
W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 273–287.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Implementing AES and Serpent Ciphers in New
Generation of Low-Cost FPGA Devices

Jarosław Sugier

Abstract. New generations of FPGA devices that are being continuously devel-
oped provide the designers with extended capabilities and create new options for
implementation of contemporary ciphers. This work presents implementations of
the two best algorithms of the AES contest – Rijndael and Serpent – in Spartan-6
devices from Xilinx and compares them with equivalent effects that were obtained
in architectures of the previous generation. The included results allow for evalua-
tion of implementation cost vs. efficiency in contemporary FPGA chips for these
two cryptographic algorithms and also provide some conclusions about how the
situation changes with development of new, more powerful programmable
architectures.

1 Introduction

Dependable operation of numerous contemporary computer systems rely on data
protection and this is assured with appropriate encryption methods. Among sym-
metric ciphers with secret key the AES algorithm is used as a standard solution
in most of the applications with Serpent cipher being the main comparable
alternative.

In this work we investigate various options for low-cost hardware implementa-
tions of the two ciphers and especially look at the changes that were caused in this
area by new generation of Spartan-6 family of FPGA devices from Xilinx. The
text is organized as follows: after presenting the two algorithms in chapter 2, the
various hardware organizations of the cipher unit are introduced in chapter 3.
Finally, chapter 4 discusses size and performance parameters that were obtained
after implementation of all the variants in Spartan-6 and, for comparison, in
Spartan-3 chips.

Jarosław Sugier
Wrocław University of Technology
Institute of Computer Engineering, Control and Robotics
ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
e-mail: jaroslaw.sugier@pwr.wroc.pl

274 J. Sugier

2 The AES Contest: Rijndael vs. Serpent

The first widely used encryption algorithm, the Data Encryption Standard (DES),
was developed by IBM and standardized by US National Institute of Standards
and Technology (NIST) in 1977. In mid-90s its strength was seriously questioned
by successful attacks ([13]) and in January 1997 NIST issued a first call for a suc-
cessor algorithm, to be called an Advanced Encryption Standard or AES. In re-
sponse 15 new cipher proposals were submitted from several countries. After two
conferences organized to promote public examination of the methods (AES1,
August 1998, and AES2, March 1999) the five finalists were announced in August
1999. Their scores in a voting which was organized during the AES2 conference
were as follows:

– Rijndael: 86 positive votes, 10 negative;
– Serpent: 59 positive, 7 negative;
– Twofish: 31 positive, 21 negative;
– RC6: 23 positive, 37 negative;
– MARS: 13 positive, 83 negative.

After the last AES3 conference in April 2000, the final decision was announced
which was consistent with the AES2 poll: the Rijndael was chosen as the winner.
Under the new name of AES it was announced the U.S. Federal Information
Processing Standard 197 (FIPS 197) in November 2001 ([10]).

Serpent and Rijndael belong to the same class of round-based cipher algorithms
and bear significant resemblance. Both algorithms are symmetric block ciphers
that are examples of substitution-permutation networks (SPN). Their processing
consists in a set of rounds, with every round being a specific set of elementary op-
erations executed repeatedly over a given block of data. Independently from ci-
pher (data) path there is a separate processing path whose task is to provide every
round with its individual key, generated form user-supplied secret external key.

To summarize the distinction between the two ciphers shortly, it is often said
that Rijndael is faster (having fewer rounds) but Serpent is more secure. After the
NIST final decision most of the attention concentrated on Rijndael for obvious
reasons, but second-to-the-winner Serpent still deserves some consideration be-
cause of its advantages that won significant appreciation during the AES contest.
It is worth noting that in the AES2 ballot it was the Serpent that received the least
number of negative votes.

2.1 The AES (Rijndael) Algorithm

The Rijndael cipher ([10]) was initially developed by two Belgian cryptographers,
Joan Daemen and Vincent Rijmen, and the finally approved AES standard, strictly
speaking, is its subset with fixed block size of 128b[it] and allowed key sizes of
128, 192 or 256b. To focus the discussion in this paper we consider exclusively
the AES-128 version, i.e. we assume size of the key to be 128b.

Implementing AES and Serpent Ciphers in New Generation 275

w4i

w4i+2

w4i+3

w4i+1

Ki

Si
16×SBox8b

Mix Col.

