountered
during the run.

14.5.2 Spiral Search Algorithm

By the evolutionary dynamics, the goal is to make the closest point assignment co-
incide to the right assignment, which minimizes objectives and satisfies constraints.
The algorithm can be seen as a massive and parallel insertion method to the nearest
points. To perform N closest point findings in expected O(N) time for uniform dis-
tributions, we have implemented the spiral search algorithm of Bentley, Weide and,
Yao [[19] based on a cell partitioning of the area. It performs an optimal nearest point
search with expected O(1) time complexity for uniform or bounded distributions,
with O(N) space complexity. Hence, a cell based decomposition of the area within
O(N1/2 x N1/2) cells is performed during the initialization phase of the memetic
algorithm. Each cell has a (non null) memory capacity proportional to an estimation
of the number of demands at that location. The memory is allocated once. The con-
tents of the memory cells are updated each time a given operator (SOM or mapping)
has to be applied. Vertices of the network are introduced into the cells and the subse-
quent (at most) O(N) closest point findings will be based on their content. The cell
contents are not updated after each move. This may introduce a relaxation on the
requirement of finding the true nearest neighbor. But this drawback is balanced by
the limited number of iterations performed and by the fact that vertex coordinates
are modified after each move.

The choice of a spiral search algorithm based on a geometric partitioning
of the area, rather than a standard k-d tree search method or a Delaunay-
Voronoimethod [30] was drawn from “heuristic” arguments. We did not perform
evaluations to yield a firm conclusion about the superiority of a method over another
in the context of the SOM. Here, the closest point findings concern the network
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vertices, rather than customers as usual for swapping operations in standard local
search approaches. The insertions of the network vertices into the cells are to be
done many times, more precisely, before each application of a given operator to a
solution. The insertions take O(N) computation time, for at most O(N) closest point
findings subsequently performed. Using a k-d tree would require O(N x log(N))
computation time to build the balanced tree at each time. Thus, it is not clear whether
the amortized computation cost would be inferior in that case. Also, we link the spi-
ral search to further possible parallel implementations of the approach, in order to
deal with very large instances for example. The k-d tree constitutes a hierarchical
structure which is adequate in a context of shared memory. On the contrary, geo-
metric partitioning according to a given topology may have some advantages when
dealing with multiprocessor implantations. Here, a given cell would only have to
“communicate” with its fixed 8 neighboring cells, each one being associated to a
given part of the data and/or the network.

14.5.3 Algorithm Complexity

In our experiments, a given working day is divided into O(N) time slices with con-
stant computation time each, N being the problem size. Hence, the computation time
allowed in experiments is O(N). The number of generations performed, as the prob-
lem size grows, will depend on the complexity of the closest point findings based
operators. With a constant population size, a SOM neighborhood proportional to
N, and N basic iterations performed by generation, the time complexity to execute
a given generation is O(N?) in the worst case. However, we claim that the spiral
search mechanism considerably improves the nearest search. This point was con-
firmed empirically in [11], a linear time was achieved for constant neighborhood
size operators applied on some unstructured TSPLIB test cases. The memetic SOM
space complexity is O(N), as usual for SOM. It is worth noting that this space com-
plexity allows dealing with large size instances of several thousands of customers,
on standard computer workstations.

14.6 Real-Time Simulation and Optimizer

This section presents the real-time simulator developed in Java which allows the
dynamic solving of a dynamic VRP. To make things concrete, we assume that a
transport company centralizes the optimization procedure, receives the orders from
the environment, monitors the vehicle locations, and dispatches the continuously
generated and optimized routes to the vehicles. Hence, we assume the existence of
a communication system between the company, the customers and the drivers, and
that communication times are negligible relatively to the rest of the real-time activ-
ities. In this section, we detail the simulator structure and the main parameters that
will allow controlling the dynamic optimization process. It is worth noting that the
simulator can be described independently of any optimization al-gorithm or policy
that could be applied.
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14.6.1 Simulator Architecture

The simulator consists of two main components implemented within two Java
threads which communicate through an asynchronous protocol. The first thread
plays the role of a real-time scheduler which decomposes the working day into
many short time-slices based on a timer clock, in order to simulate the vehicles ac-
tivities implemented as simple state machines. The second thread plays the role of
a background task which encapsulates the optimization process which continuously
optimizes routes using the remaining CPU resources. During each time-slice, the
optimization process solves a continuously evolving static VRP, with evolving vehi-
cle capacities and starting locations, and with an evolving set of currently available
requests. The idea has been discussed many times in the literature [21), 24, 26] and
is clearly different from the rough strategy which consists in restarting the optimizer
each time a new event occurs.

