
W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 87–101.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Service Availability Model to Support
Reconfiguration

Dariusz Caban and Tomasz Walkowiak

Abstract. Web based information systems are exposed to various dependability
issues during their lifetime. Reconfiguration is then used by the administration
to ensure continuity of service. Such forced reconfigurations can cause unfore-
seen side-effects, such as server overloading. To prevent this, it is proposed to
use simulation techniques to analyze the reconfigurations and construct a safe
reconfiguration strategy. Extensions to the available network simulation tools
are proposed to support this. The authors present the results of multiple experi-
ments with web-based systems, which were conducted to develop a model of
client-server interactions that would adequately describe the relationship
between the server response time and resource utilization. This model was
implemented in the simulation tools and its accuracy verified against a testbed
system configuration.

1 Introduction

Whenever a web based information system experiences some dependability issue,
caused by a hardware failure, a software error or by a deliberate vulnerability at-
tack, the administrator is faced with the difficult problem, how to maintain the
continuity of critical business services. Isolation of the affected hardware and
software is usually the first reaction (to prevent propagation of the problem to yet
unaffected parts of the system). It then follows that the most important services
have to be moved from the isolated hosts/servers to those that are still available.
This is achieved by system reconfiguration [1, 2].

Redeployment of service components onto the available hosts changes the
workload of the various servers. In consequence some of them are over-utilized
and cannot handle all the incoming requests, or handle them with an unacceptable
response delay. It is very difficult to predict these side-effects. One of the feasible
approaches is to use simulation techniques [3]: to study what are the possible

Dariusz Caban · Tomasz Walkowiak
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-320 Wrocław,
Poland
e-mail: dariusz.caban@pwr.wroc.pl, tomasz.walkowiak@pwr.wroc.pl

88 D. Caban and T. Walkowiak

effects of a change of system configuration. Available network simulators are
usually capable of analyzing the impact of reconfiguration on the proper function-
ing of the services, the settings of the network devices and on security.

The network simulators as a rule can predict transmission delays and traffic
congestions – that is natural, since it is their primary field of application. They
have a very limited capability to simulate tasks processing by the host computers.
This can be modified by developing some simulator extensions – models that
provide processing delays dependent on the number of concurrently serviced
requests [8, 9].

Accurate prediction of the response times in a simulator is in general quite
unlikely: there are too many factors that can affect it. Moreover, a lot of these
factors are unpredictable, being specific to some algorithm or unique software
feature. This can be overcome in case of predictions made for the purpose of
reconfiguration. A lot of system information can be collected on the running
system prior to reconfiguration (by analyzing its performance). This information
can be used to fine tune the simulation models.

2 System Model

The paper considers a class of information systems that is based on web interac-
tions, both at the system – human user (client) interface and between the various
distributed systems components. This is fully compliant with the service oriented
architecture, though it does not imply the use of protocols associated with SOA
systems. The system is described at 3 levels [1]. On the high level, it is
represented by the interacting service components. At the physical layer, it is de-
scribed by the hosts, on which the services are deployed, and by the visibility and
communication throughput between them (provided by the networking resources).
The third element of the system description is the mapping between the first two
layers.

2.1 Service Model

The system is composed of a number of service components. Interaction between
the components is based on the client-server paradigm, i.e. one component
requests a service from some other components and uses their responses to
produce its own results, either output to the end-user or used to respond to yet
another request. The client (user) requests are serviced by some components,
while others may be used solely in the background.

A service component is a piece of software that is entirely deployed on a single
web node (host) and all of its communication is done by exchange of messages.
The over-all description of the interaction between the service components is de-
termined by its choreography, i.e. the scenarios of interactions that produce all the
possible usages of the system [9].

Service Availability Model to Support Reconfiguration 89

Fig. 1 An UML diagram representing a simple service choreography

A very simple choreography description is given in Fig.1 for illustration
purposes. It represents a very common dynamic web service architecture based on
an Apache server with Tomcat servlet container and a back-end SQL database.
The system serves static HTML pages (e.g. MainPage) and information requiring
computation and database access (e.g. PerformList).