R
ou

nd
 R

i

w4i–1
w4i–2
w4i–3
w4i–4

R
i –

 1

32b 128b

 Key expansion Cipher path

Si+1

4×
SB

ox
8b

Shift Rows

AES

w4i

w4i+2

w4i+3

w4i+1 Ki

32
×S

B
ox

4b

Bi

32×SBox4b

Linear Tr.

R
ou

nd
 R

i

w4i–1

w4i–2

w4i–3

w4i–4

w4i–5

w4i–6

w4i–7

w4i–8

R
i –

 1

R
i –

 2

32b 128b

 Key schedule Cipher path

Bi+1

Serpent

Fig. 1 Data flow in a single round of the AES (left) and Serpent (right) ciphers

Since AES allows only one block size of 128b, it always operates on 16B[yte]
chunks of data that form a 4×4B array, termed the State. For 128b key, processing
of the State during the encryption is divided into exactly 10 rounds plus one auxil-
iary executed at the beginning of the process.

Let P be a 128b plaintext, Si – a state block that enters the i-th round Ri, K – ex-
ternal (user) key, Ki – round key, C – encoded ciphertext. The complete data path
of the AES can be expressed with the following equations:

 S1 := P ⊕ K
 Si+1 := MC(SR(SBox (Si))) ⊕ Ki i = 1 … 9
 C := SR(SBox (S10)) ⊕ K10

That is, the initial round (numbered as 0) consists only of addition of the external
(user) key while every regular round number 1 to 9 contains four elementary state
transformations executed in specific order: byte substitution SBox, row shifting SR,
column mixing MC and addition (XOR) of the round key. The last round (number
10) does not include column mixing but the other three operations remain un-
changed. Additionally, rounds 1÷10 use extended keys that need to be generated
from the user key by a separate key expansion routine. Execution of a regular
round (1÷9), along with generation of its key, is shown in the left part of Fig. 1.

The key expansion routine, in turn, operates on 32b words wi, i = 0..43, which,
after computation, are directly copied to the round keys Ki. The first four words
are initialized with bits from the user key:

{w0, w1, w2, w3} := K

and then every group of four words that creates one round key is computed as fol-
lows for i = 1..10:

276 J. Sugier

 w4i := SBox(w4i-1 <<< 8) ⊕ Rcon[i] ⊕ w4i-4
 w4i+1 := w4i ⊕ w4i-3
 w4i+2 := w4i+1 ⊕ w4i-2
 w4i+3 := w4i+2 ⊕ w4i-1

 Ki := {w4i, w4i+1, w4i+2, w4i+3 }

where <<< denotes left rotation (always by 8 bits, in this case), the SBox() trans-
formation uses exactly the same substitution boxes as the cipher path, and the
Rcon is a static vector of ten 32b constants defined in the standard.

2.2 The Serpent Algorithm

Serpent ([1] – [3]) was developed by Ross Anderson (University of Cambridge
Computer Laboratory), Eli Biham (Technion Israeli Institute of Technology), and
Lars Knudsen (University of Bergen, Norway). In the version that was submitted
for the contest the method operates on 128b blocks of data with 256b external key.
If the user supplied key is shorter (call for the standard allowed also key lengths of
128 and 192b) simple expansion procedure is applied which ensures that the
method always starts with the full 256b key. The transformation flow is divided
into 32 almost identical rounds with every round using its own 128-bit round key
generated by the key schedule; since the last round needs two keys, total of 33 dif-
ferent round keys are required.

In addition to the symbols defined above, now let the data block that enters the
i-th round is denoted as Bi. Before the plaintext block enters the procedure a
special bit reordering – so called Initial Permutation IP – is performed (this reor-
dering has no cryptographic significance and was introduced only for bit-sliced
implementations). The plaintext P after permutation gives block B0, which is the
input to the first round number 0. The output of the last round, R31, after applica-
tion of the Final Permutation FP (which is an inverse of IP) gives the ciphertext C.

