

Studies in Computational Intelligence 433

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/7092

Enrique Alba, Amir Nakib, and Patrick Siarry (Eds.)

Metaheuristics for
Dynamic Optimization

ABC

Editors
Enrique Alba
E.T.S.I. Informática
University of Málaga
Málaga
Spain

Amir Nakib
Laboratoire Images, Signaux et Systèmes

Intelligents (LISSI)
Université Paris-Est Créteil
Créteil
France

Patrick Siarry
Laboratoire Images, Signaux et Systèmes

Intelligents (LISSI)
Université Paris-Est Créteil
Créteil
France

ISSN 1860-949X e-ISSN 1860-9503
ISBN 978-3-642-30664-8 e-ISBN 978-3-642-30665-5
DOI 10.1007/978-3-642-30665-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012939884

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my mother (E. Alba)
To my family (A. Nakib)
To my family (P. Siarry)

This work has been partially funded by the Spanish Ministry of
Science and Innovation and FEDER under contracts

TIN2008-06491-C04-01 (the MSTAR project) and TIN2011-28194
(the roadME project), and by the Andalusian Government under

contract P07-TIC-03044 (the DIRICOM project).

Preface

This book is an updated effort in summarizing the trending topics and new hot
research lines in solving dynamic problems using metaheuristics. An analysis of the
present state in solving complex problems quickly draws a clear picture: problems
that change in time, having noise and uncertainties in their definition are becoming
very important. The tools to face these problems are still to be built, since exist-
ing techniques are either slow or inefficient in tracking the many global optima that
those problems are presenting to the solver technique.

Thus, this book is devoted to include several of the most important advances in
solving dynamic problems. Metaheuristics are the most popular tools to this end, and
then we can find in the book how to best use genetic algorithms, particle swarms,
ant colonies, immune systems, variable neighborhood search, and many other bio-
inspired techniques. Also, neural network solutions are considered in this book.
Both, theory and practice have been addressed in the chapters of the book. Mathe-
matical background and methodological tools in solving this new class of problems
and applications are included. From the applications point of view, not just academic
benchmarks are dealt with, but also real world applications in logistics and bioin-
formatics are discussed here. The book then covers theory and practice, as well as
discrete versus continuous dynamic optimization, in the aim of creating a fresh and
comprehensive volume. This book is targeted to either beginners and experienced
practitioners in dynamic optimization, since we took care of devising the chapters
in a way that a wide audience could profit from its contents. We hope to offer a
single source for up-to-date information in dynamic optimization, an inspiring and
attractive new research domain that appeared in these last years and is here to stay.

The resulting work is in front of you, a book with 16 chapters covering the topic
on various metaheuristics for dynamic optimization.

In the first chapter, Amir Nakib and Patrick Siarry present the different tools
and benchmarks developed to evaluate the performances of competing algorithms
aimed at solving Dynamic Optimization Problems (DOPs). They first cite various
test problems currently exploited in the continuous case, and then focus on the two
most used: the moving peaks benchmark, and the generalized approach to construct
benchmark problems for dynamic optimization (also called GDBG).

VIII Preface

Chapter 2, by Briseida Sarasola and Enrique Alba, is devoted to quantitative per-
formance measures for DOPs. The chapter introduces two new performance tools to
overcome difficulties that may appear while reporting results on DOPs. The first one
is a measure based on linear regression to evaluate fitness degradation. The second
measure is based on the area below the curve defined by some population attribute
at each generation (e.g., the best-of-generation fitness)

In Chapter 3, Irene Moser and Raymond Chiong present the Moving Peaks
Benchmark (MPB) that was devised to facilitate the comparison between compet-
ing approaches for solving DOPs. The chapter reviews all known optimization algo-
rithms that have been tested on the dynamic MPB. The majority of these approaches
are nature-inspired. The results of the best-performing solutions based on the MPB
are directly compared and discussed.

Chapter 4, by Ignacio G. del Amo and David A. Pelta, is interested in a new tech-
nique for comparing multiple algorithms under several factors in DOPs. It allows
to compact the results in a visual way, providing an easy way to detect algorithms’
behavioral patterns. However, as every form of compression, it implies the loss of
part of the information. The pros and cons of this technique are explained, with a
special emphasis on some statistical issues that commonly arise when dealing with
random-nature algorithms.

In Chapter 5, Philipp Rohlfshagen and Xin Yao point out that the role of rep-
resentations and variation operators in evolutionary computation is relatively well
understood for the case of static optimization problems, but not for the dynamic
case. Yet they show that the fitness landscape analysis metaphor can be fruitfully
used to review previous work on solving of evolutionary DOPs. This review high-
lights some of the properties unique to DOPs and paves the way for future research
related to these important issues.

In Chapter 6, Kalyanmoy Deb presents two approaches for single as well as
multi-objective dynamic optimization. Both methods are discussed and their work-
ing principles are illustrated by applying them to different practical optimization
problems. Off-line optimization techniques can be exploited too, which strongly de-
pend if the change in the problem is significant or not. Further applications of both
proposed approaches remain as important future work in making on-line optimiza-
tion task a reality in the coming years.

In Chapter 7, Mathys C. du Plessis and Andries P. Engelbrecht are interested in
self-adaptive Differential Evolution (DE) for dynamic environments with fluctuating
numbers of optima. Despite the fact that evolutionary algorithms often solve static
problems successfully, DOPs tend to pose a challenge to evolutionary algorithms,
and particularly to DE, due to lack of diversity. However, self-adaptive Dynamic
Population DE developed by the authors is proved very efficient in case the number
of optima fluctuates over time.

Mardé Helbig and Andries P. Engelbrecht propose in Chapter 8 a dynamic multi-
objective optimization algorithm based on Particle Swarm Optimization (PSO). The
chapter investigates the effect of various approaches to manage boundary constraint
violations on the performance of that new algorithm when solving multi-objective
DOPs. Furthermore, the performance of the authors’ algorithm is compared against

Preface IX

that of three other state-of-the-art dynamic multi-objective optimization algorithms.
Ant Colony based algorithms for DOPs are investigated by Guillermo Leguizamon
and Enrique Alba in Chapter 9. Ant algorithms use a set of agents which evolve in
an environment to construct one solution The authors present a general overview of
the most relevant works regarding the application of ant colony based algorithms for
DOPs. They also highlight the mechanisms used in different implementations found
in literature, and thus show the potential of this kind of algorithms for research in
this area.

In Chapter 10, Julien Lepagnot, Amir Nakib, Hamouche Oulhadj and Patrick
Siarry focus on elastic registration of brain cine-MRI sequences using a dynamic
optimization algorithm. Indeed this registration process consists in optimizing an
objective function that can be considered as dynamic. The obtained results are com-
pared to those of several well-known static optimization algorithms. This compar-
ison shows the relevance of using a dynamic optimization algorithm to solve this
kind of problems.

An Artificial Immune System for solving constrained DOPs is presented in Chap-
ter 11 by Victoria S. Aragon, Susana C. Esquivel, and Carlos A. Coello Coello. It
is an adaptation of an existing algorithm, which was originally designed to solve
static constrained problems. The proposed algorithm is validated with eleven dy-
namic constrained problems which involve the following scenarios: dynamic ob-
jective function with static constraints, static objective function with dynamic con-
straints and dynamic objective function with dynamic constraints.

Chapter 12, by Mostepha R. Khouadjia, Briseida Sarasola, Enrique Alba, El-
Ghazali Talbi and Laetitia Jourdan, is devoted to metaheuristics for dynamic vehicle
routing. The aim consists in designing the optimal set of routes for a fleet of vehicles
in order to serve a given set of customers; routes must be reconfigured dynamically
to take into account new customer orders arriving while the working day plan is
in progress. A survey on solving methods, such as population-based metaheuristics
and trajectory-based metaheuristics, is exposed.

Juan José Pantrigo and Abraham Duarte present in Chapter 13 a low-level hy-
bridization of Scatter Search and Particle Filter to solve the dynamic Travelling
Salesman Problem (TSP). To demonstrate the performance of that approach, they
conducted experiments using two different benchmarks. Experimental results have
shown that the new algorithm outperforms other population based metaheuristics,
such as Evolutionary Algorithms or Scatter Search, by reducing the execution time
without affecting the quality of the results.

In Chapter 14, Amir Hajjam, Jean-Charles Créput and Abderrafiaa Koukam add-
ress the standard dynamic and stochastic Vehicle Routing Problem (VRP). They
propose a solving method which manipulates the self-organizing map (SOM) neu-
ral network similarly as a local search into a population based memetic algorithm.
The goal is to simultaneously minimize the route lengths and the customer waiting
time. The experiments show that the new approach outperforms the best competing
operations research heuristics available in literature.

Chapter 15, by Pedro C. Pinto, Thomas A. Runkler and Joao M. C. Sousa, deals
with the solving of dynamic MAX-SAT problems. The authors propose an ant

X Preface

colony optimization algorithm and a wasp swarm optimization algorithm, which
are based on the real life behavior of ants and wasps, respectively. Both algorithms
are applied to several sets of static and dynamic MAX-SAT instances and are shown
to outperform the greedy hill climbing and simulated annealing algorithms used as
benchmarks.

The last chapter of the book (Chapter 16), by Trung Thanh Nguyen and Xin
Yao, is devoted to Dynamic Time-linkage optimization Problems (DTPs), which are
special DOPs where the current solutions chosen by the solver can influence how
the problems might change in the future. Although DTPs are very common in real-
world applications, they have received very little attention from the evolutionary
optimization community. This chapter attempts to fill this gap by addressing some
characteristics that are not fully known about DTPs.

We do hope you will find the volume interesting and thought provoking. Enjoy!

April 2012

Málaga, Spain Enrique Alba
Paris, France Amir Nakib
Paris, France Patrick Siarry

Contents

1 Performance Analysis of Dynamic Optimization Algorithms 1
Amir Nakib and Patrick Siarry
1.1 Introduction . 1
1.2 Performance Analysis Tools of Optimization Algorithms 3
1.3 The Moving Peaks Benchmark . 8
1.4 The Generalized Dynamic Benchmark Generator 10
1.5 Dynamic Multiobjective Optimization Benchmark 13
1.6 Conclusions . 14
References . 14

2 Quantitative Performance Measures for Dynamic
Optimization Problems . 17
Briseida Sarasola and Enrique Alba
2.1 Introduction . 17
2.2 Background and Motivation . 18
2.3 A Measure for Degradation: βdegradation . 21
2.4 The Moving Peaks Problem . 22
2.5 Experimental Setting . 22
2.6 A General Performance Measure for DOPs: abc 27
2.7 Conclusions . 32
References . 32

3 Dynamic Function Optimization:
The Moving Peaks Benchmark . 35
Irene Moser and Raymond Chiong
3.1 Introduction . 35
3.2 Background . 36
3.3 Existing Approaches . 38
3.4 Comparison and Discussion . 52
3.5 Conclusions . 55
References . 55

XII Contents

4 SRCS: A Technique for Comparing Multiple Algorithms under
Several Factors in Dynamic Optimization Problems 61
Ignacio G. del Amo and David A. Pelta
4.1 Introduction . 61
4.2 Typical Research Case: Comparing Multiple Algorithms over

Several Configurations of a Problem . 63
4.3 SRCS: Statistical Ranking Color Scheme . 70
4.4 Some Considerations on Statistical Tests . 73
4.5 Conclusions . 74
References . 76

5 Dynamic Combinatorial Optimization Problems: A Fitness
Landscape Analysis . 79
Philipp Rohlfshagen and Xin Yao
5.1 Introduction . 79
5.2 Evolutionary Dynamic Optimization . 80
5.3 Dynamic Fitness Landscapes . 82
5.4 Dynamic Fitness Landscapes in Practice . 86
5.5 Understanding Combinatorial Problem Dynamics 90
5.6 Conclusions . 95
References . 96

6 Two Approaches for Single and Multi-Objective Dynamic
Optimization . 99
Kalyanmoy Deb
6.1 Introduction . 100
6.2 Solving Dynamic Optimization Problems . 101
6.3 Approach 1: Off-Line Development of an Optimal Rule Base . . . 102
6.4 Approach 2: On-Line Optimization with a Minimal Time

Window . 109
6.5 Conclusions . 114
References . 115

7 Self-Adaptive Differential Evolution for Dynamic Environments
with Fluctuating Numbers of Optima . 117
Mathys C. du Plessis and Andries P. Engelbrecht
7.1 Introduction . 117
7.2 Dynamic Environments . 118
7.3 Related Work . 120
7.4 Differential Evolution . 122
7.5 Dynamic Population Differential Evolution 126
7.6 Self-Adaptive DynPopDE . 137
7.7 Conclusions . 143
References . 143

Contents XIII

8 Dynamic Multi-Objective Optimization Using PSO 147
Mardé Helbig and Andries P. Engelbrecht
8.1 Introduction . 147
8.2 Background . 148
8.3 Dynamic Vector Evaluated Particle Swarm Optimisation

Approach . 152
8.4 Experiments . 156
8.5 Results . 163
8.6 Conclusions . 178
References . 187

9 Ant Colony Based Algorithms for Dynamic Optimization
Problems . 189
Guillermo Leguizamón and Enrique Alba
9.1 Introduction . 189
9.2 Ant Colony Optimization . 191
9.3 Dynamic Optimization Problems (DOPs) . 195
9.4 Solving DOPs with ACB algorithms . 197
9.5 Conclusions . 207
References . 207

10 Elastic Registration of Brain Cine-MRI Sequences Using
MLSDO Dynamic Optimization Algorithm . 211
Julien Lepagnot, Amir Nakib, Hamouche Oulhadj, and Patrick Siarry
10.1 Introduction . 211
10.2 Registration Process . 214
10.3 The MLSDO Algorithm . 217
10.4 Experimental Results and Discussion . 219
10.5 Conclusions . 224
References . 224

11 Artificial Immune System for Solving Dynamic Constrained
Optimization Problems . 225
Victoria S. Aragón, Susana C. Esquivel, and Carlos A. Coello
11.1 Introduction . 226
11.2 Problem Statement . 227
11.3 Previous Related Work . 227
11.4 Our Proposed Approach . 231
11.5 Experiments . 238
11.6 Discussion of Results . 243
11.7 Conclusions . 258
References . 261

XIV Contents

12 Metaheuristics for Dynamic Vehicle Routing . 265
Mostepha R. Khouadjia, Briseida Sarasola, Enrique Alba,
El-Ghazali Talbi, and Laetitia Jourdan
12.1 Introduction . 266
12.2 Dynamic Vehicle Routing Problem . 266
12.3 Solving Methods . 273
12.4 Dynamic Performance Measures . 280
12.5 Performance Assessment . 282
12.6 Conclusions and Future Work . 284
References . 285

13 Low-Level Hybridization of Scatter Search and Particle Filter for
Dynamic TSP Solving . 291
Juan José Pantrigo and Abraham Duarte
13.1 Introduction . 291
13.2 Dynamic Travelling Salesman Problem . 293
13.3 Sequential Estimation Algorithm: Particle Filter 294
13.4 Population Based Metaheuristic: Scatter Search 295
13.5 Scatter Search Particle Filter . 296
13.6 Applying SSPF to Solve the DTSP . 300
13.7 Experimental Results . 301
13.8 Conclusions . 307
References . 307

14 From the TSP to the Dynamic VRP: An Application of Neural
Networks in Population Based Metaheuristic 309
Amir Hajjam, Jean-Charles Créput, and Abderrafiãa Koukam
14.1 Introduction . 309
14.2 Dynamic Euclidean Vehicle Routing Problem 312
14.3 Method Principle . 315
14.4 The Metaheuristic Embedding Framework 318
14.5 The Evolutionary Algorithm Embedding

Self-Organizing Maps . 319
14.6 Real-Time Simulation and Optimizer . 324
14.7 Experimental Results . 328
14.8 Conclusions . 336
References . 337

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 341
Pedro C. Pinto, Thomas A. Runkler, and João M.C. Sousa
15.1 Introduction . 342
15.2 MAX-SAT Optimization Problem . 343
15.3 The Dynamic MAX-SAT Optimization Problem 345
15.4 ACO Applied to MAX-SAT . 348
15.5 WSO Applied to MAX-SAT . 351
15.6 SA and GHC Applied to MAX-SAT . 353

Contents XV

15.7 Experiments . 355
15.8 Analysis and Results . 357
15.9 Conclusions . 367
References . 367

16 Dynamic Time-Linkage Evolutionary Optimization: Definitions
and Potential Solutions . 371
Trung Thanh Nguyen and Xin Yao
16.1 Dynamic Time-Linkage Problems - From Academic Research

to Real-World Applications . 372
16.2 A Framework for Defining DOPs and DTPs 373
16.3 The Prediction-Deceptive Problem in DTPs 380
16.4 Conclusions . 393
References . 393

Index . 397

List of Contributors

Enrique Alba
E.T.S.I. Informática, Campus de Teatinos,
University of Málaga 29071 Málaga, Spain
e-mail: eat@lcc.uma.es

Ignacio G. del Amo
Models of Decision and Optimization Research Group (MODO),
Dept. of Computer Sciences and Artificial Intelligence, University of Granada.
I.C.T. Research Centre (CITIC-UGR), C/ Periodista Rafael Gómez, 2, E-18071,
Granada, Spain
e-mail: ngdelamo@ugr.es,dpelta@decsai.ugr.es

Victoria S. Aragón
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC),
Universidad Nacional de San Luis - Ejército de los Andes 950 (5700)
San Luis, Argentina
e-mail: vsaragon@unsl.edu.ar

Raymond Chiong
Faculty of Higher Education, Swinburne University of Technology,
50 Melba Avenue, Lilydale, Victoria 3140, Australia
e-mail: rchiong@swin.edu.au

Carlos A. Coello Coello
CINVESTAV-IPN (Evolutionary Computation Group) - Computer Science
Department, Av. IPN No. 2508, Col. San Pedro Zacatenco,
México D.F. 07300, México
e-mail: ccoello@cs.cinvestav.mx

Jean-Charles Créput
Laboratoire Systèmes et Transports, U.T.B.M., 90010 Belfort, France
e-mail: jean-charles.creput@utbm.fr

eat@lcc.uma.es
ngdelamo@ugr.es, dpelta@decsai.ugr.es
vsaragon@unsl.edu.ar
rchiong@swin.edu.au
ccoello@cs.cinvestav.mx
jean-charles.creput@utbm.fr

XVIII List of Contributors

Kalyanmoy Deb
Kanpur Genetic Algorithms Laboratory (KanGAL),
Department of Mechanical Engineering,
Indian Institute of Technology Kanpur, PIN 208016, India
e-mail: deb@iitk.ac.in

Abraham Duarte
Universidad Rey Juan Carlos, c/ Tulipán s/n Móstoles Madrid, Spain
e-mail: abraham.duarte@urjc.es

Andries P. Engelbrecht
Department of Computer Science, School of Information Technology,
University of Pretoria, Pretoria, 0002, South Africa
e-mail: engel@cs.up.ac.za

Susana C. Esquivel
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC),
Universidad Nacional de San Luis - Ejército de los Andes 950 (5700)
San Luis, Argentina
e-mail: vsaragon@unsl.edu.ar

Amir Hajjam
Laboratoire Systèmes et Transports, U.T.B.M., 90010 Belfort, France
e-mail: amir.hajjam@utbm.fr

Mardé Helbig
CSIR Meraka Institute, Scientia, Meiring Naude Road, 0184,
Brummeria, South Africa; and Department of Computer Science,
University of Pretoria, 0002, Pretoria, South Africa
e-mail: mhelbig@csir.co.za

Laetitia Jourdan
INRIA Lille Nord-Europe, Parc scientifique de la Haute-Borne, Bâtiment A,
40 Avenue Halley, Park Plaza, 59650 Villeneuve d’Ascq, France
e-mail: laetitia.jourdan@inria.fr

Mostepha R. Khouadjia
INRIA Lille Nord-Europe, Parc scientifique de la Haute-Borne, Bâtiment A,
40 Avenue Halley, Park Plaza, 59650 Villeneuve d’Ascq, France
e-mail: mostepha-redouane.khouadjia@inria.fr

Abderrafiãa Koukam
Laboratoire Systèmes et Transports, U.T.B.M., 90010 Belfort, France
e-mail: abder.koukam@utbm.fr

Guillermo Leguizamón
Universidad Nacional de San Luis, Av. Ejército de Los Andes 950 (5700),
San Luis, Argentina
e-mail: legui@unsl.edu.ar

deb@iitk.ac.in
abraham.duarte@urjc.es
engel@cs.up.ac.za
vsaragon@unsl.edu.ar
amir.hajjam@utbm.fr
mhelbig@csir.co.za
laetitia.jourdan@inria.fr
mostepha-redouane.khouadjia@inria.fr
abder.koukam@utbm.fr
legui@unsl.edu.ar

List of Contributors XIX

Julien Lepagnot
Université Paris-Est Créteil, Laboratoire Images,
Signaux et Systèmes Intelligents (LISSI, EA 3956)
61, avenue du Général de Gaulle 94010 Créteil (France)
e-mail: julien.lepagnot@u-pec.fr

Irene Moser
Faculty of Information & Communication Technologies,
Swinburne University of Technology, Victoria 3122, Australia
e-mail: imoser@swin.edu.au

Amir Nakib
Université Paris-Est Créteil, Laboratoire Images,
Signaux et Systèmes Intelligents (LISSI, EA 3956)
61, avenue du Général de Gaulle 94010 Créteil, France
e-mail: nakib@u-pec.fr

Trung Thanh Nguyen
School of Engineering, Technology and Maritime Operations,
Liverpool John Moores University, United Kingdom
e-mail: T.T.Nguyen@ljmu.ac.uk

Hamouche Oulhadj
Université Paris-Est Créteil, Laboratoire Images,
Signaux et Systèmes Intelligents (LISSI, EA 3956)
61, avenue du Général de Gaulle 94010 Créteil, France
e-mail: oulhadj@u-pec.fr

Juan José Pantrigo
Universidad Rey Juan Carlos, c/ Tulipán s/n Móstoles Madrid, Spain
e-mail: juanjose.pantrigo@urjc.es

David A. Pelta
Models of Decision and Optimization Research Group (MODO),
Dept. of Computer Sciences and Artificial Intelligence, University of Granada.
I.C.T. Research Centre (CITIC-UGR), C/ Periodista Rafael Gómez, 2, E-18071,
Granada, Spain
e-mail: ngdelamo@ugr.es,dpelta@decsai.ugr.es

Pedro C. Pinto
Bayern Chemie GmbH, MBDA Deutschland, Department T3R,
Liebigstr. 15-17 D-84544 Aschau am Inn - Germany
e-mail: pedro.caldas-pinto@mbda-systems.de

Mathys C. du Plessis
Department of Computing, Sciences, PO Box 77000,
Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa
e-mail: mc.duplessis@nmmu.ac.za

julien.lepagnot@u-pec.fr
imoser@swin.edu.au
nakib@u-pec.fr
T.T.Nguyen@ljmu.ac.uk
oulhadj@u-pec.fr
juanjose.pantrigo@urjc.es
ngdelamo@ugr.es, dpelta@decsai.ugr.es
pedro.caldas-pinto@mbda-systems.de
mc.duplessis@nmmu.ac.za

XX List of Contributors

Philipp Rohlfshagen
School of Computer Science and Electrical Engineering, University of Essex,
Colchester CO4 3SQ, United Kingdom
e-mail: prohlf@essex.ac.uk

Thomas A. Runkler
Siemens AG, Corporate Technology, Intelligent Systems and Control,
CT T IAT ISC, Otto-Hahn-Ring 6, 81730 Munich, Germany
e-mail: thomas.runkler@siemens.com

Briseida Sarasola
E.T.S.I. Informática, Campus de Teatinos,
University of Málaga 29071 Málaga, Spain
e-mail: briseida@lcc.uma.es

Patrick Siarry
Université Paris-Est Créteil, Laboratoire Images,
Signaux et Systèmes Intelligents (LISSI, EA 3956)
61, avenue du Général de Gaulle 94010 Créteil, France
e-mail: siarry@u-pec.fr

João M. C. Sousa
Technical University of Lisbon,Instituto Superior Técnico, Dep. of Mechanical
Engineering, IDMEC-LAETA, Avenida Rovisco Pais, 1049-001, Lisbon, Portugal
e-mail: jmsousa@ist.utl.pt

El-Ghazali Talbi
INRIA Lille Nord-Europe, Parc scientifique de la Haute-Borne, Bâtiment A,
40 Avenue Halley, Park Plaza, 59650 Villeneuve d’Ascq, France
e-mail: talbi@inria.fr

Xin Yao
School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom,
e-mail: xin@cs.bham.ac.uk

prohlf@essex.ac.uk
thomas.runkler@siemens.com
briseida@lcc.uma.es
siarry@u-pec.fr
jmsousa@ist.utl.pt
talbi@inria.fr
xin@cs.bham.ac.uk

List of Tables

1.1 MPB parameters in scenario 2. 8
1.2 Comparison with competing algorithms on MPB using

s = 1,2, ...,6. 9
1.3 Static functions used to generate the GDBG problems. 10
1.4 GDBG parameters used during the CEC’2009 competition. 11
2.1 FC for each algorithm over three different max eval values. 24
2.2 Weicker’s measures results for 40k, 100k, and 400k evaluations. . . . 26
2.3 βdegradation for each algorithm and number of periods. 27
2.4 BOG obtained for each algorithm on the moving peaks instance. . . . 29
2.5 Statistical significance tests with respect to the BOG measure. 29
2.6 Normalized abcBOG obtained for each algorithm on the moving

peaks instance. 30
2.7 β -degradation obtained by the algorithms on the studied moving

peaks instance. 30
3.1 The choice of parameter value where Scenario 2 admits a range

of values – s is the severity of the change and correlation lambda
describes the degree of correlation between the direction of the
current and previous moves, where 0.0 stands for a completely
random move (no correlation) . 37

3.2 Comparison of the results based on Scenario 2; all authors used
the common choice of value listed in Table 3.1 53

3.3 Comparison of the results (offline error and standard error) for
varying numbers of peaks based on Scenario 2 54

3.4 Comparison of the results (offline error and standard error) for
varying shift severity based on Scenario 2 . 54

4.1 Standard settings for Scenario 2 of the Moving Peaks
Benchmark . 64

4.2 Performance results of several algorithms on a single problem
configuration (mean and standard deviation values of the avg.
offline accuracy) . 67

XXII List of Tables

4.3 Pairwise statistical differences among the avg. offline accuracy
distribution of the algorithms. A ’+’ sign indicates that there are
statistically significant differences between the algorithm in the
row and the algorithm in the column, and that the sign of the
comparison favors the algorithm in the row (i.e., is “better”).
A ’-’ sign indicates the opposite, that the algorithm in the row
is “worse”. Finally, the word ’no’ indicates no statistically
significant differences . 68

4.4 Performance results of several algorithms on multiple problem
configurations (mean and standard deviation values of the
avg. offline accuracy). The different configurations are based
on systematic variations of one factor, the problem’s change
frequency, expressed in the number of evaluations. Boldface
values indicate the best algorithm for the given configuration 68

6.1 All possible rules are shown. 104
6.2 Travel distance D (in meter) and time T (in sec) obtained by five

approaches for the eight-obstacle problem. 107
6.3 Optimized rule base (having nine rules only) obtained using

Technique 3 for eight-obstacle problem. 108
6.4 Optimized rule base (having five rules only) obtained using

Technique 4 for eight-obstacle problem. 108
6.5 Different emphasis between cost and emission used in the

automated decision-making process produces equivalent power
generation schedules. 114

7.1 MPB Scenario 2 settings . 119
7.2 MPB settings for fluctuating number of peaks experiments. 139
7.3 Results in 5 dimensions . 140
7.4 Results in 15 dimensions . 141
8.1 Performance Measure Values for FDA1 . 164
8.2 Performance Measure Values for FDA2 . 165
8.3 Performance Measure Values for FDA3 . 166
8.4 Performance Measure Values for dMOP1 . 167
8.5 Performance Measure Values for dMOP2 . 168
8.6 Performance Measure Values for dMOP3 . 169
8.7 Performance Measure Values for HE1 . 170
8.8 Performance Measure Values for HE2 . 171
8.9 Overall Ranking of Algorithms . 174
8.10 p-values of Kruskal-Wallis test for FDA1 . 177
8.11 p-values of Kruskal-Wallis test for FDA2 . 177
8.12 p-values of Kruskal-Wallis test for FDA3 . 177
8.13 p-values of Kruskal-Wallis test for dMOP1 . 177
8.14 p-values of Kruskal-Wallis test for dMOP2 . 177
8.15 p-values of Kruskal-Wallis test for dMOP3 . 178
8.16 p-values of Kruskal-Wallis test for HE1 . 178
8.17 p-values of Kruskal-Wallis test for HE2 . 178

List of Tables XXIII

8.18 Results of Mann-Whitney U test for VD metric for FDA1 179
8.19 Results of Mann-Whitney U test for VD metric for FDA2 180
8.20 Results of Mann-Whitney U test for VD metric for FDA3 181
8.21 Results of Mann-Whitney U test for VD metric for dMOP1 182
8.22 Results of Mann-Whitney U test for VD metric for dMOP2 183
8.23 Results of Mann-Whitney U test for VD metric for dMOP3 184
8.24 Results of Mann-Whitney U test for VD metric for HE1 185
8.25 Results of Mann-Whitney U test for VD metric for HE2 186
9.1 Summary of the reviewed literature indicating the application,

type of ACB or algorithms’ names, and some additional remarks
about the respective proposal. 206

10.1 MLSDO parameter setting for the problem at hand. 219
10.2 Transformations found for the registration of each couple of

images. The value of the objective function of the best solution
found, denoted by C∗(Φ(t)), is also given. 222

10.3 Average number of evaluations to register all couples of images,
and average sum of C∗(Φ(t)), obtained by each algorithm. 223

11.1 Main features of the test problems adopted . 239
11.2 Differences and similarities between DCTC and SMESD 241
11.3 Parameters settings for DCTC, SMESD, RIGA-elit,

and dRepairRIGA . 242
11.4 Offline errors (the standard deviation is shown in parentheses)

for problems with dynamic objective function and dynamic
constraints . 244

11.5 Offline errors (the standard deviation is shown in parentheses)
for problems with dynamic objective function and fixed
constraints . 246

11.6 Offline errors (the standard deviation is shown in parentheses)
for problems with dynamic objective function and fixed
constraints . 246

11.7 Offline errors (the standard deviation is shown in parentheses)
for problems with static objective function and dynamic
constraints . 247

11.8 Offline errors (the standard deviation is shown in parentheses)
for DCTC vs RIGA-elit and dRepairRIGA . 248

11.9 Summary of the ANOVA results. - indicates that significant
differences were detected . 256

11.10Summary of ANOVA results. - indicates that significant
differences were detected . 256

11.11Summary of ANOVA results for G24 1 vs G24 4, G24 2 vs
G24 5, G24 4 vs G24 5, G24 1 vs G24 2 and G24 6c vs
G24 6d. - indicates that significant differences were detected 259

11.12Offline errors (the standard deviation is shown in parentheses)
for dynamic constrained problems performing 50 changes 259

XXIV List of Tables

12.1 Major publications on different variants of Dynamic Vehicle
Routing problems. 274

12.2 State of the art metaheuristics for DVRP and its variants. 281
12.3 Numerical results obtained by the state-of-the-art metaheuristics

on Kilby’s instances . 283
12.4 Accuracy of different metaheuristics on the Kilby’s instances 284
13.1 Average execution time values over 10 runs for each graph

sequence . 304
13.2 Average execution time and path lengths over all instances 306
14.1 Evaluation on the 22 instances of Kilby et al (1998) with

maximum degree of dynamism. 332
14.2 Comparative evaluation on the 22 instances of Kilby et al. (1998)

with medium dynamism. 333
15.1 MAX-SAT benchmarks: . 356
15.2 Average normalized cost results . 359
15.3 Average normalized runtime results . 359
16.1 Test settings for GA, GA+Predictor and

GA+Predictor+Knowledge. 390

List of Figures

1.1 An MPB landscape before and after a change. 9
1.2 3-D map for 2-D function of F3. 12
1.3 3-D map for 2-D function of F5. 13
1.4 Comparison with competing algorithms on GDBG. 14
2.1 An example to illustrate degradation in DOPs: Running best

fitness compared to the best known fitness in each period
(left) and the best accuracy obtained in each period compared
to optimal accuracy (1.0) (right). Example taken from an
experiment on the Dynamic Vehicle Routing Problem. 20

2.2 An example showing the running BOG (top) for three algorithms.
BOG by itself is not pointing out a clear performance ranking. 21

2.3 Mean trace of four algorithms on the moving peaks problem. 23
2.4 Running FC for three stopping criteria: 40k, 100k, and 400k

evaluations. 25
2.5 Linear regression after 40 periods for genGA (top left),

genGA+hm (top right), genGA+me (bottom left), and genGA+ri
(bottom right). 28

2.6 Running representation of (a) the running fitness, (b) the running
best-of-generation, and (c) the running area below the abcBOG
curve for all five algorithms. 31

4.1 Performance measure of an algorithm using different versions of
accuracy . 66

4.2 Performance measure of an algorithm over several consecutive
changes in the environment using the offline accuracy (the best
accuracy is displayed in the background). The sudden drops of
the best accuracy values indicate a change in the environment.
The average of all offline accuracy measures is displayed in the right 66

4.3 Graphical representation of the results in Table 4.2. The
distributions are displayed using a boxplot (dark lines) in
combination with a kernel estimation of the distribution density
(light lines) . 67

XXVI List of Figures

4.4 Graphical representation of the results in Table 4.4, where
each point corresponds to the results of an algorithm on a
configuration of the problem. The results for each configuration
are shown using a boxplot of the distribution . 69

4.5 Rank explanation. The boxplot shows the distribution of the
performance measures of every algorithm, ordered by its median
value. Dotted rectangles indicate those algorithms for which no
statistical differences were found at the specified significance
level (algorithms 2-3 and 3-4). The table in the right displays, for
every algorithm, how many times it shows a significantly better
performance (“better than”), no significant differences (“equal
to”) or significantly worse performance (“worse than”) when it
is compared with respect to the other 3 algorithms, and its final
rank with the correspondent color key. 71

4.6 An example of a graphical visualization of the rank-based
color scheme for 4 hypothetical algorithms. The visualization
shows a comparison of the results of 4 algorithms for different
configurations of the factors severity and change frequency for a
problem . 72

4.7 An arrangement of the graphical color scheme of the rankings
for visualizing variations of 3 different factors: severity, change
frequency, and dimensionality. 73

5.1 Four different spaces that determine a dynamic fitness landscape,
alongside the metrics used to define distances between the
members of each space: the algorithm traverses the genotype
space, Xg, by means of crossover and mutation and the mapping
fg maps genotypes to phenotypes. The latter corresponds to
solutions to the problem of interest that may be mapped onto R

depending on the current problem instance δ (T). 85
6.1 Approach 1 is illustrated. 103
6.2 A schematic showing condition and action variables for the robot

navigation problem. 103
6.3 Author-defined membership functions. 104
6.4 Optimized paths found by all four approaches for the

eight-obstacle problem are shown. There are seven obstacles and
their movements are shown by an arrow. The location of the
critical obstacle (that is closest to the robot and is considered for
the fuzzy logic analysis at each time step) is shown by a dashed
circle. In each case, the robot is clear from the critical obstacle. 107

6.5 The optimized membership function obtained using Technique 2
for eight-obstacle problem. 108

6.6 The optimized membership function obtained using Technique 4
for eight-obstacle problem. 108

6.7 The on-line optimization procedure adopted in this study. For
simplicity, only one objective is shown. 109

List of Figures XXVII

6.8 3-hourly (M = 16) change with dynamic NSGA-II (Acceptable). . . . 112
6.9 1-hourly (M = 48) change with dynamic NSGA-II (Acceptable). . . . 112
6.10 30-min. (M = 96) change with dynamic NSGA-II (Acceptable

and minimal). 112
6.11 15-min. (M = 192) change with dynamic NSGA-II (Not

acceptable). 112
6.12 Operating solution marked with a circle for 50-50%

cost-emission case. 114
6.13 Variation of thermal power production for 50-50% cost-emission

case. 114
7.1 Diversity, Current error and Offline error of DE with

re-evaluation after changes . 125
7.2 Diversity, Current error and Offline error of DynDE on the MPB . . . 125
7.3 Error profile of three DynDE populations in a static environment . . . 131
7.4 Performance, P , of each population . 131
7.5 Error profile of three populations when using competitive

evaluation . 132
7.6 Performance, P , of each population when using competitive

evaluation . 132
7.7 Comparison of offline error for normal and competitive

evaluation . 133
7.8 Midpoint checking scenarios . 134
7.9 Difference in offline error between DynPopDE and

SADynPopDE for various settings of maximum number of peaks
and change period in 5 dimensions. 142

8.1 Results of various boundary constraint management approaches
solving FDA2, with (a) DVEPSOc, (b) DVEPSOd , (c)
DVEPSOpe, (d) DVEPSOp, (e) DVEPSOr, (f) DVEPSOre and
(g) DVEPSOu. The numbering is from top to bottom on the left,
and then from top to bottom on the right. 172

8.2 Results of various boundary constraint management approaches
solving dMOP2, with (a) DVEPSOc, (b) DVEPSOd , (c)
DVEPSOpe, (d) DVEPSOp, (e) DVEPSOr, (f) DVEPSOre, (g)
DVEPSOu. The numbering is from top to bottom on the left, and
then from top to bottom on the right. 173

8.3 Results of various algorithms solving FDA2, with (a) DVEPSO,
(b) dCOEA, (c) DNSGAII-A and (d) DNSGAII-B. 175

8.4 Results of various algorithms solving dMOP2, with (a)
DVEPSO, (b) dCOEA, (c) DNSGAII-A and (d) DNSGAII-B. 176

9.1 The most representative and widely used algorithms based on the
ACO metaheuristic. 191

XXVIII List of Figures

9.2 A general overview of the behavior of an ACO algorithm:
pheromone trail plus heuristic information are used to find the
probabilistic distribution to generate new solutions. These new
solutions are then used to update pheromone trails to bias the
search for the next iterations. 192

10.1 Two images from a brain cine-MRI sequence: (a) first image of
the sequence, (b) sixth image of the sequence. 213

10.2 A sequence of cine-MR images of the region of interest. 213
10.3 Overlapping area (Im1∩ Im′1) of the source image (Im1) and the

transformed target image (Im′1) in the registration of a couple of
successive images of a sequence. 215

10.4 Illustration of the histogram of an MR image: (a) original
histogram, (b) smoothed histogram used to accelerate the
optimization process. 216

10.5 Overall scheme of MLSDO. 218
10.6 Illustration of the registration of a couple of slightly different

images of a sequence: (a) the first image of the couple, (b) the
second image of the couple, (c) the second image after applying
the found transformation to it, (d) illustration showing the
transformation applied on the second image of the couple to
register it, (e) illustration showing the difference, in the intensity
of the pixels, between the two images of the couple: a black
pixel indicates that the intensities of the corresponding pixels in
the images are the same, and a white pixel indicates the highest
difference between the images, (f) illustration showing the
difference, in the intensity of the pixels, between the first image
and the transformed second image. 220

10.7 Illustration of the registration of another couple of slightly
different images of a sequence, in the same way as in Figure 10.6. . . 220

10.8 Illustration of the registration of a couple of significantly
different images of a sequence: (a) the first image of the couple,
(b) the second image of the couple, (c) the second image after
applying the found transformation to it, (d) illustration showing
the transformation applied on the second image of the couple to
register it, (e) illustration showing the difference, in the intensity
of the pixels, between the two images of the couple: a black
pixel indicates that the intensities of the corresponding pixels in
the images are the same, and a white pixel indicates the highest
difference between the images, (f) illustration showing the
difference, in the intensity of the pixels, between the first image
and the transformed second image. 221

10.9 Illustration of the registration of another couple of significantly
different images of a sequence, in the same way as in Figure 10.8. . . 221

10.10Convergence graph of MLSDO and CMA-ES on the problem at
hand. 223

List of Figures XXIX

11.1 RR/ARR for G24 1, G24 2 and G24 3 . 249
11.2 RR/ARR for G24 6a and G24 7 . 250
11.3 RR/ARR for G24 3b . 251
11.4 RR/ARR for G24 4 . 252
11.5 RR/ARR for G24 5 . 253
11.6 The effect of two different problem features on the performance

of DCTC. G24 1 versus G24 4 and G24 2 versus G24 5= Static
constraints versus dynamic constraints. Performance is evaluated
based on the offline error . 255

11.7 The effect of two different problem features on the performance
of DCTC. G24 1 versus G24 2 and G24 4 versus G24 5=
Optimum in the constraint boundary versus Optimum not in the
constraint boundary. Performance was evaluated based on the
offline error . 257

11.8 The effect of four different problem features on the performance
of DCTC. G24 6c versus G24 6d = Connected feasible regions
versus disconnected feasible regions and G24 3 versus G24 3b=
Moving constraints do not expose a better optimum versus
moving constraints expose a better optimum. Performance was
evaluated based on the offline error . 258

12.1 A dynamic vehicle routing case. 268
12.2 Classification of DVRPs according to deterministic and

stochastic information related to customer requests. 274
13.1 Particle Filter scheme. 295
13.2 Scatter Search scheme. 296
13.3 SSPF construction starting from SS and PF. 298
13.4 Scatter Search Particle Filter scheme. Weight computation is

required during EVALUATE and IMPROVE stages (*). 299
13.5 Voting Method. 301
13.6 Graph sequence generation process for synthetic instances. 302
13.7 Graph sequence generation process for standard-based instances.

The first frame corresponds with the original TSPLIB instance 303
13.8 Execution time per graph in (a) 25, (b) 50, (c) 75 and (d)

100-cities problem. 305
13.9 Voting Method. 306
14.1 Static vs dynamic VRP. 313
14.2 (a) VRP-Cluster, (b-c) Dynamic VRP. 318
14.3 Real-time simulator and asynchronous optimizer. 325
14.4 Asynchronous data transfers using mailboxes. 326
14.5 Data structure for transfer from the company to the optimizer. 328
14.6 Trace analysis. 331
14.7 Repartition of the CPU computation time. 331

XXX List of Figures

14.8 Evaluation of the memetic SOM against state-of-the-art
heuristics and metaheuristics. Dynamic VRP (a), static VRP with
time duration constraint (b), static VRP with capacity constraint
only (c), and static TSP (d). 334

15.1 Typical phase transition of 3SAT and MAX-3SAT [43]. 345
15.2 Learned solution cost and runtime (normalized for GHC): +:

ACO, ×: WSO, ◦: SA, •: GHC. 358
15.3 Learned solution cost and runtime (normalized for GHC): +:

ACO, ×: WSO, ◦: SA, •: GHC. 358
15.4 Cost and runtime (in seconds) for an increasing number of ants

in ACO for the UUF benchmarks. 360
15.5 Cost and runtime (in seconds) for increasingly hard RAMSEY

4K instances. +: ACO, ×: WSO, ◦: SA, •: GHC. 361
15.6 Cost and runtime (in seconds) for increasingly hard RAMSEY

5K instances. +: ACO, ×: WSO, ◦: SA, •: GHC. 361
15.7 Algorithms (•: ACOD, �: ACOR, �: ACOS) applied to a

dynamic UUF instance, all iterations, first 5 stages (initial phase)
and last 5 stages (stable phase). 363

15.8 Algorithms (•: ACOD, �: ACOR, �: ACOS) applied to a
dynamic RAMSEY instance, all iterations, first 3 stages (initial
phase) and last 3 stages (stable phase). 363

15.9 Algorithms (•: ACOD, �: ACOR, �: ACOS, +: WSO) applied
to a dynamic UUF instance. 364

15.10Algorithms (•: ACOD, �: ACOR, �: ACOS, +: WSO) applied
to a dynamic RAMSEY instance. 364

15.11Significance plots of the algorithms applied to a dynamic UUF
instance. 365

15.12Significance plots of the algorithms applied to dynamic
RAMSEY instance. 365

15.13Cost and runtime (in seconds) for varying number of iterations
per stage for a UUF250 dynamic instance, •: ACOD, �: ACOR,
◦: ACOS, +: WSO. 366

15.14Cost and runtime (in seconds) for varying number of iterations
per stage for a RAMSEY dynamic instance, •: ACOD, �:
ACOR, ◦: ACOS, +: WSO. 366

16.1 Percentage of problems with the time-linkage properties among
the 56 surveyed applications in [19] . 373

List of Figures XXXI

16.2 This figure (reproduced from [6]) illustrates the time-deceptive
property. We can see that the trajectory of f (xt) when we
optimize the present (dash line, with optimum solution x(t) = t)
is actually worse than the trajectory of f (xt) with a simple
solution x(t) = 0 (the solid line). To solve this problem to
optimality, we need to use a predictor to predict the trajectory of
function values given different outcomes of current solutions,
then choose the one that gives us the maximum profit in the
future. 381

16.3 This figure illustrates a situation where even the best predictor
+ the best algorithm (A) still perform worse than the worst
predictor + the worst algorithm (B) due to the prediction-
deceptive property of the problem in eq.16.12. Assume that we
want to predict the trajectory of F(x) from [0, tend]. In case A, the
best predictor allows us to predict F(x) ∼ f (x) = x in just only
one time step [0,1]. With that perfect prediction the algorithm
is able to find the best solution x = 1, which is valid until ts.
Now at ts although the history data tells the predictor that the
trajectory must still be F(x) ∼ f (x) = x, according to eq.16.13
the actual F(x) does switch to g(x) = x+(d− 2), which is the
worst trajectory. In other words, the best predictor chose the
worst trajectory to follow. On the contrary, in the case B the
worst predictor+worst algorithm actually get benefit from the
switch: the terrible solution (x = 0) they found during [0, ts] does
help them to switch to F(x) ∼ h(x) = d + x, whose trajectory
after ts is always better than A regardless of the value of x. 383

16.4 Plots of the mean (and standard deviation) of highest function
values over 50 runs: GA without predictor vs GA with predictor
in a time-deceptive problem (DTP1). (a) Fitness values, (b)
Variable values. 391

16.5 Plots of the mean (and standard deviation) of highest function
values over 50 runs: GA without predictor vs GA with predictor
in the prediction-deceptive problem (DTP2). The switching time
is at the 8th changing stage. (a) Fitness values, (b) Variable
values. 391

16.6 Plots of the mean (and standard deviation) of the highest function
values over 50 runs: GA without predictor vs GA+predictor vs
GA+predictor+switching knowledge in the prediction-deceptive
problem DTP2. The switching time is at the 8th changing stage.
(a) Fitness values trajectory, (b) Variable values trajectory. 392

Chapter 1
Performance Analysis of Dynamic Optimization
Algorithms

Amir Nakib and Patrick Siarry

Abstract. In recent years dynamic optimization problems have attracted a growing
interest from the community of stochastic optimization researchers with several app-
roaches developed to address these problems. The goal of this chapter is to present
the different tools and benchmarks to evaluate the performances of the proposed
algorithms. Indeed, testing and comparing the performances of a new algorithm to
the different competing algorithms is an important and hard step in the development
process. The existence of benchmarks facilitates this step, however, the success of
these benchmarks is conditioned by their use by the community. In this chapter, we
cite many tested problems (we focused only on the continuous case), and we only
present the most used: the moving peaks benchmark , and the last proposed: the
generalized approach to construct benchmark problems for dynamic optimization
(also called benchmark GDBG).

1.1 Introduction

The dynamic optimization problems (DOPs) can be met in many real-world cases.
A dynamic optimization problem can be formulated as follows:

min f (x, t)
s.t. h j(x, t) = 0 for j = 1,2, ...,u

gk(x, t)≤ 0 for k = 1,2, ...,v,
(1.1)

where f (x, t) is the objective function of a minimization problem, h j(x, t) de-
notes the jth equality constraint, and gk(x, t) denotes the kth inequality constraint.

Amir Nakib · Patrick Siarry
Université Paris Est Créteil, Laboratoire Images,
Signaux et Systèmes Intelligents (LISSI, EA 3956)
61, avenue du Général de Gaulle 94010 Créteil, France
e-mail: nakib@u-pec.fr

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 1–16.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

nakib@u-pec.fr

2 A. Nakib and P. Siarry

The function f is deterministic at any point in time, but is dependent on time t.
Consequently the position of the optimum changes over the time. Thus, the algo-
rithm dealing with DOPs should be able to continuously track this optimum rather
than requiring a repeated restart of the optimization process. The algorithms dedi-
cated to solve this kind of problem take into account, during the optimization pro-
cess, the information from previous environments to speed up optimization after
a change.

The naive approach after a change of the environment consists in formulating
each change as the arrival of a new optimization problem that has to be solved from
scratch. Indeed, if there is enough time to solve the problem, this is an efficient way.
However, the time for restarting the optimization process is, in most cases, short,
and it is based on the assumption of the identification of changing events, which is
not always the case.

To increase the convergence speed after a change, one direction consists in find-
ing the best way to use the previous known information about the search space to
speed up the search after a detected change. For example, if the new optimum is
close to the old one, one can reduce the search space to the neighborhood of the
previous optimum. Of course, taking into account the information from the past
depends on the nature of the change. If the change is drastic, and the new prob-
lem has little similarity to the previous problem, restart may be the only viable op-
tion, and use of information from the past would be misguiding rather than helping
the search.

In most real-world problems, however, the changes are smooth and using knowl-
edge from the past would be a good way to speed up the optimization. The difficult
question is: what information should be kept, and how it is used to accelerate search
after the environment has changed?

However, the information transfer does not guarantee that the optimization algo-
rithm is flexible enough to follow the optimum over the changes. Most Dynamic
Optimization Algorithms (DOAs) converge during the run, at least when the envi-
ronment has been static for some time, without losing their adaptability. Thus, be-
sides transferring knowledge, a successful DOA for dynamic optimization problems
has to maintain adaptability.

In order to evaluate the performances of the dynamic optimization algorithms,
many researchers have applied several dynamic test problems to them. The most
known are: the moving peaks benchmark (MPB) proposed by Branke [3], the DF1
generator introduced by Morrison and De Jong [17], the single- and multiobjec-
tive dynamic test problem generator by dynamically combining different objective
functions of existing stationary multiobjective benchmark problems, suggested by
Jin and Sendhoff [6], Yang and Yao’s exclusive-or (XOR) operator [22][24][25],
Kang’s dynamic traveling salesman problem (DTSP) [10], and dynamic multi knap-
sack problem (DKP), etc.

The goal of this chapter is to present the different methods to evaluate the perfor-
mances of a DOA. In the following section, the performance analysis of optimiza-
tion algorithms methods is presented. In section 3, the Moving Peak benchmark

1 Performance Analysis of Dynamic Optimization Algorithms 3

is summarized. In section 4, we present the generalized benchmark. In section 5,
the dynamic multiobjective optimization benchmark is presented. The conclusion is
presented in section 6.

1.2 Performance Analysis Tools of Optimization Algorithms

In this section, we present some metrics and tools that can be used to analyze the
performance of an optimization algorithm. Here, we do not focus only on dynamic
optimization but we present a set of tools to evaluate any optimization algorithm.

1.2.1 Fitness Value

The fitness of a solution is a numerical value that provides an indication on how well
the solution meets the objective(s) of the problem. The concept of fitness is central
to nature inspired algorithms (metaheuristics). The concept of fitness is applied in
most metaheuristics. In the case of benchmark problems such as the Sphere function,
the mathematic formulation and the location of the global optimum are known. In
such cases the fitness function corresponds to the distance to the global optimum.
The best fitness is known and is often zero. A solution that is closer to the global
optimum has a smaller error and a best fitness than a solution farther away.

Another kind of problem that can be met is when the global optimum is unknown.
It may not even be known whether or not a global optimum exists, and, if it does,
whether there are multiple global optima. Most examples of this type of problem
are NP-hard and the fitness score is a function of the system output(s). Furthermore,
the fitness score may be a weighted function of output parameters. An example is
a pipe renewal problem in drinking water networks, where the numbers and types
of pipes at hand, the provided pressure at demand points, and the cost may all be
weighted and incorporated into fitness values [4].

It is known that the three spaces of adaptation of an algorithm are: decision vari-
able space, system output space, and fitness space. System output space is the space
defined by the dynamic range(s) of the output variable(s). The fitness space is the
space used to define the goodness of the solutions in the output space. It is recom-
manded to scale the fitness to values between 0 and 1, where 0 or 1 is the opti-
mal value, depending on the optimization problem (minimization or maximization).
Thus, system output and fitness generally do not coincide.

Furthermore, the numerical value of the fitness rarely has a meaning. In most
cases, we only use fitness values to rank solutions. A proposed solution with a fitness
value of 0.950 is rarely exactly twice as good as a solution with a fitness value of
0.760. We simply have a rank-ordered list of how good a solution is relatively to
other solutions.

It is a common practice to vary parameters of the algorithm such as population
size and attempt to see what value produces a better cost. For example, run the meta-
heuristic fifty times with one population size and fifty times with another population

4 A. Nakib and P. Siarry

size. Due to the stochastic nature of the algorithm, we may very well get a different
fitness value each time.

How do we determine which solution is better? If all of the fitness values for
one population size are better than those for another population size, the situation is
clear: use the solution that consistently produces the best fitness values. However,
the situation is not always so simple. Especially, when we are fine-tuning parameters
to maximize system performance, we can meet situations that are difficult to analyze
and interpret.

1.2.2 Computational Analysis

The computational analysis of an optimization algorithm can be provided using a
theoretical analysis or an empirical one. In the first case, the worst-case complex-
ity of the algorithm is computed. Usually, the asymptotic complexity is not enough
to represent the computational performances of metaheuristics. If the probability
distribution of the input instances is available, then average-case complexity is rec-
ommended and it is more practical.

To perform empirical analysis, different measures of the computation time of the
metaheuristic used to solve a given instance are presented. The computation time
corresponds to the CPU time or wall clock time, with or without input/output and
preprocessing/postprocessing time.

The main drawback of computation time measure is its dependency on the used
hardware (e.g., processor, GPUs, memories, ...), operating systems, language, and
compilers on which the metaheuristic is executed. Some indicators that are inde-
pendent of the computer system may also be used, such as the number of objective
function evaluations. It is an acceptable measure for time-intensive and constant
objective functions. Using this metric may be problematic for problems where the
evaluation cost is low compared to the rest of the metaheuristics or is not time con-
stant since it depends on the solution evaluated and time. This appears in some
applications with variable length representations (genetic programming, robotics,
etc.) and dynamic optimization problems.

Different stopping criteria may be used: time to obtain a given target solution,
time to obtain a solution within a given percentage from a given solution (e.g., global
optimal, lower bound, best known), and number of iterations [21].

1.2.3 Classical Metrics

Two classical metrics for the effectiveness of metaheuristics were described by De
Jong (1975). These metrics, however, are appropriate for only the algorithms that
evolve a population of solutions. De Jong named these metrics off-line performance
and on-line performance.

When an optimization algorithm is being run off-line, many system configura-
tions can be evaluated (the fitness calculated) and the best configuration selected.

1 Performance Analysis of Dynamic Optimization Algorithms 5

For on-line work, however, configurations must be evaluated in real time, therefore
the usual goal is to develop an acceptable solution as early as possible.

The on-line performance, which measures the ongoing performance of a system
configuration, is defined in Equation 1.2, where f̄c(g) is the average population fit-
ness for a system configuration c during generation g and G is the number (index)
of the latest generation:

SOnline
c =

1
G

G

∑
g=1

f̄c(g), (1.2)

The off-line performance measures convergence of the algorithm and is defined in
Equation 1.3, where f ∗c(g) is the best fitness of any population member in generation
g for system configuration c. Off-line (convergence) performance is thus the average
of the best fitness values from each generation up to the present.

SOffline
c =

1
G

G

∑
g=1

f̄ ∗c(g), (1.3)

1.2.4 Sensitivity Analysis

The definition of the sensitivity of the optimization algorithms, also called robust-
ness, is not standardized inside the community. Different alternative definitions were
proposed for sensitivity. In general, it corresponds to insensitivity against small de-
viations in the input instances (data) or the parameters of the algorithm. The lower
the variability of the obtained solutions, the better the sensitivity. Sensitivity analy-
sis that is related to the applications of optimization algorithms sometimes focuses
on the problem and/or solution domain.

The parameters of the metaheuristics play an important role in their search capa-
city. Indeed, the sensitivity of a metaheuristic with respect to its parameters is critical
to its performance and, therefore, its successful applications. Using this approach,
we consider the parameters of an optimization algorithm as the input values to the
sensitivity analysis, and its performance values as the output values. Many indica-
tors can be used to evaluate the sensitivity; here we propose:

• Parameter sensitivity: it measures the effect of a given parameter on a given
output when all other parameters are constrained to be constant.

• Performance sensitivity: it takes into account the fact that the effect of a given
parameter on a given output differs with varying the data set values. This indica-
tor measures the average effect of a given parameter on a given output over a set
of data.

For metaheuristics algorithms, the output values can include parameters such as
fitness value, convergence rate, and the maximum generation required to reach a
good enough solution. The input values may be different for different algorithms.
For example, for genetic algorithms, the input values can be mutation rate, crossover

6 A. Nakib and P. Siarry

rate, population size, and so on. For particle swarm optimization algorithms, the
input values can be inertia weight w, cognitive and social coefficients c1 and c2, and
so on.

1.2.5 Statistical Analysis

Different statistical tests may be carried out to analyze and compare the metaheuris-
tics. The statistical tests are performed to estimate the confidence of the results to
be scientifically valid. The selection of a given statistical hypothesis testing tool is
performed according to the characteristics of the data.

Under some assumptions (normal distributions), the most widely used test is
the paired t-test. Otherwise, a nonparametric analysis may be realized, such as the
Wilcoxon test and the permutation test. For a comparison of more than two algo-
rithms, ANOVA models are well-established techniques to check the confidence of
the results. Multivariate ANOVA models allow simultaneous analysis of various per-
formance measures (e.g., both the quality of solutions and the computation time).
Kolmogorov-Smirnov test can be performed to check whether the obtained results
follow a normal (Gaussian) distribution. Moreover, the Levene test can be used to
test the homogeneity of the variances for each pair of samples. The Mann-Whitney
statistical test can be used to compare two optimization methods. According to a
p-value and a metric under consideration, this statistical test reveals if the sample
of approximation sets obtained by a search method S1 is significantly better than
the sample of approximation sets obtained by a search method S2, or if there is no
significant difference between both optimization methods.

These different statistical analysis procedures must be adapted for nondetermin-
istic (or stochastic) algorithms. Indeed, most metaheuristics belong to this class of
algorithms. Many trials (100 runs is the most used number) must be carried out to
derive significant statistical results. From this set of trials, many measures may be
computed: mean, median, minimum, maximum, standard deviation, the success rate
that the reference solution (e.g., global optimum, best known, given goal) has been
attained, and so on.

Below are some considerations about the use of statistical tools for analysing the
performances of metaheuristics or stochastic-based optimization algorithms:

• t-tests require that certain assumptions be made regarding the format of the data.
The one sample t-test requires that the data have an approximately normal distri-
bution, whereas the paired t-test requires that the distribution of the differences
is approximately normal. The unpaired t-test relies on the assumption that the
data from the two samples are both normally distributed, and has the additional
requirement that the standard deviations (SDs) from the two samples are approx-
imately equal.

Formal statistical tests are performed to examine whether a set of data are
normal or whether two SDs (or, equivalently, two variances) are equal, although
results from these should always be interpreted in the context of the sample size
and associated statistical power in the usual way. However, the t-test is known to

1 Performance Analysis of Dynamic Optimization Algorithms 7

be robust to modest departures from these assumptions, and so a more informal
investigation of the data may often be sufficient in practice.

If assumptions of normality are violated, then appropriate transformation of
the data may be used before performing any calculations. Similarly, transforma-
tions may also be useful if the SDs are very different in the unpaired case. Fi-
nally, these methods are restricted to the case where comparison has to be made
between one or two groups. This is probably the most common situation in prac-
tice but it is by no means uncommon to want to explore differences through three
or more methods. This requires an alternative approach that is known as analysis
of variance (ANOVA).

• The nonparametric tests require very few or very limited assumptions to be made
about the format of the data, and can therefore be used in situations where classi-
cal methods, such as t-tests, may be inappropriate. They can be useful for dealing
with unexpected, outlying observations that might be problematic with a para-
metric approach. Moreover, these methods are intuitive and are simple to carry
out by hand, for small samples at least. Indeed, nonparametric methods are often
useful in the analysis of ordered categorical data in which assignation of scores
to individual categories may be inappropriate. In contrast, parametric methods
require scores to be assigned to each category, with the implicit assumption that
the effect of moving from one category to the next is fixed.

However, nonparametric methods may lack power as compared with more
traditional approaches. This is of particular concern if the sample size is small or
if the assumptions for the corresponding parametric method (e.g. normality of the
data) hold. Moreover, these methods are geared toward hypothesis testing rather
than estimation of effects. It is often possible to obtain nonparametric estimates
and associated confidence intervals, but this is not generally simple. In many
cases an adjustment to the statistic test may be necessary.

• The Kruskal-Wallis, Jonckheere-Terpstra, and Friedman tests can be used to test
for differences between more than two groups or treatments when the assump-
tions for analysis of variance are not held.

• The P-value is the probability that an observed effect is simply due to chance; it
therefore provides a measure of the strength of an association. Moreover, it does
not provide any measure of the size of an effect and cannot be used in isolation to
inform about the best optimization algorithm. Indeed, P-values are affected both
by the magnitude of the effect and by the size of the study from which they are
derived, and should therefore be interpreted with caution. In particular, a large P-
value does not always indicate that there is no difference and, similarly, a small
P-value does not necessarily signify a high difference. The subdivision P-values
into significant and non-significant are poor statistical practice and should be
avoided. Finally, exact P-values should always be presented, along with estimates
of effect and associated confidence intervals.

The success rate: The success rate (SR) represents the ratio between the number of
successful runs and the number of trials:

8 A. Nakib and P. Siarry

Table 1.1 MPB parameters in scenario 2.

Parameter Scenario 2
Number of peaks Np 10

Dimension d 5
Peak heights [30,70]
Peak widths [1,12]

Change cycle α 5000
Change severity s 1
Height severity 7
Width severity 1

Correlation coefficient λ 0
Number of changes Nc 100

SR =
NbSuc
NbR

, (1.4)

where NbSuc is the number of successful runs and NbR is the total number of runs.

The performance rate: The performance rate (PR) takes into account the compu-
tational effort to find the solution by considering the number of objective function
evaluations:

PR =
NbSuc

NbR×Nbfeval
, (1.5)

where Nb f eval is the total number of evaluations of the objective function.

1.3 The Moving Peaks Benchmark

The most commonly used benchmark for continuous dynamic optimization is the
Moving Peaks Benchmark (MPB) [3].

MPB is a maximization problem that consists of a number of peaks that randomly
vary their shape, position, and height upon time. At any time, one of the local optima
can become the new global optimum. MPB generates DOPs consisting of a set of
peaks that periodically move in a random direction, by a fixed amount s (the change
severity). The movements are autocorrelated by a coefficient λ , 0≤ λ ≤ 1, where 0
means uncorrelated and 1 means highly autocorrelated. The peaks change position
every α evaluations, and α is called time span. The fitness function used for the
landscape of MPB is formulated in Equation 1.6:

f (x, t) = maxi=1,...,Np

(
Hi(t)−Wi(t)

√
∑d

j=1 (x j−Xi j(t))
2
)
, (1.6)

where Np is the number of peaks, d is the number of dimensions, and Hi(t), Wi(t)
and Xi(t) are the height, the width, and the position of the ith peak at the time t,
respectively.

In order to evaluate the performance, the offline error is used. The offline error
(oe) is defined in Equation 1.7:

1 Performance Analysis of Dynamic Optimization Algorithms 9

oe =
1

Nc

Nc

∑
j=1

(
1

Ne(j)

Ne(j)

∑
i=1

(
f ∗j − f ∗ji

))
(1.7)

where Nc is the total number of fitness landscape changes within a single experi-
ment, Ne(j) is the number of evaluations performed for the jth state of the land-
scape, f ∗j is the value of the optimal solution for the jth landscape, and f ∗ji is the

current best fitness value found for the jth landscape. We can see that this measure
has some weaknesses: it is sensitive to the overall height of the landscape, and to
the number of peaks. It is important for an algorithm to find the global optimum
quickly, thus minimizing the offline error. Hence, the most successful strategy is a
multi-solution approach that keeps track of every local peak [19]. In [3], three sets
of parameters, called scenarios, were proposed. It appears that the most commonly
used set of parameters for MPB is scenario 2 (see Table 10.3).

Figure 10.1 illustrates an MPB landscape before and after a change (after one
time span). More details about this benchmark will be given in the dedicated chapter.

Table 1.2 Comparison with competing algorithms on MPB using s = 1,2, ...,6.

Algorithm Offline error
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

Moser and Chiong, 2010 [18] 0.25±0.08 0.47±0.12 0.49±0.12 0.53±0.13 0.65±0.19 0.77±0.24
Lepagnot et al. [9] 0.35±0.06 0.60±0.08 0.91±0.10 1.23±0.10 1.62±0.13 2.00±0.20
Lepagnot et al., 2009 [7, 8] 0.59±0.10 0.87±0.12 1.18±0.13 1.49±0.13 1.86±0.17 2.32±0.18
Moser and Hendtlass, 2007 [18, 19] 0.66±0.20 0.86±0.21 0.94±0.22 0.97±0.21 1.05±0.21 1.09±0.22
Yang and Li, 2010 [23] 1.06±0.24 1.17±0.22 1.36±0.28 1.38±0.29 1.58±0.32 1.53±0.29
Liu et al., 2010 [14] 1.31±0.06 1.98±0.06 2.21±0.06 2.61±0.11 3.20±0.13 3.93±0.14
Lung and Dumitrescu, 2007 [15] 1.38±0.02 1.78±0.02 2.03±0.03 2.23±0.05 2.52±0.06 2.74±0.10
Bird and Li, 2007 [1] 1.50±0.08 1.87±0.05 2.40±0.08 2.90±0.08 3.25±0.09 3.86±0.11
Lung and Dumitrescu, 2008 [16] 1.53±0.01 1.57±0.01 1.67±0.01 1.72±0.03 1.78±0.06 1.79±0.03
Blackwell and Branke, 2006 [2] 1.75±0.06 2.40±0.06 3.00±0.06 3.59±0.10 4.24±0.10 4.79±0.10
Li et al., 2006 [13] 1.93±0.08 2.25±0.09 2.74±0.09 3.05±0.10 3.24±0.11 4.95±0.13
Parrott and Li, 2006 [20] 2.51±0.09 3.78±0.09 4.96±0.12 5.56±0.13 6.76±0.15 7.68±0.16

Fig. 1.1 An MPB landscape before and after a change.

10 A. Nakib and P. Siarry

Table 1.3 Static functions used to generate the GDBG problems.

Name Function Range
Sphere f (x) = ∑d

i=1 x2
i [−100,100]d

Rastrigin f (x) = ∑d
i=1 (x

2
i −10cos(2πxi)+10) [−5,5]d

Weierstrass f (x) =
d
∑

i=1
(

kmax
∑

k=0
[ak cos(2πbk(xi +0.5))])−d

kmax
∑

k=0
[ak cos(πbk)] [−0.5,0.5]d

a = 0.5,b = 3,kmax = 20

Griewank f (x) = 1
4000 ∑d

i=1(xi)
2−∏d

i=1cos(xi√
i
)+1 [−100,100]d

Ackley f (x) =−20exp(−0.2

√
1
d

d
∑

i=1
x2

i)− exp(1
d

d
∑

i=1
cos(2πxi))+20+ exp(1) [−32,32]d

Table 1.2 summarizes the last published scores of the dynamic optimization al-
gorithms tested on MPB benchmark. Here, we will not comment on these results
because it is out of the scope of this chapter.

1.4 The Generalized Dynamic Benchmark Generator

The Generalized Dynamic Benchmark Generator (GDBG) is the second bench-
mark described in this chapter, it was introduced in [11, 12]. It was provided for
the CEC’2009 Special Session on Evolutionary Computation in Dynamic and Un-
certain Environments. The functions used to create this benchmark are depicted
in Table 10.2. These functions were rotated, composed, and combined to form six
problems with different degrees of difficulty:

F1: rotation peak function (with 10 and 50 peaks)
F2: composition of Sphere’s function
F3: composition of Rastrigin’s function
F4: composition of Griewank’s function
F5: composition of Ackley’s function
F6: hybrid composition function

A total of seven dynamic scenarios with different degrees of difficulty was proposed:

T1: small step change (a small displacement)
T2: large step change (a large displacement)
T3: random change (Gaussian displacement)
T4: chaotic change (logistic function)
T5: recurrent change (a periodic displacement)
T6: recurrent with noise (the same as above, but the optimum never returns
exactly to the same point)
T7: changing the dimension of the problem

1 Performance Analysis of Dynamic Optimization Algorithms 11

Table 1.4 GDBG parameters used during the CEC’2009 competition.

Parameter Value
Dimension d (fixed) 10

Dimension d (changed) [5,15]
Change cycle α 10000×d

Number of changes Nc 60

The basic parameters of the benchmark are given in Table 1.4.
There are 49 test cases that correspond to the combinations of the six problems

with the seven change scenarios (indeed, function F1 is used twice, with 10 and
50 peaks, respectively). For each of them, the average best (Equation 1.8), aver-
age mean (Equation 1.9), average worst (Equation 1.10) values, and the standard
deviation (Equation 1.11) of the absolute error are recorded:

Avgbest =
runs

∑
i=1

minNc
j=1

Ei j

runs
(1.8)

Avgmean =
runs

∑
i=1

Nc

∑
j=1

Ei j

runs×Nc
(1.9)

Avgworst =
runs

∑
i=1

maxNc
j=1

Ei j

runs
(1.10)

STD =

√
∑runs

i=1 ∑Nc
j=1 (Ei j−Avgmean)

2

runs×Nc
, (1.11)

where Ei j =
∣∣∣ f ∗j − f̃ ∗ji

∣∣∣, f ∗j is the value of the global optimum for the jth landscape,

f̃ ∗ji is the value of the best solution found during the ith run of the tested algorithm,

for the jth landscape, and runs is the number of runs of the tested algorithm on the
benchmark, equal to 20 in our experiments.

The convergence graphs, showing the relative error ri(t) of the run with median
performance for each problem, are also computed. For the maximization problem
F1, the formula used for ri(t) is defined in Equation 1.12, and for the minimization
problems F2 to F6, it is defined in Equation 1.13:

ri(t) =
fi(t)
f ∗i (t)

(1.12)

ri(t) =
f ∗i (t)
fi(t)

, (1.13)

where fi(t) is the value of the best found solution at time t since the last occurrence
of a change, during the ith run of the tested algorithm, and f ∗i (t) is the value of the
global optimum at time t.

12 A. Nakib and P. Siarry

A mark is calculated for each test case using the formula given in Equation 1.14:

markpct = markmax×
runs

∑
i=1

Nc

∑
j=1

ri j

runs×Nc
, (1.14)

The sum of all marks markpct gives a score, denoted by op, that corresponds to the
overall performance of the tested algorithm. The maximum value of this score is
100. In Equation 1.14, ri j is calculated using the formula defined in Equation 1.15,
and markmax is a coefficient that defines the percentage of the mark of each test case
in the final score. It is also the maximal mark that can be obtained by the tested
algorithm on each test case.

ri j =
ri(t j +α)

1+∑
α
s f
s=1

1−ri(t j+s f×s)
α
s f

, (1.15)

where t j is the time at which the jth change occurred, s f is the sampling frequency,
here equal to 100, and α is the change cycle (as for MPB, it corresponds to the
number of evaluations that makes a time span).

1.4.1 Illustration of Some Test Functions in GDBG

F3: Composition of Rastrigin’s function

Basic functions: f1− f10 =Rastrigin’s function

Fig. 1.2 3-D map for 2-D function of F3.

Properties

Multi-modal
Scalable

1 Performance Analysis of Dynamic Optimization Algorithms 13

Rotated
A huge number of local optima
x ∈ [−5,5]n, Global optimum x∗(t) = Oi,F(x∗(t)) = Hi(t),Hi(t) = minm

j Hj

F5:Composition of Ackley’s function

Basic functions: f1− f10 =Ackley’s function

Fig. 1.3 3-D map for 2-D function of F5.

Properties

Multi-modal
Scalable
Rotated
A huge number of local optima
x ∈ [−5,5]n, Global optimum x∗(t) = Oi,F(x∗(t)) = Hi(t),Hi(t) = minm

j Hj

Figure 1.4 presents the scores of recent dynamic optimization algorithm on GDBG
benchmark.

1.5 Dynamic Multiobjective Optimization Benchmark

In this section, the dynamic multiobjective optimization benchmark (DMOB) pro-
posed by Farina et al. [5] is presented. Indeed, unlike in the single-objective dynamic
optimization problems, where the ordering criterion in decision space is trivial, here,
we are dealing with two distinct yet related spaces where an ordering criterion has to
be considered: decision variable space and objective space. Such an increased com-
plexity holds true for static problems and even more for dynamic problems, where
there are four possible ways a problem can demonstrate a time-varying change:

14 A. Nakib and P. Siarry

Fig. 1.4 Comparison with competing algorithms on GDBG.

1. The POS (optimal decision variables) changes, whereas the POF (optimal ob-
jective values) does not change.

2. Both POS and POF change.
3. POS does not change but POF varies.
4. The problem changes but POF and POS do not vary.

In this bechmark five different scenarios were proposed and a test suite for contin-
uous problems was also proposed (FDA1 to FDA5). Based on the proposed scenar-
ios, the five test problems involve ZDT and DTLZ test problems. However, these
test problems can be used as a representative set of test problems in a study. The au-
thors do not provide more functions but provide the procedure to build other more
interesting problems.

1.6 Conclusions

In this chapter a suggested tool has been studied to analyse the performance of
stochastic-based optimization algorithms. Moreover, a description of two continu-
ous dynamic optimization benchmarks was presented. We also reported a review
of scores of different algorithms on these benchmarks. We ended this chapter by a
benchmark for dynamic multiobjective algorithms. We hope this chapter will help
the researchers to speed up their development of new algorithms.

References

[1] Bird, S., Li, X.: Using regression to improve local convergence. In: Proc. Congr. Evol.
Comput., Singapore, pp. 592–599. IEEE (2007)

[2] Blackwell, T., Branke, J.: Multi-swarms, exclusion and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)

[3] Branke, J.: The Moving Peaks Benchmark website (1999),
http://www.aifb.unikarlsruhe.de/˜jbr/MovPeaks

http://www.aifb.unikarlsruhe.de/~jbr/MovPeaks

1 Performance Analysis of Dynamic Optimization Algorithms 15

[4] Eberhart, R.C., Shi, Y.: Computational intelligence: concepts to implementation.
Elsevier (2007)

[5] Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test
cases, approximations, and applications. IEEE Transactions on Evolutionary Computa-
tion 8(5), 425–442 (2004)

[6] Jin, Y., Sendhoff, B.: Constructing Dynamic Optimization Test Problems Using the
Multi-objective Optimization Concept. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne,
D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F.,
Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536.
Springer, Heidelberg (2004)

[7] Lepagnot, J., et al.: Performance analysis of MADO dynamic optimization algorithm.
In: Proc. IEEE Adaptive Computing in Design and Manufacturing. Int. Conf. on Intel-
ligent Systems Design and Applications, Pisa, pp. 37–42. IEEE (2009)

[8] Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A new multiagent algorithm for dy-
namic continuous optimization. International Journal of Applied Metaheuristic Com-
puting 1(1), 16–38 (2010)

[9] Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: Brain cine-MRI registration using
MLSDO dynamic optimization algorithm. In: IXth Metaheuristics International Con-
ference, pp. S1–25–1–S1–25–9 (2011)

[10] Li, C., Yang, M., Kang, L.: A New Approach to Solving Dynamic Traveling Salesman
Problems. In: Wang, T.-D., et al. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236–243.
Springer, Heidelberg (2006)

[11] Li, C., Yang, S.: A Generalized Approach to Construct Benchmark Problems for Dy-
namic Optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Ab-
bass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.)
SEAL 2008. LNCS, vol. 5361, pp. 391–400. Springer, Heidelberg (2008)

[12] Li, C., Yang, S., Nguyen, T.T., Yu, E.L., Yao, X., Jin, Y., Beyer, H.-G., Suganthan, P.N.:
Benchmark generator for CEC 2009 competition on dynamic optimization. Technical
report, University of Leicester, University of Birmingham, Nanyang Technological Uni-
versity (2008)

[13] Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a dy-
namic environment. In: Proc. Genetic Evol. Comput. Conf., Seattle, Washington, USA,
pp. 51–58. ACM (2006)

[14] Liu, L., Yang, S., Wang, D.: Particle swarm optimization with composite particles in dy-
namic environments. IEEE Trans. Syst. Man. Cybern. Part B 40(10), 1634–1648 (2010)

[15] Lung, R.I., Dumitrescu, D.: Collaborative evolutionary swarm optimization with a
Gauss chaotic sequence generator. Innovations in Hybrid Intelligent Systems 44, 207–
214 (2007)

[16] Lung, R.I., Dumitrescu, D.: ESCA: A new evolutionary-swarm cooperative algorithm.
SCI, vol. 129, pp. 105–114 (2008)

[17] Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environ-
ments. In: Proc. Congr. Evol. Comput., pp. 2047–2053 (1999)

[18] Moser, I., Chiong, R.: Dynamic function optimisation with hybridised extremal dynam-
ics. Memetic Computing 2(2), 137–148 (2010)

[19] Moser, I., Hendtlass, T.: A simple and efficient multi-component algorithm for solving
dynamic function optimisation problems. In: Proc. Congr. Evol. Comput., pp. 252–259.
IEEE, Singapore (2007)

16 A. Nakib and P. Siarry

[20] Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Transactions on Evolutionary Computation 10(4), 440–
458 (2006)

[21] Talbi, E.-G.: Metaheuristics: from design to implementation. John Wiley and Sons Inc.
(2009)

[22] Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm.
In: Proc. Congr. Evol. Comput., pp. 2246–2253. IEEE, Canberra (2003)

[23] Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multi-
ple optima in dynamic environments. IEEE Transactions on Evolutionary Computation
(2010)

[24] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Computing – A Fusion of Foundations,
Methodologies and Applications 9(11), 815–834 (2005)

[25] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Transactions on Evolutionary Computation 12(5), 542–
562 (2008)

Chapter 2
Quantitative Performance Measures
for Dynamic Optimization Problems

Briseida Sarasola and Enrique Alba

Abstract. Measuring the performance of algorithms over dynamic optimization
problems (DOPs) presents some important differences when compared to static
ones. One of the main problems is the loss of solution quality as the optimization
process advances in time. The objective in DOPs is in tracking the optima as the
landscape changes; however, it is possible that the algorithm gets progressively fur-
ther from the optimum after some changes happened. The main goal of this chapter
is to present some difficulties that may appear while reporting the results on DOPs,
and introduce two new performance tools to overcome these problems. We propose a
measure based on linear regression to measure fitness performance degradation, and
analyze our results on the moving peaks problem, using several measures existing
in the literature as well as our performance performance degradation measure. We
also propose a second measure based on the area below the curve defined by some
population attribute at each generation (e.g., the best-of-generation fitness), which
is analyzed in order to see how it can help in understanding the algorithmic search
behavior.

2.1 Introduction

The problem of finding good performance measures for dynamic optimization prob-
lems (DOPs) is not a trivial one. A good measure should at least describe what the
researcher is actually perceiving. It should also have a lower set of restrictions (in
order to be widely applicable) and allow a numerical (maybe statistical) treatment
of its results. Some traditional measures from non-stationary problems, like offline
performance [5] and accuracy [67], have been transferred to DOPs, although they
often need to be modified and adapted to dynamic environments. Other measures
have been specially designed for DOPs, like collective mean fitness [9]. Although

Briseida Sarasola · Enrique Alba
Universidad de Málaga
e-mail: {briseida,eat}@lcc.uma.es

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 17–33.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{briseida,eat}@lcc.uma.es

18 B. Sarasola and E. Alba

there is a wide plethora of other measures available (window accuracy [67], best
known peak error [4], and peak cover [5]), most current studies tend to use the three
measures mentioned in the first place, as well as a visual analysis of the algorithm
running performance.

However, at this moment there is no general consensus about what measure to
use. While the great majority of studies use an average of the best current fitness,
we think that the single value provided by best fitness averages is often not enough,
since it is possible to obtain the same average value from very different sets of
points and complete opposite search behaviors. In addition, few measures explore
other aspects of the problem dynamics. Among these other measures we can cite
the ones reporting the diversity (most typically entropy, inertia [10], and Hamming
distance based measures [12–14]), as well as stability and ε-reactivity [67].

An important issue which is usually not taken into account in existing studies is
the ability of a certain algorithm to obtain good solutions for a long time in a steady
manner while the search landscape changes, i.e. to be able to track the moving op-
tima for a big number of periods. A period is an interval of time without changes in
the problem definition. Based on existing results and on our own experience, the per-
formance of an algorithm over contiguous and continuous changes in the problem
can degrade with time. Our first objective in this work is then to present a new met-
ric to measure how an algorithm degrades as the search advances. For that purpose,
we consider a scenario using the moving peaks benchmark and genetic algorithms.
This is a fundamental issue since it characterizes the ability of the algorithm in the
long term, giving the actual power of the algorithm for a real application or for its
scalability in time. Our second objective is to study the curve defined by the algo-
rithmic search behavior regarding some population attribute, and see how this tool
can be used to learn more about algorithm performance .

The rest of the chapter is structured as follows: Section 2.2 explains the main
performance measures in the literature; Section 2.3 presents a way of measuring
fitness degradation ; Section 2.4 exposes the moving peaks problem, which will be
used as case study in this paper; Section 2.5 analyzes how existing measures perform
for a given case study; Section 2.6 introduces how the area below the fitness curve
can be used to analyze the algorithmic search behavior; finally, some conclusions
are drawn in Section 2.7.

2.2 Background and Motivation

The aim of using dynamic optimization is not only to find the global optima, but to
be able to track the movement of these optima through the search time. Although
it is still quite common in existing works to use line charts to visually compare the
running fitness of algorithms, a number of numeric measures have been proposed. In
this section we review and discuss the most widely used measures in the literature.

2 Quantitative Performance Measures for Dynamic Optimization Problems 19

2.2.1 Existing Performance Measures for DOPs

In this section we describe the most popular measures in the literature.

Offline performance

Its usage for DOPs was proposed in [5]. It is calculated as the average of the best
value found so far in the current period (see Eq. 2.1). For its computation it requires
that changes in the landscape are known beforehand.

x∗ = (1/N) ·
N

∑
i=1

f (period besti), (2.1)

Collective mean fitness

It was introduced by Morrison in [9]. It is similar to offline performance , but consi-
ders the best value in the current generation, and thus does not require to know about
changes in the search space (see Equation 2.2). It is also referred to in the literature
as Best-of-Generation Average (BOG).

FC = (1/N) ·
N

∑
i=1

f (generation besti), (2.2)

Accuracy, stability, and reactivity

This group of three measures was first proposed for static optimization problems,
and explicitly adapted for dynamic environments in [67]. The accuracy measures
how good the best solution in the current population is with respect to the best
(MaxF) and worst (MinF) known values in the search space. It ranges between 0
and 1, where a value closer to 1 means a higher accuracy level. The formula is often
simplified with MinF = 0. This measure is also known as the relative error.

accuracyi =
f (generation besti)−MinF

MaxF −MinF
, (2.3)

Stability is also viewed as an important issue in DOPs. An algorithm is stable if the
changes in the environment do not affect its accuracy severely (see Eq. 2.4).

stabilityi = max{0,accuracyi− accuracyi−1} , (2.4)

where stability ∈ [0,1]. An algorithm is considered stable if stability is close to 0.
Finally, another aspect to be taken into account is the ability of the algorithm to
react quickly to changes. This is measured by the ε-reactivity, which ranges be-
tween 1 and the number of generations (maxgen) (a smaller value implies a higher
reactivity):

reactivityi = min{i′ − i|i < i′ ≤ maxgen, i ∈ N,
accuracyi′

accuracyi
≥ (1− ε)}, (2.5)

20 B. Sarasola and E. Alba

2.2.2 Discussion

However, none of these measures reflects a very important aspect in DOPs. Algo-
rithm performance can degrade after the landscape has changed several times, re-
sulting in a loss of fitness quality in the following optimization stages. Fig. 2.1 shows
an example for an algorithm over a general problem. On the left, the running best fit-
ness and the known optimum are represented. It can be easily seen that the running
best fitness is much closer to the known best fitness at first periods (di), while the
distance between them becomes bigger at the last periods (d j). The same situation
is illustrated in the graph on the right, but this time we represent the accuracy for
each period compared to the maximum possible accuracy value (accuracy = 1.0).

Fig. 2.1 An example to illustrate degradation in DOPs: Running best fitness compared to the
best known fitness in each period (left) and the best accuracy obtained in each period com-
pared to optimal accuracy (1.0) (right). Example taken from an experiment on the Dynamic
Vehicle Routing Problem.

Besides, when using fitness averages, two or more algorithms can achieve the
same average value with very different search behaviors: it is possible to arrive at
the same average through diverging search dynamics. An example of this problem
is shown in Figure 2.2: Algorithm 1 obtains better fitness values at the beginning,
but then the average worsens; the performance of Algorithm 2 is the most stable
one; finally, Algorithm 3 obtains the worst results in the first half of the simulation,
but finally reaches the same BOG. The standard experimental study would report
that all three algorithms have the same BOG = 0.78. However, the graph draws
our attention toward the differences between them. This is a common problem in
dynamic optimization, where several algorithms can provide statistically similar re-
sults according to their BOG values. Therefore, we consider that another approach
is required to find out more information about the algorithmic performance.

2 Quantitative Performance Measures for Dynamic Optimization Problems 21

Fig. 2.2 An example show-
ing the running BOG (top)
for three algorithms. BOG
by itself is not pointing out a
clear performance ranking.

0 2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

↑

avg (BOG) = 0.78

Generations

R
un

ni
ng

 a
ve

ra
ge

 b
es

t−
of

−
ge

ne
ra

tio
n

fi
tn

es
s

Alg
1

Alg
2

Alg
3

2.3 A Measure for Degradation: βdegradation

As already discussed, none of the previously mentioned measures accounts for the
progressive degradation suffered by the algorithm. We define degradation as the
loss of fitness quality which can affect the optimization process; this results in ob-
taining worse solutions as time advances. This loss of fitness quality is more obvious
and serious when solving DOPs, because it is expected that the algorithm is able to
achieve good solutions for a number of different landscapes which follow one an-
other in time. This degradation is more evident as the execution runs for a longer
time and affects any of the mentioned existing measures.

We propose then to measure degradation using linear regression over the consec-
utive accuracy values achieved at the end of each period [3]. We have selected the
accuracy since it is consistently used as the most important error measure in most
studies. For that purpose we use Eq. 2.6, where the variable y is an approximation
to the overall accuracy, x̄ is a vector of size P, and βdegradation is the slope of the
regression line. P is the number of periods in the dynamic problem. Each xi is the
accuracy of the best solution found in period i averaged over all independent runs N
(see Eq. 2.7, where period best ji denotes the best solution found in period i in the
j-th run). A positive βdegradation value indicates that the algorithm keeps a good im-
provement and still provides good solutions: the bigger the improvement, the higher
the slope value will be. On the contrary, a negative value implies a degradation in
the solution quality, where a smaller value implies a deeper loss of quality.

y = βdegradation x̄+ ε, (2.6)

xi =
1
N

N

∑
j=1

f (period best ji), (2.7)

22 B. Sarasola and E. Alba

2.4 The Moving Peaks Problem

There are several bechmark problems for Dynamic Optimization (DO), such as the
dynamic bit-matching, dynamic royal road, moving parabola, time-varying knap-
sack problem, etc. In this paper, we focus on one of the most widely used bench-
mark problems for DO: the moving peaks problem [5]. The moving peaks idea is to
have an artificial multidimensional landscape consisting of several peaks where the
height, width, and position of each peak are altered every time a change in the envi-
ronment occurs. The cost function for N dimensions and m peaks has the following
form:

F(x̄, t) = max{B(x̄), max
i=1...m

P(x̄,hi(t),wi(t), p̄i(t))}, (2.8)

where B(x̄) is a time-invariant ”base” landscape, and P is the function defining a
peak shape, where each of the m peaks has its own time-varying height (h), width
(w), and location (p̄) parameters. Every certain number of evaluations, the height
and width of every peak are changed by adding a random Gaussian variable. The
location of every peak is changed by a vector v of fixed length s. A parameter λ
determines if a peak change depends on the previous move or not. If λ = 0 then
each change is completely random, while for λ = 1, the peak will always move in
the direction of the former change.

2.5 Experimental Setting

This section is aimed at studying the behavior of the measures explained in Sec-
tion 2.2. For that purpose, we consider the moving peaks problem, using a prob-
lem configuration which corresponds closely to the standard settings proposed by
Branke 1. We use a plane defined in (0,100)× (0,100) with 10 dimensions and 10
peaks. The peak heights are defined in the interval [30, 70] and the widths in [0.001,
0.2]. The height change severity is set to 7.0 and the width change severity to 0.01.
Changes occur every 1000 evaluations and λ = 0.

We use an elitist generational genetic algorithm (genGA) as well as three well-
known strategies which adapt metaheuristics to dynamic environments: hypermuta-
tion (hm) [6], memory (me) [8], and random immigrants (ri) [7]. This results in four
algorithms: genGA, genGA+hm, genGA+me, genGA+ri. The population size is 100
individuals, parent selection is done by binary tournament, single point crossover
probability pc equals 1.0, and mutation probability for each solution is pm = 0.1.

We also study the statistical significance of the results. First we check if the data
follow a normal distribution using the Kolmogorov-Smirnov test. If the answer is
positive, we perform a Levene’s test to check the homogeneity of the variances. If
the Levene test is positive, we do an ANOVA test to compare the means; otherwise

1 http://www.aifb.uni-karlsruhe.de/˜jbr/MovPeaks/

http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/

2 Quantitative Performance Measures for Dynamic Optimization Problems 23

we perform a Welch’s test. If the data do not follow a Gaussian distribution, we use
a Kruskal-Wallis test. All these tests use a level of confidence of 95 %. Unless stated
otherwise, the results are statistically significant.

We start by comparing the graphs for a mean execution of each algorithm, which
is the most basic strategy (Section 2.5.1). Then we analyze the results with Morri-
son’s collective mean fitness and Weicker’s measures (see sections 2.5.2 and 2.5.3
respectively). The offline performance results are excluded since they are identical
to those of collective mean fitness (since we are using an elitist genGA).

2.5.1 Studying the Graphical Representation of Mean Executions

The most immediate way of analyzing the performance of algorithms is comparing
the graphs which show the running fitness. This is done in most existing works.
The advantage is a fast and intuitive way of comparing performances; however, the
results can often be difficult to interpret, they might not always fit in a figure of the
desired size, and they can easily lead to confusion.

Figure 2.3 shows an example of this procedure, where the mean of all 100 runs
for each algorithm is represented. The length of the run has been shortened to 40k
evaluations for the sake of clarity. From this graph we conclude that genGA+ri gives
usually better fitness values than the rest; genGA+me and canonical genGA obtain
similar results in the first half of the simulation, although genGA+me comes closer
to genGA+ri and outperforms genGA in the second half. However, does this anal-
ysis reflect the real behavior of the analyzed algorithms? We do not think so. The
approach is insufficient, as it seems impossible to draw a satisfactory conclusion
from these data.

60

61

62

63

64

65

0.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fi
tn

es
s

Evaluations (×104)

genGA
genGA+hm
genGA+me

genGA+ri

Fig. 2.3 Mean trace of four algorithms on the moving peaks problem.

24 B. Sarasola and E. Alba

2.5.2 Studying the Collective Mean Fitness

Collective mean fitness (FC) is a metric with several advantages. First, it does not
need to know when changes happen in the environment (as offline performance and
error measures need). Second, the value is obtained from the fitness function, which
is directly related to the problem. However, Morrison states that FC should col-
lect information over a representative sample of the fitness landscape dynamics, but
there is no clue as what ”a representative sample” means. To illustrate this, we will
compare the FC considering three different total run lengths: 40k, 100k, and 400k
evaluations. Numerical results in Table 2.1 show how much the best FC values de-
pend on the maximum number of evaluations (stopping condition). We show with
these results that even 100k evaluations are not useful for a representative sample of
the landscape dynamics. However, the main issue here is how can we determine this
number and whether a very large value (such as 400k evaluations) would provide a
representative sample or not.

Table 2.1 FC for each algorithm over three different max eval values.

Evaluations genGA genGA+hm genGA+me genGA+ri
40,000 60.9735 61.0878 61.9364 62.7696

100,000 60.6000 60.9026 62.4002 62.8713
400,000 60.5353 60.8690 63.2371 62.8385

In order to visually understand this difficulty, we show in Fig. 2.4 the running
FC for the three considered window spans. Fig. 2.4(a) shows that genGA+ri clearly
obtains the best results in the 40k evaluations case, while genGA+me, genGA, and
genGA+hm (from best to worst) are not able to keep its pace. When we extend the
simulation to 100k evaluations (Fig. 2.4(b)), genGA+ri is still pointed as the best al-
gorithm, but genGA+me has significantly improved its performance during the last
evaluations. Another change with respect to the shorter experiment is that canonical
genGA performance has deteriorated with respect to genGA+hm. To conclude, we
show the simulation for the longest considered interval, namely 400k evaluations
(Fig. 2.4(c)). A change of roles has taken place here, as the trend now shows that
genGA+me outperforms genGA+ri, while in the two previous cases it was exactly
the contrary conclusion. It seems the algorithms have already been exposed to a sig-
nificant part of the search landscape, except for genGA+me, whose FC will improve
if the simulation is extended.

In short, in this section we have proved that it is easy to get a given conclusion
and its contrary by just allowing the algorithms run a bit further.

2 Quantitative Performance Measures for Dynamic Optimization Problems 25

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

C
ol

le
ct

iv
e

fi
tn

es
s

Evaluations (×104)

genGA
genGA+hm
genGA+me

genGA+ri

(a) 40k evaluations.

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5

0.0 2.0 4.0 6.0 8.0 10.0

C
ol

le
ct

iv
e

fi
tn

es
s

Evaluations (×104)

40k

genGA
genGA+hm
genGA+me

genGA+ri

(b) 100k evaluations.

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

C
ol

le
ct

iv
e

fi
tn

es
s

Evaluations (×105)

40k 100k genGA
genGA+hm
genGA+me

genGA+ri

(c) 400k evaluations.

Fig. 2.4 Running FC for three stopping criteria: 40k, 100k, and 400k evaluations.

26 B. Sarasola and E. Alba

2.5.3 Studying Weicker’smetrics

This section studies the usage of three metrics proposed by Weicker (accuracy,
stability, and reactivity) to measure the performance of the analyzed algorithms.
Among these three measures, accuracy is the main one, while the other two pro-
vide complementary results. The advantage of using accuracy is that it provides a
bounded range of values in [0,1]. However, it is necessary to use a value as reference
for the optimum in the current landscape; this value may be unknown in real-world
problems, although we could use the current known optimum for such a search
space, further research could find new optima and make our results deprecated.

We have compared the results achieved by the three measures and verified that
several problems arise. First, accuracy is affected by the same problem as the pre-
viously described measures (Table 2(a)). Second, stability does not directly relate
to the goodness of solutions (Table 2(b)). There, the canonical genGA is the most
stable algorithm after 40k evaluations, while genGA+me is the most stable one for
100k and 400k evaluations. Interestingly, the least stable algorithm in all cases is
genGA+ri, although it achieves high-quality solutions. This is due to high fitness
drops when the environment changes. Even if genGA+ri is able to recover fast after
changes happen, the severe descent in the accuracy affects the final stability. Finally,
as stated in [1], ε-reactivity results are usually insignificant; in our experiments, all
four algorithms obtain the same average ε-reactivity = 1.

Table 2.2 Weicker’s measures results for 40k, 100k, and 400k evaluations.

(a) Accuracy

Evals genGA genGA+hm genGA+me genGA+ri
40,000 9.170e-01 6.4e−03 9.171e-01 8.7e−03 9.338e-01 8.8e−03 9.465e-01 8.9e−03

100,000 9.133e-01 9.0e−03 9.159e-01 8.7e−03 9.396e-01 9.3e−03 9.486e-01 8.5e−03
400,000 9.127e-01 9.1e−03 9.167e-01 9.1e−03 9.544e-01 1.3e−02 9.473e-01 8.6e−03

(b) Stability

Evals genGA genGA+hm genGA+me genGA+ri
40,000 3.588e-04 1.3e−04 3.934e-04 1.2e−04 3.901e-04 2.5e−04 1.859e-03 1.5e−03

100,000 3.852e-04 1.1e−04 4.244e-04 1.3e−04 3.707e-04 2.2e−04 1.810e-03 1.3e−03
400,000 4.010e-04 1.2e−04 4.290e-04 1.1e−04 3.234e-04 2.4e−04 1.789e-03 1.3e−03

2.5.4 Translating Intuition and Graphs into Numerical Values:
βdegradation

The resulting slopes detected in our instances are shown in Table 2.3. Consider-
ing the longest period length p = 400, algorithm genGA+me degrades the least;
in fact, it is able to improve the accuracy as the optimization process advances.

2 Quantitative Performance Measures for Dynamic Optimization Problems 27

This trend is already detected with p = 40. Canonical genGA is the one most af-
fected by degradation through all experiments. Fig. 2.5 shows the regression line
obtained for the four algorithms. It is also visually evident that genGA+me obtains
the ascending line with the steepest slope, which indicates the absence of degrada-
tion and higher improvement of solutions. Besides, genGA obtains the steepest de-
scendant line, which indicates a faster degradation. We can remark that βdegradation

values are of the order of 10−4 to 10−6. This is not only due to the high number of
periods, but also to accuracy ranging in [0,1].

Table 2.3 βdegradation for each algorithm and number of periods.

Periods genGA genGA+hm genGA+me genGA+ri
40 -4.4835e-04 -1.9975e-04 8.5789e-05 -1.9254e-05
100 -2.8144e-05 -1.1124e-04 1.5504e-04 3.0762e-05
400 -3.4919e-06 1.5469e-06 7.3754e-05 -2.0230e-06

In summary, in this section we have shown that our degradation measure provides
representative results for different period lengths, and more important, it is able to
detect trends at early optimization stages which are later confirmed after longer
simulation times.

2.6 A General Performance Measure for DOPs: abc

The objective in this section is introducing a more general tool to measure per-
formance in DOPs. Basically, it consists in measuring the area below the curves
obtained by the algorithm while exploring the search space [2].

2.6.1 Definitions

First we need to define the concept of population attribute. An attribute of a popu-
lation is a value which can be measured at any time step. An attribute can depend
uniquely on the current solutions in the population, but it can also partly depend
on the previous population, or even on all successive generations which precede it.
Examples of attributes are the best fitness in a population, the standard deviation,
and the average best-of-generation fitness so far.

Next, we need to introduce the area below a curve (abc). It can be mathematically
defined as follows. Let pA(x) be the function which determines a certain attribute
value achieved by algorithm A in each generation. The area below pA(x) can be
calculated as the definite integral of pA(x) over the interval [1,N], where N is the
total number of generations. We normalize the area by averaging it over the total
number of generations (see Equation 2.9).

28 B. Sarasola and E. Alba

0 5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Periods

A
cc

ur
ac

y

β degradation = −0.00044835

(a) genGA

0 5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Periods

A
cc

ur
ac

y

β degradation = −0.00019975

(b) genGA+hm

0 5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Periods

A
cc

ur
ac

y

β degradation = 0.00008579

(c) genGA+me

0 5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Periods

A
cc

ur
ac

y

β degradation = −0.00001925

(d) genGA+ri

Fig. 2.5 Linear regression after 40 periods for genGA (top left), genGA+hm (top right),
genGA+me (bottom left), and genGA+ri (bottom right).

abcA
p =

1
N

∫ N

1
pA(x)dx, (2.9)

Since pA(x) is defined as a discrete function, abcA can be intuitively calculated as
the sum of the differential areas for each pair of generations [i, i+ 1]. We can there-
fore calculate the area using the trapezoidal method with unit spacing (see Equa-
tion 2.10).

abcA
p =

1
N

N−1

∑
i=1

(
pA(i)+

|pA(i+ 1)− pA(i)|
2

)
, (2.10)

2.6.2 Solving the Moving Peaks Problem

In this case, we use a problem configuration which corresponds closely to the third
standard scenario proposed by Branke. We use a plane defined in (0,100)× (0,100)
with 5 dimensions and 50 peaks. The peak heights are defined in the interval [30.0,

2 Quantitative Performance Measures for Dynamic Optimization Problems 29

70.0] and the widths in [1.0, 12.0]. The height change severity is set to 1.0 and the
width change severity to 0.5. Changes occur every 1000 evaluations and λ = 0.5.

The results provided by the BOG can be categorized in two groups of algorithms
with respect to performance . The first group (Group 1 from now on) is formed
by genGA+me and genGA+ri, whose results are in (34,36), and the second group
(Group 2) is composed by genGA, genGA+re, and genGA+hm, with results ranging
in (27,30) (see Table 2.4, where � denotes that the algorithm in the current row is
significantly better than the algorithm in the column header, while - means no statis-
tical difference could be asserted). Algorithms in the first group are not statistically
different, and the same is true in the case of the second group (see Table 2.5). From
these results it is concluded that memory-based and random immigrants algorithms
are better than hypermutation, complete restart, and canonical genGA.

However, an essential part of the analysis is to remark that it is not possible
to make any distinction between the behaviors of algorithms with no statistically
significant differences between them. This lack of significant difference does not
necessarily mean they behave similarly in the search landscape. In these cases, we
can study the area below the BOG curve.

Table 2.4 BOG obtained for each algorithm on the moving peaks instance.

genGA genGA+re genGA+hm genGA+me genGA+ri
29.0590 28.1864 27.5579 34.2207 35.0185

Table 2.5 Statistical significance tests with respect to the BOG measure.

genGA genGA+hm genGA+re genGA+me
genGA+ri � � � -
genGA+me � � �
genGA+re - -
genGA+hm -

Table 2.6 shows the results of abc with respect to the BOG curve. Now we are
able to see the differences in the dynamics of the algorithms. In effect, algorithms
genGA, genGA+hm, and genGA+re can be now distinguished: the first two of them
obtain similar results, while genGA+re obtains a lower value. This means that the
first two behave similarly, and we can expect they both obtain initially good solu-
tions but lose quality with respect to the performance of genGA+re. On the contrary,
genGA+re is probably more regular than genGA and genGA+hm. The results ob-
tained by genGA+me and genGA+ri are also similar in this case, which suggests
that the two algorithms have a similar behavior during the search.

It is important to notice that these values do not relate directly to the quality of
the solutions. They should be used to study the dynamic behavior of the algorithms,
and they are specially useful to compare statistically similar algorithms; in this case,

30 B. Sarasola and E. Alba

Table 2.6 Normalized abcBOG obtained for each algorithm on the moving peaks instance.

genGA genGA+re genGA+hm genGA+me genGA+ri
31.9366 27.5357 31.3606 34.5355 35.5767

lower values are desirable, since they suggest a better adaptation to changing envi-
ronments in the long term.

Figure 2.6 shows the evolution of the running fitness, the running best-of-
generation average, and the running normalized area below the BOG curve. The
three graphs illustrate the problem we have discussed in this chapter. Figure 2.6(a)
shows that genGA+re is more regular in its behavior than genGA and genGA+hm,
understanding regularity as being able to reach good solutions in most periods. On
the contrary, genGA and genGA+hm find it more difficult to obtain good solutions
after the environment changes, and we can expect this loss of solution quality con-
tinues. Although the average best-of-generation value is very similar in all these
three algorithms, the search behavior is very different, as we can appreciate in Fig-
ure 2.6(b). In Figure 2.6(c) we can check that abcBOG is able to detect this difference.

If we analyze the performance of the algorithms with respect to β -degradation
(see Table 2.7), we can obtain a broader view on how algorithms behave. All the
results in this table are statistically significant. Algorithm genGA+re achieves a
greater value (the one closest to 0), which means it degrades the least: it is the stead-
iest algorithm regarding the quality of the found solutions. Algorithm genGA+ri
obtains the second best β -degradation, that, together with the best BOG, makes
genGA+ri the best algorithm in this experimental setting. The worst results (lowest
β -degradation values) are obtained by genGA and genGA+hm. In this way, we are
able to tell the difference between the search behaviors of the algorithms, specially
when studying genGA+re, genGA, and genGA+hm: the three of them obtain a sim-
ilar final BOG, however, using β -degradation we realize that they are behaving in
quite a different way.

Table 2.7 β -degradation obtained by the algorithms on the studied moving peaks instance.

genGA genGA+re genGA+hm genGA+me genGA+ri
-0.02309 -0.00363 -0.02812 -0.01565 -0.00952

Since we cannot always rely on visually inspecting running graphs to extract con-
clusions of experiments, we consider that our new measures can help to understand
the algorithmic behavior from a numerical point of view.

2 Quantitative Performance Measures for Dynamic Optimization Problems 31

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

5

10

15

20

25

30

35

40

45

50

Evaluations

R
un

ni
ng

 f
itn

es
s

genGA

genGA+re

genGA+hm

genGA+me

genGA+ri

(a) Running fitness.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10

15

20

25

30

35

40

Evaluations

R
un

ni
ng

 a
ve

ra
ge

 B
O

G

genGA

genGA+re

genGA+hm

genGA+me

genGA+ri

(b) Running BOG.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15

20

25

30

35

40

Evaluations

R
un

ni
ng

 a
ve

ra
ge

 a
bc

B
O

G

genGA

genGA+re

genGA+hm

genGA+me

genGA+ri

(c) Running abcBOG.

Fig. 2.6 Running representation of (a) the running fitness, (b) the running best-of-generation,
and (c) the running area below the abcBOG curve for all five algorithms.

32 B. Sarasola and E. Alba

2.7 Conclusions

In this chapter, the most popular measures for DOPs have been studied and analyzed
on the moving peaks benchmark . We have discussed on a measure for fitness degra-
dation, which we call βdegradation. This measure provides a suitable way of quantify-
ing the loss of solution quality as changes in the landscape occur. It is quantitative,
not a mere inspection of a graph, and it is also informative about the behavior of
the algorithm throughout time, unlike accuracy and offline performance . The trend
in the performance can be detected earlier than using any of the other measures de-
scribed in the literature and independently of the simulation time window defined
by the researcher. We have also presented a measure based on the area below the
curve defined by some population attribute and we have applied this measure to
the average best-of generation fitness; this is a useful way to discriminate between
algorithms which could not be distinguished using just standard fitness averages.

Future work includes further studies on how fitness degradation affects other
DOPs, as well as an extensive study on similar ways to measure degradation . We
also plan on using abc to measure other population features (e.g., diversity, robust-
ness), and will consider the approximation of these curves using specific functions
(e.g., polynomial, logarithmic, trigonometric functions).

Acknowledgments. Authors acknowledge funds from the Spanish Ministry of Sciences and
Innovation and FEDER under contracts TIN2008-06491-C04-01 (M* project), TIN2011-
28194 (roadME project), and CICE, Junta de Andalucı́a under contract P07-TIC-03044
(DIRICOM project). Briseida Sarasola is supported by grant AP2009-1680 from the Spanish
government.

References

[1] Alba, E., Saucedo Badı́a, J.F., Luque, G.: A study of canonical GAs for NSOPs. In:
Metaheuristics: Progress in Complex Systems Optimization, p. 245 (2007)

[2] Alba, E., Sarasola, B.: ABC, a new performance tool for algorithms solving dynamic
optimization problems. In: IEEE Congress on Evolutionary Computation, pp. 1–7
(2010)

[3] Alba, E., Sarasola, B.: Measuring fitness degradation in dynamic optimization prob-
lems. In: Proceedings of the European Conference on the Applications of Evolutionary
Computation (2010)

[4] Bird, S., Li, X.: Informative performance metrics for dynamic optimisation problems.
In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computa-
tion, pp. 18–25 (2007)

[5] Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic
Publishers (2002)

[6] Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments.
In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 523–
530. Morgan Kaufmann (1993)

[7] Grefenstette, J.J.: Genetic algorithms for changing environments. In: Second Interna-
tional Conference on Parallel Problem Solving from Nature, pp. 137–144 (1992)

2 Quantitative Performance Measures for Dynamic Optimization Problems 33

[8] Mori, N., Imanishi, S., Kita, H., Nishikawa, Y.: Adaptation to changing environments
by means of the memory based thermodynamical genetic algorithm. In: Proceedings of
the 7th International Conference on Genetic Algorithms, pp. 299–306 (1997)

[9] Morrison, R.: Performance measurement in dynamic environments. In: Branke, J. (ed.)
GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems,
pp. 5–8 (2003)

[10] Morrison, R.W., De Jong, K.A.: Measurement of Population Diversity. In: Collet, P., et
al. (eds.) EA 2001. LNCS, vol. 2310, pp. 31–41. Springer, Heidelberg (2002)

[11] Weicker, K.: Performance Measures for Dynamic Environments. In: Guervós, J.J.M., et
al. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)

[12] Yang, S.: Genetic algorithms with memory- and elitism-based immigrants in dynamic
environments. Evolutionary Computation 16(3), 385–416 (2008)

[13] Yang, S., Tinós, R.: A hybrid immigrants scheme for genetic algorithms in dynamic
environments. International Journal of Automation and Computing, 243–254 (2007)

[14] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evolutionary Computation 12(5), 542–561 (2008)

Chapter 3
Dynamic Function Optimization:
The Moving Peaks Benchmark

Irene Moser and Raymond Chiong

Abstract. Many practical, real-world applications have dynamic features. If the
changes in the fitness function of an optimization problem are moderate, a com-
plete restart of the optimization algorithm may not be warranted. In those cases, it
is meaningful to apply optimization algorithms that can accommodate change. In
the recent past, many researchers have contributed algorithms suited for dynamic
problems. To facilitate the comparison between different approaches, the Moving
Peaks (MP) function was devised. This chapter reviews all known optimization al-
gorithms that have been tested on the dynamic MP problem. The majority of these
approaches are nature-inspired. The results of the best-performing solutions based
on the MP benchmark are directly compared and discussed. In the concluding re-
marks, the main characteristics of good approaches for dynamic optimization are
summarised.

3.1 Introduction

Dynamic function optimization is an active research area. Over the years, many
different algorithms have been proposed to solve various types of dynamic opti-
mization problems. The Moving Peaks (MP) benchmark, created by Branke [7] in
1999, has been used extensively by researchers in this domain to test their own app-
roaches against others.

Irene Moser
Faculty of Information & Communication Technologies,
Swinburne University of Technology,
Victoria 3122, Australia
e-mail: imoser@swin.edu.au

Raymond Chiong
Faculty of Higher Education,
Swinburne University of Technology,
50 Melba Avenue, Lilydale, Victoria 3140, Australia
e-mail: rchiong@swin.edu.au

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 35–59.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

imoser@swin.edu.au
rchiong@swin.edu.au

36 I. Moser and R. Chiong

Designed to cover a large range of dynamically changing fitness landscapes, the
MP problem consists of a multi-dimensional landscape with a definable number
of peaks, where the height, width, and position of each peak are altered slightly
every time a change in the environment occurs. Formally, it can be defined with the
following function:

F(x, t) = max(B(x),max1..mP(x,hi(t),wi(t),pi(t))), (3.1)

where B(x) is the base landscape on which the m peaks move, with each peak P
having its height h, width w and location p. It is necessary to note that the location,
width, height, and movement of the peaks are all free parameters. For the purpose
of performance comparison, three standardized sets of parameter settings, called
Scenario 1, Scenario 2 and Scenario 3 respectively, were defined. With increasing
numbers, the scenarios become more difficult to solve. Most of the benchmark re-
sults have been published predominantly for Scenario 2 with 10 peaks that move at
an average distance of 1/10 of the search space in a random direction, mainly due to
its appropriateness in terms of difficulty and solvability.

In this chapter, we review the existing approaches for solving the MP prob-
lem since its inception. These approaches range from evolutionary algorithms and
swarm intelligence algorithms to hybrid algorithms. Both evolutionary and swarm
intelligence algorithms are population-based stochastic search algorithms inspired
by real dynamic processes such as natural evolution and swarm behaviour (see [13–
15, 20]). Since they typically do not require extensive knowledge of the function
to be optimised, this makes them highly suitable for solving dynamic optimization
problems.

Before ending this section, it is worth noting that the focus of this review is solely
on the MP problem created by Branke [7]. For reviews or surveys with wider scopes
on dynamic optimization, interested readers are referred to the book by Branke [8]
or the survey papers by Jin and Branke [27] and Cruz et al. [16].

The remainder of this chapter is organized as follows. In the next section (i.e.,
Section 8.2), we discuss the fundamental characteristics of the MP problem as well
as the common performance measures used. Following this, we review various cur-
rently known approaches for solving the problem in Section 3.3. A discussion of the
best solutions with comparable results is then given in Section 3.4, and concluding
remarks are drawn in Section 3.5.

3.2 Background

3.2.1 Dynamic Optimization

As discussed before, the MP problem consists of a base landscape with a defin-
able number of peaks created randomly within certain width and height limits.
The solver’s task is to follow the highest peak in a landscape of several moun-
tains while the landscape is changing. There are many free parameters, hence many
different scenarios can be created and different aspects of a given algorithm can be

3 Dynamic Function Optimization: The MP Benchmark 37

tested with this problem. To provide comparable configurations, three sets of stan-
dard parameter settings known as Scenario 1, Scenario 2 and Scenario 3 were pub-
lished as standardized benchmark problems at the same time as the original problem
definition.

The frequency of the landscape change Δe is stated as numbers of function evalu-
ations available to the solver between changes. The movement of the peaks depends
on a linear correlation between a completely random assignment of new coordi-
nates and the direction of the previous move to the new coordinates. A parameter
0≤ λ ≤ 1 is used to define the balance between random and predictable movements
in the shift vector vi:

vi(t) =
s

| r+ vi(t− 1) | ((1−λ)r+λ vi(t− 1)), (3.2)

Here, r is the random shift vector and s is a definable parameter regulating the sever-
ity (length) of the movement. A λ of 0.0 results in a completely random direction of
movement while, a value of 1.0 makes every move’s direction depend entirely on the
direction of the previous move. The effects of the parameter settings are explained
in detail in [10].

When the landscape changes, the location of a peak is shifted by a random vari-
able r drawn from a Gaussian distribution. The heights and widths of all peaks are
also changed by adding Gaussian variables to the present values.

The standard scenarios, i.e. problem instances, most commonly use 5 dimen-
sions. The majority of the existing approaches in the literature have used Scenario
2. The original listing for Scenario 2 leaves a choice with regard to a subset of the
parameters, but typically the settings listed in Table 3.1 are used.