Process

1
Scheduler]

MetaSolver

AgentSolver

(a) (b)

Fig. 14.3 Real-time simulator and asynchronous optimizer.

The architecture of the simulator is presented in Figure [[4.3]in the UML class
diagram style. Figure [[4.3(a) presents the real-time scheduler while Figure [[4.3[b)
presents the structure of the optimizer. Three types of real-time processes are
implemented and scheduled based on the timer clock. They are the Environment,
Company, and Vehicle objects in Figure [[4.3(a). The company is the center entity
which receives demands from the environment, centralizes the de-mands, controls
the optimization task, and dispatches orders to the vehicles. Figure [[4.3[b) shows
the structure of the asynchronous optimization process which manages a population
of agents, called AgentSolver objects, that are responsible for generating solutions
and constitute the population of the metaheuristic approach. Each agent solver then
encapsulates a single evolving solution. A particular agent, called MetaSolver, plays
the role of a scheduler of the agent solvers activities; it performs a selection between
the solutions in a similar way of an evolutionary algorithm. Since this section is
mainly devoted to the real-time simulation and not to the optimization algorithm,
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we shall only focus here to the real-time aspects of the system and to the commu-
nication protocols. The solving policy and heuristics will be detailed further in the

paper.

14.6.2 Asynchronous Protocol

On the one hand, the company receives new orders from the environment and com-
municates with the vehicles in a synchronous way, as both processes share the same
real-time clock. On the other hand, the communication between the company and
the optimizer is asynchronous, using mailboxes to exchange information. Here, the
asynchronous execution mode of the optimizer is intended to allow the consump-
tion of all the remaining available CPU resources. Figure [[4.Tlshows the structured
information shared by the two asynchronous processes. The company controls the
optimization process following a master/slave scheme. We can distinguish simple
orders and structured orders sent by the company. Simple orders are the start, stop
commands performed respectively at the beginning or at the end of a working day,
and the dispatch of the new customer demands as soon as they arrive in the system.
Structured orders concern the transfer of a complete solution, in the SetO fVehicles
object, as well as, from time to time, the transfer of all the available requests once
removing the ones already served, in the SetO fRequests object. Hence, the mail-
boxes have a size proportional to the number of requests in O(N), N being the total
number of demands arriving within a day.

optimize(SoV,SoR currentTime, Topt, Tco) HetOptHZE)
i SetOfVehicles
Sl >—’ Optimizer
pany »| SetOfRequests P
setPlan()
SetOfvehicles 4——"
getPlan(SaV currentTime)

Fig. 14.4 Asynchronous data transfers using mailboxes.

It should be noted that the exchanges, when considering the direction from the
company to the optimizer, mainly concern the updates of the vehicle locations, to-
gether with the arrival of the new requests. On the contrary, the exchanges from the
optimizer to the company concern transfers of the built vehicle routes. But since it
can occur in real life situations that autonomous vehicles could by their own mod-
ify their routes or themselves participate to the optimization process and modify
their plans, we choose to implement a complete bi-directional exchange of vehi-
cle routes. Then, the optimizer systematically chooses as a result the best solution
between the received solution by the company and its best generated solution. How-
ever in this paper, the vehicles are supposed to strictly follow the optimized routes
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provided by the optimizer, and not try to optimize the routes by themselves. Hence,
the simulator has a general structure allowing possible distributed computations as
done in some multi-agent approaches like [30], where the company and the vehi-
cles simulate a market based protocol to construct the routes in a distributed way.
Bidirectional exchange of vehicle routes is intended to allow further developments
where a competitive solving could take place between the company and vehicles on
the one hand, and the optimizer on the other hand.

In order to control the computation time allowed to simulate a working day, we
decompose it into many time slices. Two parameters, denoted To and ToR next in the
paper, define the amount of computation time allowed to simulate a basic time slice.
They respectively control the compression of the working day into a small period
of computation time, and the real-time precision of the system. Parameters To and
ToR are respectively expressed in computation time units and real-time units. Since
the arrivals of new requests have to be tackled as soon as they arrive, ToR can be
seen as the basic unit of the real-time clock. It discretized the arrival of the re-quests
along the working day. Here, this value is chosen to be in O(D/N). Whereas, the To
value corresponds to the few milliseconds of computation time allowed to simulate
a period of ToR units of real-time. In the experiments presented in this paper, the
ToR value will be adjusted to an integer value compatible with the benchmark test
cases unit of time, taking ToR as the smallest integer greater than 0.1 x D/N. The
To parameter will be adjusted to evaluate the performance of the system from large
to very short computation time allowed, hence choosing To from To = 200ms to
To = 20ms.