The complete data path from the plaintext P to the ciphertext C can be formally
represented by a sequence of the following equations:

 B0 := IP(P)
 Bi+1 := LT(SBoxi mod 8(Bi ⊕ Ki)), i = 0 … 30
 B32 := SBox7 (B31 ⊕ K31) ⊕ K32

 C := FP(B32)

Operation of a single round, together with generation of its key, is shown in the
right part of Fig. 1. As the first transformation, the block Bi is XOR-ed with the
round key Ki that is supplied by the key schedule, and then the resulting vector is
passed through substitution boxes. The specification defines 8 different S-Boxes
numbered 0 … 7 with each round Ri using S-Box number i mod 8. The vector cre-
ated by S-Boxes finally undergoes linear transformation LT, giving block Bi+1 that
is the input to the next round. In the last round R31 the linear transformation is

Implementing AES and Serpent Ciphers in New Generation 277

replaced with XOR operation with the extra last key K32 and therefore two keys
are required in this round, to the total of 33 keys in the whole process.

The key generation in Serpent is no less involved. The schedule generates first
a set of 32-bit prekeys wi which are later used for computation of round keys. The
starting 8 prekeys numbered from –1 to –8 are filled with bits of the external
(user) key K (after its expansion to 256b, if necessary):

{w–1, w–2, … w–8} := K

and then 132 prekeys w0…w131 are generated by the following affine recurrence:

wi := (wi–1 ⊕ wi–3 ⊕ wi–5 ⊕ wi–8 ⊕ φ ⊕ i) <<< 11

where φ is the fractional part of the golden ratio () 215 + represented as 32-bit

vector (0x9E3779B9 in hexadecimal notation).
The final round keys are calculated from the prekeys using the same set of 8

substitution boxes that are defined for the cipher path. The general rule is that the
key Ki is computed from a group of four prekeys w4i, w4i+1, w4i+2 and w4i+3 that un-
dergoes bit substitution and reordering:

 K0:= IP(SBox3(w0, w1, w2, w3))
 K1:= IP(SBox2(w4, w5, w6, w7))
 …
 K31:= IP(SBox4(w124, w125, w126, w127)
 K32:= IP(SBox3(w128, w129, w130, w131)

To avoid repetitive use of the same substitution as later in the round, during com-
putation of Ki the schedule uses S-boxes number (3 – i) mod 8.

3 Implemented Architectures

Apart from relative simplicity of elementary operations at the binary level, ease of
hardware implementation of the AES and Serpent algorithms comes from the fact
that their processing flow is composed of (almost) identical rounds that are repeat-
edly executed over a given block of data. This leads to many potential processing
schemes that blend different flavours of combinational, pipelined and iterative
architectures ([4] – [9], [11] – [12], [14] – [16]).

In this study efficiency of hardware implementation of both ciphers will be
tested using four essential types of processing: combinational, half (cipher-only)
pipelined, fully (both cipher and key) pipelined, and iterative. For brevity, every
implementation will be given a name starting with a letter A (for AES) or S (for
Serpent) with indication of its type that follows: C (combinational), HP (half, i.e.
cipher-only pipelined), FP (fully, i.e. both cipher & key, pipelined) and I (itera-
tive). Since the AES pipelined architectures (AHP and AFP) can be optionally im-
plemented with or without utilization of block-RAM resources in the FPGA chip,
this leads to the total of 10 different implementations which will be investigated.

278 J. Sugier

3.1 Combinational Dataflow

In this organization hardware structure closely follows flow of the data that is be-
ing encoded. All rounds of the cipher (11 for AES and 32 for Serpent) are imple-
mented as separate hardware modules that create a continuous combinational path
from the input registers (plain text P) to the output registers (cipher text C). In-
between, the module operates as a combinational function that maps 128 + 128 =
256 input bits (data + key) into 128 output bits (cipher). The only registers used in
this design are located in the P and C ports. The K input is not registered thus
only the P → C path is taken into account by the implementation tool during
optimization of the propagation speed.

In both cases (AC and SC) the design was specified by porting the specification
to the VHDL language using strict RTL style: there were no instances of library
elements, no sequential (procedural) descriptions were inserted and the code was
free from references to any specific hardware attributes. After definition of all in-
ternal signals as std_logic_vector type, particular elementary operations
were defined as separate entities with exception of key mixing, which was imple-
mented simply with built-in xor operator at the place of their occurrence. Substi-
tution boxes, both 8b (AES) and 4b (Serpent), were defined according to general
templates recommended for ROM specification. AES row shifting and rotations
required in key expansion or key schedule were treated as simple bit reordering in
std_logic_vector signals and expressed with concurrent signal assignments
(in hardware implementations, as opposed to software realizations, these trans-
formations are done exclusively in routing and actually do not require any logic).
The other operations: column mixing MC and linear transformation LT at the bi-
nary level end up as pure XOR networks and were represented with due number of
concurrent assignments. The cascade of the modules that implement individual ci-
pher rounds was easily constructed with a single for…generate statement
which improved greatly conciseness and clarity of description.