Table 3.1 The choice of parameter value where Scenario 2 admits a range of values – s is the
severity of the change and correlation lambda describes the degree of correlation between the
direction of the current and previous moves, where 0.0 stands for a completely random move
(no correlation)

Parameters Admissible Values Most Common Choice of Value

number of peaks 10−200 10
s 0.0−3.0 1.0
correlation lambda 0.0−1.0 0.0
change every x evaluations 1000−5000 5000

3.2.2 Performance Measures

Measuring algorithm performance in a dynamic environment is not entirely straight-
forward. Early approaches used a specific measure, the “generation-best” for plot-
ting the development of the population as it evolves over time (e.g. [1], [22] and

38 I. Moser and R. Chiong

[56]). Ayvaz et al. [2] proposed measuring the run time until the best result is found.
The drawback with this method is that the algorithm may have found the best so-
lution long before the end of the run. To measure the time until a certain quality is
found, the anticipated quality would have to be known in advance.

De Jong [29] proposed the use of online and offline performances, which differ
in the fact that the online performance is based on every result the fitness func-
tion returns, whereas the offline performance records the fitness of the best solution
known when a new solution is evaluated. They are useful in a context where the
quality of the best possible solution (the highest peak) remains constant over time
(even though its location may change). Grefenstette [22] observed that subtracting
the current (online or offline) performance from the current best would compensate
for this shortcoming and introduced the online and offline errors.

The offline error has since been used as the generally accepted performance mea-
sure in dynamic environments, although its shortcomings are well known: it favours
algorithms that find relatively good solutions early (which is not necessarily a dis-
advantage); it skews the outcome over time due to the averaging factor; and it is
sensitive to the average quality of all available solutions (the average height of the
landscape). For example, when comparing performances on landscapes with vary-
ing numbers of peaks using the offline error, only comparisons on problem instances
with an equal number of peaks are meaningful, and only if the peaks are of the same
average width and height. Despite these disadvantages, the offline error has been
used extensively as a standard performance measure by many researchers for dy-
namic problems.

3.3 Existing Approaches

3.3.1 Evolutionary Algorithms

Initially, most approaches applied to the MP problem were based on evolutionary
algorithms. One of the pioneering solutions can be found in the work of the author
of the MP benchmark. In his seminal work, Branke [7] presented a memory-based
multi-population variant of a Genetic Algorithm (GA), which divides the real-value
encoded population into two parts. One of the parts maintains a population with
a good average fitness and stores fit individuals in memory. After a change, this
population retrieves individuals from the memory. The second population also stores
its best individuals in memory, but does not retrieve any individuals from it. After a
change, the second part of the population is re-randomized.

In the same work, Branke [7] proposed a further alternative according to which
the population is split into three islands. All three populations contribute to the mem-
ory while only one of the populations retrieves individuals from this memory. The
individuals stored in the memory, although inactive, are counted as part of the pop-
ulation. Only the single best individual is added to the memory from time to time
(every 10 generations in this case). For this method, several replacement strate-
gies were explored. The two best-performing strategies were one which replaces

3 Dynamic Function Optimization: The MP Benchmark 39

the most similar individual and a second strategy based on replacing the most sim-
ilar individual if it is of worse fitness. Individuals are retrieved from the memory
after each change, detected through recalculation of the fitness of solutions in the
memory.

Branke used a configuration with 5 peaks for the experiments on the MP bench-
mark. The performance of implementations with one, two and three populations,
each combined with the memory facility, was compared with a single-population
GA that does not use memory. The results show a superior performance of the im-
plementation with two populations when the peaks change their heights but do not
move, whereas the three-population variation performs best when the peaks change
their locations as well as their heights.

While the memory-based GA shows interesting features, Branke conceded that
the application of memory-based approaches is limited, since they are only truly
useful in the case of an exact recurrence of a previous situation. This approach is less
useful for more drastic changes to the landscape. With this in mind, he collaborated
with other researchers to develop the self-organizing scouts approach [9]. Unlike
earlier approaches, this algorithm does not attempt to detect the occurrence of a
change in order to react to it.

The approach [9] is based on a GA with a forking mechanism. Initially, there
is a single population. During the iterations, subpopulations are divided off, each
with a designated search area and size. Each subpopulation’s area size is allocated
according to a predefined distance from the group’s best individual, which defines
the initial group at the time of the separation, then remains constant for the subpop-
ulation’s life cycle.

The number of individuals in the subpopulation varies according to a quality fac-
tor derived from the fitness of the group’s best individual and the level of group
dynamics, a measure of the group’s improvement potential. The improvement po-
tential is determined as the group’s fitness increases during the latest generation.
While the parent population is excluded from the areas of the child populations, the
child populations may search each others’ areas as long as the group’s centre (the
fittest individual) does not enter another child population’s space. Whenever this
happens, the subpopulation is eradicated.

Branke et al. [9] compared the algorithm’s results from solving the MP problem
to results produced by a standard GA on the same problem. The change in severity
of the peak movement was set to 1, whereas the largest value used for the memory-
based approach in [7] was 0.6. The landscape changes every 5000 evaluations. A
crucial definable parameter of the self-organizing scouts approach is the range of
admissible subpopulation sizes. Regardless of the choice of subpopulation sizes,
this self-organizing scouts approach outperforms the standard GA in every instance.
Better results were achieved using larger subpopulation sizes. Varying the overall
population size was reported to have little effect on the outcome. The authors also
concluded that increasing the change frequency of the landscape enhances the ad-
vantage of the proposed approach over the standard GA.

40 I. Moser and R. Chiong

Nevertheless, the numerical results reported in both [7] and [9] used the offline
performance as a measure, which is not universally comparable when the maximum
height of the landscape is unknown. To accommodate comparisons of results from
different publications, Branke and Schmeck [10] introduced the offline error as a
new performance measure for the MP problem. Branke and Schmeck [10] also pre-
sented new empirical results obtained from the self-organizing scouts approach as
well as from the memory-based “two subpopulations” GA proposed in [7], both tri-
alled on an MP instance with 10 peaks. For the comparison, a standard GA and a
memory-based GA were also implemented. The experiments recorded the offline
error for different severities of change and the authors concluded that although the
performance of the algorithms declines with increasing severity in all cases, the
self-organizing scouts as well as the memory/search population approach from [7]
perform far better than the standard versions, maintaining a far greater diversity over
the landscape. Over a larger number of peaks, both the self-organizing scouts and
the memory/search population with increased memory sizes were reportedly able to
maintain a suitable diversity even with as many as 50 peaks. However, this diversity
is only beneficial to the performance in the case of the self-organizing scouts.

Apart from the work of Branke et al., the MP benchmark was also used by Kramer
and Gallagher [31] who devised different implementations of GA variations to find
solutions to a hardware configuration problem. The hardware was intended as a
controller for a device. Within the controller, the GA’s task is to evolve a neural net-
work with a suitable strategy to optimise a controlled device’s performance based
on sensor input. The GA receives scalar feedback on the controlled device’s perfor-
mance from a consumer. Initial comparisons between the performances of the GA
implementations were made using the MP problem. Due to the specific needs of the
controller project, the MP parameter settings used were somewhat original and did
not compare to commonly used instances.

The GA approach [31] uses elitism, mutation and re-sampling. It evolves a real-
value encoded probability vector which gets feedback from the binary encoded so-
lutions. The re-sampling strategy re-evaluates the fitness of the current best solution
to detect a change. This base implementation is then enhanced with hypermutation
and random immigrants to form two different variations, which were tested against
the performance of the base version.

As benchmark, an MP scenario with 25 narrow peaks was used with a single
peak moving among a grid of smaller, equally sized and shaped peaks. Experimental
results show that the algorithm variations using enhanced diversification outperform
the basic approach as expected on both metrics used: the online error and the pre-
shift error. While the online error is one of the optional metrics provided with the MP
benchmark, the pre-shift error is a measure introduced by Kramer and Gallagher. It
records the deviation from the current maximum immediately before the landscape
is changed again.

The original memory-based multi-population GA by Branke [7] forms the basis
of the algorithm developed by Zou et al. [59]. Instead of describing the partitioning
as two populations and a memory, as in [7], Zou et al. defined them as three popula-
tions – memory, mutation and reinitialization. The memory is initialized at the time

3 Dynamic Function Optimization: The MP Benchmark 41

the initial population of all parts is created, and the ”reinitialization” population per-
forms the tasks of Branke’s ”search” population. This population only contributes
to the memory (as was the case in Branke’s approach), whereas the “mutation” pop-
ulation exploits the memory as well as contributes to it. The ”reinitialization” pop-
ulation is recreated after a change has been detected (as was the case in Branke’s
“search” population). The only apparent difference between Zou et al.’s algorithm
and Branke’s lies in the use of a chaotic sequence for all random number generations
in [59].

Zou et al. used two problems for their experimental validation, a parabolic func-
tion and the MP problem. They benchmarked their approach with an evolutionary
algorithm introduced by Angeline [1] and reported a favourable comparison. One
of the two problem instances used by Zou et al. seems identical with the one used
by Branke in [7]. The offline performance given in both papers could therefore be
expected to be comparable, indicating that the new algorithm described in [59] com-
petes favourably with the earlier version. The authors, however, maintained that their
performance evaluation was different from the method used in the original paper by
Branke.

Moving away from memory-based approaches, Ronnewinkel and Martinetz [49]
explored a speciation approach that applies the formation of colonies. Named the
MPGA, it bears some resemblance to the self-organizing scouts approach in [9].
In Ronnewinkel and Martinetz’s approach, colonies are formed around centroids
defined as individuals with the best fitness in the region. The individuals are listed
by distances. Slumps in the fitness scores of the individuals indicate borders between
colonies. As with the parent population of the self-organizing scouts, the “search”
population is allowed to roam the space between child populations (called colonies),
but not to enter the space of a colony. New centroids are detected and colonies are
divided off when two colonies split – it is the emerging fitness slumps between
the members which give rise to a split – or when the “search” population finds a
new individual whose fitness is competitive with the existing centroids. Colonies
are merged when a valley between the fitnesses of their members disappears.

To further enhance diversity, Ronnewinkel and Martinetz kept a list of centroids
which is longer than the actual number of individuals in the colony count. Poten-
tial candidates are stored at the end. When all centroids’ fitnesses are re-evaluated,
centroids may move up in the ranking list and start a new colony. To the same end,
the general search population uses a diversity-preserving selection. One obvious
advantage of their approach over the self-organizing scouts, mentioned also by the
authors, is that no minimum or maximum diameter values have to be set beforehand.

For their experiments, Ronnewinkel and Martinetz used settings almost identical
to Scenario 1 of the MP benchmark. The MPGA was compared with many GAs
that maintain diversity by tag sharing, deterministic crowding, multi-niche crowd-
ing and restricted tournament selection. The results reported in terms of the offline
error suggest that the MPGA outperforms all its competitors, although it is clearly
superior only in the case of 5 peaks, less so when 50 peaks are present.

42 I. Moser and R. Chiong

Even though the MP problem is single-objective in nature, Bui, Branke and Ab-
bass [11] applied a multi-objective GA formulation to it by introducing a second
objective that serves the purpose of maintaining diversity. To this end, the authors
introduced six alternative “artificial” objectives: time-based, random, inversion of
the primary objective function, distance to the closest neighbour, average distance
to all individuals, and the distance to the best individual in the population. These
variations were compared to a standard GA and a random immigrants version –
both with elitism – on Scenario 2 of the MP problem, with a choice of 50 peaks.
The average generation error was used as a performance measure. To obtain this
metric, the height of each generation’s best individual is subtracted from the maxi-
mum height in the landscape. The multi-objective variations that used the distance
to all other individuals and the distance to the nearest individual as second objectives
were reported to perform significantly better than all other GAs.

Bui, Branke and Abbass [12] later extended their work by applying the Non-
dominated Sorting Genetic Algorithm version 2 (NSGA-II) [18]. The extension
ranks the non-dominated solutions and maintains diversity using the crowding dis-
tance as a basis for the implementation of the six artificial objectives listed before.
As in [11], a standard GA and a random immigrants version with varying crossover
and mutation rates were used as benchmarks for the experimental study. Addition-
ally, a benchmark algorithm called MutateHigh was used, implemented as a standard
GA with a 50% mutation rate. Again, the average generation error was applied as a
measure, but this time, the more generally used offline error was also given. In their
experiments, the authors varied the extent of the changes in height and width. The
variations of the multi-objective optimiser as described in [11] were applied and
found to perform better than the standard GA on all 4 problem instances with diffe-
rent change severities. Each variant achieves its best results with different crossover
and/or mutation rates.

Fentress [21] introduced a new concept – exaptation, defined as adaptation to
a situation that may or may not occur in the future. He “preapted” solutions with
potential to become global maxima using a GA with hill-climbing scouts. The algo-
rithm performed well due to the smooth ascent provided by the instances of the MP
problem used. So as not to exploit this trait, Fentress further developed his approach
into a multi-population GA called mp-eGA with tribes centred around a randomly
chosen point. A Gaussian distribution was used to produce the next generation in an
attempt to keep the centre points of the tribes within a reasonable proximity. As the
tribes evolve, the search space of the tribes is limited by the Gaussian distribution to
prevent individuals from being located undesirably close to the centre of a different
tribe. The population size is adapted dynamically depending on the quality of the
tribe. The quality is measured as a function of the dynamism of the tribe (difference
in fitnesses) and the aggregated fitness. This fitness measure was first introduced in
[9].

The performance of this algorithm was compared to the author’s implementa-
tion of a standard GA with the inclusion of the variations proposed by Branke [7]
and Branke et al. [9]. The results, measured as the normalised offline performance,
suggest that the mp-eGA outperforms the benchmarks used for comparison by

3 Dynamic Function Optimization: The MP Benchmark 43

5%-10%. The question arises whether the employed method to enforce diversifi-
cation in a multi-population GA deserves the term exaptation. This becomes partic-
ularly evident in the case of the hill-climbing GA: the populations simply maintain a
position on the highest point of the existing peaks; evidence of the algorithm finding
maxima before they emerge could not be found in the description.

Zeng et al. [58] proposed an orthogonal design based evolutionary algorithm,
called the ODEA, where its population consists of “niches” instead of individuals.
Each niche selects the best solution found so far as its representative. An orthogonal
design method is then employed to work on these niches, guided by a mutation
operator. Some niches – the “observer niches” – watch over known peaks, and others
– the “explorer niches” – find new peaks. The former niches make full use of fitness
similarities of the landscapes before and after a change, while the latter carry out
a global search. The authors compared their algorithm to the self-organizing scouts
introduced by Branke et al. [9]. Numerical results on different peak movements,
number of peaks and dimensionalities show that the ODEA performs better than the
self-organizing scouts.

Ayvaz et al. [2] presented a review of several evolutionary approaches with diffe-
rent characteristics. They compared the algorithms’ performances on an undefined
scenario, exploring the algorithms under different levels of severity of change. Their
empirical studies indicated that the self-organizing scouts [9] might produce the best
results among the compared evolutionary algorithms. The authors also proposed
that the self-organizing scouts could perform even better when enhanced with a
crossover-based local search introduced by Lozano et al. [38].

The efficacy of Branke et al.’s self-organizing scouts was further evident in the
work of Woldesenbet and Yen [55], who proposed a new dynamic evolutionary al-
gorithm that uses variable relocation for dynamic optimization problems. The algo-
rithm of Woldesenbet and Yen is based on the idea that individuals in the population
could be shifted if a change in the environment occurs to fit the resulting new loca-
tions of the optima better. For each individual, the fitness change is computed and
compared to its parents as well as the movement vector relative to the centroid of its
parents. A floating average is maintained on these values for each of the individuals.
The information is apportioned to each dimension separately, averaged, and then
used to compute a sensitivity value which relates the measured fitness change to
changes in the decision variable which, again, is apportioned to each dimension. It
is clear that a fitness change in an individual can arise from moving the individual in
the decision space or from a change in the environment. If an environment change
occurs, re-evaluating the population can provide an estimation of the sensitivity of
the fitness towards the change. The change in fitness, be it positive or negative, is
then used to compute a suitable relocation radius and direction for moving the in-
dividuals along the previously computed decision variable sensitivity vector. This
movement is bounded by a minimum and maximum distance as well as the limits
of the search space, and performed a specified number of times.

Woldesenbet and Yen tested their algorithm against several dynamic benchmark
problems, one of which is the MP problem, and compared it to some state-of-the-
art dynamic evolutionary approaches, including the self-organizing scouts. In their

44 I. Moser and R. Chiong

experiments, two variations of the proposed algorithm – one enhanced with mem-
ory, and another using several clusters to preserve diversity – were introduced. Nu-
merical results based on the MP benchmark with varying numbers of peaks suggest
that the variation enhanced with memory performs significantly better than other
dynamic evolutionary algorithms, except the self-organizing scouts. For all but the
single peak problem, the memory-enhanced variant provides either comparable or
worse results than the self-organizing scouts. In their effort to further improve the
algorithm’s performance, Woldesenbet and Yen used a clustering technique for di-
versity preservation, and showed that this modification produces superior results to
that of the self-organizing scouts in all comparisons.

3.3.2 Swarm Intelligence Algorithms

Particle Swarm optimization (PSO) is another popular method that has been used
extensively in the dynamic optimization domain. Inspired by the flocking behaviour
of swarms, each particle in PSO has a gradually diminishing velocity and is attracted
to the swarm’s best-known location. Some alternative implementations also use a
personal best location as a secondary attractor. Typically, PSO’s particles slow down
to provide a more fine-grained exploration towards the end of the search process.
This convergence behaviour, however, is less desirable in dynamic environments
(such as the MP problem).

Blackwell [5], who introduced charged particles (hence CPSO) that repel each
other and circle around neutral particles of the swarm for better convergence be-
haviour, was among the first to study PSO for the MP problem. Later, Blackwell and
Branke [3] applied a multi-population version of the same approach as multi-CPSO
to the same problem. They also introduced multi-Quantum Swarm optimization
(multi-QSO), a variation whose charged particles move randomly within a cloud
of a fixed radius centred around the swarm attractor. Both alternatives use an exclu-
sion radius to stop swarms from exploring the same areas, reinitialising the worse-
performing of two swarms when found in each others’ exclusion zones.

Given a constant number of 100 particles, Blackwell and Branke demonstrated
experimentally that the optimal number of swarms for Scenario 2 is around 10 (±1),
and that the usage of a single swarm leads to convergence to a local optimum for
all algorithms (PSO, multi-CPSO, multi-QSO). Multi-QSO in particular has shown
superior performance in almost all configurations and produced the best result in the
test series.

Unlike the PSO approaches by Blackwell and Branke, Janson and Middendorf
[26] proposed to respond explicitly to a change in the landscape after detection.
Their hierarchical variation of the PSO (H-PSO), first explored in a static context
(see [25]), was compared experimentally to variations of the same base algorithm.
Instead of following a global attractor, each particle in H-PSO uses the best loca-
tion found by the individual immediately above it in the tree structure in addition
to its own best find. At each evaluation, the tree structure is adjusted root to leaf by

3 Dynamic Function Optimization: The MP Benchmark 45

swapping nodes if the child node has performed better. Using diverse attractors,
this structure is likely to maintain diversity in a dynamic environment. Diversity
maintenance is further enhanced by a feature that reinitialises a defined number of
particles to a random position when a change has been detected.

A variation named Partitioned H-PSO (PH-PSO) was also introduced. It divides
the tree structure into subtrees whose nodes are reinitialized if they are at a prede-
fined level in the tree. This leaves the root node and a given level of children to
preserve the memory of a previous location, while the lower branches have their
new root nodes reinitialized. After a given period of time, the branches are rejoined
to the tree according to the structure evaluation procedure.

A comparison between PSO, H-PSO and PH-PSO was reported on experiments
with three different functions, the MP problem among them. It is not clear which
scenario has been used, though change severities of 0.1 and 3.0 are stated. The
offline errors are shown as a graph, not as a list of numerical values. It seems that H-
PSO outperforms the other variations on instances with smaller severity, while PH-
PSO is the most successful on more severe changes if all subtrees are reinitialized
after a change.

In a concurrently developed study, Parrott and Li [46] adapted the speciation
technique introduced for GA by Li et al. [33] to PSO. Given an area defined by
a fixed radius around the attractor (the best particle in the species), the members
of the species are defined by the area they are located in. In case of overlap, the
member belongs to the species with superior attractor. When a maximum number of
members to the species is exceeded, the worst members are reinitialized to random
positions.

As a performance measure, the deviation of the best particle from the global opti-
mum was used. Parrott and Li investigated different population sizes and speciation
radii. They concluded that large radii and larger population sizes lead to a more even
spread over the landscape1 and therefore provide swifter reactions to change. Since
the authors used the benchmark problem defined by De Jong and Morrison [28] in-
stead of the MP problem, their results do not compare with other PSO approaches
reviewed here. We included it because this approach forms the basis of another app-
roach (see the later part of this section) to the MP benchmark.

Based on earlier work, Blackwell and Branke [4] added anti-convergence to the
exclusion and quantum/charged particle features first conceived in [5] and [3]. Anti-
convergence maintains diversity through a mechanism that reinitialises the worst-
performing swarm as soon as all swarms have converged. As exclusion radii around
the existing swarms are enforced, the new swarm is guaranteed to search for a new
peak.

An analysis of the ideal parameter settings for swarm size and quantum cloud
radius, which are derived from the peak shift distance, has also been included in [4].
Similarly, the number of swarms was set equal to the number of peaks. This assumes
that both the distance and the peak count are known and do not vary greatly.

1 See [54] for a detailed discussion of various issues in the fitness landscape.

46 I. Moser and R. Chiong

Implementations based on quantum and charged particles were compared on Sce-
nario 2 of the MP problem. The best-performing configuration is a quantum multi-
swarm approach with 5 quantum and 5 neutral particles and as many swarms as there
are peaks. The experimental results show that anti-convergence is beneficial when
there are more swarms than peaks. Nevertheless, Blackwell and Branke pointed out
that the performance deteriorates when there are more swarms than peaks due to the
constant reinitialization of swarms that cannot find a peak (as all peaks are occu-
pied). Consequently, this approach shows little promise for an environment where
the number of peaks is unknown, which is likely to be the case in real-life optimiza-
tion problems.

To overcome the limitation, Li, Branke and Blackwell [35] combined some as-
pects of the previous work of Blackwell and Branke [4] with the notion of speciation
PSO (S-PSO) introduced in an earlier publication of Li [34]. The approach was de-
signed to optimise problems with primarily unknown numbers of peaks. It tackles
problem dynamics by detection and response. After each change, the species are
reinitialized by sorting the particles according to the new fitness and adding them
to an existing species if the landscape already has particles within the predefined
species radius. If it did not have particles, the new particles are made new species
centres. The algorithm observes a maximum member count of species, which was
devised first by Parrot and Li [46]. Particles that exceed this threshold are initialized
to a random location. Various anti-convergence techniques explored by Blackwell
and Branke in [3] and [4] were added to different variations of the algorithm and
the performances of all implementations were compared. As a new step towards di-
versity maintenance, a diversity measure is introduced for particles within the same
species. Species that have converged past this threshold are reinitialized around the
best-performing particle.

S-PSO was tested on Scenario 2 of the MP problem. The authors concluded that
the best-performing variation seems to be a PSO with speciation and an initial pop-
ulation of neutral particles, in which the converged swarms are placed randomly
within a radius of their previous attractor. A subswarm is considered as having con-
verged when the distance between the central (attractor) particle and the farthest
particle is less than 0.1. One-half of the particles are reinitialized as neutral, the
other half as quantum particles as described by Blackwell and Branke [4]. The neu-
tral particles are designed to perform the hill-climbing task.

Following the trend, Wang et al. [53] introduced Branke’s technique of applying
a multi-population approach, originally used with a GA [7], to PSO. The memory-
based reinitialization of the population is triggered by the discovery of a peak. The
intended diversity maintenance therefore responds not only to change but also to
the challenge of a multi-modal landscape where several optima have to be discov-
ered. Based on the MP benchmark, the authors carried out experiments to com-
pare the performance of several PSO algorithms with that of the proposed triggered
memory-based scheme. From their results, Wang et al. concluded that the mem-
ory mechanism can improve the performance of PSOs in dynamic environments.
Moreover, the triggered memory method has shown to be more efficient than the
traditional memory method in exploring the solution space.

3 Dynamic Function Optimization: The MP Benchmark 47

Du and Li [19] proposed a new Multi-strategy Ensemble PSO (MEPSO) for dy-
namic optimization. For the purpose of achieving a good balance between explo-
ration and exploitation, all particles in MEPSO are divided into two parts: the first
part is designed for enhancing the convergence ability of the algorithm, and the other
for extending the search area of the particle population to avoid being trapped in a
local optimum. Two new strategies, Gaussian local search and differential mutation,
were introduced to develop the individuals of each of these parts separately. Com-
paring MEPSO to other PSOs – including multi-QSO, PH-PSO and a standard PSO
with reinitialization – on the MP problem, Du and Li demonstrated that their algo-
rithm can outperform the rest in all tested conditions (varying numbers of peaks,
varying degrees of severity and different dimensionalities) when the dynamic envi-
ronment is unimodal. Although multi-QSO tends to perform better than MEPSO in
multimodal environments (especially when the number of swarms is larger than the
number of peaks), it has been observed that multi-QSO is more sensitive to param-
eter settings than MEPSO.

Inspired by Branke et al.’s self-organizing scouts [9], Li and Yang presented a
Fast Multi-Swarm optimization (FMSO) algorithm [32] to locate and track multiple
optima in dynamic environments. In FMSO, two types of swarms are used: a parent
swarm for maintaining diversity and detecting the most promising area in the search
space when the environment changes, and a group of child swarms for exploring
the local areas in their own subspaces. Each child swarm has a search radius, and
there is no overlap among all child swarms as the radii act as exclusion zones. If the
distance between two child swarms is less than their radius, the whole swarm of the
worse one is removed. This guarantees that no more than one child swarm covers a
single peak.

Li and Yang compared the performance of FMSO with that of the OMEA [58],
an algorithm that was shown to outperform the self-organizing scouts (see Section
3.3.1). Numerical results based on the MP problem indicate that FMSO performs
better than the OMEA. In addition, the experiments also demonstrated that FMSO
can find not only the global or near-global optimum, but also track the moving best
solution in a dynamic environment. As pointed out by the authors, however, the
performance of FMSO is quite sensitive to the radius of child swarms.

A new kind of particles, called “compound particles”, was introduced by Liu et
al. [36] to form part of the PSO population. The compound PSO has both indepen-
dent and compound particles. Independent particles behave according to the PSO
paradigm of shifting particles in the direction of both a local and global best posi-
tion. Compound particles, on the other hand, consist of three individual particles.
When the swarm has been randomly initialized, some of the swarm members are
chosen to become compound particles. Each of these particles is then combined
with two other particles, which are chosen such that the connecting edges between
them are of length L, and the three particles form a triangle in a two-dimensional
space.

When a compound particle moves, the worst of the three member particles, de-
noted by W, is chosen as a base. A point between the other particles, A and B, is
created and denoted by C. W and C are subsequently used to form a triangle with

48 I. Moser and R. Chiong

a new point R, which is created with the help of a reflection vector. If R has a bet-
ter fitness than W, a new point E is created along the extension of the line between
W and R. The new compound particle then consists of the point E and the original
points A and B.

Using the MP problem as a benchmark, Liu et al. compared their compound PSO
to a basic PSO as well as Parrot and Li’s [46] S-PSO. Unfortunately, none of the 9
scenarios used coincides with Branke’s scenarios. Based on 10 peaks, the scenarios
differ in the severity of change as well as the change interval, which is not defined in
terms of function evaluations but numbers of generations. As we do not know their
population sizes and cannot infer the number of evaluations used, we have to rely
on the authors’ comparison with Parrot and Li’s implementation, which is reported
to outperform the compound PSO only sporadically. This new PSO approach was
further investigated in [37].

For the purpose of preserving diversity, Hashemi and Meybodi [23] proposed a
cellular PSO algorithm and tested it on the MP problem. In this algorithm, a cellular
automaton partitions the search space into cells. At any time, in some cells of the
cellular automaton a group of particles will search for a local optimum using their
best personal experience and the best solution found in their neighbouring cells.
To prevent diversity loss, a limit is imposed on the number of particles in each
cell. Experimental studies, which compare this approach to the well-known PSO
approach by Blackwell and Branke in [4], suggest that the cellular PSO method can
be highly competitive. In addition, the authors claim that cellular PSO requires less
computational effort since it does not need to compute the distances between every
pair of particles in the swarm on every iteration.

Subsequently, Kamosi et al. [30] presented a multi-swarm algorithm with very
similar ideas to those behind the FMSO algorithm proposed by Li and Yang [32].
As in FMSO, two types of swarms are used: a parent swarm for exploring the search
space, and several non-overlapping child swarms for exploiting a promising area
found by the parent swarm. To prevent redundant search around the same area, two
procedures were adopted. First, a parent particle will be reinitialized if it collides
with a child swarm. Second, if two child swarms collide, the one with the least fit-
ness will be removed. In addition, to track the local optima after detecting a change
in the environment, particles in each child swarm change their behaviour to quantum
particles temporarily and perform a random search around the child swarm’s attrac-
tor. Experimental results on the MP benchmark suggest that the proposed algorithm
outperforms other PSO algorithms in comparison, including FMSO and the cellular
PSO method [23] previously introduced by the same group of authors, on all tested
configurations.

While multi-swarm approaches have proved useful in dynamic optimization,
there are several important issues to consider (e.g., how to guide particles to diffe-
rent promising subregions, how to determine the proper number of subswarms, how
to calculate the search area of each subswarm, how to create subswarms, etc.) for
this kind of approaches to work well. To address these issues, Yang and Li [57]
investigated a clustering PSO where a hierarchical clustering method is used to lo-
cate and track multiple peaks. With this clustering method, the appropriate number

3 Dynamic Function Optimization: The MP Benchmark 49

of subswarms is automatically determined and the search area of each subswarm is
also automatically calculated. A local search method is introduced to search optimal
solutions in a promising subregion found by the clustering method.

Yang and Li conducted numerous experiments to test the performance of their
clustering PSO, and compared it to several state-of-the-art multi-swarm algorithms
from the literature. Experimental results suggest that their clustering PSO outper-
forms all others on the MP problem with different shift severities. The performance
of the clustering PSO also seems to scale well with different numbers of peaks.
When the number of peaks is less than 20, the clustering PSO performs better than
all the other peer algorithms. When optimising problem instances with more than
20 peaks, the clustering PSO’s results are still superior to those produced by other
approaches with the exception of a hybrid algorithm by Lung and Dumitrescu [39]
(which will be discussed in Section 3.3.3).

3.3.3 Hybrid Approaches

Besides evolutionary algorithms and PSO, there also exist several highly effective
hybrid/cooperative approaches2 for solving the MP problem. One such example can
be found in the work of Mendes and Mohais [41] who experimented with a multi-
population approach of Differential Evolution (DE) and explored seven different
schemes in combination with three ways of developing elite individuals, one of
them based on the idea of quantum particles introduced by Blackwell and Branke
[3]. Their experiments used Scenario 2 whose peak count of 10 is assumed to be a
known constant and subsequently used as the fixed number of populations and in de-
termining the diameter of the exclusion zones. In case of an overlap, the population
with an inferior best solution is reinitialized.

Mendes and Mohais reported having achieved their best results using a scheme
that involves the best individual and the difference between four random population-
best individuals. This best-performing implementation uses 40% elite individuals
created from the population-best individual using a Gaussian distribution. Experi-
mental results show that these settings equal the performance observed by Blackwell
and Branke [3]. The authors also observed that smaller populations achieve better
results and they attributed this to the frequency of change in Scenario 2, which is
once in 5000 iterations.

The good performances of Blackwell and Branke’s PSO and Mendes and Mo-
hais’ DE encouraged Lung and Dumitrescu [39] to develop a hybrid algorithm that
combines PSO and a Crowding DE, called Collaborative Evolutionary-Swarm op-
timization (CESO), in which equal populations of both methods collaborate. The
Crowding DE maintains diversity by replacing the closest individual if it is fitter.
The PSO’s task is then to converge to the global optimum. Whenever a change is

2 It is never easy to clearly distinguish/categorize different types of methods, as some of
the previously discussed algorithms in Sections 3.3.1 and 3.3.2 could be seen as hybrid/-
cooperative approaches too. Our categorization here is partly dictated by the need of our
presentation as well as the sequence of relevant publications.

50 I. Moser and R. Chiong

detected, the PSO swarm is reinitialized to the Crowding DE population. Their re-
sults on Scenario 2 with 10 peaks surpass those of Blackwell and Branke’s as well
as Mendes and Mohais’.

Afterwards, Lung and Dumitrescu extended their work with a new collabora-
tive model called Evolutionary Swarm Cooperative Algorithm (ESCA) [40]. ESCA
uses three equal-sized populations of individuals: a main population evolving by the
rules of Crowding DE, a particle swarm population, and another Crowding DE pop-
ulation acting as a memory for the main population. Three types of collaboration
mechanisms are used to transmit information between populations, and they differ
in the mode and quantity of information transmitted. The performance of ESCA
was evaluated using numerical experiments on the MP benchmark, and reported an
outstanding result on Scenario 2 with the standard settings. Even though the offline
error obtained is not as good as CESO, ESCA is shown to be able to cope better
with severe changes in the fitness landscape than CESO.

Despite these impressive results, the best solution in the literature comes in a
very simple algorithm first presented by Moser and Hendtlass [44], called Multi-
phase Multi-individual Extremal optimization (MMEO). As suggested by the name,
MMEO is a multi-phase, multi-individual version of the Extremal optimization (EO)
approach originally designed by Boettcher and Percus [6]. Based on a very simple
principle of mutating a single solution according to a power-law distribution, EO
attempts to exclude bad solutions rather than to find good solutions. In other words,
EO was not designed to show any convergence behaviour. This characteristic makes
it a very promising choice for dynamic problems where the time of change is not
known.

Devised especially for the MP problem, however, MMEO is better suited to the
tracking task of following the peaks and scores high on the offline error metric. It
consists of separating global and local search phases with deterministic sampling
strategies and devices to save function evaluations. Consequently, it outperforms all
the available approaches mentioned above based on the offline error on Scenario 2.

Although the results were exceptional, the local search component of MMEO
still carries out redundant steps which cause unnecessary function evaluations. Fur-
thermore, the step lengths used in [44] were chosen without careful consideration.
As such, the use of Hooke-Jeeves (HJ) pattern search to further enhance the per-
formance of MMEO has been examined by Moser and Chiong [43]. Proposed by
Hooke and Jeeves [24] almost 50 years ago, the HJ pattern search is still among the
first choices for researchers in need of a deterministic local search. It starts with a
base point followed by exploratory moves that change the values of the dimensional
variables one at a time. A combined pattern move then repeats all changes that are
found to be successful in the exploratory move and uses a single function evalua-
tion to evaluate the effect of the combined change. This procedure goes on until no
improving change can be made in any dimension.

The hybrid EO + HJ approach presented by Moser and Chiong [43] differs from
the original MMEO only in the local search part. That is, this hybrid EO algorithm
uses the HJ pattern search with different step length sequences. In addition, the
HJ-based local search also records directions of successful steps of the preceding

3 Dynamic Function Optimization: The MP Benchmark 51

exploratory move. Experimental results on different scenarios, varying numbers of
peaks and varying dimensionalities show that the hybrid EO + HJ approach signifi-
cantly improves the results of MMEO.

In a concurrent attempt to improve the local search phase of MMEO, Moser
and Chiong [45] presented a new MMEO algorithm by systematically exploring
appropriate step length sequences and removing unnecessary redundant steps in its
local search procedure. During the development of the original MMEO, it became
clear that the step lengths used for the local search were crucial for its performance.
The original local search in [44] did not made use of the information as to which
direction the previous successful move had taken. In most cases, moving in the same
direction as the last successful step will further improve the fitness. In some cases,
the last move, although successful, has “overshot the goal” and needs retracting.
It is therefore useful to attempt a move in the opposite direction, but only when
following the previous move’s direction has failed. The new local search in [45]
addressed these issues. Extensive numerical experiments on different configurations
of the MP problem confirmed that the improvement is significant, in which the new
MMEO outperforms all other available solutions in the literature.

3.3.4 Other Approaches

Other types of solutions available for the MP problem include the Stochastic Dif-
fusion Search (SDS) [42], the B-Cell Algorithm (BCA) [50] and the agent-based
cooperative strategies approach [47, 48].

The SDS is a metaheuristic inspired by neural networks. Meyer et al. [42] of-
fered a detailed description of the approach, which involves subdividing the objec-
tive function and assigning different parts of it to agents who evaluate it for their
adopted solution. Initially, solutions are assigned randomly. The success of the par-
tial solution evaluation by the agent decides whether the agent is active. Inactive
agents randomly choose another agent and adopt its solution if the chosen agent is
active. If not, a random solution is created. Although enhanced with some factors
aimed at maintaining diversity, this approach does not compare favourably to local
search and PSO on a pattern matching problem. The authors provided neither a de-
tailed description of the adaptation of SDS to the MP problem nor numerical results;
the performance was simply described as “following the peak almost perfectly”.

The BCA belongs to the class of immune-based algorithms (see [17]). Like evo-
lutionary algorithms, it is a population-based search which evolves a set of ele-
ments called B-cells or antibodies to cope with antigens representing locations of
unknown optima of a given function. Trojanowski [50] applied the algorithm to the
MP benchmark, and used Scenario 2 in the experimental study to investigate vari-
ous properties of the BCA as well as the dynamic environment. The results show
that the algorithm is a viable means for solving the MP problem, and that it copes
well with the increasing number of moving peaks. However, no direct comparison
to other approaches in the literature has been given.

52 I. Moser and R. Chiong

Subsequently, Trojanowski and Wierzchoń [52] presented a comprehensive anal-
ysis of five different immune-based algorithms (one of which is the BCA) based
on the MP problem. Scenarios 1 and 2 with 5 and 50 peaks, respectively, were
used in their experiments. Different types of mutations were studied, and the au-
thors showed that the BCA and another algorithm known as the Artificial Immune
Iterated Algorithm [51] produce the best results among the compared cases.

The cooperative strategies system proposed by Pelta et al. [47, 48] is a decen-
tralized multi-agent approach, where a population of cooperative agents move over
a grid containing a set of solutions to the problem at hand. The grid of solutions
is used as an implicit diversity mechanism. The authors also implemented a sim-
ple strategy to maintain diversity explicitly in two stages: perturbation of a certain
percentage of solutions and a random re-positioning of the agents. In [47], these
diversity-maintaining mechanisms as well as several communication schemes of
the approach were analysed using four different scenarios of the MP problem, but
without any comparison to other solutions in the literature. The results indicate that
the implicit mechanism based on a grid of solutions can be an effective way of pre-
venting diversity loss. However, the explicit mechanism proposed has not performed
as well as expected.

In [48], two kinds of control rules to update the solutions set were studied: one
using a simple frequency based resampling (probabilistic) rule and another one a
fuzzy-set based rule. Apart from studying the behaviour of these two control rules,
the authors also compared their results to Blackwell and Branke’s multi-CPSO and
multi-QSO on Scenario 2 of the MP problem. Numerical results show that the of-
fline errors obtained by the cooperative strategies are either similar or lower than
multi-CPSO and multi-QSO. Nevertheless, no statistical tests were given to ascer-
tain the significance of the results. In terms of the two control rules, the fuzzy one
has obtained better results than the probabilistic counterpart.

3.4 Comparison and Discussion

The results of the approaches described in Section 3.3 are listed here if they were
stated in a comparable form. The scenarios with the given parameters do not rep-
resent instances of the problem, as the resulting instances depend on the random
number generator used. This limitation, however, is reduced in proportion to the
number of trials performed. Therefore, the number of trials is listed with the results
in Table 3.2.

As can be seen from the table, Moser and Chiong’s new MMEO [45] and EO + HJ
[43] have achieved hitherto unsurpassed results on Scenario 2 of the MP problem.
Among the PSO-based solutions with comparable results, Yang and Li’s clustering
PSO [57] obtained the best offline error of 1.06 followed by Blackwell and Branke’s
PSO with anti-convergence [4] on an offline error of 1.80 from solving Scenario 2.
Li et al.’s S-PSO [35] has an offline error of 1.93, while Blackwell and Branke’s
earlier version PSO in [3] achieved an offline error of 2.16.

3 Dynamic Function Optimization: The MP Benchmark 53

Table 3.2 Comparison of the results based on Scenario 2; all authors used the common choice
of value listed in Table 3.1

Publications Base algorithm No. of trials for average Offline errors

Blackwell & Branke [3] PSO 50 2.16±0.06
Li et al. [35] PSO 50 1.93±0.06
Blackwell & Branke [4] PSO 50 1.80±0.06
Mendes & Mohais [41] DE 50 1.75±0.03
Lung & Dumitrescu [40] PSO + DE 50 1.53±0.01
Lung & Dumitrescu [39] PSO + DE 50 1.38±0.02
Yang & Li [57] PSO 50 1.06±0.24
Moser & Hendtlass [44] EO 100 0.66±0.20
Moser & Chiong [43] EO 50 0.25±0.10
Moser & Chiong [45] EO 50 0.25±0.08

Unfortunately, the majority of the solutions based on evolutionary algorithms did
not provide detailed numerical results. Nevertheless, the graphical plots from several
publications as well as some numerical results given in [55] suggest that their results
are no competition for the approaches listed here. Other approaches were not listed
either because no specific scenario was used, information on the settings used was
incomplete or the numerical results used an incomparable unit of measurement.

Table 3.3 presents the experimental results (offline error and standard error) of
seven state-of-the-art algorithms for solving Scenario 2, where the results are taken
directly from the corresponding papers. The information presented in Table 3.3
partly coincides with that presented in Table 3.2, which lists all approaches that
provide numeric results for Scenario 2 with 10 peaks. From the table we see that
the clustering PSO by Yang and Li [57] outperforms all others on one peak, and
the algorithm’s performance is not significantly affected when the number of peaks
increases. Generally speaking, increasing the number of peaks makes it harder for
algorithms to track the optima. An interesting observation, however, is that the of-
fline error of Yang and Li’s clustering PSO actually decreases when the number of
peaks is larger than 20. Similar trends can also be observed on some of the other al-
gorithms. According to Yang and Li, the reason behind this is that when the number
of peaks increases, there will be more local optima that have a similar height as the
global optimum, hence there will be a higher probability for algorithms to find good
but local optima.

The EO-based approaches [43–45] perform poorly on single-peak landscapes.
According to the authors, this is mainly because their local search has long dis-
tances to cross (incurring many function evaluations while the best-known solution
is still poor) using steps that have been calibrated for smaller “mountains”. After a
change, the peak has to be found again from a single stored solution, the previous
peak. While the hybrid EO algorithms have not performed well with one peak, they
outperform all other algorithms on all other instances (see [45] for details).

54 I. Moser and R. Chiong

Table 3.3 Comparison of the results (offline error and standard error) for varying numbers
of peaks based on Scenario 2

Peaks [4] [57] [39] [40] [44] [43] [45]

1 5.07 0.14 1.04 0.98 11.3 7.08 7.47
±0.17 ±0.11 ±0.00 ±0.00 ±3.56 ±1.99 ±1.98

10 1.80 1.06 1.38 1.53 0.66 0.25 0.25
±0.06 ±0.24 ±0.02 ±0.01 ±0.20 ±0.10 ±0.08

20 2.42 1.59 1.72 1.89 0.90 0.39 0.40
±0.07 ±0.22 ±0.02 ±0.04 ±0.16 ±0.10 ±0.11

30 2.48 1.58 1.24 1.52 1.06 0.49 0.49
±0.07 ±0.17 ±0.01 ±0.02 ±0.14 ±0.09 ±0.10

40 2.55 1.51 1.30 1.61 1.18 0.56 0.56
±0.07 ±0.12 ±0.02 ±0.02 ±0.16 ±0.09 ±0.09

50 2.50 1.54 1.45 1.67 1.23 0.58 0.59
±0.06 ±0.12 ±0.01 ±0.02 ±0.11 ±0.09 ±0.10

100 2.36 1.41 1.28 1.61 1.38 0.66 0.66
±0.04 ±0.08 ±0.02 ±0.03 ±0.09 ±0.07 ±0.07

Table 3.4 Comparison of the results (offline error and standard error) for varying shift sever-
ity based on Scenario 2

Severity [4] [57] [39] [40] [44] [43] [45]

0 1.18 0.80 0.85 1.72 0.38 0.23 0.25
±0.07 ±0.21 ±0.02 ±0.03 ±0.19 ±0.10 ±0.14

1 1.75 1.06 1.38 1.53 0.66 0.25 0.25
±0.06 ±0.24 ±0.02 ±0.01 ±0.20 ±0.10 ±0.08

2 2.40 1.17 1.78 1.57 0.86 0.52 0.47
±0.06 ±0.22 ±0.02 ±0.01 ±0.21 ±0.14 ±0.12

3 3.00 1.36 2.03 1.67 0.94 0.56 0.49
±0.06 ±0.28 ±0.03 ±0.01 ±0.22 ±0.14 ±0.12

4 3.59 1.38 2.23 1.72 0.97 0.64 0.53
±0.10 ±0.29 ±0.05 ±0.03 ±0.21 ±0.16 ±0.13

5 4.24 1.58 2.52 1.78 1.05 0.71 0.65
±0.10 ±0.32 ±0.06 ±0.06 ±0.21 ±0.17 ±0.19

6 4.79 1.53 2.74 1.79 1.09 0.90 0.77
±0.10 ±0.29 ±0.10 ±0.03 ±0.22 ±0.17 ±0.24

The experimental results presented in Tables 3.2 and 3.3 were obtained based on
the shift severity of 1. This shift severity value controls the severity of the change:
the higher the values, the more severe the changes and hence the more difficult the
problem becomes. Taken from the corresponding papers, numerical results of the
seven same algorithms on shift severity values from 0 to 6 are compared in Table 3.4.

3 Dynamic Function Optimization: The MP Benchmark 55

From the table, we observe that the values reported by the EO variants are again
superior than other algorithms. This is largely expected since EO is known to be
resilient of severity of change, mainly due to its deliberate lack of convergence be-
haviour. Among the EO algorithms, the results of improved MMEOs [43, 45] are
expectedly better than the original MMEO [44].

While it is clear that the EO algorithms are coping better with larger shifts, they
do not cope well with the variations of shift severity as compared to Lung and Du-
mitrescu’s ESCA [40]. Taking performance decay into consideration, ESCA seems
to have adapted much better than the EOs.

3.5 Conclusions

In this chapter, we have reviewed all of the existing dynamic optimization app-
roaches we are aware of whose performances have been tested using the MP test
function. The majority of these approaches fall into the class of nature-inspired al-
gorithms (see [13, 14]). This type of algorithms shares two common characteristics:
(1) they are typically population-based, thus allowing the transfer of past informa-
tion which is often helpful in dynamic optimization; and (2) they are adaptive. From
the papers analysed, however, we see that the algorithms in their conventional form
do not perform well in dynamic environments. Our review here shows that good
approaches to dynamic function optimization must be capable of tracking the op-
tima over time. They must also be able to maintain diversity in the population so
as to avoid population convergence. Many of the good solutions store information
from the past explicitly (i.e., the use of memory) in order to improve performance
after future changes.

While carrying out the review, we notice that most of the studies reported only
means and standard deviations in their comparisons. Although this could give us an
indication of how competitive a particular algorithm is, the lack of statistical testing
in the results renders the findings inconclusive. In view of this, there is a need to
promote the use of proper statistical tests (e.g., the Wilcoxon rank-sum test or Mann-
Whitney U test, t-test, Kruskal-Wallis test, etc.) in order to make the claims/results
more solid. To make this possible, however, the authors would have to make either
their implementation or their experimental data publicly available.

Acknowledgements. We would like to thank the editors for inviting us to contribute to this
volume, and one of the anonymous referees for his/her useful comments.

References

[1] Angeline, P.J.: Tracking extrema in dynamic environments. In: Angeline, P.J., McDon-
nell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 335–345.
Springer, Heidelberg (1997)

56 I. Moser and R. Chiong

[2] Ayvaz, D., Topcuoglu, H., Gurgen, F.: A comparative study of evolutionary optimisation
techniques in dynamic environments. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2006), Seattle, WA, USA, pp. 1397–1398 (2006)

[3] Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In:
Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G.,
Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWork-
shops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)

[4] Blackwell, T., Branke, J.: Multi-swarms, exclusion and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation 10(4), 51–58 (2006)

[5] Blackwell, T.M.: Swarms in dynamic environments. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2003), Chicago, IL, USA, pp. 1–12
(2003)

[6] Boettcher, S., Percus, A.G.: Extremal optimization: Methods derived from co-evolution.
In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
1999), Orlando, FL, USA, pp. 825–832 (1999)

[7] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999),
Washington, DC, USA, pp. 1875–1882 (1999)

[8] Branke, J.: Evolutionary Optimization in Dynamic Environments. Springer (2001)
[9] Branke, J., Kaußler, T., Schmidt, C., Schmeck, H.: A multi-population approach to dy-

namic optimization problems. In: Parmee, I.C. (ed.) Adaptive Computing in Design and
Manufacturing (ACDM 2000), pp. 299–308. Springer, Berlin (2000)

[10] Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization
problems. In: Tsutsui, S., Ghosh, A. (eds.) Theory and Application of Evolutionary
Computation: Recent Trends, pp. 239–362. Springer, Berlin (2002)

[11] Bui, L.T., Branke, J., Abbass, H.A.: Diversity as a selection pressure in dynamic en-
vironments. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2005), Washington, DC, USA, pp. 1557–1558 (2005)

[12] Bui, L.T., Branke, J., Abbass, H.A.: Multiobjective optimization for dynamic envi-
ronments. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2005), Edinburgh, UK, pp. 2349–2356 (2005)

[13] Chiong, R., Neri, F., McKay, R.I.: Nature that breeds solutions. In: Chiong, R. (ed.)
Nature-Inspired Informatics for Intelligent Applications and Knowledge Discovery: Im-
plications in Business, Science and Engineering, ch. 1, pp. 1–24. IGI Global, Hershey
(2009)

[14] Chiong, R. (ed.): Nature-Inspired Algorithms for Optimisation. Springer (2009)
[15] Clerc, M.: Particle Swarm Optimization. John Wiley and Sons (2006)
[16] Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey

on problems, methods and measures. In: Soft Computing – A Fusion of Foundations,
Methodologies and Applications (2010), doi:10.1007/s00500-010-0681-0:(online first)

[17] de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational App-
roach. Springer (2002)

[18] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multi-objective Optimization: NSGA-II. In: Deb, K., Rudolph,
G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000.
LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

[19] Du, W., Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic opti-
mization. Information Sciences 178, 3096–3109 (2008)

[20] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Springer (2003)

3 Dynamic Function Optimization: The MP Benchmark 57

[21] Fentress, S.W.: Exaptation as a means of evolving complex solutions. Master’s thesis,
University of Edinburgh, UK (2005)

[22] Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: a genetic algorithm app-
roach. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC
1999), Washington, DC, USA (1999)

[23] Hashemi, A.B., Meybodi, M.R.: Cellular PSO: A PSO for Dynamic Environments. In:
Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. LNCS, vol. 5821, pp. 422–433.
Springer, Heidelberg (2009)

[24] Hooke, R., Jeeves, T.: Direct search solutions of numerical and statistical problems.
Journal of the Association for Computing Machinery 8, 212–229 (1961)

[25] Janson, S., Middendorf, M.: A hierachical particle swarm optimizer. In: Proceedings of
the IEEE Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, pp.
770–776 (2003)

[26] Janson, S., Middendorf, M.: A Hierarchical Particle Swarm Optimizer for Dynamic
Optimization Problems. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drech-
sler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D.,
Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 513–524. Springer, Hei-
delberg (2004)

[27] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments: a survey. IEEE
Transactions on Evolutionary Computation 9(3), 303–317 (2005)

[28] De Jong, K.A., Morrison, R.W.: A test problem generator for non-stationary envi-
ronments. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC
1999), Washington, DC, USA, pp. 2047–2053 (1999)

[29] De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan (1975)

[30] Kamosi, M., Hashemi, A.B., Meybodi, M.R.: A New Particle Swarm Optimization
Algorithm for Dynamic Environments. In: Panigrahi, B.K., Das, S., Suganthan, P.N.,
Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 129–138. Springer, Heidelberg
(2010)

[31] Kramer, G.R., Gallagher, J.C.: Improvements to the *CGA enabling online intrinsic. In:
NASA/DoD Conference on Evolvable Hardware, pp. 225–231 (2003)

[32] Li, C., Yang, S.: Fast multi-swarm optimization for dynamic optimization problems.
In: Proceedings of the 4th International Conference on Natural Computation, Jinan,
Shandong, China, pp. 624–628 (2008)

[33] Li, J., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algo-
rithm for multimodal function optimization. Evolutionary Computation 10(3), 207–234
(2002)

[34] Li, X.: Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm
Optimizer for Multimodal Function Optimization. In: Deb, K., et al. (eds.) GECCO
2004. LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004)

[35] Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a
dynamic environment. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2006), Seattle, WA, USA, pp. 51–58 (2006)

[36] Liu, L., Wang, D.-W., Yang, S.: Compound Particle Swarm Optimization in Dynamic
Environments. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler,
R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill,
M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops
2008. LNCS, vol. 4974, pp. 616–625. Springer, Heidelberg (2008)

58 I. Moser and R. Chiong

[37] Liu, L., Yang, S., Wang, D.: Particle swarm optimization with composite particles in
dynamic environments. IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics 40(6), 1634–1648 (2010)

[38] Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms
with crossover hill-climbing. Evolutionary Computation 12, 273–302 (2004)

[39] Lung, R.I., Dumitrescu, D.: A collaborative model for tracking optima in dynamic en-
vironments. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2007), Singapore, pp. 564–567 (2007)

[40] Lung, R.I., Dumitrescu, D.: Evolutionary swarm cooperative optimization in dynamic
environments. Natural Computing 9(1), 83–94 (2010)

[41] Mendes, R., Mohais, A.: Dynde: A differential evolution for dynamic optimization
problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2005), Edinburgh, UK, pp. 2808–2815 (2005)

[42] Meyer, K.D., Nasut, S.J., Bishop, M.: Stochastic diffusion search: Partial function
evaluation in swarm intelligence dynamic optimization. In: Abraham, A., Grosan, C.,
Ramos, V. (eds.) Stigmergic Optimization. SCI, vol. 31, pp. 185–207. Springer, Berlin
(2006)

[43] Moser, I., Chiong, R.: A Hooke-Jeeves Based Memetic Algorithm for Solving Dy-
namic Optimisation Problems. In: Corchado, E., et al. (eds.) HAIS 2009. LNCS (LNAI),
vol. 5572, pp. 301–309. Springer, Heidelberg (2009)

[44] Moser, I., Hendtlass, T.: A simple and efficient multi-component algorithm for solv-
ing dynamic function optimisation problems. In: Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2007), Singapore, pp. 252–259 (2007)

[45] Moser, I., Chiong, R.: Dynamic function optimisation with hybridised extremal dynam-
ics. Memetic Computing 2(2), 137–148 (2010)

[46] Parrott, D., Li, X.: A particle swarm model for tracking multiple peaks in a dynamic
environment using speciation. In: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2004), Portland, OR, USA, pp. 98–103 (2004)

[47] Pelta, D., Cruz, C., González, J.R.: A study on diversity and cooperation in a multi-
agent strategy for dynamic optimization problems. International Journal of Intelligent
Systems 24(7), 844–861 (2009)

[48] Pelta, D., Cruz, C., Verdegay, J.L.: Simple control rules in a cooperative system for
dynamic optimisation problems. International Journal of General Systems 38(7), 701–
717 (2009)

[49] Ronnewinkel, C., Martinetz, T.: Explicit speciation with few a priori parameters for
dynamic optimization problems. In: GECCO Workshop on Evolutionary Algorithms
for Dynamic Optimization Problems, San Francisco, CA, USA, pp. 31–34 (2001)

[50] Trojanowski, K.: B-cell algorithm as a parallel approach to optimization of moving
peaks benchmark tasks. In: Proceedings of the 6th International Conference on Com-
puter Information Systems and Industrial Management Applications, Elk, Poland, pp.
143–148 (2007)

[51] Trojanowski, K., Wierzchoń, S.T.: Studying properties of multipopulation heuristic app-
roach to non-stationary optimisation tasks. In: Klopotek, M.A., Wierzchoń, S.T., Tro-
janowski, K. (eds.) Proceedings of the International Conference on Intelligent Informa-
tion Processing and Web Mining (IIPWM 2003). Advances in Soft Computing, vol. 22,
pp. 23–32. Springer, Berlin (2003)

[52] Trojanowski, K., Wierzchoń, S.T.: Immune-based algorithms for dynamic optimization.
Information Sciences 179, 1495–1515 (2009)

3 Dynamic Function Optimization: The MP Benchmark 59

[53] Wang, H., Wang, D.-W., Yang, S.: Triggered Memory-Based Swarm Optimization in
Dynamic Environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 637–646. Springer, Heidelberg (2007)

[54] Weise, T., Zapf, M., Chiong, R., Nebro, A.J.: Why Is Optimization Difficult? In: Chiong,
R. (ed.) Nature-Inspired Algorithms for Optimisation. SCI, vol. 193, pp. 1–50. Springer,
Heidelberg (2009)

[55] Woldesenbet, Y.G., Yen, G.G.: Dynamic evolutionary algorithm with variable reloca-
tion. IEEE Transactions on Evolutionary Computation 13(3), 500–513 (2009)

[56] Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments.
In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2005), Washington, DC, USA, pp. 1115–1122 (2005)

[57] Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking mul-
tiple optima in dynamic environments. IEEE Transactions on Evolutionary Computa-
tion 14(6), 959–974 (2010)

[58] Zeng, S., de Garis, H., He, J., Kang, L.: A novel evolutionary algorithm based on an
orthogonal design for dynamic optimization problems. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2005), Edinburgh, UK, pp. 1188–1195
(2005)

[59] Zou, X., Wang, M., Zhou, A., Mckay, B.: Evolutionary optimization based on chaotic
sequence in dynamic environments. In: Proceedings of the IEEE International Confer-
ence on Networking, Sensing and Control, Taipei, Taiwan, pp. 1364–1369 (2004)

Chapter 4
SRCS: A Technique for Comparing Multiple
Algorithms under Several Factors in Dynamic
Optimization Problems

Ignacio G. del Amo and David A. Pelta

Abstract. Performance comparison among several algorithms is an essential task.
This is already a difficult process when dealing with stationary problems where the
researcher usually tests many algorithms, with several parameters, under different
problems. The situation is even more complex when dynamic optimization prob-
lems are considered, since additional dynamism-specific configurations should also
be analyzed (e.g. severity, frequency and type of the changes, etc). In this work,
we present a technique to compact those results in a visual way, improving their
understanding and providing an easy way to detect algorithms’ behavioral patterns.
However, as every form of compression, it implies the loss of part of the informa-
tion. The pros and cons of this technique are explained, with a special emphasis
on some statistical issues that commonly arise when dealing with random-nature
algorithms.

4.1 Introduction

An essential task in the optimization area is to evaluate an algorithm against vari-
ations of different factors, either to determine the best combination of parameters
for it (step size, population, etc) or to verify its robustness over several settings of a
problem (number of local optima, dimensionality, etc). When dealing with Dynamic
Optimization Problems (DOPs) [6], this situation is even harder, since these prob-
lems have some extra features that need to be analyzed (frequency of changes in
the environment, severity of the change, etc). Moreover, it is also usual to compare

Ignacio G. del Amo · David A. Pelta
Models of Decision and Optimization Research Group (MODO),
Dept. of Computer Sciences and Artificial Intelligence, University of Granada,
I.C.T. Research Centre (CITIC-UGR), C/ Periodista Rafael Gómez, 2,
E-18071, Granada, Spain
e-mail: ngdelamo@ugr.es, dpelta@decsai.ugr.es
http://modo.ugr.es

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 61–77.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

ngdelamo@ugr.es
dpelta@decsai.ugr.es
http://modo.ugr.es

62 I.G. del Amo and D.A. Pelta

multiple algorithms at the same time, for example to verify if a new proposal outper-
forms previous state-of-the-art techniques (1-vs-all), or to determine the best one of
a set of methods in a competition when no prior knowledge about their performance
exists (all-vs-all).

Apart from that, if metaheuristics and non-exact algorithms are used to solve
these problems, their random nature will make it necessary to perform several in-
dependent repetitions of each experiment in order to obtain a set of result sam-
ples representative enough of its underlying distribution. There are several ways of
presenting these samples, ranging from giving the mean or the median, to include
statistics like the standard deviation, the first and third quartile, etc. In general, the
more the information provided of the sample, the better the analysis that can be per-
formed on the results. On the other hand, if there is too much information, it will be
more complex to present it to the reader, and also, it will be increasingly difficult to
manage it and grasp its meaning. Furthermore, this set of result samples is a random
variable, and it is no longer a question of comparing two single values for deciding
which algorithm is better; it is necessary to use statistical tools. One of the most used
techniques is hypothesis testing, where a null hypothesis is stated (for example, that
the underlying distribution of the results of two algorithms is the same) against an
alternative hypothesis (that the distributions are not the same), and it is checked if
the data from the samples support the null hypothesis at a certain significance level.
If the data are too unlikely at that level, the null hypothesis is rejected.

Depending on the approach used for the design of the experiments (fractional, 2k,
full-factorial, etc. [1, 2]), the amount of obtained results can vary greatly. There are
several techniques commonly used when presenting these data, ranging from the
traditional numerical tables to specifically designed graphs (line charts, barplots,
boxplots, qqplots, etc). When there are few results, the use of numerical tables is
probably one of the best options, since they provide a complete and precise descrip-
tion of the data. However, if the amount of results increases, tables become rapidly
intractable, due to their extension, along with the difficulty of comprehending the
meaning of so much numerical data. Graphs allow to alleviate this situation, sum-
marizing the data in a visual way. But again, if several factors are analyzed at the
same time in a single experiment, it may be necessary to further compress the in-
formation, since the number of plots may grow to unsustainable levels (an example
of this will be shown in Sect. 4.2). Several special-purpose graphs can be used in
this situation to cope with high amounts of data (dendograms, combinations of pie-
charts and scatter plots at the same time), although the type of graph that better suits
each case tends to be dependent on the specific problem at hand. For an extensive
showcase of visualization techniques, the interested reader is referred to [5].

The goal of this chapter is to introduce a technique named SRCS (Statistical
Ranking Color Scheme) specifically designed to analyze the performance of multi-
ple algorithms in DOPs over variations of several factors. This technique is based
on the creation of a ranking of the results for each algorithm using statistical tests,
and then presents this ranking using a color scheme that allows to compress it.
It should be noted that other authors have already addressed this topic in related

4 SRCS 63

areas with similar approaches. For example, in the machine learning field, Demšar
[8] uses statistical tests for comparing several classifiers over multiple data sets,
proposing also a graphical way for presenting statistically non-differentiable clas-
sifiers by means of connected lines. And in the multi-objective optimization area,
Fonseca et al. [9] devise a technique based on statistical tests to determine the level
of attainment of each objective by several algorithms, while López-Ibáñez et al. [17]
use this technique along with a graphical color-plotting scheme to visually remark
the differences of the algorithms along their obtained Pareto-front.

Before giving the details of the SRCS technique, we will illustrate the application
scenario with a practical example.

4.2 Typical Research Case: Comparing Multiple Algorithms
over Several Configurations of a Problem

Let us suppose that we want to compare the performance of a set of metaheuristic
algorithms over a DOP, for example, the Moving Peaks Benchmark (MPB).

The MPB is a test benchmark for DOP’s originally proposed in [3]. It is a maxi-
mization problem consisting in the superposition of m peaks, each one characterized
by its own height (h), width (w), and location of its centre (p). The fitness function
of the MPB is defined as follows: Moving Peaks Benchmark

MPB(x) = max j

(
h j−wj

√
∑n

i=1(xi− p j
i)

2

)
, j = 1, ...,m, (4.1)

where n is the dimensionality of the problem. The highest point of each peak corre-
sponds to its centre, and therefore, the global optimum is the centre of the peak with
the highest parameter h.

Dynamism is introduced in the MPB by periodically changing the parameters of
each peak j after a certain number of function evaluations (ω):

h j(t + 1) = h j(t)+hs·N(0,1) (4.2)

w j(t + 1) = w j(t)+ws·N(0,1) (4.3)

p j(t + 1) = p j(t)+ v j(t + 1) (4.4)

v j(t + 1) = s
|r+v j(t)| ((1−λ)r+λ v j(t)). (4.5)

Changes to both width and height parameters depend on a given severity for each of
them (ws and hs). Changes to the centre position depend on a shift vector v j(t +1),
which is a linear combination of a random vector r and the previous shift vector
v j(t) for the peak, normalized to length s (position severity, shift distance, or simply
severity). Finally, parameter λ indicates the linear correlation with respect to the
previous shift, where a value of 1 indicates ”total correlation” and a value of 0 ”pure
randomness”.

64 I.G. del Amo and D.A. Pelta

The MPB has been widely used as a test suite for different algorithms in the pres-
ence of dynamism. One of the most used configurations for this purpose is Scenario
2, which consists of the set of parameters indicated in Table 4.1.

Table 4.1 Standard settings for Scenario 2 of the Moving Peaks Benchmark

Parameter Value
Number of peaks (m) ∈ [10,200]

Number of dimensions (d) 5
Peaks heights (hi) ∈ [30,70]
Peaks widths (wi) ∈ [1,12]

Change frequency (ω) 5000
Height severity (hs) 7.0
Width severity (ws) 1.0
Shift distance (s) ∈ [0.0,3.0]

Correlation coefficient (λ) ∈ [0.0,1.0]

Once the problem has been defined, we need to decide which performance mea-
sures are we going to use for evaluating and comparing the algorithms. There are
different options, like using directly the fitness of the algorithm at every moment in
time, or the absolute error in case the optimum is known. However, these measures
have the problem that they are expressed in absolute units, and they do not give an
idea of how close was an algorithm of reaching the optimum, nor allow us to easily
compare the results between changes in the environment. For example, if at a given
instant in time the fitness of an algorithm can be in the interval [0,10], an absolute
error of 9 units is a very bad result, while if, in another instant, the fitness can be in
the interval [0,1000], the same absolute error of 9 units is a remarkably good result.
In order to allow an easier comparison of the results, a relative performance measure
would be desirable.

Therefore, for the examples of this chapter, we will assume that the optimum
is known, and we will use Weicker’s definition [21] of the accuracy performance
measures!accuracy of an algorithm A over a function F at a given instant in time t,
as the basic performance measure:

accuracy(t)F,A =
F(sol(t)A)−Min(t)F

Max(t)F −Min(t)F

, (4.6)

where sol(t)A is the solution generated by the algorithm A at the instant t, and Min(t)F

and Max(t)F are, respectively, the minimum and maximum values of the function F
at the instant t. This measure has the advantage of always being bounded between
0 and 1, 0 being the worst possible value, and 1 the best (note that this is true in-
dependently of whether the problem is of the maximization or minimization type).

In Weicker’s original definition, best(t)A is used instead of sol(t)A , referring to the best
value of the algorithm at time t. This definition assumes that the algorithm is of an

4 SRCS 65

evolutionary type, where a population of solutions is evaluated at once, and best(t)A
refers to the best individual in that population. However, this cannot be always as-
sumed, since the algorithm may not be population-based, or the problem may not
allow that type of concurrent evaluation, thus forcing us to evaluate each solution
sequentially. With the aim of not restricting the study to any given implementation

of the algorithm nor the problem, we will use sol(t)A without loss of generality over
the accuracy. In return, we will define, independently of the algorithm, the bestAc-
curacy measure performance measures!best accuracy as:

bestAccuracy(t, t0) =

{
accuracy(t) if t = t0
max{accuracy(t),bestAccuracy(t− 1)} if t > t0

(4.7)

where t = t0 indicates the instant of time immediately after a change in the environ-
ment (variable t is “reset” in every change), such that the bestAccuracy refers only
to the time elapsed since the last change.

We will now extend the accuracy to its offline and average offline perfor-
mance measures!offline accuracy versions for several consecutive performance
measures!average offline accuracy changes in the environment, using De Jong [7]
and Branke [4] definitions:

o f f lineAccuracy(t0,T) =
1

T − t0

T

∑
t=t0

bestAccuracy(t, t0) (4.8)

avgO f f lineAccuracy(Nc) =
1

Nc

Nc

∑
n=0

o f f lineAccuracy(τ0(n),τT (n)), (4.9)

where Nc is the total number of changes considered, and τ0(n) and τT (n) are func-
tions that return, respectively, the first and last instant of time t of the station-
ary period n. A graphical explanation of these measures can be seen in Figs. 4.1
and 4.2.

At this point we can summarize an execution or run of an algorithm with the avg.
offline accuracy. However, as it has been mentioned in the previous section, when
dealing with stochastic algorithms it is necessary to perform a series of independent
repetitions of the experiments in order to obtain a representative sample of its per-
formance. Therefore, we will execute Nr runs of the algorithm, thus obtaining Nr

measurements of the avg. offline accuracy.
Now that we have already defined how are we going to measure the performance,

let us suppose that we want to compare 4 hypothetical algorithms for a given config-
uration of the MPB (for example, the widely used Scenario 2). In Sect. 4.4 we will
analyze in more detail the influence of Nr in the results of the statistical tests, but
for the moment, let us just assume that we perform a fixed amount of independent
repetitions, say Nr = 30, for each algorithm. An example of the results that could be
obtained is presented in Table 4.2 and Fig. 4.3.

In order to determine the existence of statistically significant differences in the
results, we need to perform a series of hypothesis tests. Several authors have already

66 I.G. del Amo and D.A. Pelta

Fig. 4.1 Performance measure of an algorithm using different versions of accuracy

Fig. 4.2 Performance measure of an algorithm over several consecutive changes in the envi-
ronment using the offline accuracy (the best accuracy is displayed in the background). The
sudden drops of the best accuracy values indicate a change in the environment. The average
of all offline accuracy measures is displayed in the right

pointed out that these results, in general, do not follow a normal distribution [11],
therefore recommending the use of non-parametric tests for their analysis [13, 19].
We will use a significance level α = 0.05, meaning that we are willing to assume a
probability of mistakenly rejecting the null hypothesis of, at most, 0.05. The first is-
sue that needs to be addressed is the fact that we are comparing multiple algorithms
at the same time. Therefore, we need to use a test that allows to compare more than
2 groups simultaneously. For this example, we will perform a Kruskal-Wallis (KW)
test [15], among all the samples of the 4 algorithms to check if there are global
differences at the 0.05 significance level. If the KW test concludes that there are
statistically significant differences, we will then perform a series of pair-wise tests
between each pair of algorithms, to see if we can determine which are the ones that
are causing those differences. In this case, we will use the Mann-Whitney-Wilcoxon
test Mann-Whitney-Wilcoxon (MWW) [18, 22] test to compare each pair of algo-
rithms. The combination of these tests is suitable, since the KW test can be consi-
dered as the natural extension of the MWW test to multiple groups. It is important
to note that in order to guarantee the α-level achieved by the KW test (global), we
need to adjust the α-level of each MWW test (pair-wise) to a certain value, usually
much smaller than the first one. For this purporse, we will use Holm’shypothesis

4 SRCS 67

testing!Holm correction correction [14], although other techniques are also avail-
able (for example, Hochberg’s, Hommel’s, etc; for an in-depth comparison on the
use of these techniques, the interested reader is referred to [8, 10, 11]). The results
of the tests are shown in Table 4.3, where individual comparisons between each pair
of algorithms can be seen, along with the sign of the comparison.

Table 4.2 Performance results of several algorithms on a single problem configuration (mean
and standard deviation values of the avg. offline accuracy)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Avg. Offline Accuracy 0.78 ±0.05 0.84 ±0.02 0.95 ±0.01 0.89 ±0.03

Fig. 4.3 Graphical representation of the results in Table 4.2. The distributions are displayed
using a boxplot (dark lines) in combination with a kernel estimation of the distribution density
(light lines)

Until now, the way of presenting the results (numerical data tables, boxplot
graphs, and statistical tests tables) has been appropriated, and the data are com-
prehensible. We now contemplate extending the experimental framework. We want
to know if the conclusions obtained for the algorithms follow any kind of pattern
related to some characteristic of the problem (e.g., whether algorithm 3 is good only
for Scenario 2 of the MPB, or if this is a general behaviour linked to, for example,
low change frequencies). In order to answer this question, we perform more exper-
iments, keeping all problem parameters constant, except for the change frequency,
which we vary progressively.

We can see now that the number of results increases, and its presentation begins
to be a problem, both at a table level, because of its extension and difficulty to com-
prehend the data (Table 4.4), and at a graphical level, because of its complexity (Fig.
4.4). However, it is still feasible to show the results this way, since, although data are

68 I.G. del Amo and D.A. Pelta

Table 4.3 Pairwise statistical differences among the avg. offline accuracy distribution of the
algorithms. A ’+’ sign indicates that there are statistically significant differences between the
algorithm in the row and the algorithm in the column, and that the sign of the comparison
favors the algorithm in the row (i.e., is “better”). A ’-’ sign indicates the opposite, that the
algorithm in the row is “worse”. Finally, the word ’no’ indicates no statistically significant
differences

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Algorithm 1 no - - -
Algorithm 2 + no - -
Algorithm 3 + + no +
Algorithm 4 + + - no

Table 4.4 Performance results of several algorithms on multiple problem configurations
(mean and standard deviation values of the avg. offline accuracy). The different configu-
rations are based on systematic variations of one factor, the problem’s change frequency,
expressed in the number of evaluations. Boldface values indicate the best algorithm for the
given configuration

Change Frequency Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
200 0.630 ±0.03 0.632 ±0.03 0.631 ±0.03 0.630 ±0.03
500 0.750 ±0.02 0.751 ±0.02 0.783 ±0.02 0.781 ±0.02

1000 0.811 ±0.02 0.798 ±0.02 0.886 ±0.02 0.886 ±0.02
1500 0.825 ±0.02 0.854 ±0.02 0.922 ±0.02 0.871 ±0.02
2000 0.840 ±0.02 0.859 ±0.01 0.939 ±0.01 0.862 ±0.02
2500 0.843 ±0.01 0.871 ±0.01 0.943 ±0.01 0.889 ±0.01
3000 0.852 ±0.01 0.880 ±0.01 0.950 ±0.01 0.913 ±0.01
3500 0.871 ±0.01 0.901 ±0.01 0.959 ±0.01 0.921 ±0.01
4000 0.860 ±0.01 0.906 ±0.01 0.964 ±0.01 0.932 ±0.01
4500 0.863 ±0.01 0.910 ±0.01 0.968 ±0.01 0.939 ±0.01
5000 0.869 ±0.01 0.911 ±0.01 0.970 ±0.01 0.941 ±0.01

now more difficult to grasp and manage, it is nevertheless still understandable (in
Fig. 4.4 it is reasonably easy to see which algorithm is the best, and this can also be
accomplished in Table 4.4 by enhancing the best algorithm’s result using a boldface
type). Anyway, it is worth noting that individual differences between each pair of
algorithms in the statistical tests are now too lengthy to be shown, since they imply
a comparison of the type all against all for each problem configuration, which, in
general, is not practical for a publication (we are talking of 11 tables like Table 4.3).

Finally, when we consider to simultaneously analyze several factors (e.g., change
frequency and severity of change), data grows exponentially, and the presentation in
the form of tables and figures becomes intractable. In the literature, some examples
of works can be found, where the magnitude of the study and the amount of obtained
results force the authors to use such a high number of tables and graphs that the
comprehension of the data gets obscured:

4 SRCS 69

Fig. 4.4 Graphical representation of the results in Table 4.4, where each point corresponds
to the results of an algorithm on a configuration of the problem. The results for each config-
uration are shown using a boxplot of the distribution

• In [23], the author uses 48 graphs and 45 tables of statistical comparisons to
analyze the behaviour of 8 different versions of algorithms.

• In [12] a huge number of results are presented in the form of boxplot graphs for
several algorithms on a single problem configuration, using 42 graphs for that
purpose, although without statistical comparisons tables.

• In [20], the authors compare up to 19 different techniques in 32 tables full of
numerical results, using for it an ad-hoc solution based in vectors that compress
the information, since they explicitly admit the difficulty in performing so many
comparisons.

These are only a small sample of the difficulties that a researcher may find when
presenting the results of comparing multiple algorithms, multiple versions of them,
multiple problem configurations, or combinations of all the previous. It should be
pointed out, however, that each particular case is different from the rest, and that not
always such a high number of tables and graphs must imply a bigger difficulty in
the understanding of the data. In many cases, the skill of the author for grouping and
presenting data is crucial to facilitate its comprehension. However, in general, it is
easier for the reader to understand some concise results than some extensive ones.

In order to better confront this situation, we are going to introduce a proposal for
compressing the information to be presented using color schemes obtained from the
results of the statistical tests.

70 I.G. del Amo and D.A. Pelta

4.3 SRCS: Statistical Ranking Color Scheme

As it has already been justified in the previous sections, the presentation of the
results of several algorithms over variations of multiple factors in a DOP can be
problematic. It is necessary to somehow compress the information in order for the
reader to be able to capture it and understand it.

The technique we present here, SRCS (Statistical Ranking Color Scheme), has
been designed for those situations in which the main interest is to analyze the rel-
ative performance of the algorithms, rather than the absolute one. That is, when
we want to establish an ordering or ranking of the algorithms for a given problem
configuration.

The first obstacle appears precisely at the moment of establishing that ranking.
Ordering the algorithms would be easy if we had a single value to measure their per-
formance, but instead, we have a set of values (one for each independent execution).
In order to solve this, we use the output of the statistical tests that tells us if there are
significant differences between each pair of samples (for example, using the KW +
MWW tests combination of Sect. 4.2).

The way of doing this will be as follows: for a given DOP configuration, all the
algorithms begin with an initial ranking of 0. We first compare the results of all the
algorithms using a multiple comparison test (e.g., the KW test) in order to determine
if there are global differences. In case there are no differences among all, that would
be the end of the process, and the algorithms would finish with their initial 0 rank. If,
however, significant differences were found, an adjusted pair-wise test (e.g., MWW
+ Holm) would be performed between each pair of algorithms, in order to assess
individual differences. If the pair-wise test says there are significant differences for
a given pair of algorithms, the one with the best performance value (the median
of the sample) adds +1 to its ranking, and the one with the worst value, −1. If
there were no differences according to the pair-wise test (a tie), neither algorithm
adds anything, but both maintain their previous ranking. At the end, every algorithm
will have an associated ranking value, ranging in the interval [−(Na− 1),+(Na−
1)], where Na is the number of algorithms to be compared. A ranking value of +r
for a given algorithm indicates that its performance is significantly better than r
algorithms, and a value of −r, that it is significantly worse than r algorithms (at the
end of this chapter, in the Appendix, we provide an implementation of this ranking
calculation using the R programming language).

However, until now we have only shifted the problem, since we have a ranking,
but it is still numerical, and therefore, difficult to fully understand when presented
in the form of tables if there are too many data. The solution to this comes from
human’s ability to better manage images and colors than numbers. Starting off from
this ranking, we associate a color (for example white) to the maximum ranking
value that can be obtained, +(Na− 1), and another very different color (a dark one
preferably) to the minimum ranking value that can be obtained, −(Na− 1). All the
intermediate ranking values are associated to an interpolated color between the two

4 SRCS 71

Fig. 4.5 Rank explanation. The boxplot shows the distribution of the performance measures
of every algorithm, ordered by its median value. Dotted rectangles indicate those algorithms
for which no statistical differences were found at the specified significance level (algorithms
2-3 and 3-4). The table in the right displays, for every algorithm, how many times it shows
a significantly better performance (“better than”), no significant differences (“equal to”) or
significantly worse performance (“worse than”) when it is compared with respect to the other
3 algorithms, and its final rank with the correspondent color key.

previous ones. Figure 4.5 explains the calculation of the ranking and the color as-
sociation of the 4 algorithms we have been using previously, for a given problem
configuration.

Color codes obtained from the ranking can now be used to represent the relative
performance of each algorithm with respect to the others in a graphical way. This
representation allows us to visualize the results of many configurations at once, giv-
ing the researcher the possibility to identify behavioural patterns of the algorithms
more easily.

For example, let us suppose that we have the 4 algorithms of the previous ex-
amples, and we want to extend the study of their performance in the MPB with
different variations of two factors: severity, and change frequency. As it has already
been justified, presenting the results of these experiments in the form of tables may
not be feasible. However, using the SRCS technique, we can arrange the rank col-
ors of each configuration to create the images shown in Fig. 4.6. In this figure, the
same color scheme as the one appearing in the explanation in Fig. 4.5 has been used,
where a darker color indicates a worse performance, and a lighter one a better. Tak-
ing a quick glance at Fig. 4.6, and without having to examine any type of numerical
data, we can obtain valuable overall information, like:

• in general, algorithm 1 is the worst in almost all configurations
• algorithm 3 has, in almost all configurations, a good or very good performance
• for higher change frequencies (higher number of evaluations between changes),

algorithm 3 is the best
• for lower change frequencies, algorithm 4 is the best
• variations of the severity have, in general, less influence in the performance of

the algorithms than variations of the change frequency

72 I.G. del Amo and D.A. Pelta

Fig. 4.6 An example of a graphical visualization of the rank-based color scheme for 4 hypo-
thetical algorithms. The visualization shows a comparison of the results of 4 algorithms for
different configurations of the factors severity and change frequency for a problem

Also, figures created using SRCS can be arranged to visualize variations of more
than 2 factors (see Fig. 4.7), depending on the practitioner’s creativity. These figures
can help us to further detect behavioral patterns of the algorithms, and increase our
understanding of them.

Finally, although the examples in this chapter used the avg. offline accuracy as
performance measure, and the KW + MWW combination as statistical tests, the
SRCS technique is not restricted to these methods. Other performance measures
(avg. offline error, reactivity, etc.) and statistical tests (Friedman, Iman-Davenport,
etc) are also valid, as long as their usage is appropriated. In-depth examples of the
use of non-parametric statistical tests for comparing optimization algorithms can be
found in [8, 10, 11].

4 SRCS 73

Fig. 4.7 An arrangement of the graphical color scheme of the rankings for visualizing varia-
tions of 3 different factors: severity, change frequency, and dimensionality.

4.4 Some Considerations on Statistical Tests

In a statistical hypothesis test, some of the main parameters that determine its out-
come are:

• n, the sample size used.
• α , the significance level, or the probability of making a Type I error (false posi-

tive), i.e., rejecting the null hypothesis H0 when it is true.
• θ , the effect size, or the minimum difference that can be detected by the test in

order to be considered significant, in absolute units.
• π , the power of the test or the sensitivity level, equal to 1− β , where β is the

probability of making a Type II error (false negative), i.e., accepting the null
hypothesis H0 when it is false.

These parameters are interrelated, and the values of some of them are usually de-
termined from those of the rest, which may be fixed as a result of the experiment’s
requirements. For example, in a clinical essay for a drug, it could be determined that
a minimum increase in blood pressure of 15 mm Hg must be observed in order to

74 I.G. del Amo and D.A. Pelta

consider its effect of practical significance, with a 99% confidence. Although not
explicitely stated, in these types of experiments a minimum power is usually ex-
pected (a typical value is 80%). Therefore, in this case, the effect size (θ = 15), the
significance level (α = 0.01), and the power (π = 0.8) are fixed, and the sample size
should be adjusted in order to obtain those values.

However, when comparing the performance of some algorithms in a synthetic
problem (like the MPB used in the examples of previous sections), there is usually
no concern about the effect size, since, in practice, it has no real meaning. With
no additional information, it cannot be determined if a difference of 0.1 fitness units
between two algorithms is significant or not, and therefore, the sample size (Nr in the
examples) is not constrained. In this case, unless some external requirements limit
the maximun amount of executions, we recommend to use the higher Nr possible,
as it will increase the power of the test.

For a more detailed introduction to the use of non-parametric tests and questions
on the factors that determine them, the interested reader is referred to [13, 16, 19].

4.5 Conclusions

In this chapter we have presented a new technique, SRCS (Statistical Ranking Color
Scheme), specifically designed to analyze the performance of multiple algorithms
in DOPs over variations of several factors (e.g., change frequency, severity, dimen-
sionality, etc). This technique is especially well-suited when we want to compare
algorithms in a all-vs-all manner, for example, when we want to determine which
are the best performing ones in a wide range of scenarios.

SRCS uses statistical tests to compare the performance of the algorithms for
a given problem configuration, producing a ranking. Since the results of meta-
heuristics and non-exact algorithms do not generally follow a normal distribution,
non-parametric tests are usually preferred. As a practical guideline, a multiple-
comparison test must be performed first, like the Kruskal-Wallis test, in order to
determine if there are global differences in the performance of the algorithms. Then,
a pair-wise test is used, in order to assess individual differences between algorithm
pairs, like the Mann-Whitney-Wilcoxon test. This pair-wise test must be adjusted
in order to compensate for the family-wise error derived from the performance of
multiple comparisons, using, for example, Holm’s method. However, these tests are
only suggestions that do not affect the way in which SRCS works, and other options
can be used (Friedman’s test, Iman-Davenport, etc).

The ranking produced is later used to associate color codes to each algorithm
result, such that the relative performance of each algorithm with respect to the others
can be represented in a graphical way. This representation allows us to visualize the
results of many algorithms on many configurations in a much more compact way
by enhancing differences between the results, and giving thus the researcher the
possibility of identifying behavioural patterns more easily.

4 SRCS 75

Like any information compressing technique, SRCS left out part of the infor-
mation, so its use, either isolated or as a complement to other traditional ways for
displaying results (tables and plots), should be evaluated in each case. With SRCS,
using rankings for stressing out the differences among algorithms implies not dis-
playing absolute performance values.

Acknowledgements. This work has been partially funded by the project TIN2008-01948
from the Spanish Ministry of Science and Innovation, and P07-TIC-02970 from the Andalu-
sian Government.

Appendix

In this Appendix we provide an implementation of the ranking method of Sect. 4.3,
using the R programming language 1.

#--
The function for calculating the rank of a set of algorithms using their performance results on a
single problem configuration. Returns a list indexed by algorithm, with the corresponding rank value
for each of them.
Parameters:
- data: a vector with the results of all the algorithms, that is, the ’n’ independent repetitions of
the performance measure, for each algorithm.
- group: a vector of factors for the data, indicating, for each corresponding entry of the data vector,
the algorithm it belongs to.
- alpha: the minimum p-value for the tests to assess a significant difference. Defaults to 0.05
- max: TRUE or FALSE. TRUE means the higher the performance measure, the better. FALSE means the
opposite. For example, if the performance measure is the error, set max = FALSE; if the performance
measure is the accuracy, set max = TRUE. Defaults to TRUE.
Example input:
- data <- c(2.5, 2.3, ..., 1.2, 0.7, ..., 3.5, 4.1)
- group <- factor("alg1", "alg1", ..., "alg2", "alg2", ..., "alg3", "alg3")
Example output:
- rankList : [["alg1"][0], ["alg2"][2], ["alg3"][-1]]
#--
rank <- function(data, group, alpha=0.05, max=TRUE) {

initialize the ranks to 0
algorithms <- unique(group)
rankList <- list()
for(algorithm in algorithms) {

rankList[[algorithm]] <- 0
}

calculate the vector of medians for all the algorithms’ measures
medians <- tapply(data, group, median)

perform a Kruskal-Wallis test to assess if there are differences among all the results
dataframe <- data.frame(group, data)
kruskal <- kruskal.test(data ˜ group, data=dataframe)
if(!is.na(kruskal$p.value) && kruskal$p.value < alpha) {

post-hoc test: perform a pairwise Mann-Whitney-Wilcoxon (MWW) rank sum test
with Holm correction to assess individual differences
wilcoxon <- pairwise.wilcox.test(data, group, p.adj="holm", exact=FALSE)

for(algorithm1 in rownames(wilcoxon$p.value)) {
for(algorithm2 in colnames(wilcoxon$p.value)) {

if(!is.na(wilcoxon$p.value[algorithm1,algorithm2]) &&
wilcoxon$p.value[algorithm1,algorithm2] < alpha) {

there is a significant difference between algorithm1 and algorithm2;
we need to identify which one is the best and which one the worst,
we’ll use the median for that purpose, since it is coherent with the
use of the MWW method, which also uses medians
if(medians[algorithm1] > medians[algorithm2]) {

best <- algorithm1
worst <- algorithm2

} else {
best <- algorithm2

1 http://www.r-project.org/

http://www.r-project.org/

76 I.G. del Amo and D.A. Pelta

worst <- algorithm1
}

if max==FALSE, swap best and worst
if(!max) {

tmp <- best
best <- worst
worst <- tmp

}

update ranks
rankList[[best]] <- rankList[[best]] + 1
rankList[[worst]] <- rankList[[worst]] - 1

}
}

}
}

return(rankList)
}

References

[1] Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The New
Experimentalism. Natural Computing Series. Springer, Heidelberg (2006),
doi:10.1007/3-540-32027-X

[2] Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.): Experimental
Methods for the Analysis of Optimization Algorithms. Springer, Heidelberg (2010),
doi:10.1007/978-3-642-02538-9

[3] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation (CEC
1999), vol. 3, pp. 1875–1882. IEEE (1999), doi:10.1109/CEC.1999.785502

[4] Branke, J.: Evolutionary Optimization in Dynamic Environments. Genetic algorithms
and evolutionary computation, vol. 3. Kluwer Academic Publishers, Massachusetts
(2001)

[5] Chen, C.-H., Härdle, W., Unwin, A., Friendly, M.: Handbook of Data Visualization.
Springer Handbooks of Computational Statistics. Springer, Heidelberg (2008),
doi:10.1007/978-3-540-33037-0

[6] Cruz, C., González, J., Pelta, D.: Optimization in dynamic environments: a survey on
problems, methods and measures. In: Soft Computing, pp. 1–22 (2010),
doi:10.1007/s00500-010-0681-0

[7] De Jong, K.: An analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan, Ann Arbor, MI, USA (1975)

[8] Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research 7(1) (2006)

[9] Fonseca, V.G., Fonseca, C.M.: The attainment-function approach to stochastic multiob-
jective optimizer assessment and comparison. In: Bartz-Beielstein, T., Chiarandini, M.,
Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization
Algorithms, pp. 103–130. Springer, Heidelberg (2010),
doi:10.1007/978-3-642-02538-9 5

[10] Garcı́a, S., Herrera, F.: An extension on ”statistical comparisons of classifiers over mul-
tiple data sets” for all pairwise comparisons. Journal of Machine Learning Research 9,
2677–2694 (2008)

4 SRCS 77

[11] Garcı́a, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005
special session on real parameter optimization. Journal of Heuristics 15(6), 617–644
(2009), doi:10.1007/s10732-008-9080-4

[12] Gräning, L., Jin, Y., Sendhoff, B.: Individual-based management of meta-models for
evolutionary optimization with application to three-dimensional blade optimization.
In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and
Uncertain Environments. SCI, vol. 51, pp. 225–250. Springer, Heidelberg (2007),
doi:10.1007/978-3-540-49774-5 10

[13] Hollander, M., Wolfe, D.: Nonparametric Statistical Methods, 2nd edn. John Wiley &
Sons, Inc. (1999)

[14] Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal
of Statistics 6(2), 65–70 (1979)

[15] Kruskal, W.H., Allen Wallis, W.: Use of ranks in one-criterion variance analysis. Journal
of the American Statistical Association 47(260), 583–621 (1952)

[16] Russell, V.: Lenth. Some practical guidelines for effective sample size determination.
The American Statistician 55(3), 187–193 (2001), doi:10.1198/000313001317098149

[17] López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local
search algorithms in biobjective optimization. In: Bartz-Beielstein, T., Chiarandini, M.,
Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization
Algorithms, pp. 209–222. Springer, Heidelberg (2010), doi:10.1007/978-3-642-02538-
9 9

[18] Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. The Annals of Mathematical Statistics 18(1), 50–60
(1947), doi:10.1214/aoms/1177730491

[19] Randles, R.H., Wolfe, D.: Introduction to the Theory of Nonparametric Statistics. John
Wiley & Sons, Inc. (1979)

[20] Reyes-Sierra, M., Coello, C.: A study of techniques to improve the efficiency of a multi-
objective particle swarm optimizer. In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolution-
ary Computation in Dynamic and Uncertain Environments. SCI, vol. 51, pp. 269–296.
Springer, Heidelberg (2007), doi:10.1007/978-3-540-49774-5 12

[21] Weicker, K.: Performance Measures for Dynamic Environments. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN
2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002), doi:10.1007/3-540-
45712-7 7

[22] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6),
80–83 (1945), doi:10.2307/3001968

[23] Yang, S.: Explicit memory schemes for evolutionary algorithms in dynamic environ-
ments. In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic
and Uncertain Environments. SCI, vol. 51, pp. 3–28. Springer, Heidelberg (2007),
doi:10.1007/978-3-540-49774-5 1

Chapter 5
Dynamic Combinatorial Optimization
Problems: A Fitness Landscape Analysis

Philipp Rohlfshagen and Xin Yao

Abstract. The role of representations and variation operators in evolutionary com-
putation is relatively well understood for the case of static optimization problems
thanks to a variety of empirical studies as well as some theoretical results. In the
field of evolutionary dynamic optimization very few studies exist to date that ex-
plicitly analyse the impact of these elements on the algorithm’s performance. In this
chapter we utilise the fitness landscape metaphor to review previous work on evo-
lutionary dynamic combinatorial optimization. This review highlights some of the
properties unique to dynamic combinatorial optimization problems and paves the
way for future research related to these important issues.

5.1 Introduction

The field of evolutionary dynamic optimization (see [7, 20, 27, 44]) is concerned
with the application of evolutionary algorithms (EAs) to the class of dynamic opti-
mization problems (DOPs). Unlike static optimization problems, the specifications
of DOPs are time-variant and potentially affect the problem’s fitness landscape (see
section 5.3) structurally over time. This often necessitates the adaptation of solu-
tions found so far to maintain satisfactory quality and feasibility, particularly in the
case of online optimization where solutions need to be implemented continuously.

Philipp Rohlfshagen
School of Computer Science and Electrical Engineering,
University of Essex, Colchester CO4 3SQ,
United Kingdom
e-mail: prohlf@essex.ac.uk

Xin Yao
School of Computer Science,
University of Birmingham, Birmingham B15 2TT,
United Kingdom
e-mail: xin@cs.bham.ac.uk

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 79–97.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

prohlf@essex.ac.uk
xin@cs.bham.ac.uk

80 P. Rohlfshagen and X. Yao

Considerable effort has thus been devoted in recent years to develop new techniques
that efficiently track high quality solutions as closely as possible over time.

The tracking of high quality solutions requires the dynamics of a problem to
have some exploitable structure (similar to the requirement that static optimization
problems must have an exploitable structure) and most practitioners assume that
the global optima of successive problem instances encountered by the algorithm
are correlated to some extent. However, such correlations or indeed any structural
properties of the problem’s fitness landscape depend strongly on the algorithm used
to solve the problem: whereas the actual dynamics of the problem are beyond the
control of the algorithm1, the dynamics observed by the algorithm are determined
by the chosen representation and variation [9, 33]. In other words, “in a dynamic
environment, in addition to the (static) characteristics of the fitness landscape, the
representation influences the characteristics of the fitness landscape dynamics...”[8,
p 765]. It is thus surprising to note that “... the role of representations in dynamic
environments has been largely neglected so far” [8, p 764]. This observation is par-
ticularly relevant to the combinatorial domain where algorithm-independent fitness
landscapes may be difficult to construct.2 This has had a fundamental impact on
evolutionary dynamic optimization: the probably two most significant consequences
concern the construction of general benchmark problems and the identification and
classification of problem dynamics. These aspects form the core of this chapter.

We first introduce the field of evolutionary dynamic optimization with special
emphasis on combinatorial optimization problems and their dynamics in section 5.2.
In section 5.3 we formally introduce the notion of a problem’s fitness landscape and
extend the framework to the dynamic domain. We next review some novel repre-
sentations and variation operators proposed for the dynamic domain and assess the
most commonly used benchmark generators in section 5.4. We subsequently review
a selection of studies concerned with the dynamics observable in dynamic combi-
natorial optimization problems (section 5.5) and conclude the chapter in section 5.6
where we highlight some important directions for future research in evolutionary
dynamic optimization.

5.2 Evolutionary Dynamic Optimization

The field of evolutionary computation provides a variety of nature-inspired meta-
heuristics that have been utilised successfully to obtain high quality solutions to NP-
hard optimization problems. Evolutionary algorithms (EAs) are population-based

1 This is not true for the case of time-linkage where the solution quality obtained by an
algorithm at any moment in time has an impact on the dynamics of the problem in the
future (see [4, 5]); although we do not consider such cases in this chapter, it should be
noted that the dynamics observed by the algorithm are still determined by the algorithm’s
representation and variation operators.

2 The natural order of the numerical domain entails an implicit specification of algorithm-
independent fitness landscapes (e.g., surface of a real-valued function).

5 DCOPs: A Fitness Landscape Analysis 81

global search algorithms inspired loosely by the general principles of evolutionary
systems and attempt to obtain solutions of increasing quality by means of selec-
tion, crossover and mutation: selection favours those individuals in the algorithm’s
population (the multiset P) that represent solutions of higher quality (exploitation)
whereas crossover and mutation, the algorithm’s variation operators, generate off-
spring from those individuals to advance the search (exploration); mutation opera-
tors usually perturb individuals by a small degree whereas crossover operators com-
bine two or more individuals to yield offspring that inherit genetic material from all
parents.

EAs are usually understood to be black-box algorithms (see [13]) as they assume
no knowledge regarding the probability distribution of problem instances encoun-
tered. EAs are thus often applied to difficult problems about which little or no infor-
mation exists. An optimization problem f : X×Δ →R (also known as the objective
function) is a mapping from a search space X = {x1,x2, . . .} to the domain of reals,
where Δ = {δ1,δ2, . . .} are the parameters of the function; the value f (xi,δ j) ∈ R

indicates the quality of xi with respect to problem instance δ j (see [15]); the space of
all f-values is denoted f̂ . The goal is usually to find the global optimum x� ∈ X such
that f (x�,δ) � f (x,δ), ∀x ∈ X , where �∈ {≥,≤}.3 Finally, the majority of real-
world problems have inequality and/or equality constraints a solution must satisfy,
specified by the functions g : X×Δ →R

m and h : X×Δ →R
p, respectively; a solu-

tion is considered feasible if gi(x,δ)≤ 0, i = 1, . . . ,m and h j(x,δ) = 0, j = 1, . . . , p
(see [29]).

The class of dynamic optimization problems (DOPs) is more difficult to define
as, in principle, any component of f may change over time (we assume that the
definition of f entails the specification of the search space X) and the Handbook of
Approximation Algorithms and Metaheuristics [25] states that a general definition
of DOPs does not exist (as of 2007 and we are not aware of any widely accepted def-
inition since). In this chapter we concentrate exclusively on those problems where
the dynamics affect the constraints or parameters of the objective function as this
seems to correspond to the most commonly considered scenario in the literature.
The dynamic equivalent of the static problem f (x,δ) is f (x,δ (t)); the dependency
of δ on time t ≥ 0, equivalent to the problem’s dynamics, describes a trajectory
through the space of all problem instances:

δ (T)−→ δ (T + 1)−→ δ (T + 2)−→ . . .

where Tτ ≤ t < (T + 1)τ and τ , a constant, is the period (duration) of change; we
assume that time advances with every call to the objective function. The transitions
are governed by a mapping T : Δ → Δ that maps from one problem instance to
another such that δ (T + 1) = T (δ (T)).4

3 It should be noted that maxx{ f (x)}≡minx{− f (x)}; the terms fitness and fitness landscape
are usually associated with maximisation whereas the terms cost and cost surface are the
preferred choice in the case of minimisation.

4 A more general definition allows for both T and τ to be time-variant. However, these
cases are rarely considered in the literature.

82 P. Rohlfshagen and X. Yao

5.3 Dynamic Fitness Landscapes

EAs have become a popular choice of search algorithm to tackle difficult optimiza-
tion problems, particularly when traditional approaches are not applicable. In this
section we review the role played by the algorithm’s representation and variation
operators. This is often assessed by means of the fitness landscape metaphor which
is reviewed also. The remainder of this section discusses how the fitness landscape
metaphor may be extended from static functions to those that are dynamic.

5.3.1 Representations and Variation Operators

The choice of representation and variation operators is crucial to the success of
the EA in obtaining high quality solution to the problem of interest: “... the rep-
resentation of an individual in the population and the set of operators used to al-
ter its genetic code constitute probably the two most important components of the
system, and often determine the system’s success or failure.” [2, C3.1:1]. This ob-
servation is particularly relevant to the field of combinatorial optimization which
entails the set of all functions that have discrete search spaces.5 In order to effi-
ciently traverse a space X , it is often necessary to transform X into a domain that is
suitable for the algorithm. This transformation is achieved using representations: a
representation is a mapping fg : Xg→ Xp that transforms an element xg ∈ Xg to an
element xp ∈ Xp; the former is commonly referred to as a genotype and the latter
as a phenotype. The objective function then corresponds to the composite mapping
f = fp ◦ fg = fp(fg(xg),δ), where fp : Xp×Δ → R (see [35]). If no representation
is used, xgi = xpi, ∀xgi ∈ Xg. The space in which the algorithm search is generally
referred to as the search space and the elements of xg correspond to the problem’s
decision variables.

A representation may be injective (approximate), bijective (1:1) or surjective (re-
dundant) and the exact choice of representation often depends both on f and the
algorithm to be used: “... search algorithms are usually efficient in using a partic-
ular representation and not so efficient in using other types of representation.” [2,
C1.1:1]. It is generally recommended to use the most natural representation for the
problem in question. In other words, the characteristics of the problem should deter-
mine the representation and not the other way around and if a representation is used
at all (i.e., if it is not possible to search the space Xp directly), it should be “kept as
simple as possible and obey some structure preserving conditions ...” [2, C.1.2:3].

Different types of representations have often led to different classes of algo-
rithms: genetic algorithms, for instance, are often associated with binary represen-
tations, whereas evolution strategies are used almost exclusively in the continuous
domain. One reason for this divergence of techniques is the need for appropriate
variation operators given the choice of representation: whereas the representation
determines the nature of the elements in Xg, the topology of the space is determined

5 X here refers to the space of actual solutions, not their representation, as discussed in the
remainder of this section.

5 DCOPs: A Fitness Landscape Analysis 83

by the algorithm’s neighbourhood structure: the EA traverses the search space by
means of variation operators that determine the points in Xg to be considered next
(selection subsequently determines which points will be utilised by the algorithm),
usually based on the points already sampled by the algorithm.

The points considered by the algorithm form the neighbourhood N(x) of a point
x ∈ X : N(x) = {y ∈ X | p(y = ξ (x)) > 0} (see [23]), where ξ are the algorithm’s
variation operators. In the case of a simple pseudo-Boolean hill climber, the neigh-
bourhood may be defined as N(x) = {y ∈ X | dg(x,y) = c}, where dg : Xg×Xg→ R

is a distance metric that describes how similar two points xi and x j are. A typical
distance measure for pseudo-Boolean spaces is the Hamming distance dH :

dH(x,y) =
n

∑
i=1

|xi− yi|, x,y ∈ B
n, (5.1)

If c= 1, for instance, the point x= 000 has a neighbourhood N(x)= {001,010,100},
where each element is a Hamming distance of 1 away from x.

EAs typically use stochastic variation operators and traditionally employ both
mutation and crossover operators. Most mutation operators are global search oper-
ators as there is a non-zero probability any element in Xg may be sampled. Bit-wise
mutation, for instance, inverts any element in x with probability pm (mutation rate).
The neighbourhood of any point x ∈ Xg under mutation should thus be viewed as a
probability distribution (possibly defined over an appropriate distance measure such
as the Hamming distance). Crossover operators, on the other hand, combine two or
more individuals with certain probability (crossover rate pc) to yield an offspring
that inherits genetic material from all parents. Given a particular algorithm, any two
points a and b may then be considered neighbours if b can be reached via a single
application of ξ to a. In the case of stochastic operators, it is the likelihood that
ξ (a) = b that determines the proximity in the space. It follows that the distance be-
tween non-neighbours is the length of the shortest path between them (if one exists)
[23].

The following example illustrates the role played by the representation and vari-
ation operators. We assume some function f : N×Δ →R and consider the probably
simplest EA, the (1+1)−EA, which manipulates a single solution x at any moment
in time. A common choice to represent integers is binary where an integer y is given
by some binary vector x such that y = ∑n

i=1 xi2i−1. A binary representation allows
one to use well-established mutation operators: an offspring is created using mu-
tation only with bit-wise probability pm = 1/n, such that xi = 1− xi if r < pm for
0≤ i≤ n where r is a uniform random number in [0,1]. However, it is immediately
obvious that the transformation from binary to integer is non-linear: the neighbour-
ing integers 7 and 8, for instance, are represented by 0111 and 1000, respectively,
which are a maximum Hamming distance apart. Gray codes were proposed to add-
ress the issue of Hamming cliffs [36]: Gray codes transform binary strings such that
any neighbouring integers are represented by neighbouring bit-strings. This trans-
formation gives rise to a different neighbourhood structure (assuming that the mu-
tation operator remains the same) and hence may alter the trajectory of the search.

84 P. Rohlfshagen and X. Yao

Finally, one can search the space of integers directly, eliminating the need to trans-
form genotypes to phenotypes in the first place. This, however, requires alternative
variation operators and these may be more difficult to define.

A tool commonly used to analyse the impact of genotype-phenotype transforma-
tions and the role played by the variation operators is the fitness landscape metaphor;
this is discussed next.

5.3.2 Fitness Landscapes

A significant number of different representations have been proposed for a variety
of domains and their impact on the algorithm’s behaviour is often estimated by
means of the fitness landscape metaphor. The concept of a fitness landscape has its
origin in evolutionary biology (Sewall Wright; 1920s) and corresponds to an abstract
visualisation of the problem’s topological properties in terms of a landscape that
consists of peaks, valleys and ridges. It was popularised in the realm of optimization
by Jones [21]. A fitness landscape may be specified by the tuple:6

L = (Xg, fp◦g,dg), (5.2)

The distance metric dg should ensure non-negativity, symmetry and the triangle-
inequality (see [30, p 454]) and may often be formulated independently of the al-
gorithm (e.g., Hamming distance). However, the true distances between elements in
the search space are determined by the algorithm and may differ from those defined
by an auxiliary distance metric.7 The distances between elements in Xp are also
determined by the algorithm (through the combination of variation operators and
representation) and again, these distances may deviate from those determined by an
auxiliary and algorithm-independent measure. Finally, a distance d f may be defined
for f̂ which most commonly corresponds to d f̂ (f (x), f (y)) = | f (x)− f (y)|.

The algorithm’s neighbourhood structure influences the topological features of
the space Xg, including the presence of local optima: a local optimum is a locally
optimal point x∗ such that f (x∗)� f (x),∀x ∈ N(x∗). As mentioned previously, most
EAs employ global stochastic variation operators and hence the neighbourhood cor-
responds to a probability distribution over all elements in Xg; nevertheless, local
optima still exist as some points are statistically unlikely to be sampled within the
time available.

It is clear from the definition of local optima that neither the chosen represen-
tation nor the algorithm’s variation operators may be assessed in isolation as it is
their combined effect that determines the actual neighbourhood structures utilised

6 It should be noted that the mapping fp may be composite itself and may thus further
influence the structural properties of the fitness landscape: a priori heuristic knowledge, for
instance, may be used to scale f-values to account for additional aspects such as effective
distance [3].

7 It is common to approximate the distances imposed by the algorithm using a simpler, non-
stochastic, measure. For instance, fitness distance correlations [22] are often determined
using the Hamming distance as an approximation of bit-wise mutations with mp = 1/n.

5 DCOPs: A Fitness Landscape Analysis 85

Fig. 5.1 Four different spaces that determine a dynamic fitness landscape, alongside the met-
rics used to define distances between the members of each space: the algorithm traverses the
genotype space, Xg, by means of crossover and mutation and the mapping fg maps geno-
types to phenotypes. The latter corresponds to solutions to the problem of interest that may
be mapped onto R depending on the current problem instance δ (T).

by the algorithm: whereas crossover and mutation act on elements in Xg, selection
acts on elements in Xp and the relationship between these spaces is determined by
the representation.8

5.3.3 Dynamic Fitness Landscapes

The notion of a fitness landscape, as defined in section 5.3.2, still applies in the dy-
namic case. However, the fitness landscape may now change over time, depending
on T and τ and hence the space Δ needs to be considered in addition to Xg, Xp

and f̂ . We assume the space Δ to be metric and define a distance measure dΔ that
indicates the degree of similarity between any two instances δi and δ j. This is com-
monly known as the magnitude of change. However, it is immediately obvious that
the distance between two instances is just one aspect of the transition. Other aspects
include, for instance, the number of parameters affected and the degree to which
each individual parameter has been changed; the direction of change is equally im-
portant (see [41]). The transformations involved in dynamic fitness landscapes in
the combinatorial domain are depicted in Figure 5.1.

It follows that the choice of representation and variation operators not only de-
termines the structure of the static fitness landscape at time T but also the tran-
sition from one fitness landscape to another. Numerous (high-level) classifications
were proposed to describe different types of dynamics: in [9], Branke considers fre-
quency of change, severity of change, predictability of change and cycle length/cy-
cle accuracy. De Jong [12] (cited in [9]) distinguishes between alternating problems,
problems with changing morphology, drifting landscapes, and abrupt and discon-
tinuous problems. Younes et al. [52] further differentiates between dimensionality
and non-dimensionality changes as well as dynamically significant and insignificant

8 In many cases it is possible to achieve similar effects by either changing the representation
or the variation operators. This is known as isomorphism of the fitness landscape; see [31]
cited in [35, p 82]

86 P. Rohlfshagen and X. Yao

changes. However, none of these classifications takes the aforementioned algorithm-
dependency into account; section 5.5.2 reviews a selection of studies that explicitly
looked at this issue.

The most extensive study regarding dynamic fitness landscapes is due to Richter
[32] where a dynamic fitness landscape is defined as follows:

LD = (X ,N,Γ ,F,φ), (5.3)

where X , N are the search space and neighbourhood function as defined previously.9

Γ is a time set that defines the temporal aspects of the dynamics and F is the set of
functions encountered by the algorithm, such that for every f ∈ F , f : X ×Γ → R.
Finally, the mapping φ is used to describe the trajectory of functions encountered:
φ : F×X×Γ → F . Richter utilises this definition of a dynamic fitness landscape to
propose a hierarchy of fitness landscapes, both for discrete and continuous time and
analyses their topological properties in terms of modality, ruggedness, information
content as well as dynamic severity; the focus is on dynamic fitness landscapes that
exhibit spatio-temporal chaotic behaviour. The remainder of this chapter approaches
the concept from the algorithm-design point of view, looking at different represen-
tations and variation operators that have been proposed to improve an algorithm’s
performance in the dynamic domain.

5.4 Dynamic Fitness Landscapes in Practice

This section first reviews some of the representations and variation operators devel-
oped specifically for the dynamic domain, highlighting the potential benefit of novel
neighbourhood structures given the dynamics of the problem. This is followed by a
review and assessment of popular benchmark problems used to evaluate the perfor-
mance of such new algorithms.

5.4.1 Neighbourhood Structures for the Dynamic Domain

Although EAs are generally considered promising candidates for the class of DOPs,
numerous issues were identified that may limit an algorithm’s ability to efficiently
track the moving optimum. In particular, convergence of the algorithm’s popula-
tion has been identified as a primary concern and numerous techniques were sub-
sequently proposed to address this and other issues. These techniques, which are
usually modifications of existing EAs, may broadly be classified as follows:
diversity-preserving techniques, memory, representations, variation operators,
memetic algorithms, speciation and multi-populations and anticipation and predic-
tion. Below we review some techniques that propose novel representations or varia-
tion operators for dynamic combinatorial optimization problems.

9 Richter includes the neighbourhood function rather than a distance measure in the defini-
tion of the fitness landscape; since the distance measure follows directly from the neigh-
bourhood function, these definitions are considered synonymous.

5 DCOPs: A Fitness Landscape Analysis 87

Novel representations are amongst the earliest approaches in evolutionary dy-
namic optimization. The design of representations has focussed on two primary
aspects: an implicit memory that learns short-term dynamics and flexible genotypes
that may map to a variety of distinct phenotypes, subject to very minor modifica-
tions. Diploid (e.g., [17]) and polyploid (e.g., [18]) representations were suggested
as a form of implicit memory: each individual essentially encodes multiple distinct
solutions to the problem of interest, only one of which is expressed at any one time.
Such approaches are also thought to generate additional diversity. Gaspar and Col-
lard [16] propose the Folding GA where the representation includes meta-genes that
control a transcription step to modify the expression (i.e., the mapping from Xg to
Xp) of the individual. The transcription makes use of mappings based on duality
and partial mirroring operations. A similar concept has been explored by Yang [48],
who proposes a duality scheme for dynamic functions that is enforced externally.
Each individual consists of a primal chromosome; a dual chromosome is defined
as the chromosome that is maximum distance from the primal in some Euclidean
space. The individual expresses whichever chromosome is of higher fitness, allow-
ing individuals to respond to significant changes in the environment; subsequent
work has proposed an adaptive variant [42]. Dasgupta and McGregor [11] explore
similar principles, resulting in the Structured GA, which uses redundant genetic ma-
terial and a gene activation mechanism that exploits a multi-layered chromosome
structure.

Similar to the case of representations, one of the earliest approaches to evo-
lutionary dynamic optimization corresponds to a novel variation operator: hyper-
mutations [10] attempt to maintain high levels of diversity in an evolving popu-
lation by temporarily increasing the algorithm’s mutation rate following a change
(also known as triggered hypermutation); an appropriately chosen mutation rate
should allow the algorithm to search in the vicinity of previously found high-quality
solutions. Similarly, many additional mutation operators have been proposed that
allow for enlarged neighbourhoods, either constantly or reactively (i.e., following a
change). However, almost all techniques focus on the continuous domain and very
few apply in the combinatorial case. An example of the latter is due to Woldesen-
bet and Yen [45] who propose a variable (self-adaptive) relocation operator that
moves the entire population that is (partially) adapted to the current state of the
problem: using the individuals’ history of f-values, a new population is generated
that is better suited for the new environment encountered. The authors mention that
this mechanism ensures the algorithm reuses as much information as possible from
the previous evolutionary history.

This brief review highlights three important issues: first, the majority of novel
variation operators have been proposed for the continuous domain where the func-
tion’s fitness landscape is defined unambiguously by the function definition itself.
This allows the specification of general (algorithm-independent) dynamic bench-
mark functions; as the next section will show, creating general benchmark problems
for the combinatorial domain has proven difficult. Second, almost all techniques
aim to widen the neighbourhood of points considered by the algorithm, either con-
sistently or reactively (i.e., when a change takes place); the new neighbourhood

88 P. Rohlfshagen and X. Yao

is sampled with a considerable degree of stochasticity, expressing the uncertainty
about the future structure of the fitness landscape. In other words, a large number of
points in the vicinity of previously high-quality solutions are considered equiproba-
ble in their utility following a change. Although this may allow the algorithm to sam-
ple points that are further away more easily, it also removes local structural proper-
ties that may be exploited otherwise. Third, the comparison of these techniques to
their unmodified counterparts (i.e., the algorithms developed for static functions)
often demonstrates an increase in performance yet the modifications are not com-
monly employed in the static case. This implies that the modifications shown ben-
eficial in the dynamic case do not actually improve the algorithm’s performance on
the individual problem instances encountered; limiting the negative impact of these
modifications on the individual problem instances may thus improve the algorithm’s
overall performance.

