
Chapter 1
Performance Analysis of Dynamic Optimization
Algorithms

Amir Nakib and Patrick Siarry

Abstract. In recent years dynamic optimization problems have attracted a growing
interest from the community of stochastic optimization researchers with several app-
roaches developed to address these problems. The goal of this chapter is to present
the different tools and benchmarks to evaluate the performances of the proposed
algorithms. Indeed, testing and comparing the performances of a new algorithm to
the different competing algorithms is an important and hard step in the development
process. The existence of benchmarks facilitates this step, however, the success of
these benchmarks is conditioned by their use by the community. In this chapter, we
cite many tested problems (we focused only on the continuous case), and we only
present the most used: the moving peaks benchmark , and the last proposed: the
generalized approach to construct benchmark problems for dynamic optimization
(also called benchmark GDBG).

1.1 Introduction

The dynamic optimization problems (DOPs) can be met in many real-world cases.
A dynamic optimization problem can be formulated as follows:

min f (x, t)
s.t. h j(x, t) = 0 for j = 1,2, ...,u

gk(x, t)≤ 0 for k = 1,2, ...,v,
(1.1)

where f (x, t) is the objective function of a minimization problem, h j(x, t) de-
notes the jth equality constraint, and gk(x, t) denotes the kth inequality constraint.

Amir Nakib · Patrick Siarry
Université Paris Est Créteil, Laboratoire Images,
Signaux et Systèmes Intelligents (LISSI, EA 3956)
61, avenue du Général de Gaulle 94010 Créteil, France
e-mail: nakib@u-pec.fr

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 1–16.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

nakib@u-pec.fr


2 A. Nakib and P. Siarry

The function f is deterministic at any point in time, but is dependent on time t.
Consequently the position of the optimum changes over the time. Thus, the algo-
rithm dealing with DOPs should be able to continuously track this optimum rather
than requiring a repeated restart of the optimization process. The algorithms dedi-
cated to solve this kind of problem take into account, during the optimization pro-
cess, the information from previous environments to speed up optimization after
a change.

The naive approach after a change of the environment consists in formulating
each change as the arrival of a new optimization problem that has to be solved from
scratch. Indeed, if there is enough time to solve the problem, this is an efficient way.
However, the time for restarting the optimization process is, in most cases, short,
and it is based on the assumption of the identification of changing events, which is
not always the case.

To increase the convergence speed after a change, one direction consists in find-
ing the best way to use the previous known information about the search space to
speed up the search after a detected change. For example, if the new optimum is
close to the old one, one can reduce the search space to the neighborhood of the
previous optimum. Of course, taking into account the information from the past
depends on the nature of the change. If the change is drastic, and the new prob-
lem has little similarity to the previous problem, restart may be the only viable op-
tion, and use of information from the past would be misguiding rather than helping
the search.

In most real-world problems, however, the changes are smooth and using knowl-
edge from the past would be a good way to speed up the optimization. The difficult
question is: what information should be kept, and how it is used to accelerate search
after the environment has changed?

However, the information transfer does not guarantee that the optimization algo-
rithm is flexible enough to follow the optimum over the changes. Most Dynamic
Optimization Algorithms (DOAs) converge during the run, at least when the envi-
ronment has been static for some time, without losing their adaptability. Thus, be-
sides transferring knowledge, a successful DOA for dynamic optimization problems
has to maintain adaptability.

In order to evaluate the performances of the dynamic optimization algorithms,
many researchers have applied several dynamic test problems to them. The most
known are: the moving peaks benchmark (MPB) proposed by Branke [3], the DF1
generator introduced by Morrison and De Jong [17], the single- and multiobjec-
tive dynamic test problem generator by dynamically combining different objective
functions of existing stationary multiobjective benchmark problems, suggested by
Jin and Sendhoff [6], Yang and Yao’s exclusive-or (XOR) operator [22][24][25],
Kang’s dynamic traveling salesman problem (DTSP) [10], and dynamic multi knap-
sack problem (DKP), etc.

The goal of this chapter is to present the different methods to evaluate the perfor-
mances of a DOA. In the following section, the performance analysis of optimiza-
tion algorithms methods is presented. In section 3, the Moving Peak benchmark



1 Performance Analysis of Dynamic Optimization Algorithms 3

is summarized. In section 4, we present the generalized benchmark. In section 5,
the dynamic multiobjective optimization benchmark is presented. The conclusion is
presented in section 6.