A diagram describing structure of these architectures would mostly reproduce
Fig. 1 hardly introducing any new information and, for brevity of this work, it is
not included.

3.2 Cipher-Only Pipelining

The general idea of pipelining is to introduce evenly spaced registers along the
combinational path so that in its synchronized operation several blocks of data can
be processed at the same time during every clock cycle. In the combinational ar-
chitectures of both ciphers the natural points of placing the pipeline registers are
the signals Si / Bi that cross boundaries of cipher rounds; this transforms each
round into one pipeline stage. In technical terms such organization can be inter-
preted as a complete outer loop pipelining ([5]) and yields 11 pipeline stages for
AES vs. 32 for Serpent. This means that valid output appears 11 or 32 clock cy-
cles after input and although it does not improves the latency (which is actually
worse than in the case of combinational propagation due to non-zero flip-flop
switching time and non-ideal pipelining) the throughput (amount of data processed

Implementing AES and Serpent Ciphers in New Generation 279

in unit time) rises enormously thanks to the parallel processing of multiple data in
pipeline stages.

In this version of the architecture the key generation path remains combina-
tional and this fact slows down changes of the external key during operation of the
unit: loading a new key input invalidates the pipeline contents for 11 or 32 clock
ticks until new data fill all the cipher stages. This may exclude this architecture
from environments with frequent key changes but if the key can remain constant
most of the time it is the optimal organization in terms of both speed and size.

Adding large amount of registers (128b × number of pipeline stages) may seem
to be a substantial increase in resource usage but in case of FPGA architectures
this increase is easily absorbed by the array. In these devices a flip-flop is included
in every logic cell right at the output of combinational configurable element
(Look-Up Table, LUT) so the only actual difference is that now some of them are
used for registering the LUT signal while in combinational organization they were
left unused. This usually does not affect the total number of occupied logic cells
but just increases their utilization.

3.3 Full Pipelinaing

The drawback of the half-pipelined architecture – incompatibility with applica-
tions that require frequent changes of the key – can be a significant weakness in
many applications. In general it is not recommended to encode large amounts of
data with the same key because the attacker could get some information about it
without breaking the cipher, namely by statistical analysis of the encoded stream.

To prepare the encryption unit for loading a new key with every block of data
the key generation path should be pipelined in an equivalent way as the cipher
path. More precisely, the pipelined key generator should provide the cipher stage
with relevant key together with data which leads to conclusion that the key must
be computed one clock cycle before the data is processed.

w4i

R
ou

nd
 R

i

w4i–1

w4i–2

w4i–3

w4i–4

w’4i–5

w’4i–6

w’4i–7

w’4i–8

R
i

–
1

R
i –

 2

 Key schedule Cipher path

Bi

Bi+1

w’4i

w4i+1 w’4i+1

w4i+2 w’4i+2

w4i+3 w’4i+3

Ki

32
×S

B
ox

4b

32×SBox4b

Linear Tr.

Fig. 2. Single round in fully pipelined implementation of the Serpent algorithm (SFP)

280 J. Sugier

There is no problem with such organisation of the AES cipher: since in the
first pipeline stage the round 0 uses external (user) key, its special preparation
is not required. Instead, during the first clock cycle when the S1 vector is com-
puted, simultaneously the K1 key can be prepared form K so that it is ready
for round R1 in the next cycle. The consecutive rounds work in the same way:
Ri (i.e. Si+1) is computed in parallel, simultaneously with preparation of
the Ki+1.

Looking at the diagram in Fig. 1, the registers would be added right in the
places of signals wi and Si. Thus, in case of the AES, the workflow of cipher and
key paths was mapped in a natural way onto operation of the two pipelines in
hardware.