The systematic evaluation and comparison of different algorithms, such as those
considered above, necessitates the use of unified benchmark problems these algo-
rithms may be tested on (see [52]). In order to account for a variety of different
dynamics, numerous benchmark problems have been proposed in the past; these are
discussed next.

5.4.2 Dynamic Problem Benchmark Generators

The concept of fitness landscapes is often applied retrospectively to a specific
optimization problem in order to deduce particular attributes that may determine
whether an algorithm will perform well. In particular, numerous measures for prob-
lem difficulty have been developed that attempt to predict whether a problem is diffi-
cult or not by looking at the structural properties of the problem’s fitness landscape.
A well-known example is the fitness distance correlation (FDC; [22]): problems that
have a FDC close to -1 are considered easy as points of higher fitness are, on aver-
age, closer to the global optimum. Conversely, if the FDC is close to 0, the f-value
of a point does not imply anything about its genotypic distance to the global opti-
mum. However, it is relatively easy to show counter-examples that have FDCs close
to 1 (i.e., almost all search points lead away from the global optimum) yet are easy
for an EA (e.g., short path problems; also see [1, 19]). Numerous other measures
have been proposed also, including ruggedness (epistasis), neutrality, modality and
information content. It is important to bear in mind that none of these measures may
predict perfectly the difficulty of a complex problem [19].

The fitness landscape metaphor has also been used prospectively to design new
problems: the NK fitness landscape [24], for instance, provides a general mech-
anism to generate problems with a tuneable degree of epistasis; the interdepen-
dencies of the problem’s decision variables subsequently materialise as different
degrees of ruggedness (lack of local correlation) in the fitness landscape. The
increase in ruggedness is due to a higher information content of the underly-
ing function, incrementally removing exploitable structural properties and thus
often making the problem harder to solve. Similarly, some of the most popular

5 DCOPs: A Fitness Landscape Analysis 89

benchmarks in dynamic evolutionary computation were modelled after the fitness
landscape metaphor as reviewed next.

The three most widely used benchmarks are due to Branke (MOVING PEAKS;
[7]), Morrison (DF1; [27]) and Yang (XOR; [49]). The former two are based on
the continuous domain and model the search space as a “field of cones” [28], where
each cone may be controlled individually to model different ranges of dynamics. In
the two-dimensional case of DF1, for instance, the base function is given by

f (x,y) = max
i=1,...,N

[hi− ri ·
√
(x− xi)2 +(y− yi)2], (5.4)

where N is the number of cones, each at location (xi,yi), and with height hi and
slope ri. The initial morphology is randomly generated within the bounds specified
by the user and the dynamics are modelled using a logistic function y(t) = αy(t−
1)(1−y(t−1)), where α ∈ [1,4] is a constant. The logistic function may be used to
generate different trajectories (depending on α) ranging from static to recurrent and
chaotic.

These continuous benchmarks are a literal realisation of the fitness landscape
metaphor where the structure (and dynamics) of the fitness landscape may be con-
trolled precisely by a small set of parameters. This is made possible by the natural
order of the continuous domain10 and a similar degree of control is significantly
more difficult to achieve in the combinatorial domain as Younes et al. [52] point
out: “... in discrete optimization, we cannot define an algorithm-independent land-
scape that can be made time-dependent to simulate dynamic environments.” [52, p
27].11 The only widely accepted benchmark for the combinatorial domain sidesteps
this issue and is exclusively defined for problems where xp ∈ B

n.
XOR generates a dynamic version of any static binary problem: given a static

fitness function f (x), where x ∈ {0,1}n, its dynamic equivalence is simply

f (x(t)⊕m(T)) (5.5)

where ⊕ is the bit-wise exclusive-or operator [49]. The period index T = �t/τ�
is determined by the update period τ (i.e., 1/τ is the frequency of change). The
vector m(T) ∈ {0,1}n, initially m(0) = 0, is a binary mask for period k, generated
as follows: m(T) = m(T − 1)⊕ p(T), where p(T) ∈ {0,1}n is a randomly created

10 It should be noted that although the continuous domain entails an algorithm-independent
way to specify fitness landscapes, the true fitness landscape traversed by the algorithm still
depends on the specifications of the algorithm.

11 A fitness landscape may be viewed as a fixed (given some algorithm-independent metric
dp) topological structure that the algorithm traverses: the analysis of the landscape may
hint at specific properties an algorithm should possess in order to efficiently locate regions
of higher fitness. For instance, a specific mutation operator may allow the algorithm to
“jump” off a local optimum to reach another basin of attraction. However, the ability of an
algorithm to do so in effect transforms the fitness landscape and the relevance of a chosen
variation operator should be evaluated by the resulting fitness landscape, rather than the
algorithm’s behaviour in a particular predetermined fitness landscape.

90 P. Rohlfshagen and X. Yao

template for period T that contains exactly �ρn� ones. The value of ρ ∈ [0,1] thus
controls the magnitude of change which is specified as the Hamming distance be-
tween two binary points. It follows that the algorithm used to optimise the function
is required to invert ρn bits to return to its previous position. XOR has also been
extended to generate cyclical and noisy cyclical environments (see [50, 51]).

An initial analysis of XOR highlights that the problem’s search space is fully
preserved by the xor operation: as all search points are rotated to the same degree,
their positions relative to one another are preserved [39] and an extended analysis
using dynamical systems shows that the rotations are equivalent to an additional
mutational step that may be taken whenever a change is to take place [40]. There
is thus a need for dynamic combinatorial benchmarks that are structurally time-
variant and numerous studies have made use of dynamic variants of the single and
the (multi-dimensional) knapsack problem has been used on occasions to test and
validate different EAs (e.g., [8, 10]). However, as Branke et al. [9, p 1433] point out:
”little has been done to characterize and understand the nature of change in a real-
world problems”. This makes it difficult to assess how general individual scenarios
are and hence whether the EA would behave similarly on different problem. Uyar
and Uyar [41] raise a similar concern: the authors comment how the magnitude of
change by itself is insufficient to characterise the dynamics of the problem as other
attributes such as the direction of change (especially constraints) play an important
role in the fitness landscape transformation.

5.5 Understanding Combinatorial Problem Dynamics

The majority of work in the field of evolutionary dynamic optimization attempts to
improve an algorithm’s performance by transferring knowledge from one moment
in time to another. According to a recent review of the field, ”a natural attempt to
speed up optimization after a change would be to somehow use knowledge about
the previous search space to advance the search after a change. If, for example,
it can be assumed that the new optimum is ”close” to the old one, it would cer-
tainly be beneficial to restrict the search to the vicinity of the previous optimum.”
[20, p 311]. However, as the previous sections have highlighted, the notion of dis-
tance (and hence what constitutes ”small”) is determined by the algorithm’s imple-
mented neighbourhood structure. In this section we first evaluate why (genotypic)
distances between successive global optima have played such an important role in
most empirical studies and subsequently discuss some of the issues that arise from
the algorithm-dependent structure of a problem’s fitness landscape.

5.5.1 Distance to the Optimum

In order to locate a function’s global optimum x�, algorithms need to traverse the
search space X , usually starting from a uniformly random point, using as guid-
ance only the values in f̂ that correspond to the points sampled by the algorithm

5 DCOPs: A Fitness Landscape Analysis 91

(black-box scenario; see [13]). In order to solve a class of problem instances, one
usually expects some structural properties and indeed, it has been shown that over all
functions f : A→ B (A and B are finite sets, B totally ordered [14]) closed under per-
mutation, any two algorithms will perform equal given the lack of such exploitable
structures (No Free Lunch; see [14, 46]). It follows that practitioners are not gen-
erally interested in the set of all functions but instead assume the functions to be
”reasonable” [38] in that they are ”simple” and ”natural” [14]; an algorithm may
subsequently be superior than another depending on how well aligned it is with the
underlying probability distribution of functions encountered [46, p67].

One of the most common assumptions is that small changes to a point x ∈ Xg

will, at least on average, result in small changes in fp(fg(xg)) (i.e., dg ∝ d f̂).12 Such
assumptions are reflected in an algorithm’s design and Droste et al. [14] consider
as reasonable algorithms “all search heuristics which have no a priori preference of
search regions, which prefer to base their search more on evaluated search points
with a high f-value (fitness-based selection), and which prefer to look at nearer
(Hamming) neighbors.” [14, p139]. The latter assertion (i.e., that algorithms should
prefer to look at nearer Hamming neighbours) is strongly dependent on the locality
of the algorithm’s neighbourhood structures: if dp ∝ f f̂ holds, then dg ∝ dp ensures
that these structural properties are exploitable. In other words, locality describes
how well the algorithm preserves the natural structure of the problem; if locality is
absent, any two neighbouring points in Xg may correspond to an arbitrary pair of
points in Xp.

The majority of studies in dynamic evolutionary computation assume that succes-
sive problem instances encountered are correlated to one another and in particular
that genotypic distances between successive global optima are small. In the case of
pseudo-Boolean optimization, for instance, a randomly chosen initial search point
x0 is, in expectation, a Hamming distance of n/2 from x� and has a distance of at
least n/3 to the global optimum with overwhelming probability (see [43]). Thus,
if the displacement of the global optimum is less than the expected distance to the
global optimum following a random restart, re-locating the global optimum may
be more efficient: as the majority of EAs search in the vicinity of already sampled
points, using as guidance the f-values of new samples, the distance to the global
optimum is crucial to the time it may take the algorithm to locate x�.

This assumption that the displacement of the global optimum is relatively small
may be labelled the distance-based assumption: the likelihood that a particular point
x ∈ Xg may correspond to the next global optimum x�(T +1) depending on the dis-
tance dg(x,x�(T + 1)). The distance-based assumption is probably the most widely
considered one in the literature as it allows practitioners to define the magnitude
of change in similar terms as the frequency of change; in fact, XOR implements
this concept precisely (equation 5.5). However, there are at least two drawbacks
of the distance-based assumptions: first, the genotypic displacement of the global

12 It should be noted that this assumption is about local structural properties and not the
global structure of a problem’s fitness landscape (i.e., dg ∝ f f̂ �⇒ d f̂ ∝ dg).

92 P. Rohlfshagen and X. Yao

optimum is algorithm-dependent and second, the distance-based assumption ignores
all other elements in Xg. The next section proposes an alternative that, at least partly,
addresses these issues.

5.5.2 Properties of Dynamic Fitness Landscapes

In comparison to the significant number of empirical studies, some of which were
reviewed in the previous section, the number of studies that explicitly attempt to
gain a better understanding of a problem’s fitness landscape dynamics is relatively
small. Intuition suggests that changes in the parameter space may have an arbitrary
impact on the fitness landscape, a phenomenon that has been noted frequently in the
literature. Branke, for example, notes that in the classical dynamic n = 17 knapsack
problem [17] with varying capacity c(T), optimal solutions may become infeasible
if c(T + 1)< c(T) and hence it seems unlikely that information from the previous
time steps may be reused [6].13 Similarly, Yamasaki et al. [47] note that in binary
optimization problems, small changes in the parameters may result in (dispropor-
tionally) large changes in the objective function. This property generally contradicts
the notion of small scale changes from one environment to the next and may be
responsible for the predominant focus on the continuous domain.

As mentioned in section 5.3.3, numerous classifications were proposed to char-
acterise different dynamics. However, the utility of such classifications is somewhat
limited as the attributes considered tend to be very abstract and none of the mea-
sures further quantifies the impact of these attributes on the actual dynamic fitness
landscape. Weicker [44], on the other hand, proposes a lower level analysis of the
decomposable fitness landscape generated by DF1: Weicker uses the concepts of
coordinate transformations, fitness rescalings and stretching factors. Nevertheless,
Weiker comments that these properties cannot easily be applied outside the artificial
domain (also see [9]). This problem is a common one across most studies that at-
tempt to improve our understanding of the properties of DOPs: the lack of a general
framework makes it difficult to generalise findings across a wider class of problems
and this is partly due to the algorithm-dependency of the combinatorial domain as
demonstrated throughout this chapter.

A more concrete analysis of fitness landscape dynamics in the combinatorial
domain is due to Branke et al. [9]: the authors analyse the impact of three diffe-
rent representations on the performance of a simple EA on a dynamic variant of
the multi-dimensional knapsack problem.14 The analysis of landscape changes fo-
cusses primarily on change severity and fitness correlation amongst successive prob-
lem instances, measured by taking samples of the search space before and after the

13 This, however, depends crucially on the constraint-handling method employed; if chosen
appropriately, even points that become infeasible following a change may still be valuable
(see [8, 9]).

14 The constraints of the MKP may be dealt with in numerous ways (e.g., penalty functions,
decoders, repair algorithms, constraint-preserving operators, multi-objective problem rep-
resentation) adding a further degree of complexity to the role played by the representation.

5 DCOPs: A Fitness Landscape Analysis 93

change. These measures include change severity, fitness correlation and value of past
optima. As the authors note, for most of these measurements, knowledge regarding
the problem’s global and local optima is required. The authors compare two diffe-
rent representations: real-valued vectors with weight coding and a binary representa-
tion with penalty function and show how the measured outcomes vary considerably
across the different representations. This study is extended in [8] where additional
attributes are examined, including a comparison to random restarts and hypermu-
tations; a permutation representation is considered also. The authors found that the
representation that performed best on the static variant of the multi-dimensional
knapsack problem, a real-valued vector with weight coding, also performed best on
the dynamic variant of the problem.

A different study looked at the relationship between the fitness distance corre-
lation of a problem instance and the impact of different types of dynamics on the
transitions from one problem instance to another [33, 34]: the analysis of the dy-
namic subset sum problem has shown how the attributes of the problem instance
significantly affect the distances between successive global optima. Small problem
instances were evolved with different fitness distance correlations, ranging from 0
(random) to -1 (fully correlated).15 The problem was altered by small modifications
to the problem’s parameters and constraints (the dynamics considered altered either
the parameters or constraint, or both) and the subsequent analysis showed how the
displacement of the global optimum was determined entirely by the FDC of the ins-
tance and not the magnitude of change. In other words, the structure of the fitness
landscape determined entirely how much the global optimum was displaced by.

The transformation from one fitness landscape in time to another (assuming con-
stant dimensionality) may be viewed as the scaling of the values in f̂ . Changes
in the overall structure of the fitness landscape are thus determined by the arrange-
ment of elements that correspond to the f-values. This topology is determined by the
algorithm’s representation and variation. It is possible to remove the algorithm de-
pendency from the distance measure used to correlated different fitness landscapes
by looking at the correlations between f̂ (T) and f̂ (T + 1) directly. This fitness-
based assumption may be seen as a generalisation of the distance-based assumption
and defines the likelihood that some point x ∈ Xg will be the next global optimum
as p(x�(T + 1) = x) := z(f (x)), where z : R→ R is some (domain-specific) func-
tion that reflects the relevance in a point’s f-value following a change. This concept
may be extended to define the rank-based difference between two fitness landscapes
L (T) and L (T +1): the degree to which the ranking of search points has been af-
fected by the transition from one fitness landscape in time to another. The notion of
rank-based difference is particularly suitable for EAs as the majority of EAs perform
their search based on the relative f-values encountered, not the absolute f-values.

15 The authors considered a binary representation of the subsets. The algorithm considered
was a simple (1+1)−EA with bit-wise mutation probability 1/n. The metric dg was sub-
sequently approximated using Hamming distances, with a fixed neighbourhood distance
of c = 1.

94 P. Rohlfshagen and X. Yao

5.6 Conclusions

The majority of algorithms developed for dynamic combinatorial optimization prob-
lems assume that successive problem instances are correlated and in most cases, this
assumption is limited to the genotypic distances between successive global optima.
However, the structural properties of the problem’s fitness landscape are determined
not only by the objective function but equally by the representation and variation
operators of the algorithm: the dynamics describe a trajectory through the space Δ ,
causing the values f̂ to change over time. The spatial arrangement of the elements
these f-values correspond to is determined by the algorithm. In particular, the vari-
ation operators define a neighbourhood over Xg while the representation maps this
neighbourhood to elements in Xp. In the case of dynamic optimization problems, the
chosen neighbourhood structure of an algorithm not only influences the individual
fitness landscapes encountered but also their transitions.

One of the fundamental goals in evolutionary dynamic optimization is the trans-
fer of knowledge from one problem instance in time to another: “a natural attempt
to speed up optimization after a change would be to somehow use knowledge about
the previous search space to advance the search after a change.” [20, p 311]. How-
ever, the identification of the kind of knowledge that may be used for this purpose in
non-trivial. In the majority of cases, such knowledge is restricted to previous search
points sampled by the algorithm. This chapter has shown that the utility of such
points depends on the chosen representation and variation operators and is thus algo-
rithm dependent. It is thus vital to identify some general properties that may be used
to design more efficient algorithms for the dynamic domain, including the choice
of representation, which has a fundamental impact on the difficulty of the problem.
One fundamental issue in evolutionary dynamic optimization is the requirement for
the algorithm to perform well on the individual problem instances as well as their
transitions. It is often the case that modifications suggested specifically for the dy-
namic domain hinder the algorithm’s performance on the individual problem instan-
ces (hence they are not used in static optimization). It is thus paramount to gain a
better understanding of how the performance of an algorithm may be improved on
both the individual problem instances encountered as well as their transition; this is
likely to include some form of learning and adaptation

Liepins and Vose [26] (cited in [35, p 74]) demonstrate that a fully deceptive
problem f (x) = fp(fg(x)) may be transformed to an easy problem by a transforma-
tion T : g(x) = f [T (x)]. However, as Rothlauf [35] argues, the choice of represen-
tation in the absence of domain specific information (black-box scenario) is non-
trivial and universal mappings from difficult to easy problems do not exist (NFL;
[46]). Subsequently, a representation should at the very least ensure it does not make
problems of bounded difficulty more difficult. In the dynamic case, however, domain-
specific knowledge may be accumulated over time and hence the choice of
representation and variation operators may be improved (i.e., the requirement for
locality may be relaxed); this may be achieved, for instance, using adaptive rep-
resentations [37]. In the end, as an algorithm is applied to a DOP for an in-
creasing amount of time, the algorithm’s knowledge about the problem should

5 DCOPs: A Fitness Landscape Analysis 95

monotonically increase (up to a limit); this necessarily reduces the black box un-
certainty about future problem instances and should allow the algorithm to usefully
increase the heuristic bias [30] of its representation and variation operators.

Acknowledgements. This work was partially supported by an EPSRC grant (No.
EP/E058884/1) on ”Evolutionary Algorithms for Dynamic Optimisation Problems: Design,
Analysis and Applications.”

References

[1] Altenberg, L.: Fitness distance correlation analysis: An instructive counter-example. In:
ICGA, pp. 57–64 (1997)

[2] Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation.
CRC Press (1997)

[3] Borenstein, Y., Poli, R.: Information landscapes. In: GECCO 2005: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, pp. 1515–1522. ACM,
New York (2005)

[4] Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online dy-
namic optimization. In: Proceedings of the 2005 Workshop on Genetic and Evolutionary
Computation, pp. 39–47 (2005)

[5] Bosman, P.A.N., Poutrè, H.L.: Learning and anticipation in online dynamic optimiza-
tion with evolutionary algorithms: the stochastic case. In: Proceedings of the 2007 Ge-
netic and Evolutionary Computation Conference, pp. 1165–1172 (2007)

[6] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, vol. 3,
pp. 1875–1882. IEEE (1999)

[7] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2002)
[8] Branke, J., Orbayı, M., Uyar, Ş.: The Role of Representations in Dynamic Knapsack

Problems. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R.,
Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H.
(eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 764–775. Springer, Heidelberg (2006)

[9] Branke, J., Salihoglu, E., Uyar, S.: Towards an analysis of dynamic environments. In:
Beyer, H.-G., et al. (eds.) Genetic and Evolutionary Computation Conference, pp. 1433–
1439. ACM (2005)

[10] Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator
in genetic algorithms having continuous, time-dependant nonstationary environments.
Technical report, Naval Research Laboratory, Washington, USA (1990)

[11] Dasgupta, D., McGregor, D.R.: Nonstationary function optimization using the struc-
tured genetic algorithm. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving
from Nature, vol. 2, pp. 145–154. Elsevier, Amsterdam (1992)

[12] De Jong, K.: Evolving in a Changing World. In: Raś, Z.W., Skowron, A. (eds.) ISMIS
1999. LNCS, vol. 1609, pp. 512–519. Springer, Heidelberg (1999)

[13] Droste, S., Jansen, T., Tinnefeld, K., Wegener, I.: A new framework for the valuation of
algorithms for black-box optimization. In: Proceedings of the Seventh Foundations of
Genetic Algorithms Workshop (FOGA), pp. 197–214 (2002)

[14] Droste, S., Jansen, T., Wegener, I.: Optimization with randomized search heuristics –
the (a)nfl theorem, realistic scenarios, and difficult functions. Theoretical Computer
Science 287 (2002)

96 P. Rohlfshagen and X. Yao

[15] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company (1979)

[16] Gaspar, A., Collard, P.: From GAs to artificial immune systems: Improving adaptation
in time dependent optimization. In: Proceedings of the IEEE International Congress on
Evolutionary Computation, pp. 1867–1874 (1999)

[17] Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algo-
rithms with dominance and diploidy. In: Grefenstette, J.J. (ed.) Second International
Conference on Genetic Algorithms, pp. 59–68. Lawrence Erlbaum Associates (1987)

[18] Hadad, B.S., Eick, C.F.: Supporting Polyploidy in Genetic Algorithms Using Domi-
nance Vectors. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.)
EP 1997. LNCS, vol. 1213, pp. 223–234. Springer, Heidelberg (1997)

[19] He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-
box optimization: Classification, realizations and predictability. Evolutionary Compu-
tation 15(4), 435–443 (2007)

[20] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environment - a survey. IEEE
Transactions on Evolutionary Computation 9(3), 303–317 (2005)

[21] Jones, T.: Evolutionary algorithms, fitness landscapes and search. PhD thesis, Citeseer
(1995)

[22] Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for
genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic
Algorithms, pp. 184–192 (1995)

[23] Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search land-
scapes. In: Theoretical Aspects of Evolutionary Computing, pp. 175–206 (2001)

[24] Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)
[25] Leguizamon, G., Blum, C., Alba, E.: Evolutionary Computation. In: Handbook of Ap-

proximation Algorithms and Metaheuristics, pp. 24.1–24.X. CRC Press (2007)
[26] Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. Journal of

Experimental & Theoretical Artificial Intelligence 2(2), 101–115 (1990)
[27] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments.

Springer, Berlin (2004)
[28] Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environ-

ments. In: Congress on Evolutionary Computation, vol. 3, pp. 2047–2053. IEEE (1999)
[29] Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Com-

plexity. Dover (1998)
[30] Raidl, G.R., Gottlieb, J.: Empirical analysis of locality, heritability and heuristic bias

in evolutionary algorithms: A case study for the multidimensional knapsack problem.
Evolutionary Computation 13(4), 441–475 (2005)

[31] Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations Re-
search 86, 473–490 (1999)

[32] Richter, H.: Evolutionary Optimization and Dynamic Fitness Landscapes. In: Zelinka,
I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic
Systems. SCI, vol. 267, pp. 409–446. Springer, Heidelberg (2010)

[33] Rohlfshagen, P., Yao, X.: Dynamic combinatorial optimization problems: An analysis
of the subset sum problem. To appear in Soft Computing

[34] Rohlfshagen, P., Yao, X.: Attributes of Dynamic Combinatorial Optimisation. In: Li, X.,
Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendt-
lass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp.
442–451. Springer, Heidelberg (2008)

[35] Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer (2002)

5 DCOPs: A Fitness Landscape Analysis 97

[36] Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control parameters
affecting online performance of genetic algorithms for function optimization. In: Pro-
ceedings of the Third International Conference on Genetic Algorithms, pp. 51–60. Mor-
gan Kaufmann Publishers Inc. (1989)

[37] Schnier, T., Yao, X.: Using multiple representations in evolutionary algorithms. In: Pro-
ceedings of the 2000 Congress on Evolutionary Computation, pp. 479–486. IEEE Press
(2000)

[38] Thompson, R.K., Wright, A.H.: Additively decomposable fitness functions. Technical
report, University of Montana, Computer Science Department (1996)

[39] Tinos, R., Yang, S.: Continuous dynamic problem generators for evolutionary algo-
rithms. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, pp.
236–243 (2007)

[40] Tinós, R., Yang, S.: An Analysis of the XOR Dynamic Problem Generator Based on the
Dynamical System. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN
XI. LNCS, vol. 6238, pp. 274–283. Springer, Heidelberg (2010)

[41] Uyar, Ş., Uyar, H.: A Critical Look at Dynamic Multi-dimensional Knapsack Problem
Generation. In: Applications of Evolutionary Computing, pp. 762–767 (2009)

[42] Wang, H., Yang, S., Ip, W.H., Wang, D.: Adaptive primal-dual genetic algorithms in
dynamic environments. IEEE Transactions on Systems, Man, and Cybernetics Part B:
Cybernetics 39(6), 1348–1361 (2009)

[43] Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-boolean
functions. In: Evolutionary Optimization, pp. 349–369 (2002)

[44] Weicker, K.: Evolutionary Algorithms and Dynamic Optimization Problems. Der An-
dere Verlag (2003)

[45] Woldesenbet, Y.G., Yen, G.G.: Dynamic evolutionary algorithm with variable reloca-
tion. IEEE Transactions on Evolutionary Computation 13(3), 500–513 (2009)

[46] Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1(1), 67–82 (1997)

[47] Yamasaki, K., Kitakaze, K., Sekiguchi, M.: Dynamic optimization by evolutionary al-
gorithms applied to financial time series. In: Proceedings of the 2002 Congress on Evo-
lutionary Computation (2002)

[48] Yang, S.: PDGA: the primal-dual genetic algorithm. In: Design and Application of Hy-
brid Intelligent Systems, pp. 214–223. IOS Press (2003)

[49] Yang, S.: Non-stationary problem optimization using the primal-dual genetic algo-
rithms. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.-C., McKay, R., Essam, D.,
Gedeon, T. (eds.) Proceedings of the 2003 IEEE Congress on Evolutionary Computa-
tion, vol. 3, pp. 2246–2253 (2003)

[50] Yang, S.: Memory-enhanced univariate marginal distribution algorithms for dynamic
optimization problems. In: Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, vol. 3, pp. 2560–2567 (2005)

[51] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Transactions on Evolutionary Computation 12(5), 542–
561 (2008)

[52] Younes, A., Calamai, P., Basir, O.: Generalized benchmark generation for dynamic com-
binatorial problems. In: Proceedings of the 2005 Workshop on Genetic and Evolution-
ary Computation, pp. 25–31 (2005)

Chapter 6
Two Approaches for Single and Multi-Objective
Dynamic Optimization

Kalyanmoy Deb�

Abstract. Many real-world optimization problems involve objectives, constraints,
and parameters which constantly change with time. However, to avoid complica-
tions, such problems are usually treated as static optimization problems demanding
the knowledge of the pattern of change a priori. If the problem is optimized in its
totality for the entire duration of application, the procedure can be computationally
expensive, involving a large number of variables. Despite some studies on the use of
evolutionary algorithms in solving single-objective dynamic optimization problems,
there has been a lukewarm interest in solving dynamic multi-objective optimization
problems. In this paper, we discuss two different approaches to dynamic optimiza-
tion for single as well as multi-objective problems. Both methods are discussed and
their working principles are illustrated by applying them to different practical opti-
mization problems. The off-line optimization approach in arriving at a knowledge
base which can then be used for on-line applications is applicable when the change
in the problem is significant. On the other hand, an off-line approach to arrive at a
minimal time window for treating the problem in a static manner is more appropri-
ate for problems having a slow change. Further approaches and applications of these
two techniques remain as important future work in making on-line optimization task
a reality in the coming years.

Kalyanmoy Deb
Kanpur Genetic Algorithms Laboratory (KanGAL)
Department of Mechanical Engineering
Indian Institute of Technology Kanpur,
PIN 208016, India
e-mail: deb@iitk.ac.in
� Kalyanmoy Deb is a Professor at IIT Kanpur, India and is also an Adjunct Professor

at Aalto University School of Economics, Helsinki, Finland and a Visiting Professor at
University of Skövde, Sweden.

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 99–116.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

deb@iitk.ac.in

100 K. Deb

6.1 Introduction

A dynamic optimization problem involves objective functions, dynamic optimiza-
tion constraint functions, and problem parameters which can change with time. Such
problems often arise in real-world problem solving, particularly in optimal control
problems or problems requiring an on-line optimization. There are two computa-
tional procedures usually followed. In one approach, optimal control laws or rules
(more generally a knowledge base) are evolved by solving an off-line optimization
problem formed by evaluating a solution on a number of real scenarios of the dy-
namic problem [10, 11]. This approach is useful in solving problems which change
frequently and are also computationally expensive for any optimization algorithm
to be applied on-line. The other approach is a direct optimization procedure on-line
in which an off-line study is suggested for finding a minimal time window within
which the problem will be treated as unchanged. In the latter case, the problem is
considered stationary for some time period and an optimization algorithm can be
allowed to find optimal or near-optimal solution(s) within the time span in which
the problem remains stationary. Thereafter, a new problem is constructed based on
the current problem scenario and a new optimization is performed for the new time
period. Although this procedure is approximate due to the static consideration of the
problem during the time for optimization, efforts are made to develop efficient opti-
mization algorithms which can track the optimal solution(s) within a small number
of iterations so that the required time period for fixing the problem is small and the
approximation error is reduced.

Both approaches are applicable for single as well as multi-objective optimization
problems. In the case of single-objective dynamic optimization problems, the opti-
mal solution changes during the optimization procedure and the task of an efficient
optimization algorithm would be to track the optimum solution as closely as possible
with a minimal computational effort. Although single-objective dynamic optimiza-
tion has received some attention in the past [2], the dynamic multi-objective opti-
mization is yet to receive significant attention. When a multi-objective optimization
problem changes with time, the task of a dynamic evolutionary multi-objective op-
timization (EMO) procedure is to find or track the Pareto-optimal front as and when
there is a change. Since a front of trade-off solutions changes with time, dynamic
multi-objective optimization is expected to be harder than dynamic single-objective
optimization. A previous study [6] illustrated different possibilities of a change in
the optimal front. But since this study, there has been a lukewarm interest on this
topic [7, 8].

In the remainder of this paper, we discuss in details the philosophies of both
approaches in Section 6.2. The first approach in which an off-line optimization study
is needed to obtain an optimal knowledge base for on-line optimization is described
next in Section 6.3. This section also shows how the procedure can be applied to a
dynamic robot navigation problem for a single-objective function of minimizing the
overall time of travel and satisfying constraints related to avoidance of collision with
moving obstacles. Due to the uncertain and imprecision nature of the associated
variables, a fuzzy knowledge base is developed by an off-line application of an

6 Single and Multi-Objective Dynamic Optimization 101

evolutionary algorithm. Later, the obtained fuzzy rule base is used to navigate on-
line in unseen test scenarios. Section 6.4 then describes the second approach, in
which an idea of the minimal time window for considering the problem as a static
problem is determined based on an off-line study. The approach is applied to a
hydro-thermal power dispatch problem in which power demand is considered as
a changing parameter with time. The study shows how the obtained minimal time
window allows the approach to be used on-line in a multi-objective version of the
problem. The issue of automated decision-making required in the case of dynamic
multi-objective optimization is discussed in Section 6.4.4. Conclusions are drawn in
Section 6.5.

6.2 Solving Dynamic Optimization Problems

Many search and optimization problems in practice change with time and therefore
must be treated as on-line optimization problems. The change in the problem with
time t can be either in its objective functions or in its constraint functions or in its
variable boundaries or in any problem parameters or in any combination of above.
Such an optimization problem ideally must be solved instantly at every time instant
t or whenever there is a change in any of the above functions with t. However, prac-
tically speaking, an optimization task requires a finite amount of computational time
(τopt) to arrive at a solution reasonably close to the true optimum. In such problems,
there are two time frames which are intertwined: (i) computational time in arriv-
ing at a solution (denoted as τ) and (ii) real time in which the problem undergoes
a change (denoted as t). While an optimization run is underway in the time frame
of τ , the problem gets also changed in the time frame of t. Here, we shall assume
equivalence of both time frames and any time spent in one frame affects the same
amount in the other time frame.

It now becomes obvious that in an on-line optimization task, as an optimization
task is performed (taking a finite time) the optimization problem gets changed and
the optimization task is not solving the same problem with which it started. The
relevance and accuracy of the obtained optimum in the current context largely de-
pends on the rate at which the problem changes with time. If the rate of change
in the problem is fast compared to the time taken by the optimization algorithm
in arriving at the optimal solution, the relevance of the optimal solution of earlier
problem to the current context may be questionable. In such a situation, performing
an optimization task on-line may not make much sense. On the other hand, if the
rate in change is slow, an optimization task can be performed and the obtained opti-
mal solution can still be meaningful. Based on these two scenarios, we suggest two
different techniques for a possible on-line optimization task:

1. Develop an optimal rule base off-line and use it for on-line application, and
2. Develop an on-line optimization procedure by considering the problem to be

static for a minimal time window.

We discuss each of these techniques in the following sections.

102 K. Deb

6.3 Approach 1: Off-Line Development of an Optimal Rule
Base

This approach is more suitable to problems which change quickly with time or
which require a computationally expensive evaluation procedure. In this approach, a
number of instantiations of the dynamically changed problem are first collected. An
off-line optimization task is then used to find a set of optimal rules (other classifier
based approaches can also be adopted here) that would correctly work in the chosen
instantiations. It is then believed that since the obtained optimal rule base worked
on a number of cases in solving the task optimally, it would also work on new cases
on-line. Thus, the obtained optimal rule base can be used to quickly find a reason-
able solution to the changing problem. Since new instantiations can be somewhat
different from the earlier chosen instantiations, the optimization task of finding the
optimal rule base can be repeated in a regular interval during the on-line application
process. For this purpose, the new and structurally different instantiations can be
stored in an archive. The optimization task can continue in the background without
disturbing the on-line application process. We describe one such application through
an optimization based approach applied to dynamic robot navigation problem [4].

6.3.1 Off-Line Optimization Approach Applied to a Robot
Navigation Problem

Figure 6.1 shows the suggested off-line optimization based approach. On a set of
instantiations, an optimization algorithm is applied to find a knowledge base using
rules or by other means. The optimization task would find a set of rules or classifiers
which will determine the nature of the outcome based on the variable values at any
time instant. In the following, we describe the procedure in the context of an on-line
robot navigation problem.

The purpose of the dynamic motion planning (DMP) problem of a robot is to find
an obstacle-free path which takes a robot from a point A to a point B with minimum
time. There are essentially two parts of the problem:

1. Learn to find any obstacle-free path from point A to B, and
2. Learn to choose that obstacle-free path which takes the robot in a minimum

possible time.

Both these problems are somewhat similar to the learning phases a child would go
through while solving a similar obstacle-avoidance problem. If a child is kept in
a similar (albeit hypothetical) situation (that is, a child has to go from one corner
of a room to another by avoiding a few moving objects), the child learns to avoid
incoming obstacle by taking detour from his/her path. It is interesting that while
taking the detour he/she never calculates the precise angle of deviation. This process
of avoiding an object can be thought as if the child is using a rule of the following
sort:

6 Single and Multi-Objective Dynamic Optimization 103

If an object is very near and is approaching, then turn right to the original path.

Because of the imprecise definition of the deviation in this problem, it seems natural
to use a fuzzy logic technique here.

The second task of finding an optimal obstacle-free path arises from a simile of
solving the same problem by an experienced versus an inexperienced child. An in-
experienced child may take avoidance of each obstacle too seriously and deviate by
a large angle each time he/she faces an obstacle. This way, this child may lead away
from the target and take a long winding distance to reach the target. Whereas, an
experienced child may deviate barely from each obstacle, thereby taking the quick-
est route. If we think of how the experienced child has learned this trick, the answer
is through experience of solving many such problems in the past. Previous efforts
helped us to find a set of good rules to do the task efficiently. This is precisely the
task of an optimizer which needs to discover the optimal set of rules needed to avoid
obstacles and reach the target point in a minimum possible time. This is where the
genetic algorithm (GA) is a natural choice.

based learning

A number of

instantiations

Knowledge
 Base

Off−line

On−line

instantiation(t)
On−line Solution(t)

Optimization

Fig. 6.1 Approach 1 is illustrated.

A

P

O1
O2

N

B

v
1

distance=Distance PO

Angle BPO2

deviation

angle

=

=

2

Angle BPNv2

Fig. 6.2 A schematic showing condition
and action variables for the robot navigation
problem.

In the proposed genetic-fuzzy approach, a GA is used to create the knowledge
base comprising of fuzzy rules for navigating a robot off-line. For on-line applica-
tion, the robot uses its optimal fuzzy rule base to find an obstacle-free path for a
given input of parameters depicting the state of moving obstacles and the state of
the robot.

6.3.2 Representation of a Solution in a GA

A solution to the DMP problem is represented by a set of rules which a robot will
use to navigate from point A to point B (Fig. 6.2). Each rule has three conditions:
distance, angle, and relative velocity. The distance is the distance of the near-
est obstacle forward from the robot. Four fuzzy values of distance are chosen:
very near (VN), near (N), far (F), and very far (VF). The angle is the relative angle

104 K. Deb

between the path joining the robot and the target point and the path to the nearest
obstacle forward. The corresponding fuzzy values are left (L), ahead left (AL), ahead
(A), ahead right (AR), and right (R). The relative velocity is the relative velocity
vector of the nearest obstacle forward with respect to the robot. In our approach, we
eliminate this variable by using a practical incremental procedure. Since a robot can
sense the position and velocity of each obstacle at any instant of time, the critical
obstacle ahead of the robot can always be identified. In such a case (Fig. 6.2), even if
an obstacle O1 is nearer compared to another obstacle O2, and the relative velocity
v1 of O1 directs away from robot’s path toward the target point B, whereas the
relative velocity v2 of O2 directs toward the robot (Position P), the obstacle O2 is
assumed to be the critical obstacle forward.

The action variable is deviation of the robot from its path toward the target
(Fig. 6.2). This variable is considered to have five fuzzy values: L, AL, A, AR, and
R. Triangular membership functions are considered for each membership function
(Fig. 6.3). Using this rule base, a typical rule will look like the following:

If distance is VN and angle is A, then deviation is AL.

With four choices for distance and five choices for angle, there could be a total
of 4× 5 or 20 valid rules possible. For each combination of condition variables, a
suitable action value (author-defined) is associated, as shown in Table 6.1.

Table 6.1 All possible rules are shown.

di
st

an
ce

angle
L AL A AR R

VN A AR AL AL A
N A A AL A A
F A A AR A A

VF A A A A A

1.0

0.0

VN N F VF

0.2 2.5 4.8 7.1
Distance (m)

1.0

0.0

L AL A AR R

0.0 45.0 90.0-45.0-90.0
Angle and Deviation (degrees)

b

b

1

2

Fig. 6.3 Author-defined membership functions.

The task of GA is to find which rules (out of 20) should be present in the optimal
rule base. We represent the presence of a rule by a 1 and the absence by a 0. Thus,
a complete solution will have a 20-bit length string of 1 and 0. The value of i-th
position along the string marks the presence or absence of the i-th rule in the rule
base.

6 Single and Multi-Objective Dynamic Optimization 105

6.3.3 Evaluating a Solution in the GA

A rule base (represented by a 20-bit binary string) is evaluated by simulating a
robot’s performance on a number of scenarios and keeping track of the travel time,
T . Since a robot may not reach the destination using a lethal rule base, the robot is
allowed a maximum travel time. An average of travel times in all scenarios is used
as the fitness of the solution.

Now, we shall discuss some details which will be necessary to calculate the actual
travel time T . As mentioned earlier, the robot’s total path is a collection of a number
of small straight line paths traveled for a constant time ΔT in each step. To make
the matter as practical as possible, we have assumed that the robot starts from zero
velocity and accelerates during the first quarter of the time ΔT and then maintains a
constant velocity for the next one-half of ΔT and decelerates to zero velocity during
the remaining quarter of the total time ΔT . For constant acceleration and decelera-
tion rates (a), the total distance covered during the small time step ΔT is 3aΔT 2/16.
At the end of the constant velocity travel, the robot senses the position and velocity
of each obstacle and decides whether to continue moving in the same direction or to
deviate from its path. This is achieved by first determining the predicted position of
each obstacle, as follows:

Ppredicted = Ppresent +(Ppresent−Pprevious). (6.1)

The predicted position is the linearly extrapolated position of an obstacle from its
current position Ppresent along the path formed by joining the previous Pprevious and
present positions. Thereafter, the nearest obstacle forward is determined based on
Ppredicted values of all obstacles and the fuzzy logic technique is applied to find
the obstacle-free direction using the rule base dictated by the corresponding 20-
bit string. If the robot has to change its path, its velocity is reduced to zero at the
end of the time step; otherwise the robot does not decelerate and continues in the
same direction with the same velocity aΔT/4. It is interesting to note that when the
latter case happens (the robot does not change its course) in two consecutive time
steps, there is a saving of ΔT/4 second in travel time per such occasion. Overall
time of travel (T) is then calculated by summing all intermediate time steps needed
for the robot to reach its destination. This approach of robot navigation can be easily
incorporated in a real-world scenario1.

6.3.4 Results on Robot Navigation Problem

We consider five different techniques:

Technique 1: Author-defined fuzzy-logic controller. In this approach, a fixed set
of 20 rules and author-defined membership functions are used. No optimization

1 In all simulations here, ΔT = 4 sec and a = 1 m/s2 are chosen. These values make the
velocity of the robot in the middle portion of each time step equal to 1 m/sec.

106 K. Deb

method is used to find optimal rule base or to find the optimal membership func-
tion distributions.

Technique 2: Optimizing membership functions alone. A set of all 20 author-
defined rule base is assumed and the membership function distributions of
condition and action variables are optimized. The shape of the membership
functions is assumed to be triangular. The bases of the membership functions
are considered as variables. The bases b1 and b2 (refer Fig. 6.3) are coded in 10
bit substrings each, thereby making a GA string equal to 20 bits. The base b1 is
decoded in the range (1.0, 4.0) cm and the base b2 is decoded in the range (25.0,
60.0) degrees. Symmetry is maintained in constructing other membership func-
tion distributions. In all simulations here, the membership function distribution
for deviation is kept the same as that in angle.

Technique 3: Optimizing rule base alone. The rule base is optimized in this study,
while using an author-defined membership function. Here, the GA string is a 20-
bit string (of 1 and 0 denoting the presence or absence of rules).

Technique 4: Optimizing membership functions and rule base. In this study, both
optimization of finding optimized membership functions and finding an opti-
mized rule base are achieved simultaneously. Here, a GA string is a 40-bit string
with first 20 bits denoting the presence or absence of 20 possible rules, next 10
bits are used to represent the base b1, and the final 10 bits are used to represent
the base b2.

In all runs, we use binary tournament selection (with replacement), the single-point
crossover operator with a probability pc of 0.98 and the bit-wise mutation operator
with a probability pm of 0.02. A maximum number of generations equal to 40 are
used. In every case, a population size of 100 is used. In all cases, 10 different author-
defined scenarios are used to evaluate a solution.

We now apply all five techniques to eight-obstacle problems (in a grid of 20×24
m2). The optimized travel distance and time for Techniques 1 to 4 are presented in
Table 6.2. Ideally multiple applications of a GA from different initial populations
must be used to make a comprehensive evaluation, but here, we show results from
a single simulation in each case. However, a visual inspection of multiple runs has
shown similar results. The first three rows in the table show the performance of all
approaches on scenarios that were used during the optimization process and the last
three rows show their performance on new test (unseen) scenarios. The table shows
that in all cases, Techniques 2, 3, and 4 have performed better than Technique 1
(no optimization). Paths obtained using all four approaches for scenario 4 (unseen)
are shown in Fig. 6.4. It is clear that the paths obtained by Techniques 3 and 4 are
shorter and quicker than those obtained by Techniques 1 and 2. The optimized rule
bases obtained using Techniques 3 and 4 are shown in Tables 6.3 and 6.4.

The optimized membership functions obtained using Techniques 2 and 4 are
shown in Figs. 6.5 and 6.6, respectively.

Here, Technique 4 (simultaneous optimization of rules and membership func-
tions) has elongated the membership function distribution, so that classification of

6 Single and Multi-Objective Dynamic Optimization 107

Table 6.2 Travel distance D (in meter) and time T (in sec) obtained by five approaches for
the eight-obstacle problem.

Technique 1 Technique 2 Technique 3 Technique 4
Scenario D T D T D T D T

T
ra

in
in

g 1 27.203 28.901 26.077 27.769 26.154 27.872 26.154 27.872
2 26.957 28.943 25.966 27.622 26.026 26.564 26.026 26.546
3 29.848 36.798 28.623 35.164 26.660 34.547 27.139 35.000

Te
st

in
g 4 33.465 43.364 26.396 27.907 26.243 27.512 26.243 29.512

5 32.836 41.781 27.129 33.000 26.543 32.390 27.041 33.000
6 33.464 43.363 28.001 31.335 27.164 31.000 27.164 31.000

1

1

2 2 2 2 8

8

8

8

8

3

3

3

3

3

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

55555555555

Approach 1

Approaches 3 and 4

X

Y

Approach 2

A

B

12.5 250
0

10

20

Fig. 6.4 Optimized paths found by all four approaches for the eight-obstacle problem are
shown. There are seven obstacles and their movements are shown by an arrow. The location
of the critical obstacle (that is closest to the robot and is considered for the fuzzy logic analysis
at each time step) is shown by a dashed circle. In each case, the robot is clear from the critical
obstacle.

relative angle is uniform in the range of (−90,90) degrees. Because only 10 scenar-
ios are considered during the optimization process, it could have been that in most
cases the critical obstacles come in the left of the robot, thereby causing more rules
specifying L or AL to appear in the optimized rule base. By considering more sce-
narios during the optimization process, such bias can be avoided and equal number

108 K. Deb

Table 6.3 Optimized rule base (having nine
rules only) obtained using Technique 3 for
eight-obstacle problem.

di
st

an
ce

angle
L AL A AR R

VN
N A A
F A A

VF A A A A A

Table 6.4 Optimized rule base (having five
rules only) obtained using Technique 4 for
eight-obstacle problem.

di
st

an
ce

angle
L AL A AR R

VN AR
N A A
F A

VF A

VN N F VF

0.0
0.2 1.4 2.6 3.8

1.0

L AL A AR R

0.0 35.0 70.0-35.0-70.0

0.0

1.0

Angle and Deviation (degrees)

Distance (m)

Fig. 6.5 The optimized membership func-
tion obtained using Technique 2 for eight-
obstacle problem.

Angle and Deviation (degrees)

VF

0.0

1.0 VN N F

0.2 4.1 8.0 11.9
Distance (m)

L AL A AR R

0.0 42.1 84.2-42.1-84.2

1.0

0.0

Fig. 6.6 The optimized membership func-
tion obtained using Technique 4 for eight-
obstacle problem.

of rules specifying left and right considerations can be obtained. From Table 6.2, it
can be observed that Technique 3 (optimization of rule base only) has resulted in a
much quicker path than Technique 2 (optimization of membership function only).
This is because finding a good set of rules is more important for the robot than
finding a good set of membership functions. Thus, the optimization of rule base
is a rough-tuning process and the optimization of the membership function distri-
butions is a fine-tuning process. Among both tables, in only one case (Scenario 6
in Table 6.2) the optimization of membership function for a optimized rule base
has improved the solution slightly (Technique 4). In all other cases, the optimized
solutions are already obtained during the optimization of rule-base only and opti-
mization of membership function did not improve the solution any further.

Although the performance of Techniques 3 and 4 is more-or-less similar, we
would like to highlight that Technique 4 is a more flexible and practical approach.
The similarity in the performances of Techniques 3 and 4 reveals that optimizing
rule base has a significant effect and the optimization of the membership functions
is only a secondary matter. Since the membership functions used in Technique 3
are developed by the authors and are reasonably good in these two problems, the
performance of Technique 3 turns out to be good. However, for more complicated
problems, we recommend using Technique 4, since it optimizes both the rule base
and membership functions needed in a problem.

6 Single and Multi-Objective Dynamic Optimization 109

6.4 Approach 2: On-Line Optimization with a Minimal Time
Window

For a steady change in a problem (which is most usual in practice), we suggest an
on-line optimization technique which we discuss next.

Let us assume that the change in the optimization problem is gradual in t. Let us
also assume that each optimization iteration requires a finite time G and that τT itera-
tions are needed to track the optimal frontier within an allowable performance level.
An assumption we make here is that the problem does not change (or is assumed to
be constant) within a time interval tT , such that GτT < tT . Thus, an initial GτT time
is taken up by the optimization algorithm to track the new trade-off frontier and to
make a decision for implementing a particular solution from the frontier. We expect
that only a fraction of overall time is taken by the optimization algorithm, that is,
α = GτT /tT is expected to be a small value (say 0.25). After the optimal frontier
is tracked, (1−α)tT time is spent on using the optimized solution for the rest of
the time period. Fig. 6.7 illustrates this dynamic procedure. The objective function
f (x), hence also the optimum of f (x), changes with time.

sampled at A

f(x,) time period of length t

A

f(x,0)

f*(t)
f(x,2)

(window for
optimization)

assumed f(x) for

0 2tT Time, t

T

τT GτT
tT

tT

tT
tT

G

Fig. 6.7 The on-line optimization procedure adopted in this study. For simplicity, only one
objective is shown.

The choice of the time window is a crucial matter. If we allow a large value of
tT (allowing a proportionately large number of optimization iterations τT), a large
change in the problem is expected, but the change occurs only after a large number
of iterations of the optimization algorithm. Thus, despite the large change in the
problem, the optimization algorithm may have enough iterations to track the trade-
off optimal solutions. On the other hand, if we choose a small τT , the change in
the problem is frequent (which approximates the real scenario more closely), but a
lesser number of iterations are allowed to track new optimal solutions for a problem

110 K. Deb

which has also undergone a small change. Obviously, there lies a lower limit to τT

below which, albeit a small change in the problem, the number of iterations is not
enough for an optimization algorithm to track the new optimal solutions adequately.
Such a limiting τT will depend on the nature of the dynamic problem and the chosen
algorithm, but importantly allows the best scenario (and closest approximation to
the original problem) which an algorithm can achieve. We suggest using an off-line
study to find the limiting time window for an on-line optimization problem.

6.4.1 Dynamic NSGA-II for Handling Dynamic Multi-objective
Optimization Problems

Here, we illustrate the working of the above on-line optimization approach on a
dynamic multi-objective optimization problem. For this purpose, we suggested a
modified NSGA-II procedure in an earlier study [5].

First, we introduce a test to identify whether there is a change in the problem
at every generation. For this purpose, we randomly pick a few solutions from the
parent population (10% population members used here) and re-evaluate them. If
there is a substantial change in any of the objectives and constraint function values,
we establish that there is a change in the problem. In the event of a change, all parent
solutions are re-evaluated before merging parent and child population into a bigger
pool. This process allows both offspring and parent solutions to be evaluated using
the changed objectives and constraints.

In the dynamic NSGA-II, we introduce new randomly created solutions when-
ever there is a change in the problem. A ζ% of the new population is replaced
with randomly created solutions. This helps us to introduce new (random) solutions
whenever there is a change in the problem.

6.4.2 Application to Bi-objective Hydro-thermal Power
Scheduling

In a hydro-thermal power generation system, both the hydro-thermal and thermal
generating units are utilized to meet the total power demand. The optimum power
scheduling problem involves the allocation of power to all concerned units, so that
the total fuel cost of thermal generation and emission properties are minimized,
while satisfying all constraints in the hydraulic and power system networks [12].
The problem is dynamic due to the changing nature of power demand with time.
Thus, ideally the optimal power scheduling problem is truly an on-line dynamic op-
timization problem in which solutions must be found as and when there is a change
in the power demand. In such situations, what can be expected of an optimization
algorithm is that it tracks the new optimal solutions as quickly as possible, whenever
there is a change.

The original formulation of the problem was given in Basu [1]. Let us also as-
sume that the system consists of Nh number of hydro-thermal (Pht) and Ns number of

6 Single and Multi-Objective Dynamic Optimization 111

thermal (Pst) generating units sharing the total power demand, such that x =
(Pht ,Pst). The bi-objective optimization problem is given as follows:

Minimize f1(x) = ∑M
t=1 ∑Ns

s=1 tT [as +bsPst +csP2
st + |ds sin{es(Pmin

s −Pst)}|],
Minimize f2(x) =

M
∑

t=1

Ns

∑
s=1

tT [αs +βsPst + γsP2
st +ηs exp(δsPst)],

subject to ∑Ns
s=1 Pst +∑Nh

h=1 Pht −PDt −PLt = 0, t = 1,2 . . . ,M,

∑M
t=1 tT (a0h +a1hPht +a2hP2

ht)−Wh = 0, h = 1,2, . . . ,Nh,
Pmin

s ≤ Pst ≤ Pmax
s , s = 1,2, . . . ,Ns, t = 1,2, . . . ,M,

Pmin
h ≤ Pht ≤ Pmax

h , h = 1,2, . . . ,Nh, t = 1,2, . . . ,M.

(6.2)

The transmission loss PLt term at the t-th interval is given as follows:

PLt =
Nh+Ns

∑
i=1

Nh+Ns

∑
j=1

PitBi jPjt . (6.3)

This constraint involves both thermal and hydro-thermal power generation units.
Due to its quadratic nature, it is handled directly to repair solution [5]. The problem
is dynamic due to changing nature of demand PDt . To make the demand varying in a
continuous manner, we make a piece-wise linear interpolation of power demand val-
ues with the following (t,Pdm) values: (0, 1300), (12, 900), (24, 1100), (36, 1000),
and (48, 1300) in (Hrs, MW). We keep the overall time window of T = 48 hours,
but increase the frequency of changes (that is, increase M from four to 192, so that
the time window tT for each demand level varies from 12 hours to 48/192 hours
or 15 minutes. It will then be an interesting task to find the smallest time window
for keeping the problem static, which our dynamic NSGA-II can handle adequately.
We run the dynamic NSGA-II procedure for 960/M (M is the number of changes in
the problem) generations for each change in the problem, so as to have the overall
number of function evaluations identical.

6.4.3 Results on Hydro-thermal Power Dispatch Problem

We apply a dynamic NSGA-II procedure – an elitist non-dominated sorting ge-
netic algorithm [3] – discussed above to solve the dynamic optimization problem.
In this case, we have considered α = 1, that is, the time window is equal to the
time required for completion of the NSGA-II optimization run. To evaluate the per-
formance of the dynamic NSGA-II procedure at the end of each time window, we
initially treat each problem as a static optimization problem and apply the origi-
nal NSGA-II procedure [3] for a large number (500) of generations so that no fur-
ther improvement is likely. We call these fronts as ideal fronts and compute the
hyper-volume measure using a reference point which is the nadir point of the ideal
front. Thereafter, we apply our dynamic NSGA-II procedure and find an optimized
non-dominated front after each time window. Then for each front, we compute the
hyper-volume using the same reference point and then compute the ratio of this
hyper-volume value with that of the ideal front. This way, the maximum value of
the ratio of hyper-volume for an algorithm is one and as the ratio becomes smaller

112 K. Deb

than one, the performance of the algorithm gets poorer. In all runs here, a single
NSGA-II run from an initial random population is used in order to simulate an ac-
tual application.

Figures 6.8 to 6.11 show the hyper-volume ratio for different number of changes
(τT = 4 to 192) in the problem with different proportion of addition of random
solutions, ζ . The figures also mark the 50th, 90th, 95th, and 99th percentile of
hyper-volume ratio, meaning the cut-off hyper-volume ratio which is obtained
by the best 50, 90, 95, and 99 percent of M frontiers in a problem with M
changes in power demand. Figures reveal that as M increases, the performance
of the algorithm gets poorer due to the fact that a smaller number of generations
(τT = 960/M) were allowed to meet the time constraint. If a 90% hyper-volume
ratio is assumed to be the minimum required hyper-volume ratio for a reason-
able performance of the dynamic NSGA-II and if we base our confidence on the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

50%ile
90%ile
95%ile
99%ile

Proportion of addition

H
y
p
e
r
v
o
l
u
m
e

r
a
t
i
o

Fig. 6.8 3-hourly (M = 16) change with dy-
namic NSGA-II (Acceptable).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

50%ile
90%ile
95%ile
99%ile

Proportion of addition

H
y
p
e
r
v
o
l
u
m
e

r
a
t
i
o

Fig. 6.9 1-hourly (M = 48) change with dy-
namic NSGA-II (Acceptable).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

50%ile
90%ile
95%ile
99%ile

H
y
p
e
r
v
o
l
u
m
e

r
a
t
i
o

Proportion of addition

Fig. 6.10 30-min. (M = 96) change with
dynamic NSGA-II (Acceptable and mini-
mal).

50%ile
90%ile
95%ile
99%ile

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

H
yp

er
vo

lu
m

e
ra

tio

Proportion of addition

Fig. 6.11 15-min. (M = 192) change with
dynamic NSGA-II (Not acceptable).

6 Single and Multi-Objective Dynamic Optimization 113

95-th percentile performance, the figures indicate that we can allow a maximum of
M = 96 changes (with a time window of 30 min.) in the problem. For this case,
about 20 to 70% random solutions can be added whenever there is a change in
the problem to start the next optimization and an acceptable performance of the
dynamic NSGA-II can be obtained. Too low addition of random points does not
introduce much diversity to start the new problem and too large addition of random
solutions destroys the population structure which would have helped for the new
problem. The wide range of addition for a successful run suggests the robustness of
the dynamic NSGA-II procedure for this problem.

6.4.4 Automated Decision Making in a Dynamic Multi-objective
Optimization

A decision-making task is essential in a multi-objective optimization task to choose
a single preferred solution from the obtained trade-off solution set. In a dynamic
multi-objective optimization problem, there is an additional problem with the deci-
sion making task. A solution is to be chosen and implemented as quickly as the
trade-off frontier is found, and before the next change in the problem has taken
place. This definitely calls for an automatic procedure for decision-making with
some pre-specified utility function or some other procedure. Automated decision-
making is not available even in the multi-criteria decision making (MCDM) litera-
ture and is certainly a matter of future research, particularly if dynamic EMO is to
be implemented in practice.

Here, we suggest a utility function based approach which works by providing
different importances to different objectives. First, we consider a case in which equal
importances to both cost and emission are given. As soon as a frontier is found for
the forthcoming time period, we compute the pseudo-weight w1 (for cost objective)
for every solution x using the following term:

w1(x) =
(f max

1 − f1(x))/(f max
1 − f min

1)

(f max
1 − f1(x))/(f max

1 − f min
1)+(f max

2 − f2(x))/(f max
2 − f min

2)
. (6.4)

Thereafter, we choose the solution with w1(x) closest to 0.5. A little thought will
reveal that this task is different from performing a weighted-sum approach with
equal weights for each objective. The task here is to choose the middle point in the
trade-off frontier providing a solution equi-distant from individual optimal solutions
(irrespective of whether the frontier is convex or non-convex). Since the Pareto-
optimal frontier is not known a priori, getting the frontier first and then choosing
the desired solution is the only viable approach for achieving the task and such
information cannot be utilized a priori.

To demonstrate the utility of this automated decision-making procedure, we
consider the hydro-thermal problem with 48 time periods (meaning an hourly
change in the problem). Fig. 6.12 shows the obtained frontiers in solid lines and the

114 K. Deb

t=1

48
2

47

41

31
8

13
1115

20

3
46

5

6
7

t=12

Operating point

 0

 200

 400

 600

 800

 1000

 1200

 1400

 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
Cost

E
m
i
s
s
i
o
n

Fig. 6.12 Operating solution marked with a
circle for 50-50% cost-emission case.

������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 5 9 13 17 21 25 29 33 37 41 45 48

Thermal Demand
Ts1
Ts2
Ts3
Ts4

Time (Hrs.)

P
o
w
e
r

U
n
i
t
s

(
M
W
)

Fig. 6.13 Variation of thermal power pro-
duction for 50-50% cost-emission case.

Table 6.5 Different emphasis between cost and emission used in the automated decision-
making process produces equivalent power generation schedules.

Case Cost Emission
50-50% 74239.07 25314.44
100-0% 69354.73 27689.08
0-100% 87196.50 23916.09

corresponding preferred (operating) solution with a circle. It can be observed that
due to the preferred importance of 50-50% to cost and emission, the solution comes
nearly in the middle of each frontier. To meet the water availability constraint, the
hydro-thermal units of Th1 = 219.76 MW and Th2 = 398.11 MW are computed and
kept constant over time. However, four thermal power units must produce power
to meet the remaining demand and these values for all 48 time periods are shown
in Fig. 6.13. The changing pattern in overall computation of thermal power varies
similar to that in the remaining demand in power. The figure also shows a slight
over-generation of power to meet the loss term PLt given in equation 6.3.

Next, we compare the above operating schedule of power generation with two
other extreme cases: (i) 100-0% importance to cost and emission and (ii) 0-100%
importance to cost and emission. Table 6.5 shows the trade-off between cost and
emission values for the three cases. Although this is one approach for executing
an automated decision-making task, further ideas of choosing a preferred solution
from an obtained set of trade-off solutions instantly using some previously defined
multi-criteria decision making principles [9] must be worked on.

6.5 Conclusions

In this paper, we have dealt with solving on-line optimization problems using evolu-
tionary optimization (EO) algorithms. Specifically, we have suggested and demon-
strated the working of two approaches: (i) an off-line optimization task in which a

6 Single and Multi-Objective Dynamic Optimization 115

set of optimal knowledge base is developed as guiding rules for handling changing
problems on-line, and (ii) an on-line optimization approach in which the problem
is considered static for a minimal amount of time windows. It has been argued that
for a problem having a rapid change in any of its parameters, objectives, and con-
straints, the first approach may be more suitable. For a slow changing problem, the
latter approach is more appropriate. Due to the flexibility in their operators and pop-
ulation approach, EO methods are potential for dynamic optimization.

The working of the first approach is demonstrated by solving a robot navigation
problem in which the obstacles move while the optimization is underway. A fuzzy
rule base system is used to store the knowledge of an optimal action based on two
given input parameters. The off-line optimization is able to find an optimal rule-
base for achieving the task adequately on on-line scenarios. Since it is an on-line
approach, the use of an EO with its flexibility and population approach can be fully
exploited.

The working of the second approach is demonstrated by solving a power dis-
patch problem that changes due to the ever-changing need of demand of power with
time. To illustrate the generic nature of the approach, a two-objective version of the
problem (minimizing cost and minimizing emission) has been considered. Based
on a permissible performance limit, a dynamic NSGA-II approach has been able to
identify a minimum time window (of 30 min.) for which the power demand can be
considered static. Any faster consideration in the change of the problem was found
to be too fast for the chosen algorithm to track the Pareto-optimal solutions of the
problem. An offline estimation of an optimal time window exploits an EO’s popu-
lation approach to handle multiple conflicting objectives in their true sense without
using any a priori and fixed decision-making principle.

Dynamic multi-objective optimization raises an important issue: an automated
decision making task that must be performed as soon as the optimized trade-off front
is found, as otherwise a delay in decision making may cause the problem to change
significantly before the next round of optimization is performed. This chapter has
demonstrated one such automated decision-making approach, but this remains to be
an open area of further research.

The approaches of this chapter clearly demonstrate the potential for applying
single and multi-objective evolutionary (or other) optimization techniques to on-
line optimization tasks. A true implementation of these ideas in practice and further
research for more sophisticated approaches would be the next step and way forward.

Acknowledgments. The results and some texts of this chapter are borrowed from author’s
earlier publications (references [4] and [5]). For details, readers are encouraged to refer these
papers.

References

[1] Basu, M.: A simulated annealing-based goal-attainment method for economic emission
load dispatch of fixed head hydrothermal power systems. Electric Power and Energy
Systems 27(2), 147–153 (2005)

116 K. Deb

[2] Branke, J.: Evolutionary Optimization in Dynamic Environments. Springer, Heidelberg
(2001)

[3] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

[4] Deb, K., Pratihar, D.K., Ghosh, A.: Learning to Avoid Moving Obstacles Optimally
for Mobile Robots Using a Genetic-Fuzzy Approach. In: Eiben, A.E., Bäck, T., Schoe-
nauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 583–592. Springer,
Heidelberg (1998)

[5] Deb, K., Udaya Bhaskara Rao, N., Karthik, S.: Dynamic Multi-objective Optimiza-
tion and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal
Power Scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.)
EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[6] Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: Test
cases, approximations, and applications. IEEE Transactions on Evolutionary Computa-
tion 8(5), 425–442 (2000)

[7] Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary al-
gorithms: A forward-looking approach. In: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, pp. 1201–1208 (2006)

[8] Jin, Y., Sendhoff, B.: Constructing Dynamic Optimization Test Problems Using the
Multi-objective Optimization Concept. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne,
D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F.,
Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536.
Springer, Heidelberg (2004)

[9] Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
[10] Pratihar, D., Deb, K., Ghosh, A.: Fuzzy-genetic algorithms and time-optimal obstacle-

free path generation for mobile robots. Engineering Optimization 32, 117–142 (1999)
[11] Pratihar, D.K., Deb, K., Ghosh, A.: Optimal path and gait generations simultaneously of

a six-legged robot using a ga-fuzzy approach. Robotics and Autonomous Systems 41,
1–21 (2002)

[12] Wood, A.J., Woolenberg, B.F.: Power Generation, Operation and Control. John-Wiley
& Sons (1986)

Chapter 7
Self-Adaptive Differential Evolution
for Dynamic Environments with Fluctuating
Numbers of Optima

Mathys C. du Plessis and Andries P. Engelbrecht

Abstract. In this chapter, we introduce the algorithm called: SADynPopDE, a self-
adaptive multi-population DE-based optimization algorithm, aimed at dynamic op-
timization problems in which the number of optima in the environment fluctuates
over time. We compare the performance of SADynPopDE to those of two algo-
rithms upon which it is based: DynDE and DynPopDE. DynDE extends DE for
dynamic environments by utilizing multiple sub-populations which are encouraged
to converge to distinct optima by means of exclusion. DynPopDE extends DynDE
by: using competitive population evaluation to selectively evolve sub-populations,
using a midpoint check during exclusion to determine whether sub-populations are
indeed converging to the same optimum, dynamically spawning and removing sub-
populations, and using a penalty factor to aid the stagnation detection process. The
use of self-adaptive control parameters into DynPopDE, allows a more effective
algorithm, and to remove the need to fine-tune the DE crossover and scale factors.

7.1 Introduction

Despite the fact that evolutionary algorithms often solve static problems success-
fully, dynamic optimization problems tend to pose a challenge to evolutionary al-
gorithms [25]. Differential evolution (DE) is one of the evolutionary algorithms

Mathys C. du Plessis
Department of Computing Sciences, P.O. Box 77000,
Nelson Mandela Metropolitan University,
Port Elizabeth, 6031, South Africa
e-mail: mc.duplessis@nmmu.ac.za

Andries P. Engelbrecht
Department of Computer Science,
School of Information Technology,
University of Pretoria, Pretoria, 0002, South Africa
e-mail: engel@cs.up.ac.za

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 117–145.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

mc.duplessis@nmmu.ac.za
engel@cs.up.ac.za

118 M.C. du Plessis and A.P. Engelbrecht

that does not scale well to dynamic environments due to lack of diversity [35]. A
significant body of work exists on algorithms for optimizing dynamic problems (see
Section 7.3). Recently, several algorithms based on DE have been proposed [10, 13–
15, 23].

Benchmarks used to evaluate algorithms aimed at dynamic optimization (like the
moving peaks benchmark [6] and the generalized benchmark generator [20, 21]),
typically focus on problems where a constant number of optima move around a
multi-dimensional search space. While some of these optima may be obscured by
others, these benchmarks do not simulate problems where new optima are intro-
duced, or current optima are removed from the search space. Dynamic Population
DE (DynPopDE) [14] is a DE-based algorithm aimed at dynamic optimization prob-
lems where the number of optima fluctuates over time. This chapter describes the
subcomponents of DynPopDE and then investigates the effect of hybridizing Dyn-
PopDE with the self-adaptive component of jDE [10] to form a new algorithm,
Self-Adaptive DynPopDE (SADynPopDE).

The following sections describe dynamic environments and the benchmark func-
tion used in this study. Related work by other researchers is presented in Section 7.3.
Differential evolution is described in Section 7.4. The components of DynPopDE,
the base algorithm used in this study, are described and motivated in Section 7.5.
The incorporation of self-adaptive control parameters into DynPopDE to form SA-
DynPopDE and the experimental comparison of these algorithms are described in
Section 7.6. The main conclusions of this study are summarized in Section 7.7.

7.2 Dynamic Environments

It is not uncommon for the solution to real-world optimization problems to vary over
time. In order to evaluate and compare algorithms aimed at dynamic optimization
problems, researchers created benchmark functions. The benchmark used in this
study is a variation of the moving peaks benchmark.

7.2.1 Moving Peaks Benchmark

Branke [6] created the moving peaks benchmark (MPB) to address the need for a
single, adaptable benchmark that can be used to compare the performance of algo-
rithms aimed at dynamic optimization problems. The multi-dimensional problem
space of the moving peaks function contains several peaks, or optima, of variable
height, width, and shape. These peaks move around with height and width changing
periodically. The MPB allows the following parameters to be set:

• Number of peaks
• Number of dimensions
• Maximum and minimum peak width and height
• Change period (the number of function evaluations between successive changes

in the environment)

7 Self-Adaptive DE for Dynamic Environments 119

• Change severity (how much the locations of peaks are moved within the search
space)

• Height and width severity (standard deviations of changes made to the height and
width of each peak)

• Peak function
• Correlation (between successive movements of a peak)

Three scenarios of settings of MPB parameters are suggested by Branke [6]; how-
ever, the majority of researchers using the MPB employ only variations of Scenario
2 settings. The Scenario 2 settings are listed in Table 7.1.

Table 7.1 MPB Scenario 2 settings

Setting Value

Number of Dimensions 5
Number of Peaks 10
Max and Min Peak height [30,70]
Max and Min Peak width [1.0,12.0]
Change period 5000
Change severity 1.0
Height severity 7.0
Width severity 1.0
Peak function Cone
Correlation [0.0,1.0]

The performance measure suggested by Branke and Schmeck [7] is the offline
error. The offline error is the running average of the lowest-so-far error found since
the last change in the environment:

O f f line Error =

T

∑
t=1

E(xbest(t), t)

T
, (7.1)

where T is the total number of function evaluations and E(xbest(t), t) is the error of
the best individual found since the last change in the environment (referred to as the
current error).

7.2.2 Extensions to the Moving Peaks Benchmark

This study investigates dynamic environments in which the number of peaks fluc-
tuates over time. The MPB was therefore adapted by the current authors to allow
the number of peaks to change when a change occurs in the environment. For the
adapted MPB, the number of peaks, m(t), is calculated as (Equation 7.2):

120 M.C. du Plessis and A.P. Engelbrecht

m(t) =

⎧⎪⎪⎨
⎪⎪⎩

max{1,m(t− 1)−M ·U(0,1) ·C}
if U(0,1)< 0.5

min{M,m(t− 1)+M ·U(0,1) ·C}
otherwise

, (7.2)

where M is the maximum number of peaks and C is the maximum fraction of M that
can be added or removed from the population after a change in the environment. C
thus controls the severity of the change in the number of peaks. For example, C = 1
will result in up to M peaks being added or removed, while C = 0.1 will result in a
change of up to 10% of M. M and C are included as parameters to the benchmark
function.

7.3 Related Work

A considerable body of work exists on optimization for dynamic environments. Al-
gorithms directly related to this study are briefly described in this section.

A change in the environment may cause a local optimum to become the global op-
timum. Information regarding the position of local optima can thus be useful to find
the global optimum after a change in the environment. This information is generally
gathered by using multiple, independent populations to locate various optima. A key
feature of these approaches is that independent populations are allowed to search for
optima in parallel. Three of the seminal GA algorithms employing this strategy are
self-organizing scouts (SOS) [1], [5], [11], shifting balance GA (SBGA) [28], and
multinational GA (MGA) [34]. All three of these approaches make use of different
techniques to distribute individuals among the populations intelligently.

Parrott and Li [29] suggested a multiple swarm PSO approach to optimizing dy-
namic problems, called speciation. Multiple swarms correspond to the idea of multi-
ple populations in GAs, and have the same benefits: increased diversity and parallel
discovery of optima. When using speciation, the social component of PSO provides
an simple method to divide the swarm into sub-swarms. A particle is allocated to
a sub-swarm if the Euclidean distance between the position of the particle and the
best particle in the sub-swarm is below a certain threshold value. The global best
value of each particle within a sub-swarm is set to the personal best value of the best
particle. The sizes of sub-swarms are dynamic. Particles can migrate to another pop-
ulation by moving too far away from their current sub-swarm’s best particle or by
moving closer to another sub-swarm’s best particle. It is allowable for a sub-swarm
to contain only one particle. As a mechanism to prevent sub-swarms becoming too
large, a maximum sub-swarm size is defined. When a sub-swarm’s size exceeds this
limit, the particles with the lowest fitness are randomly reinitialized and allocated to
an appropriate sub-swarm.

Blackwell and Branke [4] introduced a multiple population PSO based algorithm
that contains three components: exclusion, anti-convergence and quantum particles.

7 Self-Adaptive DE for Dynamic Environments 121

In contrast to earlier algorithms, in their approach, all sub-swarms contain the same
number of particles. The aim of having multiple sub-swarms is that each sub-swarm
should be positioned on its own, promising optimum in the environment. Unfortu-
nately, sub-swarms often converge to the same optimum, hence decreasing diversity.
Exclusion [3] is a technique meant to prevent sub-swarms from clustering around
the same optimum by means of reinitializing sub-swarms that stray within a thresh-
old Euclidean distance from better performing sub-swarms. This threshold distance
is called the exclusion radius. Anti-convergence is meant to prevent stagnation of the
particles in the search space. Consequently, if it is found that all sub-swarms have
converged to their respective optima, the weakest sub-swarm is randomly reinitial-
ized. Convergence of a sub-swarm is detected if all particles of the sub-swarm fall
within a threshold Euclidean distance of each other. This threshold is called the
convergence radius. Quantum particles is a means of increasing diversity by reini-
tializing a portion of the swarm of particles within a hyper-sphere, centered around
the best particle in the swarm. Blackwell [2] further adapted the PSO-based algo-
rithm of Blackwell and Branke [4] by self-adapting the number of swarms in the
search space. This algorithm is aimed at situations where the number of optima in
the dynamic environment is unknown. Swarms are generated when the number of
free swarms that have not converged to a optimum (Mf ree) has dropped to zero.
Conversely, swarms are removed if Mf ree is higher than nexcess, a parameter of the
algorithm. The algorithms of Blackwell and Branke [4] and Blackwell [2] have the
disadvantage that the severity of changes in the environment is given as a parame-
ter to the optimization algorithms. While this information is readily available when
employing a benchmark function, it is unlikely that this information will be known
to the algorithms in real-world dynamic optimization problems.

Li et al. [22] improved the speciation algorithm of Parrott and Li [29], by intro-
ducing ideas from Blackwell and Branke [3], namely quantum particles to increase
diversity, and anti-convergence to detect stagnation and subsequently reinitialize
the worst performing populations. This algorithm is called Speciation-based PSO
(SPSO).

An approach similar to quantum individuals, called Brownian individuals, is uti-
lized by DynDE, a DE based algorithm for dynamic environments [23]. Use of
Brownian individuals involves the creation of individuals close to the best individ-
ual by adding a small random value, sampled from a normal distribution, to each
component of the best individual. Mendes and Mohais [23] adapted the ideas from
Blackwell and Branke [4] to create their multi-population algorithm, DynDE, which
uses exclusion to prevent populations from converging to the same peak. Mendes
and Mohais [23] showed that DynDE was at least as effective as its PSO based
counterparts. DynDE will be discussed in detail in Section 7.5.

Recently, Brest et al. [10] proposed a self-adaptive multi-population DE algo-
rithm for optimizing dynamic environments, called jDE. This work focused on
adapting the DE scale factor and crossover probability and is based on a previous
algorithm for static optimization [9]. jDE also contains several components that are

122 M.C. du Plessis and A.P. Engelbrecht

similar to other dynamic optimization algorithms. A technique similar to exclusion
is used to prevent sub-populations from converging to the same optimum. An aging
metaphor is used to reinitialize sub-populations that have stagnated on a local opti-
mum. Each individual’s age is incremented every generation. Offspring inherit the
age of parents, but this age may be reduced if the offspring performs significantly
better than the parent. Sub-populations of which the best individual is too old, are
reinitialized. Within sub-populations a further mechanism is used to prevent conver-
gence. An individual is reinitialized if the Euclidean distance between the individual
and the best individual in the population is too small. The algorithm also utilizes a
form of memory called an archive. The best individual is added to the archive every
time a change in the environment occurs. One of the sub-populations is always cre-
ated by randomly selecting an individual from the archive and adding small random
numbers to each of the individual’s components.

For a survey of algorithms for dynamic optimization see [19].

7.4 Differential Evolution

The purpose of this section is to describe the Differential Evolution (DE) algorithm
and to discuss variations of the basic algorithm. The original DE algorithm is dis-
cussed in Section 7.4.1, followed by a discussion on DE schemes in Section 7.4.2
and DE control parameters in Section 7.4.3. Section 7.4.4 describes the performance
of DE in dynamic environments and Section 7.4.5 discusses methods of detecting
changes in dynamic environments.

7.4.1 Basic Differential Evolution

Differential Evolution (DE) is an optimization algorithm based on Darwinian evolu-
tion [12], created by Storn and Price [30], [33]. Several variants to the DE algorithm
have been suggested, but the original algorithm is given in Algorithm 7.1.

7.4.2 Differential Evolution Schemes

Most variations of DE (called schemes) are based on different approaches to creating
each of the temporary individuals, vi (see equation (12.1)), and different approaches
to the method of creating offspring [31]. One of two crossover schemes is typically
used to create offspring. The first, binary crossover, is used in Equation (12.2). The
second common approach is called exponential crossover.

By convention, schemes are labelled in the form DE/a/b/c, where a is the method
used to select the base vector, b is the number of difference vectors, and c is the
method used to create offspring. The scheme used in Algorithm 7.1 is referred to as
DE/rand/1/bin.

7 Self-Adaptive DE for Dynamic Environments 123

Algorithm 7.1. Basic Differential Evolution
Generate a population, P, of I individuals by creating vectors of random candidate
solutions, xi, i = 1, · · · , I and |xi|= J;
Evaluate the fitness, F(xi), of all individuals.;
while termination criteria not met do

foreach i ∈ {1, . . . , I}; // Create I individuals for a trial
population
do

Select three individuals, x1, x2 and x3, at random from the current population
such that x1 �= x2 �= x3;
Create a new trial vector vi using:

vi = x1 +F · (x2−x3) (7.3)

where F ∈ (0,∞) is known as the scale factor and x1 is referred to as the base
vector;
Add vi to the trial population;

end
foreach xi in the current population (referred to as the target vector), select the
corresponding trial vector vi from the trial population; // Perform
crossover
do

Create offspring ui as follows:

ui, j =

{
vi, j if (U(0,1) ≤Cr or j == jrand)
xi, j otherwise

(7.4)

where Cr ∈ (0,1) is the crossover probability and jrand is a randomly selected
index, i.e. jrand ∼U(1,J +1);
Evaluate the fitness of ui;
If ui has a better fitness value than xi then replace xi with ui;

end
end

Several methods of selecting the base vector have been developed and can be
used with either of the crossover methods. Popular base vector selection methods
include [31][32][24] (in each case the selected vectors are assumed to be unique):

DE/rand/2: Two pairs of difference vectors are used:

vi = x1 +F · (x2 + x3− x4− x5) (7.5)

DE/best/1: The best individual in the population is selected as the base vector:

vi = xbest +F · (x1− x2) (7.6)

124 M.C. du Plessis and A.P. Engelbrecht

7.4.3 Differential Evolution Control Parameters

The Differential Evolution algorithm has several control parameters that can be set.
Ignoring extra parameters introduced by some DE schemes, the main DE control
parameters are population size, scale factor (F), and crossover factor (Cr).

The scale factor (F) controls the magnitude of the difference vector and con-
sequently the amount by which the base vector is perturbed. Large values of F
encourage large scale exploration of the search space but could lead to premature
convergence, while small values result in a more detailed exploration of the local
search space while increasing convergence time.

The crossover factor (Cr) controls the diversity of the population, since a large
value of Cr will result in a higher probability that new genetic material will be
incorporated into the population. Large values of Cr result in fast convergence while
smaller values improve robustness [17].

General guidelines for the values of parameters that work reasonably well on a
wide range of problems are known; however, the best results in terms of accuracy,
robustness, and speed are found if the parameters are tuned for each problem indi-
vidually [17].

7.4.4 Differential Evolution in Dynamic Environments

Like most evolutionary algorithms, the initial population of DE is formed from in-
dividuals that are randomly dispersed in the search space. This ensures that the al-
gorithm explores a large area of the search space during the first generations. Even-
tually, however, the algorithm converges to an optimum, with all the individuals
clustered around a single point.

The amount by which the locations of individuals in the population differ is re-
ferred to as diversity. If individuals are uniformly distributed in the search space
then their diversity is high. Alternatively, when individuals are clustered around a
single point, the diversity is low. The diversity measure used in this work calculates
the diversity, D, of a population of size I in J dimensions as

D =
I

∑
i=1

‖d− xi‖2, (7.7)

where d is the average location of all individuals, calculated as

d j =

I

∑
i=1

xi, j

I
, ∀ j ∈ J, (7.8)

In static environments this loss of diversity is not a bona fide problem and is in most
cases desirable, since having all individuals clustered around the optimum assists
with the fine-grained optimization at the end of the search process.

7 Self-Adaptive DE for Dynamic Environments 125

In dynamic environments, however, loss of diversity is a major cause of evolu-
tionary algorithms being ineffective. When changes occur in the environment, the
population lacks the diversity necessary to locate the position of the new global op-
timum [35]. Consider Figure 7.1 which depicts the offline error, current error and
diversity averaged over 30 runs on the MPB of the basic DE algorithm described
in Section 7.4. Ten changes in the environment are illustrated. Changes occur once
every 5 000 function evaluations.

0 1 2 3 4 5

x 10
4

0

10

20

30

40

O
ffl

in
e

E
rr

or
 a

nd
 C

ur
re

nt
 E

rr
or

Function Evaluations

0 1 2 3 4 5

x 10
4

0

20

40

60

80

D
iv

er
si

ty

Current Error
Diversity
Offline Error

Fig. 7.1 Diversity, Current error and Of-
fline error of DE with re-evaluation after
changes

0 1 2 3 4 5

x 10
4

0

10

20

30

40

O
ffl

in
e

E
rr

or
 a

nd
 C

ur
re

nt
 E

rr
or

Function Evaluations

0 1 2 3 4 5

x 10
4

56

57

58

59

60

D
iv

er
si

ty

Current Error
Diversity
Offline Error

Fig. 7.2 Diversity, Current error and Of-
fline error of DynDE on the MPB

During the period between the commencement of the algorithm and the first
change in the environment, the current error and the offline error drops sharply due
to the DE algorithm converging to one or more optima in the environment. The fact
that individuals are clustered increasingly closely together is proven by the sharp
drop in diversity. Directly after the first change in the environment, the current error
increases, since the optima have shifted. Although the current error does improve
after the first and subsequent changes, it never reaches the low value that was found
before the first change occurred. The diversity continues to drop until it reaches a
value close to zero shortly after the second change in the environment. This means
that all individuals are clustered around a single optimum and that the rest of the
search space is left completely unexplored. In DE mutations are performed based
on the spacial differences between individuals. If individuals are spatially close then
very small mutations are applied which hampers further exploration of the search
space. Over 30 runs the average diversity per generation was found to be 0.422.
This value is extremely low and explains why normal DE is not effective in dynamic
environments.

126 M.C. du Plessis and A.P. Engelbrecht

7.4.5 Detecting Changes in the Environment

Most evolutionary dynamic optimization algorithms respond to changes in the en-
vironment. When the period between changes is known beforehand, it is necessary
for the algorithm to detect changes automatically. Detecting changes is not trivial,
since changes could be localized in small areas of the search space, or could in-
volve the introduction of an optimum into an area of the search space where no
individuals are located. It is thus necessary to have an appropriate strategy to detect
changes. Standard approaches include periodically re-evaluating the best particle in
the swarm [18], stationary sentinels [25], or random points in the problem space
[11]. Discrepancies between current and previous fitness values indicate a change
in the environment.

The MPB requires the optimization algorithm to automatically detect changes
in the environment. It was experimentally determined by the authors that a simple
change detection strategy, involving only the re-evaluation of a single sentinel indi-
vidual once during every generation, is sufficient to detect all changes when using
the MPB. This approach was followed throughout this study, but is not expected to
be sufficient for all dynamic optimization problems. However, a more robust app-
roach, for example re-evaluating the best individual in each sub-population, can be
introduced relatively easily should it be required.

7.5 Dynamic Population Differential Evolution

Dynamic Population Differential Evolution (DynPopDE) [14], an extension of
DynDE and CDE [15], is aimed at dynamic optimization problems where the num-
ber of optima in the search space is unknown or fluctuates over time.

DynDE is a differential evolution algorithm developed by Mendes and Mohais
[23] to solve dynamic optimization problems. Sections 7.5.1 to 7.5.5 provides an
overview of the components inherited by DynPopDE from DynDE. The two al-
gorithmic components that make up CDE are described and motivated in Sections
7.5.6 and 7.5.7. DynPopDE is an extension of CDE consisting of three components,
namely: spawning new populations (Section 7.5.8), removing populations (Section
7.5.9), and the introduction of a penalty factor on the performance value used to
determine which sub-population is to evolve at a given time (Section 7.5.10).

7.5.1 Multiple Populations

Typically, a static problem space may contain several local optima. These optima
typically move around in a dynamic environment and also change in height and
shape. This implies that an entirely different optimum may become the global op-
timum once a change in the environment occurs. Consequently, not only the move-
ment of the global optimum in the problem space must be tracked, but also the

7 Self-Adaptive DE for Dynamic Environments 127

local optima. An effective method of tracking all optima is to maintain several
independent sub-populations of DE individuals, one sub-population on each opti-
mum. In their most successful experiments Mendes and Mohais [23] used 10 sub-
populations, each containing 6 individuals.

7.5.2 Exclusion

In order to track all optima, it is necessary to ensure that all sub-populations con-
verge to different optima. If all populations converged to the global optimum, it
would defeat the purpose of having multiple populations. Mendes and Mohais [23]
used exclusion to prevent sub-populations from converging to the same optimum.
Exclusion compares the locations of the best individuals from each sub-population.
If the spatial difference between any two of these individuals becomes too small, the
entire sub-population of the inferior individual is randomly reinitialized. A thresh-
old is used to determine if two individuals are too close. The threshold, or exclusion
radius, is calculated as

rexcl =
X

2p
1
d

, (7.9)

where X is the range of the d dimensions (assuming equal ranges for all dimensions),
and p is the number of peaks. Equation (7.9) shows that the exclusion threshold in-
creases with an increase in the number of dimensions and decreases if the number
of peaks is increased. Because knowledge of the number of peaks is generally not
available, it was proposed that the exclusion threshold be calculated using the num-
ber of sub-populations as follows [14]:

rexcl =
X

2K
1
d

, (7.10)

where K is the number of populations, thus making the threshold dependent on the
number of available populations. The same equation was used by Blackwell [2] in
the self-adapting multi-swarms algorithm.

7.5.3 Brownian Individuals

In cases where a change in the environment results in the positional movement of
some of the optima, it is unlikely that all of the sub-populations will still be clustered
around the optimal point of their respective optima, even if the change is small. In
order for individuals in the sub-populations to track the moving optima more ef-
fectively, the diversity of each population should be increased. Mendes and Mohais
[23] successfully used Brownian individuals for this purpose. In every generation a

128 M.C. du Plessis and A.P. Engelbrecht

predefined number of the weakest individuals are flagged as Brownian. These in-
dividuals are then replaced by new individuals created by adding a small random
number, sampled from a zero centered Gaussian distribution, to each component
of the best individual in the sub-population. A Brownian individual, xbrown, is thus
created from the best individual xbest using

xbrown = xbest +N (0,ν), (7.11)

where ν is the standard deviation of the Gaussian distribution. Mendes and Mohais
[23] showed that a suitable value of ν to use is 0.2.

7.5.4 DE Scheme

Mendes and Mohais [23] experimentally investigated several DE schemes to de-
termine which one is the best to use in DynDE. The schemes investigated were
DE/rand/1/bin, DE/rand/2/bin, DE/best/1/bin, DE/best/2/bin, DE/rand-to-best/1/bin,
DE/current-to-best/1/bin and DE/current-to-rand/1/bin. It was shown that the most
effective scheme to use in conjunction with DynDE is DE/best/2/bin, where each
temporary individual is created using

v = xbest +F · (x1 + x2− x3− x4) (7.12)

with x1 �= x2 �= x3 �= x4 and xbest being the best individual in the sub-population.

7.5.5 DynDE Discussion

The performance of DynDE was thoroughly investigated by Du Plessis and Engel-
brecht [15]. However, to illustrate how effective DynDE is on dynamic environ-
ments compared to normal DE, Figure 7.2 depicts the offline error, current error,
and diversity of DynDE algorithm on the MPB for 10 changes in the environment.
Averages over 30 runs are used.

A comparison between Figures 7.1 and 7.2 shows the considerable improvement
of DynDE over DE. Firstly, where the diversity of the DE algorithm sharply declines
to a point close to zero, the diversity of DynDE remains high. The average diversity
per generation over all repeats was found to be 59.496 for DynDE, compared to the
value of 0.422 for DE. The frequent perturbations on the diversity curve in Figure
7.2 show how diversity is perpetually increased by Brownian individuals and sub-
populations reinitialized by exclusion.

Secondly, the graphs clearly show considerably lower offline and current errors
for DynDE than for DE. In Figure 7.1, the offline error increases after the first
few changes in the environment, while DynDE’s offline error consistently decreases
(see Figure 7.2). The current error of DynDE frequently approaches zero between
changes in the environment, while the current error of DE remains high, especially
after the first change in the environment.

7 Self-Adaptive DE for Dynamic Environments 129

7.5.6 Competitive Population Evaluation

For most static optimization problems, the effectiveness of an algorithm is measured
by the error of the best solution found at the end of the optimization process. In
contrast, optimization in dynamic environments implies that a solution is likely to
be required at all times (or at least just before changes in the environment occur),
not just at the termination of the algorithm. In these situations, it is imperative to
find the lowest error value as soon as possible after changes in the environment
have occurred. A dynamic optimization algorithm can thus be improved, not only
by reducing the error, but also by making the algorithm reach its lowest error value
(before a change occurs in the environment) in fewer function evaluations.

The above argument is the motivation for the component of DynPopDE named
Competitive Population Evaluation (CPE). The primary goal of CPE is not to de-
crease the error value found by DynDE, but rather to make the algorithm reach
the lowest error value in fewer function evaluations. It is proposed that this can be
achieved by initially allocating all function evaluations after a change in the en-
vironment to the sub-population that is optimizing the global optimum; thereafter
function evaluations are allocated to other sub-populations to locate local optima.

The mechanism used by CPE to allocate function evaluations is based on the
performance of sub-populations. The best-performing sub-population is evolved on
its own until its performance drops below that of another sub-population. The new
best performing sub-population is then evolved on its own until its performance
drops below that of another sub-population. This process is repeated until a change
occurs in the environment. CPE allows the location of the global optimum to be
discovered early, while the sub-optimum peaks are located later. CPE thus differs
from DynDE in that peaks are not located in parallel, but sequentially. The CPE
process is detailed in Algorithm 7.2.

The performance value, P , of a sub-population depends on two factors: The
current fitness of the best individual in the sub-population and the error reduction
of the best individual during the last evaluation of the sub-population. Let K be
the number of sub-populations, xbest,k the best individual in sub-population k, and
F(xbest,k, t) the fitness of the best individual in sub-population k during iteration t.
The performance P(k, t) of population k after iteration t is given by:

P(k, t) = (ΔF(xbest,k, t)+ 1)(Rk(t)+ 1), (7.13)

where

ΔF(xbest,k, t) = |F(xbest,k, t)−F(xbest,k, t− 1)| (7.14)

For function maximization problems, Rk(t) is calculated as:

Rk(t) = |F(xbest,k, t)− min
q=1,...,K

{F(xbest,q, t)}| (7.15)

130 M.C. du Plessis and A.P. Engelbrecht

Algorithm 7.2. Competitive Population Evaluation

while termination criteria not met do
Allow the standard DynDE algorithm to run for two generations;
repeat

for k = 1, . . . ,K; // all K sub-populations
do

Calculate the performance value, P(k, t)
end
Select a such that P(a, t) = min

k=1,...,K
{P(k, t)};

Evolve only sub-population a using DE;
t = t +1;
Calculate P(a, t);
Perform Exclusion;

until Change occurs in the environment;
end

and for function minimization problems,

Rk(t) = |F(xbest,k, t)− max
q=1,...,K

{F(xbest,q, t)}| (7.16)

Therefore, the best performing sub-population is the sub-population with the high-
est product of fitness and improvement. The motivation for the addition of 1 to the
first and second terms in Equation (7.13) is to prevent a population being assigned
a performance value of zero. Without the addition in the second term, the least fit
population will always be assigned a performance value of zero (since the product
of the first and second terms will be zero) and will never be considered for searching
for an optimum. Similarly, without the addition in the first term, a good perform-
ing population that does not show any improvement during a specific iteration, is
assigned a performance value of zero and will never be considered for evaluation
again. The addition of 1 to the first and second terms is thus included to ensure
that every sub-population could potentially have the highest performance value and
subsequently be given function evaluations.

The absolute values of ΔF(xbest,k, t) and Rk(t) are taken to ensure that the perfor-
mance values are always positive. When a population is reinitialized due to exclu-
sion (see Section 7.5.2), the fitness of the best individual is likely to be lower than
before reinitialization (since the sub-population now consists of randomly generated
individuals), resulting in a large ΔF(xbest,k, t) value. The population is consequently
assigned a relatively large performance value, making it likely that it would be allo-
cated fitness evaluations in the near future.

The CPE approach can be clarified by an example. Figure 7.3 plots the error
per function evaluation of the best individual in each of the three sub-populations
(labelled Population 1, Population 2 and Population 3) found during an actual run

7 Self-Adaptive DE for Dynamic Environments 131

of the DynDE algorithm on the MPB. During the period that is depicted, no changes
occurred in the environment. Note that one of the sub-populations (Population 3)
converged to the global optimum, as is evidenced by its error value approaching
zero, while the others likely converged to local optima.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

x 10 Function Evaluations

E
rr

or

Population 1
Population 2
Population 3

Fig. 7.3 Error profile of three DynDE pop-
ulations in a static environment

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

x 10 Function Evaluations

P
er

fo
rm

an
ce

Population 1
Population 2
Population 3

Fig. 7.4 Performance, P , of each
population

The performance of each of the populations was calculated using Equation (7.13).
A plot of the performance of each of the populations is given in Figure 7.4. For
roughly the first half of the period depicted, Population 2 and Population 3 al-
ternated between having the highest performance value. After the first half of the
depicted period, Population 3 consistently received the highest performance value,
as it converged to the global optimum. Population 3 received, on average, a higher
performance value than the other two populations. The population that had the high-
est overall error received a relatively low average performance value. Note that it
was only after about 1 000 function evaluations that Population 2 and Population
3 received a lower performance value than the initial performance value of Popula-
tion 1.

It is now possible, by using the calculated performance values, to observe the be-
haviour of each of the populations when the CPE algorithm (refer to Algorithm 7.2)
is used to selectively evolve sub-populations on their own based on their respective
performance values. The plots of the error of each of the populations per function
evaluation when using CPE are given in Figure 7.5. For the first few iterations, Pop-
ulation 2 and Population 3 were alternately evolved, followed by a period where
only Population 2 was evolved. After about 250 function evaluations, Population
3 was evolved (except for a few intermittent iterations around 700 function evalua-
tions) until it converged to the global optimum at about 1 000 function evaluations.
Population 2 was evolved during the next period which lasted until about 1 200
function evaluations, while Population 1 was evolved during the last period.

132 M.C. du Plessis and A.P. Engelbrecht

Note that the lowest error was reached after 1 000 function evaluations in Figure
7.5, while this point was only reached after 1 800 function evaluations in Figure
7.3. The performance values of the three populations when using CPE are given in
Figure 7.6. Observe that for considerable periods the performance values of some of
the sub-populations remain constant. This occurs because only one sub-population
is evolved at a time, during which the performance value of the other populations
remains unchanged.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

x 10 Function Evaluations

E
rr

or

Population 1
Population 2
Population 3

Fig. 7.5 Error profile of three populations
when using competitive evaluation

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

x 10 Function Evaluations

P
er

fo
rm

an
ce

Population 1
Population 2
Population 3

Fig. 7.6 Performance, P , of each popu-
lation when using competitive evaluation

It is clear how the more successful sub-populations are allocated more function
evaluations earlier in the evolution process. Optima are located sequentially by CPE
and in parallel by DynDE. Figure 7.7 depicts the effect that using CPE had on the
offline error for the three sub-population example. The curve of the offline error
when competing sub-populations are used exhibits a steeper downward gradient
than the curve of normal DynDE, due to earlier discovery of the global optimum.
Overall, the offline error was reduced by more than 30% after 1 800 function
evaluations.

By competitively choosing the better performing populations to evolve before
other populations, the lowest error value could be reached sooner, thus reducing
the average error. This technique has the added advantage that better performing
populations will receive more function evaluations that would otherwise have been
wasted on finding the maximum of the sub-optimal peaks. The overall error value
should consequently also be reduced.

An advantage of CPE is that it only utilizes information that is available in normal
DynDE, so that no extra function evaluations are required.

7 Self-Adaptive DE for Dynamic Environments 133

0 20 40 60 80 100 120 140 160 180
6

8

10

12

14

16

18

20

22

24

x 10 Function Evaluations

O
ffl

in
e

E
rr

or

Normal
Competing

Fig. 7.7 Comparison of offline error for normal and competitive evaluation

7.5.7 Reinitialization Midpoint Check

Section 7.5.2 explained how DynDE determines when two sub-populations are lo-
cated on the same optimum, which results in the weaker sub-population being reini-
tialized. This approach does not take into account the case when two optima are
located extremely close to each other, i.e. within the exclusion threshold from one
another. In these situations, one of the sub-populations will be reinitialized, leaving
one of the optima unpopulated. It was shown [15] that this problem can be par-
tially remedied by determining whether the midpoint between the best individuals
in each sub-population constitutes a higher error value than the best individuals of
both sub-populations. If this is the case, it implies that a trough exists between the
two sub-populations and that neither should be reinitialized (see Figure 7.8, scenario
A). This approach is referred to as the Reinitialization Midpoint Check (RMC) app-
roach. It is apparent that RMC does not work in all cases. Scenarios B and C of
Figure 7.8 depict situations where multiple optima within the exclusion threshold
are not detected by a midpoint check. Scenario C further constitutes an example
where no point between the two optima will give a higher error, thus making it
impossible to detect two optima by using any number of intermediate point checks.

This approach is similar to, but simpler, than hill-valley detection suggested by
[34], since only one point is checked between sub-populations.

The midpoint check approach provides a method of detecting multiple optima
within the exclusion threshold without being computationally expensive or using
too many function evaluations, since only one point is evaluated.

7.5.8 Spawning Populations

It was shown [14] that even if the number of peaks is known, creating an equal
number of sub-populations as peaks is not always an effective strategy. When the

134 M.C. du Plessis and A.P. Engelbrecht

Scenario C: Multiple optima not detected

�
�
�
�
�
�
�
��

�
�
�
�
�
�
���

�
�
�
���

�
�
�
��

Midpoint�

Scenario B: Multiple optima not detected

�
�
�
�
�
�
�
����

�
�
�
�
�
��	

	
	
	
		

Midpoint�

Scenario A: Multiple optima detected

�
�
�
�
�
�
�
����

�
�
�
�
�
���

�
�
�
�
���

�
�
�
�
��

Midpoint�

Fig. 7.8 Midpoint checking scenarios

number of peaks is unknown, choosing the number of sub-populations to use would
be, at best, an educated guess. It was therefore suggested [14] that the number of
sub-populations should not be a parameter of the algorithm, but that sub-populations
should be spawned as needed. The question that must be answered is: When should
new populations be spawned?

CPE is based on allocating processing time and function evaluations to popu-
lations based on a performance value, P(k, t) (refer to equation (7.13) in Section
7.5.6). Sub-populations are evolved in sequence until all sub-populations converge
to their respective optima in the search space. It was proposed that an appropriate
time to introduce an additional sub-population is when little further improvement in
fitness is found for all the current sub-populations. Introducing new sub-populations
earlier would be contrary to the competing population approach of CPE, where in-
ferior sub-populations are deliberately excluded from the evolution process so that
optima can be discovered earlier.

7 Self-Adaptive DE for Dynamic Environments 135

A detection scheme is suggested to indicate when evolution has reached a point
of little or no improvement in fitness of current sub-populations. This point will be
referred to as stagnation. When stagnation is detected, DynPopDE introduces a new
population of randomly created individuals so that previously undiscovered optima
can be located. CPE calculates the performance value of a sub-population, k, as the
product of its current relative fitness, Rk(t), and the improvement that was made
in fitness during the previous generation, ΔF(xbest,k, t) (see Equation (7.13)). It is
suggested that a meaningful indicator of stagnation is when all of the current sub-
populations receive a zero improvement of fitness after their last respective function
evaluations. Let K be the set of current populations. Define a function, ϒ (t), that is
true if stagnation has occurred, as follows:

ϒ (t) =

{
true if(ΔF(xbest,k, t) = 0) ∀ k ∈K
f alse otherwise

(7.17)

ΔF(xbest,k, t) is defined in equation (7.14). Note that equation (7.17) does not guar-
antee that stagnation of all populations has permanently occurred, since the fitness
of some of the sub-populations may improve in subsequent generations. However,
when ϒ (t) is true, it does mean that none of the sub-populations has improved its
fitness in the previous generation. Since function evaluations are not effectively used
by the current sub-populations, a new sub-population should be created which may
lead to locating more optima in the problem space.

After each generation, DynPopDE determines the value of ϒ (t). If ϒ (t) =
true then a new randomly generated sub-population is added to the set of sub-
populations. The sub-population spawning approach allows DynPopDE to com-
mence with only a single population and adapt to an appropriate number of pop-
ulations. The number of sub-populations is thus removed as a parameter from the
algorithm.

7.5.9 Removing Populations

The previous section explained how new populations are spawned when necessary.
However, it is possible that Equation (7.17) detects stagnation incorrectly since it
cannot guarantee that stagnation for all sub-populations has occurred indefinitely.
Consequently, more sub-populations than necessary may be created. Furthermore,
in problems where the number of optima fluctuates, it would be desirable to remove
superfluous sub-populations when the number of optima decreases. It thus becomes
necessary to detect and remove redundant sub-populations.

DynDE reinitializes sub-populations through exclusion when the spatial differ-
ence between the population and a more fit population drops below the exclu-
sion threshold. It is reasonable to assume that when redundant populations are
present (i.e. more sub-populations exist than optima), these sub-populations will
perpetually be reinitialized and will not converge to specific optima since exclu-
sion prevents more than one sub-population from converging to the same optima.

136 M.C. du Plessis and A.P. Engelbrecht

Consequently, redundant sub-populations can be detected by finding sub-populations
that are successively reinitialized through exclusion without reaching a point of ap-
parent stagnation (i.e. there are no more optima available for the sub-population to
occupy).

A sub-population, k, will be discarded when it is flagged for reinitialization due
to exclusion and if

ΔF(xbest,k, t) �= 0. (7.18)

The RMC exclusion process is thus further adapted to also remove sub-populations
(refer to Algorithm 7.3 where xbest,k is the best individual in sub-population k ∈
{1,2, . . . ,K}).

Algorithm 7.3. DynPopDE Exclusion

for k = 1, . . . ,K do
for q = 1, . . . ,K do

if ‖xbest,k−xbest,q‖2 < rexcl and k �= q then
Let xmid = (xbest,k +xbest,q)/2;
if F(xmid)< F(xbest,k) and F(xmid)< F(xbest,q) then

if F(xbest,k)< F(xbest,q) then
if ΔF(xbest,q, t) = 0 then

Reinitialize population q
else

Discard population q
end

else
if ΔF(xbest,k, t) = 0 then

Reinitialize population k
else

Discard population k
end

end
end

end
end

end

This approach may at times incorrectly classify populations as redundant in that
it does not guarantee the removal of populations only when the number of popu-
lations outnumbers the number of optima. In some cases a sub-population will be
discarded for converging to an optimum, occupied by another sub-population, even
when undiscovered optima still exist in the the problem space. However, no opti-
mum is ever left unguarded through the discarding process since a sub-population
is discarded only when converging to an optimum already occupied by another sub-
population. No information about the search space is thus lost through discarding
a sub-population. If all sub-populations have stagnated, a new sub-population will

7 Self-Adaptive DE for Dynamic Environments 137

be created through the spawning process. The spawning and the discarding com-
ponents of DynPopDE thus reach a point of equilibrium where sub-populations are
created when function evaluations are not being used effectively by the current sub-
populations, and sub-populations are removed when converging to optima that are
already guarded by other sub-populations.

7.5.10 Penalty Factor

The detection of stagnation is essential to DynPopDE’s population spawning pro-
cess. The detection strategy described in Section 7.5.8 is based on all sub-populations
not improving their respective fitness values in the previous generation. However, in
CPE, sub-populations are evolved alone based on performance value. It is possible
that a situation could occur where some of the weaker sub-populations are not allo-
cated enough fitness evaluation to reach the stagnation point as detected by Equation
(7.17). It was found experimentally that in order to detect stagnation effectively, it
is necessary to distribute function evaluations more uniformly among all popula-
tions [14]. The final component of DynPopDE is the introduction of a penalty factor
into the performance value, P(k, t) given in Equation (7.13), to penalize popula-
tions for successively receiving the highest performance value without showing any
improvement in fitness.

Each population, k, maintains a penalty factor penk(t) which is calculated as
follows:

penk(t) =

{
penk(t− 1)+ 1 if(ΔF(xbest,k, t) = 0)
0 otherwise

. (7.19)

The penalty factor is thus reset to zero as soon as an improvement of fitness is found.
The performance with penalty Ppen(k, t) is calculated as:

Ppen(k, t) =

{
P(k,t)
penk(t)

if(penk(t)> 0)
P(k, t) otherwise

. (7.20)

Populations that stagnate but still receive a large performance value, P(k, t), will
eventually receive a low value for performance with penalty, Ppen(k, t), and will
consequently not dominate the evolution process.

The necessity of using a penalty implies that there is an intrinsic cost to detecting
stagnation effectively, since it is necessary to waste more function evaluations on
weaker sub-populations to ensure a reasonable chance to stagnate.

7.6 Self-Adaptive DynPopDE

The main goal of this study is an investigation into the effect of incorporating
self-adaptive control parameters into DynPopDE. This section describes the self-
adaptive approach that is incorporated into DynPopDE to form the Self-Adaptive
Dynamic Population Differential Evolution (SADynPopDE) algorithm.

138 M.C. du Plessis and A.P. Engelbrecht

7.6.1 The Self-Adaptive DynPopDE Algorithm

In a previous study, it has been shown that CDE can be improved by self-adapting
the DE scale and crossover factors [16]. Three different DE-based approaches to
self-adaptation were investigated [9, 26, 27], and it was found that the the app-
roach of Brest et al. [9] is the most effective of the three when used in conjunction
with CDE.

The approach of Brest et al. [9] self-adapts the values of both the crossover fac-
tor and the scale factor. Each individual, xi, stores its own value for the crossover
factor, Cri, and scale factor, Fi. Before Equation (7.1) is used to create a new trial
individual, the scale factor and crossover factor of the target individual (xi in Equa-
tion (7.2)) are used to create new values for the scale factor and crossover factor to
be used in equations (7.1) and (7.2). The new scale and crossover factors (Fnew and
Crnew) are calculated as follows:

Fnew =

{
Fl +U(0,1) ·Fu if (U(0,1)< τ1)
Fi otherwise

(7.21)

Crnew =

{
U(0,1) if (U(0,1)< τ2)
Cri otherwise

, (7.22)

where τ1 and τ2 are the probabilities that the factors will be adjusted. Brest et al.
[9] used 0.1 for both τ1 and τ2. Other values used were Fl = 0.1 and Fu = 0.9. Fl

is a constant introduced to avoid premature convergence by ensuring that the scale
factor is never too small (see Section 7.4.3), while Fu determines the range of scale
factors that can be explored by the algorithm.

This approach is the basis for the successful jDE algorithm [10] which is aimed
at dynamic environments. Brest et al. [10] used Fl = 0.36 rather than Fl = 0.1 for
the dynamic algorithm. Initial values of 0.9 for the crossover factor and 0.5 for the
scale factor were used [10]. The jDE algorithm makes use of DE/rand/1/bin, but it
was found that DE/best/2/bin yielded the best results in the CDE-based version of
this algorithm [16].

The self-adaptive approach of Brest et al. [9][10] was incorporated into Dyn-
PopDE to form SADynPopDE. The following section presents experimental ev-
idence that shows that SADynPopDE is an improvement over DynDE and Dyn-
PopDE.

7.6.2 Results and Discussion

This section experimentally compares the performance of SADynPopDE to those of
DynDE and DynPopDE, in order to determine whether self-adaptive control param-
eters yield a more effective algorithm. The modified MPB described in Section 7.2.2
was used to model problems with a fluctuating number of peaks. For these exper-
iments, DynDE was given 10 sub-populations, since this number was shown to yield

7 Self-Adaptive DE for Dynamic Environments 139

reasonable performance on this type of problem [14]. The number of individuals
in the sub-populations of all algorithms was set to six. For all algorithms, DynDE
and DynPopDE were compared to SADynPopDE for different values of maximum
number of peaks and percentage change in the number of peaks. Additionally, the
effect of varying dimension and change period was investigated. All combinations
of settings listed in Table 7.2 were investigated.

Table 7.2 MPB settings for fluctuating number of peaks experiments.

Setting Values

Number of Dimensions 5, 10, 15
Change period 1000, 2000, 3000, 4000, 5000
Maximum Number of Peaks 20, 40, 60, 80, 100, . . . , 180, 200
Percentage Change in the Number of Peaks 10, 20, 30, 40, 50

Each experiment was repeated 50 times. Average offline error and 95% confi-
dence interval for DynDE, DynPopDE and SADynPopDE along with the results
of Mann-Whitney U tests are summarized in Tables 7.3 and 7.4. For the sake of
brevity, some of the results were omitted, but are available from the authors. The ta-
bles list the maximum number of peaks (Max Peaks), percentage change in number
of peaks (% Change), change period (CP), offline error of DynDE, offline error of
DynPopDE, offline error of SADynPopDE, the p-values of Mann-Whitney U tests
comparing the differences in offline error between DynDE and DynPopDE (p-A),
and DynPopDE and SADynPopDE (p-B). Values for which the differences were
not statistically significant at a 95% confidence level are given in boldface. Cases
where the offline error of DynPopDE is lower than that of SADynPopDE are given
in italics.

The results show that DynDE generally yields large offline errors when the num-
ber of optima fluctuates. Increasing the number of dimensions greatly increases the
offline error, because the size of the search space is effectively increased which
makes it harder to locate optima. In addition, lowering the number of function eval-
uations between changes in the environment has a negative effect on the offline error,
since fewer generations can be performed between changes in the environment.

Fluctuating the number of optima in the solution space results in severe changes
in the environment. When optima vanish from the solution space, entire sub-
populations are left with a low fitness value. Similarly, optima are introduced in
areas of the search space which is not guarded by individuals. As the maximum
number of optima in the environment increases (and subsequently the number of
optima that are introduced or removed when a change in the environment occurs),
the offline error of DynDE increases.

Increasing the percentage change in the number of peaks negatively affected the
performance of DynDE. This trend is expected, since, when peaks are removed, the
sub-populations guarding those peaks are reduced to relatively low fitness values.

140 M.C. du Plessis and A.P. Engelbrecht

Table 7.3 Results in 5 dimensions

Max Peaks % Change CP DynDE DynPopDE p-A SADynPopDEp-B

20 10 1000 15.73 ± 1.22 11.39 ± 0.69 0.00 6.78 ± 0.32 0.00
20 10 3000 3.85 ± 0.33 3.21 ± 0.33 0.00 2.14 ± 0.13 0.00
20 10 5000 2.42 ± 0.19 1.96 ± 0.19 0.00 1.38 ± 0.09 0.00
20 30 1000 28.92 ± 1.46 19.88 ± 0.88 0.00 13.53 ± 0.56 0.00
20 30 3000 7.84 ± 0.64 5.61 ± 0.53 0.00 3.56 ± 0.26 0.00
20 30 5000 3.97 ± 0.45 3.24 ± 0.34 0.01 2.22 ± 0.21 0.00
20 50 1000 37.73 ± 1.15 26.15 ± 0.88 0.00 17.73 ± 0.57 0.00
20 50 3000 11.35 ± 0.86 9.10 ± 0.60 0.00 5.61 ± 0.38 0.00
20 50 5000 6.30 ± 0.59 5.32 ± 0.46 0.04 2.89 ± 0.26 0.00
40 10 1000 16.70 ± 1.44 10.68 ± 0.99 0.00 8.62 ± 0.58 0.01
40 10 3000 5.09 ± 0.48 3.94 ± 0.47 0.00 2.60 ± 0.15 0.00
40 10 5000 3.07 ± 0.20 2.38 ± 0.20 0.00 1.64 ± 0.09 0.00
40 30 1000 28.97 ± 0.99 21.94 ± 1.24 0.00 15.11 ± 0.72 0.00
40 30 3000 10.14 ± 0.92 6.54 ± 0.46 0.00 5.00 ± 0.41 0.00
40 30 5000 6.37 ± 0.71 4.11 ± 0.44 0.00 2.70 ± 0.27 0.00
40 50 1000 38.19 ± 1.22 28.00 ± 0.88 0.00 20.74 ± 0.70 0.00
40 50 3000 15.00 ± 1.18 10.53 ± 0.69 0.00 6.96 ± 0.58 0.00
40 50 5000 8.52 ± 0.89 5.41 ± 0.58 0.00 4.20 ± 0.39 0.00
80 10 1000 16.30 ± 1.70 11.82 ± 1.19 0.00 9.19 ± 0.75 0.00
80 10 3000 6.64 ± 0.80 3.95 ± 0.34 0.00 3.16 ± 0.27 0.00
80 10 5000 3.62 ± 0.22 2.76 ± 0.29 0.00 2.18 ± 0.14 0.00
80 30 1000 29.26 ± 1.35 20.44 ± 0.94 0.00 16.75 ± 0.85 0.00
80 30 3000 13.29 ± 1.13 7.73 ± 0.67 0.00 5.78 ± 0.38 0.00
80 30 5000 6.42 ± 0.58 4.95 ± 0.57 0.00 3.44 ± 0.33 0.00
80 50 1000 37.94 ± 1.17 28.09 ± 0.78 0.00 21.46 ± 0.57 0.00
80 50 3000 17.12 ± 1.12 11.75 ± 0.93 0.00 8.33 ± 0.56 0.00
80 50 5000 9.83 ± 0.87 7.60 ± 0.72 0.00 5.58 ± 0.40 0.00
160 10 1000 16.60 ± 1.55 12.03 ± 1.22 0.00 9.55 ± 0.81 0.00
160 10 3000 7.94 ± 1.29 5.03 ± 0.57 0.00 3.54 ± 0.29 0.00
160 10 5000 4.53 ± 0.46 3.37 ± 0.61 0.00 2.66 ± 0.30 0.00
160 30 1000 28.60 ± 1.31 22.61 ± 1.05 0.00 16.80 ± 0.76 0.00
160 30 3000 14.38 ± 1.26 9.43 ± 0.94 0.00 6.48 ± 0.51 0.00
160 30 5000 8.95 ± 1.04 5.67 ± 0.78 0.00 4.22 ± 0.42 0.01
160 50 1000 36.32 ± 1.18 29.31 ± 0.93 0.00 22.10 ± 0.70 0.00
160 50 3000 18.71 ± 1.20 12.14 ± 0.84 0.00 9.32 ± 0.50 0.00
160 50 5000 12.58 ± 1.10 8.15 ± 0.72 0.00 5.72 ± 0.43 0.00

Similarly, new peaks that are introduced will initially not be located by sub-
populations. When the percentage of peaks that are removed or introduced is in-
creased, either, more sub-populations are left not guarding a peak, or more peaks are
introduced that are initially unguarded. The detrimental effect of percentage change
in number of peaks was more pronounced for larger values of maximum number of
peaks, since a greater number of peaks are introduced or removed.