The unit of real-time being defined, we now introduce the main parameters gov-
erning the frequency of the route updates between the company and the optimizer.
They are the optimization time-slice Topt and the commitment horizon T co, which
are both expressed in real-time units. The optimization time-slice Topt defines the
time between two consecutive route updates occurring between the company and
the optimizer. The commitment horizon 7 co is a period of time which defines the
requests in routes that cannot be reallocated to other vehicle routes. The period starts
from the current time, it is a commitment to the drivers that cannot be changed. We
necessarily have Topt < Tco, and ToR < Topt. Each Topt units of time, the com-
pany respectively gets back the new routes generated by the optimization process,
and sends the current vehicle routes containing the actual vehicle positions. Hence,
each time a route update is sent by the company at time ¢ using the ’optimize()”
procedure, the optimizer anticipates the vehicle positions at their future positions
at time ¢ + Topt. This is done within the ”getOptimize()” procedure. Then, the op-
timization is performed with the anticipated solution at time ¢ + Topt, when the
solution will get back by the company using the ”getPlan()” procedure. As well, the
optimizer anticipates the vehicle positions at time ¢t 4 T co since only the part of the
routes behind this point can evolve through the optimization process. The optimizer
regularly updates the mailbox with the new solution following its own internal rate
Tg by calling the ”setPlan()” procedure. The new requests are sent to the optimizer
whenever they appear, using the “request()” procedure.
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Fig. 14.5 Data structure for transfer from the company to the optimizer.

Figure[T4.3lillustrates how the data structure representing a given vehicle route is
affected by the transfer from the company to the optimizer. Since a route is defined
as an ordered set of requests, the lookahead consists in finding the vehicle position
at time 7 + Topt, and then fixing the requests from that date to the date # + 7T'co since
the committed requests will not be affected by the optimization procedure. It should
be noted also in Figure[T4.3] that the vehicle buffer size is adjusted each Topt to the
value 5 x N'/NbVehicles, with N’ the number of currently available requests in the
system at time ¢ + T'co, in order to be sufficiently large to insert new requests as
they arrive during the next time-slice. The sizes of the Topt and Tco windows can
be fixed independently from each other. But in a real time setting, and as showed in
the Kilby et al. paper [24], the reactivity of the system drastically diminishes with
the augmentation of the commitment horizon Tco. In this case, further requests will
not be inserted into the committed portion of a route and then will be served later.
In order to ensure a maximum of reactivity and dynamism of the system, we set
Tco = Topt in all the experiments presented in the paper, with Topt as small as
possible. The Topt value is set to Topt = 10 x ToR, thus taking an optimization
time-slice in O(D/N), allowing a single request occurrence on average for a single
optimization time-slice.

14.7 Experimental Results

14.7.1 Experiments Overview

In this paper, we define the dynamic VRP as a straightforward extension of the static
VRP. The length objective (1), the constraints of capacity (2) and time duration (3)
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are defined exactly the same way as for the static case problem. This allows compati-
ble evaluations according to static optimal values and allows a standard formulation
of the problem. To take into account the degree of dynamism of the optimization
process, a second objective is defined related to the real-time execution. It is the
customer waiting time WT defined in (4). However, in order to give a supplemen-
tary insight into the real-time execution, an auxiliary criterion that we think useful
to consider is the maximum vehicle finishing time MT defined by (5), i.e. the date
of arrival at the depot of the last vehicle once all demands have been served. We
think that this auxiliary criterion will help to gauge the excess part of the vehicle
services performed behind the working day, once all the demands have been already
received, and indirectly to evaluate the part of the instance that is solved as a static
problem due to system congestion.

The proposed memetic SOM was programmed in Java and has been ran on a
AMD Athlon 2 GHz computer. All the tests performed with the memetic SOM are
done on a basis of 10 runs per instance.

For each test case is evaluated the percentage deviation, denoted ”%Length”, to
the best known route length, of the mean solution value obtained, i.e.