In Serpent, in turn, situation at first looks similar: since computation of the
round keys depends on prekeys wi, these signals must be stored in pipeline
registers. But the first problem is that, due to more complex key data depend-
ency, computation of Ki in stage i depends on prekeys from not only stage
i – 1 but also i – 2, so additional registers – denoted as w’ – are required for
storing previous values of w and feeding them two stages down the pipeline.
This factor alone doubles the number of the key schedule registers. Moreover,
w’ registers are not located at LUT outputs – they are loaded with data from
another registers – which is not an advantageous configuration for FPGA
implementation.

Secondly, the last cipher round – R31 – needs two keys, so it must be split into
two stages: the first one contains key mixing with bit substitution and the second
one performs only final key mixing. An alternative solution – computation of
two keys K31 and K32 in one clock cycle – is not a good option: the key schedule
is relatively complex and a combinational path generating two keys would in-
troduce unacceptable long delay holding back performance of the whole unit.
Splitting the last round into two stages increases the total latency to 33 clock cy-
cles but, compared to solution with 32 stages but with computation of K31 and
K32 in one clock cycle, the shorter clock period compensates this more than
adequately.

Another problem is that the first Serpent’s round does not use unmodified
external key; instead, K0 must be computed in a regular way as any other key and
during that the data in cipher path must idle going through a dummy (empty) stage
added right at the beginning of the pipeline. This adds extra 128 flip-flops (which
is a negligible increase compared to the total resource consumption) but also
extends pipeline length to 34.

Detailed descriptions of different options for pipelining Serpent unit can be
found in [14] along with evaluation of their performance vs. size trade-offs. It was
shown that the final optimum solution is reached after adding registers not only
for wi but also for Ki signals. The resulting architecture is shown in Fig. 2 where
pipeline registers are marked as rectangles. In this organization new computed
values of prekeys w are not only stored in the flip-flops, but in the same cycle they
go through the SBoxes evaluating new Ki value which is latched in the extra

Implementing AES and Serpent Ciphers in New Generation 281

registers. As a result the longest combinational path (which decides about maxi-
mum frequency of operation of the whole unit) now runs from registers Ki to Bi+1
and does not contain any elements belonging to key computation. Within the key
schedule, on the other hand, there are two paths, both originating from w/w’
flip-flops: the first one computes next values of w and the second one extends
additionally through S-boxes to the registers Ki. Such a distribution of the ele-
ments in the combinational paths turned out to be the most balanced configuration
for optimal (highest) performance.

The increase in speed that results from this amendment is accomplished at the
cost of 33×128 = 4224 flip-flops but it was shown that this did not incurred any
increase in total number of occupied logic cells – all the new registers were lo-
cated at the outputs of the LUT elements used for implementation of the SBoxes
and were absorbed in cells already occupied ([10]).

3.4 Iterative Loop

The two iterative architectures proposed in this study – AI and SI – are based on
the structure of one round taken from the fully pipelined architectures (AFP and
SFP). Such a single round was supplemented with necessary multiplexing logic
(loading the data in – looping back – loading the data out) and a simple controller
responsible for counting the repetitions of the loop (round numbers) and super-
vising the multiplexers. The controller, in its minimal form, comprises a single
“idle/busy” register and a round counter. In both architectures number of clock
cycles required for encoding one block of data was identical to the number of
pipeline stages in AFP / SFP implementations. Every clock cycle completes
processing which corresponds to one stage of the pipeline (usually equivalent to
one cipher round, apart from the above discussed exceptions for the Serpent
case).

One issue needs to be pointed out here, though. While in the AES there is just
one SBox transformation used in all rounds in both data and key processing, the
Serpent defines 8 different SBoxes, each one being applied in exactly four rounds
in the cipher path and in another four rounds in the key path. In iterative organi-
zation where just one “universal” round is realized in hardware this means that
the “universal” SBox must be created which includes the contents of all 8 regular
substitution tables and additionally provides extra 3b input for selection signal.
Such a solution is not elegant because, effectively, the SBox becomes a 7-input
function (4b data + 3b selection) in place of a 4-input one, which makes its im-
plementation with FPGA resources notably more complicated. For this reason
one-round iterative implementation is usually not recommended for Serpent; in-
stead it is proposed to implement 8 rounds in hardware with the data block
looped back 4 times during the encoding (8 × 4 instead of 32 × 1). Nevertheless,
such organization was not implemented in this study for consistency of examined
solutions.