1.2 Performance Analysis Tools of Optimization Algorithms

In this section, we present some metrics and tools that can be used to analyze the
performance of an optimization algorithm. Here, we do not focus only on dynamic
optimization but we present a set of tools to evaluate any optimization algorithm.

1.2.1 Fitness Value

The fitness of a solution is a numerical value that provides an indication on how well
the solution meets the objective(s) of the problem. The concept of fitness is central
to nature inspired algorithms (metaheuristics). The concept of fitness is applied in
most metaheuristics. In the case of benchmark problems such as the Sphere function,
the mathematic formulation and the location of the global optimum are known. In
such cases the fitness function corresponds to the distance to the global optimum.
The best fitness is known and is often zero. A solution that is closer to the global
optimum has a smaller error and a best fitness than a solution farther away.

Another kind of problem that can be met is when the global optimum is unknown.
It may not even be known whether or not a global optimum exists, and, if it does,
whether there are multiple global optima. Most examples of this type of problem
are NP-hard and the fitness score is a function of the system output(s). Furthermore,
the fitness score may be a weighted function of output parameters. An example is
a pipe renewal problem in drinking water networks, where the numbers and types
of pipes at hand, the provided pressure at demand points, and the cost may all be
weighted and incorporated into fitness values [4].

It is known that the three spaces of adaptation of an algorithm are: decision vari-
able space, system output space, and fitness space. System output space is the space
defined by the dynamic range(s) of the output variable(s). The fitness space is the
space used to define the goodness of the solutions in the output space. It is recom-
manded to scale the fitness to values between 0 and 1, where 0 or 1 is the opti-
mal value, depending on the optimization problem (minimization or maximization).
Thus, system output and fitness generally do not coincide.

Furthermore, the numerical value of the fitness rarely has a meaning. In most
cases, we only use fitness values to rank solutions. A proposed solution with a fitness
value of 0.950 is rarely exactly twice as good as a solution with a fitness value of
0.760. We simply have a rank-ordered list of how good a solution is relatively to
other solutions.

It is a common practice to vary parameters of the algorithm such as population
size and attempt to see what value produces a better cost. For example, run the meta-
heuristic fifty times with one population size and fifty times with another population



4 A. Nakib and P. Siarry

size. Due to the stochastic nature of the algorithm, we may very well get a different
fitness value each time.

How do we determine which solution is better? If all of the fitness values for
one population size are better than those for another population size, the situation is
clear: use the solution that consistently produces the best fitness values. However,
the situation is not always so simple. Especially, when we are fine-tuning parameters
to maximize system performance, we can meet situations that are difficult to analyze
and interpret.

1.2.2 Computational Analysis

The computational analysis of an optimization algorithm can be provided using a
theoretical analysis or an empirical one. In the first case, the worst-case complex-
ity of the algorithm is computed. Usually, the asymptotic complexity is not enough
to represent the computational performances of metaheuristics. If the probability
distribution of the input instances is available, then average-case complexity is rec-
ommended and it is more practical.

To perform empirical analysis, different measures of the computation time of the
metaheuristic used to solve a given instance are presented. The computation time
corresponds to the CPU time or wall clock time, with or without input/output and
preprocessing/postprocessing time.

The main drawback of computation time measure is its dependency on the used
hardware (e.g., processor, GPUs, memories, ...), operating systems, language, and
compilers on which the metaheuristic is executed. Some indicators that are inde-
pendent of the computer system may also be used, such as the number of objective
function evaluations. It is an acceptable measure for time-intensive and constant
objective functions. Using this metric may be problematic for problems where the
evaluation cost is low compared to the rest of the metaheuristics or is not time con-
stant since it depends on the solution evaluated and time. This appears in some
applications with variable length representations (genetic programming, robotics,
etc.) and dynamic optimization problems.

Different stopping criteria may be used: time to obtain a given target solution,
time to obtain a solution within a given percentage from a given solution (e.g., global
optimal, lower bound, best known), and number of iterations [21].

