

Advances in Intelligent and
Soft Computing 170

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/4240

Wojciech Zamojski, Jacek Mazurkiewicz,
Jarosław Sugier, Tomasz Walkowiak,
and Janusz Kacprzyk (Eds.)

Complex Systems
and Dependability

ABC

Editors
Wojciech Zamojski
Institute of Computer Engineering,
Control and Robotics
Wrocław University of Technology
Wrocław
Poland

Jacek Mazurkiewicz
Institute of Computer Engineering,
Control and Robotics
Wrocław University of Technology
Wrocław
Poland

Jarosław Sugier
Institute of Computer Engineering,
Control and Robotics
Wrocław University of Technology
Wrocław
Poland

Tomasz Walkowiak
Institute of Computer Engineering,
Control and Robotics
Wrocław University of Technology
Wrocław
Poland

Janusz Kacprzyk
Polish Academy of Sciences
Systems Research Institute
Warszawa
Poland

ISSN 1867-5662 e-ISSN 1867-5670
ISBN 978-3-642-30661-7 e-ISBN 978-3-642-30662-4
DOI 10.1007/978-3-642-30662-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012938746

c© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We would like to present monographic studies on selected problems of complex
systems and their dependability which are included in this volume of “Advances in
Intelligent and Soft Computing” series.

Today’s complex systems are integrated unities of technical, information, orga-
nization, software and human (users, administrators and management) resources.
Complexity of modern systems stems not only from their complex technical and
organization structures (hardware and software resources) but mainly from com-
plexity of system information processes (processing, monitoring, management, etc.)
realized in their defined environment. System resources are dynamically allocated
to ongoing tasks. A rhythm of system events flow (incoming and/or ongoing tasks,
decisions of a management system, system faults, “defense” system reactions, etc.)
may be considered as deterministic or/and probabilistic event streams. This com-
plexity and multiplicity of processes, their concurrency and their reliance on em-
bedded intelligence (human and artificial) significantly impedes the construction
of mathematical models and limits evaluation of adequate system measures. In
many cases, analysis of modern complex systems is confined to quantitative studies
(Monte Carlo simulations) which prevents development of appropriate methods of
system design and selection of policies for system exploitation. Security and confi-
dentiality of information processing introduce further complications into the system
models and evaluation methods.

Dependability is the modern approach to reliability problems of contemporary
complex systems. It is worth to underline the difference among the two terms of
system dependability and systems reliability. Dependability of systems, especially
computer systems and networks, is based on multi-disciplinary approach to the-
ory, technology, and maintenance of systems working in a real (and very often
unfriendly) environment. Dependability of systems concentrates on efficient real-
ization of tasks, services and jobs by a system considered as a unity of technical,
information and human resources, while “classical” reliability is restrained to anal-
ysis of technical system resources (components and structures built form them).

In the following few points we will briefly present main subjects of our
monograph.

VI Preface

Problems of complex system modelling can be found in many chapters. Mod-
elling of a system as a services network is investigated in chapter 11. Mathematical
models of computer systems and networks and applied computation methods are
presented in chapters 4, 6 and 19. Optimization of the traveller salesman problem
modelled by a genetic algorithm is considered in chapter 13, while in 21 specific
mechanism – service renaming – is proposed as a method for elimination of unex-
pected behaviour in component-based systems.

A statistical methodology called “nonparametric predictive inference” applied to
reliability analysis for systems and networks is presented in chapter 8. Some specific
view on several aspects on the interrelation between statistics and software testing
and reliability is discussed in chapter 7. In chapter 17 a method of event monitoring
in a cluster system is proposed. A functional testing toolset and its application to
development of dependable avionics software are the topic of chapter 2.

The ISO/IEC standard 15408 “Common Criteria for IT security evaluation”
deals with problems of IT security features and behaviour. Chapter 3 proposes an
ontology-based approach to definition of specification means used in a process com-
pliant with this standard, whereas building development environments for secure
and reliable IT products based on design patterns of the “CC” project is the topic of
chapter 12. Chapter 1 presents specific tool supporting both business continuity and
information security management trying to integrate those two aspects in the most
efficient way.

Encryption and security tools create a foundation of secure exploitation of com-
puter systems and networks. An encryption method useful for oblivious information
transfer is proposed in chapter 9, while specialized cipher devices implemented in
FPGA devices are discussed in chapter 18. Chapter 10, in turn, is devoted to security
issues in the process of hardware design and simulation.

The final subject deals with specific controlling and design issues in specialized
complex systems applied for street lighting. In chapter 14 mathematical models of
the lighting systems are introduced and then formal methods improving agent-aided
smart lighting system design are presented in chapter 15. Computational support
for optimizing systems of this kind is discussed in chapter 16 while in 20 specific
rule-based approach to the problems of their control is proposed.

In the final words of this introduction we would like to express our sincere appre-
ciation for all authors who have contributed their works as well as to all reviewers
who has helped to refine the contents of this monograph. We believe that it will
be interesting to all scientists, researchers, practitioners and students who work on
problems of dependability.

The Editors

Wojciech Zamojski
Jacek Mazurkiewicz

Jarosław Sugier
Tomasz Walkowiak

Janusz Kacprzyk

List of Reviewers

Salem Abdel-Badeeh
Ali Al-Dahoud
Manuel Gil Perez
Janusz Górski
Zbigniew Huzar
Adrian Kapczyński
Jan Magott
Istvan Majzik
Grzegorz J. Nalepa

Sergey Orlov
Yiannis Papadopoulos
Oksana Pomorova
Maciej Rostański
Krzysztof Sacha
Marek Skomorowski
Barbara Strug
Stanisław Wrycza
Wojciech Zamojski

Contents

Validation of the Software Supporting Information Security and
Business Continuity Management Processes . 1
Jacek Baginski, Andrzej Białas

A Functional Testing Toolset and Its Application to Development of
Dependable Avionics Software . 19
Vasily Balashov, Alexander Baranov, Maxim Chistolinov, Dmitry Gribov,
Ruslan Smeliansky

Specification Means Definition for the Common Criteria Compliant
Development Process – An Ontological Approach . 37
Andrzej Białas

Real-Time Gastrointestinal Tract Video Analysis on a Cluster
Supercomputer . 55
Adam Blokus, Adam Brzeski, Jan Cychnerski, Tomasz Dziubich,
Mateusz Jędrzejewski

Detection of Anomalies in a SOA System by Learning Algorithms 69
Ilona Bluemke, Marcin Tarka

Service Availability Model to Support Reconfiguration 87
Dariusz Caban, Tomasz Walkowiak

On Some Statistical Aspects of Software Testing and Reliability 103
Frank P.A. Coolen

Generalizing the Signature to Systems with Multiple Types of
Components . 115
Frank P.A. Coolen, Tahani Coolen-Maturi

Effective Oblivious Transfer Using a Probabilistic Encryption 131
Alexander Frolov

X Contents

Gap-and-IMECA-Based Assessment of I&C Systems Cyber Security . . . 149
Vyacheslav Kharchenko, Anton Andrashov, Vladimir Sklyar,
Andriy Kovalenko, Olexandr Siora

Approach to Methods of Network Services Exploitation 165
Katarzyna Nowak, Jacek Mazurkiewicz

Pattern Based Support for Site Certification . 179
Dariusz Rogowski, Przemysław Nowak

Integrating the Best 2-Opt Method to Enhance the Genetic Algorithm
Execution Time in Solving the Traveler Salesman Problem 195
Sara Sabba, Salim Chikhi

Representation of Objects in Agent-Based Lighting Design Problem 209
Adam Sȩdziwy

Formal Methods Supporting Agent Aided Smart Lighting Design 225
Adam Sȩdziwy, Leszek Kotulski, Marcin Szpyrka

Computational Support for Optimizing Street Lighting Design 241
Adam Sȩdziwy, Magdalena Kozień-Woźniak

Monitoring Event Logs within a Cluster System . 257
Janusz Sosnowski, Marcin Kubacki, Henryk Krawczyk

Implementing AES and Serpent Ciphers in New Generation of
Low-Cost FPGA Devices . 273
Jarosław Sugier

Dependable Strategies for Job-Flows Dispatching and Scheduling in
Virtual Organizations of Distributed Computing Environments 289
Victor Toporkov, Alexey Tselishchev, Dmitry Yemelyanov,
Alexander Bobchenkov

Controlling Complex Lighting Systems . 305
Igor Wojnicki, Leszek Kotulski

Service Renaming in Component Composition . 319
Wlodek M. Zuberek

Author Index . 331

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 1–17.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Validation of the Software Supporting
Information Security and Business Continuity
Management Processes

Jacek Baginski and Andrzej Białas

Abstract. The chapter presents the OSCAD tool supporting the business continui-
ty (according to BS 25999) and information security management (according to
ISO/IEC 27001) processes in organizations. First, the subject of the validation, i.e.
the OSCAD software is presented, next the goal and range of the validation are
briefly described. The validation is focused on the key management process re-
lated to risk analyses. A business-oriented, two-stage risk analysis method imple-
mented in the tool assumes a business processes criticality assessment at the first
stage and detailed analysis of threats and vulnerabilities for most critical processes
at the second stage of the risk analysis. The main objective of the validation is to
answer how to integrate those two management systems in the most efficient way.

1 Introduction

The chapter concerns a joint software implementation of two management systems
very important for business processes of any modern organization. The first deals
with business continuity, while the second concerns information security.

Business continuity [1], [2] is understood as a strategic ability of the
organization to:

• plan reactions and react to incidents and disturbances in its business operations

with a view to continue them on an acceptable, previously determined level,
• diminish possible losses if such harmful factors occur.

Different kinds of assets are engaged to run business processes – technical produc-
tion infrastructures, ICT infrastructures with information assets, services, energy,
media, materials, human resources, etc. All of them are needed by an organization
to continue its operations and, as a result, to achieve its business objectives.
Business continuity is very important for organizations:

Jacek Baginski · Andrzej Białas
Institute of Innovative Technologies EMAG, 40-189 Katowice, Leopolda 31, Poland
e-mail: jbaginski@emag.pl, a.bialas@emag.pl

2 J. Baginski and A. Białas

• which have expanded co-operation links,
• which are part of complex supply chains,
• which work according to the Just-in-time strategy.

There is a specific group of organizations providing e-services that are totally
dependent on ICT infrastructures. Their business processes depend strongly on
efficient operations of IT systems and business continuity is a key issue for them.

There are many other factors which can disturb business continuity, such as:
technical damages; random disruption events; catastrophes; disturbances in the
provision of services, materials and information from the outside; organizational
errors; human errors, deliberate human actions, etc. These factors should be identi-
fied, mitigated and controlled. The BS 25999 group of standards [1], [2] plays the
key role in business continuity management (BCM), specifying the requirements
for Business Continuity Management Systems (BCMS).

Information security [3], [4] is identified as the protection of integrity, confi-
dentiality and availability with respect to information assets of any organization.
Business processes of modern organizations depend on reliable and secure infor-
mation processing. This processing influences the achievement of business objec-
tives of these organizations, despite of their size and character. It is important for
public or health organizations, educational institutions, and commercial compa-
nies. The information related to business processes should be protected while it is
generated, processed, stored or transferred, despite of its representation (electron-
ic, paper document, voice, etc.). Different threats exploiting vulnerabilities
cause information security breaches. Any factors that may negatively influence
information assets should be mitigated and controlled. The key role for informa-
tion security management (ISM) belongs to the ISO/IEC 2700x family of
standards, especially ISO/IEC 27001, specifying the requirements for Information
Security Managements Systems (ISMS).

Both BCM and ISM systems are based on the Deming cycle (Plan-Do-Check-
Act) and broadly use the risk analysis. They gave foundation to the OSCAD sys-
tem, presented in this chapter. OSCAD is developed at the Institute of Innovative
Technologies EMAG within a project co-financed by the Polish National Research
& Development Centre (Narodowe Centrum Badań i Rozwoju) [5].

The BS 25999 standard plays the key role in the BCM domain. To improve the
effectiveness of the BCM processes, a number of software tools were developed,
e.g.: SunGuard LDRPS (Living Disaster Recovery Planning System) [6], ErLogix
BCMS [7], ROBUST [8], RPX Recovery Planner [9]. These tools offer very simi-
lar functions, more or less detailed activities within the BCMS phases. Some of
them require purchasing several separate modules for the full BCMS implementa-
tion (like risk analysis or incident management). OSCAD tries to gather those
functions within one complex solution and offers additional elements, like:

• integration with ISMS and its specific elements (e.g. statement of applicability,

information groups risk analysis, more emphasis on information confidentiality
and integrity during the risk analysis);

Validation of the Software Supporting Information Security and BCM Processes 3

• incidents database with incident registration (manual registration or automatic
coming from external sensors) and management (with simplified task manage-
ment for the activities related to the incident investigation and handling);

• simplified task management for any task with automated generation of most
typical tasks (risk analysis, business continuity plans, incident management
task) and users’ notification about task generated for them.

Risk management is a significant element of BCM and ISM systems. There are a
number of tools (like Cobra [10], Cora [11], Coras [12], Ebios [13], Ezrisk [14],
Mehari [15], Risicare [16], Octave [17], Lancelot [18]) that specialize in risk man-
agement. More advanced risk methods and their ontologies are discussed in [19].

Risk is an important issue for different management systems in many domains.
For example, the decision making process requires inclusion of a risk level related
to the considered decision. That is why the OSCAD tool presented in the chapter
is considered (among other tools) a potential element of the decision-making sup-
porting tool, whose implementation is a subject of the ValueSec project [20].

The chapter presents the OSCAD software supporting business continuity and
information security management processes, validation program for the OSCAD
system, especially the risk management processes validation, and the conclusions
for further development and improvements.

2 Computer-Supported Integrated Management System
OSCAD

The OSCAD project is focused not only on the software development but also on
providing an organizational and procedural layer for the joined BCMS/ISMS im-
plementation. It is assumed that management activities contain purely human ac-
tivities and human activities supported by the OSCAD tool. The OSCAD project
provides software, a set of patterns of BCMS/ISMS documents, implementation
methodology and know-how. Apart from the OSCAD core application, supporting
management processes, two additional software components have been developed:

• the OSCAD-STAT web-based application gathering incident records, analyzing

them and, on this basis, elaborating and providing statistics,
• the OSCAD-REDUNDANCY module, being a failover facility for the basic

OSCAD system.

The BCMS and ISMS parts of OSCAD are integrated according to the Integrated
Security Platform (ISP) whose concept was presented in [21]. The ISP assumes
that different management systems (ISM-, BCM-, IT services-, quality-, business
processes management systems, etc.) are integrated with the use of a common
Configuration Management Database (CMDB). The ISP platform ensures the
management systems integration from the logical point of view, while BS PAS 99
[22] provides recommendations for the organizational and procedural aspects of
this integration. The ISP concept assumes the separation of common parts of the

4 J. Baginski and A. Białas

organization’s management systems and their uniform, integrated implementation.
Specific elements of particular management systems are implemented for each
system separately.

The OSCAD software components were discussed in details in [23], [24],
therefore in this chapter only concise information will be provided. The OSCAD
system consists of a certain number of modules presented below (Fig. 1).

Fig. 1 OSCAD – block diagram of software modules

The assets inventory module stores information on assets and asset groups.
Some assets are common for both systems and some are related either to the
business continuity- or information security management system.

The system management module supports the execution of tasks by other
modules and concerns proper configuration of the OSCAD system, preparation of
pre-defined data, including dictionaries, basic information about the organization,
risk analysis parameters (business loss matrix, acceptable risk level), and the
roles of people who take part in business continuity and information security
management processes.

The risk analyzer plays a key role in the OSCAD system. Thanks to this
module it is possible to orientate the implementation of the system in the organiza-
tion’s operational environment. The module supports the execution of activities
related to risk management, such as:

Validation of the Software Supporting Information Security and BCM Processes 5

• Business Impact Analysis (BIA) of the loss of such parameters as availability,
integrity of a process, service or information as well as information confiden-
tiality (important in the case of an information security management system),

• determining criticality of processes based on the BIA analysis results,
• determining parameter value of Maximum Tolerable Period of Disruption

(MTPD) and Recovery Time Objective (RTO),
• collecting information about threats and vulnerabilities for processes, informa-

tion groups (possibility to select threats and vulnerabilities defined in
bases/dictionaries or to enter new ones),

• risk level assessment with respect to existing security measures,
• preparing a risk treatment plan: risk acceptance or selection of security

measures with respect to implementation costs.

The events and incidents management module performs the following tasks in the
BCM system:

• event registration, incident classification and registration,
• preliminary evaluation and selection of proper proceedings,
• initiation of rescue operations to protect lives and health of employees and

clients,
• problem analysis and start-up of a proper Business Continuity Plan (BCP),
• communication with interested parties and co-operation with contractors,
• providing accessibility of the basic and stand-by locations of incident

management,
• providing all required documents,
• closing the incident,
• reporting,
• lessons learnt.

The BCP elaboration and maintenance module is responsible for supporting three
basic activity groups: elaboration, start-up and testing of the BCP plan. The
assumption was that plans are prepared for processes with the “critical” attribute
assigned as a result of the conducted risk analysis. The BCP plan points at:

• assets necessary to begin and fulfill the plan,
• plan execution environment – basic and stand-by locations in the organization,
• contact list of people who execute the plan,
• operations to be performed.

The kinds of operations undertaken within the plan determine the kinds of tests.
Tests planning is supported by the timetable module.

The task management module enables to define tasks which are to be
performed by particular users of the systems and to control this performance.
The module has the following basic functions: planning, ordering, supervising the
performance and reviewing tasks. The tasks can refer not only to the management

6 J. Baginski and A. Białas

of business continuity and information security in the organization but also to any
other aspects of its operations.

The audit module supports audit management in a sense that it collects
information about the execution of each audit, supports the preparation of reports,
assists in audit approval by people who supervise it. Audit planning as such is
handled in the timetable module.

The timetable module supports to plan management operations undertaken at a
certain time horizon within different modules.

The reports module is presents information about the BCM/ISM system, col-
lected during its implementation and kept during exploitation, in the form of text
or graphics. Additionally the information can be exported with the use of popular
formats. The following reports are expected as minimum:

• information about the organization and its business processes,
• information about the organization’s assets involved in the execution of the

OSCAD system,
• summary of the risk analysis process,
• summary of planned tasks which are part of timetables,
• information about BCP plans,
• summary of audit results,
• summary of preventive and corrective actions,
• values of measures and indicators used for continual improvement of the

BCM/ISM system,
• summary of different tasks execution,
• statistics related to incidents.

The documents management module supports registration, version control,
circulation, confirmation, search, etc. of BCM and ISM systems documents in
compliance with the requirements of standards. Documents and their templates are
attached to the system and stored in the data repository. Sample documents are:
“Business continuity management system policy”, “Description of risk assessment
methodology and risk acceptance criteria”, or “Records supervision procedure”.

The communication module enables information exchange between external
systems and appointed persons. The phases of event detection and notification are
performed automatically by the communication interface for the incident man-
agement module. Events registration can be performed either “manually” (entered
by a person who gives information about the event) or automatically with the use
of an XML template generated and sent by the system or by external devices,
including other OSCAD-type systems.

Currently, the following external systems are taken into account. They can be
divided with respect to the functions they perform:

• Enterprise Resource Planning (ERP) systems,
• IT infrastructure monitoring systems,
• building automation systems,
• burglary and fire alarm systems.

Validation of the Software Supporting Information Security and BCM Processes 7

The communication interface enables connection with external systems by means
of the monitoring station module which will also contain the implementation of all
recognized communication protocols.

The efficiency parameters of the management system are stored in the measures
and indicators module. This way it is possible to have periodical analyses and
make decisions how to improve the system.

3 Risk Management Methodology of the OSCAD System

The key element of the OSCAD BCMS-ISMS joined implementation is the risk
analysis facility. It was conceived as a common module for both management sys-
tems. The risk analysis method adopted in OSCAD is a business-oriented method,
which means that its key aspect and starting point is proper identification and de-
scription of business processes functioning in the organization. Having those
processes identified, the risk analysis is performed within a two-stage process.
First, the criticality (weight) of each business process for the organization must be
assessed. Next, a detailed risk analysis should be performed to identify threats,
vulnerabilities and to select appropriate security measures for the most important
vulnerabilities. Such approach complies with the recommendation for risk analysis
described in [25] and is a simplified version of the method presented in [26].

3.1 Business Impact Analysis

Criticality of business processes is performed in the OSCAD tool with the use of
the so called Business Impact Analysis (BIA) as described in [27]. During this
analysis it is necessary to assess potential losses for the organization resulting
from breaching its main security attributes. These attributes are: confidentiality of
data, integrity of data and process activities, availability of data and processes.

The main tool for BIA is the business impact matrix. The table requires to de-
fine impact categories (rows). The most common categories, adequate for the most
of organizations, are financial losses and law violation. Other categories may vary
for each organization. These can be human (personnel/clients) related losses, envi-
ronmental and other, depending on business operations of the organization.

For each category, a loss level should be assessed. To keep the unified grading
scale, the same range of possible losses (levels of losses) should be defined to
assess the whole of the organization’s business processes. To make things
simpler, the loss levels may be defined as a descriptive note or as a range of
values, if possible (for example for financial losses). In case of descriptive
values, they should be assigned to numerical values to enable their calculation in
the software tool.

An example of descriptive loss levels interpretation is shown in Table 1. The N
value is the maximum loss level and, just like impact categories, the number of
possible loss levels should be adjusted to the organization’s specific needs.

8 J. Baginski and A. Białas

Table 1 Loss levels table [27]

Loss level Value and description

1 – Lowest No or insignificant losses in case of confidentiality, integrity or availa-
bility incident;

Confidentiality example: data publicly available

… …

… …

N – Highest Major losses, threat to further organization functioning

Confidentiality example: Top secret data requiring maximum security

Business impact categories and loss levels with their descriptions for each cate-

gories together make the business impact matrix which is the core element of the
proposed Business Impact Analysis. An example of the impact matrix is shown in
Table 2. Using a prepared matrix, possible impacts resulting from the loss of secu-
rity attributes (data/process availability, integrity and confidentiality) should be
assessed. Each attribute should be assessed separately. The worst-case assessment
from all categories is the final value for the particular attribute. This means that
for each attribute (integrity, confidentiality, availability) all categories from the
left column of Table 2 are assessed. The most pessimistic value for the given pa-
rameter is chosen as the final value.

Table 2 Business impact matrix example [27]

Business impact categories Loss level

Human (personnel/clients)
related losses

1 - No effect on personnel/clients

2 - Possibilities of injuries

3 - May cause human death or serious injury

Law violation 1 - No infringement

2 - Organization may have limited possibilities of activity
caused by lawsuits

3 - May be a cause to stop all activities of the organization

Financial Losses 1 - Up to 50,000$

2 - Up to 500,000$

3 - Over 500,000$

Effectiveness drop 1 - No difficulties

2 - Break in process continuity for a couple of hours

3 - No further service possible

After carrying out the assessment of all categories and loss levels for each

attribute, an overall weight of the process is calculated. The current OSCAD
version offers three possible methods of weight computation:

Validation of the Software Supporting Information Security and BCM Processes 9

• worst case scenario – the process weight is the highest loss value in any
attribute and category;

• arithmetical sum of all loss levels for availability/integrity/confidentiality
attributes;

• product of all loss levels for security attributes.

The implementation of other methods of weight computation, like square sum per-
centage or process weight matrix, is taken into consideration in other versions of
OSCAD. These methods of computation were described in [27].

3.2 Detailed Risk Analysis

Based on the Business Impact Analysis results it is possible to calculate the weight
of all processes – the importance, criticality of each process for the organization.

The next stage of the analysis – detailed risk analysis is performed in the first
place for the most important (critical) processes.

At that stage it is necessary to identify the threats for the data, business
processes and vulnerabilities which may cause these threats to materialize. Groups
of threats and vulnerabilities can be defined in the OSCAD database – the so
called ‘dictionaries’. For all threat-vulnerability pairs identified for the organiza-
tion the risk level (risk value) must be assessed next.

In the OSCAD tool, the risk level assessment is performed with the following
formula:

CtaCi

PcVsTs
R

*

∗∗= (1)

R – risk value,
Ts – threat severity (level of impacts),
Vs – vulnerability severity (probability of occurrence),
Pc – process criticality (process weight),
Ci – existing controls implementation level,
Cta – existing controls technical advancement,

The current version of OSCAD allows to change the multiplication operator in-

to arithmetic sum (in configuration options), depending on the organization’s
needs.

The vulnerability severity can be assessed based on the probability of its ex-
ploitation and with consideration of existing security measures. The information
about incidents related to this vulnerability should be also taken into considera-
tion. For example, possible values of severity can be defined as follows:

Once per 5 years -> vulnerability severity = 1
Once per 3 years -> vulnerability severity = 2
Once per year -> vulnerability severity = 3
…

10 J. Baginski and A. Białas

The threat severity can be assessed based on possible financial or other losses that
may appear in case of the threat materialization. For example:

Less than 10,000 -> threat severity = 1
10,000 – 100,000 -> threat severity = 2
100,000 – 500,000 -> threat severity = 3
…

The process criticality is the weight value assessed during the Business Impact
Analysis of the process.

The existing controls implementation level can be assessed based on the per-
centage of implementation or as a descriptive value, for example:

Lack of implementation -> implementation level = 1
Partially implemented -> implementation level = 2
Fully implemented -> implementation level = 3

The technical advancement can be assessed taking into consideration the level of
technical means used by the implemented controls, for example:

Procedural controls -> technical advancement = 1
Technical controls with manual handling -> technical advancement = 2
Technical, automated controls -> technical advancement = 3

All above values must be adjusted to the organization’s needs and its mission.

Depending on the calculated risk level, a decision about the risk treatment
should be made:

• when the risk is higher than the assumed acceptable level for the organization,

risk reduction should be done – new controls (security measures) should be
proposed for implementation,

• when the risk is lower than the level acceptable for the organization or it is not
possible (in the technical or financial aspect) to reduce the risk further – the
organization’s management board can accept the risk and no further risk
reduction activities are required; in this case risk should be monitored and
organizational controls should be applied (e.g. crisis management procedures).

OSCAD supports both these risk treatment possibilities. In the first case, for each
threat-vulnerability pair with a high risk level identified, new security measures
can be added and taken into account, and then the risk level can be reassessed.
Both risk values (before and after new controls addition) can be easily compared.
In figure 2, the ‘Risk’ column presents risk levels for each pair. The values in
brackets relate to the current situation. The numbers outside brackets are estimated
values expected after the security measures implementation.

If the risk value is still higher than the acceptable level, additional security
measures can be considered. The level of acceptable risk can be configured in the

Validation of the Software Supporting Information Security and BCM Processes 11

software depending on the organization’s needs. Security measures selected and
agreed during the risk analysis are then merged into the security treatment plan
which should be accepted by the organization’s management board.

Fig. 2 OSCAD – Threat-vulnerability risk assessment main window

In the second case – risk acceptance, the organization’s management board
should be aware of threats that may occur if the risk level is not reduced. Based on
such information from the risk management team, the management board should
formally approve the remaining risk. It is also possible within the OSCAD tool –
the risk analysis can be closed (justification required) even if the risk level ex-
ceeds the acceptable risk level.

Other typical risk treatment strategies, like risk avoidance or risk transfer are
treated in OSCAD as security measures.

4 Validation Plan of the OSCAD System

The OSCAD implementation methodology assumes the implementation of the
BCMS part, ISMS part, or both. The implementation range may encompass the
entire organization, its part, selected parts of a few organizations, e.g. co-operating
together and involved in a common project. The BCMS/ISMS implementation can
run without or with the OSCAD supporting tool. The software-based implementa-
tion gives extra advantages comparable to the advantages of CAD/CAM systems.

The OSCAD implementation methodology encompasses the following steps:

1. Kick-off meeting – initializing the deployment process by the top man-
agement, planning and organizing the BCMS/ISMS implementation.

2. Training of the deployment team.
3. Business processes analysis.
4. Gap analysis (zero-audit) and elaboration of the strategy how to achieve

standards/legal compliance.

12 J. Baginski and A. Białas

5. Building the assets inventory for the organization.
6. Business Impact Analysis (high-level risk analysis), identification of criti-

cal processes.
7. Detailed (low-level) risk analysis.
8. Risk treatment plan.
9. Business continuity strategy (for BCMS) and SoA – Statement of Applica-

bility (for ISMS).
10. Business continuity plans (BCP) and Incident management plans (IMP).
11. Elaboration of other documentation of both or selected management sys-

tems (BCMS/ISMS) on the patterns basis.
12. Setting the BCMS/ISMS in motion (a decision) and sampling

BCMS/ISMS records.
13. Trainings for employers, third parties, OSCAD users with respect to their

business/system roles.
14. Final audit and certification.

The validation process may encompass the selected or all steps of the implementa-
tion methodology. The whole validation has been performed at the EMAG Insti-
tute. The chapter focuses on validation issues concerning risk management.

5 Validation of the Risk Management Processes

5.1 Gathering Information about Business Processes

Before the risk analyses process starts, the significant issue is to properly identify
the organization’s processes and their sub-processes for which risk analyses will
be performed.

For the validation purposes in EMAG, four main and ten supportive processes
were identified. The OSCAD tool allows to register these processes in the data-
base. Once a process has been registered in the OSCAD database, a new task is
automatically registered in the task management module and the responsible
person gets information that the new process has occurred and it needs the risk
analysis. Additionally, each change in the process description causes a new task
generation with information that the risk analysis of the this process should be
revised.

The first issues appear as early as at the processes description stage. They are
caused by the fact that the organization’s management processes are partially han-
dled by persons from several different organizational units. In that case, persons
from each unit must be selected to participate in the business process description
and assessment.

The sub-processes must be distinguished for some processes due to their com-
plexity and activities diversity For example, one of the complex supportive
processes was the ‘IT support’ process. Because of a wide scope of activities, it
was divided into several sub-processes (related to the LAN, Internet, applications,
telephones, and other aspects).

Validation of the Software Supporting Information Security and BCM Processes 13

Processes should be divided in such a way to neither over- nor under-estimate
any of them. For example, a supportive process like ‘clean-up and facilities main-
tenance’ may include less important activities for business continuity, like clean-
ing the offices, but on the other hand such activities like ‘clearing (the streets or
roofs) of snow’ may have significant influence on business continuity and the per-
sonnel safety. In the first iteration of the system implementation ‘clean-up and fa-
cilities maintenance’ was assumed as one process. During the risk analysis it ap-
pears that equal treatment of these activities and performing their analysis as a
whole will lead to over-estimation of offices cleaning or under-estimation of
‘clearing the streets/roofs of snow’ (the streets not cleared of snow may reduce
access to buildings, while snow remaining on the roofs may cause injuries by fall-
ing icicles or even roof collapse).

The validation of risk analysis helps then to identify gaps in the process map
previously prepared for the organization.

5.2 Validation of BIA Method

The presented risk analysis method requires to adjust the business impact matrix.
Possible impact (loss) levels should be matched to the organization’s needs. These
levels will depend on the organization’s business activities, legal and procedural
requirements, annual income (it will have influence on the level of accepta-
ble/unacceptable financial losses).

Taking into account the scope of activities of the organization where OSCAD
was validated, the following impact categories were selected: financial losses, de-
lay or discontinuity of business operations, law violation, employees’ satisfaction,
influence on employees’ health and on the natural environment, loss of reputation.

During the validation, a matrix was prepared and a few first processes were
analyzed. To keep the calculation of the processes weight as simple as possible,
the arithmetic sum of impact levels (for availability, integrity and confidentiality
loss) was used in the validation process.

For all of these categories four levels of possible losses were established. Nu-
merical values (from 1 to 4) with description were assigned. For such assumption,
the process weight values will be in the range from 3 to 12. For such values, for
the initial risk analysis it was assumed that processes with the weight value higher
than 7 will be marked as critical.

The first business impact analyses have shown that the matrix statements were
not fitted properly and too many processes were assessed as critical for the organi-
zation. Even supportive processes, activities that are not really important for the
organization’s mission, had very high scores during the analysis. Some statements
from the 3rd level of possible losses were moved to the 2nd level. After that opera-
tion, reassessed BIAs gave more appropriate results.

A proper analysis of each process requires participation of crucial organization-
al units involved in the process operation. Risk analyses were performed in the
form of workshops with all owners of the processes or persons having appropriate
knowledge appointed by the process owners, and with other process stakeholders
(from other related processes). This helps to keep the objectivity during the

14 J. Baginski and A. Białas

analyses, because one process is always more valuable for its owner, but not nec-
essarily must be important for the overall business activity of the organization.
Additionally, a loss level may be strictly dependent on loss levels of other related
processes. The IT process, for example, should be assessed with respect to the
highest loss (the worst case) which may appear in other processes as a result of the
IT process unavailability.

5.3 Validation of Detailed Risk Analysis

Once the business impact analysis of the process has been approved in OSCAD,
the next step of the risk analysis can be performed, which requires more time and
organization’s resources. During this stage as many as possible threats and vulne-
rabilities should be identified, their severity and risk levels assessed, while securi-
ty measures and controls should be selected for the vulnerabilities with the highest
risk levels, as described in section 3.2. The identification of vulnerabilities
requires more involvement of technical/IT staff. That is why the proposed risk
analysis method assumes that the second stage – detailed risk analysis, should be
performed only for the most critical processes.

During the first stage of the analysis (BIA) the risk management team asked the
interviewees about the possible impacts (consequences) and the potential sources
of those impacts. This way, already during the business impact analysis, they re-
ceived information about the most important threats. Having threats and vulnera-
bilities identified, the risk parameters value assessment can be easily performed
with the OSCAD tool support (Fig. 3). Incidents registered in the database through
the incident management module can be taken into account during the threat and
vulnerability severity (impact and probability) assessment.

For the highest risks the security measures (controls) can be selected from the
database or defined to mitigate these risks.

Fig. 3 Risk treatment window – threat-vulnerability assessment, controls selection

Validation of the Software Supporting Information Security and BCM Processes 15

The results of the detailed risk analysis are the input to the next activities within
the business continuity and information security management process. Based on
the risk level values, a decision can be made which vulnerabilities should be
treated as priority during the risk treatment plan elaboration and during the im-
plementation of security measures. Business continuity plans should be prepared
for the most critical processes and the most severe threats.

When the risk analysis is completed, the task is sent to the responsible person
(using the task management module) to approve the results. Each risk analysis
must be approved by the authorized person (selected in the software configura-
tion). Information about all performed risk analyses, business processes weight,
risk levels can be listed in the risk analysis module and in the reports module.

For the risk analysis that was approved, a written report and a risk treatment
plan can be generated. Additionally, the tasks are created in the task management
module for people responsible for the control implementation.

6 Conclusions

The chapter presents the computer-supported, integrated business continuity- and
information security management system and its validation on the risk issues
examples.

The OSCAD tool validation in the scope of the risk analysis allows to find gaps
in the organization’s business processes map. The validation enabled to identify
those phases of the risk analysis process implementation, to which more attention
should be paid. It helped to identify typical issues which may occur during the im-
plementation, such as appropriate selection of impact matrix values and appropri-
ate description of those values. During the validation of the BIA and detailed risk
analysis processes, the risk value calculation method was tested. The validation
showed the points of the OSCAD tool that require improvement. For example, in-
ability to perform the analysis and assessment of possible impacts of security
measure implementation or the impossibility to assess a few variations of security
measures and to select the most appropriate from the assessed variants (taking into
consideration the risk level expected after its implementation). The identified gaps
and required improvements will be taken into consideration in further work on the
software development.

The OSCAD project has the following innovative elements:

• possibility to support the BCMS, ISMS, or both management systems;
• possibility to gather, analyze and provide statistical data about incidents and

use them in the lessons learnt, risk management, and improvement processes;
• open character; possibility to customize provided patterns for the needs and

expectations of different kinds of organizations;
• advanced automation of management processes;
• possibility to gather information on incidents from different sources: monitor-

ing the IT infrastructure or technical-production infrastructure, physical securi-
ty infrastructure (burglary, fire), business processes through the ERP systems;

16 J. Baginski and A. Białas

• implementation of failover technology for the BCM/ISM computer-supported
systems,

• implementation of mobile technology (web access, SMS-notification);
• possibility to conduct a statistical analysis of events and reliability analysis of

IT systems functioning (an option);
• possibility to exchange information between different organizations, especially

those working within supply chains;
• easy integration with other management systems co-existing in the organization

(PAS99).
The project results are dedicated mainly for organizations:

• which are elements of the critical infrastructure of the country (power engineer-
ing, production and distribution of fuels, telecommunications, etc.), providing
media for people (water, gas, energy, etc.),

• operating in a financial sector (insurance, banking),
• offering e-services,
• operating as part of the public administration (government- or local government

level),
• representing the sectors of health services and higher education,
• involved in the protection of groups of people,
• commercial and industrial companies.

The results of the conducted validation of the OSCAD software are used to
improve the developed prototypes and to prepare dedicated versions for different
application domains. The OSCAD project is currently in progress and its
completion is planned by the end of 2012.

References

[1] BS 25999-1:2006 Business Continuity Management – Code of Practice
[2] BS 25999-2:2007 Business Continuity Management – Specification for Business

Continuity Management
[3] ISO/IEC 27001:2005 – Information technology – Security techniques – Information

security management systems – Requirements
[4] ISO/IEC 27002:2005 – Information technology - Security techniques - Code of prac-

tice for information security management (formerly ISO/IEC 17799)
[5] Institute EMAG (2010-2011) Reports of a specific-targeted project “Computer-

supported business continuity management system – OSCAD”
[6] LDRPS, http://www.availability.sungard.com (accessed January

05, 2012)
[7] ErLogix, http://www.erlogix.com/disaster_recovery_plan_

example.asp (accessed January 05, 2012)
[8] Resilient Business Software Toolkit ROBUST, https://robust.

riscauthority.co.uk (accessed January 05, 2012)
[9] RPX Recovery planner, http://www.recoveryplanner.com (accessed

January 05, 2012)
[10] Cobra, http://www.riskworld.net (accessed January 09, 2012)

Validation of the Software Supporting Information Security and BCM Processes 17

[11] Cora, http://www.ist-usa.com (accessed January 09, 2012)
[12] Coras, http://coras.sourceforge.net (accessed January 09, 2012)
[13] Ebios, http://www.ssi.gouv.fr (accessed January 09, 2012)
[14] Ezrisk, http://www.25999continuity.com/ezrisk.htm (accessed

January 09, 2012)
[15] Mehari, http://www.clusif.asso.fr (accessed January 09, 2012)
[16] Risicare, http://www.risicare.fr (accessed January 09, 2012)
[17] Octave, http://www.sei.cmu.edu (accessed January 09, 2012)
[18] Lancelot, http://www.wck-grc.com (accessed January 09, 2012)
[19] Bialas, A.: Security Trade-off – Ontological Approach. In: Akbar Hussain, D.M. (ed.)

Advances in Computer Science and IT, pp. 39–64. In-Tech, Vienna – Austria (2009)
ISBN 978-953-7619-51-0,
http://sciyo.com/articles/show/title/security-trade-off-
ontological-approach?PHPSESSID=kkl5c72nt1g3qc4t98de5shhc2
(accessed January 10, 2012)

[20] ValueSec Project, http://www.valuesec.eu (accessed January 10, 2012)
[21] Białas, A.: Development of an Integrated, Risk-Based Platform for Information and

E-Services Security. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp.
316–329. Springer, Heidelberg (2006)

[22] BS PAS 99:2006 Specification of common management system requirements as a
framework for integration

[23] Białas, A.: Integrated system for business continuity and information security man-
agement – summary of the project results oriented towards of the construction of sys-
tem models. In: Mechanizacja i Automatyzacja Górnictwa, vol. 11(489), pp. 18–38.
Instytut Technik Innowacyjnych “EMAG”, Katowice (2011)

[24] Bialas, A.: Computer Support in Business Continuity and Information Security Man-
agement. In: Kapczyński, A., Tkacz, E., Rostanski, M. (eds.) Internet - Technical De-
velopments and Applications 2. AISC, vol. 118, pp. 161–176. Springer, Heidelberg
(2012)

[25] Stoneburner, G., Goguen, A., Feringa, A.: Risk Management Guide for Information
Technology Systems. Recommendations of the National Institute of Standards and
Technology. NIST Special Publication 800-30 (July 2002)

[26] Białas, A., Lisek, K.: Integrated, business-oriented, two-stage risk analysis. Journal of
Information Assurance and Security 2(3) (September 2007) ISSN 1554-10

[27] Bagiński, J., Rostański, M.: The modeling of Business Impact Analysis for the loss of
integrity, confidentiality and availability in business processes and data. Theoretical
and Applied Informatics 23(1), 73–82 (2011) ISSN 1896-5334

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 19–35.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

A Functional Testing Toolset and Its
Application to Development of Dependable
Avionics Software

Vasily Balashov, Alexander Baranov, Maxim Chistolinov, Dmitry Gribov,
and Ruslan Smeliansky

Abstract. Significant part of requirements to avionics software can only be tested
on target hardware running non-instrumented software. General purpose function-
al testing toolsets require loading auxiliary software to target avionics devices to
perform target-based testing. This work presents a toolset for functional testing of
avionics software, aimed at testing without target instrumentation. The toolset
supports automatic and human-assisted testing of software running on target avio-
nics device(s) by providing input data through a variety of onboard interface
channels and analyzing devices' responses and inter-device communication.
Architecture of software and hardware counterparts of the toolset is described.
A family of avionics testbenches based on the toolset is considered as an
industrial case study. Special attention is paid to toolset application for testing of
dependability requirements to avionics systems.

1 Introduction

Modern avionics systems (AS) are subject to strict requirements to dependability,
functionality and real-time operation. To ensure that an AS fulfills these require-
ments, systematic testing of avionics software is performed on several phases of
AS development.

Important specifics of avionics software testing is that significant part of
requirements can only be tested on target hardware. These are requirements to

Vasily Balashov · Maxim Chistolinov · Ruslan Smeliansky
Department of Computational Mathematics and Cybernetics, Lomonosov Moscow State
University, Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia
e-mail: hbd@cs.msu.su, mike@cs.msu.su, smel@cs.msu.su

Alexander Baranov · Dmitry Gribov
Sukhoi Design Bureau (JSC),
23A, Polikarpov str., Moscow, Russia
e-mail: abaranov@okb.sukhoi.org, dgribov@okb.sukhoi.org

20 V. Balashov et al.

real-time operation, to data exchange through onboard channels, to co-operation of
multiple software layers (OS, system software, application software). Many
dependability requirements belong to these classes. For instance, switching
between primary and hot-spare devices requires real-time actions of several
devices coordinated through onboard channels.

General purpose functional testing toolsets, such as Rational Test RealTime and
VectorCAST, require instrumentation of target avionics devices to perform target-
based testing. Such instrumentation involves loading auxiliary software to the
devices and thus is prohibited for acceptance and field testing. These toolsets do
not also support analysis of data communication through onboard channels,
requiring deep customization for AS testing.

In this work we present a toolset for functional testing of avionics software and
hardware/software avionics systems. This toolset is aimed at testing without target
instrumentation, and supports testing of dependability requirements to AS. The
toolset is developed in the Computer Systems Laboratory (CS Lab) of Computa-
tional Mathematics and Cybernetics Department of Lomonosov Moscow State
University. The toolset is utilized by Sukhoi Design Bureau for testing of modern
avionics systems. These systems consist of multiple devices (computational nodes,
sensors, actuators, indicators) connected by dozens of data transfer channels.

The rest of this work is organized as follows. Section 2 lists several essential
cases which require target-based avionics software testing. Section 3 estimates ap-
plicability of two existing general purpose functional testing toolsets to the task of
target-based avionics software testing and emphasizes significant issues undermin-
ing this applicability. Section 4 presents the functional testing toolset utilized by
Sukhoi, describes its architecture and capabilities. Section 5 describes the common
architecture of testbenches based on the toolset. Section 6 considers an industrial
case study, including a set of testbenches based on the presented toolset, each
testbench aimed at a specific stage of AS development. The section also outlines
the architecture of the target AS for this case study. Section 7 describes several
approaches to testing of dependability requirements to AS, involving the
presented testing technology. In the last section, future directions for technology
development are proposed.