282 J. Sugier

4 Implementation Results

All the 4 above architectures were implemented in Spartan-6 and, for comparison, in
the previous family of Spartan-3 devices from Xilinx. There was 8 designs in total (4
for each cipher) and the same code was implemented twice in Xilinx ISE Design
Suite version 13.4, for the two different target devices selected. Implementation was
fully automatic, without any hand-made fine tuning neither in placement nor in lay-
out. Since it turned out that AES pipelined architectures (AHP and AFP) can be op-
tionally implemented with or without utilization of block RAM resources available
in the FPGA chip, this gave the total of 10 different cases. The AHP and AFP
architectures implemented with block RAM are marked with “_B’ suffix.

From Spartan-6 family a middle-sized chip XC6SLX75 was selected as a repre-
sentative test platform and it served this role very well but selection of Spartan-3
device was more difficult. The initial plan was to use Spartan-3E sub family in-
tended for general, logic-optimized projects. As it soon turned out, even the larg-
est 3E chip – XC3S1600E – was too small for combinational and pipelined AES
designs. In other contemporary Spartan-3 families: I/O optimized Spartan-3A,
flash-memory based Spartan-3AN and DSP oriented Spartan-3A DSP, only the
largest Spartan-3A DSP chips were large enough but this family is optimized for
different type of processing. Therefore it was decided to revert to, nowadays
somewhat obsolete, initial Spartan-3 family, and to select the XC3S2000 device.

The results are presented in Tables 1 and 2. In general, different types of archi-
tectures behave as expected: the combinational organizations give the shortest la-
tency, pipelining is the only way to maximize throughput, and the iterative units

Table 1 Implementation results for the Spartan-6 device (XC6SLX75-3)

A
va

ila
bl

e

A
C

A
H

P

A
H

P_
B

A
FP

A
FP

_B

A
I

SC

SH
P

SF
P

SI

Slice registers 93296 256 1536 256 2944 1664 817 256 4224 16768 806

Slice LUTs 46648 8997 9087 3946 8884 3376 1367 16888 15523 22029 1566

Slices 11662 2680 2529 1324 2352 1216 493 5243 4590 6629 536

RAMB8s 344 80 86

Fmax[MHz] 24.4 195 154 215 168 160 7.95 196 169 180

Latency [Tclk] 1 11 11 11 11 11 1 32 34 34

Latency [ns] 41.0 56.4 71.2 51.2 65.6 68.9 126 163 202 189

Throughput
[Gbps]

3.05 24.4 19.3 26.8 20.9 1.81 0.99 24.5 21.1 0.66

Mbps / Slice 1.17 9.87 14.9 11.7 17.6 3.77 0.19 5.46 3.26 1.26

Max path:
logic/routing

[%]

21
79

28
72

38
62

30
70

38
62

21
79

15
85

25
75

18
82

32
68

Implementing AES and Serpent Ciphers in New Generation 283

Table 2 Implementation results for the Spartan-3 device (XC3S2000-5)

A
va

ila
bl

e

A
C

A
H

P

A
H

P_
B

A
FP

A
FP

_B

A
I

SC

SH
P

SF
P

SI

Slice registers 40960 271 5061 2771 3913 3913 781 256 4224 16768 783

Slice LUTs 40960 34566 30426 25328 29976 24583 7986 18939 22708 26876 3995

Slices 20480 17428 18799 14274 16103 13220 5948 9900 11793 18377 2145

RAMB16s 40 20 20

Fmax[MHz] 11.8 83.5 77.0 106 101 77.0 6.35 143 125 96.2

Latency [Tclk] 1 11 11 11 11 11 1 32 34 34

Latency [ns] 84.8 132 143 104 109 143 158 224 272 353

Throughput
[Gbps]

1.47 10.4 9.62 13.2 12.6 0.88 0.79 17.9 15.6 0.35

Mbps / Slice 0.09 0.57 0.69 0.84 0.98 0.15 0.08 1.55 0.87 0.17

Max path:
logic/routing

[%]

27
73

24
76

30
70

19
81

34
66

28
72

30
70

33
67

28
73

31
69

are unsurpassed if smallest possible resource utilization, at the cost of low per-
formance, is needed. It is worth noting, however, that from all the 4 architectures
applied to the two ciphers only the two pipelined AES organizations were imple-
mented with the use of block RAM resources in both Spartan-6 and Spartan-3
chips. In Spartan-6 this resulted in remarkable savings in other resources (slices,
registers and LUTs) which utilization dropped roughly by half, but the perform-
ance was also affected although not so evidently (approx. 20% drop in the
throughput). On Spartan-3 platform, on the other hand, the difference was not so
apparent. In cases of other architecture / cipher combinations the implementation
tool did not choose to use block RAM units, although the VHDL code did include
templates of ROM definitions (for SBox specification) and they were properly de-
tected in reports of the synthesis tool.