1.2.3 Classical Metrics

Two classical metrics for the effectiveness of metaheuristics were described by De
Jong (1975). These metrics, however, are appropriate for only the algorithms that
evolve a population of solutions. De Jong named these metrics off-line performance
and on-line performance.

When an optimization algorithm is being run off-line, many system configura-
tions can be evaluated (the fitness calculated) and the best configuration selected.



1 Performance Analysis of Dynamic Optimization Algorithms 5

For on-line work, however, configurations must be evaluated in real time, therefore
the usual goal is to develop an acceptable solution as early as possible.

The on-line performance, which measures the ongoing performance of a system
configuration, is defined in Equation 1.2, where f̄c(g) is the average population fit-
ness for a system configuration c during generation g and G is the number (index)
of the latest generation:

SOnline
c =

1
G

G

∑
g=1

f̄c(g), (1.2)

The off-line performance measures convergence of the algorithm and is defined in
Equation 1.3, where f ∗c(g) is the best fitness of any population member in generation
g for system configuration c. Off-line (convergence) performance is thus the average
of the best fitness values from each generation up to the present.

SOffline
c =

1
G

G

∑
g=1

f̄ ∗c(g), (1.3)

1.2.4 Sensitivity Analysis

The definition of the sensitivity of the optimization algorithms, also called robust-
ness, is not standardized inside the community. Different alternative definitions were
proposed for sensitivity. In general, it corresponds to insensitivity against small de-
viations in the input instances (data) or the parameters of the algorithm. The lower
the variability of the obtained solutions, the better the sensitivity. Sensitivity analy-
sis that is related to the applications of optimization algorithms sometimes focuses
on the problem and/or solution domain.

The parameters of the metaheuristics play an important role in their search capa-
city. Indeed, the sensitivity of a metaheuristic with respect to its parameters is critical
to its performance and, therefore, its successful applications. Using this approach,
we consider the parameters of an optimization algorithm as the input values to the
sensitivity analysis, and its performance values as the output values. Many indica-
tors can be used to evaluate the sensitivity; here we propose:

• Parameter sensitivity: it measures the effect of a given parameter on a given
output when all other parameters are constrained to be constant.

• Performance sensitivity: it takes into account the fact that the effect of a given
parameter on a given output differs with varying the data set values. This indica-
tor measures the average effect of a given parameter on a given output over a set
of data.

For metaheuristics algorithms, the output values can include parameters such as
fitness value, convergence rate, and the maximum generation required to reach a
good enough solution. The input values may be different for different algorithms.
For example, for genetic algorithms, the input values can be mutation rate, crossover



6 A. Nakib and P. Siarry

rate, population size, and so on. For particle swarm optimization algorithms, the
input values can be inertia weight w, cognitive and social coefficients c1 and c2, and
so on.

1.2.5 Statistical Analysis

Different statistical tests may be carried out to analyze and compare the metaheuris-
tics. The statistical tests are performed to estimate the confidence of the results to
be scientifically valid. The selection of a given statistical hypothesis testing tool is
performed according to the characteristics of the data.

Under some assumptions (normal distributions), the most widely used test is
the paired t-test. Otherwise, a nonparametric analysis may be realized, such as the
Wilcoxon test and the permutation test. For a comparison of more than two algo-
rithms, ANOVA models are well-established techniques to check the confidence of
the results. Multivariate ANOVA models allow simultaneous analysis of various per-
formance measures (e.g., both the quality of solutions and the computation time).
Kolmogorov-Smirnov test can be performed to check whether the obtained results
follow a normal (Gaussian) distribution. Moreover, the Levene test can be used to
test the homogeneity of the variances for each pair of samples. The Mann-Whitney
statistical test can be used to compare two optimization methods. According to a
p-value and a metric under consideration, this statistical test reveals if the sample
of approximation sets obtained by a search method S1 is significantly better than
the sample of approximation sets obtained by a search method S2, or if there is no
significant difference between both optimization methods.

These different statistical analysis procedures must be adapted for nondetermin-
istic (or stochastic) algorithms. Indeed, most metaheuristics belong to this class of
algorithms. Many trials (100 runs is the most used number ) must be carried out to
derive significant statistical results. From this set of trials, many measures may be
computed: mean, median, minimum, maximum, standard deviation, the success rate
that the reference solution (e.g., global optimum, best known, given goal) has been
attained, and so on.