2 Cases for Target-Based Avionics Software Testing

There are following essential cases of avionics software development and support
which require testing of avionics software running on target hardware.

1. Integration of software components with target hardware, debugging of

software on target platform;
2. Integration of application software components, including components deli-

vered by partner organizations responsible for specific software subsystems;
3. Integration of avionics subsystems consisting of several devices, or integration

of the whole AS as a hardware/software system;
4. Functional and acceptance testing of AS software;

A Functional Testing Toolset and Its Application to Development of Dependable AS 21

5. Acceptance testing of series-produced avionics devices and complete AS in-
stances;

6. Diagnostics of avionics devices subject to reclamations;
7. Diagnostics of avionics devices onboard the aircraft.

Cases 1 and 2 typically involve operations with an individual (isolated) avionics
device.

Specialized hardware/software environments (avionics testbenches) are in-
volved to support testing activities related to cases 1-7. Testing toolset is the key
component of testbench software.

Testing technology, including the used toolset and testbench architecture,
should be unified for tasks 1-7 in order to minimize technological complexity of
the testing process, as well as to enable reusing test suites between AS
development stages.

3 Applicability of General Purpose Functional Testing Toolsets
to Target-Based Avionics Software Testing

In this section we consider two existing functional testing toolsets and estimate
their applicability to the task of testing avionics software on target device(s) with-
out target instrumentation. The toolsets, namely Rational Test RealTime and Vec-
torCAST, are not “purely” general purpose. They are designed to support testing
of distributed real-time systems, however there are several common issues that
substantially complicate their application to the above mentioned task.

Rational Test RealTime (RTRT) [1] from IBM is a cross-platform solution for
testing real-time applications, including networked and embedded software. RTRT
provides facilities for automated target-based software testing, memory leaks de-
tection and code coverage analysis. RTRT is integrated with revision control and
configuration management tools from IBM (ClearCase, ClearQuest).

RTRT was initially developed for unit testing. System testing support for
distributed applications was added later. Target-based testing requires loading
instrumental modules (system testing agents) to every device (computer) of the
target system which runs software to be tested. Agents are responsible for supply-
ing test data to the software under test, reading resulting data and communicating
with the testing control computer.

RTRT supports two test description languages: Component Testing Script
Language for unit tests and System Testing Script Language for system tests.

Conventional (recommended by vendor) technology of RTRT application to
target-based testing of avionics software requires loading instrumental software
modules to AS devices. This approach is not suitable for acceptance and field
testing. It is also questionable whether the instrumental modules significantly
affect real-time characteristics of the target software operation.

RTRT was applied in Sukhoi company for testing of Sukhoi Superjet civilian
aircraft avionics. This application involved custom “adaptation layer” software
running on dedicated computers and translating test data from RTRT to onboard

22 V. Balashov et al.

channel messages sent to the (non-instrumented) target system. Development of
such intermediate software is a complex task which requires access to internal
details of RTRT implementation.

Testing solution based on RTRT with adaptation layer provides communication
with the target system on “parameter” level, where parameter is a variable taken
by the target application software as an input or generated as an output. This level
is not suitable for testing devices that take or generate “binary” data (e.g. video
frames, digital maps etc). It is also hardly suitable for dependability testing which
requires low-level stimulation of the target system (e.g. injection of communica-
tion faults into channels, simulation of interface adapter breakdown or power
failures).

VectorCAST [2] from Vector Software is an integrated toolset for unit and func-
tional testing. It supports test generation, execution, code coverage analysis and
regression testing. VectorCAST can be integrated with third-party requirement
management tools through VectorCAST / Requirement Gateway module.

VectorCAST provides special features for avionics software testing. In particu-
lar, it implements recommendations of DO-178B standard which describes avio-
nics software development processes. VectorCAST was applied to development of
avionics software for several aircraft including JSF, A380, Boeing 777, A400.

VectorCAST supports unit and integration testing of avionics software on tar-
get platform. Similarly to RTRT, VectorCAST requires loading instrumental
software modules (VectorCAST/RSP, Runtime Support Package) to target
devices. This raises the same issues as mentioned above for RTRT.

There is no open information available on existence of “adaptation layer”-like
software for VectorCAST which could allow application of VectorCAST to test-
ing of non-instrumented AS through onboard channels. Development of such
software layer is problematic as VectorCAST is a closed commercial product, and
even if such layer existed, the resulting solution would have same limitations as
noted above for RTRT-based solution.

Both testing toolsets reviewed in this section provide a rich feature set, but have
similarly limited applicability to the task of testing of avionics software running
on a non-instrumented target system. These toolsets also lack support for direct
control of exchange through onboard channels, which additionally restricts their
capabilities for testing AS dependability features.

4 Functional Testing Toolset Utilized by Sukhoi

This section describes the avionics testing tools (ATT) utilized by Sukhoi Design
Bureau for functional testing of avionics software of several modern Sukhoi air-
craft. The ATT toolset is developed in Computer Systems Laboratory (CS Lab) at
Computational Mathematics and Cybernetics Department of Lomonosov Moscow
State University.

A Functional Testing Toolset and Its Application to Development of Dependable AS 23

4.1 Toolset Overview

In contrast to RTRT and VectorCast toolsets considered above, ATT toolset is
aimed at testing of AS through onboard interface channels, without loading any
instrumental modules to AS devices. ATT supports MIL STD-1553B, ARINC
429, Fibre Channel and several other standards of onboard interface channels re-
quired for testing of modern avionics. Onboard channel adapters are installed on
instrumental computers that perform tests execution.

For every supported type of channel, following activities are supported:

• Preparation and sending data to AS through onboard channels (both packing of
parameters into messages and low-level forming of “binary” messages are sup-
ported).

• Receiving of data from AS through onboard channels for subsequent analysis
(both unpacking parameters from messages and low-level access to “binary”
messages are supported).

• Monitoring of data exchange between AS devices through onboard channels
and processing of monitoring results by tests (on same two levels as for data
receiving).

ATT can be extended to support new standards of onboard channels. Testbenches
based on ATT cover all cases for target-based testing of AS software listed in
Section 2.

The toolset supports distributed execution of tests on multiple-computer test-
bench configurations, necessary for testing complex AS with large (up to several
hundred) number of interfaces. Instrumental computers operate in synchronized
time and perform time-coordinated sending and processing of test data.

To operate specialized channels requiring highly optimized hardware solutions
for signal simulation, e.g. Fibre Channel-based video channels, ATT supports in-
tegration with signal simulation hardware (SSH) systems which are integral parts
of ATT-based testbenches (typical testbench structure is described in Section 5).
SSH systems operate under control of tests which run on instrumental computers.

ATT provides facilities for testing requirements to real-time operation of the
AS. All operations performed by tests are synchronized with physical time. Tim-
ings of test data sending to AS, and timings of receiving the responses are meas-
ured with high precision (dozens of microseconds), enabling tests to verify AS
reaction time to test stimuli.

ATT supports both fully-automatic test execution (including batch mode) and
interactive testing. Interactive features include:

• Generation of requests from the test to the user:

– For positive/negative confirmation (yes/no), necessary if testing requires
visual assessment of AS reaction, e.g. correctness of image shown on
avionics display device;

– For text comments, e.g. rationale for positive or negative confirmation;

24 V. Balashov et al.

• Manual input of test data values by the user;
• Manual selection of tests execution order (within a single testing script), useful

for debugging of AS software on the testbench.

Each testing session produces a log which contains status of all executed tests
(pass/fail), user replies to test requests, etc. Testing log is subsequently processed
to determine which requirements to AS have successfully passed testing (corres-
pondence between tests and requirements is specified in test description). Testing
logs and test data values (in numeric or graphical form) are displayed to the user
in online visualization tool, enabling one to track the testing progress. Custom
parameter visualization and input tools are supported, such as dials, sliders etc;
plugin interface is provided for adding new custom tools.

An auxiliary log can be generated which records all user-entered data, includ-
ing parameter values, replies to test requests, manual selection of tests execution
order, etc. Such log can later be “replayed” to automatically reproduce an interac-
tive testing session, which is useful for debugging of tests.

To supports development and debugging of tests “in advance”, without actual
avionics hardware available, ATT implements the following features:

• Support for software-simulated “virtual” onboard channels, namely MIL

STD-1553B and ARINC 429;
• Execution of tests in user input expectation mode, in which the tests ask the

user for data instead of getting it from avionics devices (this mode requires no
modification of tests).

ATT toolset supports creation of avionics device simulation models using the
hardware-in-the-loop simulation technology described in [3]. This technology is
an integral part of the testing toolset. Simulation models utilize the resources of
instrumental computers, including onboard channel adapter cards, to reproduce the
modeled device’s activity on the channels. Simulation models can be involved in
testing reconfiguration features of AS subsystems in case of incomplete availabili-
ty of hardware avionics devices participating in reconfiguration.

Hardware resources of an ATT-based testbench can be shared between tests
and monitoring tools of “Channel analyzer” family [4]. Sharing is supported for
MIL STD-1553B adapters with multiple terminal support, with monitoring sup-
port (including concurrent operation of bus controller and monitor functions), for
multiple-channel ARINC 429 and Fibre Channel adapters. Operation of testing
tools (both runtime an user interface subsystems) and monitoring tools in a com-
mon hardware/software environment based on Linux OS with real-time extensions
enables implementation of a compact mobile workstation for testing and monitor-
ing of avionics systems. This solution can be used for field diagnostics of AS, see
Section 6 for details.

Test development subsystem of ATT supports automatic generation of interface
part of tests’ description (i.e. specification of data words and messages structure)
from data contained in Interface control document database. Such database is
maintained by Sukhoi software development teams for each version of avionics
software, see [5] for details.

A Functional Testing Toolset and Its Application to Development of Dependable AS 25

SUBVERSION-based revision control for tests and test logs is implemented in
ATT, integration with ClearCase is on the roadmap.

4.2 Test Description Language Features

Test description language (TDL) of ATT toolset is intended for description of
avionics devices testing scripts. Tests written in TDL are executed on instrumental
computers of a testbench and communicate with tested devices through onboard
channels. Tests also control the operation of SSH systems, including data ex-
change between SSH and avionics devices.

TDL is an extension of C language providing statements for defining test struc-
ture, binding test execution to physical time, control of data exchange through on-
board channels, and control of testing process.

Basic TDL unit for test coupling is test component (TC). TC source code con-
sists of header and body.

TC header specifies:

• Set, structure and hierarchical naming of test cases;
• Correspondence between test cases and requirements to AS;
• Set and types of interfaces to onboard channels through which communication

with AS is performed during testing;
• Structure of data words and messages transferred and received through inter-

faces;
• Set and types of auxiliary variables (parameters) intended for data exchange be-

tween different TCs and between TC and SSH systems;
• Set of testing logs recorded by the TC.

TC body specified testing scripts’ activity on:
• Preparing test data;
• Sending test data into channels;
• Receiving data from avionics devices through channels and checking tested

conditions (access to channel monitoring results is provided in a similar way);
• Direct control of channel adapters, including turning on/off, setting service flag

values, fault injection;
• Interaction with the user during human-assisted (e.g. visual) checking of tested

conditions;
• Control for generation of testing logs.

TDL provides following functionality for automatic checking of timing constraints
on responses from avionics devices (i.e. for testing AS real-time characteristics):

• Waiting for a specified duration and then checking the condition on received data;
• Waiting for the condition on received data to become true, until a specified

timeout expires;
• Constantly checking that the condition on received data remains true during a

specified duration.

26 V. Balashov et al.

A TDL project may include several TCs, in particular intended for execution on
different instrumental computers. Even if only one TC is used, it can access chan-
nel adapters located on different instrumental computers. It is useful in case a sin-
gle TC implements scripts for comprehensive testing of AS or its subsystem
through a large set of interfaces attached to different instrumental computers.

4.3 Toolset Software Structure

ATT toolset contains following major subsystems:

1. Test development subsystem, responsible for creation and editing of tests’

source code in TDL;
2. Facilities for setup of testbench configuration, including:

– Distribution of test components to instrumental computers;
– Allocation of channel adapters to test components’ interfaces;
– Specification of data links from tests to SSH systems;
– Level of detail for testing events recording;

3. Real-time test execution environment, responsible for:
– Distributed real-time execution of tests on multiple instrumental comput-

ers;
– Data communication and time synchronization between instrumental com-

puters;
– Remote access of test components to channel adapters located on different

instrumental computers (via internal Ethernet network of the testbench);
– Data communication between tests and SSH systems;
– Data exchange through onboard channels between tests and tested devices;
– Access of tests to results of channel monitoring;
– Communication with experiment control tools to provide interactive test-

ing control and online visualization of testing process;
– Recording of testing results as logs and event traces;

4. Experiment control subsystem, responsible for interaction with the user, in par-
ticular for online visualization and interactive testing control;

5. Testing results processing subsystem, responsible for:
– Visualization of testing results in form of testing logs, time diagrams, pa-

rameter graphs, channel monitoring logs;
– Generation of reports on results of testing;

6. Server subsystem, responsible for:
– Revision control of test source code, testbench configuration and testing

logs;
– Interaction with Interface control document database;
– Sharing of testbench repository over network between all testbench

computers.

The user accesses tools from groups 1-6 via Integrated development environment.

A Functional Testing Toolset and Its Application to Development of Dependable AS 27

5 Architecture of a Testbench Based on the Presented Toolset

ATT toolset described in Section 4 is practically applied as a central software
facility of avionics testbenches. Architecture of such testbenches, including typical
components and scheme of their composition, evolved through years of toolset
industrial application. The present section describes this architecture.

ATT-based testbench typically includes following components:

• Instrumental computers intended for running tests and performing data
exchange with AS through onboard channels (currently, MIL STD-1553B,
ARINC 429 and Fibre Channel);

• Specialized signal simulation hardware (SSH) systems operating under control
of instrumental computers;

• Workstations for test engineers and AS software developers;
• Server (or a dedicated workstation) responsible for centralized functions such

as testbench repository keeping and sharing, user authentication, etc;
• Network of onboard interface channels connecting avionics devices with in-

strumental machines and SSH systems, and avionics devices with each other;
• Auxiliary equipment, including systems for power supply and cooling, technol-

ogical networks, racks, etc.
Structural scheme of a typical testbench is shown on Fig.1.

Instrumental
computers

Workstations

Avionics
devices

Ethernet
networkServer

SSH system

Onboard
channels
network

Fig. 1 Structural scheme of an ATT-based testbench

28 V. Balashov et al.

The number of instrumental computers, workstations, number and types of on-
board channels depends on specifics of the tested AS and tasks of the testbench.

All testbench computers (workstations, server, instrumental computers, SSH
system computers) use Linux as operating system. Instrumental computers and
computers of SSH systems use Linux with real-time extensions.

In addition to Ethernet network, instrumental computers are connected by a
dedicated time synchronization network. It connects their LPT ports and serves for
transfer of precise time signals from a single “master” computer to other comput-
ers. Time synchronization error is within bound of 10 us.

The most advanced type of SSH system implemented to date is SSH TV, a mul-
ti-computer system supporting real-time generation and recording of multiple high
speed video streams. It serves as test data source and feedback recorder for testing
of avionics display and video processing devices. Static (picture) and dynamic
(motion picture) test video streams are prepared in advance, before start of testing.
Selection of a video stream to be transferred to a given channel at specific moment
of time is performed by the test executed on an instrumental computer.

6 Industrial Case Study

This section describes the industrial application of ATT testing toolset presented
in Section 4.

The ATT toolset is utilized for over six years by Sukhoi Design Bureau for test-
ing of avionics software of modern aircraft. A family of testbenches is created on
the base of this toolset, each testbench aimed at a specific stage of AS
development.

The ATT-based testbenches used by Sukhoi are integral parts of the technology
for development of Data control system (DCS) of the aircraft. DCS includes Cen-
tral board computer (CBC), a set of display devices, and some auxiliary devices.
DCS data exchange network includes:

• several MIL STD-1553B buses connecting the CBC with other devices;
• dozens of ARINC 429 channels for connecting legacy devices;
• Fibre channel network intended for high speed data transfer, including transfer

of video data.

Description of particular ATT-based testbenches used by Sukhoi, and their tasks,
is provided below. All testbenches share the common architecture described in
Section 5. Together these testbenches cover all the cases for target-based avionics
software testing listed in Section 2.

1. Testbench for testing and debugging of individual avionics device’s
software. This testbench is intended for working with an individual device, for
instance the most complex DCS device – the CBC. Software of this testbench
includes ATT toolset, tools for target-based software debugging and “Channel
analyzer” tools for monitoring of data exchange through channels. Main purpose
of this testbench is to support debugging of DCS device software and preparation

A Functional Testing Toolset and Its Application to Development of Dependable AS 29

of the device for integration with other devices. For final checks of the device’s
readiness for integration with other devices, an approved set of tests should be
used.

Data exchange monitoring tools are used in the testbench for resolving
“boundary” issues in case it is unclear whether the target device itself operates
incorrectly or the tests provide improper input data.

As it is sufficient to support only those external interfaces that are provided by
the selected DCS device, the number of instrumental computers in the testbench is
usually small (not greater than 3). SSH systems are implemented in single-
computer configurations. This enables composition of all testbench hardware,
together with the DCS device, into a single rack. Sharing of hardware resources
between testing and monitoring tools helps to keep hardware requirements low.

“Unified” testbench for working with different DCS devices from a specified
set is organized in a similar way. Instrumental computers of such testbench cover
all types of external interfaces provided by devices from the set, in quantities
sufficient for working with every single device from this set.

Testbench of the described type can be used for testing and debugging of appli-
cation software subsystems on a partially equipped avionics device, for instance a
CBC with only some of processor and communication modules installed. This
approach is practical for co-developer organizations responsible for specific
application software subsystems.

2. Testbench for testing and debugging the software of a group of several
connected avionics devices. This testbench is intended for workout of communi-
cation between two or several directly connected DCS devices, for instance CBC
and a display device. The testbench can also be used for performing some activi-
ties of debugging the software of these devices.

The testbench hardware structure and configuration is similar to those of the
testbench for an individual device (described above), except that a separate place
outside the rack is needed for at least one DCS device, usually the display device.

A set of tests for this type of testbench is aimed at checking of co-operation of
the bunch of connected DCS devices composing a DCS subsystem.

As in the previous case, a testbench can be created which supports different
combinations of DCS devices, for instance the CBC and one of several display
devices.

This type of testbench supports the activities necessary for preparation to inte-
gration of the whole DCS. Use of this testbench relieves the “main” DCS integra-
tion testbench from tasks of detecting and fixing the issues of co-operation be-
tween most intensely communicating DCS devices.

3. Testbench for DCS integration and acceptance testing. This testbench is
intended for stepwise integration of DCS, and for DCS software acceptance test-
ing. The testbench supports delivery of input data to all DCS input interfaces and
receiving resulting data from all DCS output interfaces. Furthermore, monitoring
of internal DCS channels is supported.

Due to need for complete workout of data communication protocols for all
DCS interfaces and internal channels, a large number of instrumental computers

30 V. Balashov et al.

(5-6 or more) is included in the testbench hardware, along with full-featured SSH
systems in multiple-computer configurations.

Testbench for DCS integration and acceptance testing represents several racks
containing instrumental computers and DCS devices. The testbench includes sev-
eral workstations, enabling simultaneous development and execution of tests.

Tools for monitoring of data exchange through channels are used in the test-
bench for analysis of inter-device communication issues and for resolving “boun-
dary” issues.

4. Testbench for development of DCS functional tests. This testbench plays
an auxiliary role and is dedicated to development of tests. It contains several
workstations and a server connected by Ethernet network. All computers have
ATT toolset installed.

Debugging of tests is performed on workstations using such features of the
ATT toolset as virtual onboard channels and execution of tests in user input ex-
pectation mode.

5. Testbench for acceptance testing of series-produced DCS. This testbench
is intended for performing acceptance tests for DCS device sets before their instal-
lation onboard the aircraft. Second purpose of this testbench is diagnostics of de-
vices which are subject to reclamations.

Instrumental hardware of this testbench is essentially the same as of the test-
bench for DCS integration and acceptance testing, except for lack of multiple
workstations as the testbench is not intended for development of tests.

The testbench includes a “reference” set of DCS devices which has passed
full-scale testing. On arrival of a DCS device subject to reclamations, this device
replaces the corresponding reference device, and a bunch of tests is automatically
executed which is aimed at examination of the device under question. Decision on
farther operations with the device is made on the base of testing results.

If a newly produced set of DCS devices arrives for testing, it completely rep-
laces the reference set. In case of issues in DCS operation, new devices can be se-
lectively replaced by reference devices to locate the improperly operating device.

6. Mobile workstation for monitoring and testing DCS devices onboard the
aircraft. Mobile workstation is the most compact installation of ATT toolset and
“Channel analyzer” tools for data exchange monitoring. Workstation hardware
includes:

• A rugged industrial notebook with extension chassis providing PCI and/or PCI

Express slots;
• Adapters of onboard interface channels (e.g. MIL STD-1553B, ARINC 429,

Fibre Channel).

Testing toolset and monitoring tools named above use the same software
environment, share the hardware resources (including adapters) and can be used
concurrently.

In case the number of available extension slots is not sufficient for installation
of adapters for all required types of interface channels, a replaceable extension
chassis can be used. External adapters attached to USB ports can also be used, e.g.
for monitoring of data exchange on MIL STD-1553B channels.

A Functional Testing Toolset and Its Application to Development of Dependable AS 31

Mobile testing and monitoring workstation enables primary diagnostics of DCS
devices operation without their transportation to the location of stationary test-
benches. This possibility is essential in case of multiple geographically separated
locations in which the aircraft containing the DCS is operated or field tested. If
there are issues in operation of DCS “as a whole”, use of mobile test and monitor-
ing workstations allows localization of the problem and its attribution to a specific
DCS device. This single device becomes the subject for farther examination on a
stationary testbench.

Testing of DCS devices operation using the mobile workstation can be
performed:

• On a grounded aircraft: the workstation is attached to control plugs of

the onboard network and operates in “passive” mode, performing following
activities:
– data exchange analysis by monitoring tools;
– execution of tests which automatically check the correctness of data ex-

change sequences and transferred data values;

• On a device (temporarily) disconnected from the other DCS devices: the
workstation is attached to the device’s inputs and outputs and executes the tests
for checking the device’s operation.

The workstation can also be used for simulation of an avionics device connected
to DCS but not belonging to DCS itself.

It is practical to equip the mobile workstation with test suites for different DCS
devices, each suite packaged for automatic execution (similar to the testbench for
acceptance testing of series-produced DCS).

Testing logs and data exchange traces collected by the mobile workstation can
be transferred by communication links to the main DCS development workgroup
for analysis. To enable such analysis, the testing and monitoring tools used on the
mobile workstation and on the stationary testbenches must be unified.

Unification of architecture and software tools on all the testbenches listed
above, first of all the testing and monitoring tools, enables use of the same testing
technology on different stages of DCS development at Sukhoi Design Bureau, as
well as transfer of test suites between testbenches and DCS development stages
with minimal adaptation.

DCS software, the requirements to this software, and test suites for
verification of these requirements are subject to configuration management. A
professional configuration management tool is included in the DCS software
development toolchain applied by Sukhoi Design Bureau. Version of the test
suite is an integral part of the DCS software version. Headers of test components
comprising the test suite contain references to the requirements that apply to the
software version.

32 V. Balashov et al.

7 Testing Dependability Features of Avionics Systems

This section describes techniques for testing of AS dependability features on a
testbench based on ATT toolset.

To test a dependability feature of AS or its subsystem, the testbench must:

1. Generate a stimulus to activate the dependability feature;
2. Verify that the feature operates correctly.

The stimulus typically belongs to one of following classes:

1. Explicit command for dependability feature activation, delivered through on-
board channel;

2. Simulation of a fault (also known as fault injection):
– Software: delivery of corrupted data;
– Hardware: simulation of noise on channels, power failures, device shut-

down.

Generation of stimuli from classes listed above require control of “external” envi-
ronment of the tested avionics devices, namely of data exchange channels and
power supply systems. Other stimuli, like simulation of data corruption or hard-
ware failures inside the devices, require instrumentation of the devices and are not
considered here.

Special channel adapters installed on instrumental computers are used for injec-
tion of “bit inversion” or “noise on channel” faults into onboard channels con-
nected to DCS devices. To generate a power failure for a specific device, its power
cable is equipped with software-controlled switch which can temporarily “disrupt”
the cable by a signal from SSH system belonging to the testbench. Both types of
hardware fault injection are controlled by tests.

To test AS support for reconfigurability in case of faults as early as possible,
simulation models of some AS devices can be used. If reconfiguration procedure
involves coordinated actions of several devices, only one of which is available in
hardware on the testbench, other devices can be substituted by simulation models.
This enables testing reconfiguration-related functions of the hardware device in
advance, to prepare it for testing on the “main” testbench for integration and
acceptance testing. Avionics device simulation models are created using the
hardware-in-the-loop simulation technology described in [3].

Table 1 lists several techniques for testing of AS dependability features, includ-
ing basic support for reconfigurability. These features are usually implemented in
software. Actual set of dependability features and expected AS responses depends
on specifics of the target AS. Responses from AS are available to tests in form of
data received from AS or obtained by monitoring of internal channels connecting
AS devices.

A Functional Testing Toolset and Its Application to Development of Dependable AS 33

Table 1 Testing avionics system dependability features

Dependability feature Test stimulus Expected response from AS

Resilience to sporadic
noise on a channel

Injection of “bit inversion”
error into the channel

Request for re-sending the
corrupted message

Resilience to receiving a
single incorrect set of data
values

Delivery of message with in-
correct (e.g. out of range) data
values through an onboard
channel

Correct output data values from
AS, e.g. produced using last
correct input data values

Switching to the secondary
MIL STD-1553B bus in
case of primary bus failure

Simultaneous shutdown of all
primary bus terminals
controlled by the testbench, or
continuous injection of
“noise” into the primary bus

Activation of data exchange on the
secondary bus

Switching between primary
and hot-spare devices in a
redundant device pair (the
pair of devices is tested)

Testbench acts as the bus con-
troller and sends the command
to start reconfiguration

Reconfiguration-related data
exchange starts on the channel
connecting the device pair. Former
hot-spare device marks itself as
primary one (and vice versa) in
subsequent data exchange with
other devices.

Initiation of switching
between primary and
hot-spare devices in a
redundant device pair
(central board computer is
tested; device pair is
simulated by the testbench)

Testbench acts on behalf of
the device pair and simulates a
malfunction of the primary
device (shutdown or
continuous generation of
incorrect data)

CBC sends the command (or
command sequence) to initiate the
reconfiguration. After (simulated)
reconfiguration is completed, CBC
produces correct output data,
matching the input data from the
correctly operating (former hot-
spare) device.

Switching to emergency
mode

Simulation of multiple devices
malfunction (or other
condition that initiates the
emergency mode according to
AS specification)

CBC sends appropriate commands
to all devices and switches to the
emergency mode data exchange
schedule

Recovery after power
failure of a non-redundant
device

Controlled instant disruption
of a device’s power supply

After specified time the device
resumes operation (as a result of
successful reboot), i.e. starts
sending correct data through
channels. The rest of AS resumes
using the data produced by the
device (this is observable on
outputs of other devices).

8 Conclusion

In this paper we presented a toolset for target-based functional testing of
avionics software. Architecture of testbenches based on this toolset was described.

34 V. Balashov et al.

Application of the testbenches to testing of avionics systems (AS) dependability
features was illustrated by several examples.

The presented toolset is aimed at testing of software running on
non-instrumented avionics devices. This capability is essential for acceptance and
field testing of avionics devices. Brief analysis of two popular real-time testing
toolsets performed in this work shows that they support this capability in a very
limited way.

A family of testbenches based on the presented testing toolset was described.
These testbenches are used in Sukhoi Design Bureau in the processes of aircraft
data control system (DCS) software development and support.

Directions for future development of the testing toolset and testbench technolo-
gy include support for:

• Declarative description of tests, as an alternative to procedural description by

means of Test description language (TDL). An example of declarative test de-
scription is a table of test cases (a case contains input values for AS, processing
delay, and condition to be checked on AS outputs) in format allowing automat-
ic generation of TDL description.

• Use of a single description of onboard channel messages structure in all test
projects for a specific version of AS software.

• Automatic binding of test components’ interfaces to testbench hardware (chan-
nel adapter ports on instrumental computers) in order to minimize adaptation of
test projects on transfer between testbenches. Descriptions of correspondence
between testbench interfaces and AS interfaces must be created and automati-
cally processed to implement this capability.

• Automatic analysis of exchange sequences recorded on channels for confor-
mance to reference schedules from Interface control document database.

• Automatic testing of indication formats on DCS display devices. These devices
create and send archive copies of displayed video frames. To support automatic
testing of indication formats, tools must be created for automatic comparison of
these archive frames with reference images.

• Open interfaces for integration of the testbench with external systems for AS
workout. An example of such interface is the one specified by HLA stan-
dard [6].

References

[1] IBM, Embedded software test automation framework – IBM Rational Test Real Time
(2011), http://www-01.ibm.com/software/awdtools/test/realtime/
(accessed December 19, 2011)

[2] Vector Software, How to Improve Embedded Software Unit/Integration Testing with
Automation (2011), http://www.vectorcast.com/testing-solutions/
unit-integration-embedded-software-testing.php
(accessed December 19, 2011)

A Functional Testing Toolset and Its Application to Development of Dependable AS 35

[3] Balashov, V.V., Bakhmurov, A.G., Chistolinov, M.V., Smeliansky, R.L., Volkanov,
D.Y., Youshchenko, N.V.: A hardware-in-the-loop simulation environment for real-
time systems development and architecture evaluation. Int. J. Crit. Comput.-Based
Syst. 1(1/2/3), 5–23 (2010)

[4] Balashov, V.V., Balakhanov, V.A., Bakhmurov, A.G., Chistolinov, M.V., Shestov,
P.E., Smeliansky, R.L., Youshchenko, N.V.: Tools for monitoring of data exchange in
real-time avionics systems. In: Proc. European Conference for Aero-Space Sciences,
EUCASS (2011)

[5] Balashov, V.V., Balakhanov, V.A., Kostenko, V.A., Smeliansky, R.L., Kokarev, V.A.,
Shestov, P.E.: A technology for scheduling of data exchange over bus with centralized
control in onboard avionics systems. Proc. IMech. E Part G: J. Aerosp. Eng. 224(9),
993–1004 (2010)

[6] IEEE, IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) – Framework and Rules (2010), doi:10.1109/IEEESTD.2010.5553440

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 37–53.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Specification Means Definition for the Common
Criteria Compliant Development Process – An
Ontological Approach

Andrzej Białas

Abstract. The chapter presents a new ontology-based approach to the definition of
specification means used in the IT security development process compliant with
the Common Criteria standard. Introducing the ontological approach makes, gen-
erally, the IT security development process easier and more effective. The chapter
provides multiple-use specification means to create Security Targets (STs) for dif-
ferent kinds of IT products or systems. First, the review of works concerning the
ontological approach within the information security domain was performed. Then
the chapter discusses the ITSDO workout: domain and scope definition, identifica-
tion of terms within the domain, identification of the hierarchy of classes and its
properties, creation of a set of individuals, and the ontology testing and validation.
This way a prototype of the specification means knowledge base was proposed,
developed in the Protégé Ontology Editor and Knowledge Acquisition System.

1 Introduction

The chapter concerns the IT security development process compliant with the
Common Criteria (CC) standard [1], and deals with the ontological representation
of the specification means which describe IT security features and behaviour.

The CC methodology is of key importance as it provides dependable IT
solutions to the market, particularly those that are to be used by large businesses,
critical infrastructures, and emerging e-services. All these critical IT applications
need solutions providing the right assurance for their stakeholders and users.
According to [1], the assurance is understood as the confidence that an entity, i.e.
IT product or system, called TOE (Target of Evaluation), meets the security
objectives specified for it. IT consumers want their IT products or systems work
just as they were designed. The assurance foundation is created in a rigorous IT
security development process whose results are independently verified according
to the standard.

Andrzej Białas
Institute of Innovative Technologies EMAG, 40-189 Katowice, Leopolda 31, Poland
e-mail: a.bialas@emag.pl

38 A. Białas

The general recommendation is that IT products or systems should be
developed in a rigorous manner. Rigorous means more precise, more coherent,
mathematically based, supported by the rationale and verification processes, etc.
Assurance is measurable in the EALn scale (Evaluation Assurance Level) in the
range from EAL1 (min) to EAL7 (max).

The ontology represents explicit formal specifications of terms in the given
domain and relations between them. Generally, the creation of ontologies allows
to analyze, share and reuse knowledge in an explicit and mutually agreed manner,
as well as to separate the domain knowledge from the operational one and make
domain assumptions explicit [2]. A few methodologies were developed with a
view to create ontologies and to perform reasoning. Ontologies were elaborated in
many disciplines, such as web-based applications, medicine, public administration
and biology, and, recently, in the information security domain.

The general motivation of the works is to improve the IT security development
process using the advantages and new possibilities offered by the ontological ap-
proach. For this reason the ontology-based models were worked out. The chapter
concerns the security ontologies discipline and presents the IT Security Develop-
ment Ontology (ITSDO), with the focus on its part about specification means.

The chapter features some basic concepts and approaches of knowledge engi-
neering used to improve the IT security development process. The most relevant
works concern:

• the CC security functional requirements (Part 2 of [1]) modelling and their

mapping to the specified security objectives with the use of the developed CC
ontology tool (GenOM) [3]; the security requirements and the security objec-
tives are represented by an ontology; as the paper focuses on the security objec-
tives specification, it neither discusses the security problem definition (threats,
policies, assumptions), whose analysis allows to specify these objectives, nor
the security functions elaborated on the security requirements basis;

• the ontological representation of the CC assurance requirements catalogue (Part
3 of [1]) used by the developed CC ontology tool [4] to support evaluators dur-
ing the certification process; the authors of the paper show the usefulness of
this methodology especially in such activities as: planning of an evaluation
process, review of relevant documents or creating reports; generally, this tool
reduces the time and costs of the certification process; please note that the me-
thodology focuses on the evaluation of assurance requirements only, not on the
whole IT security development process.

Reviews of researches on security ontologies were provided in [5]. These
ontologies concern: risk management issues, advanced security trade-off methods,
information security management systems, especially those compliant with
ISO/IEC 27001, or business continuity management systems compliant with
BS 25999, common security issues, like: threats, attacks, policies, security of
services, security agents, information objects, security algorithms, assurance and
credentials, etc. The number of elaborated security ontologies is growing and they
cover all security-relevant issues.

Specification Means Definition for the CC Compliant Development Process 39

The most relevant papers [3] and [4] present how to build ontological models of
the Common Criteria components only. Additionally, the work [3] shows how to
map security requirements to security objectives, however, it does not discuss how
to specify these objectives while a security problem is solved. None of these
works concerns specification means for all stages of the CC-compliant IT security
development process. This chapter concerns specification means for all develop-
ment stages and security issues mapping between these stages.

The chapter is based on the author’s earlier works summarized in [5] and in the
monograph [6] presenting the CC-compliant IT security development framework
(ITSDF). The UML/OCL approach was used for ITSDF to express all develop-
ment stages. The models of specification means were elaborated. The means in-
clude not only CC components but also the introduced semiformal generics, called
“enhanced generics”, as they have features comparable to the CC components, al-
lowing parameterization, derivation, iteration, etc. The paper [5] considers the on-
tological representation of the enhanced generics as a kind of design patterns used
to specify security issues of intelligent sensors and sensor systems.

2 IT Security Development Process

The IT security development process is related to the Security Target (ST) or Pro-
tection Profile (PP) elaboration (or their simplified, low-assurance versions) [1].
The chapter concerns the specification means for the ST elaboration process,
which is a more complicated case. The above mentioned ITSDF framework
provides UML/OCL models of the specification means: enhanced generics –
proposed by the author, and components – defined by the standard. They are
implemented as library items. These are the main stages of the Security Target
(ST) elaboration process and the used specification means:

• the preliminary ST introduction stage, for which an informal textual description

is used;
• security problem definition (SPD), specifying the threats, OSPs (Organizational

Security Policies) and assumptions; for this stage the ITSDF framework pro-
vides enhanced generics;

• setting, on this basis, the security objectives (SO) – for the TOE and its envi-
ronment (development and operational); enhanced security objectives generics
are used, covering the SPD items;

• working out the sets of functional (SFR) and assurance (SAR) requirements for
the TOE and its environment, based on the CC components catalogues, and
analyzing the above objectives;

• preparing the TOE summary specification (TSS) based on requirements, con-
taining security functions (SF) generics that should be implemented in the IT
product or system (the TOE development process).

The next section presents the creation of the ontology focusing on specification
means for all IT security development stages.

40 A. Białas

3 Elaboration of the IT Security Development Ontology

The elaboration of the IT Security Development Ontology (ITSDO), compliant
with the CC v. 3.1, was based on the author’s experiences related to the ITSDF
framework implementation and the use of the Protégé environment developed at
Stanford University [7]. The ontology development process was performed with
respect to the basic knowledge engineering rules [2]. It will be exemplified by
some issues encountered during the ITSDO ontology validation (Section 3.7)
using the MyFirewall project presented in [6].

3.1 The Domain and Scope of the Ontology

First, the domain and scope of the elaborated ontology have to be defined. For the
ITSDO ontology they are related to the Common Criteria compliant IT security
development process. The given ontology is able to answer specific questions
called competency questions. All these answers define the ontology scope.

While elaborating this ontology, two goals should be achieved to improve the
IT security development process:

1. ITSDO provides common taxonomy of the specification means. It allows to

better understand terms and relationships between them.
2. Creating on this basis a knowledge database, containing specification means to

be retrieved while the security specifications (ST/PP) are elaborated.

3.2 Possible Reuse of Existing Ontologies

As regards the reusability of third-party ontologies, the key issues are the range of
compatibility, integration ability, quality, satisfied needs of the ontology users
and, first and most – the availability of the given ontology.

3.3 Identifying Important Terms in the Ontology

The ontology development stage called “identification of important terms” was
provided mostly during the ITSDF framework [6] elaboration by analyzing the IT
security development process, functional and assurance components [1], evaluated
products and systems, performed case studies, etc.

3.4 The Classes (Concepts) and the Class Hierarchy

Generally, a top-down ontology development approach was applied, though the
entire process was iterative and some bottom-up activities were undertaken. To
assure proper knowledge representation, the analyses of the identified terms and
relationships were provided. During ITSDO development different analyses of
terms and relations between terms should be performed, e.g.: class-individual,
class-subclass, class-superclass, abstract classes, and classes having instances. It is
important to decide what is to be expressed by a class and what by a property. The

Specification Means Definition for the CC Compliant Development Process 41

possibility of the future evolution of the class hierarchy, transitivity of class rela-
tions, avoiding common errors, naming convention, etc. should be considered too.

All concepts of ITSDO are grouped in the following superclasses:

• CCSecComponent, representing security assurance – SAR (SARComponent)
and security functional requirements – SFR (SFRComponent);

• EnhancedGeneric, expressing enhanced generics used as the specification
means for development stages other than the security requirements elaboration,
defined previously for the ITSDF framework;

• SecSpecification, expressing structures of the ST/PP; this chapter is focused on
specification means used to fill in these structures;

• EvidenceDoc, representing evidences which should be worked out to meet as-
surance requirements of the declared EAL (not discussed in this chapter);

• AuxiliaryConcept, representing a set of auxiliary terms used in the projects.

The SARComponent class represents all CC-defined SAR requirements which are
grouped by CC assurance classes, e.g. ACOClass, ADVClass, etc. Each CC assur-
ance class has its CC-families, e.g. ADVClass has ADV_ARC, ADV_FSP,
ADV_IMP, etc. Please note that the CC-defined classes (functional, assurance) and
their families are both represented by ontology classes. Assurance components are
grouped in sets (packages) represented by EAL levels defined in the third part of
the standard [1]. In the ITSDO ontology the SAR components are considered as
individuals (instances) of the given family.

Example 1. Specification of the ADV_FSP_4 assurance component during
ontology validation using the MyFirewall project (Figure 1).

The “ADV_FSP.4 Complete functional specification” CC assurance component
is represented by ADV_FSP_4, i.e. by the individual of the ADV_FSP ontology
class. It is exemplified with the use of the Protégé environment.

The left side of this figure shows a part of the ITSDO ontology class hierarchy.
The main superclasses and ADV families, with numbers of their individuals in
brackets, are visible. For the highlighted ADV_FSP CC family (i.e. ontology
class) its individuals are presented (see “Instance Browser” – in the middle): from
ADV_FSP_1 to ADV_FSP_6. The right part of the window shows the
ADV_FSP_4 details. For each individual (SAR component and others) a set of
properties is defined – according to the third part of the standard [1]. This issue
will be discussed later in the second part of the example. □

Due to the restrictions concerning the naming convention, the dot notation
commonly used for CC components, e.g. ADV_FSP.1 (and their parts called
“elements”, e.g. ADV_FSP.1.1) cannot be used in Protégé. The dot “.” character is
replaced by the “_” underscore character. A similar notation was assumed for the
security functional requirements. The SFRComponent class represents all CC-
defined SFR requirements which are grouped by CC functional classes, e.g.
FAUClass, FCOClass, etc. Each CC functional class has its CC functional

42 A. Białas

families, e.g. FAUClass has FAU_ARP, FAU_GEN, FAU_SAA, etc. For the
ITSDO ontology it was assumed that particular CC components are individuals of
the given family, e.g. FAU_ARP_1 component is an individual of the FAU_ARP
class. For each individual a set of properties is defined – according to the second
part of the standard [1].

Fig. 1 Examples of ITSDO ontology classes and their instances within the Protégé
environment (security assurance requirements)

The EnhancedGeneric class represents specification means other than CC
components, called enhanced generics and introduced in the ITSDF framework.
In comparison with the “generics” usually used by developers, they have some
extra features, so they are called “enhanced”. In comparison with the ITSDF
enhanced generics, here presented enhanced generics have a little changed
semantics, their set was optimized (reduced) and matched to the CC ver. 3.1. For
this reason they need some explanation concerning the semantics elaborated
for them.

Different kinds of assets are represented by the DAgrGeneric class which has
three subclasses with individuals (Table 1). The part of the name after “_”, i.e. the
string “Generic”, represents real names of individuals expressing different kinds
of assets, called “Mnemonic” in the ITSDF framework. Subjects and other active
entities are expressed by SgrGeneric subclasses (Table 2):

Specification Means Definition for the CC Compliant Development Process 43

Table 1 Generics representing assets (passive entities): DAgrGeneric class

DAgrGeneric Semantics

DTO_Generic Data objects, services and other assets related to the TOE

DIT_Generic Data objects, services and other assets placed in the TOE IT environment

DAP_Generic Other assets placed in the physical environment of the TOE

Table 2 Generics representing subjects and other active entities: SgrGeneric class

SgrGeneric Semantics

SAU_Generic
An authorized subject or other active entity; may be internal or external to the
TOE; usually expresses legal users, administrators or processes

SNA_Generic
An unauthorized subject or other active entity; may be internal or external to
the TOE; usually expresses threat agents

SNH_Generic
A non-human malicious entity within the system being the cause of unex-
pected events, different disturbances or technical failures, force majeures, etc.

The security problem definition needs enhanced generics for the specification

of threats, organizational security policy rules and assumptions. Assumptions
(AgrGeneric subclasses) are shown in Table 3. Threats concerning the TOE
and its environment are expressed by three TgrGeneric subclasses (Table 4).
Organizational security policy rules (OSPs) (PgrGeneric class) used for the secu-
rity problem definition and security objectives for the TOE and its environment
(OgrGeneric class) have similar subclasses, shown in Table 5.