The service components interact in accordance with the choreography. As the
result, they generate demand on the networking resources and on the computation-
al power of the hosts running the components.

Fig. 2 A simple system infrastructure based on multiple levels of load balancing

2.2 Network Infrastructure

The service components are deployed on a network of computers. This underlying
communication and computing hardware is abstracted as a collection of in-
terconnected computing hosts (or server software deployed on the hosts to run the
service components). Fig. 2 presents a possible network that may be used to
provide the services described in Fig. 1. The configuration encompasses a load

90 D. Caban and T. Walkowiak

balancer, used to distribute requests between the front-end hosts. At the back-end
the load is also distributed between the workers.

2.3 System Configuration

System configuration is determined by the deployment of service components
onto the hosts. This is characterized by the subsets of services deployed at each
location. The deployment clearly affects the system performance, as it changes the
communication and computational requirements imposed on the infrastructure.

Reconfiguration (change of system configuration) takes place when service
deployment is changed. In case of network configurations that use load balancing
to improve service availability, some degree of automatic reconfiguration is intro-
duced by the infrastructure. Load balancing techniques usually implement some
fault fallback mechanisms, which prevent distribution of load to failed worker
nodes.

More sophisticated reconfiguration can be achieved by redistribution of tasks to
be performed by each worker host. This is fairly easily achieved by reconfiguring
the front-end servers, responsible for workload distribution among the worker
nodes.

3 System Reconfiguration

Mostly, reconfiguration occurs as a routine procedure of system maintenance.
Services are redeployed when the administrators observe that some hosts are
either overloaded or under-utilized. This is usually done in a leisurely manner,
planned and tested well in advance. As such, it does not require any tools or
support specifically designed for reconfiguration.

A much more demanding situation can occur when the system experiences
some malfunction. Reconfiguration can then be used to overcome its effects and
maintain access to the services. It is quite interesting that reconfiguration can be
used as a method of exercising functional redundancy existing in the system, to
improve its dependability. This type of reconfiguration is done in a hurry, to bring
up the system service as quickly as possible. Consequently, it is likely that some
side-effects of reconfiguration may be overseen, especially if these are connected
with the system performance.

3.1 System Faults

System reconfiguration may be triggered by a wide class of adverse events. We
consider various sources of system faults [1, 2]: transient and persistent hardware
faults, software bugs, human mistakes and exploitation of software vulnerabilities.
There are also attacks on services, based on draining their limited resources, e. g.
DOS attacks.

Service Availability Model to Support Reconfiguration 91

Fig. 3 A classification of system faults reflecting their impact on reconfiguration

In the considered approach to complex information systems modeling, the hosts
are the basic components of the system infrastructure. Thus, all the faults are attri-
buted to them (and not to hardware or software components). This is the basis for
the classification of faults presented in Fig. 3.

Inoperational host fault – the host cannot process services that are located on it,
these in turn do not produce any responses to queries from the services located on
other nodes. Reconfiguration is required, all the service components have to be
moved to unaffected hosts.

Impaired performance fault – the host can operate, but it cannot provide the full
computational resources, causing some services to fail or increasing their response
time above the acceptable limits. Some service components may tolerate the fault,
especially if other ones are moved elsewhere.

Connectivity fault – the host cannot communicate with other hosts with the re-
quired throughput. In effect, the node may become unreachable, requiring service
redeployment.

Service malfunction fault – the service components located on the node can
produce incorrect or inconsistent responses due to accumulated software errors,
effects of transient malfunctions and possible exploitation of vulnerabilities. The
operation of services located at such nodes becomes unpredictable and potentially
dangerous to services at other ones (that communicate with them). Thus, the fault
may propagate to other connected hosts and services. It is advisable to isolate the
affected service to prevent problem escalation.

DOS fault – a special case of a service fault, where the service component loses
its ability to respond to requests. It is usually caused by some exploitation of secu-
rity vulnerability, often a proliferation of bogus service requests that lock up all
the server resources. This is a common consequence of insufficient security meas-
ures (firewall rules, antivirus software, etc.). A very important aspect of this class
of faults is that the attack may be either IP site locked or service locked. Reconfi-
guration is effective only in the first case: moving the affected services to other
network addresses can prevent further damage. On the other hand, if a service is

92 D. Caban and T. Walkowiak

moved in case of a service locked attack, then the fault will also be propagated to
the new location. In effect, this is the only situation when reconfiguration may in-
crease the damage to the system.