%Length = (meanLength — Length«) x 100/Length (14.5)

where Lengthx is the best known value taken from the VRP Web, and “mean
Length” is the sample mean based on 10 runs. The average computation times are
also reported based on 10 runs. The average customer waiting time (4) and the max-
imum vehicle finishing time (5) are expressed as a fraction of the working day in
order to compare data with different working days. The waiting time is expressed as
a percentage of the working day length D by

%WT = meanWT x 100/D, (14.6)

whereas the maximum finishing time is expressed as an excess deviation to the
working day by:
9%MT = (meanMT — D) x 100/D (14.7)

This setting also guarantees that it is possible to serve all the demands for the prob-
lems considered. Finally, to make things concrete and realistic, the vehicle speed
defined in the benchmarks of 1 distance-unit by 1 time-unit can be seen as a ve-
hicle speed of 1 km/mn, or equivalently of 60 km/h. In order to be concrete, we
will express the real-time in minutes and the distances in km when reported by their
absolute values in some graphics. The working days are roughly between 4 hours
and 17 hours, with an exception of a single test case having a 195 hours working
day. It is worth noting that the parameter N and the total load of the demands are
known before optimization in order to adequately dimension the system. Hence, the
working day D can be decomposed into the many required time-slices. We assume
that such values are necessarily known in advance in order to model a concrete real-
life situation where a limited number of vehicles are intended to serve a maximum
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amount of demands, and to reasonably dimension the real-time simulator memory
and the optimization system.

14.7.2 Influence of the Main Simulation Parameters

In this chapter, we apply to the dynamic VRP a simplified version of the memetic
SOM algorithm that was studied in [[14] for the static VRP. Since an analysis of
the role of the operators and of the algorithm internal parameters was previously
performed in the above mentioned paper, we will restrict the focus to an analysis
of the few parameters that have an important impact to the dynamic and real-time
implementation of the approach. In this section, we study the influence of three
parameters and their impact to the length objective and waiting time trade-offs. The
parameters studied are the population size Pop of the metaheuristic, the computation
time allowed by the choice of the basic temporization To, or timer-clock, of the
real-time simulator. The degree of dynamism is adjusted by simply delaying the
starts of vehicles, from immediate starts (maximum dynamism) to an half of the day
starts (medium dynamism). To respectively implement a high or medium degree
of dynamism, delay start is expressed with two values: immediate start at time O,
or delay start at time D/2. A delay start at D or 2D is used to simulate a static
VRP solver in a second set of experiments. The computation times are fast or long
depending on the choices To = 30ms or To = 200ms to simulate a given time slice
of a working day. Three population sizes are considered: Pop = 1, Pop = 10, and
Pop = 50. The experiments were done with the 22 dynamic instances of Kil-by
et al. performing 10 runs by instance and reporting the average lengths and average
waiting times. These experiments are for a part reported with details in Table 1 and
Table 2 next in the chapter.

14.7.3 Trace Analysis

We analyze the trace execution of a typical simulation run in order to illustrate
how real-time services are adequately simulated and performed along a working
day, and verify that the CPU computation time is uniformly distributed along the
day. The execution traces presented in Fig.6(a-b) illustrate how the route length
and waiting time are evolving for the two cases of dynamism, that is, a maximum
and a medium degree of dynamism, respectively, simulated by an immediate start
of vehicles or a delay start of D/2. The problem considered is the c50 test case
of the benchmark set, having a working day of D = 351mn, simulated with the
timer-clock To = 30ms, and using a metaheuristic population size of Pop = 10. In
Figure[I4.6]a) is shown the length evolution, whereas in Figure[[4.6]b) is shown the
waiting time evolution for both cases of dynamism. The tradeoff between these two
criteria suggests that one would have to choose between two incompatible scenarios:
choose to drastically minimize the customer waiting time or choose to minimize
length and drivers working time at an expense of the customer waiting time.
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Fig. 14.6 Trace analysis.

As well, in order to verify that the CPU computation time is uniformly distributed
along the simulated working day, we report in Figure[I4.7(a) the simulated real-time
as a function of the processor time, measured by Java system calls every period of
Topt units of real-time. The test case is the same as above with immediate vehicle
starts and clock To = 30ms. The straight line obtained in the figure clearly shows
that the computation time is uniformly distributed along the day. We also report
in [[4.77(b) the number of generations performed by the memetic SOM algorithm
as a function of the measured computation time. Again, the number of generations
performed at each time step looks roughly proportional to the computation time al-
lowed, with smooth variations on the curve probably due to the varying problem
size along the day, or the varying CPU consumption of the vehicles activities imple-
mented as simple state machines.
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Fig. 14.7 Repartition of the CPU computation time.