Below are some considerations about the use of statistical tools for analysing the
performances of metaheuristics or stochastic-based optimization algorithms:

• t-tests require that certain assumptions be made regarding the format of the data.
The one sample t-test requires that the data have an approximately normal distri-
bution, whereas the paired t-test requires that the distribution of the differences
is approximately normal. The unpaired t-test relies on the assumption that the
data from the two samples are both normally distributed, and has the additional
requirement that the standard deviations (SDs) from the two samples are approx-
imately equal.

Formal statistical tests are performed to examine whether a set of data are
normal or whether two SDs (or, equivalently, two variances) are equal, although
results from these should always be interpreted in the context of the sample size
and associated statistical power in the usual way. However, the t-test is known to



1 Performance Analysis of Dynamic Optimization Algorithms 7

be robust to modest departures from these assumptions, and so a more informal
investigation of the data may often be sufficient in practice.

If assumptions of normality are violated, then appropriate transformation of
the data may be used before performing any calculations. Similarly, transforma-
tions may also be useful if the SDs are very different in the unpaired case. Fi-
nally, these methods are restricted to the case where comparison has to be made
between one or two groups. This is probably the most common situation in prac-
tice but it is by no means uncommon to want to explore differences through three
or more methods. This requires an alternative approach that is known as analysis
of variance (ANOVA).

• The nonparametric tests require very few or very limited assumptions to be made
about the format of the data, and can therefore be used in situations where classi-
cal methods, such as t-tests, may be inappropriate. They can be useful for dealing
with unexpected, outlying observations that might be problematic with a para-
metric approach. Moreover, these methods are intuitive and are simple to carry
out by hand, for small samples at least. Indeed, nonparametric methods are often
useful in the analysis of ordered categorical data in which assignation of scores
to individual categories may be inappropriate. In contrast, parametric methods
require scores to be assigned to each category, with the implicit assumption that
the effect of moving from one category to the next is fixed.

However, nonparametric methods may lack power as compared with more
traditional approaches. This is of particular concern if the sample size is small or
if the assumptions for the corresponding parametric method (e.g. normality of the
data) hold. Moreover, these methods are geared toward hypothesis testing rather
than estimation of effects. It is often possible to obtain nonparametric estimates
and associated confidence intervals, but this is not generally simple. In many
cases an adjustment to the statistic test may be necessary.

• The Kruskal-Wallis, Jonckheere-Terpstra, and Friedman tests can be used to test
for differences between more than two groups or treatments when the assump-
tions for analysis of variance are not held.

• The P-value is the probability that an observed effect is simply due to chance; it
therefore provides a measure of the strength of an association. Moreover, it does
not provide any measure of the size of an effect and cannot be used in isolation to
inform about the best optimization algorithm. Indeed, P-values are affected both
by the magnitude of the effect and by the size of the study from which they are
derived, and should therefore be interpreted with caution. In particular, a large P-
value does not always indicate that there is no difference and, similarly, a small
P-value does not necessarily signify a high difference. The subdivision P-values
into significant and non-significant are poor statistical practice and should be
avoided. Finally, exact P-values should always be presented, along with estimates
of effect and associated confidence intervals.

The success rate: The success rate (SR) represents the ratio between the number of
successful runs and the number of trials:



8 A. Nakib and P. Siarry

Table 1.1 MPB parameters in scenario 2.

Parameter Scenario 2
Number of peaks Np 10

Dimension d 5
Peak heights [30,70]
Peak widths [1,12]

Change cycle α 5000
Change severity s 1
Height severity 7
Width severity 1

Correlation coefficient λ 0
Number of changes Nc 100

SR =
NbSuc
NbR

, (1.4)

where NbSuc is the number of successful runs and NbR is the total number of runs.

The performance rate: The performance rate (PR) takes into account the compu-
tational effort to find the solution by considering the number of objective function
evaluations:

PR =
NbSuc

NbR×Nbfeval
, (1.5)

where Nb f eval is the total number of evaluations of the objective function.

1.3 The Moving Peaks Benchmark

The most commonly used benchmark for continuous dynamic optimization is the
Moving Peaks Benchmark (MPB) [3].