Effectively, the change of configuration may restore the system functionality in
almost every type of fault occurrence, ensuring service continuity.

3.2 Service Availability

Dependability analysis is based on the assessment of some performance measures.
In fact, dependability is an integrative concept that encompasses: availability
(readiness for correct service), reliability (continuity of correct service), safety
(absence of catastrophic consequences), confidentiality (absence of unauthorized
disclosure of information), integrity (absence of improper system state altera-
tions), maintainability (ability to undergo repairs and modifications).

Any of the considered faults will cause the system to fail if/when they propa-
gate to the system output (affecting its ability to generate correct responses to the
client requests). This is best characterized by the availability function A(t),
defined as the probability that the system is operational (provides correct
responses) at a specific time t. In stationary conditions, most interesting from the
practical point of view, the function is time invariant, characterized by a constant
coefficient, denoted as A.

The measure has a direct application both from the business perspective and
from the administrator viewpoint. The asymptotic property of the steady-state
availability A:

t

t

t

upA
∞→

= lim , (1)

gives a prediction of the total uptime tup. This is a very useful business level meas-
ure. From the administrators’ perspective, the asymptotic property may be further
transformed, assuming a uniform rate of service requests [1]:

n
n

t

okA
∞→

= lim (2)

This yields a common understanding of availability as the number of properly
handled requests nok expressed as a percentage of all the requests n. Equations (1)
and (2) are equivalent only if the operational system handles all the requests cor-
rectly.

Availability does not reflect the comfort of using the service by the end-users.
This has to be analyzed using a different measure of the quality of service. The
most natural is to use the average response time, i.e. the time elapsed from the
moment of sending a request until the response is completely delivered to the
client [8]. The mean value is calculated only on the basis of correctly handled
response times. The error response times are excluded from the assessment (or
assessed as a separate average).

Service Availability Model to Support Reconfiguration 93

3.3 System Reconfiguration Strategy

System reconfiguration is realized by changing the system from one configuration
to another, in which all the services can still be delivered. There are various situa-
tions when a reconfiguration may be desirable, we concentrate on the dependabili-
ty oriented reconfiguration. This implies that the reconfiguration is forced by the
occurrence of a dependability issue, i.e. a fault occurrence which causes some ser-
vices to fail in the current configuration. Reconfiguration is achieved by isolating
the faulty hosts and servers, and then moving the affected services to other hosts.

The reconfiguration strategy should ensure that the target configuration im-
proves the availability and response times of the services, as compared to the state,
at which the system ends after a fault occurrence. The target configuration, if it
exists, should ensure the following:

• It should be able to handle all the end client requests, i.e. it should not limit the

system functionality.
• It should maintain the quality of service at the highest possible level, given the

degraded condition of the infrastructure.

The first requirement is met if all the service components are deployed on unaf-
fected hosts, they do not lead to compatibility issues with other components, and
the communication resources ensure their reachability. Thus, it is a combinatorial
problem of eliminating all inherently conflicting configurations. The set of per-
missible configurations can then be determined. Within these configurations, some
are affected by a specific dependability issue. All the others are potential candi-
dates for reconfiguration. If the resulting set is empty, then the considered faults
cannot be tolerated and the system fails (reconfiguration cannot bring it up).

The reconfiguration strategy is constructed by choosing just one configuration
from the set corresponding to the various dependability issues. Usually, there are
numerous different reconfiguration strategies that can be constructed in this way.
Any one of them will ensure the continuity of service. Optimal strategy is obtained
by choosing the configuration that ensures the best quality of service, i.e. with the
shortest average response times. This can be achieved if there is an efficient tool
for predicting the service availability and response time. One of the feasible ap-
proaches is to use network simulation.