Table 3 Generics representing assumptions: AgrGeneric class

AgrGeneric Semantics

ACN_Generic Connectivity aspects of the operational environment (IT aspects)

APH_Generic Physical/organizational aspects of the operational environment

APR_Generic Personnel aspects of the operational environment

Table 4 Generics representing threats: TgrGeneric class

TgrGeneric Semantics

TDA_Generic Direct attacks on the TOE

TIT_Generic Threats to the IT environment of the TOE

TPH_Generic
Threats to the physical environment of the TOE, including procedural and
organizational breaches

44 A. Białas

Table 5 Generics for OSPs (PgrGeneric class) and security objectives (OgrGeneric class)

PgrGeneric/OgrGeneric Semantics

PACC_Generic /OACC_Generic Access control and information flow control aspects

PIDA_Generic /OIDA_Generic Identification and authentication issues

PADT_Generic /OADT_Generic Accountability and security audit

PINT_Generic /OINT_Generic Integrity

PAVB_Generic /OAVB_Generic Availability

PPRV_Generic /OPRV_Generic Privacy

PDEX_Generic /ODEX_Generic General aspects of secure data exchange

PCON_Generic /OCON_Generic Confidentiality

PEIT_Generic /OEIT_Generic
Right use of software and hardware within the TOE envi-
ronment

PEPH_Generic /OEPH_Generic
Technical infrastructure and physical security of the TOE en-
vironment

PSMN_Generic /OSMN_Generic
Security maintenance, technical solutions and legislation, ob-
ligatorily used within the organization (other non-IT aspects)

Security functions (Table 6) representing the TOE security functionality (TSF)

are expressed by FgrGeneric subclasses related to particular security functional
requirements (part 2 of [1]).

Table 6 Generics representing security functions: FgrGeneric class

FgrGeneric Semantics

SFAU_Generic Security functions dealing with audit

SFCO_Generic Security functions dealing with communication

SFCS_Generic Security functions dealing with cryptographic support

SFDP_Generic Security functions dealing with user data protection

SFIA_Generic Security functions dealing with identification and authentication

SFMT_Generic Security functions dealing with security management

SFPR_Generic Security functions dealing with privacy issues

SFPT_Generic Security functions dealing with the protection of the TSF

SFRU_Generic Security functions dealing with the resource utilisation

SFTA_Generic Security functions dealing with the TOE access

SFTP_Generic Security functions dealing with trusted path/channels

The presented taxonomy is more concise and effective than ITSDF. The de-

fined security functions subclasses facilitate their mapping to the principal SFRs.
The last main class is AuxiliaryConcept which contains EALs definitions

(EAL subclass), security attributes (SecurityAttribute subclass), etc. The ITSDO
ontology has also terms representing the ST/PP specifications and evidences.

Specification Means Definition for the CC Compliant Development Process 45

The classes on the same generality level, called siblings, are usually disjointed,
e.g. particular kinds of specification items. For example, a generic representing
threats (TgrGeneric) cannot represent security policies (PgrGeneric) or assump-
tions (AgrGeneric). Please note that disjointed classes cannot have common
instances. The well-defined classes hierarchy helps to avoid “class cycles”.

It was assumed that only the classes of the lowest hierarchy level, e.g.:
ACN_Generic, DTO_Generic, TDA_Generic, ADV_FSP, ALC_DEL,
SFCS_Generic, can have individuals used as specification means, i.e. library ele-
ments to create ST/PP specifications. These specifications means have object-type
properties to join other individuals, e.g. an asset generic being a parameter of a
threat generic, a security objective generic covering a given threat generic. Be-
sides, these individuals have many details assigned. Such details are expressed by
data-type properties, like strings, numbers and dates.

3.5 The Class Properties and Their Restrictions

The above discussed hierarchy of classes defines the general taxonomy of the used
concepts covering all CC-specification means issues. The next step is to define
class properties and their restrictions, starting with the basic ones. The restrictions
describe or limit a set of possible values for the given property. The ontology de-
velopment is an iterative and incremental process. More complicated properties
and restrictions can be added later, during the ontology refinement, taking into
consideration the validation results. The modelled, more sophisticated relation-
ships offer more and more benefits to the ontology users.

Two kinds of standard properties are used:

• object (instance-type) properties, expressing relationships between an individu-
al member of the given class (the object) and other individuals; they are used to
show parts of the structured concepts as well; they represent “complex proper-
ties”, i.e. they contain or point to other objects;

• data-type properties, expressing simple intrinsic or extrinsic properties of the
individuals of the most elementary classes; those are commonly used data
types, like: integer, byte, float, time, date, enumeration, string, etc.; they
represent “simple properties” or “attributes”.

Moreover, annotation properties (to document different issues) which explain the
meaning of the given concept can be used.

Please note that all subclasses of a given class inherit the properties of that
class. If a class has multiple superclasses, it simply inherits properties from all of
them. The classes to which an instance-type property is attached are called a do-
main, while the classes indicated by this property are called a range.

Example 2. Object properties used to express the relations between class individu-
als (mapping the issues).

The simple property isCounteredBy, having the TgrGeneric domain and the
OgrGeneric range, allows to specify all security objectives (individuals) covering

46 A. Białas

the given threat (an individual). This property has the countersThreat inverse
property which allows to retrieve knowledge on all threats (individuals) that can
be countered by the considered security objective (an individual). Similar proper-
ties are defined for many other relations, i.e. between security policy rules and se-
curity objectives, security objectives and security functional requirements, security
requirements and functions. □

Example 3. Object properties of the enumerative class range (knowledge organiza-
tion and retrieving).

The ontology allows to define enumerative classes [2] including a strictly
defined type and number of individuals which have abstract meaning. Such indi-
viduals help to organize and retrieve knowledge. ITSDO has defined, e.g.:

• the EAL class, encompassing individuals: from EAL1, EAL2,... to EAL7,
• the SecurityAttribute class including: Availability, Confidentiality, Integrity in-

dividuals,
• the LifeCyclePhase of the specification means with three allowed individuals:

UnderDevelopment, DefinedInLibrary, Assigned2Specif.

The hasLifeCyclePhase property, having the domain of two classes:
EnhancedGeneric and CCSecComponent, has a range of the enumerative class
LifeCyclePhase. This property is used to manipulate the specification means, e.g.
moving items to or removing them from the specification. □

The second kind of properties, i.e. data-type properties, can be used to assign
numeric, enumerative values and strings to the individuals of the given class.

Example 4. Data-type properties used to express numerical, textual, logical values.

1. The hasE-element property (the SARComponent domain) has a range of a
data-type string and allows to assign an textual description expressing the
E-type element (of the component) to the component class.

2. The hasRisk property of TgrGeneric has a range of an integer, representing the
risk value inherent to the threat item.

3. The EnhancedGeneric class has the hasDescription property, representing the
verbal description of the generic (the data-type string). □

The next example presents how a property can be used to express details of the
assurance components.

Example 1 (continuation). Specification of the ADV_FSP_4 assurance component
during ontology validation using the MyFirewall project (Figure 1).

Please note some details concerning properties of ADV_FSP_4. The
hasLifeCyclePhase property value indicates that this component is assigned to the
elaborated security specification. The hasDependencies property points to
the ADV_TDS_1 (ADV_TDS.1 Basic Design) component (dependencies),

Specification Means Definition for the CC Compliant Development Process 47

while the hasEvidence property – to ADV_FSP_EAL_4, an individual of the
EvidencePattern class. The EvidencePattern class represents evidences sampled
for this component dealing with EAL4 and influenced by the D, C and E elements
(see string-type properties expressing these elements of the component) with
respect to the given TOE (i.e. validated MyFirewall system). □

3.6 Creating Individuals (Instances)

During the ontology defining process it is very important to identify concepts that
have individuals (instances). Please note that an instance of a subclass is an in-
stance of a superclass. The ITSDO ontology is focused on specification means, i.e.
functional components, assurance components and enhanced generics classes. As
it was mentioned above, they belong to the lowest levels of the class hierarchy and
have individuals which are elementary issues of the created knowledge database.

Example 5. Specification of the TDA_IllegAcc enhanced generic expressing a
threat against the MyFirewall system (Figure 2).

Enhanced generics will be exemplified by threats within the Protégé environ-
ment. The left side of Figure 2 shows a part of the ITSDO ontology class hie-
rarchy, presenting different enhanced generics classes (i.e. groups of generics [6])
and their subclasses (i.e. families of generics [6]). Please note that only generics
families (and earlier mentioned component families) can have instances. The
numbers of individuals of particular families are in brackets. For the highlighted
TDA_Generic family (i.e. ontology class, seen at the bottom of the left window),
62 individuals were defined up until now in the library (i.e. in the ITSDO related
knowledge base), which represent direct attacks against different kinds of TOEs.
The highlighted TDA_IllegAcc individual (as well as the TDA_FwlAdminImpers,
TDA.NewAttMeth individuals) were used to specify threats for the MyFirewall
firewall during the ontology validation (see “Instance browser” in the middle).
The right window (“Protégé Individual Editor”) shows details on the highlighted
TDA_IllegAcc individual of the TDA_Generic ontology class.

The TDA_IllegAcc meaning is expressed by the string-type property hasDe-
scription, having the following value partially visible there (defined on the library
level):

“An attacker [SNA] on the hostile network may exploit flaws in service imple-
mentations (e.g. using a well-known port number for a protocol other than the one
defined to use that port) to gain access to hosts or services [D*]”.

The meaning of the discussed threat is supplemented by the refinement,
expressed by the string-type property hasRefinement, having the following value
also partially visible:

“The MyFWL firewall protects external assets, located in the protected
network”.

Please note that parameters in square brackets can be substituted by proper
subjects/assets generics. The first [SNA] parameter is expressed by the
hasThreatAgent property and has the SNA_HighPotenIntrud_D1 value, while the

48 A. Białas

second, [D*] (* means any kind of data assets) parameter is expressed by the
threatenedAsset property of the DIT_ProtectedNet value.

Fig. 2 Examples of ITSDO ontology classes and their instances within the Protégé
environment (enhanced generic expressing threat)

The SNA_HighPotenIntrud_D1 is derived from the SNA_HighPotenIntrud
generic and means: “Attacker having high level skills, enough resources and
deep motivation to perform a deliberate attack”, expressed by its property
hasDescription (not shown in Figure 2). The DIT_ProtectedNet generic has the
hasDescription property value: “Hosts, workstations, their data and services on
the private network protected by the firewall” (not shown either). Please note that
it is a “DIT” family generic, concerning the TOE IT environment, because these
protected assets are external with respect to the firewall (TOE).

Going back to the TDA_IllegAcc enhanced generic, please look at its
other properties which contain much information concerning this threat. First,
note that this generic is native, i.e. it was not derived from another, because the
hasDerivation property is empty. Please note that the breachedSecAttr property
has the Integrity value, being one of three possible individuals of the enumerative
class SecurityAttribute (see Example 3).

The exploitedVulnerability and hasAdvertAction properties present details on
the threat, while the hasLikelihood and hasRisk properties – information about risk
inherent in this threat. The ITSDO ontology has a simple risk analysis facility
built-in. The risk value displayed within the hasRisk property can be calculated in

Specification Means Definition for the CC Compliant Development Process 49

the following way: multiplying the value introduced into the hasLikelihood prop-
erty of the threat by the value introduced into the hasValue property of the generic
representing assets, e.g. DIT_ProtectedNet, and used as a threat parameter, i.e.:

hasRisk := hasLikelihood * hasValue.

All numbers related to the risk calculation are expressed in predefined measures
(e.g. 1, 2, 3). In the future this risk facility will allow to order threats by risk value
that can be helpful during the security objectives workout.

A very important property is isCounteredBy which specifies security objectives
covering this threat. This is an inverse property to the countersThreat property
placed for any security objective family. Both are applied in bidirectional “naviga-
tion” through the ontological model. Figure 2 shows the security objectives se-
lected as a solution to the elementary security issue expressed by the considered
TDA_IllegAcc threat. Each of these individuals is easily accessed by clicking it
and using the “Protégé Individual Editor”. Moreover (not shown) it is possible to
access functional components, which cover them, from any security objective in-
dividual, and, finally, from these components to the security functions individuals
– the navigation through the entire model is very easy.

Please note the annotation-type rdfs:comment property in the upper part of the
“Protégé Individual Editor” window, used to add extra information to any issue of
the ontology. □

The developed ITSDO ontology allows to build a knowledge base encompass-
ing all CC-defined functional/assurance components and authors-defined generics
designed to express the security problem definition, security objectives for the
TOE and its environment, security requirements and security functions. Together
they cover all issues needed to specify the security targets (or protection profiles)
for different IT products or systems. Moreover, the knowledge database contains
ST/PP patterns and evidence patterns for EAL1-EAL7. The knowledge database
can be used as a library of specification means allowing to retrieve solutions for
elementary security issues.

3.7 Test and Validation of the Developed Ontology

During the ITSDO ontology development the Protégé environment was useful to
perform the following types of basic tests:

1. Manual ontology inspections – to avoid commonly known errors [2], such as:

cycles in the class hierarchy, violation of property constraints, interval
restrictions issuing empty intervals, e.g. min val > max val, terms not properly
defined, classes with a single subclass.

2. Ontology tests offered by the Protégé menu functions, like “Checking
consistency”, “Run ontology tests”, were used to remove any inconsistency on
early development stages on the basis of the test report.

3. Usability tests were performed by creating individuals of the given class
and checking if proper structures of the enhanced generics, functional and
assurance requirements, as well as evidence documents are composed.

50 A. Białas

4. Knowledge retrieving tests, based on the Protégé built-in query mechanism, are
designed to check if proper data are issued by different queries applied.

Generally, ontology designing has subjective meaning but the ontology
should be objectively correct [2]. The best way to check this correctness is the
application for which the ontology was designed with respect to the ontology
users’ needs and expectations. For this reason, the ontology validation
was performed using the typical, nearly realistic MyFirewall project, based on
the example described in [6]. This kind of checking was focused on two
issues:

• the selection of proper specification means for the ST or PP, from the

huge number of available generics and components included in the know-
ledge base; the specification means for: the security problem definition,
security objectives, requirements and functions are checked, along with
evidences;

• the creation of the right relationships dealing with the generics parameterization
and mapping (covering) of the specification means; the following issues are
checked: covering the security problem definition issues by proper security ob-
jectives, security objectives by functional components and, finally, functional
components by security functions.

Example 6. Building security specification (i.e. ST parts) for the MyFirewall
system using the ITSDO ontology (Figure 3).

The “Protégé Queries” facility was used to retrieve knowledge from the
elaborated MyFirewall security target model. For the given class and property, a
query can be defined to find individuals meeting the condition specified for them.
Figure 3 shows one of them, i.e. the query called “CoverageOfTDA_IllegAcc”
allowing to get an answer to the question: “Which security objectives cover the
elementary security problem expressed by the TDA_IllegAcc threat in the consi-
dered firewall ST?” The results, i.e. 7 security objectives covering this threat, are
shown in the right part of the main window. Clicking the selected individual, e.g.
OACC_OnProxyAuth, the developer can see its details in the “Protégé Individual
Editor” (see extra window on the right side of Figure 3). Please note that this se-
curity objective is addressed by two components: FIA_UAU_2 and FIA_UID_2.
Clicking any of them, the new “Protégé Individual Editor” window is displayed
(not show there) with a security function implementing these functional require-
ments, i.e.: SFDP_FwlOnProxyAuth, responsible for the network users authenti-
cation on the firewall proxy. Besides, for any search results item (the upper right
corner) it is possible to display all its references (see bottom left part of the
figure) as well as to export the property (older name: “slot”) value to the
spreadsheet. □

Specification Means Definition for the CC Compliant Development Process 51

Fig. 3 Using the Protégé query facility to retrieve specification items for the MyFirewall
system

A few other queries are defined, e.g. to retrieve specification means of the
given IT security development stage or all used in the MyFirewall project. Please
note that queries may concern all defined ontology properties.

4 Conclusions

The chapter concerns an object-oriented ontology related to the IT security devel-
opment process compliant with the Common Criteria standard. The elaboration of
the IT Security Development Ontology (ITSDO) was presented, exemplified by
the selected issues dealing with the ontology validation on the firewall project.
The knowledge base, created on the ITSDO basis, can be considered a specifica-
tion means library used to create security specifications of different IT products or
systems (TOEs).

The enhanced generics and functional and assurance security components pro-
vide the basic set of specification means for the entire IT security development
process for any IT product or system. The ITSDO users can add their own items
into this specification means library.

ITSDO considers many details of the CC-compliant IT security development
process, which can be generalized and grouped around two competency questions:

52 A. Białas

1. How to concisely and adequately specify a security item expressing a solution
of the given elementary security problem?

2. Which security items should the developer use on the current IT security de-
velopment stage to cover an identified security issue of a more general stage?

The first question is related to the development and use of predefined specification
means included in the library, the second one – to mapping security issues. The
mapping expresses the coverage of security problems by their solutions. Both
questions are supported by the introduced ontology.

The ITSDO ontology, as many others [2], contributes to:

• sharing common understanding of the structure of information among people or
software, i.e. mainly the structure of the CC-compliant specification means;

• reusing domain knowledge – to use the same specification means library in
many different projects and to create new specification means or their variants
with the use of the previously defined ones; this approach supports interopera-
bility within the IT security development domain;

• making explicit assumptions for a domain, dealing mainly with the predefined
relationships; for example some generics can have predefined parameters
(“usually used”) or assigned items which “usually” cover them;

• separating the domain knowledge (specification means as a whole, designed to
use in many different IT products or systems security specifications) from the
operational knowledge (how to use this domain knowledge to compose new
specification or to create new specification means);

• analyzing the domain knowledge, e.g. variants, semantics, relationships of the
developed specification means.

The development of an ontology in the considered domain allows different correct
solutions, more or less convenient for the assumed application and related compe-
tency questions. As it was mentioned earlier, the best test is the application for
which the ontology is designed. It means further validation on different use cases.
The worked out ontology and related knowledge bases are prototypes. They need
more investigation, especially from the users’ point of view.

Apart from validations and knowledge base optimization on real projects,
the ontology integration and enhancement should be continued to allow more
sophisticated competency questions. Besides, other issues should be solved, e.g.:
ontology integration, refining an ontological model of evidences, risk value
calculation and interoperability with the selected third party ontologies.

To improve knowledge acquisition it is necessary to use automated knowledge
acquisition techniques, like knowledge-acquisition templates for experts specify-
ing only part of the knowledge required. Moreover, tools generating ontologies
from structured documents (e.g. XML documents) are needed. This generation is
possible because the CC standard is provided as an XML document as well.

The ontology development is usually just the beginning of further implementa-
tion works concerning knowledge bases and different kinds of applications,
including those which support decisions.

Specification Means Definition for the CC Compliant Development Process 53

ITSDO is used in the CCMODE project [8], especially to elaborate models of
the knowledge base and data structures for the supporting tool. Additionally, these
results are used in other IT security related projects to develop tools for business
continuity and information security management in an organization [9].

Acknowledgments. This work was conducted using the Protégé resource, which is
supported by the grant LM007885 from the United States National Library of
Medicine.

References

[1] ISO/IEC 15408 Common Criteria for IT security evaluation, v.3.1. Part 1-3 (2007)
[2] Noy, N.F., McGuiness, D.L.: Ontology Development 101: A Guide to Creating Your

First Ontology. Knowledge Systems Laboratory. Stanford University, Stanford (2001),
http://www-ksl.stanford.edu/people/dlm/papers/ontology-
tutorial-noy-mcguinness-abstract.html (accessed January 19, 2012)

[3] Yavagal, D.S., Lee, S.W., Ahn, G.J., Gandhi, R.A.: Common Criteria Requirements
Modeling and its Uses for Quality of Information Assurance (QoIA). In: Proc. of the
43rd Annual ACM Southeast Conference (ACMSE 2005), vol. 2, pp. 130–135. Kenne-
saw State University Kennesaw, Georgia (2005)

[4] Ekelhart, A., Fenz, S., Goluch, G., Weippl, E.: Ontological Mapping of Common
Criteria’s Security Assurance Requirements. In: Venter, H., Eloff, M., Labuschagne,
L., Eloff, J., von Solms, R. (eds.) New Approaches for Security, Privacy and Trust in
Complex Environments, pp. 85–95. Springer, Boston (2007)

[5] Bialas, A.: Common Criteria Related Security Design Patterns for Intelligent
Sensors—Knowledge Engineering-Based Implementation. Sensors 11, 8085–8114
(2011), http://www.mdpi.com/1424-8220/11/8/8085/ (accessed January
19, 2012)

[6] Bialas, A.: Semiformal Common Criteria Compliant IT Security Development
Framework. Studia Informatica, vol. 29(2B(77)). Silesian University of Technology
Press, Gliwice (2008), http://www.znsi.aei.polsl.pl/ (accessed January
19, 2012)

[7] Protégé Ontology Editor and Knowledge Acquisition System, Stanford University,
http://protege.stanford.edu/ (accessed January 19, 2012)

[8] CCMODE (Common Criteria compliant, Modular, Open IT security Development
Environment) Project, http://www.commoncriteria.pl/ (accessed January
19, 2012)

[9] OSCAD Project (the computer supported business continuity and information security
management system), http://www.oscad.eu/ (accessed January 19, 2012)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 55–68.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Real-Time Gastrointestinal Tract Video
Analysis on a Cluster Supercomputer

Adam Blokus, Adam Brzeski, Jan Cychnerski, Tomasz Dziubich,
and Mateusz Jędrzejewski

Abstract. The article presents a novel approach to medical video data analysis and
recognition. Emphasis has been put on adapting existing algorithms detecting
lesions and bleedings for real time usage in a medical doctor's office during an
endoscopic examination. A system for diagnosis recommendation and disease
detection has been designed taking into account the limited mobility of the endos-
cope and the doctor's requirements. The main goal of the performed research was
to establish the possibility of assuring the necessary performance to introduce the
solution into real-life diagnostics.

The structure of an exemplary algorithm has been analyzed to distinguish and
discuss parallelization options. After introducing them to the algorithm, the usage
of a supercomputer multimedia processing platform allowed to acquire the
throughput and latency values required for real-time usage. Four different configu-
rations of the algorithm have been tested and all their measured parameters have
been provided and discussed.

1 Introduction

Today, medical image processing tasks are not only getting larger but they are also
getting more complicated as we strive to achieve a more accurate representation of
reality.

Constantly developed inventions provide the doctors with new means of ex-
amination and allow diagnosing parts of the body that were unreachable so far.
One of the interesting technological advances is the Wireless Capsule Endoscopy
(WCE) [1]. It is a new method of diagnosis that involves the patient swallowing a
medium-sized (11mm x 26mm) capsule equipped with a light, camera, and
wireless transmitter that traverses the patient's gastrointestinal (GI) tract capturing

Adam Blokus · Adam Brzeski · Jan Cychnerski · Tomasz Dziubich · Mateusz Jędrzejewski
Department of Computer Architecture, Gdańsk University of Technology, Poland, Gdańsk,
G. Narutowicza street 11/12
e-mail: ablokus@eti.pg.gda.pl, brzeski@eti.pg.gda.pl,

jan.cychnerski@eti.pg.gda.pl, dziubich@eti.pg.gda.pl,
matjedrz@eti.pg.gda.pl

56 A. Blokus et al.

images and sending them to a recording device outside of the patient's body. It
allows the doctor to see the whole GI tract and proves to be superior to methods
used so far to diagnose conditions of the small intestine.

As the method becomes more popular, scientist work on reducing the workload
put on the diagnostician who has to spend 45 to 120 min analyzing the 8h long
recording [2]. The current research has two main directions. The first one is the
elimination of uninformative frames and therefore the reduction of the total
amount of images to analyze by removing series of similar frames and keeping
only their most typical representatives. An image mining approach firstly pro-
posed in [3] has been successfully improved by the introduction of distributed
computing [4] and primary division of the video into separately processed seg-
ments. The summarized final recordings, having ca 30% of their initial length,
turn out to cover all the findings marked by professional doctors. Other solutions
are proposed in [5], which utilize the Gabor and wavelet filters to detect the
frames which are blurry or contain only bubble-shaped intestinal liquids.

The second direction in research involves the automatic recognition of images
by specialized classifiers and means of artificial intelligence. The main idea be-
hind many algorithms is the extraction of a set of features from the image and
training the system to recognize the ones classified as pictures of lesions or bleed-
ings. After the algorithm analyzes the video, the detected frames are presented to
the medical doctor, who is responsible for their final classification. There are vari-
ous works that relate to the problem of automated disease detection [2]. Most im-
plemented algorithms perform remarkably well, achieving rates of sensitivity of
over 90%.

Our team has put work into incorporating these methods into the traditional en-
doscopy, by adapting the recognizing algorithms to be useful not only in offline
processing but also during endoscopic examinations. While performing his duties,
the doctor could be supported by a computer system giving hints and marking
abnormal regions in the video image. Such system could vastly improve the diag-
nosis and disease detection rate but only if it was highly efficient and would not
slow down the examination procedure.

Our aim was to create a system capable of performing a real-time analysis of
the video data coming directly from the endoscope. To achieve this we have estab-
lished the values of the throughput and the latency that the system must comply
with. In the considered case, the throughput should be equal to at least 30 fps. An
interview of medical specialists cooperating with our project indicated that for an
online analysis to be helpful during the examinations, the latency parameter
should fall within the range of 2 seconds. Such amount of time typically corres-
ponds to the movement of the endoscope by approximately 5cm in the gastrointes-
tinal tract. If we include the inevitable time of transferring data back and forth,
about 0.2 seconds are left for the video processing and recognition algorithms. Of
course, from the medical specialist's point of view the overall latency of the
system should be kept as low as possible.

Although systems that divide the data among computational nodes, like the one
presented in [4], or analyze only a subset of video frames can increase the
throughput, the latency value is still going to be too high if the algorithm

Real-Time Gastrointestinal Tract Video Analysis on a Cluster Supercomputer 57

analyzing a single frame proves be too slow. Also, in a continuous processing of a
video stream analyzing only selected frames would not be desirable. Therefore,
the key is to parallelize the processing algorithm itself. This could be done by di-
viding it in a workflow fashion into logically consistent blocks and executing them
on different computational nodes.

Most of the workflow-building solutions found in the papers, notably ones such
as Pegasus [6], Triana [7], Taverna [8] and Kepler [9], operate in a grid environ-
ment. However, computations in a heterogeneous environment can often prove to
be non-deterministic and not always reliable. Furthermore, grid nodes are usually
connected by a slow, high-latency network that can hinder the whole system's ef-
fectiveness. Hence, we propose the use of a uniform and reliable environment of a
dedicated cluster computer.

The research which shows the capability of real-time endoscopic video stream
processing has been conducted on the multimedia stream processing platform
called KASKADA [10], which is described in section 3. The platform is deployed
on a cluster supercomputer environment which consists of multiple computational
nodes connected by a fast low-latency network. It is capable of processing incom-
ing data with the use of services created by the user and provides methods for an
easy parallelization of the algorithms.

During the initial tests, the aforementioned typical video analysis and disease
detection algorithms proved to be too slow to satisfy the parameters imposed by
real-time processing. Therefore we have chosen a representative algorithm which
was subjected to parallelization with the use of methods provided by the
KASKADA platform. Then the possibility for the real-time processing was tested
by measuring latency and throughput of the endoscopic video analysis. The tests
have shown that the prerequisites for the real-time processing can be met using the
chosen methods.

The rest of the paper is organized as follows. In section 2 the purely sequential
version of the chosen video analysis algorithm is briefly described. Section 3 con-
tains the characterization of the execution environment of the KASKADA plat-
form and its capabilities. Next, in section 4, a parallel pipeline version of the algo-
rithm is proposed. The testing procedure along with the definition of the chosen
measures is described in section 5 whereas the results and the discussion are pre-
sented in section 6. Finally, the section 7 encompasses the paper conclusions and
suggestions for future research.

2 The Sequential Algorithm

There are several algorithms addressing the problem of abnormality detection on
videos acquired from gastrointestinal tract examinations such as endoscopy, colo-
noscopy or wireless endoscopy, that can be found in scientific literature [2].

Most of them consist of two main steps. The first one is finding a set of features
in an image acquired from the examination video. The second one is the classifica-
tion step in which a set of features calculated in the previous step is assigned to
one of the predefined classes that represent diseases as well as healthy tissue.

58 A. Blokus et al.

For conducting the research, an algorithm developed by Baopu Li and Max
Q.-H. Meng [11] was chosen as it proved to be highly effective both in the origi-
nal paper and in our tests. Furthermore, it shows similarities to other solutions, so
a successful parallelization attempt would open path for accelerating other
algorithms.

In this section, the selected algorithm will be explained in detail to give a
perspective on how speed improvements can be made. Later, in section 4, several
algorithm acceleration enhancements proposals will be presented.

The feature set calculation of the selected algorithm is composed of three major
steps. The first one is preprocessing which involves only a lossless recalculation
of image pixels to a desired color space like RGB or HSV. Then each subsequent
channel is subjected to a DWT (Discrete Wavelet Transform) [12] algorithm
which highlights and amplifies texture features found in the processed image.
DWT decomposes the image into 4 smaller images using a combination of
low- and highpass filters based on a wavelet transform. An image obtained by a
combination of two highpass filters (called LL) is a smaller and less detailed input
image equivalent, whereas images created with other filter combinations (named
LH, HL, HH) contain valuable texture information and are taken for the later
analysis.

At the last step, texture features from DWT images (HL, LH and HH) created
from all of the channels are calculated separately using a uniform LBP (Local
Binary Pattern) [13]. Basically, LBP gathers statistical information about relevant
points (pixels) found in an image, such as corners, edges, holes, etc. Additionally,
it is invariant to monotonic grayscale transformations and the uniform version of
the algorithm can gather information about same classes of points regardless of
their rotation and transposition.

The LBP used in the article and implemented by us for further analysis, gathers
information about 10 different classes of points found in an image. Thus, a combi-
nation of features (statistics of pixel data) found in all DWT images of all color
channels gives a vector containing 90 features (3 color channels * 3 DWT images
* 10 classes of points).

The next step of the algorithm is image classification. It is done with methods
chosen directly from the field of artificial intelligence. In the analyzed algorithm
an SVM classifier was used, which proved to have a high accuracy potential.
From the designed system and real-time analysis point of view, this classifier has
other benefits as well, such as being able to perform classification in a time effi-
cient fashion. We are still in the phase of developing a more elaborate decision
system, so for the current research we have chosen a single SVM classifier which
was tuned for recognition between healthy large intestine tissue and cancer tissue
located in the same organ.

3 Primary Execution Environment

All experiments have been carried out in the environment provided by the
multimedia processing platform KASKADA (polish acronym for: Contextual
Analysis of Data Streams from Video Cameras for Alarm Defining Applications),

Real-Time Gastrointestinal Tract Video Analysis on a Cluster Supercomputer 59

which was developed as a part of the MAYDAY EURO 2012 project at the
Gdańsk University of Technology.

The KASKADA platform has been primarily designed as an execution envi-
ronment for algorithms which process multimedia streams and is currently work-
ing on the cluster supercomputer Galera [14] (672 nodes, each with two Intel
Xeon Quad Core 2,33 GHz processors, at least 8GB RAM, InfiniBand network).
The main execution units on the KASKADA platform are the processing services.
Each user can create simple services which incorporate chosen algorithms.
They can realize a particular task such as image conversion, or perform more
complicated ones like a complete face detection algorithm.

Simple services can be organized into more sophisticated complex services
forming a well-known parallel workflow system. The platform is responsible for
managing the life cycle of all the services, the connections between them and the
input streams from various data sources. The incoming streams are decoded and
given as input for the services. Each simple service can create new data streams,
which can become the inputs for other simple services or the outputs of the whole
complex service. Computations in the simple services are performed in parallel, as
each service can be bound to different nodes of the supercomputer. This feature of
the KASKADA framework encourages the design of complex algorithms in a
fashion that allows to parallelize their execution by introducing logically separate
blocks and pipeline processing of the incoming data.

Fig. 1 The execution model of the KASKADA platform [10]

The services are also capable of signaling detected contextual events (a danger-
ous situation, a disease, etc.). Those events are sent to a queue server specified by
the user and can be read by his application.

The structure of the platform makes it reasonable to perceive it as a possible
component of complex diagnostical systems that can aid medical doctors with
real-time analysis of video data from endoscopic examinations. Thus, all the

60 A. Blokus et al.

efforts to improve the algorithm are focused on its parallelization with the tools
provided by the KASKADA platform.

4 Parallelization Options

Initial speed tests of the sequential algorithm (presented in section 6) have shown,
that the method cannot be used straightforwardly in real-time video analysis,
which is why we present the following proposals for accelerating computations.
Our aim in all the tests was to use parallelization and speed-up mechanisms pro-
vided by the aforementioned KASKADA platform and to assess their efficiency in
the context of the analyzed problem.

Fig. 2 Distributing a frame sequence to multiple algorithm instances

First experiments were performed solely with the use of parallelization methods
provided by the KASKADA platform. The first and most straightforward way of
decomposing the recognition algorithm into parallelizable modules involves
processing multiple frames (or multiple parts of one frame - like different color
channels) concurrently by distributing them among multiple instances of one algo-
rithm. As it is shown in Fig. 2, the incoming video stream is evenly distributed by
sending every portion of consecutive frames to different instances of the same
processing algorithm. After all computations are done, the resulting output is
gathered by another node and sent to the output or for further computations.

For the purposes of our research, the scheme presented above has been applied
twice, to achieve a finer division of the original stream. The algorithm chosen in
section 2 was decomposed into logically consistent blocks which were then

Real-Time Gastrointestinal Tract Video Analysis on a Cluster Supercomputer 61

implemented and executed as separate simple services forming one complex ser-
vice on the KASKADA platform. Service startup, data flow, event message pass-
ing and, most notably, computation nodes allocation were all maintained by the
execution environment of the platform. The platform also ensures that all
processing blocks are given the predefined computation resources. Those mechan-
isms guaranteed that each computing service block used during the experiments
had an exclusive access to at least one processing core.

Fig. 3 Proposed parallel version of the chosen algorithm

The data flow of the parallel algorithm is presented in Fig. 3. In this version of
the algorithm, calculations were modeled as a pipeline system with elements of
data decomposition concerning separate color channels and DWT images. Such
processing model should lead to significant enhancements in terms of both latency
and throughput.

To make further acceleration improvements we decided to parallelize calcula-
tions in the services. Each simple service deployed on the KASKADA platform is
assigned to a multiprocessor cluster node of the Galera supercomputer at run-time.
In consequence, classic process parallelization techniques such as dividing compu-
tations into multiple threads can be efficiently employed. To achieve this,
we chose an OpenMP library which allows smooth parallelization of the most
computationally intensive parts of code, such as loops.

The DWT and LBP services were parallelized in this fashion. During the expe-
riments, two numbers of OpenMP threads utilized by these services have been
tested.

62 A. Blokus et al.

5 The Testing Procedure

The testing procedure consisted of three steps: a) collecting a set of endoscopic
videos that can be processed by the system, b) processing these videos multiple
times with prepared scenarios, and c) calculating performance statistics. Some
important aspects of these operations are described below.

5.1 Videos Database

In cooperation with the Medical University of Gdańsk we collected a large set of
endoscopic videos (ca. a thousand of check-ups). For performing the tests, we
have chosen a set of 5 representative video fragments, each approximately 20
seconds long. The test videos have been saved in the original DVD format (i.e.
MPEG2, PAL 720x576, 25 fps interlaced, 9400 Kbps). Afterwards, a medical
doctor has analyzed each video and has marked frames containing images of
diseased tissues.

5.2 Performance Measures

Throughput and latency are the two key measures for performance evaluation of a
pipeline system. The throughput of the pipeline system is the maximum amount of
data that system can process in a given time, and the latency is the time between
the arrival of a video frame at the system input and the time at which the detection
report is available at the system output. [15]

It is worth noting that the evaluated parameters of the chosen algorithm's
depend only on the resolution and framerate of the video input, not on the content
of the frames. Therefore, there is no need to involve a larger number of test cases,
as any influence of external factors can be limited by repeating the test several
times for the same video stream.

5.3 Stream Processing

In the KASKADA platform, stream processing can be simplistically illustrated as
shown in Fig. 4. Each of the consecutive frames arrives at the input of the system
is being processed (possibly, in parallel with other frames) for the time li, after
which the output corresponding to that frame is acquired at the time Ti, di after the
previous frame's output. The overall throughput is determined by one of the inter-
nal blocks, that has the worst time of processing a single incoming frame. The
latency – by the longest path in the graph on Fig. 3 (in the case of the analyzed
algorithm, all paths are actually of the same length).

As every processing block has an internal queue of awaiting frames, it is
impossible to clearly determine the time of a frame being input to the service, be-
cause all frames arrive almost at once at the input, and continue waiting in queues
and being processed by consecutive blocks. Therefore, all measurements have
been performed on the time values acquired at the output of the service, relative to
the starting time of the whole processing.

Real-Time Gastrointestinal Tract Video Analysis on a Cluster Supercomputer 63

Fig. 4 Stream processing in the KASKADA platform
n - number of frames in the whole stream
T0 - time at which the first frame arrives to the system, fixed to 0
Ti - time at i-th frame's report is available
Tp - time of the whole video processing, Tp = Tn - T0
li - processing time of i-th frame
di - time interval between two succeeding reports, di = Ti+1 – Ti

5.4 The Measurements

Each configuration scenario has been tested in the environment of the KASKADA
platform. The execution environment of the platform ensured that each separate
thread in every service performing computations had an exclusive use of one
processing core.

Each test consisted of two steps:

1. throughput measurement - videos were processed separately, with
maximal input frame rate (>100 fps). Every video was processed 5 times.
Finally, throughput H and σH (standard deviation of h) were calculated.
While processing the video, temporal throughput values hi have been
calculated using the relationship:

i
i d

h
1=

After processing the whole video, the average throughput value H has
been computed as the mean value of the temporal values weighted by
their time:

1
1

1

1

1
1

1

1

1 1

1

TT

n

d

d
d

d

dh
H

n
n

i
i

n

i
i

i
n

i
i

n

i
ii

−
−===








−

=

−

=
−

=

−

=

which gives the ratio of the number of frames to the amount of time
needed to process them - the well-known FPS (Frames Per Second)
measure.

64 A. Blokus et al.

Finally, to acquire the standard deviation of the temporal throughput, its
variance has been calculated using the weighted formula:




−

=

−

=

−
= 1

1

1

1

2

2

)(

n

i
i

n

i
ii

H

d

dHh
σ

2. latency measurement - videos were processed separately, with their orig-
inal frame rate (25 fps) for all the versions of the algorithm which proved
to provide a sufficient throughput. Other configurations have been
skipped as being unsuitable for real life use. Every video was processed
5 times. Finally, the average (L) and the standard deviation (σL) of the la-
tency were calculated using the simple formulas:

n

l
L

n

i
i

== 1

and

n

Ll
n

i
i

L


=

−
= 1

2

2

)(
σ

6 Test Results

All the experiments have been carried out according to the procedure described in
the previous section. The results of all the experiments have been summarized in
Table 1, which shows the average values of the chosen measures from all per-
formed tests. More detailed results of the throughput measurement have been pre-
sented in Fig. 5 which shows the outcome of each test together with estimated
error ranging three standard deviations of the measurement.

Table 1 Sample data

Algorithm version H[fps] σH L[ms] σL

Sequential 0.9 0.01 - -

Pipeline 8.94 0.39 - -

Pipeline+OpenMP
(4 threads)

32.51 1.58 56.11 3.9

Pipeline+OpenMP
(8 threads)

58.55 4.58 38.96 3.09

Real-Time Gastrointestinal Tract Video Analysis on a Cluster Supercomputer 65

The first tests involved the sequential version of the algorithm and confirmed
its poor performance for live video processing. Therefore, the first steps have been
taken to parallelize the algorithm. Pipeline processing and data decomposition
have been introduced by dividing the algorithm into logically separate blocks as
presented in section 4. The throughput has been re-measured, acquiring a result
which was better by an order of magnitude, but still not suitable for real-time ap-
plications. The last experiment involved additional parallelization through the use
of OpenMP. The resulting throughput turned out to be adequate. Therefore, further
experiments have been carried out to determine the average latency of the system.

Fig. 6 presents the latency measurement results of the two tested OpenMP
thread configurations. Average latencies of particular tests have been shown to-
gether with corresponding intervals of values within a one standard deviation. As
we can observe, the latency is kept far below 100ms.

As shown in Table 1 and Fig. 5 and 6, the parameters of the final algorithm fit
into the established boundaries. This holds for both tested numbers of threads.
Still, the version with more threads available for OpenMP's parallelization of
loops has proven to be more time-efficient.

Fig. 5 Diagram of the throughput(H) values acquired in the experiments, with their
intervals of values within a standard deviation

66 A. Blokus et al.

7 Conclusions

In the course of the performed experiments, it has been proven that real-time
processing of video from endoscopic examinations is possible with a proper choice
of hardware, a parallel multimedia processing platform and a parallelizable algo-
rithm. Although these prerequisites are quite extensive and demanding, the acquired
results are valuable as the first ones in this direction of research, as most other
experiments focus purely on the accuracy of the off-line processing algorithms.

The determined value of the system's processing latency is relatively low in
comparison with the boundary value. Therefore, the Internet connection is allowed
to introduce a latency of not more than 1.9 s - a value not difficult to achieve.

All of the results were made possible by the use of the supercomputer multime-
dia processing platform KASKADA. It allowed an easy and straightforward paral-
lelization of the chosen algorithm and provided the runtime environment for it.
Other algorithms (e.g. [16][17][18]) , similarly designed, can be parallelized in an
analogous manner. Further research in this direction is planned to involve a real
life installation of the system at a Medical University of Gdańsk examination
room to evaluate its usability for the medical specialist.

Fig. 6 Diagram of the latency(L) values acquired in the experiments, with their intervals of
values within a standard deviation

Real-Time Gastrointestinal Tract Video Analysis on a Cluster Supercomputer 67

Acknowledgments. Research funded within the project No. POIG.02.03.03-00-008/08,
entitled ”MAYDAY EURO 2012- the supercomputer platform of context-depended
analysis of multimedia data streams for identifying specified objects or safety threads”. The
project is subsidized by the European regional development fund and by the Polish State
budget”.