7 Self-Adaptive DE for Dynamic Environments 141

Table 7.4 Results in 15 dimensions

Max Peaks % Change CP DynDE DynPopDE p-A SADynPopDEp-B

20 10 1000 118.51± 5.70 63.59 ± 5.33 0.00 68.97 ± 4.89 0.14
20 10 3000 47.52 ± 8.12 19.39 ± 2.74 0.00 16.95 ± 2.36 0.23
20 10 5000 25.82 ± 5.15 11.66 ± 2.10 0.00 8.43 ± 1.18 0.02
20 30 1000 146.05± 2.30 98.36 ± 4.83 0.00 101.37± 3.30 0.11
20 30 3000 80.93 ± 6.07 42.26 ± 4.71 0.00 32.34 ± 2.08 0.00
20 30 5000 47.70 ± 5.81 24.73 ± 3.93 0.00 17.64 ± 2.18 0.00
20 50 1000 157.85± 2.53 120.04± 4.06 0.00 117.58± 2.69 0.72
20 50 3000 107.02± 5.33 51.94 ± 4.49 0.00 41.19 ± 3.12 0.00
20 50 5000 67.92 ± 5.41 33.87 ± 3.07 0.00 26.50 ± 2.26 0.00
40 10 1000 103.93± 5.47 64.02 ± 6.34 0.00 58.14 ± 4.89 0.18
40 10 3000 37.39 ± 7.52 21.58 ± 3.94 0.00 15.64 ± 2.32 0.08
40 10 5000 21.77 ± 4.48 13.66 ± 2.39 0.00 9.62 ± 1.75 0.00
40 30 1000 137.11± 3.09 91.94 ± 4.25 0.00 92.80 ± 3.65 0.60
40 30 3000 72.50 ± 5.20 40.85 ± 3.86 0.00 32.65 ± 2.94 0.00
40 30 5000 52.98 ± 4.95 24.85 ± 3.93 0.00 20.24 ± 2.45 0.13
40 50 1000 146.45± 2.19 112.54± 3.89 0.00 110.23± 3.29 0.48
40 50 3000 98.18 ± 4.94 52.51 ± 3.15 0.00 43.75 ± 2.97 0.00
40 50 5000 65.42 ± 5.49 34.49 ± 2.69 0.00 27.34 ± 2.43 0.00
80 10 1000 95.19 ± 6.04 55.47 ± 5.40 0.00 56.74 ± 4.94 0.49
80 10 3000 41.76 ± 7.72 27.93 ± 5.55 0.00 16.13 ± 2.43 0.00
80 10 5000 24.61 ± 6.25 12.44 ± 3.29 0.00 7.90 ± 1.06 0.01
80 30 1000 128.25± 2.83 89.70 ± 4.70 0.00 84.20 ± 3.49 0.16
80 30 3000 78.10 ± 5.63 41.28 ± 4.51 0.00 32.97 ± 3.11 0.01
80 30 5000 43.62 ± 5.92 25.94 ± 3.28 0.00 20.64 ± 2.08 0.03
80 50 1000 138.18± 2.17 107.12± 3.54 0.00 108.03± 2.56 0.32
80 50 3000 92.44 ± 4.16 59.88 ± 5.61 0.00 43.56 ± 2.66 0.00
80 50 5000 62.89 ± 4.50 34.59 ± 4.25 0.00 30.44 ± 2.30 0.29
160 10 1000 87.46 ± 5.89 56.10 ± 6.78 0.00 48.07 ± 5.54 0.11
160 10 3000 33.20 ± 5.60 22.77 ± 3.74 0.00 14.77 ± 2.51 0.00
160 10 5000 25.33 ± 6.24 12.41 ± 3.10 0.00 12.84 ± 2.62 0.72
160 30 1000 120.91± 2.52 85.79 ± 4.21 0.00 81.53 ± 3.57 0.22
160 30 3000 69.23 ± 5.86 38.10 ± 3.93 0.00 34.71 ± 3.42 0.23
160 30 5000 47.35 ± 6.68 27.42 ± 3.56 0.00 21.79 ± 3.08 0.02
160 50 1000 132.74± 2.26 104.89± 3.03 0.00 102.15± 2.75 0.27
160 50 3000 88.49 ± 4.18 54.33 ± 2.69 0.00 45.54 ± 2.76 0.00
160 50 5000 66.22 ± 6.10 37.94 ± 3.25 0.00 31.54 ± 2.61 0.00

The same general trends that are visible in the DynDE results were also found
for both DynPopDE and SADynPopDE, i.e. the offline error deteriorates when the
change period is reduced, the percentage change in the number of peaks is increased,
or the number of dimensions is increased.

A comparison of the results of DynDE and DynPopDE (refer to Tables 7.3
and 7.4) shows DynPopDE yielded a clear improvement over DynDE. Over all

142 M.C. du Plessis and A.P. Engelbrecht

experiments, it was found that 746 of the 750 experiments resulted in a statistically
significantly better result for DynPopDE. On average, DynPopDE yielded an im-
provement over DynDE of 29.22% in 5 dimensions, 37.02% in 10 dimensions, and
40.55% in 15 dimensions. The magnitudes of the improvements are greater when
larger values for maximum number of peaks were used, as population spawning
ability of DynPopDE is more beneficial when in these regions. Figure 7.9 graph-
ically depicts the surface found when subtracting the average offline error of SA-
DynPopDE from the average offline error of DynPopDE for various settings of the
MPB when a 50% maximum change in the number of peaks was used. For 5 di-
mensions almost all the SADynPopDE results were statistically significantly better
than those of DynPopDE. For the 10 dimensional experiments the majority of the
SADynPopDE results were statistically significantly better than DynPopDE, while
in 15 dimensions the majority of the differences were not statistically significant.
SADynPopDE did not perform statistically significantly worse than DynPopDE in
any of the 5 and 10 dimensional experiments. In 15 dimensions, SADynPopDE was
only statistically significantly worse then DynPopDE in 1 of the 250 experiments.

20
40

60
80

100
120

140
160

180
200

1000

2000

3000

4000

5000

0

2

4

6

8

10

Change PeriodNumber Peaks

E
rr

or
 D

iff
er

en
ce

2

3

4

5

6

7

8

Fig. 7.9 Difference in offline error between DynPopDE and SADynPopDE for various set-
tings of maximum number of peaks and change period in 5 dimensions.

Figure 7.9 shows how the improvement of SADynPopDE over DynPopDE in 5
dimensions becomes more pronounced as the change period becomes smaller. This
trend is reversed in 10 and 15 dimensions where the improvement of SADynPopDE
over DynPopDE was relatively small for change periods of 1000. The improvements
of SADynPopDE over DynPopDE were less frequently significant in the higher
dimensions, but differences in offline error are nonetheless often larger than 10.
It was found that SADynPopDE was more often better than DynPopDE when the
percentage change in the number of peaks is larger then 30%.

From the results it can be concluded that SADynPopDE is an improvement over
DynPopDE, especially in low dimensional problems.

7 Self-Adaptive DE for Dynamic Environments 143

7.7 Conclusions

This chapter introduced SADynPopDE, a self-adaptive multi-population DE-based
optimization algorithm, aimed at dynamic optimization problems in which the num-
ber of optima in the environment fluctuates over time. SADynPopDE was experi-
mentally compared to two algorithms upon which it is based: DynDE and Dyn-
PopDE. DynDE extends DE for dynamic environments by utilizing multiple sub-
populations which are encouraged to converge to distinct optima by means of ex-
clusion. DynPopDE extends DynDE by: using competitive population evaluation
to selectively evolve sub-populations, using a midpoint check during exclusion to
determine whether sup-populations are indeed converging to the same optimum,
dynamically spawning and removing sub-populations, and using a penalty factor
to aid the stagnation detection process. Experimental evidence suggests that Dyn-
PopDE is more effective on problems in which the number of optima fluctuates than
DynDE. In turn, it was shown that SADynPopDE is more effective than DynPopDE
on these types of problems, especially on low dimensional cases.

In conclusion, the incorporation of self-adaptive control parameters into Dyn-
PopDE not only yielded a more effective algorithm, but also removed the need to
fine-tune the DE crossover and scale factors.

References

[1] A multi-population approach to dynamic optimization problems. In: Adaptive Comput-
ing in Design and Manufacturing, pp. 299–308. Springer (2000)

[2] Blackwell, T.: Particle swarm optimization in dynamic environments. In: Evolutionary
Computation in Dynamic and Uncertain Environments, pp. 29–49. Springer (2007)

[3] Blackwell, T., Branke, J.: Multiswarm optimization in dynamic environments. Applica-
tions of Evolutionary Computing 3005, 489–500 (2004)

[4] Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)

[5] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers, Norwell (2002)

[6] Branke, J.: The moving peaks benchmark (2007),
http://www.aifb.uni-karlsruhe.de/˜jbr/MovPeaks/

[7] Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization
problems. In: Tsutsui, S., Ghosh, A. (eds.) Theory and Application of Evolutionary
Computation: Recent Trends, pp. 239–262. Springer (2002)

[8] Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization
problems, pp. 239–262 (2003)

[9] Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control param-
eters in differential evolution: A comparative study on numerical benchmark problems.
IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

[10] Brest, J., Zamuda, A., Boškovic, B., Maučec, M.S., Žumer, V.: Dynamic optimization
using self-adaptive differential evolution. In: CEC 2009: Proceedings of the Eleventh
Conference on Congress on Evolutionary Computation, Piscataway, NJ, USA, pp. 415–
422 (2009)

http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/

144 M.C. du Plessis and A.P. Engelbrecht

[11] Carlisle, A., Dozier, G.: Tracking changing extrema with adaptive particle swarm opti-
mizer. In: Proc. World Automation Congress, pp. 265–270 (2002)

[12] Darwin, C.: The origin of species (1859)
[13] du Plessis, M.C., Engelbrecht, A.P.: Improved differential evolution for dynamic opti-

mization problems. In: IEEE Congress on Evolutionary Computation, CEC 2008, pp.
229–234 (June 2008)

[14] du Plessis, M.C., Engelbrecht, A.P.: Differential evolution for dynamic environments
with unknown numbers of optima. Submitted to Journal of Global Optimization (2010)

[15] du Plessis, M.C., Engelbrecht, A.P.: Using competitive population evaluation in a dif-
ferential evolution algorithm for dynamic environments. Submitted to European Journal
of Operational Research (2010)

[16] du Plessis, M.C., Engelbrecht, A.P.: Self-adaptive competitive differential evolution for
dynamic environments. In: IEEE Symposium Series on Computational Intelligence,
SSCI 2011, pp. 1–8 (April 2011)

[17] Engelbrecht, A.P.: Computational Intelligence An Introduction, 2nd edn. John Wiley
and Sons (2007)

[18] Hu, X., Eberhart, R.C.: Adaptive particle swarm optimisation: detection and response to
dynamic systems. In: Proceedings Congress on Evolutionary Computation, pp. 1666–
1670 (2002)

[19] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE
Transactions on Evolutionary Computation 9(3), 303–317 (2005)

[20] Li, C., Yang, S.: A Generalized Approach to Construct Benchmark Problems for Dy-
namic Optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Ab-
bass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.)
SEAL 2008. LNCS, vol. 5361, pp. 391–400. Springer, Heidelberg (2008)

[21] Li, C., Yang, S., Nguyen, T.T., Yu, E.L., Yao, X., Jin, Y., Beyer, H.G., Suganthan, P.N.:
University of Leicester, University of Birmingham, Nanyang Technological University,
Technical Report (2008)

[22] Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a
dynamic environment. In: GECCO 2006: Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, pp. 51–58. ACM, New York (2006)

[23] Mendes, R., Mohais, A.: Dynde: a differential evolution for dynamic optimization prob-
lems. In: Congress on Evolutionary Computation, pp. 2808–2815. IEEE (2005)

[24] Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.: A comparative study of differ-
ential evolution variants for global optimization. In: GECCO 2006: Proceedings of the
8th Annual Conference on Genetic and Evolutionary Computation, pp. 485–492. ACM,
New York (2006)

[25] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments.
Springer (2004)

[26] Omran, M.G.H., Salman, A., Engelbrecht, A.P.: Self-adaptive Differential Evolution.
In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C.
(eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 192–199. Springer, Heidelberg (2005)

[27] Omran, M.G.H., Engelbrecht, A.P., Salman, A.: Bare bones differential evolution. Eu-
ropean Journal of Operational Research 196(1), 128–139 (2009)

[28] Oppacher, F., Wineberg, M.: The shifting balance genetic algorithm: Improving the ga
in a dynamic environment. In: Banzhaf, W., et al. (eds.) Genetic and Evolutionary Com-
putation Conference (GECCO), vol. 1, pp. 504–510. Morgan Kaufmann, San Francisco
(1999)

7 Self-Adaptive DE for Dynamic Environments 145

[29] Parrott, D., Li, X.: A particle swarm model for tracking multiple peaks in a dynamic
environment using speciation. In: Congress on Evolutionary Computation, pp. 98–103.
IEEE (2004)

[30] Price, K., Storn, R., Lampinen, J.: Differential evolution - A practical approach to global
optimization. Springer (2005)

[31] Storn, R.: On the usage of differential evolution for function optimization. In: Biennial
Conference of the North American Fuzzy Information Processing Society, pp. 519–523.
IEEE (1996)

[32] Storn, R., Price, K.: Minimizing the real functions of the icec96 contest by differen-
tial evolution. In: IEEE Conference on Evolutionary Computation, pp. 842–844. IEEE
(1996)

[33] Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global op-
timization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

[34] Ursem, R.K.: Multinational GA optimization techniques in dynamic environments. In:
Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.-G. (eds.)
Genetic and Evolutionary Computation Conference, pp. 19–26. Morgan Kaufmann
(2000)

[35] Zaharie, D., Zamfirache, F.: Diversity enhancing mechanisms for evolutionary opti-
mization in static and dynamic environments. In: 3rd Romanian-Hungarian Joint Sym-
posium on Applied Computational Intelligence, pp. 460–471 (2006)

Chapter 8
Dynamic Multi-Objective Optimization
Using PSO

Mardé Helbig and Andries P. Engelbrecht

Abstract. Dynamic multi-objective optimization problems occur in many situations
in the real world. These optimization problems do not have a single goal to solve,
but many goals that are in conflict with one another - improvement in one goal
leads to deterioration of another. Therefore, when solving dynamic multi-objective
optimization problem, an algorithm attempts to find the set of optimal solutions,
referred to as the Pareto-optimal front. Each dynamic multi-objective optimization
problem also has a number of boundary constraints that limits the search space.
When the particles of a particle swarm optimization (PSO) algorithm move outside
the search space, an approach should be followed to manage violation of the bound-
ary constraints. This chapter investigates the effect of various approaches to manage
boundary constraint violations on the performance of the dynamic Vector Evaluated
Particle Swarm optimization (DVEPSO) algorithm when solving DMOOP. Further-
more, the performance of DVEPSO is compared against the performance of three
other state-of-the-art dynamic multi-objective optimization algorithms.

8.1 Introduction

Many problems in the real-world change over time and require more than one goal
to be optimized. However, these goals, or objectives, are normally in conflict with
one another, where an improvement in one objective results in deterioration of an-
other objective. Therefore, a single solution does not exist and the goal becomes

Mardé Helbig
CSIR Meraka Institute, Scientia, Meiring Naude Road, 0184,
Brummeria, South Africa
e-mail: mhelbig@csir.co.za

Mardé Helbig · Andries P. Engelbrecht
Department of Computer Science, University of Pretoria, 0002,
Pretoria, South Africa
e-mail: engel@cs.up.ac.za

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 147–188.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

mhelbig@csir.co.za
engel@cs.up.ac.za

148 M. Helbig and A.P. Engelbrecht

to find the set of optimal trade-off solutions. These problems are called dynamic
multi-objective optimization problem (DMOOP). Each DMOOP has a number of
objective functions to optimize and each variable within an objective function has a
range of values that are valid, referred to as the search space. These bounds of valid
values of the decision variable are called boundary constraints.

A multi-swarm algorithm, called Dynamic Vector Evaluated Particle Swarm op-
timization (DVEPSO) [10], is presented. The effect that various approaches to man-
age boundary constraints have on the performance of DVEPSO is investigated.
Furthermore, DVEPSO is compared against three other state-of-the-art dynamic
multi-objective optimization (DMOO) algorithms.

The rest of the chapter’s layout is as follows: Section 8.2 presents theory and
background information with regard to particle swarm optimization (PSO) and
DMOO. The DVEPSO algorithm is presented in Section 8.3, as well as the app-
roaches that can be used to manage boundary constraints. Section 8.4 provides in-
formation about the experiments that were run, including the benchmark functions,
performance metrics and statistical analysis that were used to measure the perfor-
mance of the various algorithms. The results that were obtained from the experi-
ments are discussed in Section 8.5. Conclusions about this research are presented in
Section 8.6.

8.2 Background

This section presents background information on PSO, as well as the theory on
multi-objective optimization (MOO) and DMOO. Furthermore, some issues when
solving DMOOP are presented.

8.2.1 Particle Swarm Optimization

Inspired by the social behaviour of bird flocks, Eberhart and Kennedy introduced
PSO [15]. The PSO algorithm maintains a swarm of particles, where each particle
represents a solution of the optimisation problem. Each particle moves through the
search space and its position is updated based on its own experience (cognitive in-
formation), as well as the experience of the its neighbours (social information). The
particle’s position that produced the best solution so far is referred to as its personal
best or pbest. The position that leads to the best overall solution by all particles in a
pre-defined neighbourhood, is called the neighbourhood best or nbest. If the neigh-
bourhood is defined as the whole swarm, the neighbourhood best is referred to as
the global best or gbest.

In general, the PSO algorithm can be described as indicated in Algorithm 8.1.
Every optimisation problem has boundary constraints and therefore a particle

should be prevented from drifting outside the boundary constraints of the problem.
In some cases it may be beneficiary to allow a particle to move somewhat outside

8 Dynamic Multi-Objective Optimization Using PSO 149

Algorithm 8.1. PSO Algorithm
1. Create and initialise a swarm
2. while stopping condition has not been reached
3. for each particle in swarm do
4. set pbest
5. set gbest
6. for each particle in swarm do
7. calculate new velocity
8. calculate new position

the bounds when the solution is in close proximity of the bounds. However, once a
particle has moved outside the bounds, it should not be allowed to roam outside the
boundary constraints indefinitely and should be pulled back within the valid bounds
of the decision space. Furthermore, if a particle’s position is outside the bounds, the
position should not be used as the particle’s pbest.

According to Chu et al, there are three basic boundary handling techniques that
are widely used, namely [4]:

• Random, where if a particle moves outside the search space, a random value from
a uniform distribution between the lower and upper boundaries of the violating
dimension is assigned to the violating dimension of the particle’s position.

• Absorbing, where if a particle moves outside the search space, the dimension that
is violating the bounds are set to the boundary of that dimension, so that it seems
as though the particle has been absorbed by the boundary.

• Reflection, where if a particle moves outside the search space, the boundary acts
like a mirror that reflects the projection of the particle’s displacement.

Recently, studies have been done on the effect of boundary constraint violation
approaches on the performance of PSO. Helwig and Wanka investigated four app-
roaches for managing boundary constraints when solving high-dimensional single-
objective optimization problem (SOOP) [13]. Chu et al. investigated the effect of the
three boundary handling techniques mentioned above for high dimensional SOOP
and high dimensional composite SOOP. However, in this chapter various boundary
handling approaches are investigated to determine their effect on the performance
of VEPSO when solving DMOOP.

8.2.2 Multi-Objective Optimization Theory

When dealing with a MOOP, the various objectives are normally in conflict with
one another, i.e. improvement in one objective leads to a worse solution for another
objective. Therefore, for MOOP, the definition of optimality has to be adjusted from
the one that is used for SOOP. When solving a MOOP the goal is to find a set of
trade-off solutions where for each of these solutions no objective can be improved

150 M. Helbig and A.P. Engelbrecht

without causing a worse solution for at least one of the other objectives. These
solutions are referred to as non-dominated solutions and the set of such solutions
is called the non-dominated set or Pareto-optimal set (POS). The corresponding
objective vectors in the objective space that lead to the non-dominated solutions are
referred to as the Pareto-optimal front (POF) or Pareto-front.

For MOOP, when one decision vector dominates another, the dominating deci-
sion vector is considered as a better decision vector. Therefore, only non-dominated
decision vectors are included in the POS. Decision vector domination is defined as
follows:

Definition 8.1. Decision Vector Domination: A decision vector x1 dominates an-
other decision vector x2, denoted by x1 ≺ x2, if and only if

• x1 is at least as good as x2 for all the objectives, i.e. fm(x1) ≤ fm(x2), ∀m =
1, . . . ,nm; and

• x1 is strictly better than x2 for at least one objective, i.e. ∃i = 1, . . . ,nm : fm(x1)<
fm(x2) .

The best decision vectors are called Pareto-optimal, defined as follows:

Definition 8.2. Pareto-optimal: A decision vector x∗ is Pareto-optimal if there does
not exist a decision vector x �= x∗ ∈ F that dominates it, i.e. �m : fm(x)< fm(x∗). If
x∗ is Pareto-optimal, the objective vector, f(x∗), is also Pareto-optimal.

Together, all the Pareto-optimal decision vectors form the POS, defined as:

Definition 8.3. Pareto-optimal Set: The POS, P∗, is formed by the set of all Pareto-
optimal decision vectors, i.e.

P∗ = {x∗ ∈ F |�x ∈ F : x≺ x∗}, (8.1)

The POS contains the best trade-off solutions for the MOOP. The corresponding
objective vectors form the POF, which is defined as follows:

Definition 8.4. Pareto-optimal Front: For the objective vector f(x) and the POS P,
the POF, PF∗ ⊆ O is defined as

PF∗ = {f = (f1(x∗), f2(x∗), . . . , fnm(x
∗)) |x∗ ∈ P}, (8.2)

Therefore, the POF contains the set of objective vectors that corresponds to the POS,
i.e. the set of decision vectors that are non-dominated. The POF can have various
shapes, e.g. a convex POF or a concave POF.

8.2.3 Dynamic Multi-Objective Optimisation Theory

Let the nx-dimensional search space (also referred to as the decision space) be rep-
resented by S ⊆ R

nx and the feasible space represented by F ⊆ S, where F = S for

8 Dynamic Multi-Objective Optimization Using PSO 151

unconstrained optimisation problems. Let x = (x1,x2, . . . ,xnx)∈ S represent a vector
of the decision variables, i.e. the decision vector, and let a single objective function
be defined as fm : Rnx → R. Then f(x) = (f1(x), f2(x), . . . , fnm(x)) ∈ O ⊆ R

nm rep-
resents an objective vector containing nm objective function evaluations, and O is
the objective space.

Using the notation above, mathematically, a DMOOP can be defined as:

minimise f(x,W(t)), x = (x1, . . . ,xnx),W(t) = (w1(t), . . . ,wnm(t))

sub ject to gi(x)≤ 0, i = 1, . . . ,ng

h j(x) = 0, j = ng + 1, . . . ,nh

x ∈ [xmin , xmax]
nx , (8.3)

where W(t) is a vector of time-dependent control parameters of an objective func-
tion at time t, nx is the number of decision variables, x ∈ R

nx , ng is the num-
ber of inequality constraints, g, nh is the number of equality constraints, h, and
x ∈ [xmin , xmax]

nx refers to the boundary constraints.
Unlike DSOOP with only one objective function, DMOOP has many objective

functions. Therefore, in order to solve the DMOOP the goal is to track the POF over
time, i.e.

PF∗(t) = {f(t) = (f1(x
∗,w1(t)), f2(x

∗,w2(t)), . . . , fnm(x
∗,wnm(t))) |x∗ ∈ P},

(8.4)
Farina et al. [7] classified dynamic environments for DMOOP into four types,
namely:

• Type I environment where the POS (optimal set of decision variables) changes,
but the POF (corresponding objective function values) remains unchanged.

• Type II environment where both the POS and the POF change.
• Type III environment where the POS remains unchanged, but the POF changes.
• Type IV environment where both the POS and the POF remain unchanged, even

though the problem can change.

8.2.4 Dynamic Multi-Objective Optimization Issues

In order to solve a DMOOP, an algorithm has to be able to detect when a change
in the environment has occurred and then respond to the change. A change in the
environment can be detected through the use of sentry particles [2] where a random
number of sentry particles are selected after each iteration. Just before the next iter-
ation is performed, these particles are re-evaluated, and if their current fitness value
differs more than a specified value from their fitness value just after the previous
iteration, the swarm is alerted that a change has occurred in the environment.

In order to test whether an algorithm can solve DMOOPs, benchmark functions
are developed that test an algorithm’s ability to manage certain difficulties, such as

152 M. Helbig and A.P. Engelbrecht

local POF and a POF that changes shape (such as from convex to concave) over
time. Benchmark functions are representative of typical real-world problems. An
approach to reformulate a three-objective optimisation test function to define a dy-
namic two-objective optimisation problem was presented by Jin and Sendhof [14].
Guan et al. [11] presented an approach to create DMOOPs by replacing objective
functions with new ones at specific times. DMOOPs based on the static MOO two-
objective ZDT functions [26] and the scalable DTLZ functions [5] was presented by
Farina et al. [7]. Some adaptions to these test functions were proposed in [19, 25].

However, when algorithms’ performances are compared against each other, per-
formance measures are required [1, 7, 8, 18]. Two main categories of performance
metrics for DMOOP exist, namely metrics that require knowledge about the true
POF and metrics that do not require any prior knowledge about the DMOOP. Various
performance metrics were developed to measure the performance of an algorithm
with regard to two main goals when solving a DMOOP, namely finding solutions
that are as close as possible to the true POF and finding a diverse set of solutions.

One of the problems when working with DMOOP is that there are no standard
benchmark functions or performance metrics that are used when research on an
algorithm’s performance is presented.

8.3 Dynamic Vector Evaluated Particle Swarm Optimization
Approach

This section discusses the Vector Evaluated Particle Swarm Optimization (VEPSO)
algorithm and how it has been adapted to solve DMOOPs. One type of constraint
that forms part of a DMOOP is the bounds for each decision variable, also referred
to as boundary constraints. This section presents approaches that can be used to
manage boundary constraint violations when solving DMOOPs.

8.3.1 Vector Evaluated Particle Swarm Optimization

The Vector Evaluated Particle Swarm Optimization (VEPSO) algorithm, inspired
by the Vector Evaluated Genetic Algorithm (VEGA) [21], was introduced by Par-
sopoulos et al. [22]. With VEPSO, each swarm solves only one objective function
and then shares its knowledge with the other swarms.

v j
i (t + 1) = wjv j

i (t)+ c j
1r1(y

j
i (t)− x j

i (t))+ c j
2r2(ŷ

s
i (t)− x j

i (t)) (8.5)

x j
i (t + 1) = x j

i (t)+ v j
i (t + 1), (8.6)

where n represents the dimension with i = 1, . . . ,n; m represents the number of
swarms with j = 1, . . . ,m as the swarm index; ŷs

i is the global best of the s-th

8 Dynamic Multi-Objective Optimization Using PSO 153

swarm with s �= j; c j
1 and c j

2 are the cognitive and social parameters of the j-th
swarm respectively; r1,r2 ∈ [0,1]; wj is the inertia weight of the j-th swarm; and
s ∈ [1, . . . , j−1, j+1, . . . ,M] represents the index of a respective swarm. The index
s can be set up in various ways, affecting the topology of the swarms in VEPSO.

In Equation (8.5) the global best of another swarm (indexed by s) is used to
update the velocity of the particles of the j-th swarm. In this way the knowledge of
the s-th swarm is shared with the j-th swarm.

8.3.2 Dynamic Vector Evaluated Particle Swarm Optimization

When solving DMOOPs, in order to track the changing POF, an algorithm must be
able to detect that a change has occurred in the environment and then respond to the
change appropriately. The VEPSO algorithm adapted to solve DMOOPs (DVEPSO)
is presented in Algorithm 8.2.

Algorithm 8.2. VEPSO for DMOO problems
1. for number of iterations do
2. check whether a change has occurred
3. if change has occurred
4. respond to change
5. remove dominated solutions from archive
6. perform iteration
7. if new solutions are non-dominated
8. if space in archive
9. add new solutions to archive
10. else
11. remove solutions from archive
12. add new solutions to archive
13. select sentry particles

The default configuration of DVEPSO algorithm that is used for this research is
as follows:

• Each swarm has 20 particles.
• The non-dominated solutions found so far is stored in an archive and the archive

size is set to 100.
• If a particle’s new position is non-dominant with regard to its current pbest, one

of these two positions is randomly selected as the particle’s new pbest.
• If a particle’s new position is non-dominant with regard to the swarm’s current

gbest, one of these two positions is randomly selected as the swarm’s new gbest.
• Sentry particles are used for change detection (refer to lines 2 and 13 in Algo-

rithm 8.2).
• If a change has been detected, 30% of the particles of the swarm(s) whose

objective function changed is re-initialised (refer to line 4 in Algorithm 8.2).

154 M. Helbig and A.P. Engelbrecht

The non-dominated solutions in the archive is re-evaluated and the solutions that
have become dominated are removed from the archive (refer to line 5 in Algo-
rithm 8.2).

• If the archive is full, the distance between the solution and the other non-
dominated solutions in the archive is calculated, and the one with the lowest
average distance is removed. This ensures that a solution from a crowded region
in the found POF is removed (refer to line 11 in Algorithm 8.2).

• For knowledge sharing between the various swarms, a ring topology is used.
Therefore, s in Equation (8.5) is selected using

s =

{
M for j = 1

j− 1 for j = 2, . . . ,M,
(8.7)

The next section discusses approaches that can be followed to appropriately respond
to a violation of the boundary constraints.

8.3.3 Management of Boundary Constraints

This section presents the various approaches that are used in the experiments to man-
age boundary constraint violations. Below, xmax and xmin refer to the upper bounds
and lower bounds of the decision variables of the DMOOP respectively.

The following approaches to handle boundary constraints are investigated to de-
termine their effect on the performance of DVEPSO when solving DMOOPs:

8.3.3.1 Clamping Approach

With the clamping approach, any particle that violates a specific boundary of the
search space is placed on or close to the violated boundary of the search space [20].
This approach is used for the default configuration of DVEPSO as discussed in
Section 8.3.2. Mathematically, clamping is defined as:

if x(t + 1) > xmax then x(t + 1) = xmax− ε
if x(t + 1) < xmin then x(t + 1) = xmin (8.8)

with ε a very small positive number.

8.3.3.2 Deflection Approach

With the deflection approach, if a particle moves outside the bounds of the search
space, the velocity’s direction of the violated dimension is inverted, thereby caus-
ing a bouncing effect of the bounds. Mathematically, the deflection approach is
defined as:

8 Dynamic Multi-Objective Optimization Using PSO 155

if xi(t + 1)> xmaxi then xi(t + 1) = xi
max− (xi(t + 1)− xi

max)%(xi
max− xi

min) and

vi(t + 1) = −vi(t)

if xi(t + 1)< xmini then xi(t + 1) = xi
min +(xi

min− xi(t + 1))%(xi
max− xi

min) and

vi(t + 1) = −vi(t), (8.9)

where xi, xi
min and xi

max are the i-th dimension of x, xmax and xmin respectively.

8.3.3.3 Per Element Re-initialization Approach

With per element re-initialisation, if a particle moves outside the search space,
each dimension of the particle’s position that violates the boundary constraint is
re-initialized to a random valid value [20]. Therefore, the dimensions of the posi-
tion that is valid remain the same. Mathematically, per element re-initialization is
defined as:

if xi(t + 1) > xi
max then xi(t + 1) = rand(xi

min,x
i
max)

if xi(t + 1) < xi
min then xi(t + 1) = rand(xi

min,x
i
max), (8.10)

8.3.3.4 Periodic Approach

The periodic approach is similar to the deflection approach. However, if a particle’s
position violates the upper boundary for a specific dimension, it is placed near the
lower boundary for that dimension and vice versa [24]. Mathematically, the periodic
approach is defined as:

if xi(t + 1) > xi
max then xi(t + 1) = xi

min− (xi(t + 1)− xi
max)%(xi

max− xi
min)

if xi(t + 1) < xi
min then xi(t + 1) = xi

max− (xi
min− xi(t + 1))%(xi

max− xi
min).

(8.11)

8.3.3.5 Random Approach

The random approach re-initializes a particle’s position to a valid position within
the search space if it violates the boundaries of the search space [13, 24]. There-
fore, in contrast to the per element re-initialization approach, all dimensions are
re-initialized and not only the violating dimensions. Mathematically, it is defined
as:

if x(t + 1) > xmax then x(t + 1) = rand(xmin,xmax)

if x(t + 1) < xmin then x(t + 1) = rand(xmin,xmax). (8.12)

156 M. Helbig and A.P. Engelbrecht

8.3.3.6 Re-initialization Approach

With the re-initialisation approach, a particle that violates the bounds of the search
space has its position re-initialised to a valid position within the search space, its
velocity set to zero and its pbest set to the particle’s new position [20].

8.3.3.7 Unconstrained Approach

With the unconstrained approach, no clamping is performed and particles are free
to move outside the search space. However, only valid positions are selected as the
pbest of a particle.

8.4 Experiments

This section describes experiments that were conducted, using benchmark functions
and performance metrics discussed in Sections 8.4.1 and 8.4.2, respectively, to test:

• the effect of various approaches to manage boundary constraints on the perfor-
mance of DVEPSO (refer to Section 8.3.3); and

• the performance of DVEPSO compared to three other state-of-the-art DMOO
algorithms (refer to Section 8.4.3).

All experiments consisted of 30 independent runs and each run consisted of 1,000
iterations. For all benchmark functions the severity of change (nt) is set to 10 and
the frequency of change (τt) is set to either 5, 25 or 50. This will cause the DMOOP
to change every τt iteration with nt distinct steps in time t.

The PSO parameters were set to values that lead to convergent behaviour [23],
namely w = 0.72 and c1 = c2 = 1.49.

All codes are implemented in the Computational Intelligence Library (CIlib) [20].
All simulations were run on the Sun Hybrid System’s Nehalem System of the Center
for High Performance Computing [3]. The SUN Nehalem system has an Intel Ne-
halem Processor of 2.93 GHz, 2304 CPU cores, 3465 GB of Memory and produces
24 TFlops at peak performance.

8.4.1 Benchmark Functions

This section presents the benchmark functions that were used to test whether the
algorithms can track a POF that changes over time. Three functions presented by
Farina et al. [7] and three functions of Goh and Tan [8] were used. Additionally,
two functions that are based on the ZDT3 function of Deb [26] that were adapted
to become DMOOPs were used [12]. Below, τ is the generation counter, τt is the
number of iterations for which t remains fixed, and nt is the number of distinct steps
in t.

8 Dynamic Multi-Objective Optimization Using PSO 157

FDA1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = (f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+∑xi∈xII
(xi−G(t))2

h(f1,g) = 1−
√

f1
g

where :

G(t) = sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xI ∈ [0,1]; xII = (x2, . . . ,xn) ∈ [−1,1]

,

(8.13)

As suggested by [7], the dimension, n, was set to 20. Function FDA1’s values in
the decision variable space change over time, but its values in the objective space
remain the same. Therefore, it is a Type I DMOOP. It has a convex POF with POF =
1−√ f1.

FDA2=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = (f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+∑xi∈xII
x2

i

h(f1,g) = 1− f1
g

(H(t)+∑xi∈xIII
(xi−H(t))2)−1

where :

H(t) = 0.75+ 0.75sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xI ∈ [0,1];xII,xIII ∈ [−1,1]

.

(8.14)

For FDA2 the parameters |XII| and |XIII| were set to: |XII|= |XIII|= 15 (as suggested
by [7]). Function FDA2 has a POF that changes from a convex to a non-convex
shape. It is a Type III DMOOP, since the values in the objective space change while
the values in the decision variable space remain the same. For FDA2, POF = 1−
f H(t)−1

1 .

FDA3=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = (f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = ∑xi∈xI
xF(t)

i
g(xII) = 1+G(t)+∑xi∈xII

(xi−G(t))2

h(f1,g) = 1−
√

f1
g

G(t) = |sin(0.5πt)|
F(t) = 102sin(0.5πt), t = 1

nt

⌊
τ
τt

⌋
xI ∈ [0,1];xII ∈ [−1,1]

.

(8.15)

158 M. Helbig and A.P. Engelbrecht

As suggested by [7], the function parameters |XII| and |XIII| were set to: |XI| = 5
and |XII| = 25. Function FDA3 has a convex shaped POF and both the values in
the decision variable space, as well as the objective space, change. Therefore, it is

called a Type II DMOOP. For FDA3, POF = (1+G(t))(1−
√

f1
1+G(t)).

dMOP1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = (f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+ 9∑xi∈xII
(xi)

2

h(f1,g) = 1− f1
g

H(t)

where :

H(t) = 0.75sin(0.5πt)+ 1.25, t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)

.

(8.16)

As suggested by [8], the dimension was set to n= 10. Function dMOP1 has a convex
POF where the values in the objective space change, but the values in the decision

space remain the same. Therefore, it is a Type III problem, with POF = 1− f H(t)
1 .

dMOP2=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = (f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+ 9∑xi∈xII
(xi−G(t))2

h(f1,g) = 1− f1
g

H(t)

where :
H(t) = 0.75sin(0.5πt)+ 1.25,

G(t) = sin(0.5πt)t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)

.

(8.17)

The dimension, n, was set 10 (as suggested by [8]). Function dMOP2 has a con-
vex POF where the values in both the decision space and objective space change.

Therefore, dMOP2 is a Type II problem, with POF = 1− f H(t)
1 .

dMOP3=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = (f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xr

g(xII) = 1+ 9∑xi∈xII\xr(xi−G(t))2

h(f1,g) = 1−
√

f1
g

where :

G(t) = sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0,1];r =

⋃
(1,2, . . . ,n)

.

(8.18)

8 Dynamic Multi-Objective Optimization Using PSO 159

As suggested by [8], the dimension, n, was set to 10. Function dMOP3 has a convex
POF where the values in the objective space change, but the values in the decision
space remain the same, and is therefore a Type I DMOOP, but the spread of the POF
changes over time. For dMOP3, POF = 1−√ f1.

The following two functions, HE1 and HE2, are based on the function ZDT3 [26],
and adapted to be dynamic.

HE1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = (f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+ 9
n−1 ∑xi∈xII

xi

h(f1,g) = 1−
√

f1
g − f1

g sin(10πt f1)

where :

t = 1
nt

⌊
τ
τt

⌋
; xi ∈ [0,1]

xI = (x1); xII = (x2, . . . ,xn)

.

(8.19)

HE2=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize : f (x, t) = (f1(xI, t),g(xII, t) ·h(xIII, fi(xI, t),g(xII, t), t))

f1(xI) = xi

g(xII) = 1+ 9
n−1 ∑xi∈xII

xi

h(f1,g) = 1−
√

f1
g

H(t)
− f1

g
H(t)

sin(10π f1)

where :

H(t) = 0.75sin(0.5πt)+ 1.25; t = 1
nt

⌊
τ
τt

⌋
xi ∈ [0,1]; xI = (x1); xII = (x2, . . . ,xn)

.

(8.20)

The dimension, n, was set to 30 (as suggested by [26]) for both HE1 and HE. Both
functions have a discontinuous POF. For HE1, POF = 1−√ f1− f1 sin(10πt f1),

and, for HE2, POF = 1−√ f 1H(t)− f H(t)
1 sin(0.5π f1).

8.4.2 Performance Metrics

This section discusses the performance metrics that were used to measure the perfor-
mance of the various algorithms. Each metric is calculated every time just before a
change occurs in the environment. The average of all these values is then calculated
for each of the runs. However, if it is unknown when a change will occur, the per-
formance metrics can be calculated over all iterations instead of only the iterations
just before a change occurs in the environment.

160 M. Helbig and A.P. Engelbrecht

To determine the algorithm with the best performance for a specific function,
the algorithm’s overall rank is calculated. For each of the performance metrics the
algorithm is ranked according to its performance with regards to the specific metric.
The algorithm’s average rank value is calculated and then the algorithm is ranked
accordingly. Two average ranks are calculated, namely: (a) the sum of all ranks
divided by the number of performance metrics (indicated in Tables 8.1-8.8 as R1);
and (b) the sum of all ranks (but the ranks of performance metrics that rely on
the true POF, namely HV R, VD and MS counted double) divided by the adjusted
number of performance metrics (indicated in Tables 8.1-8.8 as R2).

8.4.2.1 Spacing

Measuring how evenly the non-dominated solutions are distributed along the found
POF (POF∗) can be done using the metric of spacing [9], defined as:

S
i
=

1
nc

nc

∑
j=1

Si
j, S =

1
nPF

[
1

nPF

nPF

∑
i=1

(di− d)2

] 1
2

, d =
1

nPF

nPF

∑
i=1

di, (8.21)

where nc is the number of changes that occurred in the environment, nPF is the
number of non-dominated solutions found at time t and di is the Euclidean distance,
in the objective space, between non-dominated solution i and its nearest solution in
POF∗.

8.4.2.2 Hypervolume Ratio

The hypervolume (HV) or S-metric [26] computes the size of the region that is
dominated by a set of non-dominated solutions, based on a reference vector. Ac-
cording to Li et al., comparing the HV averaged over a number of runs may not
be as meaningful when dealing with dynamic environments [17]. Therefore, they
suggest using the HV ratio (HV R) to overcome this problem, since the HV of the
found POF (POF∗) is computed in relation to the HV of the true POF (POF) [17].
Mathematically, HVR is defined as:

HVR =
1
nc

nc

∑
i=1

HVR(t), HVR(t) =
HV (POF∗(t))
HV (POF(t)

. (8.22)

Prior knowledge about POF is required to calculate the HVR, POF and the value
of the metric will depend on the distribution of sampling points on POF and the
selection of the reference vector. For this research the reference vector is selected as
the maximum value for each objective.

8 Dynamic Multi-Objective Optimization Using PSO 161

8.4.2.3 Accuracy

A measure of accuracy that measures the quality of the solutions as a relation be-
tween the HV of POF∗ and the maximum HV that has been found so far was intro-
duced by Cámara et al. [1]. Mathematically, it is defined as:

acc =
1
nc

nc

∑
i=1

acc(t), acc(t) =
HV (POF∗(t))

HVmax(POF∗(t))
, (8.23)

8.4.2.4 Stability

The effect of the changes in the environment on the accuracy (acc defined above)
of the algorithm can be measured by the measure of stability that was introduced by
Cámara et al. [1]. Mathematically, stability is defined as:

stab =
1
nc

nc

∑
i=1

stab(t), stab(t) = max{0,acc(t− 1)− acc(t)} (8.24)

8.4.2.5 Variable Space Generational Distance

The static generational distance (GD) metric was adapted for dynamic environments
by Goh and Tan [8]. It measures the distance between POF∗ and POF , i.e. the
proximity of POF∗ to POF . The variable space GD (VGD) metric calculates the
GD just before a change occurs in the environment, and is mathematically expressed
as:

VD(t) =
1
τ

τ

∑
t=0

VD(t)I(t)

VD(t) =
1

nPOF∗(t)

√√√√nPOF∗(t)

nPOF∗(t)

∑
i=1

di(t)2

I(t) =

{
1, if t%τt = 0
0, otherwise

, (8.25)

where nPOF(t)∗ is the number of non-dominated solutions in POF∗ at time t and di

is the Euclidean distance between the i-th solution of POF∗ and the nearest solution
solution of POF . Goh and Tan calculate di in the decision space [8]. However, for
this research it is calculated in the objective space.

8.4.2.6 Maximum Spread

Goh and Tan adapted the maximum spread (MS) metric for dynamic environ-
ments [8]. MS measures how well POF∗ covers the POF , i.e. how well the

162 M. Helbig and A.P. Engelbrecht

non-dominated solutions of POF∗ are spread along POF . MS for dynamic envi-
ronments calculates the MS just before a change occurs in the environment, and is
defined mathematically as:

MS(t) =
1
τ

τ

∑
t=0

MS(t)I(t)

MS(t) =

√√√√√ 1
M

M

∑
i=1

⎡
⎣min

[
POF∗i (t),POFi(t)

]−max
[
POF∗i (t),POFi(t)

]
POFi(t)−POFi(t)

⎤
⎦

I(t) =

{
1, if t%τt = 0
0, otherwise

(8.26)

where M is the number of objectives, nPOF(t)∗ is the number of non-dominated so-
lutions in POF∗ at time t, POF∗i and POF∗i refer to the maximum and minimum

of the i-th objective of non-dominated solutions in POF∗ and POFi and POFi refer
to the maximum and minimum of the i-th objective of non-dominated solutions in
POF respectively.

8.4.3 Comparison

The performance of DVEPSO is compared against three those of the other state-of-
the-art DMOO algorithms, namely:

• DNSGA-II-A algorithm, an NSGA-II algorithm adapted for DMOO and pro-
posed by Deb et al. [6]. If a change in the environment is detected, a percentage
of individuals are randomly selected and replaced with newly created individuals.

• DNSGA-II-B algorithm, an NSGA-II algorithm that selects a percentage of in-
dividuals randomly and replaces them with individuals that are mutated from
existing individuals when a change is detected. DNSGA-II-B was proposed by
Deb et al. [6].

• dCOEA algorithm, a dynamic competitive-cooperative coevolutionary algorithm
proposed by Goh and Tan [8].

The source code of the dCOEA algorithm was obtained from the first author of [8].
The source code of the static NSGA-II algorithm was obtained from [16] and was
adapted for DMOO according to [6].

8.4.4 Statistical Analysis

A Kruskal-Wallis test was performed for each function for each τt to determine
whether there is a difference in performance with respect to the performance met-
rics. If this test indicated that there was a difference, pairwise Mann-Whitney U tests
were performed.

8 Dynamic Multi-Objective Optimization Using PSO 163

8.5 Results

This section discusses the results that were obtained from the experiments. The val-
ues of the performance metrics that were obtained, are presented in Tables 8.1- 8.8.
In all tables, DVEPSOc, DVEPSOd, DVEPSOpe, DVEPSOp, DVEPSOr, DVEPSOre

and DVEPSOu refer to the clamping, deflection, per element re-initialisation, peri-
odic, random, re-initialisation and unconstrained approaches respectively (refer to
Section 8.3.3 for the definitions of these approaches).

8.5.1 Managing Boundary Constraints

This section discusses the results that were obtained by the various boundary con-
straint management approaches. The values of the performance metrics are pre-
sented in Tables 8.1- 8.8.

When comparing the POF that was found by the various approaches to the true
POF, the VD and MS metrics provide a good indication of the algorithms’ perfor-
mance. These tables show that for a change frequency of 10, DVEPSOc, DVEPSOpe

and DVEPSOd obtained the best overall VD value for two, one and one function(s)
respectively, DVEPSOp, DVEPSOu and DVEPSOre each obtained the best MS
value for one function and DVEPSOr, DVEPSOd and DVEPSOu obtained the best
rank over all performance measures for one, two and two function(s) respectively.

For a change frequency of 25, DVEPSOr obtained the best overall VD value
for three functions, DVEPSOp, DVEPSOd and DVEPSOpe each obtained the best
MS value for one function, and DVEPSOpe, DVEPSOc, DVEPSOu and DVEPSOre

each obtained the best overall rank for one function.
For a change frequency of 50, DVEPSOpe, DVEPSOu and DVEPSOr obtained

the best VD value for two, one and one function(s) respectively, DVEPSOu and
DVEPSOr obtained the best MS value for one function each and DVEPSOu ob-
tained the best overall rank for three functions.

Figure 8.1 illustrates the found POF of the various boundary handling app-
roaches for FDA2. Figure 8.1 shows that good results were obtained by DVEPSOc,
DVEPSOr, DVEPSOu and DVEPSOpe, but DVEPSOd and DVEPSOp struggled to
find the POF.

The results obtained by the various boundary handling techniques for dMOP2
can be seen in Figure 8.2. Good results were obtained by all approaches, but the
approximated POFs of DVEPSOp and DVEPSOpe had a worse spread or coverage
than the other DVEPSO approaches.

Table 8.9 presents the overall rank that the various algorithms obtained for each
performance measure, as well as their overall rank for the various frequencies of
change. Table 8.9 shows that with regard to the various boundary constraint man-
agement approaches, for a change frequency of 10 the best overall rank for VD
was obtained by DVEPSOr and DVEPSOc, the best MS rank was obtained by
DVEPSOr and the best overall rank for all DVEPSO approaches was obtained by
DVEPSOc. For a change frequency of 25 the best overall rank for VD was ob-
tained by DVEPSOcl and DVEPSOr, the best overall rank for MS was obtained by

164 M. Helbig and A.P. Engelbrecht

Table 8.1 Performance Measure Values for FDA1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.4 0.00043 0.99658 0.9967 0.00154 0.06593 0.9761 2 2

10 DVEPSOd 99.4 0.00074 0.99361 0.99373 0.00217 0.12731 0.92471 6 6

10 DVEPSOpe 99.2 0.00051 0.99589 0.99601 0.00133 0.08515 0.92806 3.5 3.5

10 DVEPSOp 99.5 0.00053 0.99538 0.9955 0.00163 0.08932 0.95041 3.5 3.5

10 DVEPSOr 99.5 0.00043 0.99701 0.99713 0.00116 0.07035 0.94377 1 1

10 DVEPSOre 99.4 0.00053 0.9953 0.99541 0.00143 0.07855 0.89446 5 5

10 DVEPSOu 99.3 0.00077 0.99391 0.99403 0.00191 0.14115 0.91986 7 7

10 DNSGAII-A 22.8 0.00494 0.97425 0.97436 0.00339 0.83219 0.78693 10 10

10 DNSGAII-B 21.1 0.00612 0.95019 0.9503 0.00543 1.13392 1.19478 9 9

10 dCOEA 33.7 0.00132 0.90528 0.90538 0.01328 1.13184 2.48561 8 8

25 DVEPSOc 99.9 0.0008 0.99857 0.99858 0.00034 0.18913 0.91448 3 4

25 DVEPSOd 99.9 0.00042 0.98439 0.9763 0.00397 0.12891 0.86929 6 8

25 DVEPSOpe 99.9 0.00046 0.99928 0.99016 0.00032 0.12982 0.90767 1 1

25 DVEPSOp 99.9 0.00045 0.98084 0.97189 0.00485 0.10817 0.89605 9 9

25 DVEPSOr 99.8 0.00047 0.99856 0.98944 0.00049 0.10446 0.90257 4.5 3

25 DVEPSOre 99.9 0.00057 0.99922 0.9901 0.00035 0.13211 0.86428 4.5 5

25 DVEPSOu 98.5 0.00068 1.00377 0.99409 0.0013 0.24299 0.88969 7 6

25 DNSGAII-A 37.8 0.00056 0.99903 0.98891 0.00014 0.29491 0.9446 8 7

25 DNSGAII-B 38.3 0.00046 0.99913 0.98901 0.00014 0.28079 0.94903 2 2

25 dCOEA 39.8 0.00053 0.96001 0.95028 0.00428 1.32408 2.93453 10 10

50 DVEPSOc 100.0 0.00039 0.99865 0.99866 0.00035 0.19331 0.93334 6 7

50 DVEPSOd 99.8 0.00048 0.96771 0.96395 0.00616 0.17621 0.87048 10 10

50 DVEPSOpe 99.9 0.00044 0.99915 0.99456 0.0004 0.09639 0.86153 7 6

50 DVEPSOp 99.9 0.00037 0.97749 0.97285 0.00541 0.14417 0.83086 9 9

50 DVEPSOr 100.0 0.00046 0.99888 0.9941 0.00038 0.24311 0.89013 8 8

50 DVEPSOre 100.0 0.00033 0.99917 0.99439 0.00041 0.1331 0.87969 4 4

50 DVEPSOu 99.9 0.00033 1.00125 0.9957 0.00126 0.15148 0.91074 2 1.5

50 DNSGAII-A 40.0 0.00032 0.99985 0.99419 3.016x10−05 0.1716 0.98858 2 1.5

50 DNSGAII-B 40.0 0.00033 0.99986 0.9942 2.245x10−05 0.17261 0.98778 2 3

50 dCOEA 39.9 0.00026 0.99965 0.994 0.00017 0.1515 0.95904 5 5

DVEPSOr, and the approach that ranked the best over all performance measures
was DVEPSOcl . For a change frequency of 50 the best overall rank for VD was ob-
tained by DVEPSOpe, the best overall rank for MS was obtained by DVEPSOr and
the approach that ranked the best over all performance measures was DVEPSOu. It
is interesting to note that DVEPSOr consistently provided the best overall MS value.
Furthermore, DVEPSOc and DEVPSOr obtained the best rank for VD for change
frequencies of 10 and 25. Therefore, for the lower change frequencies of 10 and
25, DVEPSOc and DVEPSOr outperformed the other approaches and for a change
frequency of 50 DVEPSOu performed the best of the DVEPSO approaches.

8 Dynamic Multi-Objective Optimization Using PSO 165

Table 8.2 Performance Measure Values for FDA2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 63.3 0.00367 0.99525 0.99191 0.00049 0.43937 0.87783 7.5 7

10 DVEPSOd 73.4 0.00118 0.99533 0.97848 0.00049 0.45824 0.90878 7.5 8

10 DVEPSOpe 63.0 0.00391 0.99905 0.98157 0.00029 0.43234 0.88916 5 3

10 DVEPSOp 68.5 0.002 0.99846 0.98098 0.00034 0.45147 0.91258 3 2

10 DVEPSOr 68.6 0.00372 0.99634 0.9789 0.00043 0.44453 0.90914 6 5

10 DVEPSOre 63.3 0.00297 0.99554 0.97812 0.00037 0.45008 0.87382 9.5 9

10 DVEPSOu 71.5 0.00283 1.00171 0.98418 0.00019 0.44998 0.90757 1 1

10 DNSGAII-A 39.4 0.00044 1.0044 0.98681 9.565x10−06 0.71581 0.77096 4 6

10 DNSGAII-B 39.6 0.00042 1.00441 0.98683 9.206x10−06 0.71681 0.77866 2 4

10 dCOEA 38.4 0.00051 1.00209 0.98454 0.00122 0.70453 0.61923 9.5 10

25 DVEPSOc 78.5 0.0023 0.99644 0.99421 0.00037 0.43181 0.86647 7 7

25 DVEPSOd 77.2 0.00204 0.99354 0.98997 0.00058 0.43196 0.86884 9.5 8.5

25 DVEPSOpe 76.7 0.00221 0.99882 0.99493 0.00024 0.43695 0.85983 4 4

25 DVEPSOp 79.3 0.00166 0.99701 0.9893 0.0004 0.4421 0.89688 6 4

25 DVEPSOr 78.0 0.00114 0.9968 0.98855 0.00036 0.42211 0.87893 2.5 1

25 DVEPSOre 78.5 0.00251 0.99684 0.98859 0.00028 0.42642 0.82876 9.5 8.5

25 DVEPSOu 76.0 0.00145 1.00077 0.99249 0.00021 0.43903 0.86418 5.0 4

25 DNSGAII-A 39.7 0.00043 1.00314 0.99484 7.579x10−06 0.72841 0.78969 2.5 6

25 DNSGAII-B 39.7 0.00051 1.00314 0.99484 6.707x10−06 0.7268 0.83159 1 2

25 dCOEA 39.9 0.00099 1.00265 0.99436 0.00017 0.74606 0.78319 8 10

50 DVEPSOc 93.7 0.00031 0.99961 0.9979 0.00017 0.50599 0.95397 3 3

50 DVEPSOd 93.3 0.00028 0.99491 0.99166 0.00173 0.49882 0.94 4.5 5

50 DVEPSOpe 93.1 0.00031 1.001 0.99732 7.344x10−05 0.4994 0.95325 2 2

50 DVEPSOp 94.0 0.00031 0.99524 0.99158 0.00161 0.51161 0.93862 9 9

50 DVEPSOr 93.0 0.00032 1.00035 0.99668 0.00012 0.50096 0.92995 8 7

50 DVEPSOre 93.7 0.00036 0.99904 0.99537 0.00012 0.49984 0.95716 6.5 4

50 DVEPSOu 91.4 0.00031 1.00155 0.99787 9.68x10−05 0.49669 0.95937 1 1

50 DNSGAII-A 40.0 0.0005 1.00287 0.99918 2.804x10−06 0.67584 0.75404 4.5 6

50 DNSGAII-B 40.0 0.00039 1.00287 0.99918 2.778x10−06 0.67736 0.74332 6.5 8

50 dCOEA 40.0 0.00207 1.00268 0.999 4.575x10−05 0.69043 0.86612 10 10

8.5.2 Comparison

This section discusses the results that were obtained by the various DMOO algo-
rithms. The results are presented in Tables 8.1- 8.8. These tables show that for
a change frequency of 10, dCOEA and DNSGAII-A each obtained the best over-
all VD value for 2 functions and with regard to the MS value, DNSGAII-A and
dCOEA obtained the best overall value for two and three functions respectively a
change frequency of 25, dCOEA obtained the best overall VD value for two func-
tions and DNSGAII-A and DNSGAII-B each obtained the best overall VD value for
one function; dCOEA and DNSGAII-A obtained the best MS value for two and three

166 M. Helbig and A.P. Engelbrecht

Table 8.3 Performance Measure Values for FDA3

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 100.0 0.00109 1.00221 0.99889 0.00013 0.95943 0.83848 4 1.5

10 DVEPSOd 100.0 0.00084 1.963x10+44 0.00773 0.00334 0.98365 0.82782 2 3

10 DVEPSOpe 100.0 0.00095 1.00169 5.124x10−48 7.62x10−52 0.99045 0.80762 7.5 8

10 DVEPSOp 100.0 0.00084 5.822x10+40 2.977x10−07 2.96x10−07 1.0308 0.86383 2 4

10 DVEPSOr 100.0 0.00087 1.00164 5.124x10−48 8.014x10−52 0.99326 0.82882 7.5 7

10 DVEPSOre 100.0 0.00091 1.0017 5.124x10−48 7.63x10−52 0.99818 0.8472 6 6

10 DVEPSOu 100.0 0.00081 4.767x10+45 0.00068 0.00068 0.97488 0.81679 2 1.5

10 DNSGAII-A 32.8 0.00318 0.99967 7.171x10−50 2.796x10−53 1.32639 1.09947 9 9.5

10 DNSGAII-B 27.3 0.00498 0.99796 7.158x10−50 5.576x10−53 1.31649 1.18386 10 9.5

10 dCOEA 39.3 0.00076 1.00182 7.186x10−50 1.503x10−53 1.08503 1.30535 5 5

25 DVEPSOc 100.0 0.00076 1.00045 0.99981 2.746x10−05 1.0931 0.95493 1.5 2

25 DVEPSOd 100.0 0.00087 7.955x10+41 0.01251 0.0025 1.14336 1.02693 5 4

25 DVEPSOpe 100.0 0.00069 1.00037 1.053x10−45 2.484x10−50 1.08436 0.91634 6.5 6

25 DVEPSOp 100.0 0.00071 4.334x10+41 0.00046 0.00045 1.10933 0.96636 4 5

25 DVEPSOr 100.0 0.00066 1.00036 1.053x10−45 2.646x10−50 1.11311 0.99296 6.5 7

25 DVEPSOre 100.0 0.00069 1.00037 1.053x10−45 2.5x10−50 1.10671 0.95784 8 8

25 DVEPSOu 100.0 0.0008 1.508x10+35 1.588x10−10 1.586x10−10 1.10233 0.97723 1.5 1

25 DNSGAII-A 38.2 0.00124 1.00039 1.053x10−45 4.373x10−50 1.27408 1.1752 10 9.5

25 DNSGAII-B 39.1 0.0011 1.00041 1.053x10−45 3.612x10−50 1.27814 1.17337 9 9.5

25 dCOEA 39.9 0.00052 1.00044 1.053x10−45 3.221x10−50 1.22933 1.37518 3 3

50 DVEPSOc 100.0 0.00103 1.01768 0.98517 0.00231 0.70117 0.98572 6 6

50 DVEPSOd 100.0 0.00098 5.573x10+41 0.02758 0.00885 0.68577 0.97358 5 5

50 DVEPSOpe 100.0 0.00076 1.00645 6.998x10−45 1.587x10−47 0.67082 0.98334 2.5 4

50 DVEPSOp 100.0 0.00115 1.969x10+43 0.00167 0.00167 0.68958 0.98313 4 2

50 DVEPSOr 100.0 0.00077 1.00532 8.548x10−47 2.067x10−49 0.66911 0.9844 2.5 3

50 DVEPSOre 100.0 0.00092 1.00664 8.559x10−47 1.935x10−49 0.70841 0.97215 10 10

50 DVEPSOu 100.0 0.00088 4.341x10+41 3.674x10−05 3.674x10−05 0.68476 0.98049 1 1

50 DNSGAII-A 40.0 0.00137 1.02952 8.753x10−47 3.248x10−50 1.15409 0.99744 7 7

50 DNSGAII-B 40.0 0.00141 1.02976 8.755x10−47 2.781x10−50 1.16742 0.99743 8.5 8

50 dCOEA 40.0 0.00065 1.01787 8.654x10−47 2.083x10−49 0.75373 0.9469 8.5 9

functions respectively; and dCOEA, DNSGAII-A and DNSGAII-B obtained the best
overall rank for one, two and two functions respectively.

For a change frequency of 50, dCOEA and DNSGAII-B obtained the best VD
value for two and three functions respectively; DNSGAII-A and DNSGAII-B ob-
tained the best MS value for four and one function(s) respectively; and DNSGAII-A
and DNSGAII-B obtained the best overall rank for four and three functions
respectively.

Figure 8.3 illustrates the found POF of the various DMOO algorithms for FDA2.
Figure 8.3 shows that DVEPSO was tracking the changing POF well over time, but
DNSGAII-A and dCOEA struggled to track the changing POF once it changed from
convex to concave.

8 Dynamic Multi-Objective Optimization Using PSO 167

Table 8.4 Performance Measure Values for dMOP1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.9 0.00407 0.99962 0.99962 0.00035 0.26344 0.87907 2 3

10 DVEPSOd 99.9 0.00452 0.99821 0.99796 7.232x10−05 0.29477 0.89326 8 9.5

10 DVEPSOpe 99.9 0.00484 0.9991 0.99885 0.00046 0.29445 0.89736 7 6

10 DVEPSOp 99.9 0.00405 0.9983 0.99805 6.998x10−05 0.28384 0.89884 5 5

10 DVEPSOr 99.9 0.00431 0.99841 0.99816 0.00083 0.29631 0.90964 9 8

10 DVEPSOre 99.9 0.00365 0.99921 0.99896 0.00041 0.23362 0.88294 4 4

10 DVEPSOu 99.9 0.00386 0.99866 0.99817 0.00086 0.23642 0.86045 6 7

10 DNSGAII-A 38.8 0.00577 0.99991 0.99933 3.603x10−05 0.15212 0.9834 1 1

10 DNSGAII-B 38.7 0.00497 0.99991 0.99933 5.904x10−05 0.15351 0.93976 3 2

10 dCOEA 39.8 0.00045 0.99582 0.99524 0.00253 0.03892 0.86235 10 9.5

25 DVEPSOc 100.0 0.00361 0.9936 0.99343 0.00148 0.68678 0.76746 4 4

25 DVEPSOd 100.0 0.00352 0.99097 0.97202 0.00091 0.77566 0.75222 8 8

25 DVEPSOpe 100.0 0.00395 0.99877 0.96826 0.00055 0.71365 0.73278 6 6.5

25 DVEPSOp 100.0 0.00351 0.99056 0.96029 0.00105 0.70929 0.74939 9 9

25 DVEPSOr 100.0 0.00358 0.99347 0.96311 0.00177 0.80396 0.76349 10 10

25 DVEPSOre 100.0 0.00386 0.99892 0.9684 0.00049 0.72382 0.72943 6 6.5

25 DVEPSOu 100.0 0.00361 1.0082 0.94919 0.00276 0.72882 0.75882 6 5

25 DNSGAII-A 39.3 0.0004 0.9998 0.93468 7.896x10−06 0.15351 0.97874 1 1

25 DNSGAII-B 39.3 0.0004 0.99976 0.93464 1.998x10−05 0.13231 0.9755 2 2

25 dCOEA 40.0 0.0003 0.99887 0.93381 0.00064 0.0686 0.95086 3 3

50 DVEPSOc 100.0 0.00136 0.97142 0.9714 0.00117 1.43242 0.56964 7 9.5

50 DVEPSOd 100.0 0.00146 0.97285 0.91286 0.00368 1.48468 0.58482 9 9.5

50 DVEPSOpe 100.0 0.00164 0.9977 0.90593 0.00074 1.27847 0.5732 6 6

50 DVEPSOp 100.0 0.00112 0.97275 0.88327 0.00248 1.40793 0.6043 8 7

50 DVEPSOr 100.0 0.00148 0.97523 0.88553 0.00208 1.4258 0.60255 10 8

50 DVEPSOre 100.0 0.00194 0.99825 0.90643 0.00068 1.26249 0.56443 5 5

50 DVEPSOu 100.0 0.00126 1.01387 0.91444 0.00885 1.60305 0.66245 4 4

50 DNSGAII-A 40.0 0.00034 0.99967 0.89645 1.349x10−05 0.11787 0.98323 2 2

50 DNSGAII-B 40.0 0.00032 0.99967 0.89646 1.246x10−05 0.121 0.98338 1 1

50 dCOEA 40.0 0.00023 0.99942 0.89624 0.00021 0.09572 0.97838 3 3

Although all DMOO algorithms tracked the changing POF of dMOP1 very well
over time, Figure 8.4 shows that DNSGAII-A and dCOEA struggled to track the
changing POF of dMOP2 over time. However, DVEPSO had no problem tracking
the changing POF of dMOP2. The VD value that is obtained by the DVEPSO app-
roaches for dMOP1 is high compared to the evolutionary algorithms. The DVEPSO
approaches find much more solutions than the evolutionary algorithms, and most of
the these solutions are on or very close to the true POF. However, a few outlier so-
lutions in the archive of the DVEPSO approaches lead to the high VD values, even
though they have tracked the changing POF.

Table 8.9 presents the overall rank that the various algorithms obtained for each
performance measure, as well as their overall rank for the various frequencies of

168 M. Helbig and A.P. Engelbrecht

Table 8.5 Performance Measure Values for dMOP2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 99.9 0.00073 0.99962 0.99951 0.00027 0.07904 0.97647 2 2

10 DVEPSOd 99.9 0.00062 1.00667 0.98227 0.00042 0.07402 0.97937 1 1

10 DVEPSOpe 99.9 0.00083 0.99915 0.9732 0.00039 0.09291 0.97288 5 7

10 DVEPSOp 99.9 0.00067 1.00603 0.97887 0.00045 0.07467 0.9744 3 3

10 DVEPSOr 99.9 0.00076 0.99891 0.97127 0.00047 0.08269 0.97518 6.5 6

10 DVEPSOre 99.9 0.00067 0.99903 0.97138 0.00046 0.0855 0.97567 4 4

10 DVEPSOu 99.9 0.0008 1.00709 0.95911 0.00197 0.08911 0.9689 6.5 5

10 DNSGAII-A 33.5 0.00095 0.99321 0.93715 0.00064 0.90415 1.45643 8 8

10 DNSGAII-B 28.7 0.00212 0.99216 0.93616 0.00068 1.03746 1.43973 9.5 9.5

10 dCOEA 33.7 0.00112 0.98988 0.93401 0.00213 0.81297 1.40996 9.5 9.5

25 DVEPSOc 100.0 0.00078 0.998 0.9978 0.00097 0.17631 0.91634 3 4

25 DVEPSOd 100.0 0.00085 0.99396 0.96988 0.00188 0.1772 0.93172 6 5

25 DVEPSOpe 100.0 0.00076 0.99874 0.96992 0.00056 0.18783 0.94799 2 2

25 DVEPSOp 100.0 0.00085 0.99719 0.96842 0.00163 0.17535 0.91477 6 6.5

25 DVEPSOr 100.0 0.00054 0.99767 0.96888 0.00096 0.17112 0.93158 4 3

25 DVEPSOre 100.0 0.00079 0.99867 0.96986 0.00064 0.17207 0.93278 1 1

25 DVEPSOu 100.0 0.00099 1.0045 0.96771 0.00241 0.18725 0.91586 9 9

25 DNSGAII-A 39.9 0.00043 0.98884 0.95201 0.00101 0.93768 1.63537 8 6.5

25 DNSGAII-B 39.9 0.00041 0.98885 0.95203 0.001 0.94214 1.63414 6 8

25 dCOEA 39.8 0.0004 0.98775 0.95096 0.00144 0.93822 1.61199 10 10

50 DVEPSOc 100.0 0.00016 0.97296 0.97124 0.00629 0.19285 0.84654 9 10

50 DVEPSOd 100.0 0.00017 1.05717 0.71632 0.01254 0.1688 0.85856 2.5 4

50 DVEPSOpe 100.0 0.00016 0.99637 0.62876 0.00077 0.16929 0.85865 4 6.5

50 DVEPSOp 100.0 0.00017 1.13016 0.61318 0.01325 0.20012 0.88857 6 5

50 DVEPSOr 100.0 0.00016 0.98452 0.49138 0.0024 0.16467 0.87944 6 8

50 DVEPSOre 100.0 0.00018 0.99619 0.4972 0.00065 0.14661 0.85065 6 6.5

50 DVEPSOu 100.0 0.00016 1.23115 0.61117 0.04407 0.15933 0.87335 2.5 2

50 DNSGAII-A 40.0 0.00032 0.99845 0.45172 0.00014 0.15645 0.9955 8 3

50 DNSGAII-B 40.0 0.00032 0.99863 0.45181 0.00012 0.14069 0.99639 1 1

50 dCOEA 39.8 0.00027 0.98953 0.44769 0.00229 0.15248 0.95434 10 9

change. Table 8.9 shows that for a change frequency of 10 the best overall rank for
VD was obtained by DVEPSOc and DVEPSOr and the best overall rank for MS was
obtained by DNSGAII-A. DNSGAII-B obtained the best rank over all performance
measures and DVEPSOc obtained the best rank over all performance measures when
the measures that use the true POF count more towards the overall rank average.

For a change frequency of 25 the best overall rank for VD was obtained by
DVEPSOcl and DVEPSOr, the best overall rank for MS was obtained by DNSGAII-A
and the approach that ranked the best over all performance measures was DNSGAII-B.
For a change frequency of 50 the best overall rank forVD was obtained by DNSGAII-B
and dCOEA. The best overall rank for MS was obtained by DNSGAII-A and the app-
roach that ranked the best over all performance measures was DNSGAII-A.

8 Dynamic Multi-Objective Optimization Using PSO 169

Table 8.6 Performance Measure Values for dMOP3

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 5.1 0.07368 0.9973 0.99735 0.00045 1.35206 1.91012 2.5 2

10 DVEPSOd 5.1 0.0789 0.91942 0.91945 0.01367 1.38248 1.93216 10 10

10 DVEPSOpe 5.2 0.07884 0.99545 0.99548 0.00108 1.38861 1.93614 4 4

10 DVEPSOp 5.1 0.07866 0.91629 0.91632 0.01296 1.37957 1.92784 9 9

10 DVEPSOr 5.0 0.07815 0.99515 0.99519 0.00125 1.3581 1.90401 8 7

10 DVEPSOre 5.1 0.08445 0.99547 0.9955 0.00107 1.38452 1.93409 5 5.5

10 DVEPSOu 5.2 0.07905 0.99403 0.99406 0.00232 1.38136 1.94846 6.5 5.5

10 DNSGAII-A 36.7 0.00075 0.99744 0.99745 0.00086 0.84372 1.54286 1 1

10 DNSGAII-B 28.2 0.00146 0.97038 0.97039 0.00558 0.94898 1.27303 6.5 8

10 dCOEA 36.9 0.00078 0.99611 0.99612 0.00159 0.74777 1.34982 2.5 3

25 DVEPSOc 5.5 0.07858 0.98458 0.98515 0.00178 1.43742 2.08363 7 5

25 DVEPSOd 5.5 0.07596 0.88596 0.88644 0.01572 1.45526 2.12036 9 10

25 DVEPSOpe 5.5 0.08177 0.98197 0.9825 0.002 1.48467 2.14814 8 8

25 DVEPSOp 5.5 0.07608 0.89117 0.89164 0.01617 1.45777 2.1446 10 9

25 DVEPSOr 5.8 0.07085 0.98163 0.98215 0.00206 1.42254 2.10335 4 4

25 DVEPSOre 5.5 0.07123 0.98211 0.98263 0.00191 1.44345 2.12769 3 3

25 DVEPSOu 5.5 0.07527 0.98564 0.98583 0.00289 1.46414 2.10228 6 6

25 DNSGAII-A 40.0 0.00038 0.99017 0.99018 0.0014 0.90791 1.6252 2 2

25 DNSGAII-B 40.0 0.00035 0.9741 0.97411 0.00812 0.89235 1.49494 5 7

25 dCOEA 39.9 0.00042 0.99104 0.99106 0.00116 0.88038 1.52265 1 1

50 DVEPSOc 8.9 0.01957 0.99372 0.99612 0.00105 0.60082 0.83513 5 6

50 DVEPSOd 9.6 0.01643 0.86685 0.86849 0.0281 0.5848 0.86028 6 5

50 DVEPSOpe 9.3 0.01741 0.99347 0.99535 0.00123 0.59723 0.84383 4 4

50 DVEPSOp 9.0 0.01997 0.86521 0.86588 0.03018 0.60588 0.83987 9 9

50 DVEPSOr 9.2 0.01932 0.99301 0.99365 0.00154 0.58804 0.83986 7 7

50 DVEPSOre 8.9 0.02124 0.99359 0.99423 0.00114 0.61199 0.84182 8 8

50 DVEPSOu 8.7 0.02248 0.98684 0.98649 0.00439 0.61941 0.83323 10 10

50 DNSGAII-A 40.0 0.00032 0.99982 0.99912 3.1x10−05 0.11419 0.99401 1 1

50 DNSGAII-B 40.0 0.00029 0.99561 0.99491 0.00422 0.09471 0.97185 3 3

50 dCOEA 39.9 0.00025 0.99942 0.99871 0.00028 0.12694 0.968 2 2

With regard to the overall rank presented in Table 8.9 over all frequencies of
change, the DVEPSO approaches performed the best with regards to VD and the dy-
namic NSGA-II approaches performed the best with regards to MS and the overall
rank. The DVEPSO approaches obtained the best overall rank for VD on eleven oc-
casions, and the dynamic NSGA-II approaches and dCOEA on six occasions each.
With regards to MS, the DVEPSO approaches obtained the highest rank on 8 oc-
casions, the dynamic NSGA-II approaches on eleven occasions and dCOEA on 4
occasions. The dynamic NSGA-II approaches obtained the best overall rank on 15
occasions, the DVEPSO approaches on 12 occasions and dCOEA on no occasion.

170 M. Helbig and A.P. Engelbrecht

Table 8.7 Performance Measure Values for HE1

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 13.5 0.01173 0.66388 0.85439 0.01399 1.55763 0.78202 7 9

10 DVEPSOd 12.6 0.01359 0.73684 0.67688 0.01324 1.51808 0.77148 8 6

10 DVEPSOpe 13.1 0.01518 0.68747 0.61666 0.00955 1.522 0.76341 10.0 10

10 DVEPSOp 13.3 0.01196 0.78513 0.70427 0.01191 1.53101 0.77698 4.5 4.5

10 DVEPSOr 14.4 0.0108 0.67781 0.608 0.00835 1.53891 0.76821 6 7.5

10 DVEPSOre 13.5 0.01411 0.70286 0.63047 0.01085 1.54639 0.78341 9 7.5

10 DVEPSOu 13.8 0.01429 0.89687 0.7716 0.01334 1.56948 0.78503 4.5 4.5

10 DNSGAII-A 40.0 0.00058 0.96747 0.80366 0.00827 0.13607 0.8044 1 1

10 DNSGAII-B 40.0 0.00033 0.90325 0.75031 0.00317 0.13917 0.42739 2 2

10 dCOEA 28.6 0.00326 0.92802 0.77089 0.01347 0.18269 0.60639 3 3

25 DVEPSOc 19.9 0.0069 0.66264 0.88732 0.01299 1.54781 0.77076 6.5 5.5

25 DVEPSOd 24.2 0.00558 0.8044 0.75121 0.02017 1.55831 0.76052 9.5 10

25 DVEPSOpe 18.3 0.00837 0.69068 0.63844 0.00961 1.51748 0.75548 9.5 9

25 DVEPSOp 21.1 0.0075 0.83401 0.74319 0.01696 1.53058 0.76397 8 7

25 DVEPSOr 25.0 0.00543 0.68311 0.60386 0.00915 1.57137 0.76668 4.5 5.5

25 DVEPSOre 19.9 0.00543 0.71364 0.63085 0.00988 1.57552 0.76542 6.5 8

25 DVEPSOu 17.3 0.009 0.87798 0.77612 0.01192 1.52789 0.77961 4.5 4

25 DNSGAII-A 40.0 0.00058 0.96607 0.85399 0.01143 0.15803 0.79656 1 1

25 DNSGAII-B 40.0 0.00038 0.90938 0.80388 0.00648 0.16232 0.47371 2 2

25 dCOEA 39.7 0.0011 0.94994 0.83974 0.0125 0.18167 0.72581 3 3

50 DVEPSOc 34.2 0.00367 0.71493 0.91246 0.01146 1.59845 0.76024 5 8.5

50 DVEPSOd 34.7 0.00401 0.87724 0.79065 0.01461 1.56689 0.7584 9 8.5

50 DVEPSOpe 29.0 0.00409 0.72615 0.64561 0.00899 1.56256 0.76148 6.5 5

50 DVEPSOp 29.4 0.00489 0.89416 0.79499 0.01309 1.54536 0.75448 10 6.5

50 DVEPSOr 33.4 0.00357 0.71771 0.63811 0.00863 1.5742 0.75946 6.5 10

50 DVEPSOre 34.2 0.00342 0.75603 0.67218 0.00934 1.56573 0.76762 4 4

50 DVEPSOu 32.4 0.00416 0.89113 0.7923 0.01105 1.56451 0.75721 8 6.5

50 DNSGAII-A 40.0 0.00058 0.96827 0.86088 0.01083 0.19626 0.78734 1 1

50 DNSGAII-B 40.0 0.00041 0.91908 0.81715 0.00778 0.19108 0.46374 3 3

50 dCOEA 40.0 0.00072 0.96564 0.85854 0.00961 0.18173 0.78317 2 2

8.5.3 Statistical Analysis

This section discusses the statistical analysis that was done on the performance
metrics values. Kruskal-Wallis tests were performed to determine whether there
was a statistically significant difference between the values obtained by the vari-
ous DMOO algorithms for a performance metric for a specific function at a specific
τt . The p-values that were obtained from the Kruskal-Wallis tests are presented in
Tables 8.10- 8.17. In these tables, p-values that are statistically significant are dis-
played in bold.

When the p-value of the Kruskal-Wallis test indicated that there was a statis-
tically significant difference, Mann-Whitney U tests were performed to determine

8 Dynamic Multi-Objective Optimization Using PSO 171

Table 8.8 Performance Measure Values for HE2

τt Algorithm NS S HV R Acc Stab VD MS R1 R2

10 DVEPSOc 24.4 0.01986 0.48235 0.54748 0.01305 1.52451 0.98783 4.5 3.5

10 DVEPSOd 29.8 0.0115 0.46427 0.51349 0.0134 1.55614 1.02734 6.5 7

10 DVEPSOpe 27.8 0.0132 0.47364 0.52271 0.01315 1.52684 1.01328 4.5 5

10 DVEPSOp 28.1 0.01271 0.46458 0.51271 0.01325 1.56867 1.01558 10 10

10 DVEPSOr 23.3 0.02176 0.46844 0.51697 0.01302 1.53622 1.024 8.5 8

10 DVEPSOre 24.4 0.01208 0.46198 0.50984 0.01338 1.55797 1.03365 8.5 9

10 DVEPSOu 23.9 0.01354 0.47324 0.52226 0.01305 1.5348 1.01992 6.5 6

10 DNSGAII-A 40.0 0.00062 0.99071 0.94744 0.00213 0.20337 0.91933 2 2

10 DNSGAII-B 40.0 0.00061 0.99095 0.9474 0.00206 0.20331 0.92084 1 1

10 dCOEA 27.4 0.00452 0.9062 0.89176 0.01591 0.23457 0.6925 3 3.5

25 DVEPSOc 43.5 0.00478 0.6976 0.7411 0.00911 1.50652 0.89599 5 5

25 DVEPSOd 42.7 0.01078 0.98233 0.45845 0.00316 1.5213 0.90232 4 4

25 DVEPSOpe 34.1 0.01208 0.71057 0.18521 0.00214 1.48753 0.88314 9 9

25 DVEPSOp 39.5 0.00823 0.98768 0.25744 0.00207 1.49003 0.89328 3 3

25 DVEPSOr 32.0 0.01914 0.69406 0.18091 0.00235 1.50608 0.88741 10 10

25 DVEPSOre 43.5 0.01553 0.74847 0.19509 0.00181 1.51314 0.89228 8 8

25 DVEPSOu 33.6 0.01342 0.9345 0.24358 0.00187 1.52096 0.89767 7 7

25 DNSGAII-A 40.0 0.00065 0.9896 0.25794 0.00022 0.26994 0.88562 2 2

25 DNSGAII-B 40.0 0.00061 0.9896 0.25794 0.00022 0.26682 0.88501 1 1

25 dCOEA 39.4 0.00131 0.95101 0.24789 0.00204 0.2783 0.74454 6 6

50 DVEPSOc 33.2 0.0145 0.66815 0.89051 0.00519 1.75131 1.16669 9 10

50 DVEPSOd 24.4 0.02218 0.9366 0.72392 0.00342 1.71371 1.14846 7 7

50 DVEPSOpe 28.0 0.02009 0.68452 0.48548 0.00278 1.71787 1.18569 8 8

50 DVEPSOp 32.3 0.01708 0.94995 0.67374 0.00244 1.73754 1.1905 4 3.5

50 DVEPSOr 20.3 0.01837 0.67025 0.47536 0.00298 1.74609 1.1989 10 9

50 DVEPSOre 33.2 0.01405 0.72528 0.51439 0.00193 1.72075 1.1981 5 5

50 DVEPSOu 25.9 0.01376 0.86189 0.61128 0.00301 1.71865 1.17589 6 6

50 DNSGAII-A 40.0 0.00063 0.9985 0.70817 0.00048 0.19138 0.91808 1 1

50 DNSGAII-B 40.0 0.00062 0.99847 0.70815 0.00048 0.17538 0.91793 2 2

50 dCOEA 40.0 0.00146 0.97275 0.68991 0.00346 0.25389 0.81778 3 3

between which DMOO algorithms’ performance metric values there were a statis-
tically significant difference. Both the Kruskal-Wallis tests and the Mann-Whitney
U tests were performed using the statistical software package R and testing for a
confidence level of 95%. Due to a lack of space all results of the Mann-Whitney
U tests are not presented. However, Tables 8.18- 8.25 in the appendix present the
results of the Mann-Whitney U tests for the VD performance metric. In all these
tables “-” indicates that there was no statistically significant difference and “x” indi-
cates that according to the Mann-Whitney U test, there was a statistically significant
difference between the specific performance metric values.

Table 8.10 shows that for FDA1 there is a statistically significant difference be-
tween almost all of the algorithms for a change frequency of 10 and for almost half

172 M. Helbig and A.P. Engelbrecht

Fig. 8.1 Results of various boundary constraint management approaches solving FDA2, with
(a) DVEPSOc, (b) DVEPSOd , (c) DVEPSOpe, (d) DVEPSOp, (e) DVEPSOr, (f) DVEPSOre

and (g) DVEPSOu. The numbering is from top to bottom on the left, and then from top to
bottom on the right.

of the algorithm combinations for a change frequency of 50. However, for a change
frequency of 25 there is no statistically significant difference when comparing the
evolutionary algorithms against each other, but there is a statistically significant dif-
ference for almost all combinations when comparing the evolutionary algorithms
against the DVEPSO approaches.

8 Dynamic Multi-Objective Optimization Using PSO 173

Fig. 8.2 Results of various boundary constraint management approaches solving dMOP2,
with (a) DVEPSOc, (b) DVEPSOd , (c) DVEPSOpe, (d) DVEPSOp, (e) DVEPSOr, (f)
DVEPSOre, (g) DVEPSOu. The numbering is from top to bottom on the left, and then from
top to bottom on the right.

For FDA2 with a change frequency of 10 and 25, only a few of the DVEPSO app-
roaches have statistically significant differences when compared to other DVEPSO
approaches, but almost all combinations of comparisons between DVEPSO

174 M. Helbig and A.P. Engelbrecht

Table 8.9 Overall Ranking of Algorithms

τt Algorithm RNS RS RHVR RAcc RStab RV D RMS RO1 RO2

10 DVEPSOc 1 9 8 1 8 1.5 4 3 1

10 DVEPSOd 3 6 9 2 10 9.5 3 10 9

10 DVEPSOpe 4.5 7.5 6 3 4 3.5 9 6 6

10 DVEPSOp 4.5 5 7 8 9 3.5 7 9 4

10 DVEPSOr 6 4 10 10 6 1.5 2 6 7

10 DVEPSOre 2 7.5 5 6.5 3 6.5 10 8 8

10 DVEPSOu 7 10 1 5 7 9.5 5.5 6 2

10 DNSGAII-A 10 3 2 4 1 6.5 1 2 3

10 DNSGAII-B 9 1.5 3 2 2 5 5.5 1 5

10 dCOEA 8 1.5 4 9 5 8 8 4 10

25 DVEPSOc 1 9 8 1 8 1.5 4 3 3

25 DVEPSOd 3 6 9 2 10 9.5 3 10 10

25 DVEPSOpe 4.5 7.5 6 3 4 3.5 9 6 6

25 DVEPSOp 4.5 5 7 8 9 3.5 7 9 9

25 DVEPSOr 6 4 10 10 6 1.5 2 6 5

25 DVEPSOre 2 7.5 5 6.5 3 6.5 10 8 8

25 DVEPSOu 7 10 1 5 7 9.5 5.5 6 4

25 DNSGAII-A 10 3 2 4 1 6.5 1.0 2 2

25 DNSGAII-B 9 1.5 3 6.5 2 5.0 5.5 1.0 1

25 dCOEA 8 1.5 4 9 5 8 8 4 7

50 DVEPSOc 1.5 5 10 1 7 10 8 7 9.5

50 DVEPSOd 1.5 9 7 4.5 10 7 10 8 8

50 DVEPSOpe 5.5 6 8 6.5 5 3 5.5 4 4

50 DVEPSOp 3.5 9 5 9 9 8 9 10 7

50 DVEPSOr 3.5 7 9 10 6 9 4 9 9.5

50 DVEPSOre 5.5 9 6 8 4 5 7 6 6

50 DVEPSOu 9 3 3 2 8 6 5.5 3 3

50 DNSGAII-A 7.5 4 1 3 2 4 1 1 1

50 DNSGAII-B 7.5 2 2 4.5 1 1.5 2 2 2

50 dCOEA 10 1 4 6.5 3 1.5 3 5 5

approaches and the evolutionary algorithms resulted in statistically significant dif-
ferences. This is shown in Table 8.11.

Table 8.12 shows that for FDA3 for a change frequency of 10 and 25 there is no sta-
tistically significant difference between the VD values of the DVEPSO approaches,
but almost all comparisons of DVEPSO approaches with an evolutionary algorithm
resulted in a statistically significant difference in VD values. For a change frequency
of 50, almost all comparisons resulted in statistically significant differences.

For dMOP1 with a change frequency of 10 most DVEPSO approaches com-
pared against each other resulted in statistically significant differences and for a
change frequency of 25 and 50 almost half of the DVEPSO approaches compar-
isons resulted in statistically significant differences. However, for all three change
frequencies all comparisons between the evolutionary algorithms and the DVEPSO
approaches resulted in statistically significant differences and the values obtained by

8 Dynamic Multi-Objective Optimization Using PSO 175

Fig. 8.3 Results of various algorithms solving FDA2, with (a) DVEPSO, (b) dCOEA, (c)
DNSGAII-A and (d) DNSGAII-B.

DNSGAII-A and DNSGAII-B was statistically significantly different, but the com-
parison between DNSGAII-B and dCOEA was not statistically significantly diffe-
rent. This is shown in Table 8.13. Table 8.14 shows that for dMOP2 for a change
frequency of 10 all comparisons lead to statistically significant differences and for a
change frequency of 50 only the comparison between DNSGAII-A and DNSGAII-B
indicated a statistically significant difference. For a change frequency of 25 all
comparisons amongst the evolutionary algorithms, and all comparisons between
the evolutionary algorithms and the DVEPSO approaches, resulted in statistically
significant differences. However, only a few comparisons amongst the DVEPSO
approaches resulted in a statistically significant difference.

For dMOP3 no statistically significant difference was found for any comparisons
amongst the DVEPSO approaches for all frequencies of change. For a change fre-
quency of 10, all comparisons amongst the evolutionary algorithms indicated a sta-
tistically significant difference, but not for the change frequencies of 25 and 50. All
comparisons between the evolutionary algorithms and the DVEPSO approaches in-
dicated a statistically significant difference for all frequencies of change for dMOP3.
This is shown in Table 8.15.

Table 8.16 shows that for HE1 for a change frequency of 10, all comparisons
lead to a statistically significant difference, except the comparison of DNSGAII-B

176 M. Helbig and A.P. Engelbrecht

Fig. 8.4 Results of various algorithms solving dMOP2, with (a) DVEPSO, (b) dCOEA, (c)
DNSGAII-A and (d) DNSGAII-B.

and dCOEA. For a change frequency of 25, almost all DVEPSO comparisons and
all comparisons between DVEPSO and evolutionary computation algorithms lead to
a statistically significant difference and amongst the evolutionary algorithms only
the comparison between DNSGAII-B and dCOEA indicated VD values that were
not statistically significantly different. For a change frequency of 50, all compar-
isons between DVEPSO and the evolutionary algorithms, and a few of the compar-
isons amongst the DVEPSO approaches, indicated statistically significant different
values.

For HE2 for a change frequency of 10 and 50, amongst the evolutionary algo-
rithms only the comparison between DNSGAII-B and dCOEA indicated VD val-
ues that were not statistically significantly different and for a change frequency
of 25 none of the comparisons amongst the evolutionary algorithms indicated a
statistically significant difference. From the comparisons amongst the DVEPSO
approaches, approximately half indicated a statistically significant difference for
change frequencies of 10 and 50. For a change frequency of 25, none of the com-
parisons amongst the DVEPSO approaches indicated a statistically significant dif-
ference. However, for all frequencies of change, the comparisons between the evolu-
tionary algorithms and the DVEPSO approaches indicated a statistically significant
difference.

8 Dynamic Multi-Objective Optimization Using PSO 177

Table 8.10 p-values of Kruskal-Wallis test for FDA1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 0.00045 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

50 0.01745 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.0001837 < 2.2x10−16

Table 8.11 p-values of Kruskal-Wallis test for FDA2

τt S HV R Acc Stab VD MS

10 3.509x10−14 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 0.003196 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 5.444x10−12

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 8.12 p-values of Kruskal-Wallis test for FDA3

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 9.382x10−14 0.01549

25 4.898x10−08 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.0182 0.08228

50 1.864x10−07 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.96x10−08

Table 8.13 p-values of Kruskal-Wallis test for dMOP1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 8.14 p-values of Kruskal-Wallis test for dMOP2

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 7.723x10−16

25 0.9811 < 2.2x10−16 < 2.2x10−16 3.127x10−16 2.888x10−08 7.932x10−08

50 2.564x10−15 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.9032 < 2.2x10−16

178 M. Helbig and A.P. Engelbrecht

Table 8.15 p-values of Kruskal-Wallis test for dMOP3

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.07x10−12

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.573x10−07 0.1925

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 8.16 p-values of Kruskal-Wallis test for HE1

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 1.231x10−15 < 2.2x10−16 < 2.2x10−16

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 0.009434 < 2.2x10−16 1.158x10−06

Table 8.17 p-values of Kruskal-Wallis test for HE2

τt S HV R Acc Stab VD MS

10 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 2.682x10−10

25 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 3.902x10−15 < 2.2x10−16 0.003448

50 < 2.2x10−16 < 2.2x10−16 < 2.2x10−16 2.815x10−05 < 2.2x10−16 < 2.2x10−16

8.6 Conclusions

This chapter discussed DMOO and issues that should be addressed when solving
DMOOP. The DVEPSO algorithm was presented and the effect that various bound-
ary handling approaches have on the performance of DVEPSO was investigated. It
could clearly be seen that the deflection and periodic boundary handling approaches
lead to bad performance with especially the FDA2 problem.

The performance of DVEPSO were compared against those of three other state-
of-the-art DMOO algorithms. DVEPSO performed quite well with regards to the
VD metric that measures the closeness of the approximated POF to the true POF and
the MS metric that measures the spread of the found non-dominated solutions. The
DNSGAII approaches and dCOEA struggled to track the changing POF of the FDA2
and dMOP2 problems, but DVEPSO had no problem to track the changing POF
for these problems. However, the DNSGAII approaches and dCOEA outperformed
DVEPSO with the problems that have a discontiuous POF.

Acknowledgement. The authors would like to thank the Centre for High Performance Com-
puting (CHPC) for the use of their infrastructure for this research. Furthermore, they would
like to thank C.-K. Goh for sharing his source code of the dCOEA algorithm, and Kalyanmoy
Deb for making the code of the static NSGA-II available on his website.

8 Dynamic Multi-Objective Optimization Using PSO 179

Appendix

Tables 8.18- 8.25 present the results that were obtained with the Mann-Whitney U
tests that were performed on the performance metric values. In all tables below, Dd ,
Dpe, Dp, Dr, Dre, Du, N-A, N-B and C refers to DVEPSOd , DVEPSOpe, DVEPSOp,
DVEPSOr, DVEPSOre, DVEPSOu, DNSGAII-A and DNSGAII-B respectively. In
all tables “-” indicates that there was no statistically significant difference and “x”
indicates that according to the Mann-Whitney U test, there was a statistically sig-
nificant difference between the specific performance metric values.

Table 8.18 Results of Mann-Whitney U test for VD metric for FDA1

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x – n/a
10 Dr x x – x n/a
10 Dre x x – x – n/a
10 Du x – x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a
25 Dc n/a
25 Dd x n/a
25 Dpe x – n/a
25 Dp x – – n/a
25 Dr x x – – n/a
25 Dre x – – – x n/a
25 Du – x x x x x n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x – – – n/a
50 Dc n/a
50 Dd – n/a
50 Dpe x x xn/a
50 Dp – – x n/a
50 Dr – x – x n/a
50 Dre – – – – x n/a
50 Du – – x – x – n/a
50 N-A – – x – x – – n/a
50 N-B – – x x x x – x n/a
50 C – – x x – x – x – n/a

180 M. Helbig and A.P. Engelbrecht

Table 8.19 Results of Mann-Whitney U test for VD metric for FDA2

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe – x n/a
10 Dp – – x n/a
10 Dr – – – – n/a
10 Dre – – x – – n/a
10 Du – – – – – – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x – n/a
10 C x x x x x x x – – n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – x n/a
25 Dre – – – x – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a
50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x x x n/a
50 Dr x – – x n/a
50 Dre – – – x – n/a
50 Du x – – x – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x – – n/a

8 Dynamic Multi-Objective Optimization Using PSO 181

Table 8.20 Results of Mann-Whitney U test for VD metric for FDA3

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd – n/a
10 Dpe – – n/a
10 Dp – – – n/a
10 Dr – – – – n/a
10 Dre – – – – – n/a
10 Du – – – – – – n/a
10 N-A – – – – – – – n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A – – – – – – – n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a
50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x – – n/a
50 Dr x – x – n/a
50 Dre x x x x x n/a
50 Du x x x x x – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x – n/a
50 C x x x x x x x x – n/a

182 M. Helbig and A.P. Engelbrecht

Table 8.21 Results of Mann-Whitney U test for VD metric for dMOP1

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x – n/a
10 Dp x – – n/a
10 Dr x – – x n/a
10 Dre x x x x x n/a
10 Du x x x x x – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a
25 Dc n/a
25 Dd x n/a
25 Dpe – – n/a
25 Dp – x – n/a
25 Dr x – x x n/a
25 Dre – x – – x n/a
25 Du – – – – x – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x – n/a
50 Dc n/a
50 Dd – n/a
50 Dpe x x n/a
50 Dp – x x n/a
50 Dr – – x – n/a
50 Dre x x – x x n/a
50 Du x x x x x x n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x x – n/a

8 Dynamic Multi-Objective Optimization Using PSO 183

Table 8.22 Results of Mann-Whitney U test for VD metric for dMOP2

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x x n/a
10 Dr x x x x n/a
10 Dre x x x x x n/a
10 Du x x x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – x n/a
25 Dp – – x n/a
25 Dr – – x – n/a
25 Dre – – – – – n/a
25 Du x – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x x n/a
50 Dc n/a
50 Dd – n/a
50 Dpe – – n/a
50 Dp – – – n/a
50 Dr – – – – n/a
50 Dre – – – – n/a
50 Du – – – – – – n/a
50 N-A – – – – – – – n/a
50 N-B – – – – – – – x n/a
50 C – – – – – – – – – n/a

184 M. Helbig and A.P. Engelbrecht

Table 8.23 Results of Mann-Whitney U test for VD metric for dMOP3

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd – n/a
10 Dpe – – n/a
10 Dp – – – n/a
10 Dr – – – – n/a
10 Dre – – – – – n/a
10 Du – – – – – – n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x x n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a
50 Dc n/a
50 Dd – n/a
50 Dpe – – n/a
50 Dp – – – n/a
50 Dr – – – – n/a
50 Dre – – – – – n/a
50 Du – – – – – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x – n/a
50 C x x x x x x x – – n/a

8 Dynamic Multi-Objective Optimization Using PSO 185

Table 8.24 Results of Mann-Whitney U test for VD metric for HE1

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe x x n/a
10 Dp x x x n/a
10 Dr x x x x n/a
10 Dre x x x x x n/a
10 Du x x x x x x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a
25 Dc n/a
25 Dd x n/a
25 Dpe x x n/a
25 Dp x x x n/a
25 Dr x x x x n/a
25 Dre x x x x – n/a
25 Du x x – – x x n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x x n/a
25 C x x x x x x x x – n/a
50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp x x x n/a
50 Dr x – – x n/a
50 Dre x – – x – n/a
50 Du x – – x – – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x – – n/a

186 M. Helbig and A.P. Engelbrecht

Table 8.25 Results of Mann-Whitney U test for VD metric for HE2

τt Algorithm Algorithm

Dc Dd Dpe Dp Dr Dre Du N-A N-B C

10 Dc n/a
10 Dd x n/a
10 Dpe – x n/a
10 Dp x – x n/a
10 Dr – x – x n/a
10 Dre x – x – x n/a
10 Du – x – x – x n/a
10 N-A x x x x x x x n/a
10 N-B x x x x x x x x n/a
10 C x x x x x x x x – n/a
25 Dc n/a
25 Dd – n/a
25 Dpe – – n/a
25 Dp – – – n/a
25 Dr – – – – n/a
25 Dre – – – – – n/a
25 Du – – – – – – n/a
25 N-A x x x x x x x n/a
25 N-B x x x x x x x – n/a
25 C x x x x x x x – – n/a
50 Dc n/a
50 Dd x n/a
50 Dpe x – n/a
50 Dp – x – n/a
50 Dr – x x – n/a
50 Dre x – – – – n/a
50 Du x – – – x – n/a
50 N-A x x x x x x x n/a
50 N-B x x x x x x x x n/a
50 C x x x x x x x x – n/a

8 Dynamic Multi-Objective Optimization Using PSO 187

References

[1] Cámara, M., Ortega, J., Toro, J.: Parallel Processing for Multi-objective Optimization
in Dynamic Environments. In: Proc. of IEEE International Parallel and Distributed Pro-
cessing Symposium, p. 243 (2007)

[2] Carlisle, A., Dozier, G.: Adapting Particle Swarm Optimization to Dynamic Environ-
ments. In: Proc. of International Conference on Artificial Intelligence (ICAI 2000), pp.
429–434 (2000)

[3] CHPC. Sun hybrid system, http://www.chpc.ac.za/sun (last accessed online
on March 15, 2011)

[4] Chu, W., Gao, X., Sorooshian, S.: Handling boundary constraints for particle swarm
optimization in high-dimensional search space. Information Sciences (2010) (in press)

[5] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization
test problems. In: Proc. of Congress on Evolutionary Computation (CEC 2002), vol. 1,
pp. 825–830 (2002)

[6] Deb, K., Udaya Bhaskara Rao, N., Karthik, S.: Dynamic Multi-objective Optimiza-
tion and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal
Power Scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.)
EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[7] Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test
cases, approximations, and applications. IEEE Transactions on Evolutionary Computa-
tion 8(5), 425–442 (2004)

[8] Goh, C.-K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic
multiobjective optimization. IEEE Transactions on Evolutionary Computation 13(1),
103–127 (2009)

[9] Goh, C.K., Tan, K.C.: An Investigation on Noisy Environments in Evolutionary Mul-
tiobjective Optimization. IEEE Transactions on Evolutionary Computation 11(3), 354–
381 (2007)

[10] Greeff, M., Engelbrecht, A.P.: Solving dynamic multi-objective problems with vector
evaluated particle swarm optimisation. In: Proc. of IEEE World Congress on Evolu-
tionary Computation: IEEE Congress on Evolutionary Computation, Hong Kong, pp.
2917–2924 (June 2008)

[11] Guan, S.-U., Chen, Q., Mo, W.: Evolving Dynamic Multi-Objective Optimization Prob-
lems with Objective Replacement. Artificial Intelligence Review 23(3), 267–293 (2005)

[12] Helbig, M., Engelbrecht, A.P.: Archive management for dynamic multi-objective opti-
misation problems using vector evaluated particle swarm optimisation. Submitted for
Review

[13] Helwig, S., Wanka, R.: Particle swarm optimization in high-dimensional bounded
search spaces. In: Proc. of IEEE Swarm Intelligence Symposium, Honululu (HI), pp.
198–205 (2007)

[14] Jin, Y., Sendhoff, B.: Constructing Dynamic Optimization Test Problems Using the
Multi-objective Optimization Concept. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne,
D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F.,
Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536.
Springer, Heidelberg (2004)

[15] Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. of IEEE Interna-
tional Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)

http://www.chpc.ac.za/sun

188 M. Helbig and A.P. Engelbrecht

[16] Deb, K.: Kanpur Genetic Algorithms Laboratory (2011),
http://www.iitk.ac.in/kangal/codes.shtml
(last accessed online on March 6, 2011)

[17] Li, X., Branke, J., Blackwell, T.: Particle Swarm with Speciation and Adaptation in a
Dynamic Environment. In: Proc. of 8th Conference on Genetic and Evolutionary Com-
putation (GECCO 2006), pp. 51–58 (2006)

[18] Li, X., Branke, J., Kirley, M.: On Performance Metrics and Particle Swarm Methods for
Dynamic Multiobjective Optimization Problems. In: Proc. of Congress of Evolutionary
Computation (CEC 2007), pp. 1635–1643 (2007)

[19] Mehnen, J., Wagner, T., Rudolph, G.: Evolutionary Optimization of Dynamic Muli-
Objective Test Functions. In: Proc. of 2nd Italian Workshop on Evolutionary Computa-
tion and 3rd Italian Workshop on Artificial Life (2006)

[20] Pampara, G., Engelbrecht, A.P., Cloete, T.: Cilib: A collaborative framework for com-
putational intelligence algorithms - part i. In: Proc. of IEEE World Congress on Com-
putational Intelligence (WCCI), Hong Kong, June 1-8, pp. 1750–1757 (2011), Source
code available at, http://www.cilib.net (last accessed on March 6, 2011)

[21] Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N.: Multiobjective Optimization using
Parallel Vector Evaluated Particle Swarm Optimization. In: Proc. of IASTED Interna-
tional Conference on Artificial Intelligence and Applications, Innsbruck Austria (2004)

[22] Parsopoulos, K.E., Vrahatis, M.N.: Recent Approaches to Global Optimization Prob-
lems through Particle Swarm Optimization. Natural Computing 1(2-3), 235–306 (2002)

[23] Bergh, F.V.D.: An analysis of particle swarm optimizers. PhD thesis, Department of
Computer Science, University of Pretoria (2002)

[24] Zhang, W.-J., Xie, X.-F., Bi, D.-C.: Handling boundary constraints for numerical op-
timization by particle swarm flying in periodic search space. In: IEEE Congress on
Evolutionary Computation, vol. 2, pp. 2307–2311 (June 2004)

[25] Zheng, B.: A New Dynamic Multi-Objective Optimization Evolutionary Algorithm. In:
Proc. of third International Conference on Natural Computation (ICNC 2007), vol. V,
pp. 565–570 (2007)

[26] Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms:
Emperical Results. Evolutionary Computation 8(2), 173–195 (2000)

http://www.iitk.ac.in/kangal/codes.shtml
http://www.cilib.net

Chapter 9
Ant Colony Based Algorithms
for Dynamic Optimization Problems

Guillermo Leguizamón and Enrique Alba

Abstract. The use of metaheuristic approaches to deal with dynamic optimization
problems has been largely studied, being evolutionary techniques the more widely
used and assessed techniques. Nevertheless, successful applications coming from
other nature-inspired metaheuristics, e.g., ant algorithms, have also shown their ap-
plicability in dynamic optimization problems, but received a limited attention un-
til now. Different from perturbative techniques, ant algorithms use a set of agents
which evolve in an environment to construct one solution. They cooperate by means
of asynchronous communications based on numerical information laid on an en-
vironment. This environment is often modeled by a graph which constitutes a for-
malism with a great expressiveness, specially well-suited for dynamic optimization
problems. A solution could be a structure like a subgraph, a route, a short path, a
spanning tree, or even a partition of vertices. In this chapter we present a general
overview of the more relevant works regarding the application of ant colony based
algorithms for dynamic optimization problems. We will also highlight the mecha-
nisms used in different implementations found in the literature, and thus show the
potential of this kind of algorithms for research in this area.

9.1 Introduction

Metaheuristic techniques have widely proved to be suitable approaches for dynamic
environments. In this regard, it should be noticed that Evolutionary Algorithms
(AEs) are without any doubt the pioneer and more widely used metaheuristic [30].

Guillermo Leguizamón
Universidad Nacional de San Luis,
Av. Ejército de Los Andes 950 (5700), San Luis, Argentina
e-mail: legui@unsl.edu.ar

Enrique Alba
Universidad de Málaga, Campus de Teatinos (3.2.12)
Málaga - 29071, Spain
e-mail: eat@lcc.uma.es

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 189–210.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

legui@unsl.edu.ar
eat@lcc.uma.es

190 G. Leguizamón and E. Alba

However, Ant Colony Optimization (ACO) metaheuristic has also shown to be an
efficient candidate to deal with this kind of problem [35]. In a broad sense, ACO [17]
refers to a class of algorithms whose design is mainly based on the foraging beha-
vior of real ants, being the more representative ACO algorithms those designed for
solving a certain type of combinatorial optimization problem: those problems for
which a solution is obtained by simulating a walk through a construction graph.
One of the more studied problems under the above (original) vision of ACO al-
gorithms is the Traveling Salesperson Problem (TSP), a well-known and classical
NP-complete problem that owns important features that can be easily exploited to
show the applicability of this metaheuristic. Several ACO algorithms were designed
since the publication of the first ACO, the so-called Ant System (AS) by Dorigo et
al. [16]. These algorithms include (see Figure 9.1 where each algorithm name in-
cludes the main keyword that respectively defines it) [17]: elitist-AS (an AS with an
elitist strategy for updating the pheromone trail levels), AS rank (a rank-based ver-
sion of Ant System), MAX-MIN Ant System (an AS that incorporates a mechanism
to control the pheromone levels), the Ant Colony System (ACS) (a more advanced
ACO algorithm with a modified transition rule, with local and global pheromone
update), the Best-Worst Ant System (an extended AS characterized by integrating
some components taken from evolutionary computation), ANTS (an AS that uses
lower bounds on the completion of a partial solution to derive the heuristic desira-
bility), and ANT-Q (a version of an AS that combines concepts of the reinforce-
ment learning theory). Many of them were initially applied to TSP and also to the
Quadratic Assignment Problem (QAP) [34]. After that, many other variants of these
algorithms have been proposed in the literature. However, not all of them strictly fo-
llow the standard design principles given for the ACO metaheuristic in [17]. Instead,
these algorithms follow in many different ways the metaphor of the ants behavior
(foraging or some other) as a general framework which let the researcher broaden
the field of application of this nature-inspired approach. In a more general sense,
algorithms that follow in some way the above mentioned metaphor could be called
Ant Colony Based algorithms (ACB).

Ant colony based algorithms have proven to be successfully applied to many
different real world and academic problems that include combinatorial optimization
problems, continuous domains, and also dynamic optimization problems (DOPs),
the kind of problems and applications considered in the current chapter.

The rest of the chapter is organized as follows. The next section describes the
ACO metaheuristic as the more representative ant colony based algorithm. Sec-
tion 9.3 gives a general description of the type of dynamic problems usually found in
the literature, as well as in real-world applications. Section 9.4 presents the mech-
anisms used in ACB algorithms to deal with dynamic problems, and a survey of
the works in the literature. The last section contains some conclusions and outlines
some future challenges.

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 191

Fig. 9.1 The most representative and widely used algorithms based on the ACO
metaheuristic.

9.2 Ant Colony Optimization

As mentioned earlier in this chapter, ant colony based algorithms involve a broad
class of optimization algorithms designed under the metaphor of real ants behavior.
More precisely, ant colonies are social insect societies that can be considered dis-
tributed systems composed of simple interacting individuals. From the interaction
between those individuals, a complex and highly structured social organization
arises. Different types of ant colonies self-organize according to a particular beha-
vior, e.g., foraging, division of labor, brood sorting, and cooperative transport. In
the case of foraging ants, as well for the remaining behaviors, the activities are co-
ordinated through indirect communication known as stigmergy [23]. A foraging ant
deposits a chemical substance (pheromone trail) on the ground to communicate to
other ants the desirability of following a particular path. At the same time, as more
intense is the pheromone trail sensed on the ground, more amount of the chemical
substance is deposited by a particular ant. From this autocatalytic or positive feed-
back process emerges a self-organized system in which the shortest paths connect-
ing the nest and the food source remain candidates to follow by the whole colony.
In addition to the above, it is worth noticing that an evaporation process occurs in
the environment which helps the colony to keep the exploration capabilities during
the search of alternative paths to the food source.

The foraging ants behavior just described as well as other types of behavior are
taken as useful metaphors to design optimization and search algorithms under diffe-
rent names. In this work we adopted the definition of the Ant Colony Optimiza-
tion (ACO) metaheuristic, as given by Dorigo and Stützle [17], which is the clas-
sical and more widely used formulation for this type of algorithms. Nevertheless,
other ant colony based algorithms that not strictly follow the definition of the ACO

192 G. Leguizamón and E. Alba

Fig. 9.2 A general overview of the behavior of an ACO algorithm: pheromone trail plus
heuristic information are used to find the probabilistic distribution to generate new solutions.
These new solutions are then used to update pheromone trails to bias the search for the next
iterations.

metaheuristic will be also described in further sections. It is well-known that ACO
is one of the most representative metaheuristics derived from the broad concept
known as swarm intelligence, where the behavior of social insects is the main source
of inspiration. As a typical swarm intelligence approach, the ACO metaheuristic
is mainly characterized by its distributiveness, flexibility, capacity of interaction
among simple agents, and its robustness.

ACO algorithms (in the standard version) generate solutions for an optimization
problem by a construction mechanism where the selection of the solution compo-
nent to be added at each step is probabilistically influenced by pheromone trails and
(in most of the cases) heuristic information. Thus, the solution construction process
is mainly influenced by pheromone trails and heuristic information1 from which a
probabilistic model is evolved to guide to exploration of the search space.

This means that the construction process probabilistically builds step by step the
problem solutions and the probabilistic model has a feedback for its modification
based on the solutions found. Figure 9.2 displays a general overview of an ACO
algorithm. Heuristic information plus pheromone values are used to find a proba-
bility distribution over the search space. Initial pheromone values are in general set
to a constant value, thus, at the first iterations the algorithm is highly explorative.

1 The use of heuristic information is not mandatory, if used, this information is also taken
into account to build a probabilistic model.

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 193

The probability distribution is then used to sample new solutions to the problem at
hand. According to some criterion, all or a subset of these new solutions are involved
in the pheromone update process. As the cycle displayed in Figure 9.2 is repeated,
the pheromone values will bias the search to specific regions of the search space as
it directly influences the probability distribution.

Although the application domains of ACO algorithms are certainly diverse, the
more and well-known field is that related to combinatorial optimization problems
like TSP [15, 16], QAP [21, 44], and Vehicle Routing Problem (VRP) [12, 41].
Thus, we present in the following some important considerations when applying
this kind of algorithm to discrete problems as the mentioned above.

First of all, it is necessary to define an appropriate problem representation. In the
jargon of ACO metaheuristic, this means to properly define:

(i) the construction graph and the way this represents the different problem com-
ponents and connections among them,

(ii) the definition (if any) of the problem information to be exploited,
(iii) the behavior of the artificial ants, in the sense of how each ant will walk

through the construction graph to build the corresponding solutions.