MPB is a maximization problem that consists of a number of peaks that randomly
vary their shape, position, and height upon time. At any time, one of the local optima
can become the new global optimum. MPB generates DOPs consisting of a set of
peaks that periodically move in a random direction, by a fixed amount s (the change
severity). The movements are autocorrelated by a coefficient λ , 0≤ λ ≤ 1, where 0
means uncorrelated and 1 means highly autocorrelated. The peaks change position
every α evaluations, and α is called time span. The fitness function used for the
landscape of MPB is formulated in Equation 1.6:

f (x, t) = maxi=1,...,Np

(
Hi(t)−Wi(t)

√
∑d

j=1 (x j−Xi j(t))
2
)
, (1.6)

where Np is the number of peaks, d is the number of dimensions, and Hi(t), Wi(t)
and Xi(t) are the height, the width, and the position of the ith peak at the time t,
respectively.

In order to evaluate the performance, the offline error is used. The offline error
(oe) is defined in Equation 1.7:



1 Performance Analysis of Dynamic Optimization Algorithms 9

oe =
1

Nc

Nc

∑
j=1

(
1

Ne( j)

Ne( j)

∑
i=1

(
f ∗j − f ∗ji

))
(1.7)

where Nc is the total number of fitness landscape changes within a single experi-
ment, Ne( j) is the number of evaluations performed for the jth state of the land-
scape, f ∗j is the value of the optimal solution for the jth landscape, and f ∗ji is the

current best fitness value found for the jth landscape. We can see that this measure
has some weaknesses: it is sensitive to the overall height of the landscape, and to
the number of peaks. It is important for an algorithm to find the global optimum
quickly, thus minimizing the offline error. Hence, the most successful strategy is a
multi-solution approach that keeps track of every local peak [19]. In [3], three sets
of parameters, called scenarios, were proposed. It appears that the most commonly
used set of parameters for MPB is scenario 2 (see Table 10.3).

Figure 10.1 illustrates an MPB landscape before and after a change (after one
time span). More details about this benchmark will be given in the dedicated chapter.

Table 1.2 Comparison with competing algorithms on MPB using s = 1,2, ...,6.

Algorithm Offline error
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

Moser and Chiong, 2010 [18] 0.25±0.08 0.47±0.12 0.49±0.12 0.53±0.13 0.65±0.19 0.77±0.24
Lepagnot et al. [9] 0.35±0.06 0.60±0.08 0.91±0.10 1.23±0.10 1.62±0.13 2.00±0.20
Lepagnot et al., 2009 [7, 8] 0.59±0.10 0.87±0.12 1.18±0.13 1.49±0.13 1.86±0.17 2.32±0.18
Moser and Hendtlass, 2007 [18, 19] 0.66±0.20 0.86±0.21 0.94±0.22 0.97±0.21 1.05±0.21 1.09±0.22
Yang and Li, 2010 [23] 1.06±0.24 1.17±0.22 1.36±0.28 1.38±0.29 1.58±0.32 1.53±0.29
Liu et al., 2010 [14] 1.31±0.06 1.98±0.06 2.21±0.06 2.61±0.11 3.20±0.13 3.93±0.14
Lung and Dumitrescu, 2007 [15] 1.38±0.02 1.78±0.02 2.03±0.03 2.23±0.05 2.52±0.06 2.74±0.10
Bird and Li, 2007 [1] 1.50±0.08 1.87±0.05 2.40±0.08 2.90±0.08 3.25±0.09 3.86±0.11
Lung and Dumitrescu, 2008 [16] 1.53±0.01 1.57±0.01 1.67±0.01 1.72±0.03 1.78±0.06 1.79±0.03
Blackwell and Branke, 2006 [2] 1.75±0.06 2.40±0.06 3.00±0.06 3.59±0.10 4.24±0.10 4.79±0.10
Li et al., 2006 [13] 1.93±0.08 2.25±0.09 2.74±0.09 3.05±0.10 3.24±0.11 4.95±0.13
Parrott and Li, 2006 [20] 2.51±0.09 3.78±0.09 4.96±0.12 5.56±0.13 6.76±0.15 7.68±0.16

Fig. 1.1 An MPB landscape before and after a change.



