
W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 289–304.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Dependable Strategies for Job-Flows
Dispatching and Scheduling in Virtual
Organizations of Distributed Computing
Environments

Victor Toporkov, Alexey Tselishchev, Dmitry Yemelyanov,
and Alexander Bobchenkov

Abstract. This work presents dispatching strategies based on methods of job-flow
and application-level scheduling in virtual organizations of distributed computa-
tional environments with non-dedicated resources. Dependable job-flow manage-
ment is implemented with the set of specific rules for resource usage. Strategies
are based on economic scheduling models and diverse administration policies in-
side resource domains. Job management structures and economic mechanisms for
load balancing in distributed environments are considered. Scheduling methods
composing priority algorithms for parallel applications and job batch scheduling in
distributed computing with non-dedicated resources are proposed.

1 Introduction

Distributed computational environments such as Grid have been known for signif-
icant efficiency increase in shared computational resource usage and provision of
scientific and enterprise communities with solutions for complex computational
tasks. However, those who are responsible for setting up Grid infrastructure and
economy encounter difficulties while defining policies and strategies for efficient
resource management and job scheduling. The problem of establishing an optimal
or at least good strategy based on current environment condition remains actual
and prominent at the moment in the domain of distributed computing.

Victor Toporkov · Dmitry Yemelyanov · Alexander Bobchenkov
National Research University “MPEI”, ul. Krasnokazarmennaya 14, Moscow,
111250 Russia
e-mail: ToporkovVV@mpei.ru,

{groddenator,yemelyanov.dmitry}@gmail.com

Alexey Tselishchev
CERN (European Organization for Nuclear Research),
CERN CH-1211 Genève 23 Switzerland
e-mail: Alexey.Tselishchev@cern.ch

290 V. Toporkov et al.

Heterogeneity, changing composition, different owners of different nodes
whose computing time is partially shared by users turn the organization of a dis-
tributed computational environment into an especially difficult task. Utility grid
[1], multi-agent systems [2] and cloud computing [3] are types of distributed envi-
ronments where usage of economic mechanisms is seen as promising. Those eco-
nomic mechanisms are designed to solve tasks like resource management and
scheduling of user jobs in a transparent and efficient way. Within the context of
any used economic model the interests of different participants of a distributed
computing environment (such as end-users or node owners) are often contradicto-
ry. Since the resources of distributed environment such as Grid are non-dedicated,
it is assumed that node owners may have local job flows (their own tasks) and
global job flow (which is formed by external user jobs) competing for limited
computational resources of the node. Elaboration of pricing rules which are used
to calculate a fee for node computing time usage and take into account user-
required quality of service (QoS) is also a very serious problem [1-3]. An over-
view of various approaches to this problem is given in [4]. Heuristic algorithms
for resource selection based on user-given utility function are described in [5].
Some resource management models offer simple search and selection of resources
required by a user [6] and do not support any optimization. Others do not take into
account features related to global and local job competition, the competition
among users and other characteristics of distributed environments with non-
dedicated computational resources [7]. A resource broker model [1-5] dynamically
employs various economic policies which perform resource management which is
decentralized and application-specific and have two parties: node owners and
brokers representing users. Another common trend is related to virtual organiza-
tions [7-9] with central schedulers providing job-flow level scheduling and
optimization. While former type of resource management is well-scalable, the
simultaneous satisfaction of various application optimization criteria submitted by
independent users is unreachable in essence and also can deteriorate such integral
quality of service rates as total execution time of a sequence of jobs or overall
resource utilization. The latter type, virtual organizations naturally restrict the
scalability. However, scheduling based on uniform and controlled rules for alloca-
tion and consumption of resources makes it possible to improve the efficiency
of resource usage and find a tradeoff between contradictory interests of different
participants.