References

[1] Iddan, G., Meron, G., Glukhovsky, A., Swain, P.: Wireless capsule endoscopy. Na-
ture 405(6785), 405–417 (2000)

[2] Karargyris, A., Bourbakis, N.: Wireless capsule endoscopy and endoscopic imaging:
A survey on various methodologies presented. IEEE Engineering in Medicine and Bi-
ology Magazine 29(1), 72–83 (2010)

[3] Iakovidisa, D., Tsevasa, S., Polydorouc, A.: Reduction of capsule endoscopy reading
times by unsupervised image mining. Computerized Medical Imaging and Graph-
ics 34, 471–476 (2010)

[4] Ioannis, K., Tsevas, S., Maglogiannis, I., Iakovidis, D.: Enabling distributed summa-
rization of wireless capsule endoscopy video. In: 2010 IEEE International Conference
on Imaging Systems and Techniques (IST), pp. 17–21 (July 2010)

[5] Bashar, M.K., Kitasaka, T., Suenaga, Y., Mekada, Y., Mori, K.: Automatic detection
of informative frames from wireless capsule endoscopy images. Medical Image Anal-
ysis (January 2010)

[6] Deelman, E., Blythe, J., Gil, A., Kesselman, C., Mehta, G., Patil, S., Hui Su, M., Va-
hi, K., Livny, M.: Pegasus: Mapping scientific workflows onto the grid, pp. 11–20
(2004)

[7] Majithia, S., Shields, M., Taylor, I., Wang, I.: Triana: A graphical web service com-
position and execution toolkit, Web Services. IEEE International Conference on Web
Services, 514 (2004)

[8] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

[9] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A.,
Tao, J., Zhao, Y.: Scientific workflow management and the kepler system: Research
articles. Concurr. Comput.: Pract. Exper. 18, 1039–1065 (2006)

[10] Krawczyk, H., Proficz, J.: Kaskada - multimedia processing platform architecture. In:
SIGMAP (2010)

[11] Li, B., Meng, M.Q.-H.: Capsule endoscopy images classification by color texture and
support vector machine. In: IEEE International Conference on Automation and Logis-
tics (2010)

[12] Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet repre-
sentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–
693 (1989)

[13] Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures
with classification based on feature distributions. Pattern Recognition 29, 51–59
(1996)

[14] TOP500 supercomputer list (2012) top500.org

68 A. Blokus et al.

[15] Liao, W.-K., Choudhary, A., Weiner, D., Varshney, P.: Performance evaluation of a
parallel pipeline computational model for space-time adaptive processing. The Jour-
nal of Supercomputing 31(2), 145 (2005)

[16] Kodogiannis, V.S., Boulougoura, M.: An adaptive neurofuzzy approach for the diag-
nosis in wireless capsule endoscopy imaging. Int. J. Inf. Technol. 13(1) (2007)

[17] Magoulas, G.: Neuronal networks and textural descriptors for automated tissue classi-
fication in endoscopy. Oncol. Rep. 15, 997–1000 (2006)

[18] Magoulas, G.D., Plagianakos, V.P., Vrahatis, M.N.: Neural network based colonos-
copic diagnosis using on-line learning and differential evolution. Appl. Soft Com-
put. 4(4), 369–379 (2011)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 69–85.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Detection of Anomalies in a SOA System
by Learning Algorithms

Ilona Bluemke and Marcin Tarka

Abstract. The objective of this chapter is to present the detection of anomalies in
SOA system by learning algorithms. As it was not possible to inject errors into the
“real” SOA system and to measure them, a special model of SOA system was de-
signed and implemented. In this systems several anomalies were introduced and
the effectiveness of algorithms in detecting them were measured. The results of
experiments may be used to select efficient algorithm for anomaly detection. Two
algorithms: K-Means clustering and emerging patterns were used to detect anoma-
lies in the frequency of service call. The results of this experiment are discussed.

1 Introduction

With the growth of computer networking, electronic commerce, and web services,
security of networking systems has become very important. Many companies now
rely on web services as a major source of revenue. Computer hacking poses signif-
icant problems to these companies, as distributed attacks can make their systems
or services inoperable for some period of time. This happens often, so an entire
area of research, called Intrusion Detection, is devoted to detect this activity.

Nowadays many system are based on SOA idea. A system based on a SOA
provides functionality as a suite of interoperable services that can be used within
multiple, separate systems from several business domains. SOA also generally
provides a way for consumers of services, such as web-based applications, to be
aware of available SOA-based services. Service-orientation requires loose coupl-
ing of services with operating systems, and other technologies that underlie appli-
cations. SOA separates functions into distinct units, or services, which developers
make accessible over a network in order to allow users to combine and reuse them
in the production of applications.

There are several definitions of service oriented architecture (SOA). OASIS [1]
defines SOA as the following: A paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains.

Ilona Bluemke · Marcin Tarka
Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland
e-mail: I.Bluemke@ii.pw.edu.pl

70 I. Bluemke and M. Tarka

It provides a uniform means to offer, discover, interact with and use capabilities
to produce desired effects consistent with measurable preconditions and
expectations. Definition of SOA can be also found in SOA Manifesto [2].

The objective of this chapter is to present the detection of anomalies in SOA sys-
tem by learning algorithms. Related work is presented in section 2 and in section 3,
a special model of SOA system which was used in experiments, is presented. In
this systems several anomalies were introduced. Four algorithms: Chi-Square sta-
tistics, k-means clustering, emerging patterns and Kohonen networks were used to
detect anomalies. Detection of anomalies by k-means and emergent patterns is
presented in section 4 and some conclusions are given in section 5.

2 Related Work

There are many anomaly detection algorithms proposed in the literature that differ
according to the information used for analysis and according to techniques that are
employed to detect deviations from normal behavior. Lim and Jones in [3] pro-
posed two types of anomaly detection techniques based on employed techniques:

• learning model method
• specification model.

The learning approach is based on the application of machine learning techniques,
to automatically obtain a representation of normal behaviours from the analysis of
system activity. The specification-based approach requires that someone manually
provides specifications of correct behaviour. Approaches that concern the model
construction are presented in Fig. 1.

The specification approach depends more on human observation and expertise
than on mathematical models. It was first proposed by C. Ko et. al. [4] and uses a
logic based description of expected behaviour to construct a base model. This
specification-based anomaly detector monitors multiple system elements, ranging
from application to network traffic.

Fig. 1 Taxonomy of anomaly detection behavioral model (based on [3])

Detection of Anomalies in a SOA System by Learning Algorithms 71

In the protocol based approach [5] a normal use model is built from the proto-
col specification e.g. TCP/IP. Lemonnier [5] proposed a protocol anomaly filter
able to specifically analyse a protocol and model the normal usage of a specific
protocol. This technique can be seen as a filter looking for protocol misuse.
Protocol could be interpreted as any official set of rules describing the interaction
between the elements of a computer system. Protocols always have theoretical
rules governing their usage which can either refer to their official description or
the practical usage of this protocol. Hence any use of this protocol outside the
defined area can be considered as a protocol anomaly. Protocol anomaly filters are
able to detect all attacks by deviations from the theirs normal usage.

In protocols, in networks often certain events must take place at certain times
so many protocol anomaly detectors are built as state machines [6]. Each state cor-
responds to a part of the connection, such as a server waiting for a response from
client. The transitions between the states describe the legal and expected changes
between states. Besides, Z. Shan et. al. [7] uses network state based model ap-
proach to describe intrusion attacks. This model uses finite automata theory and
can detect unknown attacks, the attacks and intrusions are described by the states
and state transitions of network protocols and operating systems.

In the transaction based approach the “positive” behaviour is formally de-
scribed. The desired actions and sequence of actions are specified by the definition
of transactions. Such explicit definition makes the transaction an integral part of
security policy. Transactions are a well known concept originating from the field
of database management systems and now widely applied in other environments.
In the research proposed by R. Buschkes et. al. [8] the detection of anomalies is
based on the definition of correct transactional behaviour. This definition of cor-
rect and desired behaviour defines the system’s multi-level security policy, which
is monitored during runtime. The system is monitored only for potential conflicts.

The learning model must be trained on the specific network. In the training
phase, the behaviour of the system is observed and logged and machine learning
techniques are used to create a profile of normal behaviours. In the process of
creating an effective anomaly detection model, rulebased, model-based, and sta-
tistical-based approaches have been adopted to create the baseline profile.

Rule-based systems used in anomaly detection describe the normal behaviour
of users, networks and/or computer systems by a set of rules. These predefined
rules typically look for the high-level state change patterns observed in the audit
data. The expert system is an extension of rule-based systems. The system state is
represented in a knowledge base consisting of a fact base and a rule base. A fact
base is a collection of assertions that can be made on accumulated data from the
audit records or directly from system activity monitoring. The rule base contains
the rules that describe known intrusion scenario or generic techniques. When a
pattern of a rule’s antecedent matches the asserted fact, a rule-fact binding is
created. After this binding is made, if all the patterns of the rule have been
matched, then a binding analysis is performed to make sure that all the associated
variables with the rule are consistent with the binding.

SRI International’s Next-generation Intrusion Detection Expert System
(NIDES) [9] is an innovative statistical algorithm for anomaly detection, and an

72 I. Bluemke and M. Tarka

expert system that encodes known intrusion scenarios. The features considered by
NIDES are related to user activity, for instance CPU usage and file usage. The
usage rate or intensity features derived are used to match with the long term pro-
file and deviations for the system are learned and then summarized in a chi-
squared statistic. A variant of incorporating expert system in anomaly detection is
presented in [10]. Owens et. al. presented an adaptive expert system for intrusion
detection based on fuzzy sets. The Fuzzy set theory permits the gradual assess-
ment of the membership of elements in a set and it is described with the aid of a
membership function valued in the real interval 0 and 1. Therefore, this system
has the ability to adapt to the type and degree of threat, and it is relatively
simple to implement it in anomaly detection system which has a high degree of
uncertainty and ambiguity.

Model based anomaly detector models intrusions at a higher level of abstraction
than audit records in rule based approach. It restricts execution to a pre-computed
model of expected behaviour. In this approach more data can be processed, be-
cause the technique allows to focus on some data. More intuitive explanations of
intrusion attempts are possible and system can predict the intruder's next action. A
challenging task is to construct a model well balancing needs of detection ability
and efficiency. Many researchers used different types of models to characterize
the normal behaviour of the monitored system like data mining, neural networks,
pattern matching, etc. to build predictive models.

In data mining approach models are automatically extracted from a large
amount of data. Current intrusion detection system requires frequent adaptation to
resist to new attacks so data mining techniques that can adaptively build new de-
tection models are very useful. The basics idea is to extract an extensive set of fea-
tures that describes each network, connection, or session, and apply a data mining
program to learn rules that accurately capture the behaviour of intrusions and
normal activities. An example of data mining system was proposed by Lee et. al.
and is presented in [11]. The key idea is to mine network audit data, then use the
patterns to compute inductively learned classifiers that can recognize anomalies
and known intrusions.

Neural network is trained on a sequence of information, which may be more
abstract than an audit record. Once the neural net is trained on a set of representa-
tive command sequences of a user, the net constitutes the profile of the user, and
the fraction of incorrectly predicted events then measures, the variance of the user
behaviour from his profile. Kohonen networks used to detect anomalies in
information system is described in [12]. There are several libraries to built neural
networks e.g. [13, 14, 15]. Other neural networks based systems for intrusion
detection are described in [16,17,18,19].

In pattern matching approach, learning is used to build a traffic profile for a
given network. Traffic profiles are built using s features such as packet loss, link
utilization, number of collisions. Normal behaviour is captured as templates and
tolerance limits are set, based on different levels of standard deviation. These
profiles are then categorized by time of day, day of week and so on. When newly
acquired data fails to fit within some confidence interval of the developed profiles
then an anomaly is pointed out. The efficiency of the pattern matching approach

Detection of Anomalies in a SOA System by Learning Algorithms 73

depends on the accuracy of the profile generated. For a new network, significantly
time may be necessary to build traffic profiles and this method might not scale
well with the evolving network topologies and traffic conditions. The usage of
emerging patterns in anomaly detection is described in [20].

First statistical based anomaly detection was proposed by Denning and
Neumann [21] in 1985. The anomaly detector observes subjects and generates
profiles for them that represent their behaviour. These profiles should use little
memory to store their internal state, and be efficient in updating because every
profile may potentially be updated for every audit record. System periodically
generates a quantitative measure of the normal profile. The well known techniques
in statistics can often be applied; e.g. data points that lie beyond a multiple of the
standard deviation on either side of the mean might be considered anomalous.
There are many statistical technique like Bayesian statistics, covariance matrices
and Chi-square statistics [22] for the profiling of anomaly detection. Example of
Chi-square statistic in anomaly detection is described in [23]. Statistical
approaches disadvantage is the insensitivity to the order of occurrence of events.
Sequential interrelationships among events should be considered for more accu-
rate detection. It is also difficult to determine a threshold above which an anomaly
should be considered.

Commercial products applying rule based, statistical based, model based and
neural networks approach to detected anomalies (known till 2008) are briefly
described in [3].

3 Research Model and Environment

It was not possible to detect anomalies on real SOA system so a special system
was implemented. The business idea of this system VTV (Virtual TV) is presented
in Fig. 2. The exemplary company is a virtual TV provider . Company does not
have its own technical infrastructure and is associating TV digital provider with

Fig. 2 The business relations of an exemplary company

74 I. Bluemke and M. Tarka

the telecommunication operator. The receiving equipment is delivered to the client
by one of courier companies. The company is also using two applications: CRM
containing all clients data and a storage management system.

The VTV system simulates a real SOA system and enables to inject typical
anomalies into its regular operation. Configurable are frequencies of :

• single services calls,
• group of services calls,
• processes calls,
• services in a context.

3.1 Architecture of VTV System

The architecture of VTV system is presented in Fig. 3. The request generator simu-
lates activities of clients. It generates different types of request (e.g. create, modify,
deactivate) for available services (e.g. TV or hardware). Depending of the value of
request some requests can be identified as VIP. The generated address of a client
determines the currier group. The configurable parameters of the request generator
shown in Table 1, enable to simulate real operation and to inject some anomalies.

Fig. 3 Architecture of VTV system

Table 1 Configuration of the request generator

parameter range description

Create_share <0:1> CREATE requests share in generated requests

Modify_share <0:1> MODIFY requests share in generated request

Deactivate_share <0:1> DEACTIVATE requests share in generated request

Tv_share <0:1> Request for TV service

Hardware_share <0:1> Request for hardware service

courrerABprobability <0:1> Probability of the usage of A courier

sleeptime <0:100000> Sleep time between request generation

Detection of Anomalies in a SOA System by Learning Algorithms 75

The generated request is transferred to the business processes engine (Fig.3)
which composes processes from services available on ESB bus. Outputs of
processes are logs. Logs of model contain information similar to logs from
monitoring real SOA systems.

3.2 Main Process

In Fig. 4 the main process of integration layer is presented in BPMN notation
[24]. This process exists in three versions: service creation, modification and
deactivation. The graphs of these processes are similar but the probabilities of the
execution of sub-process can differ. The probabilities of the execution of three
configurable processes are given in configuration file:

1. CourierPartnerConfig – process is responsible for the delivery, by a courier

company, to the client, necessary hardware. The rule decides to call the
process if in a request HARDWARE service is present.

2. TechPartnerConfig – configuration of the technological partner, shown in
Fig. 5. Process communicates with technological partner. The rule decides to
call the process if in a request HARDWARE service is present.

3. TvPartnerConfig - configuration of TV partner. Process communicates with TV
partner. The rule decides to call the process if in a request TV service is present.

The remaining five sub_processes are not configurable directly (Fig. 4) :

1. FeasibilityStudy – process is called for each request, shown in Fig.6.
2. CrmConfig – the configuration of application managing clients data. Process

is called if the request is feasible.
3. Activation – service activation. Process is included for successful request ela-

boration.
4. ClientCompensation – process is called if the request is infeasible, parameter

feasibilityRate defines the number of requests accepted in FeasibilityStudy.
5. ErrorHandling – process is called if an error appeared during the elaboration

of a request. Information about the error can be generated by each service in
the model. The probability of an error in a service is set in configuration.

All the above listed processes are described in details in [25].

3.3 Environment of Experiment

All experiments were conducted on PC with Intel Core 2 Duo T7200, 512 Mb of
memory under Fedora Core operating system . The examined algorithms are using
text input files prepared from logs of the VTV system (Fig.3). In this log file in-
formation like number of request, name of process, name of service called, execu-
tion time are written. These logs files are then processed by scripts, implemented
in R [26] environment into transactions (example in Fig.7.) or summarized reports
(example in Fig. 8.) and written into files used by detection algorithms. The flow
of data from logs of the model is shown in Fig. 9.

76 I. Bluemke and M. Tarka

Fig. 4 Main process

Fig. 5 Process TechPartnerConfig

Fig. 6 Process FeasibilityStudy

Detection of Anomalies in a SOA System by Learning Algorithms 77

1 " createFStudyOrder " , " fstudyTvPartner " , " fstudyTechParner " ,
 " prepareTvPartnerRequest " , " invokeTvPartner " ,
 " processTvPartnerResponse " , " storeClientData " ,
 " getStandardOffer " , " sendStandardOffer " ,
5 "magazineOrder " , " courierASystemOrder " ,
 " courierASystemResponse " , " commitTvPartner " ,
 "commitCrm" , " sendNotification " ;
 " createFStudyOrder " , " fstudyTvPartner " , " fstudyTechParner " ,
10 " prepareTvPartnerRequest " , " invokeTvPartner " ,
 " processTvPartnerResponse " , " storeClientData " ,
 " getStandardOffer " , " sendStandardOffer " , "magazineOrder " ,
 " courierASystemOrder " , " courierASystemResponse " ,

 " commitTvPartner " , "commitCrm" , " sendNotification " ;

Fig. 7 Logs in transactional format

1 " createFStudyOrder ":0.089
 " fstudyTvPartner ":0.065
 " fstudyTechParner ":0.056
 " prepareTvPartnerRequest ":0.064

Fig. 8 Logs processed into a summary report.

Fig. 9 Flow of data from logs

The implementation of algorithms for anomaly detection k-means, Chi-Square
and Kohonen networks algorithms was made in R environment while the emerg-
ing patterns algorithm, which is more complicated, was implemented in C++.

k-means algorithm was prepared based on [27], for emerging patterns
algorithm information from [20, 28] were used, Chi-Square detector was taken
from [23].

4 Experiment

The research system presented in section 3 was used to explore four cases typical
for SOA systems i.e.:

78 I. Bluemke and M. Tarka

1. change in the frequency of service call,
2. change in the frequency of a group of services,
3. change of the context of services calls,
4. not used functionality.

For each of the above listed cases it was expected, that anomalies detector pro-
vides information useful for the maintenance team. Four learning algorithms (sec-
tion 2) were used in the anomalies detector:

• Chi-square statistic
• Kohonen network
• Emerging patterns
• k-means clustering

Each of the above algorithms represents different approach to anomalies detection.
The goal of experiment was to examine advantages and disadvantages of each of
these algorithms.

4.1 Quality Evaluation of Algorithms

Anomalies detection is a kind of clustering with two types of clusters grouping
normal and abnormal behaviours. Correctly identified anomaly is an abnormal
event which was introduced by purpose by case’ scenario and was assigned to the
abnormal cluster. Identified as anomalies other events or not recognized anomalies
are treated as errors. The values measured in experiments are:

• FP (false positive) – number of incorrectly identified anomalies,
• FN (false negative) - number of not recognized anomalies,
• TP (true positive) - number of correctly identified normal behaviours,
• TN (true negative) - number of incorrectly identified normal behaviours.

Good anomalies detector should generate small number of errors. To compare
the quality of detectors often sensitivity and specificity measures are used. The
sensitivity and specificity are defined accordingly as:

FNTP

TP
ysensitivit

+
= (1)

and

FPTN

TN
yspecificit

+
= (2)

The relation between specificity and sensitivity – ROC (Receiver Operating Cha-
racterisctics) curve [29] can be used to compare the quality of models. ROC as a
technique to analyze data was introduced during the second world war to identify
if signal seen on a radar comes from an enemy, an alliance or it is noise. Currently
ROC curves are used to analyze different types of data e.g. radiological data.

Detection of Anomalies in a SOA System by Learning Algorithms 79

The construction of ROC curves during experiments was as follows:

1. create entities with algorithm’ parameters
2. for each entity :

• perform experiment
• calculate specificity and sensitivity
• mark the point on the diagram

3. draw the line connecting points.

For each examined algorithm also the learning time was calculated.

4.2 Plan for Experiment

The examination of anomaly detection algorithms was based on four test cases:
changes in frequency of service and groups of services calls, change of the context
of services calls, and lacking functionality. Each of these cases simulates one type
of anomaly typical for SOA.

The experiment was conducted in following steps:

1. Create data for regular behaviour
2. For each of test case’ scenario :

• Create data for abnormal behaviour in this scenario
• For each algorithm execute:

o Using regular data perform the learning phase
o Perform detection phase on data for abnormal behaviour
o Evaluate the quality of detection

3. Compare algorithms.

Below the results for the first examined scenario “change of the frequencies of
service calls” are presented. In some SOA systems e.g. telecommunications or
transactional in in some time periods, the frequencies of services is almost stable.
Changes in frequencies in such systems may indicate an anomaly, important for
the maintenance team. Such anomaly can be caused by e.g. are errors in the confi-
guration or inefficient allocation of resources. In our research model the changes
were applied to two independent services. The frequency of calls of one process
fstudyInternal in FeasibilityStudy process (Fig. 6) was increased (the probability
of call of this service was raised from 0.2 into 0.8.). The frequency of calls of one
service processTechTask in process TechPartnerConfig (Fig.5) was decreased by
decreasing its probability call from 0.5 into 0.2.

4.3 Results of Experiments

The goal of examination was to find high level of detection with minimal number
of false alarms. If the ideal detection was not possible preferred were the results
with no false alarms. In practice, if system is generating many false alarms the
user will neglect any alarm.

80 I. Bluemke and M. Tarka

k-Means Algorithm

k-means clustering [27] is a clustering analysis algorithm that groups objects
based on their feature values into k disjoint clusters. Objects that are classified into
the same cluster have similar feature values. k is a positive integer number specify-
ing the number of clusters, and has to be given in advance. All object are assigned
to their closest cluster according to the ordinary Euclidean distance metric.

At the beginning the summarized reports used by algorithm were created for all
logs in the system. The results are given in Table 2. High sensitivity (1) values were
obtained for many false alarms. The Euclidean distance metric is used to calculate
differences between summarized reports, elements close to each other are assigned
to the same clusters. Such approach does not take into account the independence of
events. E.g. two summarization with the same number of calls of service
fstudyInternal may be assigned to different clusters because may have different
characteristics of VIP accounts. Number of independent functionalities is usually
significant so tuning the algorithm for real system may be impractical.

When the summarized reports were prepared separately for processes the re-
sults improved. The ROC curve for k=4 and 150 training logs is shown in Fig.10.
Point A represents configuration detecting all anomalies but with false alarms
constituting 25% of all anomalies. In point B number of false alarms is zero but
the sensitivity of detection is only 0.6. Point C is optimal, with the sensitivity= 0.8
and specificity= 0.87, the costs of false qualification of anomaly and false qualifi-
cation of normal behaviour are equal.

Emerging Patterns Algorithm

Emerging patterns (EP) are defined as item-sets whose supports increase significant-
ly from one dataset to another. EP can capture emerging trends over time or useful
contrasts in data sets. EP are item-sets whose growth rates the ratios of the two sup-
ports are larger than a given threshold. EP algorithm is working on transactions (e.g.
in Fig 8) obtained from the monitored system and containing names of services. The
first attempts to use EP approach, based on [20,28], showed that many pattern were
discovered, some of them with low value of score given in formula (3).

Table 2 Results for clustering algorithm

k logSize maxL TP TN FP FN Sensitivity Specificity

6 50 3 44 1 43 0 1 0.02

6 50 3.5 32 13 31 12 0.7 0.3

7 50 3 44 4 40 4 0.92 0.09

7 50 3.5 30 18 26 14 0.68 0.41

7 50 4 18 22 22 26 0.41 0.5

7 80 3.5 26 1 26 1 0.96 0.04

7 80 5 21 14 13 6 0.78 0.52

6 250 11 7 6 3 2 0.78 0.67

6 250 15 3 6 2 7 0.3 0.75

Detection of Anomalies in a SOA System by Learning Algorithms 81

Fig. 10 ROC curve for k-means algorithm, summarization for each process

)(sup

)(sup

)(sup
1

)(sup

)(sup

~

~ Ap

Ap

Ap
Ap

Ap

score c

c

c

c

c

+
=

(3)

Where:)(sup Apc
 - support of pattern A in class c,

)(sup ~ Ap c
 - support of pattern A in negation of class c.

Majority of these pattern were characteristic for new data, potential anomalies.
They would generate many false alarms. Filters in EP algorithms were added:

• Pattern with score values lower than threshold are not used in
classification,

• Transactions with none class assigned to them are treated as normal.

After the above modification EP algorithm was able to give good anomalies’
detection. The results are presented in Table 3. In all examined settings the
parameter growRatio equals 1.85. The value of this parameter can be estimated if
the characteristics of normal and abnormal behaviours are known. In training data
support for calls of internalFstudy is increased twice. Support for call service
procesTechTask is decreased in similar ratio. Hence the value of growRatio,
minimal necessary increase of support, is 1.85.

82 I. Bluemke and M. Tarka

Table 3 Results for emerging patterns algorithm, growRatio=1.85

lT cSup TP TN FP FN Sensitivity Specificity Anomaly 2

7 0.2 70 18 36 19 0.79 0.33 No

7 0.5 80 30 26 7 0.92 0.54 No

7 0.55 78 30 28 7 0.92 0.52 No

7 0.575 106 37 0 0 1 1 No

7 0.6 106 37 0 0 1 1 No

7 0.65 106 37 0 0 1 1 No

7 0.7 64 20 42 17 0.79 0.32 No

10 0.2 63 36 43 1 0.98 0.46 Yes

10 0.4 77 37 29 0 1 0.56 Yes

10 0.42 80 37 26 0 1 0.59 Yes

10 0.43 80 37 26 0 1 0.59 Yes

10 0.44 82 37 24 0 1 0.61 No

10 0.45 106 37 0 0 1 1 No

10 0.5 106 37 0 0 1 1 No

10 0.7 106 37 0 0 1 1 No

10 0.8 94 37 0 12 0.89 1 No

10 0.85 0 37 0 106 0 1 No

10 0.9 0 37 0 106 0 1 No

13 0.2 98 27 8 10 0.91 0.77 Yes

13 0.22 100 18 6 19 0.84 0.75 Yes

13 0.25 106 37 0 0 1 1 No

13 0.5 106 37 0 0 1 1 No

Emerging pattern algorithm was able to provide satisfactory detection of ano-

malies introduced in process FeasibilityStudy (service internalFstudy). Several
setting were ideal. Unfortunately it was not possible to make the algorithm capa-
ble of finding both anomalies. In Fig 11 the ROC curve is shown. This curve was
obtained for lT parameter equal to 10, this is appropriate to parameter LogSize =
150 in k-means algorithm.

Point A represents the ideal assignments of anomalies in process
FeasibilityStudy and it was possible to obtain it for several settings. Unfortunately
the anomalies in the second process were not detected for these settings.
Point B was obtained for high value of cSup, equal to 0.8. The increase of the
value of cSup results in zero values for sensitivity and specificity (point C).
Pattern characterizing anomalies in our experiment have support less than 0.8.

Point D was created for low value of cSup (0.44), which caused the generation of
many emerging patterns, then decreased the specificity to 0.61. Further decrease of
cSup created point E and others. The decrease of minimal patterns’ support was
aimed to obtain the detection of the second anomaly (service procesTechTask). For
cSup equal or less than 0.43 the second anomaly was detected.

Detection of Anomalies in a SOA System by Learning Algorithms 83

Fig. 11 ROC curve for EP algorithm

5 Conclusions

In this chapters some results of the experiment – detection of anomalies in SOA
system are presented. The experiment was conducted in special environment built
to introduce several types of anomalies, detect them and measure. The environ-
ment was described in section 3. In the detection of anomalies four learning algo-
rithms, from different types (section 2): emerging patterns, k-means clustering,
Kohonen networks and statistical Chi-Square were used. In this chapter the results
of only two: the worst (k-means clustering) and the best one are shown, for one
type of anomaly – the change in frequencies of services calls. The emerging pat-
tern algorithm was able to produce the best quality of detection even for several
settings. The results for two other algorithms (Kohonen networks and Chi_Sqare)
in detecting the same anomaly are discussed in [25]. Statistical algorithm
Chi_Sqare appeared to be inappropriate for the tested anomaly, Kohonen
produced quite good results. The exemplary SOA system (section 2) enables to
conduct other experiments examining the suitability of learning algorithms in the
detection of other anomalies. The results of these experiments will be available
very soon.

84 I. Bluemke and M. Tarka

References

[1] BPEL Standard, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (access July
2011)

[2] SOA manifesto, http://www.soa-manifesto.org (access July 2011)
[3] Lim, S.Y., Jones, A.: Network Anomaly Detection System: The State of Art of

Network Behaviour Analysis. In: Proc. of the Int. Conference on Convergence and
Hybrid Information Technology 2008, pp. 459–465 (2008), doi:10.1109/
ICHIT2008.249

[4] Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical programs
in distributed systems: a specification-based approach. In: Proc. of IEEE Symposium
on Security and Privacy, Oakland, CA, USA (1997)

[5] Lemonnier, E.: Protocol Anomaly Detection in Network-based IDSs. Defcom white
paper (2001)

[6] Sekar, R., Gupta, A., Frullo, J., Shanbag, T., Tiwari, A., Yang, H., Zhou, S.: Specifi-
cation-based anomaly detection: A New Approach for Detecting Network Intrusions.
In: ACM Computer and Communication Security Conference, Washington, DC, USA
(2002)

[7] Shan, Z., Chen, P., Xu, Y., Xu, K.: A Network State Based Intrusion Detection
Model. In: Proc. of the 2001 International Conference on Computer Networks and
Mobile Computing, ICCNMC 2001 (2001)

[8] Buschkes, R., Borning, M., Kesdogan, D.: Transaction-based Anomaly Detection. In:
Proc. of the Workshop on Intrusion Detection and Network Monitoring, Santa Clara,
California, USA (1999)

[9] Anderson, D., Frivold, T., Valdes: A Next-generation Intrusion Detection Expert
System, NIDES (2005)

[10] Owens, S., Levary, R.: An adaptive expert system approach for intrusion detection.
International Journal of Security and Networks 1(3-4) (2006)

[11] Lee, W., Stolfo, S.J.: Data mining approaches for intrusion detection. In: Proc. of the
7th USENIX Security Symposium (1998)

[12] Bivens, A., Palagrini, C., Smith, R., Szymański, B., Embrechts, M.: Network-based
intrusion detection using neural networks. In: Proc. Intelligent Eng. Systems through
Neural Networks, ANNIE 2002, St. Louis, MO, vol. 12, pp. 579–584. ASME Press,
NY (2002)

[13] C Neural network library, http://franck.fleurey.free.fr/NeuralNetwork/
[14] NeuroBox, http://www.cdrnet.net/projects/neuro/
[15] Fast Artificial Neural Network Library, http://sourceforge.net/projects/fann/
[16] Ryan, J., Lin, M., Miikkulainen, M.: Intrusion Detection with Neural Networks. In:

Advances in Neural Information Processing Systems, vol. 10 (1998)
[17] Ghosh, A.K., Schwartzbard, A.: A Study in Using Neural Networks for Anomaly and

Misuse Detection. In: Proc. of the 8th USENIX Security Symposium, Washington,
D.C., USA (1999)

[18] Han, S.-J., Cho, S.-B.: Evolutionary Neural Networks for Anomaly Detection Based
on the Behaviour of a Program. IEEE Transactions on Systems, Man and Cybernetics
(2006)

[19] Bivens, A., et al.: Network-based intrusion detection using neural networks. In: Proc.
of Intelligent Engineering Systems through Artificial Neural Networks, ANNIE 2002,
St.Luis, MO, vol. 12, pp. 579–584. ASME press, New York (2002)

Detection of Anomalies in a SOA System by Learning Algorithms 85

[20] Ceci, M., Appice, A., Caruso, C., Malerba, D.: Discovering Emerging Patterns for
Anomaly Detection in Network Connection Data. In: An, A., Matwin, S., Raś, Z.W.,
Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp.
179–188. Springer, Heidelberg (2008)

[21] Denning, D., Neumann, P.: Requirements and Model for IDES-A Real-Time
Intrusion-Detection Expert System. SRI Project 6169, SRI International, Menlo Park,
CA (1985)

[22] Masum, S., Ye, E.M., Chen, Q., Noh, K.: Chi-square statistical profiling for anomaly
detection. In: Proceedings of the 2000 IEEE Workshop on Information Assurance and
Security (2000)

[23] Ye, N., Chen, Q.: An anomaly detection technique based on a chi-square statistic for
detecting intrusions into information systems. Qual. Reliab. Engng. Int. 17, 105–112
(2001)

[24] http://www.bpmn.org/
[25] Tarka, M.: Anomaly detection in SOA systems. Msc Thesis, Institute of Computer

Science, Warsaw University of Technology (2011)
[26] The R Project for Statistical Computing, http://gcc.gnu.org/ (access September 2011)
[27] Munz, G., Li, S., Carle, G.: Traffic Anomaly Detection Using K-Means Clustering,

Wilhelm Schickard Institute for Computer Science, University of Tuebingen (2007)
[28] Guozhu, D., Jinyan, L.: Efficient Mining of Emerging Patterns: Discovering Trends

and Differences. Wright State University, The University of Melbourne (2007)
[29] Hanley, J.A.: Receiver operating characteristic (ROC) methodology: the state of the

art. Crit. Rev. Diagn. Imaging (1989)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 87–101.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Service Availability Model to Support
Reconfiguration

Dariusz Caban and Tomasz Walkowiak

Abstract. Web based information systems are exposed to various dependability
issues during their lifetime. Reconfiguration is then used by the administration
to ensure continuity of service. Such forced reconfigurations can cause unfore-
seen side-effects, such as server overloading. To prevent this, it is proposed to
use simulation techniques to analyze the reconfigurations and construct a safe
reconfiguration strategy. Extensions to the available network simulation tools
are proposed to support this. The authors present the results of multiple experi-
ments with web-based systems, which were conducted to develop a model of
client-server interactions that would adequately describe the relationship
between the server response time and resource utilization. This model was
implemented in the simulation tools and its accuracy verified against a testbed
system configuration.

1 Introduction

Whenever a web based information system experiences some dependability issue,
caused by a hardware failure, a software error or by a deliberate vulnerability at-
tack, the administrator is faced with the difficult problem, how to maintain the
continuity of critical business services. Isolation of the affected hardware and
software is usually the first reaction (to prevent propagation of the problem to yet
unaffected parts of the system). It then follows that the most important services
have to be moved from the isolated hosts/servers to those that are still available.
This is achieved by system reconfiguration [1, 2].

Redeployment of service components onto the available hosts changes the
workload of the various servers. In consequence some of them are over-utilized
and cannot handle all the incoming requests, or handle them with an unacceptable
response delay. It is very difficult to predict these side-effects. One of the feasible
approaches is to use simulation techniques [3]: to study what are the possible

Dariusz Caban · Tomasz Walkowiak
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-320 Wrocław,
Poland
e-mail: dariusz.caban@pwr.wroc.pl, tomasz.walkowiak@pwr.wroc.pl

88 D. Caban and T. Walkowiak

effects of a change of system configuration. Available network simulators are
usually capable of analyzing the impact of reconfiguration on the proper function-
ing of the services, the settings of the network devices and on security.

The network simulators as a rule can predict transmission delays and traffic
congestions – that is natural, since it is their primary field of application. They
have a very limited capability to simulate tasks processing by the host computers.
This can be modified by developing some simulator extensions – models that
provide processing delays dependent on the number of concurrently serviced
requests [8, 9].

Accurate prediction of the response times in a simulator is in general quite
unlikely: there are too many factors that can affect it. Moreover, a lot of these
factors are unpredictable, being specific to some algorithm or unique software
feature. This can be overcome in case of predictions made for the purpose of
reconfiguration. A lot of system information can be collected on the running
system prior to reconfiguration (by analyzing its performance). This information
can be used to fine tune the simulation models.

2 System Model

The paper considers a class of information systems that is based on web interac-
tions, both at the system – human user (client) interface and between the various
distributed systems components. This is fully compliant with the service oriented
architecture, though it does not imply the use of protocols associated with SOA
systems. The system is described at 3 levels [1]. On the high level, it is
represented by the interacting service components. At the physical layer, it is de-
scribed by the hosts, on which the services are deployed, and by the visibility and
communication throughput between them (provided by the networking resources).
The third element of the system description is the mapping between the first two
layers.

2.1 Service Model

The system is composed of a number of service components. Interaction between
the components is based on the client-server paradigm, i.e. one component
requests a service from some other components and uses their responses to
produce its own results, either output to the end-user or used to respond to yet
another request. The client (user) requests are serviced by some components,
while others may be used solely in the background.

A service component is a piece of software that is entirely deployed on a single
web node (host) and all of its communication is done by exchange of messages.
The over-all description of the interaction between the service components is de-
termined by its choreography, i.e. the scenarios of interactions that produce all the
possible usages of the system [9].

Service Availability Model to Support Reconfiguration 89

Fig. 1 An UML diagram representing a simple service choreography

A very simple choreography description is given in Fig.1 for illustration
purposes. It represents a very common dynamic web service architecture based on
an Apache server with Tomcat servlet container and a back-end SQL database.
The system serves static HTML pages (e.g. MainPage) and information requiring
computation and database access (e.g. PerformList).

The service components interact in accordance with the choreography. As the
result, they generate demand on the networking resources and on the computation-
al power of the hosts running the components.

Fig. 2 A simple system infrastructure based on multiple levels of load balancing

2.2 Network Infrastructure

The service components are deployed on a network of computers. This underlying
communication and computing hardware is abstracted as a collection of in-
terconnected computing hosts (or server software deployed on the hosts to run the
service components). Fig. 2 presents a possible network that may be used to
provide the services described in Fig. 1. The configuration encompasses a load

90 D. Caban and T. Walkowiak

balancer, used to distribute requests between the front-end hosts. At the back-end
the load is also distributed between the workers.

2.3 System Configuration

System configuration is determined by the deployment of service components
onto the hosts. This is characterized by the subsets of services deployed at each
location. The deployment clearly affects the system performance, as it changes the
communication and computational requirements imposed on the infrastructure.

Reconfiguration (change of system configuration) takes place when service
deployment is changed. In case of network configurations that use load balancing
to improve service availability, some degree of automatic reconfiguration is intro-
duced by the infrastructure. Load balancing techniques usually implement some
fault fallback mechanisms, which prevent distribution of load to failed worker
nodes.

More sophisticated reconfiguration can be achieved by redistribution of tasks to
be performed by each worker host. This is fairly easily achieved by reconfiguring
the front-end servers, responsible for workload distribution among the worker
nodes.

3 System Reconfiguration

Mostly, reconfiguration occurs as a routine procedure of system maintenance.
Services are redeployed when the administrators observe that some hosts are
either overloaded or under-utilized. This is usually done in a leisurely manner,
planned and tested well in advance. As such, it does not require any tools or
support specifically designed for reconfiguration.

A much more demanding situation can occur when the system experiences
some malfunction. Reconfiguration can then be used to overcome its effects and
maintain access to the services. It is quite interesting that reconfiguration can be
used as a method of exercising functional redundancy existing in the system, to
improve its dependability. This type of reconfiguration is done in a hurry, to bring
up the system service as quickly as possible. Consequently, it is likely that some
side-effects of reconfiguration may be overseen, especially if these are connected
with the system performance.

3.1 System Faults

System reconfiguration may be triggered by a wide class of adverse events. We
consider various sources of system faults [1, 2]: transient and persistent hardware
faults, software bugs, human mistakes and exploitation of software vulnerabilities.
There are also attacks on services, based on draining their limited resources, e. g.
DOS attacks.

Service Availability Model to Support Reconfiguration 91

Fig. 3 A classification of system faults reflecting their impact on reconfiguration

In the considered approach to complex information systems modeling, the hosts
are the basic components of the system infrastructure. Thus, all the faults are attri-
buted to them (and not to hardware or software components). This is the basis for
the classification of faults presented in Fig. 3.

Inoperational host fault – the host cannot process services that are located on it,
these in turn do not produce any responses to queries from the services located on
other nodes. Reconfiguration is required, all the service components have to be
moved to unaffected hosts.

Impaired performance fault – the host can operate, but it cannot provide the full
computational resources, causing some services to fail or increasing their response
time above the acceptable limits. Some service components may tolerate the fault,
especially if other ones are moved elsewhere.

Connectivity fault – the host cannot communicate with other hosts with the re-
quired throughput. In effect, the node may become unreachable, requiring service
redeployment.

Service malfunction fault – the service components located on the node can
produce incorrect or inconsistent responses due to accumulated software errors,
effects of transient malfunctions and possible exploitation of vulnerabilities. The
operation of services located at such nodes becomes unpredictable and potentially
dangerous to services at other ones (that communicate with them). Thus, the fault
may propagate to other connected hosts and services. It is advisable to isolate the
affected service to prevent problem escalation.

DOS fault – a special case of a service fault, where the service component loses
its ability to respond to requests. It is usually caused by some exploitation of secu-
rity vulnerability, often a proliferation of bogus service requests that lock up all
the server resources. This is a common consequence of insufficient security meas-
ures (firewall rules, antivirus software, etc.). A very important aspect of this class
of faults is that the attack may be either IP site locked or service locked. Reconfi-
guration is effective only in the first case: moving the affected services to other
network addresses can prevent further damage. On the other hand, if a service is

92 D. Caban and T. Walkowiak

moved in case of a service locked attack, then the fault will also be propagated to
the new location. In effect, this is the only situation when reconfiguration may in-
crease the damage to the system.

Effectively, the change of configuration may restore the system functionality in
almost every type of fault occurrence, ensuring service continuity.

3.2 Service Availability

Dependability analysis is based on the assessment of some performance measures.
In fact, dependability is an integrative concept that encompasses: availability
(readiness for correct service), reliability (continuity of correct service), safety
(absence of catastrophic consequences), confidentiality (absence of unauthorized
disclosure of information), integrity (absence of improper system state altera-
tions), maintainability (ability to undergo repairs and modifications).

Any of the considered faults will cause the system to fail if/when they propa-
gate to the system output (affecting its ability to generate correct responses to the
client requests). This is best characterized by the availability function A(t),
defined as the probability that the system is operational (provides correct
responses) at a specific time t. In stationary conditions, most interesting from the
practical point of view, the function is time invariant, characterized by a constant
coefficient, denoted as A.

The measure has a direct application both from the business perspective and
from the administrator viewpoint. The asymptotic property of the steady-state
availability A:

t

t

t

upA
∞→

= lim , (1)

gives a prediction of the total uptime tup. This is a very useful business level meas-
ure. From the administrators’ perspective, the asymptotic property may be further
transformed, assuming a uniform rate of service requests [1]:

n
n

t

okA
∞→

= lim (2)

This yields a common understanding of availability as the number of properly
handled requests nok expressed as a percentage of all the requests n. Equations (1)
and (2) are equivalent only if the operational system handles all the requests cor-
rectly.

Availability does not reflect the comfort of using the service by the end-users.
This has to be analyzed using a different measure of the quality of service. The
most natural is to use the average response time, i.e. the time elapsed from the
moment of sending a request until the response is completely delivered to the
client [8]. The mean value is calculated only on the basis of correctly handled
response times. The error response times are excluded from the assessment (or
assessed as a separate average).

Service Availability Model to Support Reconfiguration 93

3.3 System Reconfiguration Strategy

System reconfiguration is realized by changing the system from one configuration
to another, in which all the services can still be delivered. There are various situa-
tions when a reconfiguration may be desirable, we concentrate on the dependabili-
ty oriented reconfiguration. This implies that the reconfiguration is forced by the
occurrence of a dependability issue, i.e. a fault occurrence which causes some ser-
vices to fail in the current configuration. Reconfiguration is achieved by isolating
the faulty hosts and servers, and then moving the affected services to other hosts.

The reconfiguration strategy should ensure that the target configuration im-
proves the availability and response times of the services, as compared to the state,
at which the system ends after a fault occurrence. The target configuration, if it
exists, should ensure the following:

• It should be able to handle all the end client requests, i.e. it should not limit the

system functionality.
• It should maintain the quality of service at the highest possible level, given the

degraded condition of the infrastructure.

The first requirement is met if all the service components are deployed on unaf-
fected hosts, they do not lead to compatibility issues with other components, and
the communication resources ensure their reachability. Thus, it is a combinatorial
problem of eliminating all inherently conflicting configurations. The set of per-
missible configurations can then be determined. Within these configurations, some
are affected by a specific dependability issue. All the others are potential candi-
dates for reconfiguration. If the resulting set is empty, then the considered faults
cannot be tolerated and the system fails (reconfiguration cannot bring it up).

The reconfiguration strategy is constructed by choosing just one configuration
from the set corresponding to the various dependability issues. Usually, there are
numerous different reconfiguration strategies that can be constructed in this way.
Any one of them will ensure the continuity of service. Optimal strategy is obtained
by choosing the configuration that ensures the best quality of service, i.e. with the
shortest average response times. This can be achieved if there is an efficient tool
for predicting the service availability and response time. One of the feasible ap-
proaches is to use network simulation.