Algorithm 9.1. ACO algorithm
1: Init();
2: while not (termination-condition) do
3: Build-Sols-Step-by-Step();
4: Pheromone-Update();
5: Daemon-Actions(); // Optional step
6: end while

A general design of an ACO algorithm (as showed in Algorithm 9.1) includes
a set of four main activities (or steps) that define this iterative search technique. It
must be noticed that variations of the way these activities are implemented define
the kind of ACO Algorithm. For example, a variation on the activity Pheromone-
Update() will mainly define Algorithm 9.1 as an Ant System (AS), elitist-AS, AS-
rank, MAX-MIN Ant System, or an ACS (in this last case, Build-Sols-Step-by-Step()
activity also involves a local pheromone update step). Also, any other ant colony
based algorithm not necessarily fitting exactly in the canonical definition of those
algorithms could be included in the family of ACO algorithms. Nevertheless, the
activities in Algorithm 9.1 can be described in a general way in the following. To
do that we assume an Ant System applied to TSP, thus the problem components are
cities and connections (routes) between them. The connections have an associated
value, e.g., distance between cities or cost to travel from one city to another:

• Init(): As in any typical population-based algorithm, some basic tasks need to be
done before starting the exploration of the search space. In this case, the initia-
lization of pheromone trail matrix which at time 0 is:

194 G. Leguizamón and E. Alba

τi j(0) = τ0, for i, j ∈ {1, . . . ,n}, (9.1)

where n represents the problem size and τ0 is a small constant value (e.g., the fol-
lowing value is suggested for TSP in [17]: τ0 = m/Cnn, where m is the number
of ants, and Cnn is the length of a tour generated by the nearest-neighbor heuris-
tic). Also the heuristic values (represented by η symbol) are calculated (when
available and used) and any other structure, necessary to complete the problem
representation, is initialized.

• Build-Sols-Step-by-Step(): This activity involves the release of an independent
colony of artificial ants in charge of incrementally building a solution to the prob-
lem. Each ant, at each step of the construction process, makes a local stochastic
decision about the next component to be included in the solution under construc-
tion. For example, for an Ant System applied to TSP, the decision of adding city
j (problem component) to the solution under construction when city i was the
last visited is given by:

pk
i j =

⎧⎨
⎩

τi j(t)α ηβ
i j

∑h∈N k(i)
τih(t)α ηβ

ih

if j ∈N k(i)

0 otherwise,
(9.2)

where α and β are the parameters that, respectively represent the importance
of the pheromone trail (τi j(t)) and the heuristic information (ηi j), and N k(i)
represents the set of cities that can be visited by ant k, i.e., the feasible or unvisited
cities.

• Pheromone-Update(): The acquired experience achieved at each iteration by the
colony is considered in this activity. High quality solutions will positively affect
the amount of pheromone trail, i.e., those edges that are part of solutions found
will receive an increased amount of pheromone trail according to the goodness
of these solutions. This is known as the global pheromone update.

As in Nature [22], a process of pheromone evaporation takes place (usual im-
plementations of this metaheuristic decrease the amount of pheromone trail for
all edges in the construction graph) [9]. Thus, the amount of pheromone corres-
ponding to those edges that are not part of any solution at the current iteration
will show a gradually diminishing pheromone intensity. It should be noticed that
some ACO algorithms, such as ACS [15], apply a local pheromone update rule
which does not depend on the solution quality. Instead, a fixed amount is de-
posited as soon as an edge in the construction graph is selected to make the move
(the next component added to the solution under construction). The following
equation is a possible way of (global) updating pheromone values:

τi j(t + 1) = (1−ρ) · τi j(t)+Δτi j, (9.3)

where ρ is the evaporation rate and Δτi j represents the amount of pheromone
trail deposited in edge (i, j). That amount is calculated according to the quality
of the solutions, found by the whole colony, that include edge (i, j).

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 195

• Daemon-Actions(): As single ants cannot carry out centralized actions, many
ACO algorithms include some specific activities called daemon actions. Exam-
ples of these activities are: activation of a local search procedure or a collection
of global information (e.g., use of a set of the best ranked solutions) that could
be employed to modify some entries in the pheromone trail matrix.

Based on the above description, several types of ACO algorithms can be ob-
tained [17]. In addition, many other algorithms that not necessarily follow the
standard design can be considered either for discrete problems [9], continuous do-
mains [43], and dynamic optimization problems [28] as we will show in the next
sections.

9.3 Dynamic Optimization Problems (DOPs)

Dynamic optimization problems (DOPs) involve any problem definition for which
at least one of its components varies with time. Thus, we can find problems where
the objective function changes over time or some problem constraints depend on
environmental conditions. These situations include many real-world tasks for which
changes in the environment affect the applied optimization process, as this has to
react to the new environmental conditions.

In this section we present the more relevant concepts involved in DOPs that are
usually considered when applying metaheuristic techniques2 for solving them. A
classical reference to the use of Evolutionary Algorithms (EAs) for dynamic prob-
lems is given in Branke [6] in which a widely referenced classification of dynamic
problems is presented, and the fundamentals of possible mechanisms to deal with
are also analyzed.

In order to obtain a fairly self-contained chapter we succinctly describe some im-
portant concepts regarding the mechanism to deal with certain dynamic optimiza-
tion problems. The interested reader can find a good source of information in this
regard in Branke [6, 30] and Morrison [37]. In addition, a complementary source of
information can be found in Leguizamón et al. [33] where alternative metaheuristic
techniques to deal with dynamic optimization problems under a unified perspective
are described.

Any change in a dynamic problem can be seen as the activation of a new opti-
mization problem (replacing the previous one) for which a new solution must be
provided as the quality of the current solution could be no longer acceptable for the
new environment. Therefore, the adaptation of the current solution to the new prob-
lem will be the main objective when a change occurs. The most primitive mecha-
nism to deal with dynamic problems is restarting from scratch, i.e., the optimization
algorithm does not consider any previous experience or information that could be
helpful under the new conditions. However, this approach is impractical for many
reasons and alternative mechanisms should be taken into account that consider in
different ways the past experience on the search. This is particularly desirable when

2 We are assuming through this chapter population-based metaheuristic techniques.

196 G. Leguizamón and E. Alba

the solution for the new problem should be not too different from the solution pre-
viously found for the (probably related) old problem. Also, the past experience is
a valuable element, as many dynamic problems are defined as a sequence of static
instances of a basic problem with slight variations from one instance to another, re-
sulting in a sequence that defines the complete dynamic problem. In that regard, it
is worth noticing that the quantity and quality of the past experience considered for
an optimization algorithm will determine the capacity of such algorithm to adapt to
a possibly continuously changing environment. In addition, the control of the pop-
ulation diversity is a key factor, as the adaptation to the changes could be harder if
the algorithm rapidly losses diversity.

The use of explicit or implicit memory to remember past experience is the typi-
cal approach implemented in metaheuristic techniques to guide the exploration of
the search space. However, some metaheuristics implement by definition some sort
of memory of the past experience as a mechanism to bias the search during the
incoming iterations; also this “natural” memory can be used to deal with dynamic
problems. This is the case of ant colony based algorithms, as will be described in
the next section.

Many types of dynamic features can be found in real-world problems. From ear-
lier application of evolutionary algorithms to dynamic problems (see for example,
Abdunnaser [1], Bianchi [7], Branke [6], and Psaraftis [31]) the following elements
and features are commonly considered when dealing with DOPs:

• the problem can change with time in such a way that future scenarios are
not completely known, yet the problem is completely known up to the current
moment;

• a solution that is optimal or near optimal at a certain time may reduce its quality
in the future, or may even become infeasible;

• the goal of the optimization algorithm is to track the shifting optima through time
as closely as possible;

• solutions cannot be determined ahead of time but should be found in response to
the incoming information; and

• solving the problem entails setting up a strategy that specifies how the algorithm
should react to environmental changes, e.g., to solve the problem from scratch or
adapt some parameters of the algorithm at every change.

Besides the described features, DOPs can be classified in different ways depending
on the sources of dynamism and its effects on the objective function. Simple ques-
tions will help us to determine the nature of the change: i) what? (i.e., aspects of
change), ii) when? (i.e., frequency of change), and iii) how? (i.e., severity of the
change, effect of the algorithm over the scenario, and presence of patterns).

Different descriptions for dynamic problems are given in the literature [6, 37] and
some of them were proposed having in mind certain type of metaheuristic algorithm
that could be used for solving them [8, 11, 28]. Nevertheless, before applying any
algorithm to solve a particular dynamic problem, the dynamic nature of the problem

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 197

must be taken into account as well as the capability of the chosen algorithm to react
to the changes. Next section discusses different ant colony based algorithms and the
way they were applied to dynamic problems.

9.4 Solving DOPs with ACB algorithms

Different metaheuristic approaches have been applied to dynamic optimization
problems, being EAs the more widely used search technique to deal with this kind
of problems [6, 8, 28]. However, other well-known metaheuristics have also been in-
creasingly and successfully applied to DOPs. Some of them include Nature inspired
metaheuristics like the ACO and Particle Swarm Optimization (PSO). For example,
a recent short survey by Hendtlass et al. [28] examines some representative works
and methodologies to deal with DOPs by using Ant Colony Optimization, Particle
Swarm Optimization, and Extremal Optimization. Besides describing the applica-
tions based in these Nature inspired metaheuristics, the authors also analyzed some
limitations of the presented algorithms. Other short review in this regard (see the
technical report from Angus [2]) focuses on the ACO metaheuristic and describes
some relevant and related works. Besides the previous surveys on this topic, we give
here a unified and broad perspective of the different ant colony based algorithms to
deal with DOPs.

There are two concepts closely related in any algorithm dealing with DOPs: 1)
the mechanisms implemented to avoid stagnation and hence 2) the capacity of the
algorithm to react to the changes. Particularly in the ant colony based algorithms
the pheromone structure τ presented in Section 9.2 is the key algorithm compo-
nent that should mainly be taken into account, as this represents, on one hand, the
memory of the algorithm. On the other hand, the pheromone structure is built in the
solution search space by a graph and that dynamics modify this graph valuated by
variable amounts of pheromone. Thus, in any ant based algorithm an appropriate
strategy must be defined to let the algorithm adapt to the changes by modifying the
pheromone values, e.g., by resetting all or part of the pheromone values to reduce,
in some extent, the learnt experience. This is a classical strategy for increasing an
explorative behavior as the new scenario has been detected.

The seminal works of the ACO metaheuristic to deal with dynamic optimization
problems (see [24, 26, 27, 36]) were mostly devoted to the TSP, QAP, and VRP. All
the dynamic versions of these problems have the following characteritic: the changes
are produced by adding/eliminating problem components, i.e., cities in TSP, loca-
tions in QAP, and orders in VRP. However, other alternatives are also possible like
changing the problem data, e.g., distance between cities in TSP, cost of assignment
in QAP, or cost of delivery between the depot and customers in VRP.

In the following we present in three sections a short review of literature and a
global description of the respective mechanism used to deal with certain types of
DOPs in the past. The sections are divided according to the following criteria: Sec-
tion 9.4.1 presents the so-called standard versions of ACO algorithms, Section 9.4.2

198 G. Leguizamón and E. Alba

describes the class of population-based ACO (P-ACO) algorithms, and finally in
Section 9.4.3 some general algorithms based in the metaphor of ants behavior are
presented.

9.4.1 Standard ACO Algorithms

One of the seminal works regarding this type of algorithm is the proposal by
Guntsch et al. [27]. Authors there investigate several strategies for pheromone up-
dating in reaction to changes on the problem instance. In this case, the problem
instance is changed by adding/eliminating cities.

Regarding dynamic TSP, Angus and Hendtlass [3, 4] study another strategy to
modify the pheromone matrix when a change occurs. In this case, the strategy con-
sists in normalizing the pheromone values in a way that the past memory is main-
tained but avoiding extreme values.

Another proposal to solve dynamic TSP is presented by Eyckelhof and Snoek [18].
They study two different ways of modifying pheromone trails: local and global. In
the dynamic TSP studied, the distance between cities is seen as the time to travel
from one city to another one. Thus, the changes are obtained by modifying the trave-
ling times and hence, traffic jams could be produced in the paths as the ants are walk-
ing while solving the problem. The strategy proposed logarithmically smooths the
pheromone values (called shaking process) maintaining the relative ordering among
them before and after the modification. The global shaking produces a modification
on all over the edges while the local one only changes the pheromone values around
a certain distance where the traffic jam was produced. The strategy also avoids to
assign pheromone values below a certain lower bound.

Montemanni et al. [36] investigate the Dynamic Vehicle Routing Problem (DVRP)
through an Ant Colony System based algorithm. In the studied version of the DVRP
new orders can arrive at any time and they have to be dynamically incorporated in
the constantly evolving schedule. In the particular case of [36] new orders can be
assigned after the vehicle left the depot. The mechanism for pheromone updating
is inspired by the work by Guntsch and Middendorf [24, 25]. The strategy adopted
evaporates the old pheromone values and at the same time increases the amount of
pheromone values by a constant amount.

The Binary Ant Algorithm (BAA) proposed by Fernandes et al. [20] is designed
by using a particular construction graph to work on binary dynamic environments.
The main characteristic of BAA is that it stresses the role of the negative feedback
(i.e., give more relevance to the evaporation processes). BAA was tested on two
dynamic continuous functions: Oscillatory Royal Road and Dynamic Schaffer.

In summary, several strategies have been proposed in the literature to deal with
DOPs by applying the classical ACO algorithms (i.e., those which more closely
follow the principle of using a construction graph as earlier defined in [17]):

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 199

• Global pheromone modification:

– Increase the values proportionally to their difference to the maximum
pheromone value.

– The new pheromone values are a combination of the old values and an incre-
ment of a constant small pheromone value. Those values are regulated by a
parameter 0≤ γr ≤ 1 that controls the relative importance of both values:

τnew
i, j = (1− γr) · τold

i, j + γr · τ0, (9.4)

where τ0 is a small constant value (usually used in the pheromone matrix initia-
lization process); and τnew

i, j and τold
i, j represent, respectively the pheromone value

on edge (i, j) before and after the change in the environment.

• Local pheromone modification:

– η-strategy (based on the heuristic information) and τ-strategy (based on
pheromone information). They both refer to connection problems, thus, prob-
lem components can be inserted/deleted. Consequently, only the edges con-
necting the problem components must be added/eliminated from the construc-
tion graph will influence (locally) the pheromone values.

– Combined strategies based on η-strategy and τ-strategy.
– Normalize the pheromone values regarding the maximum pheromone value

all over the current edges, i.e., τi j(t + 1) = τi j(t)/τi,max(t). The term “current
edges” is used here as the edges directly connecting component i with some
other component and τi,max(t) indicates the maximum pheromone value in the
neighborhood of component i. Thus, the normalization is local with respect to
each component i of the problem instance.

• Local and global pheromone modification:

– Using a mechanism to limit the lower pheromone values (similar to the
MAX-MIN Ant System) and smoothing the pheromone values keeping the
relative order before and after the change (this promote exploration without
losing information of the past experience). The modification can be applied
locally or globally (depending on an ad-hoc parameter).

• Other:

– Keeping elitist ant: in this case the best-so-far ant is modified after a change
has occurred (e.g., adding/eliminating solution components). Thus, the elimi-
nated components are deleted from the elitist solution, whereas the new added
components (if any) are located in the places left in the solution. The new com-
ponents could be added, for example, by using some heuristic procedure. This
is a possible way of remembering the past experience that will influence the
pheromone values when the usual step of pheromone updating takes place.

– Choosing only the ants with a quality value equal to or below3 the population’s
average fitness to generate new solutions. This strategy is combined with a
quick evaporation of pheromone trails.

3 For a maximization problem the value is above or equal to the average.

200 G. Leguizamón and E. Alba

Please notice that the above strategies could be adapted or enhanced in many
ways to deal with unseen dynamic problems. In this regards, the approach to use
and adapt the pheromone matrix is the more important issue in order to achieve an
efficient mechanism to react to the changes.

9.4.2 Population Based ACO Algorithms

Population based ACO algorithms (P-ACO) were first proposed by Guntsch and
Middendorf [26] as an alternative ACO in which a set of solutions is transferred
between the current iteration and the next one instead of the pheromone trail values
(or pheromone matrix). Thus the set of transferred solutions is used to calculate the
new pheromone values used later for building the new set of solutions. Although
not applied to dynamic problems, FIFO-Queue ACO ([26]) could be considered as
a preliminary work of P-ACO in this direction as the authors claimed about its ap-
plicability to create new metaheuristic algorithms, as well as to solve dynamic prob-
lems, since P-ACO could rapidly adapt the pheromone values as the environment
changes in comparison with standard ACO algorithms. In Guntsch and Middendorf
[25] FIFO-Queue was studied on dynamic versions of QAP and TSP, where diffe-
rent strategies for updating the population were investigated. More recently, Ho and
Ewe [29] proposed a P-ACO algorithm where three different mechanisms to adapt
the pheromone values are investigated to solve the dynamic load-balanced cluster-
ing problem in ad hoc networks. Although the proposed mechanisms are novel,
they only represent slight variations of the original P-ACO [26]. For that reason,
we describe first the main features of P-ACO, as proposed by Guntsch and Midden-
dorf [26] and then we give some highlights of the variations of P-ACO according to
Ho and Ewe [29].

It is important to note that P-ACO algorithms also adopt the principle of the con-
struction graph as in the standard ACO described in the previous section. However,
we have decided to describe them in a section apart. The reason for that is because
they differ from the standard ACO algorithms. On one side, ACO algorithms include
problem-based strategies in the pheromone updating process. On the other side, P-
ACO algorithms use the solutions themselves to define the strategies to calculate the
new pheromone values. Another interesting feature of P-ACO is that this algorithm
does not use any problem information to handle the changes. This makes it a con-
venient approach for different types of dynamic as the basic information needed is
that provided by the fitness function.

The following strategies are the alternatives implemented in [26] to manipulate
the set of solutions maintained (i.e., the population) in order to influence in different
ways the pheromone values:

1. Age strategy: Add the best solution found in the current iteration and remove
the oldest one.

2. Quality strategy: Add the best solution found in the current iteration and remove
the worst one.

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 201

3. Prob strategy: Add the best solution found in the current iteration and remove
a solution randomly chosen. To do that a distribution probability is created in a
way that bad solutions have more chances to be removed; however, all solutions
are candidate to be eliminated.

Combinations of two of the above three strategies also exist, as used and tested
in [26]. It must be noticed that the above strategies were designed for controlled
changes where the number of cities (problem components for the general case) that
are added is the same as the number of deleted ones, i.e., the problem size is kept
constant.

Under the population-based ACO the KeeepElite strategy, first defined in [27],
can also be applied to repair the solutions in the population regarding the changes
that took place in the environments, i.e., deleted problem components are eliminated
from the elite solution whereas the new inserted ones are added based on some
criterion.

Instances considered in [26] include two additional parameters regarding the dy-
namic features:

• c, which indicates the severity of the change, i.e., the number of components
deleted (respectively inserted) from (to) the problem instance.

• t, the time window that controls the occurrence of the change.

No overall definitive conclusion about the use of the different strategies in P-ACO
algorithms can be achieved according to the results presented in [26]. However,
strategy Prob was the worst performer for all the scenarios considered in the ex-
perimental study. Also, a small number of solutions in the population (size of the
population k = 3) was enough to perform fairly well on all the problems (TSP and
QAP) and considered instances.

Three variations of P-ACO (see Ho and Ewe [29]) were studied when solving the
dynamic load-balanced clustering problem in ad hoc networks. The changes here
operate on the problem structure. The variations presented are intended to adapt the
pheromone values as closely as possible to reflect the new problem structure after a
change has occurred by:

i) Applying a repairing process (based on the new problem structure) to the solu-
tions in the population.

ii) Adapting the parameters that control the importance of the pheromone and
heuristic values: parameters α and β as used in standard ACO algorithms (see
Equation 9.2). Thus, more importance is given to the heuristic values (they are
recalculated when the problem changes) and less importance to the pheromone
values (forgetting past experience). The adapted parameters are used by a per-
centage of ants of the whole colony.

iii) Combining two approaches to build new solutions: greedy and pheromone
based. Thus, a percentage of ants have a greedy behavior since they disregard
the accumulated pheromone values and only consider the new problem struc-
ture. The remaining ants follow the usual steps to find a solution based on the
accumulated pheromone values.

202 G. Leguizamón and E. Alba

The above P-ACO variations were called, respectively P-ACO, PAdapt, and
GreedyAnts. These algorithms were tested on 12 instances representing 4 ad hoc
networks. The best performer algorithms were P-ACO and GreedyAnts. The au-
thors highlight that all the algorithms experience some difficulties to react to the
first change, however, they improved the respective capacity of reaction in subse-
quent changes of the problems structure.

To finish this section we would like to remark that only a few applications of
P-ACO for dynamic problems were found in the literature. Nevertheless, it is in-
teresting to note, as claimed by Guntsch and Middendorf [26], that P-ACO has a
potential to solve other dynamic problems.

9.4.3 Other Ants Based Algorithms

In addition to the standard ACO algorithms (Section 9.4.1) and Population-based
ACO algorithms (Section 9.4.2), there exist other alternatives to implement algo-
rithms based on the metaphor of ants behavior which do not completely fit in the
mentioned two classes. In this section we describe some representative works in
this regard in order to show the reader the potential of following the ant behavior
metaphor to solve unseen dynamic problems. An earlier ant-based method to deal
with dynamic problems is the proposal by Schoonderwoerd et al. [42] where an
ant-based load balancing approach is applied to telecommunication networks. This
methodology considers the ants as mobile agents that can travel though the net-
work with similar abilities as the real ants, as they can deposit certain amount of
pheromone according to the distance between two pair of nodes and the congestion
found during the journey.

The implemented mechanism to route the call is fairly simple as the pheromone
value deposited on the route connecting two nodes is used to calculate a probabil-
ity distribution that will influence the decision maker to route a call. Based on the
experimental study accomplished, the authors claim that good load balance can be
reached due to the emergent organization of the proposed ant-based methodology
(thus, other related problems could also be solved).

Another methodology where the ants are seen as mobile agents is the AntNet [14],
maybe one of the more widely known ant based algorithms different from standard
ACO algorithms. This algorithm was designed as an alternative approach to the
adaptive learning tables in communication networks, an intrinsically dynamic prob-
lem. AntNet follows the core ideas of the ACO metaheuristic: a set of independent
ants (agents) try to find an optimal or near-optimal path by indirect communications.

Interestingly, there are two types of ants (forward and backward) which are dis-
tributed on the network (represented by small packages) to find paths from a source
node to a destination node (the task of forward ants) and propagate the collected
information on the routing tables (the task of backwards ants). In short, during their
travel ants collect information about the network traffic which is later used to adapt

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 203

certain values (resembling pheromone values) used by the decision maker at the
time of routing the actual data packages. AntNet was thoroughly tested on real and
artificial IP datagram networks and achieved superior performance with respect to
the other algorithms tested for comparison. In the same mobile agent approaches as
AntNet and Schoonderwoerd’s ABC, Pigné and Guinand [39] consider the problem
of mobile ad hoc networks where, prior to the throughput and the quality of service,
the problem of energy consuming is the biggest issue in these wireless networks,
composed of small handheld devices. The authors propose a bi-objective model
where the length of communication paths is minimized and the selection of robust
(unlikely to fail) links is maximized. The approach is decentralized and only relies
on local rules for heuristics and pheromone updates.

In Cicirello and Smith [13] the so-called Ant Colony Control (AC2) is proposed
to an adaptive and dynamic shop floor scheduling problem. AC2 is a decentralized
algorithm conformed by a set of artificial ants which use indirect communication to
make all shop routing decisions. This is done by altering and reacting to a dynami-
cally changing common environment through the use of simulated pheromone trails.
Thus, the amount of pheromones will be used to control the reaction of the algo-
rithm to the changes, i.e., the decision about to which processing shop a job should
be assigned. Another interesting feature of AC2 is that, as the shop can process job
of different types, an ant associated to that job will have different pheromone type
from an ant associated to a different type of job. According to this, AC2 manages
many pheromone matrices such as the number of different types of jobs the shop
floor can process. From the experimental study (applied to different shop floors)
the authors claim that, for complex problems, AC2 evolves local decision making
policies that lead to near-optimal solutions with respect to its global performance.

A recent work by Fernandes et al. [19] proposed an extension of the Univariate
Marginal Distribution Algorithm (UMDA) (see Mühlenbein and Paas [38]) called
Reinforcement-Evaporation UMDA (RE UMDA). This new algorithm includes a
different update strategy for the probability model based on the equation of the
transition probability equations found in ACO algorithms. To do that, RE UMDA
uses two real vectors τ0 and τ1 that, respectively, represent the pheromone values
associated with the desirability of having a 0 or 1 at a particular position in the
solution (a binary search space it is assumed). These two vectors are then used to
calculate the probability of assigning 1 (respectively 0) to a particular solution com-
ponent, i.e., to generate new solutions. As mentioned before, the two pheromone
trail vectors are updated (reinforcement stage) according to the solutions found in
the current iteration before obtaining the probability to generate new solutions. The
evaporation stage, which uses an evaporation parameter as in the traditional ACO
algorithms, takes place when the new population has been completely generated.
This new approach delays (or avoids) the complete convergence of the population
which increases the chances to adaptation to a new environment when a change
occurs. RE UMDA was tested on dynamic versions of Onemax and Royal Road

204 G. Leguizamón and E. Alba

(R1) functions. In addition, several variations of specific parameters of UMDA were
studied under the dynamic functions considered.

Xi et al. [45] propose an Ant Colony System (ACS) based methodology to deal
with the curing of polymeric coating process, a complex and dynamic optimization
problem of great interest in the automotive industry. This is a large-scale multi-
stage dynamic optimization problem that involves a time variant objective function
(energy consumption for the coating process) and also time dependent linear and
nonlinear constraints. More precisely, the ACS-based methodology is called a dy-
namic model-embedded ACS-based optimization methodology. The solution search
space is represented by N trees (N is the problem dimension) where each of them is
traversed by a set of M ants in charge of cooperatively finding a complete solution
by building a tour on each of the N trees, i.e., when ant j traverses tree i, a value for
dimension i will be found by ant j. Pheromone and heuristic values are associated
to each branch tree to bias the probability values that will guide the ants when trave-
ling the respective trees from the root to the leaves. Each tree node is assumed to
have L possible branches (i.e., L possible values for each problem dimension). As in
a standard ACS, global and local pheromone updates are applied, as well as similar
transition rule as the originally defined in ACS. The authors claim that by building
the solutions in this way the algorithm can easily adapt the solutions to the cur-
rent state of the problem environment to reach the minimum energy consumption.
The proposed ACS-based methodology was successfully compared with a genetic
algorithm (GA) as the first one was capable of decreasing in about 9% the energy
consumption with respect a Genetic Algorithm. Although the reported results are
encouraging, it is still necessary to study in more detail the changes produced in the
values associated to the edges in the trees when a change occurs in the environment.

In a recent work, an ant-stigmergy based algorithm to solve dynamic optimiza-
tion problems (DASA) was proposed by Korošec and Šilc [31]. Interestingly, DASA
was first proposed to solve (static) problems in continuous domains (see [32]).
More precisely, it was applied on a benchmark suite from the Special Session on
Real Parameter Optimization of the International Congress on Evolutionary Com-
putation (CEC) 2005. Interestingly, the same algorithm DASA was applied without
any modification on the set of benchmark problems provided for CEC’ 2009 Spe-
cial Session on Evolutionary Computation in Dynamic and Uncertain Environments
with encouraging results. The main idea behind the DASA design is the construc-
tion of a special graph called differential graph used by ants to build a solution
(vector of real numbers) starting from a given solution called temporary best solu-
tion which is initially chosen at random. Each edge in the graph represents either an
increment or decrement (Δ value) that have to be applied to a particular dimension
as the ant walks through the graph. The decision to choose the next vertex to visit
is based on the pheromone values which are initialized according to the Cauchy
distribution. Although no exhaustive discussion is provided in this work concerning
the features of DASA, the results showed a natural capacity of the algorithm when
dealing with the kind of tested dynamic problems. In [5, 6] the authors propose to

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 205

distribute agents or entities-based applications on a grid or network of computers
using several distinct colonies of ants. Each colony represents a distinct comput-
ing resource identified by a color. The colored ants compete to detect and colonize
evolving communities, or organizations in a dynamic graph representing the set of
entities (nodes) and their interactions one with another (edges). The importance of
the interaction can be used to weight the edges. Communities are commonly defined
as areas of a graph where nodes are more connected one with another than with the
other parts of the graph. Organizations are evolving communities, as the underlying
graph changes during time. Indeed, often, although individual nodes and edges of a
community appear, change, or disappear, the community remains stable for a longer
period of time. The proposed algorithm (called AntCO2) shows two important dif-
ferences with standard ACB: it does not use an explicit objective function, and it
uses several colonies of ants in competition one with another. The ants detect orga-
nizations of the evolving graph by laying down “colored” pheromone corresponding
to their colony. Pheromone of the same color as an ant probabilistically attracts it,
whereas other colors repulse it. Furthermore, the larger the weight on an edge, the
more this edge attracts ants, and strongly connected areas capture ants. These mech-
anisms act as positive feedback to create “colonized” areas on organizations.

Both the evolution of the network (disappearance of edges and node) and the
evaporation of pheromone act as negative feedback to remove old solutions (old
colonized areas) that are no more valid when the environment changes, therefore
providing adaption to dynamics of the graph. Indeed, there is no need to evaluate
any objective function to use this algorithm, which allows it to be easily distributed,
since it uses only local information. Colonies can be of distinct sizes (number of
ants) to accommodate the difference in power of the corresponding computing re-
sources, and therefore colonize larger areas to distribute more entities or agents
on more powerful computers. Furthermore, colonies can be added or removed
as computing resources appear or disappear, therefore providing another level of
dynamism.

9.4.4 Summary of ACB Applications on DOPs

To finish the main section on ACB for DOPs, we show in Table 9.1 a summary
of the main applications commented in this chapter. Table 9.1 displays in the first
column the type of application considered (Application), the name and reference
of the ant colony based algorithm used (ACB), and finally some remarks about
the algorithm are given in the third column (Remarks). In column ACB the pro-
posal is called as: Standard ACO (Section 9.4.1), P-ACO (Section 9.4.2), and the
respective names found in the literature for other ant colony based algorithms
(Section 9.4.3).

206 G. Leguizamón and E. Alba

Table 9.1 Summary of the reviewed literature indicating the application, type of ACB or
algorithms’ names, and some additional remarks about the respective proposal.

Application ACB Remarks

Dynamic TSP Standard ACO [3, 4, 18, 24]
P-ACO [25, 26]

Mostly aimed to investigate different
strategies for pheromone updating on
dynamic problems where components
are added/eliminated at certain times.

Dynamic QAP P-ACO [25, 26]
Like the previous row.

Dynamic VRP Standard ACO [36]

Idem above with new orders arriving
when vehicles have already started their
tours.

Load balancing in
telecommunication
newtorks

Ant-Based Control [42]

Use of simple mobile agents (ants)
with abilities to laid pheromone trails.
Pheromone tables are used to balance
the load generated by calls between
nodes.

Ad hoc networks P-ACO, PAdapt, and
GreedyAnts [29]

Variations of P-ACO are studied to
manage in different ways the modifi-
cation of the pheromone matrix. The al-
gorithms use knowledge of the problem
structure (dynamic component) to carry
on the pheromone updating process.

Dynamic load balancing in
individual-based
simulations

AntCO2 [5, 6]

Use of several ant colonies in compe-
tition to colonize communities in an
evolving network of interacting entities.

Continuous functions DASA [31]

An ant-stigmergy based algorithm orig-
inally designed for static continuous
functions is successfully applied on
a benchmark of dynamic continuous
functions.

Shop floor scheduling
problem

AC2 [13]

Ants use only the stigmergy princi-
ple to make all shop routing deci-
sions by altering and reacting to their
dynamically changing common envi-
ronment through the use of simulated
pheromone trails.

Oscillatory Royal Road &
dynamic Schaffer’s
function

Standard ACO [20]

Optimization of dynamic binary land-
scapes by stressing the role of negative
feedback when modifying pheromone
values.

Routing tables in
communication networks

AntNet [14]

Tiny packages (ants) are used to collect
and distribute information from the net-
work to modify the routing tables.

Communications paths in
wireless mobile ad hoc
networks

Ant-based algorithm [39]

An ant colony constructs and maintains
communication paths trying to mini-
mize both, the length of the constructed
paths and the number of link reconnec-
tions.

Curing of Polymeric
Coating

ACS-based algorithm [45]

Utilization of tree structures to find
quality values for each problem dimen-
sion. The traversing from the root to
the leaves in the respective trees is gov-
erned by the deposited pheromone val-
ues. The pheromone updating is made
by rules resembling those used in Ant
Colony Systems.

OneMax & Royal Road RE UMDA [19]
Use of principles of pheromone trail to
keep diversity.

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 207

9.5 Conclusions

Many real-world problems are dynamic by definition and the use of metaheuristic
techniques to solve them seems to be a good alternative, as those kind of algorithms
are robust and flexible. Ant colony based algorithms share these particular features
as they can be easily adapted to deal with dynamic problems.

In this chapter we presented a general perspective of the more relevant works
regarding the application of ant colony based algorithms for dynamic optimization
problems. The main mechanisms used in different implementations found in the
literature were described. Interestingly, the metaphor of ant colony behavior could
potentially be used in many different ways, which make ACB algorithms good can-
didates to solve known and unseen DOPs.

Promising research areas seem to be related with applications in which the
metaphor of ants behavior (basically stigmergy by pheromone trail) can be used
as a source of information to rapidly react to the changes. In that regard, it could
be interesting to define and thoroughly study general strategies to adapt pheromone
values on classes of dynamics problems as well as comparisons with other, more
studied and applied, metaheuristics for solving DOPs, e.g., evolutionary algorithms.

Acknowledgments. The first author acknowledges funding from Universidad Nacional de
San Luis (UNSL), Argentina and the National Agency for Promotion of Science and Tech-
nology, Argentina (ANPCYT). The second author acknowledges funds from the Junta de
Andalucı́a (CICE), under contract P07-TIC-03044 (DIRICOM project) and Spanish Ministry
of Sciences and Innovation (MICINN) and FEDER under contracts TIN2008-06491-C04-01
(M* project) and TIN2011-28194 (roadME project).

References

[1] Abdunnaser, Y.: Adapting Evolutionary Approaches for Optimization in Dynamic En-
vironments. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada (2006)

[2] Angus, D.: The current state of ant colony optimisation applied to dynamic problems.
Technical Report TR009, Centre for Intelligent Systems & Complex Processes, Faculty
of Information & Communication Technologies Swinburne University of Technology,
Melbourne, Australia (2006)

[3] Angus, D., Hendtlass, T.: Ant Colony Optimisation Applied to a Dynamically Changing
Problem. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS (LNAI), vol. 2358, pp.
618–627. Springer, Heidelberg (2002)

[4] Angus, D., Hendtlass, T.: Dynamic ant colony optimisation. Applied Intelligence 23(1),
33–38 (2005)

[5] Bertelle, C., Dutot, A., Guinand, F., Olivier, D.: Organization Detection Using Emergent
Computing. International Transactions on Systems Science and Applications 2(1), 61–
70 (2006)

[6] Bertelle, C., Dutot, A., Guinand, F., Olivier, D.: Organization Detection for Dynamic
Load Balancing in Individual-Based Simulations. Multi-Agent and Grid Systems 3(1),
42 (2007)

208 G. Leguizamón and E. Alba

[7] Bianchi, L.: Notes on dynamic vehicle routing - the state of the art. Technical Report ID-
SIA 05-01, Istituto Dalle Molle di Studi sull’ Intelligenza Artificiale (IDSIA), Manno-
Lugano, Switzerland (2000)

[8] Blackwell, T.: Particle Swarm Optimization in Dynamic Environments. In: Yang, S.,
Ong, Y., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environ-
ments. SCI, vol. 51, pp. 29–49. Springer, Heidelberg (2007)

[9] Blum, C.: Ant colony optimization: Introduction and recent trends. Physics of Life Re-
views 2(4), 353–373 (2005)

[10] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers, Norwell (2002)

[11] Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization
problems. In: Advances in Evolutionary Computing, pp. 239–262. Springer-Verlag New
York, Inc. (2003)

[12] Bullnheimer, B., Hartl, R.F., Strauss, C.: An improved ant system algorithm for the
vehicle routing problem. Annals of Operations Research 89, 319–328 (1999)

[13] Cicirello, V.A., Smith, S.F.: Ant Colony Control for Autonomous Decentralized Shop
Floor Routing. In: International Symposium on Autonomous Decentralized Systems,
pp. 383–390. IEEE Computer Society, Dallas (2001)

[14] Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications
networks. J. Artif. Int. Res. 9, 317–365 (1998)

[15] Dorigo, M., Gambardella, L.M.: Ant Colony System: a Cooperative Learning App-
roach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Compu-
tation 1(1), 53–66 (1997)

[16] Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of co-
operating agents. IEEE Trans. on Systems, Man, and Cybernetics–Part B 26(1), 29–41
(1996)

[17] Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
[18] Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP. In: Proceedings of the

Third International Workshop on Ant Algorithms, ANTS 2002, pp. 88–99. Springer,
London (2002)

[19] Fernandes, C.M., Lima, C., Rosa, A.C.: UMDAs for dynamic optimization problems.
In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO 2008, pp. 399–406. ACM, New York (2008)

[20] Fernandes, C.M., Rosa, A.C., Ramos, V.: Binary ant algorithm. In: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp.
41–48. ACM, New York (2007)

[21] Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic assign-
ment problem. Journal of the Operational Research Society 50(2), 167–176 (1999)

[22] Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the
argentine ant. Naturwissenschaften 76, 579–581 (1989)

[23] Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez
bellicositermes natalensis et cubitermes sp. la theéorie de la stigmergie: Essai
dı́interprétation du comportement des termites constructeurs. Insectes Sociaux 6(1), 41–
48 (1959)

[24] Guntsch, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algorithms
Applied to Dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E.,
Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops
2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS,
vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

9 Ant Colony Based Algorithms for Dynamic Optimization Problems 209

[25] Guntsch, M., Middendorf, M.: Applying population based aco to dynamic optimiza-
tion problems. In: Proceedings of the Third International Workshop on Ant Algorithms,
ANTS 2002, pp. 111–122. Springer (2002)

[26] Guntsch, M., Middendorf, M.: A Population Based Approach for ACO. In: Cagnoni, S.,
Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops
2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 72–81.
Springer, Heidelberg (2002)

[27] Guntsch, M., Middendorf, M., Schmeck, H.: An Ant Colony Optimization Approach to
Dynamic TSP. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M.,
Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 860–867.
Morgan Kaufmann, San Francisco (2001)

[28] Hendtlass, T., Moser, I., Randall, M.: Dynamic Problems and Nature Inspired Meta-
Heuristics. In: Proceedings of the Second IEEE International Conference on e-Science
and Grid Computing, E-SCIENCE 2006, pp. 111–116. IEEE Computer Society, Wash-
ington, DC (2006)

[29] Ho, C.K., Ewe, H.T.: Ant Colony Optimization Approaches for the Dynamic Load-
Balanced Clustering Problem in Ad Hoc Networks. In: Swarm Intelligence Symposium,
SIS 2007, pp. 76–83. IEEE (April 2007)

[30] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - A survey.
IEEE Transactions on Evolutionary Computation 9(3), 303–318 (2005)

[31] Korošec, P., Šilc, J.: The differential ant-stigmergy algorithm applied to dynamic opti-
mization problems. In: Proceedings of the Eleventh Conference on Congress on Evolu-
tionary Computation, CEC 2009, pp. 407–414. IEEE Press, Piscataway (2009)

[32] Korošec, P., Šilc, J., Oblak, K., Kosel, F.: The differential ant-stigmergy algorithm: an
experimental evaluation and a real-world application. In: IEEE Congress on Evolution-
ary Computation, CEC 2007, pp. 157–164 (September 2007)

[33] Leguizamón, G., Ordóñez, G., Molina, S., Alba, E.: Canonical Metaheuristics for Dy-
namic Optimization Problems. In: Alba, E., Blum, C., Isasi, P., León, C., Gómez, J.A.
(eds.) Optimization Techniques for Solving Complex Problems, pp. 83–100. John Wiley
& Sons, Inc. (2008)

[34] Maniezzo, V.: Exact and Approximate Nondeterministic Tree-Search Procedures for the
Quadratic Assignment Problem. Informs Journal on Computing 11(4), 358–369 (1999)

[35] Monmarché, N., Guinand, F., Siarry, P.: Artificial Ants. Wiley-ISTE (2010)
[36] Montemanni, R., Gambardella, L.M., Rizzoli, A.E., Donati, A.V.: A new algorithm for

a Dynamic Vehicle Routing Problem based on Ant Colony System. In: Second Interna-
tional Workshop on Freight Transportation and Logistics, pp. 27–30 (2003)

[37] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments. Nat-
ural Computing Series. Springer (2004)

[38] Mühlenbein, H., Paass, G.: From Recombination of Genes to the Estimation of Distri-
butions I. Binary Parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

[39] Pigné, Y., Guinand, F.: Short and Robust Communication Paths in Dynamic Wireless
Networks. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P.,
Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.)
ANTS 2010. LNCS, vol. 6234, pp. 520–527. Springer, Heidelberg (2010)

210 G. Leguizamón and E. Alba

[40] Psaraftis, H.N.: Dynamic vehicle routing: Status and prospect. Annals Operations Re-
search 61, 143–164 (1995)

[41] Reimann, M., Doerner, K., Hartl, R.F.: D-ants: Savings based ants divide and conquer
the vehicle routing problem. Computers & Operations Research 31(4), 563–591 (2004)

[42] Schoonderwoerd, R., Holland, O.E., Bruten, J.L., Rothkrantz, L.J.M.: Ant-based load
balancing in telecommunications networks. Adaptive Behavior 2, 169–207 (1996)

[43] Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European
Journal of Operational Research 185(3), 1155–1173 (2008)

[44] Stützle, T., Dorigo, M.: ACO algorithms for the quadratic assignment problem. In:
Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 33–50. Mc-
Graw Hill, London (1999)

[45] Xiao, J., Li, J., Xu, Q., Huang, W., Lou, H.: ACS-based Dynamic Optimization for
Curing of Polymeric Coating. The American Institute of Chemical Engineers (AIChE)
Journal 52(2), 1410–1422 (2005)

Chapter 10
Elastic Registration of Brain Cine-MRI
Sequences Using MLSDO Dynamic
Optimization Algorithm

Julien Lepagnot, Amir Nakib, Hamouche Oulhadj, and Patrick Siarry

Abstract. In this chapter, we propose to use a dynamic optimization algorithm to
assess the deformations of the wall of the third cerebral ventricle in the case of a
brain cine-MR imaging. In this method, an elastic registration process is applied
to a 2D+t cine-MRI sequence of a region of interest (i.e. lamina terminalis). This
registration process consists in optimizing an objective function that can be consi-
dered as dynamic. Thus, a dynamic optimization algorithm based on multiple lo-
cal searches, called MLSDO, is used to accomplish this task. The obtained results
are compared to those of several well-known static optimization algorithms. This
comparison shows the efficiency of MLSDO, and the relevance of using a dynamic
optimization algorithm to solve this kind of problems.

10.1 Introduction

Hydrocephalus is a medical condition in which there is an abnormal accumulation
of cerebrospinal fluid in the ventricles, or cavities, of the brain. This may cause
increased intracranial pressure inside the skull and progressive enlargement of the
head, convulsion, tunnel vision, and mental disability. Hydrocephalus can also cause
death. Hydrocephalus may be suggested by symptoms; however, imaging studies of
the brain are the mainstay of diagnosis. In this paper, we focus on a method based on
cine-MRI sequences to facilitate this diagnosis, and to assist neurosurgeons in the
treatment of hydrocephalus. This method makes use of the dynamic optimization
paradigm.

Julien Lepagnot · Amir Nakib · Hamouche Oulhadj · Patrick Siarry
Université Paris-Est Créteil (UPEC)
LISSI, E.A. 3956
61 avenue du Général de Gaulle,
94010 Créteil, France
e-mail: siarry@u-pec.fr

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 211–224.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

siarry@u-pec.fr

212 J. Lepagnot et al.

Recently, optimization in dynamic environments has attracted a growing interest,
due to its practical relevance. Almost all real-world problems are time dependent
or dynamic, i.e. their objective function changes over the time. For dynamic en-
vironments, the goal is not only to locate the global optimum, but also to track it
as closely as possible over the time. Then, a dynamic optimization problem can
be expressed as in (10.1), where f (x, t) is the objective function of a minimiza-
tion problem, h j(x, t) denotes the jth equality constraint and gk(x, t) denotes the kth

inequality constraint. All of these functions may change over time (iterations), as
indicated by the dependence on the time variable t.

min f (x, t)
s.t. h j(x, t) = 0 for j = 1,2, ...,u

gk(x, t)≤ 0 for k = 1,2, ...,v
, (10.1)

In this chapter, we focus on a dynamic optimization problem with time constant
constraints. We propose to apply the Multiple Local Search algorithm for Dynamic
Optimization (MLSDO) [5] to the registration of sequences of images. Image regis-
tration is the process of overlaying two or more images of the same scene taken at
different times, from different viewpoints, and/or by different sensors. It is a critical
step in all image analysis tasks in which the final information is gained from the
combination of various data sources like in image fusion or change detection.

It geometrically aligns two images: the source and the target images. It is done
by determining a transformation that maps the target image to the source one. Thus,
registering a sequence of images consists in determining, for each couple of succes-
sive images, the transformation that makes the first image of the couple match the
following image.

Comprehensive surveys of the registration approaches are available in the litera-
ture, we can cite [6, 11]. Registration approaches can be roughly based on:

• geometric image features (geometric registration), such as points, edges and sur-
faces;

• measures computed from the image gray values (intensity based registration),
such as mutual information.

In many cases, a satisfactory solution can be found by using a rigid or an affine
transformation (deformation model applied to the target image), i.e. the target im-
age is only translated, rotated, and scaled to match the source image [7]. Elastic
registration is required to register inter-patient images or regions containing non-
rigid objects. The goal is to remove structural variation between the two images to
be registered. As stated in [6], most applications represent elastic transformations
in terms of a local vector displacement (disparity) field or as polynomial transfor-
mations in terms of the old coordinates. In the problem at hand, each image of
the region of interest (i.e. lamina terminalis) is extracted from a brain cine-MRI

10 Elastic Registration of Brain Cine-MRI Sequences Using MLSDO 213

(a) (b)

Fig. 10.1 Two images from a brain cine-MRI sequence: (a) first image of the sequence,
(b) sixth image of the sequence.

Fig. 10.2 A sequence of cine-MR images of the region of interest.

sequence of 20 images. This sequence corresponds to 80% of a R-R cardiac cycle,
more details about the acquisition procedure are given in [7]. An example of two im-
ages extracted from a brain cine-MRI sequence is presented in Figure 10.1. Hence,
each sequence is composed of 20 MR images. An example of sequence is illustrated
in Figure 10.2. The goal is to register each couple of successive images of the se-
quence. Hence, for a sequence of 20 images, 19 couples of successive images have
to be registered. Then, the transformations that result from this matching operation
can be used to assess the deformation movements of the third cerebral ventricle.

Several papers are proposed in the literature about the analysis and quantification
of cardiac movements, we can cite those recently published [1, 2, 10]. In our case,
the single approach that deals with the problem at hand is [7], because of the recent
appearance of the acquisition method of the images. The main difference between
the problem at hand and the cardiac problem lies in the amplitude of the movements
of the ventricles. Indeed, the amplitude of the cardiac ventricle movements is higher
than the amplitude of the cerebral ventricle movements. In this chapter, we propose
a method inspired from [7] to assess the movements of a region of interest (ROI).
Besides, another contribution of the present work is to show the importance of the
use of dynamic optimization algorithms for brain cine-MRI registration.

The rest of this chapter is organized as follows. In section 10.2, the method pro-
posed to register sequences of images is described. In section 10.3, the MLSDO
algorithm and its use for the problem at hand are presented. In section 10.4, a com-
parison of the results obtained by MLSDO on this problem to the ones of several

214 J. Lepagnot et al.

well-known static optimization algorithms is performed. This comparison shows
the relevance of using MLSDO on this problem. Finally, a conclusion and the works
under progress are given in section 10.5.

10.2 Registration Process

A method inspired from [7] is proposed in this chapter to evaluate the movement
in sequences of cine-MR images. This operation is required in order to assess the
movements in the ROI over time. In [7], a segmentation process is performed on
each image of the sequence, to determine the contours (as a set of points) of the
walls of the third cerebral ventricle. Then, a geometric registration of each succes-
sive contours is performed, based on an affine deformation model. In the present
work, we propose to use an intensity based registration instead of a geometric reg-
istration process. This way, we do not have to use a segmentation process anymore.
Moreover, to evaluate the pulsatile movements of the third cerebral ventricle more
precisely, an elastic deformation model is used in this chapter.

Let Im1 and Im2 be two successive images of the sequence. Let the transpose
of a matrix A be denoted by AT. Then, we assume that a transformation TΦ allows
to match Im1 with Im′1 = TΦ(Im2) and, for every pixel o2 = (x2 y2)

T of Im2, it is
defined by:

x′1 = c1 x2
2 + c2 y2

2 + c3 x2 y2 + (c4 |c4|+ 1) x2 + c5 |c5| y2 + (c6)
3

y′1 = c7 x2
2 + c8 y2

2 + c9 x2 y2 + c10 |c10| x2 + (c11 |c11|+ 1) y2 + (c12)
3 ,

(10.2)

where o′1 = (x′1 y′1)
T = TΦ(o2). The set of parameters Φ = {c1,c2, ...,c12} is esti-

mated through the maximization of the following criterion:

C(Φ) =
NMI(Φ)

P(Φ)+ 1
, (10.3)

where NMI(Φ) computes the normalized mutual information [9] of Im1 and Im′1 ;
P(Φ) is part of a regularization term that penalizes large deformations of Im2, as
we are dealing with slight movements in the ROI. Besides, as the size of the ROI is
not constant, we have to normalize the coordinates of the pixels. Then, we make the
pixels in the ROI range in the interval [−0.5,0.5]. The use of this interval transforms
discrete coordinates of the pixels into continuous ones. This interval was determined
empirically, and it is well fitted to the regularization term, and to the transformation
model used. NMI(Φ) and P(Φ) are defined as follows:

NMI(Φ) =
H(Im1)+H(Im′1)

H(Im1, Im′1)
, (10.4)

10 Elastic Registration of Brain Cine-MRI Sequences Using MLSDO 215

Fig. 10.3 Overlapping area (Im1∩ Im′1) of the source image (Im1) and the transformed target
image (Im′1) in the registration of a couple of successive images of a sequence.

P(Φ) = max
o2 ∈ Im1 ∩ Im′1

(
o2− o′1

)T (
o2− o′1

)
, (10.5)

where Im1∩ Im′1 is the overlapping area of Im1 and Im′1 (see Figure 10.3); H(Im1)
and H(Im′1) compute the Shannon entropy of Im1 and Im′1, respectively, in their
overlapping area; H(Im1, Im′1) computes the joint Shannon entropy of Im1 and Im′1,
in their overlapping area. They are defined as follows:

H(Im1) =−
L−1

∑
i=0

p(i) log2 (p(i)), (10.6)

H(Im′1) =−
L−1

∑
j=0

p′(j) log2

(
p′(j)

)
, (10.7)

H(Im1, Im′1) =−
L−1

∑
i=0

L−1

∑
j=0

p(i, j) log2 (p(i, j)), (10.8)

where L is the number of possible gray values that a pixel can take; p(i), p′(j) and
p(i, j) are the probability of the pixel intensity i in Im1, the probability of the pixel
intensity j in Im′1, and the joint probability of having a pixel intensity i in Im1 and j
in Im′1, respectively. They are defined as follows:

p(i) =
g(i)

∑L−1
k=0 g(k)

, (10.9)

p′(j) =
g′ (j)

∑L−1
l=0 g′ (l)

, (10.10)

p(i, j) =
g(i, j)

∑L−1
k=0 ∑L−1

l=0 g(k, l)
, (10.11)

216 J. Lepagnot et al.

80

100

120

ur
re

nc
e

0 50 100 150 200 250

0

20

40

60

Grey value

O
cc

u

(a)

80

100

120

oc
cu

rr
en

ce

0 50 100 150 200 250

0

20

40

60

Grey value

M
od

ifi
ed

(b)

Fig. 10.4 Illustration of the histogram of an MR image: (a) original histogram, (b) smoothed
histogram used to accelerate the optimization process.

where g(i) is the histogram of the overlapping area of Im1 (occurrence of gray level
i in Im1); g′(j) is the histogram of the overlapping area of Im′1 (occurrence of gray
level j in Im′1); g(i, j) is the joint histogram of the overlapping area of Im1 and Im′1
(occurrence of having a grey value equal to i in Im1 and to j in Im′1, see Equa-
tion (10.12)). However, in this work, we apply a low-pass filter to these histograms,
using a convolution with a Gaussian function, in order to accelerate the convergence
of the optimization process. Applying this filter reduces indeed the number of local
optima in the objective function, by smoothing it. An illustration of the histogram
of an MR image from a sequence, and of its corresponding smoothed histogram, is
shown in Figure 10.4.

In (10.12), the cardinal function is denoted by card, and the functions Im1(o) and
Im′1(o) return the gray values of a given pixel o in Im1 and Im′1, respectively.

10 Elastic Registration of Brain Cine-MRI Sequences Using MLSDO 217

g(i, j) = card
{

o ∈ Im1∩ Im′1, Im1(o) = i ∧ Im′1(o) = j
}
. (10.12)

The registration problem can be formulated as an optimization problem defined by:

max C(Φ). (10.13)

10.3 The MLSDO Algorithm

In this section, MLSDO and its use on the problem at hand are described. At first,
the algorithm is presented. Then, the dynamic objective function proposed for the
problem at hand is described. Afterwards, the parameter fitting of MLSDO is given
to solve this problem.

10.3.1 Description of the Algorithm

MLSDO uses several local searches, each one performed in parallel with the oth-
ers, to explore the search space and to track the found optima over the changes in
the objective function. These local searches consist in moving step-by-step in the
search space, from a current solution to its best neighbor one, until a stopping cri-
terion is satisfied, reaching thus a local optimum. Each local search is performed
by an agent, and all the agents are coordinated by a dedicated module (the coordi-
nator). Two types of agents exist in MLSDO: the exploring agents (to explore the
search space in order to discover the local optima) and the tracking agents (to track
the found local optima over the changes in the objective function). The strategies
used to coordinate these local search agents enable the fast convergence to well di-
versified optima, in order to quickly react to a change and find the global optimum.
Furthermore, the local optima found during the optimization process are archived,
to accelerate the detection of the global optimum after a change in the objective
function. The overall scheme of MLSDO is illustrated in Figure 10.5, where the
local search agents are depicted by the numbered black-filled circles in the search
space S, and the neighborhood of the ith agent is denoted by Ni. More details about
this algorithm are given in [5].

10.3.2 Cine-MRI Registration as a Dynamic Optimization
Problem

The registration of a cine-MRI sequence can be seen as a dynamic optimization
problem. Then, the dynamic objective function optimized by MLSDO changes ac-
cording to the following rules:

218 J. Lepagnot et al.

Fig. 10.5 Overall scheme of MLSDO.

• The criterion in (10.3) has to be minimized for each couple of successive images,
as we are in the case of a sequence, then the optimization criterion becomes:

C(Φ(t)) =
NMI(Φ(t))
P(Φ(t))+ 1

, (10.14)

where t is the index of the current couple of images in the sequence. Φ(t),
NMI(Φ(t)), and P(Φ(t)) are the same as Φ , NMI(Φ), and P(Φ) defined be-
fore, respectively, but here are dependent on the couple of images.

• Then, the dynamic optimization problem is defined by:

max C(Φ(t)), (10.15)

• If the current best solution (transformation) found for the couple t cannot be
improved anymore (according to a stagnation criterion), the next couple (t + 1)
is treated.

• The stagnation criterion of the registration of a couple of successive images is
satisfied if no significant improvement (higher than 1E-5) in the current best
solution is observed during 5000 successive evaluations of the objective function.

• Thus, the end of the registration of a couple of images and the beginning of the
registration of the next one constitute a change in the objective function.

10.3.3 Parameter Fitting of MLSDO

Table 10.1 summarizes the six parameters of MLSDO that the user has to define. In
this table, the values given are suitable for the problem at hand, and they were fixed
experimentally. These values will be used to perform the experiments reported in
the following section.

10 Elastic Registration of Brain Cine-MRI Sequences Using MLSDO 219

Table 10.1 MLSDO parameter setting for the problem at hand.

Name Type Interval Value Short description
rl real (0,re) 0.005 initial step size of tracking agents

re real (0,1] 0.1 exclusion radius of the agents, and initial step size of ex-
ploring agents

δph real [0,δpl] 1E-5 highest precision parameter of the stopping criterion of the
agents local searches

δpl real [δph,+∞] 1E-4 lowest precision parameter of the stopping criterion of the
agents local searches

na integer [1,10] 1 maximum number of exploring agents

nc integer [0,20] 2 maximum number of tracking agents created after the de-
tection of a change

10.4 Experimental Results and Discussion

The registrations of two couples of slightly different images are illustrated in Fig-
ures 10.6 and 10.7, and the registrations of two couples of significantly different
images are illustrated in Figures 10.8 and 10.9. As we can see in Figures 10.6(e)
and 10.6(f), as well as in Figures 10.7(e) and 10.7(f), if the movements in the ROI
are not significant, then only noise appears in the difference images. Hence, the
transformation used to register the couple of images (Figures 10.6(d) and 10.7(d))
does not deform the second image of the couple significantly. On the other hand,
significant movements in the ROI leave an important white trail in the difference
images, as illustrated in Figures 10.8(e) and 10.9(e). Then, a significant transforma-
tion (Figure 10.8(d) and 10.9(d)) has to be applied in order to eliminate the white
trail (see Figure 10.8(f) and 10.9(f)).

A comparison between the results obtained by MLSDO and those obtained by
several well-known static optimization algorithms is presented in this section. These
algorithms, and their parameter setting, empirically fitted to the problem at hand,
are defined below (see references for more details on these algorithms and their
parameter fitting):

• CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [4] using the rec-
ommended parameter setting, except for the initial step size σ , set to σ = 0.5.
The population size λ of children and the number of selected individuals μ are
set to λ = 11 and μ = 5;

• SPSO-07 (Standard Particle Swarm Optimization in its 2007 version) [3] using
the recommended parameter setting, except for the number S of particles (S= 12)
and for the parameter K used to generate the particles, neighborhood (K = 8) ;

220 J. Lepagnot et al.

(a) (b) (c)

(d) (e) (f)

Fig. 10.6 Illustration of the registration of a couple of slightly different images of a sequence:
(a) the first image of the couple, (b) the second image of the couple, (c) the second image after
applying the found transformation to it, (d) illustration showing the transformation applied
on the second image of the couple to register it, (e) illustration showing the difference, in
the intensity of the pixels, between the two images of the couple: a black pixel indicates
that the intensities of the corresponding pixels in the images are the same, and a white pixel
indicates the highest difference between the images, (f) illustration showing the difference, in
the intensity of the pixels, between the first image and the transformed second image.

(a) (b) (c)

(d) (e) (f)

Fig. 10.7 Illustration of the registration of another couple of slightly different images of a
sequence, in the same way as in Figure 10.6.

10 Elastic Registration of Brain Cine-MRI Sequences Using MLSDO 221

(a) (b) (c)

(d) (e) (f)

Fig. 10.8 Illustration of the registration of a couple of significantly different images of a se-
quence: (a) the first image of the couple, (b) the second image of the couple, (c) the second
image after applying the found transformation to it, (d) illustration showing the transforma-
tion applied on the second image of the couple to register it, (e) illustration showing the
difference, in the intensity of the pixels, between the two images of the couple: a black pixel
indicates that the intensities of the corresponding pixels in the images are the same, and a
white pixel indicates the highest difference between the images, (f) illustration showing the
difference, in the intensity of the pixels, between the first image and the transformed second
image.

(a) (b) (c)

(d) (e) (f)

Fig. 10.9 Illustration of the registration of another couple of significantly different images of
a sequence, in the same way as in Figure 10.8.

222 J. Lepagnot et al.

Table 10.2 Transformations found for the registration of each couple of images. The value
of the objective function of the best solution found, denoted by C∗(Φ(t)), is also given.

t c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 C∗(Φ(t))
1 0.039 -0.022 0.005 0.105 -0.034 0.139 -0.039 0.017 0.025 0.091 0.132 0.090 1.199
2 -0.005 -0.029 0.025 0.085 -0.014 0.203 0.077 0.055 0.051 0.068 -0.077 -0.264 1.201
3 0.055 0.063 0.048 0.094 -0.104 -0.239 0.068 0.000 0.000 -0.074 -0.083 -0.256 1.192
4 0.021 0.031 -0.001 0.095 -0.077 -0.223 0.025 0.013 0.006 0.081 -0.144 -0.246 1.195
5 0.063 0.000 0.003 -0.074 -0.026 -0.089 -0.026 0.041 0.011 0.100 0.145 -0.128 1.218
6 0.002 -0.063 -0.033 -0.115 0.034 0.224 -0.019 -0.027 0.024 0.015 0.087 0.258 1.209
7 0.013 -0.092 0.016 0.036 0.080 0.253 -0.060 -0.045 -0.033 -0.077 0.131 0.247 1.208
8 0.003 -0.068 -0.004 -0.023 0.117 0.238 -0.069 -0.047 -0.032 -0.078 0.131 0.247 1.195
9 0.065 -0.020 -0.007 0.044 0.061 -0.046 -0.064 -0.047 -0.023 -0.081 0.131 0.251 1.201

10 0.050 -0.004 -0.017 0.072 0.056 -0.061 0.051 0.005 0.011 -0.052 0.135 -0.043 1.216
11 0.050 0.000 -0.012 -0.004 0.073 -0.053 -0.059 0.047 0.002 0.099 0.164 -0.178 1.216
12 0.060 0.011 0.003 0.080 -0.033 -0.191 -0.024 0.032 0.036 -0.068 0.108 0.048 1.225
13 0.042 0.000 0.000 0.050 -0.018 -0.060 -0.023 0.016 0.002 -0.085 -0.064 -0.218 1.232
14 0.064 -0.005 0.000 0.094 -0.021 -0.199 -0.016 0.075 0.065 -0.039 0.065 -0.210 1.232
15 0.025 -0.008 0.042 0.049 -0.072 0.172 0.037 0.029 0.000 0.104 0.107 -0.037 1.235
16 0.060 0.007 0.003 0.082 -0.026 -0.191 -0.024 0.032 0.034 -0.063 0.111 -0.049 1.216
17 0.050 -0.005 0.000 0.021 0.010 -0.071 -0.025 0.047 0.052 0.018 0.080 -0.170 1.226
18 0.052 -0.005 -0.017 0.083 0.108 -0.121 -0.018 0.042 -0.001 0.071 0.075 0.149 1.225
19 -0.006 0.056 -0.011 -0.080 0.072 -0.210 -0.025 0.076 0.033 -0.057 0.084 -0.158 1.214

• DE (Differential Evolution) [8] using the “DE/target-to-best/1/bin” strategy, a
number of parents equal to NP = 30, a weighting factor F = 0.8, and a crossover
constant CR = 0.9.

As these algorithms are static, we have to consider the registration of each cou-
ple of successive images as a new problem to optimize. Thus, these algorithms are
restarted after the registration of each couple of images, using the stagnation cri-
terion defined in section 10.3.2. The results obtained using MLSDO, as a static
optimization algorithm, are also given. The parameters found for the elastic trans-
formation model are given in Table 10.2. In Table 10.3, the average number of eval-
uations among 20 runs of the algorithms is given. The sum of the best objective
function values (see Equation (10.14)) of each registration of the sequence is also
given, averaged on 20 runs of the algorithms. The convergence of MLSDO, and that
of the best performing static optimization algorithm on the problem at hand, i.e.
CMA-ES, are illustrated by the curves in Figure 10.10. It shows the evolution of the

relative error
(

C∗(Φ(t))−C(Φ(t))
C∗(Φ(t))

)
between the value of the objective function of the

best solution found (C∗(Φ(t))) and that of the current solution (C(Φ(t))) for each
couple of images (t). The presented curves give an idea about the convergence of
the algorithms to an optimal value. It can also be seen as a stagnation metric of the
algorithms. In this figure, the number of evaluations per registration of a couple of
images is fixed to 5000, in order to enable the comparison of the convergence of the
algorithms. For readability, a logarithmic scale is used on the ordinates.

As we can see, the average sum of objective function values given in Table 10.3
shows that the algorithms have a similar average precision. However, we can see in
Table 10.3 that the number of evaluations of the objective function performed by

10 Elastic Registration of Brain Cine-MRI Sequences Using MLSDO 223

Table 10.3 Average number of evaluations to register all couples of images, and average sum
of C∗(Φ(t)), obtained by each algorithm.

Algorithm Evaluations ∑19
t=1 C∗(Φ(t))

Dynamic optimization MLSDO 6880.68 ± 585.92 1.21 ± 7.0E-4

Static optimization

CMA-ES 7709.14 ± 467.75 1.21 ± 9.1E-4
SPSO-07 8007.21 ± 364.24 1.21 ± 8.8E-4

DE 9131.25 ± 279.20 1.21 ± 9.3E-4
MLSDO 9522.76 ± 648.87 1.21 ± 1.7E-3

10
0

or

10

10
-1

iv
e

er
ro

3

10
-2

R
el

at 10
-3

10
-4

10
-5

0 10000 20000 30000 40000 50000 60000 70000

10

80000 90000
Evaluations

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

100 100

10-1 10-1

10-2 10-2

4

10-3

4

10-3

10-4

10-5

10-4

10-5

0 2000 4000 6000 8000 10000
105

85000 87000 89000 91000 93000 95000
10

CMA-ES MLSDO

Fig. 10.10 Convergence graph of MLSDO and CMA-ES on the problem at hand.

MLSDO, used as a dynamic optimization algorithm, is significantly lower than the
ones of the static optimization algorithms. A Wilcoxon-Mann-Whitney statistical
test has been applied on the numbers of evaluations performed by MLSDO and
CMA-ES, the best ranked algorithms in terms of the number of evaluations. This test
confirms at a 99% confidence level that there is a significant difference between their
performances. It can be seen also in Figure 10.10 that the convergence of MLSDO
to an acceptable solution is faster than CMA-ES for the registration of most of the
couples of contours, especially for the last ones. MLSDO needs indeed to learn from
the first registrations in order to accelerate its convergence on the next ones. Thus,
this comparison shows the efficiency of MLSDO and the significance of using a
dynamic optimization algorithm on the problem at hand.

224 J. Lepagnot et al.

10.5 Conclusions

In this chapter, a registration process based on a dynamic optimization algorithm is
proposed to register quickly all the images of a cine-MRI sequence. It takes profit
from the effectiveness of the dynamic optimization paradigm. The process is se-
quentially applied on all the 2D images. The entire procedure is fully automated
and provides an accurate assessment of the ROI deformation throughout the entire
cardiac cycle. Our work under progress consists in the parallelization of the MLSDO
algorithm using Graphics Processing Units.

References

[1] Budoff, M.J., Ahmadi, N., Sarraf, G., Gao, Y., Chow, D., Flores, F., Mao, S.S.: Deter-
mination of left ventricular mass on cardiac computed tomographic angiography. Aca-
demic Radiology 16(6), 726–732 (2009)

[2] Chenoune, Y., Deléchelle, E., Petit, E., Goissen, T., Garot, J., Rahmouni, A.: Segmen-
tation of cardiac cine-MR images and myocardial deformation assessment using level
set methods. Computerized Medical Imaging and Graphics 29(8), 607–616 (2005)

[3] Clerc, M., et al.: The Particle Swarm Central,
http://www.particleswarm.info

[4] Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

[5] Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A multiple local search algorithm for
continuous dynamic optimization (under submission)

[6] Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Im-
age Analysis 2(1), 1–36 (1998)

[7] Nakib, A., Aiboud, F., Hodel, J., Siarry, P., Decq, P.: Third brain ventricle deformation
analysis using fractional differentiation and evolution strategy in brain cine-MRI. In:
Medical Imaging 2010: Image Processing, vol. 7623, pp. 76232I–76232I–10. SPIE,
San Diego (2010)

[8] Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach to
Global Optimization. Springer (2005)

[9] Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D
medical image alignment. Pattern Recognition 32(1), 71–86 (1999)

[10] Sundar, H., Litt, H., Shen, D.: Estimating myocardial motion by 4D image warping.
Pattern Recognition 42(11), 2514–2526 (2009)

[11] Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Comput-
ing 21(11), 977–1000 (2003)

http://www.particleswarm.info

Chapter 11
Artificial Immune System for Solving
Dynamic Constrained Optimization Problems

Victoria S. Aragón, Susana C. Esquivel, and Carlos A. Coello

Abstract. In this chapter, we analyze the behavior of an adaptive immune system
when solving dynamic constrained optimization problems (DCOPs). Our proposed
approach is called Dynamic Constrained T-Cell (DCTC) and it is an adaptation of an
existing algorithm, which was originally designed to solve static constrained prob-
lems. Here, this approach is extended to deal with problems which change over
time and whose solutions are subject to constraints. Our proposed DCTC is vali-
dated with eleven dynamic constrained problems which involve the following sce-
narios: dynamic objective function with static constraints, static objective function
with dynamic constraints, and dynamic objective function with dynamic constraints.
The performance of the proposed approach is compared with respect to that of an-
other algorithm that was originally designed to solve static constrained problems
(SMES) and which is adapted here to solve DCOPs. Besides, the performance of
our proposed DCTC is compared with respect to those of two approaches which
have been used to solve dynamic constrained optimization problems (RIGA and
dRepairRIGA). Some statistical analysis is performed in order to get some insights
into the effect that the dynamic features of the problems have on the behavior of the
proposed algorithm.

Victoria S. Aragón · Susana C. Esquivel
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC),
Universidad Nacional de San Luis - Ejército de los Andes 950 (5700)
San Luis, Argentina
e-mail: vsaragon@unsl.edu.ar

Carlos A. Coello
CINVESTAV-IPN (Evolutionary Computation Group) - Computer Science Department,
Av. IPN No. 2508, Col. San Pedro Zacatenco,
México D.F. 07300, México
e-mail: ccoello@cs.cinvestav.mx

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 225–263.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

vsaragon@unsl.edu.ar
ccoello@cs.cinvestav.mx

226 V.S. Aragón, S.C. Esquivel, and C.A. Coello

11.1 Introduction

Three are the main scenarios that we could have in dynamic constrained optimiza-
tion problems (DCOPs): 1) we could have a dynamic objective function and static
constraints (if the objective function changes over time, this could affect the loca-
tion of the optimum, which could move, for example, from a disconnected feasible
region to another one), 2) we could have a static objective function and dynamic
constraints (in this case, new local optima (or even a new global optimum) could
appear as the infeasible region changes), and 3) we could have a dynamic objective
function and dynamic constraints (this is perhaps the most difficult case, since there
are changes in both the location of the optimum and the infeasible region).

Regardless of the scenario that we consider, DCOPs are, clearly, very difficult
problems [17]. When the objective function is moving, it is necessary to have good
mechanisms to track it. When the dynamic components of the problem are given
by the constraints, then the changes could vary the shape, ratio (with respect to the
entire search space), and/or structure of the feasible region [17].

DCOPs are not simply an academic challenge, since there are several real-
world problems with such features. For example: the cargo movement problem in
metropolitan areas adjacent to marine ports. In particular, truck scheduling and route
planning, where ISO (International Standards Organization) containers need to be
transferred between marine terminals, intermodal facilities, and end customers. In
such an application, the objective is to reduce empty miles, and to improve customer
service. A dynamic component is given in this case for incorporating the informa-
tion of new customers after the set of routes has been determined [10]. Another
example is the assembly of a schedule for transport ships, where the ships transport
liquified natural gas from different ports around the world to one destination port. In
this case, after finding a valid schedule, a recalculation may be needed because some
ships got delayed (for example, due to a storm or some mechanical damage) [14].
Another example are the hydro-thermal power generation systems, in which both the
hydroelectric and the thermal generating units are utilized to meet the total power
demand. The optimum power scheduling problem involves the allocation of power
to all concerned units, but the total fuel cost of thermal generation and emission
properties has to be minimized, while satisfying all the constraints imposed by the
hydraulic and power system networks. The problem is dynamic due to the chang-
ing nature of power demand over time. Thus, ideally, the optimal power scheduling
problem should be considered as an online dynamic optimization problem in which
solutions must be found when there is a change in the power demand [9]. All of
these problems have a great industrial impact, and their efficient solution can, there-
fore, be very profitable. Surprisingly enough, however, the literature on the solution
of DCOPs is relatively scarce. In this chapter, we propose the use of an algorithm
based on an adaptive immune system model for solving DCOPs. The proposed app-
roach has been inspired by the immune responses mediated by the T cells, and con-
stitutes an extension of an algorithm (developed by the authors of this chapter) that
was originally designed for solving static constrained optimization problems.

11 Artificial Immune System for Solving DCOPs 227

The remainder of this chapter is organized as follows. Section 11.2 formally de-
fines the problem of our interest. In Section 11.3, we provide a review of the previ-
ous related work. In Section 11.4, we describe our proposed approach. Section 11.5
presents the test problems and performance measures adopted to evaluate our pro-
posed approach. This section also describes the algorithm that we used to com-
pare our results and the experimental design that we adopted. Finally, Sections 11.6
and 11.7 present the results that we obtained from the experiments performed and
our conclusions, respectively.

11.2 Problem Statement

We are interested in solving problems of the form1:
minimize

f (X ; t) (11.1)

subject to:

g j(X ;t)≤ 0 j = 1, . . . ,m (11.2)

hk(X ;t) = 0 k = 1, . . . , p (11.3)

xl
i ≤ xi ≤ xu

i i = 1, . . . ,n. (11.4)

In Equation (11.1), f designates the objective function, X = (x1,x2, . . . ,xn)
T is a

vector containing the design variables, and t is a positive integer which denotes time.
The remaining functions correspond to inequality constraints g (Equation (11.2)),
equality constraints h (Equation (11.3)), and side constraints with lower and upper
limits indicated by the superscripts l and u (Equation (11.4)), respectively. Both the
objective function and the constraints could be linear or nonlinear.

When an inequality constraint takes a zero value at the optimum, we say that it
is active. By definition, all equality constraints are active at all points of the search
space.

11.3 Previous Related Work

The literature on the solution of DCOPs using artificial immune systems is very
scarce and is briefly reviewed next. Schiex et al. [29] defined the maintenance so-
lution problem in dynamic constraint satisfaction problems (CSPs) and underlined
that the iterative application of commonly used constraint satisfaction algorithms
would result in redundant search and inefficiency. They also indicated that a com-
plete description of the space explored justified in terms of the set of constraints may

1 Without loss of generality, we will assume only minimization problems.

228 V.S. Aragón, S.C. Esquivel, and C.A. Coello

grow exponentially in space. Thus, they proposed a class of nogood recording algo-
rithms to solve the satisfaction problem and simultaneously offered a polynomially
bounded space compromise between both of these approaches. They outperformed
all algorithms considered for the solution maintenance problem in dynamic CSPs,
and also provided very good results for static CSPs.

Modi et al. [16] proposed a formalization of distributed resource allocation that,
its authors claim to be expressive enough to represent both dynamic and distributed
aspects of the problem. They defined different categories of difficulties of the prob-
lem and presented complexity results for them. Also, they defined the notion of
Dynamic Distributed Constraint Satisfaction Problem (DyDCSP) and presented a
generalized mapping from distributed resource allocation to DyDCSP. Through both
theoretical analysis and experimental verifications, they showed that this approach
to dynamic and distributed resource allocation is powerful and can be applied to
real-world problems such as the Distributed Sensor Network Problem.

Mailler [11] presented two protocols for solving dynamic distributed constraint
satisfaction problems which are based on the classical Distributed Breakout Algo-
rithm (DBA) and the Asynchronous Partial Overlay (APO) algorithm. These two
new algorithms are compared on a broad class of problems varying their overall dif-
ficulty as well as the rate at which they change over time. The results obtained by
the author indicate that neither of the algorithms completely dominates the other on
all problem classes, but that depending on environmental conditions and the needs
of the user, one method may be preferable over the other.

Richter and his collaborators have investigated the use of evolutionary algorithms
in dynamic environments in a number of papers [19–28]. Some of these works will
be briefly reviewed next.

In [19], Richter studied the behavior of an evolutionary algorithm in dynamic
environments that change chaotically. Additionally, he analyzed the concept of dy-
namic severity when applied to chaotic changes, as well as the relationship between
severity, change frequency, and predictability of the changes. Richter et al. [20] pro-
posed a memory scheme based on abstraction for evolutionary algorithms with the
aim of solving dynamic optimization problems. In this scheme, the memory does
not store good solutions as themselves but as their abstraction, i.e., their approxi-
mate location in the search space. Thus, when the environment changes, the stored
abstraction information is extracted to generate new individuals into the population.
The authors argued that their results show the efficiency of their proposed approach.
In a further paper, Richter [25] proposed a memory design for solving constrained
dynamic optimization problems using an evolutionary algorithm. Based on ideas
from abstract memory, Richter introduced and tested two schemes: blending and
censoring. Through some experiments he showed that such a memory can be used
to solve certain types of constrained dynamic problems. Richter’s work also involves
a study of the automatic detection of changes through population-based and sensor-
based schemes [22]. In another paper, Richter [24] employed a negative selec-
tion algorithm to detect changes in order to solve dynamic optimization problems.

11 Artificial Immune System for Solving DCOPs 229

His numerical experiments showed that the use of an immunological approach can
be successfully used to solve the change detection problem for dynamic fitness land-
scapes. In Richter et al. [26], the authors proposed a method for generating variable-
sized detectors in the framework of negative selection based artificial immune sys-
tems. The method is inspired by the idea of interpreting the feature space as a poten-
tial field. The authors used a divide-and-conquer algorithm in order to accelerate the
generation of detectors. They also generalized the idea of overlapping detectors by
introducing multiple detector layers compromising different geometric structures
for the used detectors. In [27], Richter et al. proposed a method for solving the
change detection problem for constrained dynamic optimization using evolutionary
algorithms. The basis for this detection is the use of both fitness values and cor-
rected fitness values of the individuals, without requiring any additional data from
the fitness landscape. The fitness distribution of the individuals of one generation is
analyzed using simple statistical measures and by hypothesis test based classifiers.
The authors argued that good results could be found for the constraint change and
the landscape change detection, for classifiers based on the Kolmogorov-Smirnov
test whereas simple statistical methods failed to detect changes with high robust-
ness. Richter et al. [28] considered optimization problems with a dynamic fitness
landscape and dynamic constraints that may change in an independent manner. The
authors argued that this situation can lead to asynchronous change patterns with the
possibility of occasional synchronization points. So, they presented a framework
for describing such a dynamical setting and for performing numerical experiments
on the algorithm’s behavior. The DynCOAA algorithm was proposed by Mertens
et al. [14]. It is based on the Ant Colony Optimization (ACO) metaheuristic and
was designed for solving DCOPs. Its authors compared this approach with respect
to two other algorithms in two different types of problems: artificial graph coloring
problems and real-world ship scheduling problems. The main conclusions from the
authors were the following: DynCOAA is well suited for solving DCOPs, as it beats
DynAWC [16, 29] in the two types of problems that they studied and DynDBA [11]
in one of them. Their second conclusion was that choosing the right algorithm for
a specific problem is very important because the performance of the algorithms
greatly depends on the type of problem being solved. The main difference between
DynCOAA and the approach proposed by us in this paper resides on the biologi-
cal metaphors they are based on: DynCOAA is based on the behavior of ants when
foraging for food and ours is based on the behavior of the immune system when
receiving an external attack. There is also another difference worth emphasizing.
DynCOAA builds a solution and then it takes the best solution as a guideline when
a change occurs. In contrast, our approach does not follow the direction of the best
solution found so far but, instead, the activities of each cell are influenced by another
random cell from the same population to which the cell belongs.

Deb et al. [9] modified the NSGA-II so that it could track down a new Pareto op-
timal front, as soon as there was a change in the problem. The authors investigated
the introduction of a few randomly generated solutions or a few mutated solutions.
The proposed approaches were tested and compared on a benchmark problem and

230 V.S. Aragón, S.C. Esquivel, and C.A. Coello

on the real-world optimization of a hydro-thermal power scheduling problem. This
systematic study was able to find a minimum frequency of change allowed in the
problem for two dynamic EMO procedures to adequately track down the Pareto
optimal frontiers on-line. Based on their results, the authors suggested an automatic
decision-making procedure for arriving at a single optimal solution on-line.

Nguyen et al. [17] studied the characteristics that might make dynamic con-
strained problems difficult to solve by some of the existing dynamic optimization
and constraint-handling algorithms. They also introduced a set of (numerical) dy-
namic benchmark problems with the features analyzed in the paper. They tested
several dynamic and constrained optimization strategies on the proposed benchmark
problems, including the use of two canonical algorithms, a triggered hyper-mutation
Genetic Algorithm (GA), a random-immigrant GA named RIGA (RIGA-elit is an al-
gorithm derivated from the GA (Genetic Algorithm), but after applying the mutation
operator on each generation, a fraction of the population is replaced by randomly
generated individuals, in order to maintain diversity.), and a GA plus repair, named
dRepairGA. The authors stated that their results confirm that dynamic constrained
problems have special characteristics that might significatively affect the perfor-
mance of the algorithms traditionally used for static problems. At the end of the
paper, they proposed a list of possible requirements that an algorithm should meet
to solve dynamic constrained problems effectively. Our algorithm differs from the
ones used by Nguyen et al. [17] in the following aspects: in our proposed DCTC, the
mutation probability is not increased when a change occurs, but instead, it remains
fixed during all the search process. Additionally, any of the randomly generated
cells is inserted into any population, except when virgin cells are initializated. Fi-
nally, our proposed DCTC works over feasible as well as over infeasible solutions
and, therefore, it does not require any repair algorithm. Nguyen et al. [19] pro-
posed a new approach to solving DCOPs, combining existing dynamic optimization
techniques with constraint-handling techniques in order to handle objective-function
changes and constraint-function changes separately and differently. They modified
an existing repair method to track down the moving constraints and combined it
with existing random-immigrant and hyper-mutation operators, in order to handle
objective-function changes. They also used different techniques to detect objective
function changes and constraint-function changes separately and differently. This
proposed approach was used to derive two new algorithms. The first of them was
called dRepairGA and is based on dRepairRIGA, an algorithm which integrates the
characteristics of a GA, a repair method (to transform infeasible solutions into feasi-
ble ones, if possible) and the dynamic optimization strategy RIGA-elit). The second
approach was called dGenocop and is based on Genocop III. They also proposed
variants of these two algorithms. The authors validated their algorithms using 18 test
problems and argued that their proposed algorithms were able to significantly out-
perform GA/RIGA/HyperM and GA+Repair/Genocop III in solving DCOPs while
still maintaining equal or better overall performance in solving other groups of prob-
lems except for the static cases.

11 Artificial Immune System for Solving DCOPs 231

11.4 Our Proposed Approach

Our proposed approach consists of an adaptive immune system model based on the
immune responses mediated by the T cells. Originally, this approach was used to
solve static optimization problems (see [3]). Then, it was extended to solve dynamic
(unconstrained) problems and, later on, to solve (static) constrained problems (see
[1, 2, 4, 5]).

The model that we developed is called TCELL, and it considers many of the pro-
cesses that T cells suffer from their origin in the hematopoietic stem cells in the bone
marrow until they become memory cells. T cells belong to a group of white blood
cells known as lymphocytes. They play a central role in cell-mediated immunity.
They present special receptors on their cell surface called T cell receptors (TCR2).
All T cells originate from hematopoietic stem cells in the bone marrow. Hematopoi-
etic progenitor derived from hematopoietic stem cells populate the thymus and ex-
pand by cell division to generate a large population of immature thymocytes [30].

Several subsets of the T cells have been discovered, each with a distinct function.
Thus, they can be classified in different populations according to the antigen recep-
tor they express. These antigens receptors could be TCR-1 or TCR-2. Additionally,
TCR-2 cells express CD4 or CD8.3

Also, T cells can be divided into three groups according to their maturation or
development level (phylogenies of the T cells [8]): virgin, effector, and memory
cells. Virgin cells are those which have never been activated (i.e., they have not
suffered proliferation or differentiation). At the beginning, these cells do not express
CD4, nor CD8. However, later on, they develop and express both marks, CD4 and
CD8. Finally, virgin cells mature and express only one mark, either CD4 or CD8.
Before these cells release the thymus, they are subject to both positive selection [12]
and negative selection [12]. Positive selection guarantees that the only survivors are
the cells with TCRs that present a moderate affinity with respect to the self MHC.
Negative selection eliminates the cells with TCRs that recognize self components
unrelated to the MHC.

Effector cells are a type of cells that express only one mark, CD4 or CD8. They
can be activated by co-stimulating signals plus their ability to recognize an antigen
[7, 13]. The immune cells interact through the secretion of cytokines.4 Cytokines al-
low cellular communication. Thus, an immune cell ci influences the activities (pro-
liferation and differentiation) of another cell c j through the secretion of cytokines,
modulating the production and secretion of cytokines by c j [8]. In order to activate
an effector cell, a co-stimulated signal is necessary. Such signal corresponds to the
cytokines secreted from another effector cell. The activation of an effector cell im-

2 TCRs are responsible for recognizing antigens bound to major histocompatibility complex
(MHC) molecules.

3 Lymphocytes express a large number of surface molecules that can be used to mark diffe-
rent cellular populations. CD means Cluster Denomination and indicates the group to
which lymphocytes belong.

4 Proteins act as signal transmitters between cells, and also induce growth, differentiation,
activation, etc.

232 V.S. Aragón, S.C. Esquivel, and C.A. Coello

plies that it will be replicated and differentiated. Thus, the proliferation process has
as its goal to replicate the cells and the differentiation process changes the clones so
that they acquire specialized functional properties.

Finally, the memory cells are those that remain in the host even when the infection
or danger has been overtaken, so that in the future, they are able to get stimulated by
the same or by a similar antigen. Usually, they respond (through proliferation and
differentiation) faster with a low dosage of antigens than the B memory cells. It is
worth noting that, although the effector and memory cells are replicated, they are
not subject to somatic hypermutation. For the effector cells, the differentiation pro-
cess is subject to the cytokines released by another effector cell. In our model, the
differentiation process of the memory cells relies on their own cytokines. The im-
mune response consists of two phases: the first (called recognizing phase) involves
the processes that suffer only the virgin cells and the second (called effector phase)
is related to the processes that suffer the effector and memory cells. The recognizing
phase has to provide some diversity so that the next phase can produce a cell to
eliminate the antigen. Meanwhile, the effector phase is in charge of doing this job.

Summarizing the features of the natural immune system that inspired our model,
we can highlight that TCELL considers that T cells react when the system is invaded
by an external pathogen as well as the presence of co-stimulating signals, sent by the
own T cells, according to the Danger Theory. Additionally, TCELL uses the Self-
Non-self concept (in the recognizing phase) in order to remove undesirable cells
which can be considered dangerous to the host. Finally, TCELL also considers the
interaction among the T cells through the secretion of cytokines, as a communication
mechanism.

11.4.1 Proposed Algorithm Based on T-CELL

DCTC (Dynamic Constrained T-Cell) is an algorithm inspired on the TCELL model
[4], which we propose here to solve dynamic constrained optimization problems.
DCTC operates on four populations, corresponding to the groups in which the T-
cells are divided: (1) Virgin Cells (VC), (2) Effector Cells with cluster denomina-
tion CD4 (CD4), (3) Effector Cells with cluster denomination CD8 (CD8), and (4)
Memory Cells (MC). Each population is composed by a set of T cells whose char-
acteristics are subject to the population to which they belong.

Virgin Cells (VC) do not suffer the activation process. They have to provide di-
versity. This is reached through the random acquisition of TCR receptors. Virgin
cells are represented by: 1) a TCR represented by a bitstring using Gray coding
(called TCRb) and 2) a TCR represented by a vector of real numbers (called TCRr).

Into the natural immune system, the positive and negative selections have to re-
move the potentially harmful cells. Thus, in our proposed algorithm, positive se-
lection is in charge of eliminating the cells that recognize the antigen with a low
matching. On the other hand, negative selection has to eliminate the cells that have
a similar TCR, according to a Hamming or a Euclidean distance, depending on
whether the TCR is represented by a TCRb or by a TCRr.

11 Artificial Immune System for Solving DCOPs 233

Effector Cells are composed by: 1) a TCRb or TCRr, if they belong to CD4 or
CD8, respectively, 2) a proliferation level, and 3) a differentiation level. The goal of
this type of cell is to explore in a global way the search space. Thus, CD4 explores
the search space, taking advantage of the Gray coding properties (there is only one
bit of difference between two consecutive numbers), while CD8 uses real numbers
representation (big or small jumps).

The goal of the memory cells is to explore the neighborhood of the best found
solutions. These cells are represented by the same components as CD8.

In our proposal, the TCR identifies the decision variables of the problem, inde-
pendently of the TCR representation. The proliferation level indicates the number of
clones that will be assigned to a cell and the differentiation level indicates the num-
ber of bits or decision variables (depending on the TCR representation adopted) that
will be changed, when the differentiation process is applied.

The activation of an effector cell, called cei, implies the random selection of a set
of potential activator (or stimulating) cells. The closest cell to cei (using Hamming
or Euclidean distance), according to the TCR in the set, is chosen to become the
stimulating cell, say ce j. Then, cei proliferates and differentiates.

At the beginning, the proliferation level of each stimulated cell, cei, is given by
a random value within [1, 3],5 but then, it is determined taking into account the
proliferation level of its stimulating cell (ce j). If the cei is better than ce j, then cei

keeps its own proliferation level; otherwise, cei receives a level which is 10% lower
than the level of ce j.

Memory cells proliferate and differentiate according to their proliferation level
(randomly between 1 and the size of MC6) and differentiation level (number of
decision variables,7) respectively. Both levels are independent from the other mem-
ory cells.

In our proposed DCTC algorithm, the constraint-handling method needs to cal-
culate, for each cell (solution), regardless of the population to which it belongs, the
following: 1) the sum of constraint violations (sum res)8 and 2) the value of the
objective function (only if the cell is feasible).

We consider that a cei cell is better than a ce j cell if: 1) TCR’s cei is feasible and
TCR’s ce j is infeasible, 2) both cells have feasible TCRs but the objective function
value of cei is lower than the objective function value of ce j, and 3) both cells have
infeasible TCRs but sum res’ of cei is lower than sum res’ of ce j. This criterion is
used to sort the population. Each type of cell has its own differentiation process,
which is blind to their representation and population:

Differentiation for CD4: the differentiation level of cei is determined by the
Hamming distance between the stimulated (cei) and stimulating (ce j) cells. It
indicates the number of bits to be changed. Each decision variable and the bit to

5 This value was derived after numerous experiments.
6 This is an arbitrary value in order to avoid overloading the number of required parameters.
7 This value was set thinking on performing an intensive local search.
8 This is a positive value determined by gi(x)+ for i = 1, . . . ,m and |hk(x)| for k = 1, . . . , p.

234 V.S. Aragón, S.C. Esquivel, and C.A. Coello

be inverted are chosen in a random way. The bits change according to a proba-
bility probdi f f−CD4. The pseudo-code for the proliferation and differentiation of
cell cei is shown in Algorithm 11.1.

Algorithm 11.1. Differentiation CD4

for np = 1 to Proliferation Level of cei do
clonenp ← cei ;

end
for nd = 1 to Differentiation Level of cei do

if probdi f f−CD4 then
k←U(1, | vd |);
l←U(1, | bitsk |);
Invert the lth-bit of vdk of the clonenp;

end
end

where U(1,w) refers to a random number with a uniform distribution in the range
(1,w), | vd | is the number of decision variables of the problem, | bitsk | is the
number of bits to represent the kth decision variable, and vdk indicates the kth

decision variable.
Differentiation for CD8: the differentiation level for cell cei is related to its stim-

ulating cell (ce j). If the TCRr of the ce j is better than the TCRr of the stimulated
cell cei (according to the objective function value), then the level (for cei) is a
random number within [1, | dv |9]; otherwise, it is a random value within [1,
| dv | /2], where | dv | is the number of decision variables of the problem. Each
variable to be changed is chosen in a random way and it is modified according to
Equation (11.5):

x
′
= x±U(0, lu− ll)

107iter

U(0,1)

, (11.5)

where x and x
′

are the original and the mutated decision variables, respectively.
lu and ll are the upper and lower bounds of x, respectively. iter indicates the
number of iterations until reaching the maximum number of evaluations for a
change. At the moment of the differentiation of a cell (cei), the value of the
objective function of its stimulating cell (ce j) is taken into account. In order to

determine if r = U(0,lu−ll)
107iter

U(0,1)
, will be added or subtracted to x, the following

criteria are considered: if ce j is better than cei and the decision variable value
of ce j is less than the value of cei, or if cei is better than ce j and the decision
variable value of cei is less than the value of ce j, then r is subtracted from x;
otherwise, r is added to x. Both criteria aim to guide the search towards the best
solutions found so far. The pseudo-code for the proliferation and differentiation
of the cell cei with the stimulating cell ce j is shown in Algorithm refCD8:

9 If the stimulating cell is better, then cei should change more decision variables

11 Artificial Immune System for Solving DCOPs 235

Algorithm 11.2. Differentiation CD8

for np = 1 to Proliferation Level of cei do
Clonenp ← cei ;
for nd = 1 to Differentiation Level of cei do

k←U(1, | vd |);
r← U(0,lu−ll)

107iter

U(0,1)
;

if f (ce jTCRr) is better than f (ceiTCRr) and ce jTCRrk
< ceiTCRrk

o f (ceiTCRr) is

better than f (ce jTCRr) and ce jTCRrk
> ceiTCRrk

then
ClonenpTCRrk ← ceiTCRrk

− r

else
else if f (ce jTCRr) is better than f (ceiTCRr) and ce jTCRrk

> ceiTCRrk
o

f (ceiTCRr) is better than f (ce jTCRr) and ce jTCRrk
< ceiTCRrk

then
ClonenpTCRrk ← ceiTCRrk

+ r;

end
Add or subtract r with probability 50%;

end
end

end

where U(w1,w2) refers to a random number with a uniform distribution in the
range (w1,w2), | vd | is the number of decision variables of the problem, lux and
llx are the upper and lower bounds of x, respectively. iter indicates the number
of iterations until reaching the maximum number of evaluations for a change.
f (cehTCRr) is the objective function value for the TCRr of the cell ceh, and
cehTCRrk

indicates the kth decision variable of the cell h. If after ten trials, the
procedure cannot find an x′ in the allowable range, a random number with a uni-
form distribution is assigned to it.

Differentiation for MC: the number of decision variables to be changed is deter-
mined by the differentiation level of the cell to be differentiated. Each variable
to be changed is chosen in a random way and it is modified according to Equa-
tion (11.6):

x
′
= x±

(
U(0, lux− llx)

107iter

)U(0,1)

, (11.6)

where x and x
′

are the original and the mutated decision variables, respectively.
U(0,w) refers to a random number with a uniform distribution in the range (0,w).
lux and llx are the upper and lower bounds of x, respectively. iter indicates the
number of iterations until reaching the maximum number of evaluations for a

change. In a random way, we decide if r =
(

U(0,lux−llx)
107iter

)U(0,1)
will be added or

subtracted to x. If after ten trials, the procedure cannot find an x′ in the allowable
range, then a random number with a uniform distribution is assigned to it.

236 V.S. Aragón, S.C. Esquivel, and C.A. Coello

The general structure of our proposed algorithm for dynamic constrained opti-
mization problems is given in Algorithm 11.3.

Algorithm 11.3. DCTC Algorithm
1: Initialize VC();
2: Evaluate VC();
3: Assign Proliferation();
4: Divide CDs();// take into account feasibility of the solutions
5: Positive Selection CD4();// eliminate the worst cells in CD4
6: Positive Selection CD8();// eliminate the worst cells in CD8
7: Negative Selection CD4();// eliminate the most similar cells in CD4
8: Negative Selection CD8();// eliminate the most similar cells in CD8
9: while A predetermined number of changes has not been reached do

10: while A predetermined number of evaluations has not been performed do
11: Proliferate CD4();
12: Differentiate CD4();
13: Sort CD4();
14: Proliferate CD8();
15: Differentiate CD8();
16: Sort CD8();
17: Insert CDs en MC();
18: for i = 1 to repMC do
19: Proliferate MC();
20: Differentiate MC();
21: end for
22: Sort CM();
23: end while
24: Statistics();
25: Change Function();
26: Re-evaluate Populations();
27: end while

The algorithm works in the following way. At the beginning, the TCRb and TCRr

from the virgin cells are initialized in a random way, according to the TCR’s encod-
ing (step 1). Then, each TCR of a virgin cell is evaluated (step 2). In step 3, the
proliferation levels are assigned. Then, in step 4, the virgin cells are divided taking
into account their feasibility. Next, the feasible cells, TCRb and TCRr, from VC are
selected to form CD4 and CD8, respectively. If it is not possible to complete the
required number of cells, then the infeasible TCRs needed to reach such a value
are selected. Each effector cell will inherit the proliferation level of the virgin cell
which received the TCR.

The negative and positive selections are applied to each effector population (CD4
and CD8). The first selection eliminates 10% of the worst cells and the second

11 Artificial Immune System for Solving DCOPs 237

selection eliminates cells that are similar among them (keeping the best from them).
This mechanism works in the following way: for each effector cell, we search inside
its population the closest cell (using Hamming or Euclidean distance according to
the TCR’s cell) and the worst from them is eliminated. This process reduces the
effector’s population sizes.

The first iteration (line 9) is controlled by the number of changes of the objective
function.

Furthermore, for each change, a maximum number of objective function evalu-
ations is allowed (line 10)10. The steps inside the last iteration are: first, to activate
the CD4 population; in other words, to perform proliferation and differentiation of
all the cells from CD4 (lines 11 and 12). Then, these cells are sorted (line 13).
Next, the CD8 population is activated. This means that we perform proliferation
and differentiation of all the cells from CD8 (lines 14 and 15), which are sorted in
(line 16).

The best solutions from CD4 and CD8 are inserted or are used to replace the 50%
of the worst solutions in MC (depending on whether or not, MC is empty) (lines 17).
Since the representation schemes of the TCR, for CD4 and MC, are different, be-
fore the insertion of the best cell from CD4 (with TCRb) into MC, the receptor has
to be converted into a real-values vector (TCRr). For this process, we use Equa-
tion (11.7), which takes as input a bitstring generated with Gray coding and returns
a real number (this process is applied as many times as decision variables has the
problem):

dv j = ll j +
∑

Lj
i=0 2Lj−idv′i j(lu j− ll j)

2L
j − 1

, (11.7)

where dv j is the jth decision variable with j = 1, . . . , number of decision variables
of the problem, Lj is the number of bits for the jth decision variable, lu j and ll j are
the upper and lower limits for the decision variable dv j, respectively. And dv′i j is the

ith bit of the bitstring that represents dv j. Also, Equation (11.7) is used when a cell
from CD4 has to be decoded in order to be evaluated. Next, the cells from MC are
activated a certain (predefined) number of times, repMC (lines 19 and 20).

The algorithm is notified about the existence of a change in the environment
(line 25), since that information is required in order to re-evaluate the populations
(step 26). Even when some literature about change detection exists (see for example,
[22, 24, 26, 27]), dealing with this (rather difficult) topic is beyond the scope of this
chapter. Here, we only focus on the mechanisms to react to any incoming changes.
In fact, when using metaheuristics, it is normally assumed that the search engine
will be informed whenever a change has occurred.

10 Since it is not known a priori how many clones will be assigned to each cell, it is possi-
ble to exceed the maximum number of evaluations per change in 3 | f easible(CD4) | + |
f easible(CD8) | +repMC | f easible(MC) |2, where f easible(x) indicates the number of
feasible solutions in population x.

238 V.S. Aragón, S.C. Esquivel, and C.A. Coello

11.5 Experiments

In this section, we describe our experimental setup. This includes a description of the
set of test problems used to validate our proposed DCTC, the performance measures
used to evaluate it, the corresponding parameters settings, and the description of the
algorithm chosen to compare our results. Some statistical analysis is performed in
order to determine the effect of the dynamic features of the problems on the behavior
of the proposed algorithm.

11.5.1 Dynamic Constrained Benchmark

In order to validate our proposed approach, we adopted eleven dynamic constrained
optimization problems from a set that was originally proposed by Nguyen et al. [17].
The subset of problems chosen presents some kind of dynamism, either in the ob-
jective function, in the constraint or both. Table 11.1 summarizes the main features
of the test problems adopted.

11.5.2 Performance Measures

Here, we describe the performance measures adopted for our experimental study.
One of them is relatively popular in the literature [6]: the offline error (oe), which
represents the average of the best error at each iteration. This measure is calculated
here, only for feasible solutions. If an infeasible solution is found then nothing is
added, as defined by Equation (11.8).

oe =
1

Nc

Nc

∑
j=1

iter

∑
i=1

(f ∗j − f ∗ji)), (11.8)

where Nc is the total number of changes within an experiment, iter is the current
iteration number, f ∗j is the value of the optimum solution for the jth state11 and f ∗ji
is the current best fitness value found for the jth state.

The ideal value for oe is zero, which would mean that the optimum was found at
the very beginning of each state.

As oe is calculated only for feasible solutions, it is possible that this value be-
comes zero or a value close to it, but without finding any feasible solution. For this
reason, we use this measure along with the measure r f , which calculates the per-
centage of runs in which at least one feasible solution was found for all the changes
that took place. Thus, the ideal value of r f is 100%, which would mean that, in all
runs, feasible solutions were found, for all changes.

11 We call state to the time period where objective function and constraints remain fixed.

11 Artificial Immune System for Solving DCOPs 239

Table 11.1 Main features of the test problems adopted

Problem ObjFunc Constr. DFR Parameters Setting

G24 l f1 Dynamic g1 g2 Fixed 2 p2(t) = ri(t) = 1;qi(t) = si(t) = 0; p1(t) =
sin(kπt + π

2)
G24 2 f1 Dynamic g1 g2 Fixed 2 i f (t mod 2 = 0) =⎧⎨

⎩
p1(t) = sin(kπt

2 + π
2)

p2(t) =
{

p2(t−1) i f t > 0
p2(0) = 0 i f t = 0

i f (t mod 2 �= 0) ={
p1(t) = sin(kπt

2 + π
2)

p2(t) = sin(kπ(t−1)
2 + π

2)
ri(t) = 1;qi(t) = si(t) = 0;

G24 3 f1 Fixed g1 g2 Dynamic 2-3 pi(t)= ri(t)= 1;qi(t)= s1(t)= 0;s2(t)= 2+
t x2 max−x2 min

S
G24 3b f1 Dynamic g1 g2 Dynamic 2-3 p1(t) = sin(kπt + π

2); p2(t) = ri(t) =

1;qi(t) = s1(t) = 0;s2(t) = 2+ t x2 max−x2 min
S

G24 4 f1 Dynamic g1 g2 Dynamic 2-3 p1(t) = sin(kπt + π
2); p2(t) = ri(t) =

1;qi(t) = s1(t) = 0;s2(t) = t x2 max−x2 min
S

G24 5 f1 Dynamic g1 g2 Dynamic 2-3 i f (t mod 2 = 0) =⎧⎨
⎩

p1(t) = sin(kπt
2 + π

2)

p2(t) =
{

p2(t−1) i f t > 0
p2(0) = 0 i f t = 0

i f (t mod 2 �= 0) ={
p1(t) = sin(kπt

2 + π
2)

p2(t) = sin(kπ(t−1)
2 + π

2)
ri(t) = 1;qi(t) = s1(t) = 0;s2(t) =

t x2 max−x2 min
S

G24 6a f1 Dynamic g3 g6 Fixed 2 p1(t) = sin(πt+ π
2); p2(t) = ri(t) = 1;qi(t) =

si(t) = 0;
G24 6c f1 Dynamic g3 g4 Fixed 2 p1(t) = sin(πt+ π

2); p2(t) = ri(t) = 1;qi(t) =
si(t) = 0;

G24 6d f1 Dynamic g5 g6 Fixed 2 p1(t) = sin(πt+ π
2); p2(t) = ri(t) = 1;qi(t) =

si(t) = 0;
G24 7 f1 Fixed g1 g2 Dynamic 2 pi(t) = ri(t) = 1;qi(t) = s1(t) = 0;s2(t) =

t x2 max−x2 min
S

G24 8b f2 Dynamic g1 g2 Fixed 2 pi(t) = −1;qi(t) = −(1.4706 +
0.859cos(kπt));q2(t) = −(3.442 +
0.859sin(kπt));ri(t) = 1;si(t) = 0

Fixed - There is no change
Dynamic - The function is dynamic
f1 = −(X1(x1; t)+X2(x2; t))

f2 = −3exp
(
−
√√

(X1(x1; t))2 +(X2(x2; t))2

)

g1 =−2Y1(x1; t)4 +8Y1(x1; t)3−8Y1(x1; t)2 +Y2(x2; t)−2
g2 = −4Y1(x1; t)4 +32Y1(x1; t)3−88Y1(x1; t)2 +96Y1(x1; t)+Y2(x2; t)−36
g3 = 2Y1(x1; t)+3Y2(x2; t)−9

g4 =
{−1 i f (0≤ Y1(x1; t)≤ 1)or (2≤ Y1(x1; t)≤ 3)

1 otherwise

g5 =
{−1 i f (0≤ Y1(x1; t)≤ 0.5)or (2≤ Y1(x1; t)≤ 2.5)

1 otherwise

g6 =
{−1 i f [(0≤ Y1(x1; t)≤ 1)and (2≤ Y2(x2; t)≤ 3)]or (2≤ Y1(x1; t)≤ 3)

1 otherwise

where Xi(x; t) = pi(t)(x+qi(t)), Yi(x; t) = ri(t)(x+ si(t)), 0≤ x1 ≤ 3, 0≤ x2 ≤ 4, pi(t), qi(t), ri(t)
and si(t) are the dynamic parameters. The first two of them determine how the objective function
changes over time and the rest determine how the constraint functions change
DFR - Number of Disconnected Feasible Regions
In all problems, except for G24 3 and G24 7, the global optimum switches between disconnected
regions
Only in problem G24 3 a new optimum appears without changing the existing one.

240 V.S. Aragón, S.C. Esquivel, and C.A. Coello

From [17], we took the measures ARR and RR, which indicate how quickly does
the algorithm converge to the global optimum before the next change occurs, and
how quickly does the algorithm recover from an environmental change and starts
converging to a new solution before a change occurs, respectively. ARR and RR are
defined by equations (11.9) and (11.10):

ARR =
1

Nc

Nc

∑
i=1

∑p(i)
j=1[f

∗
i j− f ∗i1]

p(i)[f ∗i − f ∗i1]
(11.9)

RR =
1

Nc

Nc

∑
i=1

∑p(i)
j=1[f

∗
i j− f ∗i1)]

p(i)[f ∗ip(i)− f ∗i1]
(11.10)

where f ∗i j is the objective function value of the best feasible solution found since the
last change until the jth iteration of the algorithm of the state i, Nc is the number
of changes, p(i) is the maximum number of iterations performed by the algorithm
for the state i, and f ∗i is the optimum value for the state i. Both, ARR and RR have
their ideal values in 1. Both ARR and RR would be 1 when the algorithm is able to
recover and converge to a solution (the optimal solution for ARR) immediately after
a change, and would be equal to zero in case the algorithm is completely unable to
recover from the change.

Nguyen et al. [17] proposed how to analyze the convergence behavior/recovery
speed of an algorithm through a plot of the RR/ARR scores. If a point is:

1. on the thick diagonal line, the algorithm has recovered and has converged to the
optimum;

2. at the top right corner, the algorithm has recovered quickly and is having a good
performance;

3. at the bottom right corner, it is likely that the algorithm has converged to a local
optimum;

4. at the bottom left corner, the algorithm has recovered slowly and has not con-
verged yet.

11.5.3 Parameters Settings

Since the literature on dynamic constrained optimization using artificial immune
systems is scarce, in order to validate our proposed approach, we decided to adapt
an algorithm that was originally proposed to solve (static) constrained optimization
problems. This approach was proposed in [15], and it consists of a simple multi-
membered evolution strategy, called SMES. This approach does not require the use
of penalty factors (or a penalty function at all). Instead, it uses a diversity mecha-
nism based on allowing infeasible solutions to remain in the population. It also uses
a comparison mechanism based on feasibility to guide the process towards the fea-
sible region of the search space. Also, the initial step size of the evolution strategy
is reduced in order to perform a finer search and a combined (discrete/intermediate)

11 Artificial Immune System for Solving DCOPs 241

panmictic recombination technique improves its exploitation capabilities. The app-
roach was tested with a well-known benchmark, obtaining very competitive results.
Its source code was taken fromhttp://www.cs.cinvestav.mx/˜EVOCINV/
SES/principal.html. We modified this code by adding a mechanism for re-
evaluating populations after a change occurs. We called this new version SMESD.
Table 11.2 highlights the main differences between DCTC and SMESD. Addition-
ally, our results are indirectly compared to two approaches which are known to
perform well in dynamic optimization, namely RIGA-elit and dRepairRIGA [19].

Table 11.2 Differences and similarities between DCTC and SMESD

DCTC SMESD
Search engine Artificial Immune System based on

T cells behavior
Multimembered Evolution
Strategy

Population size 4 1
Number of mutation
operators

3 1

Mutation rate Fixed It is decreased during the
search process

Recombination opera-
tor

No Yes

Constraint-handling
mechanism

Discrimination between feasible
and infeasible solutions.

Discrimination between feasi-
ble and infeasible solutions.

It uses the sum of constraint viola-
tions.

It uses the sum of constraint
violations.

No penalty function is required. No penalty function is re-
quired.

Extra diversity mecha-
nism

No It allows that the best infeasi-
ble solution which is closest to
the boundary with the feasible
region remaining into the pop-
ulation with some probability
(given by the user).

The following experiments were performed for our proposed DCTC and for
SMESD for validation purposes and in order to compare the performance of these
two approaches. Both algorithms were implemented in C and the experiments were
performed on a PC having an Intel Pentium P6000 processor, running at 1.87 GHz,
and with 3 GB in RAM.

11.5.3.1 Benchmark Problems Setting

Table 11.3 indicates the parameters settings adopted for our proposed DCTC, for
SMESD, for RIGA-elit, and for dRepairRIGA. The dynamic parameters were set as
follows:

• Number of runs: 50
• Number of changes: 5/k

242 V.S. Aragón, S.C. Esquivel, and C.A. Coello

• Change frequency: 250, 500, and 1000 objective function evaluations per change
• Objective function severity of the changes (k): 0.25 (small), 0.5 (medium) and

1.0 (large). For G24 6a, G24 6c, and G24 6d only, k=1.0
• Constraints severity of the changes (S): 10 (small), 20 (medium) and 50 (large)

It is worth noting that optimal values (necessary to calculate the offline errors),
for each period through functions, were not provided in [17]. Thus, we obtained
them by executing DCTC and SMESD with a budget of 350000 objective function
evaluations pro period (for each dynamic parameters setting). Then, we took the
best solution for each period (choosing from the union of the solutions obtained by
both DCTC and SMESD). Therefore, the offline errors for DCTC and SMESD were
calculated using these optimal values. Since the comparison of the results of DCTC
with respect to those of RIGA-elit and dRepairRIGA is indirect and, considering that
in [19], the authors do not describe how the optimal values were found, we cannot
guarantee that we used the same values adopted by them. Additionally, in [19], only
the results for medium severity and when using 1000 objective function evaluations
pro period are reported.

Table 11.3 Parameters settings for DCTC, SMESD, RIGA-elit, and dRepairRIGA

Parameter DCTC Parameter SMESD Parameter RIGA-elit Parameter dRepairRIGA

VC 20 parents 10 popsize 25 popsize 20
CD4/
CD8

10 children 20 elitism Yes elitism Yes

CM 5 Apply
diversity
mecha-
nism

Yes selection
method

non-
linear
ranking

selection
method

non-linear
ranking

repMC 2 Selection
ratio

0.97 mutation
operator

uniform
(P=0.15)

mutation
operator

uniform
(P=0.15)

probmut 0.9 crossover
operator

arithmetic
(P=0.1)

crossover
operator

arithmetic
(P=0.1)

clones 3 rand-
inming

rate
(P=0.3)

rand-
inming

rate (P=0.3)

reference
popsize

5

replace
rate

0

In order to statistically determine if when we increase the change frequency, the
objective function severity, the constraints severity or if when vary the dynamic
features of the problems, our proposed DCTC produces results with significant dif-
ferences, we performed an analysis of variance (ANOVA) taking into account the
offline errors attained by our proposed DCTC from each run of all the experiments
performed. Thus, the hypotheses considered were the following:

11 Artificial Immune System for Solving DCOPs 243

Null Hypothesis: there is no significant difference among the averages of the of-
fline errors (oe). If there are differences, they are due to random effects.

Alternative Hypothesis: there is a combination of factor values for which the av-
erages of the offline errors (oe) are significatively different and these differences
are not due to random effects.

As the results (offline errors) do not follow a normal distribution, we applied the
Kruskal-Wallis test, to perform the ANOVA and then the Turkey method in or-
der to determine the experimental conditions for which significant differences exist.
The results obtained by the ANOVA proved the Null Hypothesis for several com-
binations of parameters. However, the Alternative Hypothesis was proved, too. Ta-
bles 11.9 to 11.11 summarize the values of severity for which significant different
results were detected.

11.6 Discussion of Results

The running time depends on the number of objective function evaluations and the
test function itself. For instance, for G24 1, the running time taken by one run ranges
from 9 to 200 milliseconds when 250 and 1000 objective function evaluations pro
period are performed, respectively. For G24 3, the execution time taken by one run
ranges from 12 to 243 milliseconds when 250 and 1000 objective function evalua-
tions pro period are performed, respectively. Finally, for G24 3b, the running time
taken by one run ranges from 12 to 239 milliseconds when 250 and 1000 objective
function evaluations are performed, respectively.

Table 11.4 shows the results obtained for problems with both a dynamic objective
function and dynamic constraints. If we fix the number of objective function evalu-
ations pro period as well as the constraint severity values and increase the objective
function severity values, we can see how for G24 3b, in general, the offline errors
deteriorate. But there are significant differences only between the results produced
when adopting low and medium values of k with respect to those obtained when k
is large. Furthermore, when the constraint severity is large, the results which show
significant differences are those produced with low values of k with respect to those
obtained with medium and large values of k.

For G24 4, an increase in the objective function severity value gives rise to worse
offline errors with our proposed DCTC. In this case, we obtain results with signif-
icant differences when the number of objective function evaluations pro period is
equal to 250 and the constraint severity value is low. For 500 and 1000 evalua-
tions, the results that show significant differences are those produced with low and
medium values of k with respect to those obtained with large values of k.