In this work, we propose two-level model of resource management system
which is functioning within a virtual organization (VO). Resource management is
implemented with a hierarchical structure consisting of a metascheduler and
subordinate job schedulers that are controlled by the metascheduler and in turn
interact with resource managers (e.g., with batch job processing systems). The
application-level optimization begins when job-flow level optimization is finished.
Such a flexible structure coupled with complex metascheduling approach enables
multiaspect resource management and makes possible to control dynamic priority
of job execution, resource selection and provide multicriterial optimization both
on the job-flow scale and for specific job, according to its submitter requirements
and optimization criteria. Hence, we may speak not only of a scheduling algorithm
but rather of a scheduling strategy that is a combination of various methods of

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 291

external and local scheduling. Such a mechanism allows finer control and higher
overall resource management efficiency in a distributed computing environment.
Resource is defined as an abstract computational entity, which can be used for ex-
ecution of one and only one task. The complex set of connected interrelated tasks
form a job. In some applications jobs require co-scheduling and resource co- allo-
cation on several resources [10-13]. In this case resource allocation has a number
of substantial specific features caused by autonomy, heterogeneity, dynamic con-
tent changes, and node failures [6-9]. In our model jobs are submitted to the sys-
tem by end-users. The proposing approach is more or less the same as used in
gLite Workload Management System, where Condor is used as a scheduling mod-
ule [14]. But the significant difference between the approach proposed in this
work and well-known scheduling solutions for distributed environments such as
the Grid [1, 3-7] is the fact that the execution strategy is formed on a basis of for-
malized efficiency criteria, which efficiently allows to reflect economic principles
of resource allocation by using relevant cost functions and solving a load balance
problem for heterogeneous processor nodes. At the same time the inner structure
of the job is taken into account when the resulting schedule is formed. Thus, two
approaches are uniquely combined in a proposed two-tier model.

This work is organized as follows. Section 2 overviews model components and
metascheduling workflow. In section 3 a strategy search is formalized. Section 4
contains simulation results. Section 5 summarizes the work and describes further
research topics.

2 Basic Notions and Informal Model Components Description

Let us define basic model components presented in this work.

• VO, that defines resource co-allocation dispatching strategies, pricing policies

and resource load-balancing mechanisms.
• Heterogeneous hierarchical computational environment that contains

computational resources (Grid nodes, CPUs or others) with different
performance indices. Each resource is considered as non-dedicated (i.e. it can
have its own internal schedule and these schedules are sent to application-level
schedulers upon request).

• Metascheduler, which implements resource management strategies and policies
of the virtual organization.

• Application-level schedulers that analyze internal job structure and schedule
single tasks.

The VO in our model of distributed computational environment includes three in-
dependent parties with their own interests.

• End-users of services provided within the VO such as computation services.

End-users take steps to make resource requests to the environment, according
to resource performance, time and budget estimations needed for running cus-
tom user jobs.

292 V. Toporkov et al.

• VO administrators that set up resource usage policies to optimize scheduling
and improve load balance. The administrators control metascheduler process
running in the environment which is in fact the part of VO infrastructure soft-
ware. Thus they are directly responsible for managing the parameters of higher
level resource management.

• Owners of computational nodes that comprise the environment network and
hardware base of the distributed computing environment. The owners offer part
of their nodes computing time to VO for a fee. Computational nodes provide
the only type of distributed resources used in our model.

Each computational node of the heterogeneous environment is mapped to a com-
putational resource line in the metascheduler resource management routine. Sev-
eral resource lines are combined into a virtual resource domain. Each resource line
has two static attributes which are its performance P and its base price tag F for

a computing time unit. The performance is an inherent parameter of a node and
the base price tag is assigned by its owner. The dynamic characteristic of a node is
represented with its local schedule which is a list of slots available for reservation.
This list is sent to metascheduler by request. A slot is a continuous interval of time
and is described with three parameters: its start time, its length and its fee [10-12].
The fee is calculated when the metascheduler applies its pricing policies taking in
account resource type, slot length etc.

A resource request is a set of a few constraints determined by a user which cor-
respond to the properties of the respective user job. They include:

a) minimal performance requirement for computational nodes, minP ;

b) maximal price tag for a single timeslot, maxF ;

c) number n of simultaneously reserved timeslots;
d) minimal slot length;
e) the internal structure of a job as a directed acyclic graph (DAG), where

vertices represent single tasks and edges represent data dependencies [13];
f) deadline for the job execution.

A job may require more than one timeslot if it includes several segments that can
be executed in parallel way, for instance. Then the user specifies the number of re-
served timeslots and minimal performance requirement that applies for them all.
The whole job budget is determined by the timeslot number and the maximum
price per timeslot. The minimal timeslot length requires an additional explanation.
This is the minimal time estimated by the user which is required to complete job
execution given the performance of the nodes meet the minimal requirement

minP . Hence, the metascheduler and the user share the responsibility since the

probability of being run successfully for a job equally depends on primary user es-
timates and overall scheduling quality.