14.7.4 Comparative Evaluation

We report detailed results of the experiments performed on the Kilby et al. [24]
benchmarks in Table I and Table II. Here, such results are mainly given in order
to allow further comparisons with heuristic algorithms for the dynamic VRP. In
Table [[4.1] are given the results when considering a high degree of dynamism im-
plemented by vehicle immediate starts. Results in Table I are only given for further
comparisons. In Table [[4.2], results are presented against the two other approaches
found in the literature [21), [28] that have used the benchmark set with a medium
degree of dynamism, considering that half of the demands were known in advance.
It is worth noting that we simulate the same degree of dynamism by a vehicle de-
lay start time at D/2. As we argued along this paper, we consider the degree of
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dynamism as a property of the system rather than a property of the instance. The
first column "Name-size” of each table indicates the name and size of the instance.
The second column ”D” indicates the working day length, and the third column the
best known value obtained for the static problem. Then, results are given within five
columns for a given algorithm configuration. The columns ”%Length”, ”%WT”, and
”9%MT” are respectively defined by equations[14.3] and [[4.7] as the percent-
age routes length, percentage average customer waiting time, and percentage max-
imum finishing time. The column "+%CI” is the 95% confidence interval for the
routes length. Finally, the column ”Sec” reports the computation times in seconds.
Two algorithm configurations are considered respectively with fast (To = 30ms) and
long (To = 200ms) computation times. The metaheuristic population size was set to
Pop = 10.

Table 14.1 Evaluation on the 22 instances of Kilby et al (1998) with maximum degree of
dynamism.

memetic SOM memetic SOM

(fast, immediate start, Pop=10) (long, immediate start, Pop=10)
Name-size-veh D Best %Length  #%4CI Sec*  UWT %MT %Length  +24CI Sec® %WT  %MT
c50 351 52461 4477 3.04 17.56 2615 59.86 4203 324 11157 2678 5624
75 346 835.26 38.19 273 16.60 2174 53.21 3562 277 109.94 2235 5618
c100 399 816.14 44321 279 1205 2211 4451 3763 417 11837 2442 4534
c100b 468 81956 3306 321 1839 1673 29.00 2474 418 12404 1735 3030
c120 794 104211 2341 171 2021 1325 17.61 2070 1.89 190.21 1292 1723
c150 399 1023.42 62.88 2.50 17.85 19.57 42.88 5829 1.47 119.71 0 44 47 49
c199 399 1291.29 60.70 317 1705 1834 36.49 5530 204 111.65 18 37 3754
71 211 237 4515 3.4 9.04 2268 36.73 411 438 5856 2351 3621
f134 1741 11620 7503 7.59 4722 34 1575 6265 4.24 316.19 381 1927
tai7Sa 769 1618.36 2472 217 16.47 1772 36.80 2013 291 107.14 1825 3696
tai7 St 503 134462 2835 360 1837 1098 33.26 2655 773 12377 1133 3443
tai75c 782 1291.01 31.13 2.68 16.69 1517 36.34 2708 167 108.72 15 60 36 .68
tai7 e 789 1365.42 2506 32 16.26 1584 31.63 20.50 376 106.81 16 .44 33.08
tail00a 807 2041.34 28.13 292 39.59 1623 41.15 2723 275 25573 16.26 4027
tail 00b 799 1940.61 3029 4.59 3602 1877 417 2541 212 23420 1973 4421
tail 00c 905 1406.2 4529 424 3433 10.16 21.29 3512 410 23215 1088 2620
tail00d 782 158125 4313 359 3262 1414 3335 40 86 399 21399 1472 3462
tail50a 1062 305523 2901 33 4495 1506 3535 2731 185 29158 1587 3509
tail 50b 938 2656.47 4056 321 3739 1435 21.00 3523 270 24937 1507 2418
tail 50c 1081 234184 5264 397 4145 1035 2263 4653 245 27521 1128 2526
tail 50 1025 2645.39 4019 237 38.60 1424 2041 35.44 515 25374 1472 2130
tai385 4816 24431 44 5540 376 100.50 10.56 33:51 4675 2.06 650.69 10.40 3301
Average without tai385 4028 0.70 26 89 16.06 33.97 3583 0.69 176.79 16 67 3512
Average all 4097 0.68 3024 1581 2393 3633 0.66 19833 16.38 B2z

*Time per run in AMD Athlon (2 GHz) seconds, Java program.