4 Network Simulation Techniques

There are a large number of network simulators available on the market, both
open-source (ns3, Omnet+, SSFNet) and commercial. Most of them are based on
the package transport model – simulation of transport algorithms and package
queues [3]. These simulators can fairly well predict the network traffic, even in
case of load balancing [6]. What they lack is a comprehensive understanding of
the computational demands placed on the service hosts, and how it impacts the
system performance. In effect they are useful to predict if a system configuration

94 D. Caban and T. Walkowiak

provides access by all the end-users to all the system functionality, i.e. if a confi-
guration is permissible.

However, these network simulators cannot be directly used to develop or test a
reconfiguration strategy, since they cannot predict the quality of service (availabil-
ity and response times) of the target configurations. This is the consequence of the
lack of models for predicting tasks processing time, based on resource consump-
tion. The simulators need to be extended, by writing special purpose models to ac-
commodate this functionality [8, 9].

Alternative approach is to test the target configurations on a testbed or in a vir-
tual environment. In this case the software processing times need not be predicted:
they result from running the production software on the testbed/virtual hosts. This
approach has drawbacks: the time overhead of testing the target configuration may
be inacceptable, considering that the time to react to a dependability incident is
very limited. Furthermore, it is hardly feasible to perform the emulation on hard-
ware, which provides similar level of computational power to the production sys-
tem – thus, the results have to be scaled, which is a large problem.

Response time prediction in network simulators is based on the proper models
of the end-user clients, service components, processing hosts (servers), network
resources. The client models generate the traffic, which is transmitted by the net-
work models to the various service components. The components react to the re-
quests by doing some processing locally, and by querying other components for
the necessary data (this is determined by the system choreography, which parame-
terizes both the client models and the service component models). The request
processing time at the service components is not fixed, though. It depends on the
number of other requests being handled concurrently and on the loading of other
components deployed on the same hosts.

The network simulator has a number of parameters that have to be set to get
realistic results. These parameters are attributed to the various models, mentioned
above. In the proposed approach we assume that it is possible to formulate such
(fairly simple) models describing the clients and service components, which will
not be unduly affected by reconfiguration. Then, we can identify the values of the
parameters on the production system. Simulating the target configuration
with these parameters should provide reliable predictions of the effects of
reconfiguration.

5 Modeling Client – Server Interaction

The basis of operation of all the web oriented systems is the interaction between a
client and a server. This is in the form of a sequence of requests and responses: the
client sends a request for some data to the server and, after some delay, the server
responds with the required data. The most important characteristic of this interac-
tion is the time needed by the server to respond (deliver the data to the client) –
this is the response time that can be determined experimentally or estimated using
the simulation techniques.

The response time depends on a number of different factors: the processing to
be done at the server site, response time of other services that need to be queried

Service Availability Model to Support Reconfiguration 95

to determine the response, etc. Even in a very simple situation, where the response
is generated locally by the server, it usually has an unpredictable component (ran-
dom factor). The understanding of these simple client-server interactions is para-
mount to building a simulation model that will be capable of analyzing more com-
plex situations.

Actually, the server response time is strongly related to the client behaviour, as
determined by the request-response interaction. Such factors as connection persis-
tence, session tracking, client concurrency or client patience/think times have a
documented impact on the reaction. For example, it has been shown in [5] that if
user will not receive answer for the service in less than 10 seconds he or she will
probably resign from active interaction with the service and will be distracted by
other ones.

Fig. 4 The performance of an off-the-shelf web service under varying rates of incoming client
requests: a) the upper graph shows the response time, b) the lower – service availability

a)

 b)

96 D. Caban and T. Walkowiak

Let’s consider the models used in these simple interactions in more detail. For
this purpose, we have set up a simple testbed, consisting of a virtual machine run-
ning an Apache server. The server hosts a PHP script application, on which we
can accurately regulate the processing time needed to produce a result. This appli-
cation is exposed to a stream of requests, generated by a choice of client applica-
tions (a Python script written by the authors, open source traffic generators such as
Funkload and jMeter). Full control is maintained of the available processor re-
sources (via the virtualization hypervisor). This ensures that the client software is
not limited by insufficient processing capabilities, while the server resources are
regulated to determine their impact.