The hierarchical model of the computational environment implies two-tier
scheduling (Fig. 1). On the job-flow level the set of independent jobs is distributed
between resource domains according to dispatching strategies and economic

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 293

criteria. Schedule on this level is defined by the metascheduler as a slot set for
each job, which is optimal in terms of a whole job set. Application-level schedu-
lers receive the list of resources which were meant to execute the job on and a
strategy, which defines the rule used to execute tasks of a concrete job. On this
level an optimal slot and specific resource are defined for each single task in a job,
thus, making it possible to take internal job structure into account. On the job-flow
level all end-user jobs are initially submitted into the global queue. The metasche-
duler can manage one or more job-flows which become sub-queues of the global
queue. The mechanism of distribution of jobs between job-flows can be random or
based on current load and actual efficiency of scheduling in certain job-flows.
Scheduling process in each job-flow is performed by identical scheduling in-
stance. We consider a single job-flow case.

The metascheduler works in cycles which are quanta of its process. For each
cycle it has following information.

1. Information about distributed computing environment as a set of resource

lines.
2. The global job queue.

What it needs then is a batch of jobs which is a ranked job list and a subset of
available slots for a specific virtual resource domain and a certain timeframe
which is called a scheduling interval. The length of the batch and the scheduling
interval are parameterized by VO administrators.

Jobs are fetched into the batch accordingly to several variables, such as the
maximum price tag, deadline, and the number of failed scheduling attempts for a
job. These variables being weighted and added up determine job rank according to
which it takes a position closer to head or tail of a batch.

The preparation phase ends and the actual scheduling process is executed as
follows (see Fig. 1).

1. The metascheduler analyzes available slots and finds an optimal slot
combination to accommodate every job in a batch using economic criteria. The
budget and the deadline defined by the end-user are considered during this step.
The algorithms for this step were detailed in [10-12].

2. After the domain is determined metascheduler defines the strategy for
each job. For example as shown on Fig. 1, the user, who has sent the job i has the
higher budget than the one who has sent the job k. The strategy for i may be
expressed as “execute as soon as possible” while the strategy for k may be
expressed as “execute as late as possible within the defined deadline”. These jobs
are later sent to application-level schedulers and the application-level scheduling
begins.

3. Application-level schedulers query internal schedules for all the resources
which were selected during step 2 for each job, analyze the job DAG and form a
resulting schedule for every task according to the strategy from step 2. These
schedules must support interruptions and delays and should be optimal in terms of
the defined criteria (i.e. cost or resource load). The criterion for the job i would

294 V. Toporkov et al.

be to minimize execution cost within the defined budget, criterion for the job k
would be to maximize average resource load while meeting the defined deadline.
As shown on Fig. 1, jobs i and k are scheduled to be executed on the same set
of resources at once.

4. Application-level schedulers are guaranteeing that there are no collisions
between the tasks which were scheduled during step 3 and local tasks, which may
have priority over the job-flow from step 1.

Fig. 1 Model components

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 295

3 Formalization of Scheduling

Let us note a global resource set { }, 1,.., ,g pR r p M= = , which includes all re-

sources. A global job-flow is a set of jobs received by the metascheduler in time:
{ },I,..i,G,T,c,lFL iiiig ,1== where the job i is represented as il – the amount of

resource slots required, ic - the maximal budget end-user is ready to allocate for

execution of the job, iT – deadline, iG – the job DAG. Metascheduler at any time

moment may query each resource, receive its local schedule and build a set of
slots gtS – idle time intervals.

Let us introduce a set of strategies },..,1,{ LlstST l == , which are based on

economic criteria and are defined by Grid-managers and developers. Let SL be a
set of K slots suitable to execute a subset of jobs gp FlFL ⊆ . A slot set is consi-

dered as suitable for the job i if the execution is possible in terms of the resource
number, the budget ic and the deadline iT . It is assumed that for every job there

is at least one suitable slot set },..,1{,, KkkslSLsl ii ∈=∈ .

On a job-flow level for each job the metascheduler aims at finding a slot set isl

and a strategy ist for which the value of the function)(ii slg , that defines wheth-

er the slot set is being effective for the job i , would be optimal [11]. The internal
job structure iG is not taken into account at this time. The mechanism to define

)(ii slg which was developed in the previous works [10-12] is now improved.