4 Network Simulation Techniques

There are a large number of network simulators available on the market, both
open-source (ns3, Omnet+, SSFNet) and commercial. Most of them are based on
the package transport model – simulation of transport algorithms and package
queues [3]. These simulators can fairly well predict the network traffic, even in
case of load balancing [6]. What they lack is a comprehensive understanding of
the computational demands placed on the service hosts, and how it impacts the
system performance. In effect they are useful to predict if a system configuration

94 D. Caban and T. Walkowiak

provides access by all the end-users to all the system functionality, i.e. if a confi-
guration is permissible.

However, these network simulators cannot be directly used to develop or test a
reconfiguration strategy, since they cannot predict the quality of service (availabil-
ity and response times) of the target configurations. This is the consequence of the
lack of models for predicting tasks processing time, based on resource consump-
tion. The simulators need to be extended, by writing special purpose models to ac-
commodate this functionality [8, 9].

Alternative approach is to test the target configurations on a testbed or in a vir-
tual environment. In this case the software processing times need not be predicted:
they result from running the production software on the testbed/virtual hosts. This
approach has drawbacks: the time overhead of testing the target configuration may
be inacceptable, considering that the time to react to a dependability incident is
very limited. Furthermore, it is hardly feasible to perform the emulation on hard-
ware, which provides similar level of computational power to the production sys-
tem – thus, the results have to be scaled, which is a large problem.

Response time prediction in network simulators is based on the proper models
of the end-user clients, service components, processing hosts (servers), network
resources. The client models generate the traffic, which is transmitted by the net-
work models to the various service components. The components react to the re-
quests by doing some processing locally, and by querying other components for
the necessary data (this is determined by the system choreography, which parame-
terizes both the client models and the service component models). The request
processing time at the service components is not fixed, though. It depends on the
number of other requests being handled concurrently and on the loading of other
components deployed on the same hosts.

The network simulator has a number of parameters that have to be set to get
realistic results. These parameters are attributed to the various models, mentioned
above. In the proposed approach we assume that it is possible to formulate such
(fairly simple) models describing the clients and service components, which will
not be unduly affected by reconfiguration. Then, we can identify the values of the
parameters on the production system. Simulating the target configuration
with these parameters should provide reliable predictions of the effects of
reconfiguration.

5 Modeling Client – Server Interaction

The basis of operation of all the web oriented systems is the interaction between a
client and a server. This is in the form of a sequence of requests and responses: the
client sends a request for some data to the server and, after some delay, the server
responds with the required data. The most important characteristic of this interac-
tion is the time needed by the server to respond (deliver the data to the client) –
this is the response time that can be determined experimentally or estimated using
the simulation techniques.

The response time depends on a number of different factors: the processing to
be done at the server site, response time of other services that need to be queried

Service Availability Model to Support Reconfiguration 95

to determine the response, etc. Even in a very simple situation, where the response
is generated locally by the server, it usually has an unpredictable component (ran-
dom factor). The understanding of these simple client-server interactions is para-
mount to building a simulation model that will be capable of analyzing more com-
plex situations.

Actually, the server response time is strongly related to the client behaviour, as
determined by the request-response interaction. Such factors as connection persis-
tence, session tracking, client concurrency or client patience/think times have a
documented impact on the reaction. For example, it has been shown in [5] that if
user will not receive answer for the service in less than 10 seconds he or she will
probably resign from active interaction with the service and will be distracted by
other ones.

Fig. 4 The performance of an off-the-shelf web service under varying rates of incoming client
requests: a) the upper graph shows the response time, b) the lower – service availability

a)

 b)

96 D. Caban and T. Walkowiak

Let’s consider the models used in these simple interactions in more detail. For
this purpose, we have set up a simple testbed, consisting of a virtual machine run-
ning an Apache server. The server hosts a PHP script application, on which we
can accurately regulate the processing time needed to produce a result. This appli-
cation is exposed to a stream of requests, generated by a choice of client applica-
tions (a Python script written by the authors, open source traffic generators such as
Funkload and jMeter). Full control is maintained of the available processor re-
sources (via the virtualization hypervisor). This ensures that the client software is
not limited by insufficient processing capabilities, while the server resources are
regulated to determine their impact.

5.1 Client Model Used in Server Benchmarking

The simplest model is adopted by the software used for server/service benchmark-
ing, i.e. to determine the performance of computers used to run some web applica-
tion. In this case, it is a common practice to bombard the server with a stream of
requests, reflecting the statistics of the software usage (the proportion of the dif-
ferent types of requests, periods of burst activity, think times, etc.). Sophisticated
examples of these models of client-server interaction are documented in the indus-
try standard benchmarks, such as the retired SPECweb2009 [7].

The important factor in this approach to modeling the client-server interaction
is lack of any feedback between the rate of requests and the server response times.
In other words, the client does not wait for the server response, but proceeds to
send further requests even if the response is delayed.

Fig. 4 shows the results of experiments performed on a typical server applica-
tion exposed to this type of traffic. It should be noted that the results were
obtained in the testbed, discussed above. While they reflect the normal server
behaviour in such stress tests, the processing thresholds are much lower than
expected in modern web servers. This should be expected, since the virtual server,
being used, has a very limited processing power.

Fig. 4 a) presents the changes in the response time, depending on the rate of re-
quests generation. It should be noted that the system is characterized by two dis-
tinct thresholds in the requests rate. Up to approximately 6 requests per second,
the response time very slowly increases with the rate of requests. This is the range,
where the server processing is not fully utilized: the processor is mainly idle and
handles requests immediately on arrival. There is a gradual increase in the re-
sponse time due to the increased probability of requests overlapping.

When the requests rate is higher than the underutilization threshold, the proces-
sor is fully utilized, the requests are queued and processed concurrently. The in-
crease in the response time is caused by time sharing: it is proportional to the
number of concurrently handled requests and the time needed to process a single
one. This holds true, until the server reaches the second threshold – overutiliza-
tion. This corresponds roughly to 12 requests per second in the presented Figure.

Above the overutilization threshold the server is no longer capable of handling
the full stream of requests. In consequence, some requests are timed-out or
rejected. Further increase in the request rate does not increase the number of

Service Availability Model to Support Reconfiguration 97

concurrently handled ones. Thus, the response time remains almost constant. On
the other hand, the percentage of requests handled incorrectly increases proportio-
nately to the request rate. This is illustrated in Fig. 4 b).

In fact, there are also some further thresholds within the overutilization range.
This is caused by the fact that there can be different mechanisms of failing to han-
dle a request. Initially, connection time-out is the dominating factor in the studied
servers (Apache, MySQL, simpleHTTPD). As the requests rate increases, rejects
and exceptions become more common. This is omitted from the presented results,
as it is assumed that the web based system should never be allowed in this range
of request rates. Thus, there is no point in accurate modeling of these phenomena
for the purposes of simulation. Rather, the simulator should flag the situations
when the overutilization occurs.

In the underutilization range, another phenomenon can be observed. There is a
very high dispersion of the response times for small request rates. This is caused
by the phenomenon of server “warm-up”. Requests are initially handled much
more slowly. It is probably a side-effect of compiling scripts on the fly and server
side caching. This impacts the performance in the underutilization range.

5.2 Client Models Reflecting Human Reactions

The real behaviour of clients differs significantly from the model discussed so far. In
fact, the client sends a burst of related requests to the server, then it waits for the
server to respond and, after some “think” time for disseminating the response, sends
a new request. This implies that the request rate depends on the response time.

This type of model is implemented in a number of traffic generators available
both commercially and open-sourced (Apache JMeter, Funkload). The workload is
characterized by the number of concurrent clients, sending requests to the server.
The actual requests rate depends on the response time and the think time.

Fig. 5 Average service response when interacting with various number of concurrent
clients, waiting for service response before issuing another request

98 D. Caban and T. Walkowiak

Fig. 5 shows how the response time typically depends on the number of concur-
rent clients. In this case we have set the “think” time to 0, i.e. a new request is
generated by the client directly on receiving the response to a previous one. Quite
interestingly, the server operates practically only in the normal utilization range,
until it reaches the maximum number of clients that it can handle correctly (rough-
ly 300 clients in the considered testbed). Thereafter, increasing the number of
clients (concurrent requests) leads to a commensurate increase in the number of
request rejects (represented by the error responses).

For the purpose of correctly simulating this behavior, it is not enough to know
the thresholds of under- and overutilization. It is also necessary to model the time
of error responses. As commented in 5.1, in general this is very difficult since
there are different mechanisms coming into play (time-outs, rejects triggered by
hard-coded limits or by computing exceptions). A heavily over utilized server
sends an unpredictable mix of error responses, some of them practically with no
delay, others after a fixed delay time. In some cases the server becomes unstable
and does not respond at all to some requests.

Performed experiments show that this behaviour occurs only in situations of
heavy server overutilization. The dominating phenomenon, observed when the
server load only slightly exceeds the overutilization threshold, is based on queuing
the requests for a fixed time-period and error-responding thereafter. This beha-
viour, enhanced by flagging the state of server overutilization, is the basis of the
proposed client-server interaction model in case of error responding. It is characte-
rized by one parameter – the error response time.

5.3 Client Models Derived from Choreography Description

The client-server interaction model has to consider the various tasks initiated by
the client. In a typical web application, these tasks can exercise the server re-
sources in a wildly varied manner: some will require serving of static web pages,
some will require server-side computation, yet others will initiate database trans-
actions or access to remote web applications. A common approach to load (traffic)
generation techniques is based on determining the proportion of the various tasks
in a typical server workload, and then mixing the client models representing these
tasks in the same proportion [4, 7].

This approach assumes that the proportion of tasks in a workload does not
change significantly due to response delays and error-responding. It also assumes
that it is possible to accurately classify the tasks on the basis of the observed traf-
fic, a daunting problem that can significantly impact the performance prediction.
Direct traffic analysis can distinguish requests on the basis of client addresses, re-
sponse times, size of requests and responses, etc. It can also consider sequences of
requests identified by connections and sessions. Traffic analysis does not yield any
information on the semantics of client-server interactions, which should be the
basis for determining the client models used for load generation. In effect, this
produces a mix of tasks, in no way connected to the aims of the clients. It can be
improved using the service choreography description.

Service Availability Model to Support Reconfiguration 99

It is assumed that the analyzed web service is described by its choreography de-
scription, using one of the formal languages developed for this purpose (we con-
sider WS-CDL and BPEL descriptions). This description determines all the se-
quences of requests and responses performed in the various tasks, described in the
choreography. This is further called the set of business tasks, as opposed to the
tasks obtained from the classification of traffic. Traffic analysis can then be em-
ployed to classify the observed request-response sequences to the business tasks
identified in the choreography description. This procedure determines the typical
proportion of the various business tasks in the workload that is much less affected
by the service response times or proportions of error responses.

An even better description of client behaviour can be achieved if we have a se-
mantic model of client impatience, i.e. how the client reacts to waiting for a server
response. Currently, in case of end-clients (human users of the service) this is
modeled very simplistically by setting a threshold delay, after which the client
stops waiting for the server response and starts over the requests sequence needed
to perform a business task. A more sophisticated approach would have to identify
the changing client perspective caused by the problems in accessing a service, e.g.
a client may reduce the number of queries on products, before deciding to make a
business commitment, or on the other hand, he may abandon the commitment.
These decisions could significantly influence the workload proportions.

The same problem occurs during interactions between the web service compo-
nents. In this case one component becomes the client of another. The same phe-
nomena can be observed. The client component usually has a built-in response
time-out period which corresponds to the impatience time. The significant differ-
ence is that, in this case, the choreography description defines the reaction of the
client component. Thus, the client impatience model is fully determined, derived
from this description.

5.4 Resource Consumption Model – Server Response Prediction

The client-server interaction is paramount to the proper simulation of a complex
web service. The analysis of the behaviour of typical servers led to the formulation
of a simplified model that is used in our analysis:

• The server response time is described by 3 ranges: a constant response time be-

low the underutilization threshold, a linearly increasing response time in the
normal operation range and a constant limit response time when the server is
over utilized.

• If the model is to be used for determining the load limits, the response delay in
the range below the underutilization threshold does not affect the results.

• If the model is to be used for determining the response time in the underutiliza-
tion range, the warmup time has to be added. The model may be anyway inade-
quate, since this is not the application area that we are targeting.

• The model responds with error messages to some requests when the server is
over utilized. The error response is always delayed by a random error delay
time fixed to a constant average.

100 D. Caban and T. Walkowiak

• Client is described by an impatience time delay, after which it assumes the
server is not responding and continues as if it received an error message.

The deployment of multiple services on the same host leads to a time-sharing of
processor time between them. This does not affect noticeable the thresholds for
under- and overutilization of the services. Mainly, it changes the level at which the
response time of the service stabilizes after the load exceeds the overutilization
threshold. Further work is needed to observe the possible impact of service
prioritization.

6 Dependability Analysis

The model proposed in 5.4 can be used to simulate all the interactions between
the service components. This is the basis of the extended SSFNet simulation tool,
used by us to predict the results of reconfiguration. The performance of this si-
mulator is currently under study and the results are very promising. It is still too
early to conclude, though, whether these models are sufficiently accurate in
general.

Fig. 6 The performance a real web service (dashed line) and simulated one (solid line): a)
the upper graph shows the response time, b) the lower – service availability

a)

 b)

Service Availability Model to Support Reconfiguration 101

As an illustration, let’s consider the results of simulating the client – server
interactions discussed in 5.2. The interaction model is based on the thresholds
identified in 5.1. So, how do the simulation results bear out the response times
observed in reality?

This is shown in Fig. 6. The results are very accurate considering that we are
approximating the complex behaviour of a software component with just a few
parameters. More to the point, the observed accuracy is fully satisfactory for the
purpose of reconfiguration analysis.

The presented work was funded by the Polish National Science Centre under grant no.
N N516 475940.

References

[1] Caban, D.: Enhanced service reconfiguration to improve SOA systems depedability.
In: Problems of Dependability and Modelling, pp. 27–39. Oficyna Wydawnicza Poli-
techniki Wrocławskiej, Wroclaw (2011)

[2] Caban, D., Walkowiak, T.: Dependability oriented reconfiguration of SOA systems.
In: Grzech, A. (ed.) Information Systems Architecture and Technology: Networks and
Networks’ Services, pp. 15–25. Oficyna Wydawnicza Politechniki Wrocławskiej,
Wroclaw (2010)

[3] Lavenberg, S.S.: A perspective on queueing models of computer performance. Perfor-
mance Evaluation 10(1), 53–76 (1989)

[4] Lutteroth, C., Weber, G.: Modeling a Realistic Workload for Performance Testing. In:
12th International IEEE Enterprise Distributed Object Computing Conference (2008)

[5] Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1994)
[6] Rahmawan, H., Gondokaryono, Y.S.: The simulation of static load balancing algo-

rithms. In: International Conference on Electrical Engineering and Informatics, pp.
640–645 (2009)

[7] SPEC, SPECweb2009 Release 1.20 Benchmark Design Document vers. 1.20 (2010),
http://www.spec.org/web2009/docs/design/SPECweb2009_Design
.html (accessed February 10, 2012)

[8] Walkowiak, T.: Information systems performance analysis using task-level simulator.
In: DepCoS – RELCOMEX, pp. 218–225. IEEE Computer Society Press (2009)

[9] Walkowiak, T., Michalska, K.: Functional based reliability analysis of Web based
information systems. In: Dependable Computer Systems, pp. 257–269. Springer,
Heidelberg (2011)

On Some Statistical Aspects
of Software Testing and Reliability

Frank P.A. Coolen

Abstract. This article discusses the author’s views on possible contributions
statistics can make to software testing and reliability. Several difficulties are
highlighted and several research challenges are discussed. Overall, the mes-
sage is that statistical methods cannot provide proper support for software
testing or provide useful inferences on software reliability if the statistical
methods are considered to be an ‘add-on’; careful treatment of the uncer-
tainties and the adequate use of statistical methods have to be right at the
center of the software development and test processes to ensure better tested
and more reliable software. In line with this requirement, the development of
suitable statistical methods requires collaboration of software developers and
testers with statisticians on real-world problems.

1 Introduction

Ten years ago, a paper entitled ‘Bayesian graphical models for software test-
ing’, written by my colleagues David Wooff, Michael Goldstein and me, was
published in IEEE Transactions on Software Engineering [16]. This presented
the pinnacle of a substantial multi-year research project in collaboration with
an industrial partner, in which we explored the possibilities to use statisti-
cal methods to support software testers. As testing software is effectively all
about uncertainty and information, it seemed obvious that statistics, which
may be regarded as the art of dealing with uncertainty and information,
could help testers with their very complex tasks. This project was successful,
particularly in setting a direction for future collaboration between statisti-
cians and software testers; an overview of the project was presented in the
paper ‘Using Bayesian statistics to support testing of software systems’ (by
the same authors), published in the Journal of Risk and Reliability [8].

Frank P.A. Coolen
Dept. of Mathematical Sciences, Durham University, Durham, United Kingdom
frank.coolen@durham.ac.uk

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 103–113.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

104 F.P.A. Coolen

After initial difficulties due to very different jargons and cultures between
the academic statisticians and the real-world software testers, very useful
meetings followed during which the software testers explained more and more
which aspects involving uncertainty were really difficult, what their current
practice was with regard to all aspects of software testing, and which specific
aims and restrictions there were for the software testing. It should be empha-
sized that the ‘current practice’ was considered to be good, certainly in line
with the state-of-the-art at the time of the project (late 1990’s), and indeed
that there were quite many and different aims, particularly when managers
with different responsibilities in the company got involved and expressed the
hope that the methodology we were developing in collaboration with the
software testers would also be useful to assist them in their specific duties
related to the software testing process. For example, one such a duty involved
setting the budget for a specific software testing project, well in advance of
the software actually becoming available. I refer the interested reader to the
above cited papers for more details on the specific project, and particularly
on the Bayesian graphical modelling approach we developed. A substantial
monograph that addresses many more aspects of that project, including for
example methodology to predict the time required for software testing in-
cluding considerations of re-testing after failures, and indeed how to do such
re-testing efficiently, is in preparation [17].

In this article, I reflect a bit further on aspects from the mentioned long-
term project, and on research questions that arose from it. Beyond this, I
reflect on several aspects of the interaction between statistics and software
testing and reliability, raising some important challenges for research and
application that, to the best of my knowledge, are still open topics. This
article does not answer many questions, but I hope that it provides some
possible directions towards answers, or at least some issues to reflect upon
and which might steer future developments and collaborations in the field.

2 Statistics, Software Testing and Reliability

The question how statistics can help software testing and be used to assess
software reliability appears, at first, a simple question. However, it is not. To
start, we have to consider what statistics is, and indeed what software test-
ing and software reliability are. These are all generic terms that encompass
many different activities, problems, methods, theories and so on. Generally
speaking, however, statistics can be regarded as the theory of quantification
of uncertainty, which includes the effect of information on uncertainty. As
such, it is natural to use statistics to support all software testing and soft-
ware reliability problems where dealing correctly with uncertainty and infor-
mation is a major issue. It should be emphasized that not all problems in
testing and software require, or can benefit from, the use of statistical meth-
ods. For example, if one is absolutely certain that checking code will reveal all

Statistical Aspects of Software Testing and Reliability 105

possible problems, then one has no need to quantify uncertainty and therefore
statistics has nothing to offer. Of course, the moment the ‘absolute certainty’
disappears then one should consider the use of statistical methods.

In statistics, there are two predominant foundational frameworks, which
some might see as competing theories yet they both have their own impor-
tant place in uncertainty quantification in general, hence also with regard to
software testing and reliability. The frequentist framework of statistics gen-
erally provides methods that are calibrated in case of repeated use, under
suitable assumptions. Results are traditionally in terms of e.g. confidence or
significance levels, which are difficult to interpret for specific applications and
indicate an approximate proportion of times that the specific method, if ap-
plied to many different problems, will give the correct answer. While this has
been criticized by many, it is not a bad principle: if one has a tool available
which is known to deliver a good outcome for a specific kind of task approxi-
mately 95 out of 100 times it is being applied, many will consider it a suitable
tool. One problem with many of the classical frequentist approaches is that
uncertainties often involve unobservable quantities such as model parameters,
which add a further level of difficulty to understanding of the results in many
cases.

The Bayesian framework of statistics has very different foundational
starting points, with emphasis on subjectivity of probability to quantify un-
certainty jointly for all random quantities in a specific application, where
inferences follow from probabilistic conditioning on the information that be-
comes available. There is no frequency interpretation as a starting point, but
in practice results from Bayesian statistics are often either fully or approxi-
mately in agreement with their frequentist counterparts. This is not surprising
when there is a substantial amount of data and the wish not to let modelling
assumptions or additional information in the form of expert opinions influ-
ence the inferences. However, in situations with few data the methods provide
quite differing opportunities, where the explicit inclusion of expert opinions
in the Bayesian framework can be a substantial advantage. It should be re-
marked that both the frequentist and Bayesian methods can be generalized
by the use of sets of probabilities instead of a single one, which provides
more robust inferences and models more adequately any lack of information.
In particular some generalized methods for uncertainty quantification provide
attractive opportunities to take unobserved or even unknown possible out-
comes or risks into account [1, 2, 4, 11]. Such imprecise probabilistic methods
are gaining popularity but have thus far not yet been implemented for soft-
ware testing [9]. For general reliability problems, including a little attention
to basic software reliability, such methods have been developed [10].

Software testing, and related aspects of software reliability, vary widely in
different applications. The number of inputs that can be tested can vary from
very few to effectively an unlimited number; some functionality might not be
testable; it may be anything from trivial to impossible to know if an output is
correct; the tests may take place on the actual software system or on a special

106 F.P.A. Coolen

test system which may resemble but not be identical to the actual system;
the software may be fully open for inspection, it may be entirely black-box
or anything in between, et cetera. Furthermore, the effects of errors in the
output may be anything from neglectable to catastrophic, and may even
be genuinely unknown. Statistical methods can be used to support decision
making in all such scenarios, but it requires a high level of statistical expertise
to ensure correct choice and application of methods. Importantly, it must
be emphasized that statistics is not a miracle cure, it can only deal with
the information that is available and its use should be aimed at supporting
software testers.

The power of statistical methods lies mostly in careful learning from infor-
mation and guidance with regard to further testing, which involve problems
that even for basic test scenarios are soon too complex for the human mind
to solve without the aid of sound statistical methods. Dealing correctly with
uncertainties in applications is, in most cases, difficult and time consuming.
The benefits can be substantial but of course will require justification with
regard to the effort. Such considerations may be used to guide the level of
detail of statistical modelling. This necessarily must be done related to a spe-
cific statistical approach; as an example of such guidance I refer to [7] where
the considerations for deciding an appropriate level of detail in Bayesian
graphical models for software testing are discussed.

In the following section, I will discuss a number of topics on the interface of
statistics and software testing and reliability, which I believe require thought
and attention, and indeed further research. It is crucial that such further re-
search is linked to real-world applications with genuine collaboration between
statisticians and software testers and engineers. These topics are discussed
briefly without attempts to provide a full picture of the problems and state-
of-the-art. It will be followed by a brief personal view on the way ahead in
Section 4.

3 Some Topics That Require Attention

The first thing to consider in software testing is what actually can be tested.
This is particularly important if testing leads to quantification of reliability
of the software system in practical use. Usually, testing is limited in scope
and executed during a relatively short period of time, possibly even without
full linkage of a specific system with other real-world systems, databases et
cetera. Statistical methods using only information from such limited tests
cannot be expected to extrapolate to more practical issues. Software systems
may also fail due to failure modes occurring at the interface between software
and hardware, e.g. electricity provision might be interrupted during software
processes, or due to background activities (e.g. memory space may slowly fill
up); such aspects often cannot be discovered during practical testing, hence
deducing a level of reliability from test results requires care.

Statistical Aspects of Software Testing and Reliability 107

A very basic question which, to our surprise, took quite some time to re-
solve in the aforementioned application of Bayesian graphical models to sup-
port software testing, is what to model? In some applications, particularly
where very many tests can be done, one might simply be able to consider
the input domain and model for each element of it (there may be ‘infinitely’
many, for example if inputs are real-valued quantities) whether or not the
software provides the correct output. The software testing we were involved
with, however, considered integration testing of new or upgraded functional-
ity and code, particularly with regard to communication between databases.
Inputs were typically related to some processes, and customers could possibly
provide all kinds of inputs and in different orders, so it was difficult to define a
theoretical input space. Testers would create scenarios to go through in their
testing, and of course such test scenarios reflected their expertise in detail. We
modelled the testers’ knowledge and beliefs about the software system and its
functioning, in particular how they distinguished between related but differ-
ent inputs and where they believed possible errors in output would originate
from. The software systems were complex and (almost entirely) black-box,
with parts developed over quite many years without detailed knowledge about
the development and core software remaining in the company. The statistical
methodology was then used explicitly to assist the testers in their extremely
complex tasks with regard to selecting efficient tests, ordering these, inferring
what to do if a test outcome was wrong, and indicating when testing could be
stopped1. As the statistical approach clearly modelled the testers’ expertise
and actions and enhanced their expertise, without taking over (and it was
clear to the testers that the approach would not be taking over their roles
in the future, due to the individual aspects of specific software systems and
testing tasks), they understood the supporting role of the statistical method-
ology, helping them to do their job better and more efficiently. This is crucial
for any collaboration, of course, but perhaps particularly so when experts
are sceptical about novel methods that claim to be able to support them
but which they may find difficult to understand. Actually, we found that the
software testers quite quickly got to grips with the Bayesian graphical models
that we built, and with the possibilities of support these gave them. They
also understood well that the method could only provide useful support if
they included useful and honest information on which to base the models. A
lot more research is required on this topic, particularly considering a wide
variety of software testing and reliability scenarios, and it is hard to say which
aspects can and should be modelled without considering a specific scenario.

1 In early papers in the software testing literature the view was sometimes ex-
pressed that testing was of no use if it did not reveal failures. This is quite a
remarkable view, as no failures is of course the ultimate aim. Probably the more
important question is when to stop testing in such cases, this links to the topic
of high reliability demonstration where, of course, statistical methods can also
provide guidance [5].

108 F.P.A. Coolen

An important consideration in practical testing is what the consequences
will be of a software error, and indeed if such errors can be recognized. In the
project we were involved with it was not a problem to discover software errors.
Generally, if it is not known with certainty whether or not software output is
correct (think e.g. at complicated computational software, particularly cases
were computation for one input can take a very long time), Bayesian statisti-
cal methods can provide some modelling opportunities, mostly by comparing
results with prior expectations for them and trying to identify if results dif-
fer from expectations by a substantial amount. I have not yet seen detailed
applied research about this, it will be fascinating and important.

Consequences are often, although not necessarily explicitly, grouped into
e.g. cosmetic, minor, major or catastrophic. Typically, under severe time and
costs constraints, tests are not aimed at discovering failures with cosmetic
and perhaps even minor consequences, but any such errors are noted and
dealt with at a possible future opportunity. Test suites designed by testers
normally reflect the severity of consequences of failures, particularly so if such
failures occurred in the (recent) past. Stastical methods can be set up in order
to deal with different consequences of failures, and hence the importance of
discovering such failures. The concept of ‘utility’ is a natural part of the
Bayesian framework and is precisely used to take such consequences into
account. However, in a company with different levels of management, with
several different people responsible for different aspects of the output of the
software system that is being tested, such utilities may not be discussed
explicitly and they may differ based on the personal views and responsibilities
of specific people. What to some people might appear just a failure with minor
consequences, could by others be regarded as a major problem or worse. Such
aspects must be discussed as it is crucial that there is a unified and clear goal
for the software testing. One may be tempted to define ‘delivering fault-free
software’ as such a goal, but this is mostly unrealistic for substantial software
systems and would be extremely difficult to verify from test results, unless
time and budget for testing are extremely generous. When using statistical
methods to support software testing, the utilities related to the outcomes, and
indeed to finding failures in order to prevent future problems with specific
outputs, are important and must be determined at a relatively early stage in
the process as they will guide the focus and level of detail of the testing and
therefore of the statistical modelling process.

An intriguing situation occurs if one may not know (expected) possible con-
sequences of failures, or may not know what kind of failures can occur. This is
very natural, in particular when testing new black-box systems where discov-
ering the functionality may be part of the testing aims. Statistical methods
that can support such testing have not really been developed, and hence this
provides very important and interesting research challenges. Imprecise proba-
bilistic methods, including nonparametric predictive inference [4], have some
specific features which make them promising for inference on the occurrence
of unknown events. The theory of decision making with utilities has also been

Statistical Aspects of Software Testing and Reliability 109

nearly entirely restricted to known outcomes and known utilities. Recently,
a generalization to adaptive utilities has been presented, both within the
Bayesian and nonparametric frequentist statistical frameworks [13, 14, 15].
In this work, utility is uncertain and one can learn about it, which of course is
quite often a major reason for experimenting and testing (e.g. to learn about
unknown side-effects of medication; there is a suitable parallel to software).
We have ideas to link this work to software testing, but it would be from
theoretical perspective at first; we hope to link it to real-world test situations
in the future.

As mentioned, there may be several managers in an organisation who each
have different responsibilities and hence may have different needs for sta-
tistical methods to support their activities related to software testing and
reliability. For example, someone managing the actual test team will have
quite different specific needs for support compared to someone managing the
overall development and test budgets, and indeed having to make cases to set
such budgets, with the latter typically needing to make decisions quite far in
advance to the actual testing. Statistical methods, in particular the Bayesian
framework, can support all such different decision processes, but again this
may require problem specific modelling, will not be easy and will not be a mir-
acle cure. As part of our industrial collaboration2 we developed an approach
to provide, approximately, an expected value and corresponding variance for
the length of a future testing process, supported by the Bayesian graphical
modelling approach. This approximation took into account re-testing after
corrections of software failures discovered during testing. Of course, this re-
quires substantial input as expected times must be provided for all possible
events together with information on probabilities, not only for failures to oc-
cur but also with regard to success of correcting actions. Managers should
not expect statistical methods to be able to provide answers to such difficult
questions without such inputs, it underlines that careful modelling is difficult
and time consuming, as is generally the case if one wants to deal well with
uncertainty.

In addition to such quite general aspects there are a number of issues that,
quite remarkably, still do not seem to have been solved satisfactorily, or at
least about which there is substantial confusion amongst software testers and
even some researchers who present methods with a suggestion of statistical
expertise. For example, if one can do ample testing and has detailed knowl-
edge of the input profile for the software system in daily practical use, it
tends to be advocated that testing should be according to that input profile.
However, this will rarely be optimal use of test time and budget (unless these
are effectively limitless). Intuition on a most simple example probably suf-
fices to explain this point: suppose that a software system will only have to
provide outputs for two groups of inputs, say groups A and B. Suppose that
the input profile from practical use of the system is such that 99% of inputs

2 This will be reported in the monograph [17] that is being prepared.

110 F.P.A. Coolen

are from group A and only 1% from group B. Suppose further that 100 inputs
can be tested. In this case, testing in line with the input profile would lead to
99 inputs from group A and one input from group B to be tested. Intuitively
it will be clear that the 99 tests of inputs from group A probably leave little
remaining uncertainty about the success rate of the software on dealing cor-
rectly with inputs from this group. But the single test from group B is not
so informative for other inputs from this group. Hence, if one wishes to have
high quality software which rarely makes mistakes, then one would probably
wish to do some more tests for group B and reduce the number of tests from
group A accordingly. It is not difficult to prove this mathematically, but the
crucial part is to recognize that the input profile is to be used related to the
optimality criterion, that is proportions of applications in the future, after the
testing, with related utilities for avoiding failures in the outputs. Then the
optimisation variables should be the proportions of inputs from each group
within the test, and this will rarely lead to testing in the same proportions
as the input profile [3].

In this reasoning with regard to profiles there is an aspect that is at the
heart of software testing and the statistical support for it, namely the re-
quired judgements on exchangeability of the different inputs [6, 12]. A key
judgement that software testers have to make, and that must be reflected in
any statistical model and method to support them, is how similar different
inputs are, for a specific software system, with regard to the expected quality
of the corresponding output, and with regard to what knowledge about the
corresponding output quality reveals about such output quality for other in-
puts. One extreme situation would be that the software’s output either will
be incorrect for all inputs or will be correct for all inputs. Under such judge-
ment, clearly a single test suffices if one can correctly classify the output.
The other extreme situation would be that every tested input only reveals
whether or not the software provides the correct output for that specific in-
put value, while not revealing anything about other inputs. In the first case
the software’s performance is identical for all inputs, in the second case it
is independent for all inputs. In practice the truth, and with it the assump-
tions testers are confident to make, tends to be somewhere between these
two extremes. Statistically, the concept of exchangeability (and partial ex-
changeability [12]) provides the opportunity to model such judgements, and
these can be taken into account in a variety of ways in statistical methods.
However, it is not easy to do so, this is often overlooked [3]. In particular,
one might naturally judge that the input space can be divided into a parti-
tion, with all inputs in one element of the partition being more similar than
inputs in different elements, but with neither being identical or independent.
Bayesian graphical models provide a modelling framework for this, but are
not as flexible or easy to deal with in case of learning from many test results
as some possible alternatives [6]. Further research is required on this crucial
aspect which sits at the heart of uncertainty in software testing.

Statistical Aspects of Software Testing and Reliability 111

Practical statistical support for software testing highlights one major re-
search challenge for statistics which, perhaps remarkably, appears not yet to
have attracted much attention. Any decisions on design of test suite (and be-
yond software testing, general design of experiments) depend on modelling as-
sumptions, usually based on expert judgements, experience and convenience
of the corresponding statistical methods. Ideally, one would want to use the
test suite also to confirm the underlying model assumptions, in particular
where tests are performed sequentially this could lead to changes if it was
discovered that the assumptions were not fully adequate. In such cases, one
would still hope that the earlier test results would be of use while one could
adapt further tests in the light of the new information, and so on. This idea
to use test outcomes in case the underlying assumptions were not fully ade-
quate is an issue of robustness of the test suite with regard to aspects of the
model specification. The idea to take this into account is particularly relevant
for sequencing of tests, where at the early stages of testing one may want to
include tests which can indicate whether or not the modelling assumptions
are adequate. It has, to the best of my knowledge, not been considered in the
literature, on software testing and even on general design of experiments. A
small step to this idea is the concept of adaptive utility [13, 14] in Bayesian
methods, where in sequential decision processes it is shown that it can be
optimal to first look for observations that enable one to learn the utilities
better, to the possible benefit of later decisions. Due to the specific features
of software testing, it would be exciting if this aspect of designing suitable
test suites were investigated in direct connection to a real-world application.

4 The Way Ahead

I should make an important comment about the (mostly academic) research
literature on software testing and reliability: In practice there is often scep-
ticism about the methods presented, and I believe rightly so. Most of these
methods have been developed by mathematicians and statisticians based on
assumptions that are inadequate in many challenging software testing prob-
lems. For example, the many models based on the idea of fault counting and
removal or on assumed reliability growth appear not to have a substantial
impact on practical software testing. Our industrial collaborators, who were
very experienced software testers and engineers, did not even think in terms
of numbers of faults in the software, as it was largely black-box and defining
a fault would be non-trivial.

I believe that the only way ahead is through genuine collaboration between
software testers and statisticians throughout the process of testing, includ-
ing all stages of test preparation. This is difficult and might be expensive,
so might only be considered feasible for substantial applications, particularly
with safety or security risks in case software failures occur. However, sound
statistical support for the software testing process is likely to lead to both

112 F.P.A. Coolen

more efficient testing and more reliable software, as such it will probably
lead to cost reduction, both for the actual test process and with regard to
the consequences of software failures. It would be particularly beneficial to
have long-term collaborations between the same teams of testers and statisti-
cians, both for working on upgrades of some software systems and for working
on a variety of systems. Testing upgrades normally benefits greatly from ex-
periences on testing of earlier versions, while working on a variety of systems
will also provide great challenges for the testers and statisticians, which is
likely to provide useful further insights towards more generic approaches for
statistically supported software testing.

I strongly hope that during the next decade(s) a variety of such long-term
collaborations will be reported in the literature and will lead to important
further methods and insights. Possibly some generic aspects might be au-
tomated, to facilitate easier implementation of sound statistical support for
testing of software with some specific generic features. I am sceptical however
about the possibility to fully automate such statistical support. I am sceptical
about the possibility to fully automate software testing, and as dealing ad-
equately with the uncertainties involved adds substantial complexity to the
problem, full automation is highly unlikely. It is beyond doubt, however, that
thorough long-term collaborations between software testers and statisticians
can lead to very substantially improved software testing, hence leading to
more reliable software which will justify the effort. Clearly, this is a great
field to work in due to the many challenges and opportunities, both for re-
search and practical applications which have to be developed together.

Acknowledgements. I am grateful to the members of the organising commit-
tee of the Seventh International Conference on Dependability and Complex Sys-
tems (DepCoS-RELCOMEX 2012), in particular Professor Wojciech Zamojski, for
their kind invitation to share my experiences and views on the interaction between
statistics and software testing and reliability with the conference participants, both
through a presentation at the conference and this article. The contents of this
contribution are fully from the author’s perspective, but are based on several long-
standing and ongoing research collaborations, as reflected by the bibliography of
this article. I sincerely thank all collaborators for their substantial inputs in jointly
authored research publications, and beyond that for the many discussions which
have played a major part in shaping my research activities and views on interesting
research challenges.

References

1. Coolen, F.P.A.: On probabilistic safety assessment in case of zero failures. Jour-
nal of Risk and Reliability 220, 105–114 (2006)

2. Coolen, F.P.A.: Nonparametric prediction of unobserved failure modes. Journal
of Risk and Reliability 221, 207–216 (2007)

Statistical Aspects of Software Testing and Reliability 113

3. Coolen, F.P.A.: Discussion on: ‘A discussion of statistical testing on a safety-
related application’ by Kuball and May. Journal of Risk and Reliability 222,
265–267 (2008)

4. Coolen, F.P.A.: Nonparametric predictive inference. In: Lovric (ed.) Interna-
tional Encyclopedia of Statistical Science, pp. 968–970. Springer, Berlin (2011)

5. Coolen, F.P.A., Coolen-Schrijner, P.: On zero-failure testing for Bayesian high
reliability demonstration. Journal of Risk and Reliability 220, 35–44 (2006)

6. Coolen, F.P.A., Goldstein, M., Munro, M.: Generalized partition testing via
Bayes linear methods. Information and Software Technology 43, 783–793 (2001)

7. Coolen, F.P.A., Goldstein, M., Wooff, D.A.: Project viability assessment for
support of software testing via Bayesian graphical modelling. In: Bedford, van
Gelder (eds.) Safety and Reliability, pp. 417–422. Swets & Zeitlinger, Lisse
(2003)

8. Coolen, F.P.A., Goldstein, M., Wooff, D.A.: Using Bayesian statistics to sup-
port testing of software systems. Journal of Risk and Reliability 221, 85–93
(2007)

9. Coolen, F.P.A., Troffaes, M.C.M., Augustin, T.: Imprecise probability. In:
Lovric (ed.) International Encyclopedia of Statistical Science, pp. 645–648.
Springer, Berlin (2011)

10. Coolen, F.P.A., Utkin, L.V.: Imprecise reliability. In: Lovric (ed.) International
Encyclopedia of Statistical Science, pp. 649–650. Springer, Berlin (2011)

11. Coolen-Maturi, T., Coolen, F.P.A.: Unobserved, re-defined, unknown or re-
moved failure modes in competing risks. Journal of Risk and Reliability 225,
461–474 (2011)

12. De Finetti, B.: Theory of probability (2 volumes). Wiley, London (1974)
13. Houlding, B., Coolen, F.P.A.: Sequential adaptive utility decision making for

system failure correction. Journal of Risk and Reliability 221, 285–295 (2007)
14. Houlding, B., Coolen, F.P.A.: Adaptive utility and trial aversion. Journal of

Statistical Planning and Inference 141, 734–747 (2011)
15. Houlding, B., Coolen, F.P.A.: Nonparametric predictive utility inference. Eu-

ropean Journal of Operational Research (to appear, 2012)
16. Wooff, D.A., Goldstein, M., Coolen, F.P.A.: Bayesian graphical models for soft-

ware testing. IEEE Transactions on Software Engineering 28, 510–525 (2002)
17. Wooff, D.A., Goldstein, M., Coolen, F.P.A.: Bayesian graphical models for high-

complexity software and system testing. Springer (in preparation)

Generalizing the Signature to Systems
with Multiple Types of Components

Frank P.A. Coolen and Tahani Coolen-Maturi

Abstract. The concept of signature was introduced to simplify quantifica-
tion of reliability for coherent systems and networks consisting of a single type
of components, and for comparison of such systems’ reliabilities. The signa-
ture describes the structure of the system and can be combined with order
statistics of the component failure times to derive inferences on the reliabil-
ity of a system and to compare multiple systems. However, the restriction
to use for systems with a single type of component prevents its application
to most practical systems. We discuss the difficulty of generalization of the
signature to systems with multiple types of components. We present an al-
ternative, called the survival signature, which has similar characteristics and
is closely related to the signature. The survival signature provides a feasible
generalization to systems with multiple types of components.

1 Introduction

Theory of signatures was introduced as an attractive tool for quantification
of reliability of coherent systems and networks consisting of components with
random failure times that are independent and identically distributed (iid),
which can be regarded informally as components of ‘a single type’. Samaniego
[14] provides an excellent introduction and overview to the theory1. The main
idea of the use of signatures is separation of aspects of the components’ failure
time distribution and the structure of the system, with the latter quantified
through the signature. Let us first introduce some notation and concepts.

Frank P.A. Coolen · Tahani Coolen-Maturi
Department of Mathematical Sciences, Durham University, Durham, United
Kingdom. Kent Business School, University of Kent, Canterbury, United Kingdom
e-mail: frank.coolen@durham.ac.uk, T.Coolen-Maturi@kent.ac.uk

1 Samaniego [14] assumes iid failure times of components, which we follow in this
paper; the theory of signatures applies also under the weaker assumption of
exchangeability [9]

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 115–130.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

116 F.P.A. Coolen and T. Coolen-Maturi

For a system with m components, let state vector x = (x1, x2, . . . , xm) ∈
{0, 1}m, with xi = 1 if the ith component functions and xi = 0 if not. The
labelling of the components is arbitrary but must be fixed to define x. The
structure function φ : {0, 1}m → {0, 1}, defined for all possible x, takes the
value 1 if the system functions and 0 if the system does not function for
state vector x. We restrict attention to coherent systems, which means that
φ(x) is not decreasing in any of the components of x, so system functioning
cannot be improved by worse performance of one or more of its components2.
We further assume that φ(0) = 0 and φ(1) = 1, so the system fails if all its
components fail and it functions if all its components function3.

Let TS > 0 be the random failure time of the system and Tj:m the j-th
order statistic of the m random component failure times for j = 1, . . . ,m,
with T1:m ≤ T2:m ≤ . . . ≤ Tm:m. We assume that these component failure
times are independent and identically distributed. The system’s signature is
the m-vector q with j-th component

qj = P (TS = Tj:m) (1)

so qj is the probability that the system failure occurs at the moment of the j-
th component failure. Assume that

∑m
j=1 qj = 1; this assumption implies that

the system functions if all components function, has failed if all components
have failed, and that system failure can only occur at times of component
failures. The signature provides a qualitative description of the system struc-
ture that can be used in reliability quantification [14]. The survival function
of the system failure time can be derived by

P (TS > t) =

m∑

j=1

qjP (Tj:m > t) (2)

If the failure time distribution for the components is known and has cumu-
lative distribution function (CDF) F (t), then

P (Tj:m > t) =

m∑

r=m−j+1

(
m

r

)
[1− F (t)]r[F (t)]m−r (3)

The expected value of the system failure time can be derived as function of
the expected values of the order statistics Tj:m, by

E(TS) =

m∑

j=1

qjE(Tj:m) (4)

2 This assumption could be relaxed but is reasonable for many real-world systems.
3 This assumption could be relaxed but for coherent systems it would lead to the
trivial cases of systems that either always fail or always function.