10 A. Nakib and P. Siarry

Table 1.3 Static functions used to generate the GDBG problems.

Name Function Range
Sphere f (x) = ∑d

i=1 x2
i [−100,100]d

Rastrigin f (x) = ∑d
i=1 (x

2
i −10cos(2πxi)+10) [−5,5]d

Weierstrass f (x) =
d
∑

i=1
(

kmax
∑

k=0
[ak cos(2πbk(xi +0.5))])−d

kmax
∑

k=0
[ak cos(πbk)] [−0.5,0.5]d

a = 0.5,b = 3,kmax = 20

Griewank f (x) = 1
4000 ∑d

i=1(xi)
2−∏d

i=1cos( xi√
i
)+1 [−100,100]d

Ackley f (x) =−20exp(−0.2

√
1
d

d
∑

i=1
x2

i )− exp( 1
d

d
∑

i=1
cos(2πxi))+20+ exp(1) [−32,32]d

Table 1.2 summarizes the last published scores of the dynamic optimization al-
gorithms tested on MPB benchmark. Here, we will not comment on these results
because it is out of the scope of this chapter.

1.4 The Generalized Dynamic Benchmark Generator

The Generalized Dynamic Benchmark Generator (GDBG) is the second bench-
mark described in this chapter, it was introduced in [11, 12]. It was provided for
the CEC’2009 Special Session on Evolutionary Computation in Dynamic and Un-
certain Environments. The functions used to create this benchmark are depicted
in Table 10.2. These functions were rotated, composed, and combined to form six
problems with different degrees of difficulty:

F1: rotation peak function (with 10 and 50 peaks)
F2: composition of Sphere’s function
F3: composition of Rastrigin’s function
F4: composition of Griewank’s function
F5: composition of Ackley’s function
F6: hybrid composition function

A total of seven dynamic scenarios with different degrees of difficulty was proposed:

T1: small step change (a small displacement)
T2: large step change (a large displacement)
T3: random change (Gaussian displacement)
T4: chaotic change (logistic function)
T5: recurrent change (a periodic displacement)
T6: recurrent with noise (the same as above, but the optimum never returns
exactly to the same point)
T7: changing the dimension of the problem



1 Performance Analysis of Dynamic Optimization Algorithms 11

Table 1.4 GDBG parameters used during the CEC’2009 competition.

Parameter Value
Dimension d (fixed) 10

Dimension d (changed) [5,15]
Change cycle α 10000×d

Number of changes Nc 60

The basic parameters of the benchmark are given in Table 1.4.
There are 49 test cases that correspond to the combinations of the six problems

with the seven change scenarios (indeed, function F1 is used twice, with 10 and
50 peaks, respectively). For each of them, the average best (Equation 1.8), aver-
age mean (Equation 1.9), average worst (Equation 1.10) values, and the standard
deviation (Equation 1.11) of the absolute error are recorded:

Avgbest =
runs

∑
i=1

minNc
j=1

Ei j

runs
(1.8)

Avgmean =
runs

∑
i=1

Nc

∑
j=1

Ei j

runs×Nc
(1.9)

Avgworst =
runs

∑
i=1

maxNc
j=1

Ei j

runs
(1.10)

STD =

√
∑runs

i=1 ∑Nc
j=1 (Ei j−Avgmean)

2

runs×Nc
, (1.11)

where Ei j =
∣∣∣ f ∗j − f̃ ∗ji

∣∣∣, f ∗j is the value of the global optimum for the jth landscape,

f̃ ∗ji is the value of the best solution found during the ith run of the tested algorithm,

for the jth landscape, and runs is the number of runs of the tested algorithm on the
benchmark, equal to 20 in our experiments.

The convergence graphs, showing the relative error ri(t) of the run with median
performance for each problem, are also computed. For the maximization problem
F1, the formula used for ri(t) is defined in Equation 1.12, and for the minimization
problems F2 to F6, it is defined in Equation 1.13:

ri(t) =
fi(t)
f ∗i (t)

(1.12)

ri(t) =
f ∗i (t)
fi(t)

, (1.13)

where fi(t) is the value of the best found solution at time t since the last occurrence
of a change, during the ith run of the tested algorithm, and f ∗i (t) is the value of the
global optimum at time t.