According to the resource request it is required to find a “window” with the fol-
lowing description: n concurrent time-slots providing resource performance rate
at least P and maximal resource price not higher than maxF should be reserved

for a time span iT (the resource request type was described in more detail above).

The length of each slot in the window is determined by the performance rate of the
node on which it is allocated. Thus as a result we have a window with a “rough
right edge” (Fig. 2). In addition, the criterion of selecting the most suitable set of
slots could be specified. This could be the minimum cost, the minimum runtime
or, for example, the minimum power consumption criterion. The window search is
performed on the list of all available system slots sorted by their start time in as-
cending order (this condition is necessary to examine every slot in the list and for
operation of search algorithms of linear complexity [10-12]).

The scheme of a search for a window that meets the requirements and effective
by the given criterion can be represented as follows.

1°. From the list of available system slots the next suitable slot ks is extracted

and examined. Slot ks suits, if following conditions are met:

a) resource performance rate () PsP k ≥ for slot ks ;

b) slot length (time span) is enough (depending on the actual performance of
the slot's resource) () () PsPTsL kik /∗≥ .

296 V. Toporkov et al.

If conditions a) and b) are met, the slot ks is successfully added to the window

list.
2°. A current window start time is a set equal to the start time of the last added

slot.
3°. Slots whose length has expired considering new window start time lastT are

removed from the list. The expiration means that remaining slot length ()ksL′ ,

calculated like shown in step 1°b, is not enough assuming the k -th slot start is
equal to the last added slot start: () ()()() () PsPsTTTsL kkik /last −+<′ , where

()ksT is the slot's start time. Any combination of the remaining slots can form a

window of necessary length.
4°. If the number of slots m in the current window is greater or equal to n , it is

required to select n slots, effective on the specified criteria and at the same time
satisfying the total cost and deadline restrictions. Suppose the window W of size
n with a target criterion value equal to crW was selected. The problem of select-
ing efficient window consisting of n slots in the case of nm > will be described
below.

5°. The target criterion value crW of window W is compared with the 'cr –
the current best target criterion value for all previously found windows. If

rccrW ′< (in case of a minimization problem) the window W announced as a
new window-candidate and crW becomes the new best criteria value: crWrc =′ .
Go to step 1°.

6°.The algorithm ends after the last available slot is processed. The result of the
algorithm is the window-candidate with the best target criteria value.

Fig. 2 Window with a “rough right edge”

The described algorithm can be compared to the algorithm of maxi-
mum/minimum value search in an array of flat values. The expanded window of
size m “moves” through the ordered list of available system slots. At each step any
combination of n slots inside it (in case when mn ≤) can form a window that
meets all the requirements to run the job. The effective on the specified criteria
window of size n is selected from this m slots and compared with the results in

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 297

the previous steps. By the end of the slot list the only solution with the best criteria
value will be selected. Consider the problem of selecting a window of size n with
a total cost no more than S from the list of nm > slots (in case when nm = the
selection is trivial). The maximal budget is counted as nFtS s= , where st is a

time span to reserve and n is the necessary number of slots. The current extended
window consists of m slots msss ,...,, 21 . The cost of using each of the slots ac-

cording to their required length is: mccc ,...,, 21 . Each slot has a numeric characte-

ristic iz the total value of which should be minimized in the resulting window.

Then the problem could be formulated as follows:

min...2211 →+++ mm zazaza , Sca...caca mm ≤+++ 2211 ,

na...aa m =+++ 21 , { } mrar ,...,1,,10 =∈ .

Additional restrictions can be added, for example, considering the specified value
of deadline. Finding the coefficients maaa ,...,, 21 each of which takes integer

values 0 or 1 (and the total number of ‘1’ values is equal to n), determine the
window with the specified criteria extreme value. Job-flow level scheduling ends
here.

Application-level schedulers receive following input data.

• The optimal slot set sl and the description of all corresponding resources:

gj RJjrR ⊆== },..,1,{ .

• The directed acyclic information graph { }E,VG = , where }n,..i,v{V i 1== is

a set of vertices that correspond to job tasks, for each of those execution time

estimates 0
ijτ on each of resources in R are provided, E – is a set of edges

that define data dependencies between tasks and data transfer time intervals.
• The dispatching strategy st , which defines the criterion for a schedule

expected
• The deadline iT or the maximal budget ic for the job (depends on a dispatching

strategy and)(ii slg .