Generalizing the Signature 117

From these expressions it is clear that the system structure is fully taken into
account through the signature and is separated from the information about
the random failure times of the components. This enables e.g. straightforward
comparison of the reliability of two systems with the same single type of
components if their signatures are stochastically ordered [14]. Consider two
systems, each with m components and all failure times of the 2m components
assumed to be iid. Let the signature of system A be qa and of system B be
qb, and let their failure times be T a and T b, respectively. If

m∑

j=r

qaj ≥
m∑

j=r

qbj (5)

for all r = 1, . . . ,m, then

P (T a > t) ≥ P (T b > t) (6)

for all t > 0. Such a comparison is even possible if the two systems do not have
the same number of components, as one can increase the length of a system
signature in a way that does not affect the corresponding system’s failure
time distribution [14], so one can always make the two systems’ signatures
of the same length. Consider a system with m components, signature q =
(q1, q2, . . . , qm) and failure time TS. For ease of notation, define q0 = qm+1 =
0. Now define a signature q∗ as the vector with m+ 1 components

q∗j =
j − 1

m+ 1
qj−1 +

m+ 1− j

m+ 1
qj (7)

for j = 1, . . . ,m + 1, and define a random failure time T ∗
S with probability

distribution defined by the survival function

P (T ∗
S > t) =

m+1∑

j=1

q∗jP (Tj:m+1 > t) (8)

with

P (Tj:m+1 > t) =

m+1∑

r=m−j+2

(
m+ 1

r

)
[1− F (t)]r [F (t)]m+1−r (9)

Then the probability distributions of TS and T ∗
S are identical, so

P (TS > t) = P (T ∗
S > t) (10)

for all t > 0. Note that the signatures q and q∗ represent systems with m and
m + 1 components with iid failure times and CDF F (t), respectively. Note
further that q∗ may not actually correspond to a physical system structure,

118 F.P.A. Coolen and T. Coolen-Maturi

but applying this extension (consecutively) enables two systems with different
numbers of components to be compared.

Many systems’ structures do not have corresponding signatures which are
stochastically ordered. For example, the signatures (14 ,

1
4 ,

1
2 , 0) and (0, 2

3 ,
1
3 , 0),

which relate to basic system structures, are not stochastically ordered. An
attractive way to compare such systems’ failure times, say T a and T b, is
by considering the event T a < T b. To get more detailed insight into the
difference between the two systems’ failure times, one can consider the event
T a < T b + δ as function of δ [4]. This way to compare two systems’ failure
times does not require the failure times of the components in one system
to be iid with the failure times of the components in the other system. Let
system A consist of ma components with iid failure times, and system B
of mb components with iid failure times, with components of the different
systems being of different types and their random failure times assumed to
be fully independent, which means that any information about the failure
times of components of the type used in system A does not contain any
information about the failure times of components of the type used in system
B. The ordered random failure times of the components in system A and
of those in system B are denoted by T a

1:ma
≤ T a

2:ma
≤ . . . ≤ T a

ma:ma
and

T b
1:mb

≤ T b
2:mb

≤ . . . ≤ T b
mb:mb

, respectively. Let the failure time distribution
for components in system A have CDF Fa and for components in system B
have CDF Fb. Using the signatures q

a and qb of these systems, the probability
for the event T a < T b is

P (T a < T b) =

ma∑

i=1

mb∑

j=1

qai q
b
jP (T a

i:ma
< T b

j:mb
) (11)

with

P (T a
i:ma

< T b
j:mb

) =

∫ ∞

0

f i
a(t)P (T b

j:mb
> t)dt (12)

where f i
a(t) is the probability density function (PDF) for T a

i:ma
, which, with

PDF fa(t) for the failure time of components of in system A, is equal to

f i
a(t) = fa(t)

ma∑

ra=ma−i+1

(
ma

ra

)
[1−Fa(t)]

ra−1[Fa(t)]
ma−ra−1[ra−ma(1−Fa(t))]

(13)
and

P (T b
j:mb

> t) =

mb∑

rb=mb−j+1

(
mb

rb

)
[1− Fb(t)]

rb [Fb(t)]
mb−rb (14)

In Section 2 of this paper an alternative to the signature is proposed and
investigated, we call it the system’s survival signature. In Section 3 we discuss
the difficulties in generalizing the signature to systems with multiple types of
components, where the proposed survival signature appears to have a clear

Generalizing the Signature 119

advantage which suggests an interesting and important new area of research.
We end the paper with a concluding discussion in Section 4, where we briefly
comment on computation of the system signature and survival signature,
the possibility to use partial information, the generalization to theory of
imprecise reliability in case the components’ failure time distribution is not
precisely known [5, 6], and the possible use of these concepts if only failure
times from tested components are available and nonparametric predictive
statistical methods are used for inference on the system reliability [2].

2 The Survival Signature

The signature was introduced to assist reliability analyses for systems with
m components with iid failure times, with the specific role of modelling the
structure of the system and separating this from the random failure times of
the components. In this section, we consider an alternative to the signature
which can fulfill a similar role, and which actually is closely related to the
signature. Let Φ(l), for 0 = 1, . . . ,m, denote the probability that a system
functions given that precisely l of its components function. As in Section 1, we
restrict attention again to coherent systems, for which Φ(l) is an increasing
function of l, and we assume that Φ(0) = 0 and Φ(m) = 1. There are

(
m
l

)

state vectors x with precisely l components xi = 1, so with
∑m

i=1 xi = l; we
denote the set of these state vectors by Sl. Due to the iid assumption for the
failure times of the m components, all these state vectors are equally likely
to occur, hence

Φ(l) =

(
m

l

)−1 ∑

x∈Sl

φ(x) (15)

As the function Φ(l) is by its definition related to survival of the system, and,
as we will see later, it is close in nature to the system signature, we call it
the system survival signature.

Let Ct ∈ {0, 1, . . . ,m} denote the number of components in the system
that function at time t > 0. If the probability distribution of the component
failure time has CDF F (t), then for l ∈ {0, 1, . . . ,m}

P (Ct = l) =

(
m

l

)
[F (t)]m−l[1− F (t)]l (16)

It follows easily that

P (TS > t) =
m∑

l=0

Φ(l)P (Ct = l) (17)

The terms in the right-hand side of equation (17) explicitly have different
roles, with the term Φ(l) taking the structure of the system into account, that
is how the system’s functioning depends on the functioning of its components,

120 F.P.A. Coolen and T. Coolen-Maturi

and the term P (Ct = l) taking the random failure times of the components
into account. Taking these two crucial aspects for determining the survival
function for the system failure time into account separately in this way is
similar in nature to the use of system signatures as discussed in Section 1.

Equations (2) and (17) imply

Φ(l) =
m∑

j=m−l+1

qj (18)

which is easily verified by

m∑

j=1

m∑

r=m−j+1

qj

(
m

r

)
[1− F (t)]r[F (t)]m−r =

m∑

r=1

m∑

j=m−r+1

qj

(
m

r

)
[1− F (t)]r[F (t)]m−r (19)

Equation (18) is logical when considering that the right-hand side is the
probability that the system failure time occurs at the moment of the (m− l+
1)-th ordered component failure time or later. The moment of the (m− l+1)-
th ordered component failure time is exactly the moment at which the number
of functioning components in the system decreases from l to l− 1, hence the
system would have functioned with l components functioning.

In Section 1 a straightforward comparison was given of the failure times of
two systems A and B. Let us denote the survival signatures of these systems
by Φa(l) and Φb(l), respectively, and assume that both systems consist of
m components and that all these 2m components are of the same type, so
have iid random failure times. The comparison in Section 1 was based on the
stochastic ordering of the systems’ signatures, if indeed these are stochasti-
cally ordered. Due to the relation (18) between the survival signature Φ(l)
and the signature q, this comparison can also be formulated as follows: If

Φa(l) ≥ Φb(l) (20)

for all l = 1, . . . ,m, then

P (T a > t) ≥ P (T b > t) (21)

for all t > 0.
As explained in Section 1, the possibility to extend a signature in a way

that retains the same system failure time distribution is an advantage for
comparison of different system structures. The survival signature Φ(l) can
be similarly extended as is shown next, by defining explicitly the survival
signature Φ∗(l) that relates to a system with m+1 components which has the
same failure time distribution as a system with m components and survival

Generalizing the Signature 121

signature Φ(l) (throughout the superscript ∗ indicates the system with m+1
components, and all components considered are assumed to have iid failure
times). For l = 1, . . . ,m+ 1, let

Φ∗(l) = Φ(l − 1) +
m− l − 1

m+ 1
qm−l−1 (22)

and from (18), (22) and Φ(0) = 0 we have

Φ∗(1) =
m

m+ 1
qm =

m

m+ 1
Φ(1) (23)

and
Φ∗(m+ 1) = Φ(m) = 1 (24)

and
Φ(l + 1) = Φ(l) + qm−l (25)

Furthermore, it is easy to prove that

P (Ct = l) =
m+ 1− l

m+ 1
P (C∗

t = l) +
l + 1

m+ 1
P (C∗

t = l + 1) (26)

The failure time T ∗
S of the extended system with m + 1 components and

survival signature Φ∗(l) has the same survival function, and hence the same
probability distribution, as the failure time TS of the original system with m
components and survival signature Φ(l). This is proven as follows

P (TS > t) =

m∑

l=1

Φ(l)P (Ct = l)

=

m∑

l=1

Φ(l)

[
m+ 1− l

m+ 1
P (C∗

t = l) +
l + 1

m+ 1
P (C∗

t = l + 1)

]

= Φ∗(1)P (C∗
t = 1) +

m−1∑

l=1

[
Φ(l + 1)

m− l

m+ 1
+ Φ(l)

l + 1

m+ 1

]
P (C∗

t = l + 1)

+Φ∗(m+ 1)P (C∗
t = m+ 1)

= Φ∗(1)P (C∗
t = 1)

+

m−1∑

l=1

Φ∗(l + 1)P (C∗
t = l + 1) + Φ∗(m+ 1)P (C∗

t = m+ 1)

=
m+1∑

l=1

Φ∗(l)P (C∗
t = l) = P (T ∗

S > t) (27)

Comparison of the failure times of two systems A and B, each with a single
type of components but these being different for the two systems, with the
use of signatures, was given in Equation (11). This comparison is also possible

122 F.P.A. Coolen and T. Coolen-Maturi

with the use of the survival signatures, which we denote by Φa(la) and Φb(lb)
for systems A and B, respectively. The result is as follows

P (T a < T b) =

∫ ∞

0

fa
S(t)P (T b > t)dt (28)

with fa
S(t) the PDF of T a, given by

fa
S(t) = fa(t)

ma∑

la=0

Φa(la)

(
ma

la

)
[1−Fa(t)]

la−1[Fa(t)]
ma−la−1[la−ma(1−Fa(t))]

(29)
and

P (T b > t) =

mb∑

lb=0

Φb(lb)

(
mb

lb

)
[1− Fb(t)]

lb [Fb(t)]
mb−lb (30)

Using relation (18) and change of order of summation as in (19), it is easy to
show that (28) is actually the same formula as (11), so there is no computa-
tional difference in the use of either the signature or the survival signature for
such comparison of two systems with each a single type of components. We
can conclude that the method using the survival signature as presented in this
section is very similar in nature to the method using signatures for systems
with components with iid failure times. In Section 3 we consider the gener-
alization of the signature and the survival signature to the very important
case of reliability inferences for systems with multiple types of components.

3 Systems with Multiple Types of Component

Most practical systems and networks for which the reliability is investigated
consist of multiple types of components. Therefore, a main challenge is gen-
eralization of the theory of signatures to such systems. Although an obvious
challenge for research, little if any mention of it has been made in the litera-
ture. We will consider whether or not it is feasible to generalize the standard
concept of the signature to systems with multiple types of components, and
we will also consider this for the survival signature.

We consider a system with K ≥ 2 types of components, with mk com-
ponents of type k ∈ {1, 2, . . . ,K} and

∑K
k=1 mk = m. We assume that the

random failure times of components of the same type are iid, while full inde-
pendence is assumed for the random failure times of components of different
types. Due to the arbitrary ordering of the components in the state vector,
we can group components of the same type together, so we use state vector
x = (x1, x2, . . . , xK) with xk = (xk

1 , x
k
2 , . . . , x

k
mk

) the sub-vector representing
the states of the components of type k. We denote the ordered random failure
times of the mk components of type k by T k

jk:mk
, for ease of presentation we

assume that ties between failure times have probability zero.

Generalizing the Signature 123

System signatures were introduced explicitly for systems with a single type
of components, which are assumed to have iid failure times. To generalize the
signature approach to multiple types of components, it will be required to
take into account, at the moment of system failure TS which coincides with
the failure of a specific component, how many of the components of each other
type have failed. The generalized signature can again be defined in quite a
straightforward manner, namely by defining

qk(jk) = P (TS = T k
jk:mk

) (31)

for k = 1, . . . ,K and jk = 1, . . . ,mk, so the total signature can be defined as

q = (q1(1), . . . , q1(m1), q2(1), . . . , q2(m2), . . . , qK(1), . . . , qK(mK)) (32)

With this definition, the survival function of the system’s failure time is

P (TS > t) =
K∑

k=1

mk∑

jk=1

qk(jk)P (T k
jk:mk

> t) (33)

However, deriving this generalized signature is complex and actually depends
on the failure time probability distributions of the different types of compo-
nents, hence this method does not any longer achieve the separation of the
system structure and the failure time distributions as was the case for a single
type of components in Section 1. To illustrate this, we consider the calcula-
tion of q for the case with K = 2 types of components in the system. For
ease of notation, let T 2

0:m2
= 0 and T 2

m2+1:m2
= ∞. Calculation of q1(j1) is

possible by

q1(j1) = P (TS = T 1
j1:m1

) =
m2∑

j2=0

[
P (TS = T 1

j1:m1
| T 2

j2:m2
< T 1

j1:m1
< T 2

j2+1:m2
)

× P (T 2
j2:m2

< T 1
j1:m1

< T 2
j2+1:m2

)
]

(34)

Derivation of the terms P (T 2
j2:m2

< T 1
j1:m1

< T 2
j2+1:m2

) involves the fail-
ure time distributions of both component types. It is possible to define the
generalized signature instead by the first term in this sum, so the condi-
tional probability of TS = T 1

j1:m1
given the number of components of type

2 that are functioning at time T 1
j1:m1

, but this does not simplify things as

the probabilities P (T 2
j2:m2

< T 1
j1:m1

< T 2
j2+1:m2

) will still be required for
all j1 ∈ {1, . . . ,m1} and j2 ∈ {1, . . . ,m2}, and as these probabilities in-
volve order statistics from different probability distributions this is far from
straightforward. Of course, for the general case with a system consisting of

124 F.P.A. Coolen and T. Coolen-Maturi

K ≥ 2 types of components, the arguments are the same but the complex-
ity increases as function of K. Calculating the system reliability via this
generalized signature involves the calculation ofm terms qk(jk), each of which
requires

K∏

l=1
l �=j

(ml + 1) (35)

probabilities for orderings of order statistics from different probability dis-
tributions to be derived. This quickly becomes infeasible, which is probably
the reason why such a generalization of the signature has not been addressed
in detail in the literature. It may also explain why the signature, although a
popular topic in the reliability research literature, does not appear to have
made a substantial impact on practical reliability analyses.

We will now investigate if the survival signature, as presented in Section
2, may be better suited for the generalization to systems with multiple types
of components. Let Φ(l1, l2, . . . , lK), for lk = 0, 1, . . . ,mk, denote the prob-
ability that a system functions given that precisely lk of its components
of type k function, for each k ∈ {1, 2, . . . ,K}; again we call this function
Φ(l1, l2, . . . , lK) the system’s survival signature, it will be clear from the con-
text whether or not there are multiple types of components. There are

(
mk

lk

)

state vectors xk with precisely lk of its mk components xk
i = 1, so with∑mk

i=1 x
k
i = lk; we denote the set of these state vectors for components of

type k by Sk
l . Furthermore, let Sl1,...,lK denote the set of all state vectors

for the whole system for which
∑mk

i=1 x
k
i = lk, k = 1, 2, . . . ,K. Due to the

iid assumption for the failure times of the mk components of type k, all the
state vectors xk ∈ Sk

l are equally likely to occur, hence

Φ(l1, . . . , lK) =

[
K∏

k=1

(
mk

lk

)−1
]
×

∑

x∈Sl1,...,lK

φ(x) (36)

Let Ck
t ∈ {0, 1, . . . ,mk} denote the number of components of type k in the

system that function at time t > 0. If the probability distribution for the
failure time of components of type k is known and has CDF Fk(t), then for
lk ∈ {0, 1, . . . ,mk}, k = 1, 2, . . . ,K,

P (
⋂

k=1,...,K

{Ck
t = lk}) =

K∏

k=1

P (Ck
t = lk)

=

K∏

k=1

((
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]
lk

)
(37)

Generalizing the Signature 125

The probability that the system functions at time t > 0 is

P (TS > t) =

m1∑

l1=0

· · ·
mK∑

lK=0

Φ(l1, . . . , lK)P (

K⋂

k=1

{Ck
t = lk}) =

m1∑

l1=0

· · ·
mK∑

lK=0

[
Φ(l1, . . . , lK)

K∏

k=1

P (Ck
t = lk)

]
=

m1∑

l1=0

· · ·
mK∑

lK=0

[
Φ(l1, . . . , lK)

K∏

k=1

((
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]
lk

)]
(38)

Calculation of (38) is not straightforward but it is far easier than calcula-
tion using the generalized signature in (33). Of course, the survival signature

Φ(l1, . . . , lK) needs to be calculated for all
∏K

k=1(mk+1) different (l1, . . . , lK),
but this information must be distracted from the system anyhow and is only
required to be calculated once for any system, similar to the (survival) sig-
nature for systems with a single type of components. The main advantage of
(38) is that again the information about system structure is fully separated
from the information about the components’ failure times, and the inclusion
of the failure time distributions is straightforward due to the assumed inde-
pendence of failure times of components of different types. The difficulty in
(33) of having to find probabilities of rankings of order statistics from differ-
ent probability distributions is now avoided, which leads to a very substantial
reduction and indeed simplification of the computational effort.

We can conclude that the survival signature, which is proposed in this
paper and which is very closely related to the classical signature in case of
systems with components with iid failure times, seems to provide an attrac-
tive way to generalize the concept of signature to systems with multiple types
of components. It should be emphasized that the survival signature provides
all that is needed to calculate the survival function for the system’s failure
time, and as this fully determines the failure time’s probability distribution
all further inferences of interest can be addressed using the survival signature.
While we have assumed independence of the failure times of components of
different types, the proposed approach in this paper can also be used if these
failure times are dependent, in which case the joint probability distribution
for these failure times must of course be used in Equation (37). This would
still maintain the main feature of the use of the proposed survival signature
in Equation (38), namely the explicit separation of the factors taking into ac-
count the information about the system structure and the information about
the component failure times. Also with the less attractive generalization of
the classical signature it is possible to deal with dependent failure times for
components of different types, but it is likely to substantially complicate the
computation of probabilities on the orderings of order statistics for failure
times of components of different types.

126 F.P.A. Coolen and T. Coolen-Maturi

Theoretical properties of the survival signature for systems with multiple
types of components are an important topic for future research. This should
include analysis of possibilities to extend such a signature while keeping the
corresponding systems’ failure times distributions the same, which could pos-
sibly be used with some adapted form of stochastic monotonicity (on the sub-
vectors relating to components of the same type) for comparison of failure
times of systems that share the same multiple types of components. It seems
possible to compare the failure times of different systems with multiple types
of components using the survival signature along the lines as presented in
Section 2 for systems with components with iid failure times, but this should
also be developed in detail. The first results for this survival signature, as pre-
sented in this paper, are very promising, particularly due to the possibility
to use the survival signature for systems with multiple types of components,
so such further research will be of interest.

We briefly illustrate the use of the survival signature for a system with
K = 2 types of components, types 1 and 2, as presented in Figure 1 (where
the types of the components, 1 or 2, are as indicated).

With m1 = m2 = 3 components of each type, the survival signature
Φ(l1, l2) must be specified for all l1, l2 ∈ {0, 1, 2, 3}; this is given in Table
1. To illustrate its derivation, let us consider Φ(1, 2) and Φ(2, 2) in detail.
The state vector is x = (x1

1, x
1
2, x

1
3, x

2
1, x

2
2, x

2
3), where we order the three com-

ponents of type 1 from left to right in Figure 1, and similar for the three
components of type 2. To calculate Φ(1, 2), we consider all such vectors x
with x1

1 + x1
2 + x1

3 = 1 and x2
1 + x2

2 + x2
3 = 2, so precisely 1 component of

type 1 and 2 components of type 2 function. There are 9 such vectors, for
only one of these, namely (1, 0, 0, 1, 0, 1), the system functions. Due to the
iid assumption for the failure times of components of the same type, and
independence between components of different types, all these 9 vectors have
equal probability to occur, hence Φ(1, 2) = 1/9. To calculate Φ(2, 2) we need
to check all 9 vectors x with x1

1 + x1
2 + x1

3 = 2 and x2
1 + x2

2 + x2
3 = 2. For 4

of these vectors the system functions, namely (1, 1, 0, 1, 0, 1), (1, 1, 0, 0, 1, 1),
(1, 0, 1, 1, 1, 0) and (1, 0, 1, 1, 0, 1), so Φ(2, 2) = 4/9.

We consider two cases with regard to the failure time distributions for the
components. In Case A, we assume that the failure times of components of
type 1 have an Exponential distribution with expected value 1, so with

f1(t) = e−t and F1(t) = 1− e−t (39)

and that the failure times of components of type 2 have a Weibull distribution
with shape parameter 2 and scale parameter 1, so with

f2(t) = 2te−t2 and F2(t) = 1− e−t2 (40)

In Case B, these same probability distributions are used but for the other
components type than in Case A, so the failure times of components of type

Generalizing the Signature 127

1

1 1

2 2

2

Fig. 1 System with 2 types of components

1 have the above Weibull distribution while the failure times of components
of type 2 have the above Exponential distribution.

The survival functions for the failure time of this system, for both Cases
A and B, are calculated using Equation (38) and are presented in Figure 2.
Type 1 components are a bit more critical in this system, due to the left-most
component in Figure 1. The Exponential distribution makes early failures
more likely than the Weibull distribution used in this example, which leads
initially to lower survival function for Case A than for Case B. It is intesting
that these two survival functions cross, it would have been hard to predict
this without the detailed computations.

Whilst presenting these survival functions is in itself not of major interest
without an explicit practical problem being considered, the fact that the
computations based on Equation (38) are straightforward indicates that the
survival signature can also be used for larger and more complicated systems.
Of course, deriving the survival signature itself is not easy for larger systems,
this is briefly addressed in the following section.

Table 1 Survival signature of system in Figure 1

l1 l2 Φ(l1, l2) l1 l2 Φ(l1, l2)

0 0 0 2 0 0
0 1 0 2 1 0
0 2 0 2 2 4/9
0 3 0 2 3 6/9
1 0 0 3 0 1
1 1 0 3 1 1
1 2 1/9 3 2 1
1 3 3/9 3 3 1

128 F.P.A. Coolen and T. Coolen-Maturi

n

Fig. 2 System survival functions Cases A and B

4 Discussion

Computation of the signature of a system with components with iid failure
times is difficult unless the number of components is small or the system
structure is quite trivial [10, 14], and the same holds for the survival signa-
ture introduced in this paper. However, if derivation of the exact survival
function for the system’s failure time is required then it is unavoidable that
all details of the system’s structure must be taken into account, hence com-
putation of the signature or the survival signature is necessary. For specific
inferences of interest, e.g. if one wants to assess whether or not the system’s
reliability at a specific time t exceeds a specific value, computation of the
exact (survival) signature may not be required. If one has partial informa-
tion about the signature, then optimal bounds for P (TS > t) can be derived
easily using the most ‘pessimistic’ and ‘optimistic’ signatures that are pos-
sible given the partial information [1]. Partial information on the survival
signature is also quite straightforward to use, due to the fact that Φ(l) is in-
creasing in l so corresponding bounds for P (TS > t) are easy to derive. This
also holds for the case with multiple types of components, as Φ(l1, . . . , lK) is
increasing in each lk for k ∈ {1, . . . ,K}. Due to the far more complex nature
of the generalization of the classical signature to systems with multiple types
of components, it is likely that they would be less suited for dealing with
partial information, it seems of little interest to investigate this further. If
such bounds for P (TS > t) are already conclusive for a specific inference,
then there is no need for further computations which might reduce the effort
considerably. In many applications one may not know the precise probability
distribution for the components of a system. One way to deal with lack of

Generalizing the Signature 129

such exact knowledge is the use of a set of probability distributions, in line
with the theory of imprecise reliability [6] which uses lower and upper prob-
abilities [5] for uncertainty quantification. Generalizing the use of (survival)
signatures in order to use sets of probability distributions for the components’
failure times is difficult as derivation of the optimal corresponding bounds for
the survival function for the system’s failure time involves multiple related
constrained optimisation problems. One may also wish to use a statistical
framework for inference on the survival function for the components’ failure
times. A particularly attractive way to do this is by using nonparametric pre-
dictive inference (NPI) [2], as it actually leads to relatively straightforward
calculation of the optimal bounds for the survival function for the system’s
failure time, because the multiple optimisation problems involved can all be
solved individually (which is rather trivial in that setting) and their optima
can be attained simultaneously [4]. Currently, the generalization to systems
with multiple types of components, as presented in this paper using the sur-
vival signature, is being investigated within the NPI framework. We expect
to report exciting results from this research in the near future, which will gen-
eralize recent results on NPI for system reliability [3, 8, 11] to more general
systems.

With a suitable generalization of the signature to systems with multiple
types of components, as we believe the survival signature to be, there are
many challenges for future research. For example, one may wish to decide
on optimal testing in order to demonstrate a required level of system relia-
bility, possibly taking costs and time required for testing, and corresponding
constraints, into account [13]. It will also be of interest to consider possible
system failure due to competing risks, where the NPI approach provides in-
teresting new opportunities to consider unobserved or even unknown failure
modes [7, 12]. Of course, the main challenges will result from the application
of the new theory to large-scale real-world systems, which we expect to be
more feasible with the new results presented in this paper.

References

1. Al-nefaiee, A.H., Coolen, F.P.A.: Nonparametric prediction of system failure
time using partially known signatures. In: Proceedings Statistical Models and
Methods for Reliability and Survival Analysis and their Validation, Bordeaux
(to appear, July 2012)

2. Coolen, F.P.A.: Nonparametric predictive inference. In: Lovric (ed.) Interna-
tional Encyclopedia of Statistical Science, pp. 968–970. Springer, Berlin (2011)

3. Coolen, F.P.A., Aboalkhair, A.M., MacPhee, I.M.: Diversity in system relia-
bility following component testing. The Journal of the Safety and Reliability
Society 30(4), 78–93 (2010)

4. Coolen, F.P.A., Al-nefaiee, A.H.: Nonparametric predictive inference for failure
times of systems with exchangeable components. Journal of Risk and Reliability
(to appear, 2012)

130 F.P.A. Coolen and T. Coolen-Maturi

5. Coolen, F.P.A., Troffaes, M.C.M., Augustin, T.: Imprecise probability. In:
Lovric (ed.) International Encyclopedia of Statistical Science, pp. 645–648.
Springer, Berlin (2011)

6. Coolen, F.P.A., Utkin, L.V.: Imprecise reliability. In: Lovric (ed.) International
Encyclopedia of Statistical Science, pp. 649–650. Springer, Berlin (2011)

7. Coolen-Maturi, T., Coolen, F.P.A.: Unobserved, re-defined, unknown or re-
moved failure modes in competing risks. Journal of Risk and Reliability 225,
461–474 (2011)

8. Coolen-Schrijner, P., Coolen, F.P.A., MacPhee, I.M.: Nonparametric predictive
inference for systems reliability with redundancy allocation. Journal of Risk and
Reliability 222, 463–476 (2008)

9. De Finetti, B.: Theory of Probability. Wiley, New York (1974)
10. Eryilmaz, S.: Review of recent advances in reliability of consecutive k-out-of-n

and related systems. Journal of Risk and Reliability 224, 225–237 (2010)
11. MacPhee, I.M., Coolen, F.P.A., Aboalkhair, A.M.: Nonparametric predictive

system reliability with redundancy allocation following component testing.
Journal of Risk and Reliability 223, 181–188 (2009)

12. Maturi, T.A., Coolen-Schrijner, P., Coolen, F.P.A.: Nonparametric predictive
inference for competing risks. Journal of Risk and Reliability 224, 11–26 (2010)

13. Rahrouh, M., Coolen, F.P.A., Coolen-Schrijner, P.: Bayesian reliability demon-
stration for systems with redundancy. Journal of Risk and Reliability 220, 137–
145 (2006)

14. Samaniego, F.J.: System Signatures and their Applications in Engineering Re-
liability. Springer, New York (2007)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 131–147.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Effective Oblivious Transfer Using
a Probabilistic Encryption

Alexander Frolov

Abstract. Some novel effective 1-out-of-2, 1-out-of-n, n−1-out-of-n, and m-out-
of-n interactive and non-interactive oblivious transfer protocols (OT protocols)
using a probabilistic encryption are presented. Their key information is adapted
from corresponding Bellare − Rivest fractional OT protocols and the encryption is
carried out on ElGamal. They can be realized in a multiplicative as well as an
additive group of prime order. It is shown that due to usage of different encryption
keys this implementation can be simplified in such a way that single randomizer is
sufficient for all encryptions. The proposal allows to increase the information rate
by 2n/(n+1) times and to reduce by the same factor the computational complexity
of the second round phase of interactive and of the communication phase of non-
interactive m-out-of-n OT protocols explored probabilistic encryption. These
propositions have potential applications in all cryptographic protocols based on
the m-out-of-n oblivious transfer using probabilistic encryption including
generalized oblivious transfer, in particular in electronic commerce.

1 Introduction

The notion of oblivious transfer (OT) has been introduced by M. Rabin [1] to help
solve the problem of “exchanging secrets,” studied by M. Blum [2]. So the
simplest case of OT is the transmission of one bit with the probability 1/2.
Corresponding 1/2 fractional OT protocol is the protocol in which one party A can
transfer a message to the other party B in such a way that:

− B receives the message with probability 1/2,
− A is oblivious as to whether the transfer was successful or not, that is A does

not know whether B received the message.

In [3] using ElGamal encryption [4], the 1-out-of-2 OT protocol is established. In
this protocol one party A can transfer two messages to the other party B in such a
way that:

Alexander Frolov
National Research University Moscow Power Engineering Institute, 111250. Moscow,
Krasnokazarmennaya, Russian Federation
e-mail: abfrolov@gmail.com

132 A. Frolov

 − B receives only one message of your choice,
 − A does not know which of two messages B received.

The bibliography of initial steps of the OT protocols development can be found in
[5] and in other related publications. The next most essential step was made by
M. Bellare and R.L. Rivest [5]. They developed the theory of fractional oblivious
transfer and proposed the interactive and non-interactive m/n fractional OT
protocols in which one party A can transfer a message to the other party B in such
a way that:

− B receives the message with the probability m/n,
− A is oblivious as to whether the transfer was successful or not, that is A does

not know whether B received the message.

In [6] the basic notion of 1-out-of-2 OT protocol was extended to 1-out-of-n OT
protocol.

The Bellare − Rivest 1/n fractional OT and (n−1)/n fractional OT protocols
generalize the 1/2 fractional OT protocols, but their other m/n OT protocols
(1<m<n−1) are based on the original polynomial scheme. All these protocols
involve n ElGamal encryptions. In [7] this scheme is applied to calculate the
public keys of m-out-of-n oblivious transfer protocols (m-out-of-n OT protocols)
with repeated use of ElGamal. In such protocols, one party A can transfer n
messages to the other party B in such a way that:

− B receives combination of m messages of your choice,
− A does not know which of possible messages combinations B received.

In [8] on the basis of other matrix scheme, the interactive and non-interactive m-
out-of-n OT protocols which repeatedly use the Nyberg−Rueppel digital signature
with message recovery [9,10] have been described.

In [11] the notion of OT was extended as a generalized oblivious transfer
(GOT). In GOT protocols the retrieval restrictions are defined as a decreasing
monotone collection of subsets of the given message set U. In these protocols, one
party A can transfer all messages of the set U to the other party B in such a way
that:

− B receives all messages from only one of these subsets of your choice,
− A does not know which messages B received.

In [12] there are described GOT protocols that repeatedly involve m-out-of-n OT
protocols.

The OT protocols considered it this chapter start with the Global set-up phase
when the group G of large prime order q with intractable discrete logarithm and
Diffie─Hellman problems, its generator b, its element U with unknown for both
parties discrete logarithm logbU are declared.

Effective Oblivious Transfer Using a Probabilistic Encryption 133

The interactive OT protocols involve the First round phase of receiver’s public
key set-upping and its verifiable transmission to the sender and the Second round
phase of oblivious transmission m of n messages from the sender to the receiver.

The non-interactive OT protocols instead of the first round phase involve the
Receiver’s public key set-up and certification phase when receiver’s public key is
set-upped and sent to trusted center for verifying, certification and publishing. The
second round phase is renamed to Communication phase with the same
functionality.

As it has been pointed out in [5] non-interactive successive oblivious transfer
are not independent: the receiver’s secret key remains unchanged in successive
runs of protocol.

During the second round phase of interactive protocols as well as the
communication phase of non-interactive m-out-of-n OT protocols, n ElGamal
encryptions or digital signatures with message recovery are involved repeatedly.
In each case the encryption or signature use a new randomizer. In general, the re-
use of randomizer in the probabilistic encryption schemes or digital signatures
could lead to the disclosure of the message or the secret key. It will happen, when
one use such schemes with the same encryption key or digital signature key. But
within a single session of OT protocol, encryptions or signatures carried out
repeatedly using principally different secret keys. Therefore, the re-use of
randomizer is safe. As a consequence, the comlexity of sender’s calculation of
randomizers is reduced by n times. In the probabilistic encryption systems the
amount of transmitted information as well as the number of exponentiation is
reduced which makes the protocol more efficient.

The following notation is used.
The OT protocol is a traditional interactive oblivious transfer protocol;
the NIOT protocol is a traditional non-interactive oblivious transfer protocol;
the EOT and ENIOT protocols are contracted (effective) variants of the OT and

NIOT protocols resp.;
the SUNIOT and SUENIOT protocols are the single use NIOT and ENIOT

protocols.
In this chapter, the m/n fractional OT protocols [5] are transformed into the m-

out-of-n OT protocols and the possibility of their simplifying due use of single
randomizer in separate run of protocol is founded and estimated.

Let eOT be the number of items passed on the second round phase or the
communication phase in the performance of traditional OT protocol and eEOT be
the number of items passed on these phases in the performance of the

corresponding simplified (effective) OT protocol. Then the ratio
EOT

OT
EOT e

e=ρ

expresses the increase in the information rate of these phases. Simultaneously, this
ratio characterizes the computational efficiency of these phases. Indeed, the
numbers eOT and eEOT are the numbers of exponentiations during their
performance. The information rate and computational complexity of the first
round phase as well as of the key-set-up phase remain the same.

The chapter is organized as follows. In section 2 the traditional 1-out-of-2 OT
protocols and their proposed contracted variants are discussed and the values

134 A. Frolov

ρ1-out-of-2 EOT, ρ1-out-of-2 ENIOT, and ρ1-out-of-2 SUENIOT are estimated. In section 3 the
important partial variants of the m-out-of-n protocols are considered and the
values ρ1-out-of-n EOT , ρ1-out-of-n ENIOT, and ρ1-out-of-n SUENIOT, ρn-1-out-of-n EOT , ρ n-1-out-of-n

ENIOT, and ρ n-1-out-of-n SUENIOT are estimated. Section 4 is devoted to common m-out-
of-n protocols involving Bellare − Rivest polynomial scheme and the values ρm-

out-of-n EOT, ρm-out-of-n ENIOT, and ρm-out-of-n SUENIOT are estimated. In section 5 we recall
the concept of GOT protocol introduced in [12] to show how one can improve its
effectiveness implementing m-out of-n EOT protocols. In section 6 the EOT and
ENIOT protocols on the non-supersingular elliptic curve of large order are
presented. In conclusion (section 7) the field of application of proposed protocols
is characterized and one open question is discussed.

Considering the protocols, we omit the descriptions of the global set-up phase.
We only recall the key set-up procedures and prove the safety of ElGamal
encryptions implementations simplifying. The protocols in sections 2, 3, and 4 are
described in terms of multiplicative group G but each of them can be transformed
as a protocol in the additive group replacing multiplication and exponentiations by
additions and scalar multiplications. Protocols in section 6 are given in the
additive group.

We also suppose that the transmitted messages are represented as the elements
of the group G.

Remark. To simplify the calculations, one can represent messages as binary codes
of limited length k─1 and use the invertible mapping ψ:G→F2

k [13]. But we will
not use this method because it is not directly connected with the novelty of our
proposal.

2 Effective 1-Out-of-2 OT- and NIOT Protocols

The traditional interactive and non-interactive 1-out-of-2 OT protocols are
described as in original papers [3] and in textbooks [13, 14].

The functionality of 1-out-of-2 OT protocol has been described in section 1.
The key set-up procedure is the following. The receiver B chooses the secret key
x, 0<x<q, and permutation π on the set {1, 2} such that π(1)=i, where i is an index
of chosen message mi, then B calculates βπ(1) =bx and βπ(2) =Ub─ x , the receiver
public key is (β1,β2). The receiver B knows the discrete logarithm of only element
βi and does not possesses any information on logbβ3−i. The checking procedure
performed by the sender A or the trusted center T consists of verification of the
predicate β1β2=U.

The second round phase of 1-out-of-2 OT- and the communication phase of
1-out-of-2 NIOT protocols are the following:

A chooses at random two distinct numbers 0<y1, y2<q─1, and sends to B two
pairs of group G elements

),(),(21
21

yy bbсс =

Effective Oblivious Transfer Using a Probabilistic Encryption 135

and

).,(),(21
221121

yy mm ββαα =

This information corresponds to two ElGamal cryptograms

(11
11, yy mb β) and (22

22, yy mb β).

B calculates

.i
y

i
y

ii
xyy

ii
xy

i
x

ii mmbmbc iiiii ==== −−−− βββαα

Note that the randomly selected numbers y1 and y2 could be the same and equal to
the number y: y1 =y2 =y.

Claim 2.1. The reuse of randomizer in the 1-out-of-2 OT- and 1-out-of-2 NIOT
protocols is safe. The problem of deriving of the second message by receiver and
Diffie ─ Hellman problem are polynomially equivalent.

Proof. Let the randomizers be the same: y1 =y2 =y. Note that knowing of by = and
bx’ =Ub−x =β3−i is not sufficient to calculate β3-i

y =bx’y, since in this case solving of
the Diffie ─ Hellman problem or discrete logarithm problem is required.
Moreover, the additional knowing of mi does not allow to calculate m3−i, because
different secret keys x and x' of ElGamal cryptosystem have been used for the
calculation of βi and β3-i. So B cannot compute m3−i and randomizer reuse in
separate performances as of the 1-out-of-2 OT- and the 1-out-of-2 NIOT protocols
is safe for the sender: A can be sure that only one message has been received. At
the same time the recipient, keeping x and i secret, still convinced that A can not
distinguish which of two elements is an element β1.

In this situation, party B knows elements x, b, βi=bx , β3-i=bx’ , β1≠β2 , c=by,
di=mi βi

y = mi b
xy, m3−iβ3−i

y and U=β1β2. Let B2.1 be an algorithm for finding of
m3−i under these conditions. Then it allows to solve the Diffie ─ Hellman problem:
there are given b, by, b x, find bxy. The solution is the following: take an arbitrary
number z, 1<z<q, β1 =bz ≠ bx, put β2 = b x, compute U=β1β2, and choose arbitrary
elements d1 and d2 of group G, 1< d1, d2<q, supposing that d1=m1β1

y = m1b
xy, d2=

=m2β2
y. Then using by and applying the breaking algorithm B2.1 one could get m2

and later compute β2
y = bxy. On the other hand, if one could compute β3−i

y=bx’y then
m3−i could be computed. Hence the problem of the second message deriving and
Diffie ─ Hellman problem are polynomially equivalent. This completes the proof.

It follows that the second round phase of the 1-out-of-2 OT protocol as well as
the communication phase of the 1-out-of-2 NIOT protocol can be simplified as
follows:

A checks that C= 21ββ , chooses random number 0<y<q-1, calculates and sends

to B the element ybс = and the pair of group G elements

).,(),(221121
yy mm ββαα =

136 A. Frolov

This information corresponds to two ElGamal cryptograms

(yy mb 11, β) and (yy mb 22, β).

B calculates

.i
y

i
y

ii
yxy

ii
yx

i
x

i mmbmbc ==== −−−− βββαα

Corollary 2.1. The effectiveness of the second round phase of 1-out-of-2 EOT-
and of the communication phase of 1-out-of-2 ENIOT protocol is estimated as
following: ρ1-out-of-2 EOT =ρ1-out-of-2 ENIOT=4/3, and ρ1-out-of-2 SUENIOT=2.1

3 Effective 1-Out-of-n and n−1 of n Protocols

The 1-Out-of-n Protocols

The 1-out-of-n OT protocol can be obtained using key-information of the 1/n
fractional OT protocol [5]. The receiver’s key set-up procedure is the following.

The receiver B chooses at random the secret key (x, i), 0<x<q-1, i∈{0, 1, n−1}
where i is an index of chosen message mi, calculates βi=bx

and βj=βiU j−i for j≠i.

The receiver public key is (β0, β1, …, βn−1). The receiver B knows the discrete
logarithm x=xi of element βi only and does not possesses any information on
logbβj=xj, j≠i. The checking procedure performed by the sender A or the trusted
center T consists of verification of the predicates βj =β0U j for all j=0,…,n −1.

The second round phase of the 1-out-of-n OT protocol and the communication
phase of the 1-out-of-n NIOT protocol is the following:

A chooses at random n distinct numbers 0<y0, y1,…,yn−1<q, and sends to B two
n-tuples of group G elements

(c0,c1,…,cn−1) = (110 ,...,, −nyyy bbb)

and

(α0,α1,…,αn−1) = (110
111100 ,...,, −

−−
ny

nn
yy mmm βββ).

This information corresponds to n ElGamal cryptograms

(jj y
jj

y
mb β,), j=0,…,n− 1.

B calculates

.i
y

i
y

ii
xyy

ii
xy

i
x

ii mmbmbc iiiii ==== −−−− βββαα

Note that the randomly selected numbers y1, y2 , …, yn could be the same and
equal to the number y: y1 =y2 =…=yn =y.

1 Here and below estimating the single using non-interactive protocols, we take into account

that the sender public key c=by could be computed and published in advance.

Effective Oblivious Transfer Using a Probabilistic Encryption 137

Claim 3.1. The multiple reuse of randomizer in the 1-out-of-n OT and 1-out-of- n
NIOT protocols is safe. The problem of deriving of the second message by receiver
and Diffie ─ Hellman problem are polynomially equivalent.

Proof. Let the randomizers be the same: y1 =y2 =…=yn =y. Note that knowing of

yb and ,, ijb j
x j ≠= β is not sufficient to calculate

yxy
j

jb=β since in this case

solving of the Diffie ─ Hellman problem or discrete logarithm problem is
required. Moreover, the additional knowledge of mi, does not allow calculate mj
since different secret keys xi and xj of ElGamal cryptosystem have been used for
the calculation of βi and βj. So B cannot compute mj and randomizer reuse in
separate performances as the 1-out-of-n OT and the 1-out-of-n NIOT protocols is
safe for the sender: A can be sure that only one message has been received. At the
same time the recipient, keeping x and i secret, still convinced that A cannot
distinguish which of n elements is an element β1.