5.1 Client Model Used in Server Benchmarking

The simplest model is adopted by the software used for server/service benchmark-
ing, i.e. to determine the performance of computers used to run some web applica-
tion. In this case, it is a common practice to bombard the server with a stream of
requests, reflecting the statistics of the software usage (the proportion of the dif-
ferent types of requests, periods of burst activity, think times, etc.). Sophisticated
examples of these models of client-server interaction are documented in the indus-
try standard benchmarks, such as the retired SPECweb2009 [7].

The important factor in this approach to modeling the client-server interaction
is lack of any feedback between the rate of requests and the server response times.
In other words, the client does not wait for the server response, but proceeds to
send further requests even if the response is delayed.

Fig. 4 shows the results of experiments performed on a typical server applica-
tion exposed to this type of traffic. It should be noted that the results were
obtained in the testbed, discussed above. While they reflect the normal server
behaviour in such stress tests, the processing thresholds are much lower than
expected in modern web servers. This should be expected, since the virtual server,
being used, has a very limited processing power.

Fig. 4 a) presents the changes in the response time, depending on the rate of re-
quests generation. It should be noted that the system is characterized by two dis-
tinct thresholds in the requests rate. Up to approximately 6 requests per second,
the response time very slowly increases with the rate of requests. This is the range,
where the server processing is not fully utilized: the processor is mainly idle and
handles requests immediately on arrival. There is a gradual increase in the re-
sponse time due to the increased probability of requests overlapping.

When the requests rate is higher than the underutilization threshold, the proces-
sor is fully utilized, the requests are queued and processed concurrently. The in-
crease in the response time is caused by time sharing: it is proportional to the
number of concurrently handled requests and the time needed to process a single
one. This holds true, until the server reaches the second threshold – overutiliza-
tion. This corresponds roughly to 12 requests per second in the presented Figure.

Above the overutilization threshold the server is no longer capable of handling
the full stream of requests. In consequence, some requests are timed-out or
rejected. Further increase in the request rate does not increase the number of

Service Availability Model to Support Reconfiguration 97

concurrently handled ones. Thus, the response time remains almost constant. On
the other hand, the percentage of requests handled incorrectly increases proportio-
nately to the request rate. This is illustrated in Fig. 4 b).

In fact, there are also some further thresholds within the overutilization range.
This is caused by the fact that there can be different mechanisms of failing to han-
dle a request. Initially, connection time-out is the dominating factor in the studied
servers (Apache, MySQL, simpleHTTPD). As the requests rate increases, rejects
and exceptions become more common. This is omitted from the presented results,
as it is assumed that the web based system should never be allowed in this range
of request rates. Thus, there is no point in accurate modeling of these phenomena
for the purposes of simulation. Rather, the simulator should flag the situations
when the overutilization occurs.

In the underutilization range, another phenomenon can be observed. There is a
very high dispersion of the response times for small request rates. This is caused
by the phenomenon of server “warm-up”. Requests are initially handled much
more slowly. It is probably a side-effect of compiling scripts on the fly and server
side caching. This impacts the performance in the underutilization range.

5.2 Client Models Reflecting Human Reactions

The real behaviour of clients differs significantly from the model discussed so far. In
fact, the client sends a burst of related requests to the server, then it waits for the
server to respond and, after some “think” time for disseminating the response, sends
a new request. This implies that the request rate depends on the response time.

This type of model is implemented in a number of traffic generators available
both commercially and open-sourced (Apache JMeter, Funkload). The workload is
characterized by the number of concurrent clients, sending requests to the server.
The actual requests rate depends on the response time and the think time.

Fig. 5 Average service response when interacting with various number of concurrent
clients, waiting for service response before issuing another request

98 D. Caban and T. Walkowiak

Fig. 5 shows how the response time typically depends on the number of concur-
rent clients. In this case we have set the “think” time to 0, i.e. a new request is
generated by the client directly on receiving the response to a previous one. Quite
interestingly, the server operates practically only in the normal utilization range,
until it reaches the maximum number of clients that it can handle correctly (rough-
ly 300 clients in the considered testbed). Thereafter, increasing the number of
clients (concurrent requests) leads to a commensurate increase in the number of
request rejects (represented by the error responses).