The schedule which is being defined on an application level is presented as fol-

lows: []{ }, , , 1,..,i i iSh s f i nα= = , where],[ii fs is a time frame for a task i of a

job and iα - defines the selected resource. Sh is selected in the way that the crite-

rion function)(ShfC = achieves an optimum value. The critical jobs method

[13] which is used to find the optimal schedule and to define f consists of three

main steps.

298 V. Toporkov et al.

• Forming and ranging a set of critical jobs (longest sets of connected tasks) in
the DAG.

• Consecutive planning of each critical job using dynamic programming
methods.

• Resolution of possible collisions.
Detailed algorithm description is presented in [13].

4 Simulation Results

The two-tier model described in the sections 2 and 3 was implemented in a simu-
lation environment on two different and separated levels: on the job-flow level,
where job-flows are optimally distributed between resource domains and on the
application level, where jobs are decomposed and each task is executed in an
optimal way on a selected resource.

4.1 Job-Flow Level Scheduling Simulation Results

Job-flow level metascheduling was simulated in a specially implemented and
configured software that was written to test the features of the two-tier resource
management.

An experiment was designed to compare the performance of our job-flow level
metascheduling method with other approaches such as FCFS and backfilling. Let
us remind that our scheduling method detailed in works [10] and [11] involves
two stages that backfilling does not have at all, namely, slot set alternative genera-
tion and further elaboration of specific slots combination to optimize either time or
cost characteristic for an entire job batch. Backfilling simply assigns “slot set”
found to execute a job without an additional optimization phase. This behavior
was simulated within our domain with random selection from an alternative slot,
each job having one or more of them. So two modes were tested: with optimiza-
tion (“OPT”) and without optimization (“NO OPT”).

The experiment was conducted as follows. Each mode was simulated in 5000
independent scheduling cycles. A job batch and environment condition was rege-
nerated in every cycle in order to minimize other factor influence. A job batch
contained 30 jobs. Slot selection was consistent throughout the experiment. If a
job resource request could not be satisfied with actual resources available in the
environment, then it was simply discarded.

For optimization mode as well as for no-optimization mode four optimization
criteria or problems were used:

1. Maximize total budget, limit slot usage.
2. Minimize slot usage, limit total budget.
3. Minimize total budget, limit slot usage.
4. Maximize slot usage, limit slot budget.

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 299

Results presented in Table 1 apply for the problem 1. As one can see optimization
mode, which is using additional optimization phase after slot set generation wins
against random slot selection with about 13% gain in the problem 1 whose con-
cern is about maximizing total slot budget thus raising total economical output per
cycle and owners' profits.

Table 1 Experimental results for the problem 1: Total budget maximization with limited
slot usage

Mode

Average jobs
being processed

per cycle
(max 30)

Average total
slot cost per
cycle, cost

units

Average
total slot
usage per

cycle, time
units

Average slot usage
limit per cycle,

time units

OPT 20.0 11945.98 421.22 471.14

NO OPT 20.0 10588.53 459.36 471.85

Comparable results were obtained for other problems which are summarized in

Table 2. Optimized values are outlined in light grey.

Table 2 Experimental results for the problems 2-4

Mode Average jobs be-
ing processed per
cycle (max 30)

Average total
budget (slot

cost) per cycle,
cost units

Average to-
tal slot usage

per cycle,
time units

GAIN, %

Problem 1: Maximize total budget, limit slot usage

OPT 20.0 11945.9 421.2
+12.8

NO OPT 20.0 10588.5 459.4
Problem 2: Minimize slot usage, limit total budget

OPT 12.4 7980.4 300.9
+10.6

NO OPT 12.4 7830.9 332.8
Problem 3: Minimize total budget, limit slot usage
OPT 15.1 9242.4 410.057

+6.2
NO OPT 15.3 9813.9 406.612
Problem 4: Maximize slot usage, limit total budget
OPT 15.28 9870.8 416.835

+3.0

NO OPT 15.4 9718.1 404.8

These results are showing the advantage of the metascheduling on the job-flow

level. The next section describes the experiments on the application level.

300 V. Toporkov et al.

4.2 Application Level Scheduling Simulation Results

The experiment results presented in Table 3 shows the advantage of the critical
jobs method usage in a two-tier scheduling model compared to consecutive appli-
cation-level scheduling. Here k=0.75 means that each job is sent to be scheduled
after 75% of the time allocated for the previous one: while the scheduling cost for
a job is more or less the same, 1000 jobs are planned 25% faster.