Looking at Figs. 3 and 4 we can better evaluate the results and see some re-
markable relations. Comparing the effectiveness of AES and Serpent implementa-
tions in Spartan-6 it is seen that the AES is able to achieve notable better perform-
ance with significantly lower resource utilization: in combinational organization
the AES reaches 307% of the Serpent’s throughput with 51% of its slice size,
while for the fully pipelined and iterative architectures these numbers are, respec-
tively, 127% - 35%, and 275% - 92%. In Spartan-3 family, on the other hand, the
relation is different: although generally the AES is able to reach higher levels of
throughput (with one exception of the fully pipelined designs), its size is also big-
ger (again with exception of the xFP units). For combinational, fully pipelined and

284 J. Sugier

Fig. 3 Size and performance of AES and Serpent implementations in a Spartan-6 device

Fig. 4 Size and performance of AES and Serpent implementations in a Spartan-3 device

Implementing AES and Serpent Ciphers in New Generation 285

iterative architectures throughput and slice size ratios are, respectively, 186% -
176%, 84% - 88%, and 247% - 277%. This lead to conclusion that the new
architecture of Spartan-6 family is better suited for implementation of the AES
operations than the previous one.

This observation is confirmed by Fig. 5. In this graph we visualize size and per-
formance not across different architectures implemented on the same platform but
between the two platforms. What is instantly seen from the bars in the last row
(slice ratio) is that while for AES the size ratios are in the range from 6.5 to 12
(meaning that the slice size is bigger by this factor in Spartan-3 than in Spartan-6),
for Serpent these ratios are from 1.9 to 6 – so switching form Spartan-3 to Spar-
tan-6 is much more beneficial for the AES implementations. Also the throughput
ratio is in the range of 0.4 ÷ 0.6 for AES and 0.5 ÷ 08 for Serpent, indicating that
the new family brings more progress for the Rijndael cipher.

Fig. 5 Spartan-3 vs. Spartan-6 – ratio of performance and size parameters

This difference between the two methods can be explained looking at the most
resource-hungry elementary operation in FPGA: the substitution function. In Spar-
tan-3 every output bit of the AES SBox, being an 8-input function, requires 256 /
16 = 16 4-input LUTs for storing the substitution table plus some additional LUTs
for multiplexing their outputs (in terms of ROM organization: for address decod-
ing). Even not counting the extra multiplexing logic this needs 128 x 16 = 2048
LUTs in each round and 20480 LUTs in the entire 10-round cipher (vs., for
example, total of 40960 LUTs in the whole mighty XC3S2000 chip). On the other
hand, LUT elements in Spartan-6 are truly 6-input tables (but can also be config-
ured as two 5-input LUTs what provide some amount of flexibility) so every SBox
output is generated by 256 / 64 = 4 LUTs with much simpler multiplexing (which
can be done in dedicated fast multiplexers and not in LUTs) and the whole ciphers
needs 4 x 128b x 10 rounds = 5120 LUTs. In Serpent, in contrast, the SBoxes are
4-input functions so they perfectly fit already in Spartan-3 LUTs and moving to
Spartan-6 does not bring any improvements in this aspect – in fact, Spartan-6
LUTs generating Serpent SBox functions are utilized not to their full potential.

286 J. Sugier

5 Conclusions

We take for granted that new generations of FPGA chips bring larger sizes and
faster operation but new architectural developments can sometimes change more
than mere design performance and utilization parameters. In case of AES and Ser-
pent ciphers new organization of array resources that was introduced with Spar-
tan-6 family, especially larger Look-Up Tables used for generation of combina-
tional functions in the design, substantially changed feasibility of various
implementation options of the ciphers.