For the purpose of correctly simulating this behavior, it is not enough to know
the thresholds of under- and overutilization. It is also necessary to model the time
of error responses. As commented in 5.1, in general this is very difficult since
there are different mechanisms coming into play (time-outs, rejects triggered by
hard-coded limits or by computing exceptions). A heavily over utilized server
sends an unpredictable mix of error responses, some of them practically with no
delay, others after a fixed delay time. In some cases the server becomes unstable
and does not respond at all to some requests.

Performed experiments show that this behaviour occurs only in situations of
heavy server overutilization. The dominating phenomenon, observed when the
server load only slightly exceeds the overutilization threshold, is based on queuing
the requests for a fixed time-period and error-responding thereafter. This beha-
viour, enhanced by flagging the state of server overutilization, is the basis of the
proposed client-server interaction model in case of error responding. It is characte-
rized by one parameter – the error response time.

5.3 Client Models Derived from Choreography Description

The client-server interaction model has to consider the various tasks initiated by
the client. In a typical web application, these tasks can exercise the server re-
sources in a wildly varied manner: some will require serving of static web pages,
some will require server-side computation, yet others will initiate database trans-
actions or access to remote web applications. A common approach to load (traffic)
generation techniques is based on determining the proportion of the various tasks
in a typical server workload, and then mixing the client models representing these
tasks in the same proportion [4, 7].

This approach assumes that the proportion of tasks in a workload does not
change significantly due to response delays and error-responding. It also assumes
that it is possible to accurately classify the tasks on the basis of the observed traf-
fic, a daunting problem that can significantly impact the performance prediction.
Direct traffic analysis can distinguish requests on the basis of client addresses, re-
sponse times, size of requests and responses, etc. It can also consider sequences of
requests identified by connections and sessions. Traffic analysis does not yield any
information on the semantics of client-server interactions, which should be the
basis for determining the client models used for load generation. In effect, this
produces a mix of tasks, in no way connected to the aims of the clients. It can be
improved using the service choreography description.

Service Availability Model to Support Reconfiguration 99

It is assumed that the analyzed web service is described by its choreography de-
scription, using one of the formal languages developed for this purpose (we con-
sider WS-CDL and BPEL descriptions). This description determines all the se-
quences of requests and responses performed in the various tasks, described in the
choreography. This is further called the set of business tasks, as opposed to the
tasks obtained from the classification of traffic. Traffic analysis can then be em-
ployed to classify the observed request-response sequences to the business tasks
identified in the choreography description. This procedure determines the typical
proportion of the various business tasks in the workload that is much less affected
by the service response times or proportions of error responses.

An even better description of client behaviour can be achieved if we have a se-
mantic model of client impatience, i.e. how the client reacts to waiting for a server
response. Currently, in case of end-clients (human users of the service) this is
modeled very simplistically by setting a threshold delay, after which the client
stops waiting for the server response and starts over the requests sequence needed
to perform a business task. A more sophisticated approach would have to identify
the changing client perspective caused by the problems in accessing a service, e.g.
a client may reduce the number of queries on products, before deciding to make a
business commitment, or on the other hand, he may abandon the commitment.
These decisions could significantly influence the workload proportions.

The same problem occurs during interactions between the web service compo-
nents. In this case one component becomes the client of another. The same phe-
nomena can be observed. The client component usually has a built-in response
time-out period which corresponds to the impatience time. The significant differ-
ence is that, in this case, the choreography description defines the reaction of the
client component. Thus, the client impatience model is fully determined, derived
from this description.

5.4 Resource Consumption Model – Server Response Prediction

The client-server interaction is paramount to the proper simulation of a complex
web service. The analysis of the behaviour of typical servers led to the formulation
of a simplified model that is used in our analysis:

• The server response time is described by 3 ranges: a constant response time be-

low the underutilization threshold, a linearly increasing response time in the
normal operation range and a constant limit response time when the server is
over utilized.