When looking at the results of Table [[4.1] and Table [[4.2], one should observe
the different tradeoffs between route lengths (%Length) and waiting times (%WT),
and note that the maximum finishing times (%MT) have similar values for both de-
grees of dynamism, corroborating the trace analysis made above. Then, a medium
degree of dynamism will favor the drivers working period to be smaller, but at an
expense of the customer waiting time. In Table[I4.2] the approach is compared with
an ant colony approach, that is, an adaptation of the well known MACS-VRPTW
approach of Gambardella et al. [[17] that is considered as one of the best performing
approaches to the static VRP. The application to the dynamic VRP is due to Mon-
temanni et al. [28]. Also, it is compared with the genetic algorithm of Goncalves et
al. [21]. In Table II, the memetic SOM is compared with the ant colony approach of
Montemanni et al. [28] and to the genetic algorithm of Goncalves et al. [21]. It is
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Table 14.2 Comparative evaluation on the 22 instances of Kilby et al. (1998) with medium
dynamism.

memetic SOM memetic SOM Montemanni et Goncalves et al
(Fast, start time D2, Pop=10) (long, start time D/2, Pop=10) al. (2005) (2007)
Name-size-veh D Best  %Length +2%CI  Sec® %WT %MT %Length #%CI  Sec® %WT %MT %Length Sec® %Length  Sect

cs0 351 52461 1858 243 1652 4549 5037 1782 214 11082 4645 5519 30 00 1399

c75 346 83526 2459 282 1700 3959 5699 2265 220 10601 3953 5058 2475 1539
c100 399 326.14 1433 263 1344 4214 4769 1339 206 11860 4213 4612 2903 2407
<100t 468 819.56 976 419 1949 3482 3306 1283 202 127.54 3492 3397 2495 1360
o120 794 1042.11 9.47 232 2933 2926 1311 7.95 262 189.07 2932 1712 46.34 32l
c150 399 1023.42 3205 220 1789 3698 4323 3214 154 11452 3650 4108 4158 3059
c199 399 1291.29 3323 172 1722 3571 37389 3029 218 11369 3535 4005 4288 3018

1 211 237 3089 399 973 4876 4720 2703 294 6319 407 401 4726 19.41
134 11741 11620 5314 837 438 1812 1860 4698 534 31872 1859 2021 3342 3529
tai7 5a 769 161836 1999 302 1710 3141 4208 15.40 207 108.37 3121 3917 2018 15.18
tai75b 905 134462 2393 401 1876 3075 3249 2254 369 12342 3107 3408 2673 1336
tai75c 782 1291.01 2067 293 1672 3455 3657 2193 263 108.63 3470 3655 812 2564
tai75d 789 1365.42 1726 294 1713 3310 371 1489 328 11253 3354 4020 1198 1022
tail 00a 297 204134 1598 367 4012 3697 4304 1340 221 26221 3735 4381 1294 1865
tail 00b 799 1940.61 17.13 278 3635 3901 4548 15.19 213 239.28 3905 4732 2099 1548
tail 00c 905 1406.2 2339 299 3492 2574 2338 2458 311 22939 2644 2469 17.76 2402
tail00c 782 158125 821 273 3390 3173 386l 2471 368 22112 3175 3909 3034 2066
tail 50a 1062 305523 1975 252 4473 3489 3471 2072 305 29158 3470 3508 2569 2051
tail 50b 988 2656.47 2136 322 3883 3279 2569 2089 238 25467 3269 2681 2524 24.49
tail 50e 1081  2341.34 2130 144 4240 2787 2540 1261 201 277.16 2753 2614 2279 2443
tail 50d 1025 264539 016 306 4044 3530 2615 1622 1.87 269.60 3520 2940 2112 0535
1ai385 4316 2443144 3803 221 9576 2933 2703 3886 165 623.00 2364 2733 z =

A"”ﬁ;;’ﬁ"mm 2263 063 2740 3452 3645 1982 053 17908 3462 3684 2862 1500 2162 1500
Average all 2333 066 3051 34329 3602 053 051 19926 3435 3641

*Time per run in AMD Athlon (2 GHz) seconds, Java program.
® Time per run in Pentium IV (1.5 GHz) seconds, C program.
©Time pet run in Pentium IV (24 GHz) seconds, Java program

worth noting that the authors do not report the customer waiting time. Nevertheless,
we tried to follow the same experimental setting. The authors have used the same
benchmark set without the largest test case named fai385, and using a medium de-
gree of dynamism. As explained by the authors, a medium degree of dynamism is
achieved when half of the demands are considered as known in advance. Here, a
medium degree of dynamism is achieved by delaying the vehicle starts to the half
of the working day. Since the time distribution is uniform, half of the demands are
then expected to be known beforehand. As shown in Table the memetic SOM
outperforms both the ant colony approach and the genetic algorithm. It improves the
solution quality using lesser computation time. Computation time can be roughly an
hundred times lesser.