12 A. Nakib and P. Siarry

A mark is calculated for each test case using the formula given in Equation 1.14:

markpct = markmax×
runs

∑
i=1

Nc

∑
j=1

ri j

runs×Nc
, (1.14)

The sum of all marks markpct gives a score, denoted by op, that corresponds to the
overall performance of the tested algorithm. The maximum value of this score is
100. In Equation 1.14, ri j is calculated using the formula defined in Equation 1.15,
and markmax is a coefficient that defines the percentage of the mark of each test case
in the final score. It is also the maximal mark that can be obtained by the tested
algorithm on each test case.

ri j =
ri(t j +α)

1+∑
α
s f
s=1

1−ri(t j+s f×s)
α
s f

, (1.15)

where t j is the time at which the jth change occurred, s f is the sampling frequency,
here equal to 100, and α is the change cycle (as for MPB, it corresponds to the
number of evaluations that makes a time span).

1.4.1 Illustration of Some Test Functions in GDBG

F3: Composition of Rastrigin’s function

Basic functions: f1− f10 =Rastrigin’s function

Fig. 1.2 3-D map for 2-D function of F3.

Properties

Multi-modal
Scalable



1 Performance Analysis of Dynamic Optimization Algorithms 13

Rotated
A huge number of local optima
x ∈ [−5,5]n, Global optimum x∗(t) = Oi,F(x∗(t)) = Hi(t),Hi(t) = minm

j Hj

F5:Composition of Ackley’s function

Basic functions: f1− f10 =Ackley’s function

Fig. 1.3 3-D map for 2-D function of F5.

Properties

Multi-modal
Scalable
Rotated
A huge number of local optima
x ∈ [−5,5]n, Global optimum x∗(t) = Oi,F(x∗(t)) = Hi(t),Hi(t) = minm

j Hj

Figure 1.4 presents the scores of recent dynamic optimization algorithm on GDBG
benchmark.

1.5 Dynamic Multiobjective Optimization Benchmark

In this section, the dynamic multiobjective optimization benchmark (DMOB) pro-
posed by Farina et al. [5] is presented. Indeed, unlike in the single-objective dynamic
optimization problems, where the ordering criterion in decision space is trivial, here,
we are dealing with two distinct yet related spaces where an ordering criterion has to
be considered: decision variable space and objective space. Such an increased com-
plexity holds true for static problems and even more for dynamic problems, where
there are four possible ways a problem can demonstrate a time-varying change:



14 A. Nakib and P. Siarry

Fig. 1.4 Comparison with competing algorithms on GDBG.

1. The POS (optimal decision variables) changes, whereas the POF (optimal ob-
jective values) does not change.

2. Both POS and POF change.
3. POS does not change but POF varies.
4. The problem changes but POF and POS do not vary.

In this bechmark five different scenarios were proposed and a test suite for contin-
uous problems was also proposed (FDA1 to FDA5). Based on the proposed scenar-
ios, the five test problems involve ZDT and DTLZ test problems. However, these
test problems can be used as a representative set of test problems in a study. The au-
thors do not provide more functions but provide the procedure to build other more
interesting problems.

1.6 Conclusions

In this chapter a suggested tool has been studied to analyse the performance of
stochastic-based optimization algorithms. Moreover, a description of two continu-
ous dynamic optimization benchmarks was presented. We also reported a review
of scores of different algorithms on these benchmarks. We ended this chapter by a
benchmark for dynamic multiobjective algorithms. We hope this chapter will help
the researchers to speed up their development of new algorithms.

References

[1] Bird, S., Li, X.: Using regression to improve local convergence. In: Proc. Congr. Evol.
Comput., Singapore, pp. 592–599. IEEE (2007)

[2] Blackwell, T., Branke, J.: Multi-swarms, exclusion and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)

[3] Branke, J.: The Moving Peaks Benchmark website (1999),
http://www.aifb.unikarlsruhe.de/˜jbr/MovPeaks

http://www.aifb.unikarlsruhe.de/~jbr/MovPeaks


1 Performance Analysis of Dynamic Optimization Algorithms 15

[4] Eberhart, R.C., Shi, Y.: Computational intelligence: concepts to implementation.
Elsevier (2007)