Consider another experiment: while changing the length of the scheduling in-
terval, we will estimate the proportion of successfully distributed jobs. The length
of the scheduling interval is equal to ,6.2,..,0.1,* == hhlL with step 2.0 , where
l is the length of the longest critical path of tasks in the job and h is a distribu-
tion interval magnification factor. There were carried 200 experiments for each h
(bold points on Fig. 3). Analysis of the Fig. 3 shows that increasing the scheduling
interval (relatively to the execution time of the longest critical path on the nodes
with the highest performance) is accompanied by a significant increase in the
number of successfully distributed jobs. The detailed study of this dependence can
give a priori estimates of an individual job successful distribution probability.

Table 3 Two-tier model vs consecutive application-level scheduling

Parameter Application-level scheduling Two-tier model (k=0.75)
Jobs number 1000 1000
Execution time 531089 time units 399465 time units
Optimal schedules 687 703
Mean collision count 3.85 4.41
Mean load (forecast) 0.1843 0.1836
Mean load (fact) 0.1841 0.1830
Mean job cost 14.51 units 14.47 units

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

1 1,5 2 2,5

Scheduling interval factor, h

Su
cc

es
sf

ul
 J

ob
 d

is
tr

ib
ut

io
ns

 p
ro

po
rt

io
n

Fig. 3 Dependence of the proportion of the successful job distributions on the length of the
distribution interval

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 301

In the next experiment we will consider the dependence of successful distribu-
tions number and the number of collisions per experiment on the level of resource
instances availability. The experiments were performed in conditions of limited
resources using the specific instances of the resources. The number of resources
J in each experiment was determined as NjJ *= , where j – factor (x-axis)

and N – number of tiers in the graph. Fig. 4 shows results of the experiments
with different j values and 7,5,3=N .

The obtained dependencies (Fig. 4) suggest that the collisions number depends
on the resources availability. The lower the number of resource instances and the
greater the number of tiers in the graph – the more collisions occurred during the

0,4

2,4

4,4

6,4

8,4

10,4

12,4

1,8 2,8 3,8 4,8 5,8

Available resource instances factor, j

A
ve

ra
ge

 n
um

be
r

of
 c

ol
li

si
on

s

 p
er

 J
ob N=3

N=5

N=7

(a)

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

1,8 2,8 3,8 4,8 5,8

Available resource instances factor, j

Su
cc

es
sf

ul
 J

ob
 d

is
tr

ib
ut

io
ns

pr

op
or

ti
on

N=3

N=5

N=7

(b)

Fig. 4 Simulation results: resource dependencies of collisions number (a) and successful job
distribution proportion (b)

302 V. Toporkov et al.

scheduling. At the same time the number of resource instances affects the success-
ful distribution probability. With a value of 4>j (that is, when the number of

available resource instances is more than 4 times greater than the number of tiers
in the graph) all cases provide the maximum value of successful distribution
probability. These results are subject of future research of refined strategies on a
job-flow level.

(a)

(b)

(c)

(d)

Fig. 5 Resource utilization level balancing: utilization maximization with 66.1=h (a) and

2.1=h (b), utilization minimization and distribution cost maximization (c), distribution cost
minimization (d)

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 303

The next series of experiments aimed at identifying the priorities of selecting

certain resource instances with different optimization criteria and various restric-
tions. Figures 5 (a-d) show resource utilization levels in the following problems: re-
source load balancing, distribution cost minimization and maximization. The sche-
duling interval is defined as 66.1,* == hhlL and 2.1 , where 1 is execution time
of the longest critical path and h is a scheduling interval factor. Processors with
greater number have relatively lower cost and performance level. To maximize av-
erage resource utilization the priority is given to processors with relatively low per-
formance (Fig. 5 (a)). In case of a shorter scheduling interval (2.1=h) there is
need to use resources with higher performance (Fig 5 (b)). During the resource uti-
lization minimization and distribution cost maximization the priority is given to the
nodes with higher performance and usage cost (Fig. 5 (c)). During the distribution
cost minimization the priority is given to processor with low performance level and
correspondingly low cost. These experiments show how strategies defined on a job-
flow level are implemented on an application level, how flexible the strategies can
be and how can resource load be controlled by the metascheduler.

5 Conclusions and Future Work

In this work, we address the problem of independent job-flow scheduling in hete-
rogeneous environment with non-dedicated resources.