For G24 5, an increase in the objective function severity value also deteriorates
the offline errors produced by our proposed DCTC. In this case, we obtain signifi-
cant differences when, in general, the constraint severity values are low and medium
and k grows from low to medium. In general, when the constraint severity value is

244 V.S. Aragón, S.C. Esquivel, and C.A. Coello

Table 11.4 Offline errors (the standard deviation is shown in parentheses) for problems with
dynamic objective function and dynamic constraints

Dynamic Parameters
k=0.25 k=0.5 k=1.0

Ev. Probl. Alg. S=10 S=20 S=50 S=10 S=20 S=50 S=10 S=20 S=50

DCTC 0.59 0.54 0.56 0.55 0.57 1.15 1.67 1.09 1.68
(0.15) (0.15) (0.14) (0.13) (0.13) (0.13) (0.26) (0.29) (0.20)

250 G24 3b
SMESD 0.85 0.851 0.87 0.78 0.83 1.44 1.49 1.31 2.40

(0.00) (0.00) (0.00) (0.00) (0.04) (0.00) (0.25) (0.14) (0.00)
DCTC 0.43 0.41 0.28 0.71 0.62 0.28 1.53 1.33 1.33

(0.07) (0.05) (0.04) (0.08) (0.05) (0.06) (0.13) (0.09) (0.11)
250 G24 4

SMESD 0.82 0.80 0.69 1.05 0.99 0.68 1.91 2.17 2.14
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.15) (0.00) (0.00)

DCTC 0.21 0.18 0.11 0.34 0.31 0.12 0.46 0.28 0.31
(0.02) (0.02) (0.02) (0.04) (0.04) (0.04) (0.08) (0.11) (0.09)

250 G24 5
SMESD 0.38 0.44 0.45 0.68 0.53 0.22 0.43 0.24 0.35

(0.01) (0.11) (0.03) (0.10) (0.03) (0.00) (0.00) (0.01) (0.00)
DCTC 0.54 0.49 0.49 0.49 0.51 1.03 1.59 0.93 1.54

(0.16) (0.13) (0.10) (0.14) (0.11) (0.10) (0.23) (0.18) (0.16)
500 G24 3b

SMESD 0.84 0.81 0.842 0.74 0.81 1.40 1.72 1.79 2.36
(0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.00) (0.06) (0.00)

DCTC 0.36 0.35 0.23 0.63 0.55 0.20 1.41 1.26 1.20
(0.05) (0.02) (0.03) (0.05) (0.04) (0.04) (0.06) (0.08) (0.07)

500 G24 4
SMESD 0.81 0.813 0.67 0.834 0.94 0.61 2.23 2.05 2.03

(0.00) (0.02) (0.00) (0.04) (0.00) (0.00) (0.00) (0.00) (0.01)
DCTC 0.18 0.15 0.07 0.28 0.26 0.07 0.38 0.20 0.25

(0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (0.04) (0.05) (0.07)
500 G24 5

SMESD 0.47 0.58 0.52 0.47 0.45 0.17 0.32 0.37 0.73
(0.08) (0.19) (0.16) (0.02) (0.03) (0.00) (0.00) (0.28) (0.00)

DCTC 0.47 0.43 0.39 0.41 0.45 0.98 1.44 0.83 1.45
(0.12) (0.08) (0.06) (0.12) (0.09) (0.09) (0.18) (0.14) (0.08)

1000 G24 3b
SMESD 0.875 0.826 0.82 0.73 0.81 1.497 2.23 1.65 2.00

(0.03) (0.02) (0.03) (0.00) (0.00) (0.09) (0.00) (0.01) (0.29)
DCTC 0.32 0.32 0.19 0.57 0.50 0.15 1.36 1.17 1.13

(0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.05) (0.05) (0.05)
1000 G24 4

SMESD 0.81 0.808 0.689 1.0610 0.8711 0.61 2.07 1.57 2.01
(0.00) (0.02) (0.02) (0.06) (0.09) (0.00) (0.22) (0.22) (0.00)

DCTC 0.17 0.12 0.06 0.25 0.23 0.03 0.34 0.15 0.20
(0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (0.03)

1000 G24 5
SMESD 0.56 0.73 1.00 0.57 0.72 0.83 0.78 0.64 0.72

(0.15) (0.07) (0.17) (0.30) (0.24) (0.05) (0.12) (0.00) (0.00)

1 r f =32.0 - 2 r f =68.0 - 3 r f =44.0 - 4 r f =6.0 - 5 r f =30.0 - 6 r f =70.0 - 7 r f =46.0 - 8 r f =80.0
- 9 r f =60.0- 10 r f =54.0 - 11 r f =68.0

11 Artificial Immune System for Solving DCOPs 245

large, the results show significant differences only between those obtained with low
and medium values k and those corresponding to large values of k.

On the other hand, if we fix the number of objective function evaluations pro pe-
riod as well as the objective function severity values and we increase the constraint
severity value, we can see how G24 3b offline errors with low k improve but with-
out significant differences. If we use medium values of k, the results get worse but
show significant differences only between the results produced with low and medium
values of S with respect to those obtained when S is large. In general, with large val-
ues of k, the best results are obtained with medium values of S showing significant
differences with respect to the results obtained with low and medium values of S.

For G24 4, if we adopt either a low or a large value of k, an increase of S improves
the results but not with significant differences. With a medium value of k, the results
also improve, showing significant differences only between the results produced
with low and medium values of S with respect to those obtained when S is large.

For G24 5, an increase in S improves the results produced by our proposed
DCTC. For low values of k, the results show significant differences only between the
results produced with either a low or a large S. For medium values of k, the results
show significant differences between the results produced with low and medium
values of S with respect to those obtained with large values of S. For large values of
k, the best results are obtained with medium values of S, showing significant differ-
ences only with respect to those obtained with low values of S, but not with respect
to those produced with large values of S.

An increase in the number of objective function evaluations per change does
not produce results with significant differences for G24 3b and G24 4. For G24 5,
the results obtained for 250 evaluations present significant differences with respect
to those found for 1000 evaluations with a large value of k and either a low or a
medium S.

Our proposed DCTC always outperforms SMESD, when compared on problems
with dynamic objective function and dynamic constraints, except for four cases as
shown in Table 11.4. Furthermore, in one case, (the eleventh experiment), SMESD
fails to find feasible solutions in all changes for all runs, while our proposed DCTC
had success in the same task.

Tables 11.5 and 11.6 show the results obtained for problems with a dynamic
objective function and fixed constraints. If we fix the number of objective function
evaluations pro period and we increase the objective function severity value, we
can see how for G24 l and G24 2 the offline errors get worse. But the results show
significant differences only between the results produced when using low and large
values of k, for 250 and 500 evaluations per change.

For G24 6a, G24 6c, and G24 8b, in general, offline errors get worse when k
grows. But the results show significant differences only when they are produced with
low values of k with respect to those produced with medium and large values of k.

For G24 6d, an increase in the objective function severity value deteriorates the
offline errors but not with significant differences.

An increase in the number of objective function evaluations pro period when k is
fixed produces better results with significant differences.

246 V.S. Aragón, S.C. Esquivel, and C.A. Coello

Table 11.5 Offline errors (the standard deviation is shown in parentheses) for problems with
dynamic objective function and fixed constraints

Dynamic Parameters
Ev. Probl. Alg. k=0.25 k=0.5 k=1.0

DCTC 0.03 (0.01) 0.05 (0.03) 0.12 (0.04)
250 G24 l

SMESD 1.66 (0.00) 1.58 (0.00) 2.39 (0.03)
DCTC 0.08 (0.03) 0.12 (0.03) 0.18 (0.10)

250 G24 2
SMESD 0.77 (0.01) 0.38 (0.00) 0.16 (0.00)
DCTC 0.11 (0.04) 0.25 (0.08) 0.58 (0.19)

250 G24 8b
SMESD 0.55 (0.01) 0.74 (0.00) 0.76 (0.00)
DCTC 0.00 (0.00) 0.01 (0.01) 0.03 (0.02)

500 G24 l
SMESD 1.65 (0.00) 1.58 (0.01) 1.74 (0.00)
DCTC 0.05 (0.02) 0.06 (0.03) 0.12 (0.07)

500 G24 2
SMESD 0.84 (0.08) 0.26 (0.07) 0.57 (0.00)
DCTC 0.04 (0.02) 0.12 (0.06) 0.29 (0.13)

500 G24 8b
SMESD 0.51 (0.00) 0.69 (0.09) 1.07 (0.00)
DCTC 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

1000 G24 l
SMESD 1.65 (0.00) 1.57 (0.00) 2.32 (0.00)
DCTC 0.03 (0.01) 0.03 (0.02) 0.04 (0.04)

1000 G24 2
SMESD 1.31 (0.12) 0.79 (0.12) 0.49 (0.20)
DCTC 0.01 (0.01) 0.03 (0.02) 0.07 (0.07)

1000 G24 8b
SMESD 0.51 (0.00) 0.72 (0.01) 1.03 (0.00)

Table 11.6 Offline errors (the standard deviation is shown in parentheses) for problems with
dynamic objective function and fixed constraints

Algorithms
Ev. Probl. DCTC SMESD

250 G24 6a 0.26 (0.38) 1.76 (0.00)
250 G24 6c 0.12 (0.05) 0.11 (0.00)
250 G24 6d 0.14 (0.18) 0.55 (0.00)
500 G24 6a 0.06 (0.12) 1.75 (0.00)
500 G24 6c 0.06 (0.03) 0.10 (0.04)
500 G24 6d 0.04 (0.14) 0.50 (0.00)
1000 G24 6a 0.02 (0.02) 1.75 (0.00)
1000 G24 6c 0.04 (0.03) 0.13 (0.00)
1000 G24 6d 0.00 (0.00) 0.13 (0.00)

11 Artificial Immune System for Solving DCOPs 247

Our proposed DCTC always outperforms SMESD, when compared on problems
with dynamic objective function and static constraints, except for one case, as shown
in Table 11.5. In these problems both approaches found, for all runs, feasible solu-
tions, for all changes.

Table 11.7 shows the results obtained for problems with a static objective func-
tion and dynamic constraints. If we fix the number of objective function evaluations
pro period and increase the constraint severity value we can see how, for G24 3,
the offline errors improve. In general, the results show significant differences only
between the results produced with low values of S with respect to those obtained
with medium and large values of S.

Table 11.7 Offline errors (the standard deviation is shown in parentheses) for problems with
static objective function and dynamic constraints

Dynamic Parameters
Ev. Probl. Alg. S=10 S=20 S=50

DCTC 0.16 (0.15) 0.15 (0.21) 0.12 (0.07)
250 G24 3

SMESD 0.12 (0.00) 0.04 (0.01) 0.01 (0.00)
DCTC 0.15 (0.02) 0.11 (0.03) 0.10 (0.03)

250 G24 7
SMESD 0.14 (0.00) 0.03 (0.01) 0.08 (0.05)
DCTC 0.13 (0.14) 0.10 (0.13) 0.10 (0.11)

500 G24 3
SMESD 0.101 (0.00) 0.02 (0.00) 0.00 (0.00)
DCTC 0.12 (0.02) 0.07 (0.02) 0.06 (0.02)

500 G24 7
SMESD 0.12 (0.01) 0.04 (0.03) 0.00 (0.00)
DCTC 0.11 (0.03) 0.05 (0.03) 0.05 (0.04)

1000 G24 3
SMESD 0.09 (0.01) 0.02 (0.00) 0.00 (0.00)
DCTC 0.10 (0.02) 0.05 (0.01) 0.04 (0.01)

1000 G24 7
SMESD 0.11 (0.01) 0.02 (0.00) 0.00 (0.00)

1 r f =44.0

Finally, an increase in the number of objective function evaluations per change
produces results with significant differences for G24 3 and medium values of S as
well as for a number of evaluations of 250 and 1000. For G24 7, the results that
present significant differences are those found for 250 and 1000 evaluations with
low values of S, as well as the results produced with 250 evaluations with respect to
those obtained with 500 and 1000 evaluations, using a medium value of S. For those
two problems, the results show significant differences when S is large.

SMESD outperforms our proposed DCTC in all problems with static objective
function and dynamic constraints, except for one case and, in another case (see
Table 11.7), SMESD fails to find feasible solutions in all changes for some runs,
whereas our proposed DCTC found feasible solutions for all changes in all the runs
performed.

248 V.S. Aragón, S.C. Esquivel, and C.A. Coello

Table 11.8 shows the results for DCTC vs RIGA-elit and dRepairRIGA. Here we
can note that RIGA-elit outperforms DCTC only in one test case while DCTC is
superior to dRepairRIGA in seven of the eleven test cases adopted.

,
Table 11.8 Offline errors (the standard deviation is shown in parentheses) for DCTC vs
RIGA-elit and dRepairRIGA

Algorithms
Probl. DCTC RIGA-elit dRepairRIGA

G24 1 0.00 (0.00) 0.40 (0.04) 0.08 (0.01)
G24 2 0.03 (0.02) 0.28 (0.02) 0.16 (0.02)
G24 3 0.05 (0.03) 0.34 (0.04) 0.02 (0.00)
G24 3b 0.45 (0.09) 0.47 (0.05) 0.05 (0.00)
G24 4 0.50 (0.02) 0.49 (0.07) 0.14 (0.02)
G24 5 0.23 (0.01) 0.25 (0.03) 0.15 (0.01)
G24 6a 0.02 (0.02) 0.45 (0.05) 0.36 (0.03)
G24 6c 0.04 (0.03) 0.41 (0.04) 0.32 (0.03)
G24 6d 0.00 (0.00) 0.42 (0.02) 0.31 (0.02)
G24 7 0.05 (0.01) 0.45 (0.05) 0.15 (0.03)
G24 8b 0.03 (0.02) 1.08 (0.11) 0.34 (0.05)

In order to determine if DCTC is able to recover and converge to a solution
immediately after a change, we analyze the plot of RR/ARR scores displayed in
Figures 11.1, 11.2, 11.3, 11.4, and 11.5.

For G24 l and G24 2 (see Figures 11.1 (a) and (b)), our proposed DCTC found,
on the median run, solutions close to the optimum. As the number of objective
function evaluations grows, the algorithm recovers faster and gets closer to the new
optimum. Also, objective function severity has a negative impact on convergence
when it is increased.

For those problems in which only the constraints change (see Figures 11.1 (c)
and 11.3), the algorithm found solutions close to the optimum when the constraint
severity was larger. When constraint severity was low, the algorithm normally con-
verged to local optima.

For G24 6a, G24 6c, and G24 6d with 500 and 1000 evaluations per change
(see Figure 11.2 (a)) the algorithm had a perfect and an almost perfect performance
regarding convergence behavior and recovery speed. But, with 250 evaluations per
change it presents moderate convergence behavior and recovery speed.

For G24 3b and G24 4, with 250 evaluations per change (see Figures 11.3 (a) and
11.4 (a)), our proposed DCTC presented relatively moderate convergence behavior
and recovery speed.

For G24 3b with 500 and 1000 evaluations per change and G24 5, with 250 and
500 evaluations per change (see Figures 11.3 (b) and (c) and Figures 11.5 (b) and
(c)), our proposed DCTC presented good convergence behavior and recovery speed.

11 Artificial Immune System for Solving DCOPs 249

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_1-k:0.25-ev:250
DCTC-G24_1-k:0.5-ev:250
DCTC-G24_1-k:1.0-ev:250

DCTC-G24_1-k:0.25-ev:500
DCTC-G24_1-k:0.5-ev:500
DCTC-G24_1-k:1.0-ev:500

DCTC-G24_1-k:0.25-ev:1000
DCTC-G24_1-k:0.5-ev:1000
DCTC-G24_1-k:1.0-ev:1000

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_2-k:0.25-ev:250
DCTC-G24_2-k:0.5-ev:250
DCTC-G24_2-k:1.0-ev:250

DCTC-G24_2-k:0.25-ev:500
DCTC-G24_2-k:0.5-ev:500
DCTC-G24_2-k:1.0-ev:500

DCTC-G24_2-k:0.25-ev:1000
DCTC-G24_2-k:0.5-ev:1000
DCTC-G24_2-k:1.0-ev:1000

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_3-S:10-ev:250
DCTC-G24_3-S:20-ev:250
DCTC-G24_3-S:50-ev:250
DCTC-G24_3-S:10-ev:500
DCTC-G24_3-S:20-ev:500
DCTC-G24_3-S:50-ev:500

DCTC-G24_3-S:10-ev:1000
DCTC-G24_3-S:20-ev:1000
DCTC-G24_3-S:50-ev:1000

(c)

Fig. 11.1 RR/ARR for G24 1, G24 2 and G24 3

250 V.S. Aragón, S.C. Esquivel, and C.A. Coello

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_6a-k:1.0-ev:250
DCTC-G24_6a-k:1.0-ev:500

DCTC-G24_6a-k:1.0-ev:1000
DCTC-G24_6c-k:1.0-ev:250
DCTC-G24_6c-k:1.0-ev:500

DCTC-G24_6c-k:1.0-ev:1000
DCTC-G24_6d-k:1.0-ev:250
DCTC-G24_6d-k:1.0-ev:500

DCTC-G24_6d-k:1.0-ev:1000

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_7-S:10-ev:250
DCTC-G24_7-S:20-ev:250
DCTC-G24_7-S:50-ev:250
DCTC-G24_7-S:10-ev:500
DCTC-G24_7-S:20-ev:500
DCTC-G24_7-S:50-ev:500

DCTC-G24_7-S:10-ev:1000
DCTC-G24_7-S:20-ev:1000
DCTC-G24_7-S:50-ev:1000

(b)

Fig. 11.2 RR/ARR for G24 6a and G24 7

11 Artificial Immune System for Solving DCOPs 251

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_3b-k:0.25-S:10-ev:250
DCTC-G24_3b-k:0.25-S:20-ev:250
DCTC-G24_3b-k:0.25-S:50-ev:250
DCTC-G24_3b-k:0.5-S:10-ev:250
DCTC-G24_3b-k:0.5-S:20-ev:250
DCTC-G24_3b-k:0.5-S:50-ev:250
DCTC-G24_3b-k:1.0-S:10-ev:250
DCTC-G24_3b-k:1.0-S:20-ev:250
DCTC-G24_3b-k:1.0-S:50-ev:250

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_3b-k:0.25-S:10-ev:500
DCTC-G24_3b-k:0.25-S:20-ev:500
DCTC-G24_3b-k:0.25-S:50-ev:500
DCTC-G24_3b-k:0.5-S:10-ev:500
DCTC-G24_3b-k:0.5-S:20-ev:500
DCTC-G24_3b-k:0.5-S:50-ev:500
DCTC-G24_3b-k:1.0-S:10-ev:500
DCTC-G24_3b-k:1.0-S:20-ev:500
DCTC-G24_3b-k:1.0-S:50-ev:500

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_3b-k:0.25-S:10-ev:1000
DCTC-G24_3b-k:0.25-S:20-ev:1000
DCTC-G24_3b-k:0.25-S:50-ev:1000
DCTC-G24_3b-k:0.5-S:10-ev:1000
DCTC-G24_3b-k:0.5-S:20-ev:1000
DCTC-G24_3b-k:0.5-S:50-ev:1000
DCTC-G24_3b-k:1.0-S:10-ev:1000
DCTC-G24_3b-k:1.0-S:20-ev:1000
DCTC-G24_3b-k:1.0-S:50-ev:1000

(c)

Fig. 11.3 RR/ARR for G24 3b

252 V.S. Aragón, S.C. Esquivel, and C.A. Coello

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_4-k:0.25-S:10-ev:250
DCTC-G24_4-k:0.25-S:20-ev:250
DCTC-G24_4-k:0.25-S:50-ev:250
DCTC-G24_4-k:0.5-S:10-ev:250
DCTC-G24_4-k:0.5-S:20-ev:250
DCTC-G24_4-k:0.5-S:50-ev:250
DCTC-G24_4-k:1.0-S:10-ev:250
DCTC-G24_4-k:1.0-S:20-ev:250
DCTC-G24_4-k:1.0-S:50-ev:250

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_4-k:0.25-S:10-ev:500
DCTC-G24_4-k:0.25-S:20-ev:500
DCTC-G24_4-k:0.25-S:50-ev:500
DCTC-G24_4-k:0.5-S:10-ev:500
DCTC-G24_4-k:0.5-S:20-ev:500
DCTC-G24_4-k:0.5-S:50-ev:500
DCTC-G24_4-k:1.0-S:10-ev:500
DCTC-G24_4-k:1.0-S:20-ev:500
DCTC-G24_4-k:1.0-S:50-ev:500

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_4-k:0.25-S:10-ev:1000
DCTC-G24_4-k:0.25-S:20-ev:1000
DCTC-G24_4-k:0.25-S:50-ev:1000
DCTC-G24_4-k:0.5-S:10-ev:1000
DCTC-G24_4-k:0.5-S:20-ev:1000
DCTC-G24_4-k:0.5-S:50-ev:1000
DCTC-G24_4-k:1.0-S:10-ev:1000
DCTC-G24_4-k:1.0-S:20-ev:1000
DCTC-G24_4-k:1.0-S:50-ev:1000

(c)

Fig. 11.4 RR/ARR for G24 4

11 Artificial Immune System for Solving DCOPs 253

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_5-k:0.25-S:10-ev:250
DCTC-G24_5-k:0.25-S:20-ev:250
DCTC-G24_5-k:0.25-S:50-ev:250
DCTC-G24_5-k:0.5-S:10-ev:250
DCTC-G24_5-k:0.5-S:20-ev:250
DCTC-G24_5-k:0.5-S:50-ev:250
DCTC-G24_5-k:1.0-S:10-ev:250
DCTC-G24_5-k:1.0-S:20-ev:250
DCTC-G24_5-k:1.0-S:50-ev:250

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_5-k:0.25-S:10-ev:500
DCTC-G24_5-k:0.25-S:20-ev:500
DCTC-G24_5-k:0.25-S:50-ev:500
DCTC-G24_5-k:0.5-S:10-ev:500
DCTC-G24_5-k:0.5-S:20-ev:500
DCTC-G24_5-k:0.5-S:50-ev:500
DCTC-G24_5-k:1.0-S:10-ev:500
DCTC-G24_5-k:1.0-S:20-ev:500
DCTC-G24_5-k:1.0-S:50-ev:500

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

AR
R

RR

DCTC-G24_5-k:0.25-S:10-ev:1000
DCTC-G24_5-k:0.25-S:20-ev:1000
DCTC-G24_5-k:0.25-S:50-ev:1000
DCTC-G24_5-k:0.5-S:10-ev:1000
DCTC-G24_5-k:0.5-S:20-ev:1000
DCTC-G24_5-k:0.5-S:50-ev:1000
DCTC-G24_5-k:1.0-S:10-ev:1000
DCTC-G24_5-k:1.0-S:20-ev:1000
DCTC-G24_5-k:1.0-S:50-ev:1000

(c)

Fig. 11.5 RR/ARR for G24 5

254 V.S. Aragón, S.C. Esquivel, and C.A. Coello

Particularly, for G24 5, with 250 evaluations per change, the larger the objective
function severity, the better becomes the convergence behavior.

For G24 4 with 500 evaluations per change (see Figure 11.4 (b)), in general, the
algorithm presented a fast recovery speed but the solutions found were not very
close to the optimum.

For G24 4 and G24 5, with 1000 evaluations per change (see Figures 11.4 (c)
and 11.4 (c)), the convergence behavior of our proposed DCTC is very good and the
recovery speed is high.

In order to compare the effect that different features of the dynamic constrained
problems had on performance, Nguyen et al. [17] proposed to contrast the offline
errors produced over pairs of problems. In this work, the following comparisons
were made:

• Static constraints versus dynamic constraints - G24 1 vs G24 4 and G24 2 vs
G24 5.

• Moving constraints that do not expose better optima versus moving constraints
that expose better optima - G24 3 vs G24 3b.

• Connected feasible regions versus disconnected feasible regions - G24 6c vs
G24 6d.

• Optima in the constraints boundary versus optima that are not in the constraints
boundary - G24 4 vs G24 5.

The offline errors produced by our proposed DCTC for problems with static con-
straints and dynamic constraints (see Figures 11.6 (a) to (c)) clearly show the nega-
tive impact on performance when constraints change over time. A statistical analysis
of variance indicates that the offline errors obtained for G24 1 have significant dif-
ferences with respect to the offline errors obtained for G24 4. Note that for G24 4,
the larger the constraint severity, the better the performance.

For G24 2 versus G24 5, the offline errors also deteriorate when the problem
changes its constraints over time (see Figures 11.6 (d) to (f)), but the statistical anal-
ysis of variance indicates that the offline errors obtained for G24 5, with a medium
value of S, are not significantly different from the offline errors obtained for G24 2,
regardless of the number of evaluations between changes.

The algorithm had better performance when the optimum was in the constraint
boundary than when it was not (see Figure 11.7 (a)), showing only significant differ-
ences with large values of k and a few evaluations per change. The opposite situation
occurs when we compare the results obtained for G24 4 and G24 5 (see Figures 11.7
(b) to (d)). Also, they always presented significant differences.

When the algorithm had only a few evaluations to perform per state (or change),
moving inside the connected feasible regions was easier than moving between dis-
connected feasible regions. But, if we could perform more evaluations per change,
moving between disconnected regions became easier (see Figure 11.8 (a)), showing
significant differences in the offline errors for all the tested cases.

The exposition of better optima when the constraints change, had a negative im-
pact on the performance of our proposed DCTC, showing significant differences for
all the tested cases (see Figures 11.8 (b) to (d)).

11 Artificial Immune System for Solving DCOPs 255

a - ev=250 b - ev=500

c - ev=1000 d - ev=250

e - ev=500 f - ev=1000

Fig. 11.6 The effect of two different problem features on the performance of DCTC. G24 1
versus G24 4 and G24 2 versus G24 5= Static constraints versus dynamic constraints. Per-
formance is evaluated based on the offline error

256 V.S. Aragón, S.C. Esquivel, and C.A. Coello

Table 11.9 Summary of the ANOVA results. - indicates that significant differences were
detected

Probl. Eval. Pairs of severity values for the results having significant differences

250 low k and high k
G24 1 500 low k and high k

1000 -
250 low k and high k

G24 2 500 low k and high k / medium k and high k
1000 -
250 low S and medium S

G24 3 500 low S and high S / low S and medium S
1000 low S and high S / low S and medium S
250 low k and medium k / low k and high k

G24 6a 500 low k and medium k
1000 low k and medium k / low k and high k
250 low k and medium k / low k and high k

G24 6c 500 low k and medium k / low k and high k
1000 low k and medium k / low k and high k
250 -

G24 6d 500 -
1000 -
250 low S and high S / low S and medium S

G24 7 500 low S and high S / low S and medium S
1000 low S and high S / low S and medium S
250 low k and medium k / low k and high k / medium k and high k

G24 8b 500 low k and medium k / low k and high k / medium k and high k
1000 low k and high k

Table 11.10 Summary of ANOVA results. - indicates that significant differences were
detected

Probl. Eval. k Pairs of severity values for the results having significant
differences

250 / 500 / 1000 small -
G24 3b 250/ 500 / 1000 medium low S and high S / medium S and high S

250 / 500 / 1000 large low S and medium S / medium S and high S
250 / 500 / 1000 small -

G24 4 250 / 500 / 1000 medium low S and high S / medium S and high S
250 / 500 / 1000 large -
250 / 500 / 1000 small low S and high S

G24 5 250 / 500 / 1000 medium low S and high S / medium S and high S
250 / 500 / 1000 large low S and medium S / low S and high S

11 Artificial Immune System for Solving DCOPs 257

a b - ev=250

c - ev=500 d - ev=1000

Fig. 11.7 The effect of two different problem features on the performance of DCTC. G24 1
versus G24 2 and G24 4 versus G24 5= Optimum in the constraint boundary versus Opti-
mum not in the constraint boundary. Performance was evaluated based on the offline error

11.6.1 Increasing the Number of Changes per Run

In order to determine if the performance of DCTC and SMESD gets affected when
more than five changes occur, in the case in which severity is high (k= 0.01 and S=
50) and the minimum time pro period is granted (only 250 objective function evalu-
ations), we ran these two algorithms allowing fifty changes (in 50 independent runs)
for each test problem. The results of these experiments are shown in Table 11.12.

First, it can be seen that DCTC outperforms SMESD in all the test cases, except
for G24 7 but here, SMESD could not find feasible solutions for every period (r f =
62.0). It is worth noting that, for G24 3 and G24 3b, even when the offline errors
of SMESD are zero, their r f values are zero, as well. This means that SMESD could
not find, in any run, a feasible solution for each period while DCTC could do it.

On the other hand, when we consider the results obtained by DCTC for 5 against
50 changes (with the highest severity), in general (8 from 11 cases) the offline errors
improved when more changes were allowed, while, regarding SMESD, on 6 of the

258 V.S. Aragón, S.C. Esquivel, and C.A. Coello

a b - ev=250

c - ev=500 d - ev=1000

Fig. 11.8 The effect of four different problem features on the performance of DCTC. G24 6c
versus G24 6d = Connected feasible regions versus disconnected feasible regions and G24 3
versus G24 3b= Moving constraints do not expose a better optimum versus moving con-
straints expose a better optimum. Performance was evaluated based on the offline error

11 test cases the results were worst. Thus, we can think that SMESD loses its abil-
ity to react to changes when these are increased, while DCTC properly maintains
diversity during the search process.

11.7 Conclusions

In this chapter, we have analyzed the behavior of an adaptive immune system called
Dynamic Constrained T-Cell (DCTC) for solving dynamic constrained optimization
problems. One of the strengths we can highlight about DCTC is the few number of
parameters that it requires. Furthermore, and analogously to other techniques that do
not rely on a penalty function to handle constraints, DCTC does not need to define
a penalty factor, which normally has to take a specific value for each problem at
hand. An adaptation of an existing algorithm, which was originally used to solve
static constrained optimization problems, was used to compare the results obtained
by our proposed DCTC on eleven constrained optimization problems which present

11 Artificial Immune System for Solving DCOPs 259

Table 11.11 Summary of ANOVA results for G24 1 vs G24 4, G24 2 vs G24 5, G24 4 vs
G24 5, G24 1 vs G24 2 and G24 6c vs G24 6d. - indicates that significant differences were
detected

First function vs Second Func-
tion

Eval. Did the results obtained for the first function have
significant differences with respect to the results ob-
tained for the second function with any dynamic pa-
rameter?

250 Always
G24 1 vs G24 4 500 Always

1000 Always
250 Yes, when S is small and when S is medium

G24 2 vs G24 5 500 Yes, when S is small and when S is medium
1000 Always
250 Always

G24 4 vs G24 5 500 Always
1000 Always
250 Always

G24 3 vs G24 3b 500 Always
1000 Always
250 Yes, when k is small and when k is medium

G24 1 vs G24 2 500 Always
1000 Always
250 Always

G24 6c vs G24 6d 500 Always
1000 Always

Table 11.12 Offline errors (the standard deviation is shown in parentheses) for dynamic con-
strained problems performing 50 changes

Algorithms
Probl. DCTC SMESD

G24 1 0.06 (0.02) 2.32 (0.00)
G24 2 0.20 (0.04) 0.55 (0.04)
G24 3 0.19 (0.05) 0.00 (0.00)1

G24 3b 0.49 (0.17) 0.86 (0.01)2

G24 4 0.16 (0.04) 1.03 (0.07)3

G24 5 0.11 (0.02) 0.32 (0.03)
G24 6a 0.08 (0.04) 1.80 (0.02)
G24 6c 0.09 (0.02) 0.23 (0.00)
G24 6d 0.08 (0.06) 0.97 (0.00)
G24 7 0.05 (0.01) 0.00 (0.00)4

G24 8b 0.20 (0.07) 0.64 (0.13)

1 rf=0.0 - 2 rf=0.0 - 3 rf=54.0 - 4 rf=62.0

260 V.S. Aragón, S.C. Esquivel, and C.A. Coello

several forms of dynamism (both in the objective function and in the constraints).
Additionally, DCTC was also indirectly compared to two approaches used to solve
dynamic constrained optimization problems: RIGA-elit and dRepairRIGA.

For problems with a dynamic objective function and dynamic constraints, an in-
crease in the objective function severity produces a poorer performance of our pro-
posed DCTC. However, in general, the results that show significant differences are
those found with low severity with respect to those found with large severity. An
increase in the constraints severity improves the offline errors, showing, in some
cases, significant differences, generally between the results found with low severity
with respect to those found with a large severity. In general, an increase in the num-
ber of evaluations per change improves the offline errors but not with significant
differences.

For those problems in which the objective function is dynamic and the constraints
are static, in general, an increase in the severity has a negative impact on the behavior
of our proposed DCTC. In this case, there are significant differences between the re-
sults obtained with low severity with respect to those obtained with a large severity.
In this type of problems, an increase in the number of evaluations per change im-
proves the offline errors with significant differences.

In problems in which the objective function is static and the constraints change
over time, an increase in the severity improves the results. In this case, there are sig-
nificant differences when using a low severity with respect to the use of a medium
and a large severity. An increase in the number of evaluations per change improves
the offline errors but significant differences are detected on results found with low
severity, with respect to those obtained with a large severity. Regarding the poor
behavior of DCTC in problems that present dynamic constraints, our hypothesis is
the following. When the constraint severity is low, it is likely that many of the feasi-
ble solutions found so far keep their feasibility. However, in this case, the algorithm
has converged to a local optimum and it remains trapped there. On the other hand,
when the constraint severity is large, feasible solutions will become infeasible and
viceversa. This causes the search to be redirected to the new feasible regions. This
situation can be observed in both DCTC and SMESD.

When a global optimum switches between disconnected feasible regions and the
constraints change, for our proposed DCTC it is more difficult to solve the problem
than when the constraints are static.

For all the test problems adopted, we could see, in the median run, that a larger
number of objective function evaluations allowed us to keep improving the solutions
in that period.

When the problem presented a dynamic objective function and dynamic con-
straints and the number of objective function evaluations per change was low, the
results obtained were not very good. But, we could see that if we increased this
number, the results improved, showing significant differences in some cases. This
leads us to believe that our proposed approach is able to adapt well to dynamic en-
vironments but requires a minimum number of evaluations in order to reach some
stability.

11 Artificial Immune System for Solving DCOPs 261

Our proposed DCTC was found to be superior to SMESD in problems with a
dynamic objective function and dynamic constraints and in problems with a dy-
namic objective function and static constraints. There were only five cases in which
SMESD outperformed our proposed DCTC when using such types of problems.
On the other hand, SMESD showed a better behavior than our proposed DCTC in
problems having a static objective function and dynamic constraints. When we com-
pared our results against those of RIGA-elit, we could note the superior performance
of DCTC in all but one test case. On the other hand, DCTC showed to be compet-
itive with respect to dRepairRIGA, overcoming it in seven of the eleven test cases
adopted. As part of our future work, we aim to improve the mechanisms to maintain
diversity of our approach, mainly when dealing with problems in which a change
in the constraints gives rise to a new optimum. It is also desirable to improve the
exploratory capabilities of our proposed algorithm so that it can be more effective
in the test problems in which it was outperformed by SMESD. Thus, taking into
account the performed experiments and the results obtained from them, we can sug-
gest that DCTC should be suitable for solving problems having a dynamic objective
function and either static or dynamic constraints. However, our aim is to improve the
behavior of our proposed DCTC in problems having a static objective function and
dynamic constraints. Finally, we would also like to extend our approach for solving
multi-objective dynamic constrained optimization problems.

Acknowledgments. The first two authors acknowledge support from the Universidad Na-
cional de San Luis, the Agencia Nacional para promover la Ciencia y Tecnologı́a (ANPCYT)
and project no. PROICO 317902. The third author acknowledges support from CONACyT
project no. 103570 and from the UMI LAFMIA 3175 CNRS at CINVESTAV-IPN.

References

[1] Aragón, V., Esquivel, S., Coello Coello, C.: Optimizing Constrained Problems through
a T-Cell Artificial Immune System. Journal of Computer Science & Technology 8(3),
158–165 (2008)

[2] Aragón, V., Esquivel, S., Coello Coello, C.: Solving constrained optimization using a t-
cell artificial immune system. Revista Iberoamericana de Inteligencia Artificial 12(40),
7–22 (2008)

[3] Aragón, V., Esquivel, S., Coello Coello, C.: Artificial Immune System for Solv-
ing Global Optimization Problems. Revista Iberoamericana de Inteligencia Artificial
(AEPIA) 14(46), 3–16 (2010) ISSN: 1137-3601

[4] Aragón, V., Esquivel, S., Coello Coello, C.: A Modified Version of a T-Cell Algorithm
for Constrained Optimization Problems. International Journal for Numerical Methods
in Engineering 84(3), 351–378 (2010)

[5] Aragón, V.: Optimización de Problemas con Restricciones a través de Heurı́sticas
BioInspiradas. PhD Tesis

[6] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers (2002)

[7] Bretscher, P., Cohn, M.: A theory of self-nonself discrimination. Science 169, 1042–
1049 (1970)

262 V.S. Aragón, S.C. Esquivel, and C.A. Coello

[8] Dasgupta, D., Nino, F.: Immunological Computation: Theory and Applications. Auer-
bach Publications, Boston (2008)

[9] Deb, K., Udaya Bhaskara Rao, N., Karthik, S.: Dynamic Multi-objective Optimiza-
tion and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal
Power Scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.)
EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[10] Jula, H., Dessouky, M., Ioannou, P., Chassiakos, A.: Container movement by trucks in
metropolitan networks: modeling and optimization. Transportation Research Part E 41,
235–259 (2005)

[11] Mailler, R.: Comparing two approaches to dynamic, distributed constraint sat-
isfaction. In: Proceedings of the 4th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 1049–1056. ACM, New York (2005),
doi:10.1145/1082473.1082632

[12] Male, D., Brostoff, J., Roth, D., Roitt, I.: Inmunology. Mosby, 7th edn. (2006)
[13] Matzinger, P.: Tolerance, danger and the extend family. Annual Review of Immunol-

ogy 12, 991–1045 (1994)
[14] Mertens, K., Holvoet, T., Berbers, Y.: The DynCOAA algorithm for dynamic constraint

optimization problems. In: Proceedings of the 5th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 1421–1423. ACM,
New York (2006), doi:10.1145/1160633.1160898

[15] Mezura Montes, E., Coello Coello, C.: A Simple Multi-Membered Evolution Strategy
to Solve Constrained Optimization Problems. IEEE Transactions on Evolutionary Com-
putation 9(1), 1–17 (2005)

[16] Modi, P.J., Jung, H., Tambe, M., Shen, W.-m., Kulkarni, S.: A Dynamic Distributed
Constraint Satisfaction Approach to Resource Allocation. In: Walsh, T. (ed.) CP 2001.
LNCS, vol. 2239, pp. 685–700. Springer, Heidelberg (2001)

[17] Nguyen, T., Yao, X.: Continuous Dynamic Constrained Optimisation - The Challenges.
IEEE Transactions on Evolutionary Computation, 321–354 (2010)

[18] Nguyen, T., Yao, X.: Solving dynamic constrained optimisation problems using repair
methods (2011)

[19] Richter, H.: A study of dynamic severity in chaotic fitness landscapes. The 2005 IEEE
Congress on Evolutionary Computation 3, 2824–2831 (2005)

[20] Richter, H., Yang, S.: Memory Based on Abstraction for Dynamic Fitness Functions.
In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J.,
Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS,
vol. 4974, pp. 596–605. Springer, Heidelberg (2008)

[21] Richter, H., Yang, S.: Learning in Abstract Memory Schemes for Dynamic Optimiza-
tion. In: Proceedings of the 2008 Fourth International Conference on Natural Computa-
tion, vol. 1, pp. 86–91. IEEE Computer Society, Washington, DC (2008)

[22] Richter, H.: Detecting change in dynamic fitness landscapes. In: Proceedings of the
Eleventh Conference on Congress on Evolutionary Computation (CEC 2009), pp.
1613–1620. IEEE Press, Piscataway (2009)

[23] Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic op-
timization problems. Soft Comput. 13(12), 1163–1173 (2009)

[24] Richter, H.: Change detection in dynamic fitness landscapes: An immunological app-
roach. In: World Congress on Nature Biologically Inspired Computing, pp. 719–724
(2009)

11 Artificial Immune System for Solving DCOPs 263

[25] Richter, H.: Memory Design for Constrained Dynamic Optimization Problems. In: Di
Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh,
C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoAppli-
catons 2010. LNCS, vol. 6024, pp. 552–561. Springer, Heidelberg (2010)

[26] Schulze, R., Dietel, F., Jandkel, J., Richter, H.: Using an artificial immune system for
classifying aerodynamic instabilities of centrifugal compressors. In: World Congress on
Nature Biologically Inspired Computing, pp. 31–36 (2010)

[27] Richter, H., Dietel, F.: Change detection in dynamic fitness landscapes with time-
dependent constraints. In: Second World Congress on Nature Biologically Inspired
Computing, pp. 580–585 (2010)

[28] Richter, H., Dietel, F.: Solving Dynamic Constrained Optimization Problems with
Asynchronous Change Pattern. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt,
A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J.,
Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 334–343.
Springer, Heidelberg (2011)

[29] Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic Constraint Satis-
faction Problems. International Journal of Artificial Intelligence Tools 3, 48–55 (1993)

[30] Schwarz, B., Bhandoola, A.: Trafficking from the bone marrow to the thymus: a prereq-
uisite for thymopoiesis. N. Immunol. Rev., 209–247 (2006)

[31] Yang, S., Richter, H.: Hyper-learning for population-based incremental learning in dy-
namic environments. In: Proceedings of the Eleventh Conference on Congress on Evo-
lutionary Computation (CEC 2009), pp. 682–689. IEEE Press, Piscataway (2009)

Chapter 12
Metaheuristics for Dynamic Vehicle Routing

Mostepha R. Khouadjia, Briseida Sarasola, Enrique Alba,
El-Ghazali Talbi, and Laetitia Jourdan

Abstract. Combinatorial optimization problems are usually modeled in a static
fashion. In this kind of problems, all data are known in advance, i.e. before the op-
timization process has started. However, in practice, many problems are dynamic,
and change while the optimization is in progress. For example, in the Dynamic Ve-
hicle Routing Problem (DVRP), which is one of the most challenging combinatorial
optimization tasks, the aim consists in designing the optimal set of routes for a fleet
of vehicles in order to serve a given set of customers. However, new customer orders
arrive while the working day plan is in progress. In this case, routes must be recon-
figured dynamically while executing the current simulation. The DVRP is an exten-
sion of the conventional routing problem, its main interest being the connection to
many real-word applications (repair services, courier mail services, dial-a-ride ser-
vices, etc.). In this chapter, the DVRP is examined, and a survey on solving meth-
ods such as population-based metaheuristics and trajectory-based metaheuristics is
exposed. Dynamic performances measures of different metaheuristics are assessed
using dedicated indicators for the dynamic environment.

Enrique Alba · Briseida Sarasola
Departamento de Lenguajes y Ciencias de la Computación,
Universidad de Málaga,
E.T.S.I. Informática, Campus de Teatinos,
29071 Málaga, Spain
e-mail: eat@lcc.uma.es,briseida@lcc.uma.es

Mostepha R. Khouadjia · El-Ghazali Talbi · Laetitia Jourdan
INRIA Lille Nord-Europe, Parc Scientifique de la Haute-Borne,
Bâtiment A, 40 Avenue Halley,
Park Plaza, 59650 Villeneuve d’Ascq Cedex, France
e-mail: mostepha-redouane.khouadjia@inria.fr,

El-talbi@lifl.fr,
laetitia.jourdan@inria.fr

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 265–289.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

eat@lcc.uma.es, briseida@lcc.uma.es
mostepha-redouane.khouadjia@inria.fr,
El-talbi@lifl.fr,
laetitia.jourdan@inria.fr

266 M.R. Khouadjia et al.

12.1 Introduction

Thanks to recent advances in information and communication technologies, vehi-
cle fleets can now be managed in real-time. When jointly used, techniques like
geographic information systems (GIS), global positioning systems (GPS), traffic
flow sensors, and cellular telephones are able to provide real-time data, such as cur-
rent vehicle locations, new customer requests, and periodic estimates of road travel
times. If suitably processed, this large amount of data can be used to reduce the cost
and improve the service level of a modern company. To do that, revised routes have
to be timely generated as soon as new events occur [28].

In this context, Dynamic Vehicle Routing Problems (DVRPs) are getting increas-
ingly important [31, 32, 49, 55]. The VRP [17] is a well-known combinatorial prob-
lem which consists in designing routes for a fleet of capacitated vehicles to service
a set of geographically dispersed points (customers, stores, schools, cities, ware-
houses, etc.) at the least cost (distance, time, or any other desired measure). It is
possible to define several dynamic features which introduce dynamism in the clas-
sical VRP: roads between two customers could be blocked off, customers could
modify their orders, the travel time for some routes could be increased due to bad
weather conditions, etc. This implies that Dynamic VRPs constitute in fact a set of
different problems, which are of crucial importance in today’s industry, accounting
for a significant portion of many distribution and transportation systems.

In this chapter, we first present an overview of different metaheuristics (from tra-
jectory to population-based algorithms) for solving the DVRP. Second, we evaluate
these algorithms according to dynamic performance measures.

The rest of this chapter is organized as follows. Section 12.2 describes the dy-
namic VRP, its interests in practical applications, and its specific characteristics.
An overview on the problem representation as well as solving trajectory/popula-
tion based metaheuristics is given in Section 12.3. In order to measure the dynamic
performances of the metaheuristics. Section 12.4 presents certain measures that
can be used to evaluate the performance. The performance evaluation of different
metaheuristics: Genetic Algorithm (GA), Ant Colony System (AS), Multi-Particle
Swarm Optimization (MAPSO), and Tabu Search (TS) is analyzed in Section 12.5.
Finally Section 12.6 presents conclusions and opens some lines for further research.

12.2 Dynamic Vehicle Routing Problem

In this section, we present a formal description of the problem (Section 12.2.1) and
a brief state of the art on common interests of the problem in the literature and its
variants (Sections 12.2.3 and 12.2.4).

12 Metaheuristics for Dynamic Vehicle Routing 267

12.2.1 Formal Description

The conventional VRP can be mathematically modeled by using an undirected graph
G = (V,E), where V is a vertex set, and E is an edge set. They are expressed as
V = {v0,v1, ...,vn}, and E =

{
(vi,v j)|vi,v j ∈V, i < j

}
. D is a matrix of non-negative

distances di, j between customers vi and v j. Furthermore, a set of l homogeneous
vehicles each with capacity Q originate from a single depot, represented by the
vertex v0, and must service all the customers, represented by the set V ′ = V \ {v0}.
The quantity of goods qi requested by each customer i (i > 0) is associated with the
corresponding vertex. The goal is to find a feasible set of tours with the minimum
total traveled distance. The VRP thus consists in determining a set of m vehicle
routes of minimal total cost, m ≤ l, starting and ending at a depot, such that every
vertex in V ′ is visited exactly once by one vehicle. The total demand of all customers
supplied by each vehicle cannot exceed the vehicle capacity Q. The capacity means
the quantity of items (goods) that the vehicle can carry during its travel. Let be
S = {R1, . . . ,Rm} a partition of V representing the routes of the vehicles to service
all the customers. The cost of a given route R j = (r0,r1, . . . ,rk+1), where ri ∈V and
r0 = rk+1 (denoting the depot), is given by:

Cost(R j) =
k

∑
i=0

dri,ri+1 (12.1)

and the cost of the problem solution S is:

FVRP(S) =
m

∑
j=1

Cost(R j) (12.2)

with a constraint on the vehicle capacity:

k

∑
i=1

qri ≤ Q, (12.3)

where qri is the associated quantity of the customer at ri (items to be deliv-
ered/picked up).

We will consider a service time δi (time needed to unload/load all goods), re-
quired by a vehicle to load the quantity qi at vi. It is required that the total duration
of any vehicle route (travel plus service times) may not surpass a given bound T ,
so, a route R j = (r0,r1, . . . ,rk+1) is feasible if the vehicle stops exactly once in each
customer and the travel time of the route does not exceed a prespecified bound T
corresponding to the end of the working day.

k

∑
i=0

dri,ri+1 +
k

∑
i=1

δri ≤ T (12.4)

268 M.R. Khouadjia et al.

There may exist some restrictions such as the total traveling distance allowed for
each vehicle, time windows to visit the specific customers, and so forth. The basic
VRP deals with customers which are known in advance; all other information such
as the driving time between the customers and the service times at the customers are
also usually known prior to the planning.

Fig. 12.1 A dynamic vehicle routing case.

The Dynamic Vehicle Routing Problem (DVRP) [55] is strongly related to the
static VRP, as it can be described as a routing problem in which information about
the problem can change during the optimization process. As conventional static
VRPs are NP-hard, DVRP also belongs to the class of NP-hard problems. It is a
discrete-time dynamic problem, and can be viewed as a sequence of P instances;
each instance is a static problem, which starts at time t and must be solved within a
specific time interval Δt . We summarize that as follows:

P = {(Pi, ti,Δt) / i = 0,1, . . . , imax}. (12.5)

With this information the duration of the instance i is ti+1− ti. The maximum num-
ber of instances imax can be infinite if the problem is open-ended. A new instance
Pi+1 is generated by the action of the environment change ρi on the instance i. This
is expressed by Pi+1 = ρi⊕Pi. This change in the environment can be due to sev-
eral factors; for example, travel times can be time [29] or traffic [66] dependent,
orders may be withdrawn or changed [62], some clients may be unknown when the
execution begins [47], etc.

One standard approach to deal with this change is to consider the entire problem
as a sequence of instances related to the events that happen in the environment.
Each change corresponds to the arrival of new optimization problem that has to

12 Metaheuristics for Dynamic Vehicle Routing 269

be solved. The time devoted to solve each instance depends on the frequency of
changes [12]. The aim of the present study is to design an optimization algorithm
that is able of continuously adapting the solution to a changing environment. This
technique is now commonly followed by the community that works on the DVRP
domain [31, 39, 49]. Therefore, a partial static VRP has to be solved each time a
new request is received. A simple example of a dynamic vehicle routing situation
is shown in Figure 12.1. In the example, two uncapacitated vehicles must service
both known and new customer requests. Designing a real-time routing algorithm
depends to a large extent on how much the problem is dynamic. To quantify this
concept, [46] and [45] have defined the degree of dynamism of a problem (dod).
Without loss of generality, we assume that the planning horizon is a given interval
[0,T], possibly divided into a finite number of smaller intervals. Let ns and nd be the
number of static and dynamic requests, respectively. Moreover, let ti ∈ [0,T] be the
occurrence time of request i. Static requests are such that ti = 0 while dynamic ones
have ti ∈]0,T]. The degree of dynamism is defined as:

dod =
nd

ns + nd
(12.6)

which may vary between 0 and 1. If it is equal to 0, all requests are known in advance
(static problem), while if it is equal to 1, all requests are dynamic (completely dy-
namic problem). Larsen [42] generalizes the definition proposed by Lund et al. [46]
in order to take into account both dynamic request occurrence times and possible
time windows. He observed that a system in which dynamic requests are received
late over the planning horizon [0,T] is more dynamic than another one in which
the requests occur at the beginning of the working day. Thus, he introduces a new
measure of dynamism:

edod =
∑ns+nd

i=1 (ti/T)

ns + nd

The effective degree of dynamism then represents an average of how late the re-
quests are received compared to the latest possible time the requests could be re-
ceived. It is possible to easily see edod ranges between 0 and 1. It is equal to 0 if all
user requests are known in advance while it is equal to 1 if all user requests occur at
time T . Finally, Larsen extends the definition of edod to take into account possible
time windows on user service time. Let [ai,bi] be the interval time of the client i
referred to as time windows, with ai and bi corresponding to the earliest and the
latest possible times when the service should begin, respectively.

edodtw =
∑ns+nd

i=1 [T − (bi− ti)]/T

ns + nd
.

It is also obvious that edodtw varies between 0 and 1. Moreover, if no time windows
are imposed (i.e. ai = ti and bi = T), then edodtw = edod.

270 M.R. Khouadjia et al.

Larsen et al. [43] describe and test several dynamic policies to minimize rout-
ing costs for the Partially Dynamic Traveling Repairman Problem (PDTRP) with
various degrees of dynamism.

12.2.2 DVRP Interests

There are several important problems that must be solved in real-time. In [27, 28,
42], the authors list a number of real-life applications that motivate the research in
the domain of dynamic vehicle routing problems.

• Supply and distribution companies: In seller-managed systems, distribution com-
panies estimate customer inventory level in such a way as to replenish them be-
fore stock depletion. Hence, demands are known beforehand in principle and
all customers are static. However, since the actual demand quantity is uncertain,
some customers might run out of their stock and have to be serviced urgently.

• Courier Services: It refers to the international express mail services that must
respond to customer requests in real-time. The load is collected at different cus-
tomer locations and has to be delivered at another location. The package to be
delivered is brought back to a remote terminal for further processing and ship-
ping. The deliveries form a static routing problem since recipients are known by
the driver. However, most pickup requests are dynamic because neither the driver
nor the planner knows where the pickups are going to take place.

• Rescue and repair service companies: Repair services usually involve a utility
firm (broken car rescue, electricity, gas, water and sewer, etc) that responds to
customer requests for maintenance or repair of its facilities.

• Dial-a-ride systems: Dial-a-ride systems are mostly found in demand-responsive
transportation systems aimed at servicing small communities or passengers with
specific requirements (elderly, disabled). These problems are of the many-to-
many when any node can serve as a source or destination for any commodity or
service. Customers can book a trip one day in advance (static customers) or make
a request at short notice (dynamic customers) [3, 21, 60].

• Emergency services: They cover the police, firefighting, and ambulance ser-
vices [30, 61]. By definition, the problem is pure dynamic since all customers
are unknown beforehand and arrive in real-time. In most situations, routes are
not formed because the requests are usually served before a new request appears.
The problem then is to assign the best vehicle (for instance, the nearest) to the
new request. Solving methods are based on location analysis for deciding where
to dispatch the emergency vehicles or to escape the downtown traffic jam.

• Taxi cab services: Managing taxi cabs is still another example of a real-life dy-
namic routing problem. In most taxi cab systems the percentage of dynamic cus-
tomers is very high, i.e. only very few customers are known by the planner before
the taxi cab leaves the central at the beginning of its working day [20].

12 Metaheuristics for Dynamic Vehicle Routing 271

12.2.3 Objectives

Depending on the nature of the system, the objective to be optimized is often a
combination of different measures. DVRP inherits the classical objectives defined
in the conventional VRP. Moreover, the dynamic nature of the problem leads to the
emergence of new objectives. For instance, in weakly dynamic systems the focus is
on minimizing routing cost [31, 49]. However, in strongly dynamic systems such as
emergency services, the interest is to minimize the expected response time (i.e. the
expected time lag between the moment when the user request occurs and its service
time) [25, 43, 48]. Furthermore, there are other objectives such as maximizing the
expected number of requests serviced during a given period of time [4, 5].

12.2.4 Related Works

In this section, we present a classification and an overview on the state of the art of
dynamic vehicle routing problems. Different surveys have been proposed in scien-
tific articles on DVRPs [8, 11, 28]. Psaraftis [54] defines a VRP to be dynamic when
some input to the problem is revealed during the execution of the algorithm. Solu-
tions to the problem should change as new information is revealed to the algorithm
and to the decision maker. Possible information attributes may include the evolution
of information (static / dynamic), the quality of information (known-deterministic /
forecast / probabilistic / unknown), the availability of information (local / global),
and the processing of information (centralized / decentralized).

We propose to classify the DVRPs according to the degree of knowledge that we
have on the input data of the problem. A dynamic problem can be either determin-
istic or stochastic (see Figure 12.2). DVRP is deterministic if all data related to the
customers are known when the customer demands arrive, otherwise it is stochastic.
Both of these classes can be subject to different factors such as service time win-
dow, traffic jam, road maintenance, weather changes, breakdown of vehicles and so
on. These factors often change the speed of vehicles, and the travel time of arriv-
ing at the depot. Consequently, they lead to other sub-variants of the problem (see
Table 12.1):

1. Deterministic: In the deterministic case, all the data related to the inputs are
known. For instance, when a new customer demand appears, the customer loca-
tion and the quantity of its demand are known. Different types of deterministic
DVRP can be found in the literature as:

a. Dynamic Capacitated Vehicle Routing Problem with Dynamic Re-
quests (DCVRP): An important number of works exist on this vari-
ant [26, 40, 49] which represents the conventional definition of the problem,
and where the existence of all customers and their localizations are deter-
ministic, but their order can arrive at any time. The objective is to find a set
of routes with the lowest traveled distance, observing the vehicle capacity
limit.

272 M.R. Khouadjia et al.

b. Dynamic Vehicle Routing Problem with Time Window (DVRPTW):
It is one of the most well-studied variants of the DVRP [1, 18, 19, 32,
44, 48, 66]. Besides the possibility of requiring services in real time,
the time window associated to each customer must be respected. The
DVRPTW is closely related to the Dynamic Traveling Repairman Prob-
lem (DTRP) [6, 7], in which m identical vehicles must service the upcom-
ing demands. At each location, the vehicle serving the demand must spend
some amount of time in on-site service. This service time is a random vari-
able that is realized only when the service is completed. The objective is
to find service policies that minimize the expected waiting time of the de-
mands. Larsen et al. [43] proposed on-line policies for the Partially Dy-
namic Traveling Salesman Problem with Time Windows (PDTSPTW) that
could be considered as an instance of DVRPTW with a single vehicle. The
objective is to minimize the total or maximum lateness over the set of cus-
tomers. A simple policy consists in requiring the vehicle to wait at the cur-
rent customer location until it can service another customer without being
early. Other policies may suggest repositioning the vehicle at a location
different from that of the current customer, based on prior information on
future requests.

c. Dynamic Vehicle Routing Problem with Time-Dependent Travel Times
(DVRPTT): Described in [29], it assumes that the travel times from the
customer i to the customer j are variable over time. This variation could
occur due to the type of the road, weather, and traffic conditions that may
strongly influence the speed of vehicles and hence travel times.

d. Dynamic Pickup and Delivery Vehicle Routing Problem (DPDVRP): It
is based on the conventional Pickup and Delivery Vehicle Routing Problem
(PDVRP) [59]. The problem consists of determining a set of optimal routes
for a fleet of vehicles in order to serve customer requests. The objective is to
minimize the total route length, i.e. the sum of the distances traveled by all
the vehicles, under the following constraints: all requests must be served,
each request must be served entirely by one vehicle (pairing constraint),
and each pickup location has to be served before its corresponding delivery
location (precedence constraint). The dynamic version arises when not all
requests are known in advance [48].

Attanasio et al. present in [2] parallel implementations of a tabu search
method developed previously by Cordeau and Laporte for the Dial-a-Ride
Problem (DARP) [16]. Gendreau et al. [25] developed a tabu search heuris-
tic where the neighborhood structure is based on ejection chains heuristic.
Yang et al. [69] introduce a real-time multi-vehicle truckload pickup and
delivery problem. They propose a mixed-integer programming formulation
for the off-line version of the problem and propose a new rolling horizon
re-optimization strategy for a dynamic version.

12 Metaheuristics for Dynamic Vehicle Routing 273

2. Stochastic: In stochastic dynamic problems (also known as probabilistic dy-
namic problems) uncertain data are related to customer demands and are repre-
sented by random variables.

a. Dynamic and Stochastic Capacitated Vehicle Routing Problem
(DSCVRP): It considers customer requests are unknown and revealed over
time. In addition, customer locations and service times are random vari-
ables and are realized dynamically during the plan execution. Bent and
Van Hentenryck [4, 5] considered dynamic DVRPTW with stochastic cus-
tomers. They proposed a multiple scenario approach that continuously gen-
erates routing plans for scenarios including known and immediate requests
to maximize the number of serviced customers. The approach was adapted
from Solomon benchmarks with varying degree of dynamism. Hvattum et
al. [33] addressed this variant of the problem. The authors consider that
both customer locations and demands may be unknown in advance. They
formulate the problem as a multi-stage stochastic programming problem,
and a heuristic method was developed to generate routes by exploiting the
information gathered on future customer demand.

b. Dynamic and Stochastic Vehicle Routing Problem with Time Window
(DSVRPTW): It has been introduced in [51]. In this problem, each service
request is generated according to a stochastic process; once a service re-
quest appears, it remains active for a certain deterministic amount of time,
and then expires. The objective is to minimize the number of possible vehi-
cles and ensure that each demand is visited before its expiration.

c. Dynamic Vehicle Routing Problem With Stochastic Travel Times
(DVRPSTT): It assumes that the problem is subject to stochastic travel
times. The travel times may change from one period to the next one. Some
works present this version of the problem as in [52], where the travel time
to the next destination is perturbed by adding a value generated with a nor-
mal probability law. This perturbation represents any unforeseen events that
may occur along the current travel journey. It is known to the dispatching
system only when the vehicle arrives at its planned destination.

d. Dynamic and Stochastic Pickup and Delivery Vehicle Routing Prob-
lem (DSPDVRP): In this version of the problem, the stochastic process
concerns the demand quantity that the vehicle must pick or delivery to each
customer. Thus, we have uncertain quantities to pick up or deliver at the
customers’ location [68]. This distribution can be modelled by using a prob-
abilistic law, such as a normal law for example, or by using fuzzy logic.

12.3 Solving Methods

In this part we present a common solution representation of the problem in the Sec-
tion 12.3.1, and the major classes of metaheuristics proposed to solve this problem
in Section 12.3.2 and Section 12.3.3.

274 M.R. Khouadjia et al.

Fig. 12.2 Classification of DVRPs according to deterministic and stochastic information re-
lated to customer requests.

Table 12.1 Major publications on different variants of Dynamic Vehicle Routing problems.

DVRPs Authors Class Characteristics Objectives

Deterministic

Psaraftis et al. [54]

DCVRP
Dynamic requests Minimize the total

Kilby et al. [40]
Montemanni et al. [49]

Hanshar et al. [31] traveled distance
Branching et al. [11]

Capacitated vehicles
Khouadjia et al. [38]
Sarasola et al. [58]
Oliveira et al. [18]

DVRPTW
Dynamic requests

Gendreau et al. [26] Minimize the total
Mitrović-Minić et al. [48] traveled distance

Larsen et al. [44] and minimize the total
Housroum et al. [32] Time windows lateness at the customer

Alvarez et al. [1]
Minimize the total

Haghani et al. [29]
DVRPTT Variable travel times

traveled distance
Kritzinger et al. [41] Minimize the total

lateness/tardiness at the customer
Minimize the total travel time,

Gendreau et al. [25]
DPDVRP

Dynamic requests tardiness over all pick-up
Mitrović-Minić et al. [48] Pickup and Delivery and delivery locations,

and sum of overtime over all vehicles

Stochastic

Bent et al. [4, 5]
DSCVRP

Random customer Maximize the number of
locations serviced customers

Hvattum et al. [33] Random service times Minimize the total traveled distance

DSVRPTW

Random customer Minimize the number of vehicles
Pavone et al. [51] locations and the traveled distance

Bertsimas et al. [6, 7] Random service times Minimize the wait for
Time window completion of service

12.3.1 Solution Representation

The solution representation in dynamic vehicle routing problems takes its
source from representations that have already been proposed in the literature for the

12 Metaheuristics for Dynamic Vehicle Routing 275

conventional static version of the problem [53, 56, 63]. Different representations for
the DVRP solutions have been proposed in the literature either for trajectory-based
metaheuristics or population-based metaheuristics [26, 31, 38, 49].

The difference between a dynamic representation and a static representation of
the vehicle routing problem consists in the fact that given the dynamic nature of the
problem, a representation with a variable length is required. It is justified by the fact
that demands arrive over time and have to be inserted in the existing routes or by
creating new ones. This representation is encoded as a set of vehicle routes. Each
route includes some information on committed customers that have been visited by
a given vehicle as well as those that are waiting for completion of service, or new
customers that have been added to the day’s service, but not yet assigned to any
vehicle. Another important point is the information related to vehicles. The current
vehicle position in the service area must be known by the dispatcher at any moment
of the day’s service. This allows to redirect the vehicle when new requests arrive
into the system.

In [49], Montemanni et al. propose a representation for their Ant Colony System
(ACS) algorithm. The authors consider v dummy depots (one for each vehicle of the
fleet) and they refer to them as d1, . . . ,dv . Solutions retrieved by ants will be repre-
sented as long, single tours. In this context, nodes contained within two consecutive
dummy depots da and db (with da, db ∈ {1, ...,v}) form the (partial) tour associated
with vehicle a. The partial tour associated with vehicle b will start from the dummy
depot db, which corresponds to the location of the last customer committed to ve-
hicle b. The starting time from db corresponds to the end of the serving time for
the last customer committed to vehicle b, while the capacity of b will be equal to
the residual capacity of b, i.e. Qb minus the quantity ordered by customers already
committed to vehicle b.

Another representation is proposed by Hanshar et al. [31] for a Genetic Algo-
rithm. Their chromosomal representation consists of two types of nodes: a node
with a positive integer number representing a single customer (which has not yet
been assigned to a vehicle) and a node depicted with a negative integer number
representing a group of clustered customers that have already been committed to
a given vehicle. Thus, the chromosome consists of integers, where new customers
are directly represented on a chromosome with their corresponding positive index
number and each committed customer is indirectly represented within one of the
groups representing a given deployed vehicle. When the chromosome is decoded,
new customers could be added to these pre-existing vehicles (i.e. groups) if they still
have the capacity to accommodate new customer orders.

Garrido et al. [24] have tackled the DVRP using Evolutionary Hyper-Heuristics
(EH-DVRP). The authors propose a chromosome representation for the low-level
heuristics composed by two main data structures: a list of new unassigned customers
represented by their identifier, and a set of routes which represents a set of partial
solutions or states of the problem, formed by committed and uncommitted requests.

In [38], Khouadjia et al. propose a representation for a Particle Swarm Opti-
mization (PSO) Algorithm. It consists in a discrete representation which expresses
the route of m vehicles over the n customers to serve. The encoding allows the

276 M.R. Khouadjia et al.

insertion of dynamic customers in the already planned routes. The representation of
each route Rk is a permutation of n customers Rk : (v0,v1,v2, ...,vi, ...,vn,vn+1). This
representation handles the static and dynamic aspects of the problem. On the one
side, it allows the insertion of dynamic customers in the already planned routes. On
the other side, if the customer is served, it cannot be shifted from its current route
to another one. For the simulation process, the authors keep some information, such
as the state of each customer (served / not served) and its time of service, the state
of vehicles as their current position in the service region, their remaining capacity,
the traveled distance, and their condition (committed / not committed).

12.3.2 Trajectory-Based Metaheuristics

Many works are related to trajectory-based metaheuristics for solving the DVRP
(see Table 12.2). Gendreau et al. in [26] propose a parallel tabu search heuristic
with an adaptive memory. The adaptive memory stores previously found elite so-
lutions and uses them to generate new starting points for the tabu search. This is
achieved by combining routes taken from different solutions in the memory. Any
new solution produced by the tabu search is included in the memory if it is not filled
yet. Otherwise, the new solution replaces the worst solution in memory, if it is better.
The parallelization of the procedure was achieved at two different levels: (1) diffe-
rent tabu search threads run in parallel, each of them starting from a different initial
solution; and (2) within each search thread, many tabu searches run independently
of subproblems obtained through a decomposition procedure of the whole problem.
For the parallel implementation a masterâslave scheme was chosen to implement
the procedure. The master process manages the adaptive memory and creates initial
solutions for the slave processes that run the tabu search. Ichoua et al. in [34] reused
the same algorithm with some enhancement related to the strategy for assigning
customer requests to vehicles.

Mitrović -Minić et al. [48] dealt with the Dynamic Pickup and Delivery Problem
with Time Windows (DPDVRPTW) and applied the cheapest insertion procedure in
order to determine the overall best insertions for the locations of a request before its
insertion. The improvement procedure is based on Tabu Search (TS). It is applied
after the reinsertion procedure and it runs while new requests are being received.

Hanshar et al. have implemented a basic tabu search in [31]. Two operators are
employed as neighborhood structure procedures: an inversion operator and a λ -
exchange operator [50], each one applied according to some probability. Further-
more, Montemanni et al. [49] have implemented a GRASP (Greedy Randomized
Adaptive Search Procedure) for dealing with the DVRP. Basically, initial tours are
generated by iteratively selecting the next customers to visit. The procedure is re-
peated until a complete solution is built. Sarasola et al. [58] designed a flexible
VNS for the VRP with dynamic requests. The flexibility strategy is based on the
relaxation of the maximum tour length constraint.

12 Metaheuristics for Dynamic Vehicle Routing 277

Attanasio et al. present in [2] parallel implementations of a tabu search method
developed previously by Cordeau and Laporte for the static Dial-a-Ride Problem
(DARP) [16]. In this latter the requests are received throughout the day and the pri-
mary objective is to accept as many requests as possible as possible with the avail-
able fleet of vehicles. Furthermore, the routes are constructed under the constraint
that users specify pick-up and drop-off requests between origins and destinations.

12.3.3 Population-Based Metaheuristics

Several population-based metaheuristics have been proposed in the literature (see
Table 12.2). Next, we outline the major works that follow this research line.

12.3.3.1 Ant Colony Optimization

Ant System (AS) has been applied to tackle a large variety of Dynamic Vehicle
Routing Problems [23, 37, 49, 57, 64].

Tian et al. [64] present a hybrid Ant System to handle the dynamism by means of
modifying the pheromone matrix in order to take advantage of the old information
gathered during the previous search. They propose a new pheromone initialization
for new demands, which works better than a re-start optimization. Furthermore,
they use a simple strategy that consists in grouping new requests at every fixed
interval-time before their introduction into the system. In addition, they make further
improvements on vehicle routes with the local search 2-Opt heuristic.

Jun et al. [37] addressed a hybrid multi-objective ant colony algorithm for solv-
ing DVRPTW. They consider two sub-objectives such as the vehicle number and
the time cost. In their Ant Colony Algorithm, an Evolutionary Algorithm (EA) is
embedded to increase the pheromone update. They explain that EA participates to
speed up the convergence of their algorithm.

Montemanni et al. [49] exploit some features of the Ant Colony System opti-
mization paradigm to smoothly save information about promising solutions when
the optimization problem evolves because of the arrival of new orders. One of these
characteristics is the pheromone conservation procedure, which contains informa-
tion about good solutions features. In particular, pairs of customers that have been
visited in sequence in good solutions will have high values in the corresponding
entries of the pheromone matrix. In the dynamic context, it is used to pass on in-
formation about the properties of good solutions from previously obtained results in
the new changing environment, since the two problems are potentially very similar.
This operation avoids restarting the optimization from scratch. Based on the Monte-
manni’s algorithm, Rizzoli et al. [57] discuss the applications of ACO on a number
of real-world problems. They propose some results obtained by their algorithm on
an on-line VRP for fuel distribution in the city of Lugano (Switzerland).

278 M.R. Khouadjia et al.

Oliveira et al. [18] propose an Ant Colony Algorithm for the DVRPTW with
two different forms of attractiveness (time windows and distance) for building the
vehicles routes. According to their experiments, the higher the degree of dynamism,
the fewer customers will be served.

Chitty et al. [14] introduce a hybrid dynamic programming-ant colony optimiza-
tion approach to solve bi-criterion Vehicle Routing Problems. The aim is to find
routes that have both shortest overall travel time and smallest variance in travel time.
The hybrid approach uses the principles of dynamic programming to first solve sim-
ple problems using ACO (routing from each adjacent node to the end node), and then
builds on this preliminary solution to eventually provide solutions (i.e. Pareto fronts)
for routing between each node in the network and the destination node. However,
the hybrid technique updates the pheromone concentrations only along the first edge
visited by each ant. This technique is shown to provide the overall solution faster
than an established bi-criterion ACO technique that is concerned only with rout-
ing between the start and destination nodes, allowing re-routing vehicle to dynamic
changes within the road network.

12.3.3.2 Evolutionary Algorithms

Hanshar [31] proposes a Genetic Algorithm (GA) that handles the optimization of
the static VRP-like instances that correspond to the whole dynamic optimization
problem. The GA is launched at each fixed duration and must run within an efficient
amount of time. The fitness evaluation involves the vehicle routes obtained after the
translation of the chromosome representation. It returns the total travel distance /
cost of the routes. The Best-Cost Route Crossover (BCRC) is used as the crossover
operator and the inversion operator is used as the mutation operator.

Housroum et al. [32] deal with the Dynamic Vehicle Routing Problem with Time
Windows (DVRPTW). The authors propose an approach based on genetic algo-
rithms. For their algorithm, they use the PMX crossover and different mutation op-
erators such as Or-Opt, 1-Opt, or swap. They validate their approach on modified
Solomon’s benchmarks which have been proposed by Gendreau et al. [26]. Zhao
et al. in [70] use a GA similar to Housroum’s algorithm [32] for solving the Dy-
namic Vehicle Routing Problem with time-dependent Travel Times (DVRPTT).

Alvarenga et al. propose in [1] a hybrid GA with Column Generation Heuristic
for the DVRPTW. The authors propose a specific crossover that, at the first step,
makes a random choice of routes from each parent involved. After all feasible routes
have been inserted in the offspring, remaining customers are inserted into existing
routes, if possible (second step). New routes are created if some customers remain
after this insertion step. Eight different operators are used as mutation operators.

Branke et al. [13] propose a GA with different waiting strategies of vehicles for
the DCVRP. A two-point crossover is chosen and the mutation is done by adding to
each value a normally distributed random value.

For their Evolutionary Hyper-Heuristics (EH-DVRP) [24], Garrido et al. pro-
pose a high-level algorithm which evolves and combines different types of low-level

12 Metaheuristics for Dynamic Vehicle Routing 279

heuristics (constructive, perturbation, and noise heuristics) to solve the problem.
Each individual of the population refers to a sequence of genes that corresponds to
a constructive and improvement heuristics which gradually inserts customers and
repairs the set of routes created so far. These dedicated heuristics are applied to
construct and improve partial states of the problem. The hyper-heuristic uses four
operators to find new individuals: one recombination and three mutation-like oper-
ators. The recombination operator performs a one point crossover to generate two
new offsprings. For the mutation operators, the first one randomly selects and copies
one of the heuristics to another position in the chromosome which allows us to in-
clude new heuristics in different steps of the algorithm. The second operator selects
and replaces a gene by one single heuristic. The authors’ idea is to give an alterna-
tive heuristic which may perform better in cooperation with existing ones. The last
operator deletes a gene from the chromosome and discards some heuristics which
cannot be useful to improve candidate solutions.

Wang et al. [66] have proposed an EA for solving the DVRPTW. For the algo-
rihtm’s reproduction phase, the authors used a two-point crossover operator and a
mutation operator that consists in changing the assignment of unserved customers
to another vehicle. In order to enhance their algorithm, the authors propose to hy-
bridize their algorithm with a modified Dijkstra’s algorithm for finding real-time
shortest paths.

Jih et al. [36] address a hybrid genetic algorithm for solving single-vehicle pickup
and delivery problem with time windows and capacity constraints (DPDVRPTW).
Their approach enables dynamic programming to achieve real-time performance
and genetic algorithms to approximate optimal solutions. The initial population is
created by the dynamic programming instead of generating it randomly. The dy-
namic programming passes the unfinished routes to the genetic algorithm in order
to produce final solutions. The authors compare the performance of four crossover
operators. These operators are order crossover (OX), uniform order-based crossover
(UOX), merge cross #1 (MX1), and merge cross #2 (MX2) [9]. In addition, they
consider three mutation operators:(i) two genes are selected randomly, and their po-
sitions are interchanged (swap operator); (ii) two break points are selected randomly
and the order of the sub-route specified by the genes is inverted (inverse operator);
(iii) if the vehicle arrives at the ith stop and violates the constraints, the order of the
genes within the first ith sub-route is disturbed (rearrangement operator).

Haghani and Jung [29], deal with the pick-up and delivery vehicle routing prob-
lem with soft time windows, where they consider multiple vehicles with different ca-
pacities, real-time service requests, and real-time variations in travel times between
demand nodes. This algorithm includes a vehicle merging operator in addition to
the generic genetic operators, namely the crossover and the mutation operators.

Bosman et al. [10] introduce a probabilistic model to describe the beha-
vior of the load announcements. This allows the routing to be informed about
customer positions where loads are expected to arrive shortly. This approach
outperforms the EA that only considers currently available loads. Only mutation is

280 M.R. Khouadjia et al.

considered. In the mutation of an individual, two vehicles are chosen randomly
(could be the same), and two customers from their respective routes are chosen ran-
domly, and are swapped. This operator allows visits to customers to be exchanged
between vehicles or to be re-ordered in the route of a single vehicle directly.

Van Hemertand and La Poutré [65] present an evolutionary algorithm that is able
to provide solutions in real-time for the DVRP. The authors analyze the benefit of
anticipatory vehicle moves within regions that have a high potential of generating
loads (fruitful regions). Only mutation is considered. Two vehicles, possibly the
same one, are chosen uniform randomly. In both vehicles two nodes are selected
uniform randomly. If only one vehicle is chosen, these nodes are chosen to be dis-
tinct. Then, the nodes are swapped.

12.3.3.3 Particle Swarm Optimization

Khouadjia et al. [39] have proposed a Particle Swarm Optimization (PSO) for solv-
ing DCVRP. The authors suggest a discrete optimization of the problem and some
adaptive mechanisms. Since PSO is intrinsically a memory-based approach, due
to the memorization by each particle of its current and best position in the search
space, they propose to reuse the best positions gathered in the past to face the chang-
ing environment. At each new sub-problem, the algorithm selects the positions with
the best solution cost in the new search landscape. From these positions, the parti-
cles are re-positioned (re-initialized) for the new optimization process. The velocity
vector of each particle corresponds to the likely routes in which a customer could
belong. The updating of the position vector is the application of the velocity vec-
tor. It is summarized in shifting customers from their respective route to another
one according to the velocity vector and with the cheapest strategy insertion (i.e. by
minimizing the cost of the insertion). The updating process is very similar to the
ejection chain method that has been applied successfully to vehicle routing [56].

Khouadjia et al. [38] have enhanced their algorithm, particularly against the early
well-known convergence of PSO algorithm. They propose in [38], a multi-swarm
approach called MAPSO (Multi-Adaptive Particle Swarm Optimization) to investi-
gate whether a multi-population metaheuristic might be beneficial in dynamic vehi-
cle routing environments. The aim is to place different swarms on the search space
to counterbalance the loss of diversity population and to provide better reactivity to
the arrival of new customers.

12.4 Dynamic Performance Measures

The goal of optimization in dynamic environments is not only to find an optimum
within a given number of generations, but rather a perpetual adjustment to chang-
ing environmental conditions. Besides the accuracy of an approximation at time
t, the stability of the algorithm is also of interest as well as the recovery time to reach

12 Metaheuristics for Dynamic Vehicle Routing 281

Table 12.2 State of the art metaheuristics for DVRP and its variants.

Metaheuristics Authors Problem Operators or Neighborhood

Trajectory-Based
Tabu Search

Hanshar et al. [31] DCVRP λ -interchange and inversion
Gendreau1 et al. [26]

DVRPTW
CROSS exchange

Ichoua et al. [34, 35]
Mitrović-Minić et al. [48]

DPDVRP
Attanasio et al. [2]

GRASP Montemanni et al. [49] DCVRP Greedy insertion
VNS Sarasola et al. [58] DCVRP Swap, insertion, 2-Opt, 2-Opt*

Population-Based

Montemanni et al. [49]

DCVRP

Greedy heuristic
Optimization Rizzoli et al. [57] –

Tian et al. [64] 2-opt heuristic
Ant Colony Chitty [14] Dynamic programming

Jun et al. [37]
DVRPTW

Cooperation with EA
Oliveira et al. [18] Greedy heuristic
Hanshar et al. [31]

DCVRP

BCRC crossover
Mutation (inversion)

Branke et al. [13] Two-point crossover
Mutation (replacement)

Garrido2010 et al. [24] One-point crossover
3 mutation operators

(replacement,insertion,deletion)
Van Hemertand and mutation (CROSS exchange)
La Poutré [65]
Housroum et al. [32]

DVRPTW

PMX crossover
3 mutations (Or-Opt, 1-Opt, swap)

Evolutionary Alvarenga et al. [1] Specific crossover
Algorithms 8 mutations (insertion, exchange, ...)

Wang et al. [66] Two-point crossover
Mutation (Insertion)

Jih et al. [36]
DPDVRPTW

3 crossovers (OX, UOX MX1, MX2)
3 mutations (rearrangement, swap, 2-Opt)

Bosman et al. [10] CROSS exchange mutation
Zhao et al. [70]

DVRPTT
PMX crossover

3 mutations (Or-Opt, 1-Opt, swap)
Particle Swarm Khouadjia et al. [38, 39]

DCVRP
2-Opt heuristic

Optimization Cheapest insertion heuristic

again a certain approximation quality. We report here some measures that could be
used for evaluating the performance of an algorithm designed for the DVRP.

Weicker [67] proposes three features for describing the goodness of a dynamic
adaptation process: accuracy, stability, and ε-reactivity.

The optimization accuracy at time t for a fitness function F and optimization
algorithm A is defined as

accuracyt
F,A =

Mint
F

F(bestt
A)

, (12.7)

where bestt
A is the best candidate solution in the population at time t and Mint

F is
the best fitness value in the search space (best known solution). The optimization
accuracy ranges between 0 and 1, where accuracy 1 is the best possible value.

As a second goal, stability is an important issue in optimization. In the con-
text of dynamic optimization, an adaptive algorithm is called stable if changes in
the environment do not affect the optimization accuracy severely. Even in the case of

282 M.R. Khouadjia et al.

drastic changes an algorithm should be able to limit the respective fitness drop. The
stability at time, t is defined as

stabilityt
F,A = max{0,accuracy(t)− accuracy(t− 1)} (12.8)

and ranges between 0 and 1. A value close to 0 implies a high stability.
Finally, another aspect to be considered is the ability of the algorithm to react

quickly to changes. This is measured by the ε-reactivity, which ranges in [1,maxgen]
(a smaller value implies a higher reactivity):

ε− reactivityi = min{i′ − i|i < i′ ≤ maxgen, i ∈N,
accuracyi′

accuracyi
≥ (1− ε)}

12.5 Performance Assessment

This section is devoted to the performance evaluation of different recent metaheuris-
tics proposed in the literature [31, 38, 39, 49]. We justify this choice by the fact
that these approaches follow the same experimental protocol, from the simulation
framework to the set of benchmarks. Thus, it is easy to have an idea about the per-
formances of these algorithms. Besides, all the classes of population-based meta-
heuristics described in Section 12.3 are represented.

Several benchmarks have been used. The most used ones are those of Kilby [40].
They were derived from publicly available VRP benchmark data from three separate
VRP sources, namely Taillard [63] (13 instances), Christofides and Beasley [15] (7
instances), and Fisher et al. [22] (2 instances). These instances were organized and
extended by Kilby et al. [40]. Kilby et al. organized the instances into two groups,
pickup and delivery, and gave each request an available time which signifies when
the order was placed in the system and a duration, which represents the minimum
amount of time a vehicle waits at a customer. In [31, 39, 49] authors use the dod
described in the Section 12.2 in order to determine the percentage of dynamic re-
quests over the entire working day. The degree of dynamism was fixed at 0.5; this
means that a half of the customers is considered as static, while the other half is
dynamic. The optimization begins to plan routes with the known static customers at
the beginning of the working day.

We report in Table 12.3 the best found solutions from the literature on meta-
heuristics; Adaptive Particle Swarm Optimization (APSO) [39], Multi-Adaptive
Particle Swarm Optimization (MASPO) [38], Genetic Algorithm(GA) [31], Tabu
Search (TS) [31], and Ant System(AS) [49] on Kilby’s instances. These metaheuris-
tics deal with pickup instances. In this case, the driver of the vehicle is not concerned
with what is being transported, but only the quantity that has to be picked from the
customer.

We highlight the best found solutions in dark shaded cells and the average
results in light shaded cells. For each instance, 30 runs of the algorithms have been
considered. We can see that the multi-swarm MAPSO is able to provide higher

12 Metaheuristics for Dynamic Vehicle Routing 283

Table 12.3 Numerical results obtained by the state-of-the-art metaheuristics on Kilby’s ins-
tances

Metaheuristics

Instances APSO [39] MAPSO [38] AS [49] GA [31] TS [31]

Best Average Best Average Best Average Best Average Best Average

c50 575.89 647.75 571.34 610.67 631.30 681.86 570.89 593.42 603.57 627.90

c75 970.45 1046.25 931.59 965.53 1009.36 1042.39 981.57 1013.45 981.51 1013.82

c100 988.27 1087.96 953.79 973.01 973.26 1066.16 961.10 987.59 997.15 1047.60

c100b 924.32 970.66 866.42 882.39 944.23 1023.60 881.92 900.94 891.42 932.14

c120 1276.88 1450.82 1223.49 1295.79 1416.45 1525.15 1303.59 1390.58 1331.22 1468.12

c150 1371.08 1499.54 1300.43 1357.71 1345.73 1455.50 1348.88 1386.93 1318.22 1401.06

c199 1640.40 1751.63 1595.97 1646.37 1771.04 1844.82 1654.51 1758.51 1750.09 1783.43

f71 279.52 339.08 287.51 296.76 311.18 358.69 301.79 309.94 280.23 306.33

f134 15875 16477.4 15150.5 16193 15135.51 16083.56 15528.81 15986.84 15717.90 16582.04

tai75a 1816.07 1978.51 1794.38 1849.37 1843.08 1945.20 1782.91 1856.66 1778.52 1883.47

tai75b 1447.39 1489.24 1396.42 1426.67 1535.43 1704.06 1464.56 1527.77 1461.37 1587.72

tai75c 1481.35 1555.36 1483.1 1518.65 1574.98 1653.58 1440.54 1501.91 1406.27 1527.72

tai75d 1414.28 1481.05 1391.99 1413.83 1472.35 1529.00 1399.83 1422.27 1430.83 1453.56

tai100a 2249.84 2378.26 2178.86 2214.61 2375.92 2428.38 2232.71 2295.61 2208.85 2310.37

tai100b 2238.42 2426.58 2140.57 2218.58 2283.97 2347.90 2147.70 2215.93 2219.28 2330.52

tai100c 1532.56 1612.1 1490.40 1550.63 1562.30 1655.91 1541.28 1622.66 1515.10 1604.18

tai100d 1955.06 2092.31 1838.75 1928.69 2008.13 2060.72 1834.60 1912.43 1881.91 2026.76

tai150a 3400.33 3581.66 3273.24 3389.97 3644.78 3840.18 3328.85 3501.83 3488.02 3598.69

tai150b 3013.99 3391.08 2861.91 2956.84 3166.88 3327.47 2933.40 3115.39 3109.23 3215.32

tai150c 2714.34 2859.97 2512.01 2671.35 2811.48 3016.14 2612.68 2743.55 2666.28 2913.67

tai150d 3025.43 3143.16 2861.46 2989.24 3058.87 3203.75 2950.61 3045.16 2950.83 3111.43

Total 50190.87 53260.37 48104.13 50349.66 50876.23 53794.02 49202.73 51089.37 49987.8 52725.85

quality solutions than the other algorithms. It outperforms the other metaheuristics,
and gives 18 new best solutions out of the 21 Kilby’s instances. MAPSO algorithm
also provides the shortest total traveled distance over all instances. The improve-
ment brought about by MAPSO ranges between [2.23−5.76] compared to the other
metaheuristics on the total traveled distance. As to the dynamic performance mea-
sures, we have computed the accuracy at the end of the working day. Table 12.4
shows the accuracy of the previous algorithms. It reports the best obtained distances
and the bounds MinT

F (best known solutions) found by an (ideal) off-line algorithm
which had access to the entire instance, including dynamic requests, beforehand.
These solutions can be found in the literature1 over the 21 Kilby’s instances.

These best known solutions consider all customers to be static, and then are not
feasible solutions for the DVRP. They work as a bound for the algorithms. From
Table 12.4, we see that MAPSO has the best accuracy average at the end of the
simulation. This accuracy is equal to 0.89 (being 1.0 the best value) which denotes
that the algorithm is able to produce good solutions on the conventional dynamic

1 http://neo.lcc.uma.es/radi-aeb/WebVRP/

http://neo.lcc.uma.es/radi-aeb/WebVRP/

284 M.R. Khouadjia et al.

benchmarks. We do not report the reactivity and stability because we would need
all the minimum traveled distances (exact optimal cost) at each arrival of a new
customer.

Table 12.4 Accuracy of different metaheuristics on the Kilby’s instances

Metaheuristics
Instance MinT

F APSO [39] MAPSO [38] AS [49] GA [31] TS [31]
Best Accu. Best Accu. Best Accu. Best Accu. Best Accu.

c50 521 575.89 0.90 571.34 0.91 631.3 0.83 570.89 0.91 603.57 0.86
c75 832 970.45 0.86 931.59 0.89 1009.36 0.82 981.57 0.85 981.51 0.85
c100 817 988.27 0.83 953.79 0.86 973.26 0.84 961.1 0.85 997.15 0.82

c100b 820 924.32 0.89 866.42 0.95 944.23 0.87 881.92 0.93 891.42 0.92
c120 1042.11 1276.88 0.82 1223.49 0.85 1416.45 0.74 1303.59 0.8 1331.22 0.78
c150 1028.42 1371.08 0.75 1300.43 0.79 1345.73 0.76 1348.88 0.76 1318.22 0.78
c199 1291.45 1640.4 0.79 1595.97 0.81 1771.04 0.73 1654.51 0.78 1750.09 0.74
f71 237 279.52 0.85 287.51 0.82 311.18 0.76 301.79 0.79 280.23 0.85

f134 11620 15875 0.73 15150.5 0.77 15135.51 0.77 15528.81 0.75 15717.9 0.74
tai75a 1618.36 1816.07 0.89 1794.38 0.90 1843.08 0.88 1782.91 0.91 1778.52 0.91
tai75b 1344.64 1447.39 0.93 1396.42 0.96 1535.43 0.88 1464.56 0.92 1461.37 0.92
tai75c 1291.01 1481.35 0.87 1483.1 0.87 1574.98 0.82 1440.54 0.90 1406.27 0.92
tai75d 1365.42 1414.28 0.97 1391.99 0.98 1472.35 0.93 1399.83 0.98 1430.83 0.95
tai100a 2041.33 2249.84 0.91 2178.86 0.94 2375.92 0.86 2232.71 0.91 2208.85 0.92
tai100b 1940.61 2238.42 0.87 2140.57 0.91 2283.97 0.85 2147.7 0.90 2219.28 0.87
tai100c 1406.2 1532.56 0.92 1490.4 0.94 1562.3 0.9 1541.28 0.91 1515.1 0.93
tai100d 1581.25 1955.06 0.81 1838.75 0.86 2008.13 0.79 1834.6 0.86 1881.91 0.84
tai150a 3055.23 3400.33 0.90 3273.24 0.93 3644.78 0.84 3328.85 0.92 3488.02 0.88
tai150b 2656.47 3013.99 0.88 2861.91 0.93 3166.88 0.84 2933.4 0.91 3109.23 0.85
tai150c 2341.84 2714.34 0.86 2512.01 0.93 2811.48 0.83 2612.68 0.90 2666.28 0.88
tai150d 2645.39 3025.43 0.87 2861.46 0.92 3058.87 0.86 2950.61 0.90 2950.83 0.90
Average 1976.03 2390.04 0.86 2290.67 0.89 2422.68 0.83 2342.99 0.87 2380.37 0.86

12.6 Conclusions and Future Work

The Dynamic Vehicle Routing Problem (DVRP) has been surveyed in this chap-
ter. This problem is important both in research and industrial domains due to its
many real-world applications. The state of the art presented in this chapter covers
the problem representation as well as the existing solving metaheuristics. In ad-
dition, a practical study of several metaheuristics in terms of the solution quality
is reported. Besides, according to dynamic performance measures, the accuracy of
different algorithms is calculated.

This study shows that the multi-population-based metaheuristics are able to find
high quality solutions comparatively to the rest of metaheuristics. This is easy to
understand since they offer a rich diversity in the exploration, which allows the
algorithm to easily track the moving optima throughout the search space.

Different issues remain open. One of them is the landscape analysis of the DVRP
and the severity of the changes that can occur. Landscape study techniques will
allow the algorithm to locate better the current optimum and anticipate its move-
ments, given that, unless the change in the problem is strong, the new problem can
be similar to the old one. Concerning the severity, if the change is strong and fre-
quent, trajectory-based metaheuristics usually fail to react and to track the optima.
Enhancing the diversity within this class of metaheuristics is an inescapable issue.

12 Metaheuristics for Dynamic Vehicle Routing 285

Another prospect is the flexibility and robustness of the solutions. The best solu-
tion in terms of fitness quality may not be the most flexible or robust one when it
comes to updating it when the problem changes. The underlying idea is searching
for robust solutions or the manner to obtain them. Robust solutions are those that
promise high quality even if the environment changes. One way to ensure robust-
ness is to introduce flexibility in these solutions. Through anticipating the changes
in the environment, we will be able to provide solutions that not only have a high
quality, but that allow the adaptation to high quality solutions after the environment
has changed. To preserve flexibility, we could construct initial solutions being aware
about the potential arrival of new orders; in order to do so, we can imagine to adjust
dynamically the length of the working day, making it smaller at the beginning of the
optimization process and letting it increase until it reaches the value defined by the
problem instance. In this way, we can expect to get solutions with a larger number
of shorter routes at the beginning of the simulation time. If there are more routes
available and they are not built to use the whole working day length, it will be easier
to place new customers in a good position in vehicle routes.

On this way, future approaches will integrate new mechanisms that handle these
issues and will be able to respond better and react faster to the changing environ-
ment. New approaches will provide solutions which are comparable to the solutions
obtained in the static case.

Acknowledgments. Authors acknowledge funds from the Associated Teams
Program MOMDI of the French National Institute for Research in Computer
Science and Control INRIA (http://www.inria.fr), the Spanish Ministry of
Science and Innovation plus European FEDER under contracts TIN2008-06491-C04-
01 (M* Project http://mstar.lcc.uma.es), TIN2011-28194 (roadME Project
http://roadme.lcc.uma.es), and CICE, Junta de Andalucı́a under contract P07-
TIC-03044 (DIRICOM project http://diricom.lcc.uma.es). Briseida Sarasola is
supported by grant AP2009-1680 from the Spanish government.

References

[1] Alvarenga, G.B., Silva, R.M.A., Mateus, G.R.: A hybrid approach for the dynamic ve-
hicle routing problem with time windows. In: Proceedings of the Fifth International
Conference on Hybrid Intelligent Systems, pp. 61–67. IEEE Computer Society, Wash-
ington, DC (2005)

[2] Attanasio, A., Cordeau, J.F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics
for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing 30(3), 377–387
(2004)

[3] Beaudry, A., Laporte, G., Melo, T., Nickel, S.: Dynamic transportation of patients in
hospitals. OR spectrum 32(1), 77–107 (2010)

[4] Bent, R., Van Hentenryck, P.: Dynamic vehicle routing with stochastic requests. In:
Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on
Artificial Intelligence, pp. 1362–1363. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2003)

http://www.inria.fr
http://mstar.lcc.uma.es
http://roadme.lcc.uma.es
http://diricom.lcc.uma.es

286 M.R. Khouadjia et al.

[5] Bent, R., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehicle
routing with stochastic customers. Operations Research 52(6), 977–987 (2004)

[6] Bertsimas, D.J., Van Ryzin, G.J.: A stochastic and dynamic vehicle routing problem in
the euclidean plane. Operations Research 39(4), 601–615 (1991)

[7] Bertsimas, D.J., Van Ryzin, G.J.: Stochastic and dynamic vehicle routing with general
demand and interarrival time distributions. Advanced Applied Probability 25, 947–978
(1993)

[8] Bianchi, L.: Notes on dynamic vehicle routing -the state of the art-. Technical report,
Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale (2000)

[9] Blanton Jr., J.L., Wainwright, R.L.: Multiple vehicle routing with time and capacity
constraints using genetic algorithms. In: Forrest, S. (ed.) Proceedings of the 5th Interna-
tional Conference on Genetic Algorithms, pp. 452–459. Morgan Kaufmann Publishers
Inc., San Francisco (1993)

[10] Bosman, P.A.N., La Poutré, H.: Computationally Intelligent Online Dynamic Vehicle
Routing by Explicit Load Prediction in an Evolutionary Algorithm. In: Runarsson, T.P.,
Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN
2006. LNCS, vol. 4193, pp. 312–321. Springer, Heidelberg (2006)

[11] Branchini, R.M., Armentano, V.A., Løkketangen, A.: Adaptive granular local search
heuristic for a dynamic vehicle routing problem. Computers & Operations Re-
search 36(11), 2955–2968 (2009)

[12] Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic
Publishers (2002)

[13] Branke, J., Middendorf, M., Noeth, G., Dessouky, M.: Waiting strategies for dynamic
vehicle routing. Transportation Science 39(3), 298–312 (2005)

[14] Chitty, D.M., Hernandez, M.L.: A Hybrid Ant Colony Optimisation Technique for Dy-
namic Vehicle Routing. In: Deb, K., et al. (eds.) GECCO 2004, Part I. LNCS, vol. 3102,
pp. 48–59. Springer, Heidelberg (2004)

[15] Christofides, N., Beasley, J.: The period routing problem. Networks 14(2), 237–256
(1984)

[16] Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride
problem. Transportation Research Part B: Methodological 37(6), 579–594 (2003)

[17] Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Operations Research,
Management Sciences 6(1), 80–91 (1959)

[18] de Oliveira, S.M., de Souza, S.R., Silva, M.A.L.: A solution of dynamic vehicle routing
problem with time window via ant colony system metaheuristic. In: Proceedings of the
2008 10th Brazilian Symposium on Neural Networks, SBRN 2008, pp. 21–26. IEEE
Computer Society, Washington, DC (2008)

[19] Fabri, A., Recht, P.: On dynamic pickup and delivery vehicle routing with several time
windows and waiting times. Transportation Research Part B: Methodological 40(4),
335–350 (2006)

[20] Fagerholt, K., Foss, B.A., Horgen, O.J.: A decision support model for establishing an
air taxi service: a case study. Journal of the Operational Research Society 60(9), 1173–
1182 (2009)

[21] Fiegl, C., Pontow, C.: Online scheduling of pick-up and delivery tasks in hospitals.
Journal of Biomedical Informatics 42(4), 624–632 (2009)

[22] Fisher, M.: Vehicle routing. In: Monma, C.L., Ball, M.O., Magnanti, T.L., Nemhauser,
G.L. (eds.) Network Routing. Handbooks in Operations Research and Management
Science, vol. 8, pp. 1–33. Elsevier (1995)

12 Metaheuristics for Dynamic Vehicle Routing 287

[23] Gambardella, L.M., Rizzoli, A.E., Oliverio, F., Casagrande, N., Donati, A.V., Mon-
temanni, R., Lucibello, E.: Ant Colony Optimization for vehicle routing in advanced
logistics systems. In: Proceedings of MAS 2003 - International Workshop on Modeling
& Applied Simulation, pp. 3–9 (2003)

[24] Garrido, P., Riff, M.C.: DVRP: a hard dynamic combinatorial optimisation problem
tackled by an evolutionary hyper-heuristic. Journal of Heuristics 16, 795–834 (2010)

[25] Gendreau, M., Guertin, F., Potvin, J.Y., Séguin, R.: Neighborhood search heuristics for
a dynamic vehicle dispatching problem with pick-ups and deliveries. Transportation
Research Part C: Emerging Technologies 14(3), 157–174 (2006)

[26] Gendreau, M., Guertin, F., Potvin, J.Y., Taillard, E.: Parallel tabu search for real-time
vehicle routing and dispatching. Transportation Science 33(4), 381–390 (1999)

[27] Gendreau, M., Potvin, J.Y.: Dynamic vehicle routing and dispatching (1998)
[28] Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Real-time vehicle routing: Solu-

tion concepts, algorithms and parallel computing strategies. European Journal of Oper-
ational Research 151, 1–11 (2003)

[29] Haghani, A., Jung, S.: A dynamic vehicle routing problem with time-dependent travel
times. Comput. Oper. Res. 32, 2959–2986 (2005)

[30] Haghani, A., Yang, S.: Real-time emergency response fleet deployment: Concepts, sys-
tems, simulation & case studies. In: Dynamic Fleet Management, pp. 133–162 (2007)

[31] Hanshar, F.T., Ombuki-Berman, B.M.: Dynamic vehicle routing using genetic algo-
rithms. Applied Intelligence 27, 89–99 (2007)

[32] Housroum, H., Hsu, T., Dupas, R., Goncalves, G.: A hybrid GA approach for solving
the dynamic vehicle routing problem with time windows. In: 2nd International Con-
ference on Information & Communication Technologies: Workshop ICT in Intelligent
Transportation Systems, ICTTA 2006, vol. 1, pp. 787–792 (2006)

[33] Hvattum, L.M., Løkketangen, A., Laporte, G.: Solving a dynamic and stochastic vehicle
routing problem with a sample scenario hedging heuristic. Transportation Science 40,
421–438 (2006)

[34] Ichoua, S., Gendreau, M., Potvin, J.Y.: Diversion issues in real-time vehicle dispatching.
Transportation Science 34, 426–438 (2000)

[35] Ichoua, S., Gendreau, M., Potvin, J.Y.: Vehicle dispatching with time-dependent travel
times. European Journal of Operational Research 144, 379–396 (2003)

[36] Jih, W.R., Hsu, J.Y.J.: Dynamic vehicle routing using hybrid genetic algorithms. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation, Detroit,
Michigan, vol. 1, pp. 453–458 (1999)

[37] Jun, Q., Wang, J., Zheng, B.: A hybrid multi-objective algorithm for dynamic vehicle
routing problems. In: Bubak, M., Albada, G.D., Dongarra, J., Sloot, P.M. (eds.) Pro-
ceedings of the 8th International Conference on Computational Science, Part III, ICCS
2008, pp. 674–681. Springer, Heidelberg (2008)

[38] Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-Swarm Optimization for Dy-
namic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing Problem.
In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano,
D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010.
LNCS, vol. 6234, pp. 227–238. Springer, Heidelberg (2010)

[39] Khouadjia, M.R., Jourdan, L., Talbi, E.G.: Adaptive particle swarm for solving the dy-
namic vehicle routing problem. In: IEEE/ACS International Conference on Computer
Systems and Applications (AICCSA 2010), pp. 1–8. IEEE Computer Society (2010)

[40] Kilby, P., Prosser, P., Shaw, P.: Dynamic VRPs: A study of scenarios. Technical report,
University of Strathclyde, U.K. (1998)

288 M.R. Khouadjia et al.

[41] Kritzinger, S., Tricoire, F., Doerner, K.F., Hartl, R.F.: Variable Neighborhood Search
for the Time-Dependent Vehicle Routing Problem with Soft Time Windows. In: Coello,
C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 61–75. Springer, Heidelberg (2011)

[42] Larsen, A.: The Dynamic Vehicle Routing Problem. PhD thesis, Technical University
of Denmark (2000)

[43] Larsen, A., Madsen, O.B.G., Solomon, M.M.: Partially dynamic vehicle routing-models
and algorithms. Journal of the Operational Research Society 53(6), 637–646 (2002)

[44] Larsen, A., Madsen, O.B.G., Solomon, M.M.: The a priori dynamic traveling salesman
problem with time windows. Transportation Science 38(4), 459–472 (2004)

[45] Larsen, A., Madsen, O.B.G., Solomon, M.M.: Recent developments in dynamic vehi-
cle routing systems. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing
Problem: Latest Advances and New Challenges. Operations Research/Computer Sci-
ence Interfaces Series, vol. 43, pp. 199–218. Springer, US (2008)

[46] Lund, K., Madsen, O.B.G., Rygaard, J.M.: Vehicle routing problems with varying de-
grees of dynamism. Technical report, IMM, The Department of Mathematical Mod-
elling, Technical University of Denmark (1996)

[47] De Magalhães, J.M., Pinho De Sousa, J.: Dynamic VRP in pharmaceutical distribution
-a case study. Central European Journal of Operations Research 14(2), 177–192 (2006)

[48] Mitrović-Minić, S., Krishnamurti, R., Laporte, G.: Double-horizon based heuristics for
the dynamic pickup and delivery problem with time windows. Transportation Research
Part B: Methodological 38(8), 669–685 (2004)

[49] Montemanni, R., Gambardella, L.M., Rizzoli, A.E., Donati, A.V.: A new algorithm for a
dynamic vehicle routing problem based on ant colony system. Journal of Combinatorial
Optimization 10, 327–343 (2005)

[50] Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the ve-
hicle routing problem. Annals of Operations Research 41(4), 421–451 (1993)

[51] Pavone, M., Bisnik, N., Frazzoli, E., Isler, V.: A stochastic and dynamic vehicle routing
problem with time windows and customer impatience. Mobile Networks and Applica-
tions 14, 350–364 (2009)

[52] Potvin, J.Y., Xu, Y., Benyahia, I.: Vehicle routing and scheduling with dynamic travel
times. Comput. Oper. Res. 33, 1129–1137 (2006)

[53] Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research 31(12), 1985–2002 (2004)

[54] Psaraftis, H.N.: Dynamic vehicle routing problems. Vehicle Routing: Methods and
Studies 16, 223–248 (1988)

[55] Psaraftis, H.N.: Dynamic vehicle routing: status and prospects. Annals of Operations
Research 61, 143–164 (1995)

[56] Rego, C.: Node-ejection chains for the vehicle routing problem: Sequential and parallel
algorithms. Parallel Computing 27(3), 201–222 (2001)

[57] Rizzoli, A., Montemanni, R., Lucibello, E., Gambardella, L.: Ant colony optimization
for real-world vehicle routing problems. Swarm Intelligence 1, 135–151 (2007)

[58] Sarasola, B., Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.G.: Flexible variable
neighborhood search in dynamic vehicle routing. In: 8th European event on Evolu-
tionary Algorithms in Stochastic and Dynamic Environments (EvoSTOC 2011), April
27-29 (2011)

[59] Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Transportation
Science 29(1), 17–29 (1995)

12 Metaheuristics for Dynamic Vehicle Routing 289

[60] Schilde, M., Doerner, K.F., Hartl, R.F.: Metaheuristics for the dynamic stochastic dial-
a-ride problem with expected return transports. Computers & OR 38(12), 1719–1730
(2011)

[61] Schmid, V., Doerner, K.F.: Ambulance location and relocation problems with time-
dependent travel times. European Journal of Operational Research 207(3), 1293–1303
(2010)

[62] Sun, L., Hu, X., Wang, Z., Huang, M.: A knowledge-based model representation and
on-line solution method for dynamic vehicle routing problem. In: Shi, Y., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007: Proceedings of the 7th Interna-
tional Conference on Computational Science, Part IV. LNCS, pp. 218–226. Springer,
Heidelberg (2007)

[63] Taillard, É.: Parallel iterative search methods for vehicle routing problems. Net-
works 23(8), 661–673 (1993)

[64] Tian, Y., Song, J., Yao, D., Hu, J.: Dynamic vehicle routing problem using hybrid ant
system. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems,
vol. 2, pp. 970–974 (2003)

[65] van Hemert, J., La Poutré, J.A.H.: Dynamic Routing Problems with Fruitful Regions:
Models and Evolutionary Computation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith,
J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel,
H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 692–701. Springer, Heidelberg (2004)

[66] Wang, J.Q., Tong, X.N., Li, Z.M.: An improved evolutionary algorithm for dynamic
vehicle routing problem with time windows. In: ICCS 2007: Proceedings of the 7th
International Conference on Computational Science, Part IV, pp. 1147–1154. Springer,
Heidelberg (2007)

[67] Weicker, K.: Performance Measures for Dynamic Environments. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN
2002. LNCS, vol. 2439, pp. 64–76. Springer, Heidelberg (2002)

[68] Xu, J., Goncalves, G., Hsu, T.: Genetic algorithm for the vehicle routing problem with
time windows and fuzzy demand. In: 2008 IEEE World Congress on Computational
Intelligence, WCCI 2008, pp. 4125–4129 (2008)

[69] Yang, J., Jaillet, P., Mahmassani, H.: Real-time multivehicle truckload pickup and de-
livery problems. Transportation Science 38, 135–148 (2004)

[70] Zhao, X., Goncalves, G., Dupas, R.: A genetic approach to solving the vehicle rout-
ing problem with time-dependent travel times. In: 16th Mediterranean Conference on
Control and Automation, pp. 413–418 (2008)

Chapter 13
Low-Level Hybridization of Scatter Search
and Particle Filter for Dynamic TSP Solving

Juan José Pantrigo and Abraham Duarte

Abstract. This work presents the application of the Scatter Search Particle Fil-
ter (SSPF) algorithm to solve the Dynamic Travelling Salesman Problem (DTSP).
SSPF combines sequential estimation and combinatorial optimization methods to
efficiently address dynamic optimization problems. SSPF obtains high quality so-
lutions at each time step by taking advantage of the best solutions obtained in the
previous ones. To demonstrate the performance of the proposed algorithm, we con-
duct experiments using two different benchmarks. The first one was generated for
us and contains instances sized 25, 50, 75 and 100-cities and the second one are
dynamic versions of TSPLIB benchmarks. Experimental results have shown that
the performance of SSPF for the DTSP is significantly better than other population
based metaheuristics, such as Evolutionary Algorithms or Scatter Search. Our pro-
posal appreciably reduces the execution time without affecting the quality of the
obtained results.

13.1 Introduction

Dynamic optimization problems are characterized by an initial problem definition
and a collection of ”events” over the time. These ”events” define changes on the data
of the problem [26]. Therefore, dynamic optimization methods arise from strategies
to adapt for non-stationary conditions. In dynamic optimization problems, a key
question is how to use information found in previous time steps to obtain high qual-
ity solutions in subsequent ones, without restarting the computation from scratch.

Dynamic optimization problems play an important role in industrial applica-
tions. Many real-life problems belong to this category, particularly in transporta-
tion, telecommunications and manufacturing areas [26]. Surprisingly, compared to

Juan José Pantrigo · Abraham Duarte
Universidad Rey Juan Carlos,
c/ Tulipán s/n Móstoles Madrid, Spain
e-mail: {juanjose.pantrigo,abraham.duarte}@urjc.es

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 291–308.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{juanjose.pantrigo,abraham.duarte}@urjc.es

292 J. José Pantrigo and A. Duarte

the amount of research undertaken on stationary optimization problems, relatively
little work has been devoted to dynamic problems, despite the potential economic
advantages in doing so [8, 25]. Any advance in this field would translate to increased
company profits, lower consumer prices and improved services [26].

Unlike stationary problems, dynamic problems often lack well defined op-
timization functions, standard benchmarks or criteria for comparing solutions
[3, 8, 25, 26]. In the last decade, mainly used strategies have been specific heuris-
tics [26] and manual procedures [2, 25]. More recently, has been proposed a meta-
heuristic approach. Metaheuristics are high-level general strategies for designing
heuristics procedures [4]. The relevance of metaheuristics is reflected in their appli-
cation for solving many different real-world complex problems, mainly combinato-
rial [4, 11]. Since the initial proposal of Glover about Tabu Search in 1986, many
metaheuristics have emerged to design good general heuristics methods for solv-
ing different problems. The well known metaheuristics procedures are Genetic Pro-
gramming, GRASP, Simulated Annealing or Ant Colony Optimization. The reader
can find a review of this methods in [4, 11].

In dynamic optimization problems, metaheuristic-based approaches usually
consider one of the two following strategies after events: (i) restart the search
method from scratch or (ii) start from the best solutions found before the last event.
In the first approach, the derived problem is processed as unrelated with respect to
its origin problem. Therefore, the useful information obtained in the previous time
steps is wasted, increasing the computation time. On the other hand, starting the
method from the best solutions found in the previous time step could implicate a
loss of diversity in the solution set. Moreover, the best solutions found in previous
time steps could be close to local optima in the current one. As a consequence, the
search algorithm could get stuck in a local optimum.

The filtering problem concerns about updating the present state of knowledge
and predicting with drawing inferences about the future state of the system [6].
Sequential Monte Carlo population-based algorithms (also called particle filters)
are a special class of filters in which theoretical distributions on the state space are
approximated by simulated random measures (also called particles) [6]. Assuming
relative small problem data changes, the new optimum location should be related to
the solution of the previous problem definition. Thus, the actual search process could
use previous knowledge for a more efficient search. A reasonable trade-off between
the analysis of the prior problem solution and actual problem computational effort
must be found. Diverse methods consisting of the low-level hybridization of Particle
Filters and metaheuristics have been successfully applied to dynamic optimization
problems [22–24]. The term low-level hybridization refers to the functional compo-
sition of a single optimization method. In this hybrid class of optimization methods,
a given function of a metaheuristic is replaced by another metaheuristic [28]. In
this work, we apply the Scatter Search Particle Filter (SSPF) for the Dynamic Trav-
elling Salesman Problem. SSPF combines sequential estimation strategies (Particle
Filter) [1, 6] and metaheuristics methods (Scatter Search) [4] in two different stages.

13 Low-Level Hybridization of Scatter Search and PF for DTSP Solving 293

In the Particle Filter (PF) stage, a particle set is propagated and updated to obtain
new particle sets in every time step. In the Scatter Search (SS) stage, some solutions
from the particle set are selected and combined, in order to obtain better solutions.
SSPF was firstly presented in [23] and it was applied to multidimensional object
tracking (articulated and multiple object tracking). This work considers a dynamic
variant of the Travelling Salesman Problem [9] in which distances among cities vary
over the time. The problem instances used for this study have 25, 50, 75 and 100
cities placed on the Euclidean space, and a modification of approximately 15% of
the previous data graph is generated as successive events for the next problem ins-
tance. Also, dynamic versions of TSPLIB benchmark are used in order to compare
the performance of different approaches. Experimental results have shown that the
proposed algorithm has an acceptable performance when applied to the Dynamic
Travelling Salesman Problem (DTSP). Specifically, the CPU for the rest of the de-
rived problem instances significantly decreases with respect to the initial graph prob-
lem. This reduction in the search time will not affect the quality of the solution of
derived graphs.

13.2 Dynamic Travelling Salesman Problem

The Travelling Salesman Problem (TSP) consists of finding the shortest tour con-
necting a fixed number of locations (cities), visiting each city exactly once [9]. The
instances of this problem can be represented as a graph G = {V,E,W}, where V is
a set of vertexes representing the cities, E is a set of edges which model the paths
connecting cities and W is a symmetric matrix of weights that store the distances
among cities. We suppose that there is an edge connecting every pair of cities. The
TSP can be described as the problem of finding a Hamiltonian circuit with minimum
length in the graph G [30].

The TSP has been one of the most considered problems in Combinatorial Opti-
mization and Operations Research. This problem belongs to the NP-hard class, as
demonstrated in [17]. A relevant review of different approaches used to solve this
problem can be found in [12].

The Dynamic Travelling Salesman Problem (DTSP) is a generalization of the
TSP in which G is time-dependent. The DTSP is general enough to be a bench-
mark problem. Moreover, this problem has got several practical applications such
as modeling the traffic in cities along time [9] or fluctuating set of active machines
[15].

Two different DTSP varieties in the literature have been described. The first one
consists of inserting or deleting cities into a given problem instance [13, 14]. A
different approach has been taken in [9]. They keep a constant number of cities
but allow distance changing among them. The second model is applied to describe
traffic jams and motorways connecting cities. In this context, before the traffic jam
has occurred, good old solutions may not be optimal and the salesman needs to be
re-routed. In this work, we focus on this second approach.