[5] Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test
cases, approximations, and applications. IEEE Transactions on Evolutionary Computa-
tion 8(5), 425–442 (2004)

[6] Jin, Y., Sendhoff, B.: Constructing Dynamic Optimization Test Problems Using the
Multi-objective Optimization Concept. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne,
D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F.,
Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536.
Springer, Heidelberg (2004)

[7] Lepagnot, J., et al.: Performance analysis of MADO dynamic optimization algorithm.
In: Proc. IEEE Adaptive Computing in Design and Manufacturing. Int. Conf. on Intel-
ligent Systems Design and Applications, Pisa, pp. 37–42. IEEE (2009)

[8] Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A new multiagent algorithm for dy-
namic continuous optimization. International Journal of Applied Metaheuristic Com-
puting 1(1), 16–38 (2010)

[9] Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: Brain cine-MRI registration using
MLSDO dynamic optimization algorithm. In: IXth Metaheuristics International Con-
ference, pp. S1–25–1–S1–25–9 (2011)

[10] Li, C., Yang, M., Kang, L.: A New Approach to Solving Dynamic Traveling Salesman
Problems. In: Wang, T.-D., et al. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236–243.
Springer, Heidelberg (2006)

[11] Li, C., Yang, S.: A Generalized Approach to Construct Benchmark Problems for Dy-
namic Optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Ab-
bass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.)
SEAL 2008. LNCS, vol. 5361, pp. 391–400. Springer, Heidelberg (2008)

[12] Li, C., Yang, S., Nguyen, T.T., Yu, E.L., Yao, X., Jin, Y., Beyer, H.-G., Suganthan, P.N.:
Benchmark generator for CEC 2009 competition on dynamic optimization. Technical
report, University of Leicester, University of Birmingham, Nanyang Technological Uni-
versity (2008)

[13] Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a dy-
namic environment. In: Proc. Genetic Evol. Comput. Conf., Seattle, Washington, USA,
pp. 51–58. ACM (2006)

[14] Liu, L., Yang, S., Wang, D.: Particle swarm optimization with composite particles in dy-
namic environments. IEEE Trans. Syst. Man. Cybern. Part B 40(10), 1634–1648 (2010)

[15] Lung, R.I., Dumitrescu, D.: Collaborative evolutionary swarm optimization with a
Gauss chaotic sequence generator. Innovations in Hybrid Intelligent Systems 44, 207–
214 (2007)

[16] Lung, R.I., Dumitrescu, D.: ESCA: A new evolutionary-swarm cooperative algorithm.
SCI, vol. 129, pp. 105–114 (2008)

[17] Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environ-
ments. In: Proc. Congr. Evol. Comput., pp. 2047–2053 (1999)

[18] Moser, I., Chiong, R.: Dynamic function optimisation with hybridised extremal dynam-
ics. Memetic Computing 2(2), 137–148 (2010)

[19] Moser, I., Hendtlass, T.: A simple and efficient multi-component algorithm for solving
dynamic function optimisation problems. In: Proc. Congr. Evol. Comput., pp. 252–259.
IEEE, Singapore (2007)



16 A. Nakib and P. Siarry

[20] Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Transactions on Evolutionary Computation 10(4), 440–
458 (2006)

[21] Talbi, E.-G.: Metaheuristics: from design to implementation. John Wiley and Sons Inc.
(2009)

[22] Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm.
In: Proc. Congr. Evol. Comput., pp. 2246–2253. IEEE, Canberra (2003)

[23] Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multi-
ple optima in dynamic environments. IEEE Transactions on Evolutionary Computation
(2010)

[24] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Computing – A Fusion of Foundations,
Methodologies and Applications 9(11), 815–834 (2005)

[25] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Transactions on Evolutionary Computation 12(5), 542–
562 (2008)


	Performance Analysis of Dynamic Optimization Algorithms
	Introduction
	Performance Analysis Tools of Optimization Algorithms
	Fitness Value
	Computational Analysis
	Classical Metrics
	Sensitivity Analysis
	Statistical Analysis

	The Moving Peaks Benchmark
	The Generalized Dynamic Benchmark Generator
	Illustration of Some Test Functions in GDBG

	Dynamic Multiobjective Optimization Benchmark
	Conclusions
	References