In the old Spartan-3 devices combinational and pipelined organizations of the
AES units were unacceptable resource hungry and Serpent, despite much higher
number of rounds, was a better option for these kinds of processing. The new
Spartan-6 chips changed this situation and, effectively, advantage of the Serpent
algorithm is again mainly in its better cryptographic strength.

References

[1] Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced Encryp-
tion Standard. In: The First Advanced Encryption Standard (AES) Candidate Confe-
rence, Ventura, California, August 20–22 (1998), http://www.cl.cam.ac.
uk/~rja14/serpent.html (accessed March 2012)

[2] Anderson, R., Biham, E., Knudsen, L.: Serpent and Smartcards. In: Quisquater, J.-J.,
Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 246–253. Springer, Heidel-
berg (2000)

[3] Anderson, R., Biham, E., Knudsen, L.: The Case for Serpent. In: Third AES Candi-
date Conference (AES3), New York, USA, April 13–14 (2000),
http://csrc.nist.gov/archive/aes/index.html (accessed March
2012)

[4] Chu, P.P.: RTL Hardware Design Using VHDL. John Wiley & Sons, New Jersey
(2006)

[5] Gaj, K., Chodowiec, P.: Comparison of the hardware performance of the AES candi-
dates using reconfigurable hardware. In: Third AES Candidate Conference (AES3),
New York, USA, April 13–14 (2000), http://csrc.nist.gov/archive/
aes/index.html (accessed March 2012)

[6] Krukowski, Ł., Sugier, J.: Designing AES cryptographic unit for automatic
implementation in low-cost FPGA devices. Int. J. Critical Computer Based
Systems 3(1/2/3), 104–116 (2010)

[7] Lázaro, J., Astarloa, A., Arias, J.R., Bidarte, U., Cuadrado, C.: High Throughput
Serpent Encryption Implementation. In: Becker, J., Platzner, M., Vernalde, S. (eds.)
FPL 2004. LNCS, vol. 3203, pp. 996–1000. Springer, Heidelberg (2004)

[8] Liberatori, M., Otero, F., Bonadero, J.C., Castineira, J.: AES-128 Cipher. High Speed,
Low Cost FPGA Implementation. In: Proc. Third Southern Conference on Program-
mable Logic, Mar del Plata. IEEE Comp. Soc. Press, Argentina (2007)

[9] Mroczkowski, P.: Implementation of the block cipher Rijndael using Altera FPGA.
Military University of Technology, Warsaw (2000)

Implementing AES and Serpent Ciphers in New Generation 287

[10] National Institute of Standards and Technology, Specification for the Advanced
Encryption Standard (AES). Federal Information Processing Standards Publication
197 (2001), http://csrc.nist.gov/publications/PubsFIPS.html
(accessed March 2012)

[11] Osvik, D.A.: Speeding up Serpent. In: Third AES Candidate Conference (AES3),
New York, USA, April 13–14 (2000), http://csrc.nist.gov/
archive/aes/index.html (accessed March 2012)

[12] Piwko, K.: Hardware implementation of cryptographic algorithms in programmable
logic devices. Dissertation for M.Sc. degree, Wrocław University of Technology,
Faculty of Electronics (2010)

[13] RSA Laboratories, DES Challenges (1997-1999), http://www.rsa.com
[14] Sugier, J.: Low-cost hardware implementation of Serpent cipher in programmable

devices. In: Monographs of System Dependability Technical Approach to Dependa-
bility, vol. 3, pp. 159–172. Publishing House of Wrocław University of Technology
(2010)

[15] Sugier, J.: Implementing Serpent cipher in field programmable gate arrays. In: The
5th International Conference on Information Technology, ICIT 2011, Amman,
Jordan, May 11-13, pp. 91–96 (2011)

[16] Wójcik, M.: Effective implementation of Serpent algorithm. Dissertation for M.Sc.
degree, Faculty of Electronics and Information Technology, Warsaw University of
Technology (2007)

	Implementing AES and Serpent Ciphers in New
Generation of Low-Cost FPGA Devices
	Introduction
	The AES Contest: Rijndael vs. Serpent
	The AES (Rijndael) Algorithm
	The Serpent Algorithm

	Implemented Architectures
	Combinational Dataflow
	Cipher-Only Pipelining
	Full Pipelinaing
	Iterative Loop

	Implementation Results
	Conclusions
	References