294 J. José Pantrigo and A. Duarte

Ant Systems (AS) and Evolutionary Computation (EC) have been the most co-
mmon metaheuristics employed for solving the DTSP. In [9, 14, 15, 26] different
AS implementations were applied to DTSP. The main reason for using AS to dy-
namic problems is based on the pheromone concept. Pheromone can be exploited as
positive and negative reinforcement and, therefore, as a way for transferring knowl-
edge. When a change is detected in the problem instance, a partial decomposition-
reconstruction procedure is performed over old solutions [26]. This process deter-
mines which elements of ant’s solutions must be discarded in order to satisfy the
feasibility of the new conditions.

Evolutionary Computation has been successfully applied to several combinato-
rial problems, including TSP. There have many algorithms based on EC to solve
static TSP that can be directly applied to DTSP [30]. EC is considered to be one of
the best algorithms for solving DTSP, taking into account the characteristics such
that relative large population, statistical convergence, global optimization and con-
siderable robustness [30, 31]. Generally, these implementations are based on the
Inver-Over operator [16], one of the fastest algorithms in solving TSP [16, 30].

13.3 Sequential Estimation Algorithm: Particle Filter

Many interesting problems in science and engineering require estimation of the state
of a system that changes over time using a sequence of noisy measurements made
on the system [1]. Tracking problems, which consist of the estimation of the posi-
tion of one or multiple targets moving in a scenario along time [20], are important
examples of sequential estimation problems. The state-space modelling of these sys-
tems focuses on the state vector, which contains all relevant information required to
describe the system under investigation. In tracking problems, for example, this in-
formation describes kinematic characteristics of the target as position, orientation,
velocity, etc.

A particle filter (PF) is based on a large population of discrete representations
(called particles) of the probability density function (pdf) which describes the evo-
lution of a given system [6]. Particle Filters are algorithms in which theoretical
distributions in the state-space are approximated by simulated random measures
(also called particles) [6]. The state-space model consists of two processes: (i) an
observation process p(Z1:t |Xt), where Xt denotes the system state vector and Zt is
the observation vector at time t, and (ii) a transition process p(Xt |Xt−1). Assuming
that observations {Z0,Z1, . . . ,Zt} are sequentially measured in time, the goal is the
estimation of the new system state at each time step. In the framework of Sequential
Bayesian Modeling, the posterior pdf is estimated in two stages:

(a) Evaluation: the posterior pdf p(Xt |Z1:t) is computed using the observation
vector Z1:t :

p(Xt |Z1:t) =
p(Zt |Xt)p(Xt |Z1:t−1)

p(Zt |Z1:t−1)
(13.1)

13 Low-Level Hybridization of Scatter Search and PF for DTSP Solving 295

(b) Prediction: the posterior pdf p(Xt |Z1:t−1) is propagated at time step t using
the Chapman-Kolmogorov equation:

p(Xt |Z1:t−1) =
∫

p(Xt |Xt−1)p(Xt−1|Z1:t−1)dXt−1. (13.2)

The aim of the PF algorithm is to recursively estimate the posterior pdf p(Xt |Z1:t).
This pdf is represented by a set of weighted particles {(x0

t ,π0
t), . . . , (x

N
t ,πN

t)},
where the weights π i

t ∝ p(Z1:t |Xt = xi
t) are normalized.

tt

SelectSelect

EvaluateEvaluateEvaluate

DiffuseDiffuse

t + 1t + 1

Predict

v

�

PredictPredict

v

�

Update

Observation process

p(Z
t
|X

t
)

Update

Observation process

p(Z
t
|X

t
)

Prediction

Transition process

p(X
t+1

|X
t
)

Prediction

Transition process

p(X
t+1

|X
t
)

Fig. 13.1 Particle Filter scheme.

Figure 13.1 represents a schema for the PF algorithm. From an algorithmic point
of view, PF directs the temporal evolution of a particle set. Particles in PF evolve
according to the system model and they are selected or eliminated with a proba-
bility which depends on their weight, determined by the pdf [6]. In visual tracking
problems this pdf represents the probability of a target being in a given position in
the image. As a consequence, the utility of the particle filter algorithm for dynamic
opimization problems lies in the description of the temporal evolution of the system
state.

Therefore, Particle Filters can be seen as algorithms handling the particles time
evolution. Particles in PF move according to the state model and are multiplied or
died according to their weights or fitness values as determined by the likelihood
function [6].

13.4 Population Based Metaheuristic: Scatter Search

Scatter Search (SS) [11, 18] is a population-based metaheuristic that provides uni-
fying principles for recombining solutions based on generalized path construction

296 J. José Pantrigo and A. Duarte

in Euclidean spaces. In other words, SS systematically (never randomly) generates
disperse set of points (solutions) from a chosen set of reference points throughout
weighted combinations. This concept is introduced as the main mechanism to gene-
rate new trial points on lines jointing reference points. SS metaheuristic has been
successfully applied to several hard combinatorial problems. A relevant review of
this method can be found in [18].

In Figure 13.2 an outline of the SS is shown. SS procedure starts by choosing a
subset (called Re f Set) from a solution set S of PopSize = |S| initial feasible ones.
The solutions in Re f Set are obtained by choosing the h best solutions and the r most
diverse ones in S. Then, new solutions are generated by making combinations of so-
lution subsets (pairs typically) from Re f Set. The goal of the combination method
is to produce new better solutions using information from solutions in the Re f Set.
The resulting solutions, called trial solutions, can be infeasible. In that case, re-
pairing methods are used to transform these solutions into feasible ones. In order
to improve the solution fitness, a local search from trial solutions is performed. SS
ends when the new generated solutions do not improve the Re f Set quality.

UPDATE

Improved
solutions

RefSetNew

RefSetNew = RefSet?

IMPROVE*

EVALUATE*COMBINATIONMAKEREFSET

SCATTER SEARCH
S

S S

SS

NO

YES

Weighted
solutions

Combined
solutions

RefSet

SS

Best
Solutions

Diverse
Solutions

Fig. 13.2 Scatter Search scheme.

13.5 Scatter Search Particle Filter

Dynamic optimization problems deals with optimization techniques, but also with
prediction tasks. This assumption is supported by the fact that the optimization

13 Low-Level Hybridization of Scatter Search and PF for DTSP Solving 297

method for changing conditions needs from adaptive strategies. Therefore, one key
aspect is how to efficiently use important information found in previous events in
order to find high quality solutions for new derived problem instances.

Usually in metaheuristics, two approaches can be used depending on the problem
change rate. If it is high, each problem is tackled as a different one, so the compu-
tation is restarted from scratch. If change rate is low, the last solution (trajectorial
metaheuristic) or a set of last solutions (population based metaheuristic) are used as
starting point in the new search. For instance, Genetic Algorithms use the previous
population as initial set in the next time step. On the other hand, use the previous
pheromone deposition in each node as initial pheromone distribution of subsequent
steps. The same idea can be extended to other metaheuristics. In Scatter Search, the
Re f Set obtained in the previous time step can be used as a new Re f Set for the next
one. In addition, the Re f Set could be improved with diverse solutions.

Making a decision of what information is propagated to the next time steps is
very important. This is because it is possible that the search algorithm get stuck
near local optimum. As a consequence, a reasonable trade-off between both restart
from scratch and restart from previous optimum must be found. Therefore, it could
not be appropriate to use optimization procedures in the prediction stage. Sequential
estimation algorithms, like particle filters, are well-suited in prediction stages, but
they are not good enough for solving dynamic optimization problems. Optimization
strategies performed with this kind of algorithms are usually very computationally
inefficient.

Then, from our viewpoint dynamic optimization problems needs from both opti-
mization and prediction tasks. The key question is how to hybridize these two kinds
of algorithms to obtain a new one which combines both techniques. In order to ask
this question, a novel hybrid algorithm called Scatter Search Particle Filter (SSPF)
is proposed to solve the Dynamic TSP.

13.5.1 Scatter Search and Particle Filter Hybridization

SSPF hybridizes both Scatter Search (SS) and Particle Filter (PF) frameworks in
two different stages:

• In the Particle Filter stage, a particle (solution) set is propagated and updated
to obtain a new one. This stage is focused on the evolution in time of the best
solutions found in previous time steps. The aim for using PF is to avoid the loss
of diversity in the solution set.

• In the Scatter Search stage, a fixed number of solutions from the particle set are
selected and combined to obtain better ones. This stage is devoted to improve
the quality of a reference subset of good solutions in such a way that the final
solution is also improved.

Figure 13.3 shows the hybridization of SS and PF algorithms to obtain the SSPF al-
gorithm. As stated in previous sections, PF algorithm can be factorized in prediction

298 J. José Pantrigo and A. Duarte

and update stages. SS optimization is performed between these two stages. PF con-
nection with SS is achieved by means of the selection procedure. Solutions found
by SS are incorporated into the particle set of PF using the inclusion procedure.

t:=0;

Xt:=Initialize(Nd);

While not (term_cond) Do Begin

RefSet:=SelectWithDiversity(Xt,);

Et:=EstimateTheBest(RefSet);

Xt:= (Xt,RefSet);

End;

Zt := ObtainMeasures;

t := Evaluate(Xt, Zt);

[Xt, t] := Normalize(Xt, t);

t,b

While (NewRefSet<>RefSet) Do Begin

NewRefSet := Combine(RefSet);

NewRefSet := Improve(NewRefSet);

End

ReplaceTheWorst

X*t := Select(Xt, t);

X*t := Diffuse(X*t);

Xt+1 := Predict(X*t);

t := t+1;

Ð

Ð Ð

Ð

Ð

t:=0;

Xt:=Initialize(N);

While t<=Tend Do Begin

Zt := ObtainMeasures;

t := Evaluate(Xt, Zt);

[Xt,] := Normalize(Xt,);

Et := Estimate(Xt,);

X*t := Select(Xt,);

X*t := Diffuse(X*t);

Xt+1 := Predict(X*t);

t := t+1;

End;

Ð

Ð Ð

Ð

Ð

t t

t

t

PARTICLE FILTER
SCATTER SEARCH

[RefSet,] := MakeRefSet(Solutions, , b);

[RefSet,] := Order(RefSet);

While (NewRefSet<>RefSet) Do Begin

NewRefSet := Combine(RefSet);

end

Ð Ð

Ð

NewRefSet := Improve(NewRefSet);

SELECTION METHOD INCLUSION METHOD

SelectWithDiversity ReplaceTheWorst

ESTIMATION METHOD

EstimateTheBest

SCATTER SEARCH PARTICLE FILTER

Fig. 13.3 SSPF construction starting from SS and PF.

Figure 13.4 depicts a graphical template of the SSPF algorithm. Dashed lines
separate the two main components in the SSPF scheme: PF and SS optimization, re-
spectively. SSPF starts with an initial population of N particles drawn from a known
pdf (Figure 13.4: INITIALIZE stage). Each particle represents a possible solution
of the problem. Particle weights are computed using a weighting function (Figure
13.4: EVALUATE stage). SS stage is later applied to improve the best obtained so-
lutions of the particle filter stage. A Reference Set (RefSet) is created selecting a
subset of b (b << N) particles from the particle set (Figure 13.4: MAKEREFSET
stage). This subset is composed by the b/2 best solutions and the b/2 most diverse
ones of the particle set. New solutions are generated and evaluated, by combining
all possible pairs of particles in the RefSet (Figure 13.4: COMBINE and EVALU-
ATE stages). In order to improve the solution fitness, a local search from each new
solution is performed (Figure 13.4: IMPROVE stage). Worst solutions in the RefSet
are replaced when there are better ones (Figure 13.4: UPDATEREFSET stage). SS
stage ends when new generated solutions NewRefSet do not improve the quality of
the RefSet. Once the SS stage is finished, the ”worst” particles in the particle set
are replaced with the NewRefSet solutions (Figure 13.4: INCLUDE stage). Then,
a new population of particles is created by selecting the individuals from particle
set with probabilities according to their weights (Figure 13.4: SELECT and DIF-
FUSE stages). Finally, particles are projected into the next time step by following
the update rule (Figure 13.4: PREDICT stage).

13 Low-Level Hybridization of Scatter Search and PF for DTSP Solving 299

UPDATEREFSET

Improved
solutions

RefSetNew

RefSetNew = RefSet?
TERMINATION

CONDITION IS MET?

IMPROVE*

EVALUATE*

ESTIMATE

MAKEREFSET

SCATTER SEARCH OPTIMIZATION

PARTICLE FILTER

INCLUDE

SELECT

DIFFUSE

EVALUATE*

PREDICT

S

S

S

S

S

S

S

S

S

S

NO

NO

YES

YES

INPUT

OUTPUT

INITIALIZE

Weighted
solutions

RefSet

Set of Estimates

M: input data sequence

N: number of particles

b: RefSet size

Initial
Particle
Set

Weighted
Particle
Set

Optimized
Particle
Set

Selected
Particle
Set

Predicted
Particle
Set

SCATTER SEARCH PARTICLE FILTER

COMBINE

Combined
solutions

Fig. 13.4 Scatter Search Particle Filter scheme. Weight computation is required during
EVALUATE and IMPROVE stages (*).

300 J. José Pantrigo and A. Duarte

13.5.2 Scatter Search Particle Filter Main Features

The aim of the SSPF is to lead the search process to a region of the search space
in which it is highly probable to find new better solutions than the initial computed
ones. PF increases the performance of general SS in dynamic optimization problems
by improving the quality of the diverse initial solution set S.

In order to obtain the solution set for the next event S(t + 1), PF performs two
tasks over the set S(t): select the best solutions in t and predict their most proba-
ble location in the event t + 1. Firstly, the selection procedure selects particles in a
weighted random procedure, in such a way that the larger the weight of a particle,
the larger the probability to select it. Secondly, PF performs a prediction procedure
over the selected solutions to obtain the set S(t + 1). As results, we expect that so-
lutions in S(t + 1) will be closer to global optimum than other solutions obtained
randomly. As a complement, PF performs a diffusion procedure to the selected so-
lutions to preserve the needed diversity in the set S(t + 1). In this way, solutions to
be included in the RefSet in the time t + 1 will be selected from a set of better solu-
tions than a randomly obtained set. This is the main reason why SSPF reduces the
required number of evaluations for the fitness function, and hence the computational
load. PF allows parameter tuning in order to adjust the quality and the diversity of
the set S, used by SS. On the other hand, SS improves the quality of the particle set
allowing the better estimation of the pdf, by including Re f Set solutions in the set
S. This fact yields to an highly configurable algorithm. The main considered SSPF
algorithm parameters are:

• The size of the particle set N is the number of particles in the particle set. There
should be enough particles to support a set of diverse solutions, avoiding the loss
of diversity in the particle set. Therefore, N influences the performance of the SS
stage. The value of N depends on the problem instance complexity.

• The size of the reference set b is the number of solutions in the Re f Set. A typical
b used in the literature is b = 10 [5, 18].

• The diffusion stage is applied to avoid the loss of diversity in S. It is performed
by applying a random displacement with maximum amplitude A. This amplitude
A is a measure of the diversity produced in the new particle set. Therefore, A
influences the performance of the SS by tuning the diversity of the initial solution
set, and hence, the diversity of the Re f Set.

In this research field it is usual to perform a preliminary experimentation to achieve
the parameter setting.

13.6 Applying SSPF to Solve the DTSP

The main details of the SSPF implementation to solve the dynamic TSP are de-
scribed in this section. The parameter setting as well as the combination and the
improvement methods are detailed.

13 Low-Level Hybridization of Scatter Search and PF for DTSP Solving 301

In our implementation of the SSPF, solutions (particles) are represented as paths
over cities. The number of particles N in the particle set S is chosen according to the
problem size. Specifically, N varies from 100 for the 25-cities problem instances to
1000 for the 100-cities problem instances. The Re f Set is created by selecting the
5 best solutions and the 5 most diverse ones in S, according to the scatter search
algorithm.

In order to find the most diverse solutions, the distance metric for R-permutation
problems was used [18]. DTSP is considered as an R-permutation problem [18].
In these problems, relative positioning of the elements is more important than ab-
solute positioning. As a result, the distance between two permutations p and q for
R-permutation problems is defined as:

d(p,q) = number of times pi+1 doesn’t immediately follow pi in q
for i = 1, . . . ,n− 1.

Voting method [18] has been used as the combination procedure over all pairs of
solutions in the Re f Set. In this procedure, each reference solution votes for its first
sector not included in the combined solution. The voting determines the element to
be assigned to the next free position in the combined solution. An example can be
seen in Figure 13.5.

p

q
comb

1

1

2

2

3

34

45

5

6

6

p

q
comb

1

1

2

2

3

34

45

5

6

6

1

2

3

4

p

q
comb

1

1

2

2

3

34

45

5

6

6

p

q
comb

1

1

2

2

3

34

45

5

6

6

p

q
comb

1

1

2

2

3

34

45

5

6

6

RANDOM

RANDOMx

x
1

x

x

x

x

x

x

x

x

VOTING

1 4 5

x

x
1 4 5

VOTING

3

x

x

x

x

x

x
1 4 5

VOTINGx

x

2 63

p

q
comb

1

1

2

2

3

34

45

5

6

6

x

x

x

x

x

x
1 4 5

VOTINGx

x

x

x

Fig. 13.5 Voting Method.

The 2-opt method [21, 29] is usually employed as improvement stage in the SS
scheme (Figure 13.4). Given a solution, consider all pairs of edges connecting four
different cities. Remove two edges from the solution tour. Then there is a unique way
of reconnecting the two remaining paths in such a way that a new tour is obtained.
If the new tour is shorter, then it replaces the old tour and the procedure is repeated
until no improvement is produced.

13.7 Experimental Results

Our experimental design considers the performance comparison of SSPF with re-
spect to the methods Scatter Search and Evolutionary Algorithms. The computational

302 J. José Pantrigo and A. Duarte

experiments were conducted in an Intel Pentium architecture. All algorithms were
coded in MATLAB 6.1, without optimization and by the same programmer to have
comparable results. Different implementations are applied to several instances of
DTSP and results are compared. The following sections are devoted to describe the
considered problem instances, the implemented algorithms and the obtained results.

13.7.1 Problem Instances

Unfortunately, as far as the authors know, there are no benchmarks for the DTSP.
Thus, we generated two sets of instances, called as synthetic and standard-based
data. Synthetic data are composed by four different graph sequences. They were
created, using 25, 50, 75 and 100 cities. Each sequence is composed by 10 diffe-
rent derived graphs. In order to know the value of the optimum, cities are located in
the Euclidean space, along the diagonal as shown in figure 13.6. In the first frame,
cities are located in lexicographic order along the diagonal. Subsequent frames
are generated by performing exchanges of cities in groups of three as shown in
figure 13.6. The average probability of node exchange in the graph sequence is
pchange = 0.15.

x

y

1

2

3

4

5

6

7

8

9

10

Frame 1

x

y

1

2

3

9

5

6

4

8

7

10

Frame 2

x

y

1

6

3

2

5

9

4

8

7

10

Frame 3

...

Fig. 13.6 Graph sequence generation process for synthetic instances.

Standard-based data are built as dynamic version of benchmarks from the public-
domain library TSPLIB [27]. Specifically, these instances are dynamic modifica-
tions of BAYG29, BERLIN51 and ST70. These graphs belong to Euclidean sym-
metric class. We built each sequence starting from the original graph. Subsequent 4
graphs are obtained from the previous one introducing a perturbation in the actual
location of each city according to a Gaussian distribution. Figure 13.7 shows the
sequence derived from BERLIN51.

13 Low-Level Hybridization of Scatter Search and PF for DTSP Solving 303

...

Fig. 13.7 Graph sequence generation process for standard-based instances. The first frame
corresponds with the original TSPLIB instance

13.7.2 Implementation Details of the Considered Algorithms

We have implemented different versions of the Scatter Search and Evolutionary
Algorithms in order to compare their performance with respect to the SSPF. The
main details are described in this section. All procedures use as stopping criteria 10
million objective function evaluations or no improvement in the mean population
fitness. Solutions are coded as tours connecting cities.

13.7.2.1 Scatter Search Implementation

We have developed two different Scatter Search implementations. The first one,
called SS1, considers each graph in the sequence is totally decoupled one from the
others. Therefore, computation is restarted from scratch after events. In the second
implementation (called SS2) the problems are supposed to be quite related, so the
Re f Set obtained in the previous time step is used as a new Re f Set for the next one.
SS2 does not use auxiliary methods to add diversity in the Re f Set.

SS parameters PopSize and b for both implementations SS1 and SS2 were set to
100 and 10, respectively, as recommended in [5]. In order to obtain comparable re-
sults, we use the same Re f Set composition, combination and improvement methods
as in SSPF implementation.

13.7.2.2 Evolutionary Algorithm Implementation

The SSPF algorithm is also compared with an Evolutionary Algorithm (EA). EA
performs the main stages of a standard genetic algorithm, including an improvement
stage. The algorithm uses voting method as crossover operator and 2-opt method as
improvement method.

EA parameters were set to PopSize = 100, crossover probability pc = 0.25 and
mutation probability pm = 0.01 as recommended in [21]. Finally, improvement
probability was set to pi = 0.25.

304 J. José Pantrigo and A. Duarte

13.7.3 Computational Testing

Experimental results are divided in to two sections. In the first one, we test SSPF
over the synthetic instances to justify the convenience of the method. The second
one is devoted to the comparison of the performance of the SSPF with respect to SS
and EA.

13.7.3.1 SSPF in Synthetic Data

In this section, experimental results obtained by applying our proposal to synthetic
data are shown. In table 13.1, mean value of the execution time for the first graph
is compared to the mean value of the execution time for the rest of the graph se-
quence. The proposed strategy, based on particle filter and scatter search hybridiza-
tion, seems to be more advantageous than the classical SS one, in which an execu-
tion from scratch is performed. In this table, the column Ratio represents the average
time SSPF improvement with respect to the corresponding time of the SS1 solution.
As it can be seen, ratio between execution times is always in favor of our algorithm.

Table 13.1 Average execution time values over 10 runs for each graph sequence

Number of Size of Average Time SS Average Time SSPF Ratio
Cities Particle Set Solution Solution

25 100 0.3×106 0.2×106 0.69
50 100 2.1×106 1.1×106 0.55
75 500 6.8×106 3.0×106 0.44

100 1000 14.7×106 6.6×106 0.44

Figure 13.8 shows the average execution time per frame over 10 runs of the same
graph sequence. Each sequence is composed by 10 similar graphs. In this figure, rel-
ative execution time is represented for each frame. As it can be observed, execution
time for the 2nd to 10th graphs (SSPF improvement) is significantly smaller than
the execution time for the first graph (SS approach) in all considered instances.

Results show that SSPF achieves the best solution in all instances. Moreover, it
is faster than SS1 implementation without loss of quality.

13.7.3.2 SSPF vs. SS & EA in Standard-Based Data

This section presents a comparison between SSPF and the implementations of SS
and EA. Results obtained by these algorithms (SS1, SS2, EA and SSPF) over all
standard-based data (BAYG29, BERLIN52 and ST70) are presented in figure 13.9.
Because initial conditions and initial procedures performed are the same in SS1,

13 Low-Level Hybridization of Scatter Search and PF for DTSP Solving 305

(a) (b)

(c) (d)

Fig. 13.8 Execution time per graph in (a) 25, (b) 50, (c) 75 and (d) 100-cities problem.

SS2 and SSPF, solutions found in the first graph are exactly the same one. As the EA
approach is different to the other ones, the solution and the time required to found
this solution in the first graph are also dissimilar.

Quality of estimation performed by SS1 and SSPF is similar in subsequent
graphs. However, execution time is significantly lower in the SSPF approach, as
explained in previous sections. In the SS2 implementation. the search procedure is
trapped in a local optimum (maybe in in the neighbourhood of the optimum found
in the previous time step). This yields SS2 that achieves the lowest execution time,
but with very poor quality. Finally, EA finds good quality solutions, but the time
required to obtain it is larger than using SSPF.

In table 13.2, a resume of main results obtained using different implementations
is shown. Average execution time and path lengths values demonstrate the better
performance of SSPF.

306 J. José Pantrigo and A. Duarte

(a) (b)

(a) (b)

(a) (b)

1

2

3

Fig. 13.9 Voting Method.

Table 13.2 Average execution time and path lengths over all instances

SS1 SS2 EA SSPF
Length Time Length Time Length Time Length Time

BAYG29 0.86×106 0.91×104 0.25×106 1.09×104 1.02×106 0.89×104 0.59×106 0.91×104

BERLIN52 5.07×106 3.51×103 1.75×106 4.27×103 6.37×106 4.12×103 3.79×106 3.11×106

ST 70 9.65×106 302.97 2.84×106 427.58 3.9×106 331.15 5.72×106 272.15

13 Low-Level Hybridization of Scatter Search and PF for DTSP Solving 307

13.8 Conclusions

In this work we successfully applied the Scatter Search Particle Filter (SSPF) algo-
rithm to the Dynamic Travelling Salesman Problem (DTSP). Experimental results
show that SSPF appreciably increases the performance of Scatter Search and Evolu-
tionary Algorithm methods in a challenging dynamic optimization problem, without
losing quality in the estimation procedure. This improvement becomes even more
significant for large instances.

References

[1] Arulampalam, M., et al.: A Tutorial on Particle Filter for Online Nonlinear/Non-
Gaussian Bayesian Tracking. IEEE Trans. on Signal Processing 50(2), 174–188 (2002)

[2] Beasley, J., Sonander, J., Havelock, P.: Scheduling Aircraft Landings at London
Heathrow using a Population Heuristic. Journal of the Operational Research Society 52,
483–493 (2001)

[3] Beasley, J., Krishnamoorthy, M., Sharaiha, Y., Abramson, D.: The displacement Prob-
lem and Dynamically Scheduling Aircraft Landings, Working paper (2002),
http://graph.ms.ic.ac.uk/jeb/displace.pdfm

[4] Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Con-
ceptual Comparison. ACM Computing Surveys 35(3), 268–308 (2003)

[5] Campos, V., Laguna, M., Marti, R.: Scatter Search for the Linear Ordering Problem. In:
New Ideas in Optimization. McGraw-Hill (1999)

[6] Carpenter, J., Clifford, P., Fearnhead, P.: Building robust simulation based filters for
evolving data sets. Tech. Rep., Dept. Statist., Univ. Oxford, Oxford, U.K. (1999)

[7] Dorigo, M., Gambardella, L.: Ant colony system: A cooperative learning approach to
the traveling salesman problem. IIEEE Transactions on Evolutionary Computation 1(1),
53–66 (1997)

[8] Dror, M., Powell, W.: Stochastic and Dynamic Models in Transportation. Operations
Research 41, 11–14 (1993)

[9] Eyckelhof, C., Snoek, M.: Ant Systems for A Dynamic DSP: Ants Caught in a Traffic
Jam. In: Proc. of ANTS 2002 Conference (2002)

[10] Glover, F.: A Template for Scatter Search and Path Relinking. In: Hao, J.-K., Lutton, E.,
Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 13–53.
Springer, Heidelberg (1998)

[11] Glover, F., Kochenberger, G.: Handbook of metaheuristics. Kluwer Academic Publish-
ers (2002)

[12] Gutin, G., Punnen, A.: The traveling salesman problem and its variations. Kluwer Aca-
demic Publishers (2004)

[13] Guntsh, M., Middendorf, M., Schmeck, H.: An Ant Colony Optimization Approach to
Dynamic TSP. In: Proc. GECCO-2001 Conference, pp. 860–867. Morgan Kaufmann
Publishers, San Francisco (2000)

[14] Guntsch, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algorithms
Applied to Dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E.,
Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops
2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS,
vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

http://graph.ms.ic.ac.uk/jeb/displace.pdfm

308 J. José Pantrigo and A. Duarte

[15] Guntsch, M., Middendorf, M.: Applying Population Based ACO to Dynamic Optimiza-
tion Problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002.
LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)

[16] Tao, G., Michalewicz, Z.: Inver-over Operator for the TSP. In: Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812.
Springer, Heidelberg (1998)

[17] Karp, R.: Reducibility among Combinatorial Problems. In: Miller, R., Thatcher, J. (eds.)
Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

[18] Laguna, M., Marti, R.: Scatter Search methodology and implementations in C. Kluwer
Academic Publisher (2003)

[19] Larsen, A.: The dynamic vehicle routing problem. PhD Thesis (2000)
[20] MacCormick, J.: Stochastic Algorithm for visual tracking. Springer (2002)
[21] Michalewitz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer

(1996)
[22] Pantrigo, J.J., Sánchez, Á., Gianikellis, K., Duarte, A.: Path Relinking Particle Filter

for Human Body Pose Estimation. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho,
A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 653–661. Springer,
Heidelberg (2004)

[23] Pantrigo, J.J., Sánchez, A., Montemayor, A.S., Duarte, A.: Multi-Dimensional Visual
Tracking Using Scatter Search Particle Filter. Pattern Recognition Letters 29(8), 1160–
1174 (2008)

[24] Pantrigo, J.J., Hernández, A., Sánchez, A.: Multiple and Variable Target Visual Tracking
for Video Surveillance Applications. Pattern Recognition Letters 31(12), 1577–1590
(2010)

[25] Sadeh, N., Kott, A.: Models and Techniques for Dynamic Demand-Responsive Trans-
portation Planning. Technical Report, CMURI- TR-96-09, Robotics Institute, Carnegie
Mellon University (1996)

[26] Randall, M.: Constructive Meta-heuristics for Dynamic Optimization Problems. Tech-
nical Report, School of Information Technology, Bond University (2002)

[27] Reinelt, G.: TSPLIB. University of Heidelberg (1996),
http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/

[28] Talbi, E.-G.: A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics 8(5), 541–
564 (2002)

[29] Vizeacoumar, F.T.: Implementation. Project report Combinatorial Optimization CM-
PUT - 670 (2003)

[30] Zhang-Can, H., Xiao-Lin, H., Si-Duo, C.: Dynamic traveling salesman problem based
on evolutionary computation. In: Proceedings of the 2001 Congress on Evolutionary
Computation, vol. 2, pp. 1283–1288 (2001)

[31] Liu, Z., Kang, L.: A Hybrid Algorithm of n-OPT and GA to Solve Dynamic TSP. In:
Li, M., Sun, X.-H., Deng, Q.-n., Ni, J. (eds.) GCC 2003, Part II. LNCS, vol. 3033,
pp. 1030–1033. Springer, Heidelberg (2004)

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Chapter 14
From the TSP to the Dynamic VRP: An
Application of Neural Networks in Population
Based Metaheuristic

Amir Hajjam, Jean-Charles Créput, and Abderrafiãa Koukam

Abstract. In this paper, we consider the standard dynamic and stochastic vehi-
cle routing problem (dynamic VRP) where new requests are received over time and
must be incorporated into an evolving schedule in real time. We identify the key fea-
tures which make the dynamic problem different from the static problem. The app-
roach presented to address the problem is a hybrid method which manipulates the
self-organizing map (SOM) neural network similarly as a local search into a popu-
lation based memetic algorithm, it is called memetic SOM. The approach illustrates
how the concept of intermediate structure provided by the original SOM algorithm
can naturally operate in a dynamic and real-time setting of vehicle routing. A set of
operators derived from the SOM algorithm structure are customized in order to per-
form massive and distributed insertions of transport demands located in the plane.
The goal is to simultaneously minimize the route lengths and the customer waiting
time. The experiments show that the approach outperforms the operations research
heuristics that were already applied to the Kilby et al. benchmark of 22 problems
with up to 385 customers, which is one of the very few benchmark sets commonly
shared on this dynamic problem. Our approach appears to be roughly 100 times
faster than the ant colony algorithm MACS-VRPTW, and at least 10 times faster
than a genetic algorithm also applied to the dynamic VRP, for a better solution
quality.

14.1 Introduction

The vehicle routing problem (VRP) is one of the most widely studied problems in
combinatorial optimization. In the standard VRP, a fleet of vehicles must be routed
to visit a set of customers at minimum cost, subject to vehicle capacity constraint
and route duration constraint. In the static version of the problem, it is assumed that

Amir Hajjam · Jean-Charles Créput · Abderrafiãa Koukam
Laboratoire Systèmes et Transports, U.T.B.M., 90010 Belfort Cedex, France
e-mail: amir.hajjam@utbm.fr

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 309–339.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

amir.hajjam@utbm.fr

310 A. Hajjam, J.-C. Créput, and A. Koukam

all customers are known in advance to the planning process. However, many real
world routing problems include some dynamic elements. The information data of-
ten tends to be uncertain or even unknown at the time of the planning. It may be the
case that customers, driving times or service times, are unknown before the day of
operation has begun, but become available in real-time. Due to the recent advances
in information and communication technologies, such as geographic information
systems (GIS), global positioning systems (GPS) and mobile phones, companies
are now able to manage vehicle routes in real-time. Hence, with the increased ac-
cess to these services, the need for robust real-time optimization procedures will be
of critical importance, for small to big distribution companies, whose logistics are
based on a high reactivity to the customer demand.

Depending on the application area, some authors propose to classify problems
by their degree of dynamism and the objectives and constraints of the problem. As
introduced by Larsen [26], the degree of dynamism may vary between 0 and 1,
and has to be computed considering a given period of observation called a working
day or planning horizon. The simplest measure is the ratio between the number of
dynamic requests, which arrive during the working day, and the total number of re-
quests including the static requests which are known in advance. For instance, if the
degree of dynamism is 0.4, then 4 customers out of 10 arrive while the working day
has begun. Other measures of dynamism are also introduced by Larsen in order to
take into account both dynamic request occurrence times and time windows. In the
standard dynamic VRP case, the author argues that a problem is more dynamic if
immediate requests occur at the end of the working day and less dynamic as soon
as immediate requests are received relatively early during the planning horizon. For
example, two problem instances respectively with all arrivals at the beginning of
the day or all arrivals at the end of the day have different degrees of dynamism,
the latter being highly dynamic whereas the former being static. But we could ar-
gue that the crucial point is that customers would have to be served as quickly as
possible regardless of the moment of the day they sent their demands. For example,
the problem of fire fighting is highly dynamic whenever the disaster appears at the
beginning or at the end of the day. Hence, it is necessary to look at the importance
given to the real-time objectives and constraints.

Here, an ideal application field would be medical services. An application exam-
ple would be medical interventions of doctors that require a high to moderate level
of dynamicity, which would be constrained by the limited amount of doctors and
resources available to perform the service. Hence, the degree of dynamism consi-
dered in this paper will be measured by a waiting time of roughly 15% to 30% of
the working day. We assume that no information is available about requests loca-
tions prior to optimization. Only the overall capacity of the system and hence the
total number of requests that the system could serve within a day are supposed to be
known. We argue that this is a reasonable assumption since real-time performance
mainly depends on the vehicle resources available.

14 From the TSP to the Dynamic VRP 311

In this paper, we propose a heuristic approach performing empirical evaluations
by discrete time simulation on the standard benchmarks of Kilby et al. [24]. We shall
focus on a hybrid method which follows metaphors of biologic systems, and hence
naturally exhibits intrinsic parallelism and which may be considered intuitive and
easy to implement. The approach presented in this paper is based on the concept of
the ”intermediate structure” pointed out by Glover [20] about applications of neural
networks to optimization. The intermediate structure, called the network, represents
transport lines that continuously distort and modify their shapes in the plane accord-
ing to the demand distribution. Such paradigm that we called ”adaptive meshing” in
earlier papers [9, 13] partially has its origin from the Kohonen selforganizing map
(SOM) [25]. Starting from the SOM, we define insertion and deformation operators
that are applied to the network, and managed inside a population based metaheuris-
tic similarly as in a memetic algorithm [29], which is an evolutionary algorithm em-
bedding a local search process and mutation operators. The standard SOM is used
similarly as a local search process combined with a mapping operator, responsible
for the massive insertions of customers to the network, a fitness evaluation, a selec-
tion operator, and a specific operator dedicated to customer insertions according to
the maximum duration constraint. Such operators perform elementary moves in the
plane and a particular point is that almost all operators are based on the nearest point
findings implemented on the top a cellular decomposition of the plane by a spiral
search algorithm [1].

Successive generations of construction heuristics, improvement heuristics, and
metaheuristics were developed by the operations research (OR) community to solve
the static traveling salesman problem (TSP) [1] and the VRP [5, 18]. Metaheuris-
tics often encapsulate a construction method followed by the application of one or
more improvement heuristics performing local search. From stage to stage, such
heuristics were enriched reusing the past enhancements to build new sophisticated
neighborhood search structures, which operate on graphs. Then, a question is how
the complex data structures of the very powerful OR heuristics for the TSP or VRP,
often based on k-d-trees for nearest point search, managing neighborhood lists, ”do
not look bit” tables or various solution coding schemes, should be reused in a dy-
namic setting and be implemented in a distributed and parallel way. In our approach,
there is no distinction between a construction phase and an improvement phase, as
usual in metaheuristics, but rather a distinction between a deployment phases fol-
lowed by an improvement phase with different intensities. The deployment phase is
only responsible to deploy the network from scratch using a high intensity for the
network moves. Tour construction and tour improvement are performed simultane-
ously at any moment, on both phases, based on closest point finding insertions and
deformations. Hence, there is no need to introduce new insertion procedures to deal
with the on-line arrivals of new demands, or to restart the algorithm, as we would
do in order to apply traditional methods into a dynamic setting. As they arrive, new
demands are simply inserted on-line in a buffer of requests, in constant time, leading
to a very weak impact on the internal data structures and thus to the course of the
optimization process. One of the goals of our work is to exploit the natural proper-
ties of the on-line SOM algorithm to be applied in a dynamic setting. An important

312 A. Hajjam, J.-C. Créput, and A. Koukam

point of using an evolutionary framework is to allow simplicity and flexibility when
designing the algorithm. We already applied the approach, which is called memetic
SOM, to the static TSP [11], the static VRP [14] and VRPTW [10], and to several
other extensions of these problems considering combination of clustering k-median
and vehicle routing problems [11, 14]. Also, we link the approach to further pos-
sible parallel implementations by considering two strategic levels for the parallel
computation: the population based ”metaheuristic level” which corresponds to the
cooperation of many autonomous local search processes, each one embedding a
complete solution, and the ”heuristic level” which corresponds to a cellular decom-
position of the data, each cell possibly being associated with a processor and a part
of the data. Also, the Euclidean nature of the problem is directly reflected into the
Euclidean nature of the algorithm, thus allowing application to large instances, as
this was done for the TSP [11] on instances with up to 85900 cities.

The following Section II states the dynamic VRP considered in this paper with its
constraints and objectives and considered as a straightforward extension of the static
VRP. Section III illustrates the philosophy of the intermediate structure concept on
previous applications that were presented in earlier papers. We will find the details
of the memetic SOM approach in Section IV. In Section V we shall present the real-
time simulator able to gauge the efficiency of the method. Then, Section VI reports
experiments carried out on the Kilby et al. benchmark and the comparisons made
with a state-of-the-art ant colony approach and a genetic algorithm already studied
on these benchmarks. It also presents a summary of the memetic SOM performances
against classical heuristics on the TSP, VRP, and the dynamic VRP. The last section
is devoted to the conclusion and further research.

14.2 Dynamic Euclidean Vehicle Routing Problem

As for static vehicle routing problems, a lot of versions of the dynamic problem ex-
ist depending on the application areas. For an overview and classification of the nu-
merous versions of realftime routing and dispatching problems, we refer the reader
to the general surveys and classifications given in [18, 19, 26, 31, 32]. One of the
simplest versions is the standard dynamic VRP with capacity and time duration
constraints [24], called ”dynamic VRP” in this paper, which is a straightforward ex-
tension of the classical static VRP [3]. In this problem, the customers are the only
elements who have a dependence on time. Customers are not known in advance but
arrive as the day progresses, and the system has to incorporate them into the already
designed routes in real time. Problems fitting this model appear frequently in in-
dustry. Most parcel delivery services, replenishment of stocks in a manufacturing
context, waste collection, and dispatch of emergency services can be modeled in
this way. Geographically dispersed failures to be serviced by a mobile repairman
also fit this model.

14 From the TSP to the Dynamic VRP 313

In the different versions of the dynamic VRP presented, there are a very few dy-
namic routing problems except the dynamic VRPTW or dynamic PDPTW that are
recognized as standard problems well suited to allow comparative evaluations of
heuristics and metaheuristics on a common set of benchmarks. For example, we only
found two papers on the dynamic VRP that shared detailed results on a common test
set. They are first an adaptation of the ant colony approach MACS-VRPTW [17] by
Montemanni et al. [28], and second a genetic algorithm by Goncalves et al. [21].
They shared results on the Kilby et al. [24] test set with 22 problems of sizes from
50 with up to 385 customers. This paper tries to go one step further in that direc-
tion considering the dynamic VRP as a standard dynamic problem, and yielding a
comparative study with these two methods on the Kilby et al. test set. Then, we re-
strict the scope of our work to the dynamic VRP, with capacity and time duration
constraints.

Fig. 14.1 Static vs dynamic VRP.

In the static VRP, vehicles must be routed to visit a set of customers at minimum
cost, assuming that all orders for all customers are known in advance. In the dynamic
VRP however, new tasks enter the system and must be incorporated into the vehi-
cle schedules and served as the day progresses. In real-time distribution systems,
demands arrive randomly in time and the dispatching of vehicles is a continuous
process of collecting demands, forming and optimizing tours, and dispatching re-
quests to vehicles in order to process requests at the required geographic locations.
In the case of the static VRP, the three phases of demands reception, routes opti-
mization, and vehicles traveling are clearly separated and sequentially performed,
the output of a given phase being the input of the subsequent one. At the opposite, as

314 A. Hajjam, J.-C. Créput, and A. Koukam

illustrated in Figure 14.1, we can see the dynamic VRP as an extension of the static
VRP where these three time-dependent processes are merged into an approximately
same period of time. This period of time is called the working day or planning hori-
zon of length D. Here, we precisely define the working day length D as the length of
the collecting period, knowing that the optimization period and the vehicle traveling
period would have to be of approximately the same length.

The static VRP is defined on a set V = v0,v1, ...,vN of vertices, where vertex
v− 0 is a depot at which are based m identical vehicles of capacity Q, while the
remaining N vertices represent customers, also called requests, orders, or demands.
A non-negative cost, or travel time, is defined for each edge (vi,v j) ∈ V ×V . Each
customer has a non-negative load q(vi) and a non-negative service time s(vi). A
vehicle route is a circuit on vertices. The VRP consists of designing a set of m
vehicle routes of least total cost, each starting and ending at the depot, such that
each customer is visited exactly once by a vehicle, the total demand of any route
does not exceed Q, and the total duration of any route does not exceed a preset
bound T . As it is mostly done in practice [5], we address the Euclidean VRP where
each vertex vi has a location in the plane, and where the travel cost is given by the
Euclidean distance d(vi,v j) for each edge (vi,v j) ∈ V ×V . Then, the objective for
the static problem is the total route length (Length) defined by

Length = ∑
i=1,..,m

(
∑

j=1,...,ki−1

d
(
ν i

j,ν
i
j+1

)
+ d

(
ν0,ν i

1

)
+d

(
ν i

ki
,ν0
))

, (14.1)

where v j
i ∈ V,0 ≤ j ≤ ki,0 ≤ ki ≤ N, are the ordered set of demands served by the

vehicle i, 1≤ i≤ m, i.e. the vehicle route. The capacity constraint is defined by:

∑
j=1,...,ki

q
(
ν i

j

)≤ Q, i ∈ 1, ...,m (14.2)

then, assuming without loss of generality that the vehicle speed has value 1 the time
duration constraint is given by:

∑
j=1,...,ki

s
(
ν i

j

)
+ ∑

j=1,...,ki−1

d
(
ν i

j ,ν
i
j+1

)
+ d

(
ν0,ν i

1

)
+d

(
ν i

ki
,ν0

)≤ T, i ∈ 1, ...,m

(14.3)
The problem is NP-hard. Then, for large instances, using heuristics is encouraged
in that they have statistical or empirical guaranty to find good solutions possibly for
large scale problems with several hundreds of customers.

It is argued in the literature that in a real-life situation the objective function of-
ten consists of a mixture of customers, waiting time costs, or system response time,
and travel (or routing) costs. The analysis made by several authors [2, 19] confirms
that there is a trade-off between travel costs and system time in a dynamic rout-
ing system and that the travel costs can be reduced in return for an increase in the
system time. In weakly dynamic systems the focus is on minimizing routing costs.
On the other hand, when operating a strongly dynamic system, minimizing the ex-
pected system response time is the main objective. In dynamic settings, the waiting

14 From the TSP to the Dynamic VRP 315

time is often more important than the travel cost. We will then define the dynamic
VRP as a multiobjective problem, since the ”interesting” or ”good” solutions are
always a compromise between these two criteria. For example, the static problem
case can be seen as a particular case of the dynamic problem where the waiting time
is completely discarded, the optimization process starting whenever all requests to
be served are known. We define the dynamic VRP as a bi-objective problem by
adding to the classical objective and constraints of the standard VRP a supplemen-
tary objective which consists of minimizing the average customer waiting time. The
customer waiting time is the delay between the occurrence time of a demand and
the instant the service of the demand begins. It is often called ”response time” or
”system time” (Bertsimas and Simchi-Levi 1996). Hence, in addition to the classi-
cal objective and constraints defined above, we add a supplementary criterion to be
considered when evaluating solutions. This criterion is the average customer waiting
time (WT):

W T = ∑
i∈{1,...,N}

Wi

/
N (14.4)

where Wi is the waiting time of demand i, defined by Wi = sti− ti where ti ∈ [0, D]
is the demand occurrence time, and sti is the time when the service starts for that
demand.

In order to evaluate the customer waiting time we need to, not only consider travel
distances and service times, but also consider the ”real time” at which the service
is really performed. Real time includes the possible extra times during which the
vehicle may be waiting or driving back to the depot before some new requests are
dispatched to it. Only the evaluation of (14.4) depends on a real-time realization.
The evaluation of (14.1)-(14.3) only depends on the ordering of demands in a route,
the same way as for the static VRP. We consider the waiting time as the essential
criterion to gauge the dynamicity of the system. Hence, it is an important criterion
to evaluate the effectiveness of algorithms on this problem.

14.3 Method Principle

In this section, we illustrate the ”philosophy” of the neural network based approach
proposed to address the Dynamic VRP. We present the main characteristics of the
approach and explain why it may naturally deal with the dynamic and stochastic
version of the VRP, without changing quite nothing in its implementation when
passing from a static to a dynamic context. There is no need to introduce new in-
sertion procedures or to design new mechanisms to deal with the on-line arrivals of
new demands along the working day since the approach is already based on mas-
sive insertions to an ”intermediate” independent structure representing routes. While
the very powerful OR heuristics to the static VRP are often based on internal data
structures difficult to implement and to modify dynamically, the advantage of our
approach would be on the simplicity of updating the evolving internal data struc-
tures. Furthermore, we argue that a promising characteristic concerns its potential

316 A. Hajjam, J.-C. Créput, and A. Koukam

for a parallel and distributed implantation on multi-processors or grid systems. We
can distinguish two levels for the parallel computation that are, the heuristic level
which deals with the problem dependent operations distributed in the plane and
the metaheuristic level which deals with a population of independent local search
processes.

14.3.1 Biologic Metaphor and the Intermediate Structure
Paradigm

One way to explain the ”philosophy” of the approach may be by referring the reader
to some well known concepts in the Artificial Intelligence domain like emergent
computation, bio-inspired methods, and soft-computing concepts including neural
network, evolutionary algorithms, or hybrid systems. The approach can be seen as
following a biologic metaphor where customers constitute external stimuli to which
a ”biologic organism”, the network of transport lines, may respond dynamically
adapting its shape continuously to absorb, neutralize, or satisfy the external stimuli.
More generally, we can exploit this metaphor to address a large class of spatially
distributed problems of terrestrial transportation and telecommunications, such as
facility location problems, vehicle routing problems, or dimensioning mobile com-
munication networks [12, 13]. These problems involve the distribution of a set of
entities over an area (the demand) and a set of physical systems (the suppliers)
which have to respond optimally relatively to the demand. This optimal response
constitutes the solution to the optimization problem. Thus, a distributed bioinspired
heuristic to address such problems is a simulation process of such spatially dis-
tributed entities (vehicles, antenna, customers) interacting in an environment which
produces the ”emergence” of a solution by the many local and distributed inter-
actions. The approach presented involves an ”intermediate structure”, which is a
network or a graph in the plane, representing the transport lines that continuously
distort and modify their shapes according to a demand distribution. The important
point is that tour construction and tour improvement operations are all based on
massive and distributed insertions and line deformations. Customers are chosen ran-
domly in the plane and are repeatedly presented online and many times to a simple
insertion procedure based on nearest point search. The closest point search in the
network structure is performed on the top of a cellular decomposition of the plane
by a spiral search algorithm that is known to perform in constant time for bounded
distributions [1]. This paradigm of ”intermediate structure” and quite ”instantaneous
adaptation”, that we called ”adaptive meshing” in previous applications, has from a
part its origin and inspiration from the Kohonen self-organizing map (SOM) neural
network, which was applied to the TSP since a long time and which can address
large size problems with up to 85900 cities [11]. The SOM algorithm is a neural
network approach dealing, when applied in the plane, with visual patterns moving
and adapting to distributed data. Its main ”emergent” property is to allow adaptation
by density and topology preservation of a planar graph (the transport network) to
an underlying data distribution (demand set). It can also be seen as a center based

14 From the TSP to the Dynamic VRP 317

clustering algorithm with topological relationships between cluster centers. Here,
we generalize the SOM algorithm giving rise to a class of ”closest point findings”
based operators that are embedded into a population based metaheuristic frame-
work. The structure of the metaheuristic is similar to the memetic algorithm, which
is an evolutionary algorithm incorporating a local search [29]. The SOM is a (long)
stochastic gradient descent performed during the many generations allowed, and
used as a ”local search” similarly as in a classical memetic algorithm. This is why
the approach has been called memetic SOM in previous work and we will maintain
the name in this paper. The approach follows two types of metaphors. It follows
a self-organization metaphor at the level of the interacting problem components, or
heuristic level, and an evolution based metaphor at the population based metaheuris-
tic level. Since demands are conceptually separated from the routes representation,
which is an independent network or graph in the plane which continuously adjusts
itself to the data, this leads to a straightforward application from a static to a dy-
namic setting. As they arrive, new demands are simply inserted on-line in a buffer
of demands, in constant time, leading to a very weak impact on the course of the
optimization process.

Figure 14.2 (a-c) illustrates the application from a static to a dynamic setting.
Figure 14.2(a) presents a bus transportation system where vehicle routes, mod-
eled as paths with a common arrival point and depicted by lines in the figure, are
adapted to a given distribution of customers and represented by dots in the figure.
The application concerned a set of 780 employees of an enterprise located over a
geographic area of 73km× 51km around the towns of Belfort and Montbeliard in
the East of France [8]. Vehicle routes and customers are shown juxtaposed in the
figure over the underlying road network, represented by thin lines in the figure. The
problem tackled, called VRP-Cluster, is a combination of the Euclidean k-median
problem with a classical VRP. It consists of positioning bus stops, or cluster centers,
according to customer locations (k-median problem) and simultaneously generating
vehicle routes among bus-stops (VRP). Bus-stops define clusters where customers
are grouped and to which they have to walk to take the bus. As illustrated in Fig-
ure 14.2 (b-c), application to a dynamic context mainly results from considering an
evolving static VRP where the starting locations of the vehicles (the filled circles
in the figure) evolve step by step as the vehicles move in the plane and perform
their services along the working day. Hence, the system must monitor and update
the vehicle locations, their capacities, and the vehicle travel durations on a rate de-
fined by a decomposition of the day within many short time-slices. Figure 14.2 (b)
presents a version of the dynamic case where vehicles perform the service as soon
as possible, whereas Figure 14.2(c) presents a case where the vehicle starting times
are slightly delayed giving rise to a longer horizon for route optimization, hence to
longer vehicle paths in the figure. In this paper, we will experiment different de-
grees of dynamism and gauge different trade-offs between waiting time and length
minimization by simply delaying the departure of vehicles.

318 A. Hajjam, J.-C. Créput, and A. Koukam

(a)

(b) (c)

Fig. 14.2 (a) VRP-Cluster, (b-c) Dynamic VRP.

14.4 The Metaheuristic Embedding Framework

When introduced into a population based metaheuristic frame-work, the SOM is a
long run process applied to a population of solutions. This process is interrupted at
each cycle, called a generation, by the application of problem dependent operators.
A generation occurs in such a way that at most O(N) basic iterations are performed
at each generation, N being the problem size. The main components of the method
which are intended for driving the search are:

• a self-organizing map procedure based on closest point findings and route defor-
mations as a low level stochastic process,

• problem-oriented insertion operators interleaving with SOM,

14 From the TSP to the Dynamic VRP 319

• a random perturbation with a decreasing intensity,
• a mapping operator which massively assigns requests to their closest vehicle

route points,
• a fitness function incorporating constraints evaluation,
• a population based metaheuristic strategy with selection operators,
• a search performed within two phases (deployment, improvement).

The optimization process is divided within two phases, that are, a deployment phase
followed by an improvement phase. It is worth noting that there is no distinction
between a ”construction” phase and an ”improvement” phase, as usually done in OR
metaheuristics, where the construction phase builds admissible solutions whereas
improvement phase only improves the already constructed solution by swaps or
exchanges of customers. Here, the distinction is only based on the intensity of the
moves, since tour insertions and improvement operations operate simultaneously
at any moment during the deployment and improvement phases. Hence, there is
no need to add new specific insertion operators into the algorithm when passing
from a static to a dynamic setting. The approach can be said ”naturally on-line” and
”intrinsically” customized for an application into a dynamic setting.

We claim that an interesting property of the approach is its intrinsic potential
for parallel and distributed implementations in multi-processors, multi-core, grids,
or P2P networks. The approach exhibits two strategic levels of parallel execution.
On the one hand, we can exploit the ”metaheuristic level” that corresponds to the
cooperation of many autonomous local search processes, each one embedding a
complete solution. It is worth noting that since the communication times at the level
of the selection operators are relatively small, the long running times of independent
local search processes favor parallel execution of the method. Also, this is why the
optimization simulator has been structured as presented in Figure 14.4 (b). A pop-
ulation of agent-solvers embeds local search processes applied to the encapsulated
solutions, whereas a meta-solver plays the role of a scheduler of the agent-solvers
and applies selection operators to the population of agents. On the other hand, we
could also exploit the ”heuristic level” of the approach, which is problem dependent,
and based on a cellular decomposition of the data. Each cell is associated with a part
of the problem data and hence could be allocated to a given processor. Furthermore,
this should favor the application to very large size problems for which the actual
memory size of personal computers or workstations is notably insufficient.

14.5 The Evolutionary Algorithm Embedding Self-Organizing
Maps

14.5.1 Memetic SOM

The approach is similar to a memetic algorithm [29], that is, a hybrid evolutionary
algorithm embedding a local search. It is a simplified version of the approach pre-
sented in [14] which was applied to the static VRP. As illustrated previously by Fig-
ure 14.3(b), a population of Pop independent processes, called agentsolvers, perform

320 A. Hajjam, J.-C. Créput, and A. Koukam

local search and other operations such as fitness evaluation and request insertions,
each on a single encapsulated solution. A main loop, called metasolver loop, man-
ages the scheduling of the local search processes and applies selection operators to
the population of agent-solvers, i.e. of solutions. Each agent-solver exactly encapsu-
lates one solution, which is defined by a graph of routes, called the network, where
each route is represented by an independent path with max(5N′/m,5) vertices, m
being the total number of vehicles available in the system, and N′ the current num-
ber of available demands at time t, t being the current real-time. Each route starts
at the vehicle location computed for the time t +Topt and ends at the depot, Topt
being the optimization time-slice duration. Each route ends at the depot letting the
vehicles go back to the depot each time they have no demand to be served in their
schedule. The number of vertices by route corresponds to the maximum number of
customers a vehicle can handle during a given optimization time-slice. It has been
adjusted empirically to allow a good trade-off between the number of customers vis-
ited, equilibration of route lengths, and computation speed. The main loop manages
two optimization phases, that are, a deployment phase followed by an improvement
phase, each one executing a fixed number of iterations (called generations) which is
set to the problem size N, N being the total number of demands received within a
day. It is worth noting that the knowledge of the problem size N is considered in this
paper as a reasonable assumption in order to adequately dimension the memory and
computational resources. The meta-solver and agent-solver behaviors can be stated
in pseudo-code as follows:

The deployment phase starts its execution with solutions having randomly gener-
ated vertex coordinates into a rectangle area containing the demands. The improve-
ment phase follows the deployment phase. Then, once the improvement phase has
finished, the algorithm restarts at the beginning. The main difference between the
deployment and improvement phases is that the former is responsible for creating
an initial ordering from random initialization. It follows that SOM processes em-
bedded in the deployment loop have a larger initial neighborhood, proportional to
N′, N′ being the number of demands that are currently in the system at the moment
of parameters initialization. However, the improvement loop is intended for simply
performing local improvements using SOM processes with smaller neighborhoods
and applying fewer iterations. The parameter values of the SOM operators are set
exactly as in [14], except that the tmax value and radius of neighborhoods α final
and σinit depend on the instantaneous number of available demands N′ at the time
of parameters initialization, rather than on the total number of demands N.

An important operator is the SOM algorithm. At each generation, a predefined
number (niter) of basic SOM iterations, proportional to the current problem size N′,
are performed letting the long SOM decreasing run being interrupted and combined
with the application of other operators. Such operators can be also a specialization
of the SOM operator in order to perform request insertions, or to introduce perturba-
tions, a mapping/assignment operator for generating admissible solutions, a fitness
evaluation, and the selections at the population level. Below is a detailed description
of the operators:

14 From the TSP to the Dynamic VRP 321

1. Self-organizing map operator. It is the standard SOM applied to the graph net-
work.

It is denoted by its name and its parameters, as
SOM(αinit ,α f inal ,σinit ,σ f inal , tmax).

A SOM operator is executed performing niter basic iterations by solution,
at each generation. Parameter tmax is the number of iterations defining a long
decreasing run ideally performed within N generations and applied to a given
solution. When parameters initialization take place, it is stated as tmax = N×
nite r, with niter adjusted depending on the number of available demands as
given in the pseudo-code above. Other parameters define the initial and final
intensity and neighborhood for the learning law. The operator is used to deploy
the network toward customers from scratch in deployment phase, or to introduce
punctual moves to exit from local minima during the improvement phase.

Algorithm 14.1. Meta-solver main loop
1: Initialize population with Pop agent-solvers with routes randomly generated.
2: Initialize agent-solvers and their SOM parameters for the deployment phase.
3: Gen = 0
4: while not(a stop order is received from the company) do
5: Look at the received messages from the company and update vehicles and request

set according to the optimization protocol (see section 0).
6: if a ”request” order is received then
7: add the new received demands to the end of the demand buffer
8: end if
9: if an ”optimizer” order is received then

10: update the vehicle locations, their capacities, travel duration, and route sizes,
at the future time t +Topt, at the same time refresh the current request set
according to the future time t +Topt

11: end if
12: Activate each agent-solver in turn, each one executing a single agent-solver

generation
13: Save the best solution encountered, and send it back to the company.
14: Apply selection operator SELECT to the agent-solver population
15: Apply elitist selection operator SELECTELIT .
16: Gen = Gen+1
17: if Gen = N then
18: swap agent-solvers and their SOM parameters to the improvement phase
19: end if
20: if Gen = 2N then
21: Gen=0
22: randomize population
23: reset the best solution
24: then swap agent-solvers and their SOM parameters to the deployment phase
25: end if
26: end while

322 A. Hajjam, J.-C. Créput, and A. Koukam

Algorithm 14.2. Agent-solver generation
1: In deployment mode only, apply a standard SOM operator, with parameters

(αinit ,α f inal ,σinit ,σ f inal , tmax) = (0.5,0.5,max(2×N′/m,5),4,N×niter), to the
network, performing niter = max(N′/4,5) iterations.

2: In improvement mode only, apply the derived SOM operator, denoted SOMVRP,
with parameters (αinit ,α f inal ,σinit ,σ f inal , tmax) = (0.5,0.5,10,4,N×niter), to the
network, performing niter = max(N′/m,5) iterations.

3: In improvement mode only, apply the derived SOM operator, denoted SOMVRP,
with parameters
(αinit ,α f inal ,σinit ,σ f inal , tmax) =
(0.9,0.5,max(2×N′/m,5),max(2×N′/m,5)/2,N×niter), to the network,
performing niter = max(N′/m,5) iterations.

4: Apply mapping operator MAPPING to the solution network to assign each demand
to its nearest vertex and move vertices to the demand locations.

5: Apply fitness evaluation operator FITNESS to the solution.
6: 5. Apply derived operator SOMDVRP, to perform greedy insertions of the residual

demands according to the time duration constraint.

2. SOM derived operators. Two operators are derived from the SOM algorithm for
dealing with the VRP. The first operator, denoted SOMVRP, is a standard SOM
restricted to be applied to a single randomly chosen vehicle/route at each gen-
eration, using customers already inserted into the route. It helps to eliminate the
remaining crossing edges in routes. While capacity constraint is greedily tack-
led by the mapping/assignment operator below, the second operator, denoted
SOMDVRP, deals specifically with the time duration constraint. It performs few
greedy insertion moves at each generation. Given a randomly chosen customer
that is not yet already assigned to a vehicle, the competitive step selects to be
the winner the vehicle vertex for which the route time increase is minimum, the
route time duration constraint for that vehicle being satisfied. The evaluation of
the route time increase is done moving the vertex to the customer location and
including the customer into the route.

3. Mapping/assignment operator. This operator, denoted MAPPING, generates a
VRP solution by inserting customers into routes and modifying the shape of
the network accordingly, at each generation. The operator first greedily maps
customers to their nearest vertex for which the corresponding vehicle capacity
constraint is satisfied, and to which no customer has been yet assigned. The
capacity constraint is then greedily tackled by the customer assignment. Then,
the operator moves the route vertices to the location of their assigned customer
(if exist) and regularly dispatches (by translation) other vertices along edges
formed by two consecutive customers in a route. The result is a vehicle route
where assigned vertices alternate with the many more not assigned vertices. At
this stage, few customers may not be inserted because of capacity constraint
violation.

14 From the TSP to the Dynamic VRP 323

4. Fitness operator denoted FIT NESS. Once the assignment of customers to
routes has been performed, this operator evaluates a scalar fitness value for a
given solution. This value has to be maximized, it is used by the selection oper-
ator at the population level. Taking care of time duration constraint, the fitness
value is sequentially computed following routes one by one and removing a
customer from the route if it leads to a violation of the time duration constraint.
The value returned is f itness = sat− 10− 5×Length, where sat is the number
of customers that are successfully assigned to routes, and Length is the length
of the routes defined by the ordering of such customers. The value sat is then
considered as a first objective and admissible solutions are such that sat = N′,
N′ being the current number of customers in the system at a given optimization
time-slice.

5. Selection operators. Based on fitness maximization, at each generation the op-
erator denoted SELECT replaces Pop/5 worst solutions, which have the lowest
fitness values in the population, by the same number of best solutions, which
have the highest fitness values in the population. An elitist version SELECTELIT

replaces Pop/10 worst individuals by the single best individual encountered
during the run.

14.5.2 Spiral Search Algorithm

By the evolutionary dynamics, the goal is to make the closest point assignment co-
incide to the right assignment, which minimizes objectives and satisfies constraints.
The algorithm can be seen as a massive and parallel insertion method to the nearest
points. To perform N closest point findings in expected O(N) time for uniform dis-
tributions, we have implemented the spiral search algorithm of Bentley, Weide and,
Yao [19] based on a cell partitioning of the area. It performs an optimal nearest point
search with expected O(1) time complexity for uniform or bounded distributions,
with O(N) space complexity. Hence, a cell based decomposition of the area within
O(N1/2×N1/2) cells is performed during the initialization phase of the memetic
algorithm. Each cell has a (non null) memory capacity proportional to an estimation
of the number of demands at that location. The memory is allocated once. The con-
tents of the memory cells are updated each time a given operator (SOM or mapping)
has to be applied. Vertices of the network are introduced into the cells and the subse-
quent (at most) O(N) closest point findings will be based on their content. The cell
contents are not updated after each move. This may introduce a relaxation on the
requirement of finding the true nearest neighbor. But this drawback is balanced by
the limited number of iterations performed and by the fact that vertex coordinates
are modified after each move.

The choice of a spiral search algorithm based on a geometric partitioning
of the area, rather than a standard k-d tree search method or a Delaunay-
Voronoı̈method [30] was drawn from ”heuristic” arguments. We did not perform
evaluations to yield a firm conclusion about the superiority of a method over another
in the context of the SOM. Here, the closest point findings concern the network

324 A. Hajjam, J.-C. Créput, and A. Koukam

vertices, rather than customers as usual for swapping operations in standard local
search approaches. The insertions of the network vertices into the cells are to be
done many times, more precisely, before each application of a given operator to a
solution. The insertions take O(N) computation time, for at most O(N) closest point
findings subsequently performed. Using a k-d tree would require O(N × log(N))
computation time to build the balanced tree at each time. Thus, it is not clear whether
the amortized computation cost would be inferior in that case. Also, we link the spi-
ral search to further possible parallel implementations of the approach, in order to
deal with very large instances for example. The k-d tree constitutes a hierarchical
structure which is adequate in a context of shared memory. On the contrary, geo-
metric partitioning according to a given topology may have some advantages when
dealing with multiprocessor implantations. Here, a given cell would only have to
”communicate” with its fixed 8 neighboring cells, each one being associated to a
given part of the data and/or the network.

14.5.3 Algorithm Complexity

In our experiments, a given working day is divided into O(N) time slices with con-
stant computation time each, N being the problem size. Hence, the computation time
allowed in experiments is O(N). The number of generations performed, as the prob-
lem size grows, will depend on the complexity of the closest point findings based
operators. With a constant population size, a SOM neighborhood proportional to
N, and N basic iterations performed by generation, the time complexity to execute
a given generation is O(N2) in the worst case. However, we claim that the spiral
search mechanism considerably improves the nearest search. This point was con-
firmed empirically in [11], a linear time was achieved for constant neighborhood
size operators applied on some unstructured TSPLIB test cases. The memetic SOM
space complexity is O(N), as usual for SOM. It is worth noting that this space com-
plexity allows dealing with large size instances of several thousands of customers,
on standard computer workstations.

14.6 Real-Time Simulation and Optimizer

This section presents the real-time simulator developed in Java which allows the
dynamic solving of a dynamic VRP. To make things concrete, we assume that a
transport company centralizes the optimization procedure, receives the orders from
the environment, monitors the vehicle locations, and dispatches the continuously
generated and optimized routes to the vehicles. Hence, we assume the existence of
a communication system between the company, the customers and the drivers, and
that communication times are negligible relatively to the rest of the real-time activ-
ities. In this section, we detail the simulator structure and the main parameters that
will allow controlling the dynamic optimization process. It is worth noting that the
simulator can be described independently of any optimization al-gorithm or policy
that could be applied.

14 From the TSP to the Dynamic VRP 325

14.6.1 Simulator Architecture

The simulator consists of two main components implemented within two Java
threads which communicate through an asynchronous protocol. The first thread
plays the role of a real-time scheduler which decomposes the working day into
many short time-slices based on a timer clock, in order to simulate the vehicles ac-
tivities implemented as simple state machines. The second thread plays the role of
a background task which encapsulates the optimization process which continuously
optimizes routes using the remaining CPU resources. During each time-slice, the
optimization process solves a continuously evolving static VRP, with evolving vehi-
cle capacities and starting locations, and with an evolving set of currently available
requests. The idea has been discussed many times in the literature [21, 24, 26] and
is clearly different from the rough strategy which consists in restarting the optimizer
each time a new event occurs.

(a) (b)

Fig. 14.3 Real-time simulator and asynchronous optimizer.

The architecture of the simulator is presented in Figure 14.3 in the UML class
diagram style. Figure 14.3(a) presents the real-time scheduler while Figure 14.3(b)
presents the structure of the optimizer. Three types of real-time processes are
implemented and scheduled based on the timer clock. They are the Environment,
Company, and Vehicle objects in Figure 14.3(a). The company is the center entity
which receives demands from the environment, centralizes the de-mands, controls
the optimization task, and dispatches orders to the vehicles. Figure 14.3(b) shows
the structure of the asynchronous optimization process which manages a population
of agents, called AgentSolver objects, that are responsible for generating solutions
and constitute the population of the metaheuristic approach. Each agent solver then
encapsulates a single evolving solution. A particular agent, called MetaSolver, plays
the role of a scheduler of the agent solvers activities; it performs a selection between
the solutions in a similar way of an evolutionary algorithm. Since this section is
mainly devoted to the real-time simulation and not to the optimization algorithm,

326 A. Hajjam, J.-C. Créput, and A. Koukam

we shall only focus here to the real-time aspects of the system and to the commu-
nication protocols. The solving policy and heuristics will be detailed further in the
paper.

14.6.2 Asynchronous Protocol

On the one hand, the company receives new orders from the environment and com-
municates with the vehicles in a synchronous way, as both processes share the same
real-time clock. On the other hand, the communication between the company and
the optimizer is asynchronous, using mailboxes to exchange information. Here, the
asynchronous execution mode of the optimizer is intended to allow the consump-
tion of all the remaining available CPU resources. Figure 14.1 shows the structured
information shared by the two asynchronous processes. The company controls the
optimization process following a master/slave scheme. We can distinguish simple
orders and structured orders sent by the company. Simple orders are the start, stop
commands performed respectively at the beginning or at the end of a working day,
and the dispatch of the new customer demands as soon as they arrive in the system.
Structured orders concern the transfer of a complete solution, in the SetO fVehicles
object, as well as, from time to time, the transfer of all the available requests once
removing the ones already served, in the SetO f Requests object. Hence, the mail-
boxes have a size proportional to the number of requests in O(N), N being the total
number of demands arriving within a day.

Fig. 14.4 Asynchronous data transfers using mailboxes.

It should be noted that the exchanges, when considering the direction from the
company to the optimizer, mainly concern the updates of the vehicle locations, to-
gether with the arrival of the new requests. On the contrary, the exchanges from the
optimizer to the company concern transfers of the built vehicle routes. But since it
can occur in real life situations that autonomous vehicles could by their own mod-
ify their routes or themselves participate to the optimization process and modify
their plans, we choose to implement a complete bi-directional exchange of vehi-
cle routes. Then, the optimizer systematically chooses as a result the best solution
between the received solution by the company and its best generated solution. How-
ever in this paper, the vehicles are supposed to strictly follow the optimized routes

14 From the TSP to the Dynamic VRP 327

provided by the optimizer, and not try to optimize the routes by themselves. Hence,
the simulator has a general structure allowing possible distributed computations as
done in some multi-agent approaches like [30], where the company and the vehi-
cles simulate a market based protocol to construct the routes in a distributed way.
Bidirectional exchange of vehicle routes is intended to allow further developments
where a competitive solving could take place between the company and vehicles on
the one hand, and the optimizer on the other hand.

In order to control the computation time allowed to simulate a working day, we
decompose it into many time slices. Two parameters, denoted To and ToR next in the
paper, define the amount of computation time allowed to simulate a basic time slice.
They respectively control the compression of the working day into a small period
of computation time, and the real-time precision of the system. Parameters To and
ToR are respectively expressed in computation time units and real-time units. Since
the arrivals of new requests have to be tackled as soon as they arrive, ToR can be
seen as the basic unit of the real-time clock. It discretized the arrival of the re-quests
along the working day. Here, this value is chosen to be in O(D/N). Whereas, the To
value corresponds to the few milliseconds of computation time allowed to simulate
a period of ToR units of real-time. In the experiments presented in this paper, the
ToR value will be adjusted to an integer value compatible with the benchmark test
cases unit of time, taking ToR as the smallest integer greater than 0.1×D/N. The
To parameter will be adjusted to evaluate the performance of the system from large
to very short computation time allowed, hence choosing To from To = 200ms to
To = 20ms.

The unit of real-time being defined, we now introduce the main parameters gov-
erning the frequency of the route updates between the company and the optimizer.
They are the optimization time-slice Topt and the commitment horizon T co, which
are both expressed in real-time units. The optimization time-slice Topt defines the
time between two consecutive route updates occurring between the company and
the optimizer. The commitment horizon T co is a period of time which defines the
requests in routes that cannot be reallocated to other vehicle routes. The period starts
from the current time, it is a commitment to the drivers that cannot be changed. We
necessarily have Topt ≤ T co, and ToR ≤ Topt. Each Topt units of time, the com-
pany respectively gets back the new routes generated by the optimization process,
and sends the current vehicle routes containing the actual vehicle positions. Hence,
each time a route update is sent by the company at time t using the ’”optimize()”
procedure, the optimizer anticipates the vehicle positions at their future positions
at time t +Topt. This is done within the ”getOptimize()” procedure. Then, the op-
timization is performed with the anticipated solution at time t + Topt, when the
solution will get back by the company using the ”getPlan()” procedure. As well, the
optimizer anticipates the vehicle positions at time t +Tco since only the part of the
routes behind this point can evolve through the optimization process. The optimizer
regularly updates the mailbox with the new solution following its own internal rate
Tg by calling the ”setPlan()” procedure. The new requests are sent to the optimizer
whenever they appear, using the ”request()” procedure.

328 A. Hajjam, J.-C. Créput, and A. Koukam

Fig. 14.5 Data structure for transfer from the company to the optimizer.

Figure 14.5 illustrates how the data structure representing a given vehicle route is
affected by the transfer from the company to the optimizer. Since a route is defined
as an ordered set of requests, the lookahead consists in finding the vehicle position
at time t +Topt, and then fixing the requests from that date to the date t +Tco since
the committed requests will not be affected by the optimization procedure. It should
be noted also in Figure 14.5 that the vehicle buffer size is adjusted each Topt to the
value 5×N′/NbVehicles, with N′ the number of currently available requests in the
system at time t + T co, in order to be sufficiently large to insert new requests as
they arrive during the next time-slice. The sizes of the Topt and Tco windows can
be fixed independently from each other. But in a real time setting, and as showed in
the Kilby et al. paper [24], the reactivity of the system drastically diminishes with
the augmentation of the commitment horizon Tco. In this case, further requests will
not be inserted into the committed portion of a route and then will be served later.
In order to ensure a maximum of reactivity and dynamism of the system, we set
T co = Topt in all the experiments presented in the paper, with Topt as small as
possible. The Topt value is set to Topt = 10× ToR, thus taking an optimization
time-slice in O(D/N), allowing a single request occurrence on average for a single
optimization time-slice.

14.7 Experimental Results

14.7.1 Experiments Overview

In this paper, we define the dynamic VRP as a straightforward extension of the static
VRP. The length objective (1), the constraints of capacity (2) and time duration (3)

14 From the TSP to the Dynamic VRP 329

are defined exactly the same way as for the static case problem. This allows compati-
ble evaluations according to static optimal values and allows a standard formulation
of the problem. To take into account the degree of dynamism of the optimization
process, a second objective is defined related to the real-time execution. It is the
customer waiting time WT defined in (4). However, in order to give a supplemen-
tary insight into the real-time execution, an auxiliary criterion that we think useful
to consider is the maximum vehicle finishing time MT defined by (5), i.e. the date
of arrival at the depot of the last vehicle once all demands have been served. We
think that this auxiliary criterion will help to gauge the excess part of the vehicle
services performed behind the working day, once all the demands have been already
received, and indirectly to evaluate the part of the instance that is solved as a static
problem due to system congestion.

The proposed memetic SOM was programmed in Java and has been ran on a
AMD Athlon 2 GHz computer. All the tests performed with the memetic SOM are
done on a basis of 10 runs per instance.

For each test case is evaluated the percentage deviation, denoted ”%Length”, to
the best known route length, of the mean solution value obtained, i.e.

%Length = (meanLength−Length∗)×100/Length (14.5)

where Length∗ is the best known value taken from the VRP Web, and ”mean
Length” is the sample mean based on 10 runs. The average computation times are
also reported based on 10 runs. The average customer waiting time (4) and the max-
imum vehicle finishing time (5) are expressed as a fraction of the working day in
order to compare data with different working days. The waiting time is expressed as
a percentage of the working day length D by

%W T = meanWT × 100/D, (14.6)

whereas the maximum finishing time is expressed as an excess deviation to the
working day by:

%MT = (meanMT −D)× 100/D (14.7)

This setting also guarantees that it is possible to serve all the demands for the prob-
lems considered. Finally, to make things concrete and realistic, the vehicle speed
defined in the benchmarks of 1 distance-unit by 1 time-unit can be seen as a ve-
hicle speed of 1 km/mn, or equivalently of 60 km/h. In order to be concrete, we
will express the real-time in minutes and the distances in km when reported by their
absolute values in some graphics. The working days are roughly between 4 hours
and 17 hours, with an exception of a single test case having a 195 hours working
day. It is worth noting that the parameter N and the total load of the demands are
known before optimization in order to adequately dimension the system. Hence, the
working day D can be decomposed into the many required time-slices. We assume
that such values are necessarily known in advance in order to model a concrete real-
life situation where a limited number of vehicles are intended to serve a maximum

330 A. Hajjam, J.-C. Créput, and A. Koukam

amount of demands, and to reasonably dimension the real-time simulator memory
and the optimization system.

14.7.2 Influence of the Main Simulation Parameters

In this chapter, we apply to the dynamic VRP a simplified version of the memetic
SOM algorithm that was studied in [14] for the static VRP. Since an analysis of
the role of the operators and of the algorithm internal parameters was previously
performed in the above mentioned paper, we will restrict the focus to an analysis
of the few parameters that have an important impact to the dynamic and real-time
implementation of the approach. In this section, we study the influence of three
parameters and their impact to the length objective and waiting time trade-offs. The
parameters studied are the population size Pop of the metaheuristic, the computation
time allowed by the choice of the basic temporization To, or timer-clock, of the
real-time simulator. The degree of dynamism is adjusted by simply delaying the
starts of vehicles, from immediate starts (maximum dynamism) to an half of the day
starts (medium dynamism). To respectively implement a high or medium degree
of dynamism, delay start is expressed with two values: immediate start at time 0,
or delay start at time D/2. A delay start at D or 2D is used to simulate a static
VRP solver in a second set of experiments. The computation times are fast or long
depending on the choices To = 30ms or To = 200ms to simulate a given time slice
of a working day. Three population sizes are considered: Pop = 1, Pop = 10, and
Pop = 50. The experiments were done with the 22 dynamic instances of Kil-by
et al. performing 10 runs by instance and reporting the average lengths and average
waiting times. These experiments are for a part reported with details in Table 1 and
Table 2 next in the chapter.

14.7.3 Trace Analysis

We analyze the trace execution of a typical simulation run in order to illustrate
how real-time services are adequately simulated and performed along a working
day, and verify that the CPU computation time is uniformly distributed along the
day. The execution traces presented in Fig.6(a-b) illustrate how the route length
and waiting time are evolving for the two cases of dynamism, that is, a maximum
and a medium degree of dynamism, respectively, simulated by an immediate start
of vehicles or a delay start of D/2. The problem considered is the c50 test case
of the benchmark set, having a working day of D = 351mn, simulated with the
timer-clock To = 30ms, and using a metaheuristic population size of Pop = 10. In
Figure 14.6(a) is shown the length evolution, whereas in Figure 14.6(b) is shown the
waiting time evolution for both cases of dynamism. The tradeoff between these two
criteria suggests that one would have to choose between two incompatible scenarios:
choose to drastically minimize the customer waiting time or choose to minimize
length and drivers working time at an expense of the customer waiting time.

14 From the TSP to the Dynamic VRP 331

(a) (b)

Fig. 14.6 Trace analysis.

As well, in order to verify that the CPU computation time is uniformly distributed
along the simulated working day, we report in Figure 14.7(a) the simulated real-time
as a function of the processor time, measured by Java system calls every period of
Topt units of real-time. The test case is the same as above with immediate vehicle
starts and clock To = 30ms. The straight line obtained in the figure clearly shows
that the computation time is uniformly distributed along the day. We also report
in 14.7(b) the number of generations performed by the memetic SOM algorithm
as a function of the measured computation time. Again, the number of generations
performed at each time step looks roughly proportional to the computation time al-
lowed, with smooth variations on the curve probably due to the varying problem
size along the day, or the varying CPU consumption of the vehicles activities imple-
mented as simple state machines.

(a) (b)

Fig. 14.7 Repartition of the CPU computation time.

14.7.4 Comparative Evaluation

We report detailed results of the experiments performed on the Kilby et al. [24]
benchmarks in Table I and Table II. Here, such results are mainly given in order
to allow further comparisons with heuristic algorithms for the dynamic VRP. In
Table 14.1 are given the results when considering a high degree of dynamism im-
plemented by vehicle immediate starts. Results in Table I are only given for further
comparisons. In Table 14.2 , results are presented against the two other approaches
found in the literature [21, 28] that have used the benchmark set with a medium
degree of dynamism, considering that half of the demands were known in advance.
It is worth noting that we simulate the same degree of dynamism by a vehicle de-
lay start time at D/2. As we argued along this paper, we consider the degree of

332 A. Hajjam, J.-C. Créput, and A. Koukam

dynamism as a property of the system rather than a property of the instance. The
first column ”Name-size” of each table indicates the name and size of the instance.
The second column ”D” indicates the working day length, and the third column the
best known value obtained for the static problem. Then, results are given within five
columns for a given algorithm configuration. The columns ”%Length”, ”%WT”, and
”%MT” are respectively defined by equations 14.5, 14.6, and 14.7, as the percent-
age routes length, percentage average customer waiting time, and percentage max-
imum finishing time. The column ”±%CI” is the 95% confidence interval for the
routes length. Finally, the column ”Sec” reports the computation times in seconds.
Two algorithm configurations are considered respectively with fast (To= 30ms) and
long (To = 200ms) computation times. The metaheuristic population size was set to
Pop = 10.

Table 14.1 Evaluation on the 22 instances of Kilby et al (1998) with maximum degree of
dynamism.

When looking at the results of Table 14.1 and Table 14.2 , one should observe
the different tradeoffs between route lengths (%Length) and waiting times (%WT),
and note that the maximum finishing times (%MT) have similar values for both de-
grees of dynamism, corroborating the trace analysis made above. Then, a medium
degree of dynamism will favor the drivers working period to be smaller, but at an
expense of the customer waiting time. In Table 14.2, the approach is compared with
an ant colony approach, that is, an adaptation of the well known MACS-VRPTW
approach of Gambardella et al. [17] that is considered as one of the best performing
approaches to the static VRP. The application to the dynamic VRP is due to Mon-
temanni et al. [28]. Also, it is compared with the genetic algorithm of Goncalves et
al. [21]. In Table II, the memetic SOM is compared with the ant colony approach of
Montemanni et al. [28] and to the genetic algorithm of Goncalves et al. [21]. It is

14 From the TSP to the Dynamic VRP 333

Table 14.2 Comparative evaluation on the 22 instances of Kilby et al. (1998) with medium
dynamism.

worth noting that the authors do not report the customer waiting time. Nevertheless,
we tried to follow the same experimental setting. The authors have used the same
benchmark set without the largest test case named tai385, and using a medium de-
gree of dynamism. As explained by the authors, a medium degree of dynamism is
achieved when half of the demands are considered as known in advance. Here, a
medium degree of dynamism is achieved by delaying the vehicle starts to the half
of the working day. Since the time distribution is uniform, half of the demands are
then expected to be known beforehand. As shown in Table 14.2, the memetic SOM
outperforms both the ant colony approach and the genetic algorithm. It improves the
solution quality using lesser computation time. Computation time can be roughly an
hundred times lesser.

Finally, we report in Figure 14.8(a) synthetic presentation of the evaluations pre-
viously performed with the memetic SOM in [11, 14], as well as of the ones of this
paper, against state-of-the-art operations research heuristics considering the trade-
offs between objective minimization and computation time. Starting to look at the
figures from 14.8(d) and in reverse order to figure 14.8(a), the results are given
from standard static routing problems to the already studied more complex dynamic
VRP. The problems are respectively, the static TSP, the static VRP with capacity
constraint only, the static VRP with time duration constraint, and the dynamic VRP,
all problems being Euclidean problems. The aim is to suggest how a massive and
distributed insertion method, originally based on the neural network self-organizing
map algorithm, can be adequately applied in a dynamic setting and to complex prob-
lems in a way competitive with the very sophisticated operations research heuristics
specifically dedicated to deal with a given problem at hand.

334 A. Hajjam, J.-C. Créput, and A. Koukam

(a) (b)

(c) (d)

Fig. 14.8 Evaluation of the memetic SOM against state-of-the-art heuristics and metaheuris-
tics. Dynamic VRP (a), static VRP with time duration constraint (b), static VRP with capacity
constraint only (c), and static TSP (d).

Results in Figure 14.8(d) illustrate the performance of the memetic SOM on the
33 TSPLIB problems [33] of size larger than 1000 cities, with up to 85900 cities.
It is worth noting that these problems were used in the last DIMACS challenge
from which are reported the results, the computation times being normalized here
to our AMD Athlon (2GHz) computer using Dongarra’s factors [15]. Certainly, and
as illustrated in Figure 14.8(d), neural networks based approaches do not compete
with state-of-the-art OR heuristics for the TSP, such as the 2-Opt, 3-Opt and Lin and
Kernighan local search heuristics, which are from a long time the best performing
approaches to the TSP according to both length minimization and computation time
spent. For example, referring to the Johnson and McGeoch paper [23], the new
implementation of the Lin and Kernighan heuristic by Helsgaun [22] is clearly one
of the most effective approaches for the TSP.

Nevertheless, and as it is the case also for the SOM based approach called
Co-Adaptive Net algorithm [4], our approach was evaluated on many more test
problems than previously considered in the literature for neural networks and more
importantly on larger TSP’s. To be competitive, solution quality produced by neural
networks, as well as computation time, would have to be improved both by at least
a factor of ten. Other OR powerful heuristics for the TSP are, in the most often

14 From the TSP to the Dynamic VRP 335

cases, a reuse of local search techniques embedded in a restarting or metaheuris-
tic framework, as, for example, the Iterated-LK, Tabu-2-opt, or Tabu-LK, as given
in the DIMACS challenge and reported in the Figure 14.8(d). However, the design
and implementation of classical OR heuristics is not trivial since there are many
implementation and design decisions to be made that have a great influence on per-
formances. Here, on the contrary, we have focused on a heuristic which follows a
metaphor in biologic systems, hence which exhibits a high degree of intrinsic paral-
lelism and which may be considered intuitive and easy to implement.

In Figure 14.8(b-c) we turn to the static VRP, reporting results for the large size
20 test problems of Golden et al. [7] with sizes from 240 with up to 480 customers.
The benchmark contains twelve problems with the capacity constraint only and
height problems with the supplementary constraint of time duration. Comparison
is presented against some of the recent heuristics presented in the survey paper [5]
that cover the global range of metaheuristic performances for the static VRP. We
used the numerical results reported in [5] with computation times normalized to
our computer. The selected approaches are the Active Guided Evolution Strategy
(AGES) [27], the Granular Tabu Search (GTS) [34], the Unified Tabu Search Algo-
rithm (UTSA) [6], and the Very Large Neighborhood Search (VLNS) [16]. Two
configurations of the memetic SOM ”fast” and ”long” are reported for respectively
short and long computation times. From what we know, the AGES approach is, at
the date of writing, the overall winner considering both solution quality and com-
putation time for the static VRP. AGES is however considered complicated. On the
contrary, UTSA is recognized to be simple (easy to understand and implement) and
flexible (easy to extend) but more time consuming. Considering the instances with
the capacity constraint in Figure 14.8(c), the memetic SOM is less efficient on accu-
racy than the other approaches, computation times being comparable or lesser than
the ones of UTSA and VLNS. Considering the instances with the time-duration
constraint in Figure 14.8 (b), the length value becomes closest to the one of UTSA
for slightly spending more computation time. For such instances, GTS yields worst
quality results but computes very quickly. The memetic SOM performs better than
VLNS considering both quality solution and computation time. Hence, the more
complex the problem becomes with new constraints added, the more competitive
the memetic SOM becomes with OR powerful heuristics.

Finally, Figure 14.8(a) presents a summary of the experiments done on the dy-
namic VRP. The memetic SOM looks to be very faster and more efficient than the
few approaches that were applied to the Kilby et al. benchmarks. The results are re-
ported for different computation times allowed, set by a timer clock at respectively
To = 20,30, and 200ms, thus illustrating the ”anytime” nature of the algorithm that
is able to yield competitive results even for very short computation times.

As we explained in the introduction, the results corroborate the idea that the app-
roach presented in this paper was from the beginning designed to be applied in a
dynamic and Euclidean setting. Hence, the approach looks more simple and flexi-
ble than traditional OR approaches based on neighborhood swapping operators that
need complex implementation tricks to yield their effective power [23] when applied
in the Euclidean plane. Here, the performances can be explained by the many nearest

336 A. Hajjam, J.-C. Créput, and A. Koukam

point searches performed in the plane in a distributed way by spiral search. Further-
more, there is no distinction between a construction and an improvement procedure
as usual, but rather a distinction between a deployment and improvement phase
where solution construction and solution improvement are a unified process with a
decreasing intensity operating on an intermediate structure that continuously adapts
and distorts itself in the plane to an underlying distribution of the demands. No new
insertion procedure needs to be added to a previously designed improvement proce-
dure in order to dynamically add the new demands in real-time, as usually done with
improvement heuristics based on swapping operators that are subsequently applied
to dynamic versions of a vehicle routing problem [24, 31].

Furthermore, the internal data structures of the memetic SOM are weakly im-
pacted by the arrivals of new demands, an insertion into the memory being done in
constant time O(1). Subsequent insertions are then done naturally by the repeated
massive and distributed nearest point searches. Similar implementation mechanisms
look not to be considered in the ant colony and genetic algorithm when compared to
our approach. For example, an ant would have to perform a complete tour in order to
introduce a new demand in a route, thus theoretically performing O(N2) operations
to do so. As well, adding a new demand in the memory theoretically needs modify-
ing the graph structure by adding as many edges as necessary. And such conclusion
arises also for the genetic algorithm where a complete examination of a solution-
chromosome structure is needed to perform an insertion. The conclusion is that the
ant colony algorithm and the genetic algorithm look far from being the best candi-
dates for an application into a dynamic setting without saying anything about how
their structures are adequately updated in the dynamic case.

14.8 Conclusions

We have presented the dynamic VRP as a straightforward extension of the classic
and standard VRP, and a hybrid heuristic approach to address the problem using
a neural network procedure as a search process embedded into a population based
evolutionary algorithm, called memetic SOM. Based at the origin on the standard
self-organizing map algorithm, the memetic SOM reuses the concept of an inter-
mediate structure representing routes that adapt to an underlying distribution of de-
mands by the many route distortions performed in the plane. By extension, these
mechanisms become opera-tors in the population based metaheuristic. They lead
to route improvements performed at the same time of customer insertions. Massive
insertions are performed based on a spiral search algorithm for the nearest point
search implemented on the top of a cell decomposition of the plane. That is why
we think that the approach naturally deals with dynamic and real-time arrivals of
demands distributed in the plane with a weak impact on the evolving structures.

This paper concludes a set of studies where the memetic SOM was successively
applied to many routing problems. It was applied to the static TSP with problem
sizes with up to 85900 cities, to the static VRP and the VRPTW, and to different
combined bus-stop positioning and routing problems. While the approach looks far

14 From the TSP to the Dynamic VRP 337

from being competitive on the TSP when compared to the very powerful operations
research heuristics, it becomes more competitive when considering more complex
problems such as the static VRP with duration constraint, and specifically compet-
itive when applied to the dynamic VRP. The results look encouraging in that the
approach clearly outperforms the few heuristic approaches already applied to the
dynamic VRP and evaluated in an empirical way on a common benchmark set. We
claim that the memetic SOM is simple to understand and implement, as well as
flexible in that it can be applied from a static to a dynamic setting with slight modi-
fications. Also, we think that the memetic SOM is a good candidate for parallel and
distributed implementations at different levels, at the level of the population based
metaheuristic and at the level of the cellular partition of the plane.

Further research should focus on a better evaluation of the method against sim-
ple policies, or heuristics and metaheuristics approaches that were applied to more
complex dynamic vehicle routing problems, such as the dynamic VRP with time-
windows or the dynamic pick-up and delivery problem with time-windows. These
approaches would be easily customized to the standard and simplest dynamic VRP
presented in this paper. Hence, this paper has reported evaluations to allow further
comparisons on the basis of a standard formulation of the dynamic VRP and a stan-
dard test set. It would be of interest to better study and normalize the dynamic and
real-time benchmarks in a similar way that is done for the static problems, in order
to favor future empirical evaluations of algorithms on dynamic unstructured large
size problems.

References

[1] Bentley, J.-L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for closest
point problems. ACM Trans. Math. Softw. 6(4), 563–580 (1980)

[2] Bertsimas, D.J., Levi, S.D.: A New Generation of Vehicle Routing Research: Robust
Algorithms, Addressing Uncertainty. Operations Research 44(2), 286–304 (1996)

[3] Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem, pp. 315–338.
Wiley (1979)

[4] Cochrane, E.M., Beasley, J.E.: The co-adaptive neural network approach to the eu-
clidean travelling salesman problem. Neural Network 16(10), 1499–1525 (2003)

[5] Cordeau, J.-F., Gendreau, M., Hertz, A., Laporte, G.T., Sormany, J.-S.: New heuristics
for the vehicle routing problem. In: Langevin, A., Riopel, D. (eds.) Logistics Systems:
Design and Optimization, pp. 279–297. Springer, US (2005)

[6] Cordeau, J.-F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. The Journal of the Operational Research Soci-
ety 52(8), 928–936 (2001)

[7] Metaheuristics in Vehicle Routing. In: Crainic, T.G., Laporte, G. (eds.) Fleet Manage-
ment and Logistics, pp. 33–56. Kluwer, Boston (1999)

[8] Creput, J.-C., Koukam, A.: Clustering and routing as a visual meshing process. Journal
of Information and optimization sciences 28(4), 573–601 (2007)

[9] Creput, J.-C., Koukam, A.: Interactive meshing for the design and optimization of bus
transportation networks. Journal of Transportation Engineering 133(9), 529–538 (2007)

338 A. Hajjam, J.-C. Créput, and A. Koukam

[10] Creput, J.-C., Koukam, A.: Self-organization in evolution for the solving of distributed
terrestrial transportation problems. In: Prasad, B. (ed.) Soft Computing Applications in
Industry. STUDFUZZ, vol. 226, pp. 189–205. Springer, Heidelberg (2008)

[11] Creput, J.-C., Koukam, A.: A memetic neural network for the euclidean traveling sales-
man problem. Neurocomputing 72, 1250–1264 (2009)

[12] Creput, J.-C., Koukam, A., Hajjam, A.: Self-organizing maps in evolutionary approach
for the vehicle routing problem with time windows. International Journal of Computer
Science and Network Security 7(1), 103–110 (2007)

[13] Creput, J.-C., Koukam, A., Lissajoux, T., Caminada, A.: Automatic mesh generation for
mobile network dimensioning using evolutionary approach. IEEE Trans. Evolutionary
Computation 9(1), 18–30 (2005)

[14] Creput, J.-C., Koukam, A.: The memetic self-organizing map approach to the vehicle
routing problem. Soft Computing - A Fusion of Foundations, Methodologies and Ap-
plications 12, 1125–1141 (2008)

[15] Dongarra, J.: Performance of various computers using standard linear equations soft-
ware. Technical Report CS-89-85, Department of Computer Science, University of Ten-
nesse, US (2006)

[16] Ergun, O., Orlin, J.B., Steele-Feldman, A.: Creating very large scale neighborhoods out
of smaller ones by compounding moves: A study on the vehicle routing problem. MIT
Sloan Working Paper No. 4393-02 (October 2002)

[17] Gambardella, L.M., Taillard, É., Agazzi, G.: Macs-vrptw: A multiple colony system for
vehicle routing problems with time windows. In: New Ideas in Optimization, pp. 63–76.
McGraw-Hill (1999)

[18] Gendreau, M., Laporte, G., Potvin, J.-Y.: Metaheuristics for the capacitated VRP,
pp. 129–154. Society for Industrial and Applied Mathematics, Philadelphia (2001)

[19] Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Real-time vehicle routing: Solu-
tion concepts, algorithms and parallel computing strategies. European Journal of Oper-
ational Research 151 (2003)

[20] Glover, F.: Optimization by ghost image processes in neural networks. Computers and
Operations Research 21(8), 801–822 (1994); Heuristic, Genetic and Tabu Search

[21] Gonçalves, G., Hsu, T., Dupas, R., Housroum, H.: Une plate-forme de simulation pour
la gestion dynamique de tournées de véhicules. Journal Européen des Systèmes Au-
tomatisés 41(5), 515–539 (2007)

[22] Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman
heuristic. European Journal of Operational Research 126(1), 106–130 (2000)

[23] Johnson, D., McGeoch, L.: Experimental analysis of heuristics for the stsp. In: Du, D.-
Z., Pardalos, P.M., Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its
Variations of Combinatorial Optimization, vol. 12, pp. 369–443. Springer, US (2004)

[24] Kilby, P., Prosser, P., Shaw, P.: Dynamic vrps: a study of scenarios. Technical Report
APES-06-1998, University of Strathclyde, UK (1998)

[25] Kohonen, T.: Self-organization and associative memory, 3rd edn. Springer, New York
(1989)

[26] Larsen, A., Madsen, O.B.G., Solomon, M.M.: Recent developments in dynamic vehicle
routing systems. In: Sharda, R., Voß, S., Golden, B., Raghavan, S., Wasil, E. (eds.) The
Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/-
Computer Science Interfaces Series, vol. 43, pp. 199–218. Springer, US (2008)

[27] Mester, D., Braysy, O.: Active-guided evolution strategies for large-scale capacitated
vehicle routing problems. Computers and Operations Research 34(10), 2964–2975
(2007)

14 From the TSP to the Dynamic VRP 339

[28] Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: Ant colony system for a
dynamic vehicle routing problem. Journal of Combinatorial Optimization 10, 327–343
(2005)

[29] Moscato, P.: A gentle introduction to memetic algorithms. In: Handbook of Metaheuris-
tics, pp. 105–144. Kluwer Academic Publishers (2003)

[30] Preparata, F.P., Shamos, M.I.: Computational geometry: an Introduction. Springer, New
York (1985)

[31] Psaraftis, H.N.: Dynamic vehicle routing: Status and prospects. Annals of Operations
Research 61, 143–164 (1995)

[32] Psaraftis, H.N.: Dynamic vehicle routing problems, pp. 223–248. Elsevier Science Ltd.
(1998)

[33] Reinelt, G.: Tsplib - a traveling salesman problem library. ORSA Journal on Comput-
ing 3(4), 376–384 (1991)

[34] Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle-routing
problem. INFORMS Journal on Computing 15(4), 333–346 (2003)

Chapter 15
Insect Swarm Algorithms for Dynamic
MAX-SAT Problems

Pedro C. Pinto, Thomas A. Runkler, and João M.C. Sousa

Abstract. The satisfiability (SAT) problem and the maximum satisfiability problem
(MAX-SAT) were among the first problems proven to be N P-complete. While
only a limited number of theoretical and real-world problems come as instances of
SAT or MAX-SAT, many combinatorial problems can be encoded into them. This
puts the study of MAX-SAT and the development of adequate algorithms to add-
ress it in an important position in the field of computer science. Among the most
frequently used optimization methods for the MAX-SAT problem are variations of
the greedy hill climbing algorithm. This chapter studies the application to dynamic
MAX-SAT (i.e. MAX-SAT problems with structures that change over time) of the
swarm based metaheuristics ant colony optimization and wasp swarm optimization
algorithms, which are based in the real life behavior of ants and wasps, respectively.
The algorithms are applied to several sets of static and dynamic MAX-SAT instan-
ces and are shown to outperform the greedy hill climbing and simulated annealing
algorithms used as benchmarks.

Pedro C. Pinto
Bayern Chemie GmbH, MBDA Deutschland, Department T3R,
Liebigstr. 15-17 D-84544 Aschau am Inn, Germany
e-mail: pedro.caldas-pinto@mbda-systems.de

Thomas A. Runkler
Siemens AG, Corporate Technology, Intelligent Systems and Control,
CT T IAT ISC, Otto-Hahn-Ring 6, 81730 Munich, Germany
e-mail: thomas.runkler@siemens.com

João M. C. Sousa
Technical University of Lisbon, Instituto Superior Técnico, Dep. of Mechanical Engineering,
IDMEC-LAETA, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
e-mail: jmsousa@ist.utl.pt

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 341–369.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

pedro.caldas-pinto@mbda-systems.de
thomas.runkler@siemens.com
jmsousa@ist.utl.pt

342 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

15.1 Introduction

This chapter introduces an application of ant colony optimization (ACO) and wasp
swarm optimization (WSO) to solve static and dynamic instances of the maximum
satisfiability problem (MAX-SAT). The satisfiability problem (SAT) is a type of
constraint satisfaction problem (CSP) that is central in the theory of computation.
In SAT, the binary variables that define a problem can only take two values, 1 or
0, corresponding to ”true” of ”false”, respectively. Logic formulas are constructed
with these binary variables and the problem is defined as finding an assignment to
the variables that result in ”true” for each of the logic formulas. MAX-SAT is the
related optimization problem extension of the SAT problem. In MAX-SAT, the goal
is to find a solution that minimizes the number of formulas violated (or, possibly,
the sum of their weights).

In a dynamic MAX-SAT problem, clauses can be added to or removed from an
instance over time. This implies a model of a system which is subject to different
constraints at different points in time. These constraints could reflect the state of
the environment or of a subsystem, or the input by a user who controls the system
interactively. Another way of defining the dynamic problem is to keep the same fixed
set of clauses but allow certain variables to be set to true or false at different points
in time, and thus adding or removing extra constraints to/from the problem. These
extra constraints could represent, for example, sensor information or user input, in
which a variable has a physical meaning and may be forced to assume a value at a
certain time, so that the other variables of the problem have to adapt [18].

For MAX-SAT optimization, exact methods and approximate methods algo-
rithms have been studied.

Several approximate optimization algorithms have been introduced in the litera-
ture in the last two decades for the optimization of combinatorial problems. Evolu-
tionary algorithms have been successfully applied to constraint problems [21] and
dynamic problems [3], [40]. One of the algorithms most often used as a basis for
MAX-SAT optimization is greedy hill climbing (GHC) which, despite its simpli-
city, often produces excellent results [42]. Simulated annealing (SA) was one of the
first metaheuristics to be introduced in [20], with tremendous success, and is per-
haps the best well known algorithm of the class. Another increasingly well known
metaheuristic is ant colony optimization, which despite its relatively young age has
already been applied with success to a wide range of problems [11], [2], [37], includ-
ing MAX-SAT. Wasp swarm optimization is another algorithm of the metaheuristics
class, which in the last years has been increasingly applied to diverse optimization
problems [38],[9].

While only a limited number of theoretical and real-world problems come as ins-
tances of SAT or MAX-SAT, many of these are combinatorial problems with quite
natural CSP-like formulations, which can be easily encoded into SAT. This puts
the study of SAT and the optimization variant MAX-SAT to an important position
in the field of computer science, and there is a lot of work done in developing al-
gorithms that encode problems into SAT and MAX-SAT as SAT problems due to
recent advances in SAT solvers[4],[25]. The new solvers are capable of solving sig-

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 343

nificantly large and hard real-world problem instances, which more traditional SAT
solvers are incapable of, and it is hoped that techniques capable of encoding those
problems into SAT and MAX-SAT can be applicable to them. The practical results
vary in quality, as the encoding of some problems may easily lead to instances with
billions of clauses, rendering the problem more intractable than the original. Better
encoding methods continue being developed, so to an extensive number of problems
practically applying MAX-SAT solvers remains an important, open question [25].

In [28] and [29], we have shown results of the application of ACO and WSO
to optimize dynamic MAX-SAT problems. The goal of this article is to expand on
those first results in the following way: firstly, a direct comparison between the al-
gorithms is enabled. Secondly, the benchmark problems chosen for this study are
significantly more challenging. In third place, and just as important, the ACO and
WSO results are given together here with the results obtained with the GHC algo-
rithm. The comparison with GHC allows for an immediate evaluation of the quality
of the solutions, as the GHC is particulary well suited for MAX-SAT and thus used
as a benchmark in many MAX-SAT related publications. It also allows for an easy
reconstruction and verification of the results published here, since its algorithmic
formulation, given here, is extensively known and thus straightforward to imple-
ment.

15.2 MAX-SAT Optimization Problem

This section provides a brief summary of solving SAT and MAX-SAT problems.
For further information, the reader is referred to [34],[19],[24],[6], which provide
an excellent overview of the subject.

The satisfiability problem and the associated maximum satisfiability problem
were the first problems proven to be N P-complete [13],[15]. In a satisfiability
problem, or SAT, the variables {x1, ...xn} of the problem can take two values, 1 and
0, which correspond to xi =”true” and xi =”false”, respectively. Logic formulas are
constructed with binary variables and the operators ∧ (and), ∨ (or), and ¬ (not).
x1∨ x2 means that either x1 or x2 or both need to be true. x1∧ x2 means that both x1

and x2 need to be true. ¬x1 means that x1 needs to be false. A literal li is the propo-
sitional variable xi or its negation ¬xi. In the first case the literal is called positive,
and negative in the later. The literal li is interpreted as ”true” if it is positive and the
variable is assigned the value 1 or if it is negative and the variable is assigned the
value 0, and ”false” otherwise. The disjunction of the literals l1, ..., ln is:

l1∨ l2∨ ...∨ ln. (15.1)

The constraints are given as a set of clauses Ci, where each clause is a disjunction
of literals. The length of a clause is the number of different literals in that clause. A
conjunction of clauses C1,C2, ...,Cm is:

C1∧C2∧ ...∧Cm. (15.2)

344 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

A CNF-formula (Conjunctive Normal Form), or instance, is a conjunction of
clauses. The number of variables in a CNF-formula is denoted by n, and the number
of clauses denoted by m.

An instance is satisfiable if a satisfying truth assignment exists of the involved
binary variables and unsatisfiable otherwise. k-SAT is defined as the class of prob-
lems where the instance consists only of clauses with at most k literals. {k}-SAT is
defined as the class of problems where the instance has only clauses with exactly
k literals. Cook [10] proved that the class of k-SAT problems, for k � 3, is NP-
complete.

A solution of an instance consists of an instantiation of all the variables which
does not violate any of the constraints, i.e., a consistent labeling of each variable
with a value from its domain.

MAX-SAT is the related optimization problem extension of the SAT problem. In
MAX-SAT, the goal is to find a solution that minimizes the number of constraints
violated, or their weight, instead of finding a solution that satisfies all of them like
in SAT.

In case of weighted MAX-SAT, each clause has an associated weight, which
means that it is more important to satisfy certain clauses than others.

The 3-satisfiability optimization problem, or MAX-3SAT, is a special case of
k-SAT, where each clause contains at most k = 3 literals. It is known that 3-SAT
experiences dramatic transitions from easy to difficult and then from difficult back
to easy when the ratio of the number of clauses to the number of variables increases
and becomes therefore simple to prove if no solution exists [43].

15.2.1 Phase Transitions

It is known that the class of random 3-SAT instances introduced above is subject
to threshold phenomena with respect to the density parameter, which for SAT and
MAX-SAT is the number of constraints to number of variables ratio [6],[24]. Low-
density problems are satisfiable with high probability and easily shown to be satis-
fiable by basic techniques. High density problems are unsatisfiable with high prob-
ability. Instances with a low density tend to have many solutions, which makes it
relatively easy to find one. Instances with a high density offer many different possi-
bilities to prove a contradiction. Instances near the density threshold that are satis-
fiable have few solutions, and those that are not have few different ways to prove
unsatisfiability, which makes them hard to solve (i.e. long computational times are
necessary).

The critical value of this order parameter for 3-SAT is around 4.13. A 3-SAT is
almost always satisfiable when the clause/variable ratio is below this critical value
and is almost always unsatisfiable beyond it, making a sharp transition from satis-
fiability to unsatisfiability. The computational cost is also low when the probability
of satisfiability is close to one or zero, being the highest around the 4.13 ratio.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 345

MAX-3SAT follows the same pattern of 3-SAT to enter the computationally diffi-
cult region, but it follows an easy-hard pattern as the clause/variable ratio increases,
instead of an easy-hard-easy pattern (see Fig. 15.1).

max underconst. 2 4.13 6 8 10 12 14 16 18 max overconst
Clauses / # Variables

C
om

pl
ex

ity

MAX−3SAT

3SAT

Fig. 15.1 Typical phase transition of 3SAT and MAX-3SAT [43].

The discrepancy between the different patterns of the complexity phase transi-
tions of 3-SAT and MAX 3-SAT indicates that optimization is more difficult than
decision. The optimal solution to a MAX 3-SAT can be used to determine if the
corresponding 3-SAT is satisfiable or not, but the reverse is obviously not true. Thus,
a MAX 3-SAT is at least as hard as its corresponding 3-SAT. When a problem is
over-constrained, a small subset of the problem is very likely to be over-constrained
as well, so that the problem can be declared unsatisfiable when the subproblem
is detected to be unsatisfiable. In this way, the more constrained the satisfaction
problem is, the quicker it can be found that no solution exists. However, in an over-
constrained MAX-SAT problem, the task of finding an optimal solution to minimize
the total number of violated constraints is typically hard, since every possible vari-
able assignment has to be considered.

15.3 The Dynamic MAX-SAT Optimization Problem

The formulation of the dynamic MAX-SAT problem introduced in this section fol-
lows the formulation given in [18]. Within MAX-SAT there are basically two ways
of turning a problem dynamic. The first possibility is to start from a given instance
and allows clauses to be dynamically added to or retracted from this instance over
time. Using this definition a system which is subject to different constraints at diffe-
rent points in time (e.g. environment change, new user input) can be modeled. An-
other way of defining the dynamic problem is to keep the same fixed set of clauses
but allow certain binary variables to be set to true or false at different points in time,
and thus generating or removing extra constraints to the problem. This way of mak-
ing the problem dynamic has its basis on the representation of sensor information

346 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

or user input, in which one variable has a physical meaning and may be forced to
assume a value at times, so that the other variables of the problem have to adapt. The
factors influencing the choice and performance of an algorithm applied to dynamic
MAX-SAT (and dynamic problems in general) are described in [3] and include:

• Severity of change: in first place, some exploitable similarity between the current
and next stage of the problem must exist. If the problem is changed completely,
it can be regarded as a simple sequence of problems that have to be solved from
scratch.

• Frequency of change: how often the environment changes is another critical char-
acteristic of the dynamic problem. If the rate of changes is slow, then the problem
can be considered static or quasi-static, in which case restarting the algorithmic
computations periodically may be the most computationally efficient method. On
the other hand, if the rate of changes is faster, algorithms that are able to cope
with the changes without a restart of the computations are likely to be more effi-
cient and produce better results.

• Predictability of change: whether there is a pattern or trend in the changes that
can be used to predict the occurrence of the next change, and/or its severity. If
available, the information can be used to adjust the algorithms.

The notion of a dynamic SAT problem can be captured by the following definition:
An instance of the dynamic SAT problem (DynSAT) over a set V of variables

is given by a function Ω : N �→ CNF(V), where N is the set of nonnegative inte-
gers, and CNF(V) is the set of all propositional formula in conjunctive normal form
which only use the variables in V . For practical purposes, Ω is restricted to a finite
number of clauses.

If a DynSAT instance does not change after a finite number of time steps, i.e., if
∃n : ∀m > n : Ω(m) = Ω(n), this instance is called an n-stage DynSAT instance. A
DynSAT instance is cyclic with period Δ if ∀n : Ω(n+Δ) = Ω(n).

The second way of defining DynSAT is to use a fixed set of clauses but to allow
certain propositional variables to be set to true or false at different points in time.
This second definition can be formalized in the following way:

An instance of DynSAT over a set V of proportional variables is given by
a CNF formula F over V and a second-order function Ψ : N �→ CNF(V �→
{true, f alse, f ree}), where f ree means that the variable is unassigned.

For each time n, Ψ(n) determines for each variable appearing in F whether it is
fixed to true, fixed to false, or not fixed. The notion of n− stage and cyclic DynSAT
remains the same.

The two definitions of dynamic MAX-SAT given above are equivalent in the
sense that each DynSAT instance according to the first definition can always be
transformed into an equivalent DynSAT instance according to the second definition
and vice versa, and thus results obtained for one case are valid for both. The proof of
this proposition is based on the following two observations: Given DynSAT instance
(F,Ψ), for each variable v which is fixed at time n we add the unit clause ¬v to F if
Ψ(n)(v) = f alse (in case Ψ(n)(v) = f ree, then v is not fixed at time n and no unit

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 347

constraints need to be added). This gives a sequence Ω where Ω(n) consists of F
with necessary unit clauses added. Clearly, Ω is satisfiable if (F,Ψ) is satisfiable.

In the same manner, given a DynSAT instance Ω , we let F be the CNF for-
mula consisting of all the clauses mentioned by Ω . The set of propositional vari-
ables is then extended by adding an indicator variable vi for each clause ci in F .
Now, another CNF formula F ′ is obtained by replacing each clause ci in F by
ci ∨¬vi. Finally, Ψ(n) is defined such that for the indicator variables Ψ (n)(vi) is
true if ci appears in Ω(n) and f alse otherwise. For all original problem variables v,
Ψ(n)(v) = f ree. (F ′,Ψ) is satisfiable exactly if Ω is satisfiable.

The first way of defining the problem is conceptually simpler and a slightly more
obvious generalization from conventional SAT from a theoretical point of view. This
makes it slightly more adequate for theoretical considerations. The second defini-
tion, on the other hand, reflects actual dynamic systems in a more direct way, and
it is easier to apply directly to existent regular MAX-SAT problems without chang-
ing their characteristics by adding out of place clauses. For both reasons, we focus
on dynamic problems formalized as according to the second definition. Like in the
regular MAX-SAT problem the optimization objective is the minimization of the
number of unsatisfied clauses, or cost, at each stage of the problem.

15.3.1 Dynamic MAX-SAT: Practical Example

A simple, dynamic MAX-SAT problem is formulated next to serve as an example.
Let us have a regular MAX-SAT problem defined by a set of clauses with a fixed
number of variables being fixed to true or false in every stage, which means that
for the MAX-SAT problem the variable set X is defined in instance Φ(i) as x ∈
{0,1, f ree}. In this example, the problem is composed of an instance Φ with 3
clauses and 5 variables:

Φ = (x1∨¬x2∨ x4)∧ (x3∨ x4∨¬x5)∧ (x1∨ x3∨¬x4) (15.3)

Ψ is the function that determines which variables of X are fixed for each instance
and their values, from the set of existing variables: X1 =Ψ (X1). In this example, it
fixes two variables randomly at each stage:

Stage 1 : X = [0, f ree,1, f ree, f ree], (15.4)

In order to assure the variability of the problem, at least one of the variables fixed at
stage i cannot be fixed in stage i+ 1.

Stage 2 : X = [0, f ree, f ree, f ree,1] (15.5)

Stage 3 : X = [f ree,1, f ree, f ree,1]
...