• If the model is to be used for determining the load limits, the response delay in
the range below the underutilization threshold does not affect the results.

• If the model is to be used for determining the response time in the underutiliza-
tion range, the warmup time has to be added. The model may be anyway inade-
quate, since this is not the application area that we are targeting.

• The model responds with error messages to some requests when the server is
over utilized. The error response is always delayed by a random error delay
time fixed to a constant average.

100 D. Caban and T. Walkowiak

• Client is described by an impatience time delay, after which it assumes the
server is not responding and continues as if it received an error message.

The deployment of multiple services on the same host leads to a time-sharing of
processor time between them. This does not affect noticeable the thresholds for
under- and overutilization of the services. Mainly, it changes the level at which the
response time of the service stabilizes after the load exceeds the overutilization
threshold. Further work is needed to observe the possible impact of service
prioritization.

6 Dependability Analysis

The model proposed in 5.4 can be used to simulate all the interactions between
the service components. This is the basis of the extended SSFNet simulation tool,
used by us to predict the results of reconfiguration. The performance of this si-
mulator is currently under study and the results are very promising. It is still too
early to conclude, though, whether these models are sufficiently accurate in
general.

Fig. 6 The performance a real web service (dashed line) and simulated one (solid line): a)
the upper graph shows the response time, b) the lower – service availability

a)

 b)

Service Availability Model to Support Reconfiguration 101

As an illustration, let’s consider the results of simulating the client – server
interactions discussed in 5.2. The interaction model is based on the thresholds
identified in 5.1. So, how do the simulation results bear out the response times
observed in reality?

This is shown in Fig. 6. The results are very accurate considering that we are
approximating the complex behaviour of a software component with just a few
parameters. More to the point, the observed accuracy is fully satisfactory for the
purpose of reconfiguration analysis.

The presented work was funded by the Polish National Science Centre under grant no.
N N516 475940.

References

[1] Caban, D.: Enhanced service reconfiguration to improve SOA systems depedability.
In: Problems of Dependability and Modelling, pp. 27–39. Oficyna Wydawnicza Poli-
techniki Wrocławskiej, Wroclaw (2011)

[2] Caban, D., Walkowiak, T.: Dependability oriented reconfiguration of SOA systems.
In: Grzech, A. (ed.) Information Systems Architecture and Technology: Networks and
Networks’ Services, pp. 15–25. Oficyna Wydawnicza Politechniki Wrocławskiej,
Wroclaw (2010)

[3] Lavenberg, S.S.: A perspective on queueing models of computer performance. Perfor-
mance Evaluation 10(1), 53–76 (1989)

[4] Lutteroth, C., Weber, G.: Modeling a Realistic Workload for Performance Testing. In:
12th International IEEE Enterprise Distributed Object Computing Conference (2008)

[5] Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1994)
[6] Rahmawan, H., Gondokaryono, Y.S.: The simulation of static load balancing algo-

rithms. In: International Conference on Electrical Engineering and Informatics, pp.
640–645 (2009)

[7] SPEC, SPECweb2009 Release 1.20 Benchmark Design Document vers. 1.20 (2010),
http://www.spec.org/web2009/docs/design/SPECweb2009_Design
.html (accessed February 10, 2012)

[8] Walkowiak, T.: Information systems performance analysis using task-level simulator.
In: DepCoS – RELCOMEX, pp. 218–225. IEEE Computer Society Press (2009)

[9] Walkowiak, T., Michalska, K.: Functional based reliability analysis of Web based
information systems. In: Dependable Computer Systems, pp. 257–269. Springer,
Heidelberg (2011)

	Service Availability Model to Support
Reconfiguration
	Introduction
	System Model
	Service Model
	Network Infrastructure
	System Configuration

	System Reconfiguration
	System Faults
	Service Availability
	System Reconfiguration Strategy

	Network Simulation Techniques
	Modeling Client – Server Interaction
	Client Model Used in Server Benchmarking
	Client Models Reflecting Human Reactions
	Client Models Derived from Choreography Description
	Resource Consumption Model – Server Response Prediction

	Dependability Analysis
	References