In this situation, there are known elements xi, b, βi= ixb , c= yb , βj=
jx

b ,
yx

i
y

ii
ibmm =β ,

yx
j

y
jj

jbmm =β , and U. Let B3.1 be an algorithm for finding of mj

under these conditions. Then it allows to solve the Diffie ─ Hellman problem: there
are given b, by, b x, find bxy. The solution is the following: take an arbitrary number z,

1<z<q, xz bb ≠ , pick β0 = bx, compute β1 =
zb , U= xz bb / , and choose arbitrary

nonzero elements d0 and d1 of group G, 1< d0, d1<q, supposing that d0=m0 β0
y = m0 b

x
y, d1=m1β1

y . Then using by and applying the breaking algorithm B3.1 one could get
m1 and later compute β1

y = =b xy. On the other hand, if one could compute βj
y =bx’y

then mj could be computed. Hence the problem of the second message deriving and
Diffie ─ Hellman problem are polynomially equivalent. This completes the proof.

It follows that the second round phase of the 1-out-of-n OT protocol as well as
the communication phase of the 1-out-of-n NIOT protocol can be simplified as
follows:

A chooses at random number 0<y<q, calculates and sends to B element c= yb
and n-tuple of group G elements

(α0,α1,…,αn−1)=(y
nn

yy mmm 111100 ,...,, −− βββ).

This information corresponds to n ElGamal cryptograms

(y
jj

y mb β,), j=0,…,n− 1.

B calculates

.i
y

i
y

ii
yxy

ii
yx

i
x

i mmbmbc ==== −−−− βββαα

Corollary 3.1. The effectiveness of the second round phase of the 1-out-of-n EOT
and of the communication phase of the 1-out-of-n n ENIOT protocols is estimated
as following:

ρ1-out-of-n EOT =ρ1-out-of-n ENIOT=2n /(n+1), and ρ1-out-of-n SUENIOT=2.

138 A. Frolov

The n─1-Out-of-n Protocols

The n−1-out-of-n OT protocol can be obtained using key-information of the
(n−1)/n fractional OT protocol [5]. The receiver’s key set-up procedure is the
following.

The receiver B chooses at random n distinct numbers x1, x2,…,xn such that
0<xi<q, i∈{1,…, n}, x1+x2+…+xn =q, and a permutation π on the set {1,…, n}
such that π(i) =ji, i=1,…,n−1, where ji are indices of chosen messages

ij
m ,

calculates ,1,...,1,)(−== nib ix
iπβ nx

n Ub=)(πβ . The receiver’s public key is (β1,

β2, … , βn). The receiver B knows the discrete logarithms ix of elements

βπ(i)= ijβ , i=1, …, n−1, and does non possesses any information on logbβπ(n). The

checking procedure performed by the sender A or the trusted center T consists of

verification of the predicate .1 Ui
n
i =Π = β

The second round phase of the n−1-out-of-n OT protocol and of the
communication phase of the n−1-out-of-n NIOT protocol is the following:

A chooses at random n distinct numbers 0<y1, y2,…,yn<q, and sends to B two n-
tuples of group G elements

(c1,c2,…,cn−1)=(nyyy bbb ,...,, 21)

and

(α1,α2,…,αn)=(ny
nn

yy mmm βββ ,...,, 21
2211).

This information corresponds to n ElGamal cryptograms

(ii y
ii

y mb β,), i=1,…,n.

For i =1,…, n −1, B calculates

=== −−− iiiiii xyy
ii

xy
i

x
ii bmbc)()()(

)()()()()(
πππ

πππππ βαα

.)()()()(
)()(

i

ii
ji

y
i

y
ii mmm === −

ππππ
ππ ββ

Note that the randomly selected numbers y1, y2 , …, yn could be the same and
equal to the number y: y1 =y2 =…=yn =y.

Claim 3.2. The multiple reuse of randomizer in n−1-out-of-n OT and n−1-out-of-n
NIOT protocol is safe. The problem of deriving of the n-th message by receiver
and Diffie ─ Hellman problem are polynomially equivalent.

Proof. Let the randomizers be the same: y1 =y2 =…=yn =y. Note that knowing of

yb and ,)(n
xb πβ= is not sufficient to calculate xyy

n b=)(πβ since in this case

solving of the Diffie─Hellman problem or discrete logarithm problem is required.
Moreover, the additional knowledge of all messages mπ(i), i≠n, does not allow to

Effective Oblivious Transfer Using a Probabilistic Encryption 139

calculate mπ(n), since different secret keys xi and x of ElGamal cryptosystem have
been used for the calculation of βπ(i) and βπ(n). So randomizer reuse in separate
performances of the n−1-out-of-n OT protocol as well as n−1-out-of-n NIOT
protocol is safe for the sender: A can be sure that only n−1 messages have been
received. At the same time the recipient, keeping (x1, x2, …, xn−1) and π secret,
still convinced that A cannot distinguish which of n elements is an element βπ(n).

In this situation, for i=1,2, …, n−1, there are known the elements xi,

b, y
iii md)()()(πππ β= , βπ(i)= ,ixb c = ,yb βπ(n)= ,xb and U. Let B3.2 be an

algorithm for finding of)(nmπ under these conditions. Then it allows to solve the

Diffie─Hellman problem: there are given b, by, b x, find bxy. The solution is the
following: take distinct arbitrary numbers x1, x2,…, xn−1 such that 0<xi<q, for

i=1,…,n−1, calculate βi
y= ,)(yxxy ii bb = compute U= .1

1 i
n
i

xb β−
=Π Hence

,nxx
n Ubb ==β x1+x2+…+xn−1+xn=q. Then choose distinct elements d1, …, dn−1,

dn, supposing that for all i=1,…,n 1<di<q, di=miβi
y. Now applying breaking

algorithm B3.2 and using yb one can compute mn and later .xyy
n b=β On the

other hand, if the receiver could compute βπ(n)
y =bxy then mπ(n) could be computed.

Hence the problem of the n-th message deriving and Diffie─Hellman problem are
polynomially equivalent. This completes the proof.

It follows that the second round phase of the n−1-out-of-n OT protocol as well
as communication phase of the n−1-out-of-n NIOT protocol can be simplified as
follows:

A chooses at random number 0<y<q, calculates and send to B element c= yb
and n-tuple of group G elements

(α1,α2,…,αn)=(y
nn

yy mmm βββ ,...,, 2211).

This information corresponds to n ElGamal cryptograms

(y
ii

y mb β,), i=1,…,n.

For i =1,…, n−1, B calculates

=== −−− iii yxy
ii

yx
i

x
i bmbc)()()()(ππππ βαα

.)()()()(iji
y
i

y
ii mmm === −

ππππ ββ

Corollary 3.2. The effectiveness of the second round phase of the n−1-out-of-n
EOT and of the communication phase of the n−1-out-of-n ENIOT protocols is
estimated as following:

ρn−1-out-of-n EOT =ρ n−1-out-of- n ENIOT=2n /(n+1), and ρ n−1-out-of-n SUENIOT=2.

140 A. Frolov

4 Effective m-Out-of-n Protocols

The Global set-up phase of this protocol is completed by letting α0=1∈Zq, and
fixing of n distinct elements α1,…, αn of Zq\{α0}. All these elements are public.

The m-out-of-n OT protocol can be obtained using key-information of the m/n
fractional OT protocol [5].

The receiver’s key set-up procedure is the following.
The receiver’s public key is a vector (β1, β2, …, βn,W0, W1, …, Wm)∈Gn+m+1.
To compute it, the receiver B chooses at random a size m subset of

[n]={1,2,…,n} specifying an injective map π:[m]→[n], where π(1),…, π(m) are
the m chosen indices. Later he chooses elements xπ{1),…, xπ(m)∈Zn at random and

sets βπ(i)= Gb ix ∈)(π for i=1,…,m. This specifies m elements of β1, β2,…,βn, in
such a way that receiver B knows their discrete logarithms. The other n−m
elements have to be specified in such a way that B doesn’t know and cannot
compute their discrete logarithms. To compute these n−m elements, B first
compute elements W0, W1,…,Wm as follows.

The receiver B defines m+1 by m+1 matrix





















=

m
mmm

m

m

)(
1

)(
0

)(

)1(
1

)1(
0

)1(

0
1
0

0
0

πππ

πππ

ααα

ααα
ααα







A .

This is Vandermonde matrix over the field Zq. It is invertible. B computes its
inverse





















== −

nmmm

m

m

,1,0,

,11,10,1

,01,00,0

1

βββ

βββ
βββ







AB .

B now sets

.

,

,

1,0,

1,10,1

1,00,0

)(

)(1

)(0

mm
i

m
im

i
m
i

i
m
i

UW

UW

UW

β
π

β

β
π

β

β
π

β

β

β

β

Π⋅=

Π⋅=

Π⋅=



Finally, B specifies the remaining elements of the public key:

j
i

j
m
ji W αβ 0=Π=

for all i∈[m] that are not in the range of π.

Effective Oblivious Transfer Using a Probabilistic Encryption 141

The verification procedure performed by the sender A or the trusted center T is
the following:

1) check that the public key consists of m+n+1 elements of G;
2) for all i=1,…,n check the predicates

;0 j
m
j WU =Π=

j
i

j
m
ji W αβ 0=Π= .

The second round phase of the m-out-of-n OT protocol and the communication
phase of the m-out-of-n NIOT protocol are the following:

A chooses at random n distinct numbers 0<y1, y2,…,yn<q, and sends to B two n-
tuples of group G elements

(c1,c2,…,cn−1) = (nyyy bbb ,...,, 21)

and

(α1,α2,…,αn)=(ny
nn

yy mmm βββ ,...,, 21
2211).

This information corresponds to n ElGamal cryptograms

(ii y
ii

y mb β,), i=1,…,n.

For i =1,…,n −1, B calculates

=== −−− iiiiii xyy
ii

xy
i

x
ii bmbc)()()(

)()()()()(
πππ

πππππ βαα

.)()()()(
)()(

i
ii

ji
y
i

y
ii mmm ===

−
ππππ

ππ ββ

Note that the randomly selected numbers y1, y2 , …, yn could be the same and
equal to the number y: y1 =y2 =…=yn =y.

Claim 4.1. The multiple reuse of randomizer in the m-out-of-n OT and the m-out-
of-n NIOT protocols is safe.

Proof. Let the randomizers be the same: y1 =y2 =…=yn =y. Note that knowing of

yb and ,i
xib β= i is not in the range of π, is not sufficient to calculate yxy

i
ib=β

since in this case solving of the Diffie ─ Hellman or discrete logarithm problems
is required. Moreover, the additional knowledge of all messages mπ(i) does not
allow to calculate mi, since different secret keys xπ(i) and xi of ElGamal
cryptosystem have been used for the calculation of βπ(i) and βi. So randomizer
reuse in separate performances as of the m-out-of-n OT protocol and the m-out-of-
n NIOT protocols is safe for the sender: A can be sure that only m messages have
been received. At the same time the recipient, keeping (x1, x2, …, xm−1, xm) and π

142 A. Frolov

secret, still convinced that A cannot distinguish which of n elements are the
elements βπ(I,). i=1, …, m. This completes the proof.

It follows that the second round phase of the m-out-of-n OT protocol as well as
the communication phase of the m-out-of-n NIOT protocol can be simplified as
follows:

A chooses at random the number 0<y<q, calculates and sends to B element
c= by and n-tuple of group G elements

(α1,α2,…,αn)=(y
nn

yy mmm βββ ,...,, 2211).

This information corresponds to n ElGamal cryptograms

(y
ii

y mb β,), i=1,…,n.

For i =1,…, n−1, B calculates

=== −−− iii yxy
ii

yx
i

x
i bmbc)()()()(ππππ βαα

.)()()()(iji

y
i

y
ii mmm === −

ππππ ββ

Corollary 4.1. The effectiveness of the second round phase of the m-out-of-n EOT
and of the communication phase of the m-out-of-n ENIOT protocols are estimated
as following:

ρm-out-of-n EOT =ρm-out-of- n ENIOT=(2n/(n+1), and ρm-out-of-n SUENIOT=2.

The following question remains open: let B4.1 be breaking algorithm for
computing of mi, i is not in the range of π under the conditions when B knows

elements xπ(i),)()()(
y

iim ππ β , βπ(i)=
)(ix

b π for i=1,..., m, c= yb , and U. Is it

possible to solve Diffie − Hellman problem using this algorithm?
Remark that the simplest variant of generalized OT protocol can be organized

using the logic of m-out-of-n OT protocol. This special GOT protocol is the at-
most-m-out-of-n OT protocol that allows sending n messages from which the
receiver could get at most m. This protocol can be implemented as the m-out-of-
m+n OT protocol if transferred m messages mn+1,…,mn+m are randomly chosen
group G elements. Receiver obtains m out of m+n messages including m’
informative messages and m−m’ of these auxiliary codes which could be returned
to sender on the level of commercial relations.

For these protocol, ρat-most-m-out-of-n EOT=ρat-most-m-out-of-n ENIOT =2(n+m) /(n+m+1),
ρat-most-m-out-of-n SUENIOT =2.

5 The Effective GOT Protocols

In this section, we recall the GOT protocol introduced in [12] to show how one
can improve its effectiveness implementing m-out of-n EOT protocols. Let U be

Effective Oblivious Transfer Using a Probabilistic Encryption 143

the collection of messages Mi embedded in the field F, |U|=n, and A be the
monotone decreasing collection of subsets of the set U, that B is allowed to
retrieve. The collection A is represented by the collection A0 of maximal elements
of A. Without loss of generality one can assume that collection A0 consists of the
subsets of the same cardinality m, m<n.

Let Γ be monotone increasing closure of A0

Γ={C⊆U:∃B∈ A0, B⊆C },

and Σ be a secret sharing scheme realizing Γ. Let s ∈F be a secret random value
selected by the party A and let si be the corresponding share of Mi. The sender A
and the receiver B engage in m-out-of-n OT protocol for the following set of pairs
of values:

W={<Mi+xi, si >: i=1,…,n}.

Here, xi∈F, i=1,…,n are random and independent field elements selected by A.
Getting the set of k pairs

< iii sxM
jj
,+ >, j=1,…,k,

where {
kii MM ,,

1
 } ∈ A0; party B recover the secret s and sends it to the sender

A. If this value is correct, A sends to B the complete set of random shifts,
{x1,..., xn}. Then using

kj ii xx ,..., and
kk iiii xMxM ++,,

11
the receiver B can

calculate {
kii MM ,,

1
 }. Implementing m-out-of-n EOT protocol one can

improve the effectiveness of considered GOT protocol.
As we can see, interactive GOT protocol involves four phases: the First round

phase of receiver’s public key set-upping and its verifiable transmission to the
sender; the Second round phase of oblivious transmission m of n messages from
the sender to the receiver; the Third round phase of secret s recovering and
transmitting to the sender, the Fourth round phase of secret verifying and sending
of random and independent field elements to the receiver for recovering of m
allowed messages.
Corollary 5.1. The effectiveness of the second round phase of EGOT protocol is
estimated as following: ρ EGOT =2n/(n+1).

6 The Elliptic Curve EOT and NIEOT Protocols

In this section, we describe protocols defined in additive group with infeasible
discrete logarithm and Diffie−Hellman problems. These groups can be obtained as
subgroups of Koblitz’s curves [15].

Global set-up phase. Take the non-supersingular elliptic curve

EC:Y2+XY= X3+X2+1

144 A. Frolov

over the field GF(2163) in the polynomial basis

λ162 ,…, λ2, λ, 1

generated by the root λ of irreducible polynomial

X 163+X 7+ X 6+X3+1.

The order of the elliptic curve group equals

N=11692013098647223345629483507196896696658237148126=
2×5846006549323611672814741753598448348329118574063.

The point

P=(1f0c047bba3cc88cc681c3fa2ae92612b01d563ba,
527e27fbc1b349f822f52352039e0613ce54ec26c)

is the point of order N. Hence the order of point

Q=2P=
=(2b0bc3a5c0e9fa0d3f9f4d897169f986d22dbf6fc,

32e817608e3ab30c2559ac3c8d0ef606522ae0e86)

is a prime number

q=5846006549323611672814741753598448348329118574063.

So we can choose the additive group <Q> of large prime order q with the
generator Q.

Let the element U, U∈<Q> be the elliptic curve point with unknown for anyone
discrete logs.

Terminating the Global set-up phase, we let α0=1∈Zq, and fix n distinct
elements α1,…, αn of Zq\{α0}. For example, α1=2, α3=3,…, αn =n+1. (We assume
that n<q−1). All these elements are public.

The receiver’s key set-up procedure is the following.
The receiver’s public key is a vector (β1,β2,…,βn,W0,W1,…,

Wm)∈EC(GF(2163))n+m+1. To compute it, the receiver B chooses at random a size
m subset of [n]={1,2,…,n} specifying an injective map π:[m]→[n], where π(1),…,
π(m) are the m chosen indices. Later B chooses elements xπ{1},…, xπ{m}∈Zn at
random and sets βπ{i}= GQx i ∈)(π for i=1,…,m. This specifies m elements out of

the β1, β2,…, βn in such a way that the receiver B knows their discrete logarithms.
The other n−m elements have to be specified in such a way that B doesn’t know,
and can’t compute their discrete logs. To compute these n−m elements, B first
computes elements W0, W0, W1,…, Wm as follows: he defines m+1 by m+1
Vandermonde matrix A and computes its inverse B.

Effective Oblivious Transfer Using a Probabilistic Encryption 145

Then B sets

+=

+=

+=

m
i iimmm

m
i ii

m
i ii

UW

UW

UW

)(,0,

)(,10,11

)(,00,00

,

,

π

π

π

βββ

βββ

βββ



Finally, B specifies the remaining elements of the public key:

= =
m
j j

j
ii W0αβ

for all i∈[m] that are not in the range of π.

The verification procedure performed by the sender A or the trusted center T is
the following.

1) Check that public key consists of m+n+1 elements of G=<Q>.
2) Check the predicates

;0= =
m
j jWU

= =
m
j j

j
ii W1αβ for all i=1,…,n.

Suppose that all messages mi, i=1,…, n are embedded into the points Mi (using for
example algorithms from [16]). The second round phase of the m-out-of-n OT
protocol as well as the communication phase of the m-out-of-n NIOT protocol can
be performed as follows:

A chooses at random the number 0<y<q, calculates and sends to B element c=
yQ and n-tuple of group G elements

(α1,α2,…,αn)=(nn yMyMyM βββ +++ ,...,, 2211).

This information corresponds to n ElGamal cryptograms

(
ii yMyQ β+,), i=1,…, n.

For i =1,…, m, B calculates

=−+=−=− QyxyMQyxcx iiiiii i)()()()(ππππ βαα

.)()()()(ijiiii MMyyM ==−+= ππππ ββ

146 A. Frolov

7 Conclusion Remarks

In this chapter, some novel effective 1-out-of-2, 1-out-of-n, n−1-out-of-n, and m-
out-of-n interactive and non-interactive oblivious transfer protocols (OT
protocols) using a probabilistic encryption have been presented. Their key
information is adapted from corresponding Bellare − Rivest fractional OT
protocols and the encryption is carried out on ElGamal. They can be realized both
in a multiplicative and in an additive group of prime order. It has been shown that
through the use of different encryption keys, this implementation can be simplified
using a single randomizer for all encryptions in separate session. The proposal
allows to increase by 2n/(n+1) times the information rate and to reduce by the
same factor the computational complexity of the second round phase of interactive
and of the communication phase of non-interactive m-out-of-n OT protocols
explored probabilistic encryption. To validate the proposed approach in the
development of application systems following [8], one can consider a
straightforward application of the proposed protocols in electronic commerce.
Using the protocol in section 6 as an example we can construct an online video
shop. In this example, party A is the Internet merchant who wants to sell videos
over the Internet, while the clients can get what they want without revealing which
ones they have selected. Let the collection of videos contains 1000 samples and
client want to get some of them obliviously. Then on the commutative phase of
EOT protocol 1001 exponentiations have to be involved by sender and the same
number of items (elliptic curve points) have to be sent from A to B, i.e. 326 326
bits, instead of 2000 exponentiations and 652000 bits in the case of implementing
of OT protocol. The propositions of this chapter have potential applications in all
cryptographic protocols based on the m-out-of-n oblivious transfer using
probabilistic encryption including generalized oblivious transfer, in particular in
electronic commerce. The most important is application of OT protocols for
multiparty computations [17, 18, 19], in particular for oblivious polynomial
evaluation [20, 21]. The following question remains open: are the problem of
deriving of the extra message by receiver participated in m-out-of-n OT protocol
and Diffie─Hellman problem polynomially equivalent?

Acknowledgement. This research has been supported by Russian Foundation of Basic
Research, project, 11-01-00792-a.

References

[1] Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81,
Aiken Computation Laboratory, Harvard University (1981)

[2] Blum, M.: How to exchange (secret) keys. Trans. Computer Systems 1, 175–193
(1983)

[3] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28, 637–647 (1985)

[4] ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory IT-31(4), 469–472 (1985)

Effective Oblivious Transfer Using a Probabilistic Encryption 147

[5] Bellare, M., Rivest, R.L.: Translucent cryptography – an alternative to key escrow,
and its implementation via fractional oblivious transfer. MIT/LCS Technical Report
683 (1990)

[6] Brasard, G., Crépeau, C., Robert, J.M.: Oblivious transfer and intersecting codes.
IEEE Transaction of Information Theory, Special Issue on Coding and
Complexity 42, 1769–1780 (1996)

[7] Mamontov, A.I., Frolov, A.B.: On one scheme for oblivious transfer of combinations
of messages. MPEI Bulletin 3, 113–119 (2005) (in Russian)

[8] Mu, Y., Zhang, J., Varadharajan, V.: m out of n Oblivious Transfer. In: Batten, L.M.,
Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 395–405. Springer, Heidelberg
(2002)

[9] Nyberg, K., Rueppel, R.A.: A new signature scheme based on the DSA giving
message recovery. In: 1st ACM Conference on Computer and Communications
Security, Fairfax, Virginia, pp. 58–61 (1993)

[10] Nyberg, K., Rueppel, R.A.: Message recovery for signature schemes based on the
discrete logarithm problem, pp. 182–193. Springer (1994)

[11] Ishai, Y., Kushelevitz, E.: Private simultaneous messages protocols with applications.
In: Proc. of ISTCS 1997, pp. 174–184. IEEE Computer Society (1997)

[12] Tassa, T.: Generalized oblivious transfer by secret sharing. Designs, Codes and
Cryptography 58, 1:11–1:21 (2011)

[13] Koblith, N.: A Course in number theory and cryptography. Springer, New York
(1994)

[14] Salomaa, A.: Public-key cryptography. Springer, New York (1990)
[15] Koblitz, N.: Constructing Elliptic Curve Cryptosystems in Characteristic 2. In:

Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 156–167.
Springer, Heidelberg (1991)

[16] Rosing, M.: Implementing elliptic curve cryptography. Manning Publications Co.,
Greenwich (1998)

[17] Yao, A.C.: Protocols for secure computation. In: Proc. of IEEE Foundation of
Computer Science (FOCS), pp. 160–164 (1982)

[18] Goldreich, O., Vainish, R.: How to Solve Any Protocol Probleman Efficiency
Improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86.
Springer, Heidelberg (1988)

[19] Killian, J.: Founding cryptography on oblivious transfer. In: Proc. of the 20th Annual
ACM Symposium on Theory of Computing (STOC), pp. 20–31 (1988)

[20] Noar, M., Pinkas, B.: Oblivious polynomial evaluation. In: Proc. of the 31st Annual
ACM Symposium on Theory of Computing (STOC), pp. 245–254 (1999)

[21] Noar, M., Pinkas, B.: Computationally secure oblivious transfer. Journal of
Cryptology 18, 1–35 (2005)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 149–164.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Gap-and-IMECA-Based Assessment of I&C
Systems Cyber Security

Vyacheslav Kharchenko, Anton Andrashov, Vladimir Sklyar,
Andriy Kovalenko, and Olexandr Siora

Abstract. This chapter presents an approach to cyber security assessment, which
is based on Gap Analysis (GA) and Intrusion Modes and Effects Criticality Analy-
sis (IMECA) techniques, applicable to complex Instrumentation and Control
(I&C) systems, including safety-critical FPGA-based I&C systems. Elements of
the GA-and-IMECA procedure of assessment are proposed. As an example, the
proposed approach and technique are considered in the context of assessing the
cyber security properties of FPGA-based I&C systems, taking into account vulne-
rabilities of products and discrepancies of appropriate processes.

1 Introduction

1.1 Motivation

I&C systems are complex systems that consist of both hardware and software
components, which continuously interact with each other in order to perform their
intended functions. One of the development and operation problems of modern
I&C systems for critical application is the reliable assessment and assurance of the
two main system attributes, namely safety and cyber security. The assessment of
cyber security, which also influences the safety of I&C systems and other

Vyacheslav Kharchenko
National Aerospace University "KhAI", Ukraine, 61070, Kharkov, 17, Chkalov str.
e-mail: v.kharchenko@khai.edu

Andriy Kovalenko · Vyacheslav Kharchenko
Centre for Safety Infrastructure-Oriented Research and Analysis, Ukraine, 61085, Kharkov,
37, Astronomicheskaya str.
e-mail: a.kovalenko@csis.org.ua

Anton Andrashov · Vladimir Sklyar · Olexandr Siora
Research and Production Corporation "Radiy", Ukraine, 25006, Kirovograd, 29, Geroyev
Stalingrada str.
e-mail: {a.andrashov,v.sklyar,marketing}@radiy.com

150 V. Kharchenko et al.

controlled applications, is a very important, complicated, and challenging prob-
lem. During the assessment, it is necessary to take into account a set of various
features and factors, their interrelations and interactions. Modern realities require
improving I&C systems security, both in terms of requirements and their imple-
mentation. Moreover, assurance of cyber security for critical I&C systems is a re-
quirement of national and international regulatory documents, as well as actual
practice in safety engineering [1].

The Field Programmable Gate Arrays (FPGA) technology is now being widely
used worldwide in process industries, and increasingly in I&C systems for various
safety and security critical domains, such as Nuclear Power Plants (NPPs), on-
board computer-based systems, electronic medical systems, etc. [2,3]. The appli-
cation of FPGA technology allows developers to implement the required functions
in a convenient and reliable way.

There are several challenging problems in the area of cyber security assurance
for complex FPGA-based I&C systems, including the following: consideration of
all possible vulnerabilities that can appear in the final product due to process
discrepancies, which were present at earlier stages of the product life cycle, priori-
tization of such vulnerabilities according to their criticality and severity, determi-
nation of both sufficient and cost-effective countermeasures either to eliminate the
identified (or potential) vulnerabilities or to make the vulnerabilities difficult to
exploit by an adversary. In our opinion, the accurate evaluation of the actual level
of the vulnerabilities’ criticality and severity (and security of the system in whole)
is one of the main challenges. Inaccurate estimation can cause additional efforts,
costs and may present undesirable level of risk. In the framework of this chapter,
I&C safety is considered as an attribute of high importance. Security is an
attribute, which affects safety [4].

One of the possible ways to consider all possible security vulnerabilities for
complex I&C systems is using a process-product approach. Such an approach re-
quires performance assessments not only for products (components of the I&C
system received at different life cycle stages), but for all the processes within the
product life cycle. Application of process-product approach is inevitable in case of
FPGA-based I&C systems, due to FPGA’s dual nature: it consists of both hard-
ware and software, with its inherent complexity. Such a process-product approach
should also be considered in FPGA-specific regulatory documents that would ad-
dress issues such as system safety assessment, design life cycle, verification and
validation, configuration management, documentation requirements, etc. in order
to identify all possible discrepancies. Each discrepancy can potentially lead to the
introduction of security vulnerabilities (or breaches) into the final product, during
the implementation of life cycle processes.

1.2 Work Related Analysis

Authors in [5] describe security-related gaps, unique to commercial embedded
system design only. Importance and uniqueness of the embedded security chal-
lenges, an enumeration of security requirements, concepts, and design challenges
are presented. Though, the paper is limited to security processing requirements

Gap-and-IMECA-Based Assessment of I&C Systems Cyber Security 151

and architecture, illustrated with a popular secure sockets layer protocol, and
processing workload example.

Paper [6] introduces the concepts of designing secure hardware in embedded
systems. The major classes of attacks and the mindset of potential attackers are
presented, as well as examples of previous hardware attacks are discussed. Typical
product development cycle and recommends ways to incorporate security, risk as-
sessment, and policies into the process are presented.

Failure Mode, Effects and Criticality Analysis (FMECA) is an extension of
standard formalized technique called Failure Mode and Effects Analysis initially
intended for the systems reliability analysis devoted to the specification of failure
modes, their sources, causes, criticality, and influence on system’s operability [7].
“Failure modes” means the ways, or modes, in which something within an I&C
system might fail. Failures are any errors or defects in a form of deviations from
normal operation, which can affect the user of I&C system, and can be potential
(that can happen in future) or actual (that have already happened). “Effects
analysis” refers to studying the consequences of those failures. In addition,
FMECA extends FMEA (Failure Modes and Effects Analysis) by including a
criticality analysis, which is used to chart the probability of failure modes against
the severity of their consequences.

In the FMEA-technique, all possible failures are prioritized according to conse-
quences severity, frequency and detectability. Such technique is used during
design stages in order to avoid failures in a system being developed. During
certain consequent stages it can also be used for the purpose of process control.
The overall purpose of FMEA-techniques is to take actions to eliminate or reduce
possible failures.

There are a lot of FMECA technique modifications related to various com-
ponents, including software (SFMECA), to various levels of I&C hierarchy
(HFMECA), to various processes, including design (DFMECA) and others
[8,9]. In general cases, Concept and Event Modes and Effect Criticality
Analysis may be considered. These modifications are not used to assess I&C
security.

IMECA (Intrusion Modes and Effects Criticality Analysis) is a modification to
FMECA-technique that takes into account possible intrusions into the system [10].
During the assessment of I&C systems, IMECA can be used in addition to
standardized FMECA for safety-related domains, because each vulnerability can
become a failure in a case of intrusion into such systems [11,12].

The objectives of this chapter are to customize the IMECA-technique and to
develop an applicable approach to assessment the level of I&C systems cyber
security. The rest of the paper is structured as follows: Section 2 describes the
underlying concepts of the gap-and-IMECA-based approach, as well as its
application to assessment of safety-critical I&C systems. Section 3 provides a me-
thodological-level interpretation of the proposed approach in the context of cyber
security of FPGA-based I&C systems.

152 V. Kharchenko et al.

2 General Gap-and-IMECA-Based Approach to Assessment
of Safety-Critical I&C Systems

2.1 Conception of Gap-and-IMECA-Based Approach

Here, as one of possible solutions for I&C systems assessment problem, we pro-
pose an approach, which is based on IMECA technique.

One of the fundamental concepts behind the idea of the approach is the concept
of gap. Before providing a definition for gap, we propose the taxonomy of the
main notions used in the chapter. Such taxonomy covers the notions of process,
product, intrusion, discrepancy, gap, anomaly, vulnerability and attack (see
Fig. 1). We outlined clearly some important attributes of a process, product and in-
trusion, as well as their interrelations. Also, the proposed taxonomy allows tracing
a case of non-ideal process in product development along with possible
consequences of process implementation.

The main notions in Fig. 1 are process, product, and intrusion. Processes are be-
ing implemented through the development stages of I&C system life cycle model
in order to produce products. Also, products can be vulnerable to intrusions of var-
ious types that can affect the product. Results of implementation of the processes
(i.e., all the set of processes that led to the creation of the product) can have effects
on possible consequential changes in such processes. Each process comprises
activities, and, in a case of “non-ideal” process, some of them can contain
discrepancies.

So, now we can define gap as a set of discrepancies of any single process
(which can consist of a set of sub-processes) within the life cycle of I&C system
that can introduce some anomalies in a product and/or cannot reveal (and elimi-
nate) existing anomalies in a product. In particular, such anomalies can be caused
by imperfection of product specification (or even representation), implementation,
verification, and/or other non-compliances.

In terms of cyber security, some of the anomalies can be vulnerabilities of the
product. Vulnerabilities, in turn, can be exploited by an adversary during intrusion
into the product to implement an attack in order to introduce some unintended
functionality into the product.

Direct relation between vulnerabilities and unintended functionality in Fig. 1
denotes some possible situation, which is not covered by the scope of this
chapter; such a situation may occur in the presence of hardware Trojans within
the components of the product, and, hence, requires additional comprehensive
analysis.

Hence, we propose a process-based approach to GA, because “non-ideal”
processes, which contain discrepancies, can produce various problems in the
corresponding products, and the following statements are true:

1. Presence of gaps in Processj results in anomalies in Producti even if
Producti-1 is “ideal”.

Gap-and-IMECA-Based Assessment of I&C Systems Cyber Security 153

Fig. 1 A taxonomy of used notions

2. Presence of anomalies within Producti-1 can be eliminated by “ideal”
Processj in many cases. This may be true in case of verification and validation
processes, however, it does not apply to design processes. For example, anomaly
in the technical specification is not eliminated by an “ideal” direct translation
process (since it may not include verification).

154 V. Kharchenko et al.

As an illustrative example for the proposed definition of gap, let us consider a
development process within the I&C system life cycle model, where the input of
Processj is represented by Producti-1, and the output (result of process implemen-
tation) – is Producti (see Fig. 2). The transition from the previous product (i-1) to
next one (i) is accomplished by the implementation of a prescribed process (j) by
developers, using certain tools. This process can be represented as a set of sub-
processes that are implemented in serial and/or parallel ways, and each of such
sub-processes may contain problems (or discrepancies towards appropriate “ideal”
sub-process) due to various reasons caused by either the developer or the tool.
Therefore, the problems in sub-processes lead to problems in processes, which
are implemented in order to produce a new product and can result in product
anomalies.

Fig. 2 Development process in the I&C system life cycle model

The activities, required to implement the approach, comprise several
consequent steps intended for a comprehensive analysis and assessment of I&C
systems. They are depicted in Fig. 3.

The key idea of assessment is in the application of the process-product
approach. Therefore, the life cycle model of I&C systems should include detailed
representation of life cycle processes and appropriate products. Then, it is possible
to identify problems (or discrepancies) within the model, i.e. gaps. In general,
such gaps may reflect various aspects of the I&C system, depending on what
system properties are assessed (for example, safety and security).

Hence, depending on the I&C system aspects under assessment, each gap
should be represented in a form of a formal description; such formal description
should be made for a set of discrepancies identified within the gap. The IMECA

Gap-and-IMECA-Based Assessment of I&C Systems Cyber Security 155

technique is the most convenient, in our opinion, to perform such description: each
identified gap can be represented by a single local IMECA table and each discre-
pancy inside the gap can be represented by a single row in that local IMECA table.
In this way, complete traceability of life cycle processes, appropriate products and
inherent properties of corresponding discrepancies can be achieved. As a result,
the number of local IMECA tables would correspond to the number of identified
gaps, and the number of rows within each local IMECA table would correspond to
the number of identified discrepancies within the appropriate gap (see an example
in subsection 3.2).

Fig. 3 The principal stages of I&C system assessment

After completing the appropriate columns, for example on the basis of expert
assessment, for all local IMECA tables, each gap being represented by a set of
discrepancies with appropriate numerical values. Data within each row of local
IMECA tables reveal, in explicit form, the weaknesses of the I&C system aspect
under assessment: for example, in terms of safety – system faults and failures, in
terms of security – intrusion probability and severity.

Further, in order to implement the approach, the following cases are possible,
depending on the scope of the assessment:

1. Assessment of the I&C system as a whole. Then, a set of particular IMECA
tables (which represent all the identified gaps by a set of discrepancies) should be

156 V. Kharchenko et al.

integrated into the single global IMECA table that reflects the whole system. In
this case, each row of the global IMECA table forms the basis for creating a global
criticality matrix.

2. Assessment of particular (sub-)systems within the I&C system. In this case,
it is possible to create an appropriate set of local criticality matrixes that corres-
pond to certain (sub-)systems, based on a set of local IMECA tables.

Integration of local criticality matrixes into a global one is carried out in
accordance with the following rule:


n

k

L
yz

G
yz

kee
1=

= , (1)

where Ge is an element of the global criticality matrix, kLe is the corresponding
element of the k-th local criticality matrix, and n is the total number of local criti-
cality matrixes (equal to total number of gaps).

Moreover, the scales for the numerical values of a discrepancy (for example, its
probability and severity) for local criticality matrixes can be set to the same value
in order to eliminate the necessity of additional analysis during the creation of a
global criticality matrix.

In both cases, the highest risk of the selected assessment aspect corresponds to
the highest row in the criticality matrix. In a case of independent gaps and discre-
pancies, the total risk of R can be calculated using the following equation:


= =

=
n

i

m

j
ijijDpR

1 1

, (2)

where n is the total number of gaps, m is the total number of rows in the IMECA
table, p is the occurrence probability, and D is the corresponding damage.

Moreover, the criticality matrix can be extended to be K-dimensional (where
K>2) that allows us to consider, for example, the amount of time required to
implement the appropriate countermeasures for the assessed I&C system.

For example, during the assessment of security, the prioritization of vulnerabili-
ties identified on the basis of process-product approach, should be performed
according to their criticality and severity, representing their corresponding stages
in the cyber security assurance of the given I&C system. The main goal of this
step is to identify the most critical security problems within the given set. Prioriti-
zation may require the creation of a criticality matrix, where each vulnerability is
represented within single rows. In such cases, it is possible to manage the security
risks of the whole I&C system via changing the positions of the appropriate
rows within the matrix (the smallest row number in the matrix corresponds to the
smallest risk of occurrence).

During the performance of GA, the identification of discrepancies (and the cor-
responding vulnerabilities in case of security assessment), can be implemented via
separate detection/analysis of problems caused by human factors, techniques and
tools, taking into account the influence of the development environment.

Gap-and-IMECA-Based Assessment of I&C Systems Cyber Security 157

Then, after all identified vulnerabilities are prioritized, it is possible to assure
security of the I&C system by implementing of appropriate countermeasures.
Such countermeasures should be selected on the basis of their effectiveness (also,
in context of assured coverage), technical feasibility, and cost-effectiveness. But
there is an inevitable trade-off between a set of identified vulnerabilities and a
minimal number of appropriate countermeasures, which allows us to eliminate
vulnerabilities or to make them difficult to be exploited by an adversary. The
problem of choosing such appropriate countermeasures is an optimization problem
and is still challenging.

2.2 Example of Proposed Approach Application

As an illustrative example for the proposed approach, consider a typical
development process for a VHDL code, implemented by a developer (see
Fig 4a).

The input to the process is represented by a technical specification document
(containing the comprehensive description of the object being developed), and
the result is the VHDL code (development object). In such a case the possible
discrepancies can be caused by design faults, developer’s errors, and/or errors
in appropriate procedures intended for the developer. Moreover, during the
subsequent stages of the overall development process, existing problems in the
product can be either eliminated or multiplied. Then, it is possible to represent
the identified set of the process’ discrepancies (or single gap) in a form of
IMECA-based table, where each row corresponds to a discrepancy within the
process.

Such a complex gap can be eliminated, for example, via the implementation of
another development process (see Fig. 4b), which includes three entities: technical
specifications, an Event-B tool model (a form of technical specification represen-
tation in terms of a tool that is understandable to developer and can automatically
be translated into a VHDL code), and the VHDL code itself.

Transitions from previous entities to the next are accomplished by the execu-
tion of certain processes, namely: formal notations development process
(implemented by the developer, and consisting of translation of technical speci-
fications into a model, in terms of internal instructions of the Event-B tool,
allowing the developer to mathematically prove the correctness of the resulting
notation) and the translation process (implemented by special add-ons of the
Event-B tool, and consisting of generating the final VHDL code on the basis of
the derived model) [13].

Discrepancies in such processes can be caused by the applied tools only, since
the formal notations development process is followed by the model in Event-B
tool that is mathematically verifiable. Discrepancies of the translation process
(or discrepancies of its sub-processes) can be caused by the Event-B tool, for
example, in a case, when such tool is not fully tested or certified.

158 V. Kharchenko et al.

a

Technical
specification

VHDL
code

Formal notation
development process

Translation
process

Legend:

- document;

- code;

- process.

Event-B tool
model

IMECA table (2)

gap
(2)

b

Fig. 4 Development processes for VHDL code

In this way, it is possible to state that we can identify the only existing gap.
Moreover, such a gap can be eliminated if certified tools are applied. Thus, in the
case given in Equation (2), the risk factor R is reduced due to the reductions in the
values of parameters n (from 2 to 1), m, and pij.

3 Assessment of FPGA-Based I&C Systems Cyber Security

3.1 Life Cycle Model of FPGA-Based I&C System

Basis of modern critical I&C systems is usually formed by FPGA chips, which are
used in various hardware components. Vulnerabilities of FPGA technology can
unintentionally arise or can be introduced by an adversary during different stages
of FPGA chip life cycle. A model of FPGA-based I&C system life cycle is
depicted in Fig. 5, and includes:

Gap-and-IMECA-Based Assessment of I&C Systems Cyber Security 159

1) stages implemented by FPGA chip vendor:
– a stage of FPGA chip design (Stage 1);
– a stage of FPGA chip manufacturing (Stage 2)
– a stage of FPGA chip packaging and testing (Stage 3);
2) stages implemented by I&C system developer:
– a stage of FPGA electronic design (which describes I&C system’s logic)

development for integration into FPGA chip (Stage 4);
– a stage of FPGA electronic design implementation and testing (Stage 5);
3) a stage implemented by user of I&C system:
– a stage of operation of FPGA-based I&C system at intended location (Stage 6).
There are factors that can contribute to intended or unintended introduction of

vulnerabilities into FPGA-based I&C system during implementation of various
processes for the following life cycle stages:

– use of malicious tools (EDA tools or CAD tools) during either FPGA chip
designing by a vendor or during FPGA electronic design development by an I&C
system developer;

– use of compromised devices during integration of developed FPGA electronic
design into FPGA chip by an I&C system developer;

– use of IP-cores from third-party vendors during development of FPGA elec-
tronic design by an I&C system developer;

– the presence of adversaries (insiders) in development teams.
Some vendors of FPGA chips do not have own manufacturing capacity: in such

a case, after implementation of design processes for FPGA chip, that includes ap-
plication of appropriate tools, they place orders for chip manufacturing among ap-
propriate foundries. Such foundries can introduce additional vulnerabilities into
FPGA chips by stealing or modifying FPGA design. Moreover, supply chain of
manufactured FPGA chips to developer of I&C system is usually traceable and
can be audited that, however, does not reduce its importance from point of view of
cyber security assurance problem for FPGA-based I&C systems.

Most of life cycle stages of FPGA chip and FPGA-based I&C system are
implemented using software tools. Such tools are usually used, for example, dur-
ing design of printed circuit boards for FPGA chips, in development of FPGA
electronic designs, during simulations, etc. Hence, developers of tools for design
automation, in turn, can introduce new vulnerabilities into FPGA-based I&C
systems being developed.

Some vulnerabilities can be introduced into FPGA-based I&C systems by their
designers via using of IP-cores in FPGA electronic design. IP-core is completed
functional description intended for integration into FPGA electronic design, which
is being developed. IP-cores can be either in a form of modules for hardware
description languages or in a form of compiled netlists. IP-cores are used by de-
signers to save their resources and time. IP-cores can be produced by FPGA chip
vendor or third-party vendors, and, in order to assure cyber security of FPGA-
based I&C system, it is necessary to facilitate safe distribution and integration of
such IP-cores by designers of I&C systems.

160 V. Kharchenko et al.

Fig. 5 Life cycle model of FPGA-based I&C system

Gap-and-IMECA-Based Assessment of I&C Systems Cyber Security 161

3.2 Gap-and-IMECA-Based Assessment of FPGA-Based I&C
System

So, proposed gap-and-IMECA-based approach, as applied to cyber security
assessment, can be expressed in the following activities sequence:

Step 1. Identification of security gaps lists for all the components (or modules)
of I&C system, being assessed, during each life cycle stage. Such lists should in-
clude both process gaps (in terms of discrepancies) and product cyber security
gaps (in terms of vulnerabilities).