348 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

Stage 1 can then be formulated as a modified set of constraints and variables. The
new constraints are x1 = 0 and x3 = 1, and the variables are x2,x4 and x5. The
assignment x2 = 1, x4 = 1 and x5 = 0 solves the problem, since

(0∨0∨1)∧ (1∨1∨1)∧ (0∨1∨0)= 1. (15.6)

Therefore, the solution of the first stage of the dynamic problem is S = {0,1,1,1,0}.
In this case, the cost of the solution is 0 (no clauses are left unsatisfied) and the
solution is not unique, which is not a concern since the problem here consists only
in finding one solution at all.

15.4 ACO Applied to MAX-SAT

Ant colony optimization [12] is a bio-inspired multi-agent algorithm that belongs to
a special group of metaheuristics which attempt to emulate behavior characteristics
of social insects, in this case ant colonies. In ACO, the behavior of each agent in
the optimization mimics the behavior of real life ants and how they interact with
each other in order to find food sources and carry resources to the colony efficiently.
Collection of food by a group of ants is a multiple stage process.

In the beginning, each ant follows more or less a random walk, leaving a
pheromone trail behind. Eventually, a few ants will come upon a food source and
start the process of moving the food to the nest. Other ants converge on the source
and, by means of stigmergy [16], soon the shortest path between the food source
and the nest is being used by the vast majority of ants in the group (the evapora-
tion over time of the pheromones makes less used and longer paths less and less
attractive to the ants). The ants still keep some exploring capability, enabling the
discovery of other food sources. ACO has been used to optimize a wide range of
problems, such as the satisfiability problem [31],[26],[28], the traveling salesman
problem [36], supply-chain logistics [33], [32], routing problems [7], and sorting
problems [17].

One of the first applications of ant colony optimization (ACO) to the regular
MAX-SAT problem was in [31] by Roli, Blum, and Dorigo with the ant colony sys-
tem (ACS) algorithm, and studies on the viability of ACO applied to the problems
have been conducted in [26] and [35].

Before explaining the mechanism of the algorithm, it is necessary to introduce
the fundamentals required to apply ACO to the MAX-SAT optimization problem.
These fundamental concepts are the problem representation, the formulation of the
pheromone track and the heuristics. There are several ways of mathematically rep-
resenting the problem to optimize. After choosing the representation, the formula-
tion of the pheromone track, τ and the heuristic information η can be determined.
The formulation of the probabilistic rule p, which is used to decide on which ac-
tion to perform, is determined by the information stored in the pheromones and the
heuristics.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 349

Representation of the problem. The structure to learn is an assignment X =
{x1,x2, ...,xn} composed of n variables xi, i= {1, ...,n}. Each variable xi can assume
two different states v j, j ∈ {0,1}, corresponding to ”false” and ”true”, respectively.
The function f to minimize is a simple count of the number of unsatisfied clauses,
or the weight of those unsatisfied clauses for weighted MAX-SAT problems, where
a different weight is assigned to each clause. No restriction on the candidate lists
was implemented.

Pheromone update. To direct the ants, artificial pheromones are placed onto every
candidate assignment < xi,vi > of the graph. Each one of the two variable states
is differentiated within the n× 2 pheromone matrix τ , which is represented in full
by τ<xi,vi>. This means that each assignment < xi,vi > has its own entry in the
pheromone matrix, which stores information on the desirability of including the
assignment in a learned solution.

The pheromones are updated at the end of each iteration in order to preserve the
information about high quality solutions X found in previous iterations. The update
has the following steps:

• application of the evaporation coefficient ρ to each entry of τ

τ ← τ · (1−ρ) (15.7)

• update each entry τ<xi ,vi> in the pheromone matrix τ of each < xi,vi > appearing
in the current learned solution T :

τ<xi,vi>← τ<xi ,vi>+ 1/ f (T), (15.8)

where f (T) is the current cost, or the cost before any new assignment of the
variable.

• update each entry < xi,vi > in the pheromone matrix τ for the current learned
solution Tbest :

τ<xi ,vi>← τ<xi,vi>+ 1/ f (Tbest), (15.9)

Heuristics. In addition to the pheromones, heuristic information is used to guide
the ants to a desirable assignment < xi,vi > . The heuristics η are represented in a
similar way as the pheromones τ . Each assignment < xi,vi > has its own heuristics
η<xi,vi>.

Let fi j(< xi,vi >) be the cost f (T∪ < xi,vi >), for a given solution T , with
variable xi being assigned to value vi.

The heuristic information is then defined as:

η<xi ,vi> = f (T∪< xi,vi >)− f (T). (15.10)

Probabilistic rule. In the ACO algorithm, each ant can change one variable state
(or leave it unchanged) in the solution T in a single iteration. Thus, one ant can

350 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

choose an assignment vi for variable xi. The decision about the state is based on the
pheromones ρ and the heuristics η in a probabilistic way.

The probability of variable xi being assigned the value v1 is given by

p<xi,v1> =
τα
<xi,v1>

·ηβ
<xi,v1>

1
∑

k=0
τα
<xi ,vk>

·ηβ
<xi,vk>

, (15.11)

where α and β are parameters that balance the importance of pheromone and heuris-
tics in p, respectively. The ranges of α and β are problem dependent. A study about
the appropriate variable ranges for a wide selection of problems is given in [12].

Algorithm 15.1. ACO Algorithm for MAX-SAT
Input: Set of unassigned variables x1, ..,xn

Output: T with variables x1, ..,xn assigned

// Initialization
pheromones τ: initialize each entry of τ with τ0;
define Nmax as max number of iterations;
Tbest = empty solution construct;
Niter = 0;
// Optimization
repeat

T = empty solution construct;
// variable assignment
while Convergence is not reached do

// go over all m ants
for k = 1 to m do

choose variable xi from X randomly;
choose variable assignment vi according to (15.11);
compute cost benefit for the assignment < xi,vi >;

end
find ant BestAnt with highest cost benefit;
assign variable value ei chosen by ant BestAnt to T ;

end
// Pheromone update
if f (T) < f (Tbest) then

Tbest = copy of T ;
end
Update τ according to (15.7);
Update τ according to (15.8) using T ;
Update τ according to (15.9) using Tbest ;
Niter++;

until Niter=Nmax;
return Tbest

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 351

The algorithm proposed here is presented in Algorithm 15.1. Starting from an
empty assignment, the ants collaboratively build a complete solution T at each iter-
ation. Within one iteration, every ant picks randomly an edge and assigns a state to
that edge based on the pheromones and heuristics. In more detail, each ant performs
the following two steps:

1. Random selection of the next variable to be evaluated from the set of candidate
variables.

2. Assignment of a variable value, from vi ∈ {0,1} of xi. This assignment is made
probabilistically using (15.11), in a balance between the pheromone informa-
tion for the edge contained in τ<xi ,vi> and the locally computed heuristic infor-
mation provided by (15.10).

The ant that found the assignment with the highest cost improvement changes the
variable. The current variable assignment T and the best solution found so far Tbest

are used to update the pheromone information using (15.7), (15.8), (15.9) in order
to guide the ants to higher quality solutions in next iterations.

In our paper we iterate this Nmax = 200 times, which is a value high enough to
allow the pheromone matrix to saturate and the solutions to converge in all the an-
alyzed problems. The output of the optimization process is the variable assignment
Tbest .

The methods used to update the pheromones are the basis of the different ACO
algorithms. Three pheromone update approaches were followed, named static ACO,
restart ACO (ACOR), and dynamic ACO (ACOD). Static ACO and Restart ACO are
applications of the ACO algorithm introduced for static MAX-SAT. Static ACO has
no adaptation to the dynamic problem, therefore it should produce solutions of de-
creasing quality as the information contained in the pheromone matrix saturates.
Restart ACO depends on knowing the existence of a new stage, and the pheromone
matrix is reset when this is detected. In dynamic MAX-SAT the pheromone in-
formation is adjusted in order to prevent its saturation by defining the evaporation
coefficient, ρ , as a function of the diversity, divi, of the last solution computed:

ρi =

{
ρ0 if divi−1 > ρ0

K ·divi−1 otherwise
(15.12)

The diversity divi is defined as the lowest Hamming distance (number of bits which
differ between two binary strings) between solution i and any solution computed
previously, divided by the number of variables. The concept was used in [1] by R.
Battiti and M. Protasi to adapt a reactive local search algorithm with good results.

15.5 WSO Applied to MAX-SAT

Group living within species of social animals often results in occasional conflict
among the elements of the group, due to the finite number of resources generally
available, may they be food, shelter, or desirable mates. In many species of animals,
when several unacquainted individuals are placed together in a group, they engage

352 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

each other in contests for dominance. Dominance behavior has been described in
hens, cows, ponies, lizards, rats, primates, and social insects, and most notoriously
wasps [41]. Some of the contests are violent fights, some are fights that do not lead
to any serious injury, and some are limited to the passive recognition of a dominant
and a subordinate. In the initial period after placement, contests will be extremely
frequent, becoming less and less frequent with time and being replaced by stable
dominance-subordination relations among all group members [5]. Once an hierar-
chical order is obtained it lasts for long periods of times, only with minor modifica-
tions caused by the occasional successful attempt of a subordinate to take over. The
formation of this hierarchy organizes the group in such a way that internal conflicts
do not supersede the advantages of group living.

Theraulaz introduced in [38] a model for the organization characteristic of a wasp
colony. The model describes the nature of interactions between an individual wasp
and its local environment with respect to task allocation. The colony’s self-organized
allocation of tasks is modeled using what is known as response thresholds. An indi-
vidual wasp has a response threshold for each zone of the nest. Based on a wasp’s
threshold for a given zone and the amount of stimulus from brood located in that
zone, a wasp has a certain probability to become engage in the task of foraging for
that zone. A lower response threshold for a given zone amounts to a higher likeli-
hood of engaging in activity given a stimulus.

Just as before, it is necessary to introduce the fundamentals required to apply
wasp swarm optimization (WSO) to the MAX-SAT optimization problem. These
fundamental concepts are the problem representation and the formulation of the
stimulus of each wasp. The formulation of the probabilistic rule p, which is used to
decide on which action to perform, is determined stochastically by the information
stored in the stimulus of each wasp.

Representation of the problem. The representation of the problem is the same as
in the ACO formulation, with X = {x1,x2, ...,xn} being the assignment of variables
to learn, where each variable xi, i = {1, ...,n} can have two different assignments vi,
vi ∈ {0,1} and the function f to minimize is the number of unsatisfied clauses, or
the weight of those unsatisfied clauses for weighted MAX-SAT problems, where a
different weight is assigned to each clause. In the formulation followed here, each
wasp wi, i = 1, ...,n, represents a candidate assignment, with F<xi,vi> the force of
wasp representing assignment< xi,vi >. An active wasp is represented by<wi,v1 >
and an inactive wasp by < wi,v0 >. Algorithm 15.2 shows the basic mechanism of
the optimization.

Stimulus of each wasp. The probability of wasp wi bidding to change the state of
xi from unassigned (v0) to assigned (v1) is given by:

P<xi,v1>←<xi,v0> =
ηα
<xi ,v1>

ηα
<xi,v1>+Θ α

<xi,v1>
(15.13)

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 353

where η is the problem heuristics as defined in (15.10). In the first iteration, each
variable is forcibly assigned to a state, since in MAX-SAT no variables are allowed
to be left unassigned. In the following iterations, both wasps are allowed not to bid.
The parameter α is in our paper set to 2.

Each wasp has a certain force F<xi,v1> that influences its chance of winning the
tournament. In the approach followed here, the update of F<xi,v1> is influenced by
the heuristics formulated in (15.10) for ACO, and by wasp wi winning or losing the
current contest:

F<xi,v1> = F<xi,v1> ·Δ +η<xi,v1> (15.14)

where Δ is given the value 1+kw if the wasp wins and 1−kw if the wasp loses. The
parameter kw was roughly set by experimentation to 0.1 here.

Probabilistic rule. Each wasp can change one variable state (or leave it unchanged)
in the solution X in a single iteration. Thus, one wasp can choose an assignment
< xi,vi > for variable xi. The decision about the state is based on the force < xi,vi >.
The probability of variable xi being assigned the value 1 is (similarly to the ACO
probabilistic rule) given by:

p<xi,v1> =
Fβ
<xi,v1>

1
∑

k=0
Fβ
<xi,vk>

, (15.15)

where we set β = 2.

15.6 SA and GHC Applied to MAX-SAT

In order to evaluate the quality of the introduced algorithms, the quality of the
achieved solutions is compared with the results for other metaheuristics, namely
greedy hill climbing (GHC) and simulated annealing (SA). Tabu GHC is a combi-
nation of tabu search (TS) and GHC. Once a potential solution has been determined,
it is marked as ”taboo”, which means that the algorithm is forbidden to consider that
possibility again. Tabu GHC is a simple but highly effective method introduced by F.
Glover in [14] as a method to enhance the performance of a local search method by
using memory structures to guide the search process. The most widely applied fea-
ture of tabu search is the use of a short term memory to escape from local minima.
This version is denoted as simple tabu search. However, TS is often used combined
with another algorithm that helps to guide the solution building process into the
right direction. This algorithm can be GHC. However, TS can also be used with
other algorithms, namely SA, ACO, and WSO. In order to prevent the local search
from an immediate return to a previously visited solution and to avoid cycles, in
TS moves to recently visited solutions are forbidden. This can be implemented by
explicitly memorizing previously visited solutions and forbidding moving to those.
Usually, the move is forbidden for a number tl of iterations. The parameter tl is

354 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

Algorithm 15.2. WSO Algorithm for MAX-SAT
Input: Set of unassigned variables x1, ..,xn

Output: T with variables x1, ..,xn assigned

// Initialization
define Nmax as max number of iterations;
Tbest = empty solution construct;
Niter = 0;
// Optimization
repeat

T = empty solution construct;
// For Niter iterations
choose variable xi from T randomly;
update F<xi,vi> according to (15.14);
choose if variable is candidate for assignment according to (15.13);
choose variable assignment ei according to (15.15);
Assign chosen variable value < xi,vi > to T ;
if cost T > cost Tbest then

Tbest = copy of T ;
end
Niter++;

until Niter=Nmax;
return Tbest

Algorithm 15.3. GHC Algorithm for MAX-SAT
Input: Set of unassigned variables x1, ..,xn

Output: T with variables x1, ..,xn assigned

T = empty solution construct;
Tbest = empty solution construct;
T L : tabu list (FIFO) with last 100 tested variables;
repeat

choose variable xi not in the tabu list;
apply best action to xi;
add xi to T L;
if cost T > cost Tbest then

Tbest = copy of T ;
end

until Tbest has not changed last 20 times;
return Tbest

called the tabu tenure and if it is set to a value too high for the problem in question,
the algorithm becomes too restrictive and may be unable to find the best solutions.
If the number is too low, the memory effect may not work and the algorithm may
fall into a local minima more easily. Henceforth, every time GHC is mentioned it is
implicit that it is with a tabu implementation.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 355

Algorithm 15.4. SA Algorithm for MAX-SAT
Input: Set of unassigned variables x1, ..,xn

Output: T with variables x1, ..,xn assigned

Tstart = 30; // start temperature
Tend = 0.000005; // end temperature
γSA = 0.99; // temperature decrease factor
βSA = 20; // iteration factor

T = empty solution construct;
t = tstart ;
repeat

for βSA · |X| times do
choose variable xi randomly ;
choose best local action for variable (possible actions: 0 and 1);
calculate cost benefit for best action: ΔS;

if (ΔS > 0) or (exp(ΔS
t)> rand(0,1)) then

apply best action to T ;
end

end
t = t · γSA;

until T > Tend ;
return T

GHC is used with a tabu list through which the algorithm keeps a list of the
last 100 structures and allows only changes that lead to a structure not contained
in the list. The local change can lead to an increased cost in order to escape local
extrema. After 20 changes without any performance increase, the algorithm returns
the overall highest quality solution (see Algorithm 15.3).

The SA algorithm randomly chooses a variable and then chooses the best value
for the variable according to the cost and applies the best action given the net benefit
is positive. Otherwise, with a negative cost benefit, the action is chosen with a certain
probability, depending on the temperature t (see Algorithm 15.4). After a predefined
number of iterations, the temperature is decreased. These steps are repeated until the
temperature reaches a minimum value.

15.7 Experiments

The dynamic benchmark instances were generated from a selection of static instan-
ces from the MAX-SAT competition of 2007 and from the SATLIB benchmark set.
The MAX-SAT competition of 2007 benchmarks can be downloaded on the offi-
cial MAX-SAT 2007 website (www.maxsat07.udl.es/) and the SATLIB benchmark
sets can be found on the website www.cs.ubc.ca /hoos/SATLIB. The chosen bench-
marks, UUF and RAMSEY, and their characteristics are shown in Table 15.1. The
original, static instance is in this study the first stage of the dynamic problem, the
second stage is created from it.

356 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

Table 15.1 MAX-SAT benchmarks:

Instance family # instances # Variables # Clauses

UUF50 10 50 218
UUF100 10 100 430
UUF175 10 175 753
UUF250 10 250 1025
Ramsey 3k 42 6-190 5-5985
Ramsey 4k 42 10-190 10-9690
Ramsey 5k 42 15-190 21-20349

Each time step before the instance changes and the new stage commences is
considered to be an iteration of each algorithm, i.e., there is a cost function evalua-
tion at each time step. For simulation purposes, each stage has a known duration so
restart optimization strategies can be applied for comparison with the non-restart al-
gorithms. The duration of each stage is an important parameter of the system, since
if all stages last long the speed of the optimization is not critical. In a real-world
problem, it is possible (even likely) that the stages have an unknown or variable
duration.

From the benchmarks UUF 250 and RAMSEY 5k, instances with 20 and 100
stages were drawn. The effect of the duration of each stage in solution quality and
runtime for each algorithm is evaluated for a series of instances with 20 stages and
increasing duration. The two 100-stage instances were evaluated for fixed durations
chosen based on the 20-stage problem evaluation, in order to provide a proper rep-
resentation of the problem and to evaluate the behavior of the algorithms for long
running problems. The stages of the dynamic UUF250 instance have a duration
of 100 iterations, such as the RAMSEY stages. The number of fixed variables per
stage,ψ , was set to ψ = 6. A basic evaluation of the effect of several values for ψ in
the optimization with the algorithms is included in section 8.

The fixed parameters used in the algorithms were set to:

• GHC: the algorithm keeps a list of the last T L = 100 structures. After 20 changes
without any decrease in cost, the algorithm returns the overall highest quality
solution.

• SA: the start temperature was set to T0 = 30 and the end temperature to Tend =
0.000005. The temperature decrease factor is γSA = 0.99 and the iteration factor
βSA = 20.

• ACO: α = 1, β = 3, ρ = 0.05. These parameters were fitted by basic experimen-
tation, and generally recommended in [12]. The number of ants m is set to 30.
The effect of different number of ants is roughly evaluated below in the results
section. The maximum number of iterations was set to Nmax = 200.

• WSO: The parameters were set to kw = 0.1, Θt = 1, α = 2, β = 2, and Nmax =
200. A value of β equal to approximately 2 has been found to give the best results
in applications to several problems [27],[8],[9]. In our algorithmic application, all
wasps are part of the bidding in every iteration, therefore Θt is set to 1.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 357

In order to evaluate the performance of the algorithms, two metrics are reported:

• Cost f (T): cost of the achieved solution, T , which is defined as either the number
of unsatisfied clauses or the sum of their weight. The cost determines how close
the solutions are to an unknown optimal solution. The lower the cost, the closer
the solution is to the optimum.

• Runtime: CPU time needed for the algorithm to find the reported best solution of
the problem (in seconds) in a Windows XP PC with a 1.83 GHz processor and
1.00 GB RAM. The algorithm implementation was done in Matlab 7.1.

The benchmarks used in this study are used as the only benchmark set for a large
number of approximate algorithms [30],[23],[34]. Nevertheless, one should mention
that these instances do not pose anymore a reasonable challenge to state-of-the-art
exact algorithms for MAX-SAT. However, judging from the computational results
reported in the literature, exact algorithms seem to be limited (with the notable ex-
ception being SAT-encoded Steiner tree problems) to instances with a few hundred
variables which indicates that when high quality solutions for large MAX-SAT ins-
tances are required, metaheuristic approaches are currently the most efficient solu-
tion techniques [39]. Moreover, the computational results reported in the literature
so far do not give a comprehensive picture on which algorithm should be preferred,
because in most researches, algorithm designers applied their algorithms only to a
specific benchmark set. All of this indicates that the study of new metaheuristics
and local search methodologies in general remains relevant. As it was reasoned in
Section 3.1, a threshold can be expected for the number of variables/clauses after
which an exact optimization strategy will generally be less efficient than approxi-
mate optimization, even if that threshold is progressively pushed further. Moreover,
metaheuristics may help to flatten the landscape, with algorithms that can cope with
a wide range of benchmarks.

15.8 Analysis and Results

The analysis of dynamic MAX-SAT instances is computationally demanding. For
this reason, only one representative problem of each benchmark set was chosen as
a template to create dynamic MAX-SAT instances. With the objective of giving
a more comprehensive overview of the quality of the algorithms, it was opted to
report the optimization results for all instances of the benchmark sets UUF and
RAMSEY sets for the static problem (i.e., the first stage of the dynamic problems).
The static problem results are also used to fine tune the number of ants m in the ACO
algorithm. The SA algorithm is also included in the study for comparison purposes.

15.8.1 Results for Static MAX-SAT

The nondeterministic algorithms (ACO, WSO, and SA) were each run 10 times for
all the instances of each benchmark set. To note that, from Table 1, there are 10
instances for each benchmark of the UUF family and 42 for each of the RAMSEY

358 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

family. This means that the algorithms were executed 100 times for each benchmark
of the UUF family, and 420 times for each benchmark of the RAMSEY family,
ensuring that the study is statistically significant since the complexity of the instan-
ces within the same set of a benchmark family is identical. For each algorithm the
average and standard deviation of the cost and runtime needed to reach the final so-
lution are reported. The results for the benchmarks are shown in Figs. 15.2 and 15.3.

50 100 175 250 Avg
0

0.5

1

C
os

t

UUF

50 100 175 250 Avg
0

5

10

15

R
un

tim
e

UUF

Fig. 15.2 Learned solution cost and runtime (normalized for GHC): +: ACO, ×: WSO, ◦:
SA, •: GHC.

RAM3K RAM4K RAM5K Avg
0

2

4

C
os

t

RAMSEY

RAM3K RAM4K RAM5K Avg
0

2

4

R
un

tim
e

RAMSEY

Fig. 15.3 Learned solution cost and runtime (normalized for GHC): +: ACO, ×: WSO, ◦:
SA, •: GHC.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 359

Each figure corresponds to a benchmark and contains two subfigures. The first
shows the cost of the benchmark instance and the second shows the runtime. Each
subfigure contains the average results of the four algorithms: ACO, WSO, GHC,
and SA. The results are shown for the different family of instances of each bench-
mark and the average over all instances. All the measures are normalized by the
corresponding measures of GHC. As mentioned earlier in the chapter, the cost of
the learned solutions is the number of unsatisfied clauses (or weight of the unsatis-
fied clauses), therefore having a normalized cost smaller than one means that ACO,
WSO, or SA performs better than GHC, and viceversa. Since the normalization
gives the same weight in the average to each benchmark instance irrespective of its
size, both in terms of number of clauses and variables. Without it, the average would
be dominated by the largest or hardest to learn instances.

Tables 15.2 and 15.3 contain the results for the average over all benchmark ins-
tances, separated for each instance class, with the objective of giving a quick but
comprehensive overview of the results. The tables show the measures for the nor-
malized cost (Table 15.2) and the normalized runtime (Table 15.3). In addition to
the information shown in the figures, the tables also report the standard deviation
for every sample size as an indication for statistical significance.

Table 15.2 Average normalized cost results

Algorithm UUF RAMSEY Avg

GHC 1.000 ± 0.000 1.000 ± 0.000 1
ACO 0.341 ± 0.072 2.056 ± 1.221 1.064
WSO 0.211 ± 0.028 0.774 ± 0.670 0.585
SA 0.312 ± 0.029 0.515 ± 0.474 0.589

Table 15.3 Average normalized runtime results

Algorithm UUF RAMSEY Avg

GHC 1.000 ± 0.000 1.000 ± 0.000 1
ACO 8.890 ± 3.224 3.031 ± 0.784 15.257
WSO 0.717 ± 0.399 0.186 ± 0.151 1.294
SA 3.652 ± 4.936 2.147 ± 1.140 7.874

Figures 15.2 and 15.3 show the performance of WSO (cross) and ACO (plus) in
comparison to GHC (dot) and SA (circle). It can be seen clearly that ACO, SA, and
WSO perform always better than GHC for the UUF benchmarks. The RAMSEY
benchmark has GHC performing better than ACO, but on average worse than SA
and WSO.

Figures 15.4 shows the influence of the number of ants m for one representative
instance of the UUF benchmark and for 5 optimizations with the algorithm for each

360 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

m (results normalized by the corresponding results obtained with GHC). The left
hand side plot shows the influence on the cost of an increasing number of ants, and
the right hand side plot shows the runtime with an increasing number of ants. The
runtime increases proportionally with the number of ants, and the cost decreases
with the number of ants until a certain point, from which on having more ants does
not bring a benefit. The average curve is shown for the cost and runtime graphs,
and the minimum of each run curve is shown for the cost graph. Based on the cost
evolution, m was set to 30 in the algorithm as a value that achieves a good balance
between optimization speed and quality.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nr. Ants

C
os

t

0 20 40 60 80 100
0

5

10

15

20

25

30

Nr. Ants

R
un

tim
e

Fig. 15.4 Cost and runtime (in seconds) for an increasing number of ants in ACO for the
UUF benchmarks.

15.8.2 Influence of Runtime on Optimization Cost with ACO,
WSO, and SA

The runtime becomes increasingly important as problems become harder. Figs.
15.5 and 15.6 show the quality of the learned solutions for an increasing
clauses/variables ratio for the benchmark families RAMSEY-4K and RAMSEY-
5k. It should be noted that the hardest to learn of these instances have around 20,000
clauses and 200 variables, so that the ratio is around 100, and that the benchmark
family RAMSEY-5K is entirely satisfiable. Of all the algorithms, only WSO and SA
managed to find the optimum solution for each case, and WSO took the least time.
For RAMSEY-4K on the other hand, SA achieved on average the best solutions.

15.8.3 Results for Dynamic MAX-SAT

A comparison of ACO and WSO algorithms with GHC was carried out for the set
of dynamic MAX-SAT instances. The restart algorithms are GHC and ACOR, and
the continuous optimization (non-restart) algorithms are ACOS, ACOD, and WSO.
Each 20-stage and 100-stage problem was run for 5 samples for each algorithm.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 361

0 20 40 60
0

10

20

30

40

50

Clauses / # Var.

C
os

t

0 20 40 60
10

−4

10
−2

10
0

10
2

10
4

Clauses / # Var.

R
un

tim
e

Fig. 15.5 Cost and runtime (in seconds) for increasingly hard RAMSEY 4K instances. +:
ACO, ×: WSO, ◦: SA, •: GHC.

0 50 100
0

1

2

3

4

5

Clauses / # Var.

C
os

t

0 50 100
10

−4

10
−2

10
0

10
2

10
4

Clauses / # Var.

R
un

tim
e

Fig. 15.6 Cost and runtime (in seconds) for increasingly hard RAMSEY 5K instances. +:
ACO, ×: WSO, ◦: SA, •: GHC.

The solutions obtained for each stage are evaluated in terms of the cost of the best
solution achieved in the stage, and the runtime necessary to compute the best solution.

Figures 15.7 and 15.8 show the optimization results for the incoming instance
stages in terms of cost. Each stage can be separated into two basic parts, the initial
phase and the stable phase. There are no clear start and end points that define each
phase, but looking at the graph the meaning is clear. The initial phase concerns the
period between the first iteration of stage 1 (beginning of the process) and the point
where after some stages the algorithms have entered a phase of stable behavior. This
means that the mean quality of the solutions is not improving or deteriorating (with
the exception of static ACO) from stage to stage.

362 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

Figures 15.9 and 15.10 show the average stage results normalized with the results
of GHC, in terms of cost and runtime. In the same manner as for the static MAX-
SAT learning, a normalized cost smaller than 1 means that the solution learned with
ACO is of better quality than GHC, and the closest to 0 the better the quality is.

Finally, Figs. 15.11 and 15.12 show a pair-wise statistical testing of all the algo-
rithms. Each plot describes the significance of the algorithm stated above in compar-
ison with the algorithms stated below. Each figure contains a boxplot corresponding
to an algorithm with lines at the lower quartile, median, and upper quartile data val-
ues. The whiskers are lines extending from each end of the box to show the extent
of the rest of the data. Outliers are data with values beyond the ends of the whiskers.
If there are no data outside the whisker, a dot is placed at the bottom whisker. The
notches represent a robust estimate of the uncertainty about the medians for box-to-
box comparison. Boxes whose notches do not overlap indicate that the medians of
the two groups differ at the 5% significance level. A detailed explanation of boxplots
is given in [22].

It is important to distinguish the results obtained with the restart and non-restart
algorithms, due to the fact that, in a real-world problem, it may not be simple to
restart the optimization even in case a change of state is detected. Analyzing the non-
restart algorithms, ACOD, ACOS, and WSO, it is clear that ACOS is inadequate.
After the initial phases, the quality of the solutions achieved decreases drastically.
In effect, and considering the runtime, the algorithm ceases to try new solutions, an
indicator that the pheromone matrix is saturated. The difference between the quality
of the solutions achieved with ACOD and WSO is not significant for the dynamic
RAMSEY instance. For the dynamic UUF, WSO achieves a better score. Both algo-
rithms are shown to guarantee solutions of non-deteriorating quality through the 100
stages, though WSO is faster, as it was already the case in the optimization of the
static problem. In comparison to ACOR, ACOD and WSO are significantly faster.
In the initial phases, the quality of the solutions obtained with ACO static is equal to
the quality of the solutions obtained with ACOD. Since the quality remains constant
with ACOD, it is reasonable to expect that improvements of the ACO metaheuristic
available in the literature increase the solution quality throughout the whole dynamic
instance.

Overall, these results suggest that continuous optimization is generally more effi-
cient and provide significantly more stable solutions than random restart when solv-
ing dynamic instances of MAX-SAT problems. The quality of the best solution in
each stage is more or less constant through the iterations. The continuous optimiza-
tion is faster than restart in all cases.

15.8.4 Influence of the Number of Iterations per Stage on the
Optimization with ACO and WSO

Figures 15.13 and 15.14 show the influence of the stage duration in the opti-
mization with ACO and WSO for the UUF250 and RAMSEY dynamic instances,
respectively.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 363

1 2 3 4 5
0.5

1

1.5

2

2.5

3
C

os
t

stage
. . . 96 97 98 99 100

stage

Fig. 15.7 Algorithms (•: ACOD, �: ACOR, �: ACOS) applied to a dynamic UUF instance,
all iterations, first 5 stages (initial phase) and last 5 stages (stable phase).

1 2 3

1

1.1

1.2

1.3

1.4

1.5

C
os

t

stage
. . . 98 99 100

stage

Fig. 15.8 Algorithms (•: ACOD, �: ACOR, �: ACOS) applied to a dynamic RAMSEY ins-
tance, all iterations, first 3 stages (initial phase) and last 3 stages (stable phase).

For the UUF250 instance, it can be seen that until a stage duration of around 60
iterations, the average solution quality achieved with ACOD surpasses the quality
achieved with ACOR. For 60 iterations, ACOR is approximately 3 times slower than
ACOD or WSO in computing the solution. For stage durations higher than 60, the
quality achieved with ACOR is higher than the quality achieved with ACOD, but
while the runtime of ACOD remains constant, for a stage duration of 100 iterations
the runtime of ACOD is already approximately 10 times higher than the runtime
of ACOD. For the dynamic UUF250 instance, WSO always achieves better quality
solutions than the ACO algorithms for all stage durations. The optimization speed
is directly comparable to the optimization speed of ACOD.

364 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2
C

os
t

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Stages

R
un

tim
e

Fig. 15.9 Algorithms (•: ACOD, �: ACOR, �: ACOS, +: WSO) applied to a dynamic UUF
instance.

0 10 20 30 40 50 60 70 80 90 100
0.9

0.95

1

1.05

C
os

t

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Stages

R
un

tim
e

Fig. 15.10 Algorithms (•: ACOD, �: ACOR, �: ACOS, +: WSO) applied to a dynamic
RAMSEY instance.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 365

ACOR ACOD WSO

0.5

1

1.5

GHC

GHC ACOD WSO

0.5

1

1.5

2
ACOR

GHC ACOR WSO
0

0.5

1

1.5

2

ACOD

GHC ACOR ACOD

2

4

6

8

10

12

WSO

Fig. 15.11 Significance plots of the algorithms applied to a dynamic UUF instance.

ACOR ACOD WSO

0.7

0.8

0.9

1

1.1

1.2

1.3
GHC

GHC ACOD WSO
0.8

1

1.2

1.4

ACOR

GHC ACOR WSO

0.8

0.9

1

1.1

1.2

1.3

1.4

ACOD

GHC ACOR ACOD

0.9

1

1.1

1.2

1.3

1.4

WSO

Fig. 15.12 Significance plots of the algorithms applied to dynamic RAMSEY instance.

366 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

20 40 60 80 100 120 140 160
0

20

40

60

80
C

os
t

20 40 60 80 100 120 140 160
0

10

20

30

40

Iterations per stage

R
un

tim
e

Fig. 15.13 Cost and runtime (in seconds) for varying number of iterations per stage for a
UUF250 dynamic instance, •: ACOD, �: ACOR, ◦: ACOS, +: WSO.

20 40 60 80 100 120 140 160
20

30

40

50

60

C
os

t

20 40 60 80 100 120 140 160
0

5

10

15

Iterations per stage

R
un

tim
e

Fig. 15.14 Cost and runtime (in seconds) for varying number of iterations per stage for a
RAMSEY dynamic instance, •: ACOD, �: ACOR, ◦: ACOS, +: WSO.

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 367

15.9 Conclusions

The analysis of the results achieved for the static MAX-SAT problem shows that
ACO and WSO are very competitive even when solving relatively large instances.
In its first application to MAX-SAT, WSO clearly beats greedy hill search and sim-
ulated annealing and is practically equivalent to ACO in solution quality. The per-
formance of WSO and ACO is best for the UUF benchmark family. It is likely
that by adjusting the algorithm parameters for each individual problem, the results
would be even better. However, it is important to remember that a big advantage of
metaheuristic algorithms is to provide a quick framework to get quality solutions to
problems and thus spending a disproportionate amount of time determining which
parameters are best for each individual problem detracts from that goal. The analy-
sis of the results obtained in dynamic MAX-SAT optimization shows that the static
ACO (ACOS) algorithm quickly saturates and does not provide useable results. The
introduced dynamic ACO (ACOD) shows a significantly better performance, overall
comparable with WSO. Both algorithms are shown to guarantee solutions of non-
deteriorating quality through all the stages of the dynamic problems, though WSO
is faster, as it was also the case in the optimization of the static problems. In com-
parison to restart ACO (ACOR), ACOD and WSO are significantly faster. Overall,
the results suggest that continuous optimization is generally more efficient and pro-
vides significantly more stable solutions than random restart, when solving dynamic
instances of MAX-SAT problems.

Further studies will focus on the optimization effect of considering a large range
of instance families. There are also several different implementations of ACO algo-
rithms and GHC based algorithms that have not be explored and can provide diffe-
rent results. We consider that the implemented study shows the capacity of WSO
and ACO to handle large, dynamic problems and their advantages in optimizing
these problems.

Acknowledgements. This work was supported by the Portuguese foundation for Science
and Technology, through IDMEC under LAETA.

References

[1] Battiti, R., Protasi, M.: Reactive search, a history-based heuristic for MAX-SAT. ACM
Journal of Experimental Algorithmics 2 (1997)

[2] Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE
Transactions on Systems, Man, and Cybernetics-Part B 34(2), 1161–1172 (2004)

[3] Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization
problems. In: Advances in Evolutionary Computing: Theory and Applications, pp. 239–
262. Springer-Verlag New York, Inc., New York (2003)

[4] Cadoli, M., Schaerf, A.: Compiling problem specifications into SAT. In: Programming
Languages and Systems, pp. 387–401 (2001)

[5] Chase, I.D.: Models of hierarchy formation in animal societies. Behavioral Sciences 19,
374–382 (1974)

368 P.C. Pinto, T.A. Runkler, and J.M.C. Sousa

[6] Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In:
Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sid-
ney, Australia, pp. 331–337 (1991)

[7] Cicirello, V.A., Smith, S.F.: Ant colony for autonomous decentralized shop floor rout-
ing. In: Proceedings of the 5th International Symposium on Autonomous Decentralized
Systems, pp. 383–390 (2001)

[8] Cicirello, V.A., Smith, S.F.: Wasp nests for self-configurable factories. In: Agents 2001,
Proceedings of the 5th International Conference on Autonomous Agents, pp. 473–480.
ACM Press (2001)

[9] Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination. Au-
tonomous Agents and Multi-agent systems 8, 237–266 (2004)

[10] Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM, New
York (1971)

[11] Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of co-
operating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B 26(1),
29–41 (1996)

[12] Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
[13] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of

N P-Completeness. WH Freeman Publishers (1979)
[14] Glover, F., Laguna, M.: Tabu search. John Wiley & Sons, Insc., New York (1993)
[15] Goodrich, M.T., Tamassia, R.: Algorithm Design - Foundations, Analysis, and Internet

Examples. John Wiley & Sons, Inc. (2001)
[16] Grasse, P.: La reconstruction du nid et les coordinations inter-individuelles chez belli-

cositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai d’interpretation
du comportement des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)

[17] Hartmann, S.A., Runkler, T.A.: Online optimization of a color sorting assembly buffer
using ant colony optimization. In: Proceedings of the Operations Research Conference,
pp. 415–420 (2007)

[18] Hoos, H.H., O’Neill, K.: Stochastic local search methods for dynamic SAT - an ini-
tial investigation. In: Leveraging Probability and Uncertainty in Computation, Austin,
Texas, pp. 22–26. AAAI Press (2000)

[19] Hoos, H.H., Stützle, T.: Local search algorithms for SAT: an empirical evaluation. In:
Journal of Automated Reasoning, special Issue ” SAT 2000”, pp. 421–481 (1999)

[20] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

[21] Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for constraint satis-
faction problems. IEEE Transactions on Systems, Man, and Cybernetics-Part B 36(1),
54–73 (2006)

[22] McGill, R., Tukey, J.W., Larsen, W.A.: Variations of Boxplots. In: The American Statis-
tician, pp. 12–16. American Statistical Association (1978)

[23] Mills, P., Tsang, E.: Guided local search for solving SAT and weighted MAX-SAT
problems. Journal Automated Reasoning 24(1-2), 205–223 (2000)

[24] Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems.
In: 10th National Conference on Artificial Intelligence, San Jose, CA, pp. 459–465
(1992)

[25] Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling Finite Linear CSP into
SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer, Hei-
delberg (2006)

15 Insect Swarm Algorithms for Dynamic MAX-SAT Problems 369

[26] Pimont, S., Solnon, C.: A generic ant algorithm for solving constraint satisfaction prob-
lems. In: 2th International Workshop on Ant Algorithms, Brussels, Belgium, pp. 100–
108 (2000)

[27] Pinto, P., Runkler, T.A., Sousa, J.M.C.: Wasp swarm optimization of logistic systems.
In: Ribeiro, et al. (eds.) Adaptive and Natural Computing Algorithms, 7th Interna-
tional Conference on Adaptive and Natural Computing Algorithms, Coimbra, Portugal,
pp. 264–267. Springer, NewYork (2005)

[28] Pinto, P., Runkler, T.A., Sousa, J.M.C.: Ant colony optimization and its application
to regular and dynamic MAX-SAT problems. In: Advances in Biologically Inspired
Information Systems: Models, Methods, and Tools, pp. 283–302 (2007)

[29] Pinto, P.C., Runkler, T.A., Sousa, J.M.C.: Wasp Swarm Algorithm for Dynamic MAX-
SAT Problems. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.)
ICANNGA 2007. LNCS, vol. 4431, pp. 350–357. Springer, Heidelberg (2007)

[30] Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Approximate solution of weighted
MAX-SAT problems using GRASP. In: Satisfiability Problem: Theory and Applica-
tions. DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
vol. 35, pp. 393–405. American Mathematical Society (1997)

[31] Roli, A., Blum, C., Dorigo, M.: ACO for maximal constraint satisfaction problems. In:
Metaheuristics International Conference, pp. 187–192 (2001)

[32] Silva, C.A., Runkler, T.A., Sousa, J.M.C., Sá da Costa, J.M.G.: Distributed supply
chain management using ant colony optimization. European Journal of Operational Re-
search 199(2), 349–358 (2009)

[33] Silva, C.A., Sousa, J.M.C., Runkler, T.A., Sá da Costa, J.: Distributed optimization of
logistic systems and its suppliers using ant colony optimization. International Journal
of Systems Science 37(8), 503–512 (2006)

[34] Smyth, K., Hoos, H., Stützle, T.: Iterated Robust Tabu Search for MAX-SAT. In: Xiang,
Y., Chaib-draa, B. (eds.) Canadian AI 2003. LNCS (LNAI), vol. 2671, pp. 129–144.
Springer, Heidelberg (2003)

[35] Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on Evo-
lutionary Computation 6, 347–357 (2002)

[36] Stützle, T., Hoos, H.H.: The MAX-MIN ant system and local search for the traveling
salesman problem. In: Proceedings of the 4th International Conference on Evolutionary
Computation, vol. 8, pp. 308–313. IEEE Press (1997)

[37] Stützle, T., López-Ibánez, M., Dorigo, M.: A Concise Overview of Applications of Ant
Colony Optimization. In: Wiley Encyclopedia of Operations Research and Management
Science. John Wiley & Sons (2011)

[38] Theraulaz, G., Goss, S., Gervet, J., Deneubourg, J.L.: Task differentiation in polistes
wasps colonies: A model for self-organizing groups of robots. In: From Animals to
Animats: Proceedings of the 1st International Conference on Simulation of Adaptive
Behavior, pp. 346–355. MIT Press (1991)

[39] Stützle, T., Hoos, H., Roli, A.: A review of the literature on local search algorithms
for MAX-SAT. Technical report aida-01-02. Technical report, Technische Universität
Darmstadt (2006)

[40] Wang, H., Yang, S., Ip, W., Wang, D.: IEEE Transactions on Systems, Man, and
Cybernetics-Part B 39(6), 1348–1361 (2009)

[41] Wilson, E.O.: The insect societies. Harvard University Press (1971)
[42] Winston, W., Goldberg, J.: Operations Research: Applications and Algorithms. Cen-

gage Learning, 4th edn. (2003)
[43] Zhang, W.: Phase Transitions and Backbones of 3-SAT and Maximum 3-SAT. In:

Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 153–167. Springer, Heidelberg (2001)

Chapter 16
Dynamic Time-Linkage Evolutionary
Optimization: Definitions and Potential
Solutions

Trung Thanh Nguyen and Xin Yao

Abstract. Dynamic time-linkage optimization problems (DTPs) are special
dynamic optimization problems (DOPs) where the current solutions chosen by
the solver can influence how the problems might change in the future. Although
DTPs are very common in real-world applications (e.g. online scheduling, online
vehicle routing, and online optimal control problems), they have received very little
attention from the evolutionary dynamic optimization (EDO) research community.
Due to this lack of research there are still many characteristics that we do not
fully know about DTPs. For example, how should we define and classify DTPs
in detail; are there any characteristics of DTPs that we do not know; with these
characteristics are DTPs still solvable; and what is the appropriate strategy to solve
them. In this chapter these issues will be partially addressed. First, we will propose
a detailed definition framework to help characterising DOPs and DTPs. Second, we
will identify a new and challenging class of DTPs where it might not be possible
to solve the problems using traditional methods. Third, an approach to solve this
class of problems under certain circumstances will be suggested and experiments
to verify the hypothesis will be carried out. Two test problems will be proposed
to simulate the property of this new class of DTPs, and discussions of real-world
applications will be introduced.

Trung Thanh Nguyen
School of Engineering, Technology and Maritime Operations, Liverpool John Moores Univ.
e-mail: T.T.Nguyen@ljmu.ac.uk

Xin Yao
CERCIA, School of Computer Science, Univ. of Birmingham
e-mail: X.Yao@cs.bham.ac.uk

E. Alba et al. (Eds.): Metaheuristics for Dynamic Optimization, SCI 433, pp. 371–395.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

T.T.Nguyen@ljmu.ac.uk
X.Yao@cs.bham.ac.uk

372 T.T. Nguyen and X. Yao

16.1 Dynamic Time-Linkage Problems - From Academic
Research to Real-World Applications

The class of dynamic time-linkage problems (DTPs) is a common and special type
of dynamic optimization problems (DOPs). They are defined as problems where
”... there exists at least one time 0 ≤ t ≤ tend for which the dynamic optimization
value at time t is dependent on at least one earlier solution...” [7]. In other words, a
time-linkage problem is an online control problem where the algorithm is the actual
controller to control the future behaviour of the system and any decision made at
the current moment by the algorithm might consequently influence how the future
problem would be. For example, in a car navigation system, if at the current present
we found an optimal routing decision and apply this optimal decision to every cars
on the same road, all cars might follow the same ”optimal” route and consequently
make the route no longer optimal, or even congested in the future.

DTPs are very common in real-world applications. In [19, chap. 3], we have
made a survey on a large set of recent real-world dynamic optimization applica-
tions and the survey results show that a large number of the surveyed problems
were mentioned by the authors as having the time-linkage properties (45% in the
combinatorial domain, and 81% in the continuous domain, out of 56 surveyed ap-
plications. - see Figure 16.1 for a summary). In the continuous domain, a majority of
time-linkage problems are control problems where the current value of the control
variables would determine how the systems behave in the future. In the combina-
torial domain, the time-linkage properties exist in a wide range of problems, for
example scheduling, routing, allocation/layout/assignment, planning and path find-
ing. Detailed list of type of problems that have the time-linkage properties can be
found in [19].

Despite the popularity of time-linkage problems, this type of problem still has
not attracted much attention from the EDO academic research community. Only
very few recent studies proposed using EAs to solve time-linkage problems [6, 8, 9,
20]. There are also only few test problems with the time-linkage property in EDO
research [6, 8, 9, 20, 28].

From the practical side, the time-linkage property has also not been studied suffi-
ciently in evolutionary research. In the survey in [19] we found that although some
references using EAs/meta-heuristics do mention the time-linkage property when
solving real-world problems online [2, 4, 13, 14, 16–18, 21, 24, 29, 30], none of
them equip their EAs with the ability to handle this property online. In these refer-
ences, the time-linkage property is either ignored, e.g. in [13, 14, 17, 18], or handled
using a separate component/heuristics, e.g. in [2, 4], or handled in an offline way,
e.g. in [24, 30].

The lack of EDO studies in DTPs despite their popularity creates an important
gap, which should be addressed if we want to apply EAs effectively to solving real-
world DTPs. To make this important class of problems more accessible to the com-
munity, it is necessary to (i) clearly define/characterise DTPs and distinguish DTPs
from DOPs and other types of time-dependent problems; (ii) study the character-
istics of DTPs, the suitability of EAs in solving DTPs; and (iii) based on what we

16 Dynamic Time-Linkage Evolutionary Optimization 373

Percentage of DTPs in the
combinatorial variable group

Non time-
linkage

3%

No info
55%

Time-
linkage

43%

Percentage of DTPs in the continuous
and mixed variable group

Time-
linkage

84%

Non time-
linkage
12%

No info
4%

Fig. 16.1 Percentage of problems with the time-linkage properties among the 56 surveyed
applications in [19]

learn from the characteristics of DTPs, develop new EA techniques to solve DTPs
more effectively.

In the next three sections of this chapter, we will outline our attempts to accom-
plish the three tasks above to help closing the gaps between academic research and
real-world DTPs.

16.2 A Framework for Defining DOPs and DTPs

This section describes a formal definition framework with a view to defining/char-
acterising, and distinguishing DOPs and DTPs. We will firstly discuss the current
research gaps in defining/characterising DOPs and DTPs, and then propose a defi-
nition framework to help closing the gaps.

16.2.1 Research Gaps and Motivations

This subsection discusses two gaps in defining DOPs and DTPs: (i) the lack of a
formal definition to distinguish DOPs/DTPs and other time-dependent problems;
and (ii) the lack of a formal definition to fully represent DTPs.

16.2.1.1 Dynamic Problems and Dynamic Optimization Problems

It is necessary to distinguish between dynamic problems (also called dynamic envi-
ronments or time-dependent problems), which are problems that change over time,
and dynamic optimization problems (DOPs), which belong to a special class of dy-
namic problems that are solved online by an optimization algorithm as time goes by.
Of these two types of problems, only DOPs are of interest to evolutionary dynamic
optimization (EDO). This is because, no matter how the problem changes, from
the perspective of an EA or an optimization algorithm in general, a time-dependent
problem is only different from a static problem if it is solved in a dynamic way, i.e.
new solutions are produced to react to changes as time goes by. Otherwise, if future

374 T.T. Nguyen and X. Yao

changes can be completely integrated into a static objective function, or if a single
robust-to-changes solution can be provided, or if only the current static instance of
the time-dependent problem is taken into account, then the problem can be solved
using static optimization techniques.

In spite of this difference between dynamic problems and DOPs, in many EDO
studies the terms ”dynamic problem” and ”dynamic optimization problem” are not
clearly distinguished or are used interchangeably. In these studies, DOPs are either
defined as a sequence of static problems linked up by some dynamic rules [3, 22,
23, 31, 32] or as a problem that have time-dependent parameters in its mathematical
expression [5, 7, 33] without explicitly mentioning whether the problems are solved
online or not.

In definitions like those cited above, although the authors may assume that the
problems are solved online by the algorithm as time goes by (as mentioned by the
authors elsewhere or as shown by the way their algorithms solve the problems),
this assumption was not captured explicitly in the definitions. As a result, although
these definitions can be used to effectively represent time-dependent problems, they
do not clearly show whether a time-dependent problem is different from a static
problem from the perspective of an optimization algorithm and hence might not be
able to clearly distinguish a DOP from the general time-dependent problems.

It might be better to explicitly state that, from the perspective of an optimization
algorithm, a time-dependent problem is a DOP only if it is solved online by the algo-
rithm when time goes by in the definitions of DOPs, i.e. a time-dependent problem
is a DOP only if it is solved using dynamic optimization techniques. Such explicit
descriptions, however, are lacking in most current EDO formal definitions. In this
chapter a formal definition framework will be introduced in an attempt to close this
gap. This definition is an extended version of a previous study [20].

16.2.1.2 Dynamic Time-Linkage Problems

A DTP is firstly a DOP, hence it also has all the characteristics of a regular DOP.
The additional feature of a DTP, which makes it different from normal DOPs, is
that the dynamic of a parameter may depend not only on the time variable, but also
on earlier decisions made by the algorithm. It means that at the current time tnow

the value of the parameter γ (tnow) of a function f may depend on the value of the
variable x(t) ,0≤ t ≤ tnow found by the algorithm at at least one point before tnow.

Due to the lack of EDO studies on DTPs, so far there has been only one formal
definition for DOPs that mentioned DTPs [6] [7]. Equation 16.1 shows this defini-
tion for DOPs (including DTPs) with the time variable t ∈ T=

[
0, tend

]
, tend > 0.

max
{

Fγ (x(t))
}

subject to Cγ (x(t)) = f easible with

Fγ (x(t)) =
∫ tend

0 fγ(t) (x(t))dt

Cγ (x(t)) =

{
f easible if ∀t ∈ [0, tend

]
: Cγ(t) (x(t)) = f easible

in f easible otherwise

(16.1)

where γ are the time-dependent parameters of f and C is the constraint.

16 Dynamic Time-Linkage Evolutionary Optimization 375

The definition above might not be detailed enough if we want to characterise one
important property of DTPs: algorithm-dependent. We consider DTPs algorithm-
dependent because the structure of a DTP in the future may depend on the current
value of x(t), which in turn depends on the algorithm used to solve the problem. At a
particular change step t, different algorithms might provide different solutions x(t),
hence changing the future problem in different ways. Because of this property, we
believe that in order to define a DTP in an unambiguous way, the algorithm used to
solve a problem instance should be considered a part of the problem instance itself.
The original definition in Eq. 16.1 does not fully encapsulate this property.

Another reason for us to formulate an extended definition is that in (Eq. 16.1) the
time-linkage feature is not explicitly expressed. Instead, this feature is encapsulated
in the expression of fγ(t). It would be better if the time-linkage property can be
captured explicitly in the definition. This has been partially done in [7] and here we
will extend that concept further by including previous solutions that affect future
function values in the definition.

The definition in Eq. 16.1 also does not explicitly distinguish DOPs from general
time-dependent problems. It would be better to provide a new definition that is able
to distinguish DTPs from DOPs, and distinguish DOPs from other time-dependent
problems.

16.2.2 A Definition Framework

To contribute in closing the gaps above, in this chapter we will propose a new def-
inition framework which describes DTPs and DOPs in a more detailed level. It is
hoped that the framework will help in defining and characterising DTPs and DOPs
better and can be used as a basis for future theoretical works. The definition frame-
work can also help in generating benchmark problems that are able to capture the
characteristics of DTPs and DOPs, as will be described in the next section. Within
this chapter we will focus on the single-objective case only. Details of the definition
framework will be described below.

Definition 16.1 (Full-description form).
Given a finite set of functions F = { f1 (x) , ..., fn (x)}; a full-description form of F
is a tuple 〈

f̂γ (x) ,{c1, ...,cn}
〉

where f̂γ (x) is a mathematical expression with its set of parameters γ ∈ R
m, and

{c1, ...,cn} ,ci ∈ R
m is a set of vectors; so that:

f̂γ (x)
γ=c1→ f1 (x) (16.2)

...

f̂γ (x)
γ=cn→ fn (x)

376 T.T. Nguyen and X. Yao

Each function fi (x) , i = 1 : n ∈ N+ is called an instance of the full-description
form at γ = ci. From now on we will refer to the full-description form〈

f̂γ (x) ,{c1, ...,cn}
〉

as f̂ .

Example 16.1. The combination of the expression f̂γ = ax+ b with γ = {a,b} and
the following set of parameter values:
{{a = 1,b = 0} ,{a = 0,b = 1} ,{a = 1,b = 1}} is the full-description form of the
following set of functions: { f1 = x; f2 = 1; f3 = x+ 1} because

f̂γ = ax+ b
a=1,b=0→ f1 = x (16.3)

f̂γ = ax+ b
a=0,b=1→ f2 = 1

f̂γ = ax+ b
a=1,b=1→ f3 = x+ 1

The implication of a full-description form is that it can be used to represent diffe-
rent functions at different times by changing the parameters. It should be noted that,
however, a full-description form is not unique: one set of functions can be repre-
sented by multiple full-description forms and one full-description form can be used
to represent multiple set of functions. What is unique is a combination of (a) a full-
description form f̂ ; (b) a given set of functions { f1 (x) , ..., fn (x)} represented by f̂ ;
and (c) the way the parameters of f̂ can be changed to transform fi to f j ∀i, j = 1 : n.

In real-world problems, changes in the parameters are usually controlled by
some specific time-dependent rules or functions. For example, in dynamical sys-
tems changes of parameters can be represented by a linear, chaotic or other non-
linear equations of the time variable t. The dynamic rules, which govern how the
parameters of a full-description form will change, can be defined mathematically as
follows.

Definition 16.2 (Dynamic driver). Given a tuple
〈

f̂ ,γt , t
〉

where t is a time vari-

able, f̂ is a full-description form of the set of functions F = { f1 (x) , ..., fn (x)} with
respect to the set of m-element vectors {c1, ...,cn} ,ci ∈ R

m, and γt ∈ R
m is an m-

element vector containing all m parameters of f̂ at the time t;
we call a mapping D(γt , t) : Rm×N

+ −→R
m a dynamic driver of f̂ if

γt+1 = D(γt , t) ∈ {c1, ...,cn}∀t ∈ N
+ (16.4)

and
γt+1 is used as the set of parameters of f̂ at the time t + 1.

Definition 16.3 (Time-dependent problem). Given a tuple
〈

f̂ ,D(γt , t)
〉

where

t is a time variable, f̂ is a full-description form of the set of functions F =
{ f1 (x) , ..., fn (x)} with respect to the set of m-element vectors {c1, ...,cn} ,ci ∈ R

m,
γt ∈ R

m is the parameter-vector of f̂ at the time t, and D(γt , t) is a dynamic driver
of f̂ ;

16 Dynamic Time-Linkage Evolutionary Optimization 377

we call f̂D(γt) =
〈

f̂ ,D(γt , t)
〉

a time-dependent problem with respect to the time

variable t. In this problem changes can be represented as changes in the parameters
and are controlled by D(γt , t).

The inclusion of dynamic drivers and full-description form helps in distinguishing
time-dependent problems. As discussed earlier, many existing definitions represent
a time-dependent problem as a sequence of multiple static problems. These repre-
sentations might be ambiguous because there might be multiple ways to transform
one static problem to another and hence it is not clear what type of dynamic the
considered time-dependent problem has. The dynamic driver in Definition 16.3 rep-
resents the actual dynamic of the problem and hence it helps distinguish one time-
dependent problem from another.

In some existing definitions [7, 22], it has already been implied that changes in
time-dependent problems can be represented as changes in the parameter space. In
some other studies[10, 27], changes in time-dependent problems were considered
as a ”time function”, which can be separated from the ”structure function”, i.e. the
structure of the objective function. In this chapter these concepts will be formu-
lated in a more detailed level and will be explicitly defined: most common types of
changes in time-dependent problems can be represented as changes in the parame-
ter space if we can formulate the problem in a general enough full-description form.
This is true even in extreme cases where there is no correlation between the func-
tions before and after a change. For example, a function-switching change from f (x)
at t = 0 to g(x) at t ≥ 1, t ∈ N

+ can be expressed as f̂ (x) = a(t) f (x)+ b(t)g(x)
where a(t) and b(t) are two time-dependent parameters given by

{
a(t) = 1 and b(t) = 0 if t = 0
a(t) = 0 and b(t) = 1 otherwise.

Dimensional changes, as found in some real-world systems, can also be represented
as changes in the parameter, given that the maximum number of variables is taken
into account in the full-description form. For example, the function ∑n

i=1 x2
i with

dimension n varies from 1 to 2 can be represented as the full-description form
∑2

i=1 bi (t)x2
i with bi (t) ∈ {0,1} depending on t.

Definition 16.4 (Time unit). When a time-dependent problem is being solved, a
time unit, or a unit for measuring time periods in the problem, represents the time
durations needed to complete one function evaluation of that problem.1 The number
of evaluations (or time units) that have been evaluated so far since we started solving
the problem is measured by the variable τ ∈ N+.

Definition 16.5 (Change step and frequency of change). When a time-dependent
problem is being solved, a change step represents the moment when the problem
changes. The number of change steps that have occurred so far in a time-dependent

1 As mentioned in [5] and [22], from the perspective of optimization algorithms time is
discrete and the smallest time unit is one function evaluation.

378 T.T. Nguyen and X. Yao

problem is measured by the variable t ∈ N+. Obviously t is a time-dependent func-
tion of τ- the number of evaluations made so far since we started solving the
problem; t (τ) : N+ −→ N

+ . Its dynamic is controlled by a problem-specific time-
based dynamic driver:

t (τ + 1) = DT (t (τ) ,τ) , (16.5)

where DT (t (τ) ,τ) is the problem-specific time-based dynamic driver. It decides the
frequency of change of the problem and can be described as follows:

{
DT (t (τ) ,τ) = t (τ)+ 1 when a change occurs
DT (t (τ) ,τ) = t (τ) otherwise .

(16.6)

DT (t (τ) ,τ) is responsible for mapping the actual wall-clock duration of a change
step to the corresponding number of function evaluations.

Definition 16.6 (optimization algorithms and dynamic solutions).

Given a time-dependent problem f̂D(γt) =
〈

f̂ ,D(γt , t)
〉

at the change step t (see Def-

inition 16.3) and a set Pt of kt solutions x1, ...,xkt ∈ St where St ⊆ R
d is the search

space2,
an optimization algorithm G to solve f̂D(γt) can be seen as a mapping Gt :
R

d×kt → R
d×kt+1capable of producing a solution set Pt+1 of kt+1 optimized solu-

tions xG
1 , ...,x

G
kt+1

at the next change step t + 1:

Pt+1 = Gt (Pt) . (16.7)

Generally, at a change step te ∈ N
+ the set of dynamic solutions X

G[tb,te]
ft

that we

get by applying an algorithm G to solve f̂D(γt) with a given initial population Ptb−1

during the period
[
tb, te

]
, tb ≥ 1 is given by:

X
G[tb,te]
ft

=
te⋃

t=tb

Pt =
te⋃

t=tb

Gt (Pt−1) . (16.8)

In real-world time-dependent problems, some time-dependent rules that change the
problems’ parameters may have the time-linkage feature, i.e. they take solutions
found by the algorithm up to the current time step as their parameters. In such cases,
the time-linkage dynamic rules can be defined mathematically as follows.

Definition 16.7 (Time-linkage dynamic driver). Given a tuple
〈

f̂ ,γt , t,X
G[1,t]

f̂

〉
where t is a time variable, f̂ is a full-description form of the set of functions F =
{ f1 (x) , ..., fn (x)} with respect to the set of m-element vectors {c1, ...,cn} ,ci ∈ R

m,
γt ∈ R

m is an m-element vector containing all m parameters of f̂ at the time t, ; and

2 Here we are considering search spaces ⊆ R
d . However, the definition can be generalized

for other non-numerical encoding algorithms by replacing R
d with the appropriate encod-

ing space.

16 Dynamic Time-Linkage Evolutionary Optimization 379

X
G[1,t]

f̂
is a set of k d-dimensional solutions achieved by applying an algorithm G to

solve f̂ during the period [1, t];

we call a mapping D
(

γt ,X
G[1,t]

f̂
, t
)

: Rm ×R
d×k ×N

+ −→ R
m a time-linkage dy-

namic driver of f̂ if

γt+1 = D
(

γt ,X
G[1,t]

f̂
, t
)
∈ {c1, ...,cn}∀t ∈N

+ (16.9)

and γt+1 is used as the set of parameters of f̂ at the time t + 1.

When X
G[1,t]

f̂
does not have any influence on the future of f̂ , D

(
γt ,X

G[1,t]

f̂
, t
)

becomes

a regular dynamic driver with no time-linkage feature.

Definition 16.8 (Dynamic optimization problem and dynamic time-linkage

problem). Given a tuple
〈

f̂ ,Ĉ,DP,DD,DT ,G
〉

;

a dynamic optimization problem in the period
[
1,τend

]
function evaluations, τend ∈

N
+ can be defined as

optimise

⎧⎨
⎩

τend

∑
τ=1

f̂
γ
(

tτ ,X
G[1,t]

f̂

) (xt)

⎫⎬
⎭ (16.10)

subject to Ĉi=1:k∈N+

γ

(
tτ ,X

G[1,t]
f̂

) (xt , tτ)≤ 0; and l
(

tτ ,X
G[1,t]

f̂

)
≤ x≤ u

(
tτ ,X

G[1,t]

f̂

)
where

f̂ : full-description form of the objective function
Ĉ1...Ĉk : full-description forms of k dynamic constraints3

DP : dynamic driver for objective and constraint parameters (see below)
DD : dynamic driver for domain constraints (see below)
DT : dynamic driver for times and frequency of changes (Eq. 16.6)
G : algorithm used to solve the problem
τ ∈ [1,τend

]∩N : number of function evaluations done so far
tτ , or t (τ) ∈N

+ : current change step; it is controlled by DT (Eq. 16.6)

X
G[1,t]

f̂
: set of solutions achieved by applying G to solve f̂ during [1, t]

γtτ ∈ R
p : time-dependent parameters of f̂ and Ĉi;γtτ+1 = DP

(
γtτ ,X

G[1,t]

f̂
, t
)

l(tτ) ,u(tτ) ∈ R
n are domain constraints;

{ l(tτ+1)=DD

(
l(tτ),X

G[1,t]

f̂
,tτ

)

u(tτ+1)=DD

(
u(tτ),X

G[1,t]

f̂
,tτ

)

If X
G[1,t]

f̂
has any influence on the future behaviour of this dynamic optimiza-

tion problem, or in other words if any of the dynamic drivers DP,DD,DT is a
time-linkage dynamic driver, then the problem becomes a dynamic time-linkage
problem. �

380 T.T. Nguyen and X. Yao

The new definition brings us some advantages. First, with the introduction of the
change step, the optimization algorithm and the dynamic solutions produced by
the algorithm at each change step, the definition clearly defines DOPs/DTPs as
time-dependent problems that are solved online in a dynamic way, and hence dis-
tinguishes DOPs/DTPs from other time-dependent problems. Second, we can now
classify DOPs based on three distinguished components: the full-description forms,
the dynamic drivers, and the algorithm. This separation facilitates us in character-
ising DOPs and evaluating the impact of each component on the difficulty of the
problems. Third, the definition supports an important feature of DTPs that has not
been fully considered before: algorithm-dependent. Fourth, the definition encapsu-
lates different aspects of DOPs/DTPs such as dynamic rules, change frequencies,
changes in constraints, changes in domain range, changes in objective functions
in a more detailed level. Fifth, the definition framework also facilitates generating
benchmark DTPs, as will be shown in the next section.

16.3 The Prediction-Deceptive Problem in DTPs

In this section we will study some interesting characteristics of DTPs and the possi-
bility to solve this class of problems. Specifically, although it is believed that DTPs
can be solved to optimality with a perfect prediction method to predict future func-
tion values [6, 8], in this section we will discuss a new class of DTPs where it might
not be possible to solve the time-linkage problems to optimality because there is
not always the possibility to perfectly predict the future. In addition, in this type of
DTPs if we try to predict the future based on information from the past, we may
even get worse results than not using a predictor at all. We will then carry out some
experiments to verify the finding and will also discuss under which situation can we
solve this particular type of DTPs.

16.3.1 Time-Deceptive and the Anticipation Approach

According to [7], a dynamic problem is said to be time-deceptive toward an opti-
mizer if the problem is time-linkage and the optimiser cannot efficiently take into
account this time-linkage feature during its optimization process.

Bosman[6] illustrates this property by proposing the following test problem:

given n = 1;h(x) = ex− 1; max
x(t)

{∫ tend

0 f (x(t) , t)dt
}

(16.11)

f (xt , t) =

{−∑n
i=1 (x(t)i− t)2 if 0≤ t < 1

−∑n
i=1

[
(x(t)i− t)2 + h(|x(t− 1)i|)

]
otherwise,

The test problem above is a DTP because for any t ≥ 1, the current value of f (x, t)
depends on x(t− 1) found at the previous time step.

16 Dynamic Time-Linkage Evolutionary Optimization 381

0 54321
-60

-20

-30

-40

-50

-10

0

F
(x

(t
))

t

h(x) = e^x-1; x(t) = 0

h(x) = e^x-1; x(t) = t

Fig. 16.2 This figure (reproduced from [6]) illustrates the time-deceptive property. We can
see that the trajectory of f (xt) when we optimize the present (dash line, with optimum so-
lution x(t) = t) is actually worse than the trajectory of f (xt) with a simple solution x(t) = 0
(the solid line). To solve this problem to optimality, we need to use a predictor to predict the
trajectory of function values given different outcomes of current solutions, then choose the
one that gives us the maximum profit in the future.

An interesting property is revealed when we try to optimise the above problem us-
ing the traditional approach: optimising the present. That property is: the trajectory
formed by optimum solutions at each time step might not be the optimal trajectory.
For example, in Figure 16.2 we can see that the trajectory of f (x∗, t) when we op-
timise the present (with optimum solution x∗ (t) = t at the time step t) is actually
worse than the trajectory of a f (x0, t) with a simple solution x0 = 0 ∀t. It means that
the problem is deceptive because an optimiser following the traditional approach is
not able to take into account the time-linkage feature.

Bosman [6, 7] suggested that DTPs can be solved to optimality by estimating the
values of the function for future times given a trajectory ∪tnow

t=0 { ft , t} of history data
and other previously evaluated solutions. From that estimation, we can choose a
future trajectory with optimal future function values. In other words, it is suggested
that time-linkage problems can be ”solved to optimality” by prediction methods
and the result could be ”arbitrarily good” if we have a ”perfect predictor”[6–8]4.
The authors also made some experiments on the test problem mentioned in Eq.
16.11 and on the dynamic pickup problem, showing that under certain circumstances
prediction methods do help to improve the performance of the tested algorithms.

4 A predictor, as defined in [7, line 8-12, pg 139], is ”a learning algorithm that approximates
either the optimization function directly or several of its parameters... When called upon,
the predictor returns either the predicted function value directly or predicted values for
parameters”. Hence, perfect predictors should be ones that can predict values exactly as
the targets.

382 T.T. Nguyen and X. Yao

16.3.2 Can Anticipation Approaches Solve All DTPs?

Contrary to the existing belief, it will be shown below that there might be cases
where the hypothesis above does not hold: if during the predicted time span, the
trajectory of the future function values changes its function form, it might not be
possible to solve the time-linkage problems to optimality because there is not always
the possibility to perfectly predict the future.

Let us consider the situation where predictors help in achieving optimal results
first. At the current time tnow ≥ 1, in order to predict the values of f (x(t)) at a
future time t pred , a predictor needs to take the history data, for example the pre-
vious trajectory of function values Z[0,tnow−1] = ∪tnow−1

t=0 { ft , t} , as its input. Given
that input, a perfect predictor would be able to approximate correctly the function
form of Z[0,tnow−1] and hence would be able to predict precisely the future trajectory

Z[t
now,t pred] if it has the same function form as Z[0,tnow−1]. One example where pre-

dictors work is the problem in Eq. 16.11. In this problem, for each trajectory of x(t)
the trajectory of f (x(t)) always remains the same. For example with x(t) = t, the
trajectory is always 1−et−1 or with x(t) = 0 the trajectory is always−t2 (see Figure
16.2). As a result, that problem is predictable.

Now let us consider a different situation. If at any particular time step ts ∈[
tnow, t pred

]
, the function form of Z[t

now,t pred] changes, the predicted trajectory made
at tnow to predict f (x(t)) at t pred is no longer correct. This is because before ts there

is no information about how the the function form of Z[t
now,t pred] would change.

Without such information, it is impossible to predict the optimal trajectory of func-
tion values after the switch, regardless of how good the predictor is. It means that
the problem cannot be solved to optimality because it is not possible to perfectly
predict the future.

To illustrate this situation, let us consider the following simple problem where
the trajectory of function values changes over time (illustrated in Figure 16.3).

F̂ (xt) = at f (xt)+ btg(xt)+ cth(xt) 0≤ xt ≤ 1, (16.12)

where F̂ (x) is the full-description form5 of a dynamic function; f (xt) = xt ; g(xt) =
xt +(d− 2) ; h(xt) = xt +d; at ,bt and ct are the time-dependent parameters of F̂ (xt).

Their dynamic drivers are set out as follows:
⎧⎪⎪⎨
⎪⎪⎩

at = 1;bt = ct = 0 if (t < ts)

at = 0;bt = 1;ct = 0 if (t ≥ ts) and
(

F̂ts−1
(
xG

ts−1

)≥ 1
)
,

at = 0;bt = 0;ct = 1 if (t ≥ ts) and
(

F̂ts−1
(
xG

ts−1

)
< 1

) (16.13)

where ts > 1 is a pre-defined time step, d ∈ R is a pre-defined constant, and xG
ts−1 is

a single solution produced at ts− 1 by an algorithm G. Eq. 16.13 means that with

5 The concepts like full-description forms, time-dependent parameters and dynamic drivers
have been defined and described in Section 16.2.

16 Dynamic Time-Linkage Evolutionary Optimization 383

F
(x

(t
))

ts ts+1

d

d-1

t

F(x) ~ f(x)=x.at
trajectory x=1

0

F(x) ~ f(x)=x at
trajectory x=0

F(x) already switched to g(x)=x+(d-2). Now even with the
best solution (x=1) the trajectory is still worse than B

1

F(x) already switched to h(x)=x+d. Now even with the
worst solution (x=0) the trajectory is still better than A

The best
possible

solution up
to this point

is x=1

The worst
possible

solution up
to this point

is x=0

tend

A

B

Fig. 16.3 This figure illustrates a situation where even the best predictor + the best algo-
rithm (A) still perform worse than the worst predictor + the worst algorithm (B) due to
the prediction-deceptive property of the problem in eq.16.12. Assume that we want to pre-
dict the trajectory of F(x) from [0, tend]. In case A, the best predictor allows us to predict
F(x)∼ f (x) = x in just only one time step [0,1]. With that perfect prediction the algorithm is
able to find the best solution x = 1, which is valid until ts. Now at ts although the history data
tells the predictor that the trajectory must still be F(x)∼ f (x) = x, according to eq.16.13 the
actual F(x) does switch to g(x) = x+(d−2), which is the worst trajectory. In other words,
the best predictor chose the worst trajectory to follow. On the contrary, in the case B the worst
predictor+worst algorithm actually get benefit from the switch: the terrible solution (x = 0)
they found during [0, ts] does help them to switch to F(x) ∼ h(x) = d + x, whose trajectory
after ts is always better than A regardless of the value of x.

t < ts, the form of F̂ (xt) is always equal to f (xt); with t ≥ ts, depending on the
solution of xG

ts−1 the form of F̂ (xt) would switch to either g(xt) or h(xt).
In the above problem, because at any t ≥ ts the values of at ,bt and ct (and con-

sequently the value of the function F̂) depend on the solution found by G at ts− 1,
according to the definition in [7] the problem is considered time-linkage.

This problem has a special property: at any t < ts one can only predict the value
of F̂ up to ts−1. Before ts, history data does not reveal any clue about the switching
rule in Eq. 16.13, hence it is impossible to predict (i) whether the function will
switch at ts; (ii) which value xG

ts−1 should get to switch F̂ (xt) to g(xt) / h(xt) and
(iii) which form, g or h, would provide better future trajectory.

Even worse, even a predictor that can perfectly learn the current function form
of the system might still be deceived to provide worse result than not using any pre-
dictor while solving this time-linkage problem! Figure 16.3 illustrates the situations
where the best predictor could provide the worst result while the worst predictor
could provide better results after ts!

Problems like this example, i.e. time-linkage problems with function forms
switching from one to another, are very common in real-world systems. One co-

384 T.T. Nguyen and X. Yao

mmon class of problems with this property is the class of hybrid systems. According
to [26], hybrid systems are real-life systems that can evolve according to different
dynamics at different times. At each time step the behaviour of the system is con-
trolled by only one dynamics (one mode), and then depending on the behaviour of
the system, at some point the system may switch from one dynamics to another
(switch mode). Examples vary from simple systems like the bouncing ball (where
the state switches from falling to bouncing when it meets the ground and vice versa)
to complex systems like the autopilot in programmes commercial airplanes (where
the airplane automatically switches from one flying mode to another). Our survey
of real-world applications [19, chap. 3] also shows that about 30% of the surveyed
applications in the continuous domain or continuous+combinatorial domain are hy-
brid systems, and all of them have the time-linkage properties. In these applications,
if we solve the problems completely online as a black-box without any knowledge,
we will not be able to solve them to optimality because it will not be possible to pre-
dict how the systems will switch their function forms and how the function forms
after the switch will be.

Summarising, the example problem proposed in this section illustrates a common
class of DTPs (but has not been studied by the EC community yet) where it is not
guaranteed to get optimal results because it is impossible to find a perfect predictor
to predict the function values using history data. We call this class time-linkage
problems with unpredictable optimal function trajectories. The example illustrates
a special case where any predictor that relies on past data can be deceived and hence
provide the worse results than not using predictor at certain time steps. We call these
types of problems the prediction-deceptive time-linkage problems.

In Section 16.3.4, some experiments will be carried out to demonstrate a
prediction-deceptive time-linkage problem and its effect on the performance of an
algorithm that predicts the future function values based on history data.

16.3.3 Solving Prediction-Deceptive Time-Linkage Problems

Prediction-deceptive DTPs are challenging and only under limited circumstances
can we solve them to optimality. The answer of whether we can solve them to op-
timality or at least to avoid being deceived would depend on whether we have to
solve them totally online or partially online, and whether do we have to solve the
problem as a complete black box or can we get any problem-specific information.

If we have to solve the problem online as a black box, there is not much thing that
we can do. Knowing that the problem is prediction-deceptive, we might try not to
use anticipation approaches to avoid being deceived. However, there is no guarantee
that other approaches would work better.

In real-world applications, however, it might be possible to solve the problem
in a partially online way and also there might be some problem-specific informa-
tion available so that the problem can be solved as a partial black-box. Our survey
of real-world applications in [19] shows that in most of the surveyed hybrid sys-
tems, the problems are not totally black box because the mathematical function

16 Dynamic Time-Linkage Evolutionary Optimization 385

forms of the possible switch-modes and the switching rules have already been cal-
culated offline based on observation data from real systems or from simulation, e.g.
see [1, 11, 12, 15]. However, because there are modelling errors or disturbances,
these mathematical function forms might not exactly reflect the current status of the
actual systems. Because of that, the problems still need to be solved online. During
the online phase the actual function form of the system will be learned/predicted
based on history data to ”correct” any mis-modelling due to errors/disturbances.

In time-linkage problems with function forms switching from one to another and
with the knowledge about switching rules like these, it might still be possible to
solve them using prediction method while avoid being deceived. In order to do that,
the solver needs to take into account not only the current function value and the fu-
ture consequent values of the current function forms, but also the consequent func-
tion switches and the future values of the new function after a switch has been made.

Specifically, given a time-linkage problem with switching function forms and the
knowledge of the switching rules, in order to solve the problem to optimality during
the period

[
tnow, tend

]
, at the current moment tnow an algorithm needs to find the

solution x(tnow) and a set of switching times {T1, ...,Tn−1,Tn} where Tn = tend to
optimise the future trajectory and future switches:

optimise (16.14){
f (x(tnow))+

T1

∑
t=tnow+1

fpred (x(t))+
T(n−1)

∑
Ti=T1

T(i+1)

∑
t=Ti+1

fswitch (x(t) ,x(Ti))

}

where fpred is the estimated function form of the current dynamic model of the sys-
tem and fswitch is the expected function form of the dynamic model that the system
will switch into under the estimated value of x(Ti).

In summary, for time-linkage problems with switching function forms where the
knowledge of the switching rules is available, it is possible to solve the problem
more effectively if during the optimization process we take into account not only
the current function value and the future consequent values of the current function
forms, but also the consequent function switches and the future values of the new
function after a switch has been made. In other words, it is possible to solve the
problem more effectively if the algorithm optimises the problem using the objective
function described in Equation 16.14.

16.3.4 Experimental Studies

In this section some experiments will be carried out to verify: (1) The impact of
the time-deceptive property in time-linkage problems on optimization algorithms
that follow the optimising-the-present approach; (2) The efficiency of the learning-
the-current-function-form approach in solving time-deceptive time-linkage prob-
lems; (3) The impact of prediction-deceptive property in time-linkage problems on
optimization algorithms that follow the learning-the-current-function-form app-
roach; and (4) The efficiency of our proposed approach in solving prediction-

386 T.T. Nguyen and X. Yao

deceptive time-linkage problems when information about switching rules is
available

Points (1) and (2) have already been illustrated in [6, 7], but here the verification
will be re-done again because these results will be needed for verifying points (3)
and (4).

16.3.4.1 Test Problems

Problem DTP1

In [6], a test time-linkage problem with the time-deceptive property has been pro-
posed. This problem will be used in this section to verify the points (1) and (2)
above. The test problem has been described in Equation 16.11, page 380). In this
subsection the problem (with n = 1;h(x) = x2) is presented in a slightly different
way to make it conform to our definition framework in Section 16.2 and make the
change severity level adjustable:

max
x(t)

{
tend

∑
0

F̂ (xt)

}
(16.15)

where

F̂ (xt) = f 1 =

{−∑n
i=1 (x(t)i− s.t)2

−∑n
i=1

[
(x(t)i− s.t)2 +[x(t−�1/s�)i]

2
] if 0≤ t < �1/s�

otherwise

and s ∈ R is the change severity, 0 < s≤ 1.
The problem is named DTP1. Experiments on this problem will be presented in

Subsection 16.3.4.3.

Problem DTP2

To verify points (3) and (4), we need to create a problem with the prediction-
deceptive property. To maintain continuity and to re-use the results we got from
the process of verifying points (1) and (2), the original Bosman problem in Equa-
tion 16.15 is modified to make it a prediction-deceptive problem. Particularly, up
to the change step tswitch the problem is similar to DTP1, but at tswitch the problem
switches its function form depending on the function value found by the algorithm
at tswitch. If the found function value is high, the problem switches to a low-value tra-
jectory. Vice versa, if the value found at tswitch, the problem switches to a high-value
trajectory. Details of the problem are as follows:

max
x(t)

{
tend

∑
0

F̂ (xt)

}
, F̂ (xt) = at f 1 (xt)+ bt f 2 (xt)+ ct f 3 (xt)+ dt f 4 (xt) (16.16)

16 Dynamic Time-Linkage Evolutionary Optimization 387

where F̂ (x) is the full-description form6 of the mathematical descriptions
f 1, f 2, f 3, f 4 (given in Equation 16.17); at ,bt ,ct ,dt are the time-dependent parame-
ters of F̂ (xt) (their dynamic drivers are given in Equation 16.18).

Below are the descriptions of f 1, f 2, f 3, and f 4 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f 1(xt , t) =

{−∑n
i=1 (x(t)i− s.t)2

−∑n
i=1

[
(x(t)i− s.t)2 +[x(t− [1/s])i]

2
] if 0≤ t < �1/s�

otherwise

f 2(xt , t) =−60
f 3(xt , t) =−40
f 4(xt , t) =−10

(16.17)
where s ∈ R is the change severity, 0 < s≤ 1.

Below are the descriptions of the dynamic drivers of the time-dependent param-
eters at ,bt ,ct ,dt :⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

at = 1;bt = ct = dt = 0 if
(
t ≤ tswitch

)
at = 0;bt = 1;ct = dt = 0 if

(
t > tswitch

)
and

(
−36≤ F̂ (xtswitch)

)
at = bt = 0;ct = 1;dt = 0 if

(
t > tswitch

)
and

(
−50≤ F̂ (xtswitch)<−36

)
at = bt = 0;ct = 0;dt = 1 if

(
t > tswitch

)
and

(
F̂ (xtswitch)<−50

)
(16.18)

where tswitch > 1 is a pre-defined change step, and xtswitch is a single solution pro-
duced at tswitch by the solver. Equation 16.18 means that with t ≤ tswitch, the form of
F̂ (xt) is always equal to f 1 (xt); with t ≥ tswitch, depending on the solution of xtswitch

the form of F̂ (xt) would switch to either f 2 (xt) , f 3 (xt) or f 4 (xt). In other words,
Equation 16.18 defines the switching rule of the problem.

Equation 16.16 is a prediction-deceptive problem because it will deceive any
good predictor to choose a high-value trajectory during the period

[
0, tswitch

]
. After

the change step tswitch, however, such a high-value trajectory may lead the solver
to the worst possible trajectory of f 2(xt , t) =−60, which may eventually affect the
total score of the solver and make a solver with predictor to perform worse than a
solver without a predictor!

The problem is named DTP2. Experiments and discussions on this prediction-
deceptive problem will be presented in Subsection 16.3.4.3.

16.3.4.2 Test Algorithms

To carry out the experiments, three different versions of GA are developed to repre-
sent the three different approaches in solving time-linkage problems: first, a standard
GA (Algorithm 16.1, page 388) to represent the tradition optimise-the-present app-
roach; second, a combination of GA + predictor (linear least-square regression) to
represent the predict-the-future-based-on-history-dataapproach proposed in [7] (Al-

6 The concepts like full-description forms, time-dependent parameters and dynamic drivers
have been defined and described in Section 16.2.

388 T.T. Nguyen and X. Yao

gorithm 16.2, page 389); and third, a combination of GA + predictor + knowledge
(about the switching rules) to represent the approach proposed in Section 16.3.3
(Algorithm 16.3, page 390). It should be noted that, for the purpose of simplicity
Algorithm 16.3 was designed to solve only the cases where the switching rules are
known and the switching time is also known (as found in the real-world applications
in [24, 25]). In addition, we assume that the function to be estimated has a quadratic
form. Of course in reality this assumption is not always true and it might be nec-
essary to estimate the form of the function as well. In such case, powerful function
approximation models like neural networks can be used to represent the function to
be predicted. The simple assumption that the function form is quadratic was used
because our purpose is not to propose a state-of-the-art or an efficient algorithm but
just to show a proof of principle for the four points mentioned at the beginning of
this section.

Algorithm 16.1. Standard GA
1. initialization
2. Search: for each generation

a. Standard GA’s crossover
b. Standard GA’s mutation
c. Evaluation: For each individual x (tnow), evaluate f (x (tnow))
d. Standard GA’s selection

To create a fair testing environment, all three algorithms use the same set of
parameters. Table 16.1 shows the detailed parameters of the algorithms and all other
settings for the experiment.

To evaluate the performance of the algorithms, two measures are used. The first
one is performance plot - the plot of the trajectory of the best function values that
the algorithms achieved at each change step. The trajectory of the variable x as
time goes by is also plotted to study the behaviours of the algorithms. The sec-
ond measure is the total function values, which is calculated as the summation of
the best function values taken after each 1/s change steps (1,000 change steps):
totalVal = ∑10

i=1 f
(
x
(
tbegin + �i/s�)). The first measure is a DOP standard metrics.

The second measure is not a DOP standard metrics and is needed to evaluate how
the time-linkage property affects the performance of the tested algorithms. Detailed
experimental results are given in the next subsection.

16.3.4.3 Experimental Results

GA vs GA+Predictor in time-deceptive problems (DTP1)

Here we verify the suggestion of Bosman [7] that in time-deceptive DTPs, learn-
ing from the past to predict the future can be useful. Figure 16.4a, where the mean

16 Dynamic Time-Linkage Evolutionary Optimization 389

Algorithm 16.2. GA + Predictor

List of parameters:
Pred: A linear least-square regression to approximate quadratic functions with 2 variables
s Change severity
hlen The length of the predicted future horizon

1. initialization
2. Prediction: After m generations, use the predictor Pred to estimate the current

function form based on history data

• Input:
a. Solutions achieved in previous 1/s change steps:
∀x(t),(tnow−�1/s�)≤ t ≤ tnow.

b. The previous 1/s change steps t,(tnow−�1/s�)≤ t ≤ tnow

c. All corresponding function values f (x (t)).
• Output: the estimated function form fpred

3. Search: for each generation

a. Standard GA’s crossover
b. Standard GA’s mutation
c. Evaluation: For each individual x (tnow), evaluate

Fitness(x (tnow)) =

{
f (x (tnow))+

tnow+hlen

∑
t=tnow+1

fpred (x (t))

}

d. Standard GA’s selection

and standard deviation of function values of GA and GA+Predictor in the problem
DTP1 are shown, confirms the advantage of this approach. The figure shows that
although GA+Predictor has worse function values in the first few change stages, in
the longer run it performs much better (has higher total values) than the traditional
GA, which only focuses on optimising the present. The results confirm the advan-
tage of maximising future values over just optimising the present in this particular
problem.

GA vs GA+Predictor in prediction-deceptive problems (DTP2)

Predicting the future using data from the past, however, is not always beneficial in
solving DTPs. In problems like the DTP2 where a high function value might switch
the system to a low-value trajectory and vice versa, predicting future using data from
the past might make the algorithm perform worse than not using a predictor. This
behaviour is confirmed in the experiment. Figure 16.5a shows that GA+Predictor
actually has lower total values than the GA without a predictor. This is due to that,
since the eighth changing stage, the high-value trajectory that GA+Predictor pre-
dicted during the period

[
0, tswitch

]
leads the algorithm to a worse trajectory than

what GA achieves.

390 T.T. Nguyen and X. Yao

Algorithm 16.3. GA + Predictor + Knowledge about the switching rules

List of parameters:
Pred: A linear least-square regression to approximate quadratic functions
s Change severity
hlen The length of the predicted future horizon
fswitch Expected full-description form of the switching rules{
T1, ...,Tn−1,Tn

}
Set of switching times within current horizon tnow < Ti ≤ tnow +hlen

1. initialization
2. Prediction: Same as step 2 in Algorithm 16.2.
3. Search: for each generation

a. Standard GA’s crossover
b. Standard GA’s mutation
c. Evaluation: For each individual x (tnow),

i. Calculate current function value: A = f (x (tnow))
ii. Calculate the expected future function/variable values until the first

switching time:

B =
T1

∑
t=tnow+1

fpred (x (t))

iii. Estimate the variable x(T1) given the estimated outcome of fpred during the
period [tnow +1,T1]

iv. Calculate the expected future values after the first switching time:

C =

T(n−1)

∑
Ti=T1

T(i+1)

∑
t=Ti+1

fswitch (x (t) ,x (Ti))

v. Calculate the fitness value of x (tnow) : Fitness(x (tnow)) = A+B+C
vi. Update: update the set of switching times for the next future horizon

d. Standard GA’s selection

Table 16.1 Test settings for GA, GA+Predictor and GA+Predictor+Knowledge.

Algorithm Pop size 25
parameters Elitism No

Selection method Non-linear ranking
Mutation method Uniform, P = 0.15
Crossover method Arithmetic, P = 0.8
Prediction method Least-square regression

for quadratic function
Test Number of runs 50
problem Change frequency 25 function evaluations (one generation)
settings Change severity s 0.001

Learning frequency Every 10 generations
Number of change steps 11/s (11,000 change steps, tend = 11,000)
Predicted future horizon hlen 5/s
Switching time 8/s

16 Dynamic Time-Linkage Evolutionary Optimization 391

(a) (b)

Fitness value trajectory: GA vs GA+predictor
in time-deceptive problem

-90.00

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

1 2 3 4 5 6 7 8 9 10 11

Changing stage (t x s)

F(x(t))

GA (future ignored).
Total value: -281.28

GA+predictor. Total
value: -184.73

Variable value trajectory: GA vs GA+predictor
in time-deceptive problem

0.00

2.00

4.00

6.00

8.00

10.00

1 2 3 4 5 6 7 8 9 10 11

Changing stage (t x s)

x(t)

GA (future ignored)

GA+predictor

Fig. 16.4 Plots of the mean (and standard deviation) of highest function values over 50 runs:
GA without predictor vs GA with predictor in a time-deceptive problem (DTP1). (a) Fitness
values, (b) Variable values.

(a) (b)

Fitness value trajectory: GA vs GA+predictor
in prediction-deceptive problem

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

1 2 3 4 5 6 7 8 9 10 11

Changing stage (t x s)

F(x(t))

GA (future ignored).
Total value: -209.79

GA+predictor. Total
value: -241.65

Variable value trajectory: GA vs GA+predictor
in time-deceptive problem

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 3 4 5 6 7 8

Changing stage (t x s)

x(t)

GA (future ignored)

GA+predictor

Fig. 16.5 Plots of the mean (and standard deviation) of highest function values over 50 runs:
GA without predictor vs GA with predictor in the prediction-deceptive problem (DTP2). The
switching time is at the 8th changing stage. (a) Fitness values, (b) Variable values.

GA vs GA+Predictor vs GA+Predictor+Knowledge in prediction-deceptive
problems (DTP2)

In this subsection we verify the efficiency of our proposed approach described
in Section 16.3.3, which suggests that the knowledge of the switching rules, if
available, should be taken into account when anticipating the future. Figure 16.6a
shows that the new approach does help improve the performance of the algo-
rithm (GA+Predictor+Knowledge) and avoid being deceived into the wrong tra-
jectories. As can be seen in Figure 16.6a, during the first six changing stages
GA+Predictor+Knowledge follows exactly the same trajectory as GA+Predictor
to maximise the function value trajectory in the period when the system has
not switched to the other mode yet. However, from the sixth changing stage,
GA+Predictor+Knowledge follows a different route from that of the original

392 T.T. Nguyen and X. Yao

(a) (b)

Fitness value trajectory:
GA vs GA+predictor vs GA+predictor+knowledge

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

1 2 3 4 5 6 7 8 9 10 11
Changing stage (t x s)

F(x(t))

GA (future ignored). Total
value: -209.79

GA+predictor. Total value:
-241.65

GA+predictor+knowledge.
Total value: -130.7

Variable value trajectory:
GA vs GA+predictor vs GA+predictor+knowledge

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6 7 8
Changing stage (t x s)

x(t)

GA (future ignored)

GA+predictor

GA+predictor+knowledge

Fig. 16.6 Plots of the mean (and standard deviation) of the highest function values over 50
runs: GA without predictor vs GA+predictor vs GA+predictor+switching knowledge in the
prediction-deceptive problem DTP2. The switching time is at the 8th changing stage. (a)
Fitness values trajectory, (b) Variable values trajectory.

GA+Predictor. At the sixth changing stage, GA+Predictor+Knowledge chose a
slightly higher function value, which leads it to a completely different route from
those of GA+Predictor and normal GA at the seventh changing stage. At this stage,
the algorithms chose a very low function value, which is achieved thanks to the high
value it chose in the previous changing stage. Although GA+Predictor+Knowledge
has to sacrifice its current performance to achieve such a low function value, this low
value helps the algorithm to reach a better trajectory after the switch and eventually
it has a significantly higher total function values than GA and GA+Predictor. This
good result confirms the usefulness of anticipating future switches when solving
DTPs with switching function-forms. The behaviour of GA+Predictor+Knowledge
in choosing the variables to achieve a high total function value is also shown in
Figure 16.6b.

Another note is that when taking into account the future, the problem becomes
more complex and it is getting more difficult to get high-precision results, as can be
seen by looking at the standard deviations of the results in Figures 16.4, 16.5, 16.6.
We can see that the traditional GA (future ignored) achieves very consistent results
(standard deviations of the mean best values are almost zero) over 50 runs. However,
when the algorithm has to predict the current function-form (GA+Predictor) and
hence has to optimise not only the present but also the future, the problem becomes
more complex and the standard deviations of the mean best values over 50 runs be-
come higher. When the algorithm has to predict the current function-form and also
has to anticipate any possible future mode-switching, the problem becomes even
more complex and hence the level of inconsistency (standard deviation) increases
even higher. This phenomenon shows the trade-off in taking into account the future
when solving DTPs.

16 Dynamic Time-Linkage Evolutionary Optimization 393

16.4 Conclusions

In this chapter we have firstly introduced a detailed definition framework to help
characterising DTPs and DOPs, and to distinguish these two classes of problems
from other types of time-dependent problems.

Then we have identified a challenging class of time-linkage problems where ex-
isting prediction approach might fail to find the optimal results. We named this class
prediction-deceptive time-linkage problems.

An approach to solve this class of problems under certain circumstances has been
suggested. Some test algorithms have been developed to implement this approach.
Experiments were also made to verify the advantage and disadvantage of the antici-
pation approach in solving DTPs, to illustrate the impact of the prediction-deception
property on algorithm performance, and to evaluate the efficiency of our proposed
approach in solving prediction-deceptive time-linkage problems. To test problems
were also proposed in this chapter to simulate the new characteristics of DTPs.

Although the experiments (and the algorithms + test problems) in this chapter
are over-simplified, and the advantages of a predictor/ predictor+knowledge are ex-
pected, such simplifications are necessary to prove the principle and to show the
potentiality of EAs because this research is just a beginning step and is the first
EDO study in this topic. To the best of our knowledge, previously this class of prob-
lems has not been taken into account in existing academic EDO research despite
their popularity in real-world scenarios.

For future works we plan to do more experiments on more realistic scenarios with
a more powerful predictor integrated with state-of-the-art EAs. Especially, more
research will be carried out to investigate the situation where the algorithm needs to
determine multiple switching times during the optimization process. The possibility
of combining time-linkage handling techniques with normal environmental dynamic
handling techniques will also be investigated and comparisons between the new
predictive algorithms and existing DO algorithms will also be carried out.

Acknowledgements. The authors are particularly grateful to P. Rohlfshagen, J. Rowe, P.
Bosman and Y. Jin for their helpful comments. We would also like to thank S. Yang, T. Ray,
C. Li, and L. Xing for their fruitful discussions. This work was partially supported by an
EPSRC grant (No. EP/E058884/1) on ”Evolutionary Algorithms for Dynamic optimization
Problems: Design, Analysis & Applications”, an ORS Award and a School of Computer
Science PhD Studentship.

References

[1] Ahmad, A.Z., Liu, K.-Z.: A new model predictive control approach to dc-dc converters
based on combinatory optimization. In: Proceedings - 34th Annual Conference of the
IEEE Industrial Electronics Society, IECON 2008, Orlando, FL, United states, pp. 460–
465 (2008)

[2] Akanle, O.M., Zhang, D.Z.: Agent-based model for optimising supply-chain configura-
tions. International Journal of Production Economics 115(2), 444–460 (2008)

394 T.T. Nguyen and X. Yao

[3] Aragon, V.S., Esquivel, S.C.: An evolutionary algorithm to track changes of optimum
value locations in dynamic environments. Journal of Computer Science and Technol-
ogy 4(3), 127–134 (2004)

[4] Jason, A.D., Atkin, E.K., Burke, J.S.: Greenwood, and Dale Reeson. On-line decision
support for take-off runway scheduling with uncertain taxi times at london heathrow
airport. Journal of Scheduling 11(5), 323–346 (2008)

[5] Bäck, T.: On the behavior of evolutionary algorithms in dynamic environments.
In: IEEE International Conference on Evolutionary Computation, pp. 446–451. IEEE
(1998)

[6] Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online dy-
namic optimization. In: Yang, S., Branke, J. (eds.) GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization (2005)

[7] Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In: Yang,
S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain En-
vironments. SCI, vol. 51, pp. 129–152. Springer (2007)

[8] Bosman, P.A.N., Poutré, H.L.: Learning and anticipation in online dynamic optimiza-
tion with evolutionary algorithms: the stochastic case. In: GECCO 2007: Proceedings of
the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1165–1172.
ACM, New York (2007)

[9] Branke, J., Mattfeld, D.: Anticipation and flexibility in dynamic scheduling. Interna-
tional Journal of Production Research 43(15), 3103–3129 (2005)

[10] Dreo, J., Siarry, P.: An ant colony algorithm aimed at dynamic continuous optimization.
Applied Mathematics and Computation 181(1), 457–467 (2006)

[11] Fiacchini, M., Alamo, T., Alvarado, I., Camacho, E.F.: Safety verification and adaptive
model predictive control of the hybrid dynamics of a fuel cell system. International
Journal of Adaptive Control and Signal Processing 22(3), 142–160 (2008)

[12] Houwing, M., Negenborn, R.R., Heijnen, P.W., De Schutter, B., Hellendoorn, H.: Least-
cost model predictive control of residential energy resources when applying μCHP. In:
Proceedings of the Power Tech 2007 Conference, Lausanne, Switzerland, Paper 291
(July 2007)

[13] Jin, N., Termansen, M., Hubacek, K., Holden, J., Kirkby, M.: Adaptive farming strate-
gies for dynamic economic environment. In: Proceedings of the IEEE Congress on Evo-
lutionary Computation CEC 2007, pp. 1213–1220 (2007)

[14] Kanoh, H.: Dynamic route planning for car navigation systems using virus genetic al-
gorithms. International Journal of Knowledge-based and Intelligent Engineering Sys-
tems 11(1), 65–78 (2007)

[15] Long, C.E., Polisetty, P.K., Gatzke, E.P.: Deterministic global optimization for nonlinear
model predictive control of hybrid dynamic systems. International Journal of Robust
and Nonlinear Control 17(13), 1232–1250 (2007)

[16] Morimoto, T., Ouchi, Y., Shimizu, M., Baloch, M.S.: Dynamic optimization of watering
satsuma mandarin using neural networks and genetic algorithms. Agricultural Water
Management 93(1-2), 1–10 (2007)

[17] Moser, I., Hendtlass, T.: Solving dynamic single-runway aircraft landing problems with
extremal optimisation. In: IEEE Symposium on Computational Intelligence in Schedul-
ing (2007)

[18] Ngo, S.H., Jiang, X., Le, V.T., Horiguchi, S.: Ant-based survivable routing in dynamic
wdm networks with shared backup paths. The Journal of Supercomputing 36(3), 297–
307 (2006)

16 Dynamic Time-Linkage Evolutionary Optimization 395

[19] Nguyen, T.T.: Continuous Dynamic Optimisation Using Evolutionary Algorithms. PhD
thesis, School of Computer Science, University of Birmingham (2011),
http://etheses.bham.ac.uk/1296,
http://www.cs.bham.ac.uk/txn/theses/phd_thesis_nguyen.pdf

[20] Nguyen, T.T., Yao, X.: Dynamic Time-Linkage Problems Revisited. In: Giacobini, M.,
Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq,
M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744.
Springer, Heidelberg (2009)

[21] Rocha, M., Neves, J., Veloso, A.: Evolutionary algorithms for static and dynamic opti-
mization of fed-batch fermentation processes. In: Ribeiro, B., et al. (eds.) Adaptive and
Natural Computing Algorithms, pp. 288–291. Springer (2005)

[22] Rohlfshagen, P., Yao, X.: Attributes of Dynamic Combinatorial Optimisation. In: Li, X.,
Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendt-
lass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp.
442–451. Springer, Heidelberg (2008)

[23] Rohlfshagen, P., Yao, X.: On the role of modularity in evolutionary dynamic optimisa-
tion. In: Proceedings of the 2010 IEEE Wolrd Congress on Computational Intelligence,
WCCI 2010, Spain, pp. 3539–3546 (2010)

[24] Sonntag, C., Su, W., Stursberg, O., Engell, S.: Optimized start-up control of an
industrial-scale evaporation system with hybrid dynamics. Control Engineering Prac-
tice 16(8), 976–990 (2008)

[25] Summers, S., Bewley, T.R.: Mpdopt: A versatile toolbox for adjoint-based model pre-
dictive control of smooth and switched nonlinear dynamic systems. In: Proceedings of
the 46th IEEE Conference on Decision and Control 2007, pp. 4785–4790 (2007)

[26] Tafazoli, S., Sun, X.: Hybrid system state tracking and fault detection using particle
filters. IEEE Transactions on Control Systems Technology 14(6), 1078–1087 (2006)

[27] Tfaili, W., Dréo, J., Siarry, P.: Fitting of an ant colony approach to dynamic optimization
through a new set of test functions. International Journal of Computational Intelligence
Research 3, 205–218 (2007)

[28] Ursem, R.K., Krink, T., Jensen, M.T., Michalewicz, Z.: Analysis and modeling of con-
trol tasks in dynamic systems. IEEE Transactions on Evolutionary Computation 6(4),
378–389 (2002)

[29] Wang, J., Tao, X., Cho, H.: Microassembly of micro peg and hole using an optimal
visual proportional differential controller. Proceedings of the Institution of Mechanical
Engineers, Part B (Journal of Engineering Manufacture) 222(B9), 1171–1180 (2008)

[30] Wang, N., Ho, K.-H., Pavlou, G.: Adaptive Multi-topology IGP Based Traffic Engi-
neering with Near-Optimal Network Performance. In: Das, A., Pung, H.K., Lee, F.B.S.,
Wong, L.W.C. (eds.) NETWORKING 2008. LNCS, vol. 4982, pp. 654–666. Springer,
Heidelberg (2008)

[31] Weicker, K.: An Analysis of Dynamic Severity and Population Size. In: Deb, K., et al.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 159–168. Springer, Heidelberg (2000)

[32] Weicker, K.: Evolutionary algorithms and dynamic optimization problems. Der Andere
Verlag (2003)

[33] Woldesenbet, Y.G., Yen, G.G.: Dynamic evolutionary algorithm with variable reloca-
tion. IEEE Transactions on Evolutionary Computation 13(3), 500–513 (2009)

http://etheses.bham.ac.uk/1296
http://www.cs.bham.ac.uk/txn/theses/phd_thesis_nguyen.pdf

Index

Agents, 189, 192, 202–204, 320
ANOVA, 242, 243
Ant colony, 189, 191–193, 207, 229, 277,

342, 348, 357, 367
Artificial ants, 193, 194, 203

Benchmark, 1, 18, 22, 32
Binary-coded GA, 105
Boundary Constraints, 147, 148, 152, 154,

163, 178

Changing environment, 269
cine-MRI, 211, 224
Combinatorial optimization, 265, 291, 300,

301, 307
constrained optimization, 258
cost minimization, 111

DE crossover, 117, 122, 138
degradation, 17, 18, 21, 27, 32
Differential Evolution, 117, 122, 126
DTSP, 336
DVRP, 265, 270, 284, 309, 311, 312, 315
Dynamic constrained, 225, 226
Dynamic constraints, 261
Dynamic motion planning problem, 102
Dynamic NSGA-II, 110
Dynamic SAT, 347
Dynamic Time-linkage, 371, 372, 374, 380,

393
Dynamic TSP, 291, 293, 294, 300–302, 307

emission minimization, 111

EMO, 111
evolutionary, 79
Evolutionary algorithms, 278, 336, 371, 373,

393

fuzzy rule, 104

GDBG, 1
Genetic algorithm, 230, 387
Genetic-fuzzy approach, 103

hydro-thermal power scheduling, 110

Image analysis, 212
Image registration, 211, 212, 214
immune response, 232
Immune system, 225, 226, 258
Insect swarm, 341, 367

knowledge based, 102
Kruskal-Wallis, 66, 243

Mann-Whitney-Wilcoxon, 66
Maximum satisfiability problem, 341, 367
membership function, 104
memetic, 309, 311, 315, 317, 319, 336
metaheuristics, 62, 74
metrics, 26
Minimal time window, 109
MLSDO, 211
MPB, 63, 67, 74, 118, 119, 126, 142
Multiobjective optimization, 110, 147, 149–

152, 178

398 Index

multiple objectives, 110

Neural network, 309, 316
NSGA-II, 111

operators, 79–87, 93
Optimal knowledge based approach, 102

Particle filter, 291, 292, 294, 297, 300–303,
307

performance, 17–20, 23, 24, 29, 30, 32, 156
performance metrics, 159, 162
Perturbative techniques, 192
Pheromone, 207, 349
power dispatch problem, 110
Predictors, 382
PSO, 147, 148, 152, 153, 162, 163, 178, 280

register, 224

Registration, 212
Robot navigation, 102

satisfaction problem, 227
Satisfiability, 341, 342, 367
SATLIB benchmark, 355
Scatter search, 291, 295, 297, 300, 301, 303,

307
Scheduling, 371, 372, 393
Self-adaptive, 117, 118, 121, 137, 138, 143
service time, 267, 268
Shortest path, 189, 191, 192
Simulated annealing, 353, 357

Tabu search, 353
time windows, 268, 315
Traveling salesman problem, 189, 193

Wasp swarm, 342

	Title
	Preface
	Contents
	List of Contributors
	List of Tables
	List of Figures
	Performance Analysis of Dynamic Optimization Algorithms
	Introduction
	Performance Analysis Tools of Optimization Algorithms
	Fitness Value
	Computational Analysis
	Classical Metrics
	Sensitivity Analysis
	Statistical Analysis

	The Moving Peaks Benchmark
	The Generalized Dynamic Benchmark Generator
	Illustration of Some Test Functions in GDBG

	Dynamic Multiobjective Optimization Benchmark
	Conclusions
	References

	Quantitative Performance Measures for Dynamic Optimization Problems
	Introduction
	Background and Motivation
	Existing Performance Measures for DOPs
	Discussion
	A Measure for Degradation: βdegradation

	The Moving Peaks Problem
	Experimental Setting
	Studying the Graphical Representation of Mean Executions
	Studying the Collective Mean Fitness
	Studying Weicker’smetrics
	Translating Intuition and Graphs into Numerical Values: βdegradation

	A General Performance Measure for DOPs: abc
	Definitions
	Solving the Moving Peaks Problem

	Conclusions
	References

	Dynamic Function Optimization: The Moving Peaks Benchmark
	Introduction
	Background
	Dynamic Optimization
	Performance Measures

	Existing Approaches
	Evolutionary Algorithms
	Swarm Intelligence Algorithms
	Hybrid Approaches
	Other Approaches

	Comparison and Discussion
	Conclusions
	References

	SRCS: A Technique for Comparing Multiple Algorithms under Several Factors in Dynamic Optimization Problems
	Introduction
	Typical Research Case: Comparing Multiple Algorithms over Several Configurations of a Problem
	SRCS: Statistical Ranking Color Scheme
	Some Considerations on Statistical Tests
	Conclusions
	References

	Dynamic Combinatorial Optimization Problems: A Fitness Landscape Analysis
	Introduction
	Evolutionary Dynamic Optimization
	Dynamic Fitness Landscapes
	Representations and Variation Operators
	Fitness Landscapes
	Dynamic Fitness Landscapes

	Dynamic Fitness Landscapes in Practice
	Neighbourhood Structures for the Dynamic Domain
	Dynamic Problem Benchmark Generators

	Understanding Combinatorial Problem Dynamics
	Distance to the Optimum
	Properties of Dynamic Fitness Landscapes

	Conclusions
	References

	Two Approaches for Single and Multi-Objective Dynamic Optimization
	Introduction
	Solving Dynamic Optimization Problems
	Approach 1: Off-Line Development of an Optimal Rule Base
	Off-Line Optimization Approach Applied to a Robot Navigation Problem
	Representation of a Solution in a GA
	Evaluating a Solution in the GA
	Results on Robot Navigation Problem

	Approach 2: On-Line Optimization with a Minimal Time Window
	Dynamic NSGA-II for Handling Dynamic Multi-objective Optimization Problems
	Application to Bi-objective Hydro-thermal Power Scheduling
	Results on Hydro-thermal Power Dispatch Problem
	Automated Decision Making in a Dynamic Multi-objective Optimization

	Conclusions
	References

	Self-Adaptive Differential Evolution for Dynamic Environments with Fluctuating Numbers of Optima
	Introduction
	Dynamic Environments
	Moving Peaks Benchmark
	Extensions to the Moving Peaks Benchmark

	RelatedWork
	Differential Evolution
	Basic Differential Evolution
	Differential Evolution Schemes
	Differential Evolution Control Parameters
	Differential Evolution in Dynamic Environments
	Detecting Changes in the Environment

	Dynamic Population Differential Evolution
	Multiple Populations
	Exclusion
	Brownian Individuals
	DE Scheme
	DynDE Discussion
	Competitive Population Evaluation
	Reinitialization Midpoint Check
	Spawning Populations
	Removing Populations
	Penalty Factor

	Self-Adaptive DynPopDE
	The Self-Adaptive DynPopDE Algorithm
	Results and Discussion

	Conclusions
	References

	Dynamic Multi-Objective Optimization Using PSO
	Introduction
	Background
	Particle Swarm Optimization
	Multi-Objective Optimization Theory
	Dynamic Multi-Objective Optimisation Theory
	Dynamic Multi-Objective Optimization Issues

	Dynamic Vector Evaluated Particle Swarm Optimization Approach
	Vector Evaluated Particle Swarm Optimization
	Dynamic Vector Evaluated Particle Swarm Optimization
	Management of Boundary Constraints

	Experiments
	Benchmark Functions
	Performance Metrics
	Comparison
	Statistical Analysis

	Results
	Managing Boundary Constraints
	Comparison
	Statistical Analysis

	Conclusions
	References

	Ant Colony Based Algorithms for Dynamic Optimization Problems
	Introduction
	Ant Colony Optimization
	Dynamic Optimization Problems (DOPs)
	Solving DOPs with ACB algorithms
	Standard ACO Algorithms
	Population Based ACO Algorithms
	Other Ants Based Algorithms
	Summary of ACB Applications on DOPs

	Conclusions
	References

	Elastic Registration of Brain Cine-MRI Sequences Using MLSDO Dynamic Optimization Algorithm
	Introduction
	Registration Process
	The MLSDO Algorithm
	Description of the Algorithm
	Cine-MRI Registration as a Dynamic Optimization Problem
	Parameter Fitting of MLSDO

	Experimental Results and Discussion
	Conclusions
	References

	Artificial Immune System for Solving Dynamic Constrained Optimization Problems
	Introduction
	Problem Statement
	Previous Related Work
	Our Proposed Approach
	Proposed Algorithm Based on T-CELL

	Experiments
	Dynamic Constrained Benchmark
	Performance Measures
	Parameters Settings

	Discussion of Results
	Increasing the Number of Changes per Run

	Conclusions
	References

	Metaheuristics for Dynamic Vehicle Routing
	Introduction
	Dynamic Vehicle Routing Problem
	Formal Description
	DVRP Interests
	Objectives
	Related Works

	Solving Methods
	Solution Representation
	Trajectory-Based Metaheuristics
	Population-Based Metaheuristics

	Dynamic Performance Measures
	Performance Assessment
	Conclusions and Future Work
	References

	Low-Level Hybridization of Scatter Search and Particle Filter for Dynamic TSP Solving
	Introduction
	Dynamic Travelling Salesman Problem
	Sequential Estimation Algorithm: Particle Filter
	Population Based Metaheuristic: Scatter Search
	Scatter Search Particle Filter
	Scatter Search and Particle Filter Hybridization
	Scatter Search Particle Filter Main Features

	Applying SSPF to Solve the DTSP
	Experimental Results
	Problem Instances
	Implementation Details of the Considered Algorithms
	Computational Testing

	Conclusions
	References

	From the TSP to the Dynamic VRP: An Application of Neural Networks in Population Based Metaheuristic
	Introduction
	Dynamic Euclidean Vehicle Routing Problem
	Method Principle
	Biologic Metaphor and the Intermediate Structure Paradigm

	The Metaheuristic Embedding Framework
	The Evolutionary Algorithm Embedding Self-Organizing Maps
	Memetic SOM
	Spiral Search Algorithm
	Algorithm Complexity

	Real-Time Simulation and Optimizer
	Simulator Architecture
	Asynchronous Protocol

	Experimental Results
	Experiments Overview
	Influence of the Main Simulation Parameters
	Trace Analysis
	Comparative Evaluation

	Conclusions
	References

	Insect Swarm Algorithms for Dynamic MAX-SAT Problems
	Introduction
	MAX-SAT Optimization Problem
	Phase Transitions

	The Dynamic MAX-SAT Optimization Problem
	Dynamic MAX-SAT: Practical Example

	ACO Applied to MAX-SAT
	WSO Applied to MAX-SAT
	SA and GHC Applied to MAX-SAT
	Experiments
	Analysis and Results
	Results for Static MAX-SAT
	Influence of Runtime on Optimization Cost with ACO, WSO, and SA
	Results for Dynamic MAX-SAT
	Influence of the Number of Iterations per Stage on the Optimization with ACO and WSO

	Conclusions
	References

	Dynamic Time-Linkage Evolutionary Optimization: Definitions and Potential Solutions
	Dynamic Time-Linkage Problems - From Academic Research to Real-World Applications
	A Framework for Defining DOPs and DTPs
	Research Gaps and Motivations
	A Definition Framework

	The Prediction-Deceptive Problem in DTPs
	Time-Deceptive and the Anticipation Approach
	Can Anticipation Approaches Solve All DTPs?
	Solving Prediction-Deceptive Time-Linkage Problems
	Experimental Studies

	Conclusions
	References

	Index