Finally, we report in Figure [T4.8((a) synthetic presentation of the evaluations pre-
viously performed with the memetic SOM in [[11}, [14], as well as of the ones of this
paper, against state-of-the-art operations research heuristics considering the trade-
offs between objective minimization and computation time. Starting to look at the
figures from [[4.8(d) and in reverse order to figure [[4.8a), the results are given
from standard static routing problems to the already studied more complex dynamic
VRP. The problems are respectively, the static TSP, the static VRP with capacity
constraint only, the static VRP with time duration constraint, and the dynamic VRP,
all problems being Euclidean problems. The aim is to suggest how a massive and
distributed insertion method, originally based on the neural network self-organizing
map algorithm, can be adequately applied in a dynamic setting and to complex prob-
lems in a way competitive with the very sophisticated operations research heuristics
specifically dedicated to deal with a given problem at hand.
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Fig. 14.8 Evaluation of the memetic SOM against state-of-the-art heuristics and metaheuris-
tics. Dynamic VRP (a), static VRP with time duration constraint (b), static VRP with capacity
constraint only (c), and static TSP (d).

Results in Figure [[4.8(d) illustrate the performance of the memetic SOM on the
33 TSPLIB problems [33] of size larger than 1000 cities, with up to 85900 cities.
It is worth noting that these problems were used in the last DIMACS challenge
from which are reported the results, the computation times being normalized here
to our AMD Athlon (2GHz) computer using Dongarra’s factors [[15]. Certainly, and
as illustrated in Figure [[4.8(d), neural networks based approaches do not compete
with state-of-the-art OR heuristics for the TSP, such as the 2-Opt, 3-Opt and Lin and
Kernighan local search heuristics, which are from a long time the best performing
approaches to the TSP according to both length minimization and computation time
spent. For example, referring to the Johnson and McGeoch paper [23], the new
implementation of the Lin and Kernighan heuristic by Helsgaun [22] is clearly one
of the most effective approaches for the TSP.

Nevertheless, and as it is the case also for the SOM based approach called
Co-Adaptive Net algorithm [4], our approach was evaluated on many more test
problems than previously considered in the literature for neural networks and more
importantly on larger TSP’s. To be competitive, solution quality produced by neural
networks, as well as computation time, would have to be improved both by at least
a factor of ten. Other OR powerful heuristics for the TSP are, in the most often
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cases, a reuse of local search techniques embedded in a restarting or metaheuris-
tic framework, as, for example, the Iterated-LK, Tabu-2-opt, or Tabu-LK, as given
in the DIMACS challenge and reported in the Figure [[4.8(d). However, the design
and implementation of classical OR heuristics is not trivial since there are many
implementation and design decisions to be made that have a great influence on per-
formances. Here, on the contrary, we have focused on a heuristic which follows a
metaphor in biologic systems, hence which exhibits a high degree of intrinsic paral-
lelism and which may be considered intuitive and easy to implement.

In Figure [I4.8[(b-c) we turn to the static VRP, reporting results for the large size
20 test problems of Golden et al. [7] with sizes from 240 with up to 480 customers.
The benchmark contains twelve problems with the capacity constraint only and
height problems with the supplementary constraint of time duration. Comparison
is presented against some of the recent heuristics presented in the survey paper [3]
that cover the global range of metaheuristic performances for the static VRP. We
used the numerical results reported in [[5] with computation times normalized to
our computer. The selected approaches are the Active Guided Evolution Strategy
(AGES) [27], the Granular Tabu Search (GTS) [34], the Unified Tabu Search Algo-
rithm (UTSA) [6], and the Very Large Neighborhood Search (VLNS) [16]. Two
configurations of the memetic SOM ”fast” and ’long” are reported for respectively
short and long computation times. From what we know, the AGES approach is, at
the date of writing, the overall winner considering both solution quality and com-
putation time for the static VRP. AGES is however considered complicated. On the
contrary, UTSA is recognized to be simple (easy to understand and implement) and
flexible (easy to extend) but more time consuming. Considering the instances with
the capacity constraint in Figure[T4.8(c), the memetic SOM is less efficient on accu-
racy than the other approaches, computation times being comparable or lesser than
the ones of UTSA and VLNS. Considering the instances with the time-duration
constraint in Figure [I4.8] (b), the length value becomes closest to the one of UTSA
for slightly spending more computation time. For such instances, GTS yields worst
quality results but computes very quickly. The memetic SOM performs better than
VLNS considering both quality solution and computation time. Hence, the more
complex the problem becomes with new constraints added, the more competitive
the memetic SOM becomes with OR powerful heuristics.