Each job consists of a number of interrelated tasks with data dependencies. Us-
ing the combination of existing methods with a number of original algorithms the
resulting schedules are computed. These schedules meet the defined deadlines and
budget expectations, provide optimal load-balance for all the resources and fol-
lows virtual organization’s strategies, thus, allowing to achieve unprecedented
quality of service and economic competitiveness for distributed systems such as
Grid. The experiments which were conducted are showing the efficiency of me-
thods developed for both job-flow and application level scheduling. The model
proposed is showing the way these methods and advantages can be converged in
one place making it possible to achieve the main goal.

Future research will include the simulation of connected job-flow and applica-
tion levels and experiments on real Grid-jobs in order to get finer view on advan-
tages of the approach proposed.

Acknowledgements. This work was partially supported by the Council on Grants of the
President of the Russian Federation for State Support of Leading Scientific Schools
(SS-316.2012.9), the Russian Foundation for Basic Research (grant no. 12-07-00042), and
by the Federal Target Program “Research and scientific-pedagogical cadres of innovative
Russia” (State contracts 16.740.11.0038 and 16.740.11.0516).

References

[1] Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling parallel applications on utility Grids:
time and cost trade-off management. In: Proc. of ACSC 2009, Wellington, New
Zealand, pp. 151–159 (2009)

304 V. Toporkov et al.

[2] Tesauro, G., Bredin, J.L.: Strategic sequential bidding in auctions using dynamic
programming. In: Proc of the First International Joint Conference on Autonomous
Agents and Multiagent Systems: part 2, pp. 591–598. ACM, New York (2002)

[3] Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious schedul-
ing of HPC applications on distributed cloud-oriented data centers. J. of Parallel and
Distributed Computing 71(6), 732–749 (2011)

[4] Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management and
scheduling in Grid computing. J. of Concurrency and Computation: Practice and
Experience 14(5), 1507–1542 (2002)

[5] Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid
Computing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002.
LNCS, vol. 2537, pp. 128–152. Springer, Heidelberg (2002)

[6] Voevodin, V.: The Solution of Large Problems in Distributed Computational Media.
Automation and Remote Control. Pleiades Publishing, Inc. 68(5), 773–786 (2007)

[7] Kurowski, K., Nabrzyski, J., Oleksiak, A., et al.: Multicriteria aspects of Grid
resource management. In: Nabr-zyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid
Resource Management. State of the Art and Future Trends, pp. 271–293. Kluwer
Acad. Publ. (2003)

[8] Toporkov, V.: Application-Level and Job-Flow Scheduling: An Approach for
Achieving Quality of Service in Distributed Computing. In: Malyshkin, V. (ed.) PaCT
2009. LNCS, vol. 5698, pp. 350–359. Springer, Heidelberg (2009)

[9] Toporkov, V.V.: Job and application-level scheduling in distributed computing.
Ubiquitous Comput. Commun. J. 4, 559–570 (2009)

[10] Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource selection
al-gorithms for economic scheduling in distributed systems. Procedia Computer
Science 4, 2267–2276 (2011)

[11] Toporkov, V., Yemelyanov, D., Toporkova, A., Bobchenkov, A.: Resource
Co-allocation Algorithms for Job Batch Scheduling in Dependable Distributed
Computing. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak,
T. (eds.) Dependable Computer Systems. AISC, vol. 97, pp. 243–256. Springer,
Heidelberg (2011)

[12] Toporkov, V., Bobchenkov, A., Toporkova, A., Tselishchev, A., Yemelyanov, D.:
Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing.
In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 368–383. Springer,
Heidelberg (2011)

[13] Toporkov, V.V., Tselishchev, A.S.: Safety scheduling strategies in distributed
computing. Intern. J. of Critical Computer-Based Systems 1(1/2/3), 41–58 (2010)

[14] Cecchi, M., Capannini, F., Dorigo, A., et al.: The gLite Workload Management
System. Journal of Physics: Conference Series 219(6), 062039 (2010)

	Dependable Strategies for Job-Flows
Dispatching and Scheduling in Virtual Organizations of Distributed Computing Environments
	Introduction
	Basic Notions and Informal Model Components Description
	Formalization of Scheduling
	Simulation Results
	Job-Flow Level Scheduling Simulation Results
	Application Level Scheduling Simulation Results

	Conclusions and Future Work
	References