Finally, Figure [[4.8a) presents a summary of the experiments done on the dy-
namic VRP. The memetic SOM looks to be very faster and more efficient than the
few approaches that were applied to the Kilby e al. benchmarks. The results are re-
ported for different computation times allowed, set by a timer clock at respectively
To = 20,30, and 200ms, thus illustrating the “anytime” nature of the algorithm that
is able to yield competitive results even for very short computation times.

As we explained in the introduction, the results corroborate the idea that the app-
roach presented in this paper was from the beginning designed to be applied in a
dynamic and Euclidean setting. Hence, the approach looks more simple and flexi-
ble than traditional OR approaches based on neighborhood swapping operators that
need complex implementation tricks to yield their effective power [23] when applied
in the Euclidean plane. Here, the performances can be explained by the many nearest
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point searches performed in the plane in a distributed way by spiral search. Further-
more, there is no distinction between a construction and an improvement procedure
as usual, but rather a distinction between a deployment and improvement phase
where solution construction and solution improvement are a unified process with a
decreasing intensity operating on an intermediate structure that continuously adapts
and distorts itself in the plane to an underlying distribution of the demands. No new
insertion procedure needs to be added to a previously designed improvement proce-
dure in order to dynamically add the new demands in real-time, as usually done with
improvement heuristics based on swapping operators that are subsequently applied
to dynamic versions of a vehicle routing problem [24, 31]].

Furthermore, the internal data structures of the memetic SOM are weakly im-
pacted by the arrivals of new demands, an insertion into the memory being done in
constant time O(1). Subsequent insertions are then done naturally by the repeated
massive and distributed nearest point searches. Similar implementation mechanisms
look not to be considered in the ant colony and genetic algorithm when compared to
our approach. For example, an ant would have to perform a complete tour in order to
introduce a new demand in a route, thus theoretically performing O(N?) operations
to do so. As well, adding a new demand in the memory theoretically needs modify-
ing the graph structure by adding as many edges as necessary. And such conclusion
arises also for the genetic algorithm where a complete examination of a solution-
chromosome structure is needed to perform an insertion. The conclusion is that the
ant colony algorithm and the genetic algorithm look far from being the best candi-
dates for an application into a dynamic setting without saying anything about how
their structures are adequately updated in the dynamic case.

14.8 Conclusions

We have presented the dynamic VRP as a straightforward extension of the classic
and standard VRP, and a hybrid heuristic approach to address the problem using
a neural network procedure as a search process embedded into a population based
evolutionary algorithm, called memetic SOM. Based at the origin on the standard
self-organizing map algorithm, the memetic SOM reuses the concept of an inter-
mediate structure representing routes that adapt to an underlying distribution of de-
mands by the many route distortions performed in the plane. By extension, these
mechanisms become opera-tors in the population based metaheuristic. They lead
to route improvements performed at the same time of customer insertions. Massive
insertions are performed based on a spiral search algorithm for the nearest point
search implemented on the top of a cell decomposition of the plane. That is why
we think that the approach naturally deals with dynamic and real-time arrivals of
demands distributed in the plane with a weak impact on the evolving structures.
This paper concludes a set of studies where the memetic SOM was successively
applied to many routing problems. It was applied to the static TSP with problem
sizes with up to 85900 cities, to the static VRP and the VRPTW, and to different
combined bus-stop positioning and routing problems. While the approach looks far
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from being competitive on the TSP when compared to the very powerful operations
research heuristics, it becomes more competitive when considering more complex
problems such as the static VRP with duration constraint, and specifically compet-
itive when applied to the dynamic VRP. The results look encouraging in that the
approach clearly outperforms the few heuristic approaches already applied to the
dynamic VRP and evaluated in an empirical way on a common benchmark set. We
claim that the memetic SOM is simple to understand and implement, as well as
flexible in that it can be applied from a static to a dynamic setting with slight modi-
fications. Also, we think that the memetic SOM is a good candidate for parallel and
distributed implementations at different levels, at the level of the population based
metaheuristic and at the level of the cellular partition of the plane.

Further research should focus on a better evaluation of the method against sim-
ple policies, or heuristics and metaheuristics approaches that were applied to more
complex dynamic vehicle routing problems, such as the dynamic VRP with time-
windows or the dynamic pick-up and delivery problem with time-windows. These
approaches would be easily customized to the standard and simplest dynamic VRP
presented in this paper. Hence, this paper has reported evaluations to allow further
comparisons on the basis of a standard formulation of the dynamic VRP and a stan-
dard test set. It would be of interest to better study and normalize the dynamic and
real-time benchmarks in a similar way that is done for the static problems, in order
to favor future empirical evaluations of algorithms on dynamic unstructured large
size problems.
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