Step 2. Determination of an appropriate set of vulnerabilities for each identified
process gap, security gap and possible scenarios to exploit the vulnerabilities. So,
for each identified discrepancy or vulnerability, there should be created local
IMECA table that reflects: attack mode, attack nature, attack cause, occurrence
probability, effect severity, type of effects, and countermeasures.

Step 3. Performance of GA on the basis of IMECA-technique: each gap (identi-
fied during Step 1) being represented by one or several rows in a local IMECA
table, where the number of such rows corresponds to the number of appropriate
discrepancies or vulnerabilities identified during Step 2. GA should be performed
in order to reveal appropriate cyber security risks.

Step 4. Assessment of appropriate columns (occurrence probability and effect
severity) in each particular IMECA table, for example, on the basis of expert
evaluation. Then, each row of such a local IMECA table represents security weak-
nesses, which should be analyzed further (during Step 6) in context of the whole
I&C system.

Step 5. Analysis of cyber security risks of I&C system components during
different stages: each row in local IMECA tables forms the basis for creation of
security criticality matrix, which reveals the weaknesses of appropriate compo-
nents in a visual form. The highest cyber security risk corresponds to the highest
row in security criticality matrix.

In order to illustrate IMECA-based assessment, we present results for attacks
modes possible during operation and maintenance stage of FPGA-based I&C sys-
tem (see Table 1).

Criticality matrix is depicted in Fig. 6a. Each of the numbers inside the matrix
represents an appropriate row number of IMECA table. From cyber security as-
surance point of view, the possible way of risk reduction is in decreasing of at-
tacks’ occurrence probability, since related damage is constant. Fig. 6b represents
worst-case criticality diagonal for the matrix; acceptable values of risks are below
the diagonal. Cases of probability, decreasing for rows 2, 3, and 5 are denoted by
dotted lines with arrows: the problem is in decreasing of the probability by the de-
gree sufficient to move row of IMECA table below the criticality diagonal. Such
decreasing of the probability can be achieved, for example, by implementation of
certain process countermeasures.

162 V. Kharchenko et al.

Table 1 Results of IMECA for FPGA attacks

Row
num-
ber

Gap in
stage of

Attack
mode

Attack
nature

Attack cause Occur-
rence
proba-
bility

Effect
severi-
ty

Type of
effects

Countermeasures

1 Opera-
tion

Black
Box
Attack

Active Simple logic
of electronic
design

Very
low

Very
low

Reverse
engineer-
ing of logic
by adver-
sary

Complication of
electronic design
logic

2 Opera-
tion

Read-
back
Attack

Active Absence of
chip security
bit and/or
availability of
physical
access to chip
interface

Mod-
erate

High Obtaining
of secret
informa-
tion by ad-
versary

The use of security
bit.

Application of
physical security
controls

3 Opera-
tion

Clon-
ing
Attack

Active Storing of de-
coded confi-
guration

Mod-
erate

High Obtaining
of configu-
ration data
by adver-
sary

Checking of chip’s
internal ID before
powering up an
electronic design.

Encoding of confi-
guration file.

Storing of configu-
ration file within
FPGA chip
(requires internal
power source)

4 Opera-
tion

Physi-
cal
Attack

Active Absence of
monitoring of
parameters
(voltage, tem-
perature,
clock) of en-
vironment and
chip

Low Mod-
erate

Obtaining
of informa-
tion con-
cerning pa-
tented
algorithms
by adver-
sary

Decreasing memo-
ry retention effect.

Monitoring of pa-
rameters (voltage,
temperature, clock)
of environment and
chip

5 Opera-
tion

Side-
Chan-
nel
Attack

Active Correlation of
measurable
parameters
with its func-
tion

High High Leak of
undesirable
informa-
tion

Addition of random
noise in measurable
parameters (or
masking of informa-
tion by random
values).

Decrease of differ-
ence in power
consumption.

Changing of
electronic design
logic

Gap-and-IMECA-Based Assessment of I&C Systems Cyber Security 163

 a b

Fig. 6 Criticality matrixes

4 Conclusion

A problem of I&C systems assessment is still challenging due to the fact that such
systems consist of interconnected complex components with different functions
and different nature. The majority of modern I&C systems, including safety-
critical I&C systems, are being FPGA-based, hence, it is impossible to perform
their assessment without consideration of all the special features for all the tech-
nologies used. In this chapter we discussed some problems related to assessment
of various aspects of I&C systems, including FPGA-based systems.

To assure cyber security of modern complex I&C systems, as well as to de-
crease a probability of vulnerabilities exploitation and appearance of security
breaches, a cyber security assessment approach is proposed. This approach implies
identification of all possible discrepancies, on the basis of product and life cycle
processes, and their assessment via application of IMECA technique.

The proposed approach is based on both gap conception and IMECA technique.
Such an approach is applicable in assessment of various aspects of I&C systems,
since it considers process-product model to reveal all the process discrepancies
that can potentially result in product anomalies.

Application of the proposed approach and technique was illustrated by an ex-
ample of cyber security assessment for some FPGA-based I&C system. Gap-and-
IMECA-based technique was applied in development of a company standard in
Research and Production Corporation Radiy that is harmonized with international
standards. This standard is used during implementation of development and
verification activities for safety-critical I&C systems for nuclear power
plants [3].

Next steps of research and development activities may be connected with crea-
tion and implementation of tool-based support for the proposed approach, taking
into account results of qualitative and quantitative assessment.

164 V. Kharchenko et al.

References

[1] IEC 61508:2010, Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems (2010)

[2] NUREG/CR-7006, Review Guidelines for Field-Programmable Gate Arrays in
Nuclear Power Plant Safety Systems, U.S. Nuclear Regulatory Commission (February
2010)

[3] Kharchenko, V., Sklyar, V. (eds.): FPGA-based NPP Instrumentation and Control
Systems: Development and Safety Assessment, Research and Production Corporation
“Radiy”, National Aerospace University named after N.E. Zhukovsky “KhAI”, State
Scientific Technical Center on Nuclear and Radiation Safety, 188 p (2008)

[4] Kharchenko, V. (ed.): Critical Infrastructures Safety: Mathematical and Engineering
Methods of Analysis and Assurance, Department of Education and Science of
Ukraine, National aerospace university named after N. Zhukovsky “KhAI”, 641 p
(2011)

[5] Ravi, S., Raghunathan, A., Kocher, P.: Security in Embedded Systems: Design
Challenges. ACM Transactions on Embedded Computing Systems 3(3), 461–491
(2004)

[6] Grand, J.: Practical Secure Hardware Design for Embedded Systems. In: Proc. of the
2004 Embedded Systems Conference, San Francisco, California, March 29-April 1
(2004)

[7] IEC 812, Analysis Techniques for System Reliability – Procedure for Failure Modes
and Effects Analysis (FMEA). International Electrotechnical Commission, Geneva
(1985)

[8] Lutz, R., Helmer, G., Moseman, M., Statezni, D., Tockey, S.: Safety Analysis of
Requirements for a Product Family. In: Proc. 3rd Int’l Conf. on Requirements
Engineering (ICRE 1998), pp. 24–31 (1998)

[9] Elyasi Komari, I., Kharchenko, V., Babeshko, E., Gorbenko, A., Siora, A.: Extended
Dependability Analysis of Information and Control Systems by FME(C)A-technique:
Models. In: Procedures, Application, DepCoS – RELCOMEX 2009, pp. 25–32
(2009)

[10] Gorbenko, A., Kharchenko, V., Tarasyuk, O., Furmanov, A.: F(I)MEA-Technique of
Web Services Analysis and Dependability Ensuring. In: Butler, M., Jones, C.B.,
Romanovsky, A., Troubitsyna, E. (eds.) Rigorous Development of Complex
Fault-Tolerant Systems. LNCS, vol. 4157, pp. 153–167. Springer, Heidelberg (2006)

[11] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and
Taxonomy of De-pendable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing 1(1), 11–33 (2004)

[12] Babeshko, E., Kharchenko, V., Gorbenko, A.: Applying F(I)MEA-technique for
SCADA-based Industrial Control Systems Dependability Assessment and Ensuring.
In: DepCoS-RELCOMEX 2008, pp. 309–315 (2008), doi:10.1109/DepCoS-
RELCOMEX.2008.23

[13] Abrial, J.-R.: Modeling in Event-B, 612 p. Cambridge University Press (2010)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 165–178.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Approach to Methods of Network Services
Exploitation

Katarzyna Nowak and Jacek Mazurkiewicz

Abstract. The chapter is focused on the methods of network services exploita-
tion. The approach is based on two streams of data: dependability factors and the
features defined by the type of business service realized. The dependability
means the combination of the reliability and functional parameters of the net-
work. We try to analyze two types of sophisticated systems: discrete transport
systems and the computer networks. The proposed method is based on modeling
and simulating of the system behavior. This way it is possible to operate with
large and complex networks described by various - not only classic – distribu-
tions and set of parameters. The results are converted to the unified system
description and generic model. The model can be used as a source to create
different measures – also for the economic quality of the network systems.
The presented problem is practically essential for defining and organization of
network services exploitation.

1 Introduction

The contemporary network systems are created as very sophisticated products of
human idea characterized by the complex structure. On the other hand the systems
combine two types of resources: technical (engineering stuff) and information
(algorithms, processes and management procedures). The systems are human-
controlled and computer-aided devices. The reliability parameters of the system
resources are very screwed-up – so the exploitation analysis of contemporary
systems needs adequate models and calculation methods [24, 29].

During more than 60 years the reliability theory was altered from the reliability
of single and separated objects (elements) considered only two states ("efficient
work", failure) to the contemporary dependability of systems or even the

Katarzyna Nowak · Jacek Mazurkiewicz
Institute of Computer Engineering, Control and Robotics, Wroclaw University of
Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
e-mail: Katarzyna.M.Nowak@pwr.wroc.pl,
Jacek.Mazurkiewicz@pwr.wroc.pl

166 K. Nowak and J. Mazurkiewicz

dependability of service nets. The indicated development of the reliability theory
is the consequence of expanding the event sets taken into consideration for the
reliability models. The present system dependability theory considers not only
classical reliable events (failures or repairs) but tries to combine all types of the
faults generated by the system resources (hardware, algorithms, human-factor) and
the environmental features which may disturb the operable state (attacks – for ex-
ample). The main goal of the system exploitation analysis is to convert the discus-
sion focused on the reliability function of elements (or structures created by the
element sets) into the task performance or efficiency estimation. The tasks are
realised according to the system services [20, 21]. The classical models used for
reliability analysis are mainly based on Markov or Semi-Markov processes [2]
which are idealized, it is hard to reconcile them with practice and is insufficient in
general. We suggest the Monte Carlo simulation [30] for proper reliability and
functional parameters calculation. No restriction on the system structure and on a
kind of distribution is the main advantage of the method [31].

We call the approach as the functional-reliability models of network system
exploitation. The computer systems analysis is the root for our elaboration but we
believe it is useful for modelling of the wider spectrum of systems which realise
tasks based on fully or partially available resources. We think about a discrete
transport system or power management systems for example.

The computer and software equipment allows making the exploitation analysis
more sophisticated. The simulation technique is the real chance to operate with
large systems – where the number of elements is significant. The elements can be
described by different sets of features. We can observe – in parallel – large num-
ber of events in quite long time-periods. This way we can collect data sets to very
detailed presentation of the system life. Based on the data we are able to elaborate
the formal theoretical approach to the network system exploitation. [21, 30, 31] Of
course it is necessary to eliminate all these features which are very system-depend
and not enough generic.

2 Transportation Systems

2.1 Traffic Modeling

Modeling traffic flow for design, planning and management of transportation sys-
tems in urban and highway area has been addressed since the 1950s mostly by the
civil engineering community. The following definitions and concepts of traffic
simulation modeling can be found in works such as Gartner et al. [11]. Depending
on the level of detail in modeling the granularity of traffic flow, traffic models are
broadly divided into two categories: macroscopic and microscopic models. Ac-
cording to Gartner et al. [11], a macroscopic model describes the traffic flow as a
fluid process with aggregate variables, such as flow and density. The state of the
system is then simulated using analytical relationships between average variables
such as traffic density, traffic volume, and average speed. On the other hand, a
microscopic model reproduces interaction of punctual elements (vehicles, road
segments, intersections, etc) in the traffic network. Each vehicle in the system is

Approach to Methods of Network Services Exploitation 167

emulated according to its individual characteristics (length, speed, acceleration,
etc.). Traffic is then simulated, using processing logic and models describing ve-
hicle driving behavior, such as car-following and lane-changing models. Those
models reproduce driver-driver and driver-road interactions. Despite its great
accuracy level, for many years this highly detailed modeling was considered a
computationally intensive approach. Since the last twenty years, with the im-
provements in processing speed, this microscopic approach becomes more
attractive. In fact, Ben-Akiva et al. [3], Barcelo et al. [1] and Liu et al. [17] claim
that using microscopic approach is essential to track the real-time traffic state and
then, to define strategy to decrease congestion in urban transportation networks.
For the control of congestion, they explain that the models must accurately capture
the full dynamics of time dependant traffic phenomena and must also track ve-
hicles’ reactions when exposed to Intelligent Transportation Systems (ITS). From
the latter assertions, in order to control traffic congestion in internal transportation
networks it appears that the microscopic modeling will be more appropriate. A
common definition of congestion is the apparition of a delay above the minimum
travel time needed to traverse a transportation network. As stated in Taylor et al.
[25], this notion is context-specific; and complex because a delay may always
appear in dynamic transport system, but this delay must exceed a threshold value
in order to be considered.

2.2 Microscopic Analysis

Few works have considered the traffic behavior when studying outdoors vehicle-
based internal transport operational problems. In the surface mining environment,
pickup and delivery operations involve a fleet of trucks transporting materials
from excavation stations to dumping stations, through a designed shared road net-
work. At pickup stations, shovels are continuously digging during a shift accord-
ing to a pre-assigned mining production plan. Trucks are moving in a cyclical
manner between shovels (pickup stations), and dumping areas (delivery stations).
A truck cycle time is defined as the time spent by a truck to accomplish an af-
fected mission that consists of travelling to a specific shovel, being serviced by the
shovel and hauling material to a specific dumping area. Burt and Caccetta [6] state
that mine productivity is very sensitive to truck dispatching decisions which are
closely related to the truck cycle time. Thus several papers have studied and pro-
posed algorithms and software to resolve this problematic issue. In fact, this criti-
cal decision consists of finding, according to the real environment, to which best
shovel a truck must be affected. Such decision has to be generated continuously
during a shift, whenever a truck finished dumping at a delivery station. Despite the
several proposed dispatching software, recent articles by Krzyzanowska [16]
formally criticize the simplistic assumption behind those software which tend to
provide dispatching decisions with the objective to optimize a truck cycle times
previously calculated. Generally speaking, those software systems based the
optimisation process on the past period collected data of trucks cycle times and
assume that for the next period trucks will spend on average the same time to
accomplish missions. But in the reality of mining operation, the duration of truck

168 K. Nowak and J. Mazurkiewicz

travel time appears to be very sensitive to the variable traffic state and road condi-
tions. Burt and Caccetta [6] and Krzyzanowska [16], point out the unresolved
problematic of truck bunching and platoon formation in mining road network
which apparently induce lower productivity.

2.3 Commodity Movement

Similarly to material transportation in mining operation, several papers (Ioannou
[14], Vis [26]) have provided methods for improving container terminal complex
operations. In such applications, three types of handling operations are defined:
vessel operations, receiving/delivery operations and container handling and sto-
rage operations in the stack yards. As we are interested by internal transportation
systems, our review concerns the papers dealing with the container handling and
storage operations in the stack yards. Generally speaking, vessels bring inbound
containers to be picked up by internal trucks and distributed to the respective
stocks in the yard. Once discharged, vessels have to leave with on board outbound
containers which also are delivered by internal trucks from the storage yard. For
this purpose, trucks are moving through a terminal internal road network. In order
to decrease the vessel turnaround time, which is the most important performance
measure of container terminals, it is important to perform those operations as
quickly as possible. In fact according to [3], this movement of containers between
quay sides and storage yards appears to greatly affect the productivity of contai-
nership’s journey. Vis and Koster [26] gives an extended review of numerous re-
search papers, providing algorithms to solve this complex routing and scheduling
problem. They criticize the lack of consistency of the simplistic assumptions made
to solve the proposed models within the real-world highly stochastic environment.
The ignored traffic situation in the complex seaport internal transportation net-
work is strongly criticized in recent papers [4], [11]. For example, in [3], a travel
time of a container internal truck is modeled as a static mean time of travel, based
on the distance and the truck average speed. Duinkerken et al. [7], put a uniform
distribution between zero and 30% of the nominal travel time formulation, aiming
to assimilate the complexity of traffic. More accurate work to solve this issue is
the one provided recently by Liu, Chu and Recker [17]. They integrate a traffic
model to the internal service model and reported the effectiveness of this integra-
tion which allows analyzing the tractor traffic flow in a port container terminal.
Conscious about the critical problem of congestion in the road network inside a
terminal, a quantitative measure of congestion to be added as a controllable deci-
sion variable had been developed. For this purpose, they considered the road sys-
tem inside the terminal as a directed network and they measured flows on arcs in
units of trucks travelling per unit time. Those two last works appear as providing
the leader approach in term of consideration of congestion and traffic in container
terminals; however, their approach is ultimately macroscopic. As we have lately
discussed, even if this macroscopic approach allows analyzing the traffic behavior,
the highly detailed microscopic model is more efficient for an effective real-time
traffic monitoring and control.

Approach to Methods of Network Services Exploitation 169

2.4 Real System Description

The analyzed transportation system is a simplified case of the Polish Post. The
business service [27], [29], [31] provided the Polish Post is the delivery of mails.
The system consists of a set of nodes placed in different geographical locations.
We have the headquarter (HQ) located in the central part of Poland and two kinds
of nodes could be distinguished: central nodes (CN) and ordinary nodes (ON). The
single central node with the set of ordinary nodes corresponding with it creates the
sub-system.

There are bidirectional routes between nodes. Mails are distributed among or-
dinary nodes by trucks, whereas between central nodes by trucks, railway or by
plane. The mail distribution could be understood by tracing the delivery of some
mail from point A to point B. At first the mail is transported to the nearest ordinary
node A. Different mails are collected in ordinary nodes, packed in larger units
called containers and then transported by trucks scheduled according to manage-
ment architecture decision to the nearest central node. In central node containers
are repacked and delivered to appropriate (according to delivery address of each
mail) central node. In the second – closest to the destination place - central
node the mail is again repacked and delivered in a container to destination
ordinary node.

The headquarter collects all data about the actual situation in whole transporta-
tion system and makes the necessary decisions as the reaction for the temporary
needs. The headquarter is not in use in transportation action – if we think about the
loading, unloading processes, etc. The central nodes aggregate the data from the
single region of the country. And finally the ordinary nodes control the local situa-
tion to the end-user. The scale of necessary actions depends on the actual needs. In
the Polish Post there are 14 central nodes and more than 300 ordinary nodes.
There more than one million mails going through one central node within 24
hours. It gives a very large system to be modeled and simulated.

The process of any system modeling requires defining the level of details.
Increasing the system details causes the simulation becoming useless due to the
computational complexity and a large number of required parameter values to be
given.

2.5 Formal Model

The model can be described as follows [27]:

TTCMTIBSTMDTS ,,,,= (1)

where: CM – client model, BS – business service, TM – task model,
TI – technical and human infrastructure, TT – vehicles’ time-table.

Task Model (TM): We can discuss several kinds of a commodity transported in the
system. Single kind commodity is placed in a unified container, and containers are
transported by vehicles. The commodities are addressed and there are no other pa-
rameters describing them.

170 K. Nowak and J. Mazurkiewicz

Business Service (BS): It is a set of services based on business logic that can be
loaded and repeatedly used for concrete business handling process. Business
Service can be seen as a set of service components and tasks that are used to
provide service in accordance with business logic for this process. Each service
component in DTS consists of a task of delivering a container from a source node
to the destination one.

Technical Infrastructure (TI) consists of: Nodes, Routes, Vehicles, Maintenance
Crews.

Nodes: We have single central node in the each part of the sub-system and the set of
central nodes in the whole system. The central node is the destination of all com-
modities taken from other – ordinary nodes. The central node is also the global gene-
rator of commodities driven to the nodes of the system. The generation of containers
is described by Poisson process. In case of central node there are separate processes
for each ordinary node. Whereas, for ordinary nodes there is one process, since
commodities are transported from ordinary nodes to the central node or in other
direction. Ordinary nodes are described by intensity of container generation (routed
to central node) and central node is described be a table of intensities of containers
for each ordinary node. Moreover the length between each two nodes is given.

Vehicles: We assumed that all vehicles are of the same type and are described by
following functional and reliability parameters: mean speed of a journey, capacity
– number of containers which can be loaded, reliability function and time of ve-
hicle maintenance. Central node is the base place for vehicles. They start from the
central node and the central node is the destination of their travel. The temporary
state of each vehicle is characterized by following data: vehicle state, distance tra-
velled from the beginning of the route, capacity of the commodity. The vehicle
running to the end of the route is able to take different kinds of commodity (lo-
cated in unified containers, each container includes single-kind commodity). The
vehicle hauling a commodity is always fully loaded or taking the last part of the
commodity if it is less than its capacity.

Routes: Each route describes possible trip of vehicles. The set of routes we can
describe as series of nodes:

CNcandONvcvvcR in =∈= ,,...,, 1 (2)

Maintenance Crews: Maintenance crews are identical and indistinguishable. The
crews are not combined to any node, are not combined to any route, they operate in
the whole system and are described only by the number of them. The temporary state
of maintenance crew is characterized by: number of crews which are not involved
into maintenance procedures and queue of vehicle waiting for the maintenance.

Client Model (CM): The service realised by the clients of the transport system is
sending mails from a source node to a destination one. Client Model consist of a
set of clients (C). Each client is allocated in one of nodes of the transport system:

NoCallocation →: . (3)

Approach to Methods of Network Services Exploitation 171

A client allocated in an ordinary node is generating containers (since, we have
decided to monitor containers not separate mails during simulation) according to
the Poisson process with destination address set to ordinary nodes. In the central
node, there is a set of clients, one for each ordinary node. Each client generates
containers by a separate Poisson process and is described by intensity of container
generation:

+→ RCintensity : . (4)

The central node is the destination address for all containers generated in ordinary
nodes.

Time-Table (TT): Vehicles operate according to the time-table exactly as city bus-
es or intercity coaches. The Time-Table consists of a set of routes (sequence of
nodes starting and ending in the central node, times of approaching each node in
the route and the recommended size of a vehicle [28].

The number of used vehicles or the capacity of vehicles does not depend on tem-
porary situation described by number of transportation tasks or by the task amount
for example. It means that it is possible to realize the journey by completely empty
vehicle or the vehicle cannot load the available amount of commodity (the vehicle
is to small). Time-Table is a fixed element of the system in observable time hori-
zon, but it is possible to use different time-tables for different seasons or months
of the year. Each day a given time-table is realized, it means that at a time given
by the time table a vehicle, selected randomly from vehicles available in the cen-
tral node, starts from central node and is loaded with containers addressed to each
ordinary nodes included in a given route. This is done in a proportional way. Next,
after approaching given node (it takes some time according to vehicle speed - ran-
dom process and road length) and the vehicle is waiting in an input queue if there
is any other vehicle being loaded/unload at the same time. There is only one han-
dling point in each node. The time of loading/unloading vehicle is described by a
random distribution. The containers addressed to given node are unloaded and
empty space in the vehicle is filled by containers addressed to a central node. The
operation is repeated in each node on the route and finally the vehicle is approach-
ing the central node when is fully unloaded and after it is available for the next
route. The process of vehicle operation could be stopped at any moment due to a
failure (described by a random process). After the failure, the vehicle waits for a
maintenance crew (if there are no available due to repairing other vehicles), is
being repaired (random time) and after it continues its journey [29].

3 Complex Information Systems

Few years from now desktop applications were the most popular and used, but
with increasing population of the Internet and with growing possibilities of porta-
bility of applications, many systems become an online services. Trends related

172 K. Nowak and J. Mazurkiewicz

with that fact (i.e. cloud computing [10], service oriented architecture [18]) be-
came a standard in some online services (i.e. document exchange, software devel-
opment and code refactoring, online banking, tax-payment systems). Hence need
for those systems are still growing more and more complex and high-tech technol-
ogy is required. One thing was not change during the time – user needs. Com-
plexity of the system resulted in defining some of the Information System as a
Complex Information System (CIS) – systems with extensive infrastructure aimed
to satisfy user needs in case of a service. To meet these needs, Information System
should be created in as an optimal technical infrastructure that (with combination
of business point of view) will provide an appropriate level of the system goals.
Taking these aspects into consideration we focus on service and user requirements
– functional and dependability. Since the client expects from the system that it will
provide some service in an infrastructure located on a provider side and with a
suitable configuration, therefore user expect to receive a solution for the task that
was send to the system as a request. For this reasons, we can model CIS as a
4-tuple:

>=< Z,HS,M,KCIS (5)

where: Z – tasks, HS – technical infrastructure (hardware, software, links),
K – chronicle of the system (understood as time functions of the system),
M – clients.

As mentioned since we propose to analyze CIS systems on a basis of their
service, we can modify (5) and define Business Service (BS) as a set of business
logic, that can be loaded and repeatedly used for concrete business handling
process (i.e. online banking, flight booking, etc.).

>=< BS,HS,M,KZCISB , (6)

Taks (Z) are considered as an input data specified by the clients in case of business
service usage (i.e. selection of page and subpages related with various possibilities
and scenarios).

Business service (BS) can be seen as a set of Service Components (SC) and tasks
that are used to provide service in accordance with business logic for this process.
Each Service Component (SC) is a service located on defined host (server) that
determined service behavior, possibilities and requirements (i.e. authentication,
data base service, web service, etc.). Since service component is not a physical
unit, it can be locates on any machine, therefore one host can have more than one
service component.

Technical infrastructure (HS) is defined as a set of network devices and links built
to provide network service with respect to TCP/IP aspects. Each device is de-
scribed by unique ID and some parameters (i.e. host performance, software, opera-
tion system).

Chronicle of the system (K) is the time function on each level of abstraction.

Approach to Methods of Network Services Exploitation 173

Clients (M) consists of a set of users where each user is defined by its allocation
(host), number of users of a given profile (i.e. similar type of behavior), set of ac-
tivities (a sequence of task calls - name of task and a name of service component)
and inter-activity delay time.

Fig. 1 Business service oriented information system – levels of abstraction

4 Abstract Approach for Network Services

Taking into consideration that both systems described above providing a service in
a sense of user request accomplishment, we can note that we can speak about one
common approach. An approach of describing and analyzing network services as a
general network, but still in a sense of its proposes. In this method, the key point
of the view is the Task (T) given to the systems, its specification and its time.
Since results of task are conditioned by the scenario, choreography within a
service must be defined and known.

Moreover resources used to realize this choreography must be dependable. It is
worth to note that, on a one network of Technical Infrastructure (TI) more than one
choreography can be realized and more than one configuration of the service is possi-
ble (i.e. reconfiguration of the system is possible). Task is realized as an input to the
Business Service (BS), therefore its choreography is based on predefined service com-
ponents located in network nodes. As mentioned, specifying the task and its parame-
ters is a user role (M) and the time functions on each level of abstraction - Chronicle of
the System (K). Both systems DTS (1) and CIS (5) can be represented as a 4-tuple:

>=< BS,TI,M,KZANS , (7)

where: ANS – Abstract Network Services

174 K. Nowak and J. Mazurkiewicz

The unified description can guarantee the required level of abstraction for the
analysis we are going to provide (Fig. 1). For example the discussion at the field
of queue theory ought to be realized forgetting the technical details which are
useless. But if we try to transform the results into the economic matters the more
sophisticated features for each element of the system can be easily provided.

It requires only the proper definition of functions and their parameters. In
general the abstract approach is a tool to tune the level of network system
exploitation analysis.

5 Dependability Analysis for Network Services

Proposed abstract approach of mathematical model (7) for network services is
given (in section 4). This model is seen as a mathematical description of all the
system aspects easily transformed to some computer model for further analysis.
To gain results that are close to reality system should be described as precise as it
is possible and with respect of various parameters from the lowest to the highest
level of the system.

Therefore tree stage architecture concept is proposed:

1. Monitoring – finding and defining elements of the network (nodes, devices,
vehicles, routes, links), specifying its parameters/characteristics, faults and
failures tracing, etc.;

2. Modelling – describing elements (service components and resources) as an in-
put for analysis tools, representing collected data in a description language of
selected format for computer processing;

3. Analysis – processing of computer representation of the system, analysis and
visualization of its behaviour and inference based on the results.

Fig. 2 Method for data collecting and data processing – draft architecture

The presented architecture (Fig. 2) can be combined with several techniques
and methods, depending of a level of abstraction and analysis purposes. For this
reasons as a monitoring method, some know tools can be used (i.e. ping
command) or more advances concept can be adapted. For example, multi-agent

Approach to Methods of Network Services Exploitation 175

monitoring can be used [15, 21, 23]. Data gathered in this way can be collected as
one common format (text file, database, etc.).

Research prove that using standards as a basis of this representation is one of
the best techniques for system modelling [4, 21, 27]. Description languages pro-
posed as a standard in that matter seem to be suitable (i.e. WS-CDL [13], BPEL
[19]) and easily transformable to any analysis tool. Surely various analysis me-
thods can be used, i.e. formal analysis [8], chains [8] and network simulation [22].
Depending on results and their representation post-processing method can be cho-
sen: Matlab charts, table representations, etc.

The presented approach requires the event-driven simulation. Which is based
on a idea of event, which could is described by time of event occurring and type of
an event. The simulation is done by analyzing a queue of event (sorted by time of
event occurring) while updating the states of system elements according to rules
related to a proper type of event. Due to a presence of randomness in the system
model the analysis of it has to be done based on Monte-Carlo approach [9]. What
requires a large number of repeated simulations.

The processing of events is done in objects representing the network system
elements. The objects are working in parallel. The life cycle of each object con-
sists of waiting for an event directed to this object and then execution of tasks re-
quired to perform the event. These tasks includes the changes of internal state of
the object (for example when vehicle approaches the node it is unloaded, i.e. the
number of hauled containers decreases) and sometimes creating a new event (for
example the event vehicle starts from the node generates new event vehicle
reached the node – next node in the trip).

The random number generator is used to deal with random events, i.e. failures.
It is worth to notice that the current analyzed event not only generates a new event
but also could change time of some future events (i.e. time of approaching the
node is changed when failure happens before). The time of a new event is defined
by the sum of current time (moment of execution of the current event) and the du-
ration of a given task (for example vehicle repair). Only times of starting a given
route (event vehicle starts from the central node) are predefined (according to the
time table). Duration of all other tasks is defined by system elements states or are
given by random processes.

Moreover each object representing a node has additional process (working in
parallel) which is responsible for generating the amount of commodity. The life
cycle of this process is very simple: waiting a random time, generating a commod-
ity with a given destination address and storing a commodity in the store house
(implemented as a queue) of a given node.

The event-simulation program could be written in a general purpose program-
ming language (like C++), in a fast prototyping environment (like Matlab) or a
special purpose discrete-event simulation kernel. One of such kernels, is the
Scalable Simulation Framework (SSF) [28] which is a used for SSFNet [29][30]
computer network simulator. SSF is an object-oriented API - a collection of class
interfaces with prototype implementations. It is available in C++ and Java.
SSFAPI defines just five base classes: Entity, inChannel, outChannel, Process, and

176 K. Nowak and J. Mazurkiewicz

Event. The communication between entities and delivery of events is done by
channels (channel mappings connects entities).

As it was mentioned a presence of randomness in the system model, the Monte-
Carlo approach is used. The original SSF was not designed for this purpose so
some changes in SSF core were done to allow to restart the simulation from time
zero several times within one run of simulation program.

The statistical analysis of the system behavior requires a very large number of
simulation repetition, therefore the time performance of developed simulator is
very important.

6 Conclusions

We have presented a unified, abstract, formal model for modelling of network
systems exploitation problems. The approach has been created based on Discrete
Transport System (DTS) and Complex Information System (CIS). The proposed
approach allows performing various dependability analysis of the network
systems, for example:

• determine what will cause a ”local” change in the system,
• make experiments in case of increasing volume of commodity (contain-

ers, amount of bytes) per day incoming to system,
• identify weak point of the system by comparing few its configuration,
• better understand how the system behaves,
• foresee changes caused by human resource influence.

Based on the results of simulation it is possible to create different metrics to
analyse the system in case of reliability, functional and economic case.

The metric could be analysed as a function of different essential functional and
reliability parameters of network services system. Also the system could be
analyse in case of some critical situation (like for example a few day tie-up [30]).

The presented approach - based on two streams of data: dependability factors
and the features defined by the type of business service realized - makes a
starting point for practical tool for defining an organization of network systems
maintenance.

It is possible to operate with large and complex networks described by various -
not only classic – distributions and set of parameters. The model can be used
as a source to create different measures – also for the economic quality of the
network systems. The presented problem is practically essential for defining and
organization of network services exploitation.

Acknowledgment. Work reported in this paper was sponsored by a grant No. N N509
496238, (years: 2010-2013) from the Polish Ministry of Science and Higher Education.

Approach to Methods of Network Services Exploitation 177

References

[1] Barcelo, J., Codina, E., Casas, J., Ferrer, J.L., Garcia, D.: Microscopic Traffic
Simulation: a Tool for the Design, Analysis And Evaluation Of Intelligent Transport
Systems. Journal of Intelligent and Robotic Systems: Theory and Applications 41,
173–203 (2005)

[2] Barlow, R., Proschan, F.: Mathematical Theory of Reliability. Society for Industrial
and Applied Mathematics, Philadelphia (1996)

[3] Ben-Akiva, M., Cuneo, D., Hasan, M., Jha, M., Yang, Q.: Evaluation of Freeway
Control Using a Microscopic Simulation Laboratory. Transportation Research, Part C
(Emerging Technologies) 11C, 29–50 (2003)

[4] Birta, L., Arbez, G.: Modelling and Simulation: Exploring Dynamic System
Behaviour. Springer, London (2007)

[5] Bonabeau, E.: Agent-based modelling: methods and techniques for simulating human
systems. Presented at. Proc. Natl. Acad. Sci. (2002)

[6] Burt, C.N., Caccetta, L.: Match Factor for Heterogeneous Truck and Loader Fleets.
International Journal of Mining, Reclamation and Environment 21, 262–270 (2007)

[7] Duinkerken, M.B., Dekker, R., Kurstjens, S.T.G.L., Ottjes, J.A., Dellaert, N.P.:
Comparing Transportation Systems for Inter-Terminal Transport at the Maasvlakte
Container Terminals. OR Spectrum 28, 469–493 (2006)

[8] Duflos, S., Diallo, A.A., Le Grand, G.: An Overlay Simulator for Interdependent
Critical Information Infrastructures. In: Dependability of Computer Systems.
DepCoS-RELCOMEX 2007, pp. 27–34 (2007)

[9] Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer (1996)
[10] Gao, Y., Freeh, V.W., Madey, G.R.: Conceptual Framework for Agent-based Model-

ling and Simulation. In: Proceedings of NAACSOS Conference, Pittsburgh (2003)
[11] Gartner, N., Messer, C.J., Rathi, A.K.: Traffic Flow Theory and Characteristics. In:

Board, T.R. (ed.) University of Texas at Austin, Texas (1998)
[12] Gold, N., Knight, C., Mohan, A., Munro, M.: Understanding service-oriented

software. IEEE Software 21, 71–77 (2004)
[13] Hongli, Y., Xiangpeng, Z., Zongyan, Q., Geguang, P., Shuling, W.: A Formal Model

for Web Service Choreography Description Language (WS-CDL). In: Proc. of ICWS
2006. IEEE Computer Society (2006)

[14] Ioannou, P.A.: Intelligent Freight Transportation. Taylor and Francis Group, Carolina
(2008)

[15] Jennings, N.R.: On Agent-Based Software Engineering. In: Artificial Intelligence,
vol. 117, pp. 277–296. Elsevier Press (2000)

[16] Krzyzanowska, J.: The Impact of Mixed Fleet Hauling on Mining Operations at
Venetia Mine. Journal of The South African Institute of Mining and Metallurgy 107,
215–224 (2007)

[17] Liu, H., Chu, L., Recker, W.: Performance Evaluation of ITS Strategies Using
Microscopic Simulation. In: Proceedings of the 7th International IEEE Conference on
Intelligent Transportation Systems, pp. 255–270 (2004)

[18] Mascal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. In:
Winter Simulation Conference (2005)

[19] Mayer, P., Lubke, D.: Towards a BPEL Unit Testing Framework. In: International
Symposium on Software Testing and Analysis, pp. 33–42. ACM (2006)

178 K. Nowak and J. Mazurkiewicz

[20] Mellouli, S., Moulin, B., Mineau, G.W.: Laying Down the Foundations of an
Agent Modelling Methodology for Fault-Tolerant Multi-agent Systems. In: ESAW,
pp. 275–293 (2003)

[21] Michalska, K., Mazurkiewicz, J.: Functional and Dependability Approach to
Transport Services Using Modelling Language. In: Jędrzejowicz, P., Nguyen, N.T.,
Hoang, K. (eds.) ICCCI 2011, Part II. LNCS (LNAI), vol. 6923, pp. 180–190.
Springer, Heidelberg (2011)

[22] Nicol, D., Liu, J., Liljenstam, M., Guanhua, Y.: Simulation of Large Scale Networks
Using SSF. In: Proceedings of the 2003 Winter Simulation Conference, vol. 1, pp.
650–657 (2003)

[23] Nowak, K., Mazurkiewicz, J.: Multiagent Modeling and XML-Like Description of
Discrete Transport System. In: Kabashkin, I. (ed.) Transport and Telecommunication.
Transport and Telecommunication Institute, Riga, vol. 12(4), pp. 14–26 (2011)

[24] Sanso, B., Milot, L.: Performability of a Congested Urban-Transportation Network
when Accident Information is Available. Transportation Science 33(1), 10–21 (1999)

[25] Taylor, M.A.P., Woolley, J.E., Zito, R.: Integration of the Global Positioning System
and Geographical Information Systems for Traffic Congestion Studies. Transportation
Research, Part C (Emerging Technologies) 8C, 257–285 (2000)

[26] Vis, I.F.A.: Survey of Research in the Design and Control of Automated Guided
Vehicle Systems. European Journal of Operational Research 170, 677–709 (2006)

[27] Walkowiak, T., Mazurkiewicz, J.: Analysis of Critical Situations in Discrete
Transport Systems. In: Proceedings of International Conference on Dependability of
Computer Systems, Brunow, Poland, June 30-July 2, pp. 364–371. IEEE Computer
Society Press, Los Alamitos (2009)

[28] Walkowiak, T., Mazurkiewicz, J.: Availability of Discrete Transport System Simu-
lated by SSF Tool. In: Proceedings of International Conference on Dependability of
Computer Systems, Szklarska Poreba, Poland, pp. 430–437. IEEE Computer Society
Press, Los Alamitos (2008)

[29] Walkowiak, T., Mazurkiewicz, J.: Functional Availability Analysis of Discrete
Transport System Realized by SSF Simulator. In: Bubak, M., van Albada, G.D.,
Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 671–678.
Springer, Heidelberg (2008)

[30] Walkowiak, T., Mazurkiewicz, J.: Algorithmic Approach to Vehicle Dispatching in
Discrete Transport Systems. In: Sugier, J., et al. (eds.) Technical Approach to
Dependability, pp. 173–188. Oficyna Wydawnicza Politechniki Wroclawskiej,
Wroclaw (2010)

[31] Walkowiak, T., Mazurkiewicz, J.: Functional Availability Analysis of Discrete
Transport System Simulated by SSF Tool. International Journal of Critical Computer-
Based Systems 1(1-3), 255–266 (2010)

[32] Walkowiak, T., Mazurkiewicz, J.: Soft Computing Approach to Discrete Transport
System Management. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6114, pp. 675–682. Springer, Heidel-
berg (2010)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 179–193.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Pattern Based Support for Site Certification

Dariusz Rogowski and Przemysław Nowak

Abstract. The work presents a methodology for building development environ-
ments of secure and reliable IT products or systems according to the newest ap-
proach called Site Certification. The methodology is based on design patterns
worked out in the CCMODE project (Common Criteria compliant, Modular, Open
IT security Development Environment) carried out by the Institute of Innovative
Technologies EMAG. The design patterns help developers to write proper docu-
ments (evidences) according to the Site Certification requirements. This approach
allows to gain a certificate for a development environment. Next, the certificate
can also be used to diminish the costs of the product evaluation according to the
Common Criteria standard. The work shows by examples how to accomplish the
final document by using its pattern.

1 Introduction

The Common Criteria for Information Technology Security Evaluation (called for
short the Common Criteria – CC) is also known as the international standard
ISO/IEC 15408 [1–3]. The CC provides a set of requirements for security functio-
nality of IT products. It also provides assurance based upon an evaluation of the
IT product (called the TOE – Target of Evaluation) that is to be trusted. The eval-
uation results answer the question whether the IT product fulfills its security speci-
fication or not. Additionally, the standard can be used as a guide for developers,
evaluators and eventually consumers of products with security features. However,
the usage of this guide in its original shape is very complicated and difficult.
That is why the pattern based methodology was worked out in the CCMODE
project.

The methodology comprises design patterns for evidences that are needed for
the evaluation process of the IT product. The structure of the pattern is consistent
with the CC requirements. It comprises hints with definitions and guidelines taken
from the standard. The patterns are ready to use and they enable developers to
make necessary documentation of the IT product. More specific information about
the patterns can be found in the following publications [4–7].

Dariusz Rogowski · Przemysław Nowak
Institute of Innovative Technologies EMAG, 40-189 Katowice, Leopolda 31, Poland
e-mail: drogowski@emag.pl, pnowak@emag.pl

180 D. Rogowski and P. Nowak

IT products developed according to the CC requirements have their security
features well done and structured. This development process is very similar to
good engineering practices which are used in many development environments
(hardware or software). Next the product has to be assessed by an independent
evaluation institution. This institution must check not only the evidences made by
developers but also the development environment itself which we can call the site
audit.

The complete evaluation of the product has two steps: the TOE evaluation and
the audit of the site. Every time when a new product is developed it must be as-
sessed during this two-steps evaluation process. That makes the assessment more
expensive and time consuming.

Nowadays many of IT products are made in several development and manufac-
turing sites, located across the world. Developers may construct multiple TOEs,
each using a different set of these sites. In such cases, the time, cost and effort
needed for the evaluation are soaring. These obstacles could be overcame by reuse
of already assessed evidences of the sites. There is increasing demand coming
from developers to avoid unnecessary evaluation efforts.

That is why the Bundesamt für Sicherheit in der Informationstechnik (BSI) has
developed and validated a procedure in order to perform reusable evaluations of
sites-related aspects. The procedure is called the Site Certification and leads to a
TOE independent CC certificate [8]. This certificate confirms that a specific de-
velopment environment fulfils the CC requirements. These requirements concern
the life-cycle support of the products developed at the site. These certificates can
be reused in a TOE evaluation later on.

One of the key issues of the CCMODE project methodology is the ability to
support the process of implementation and management of development environ-
ments. The methodology comprises the survey which helps developers to find out
whether their sites fulfill the CC requirements or not. It shows what must be done
to provide basic procedural, physical and personnel security of the site. While
building the site, every step must be documented in a proper and consistent
manner for the needs of the later evaluation. The design patterns dedicated for the
development environment facilitate the process of site documentation.

There are standard patterns which regard such aspects of the site as: configura-
tion management, life-cycle definition, development security, delivery, flaw
remediation, tools and techniques. These patterns are fully consistent with the
assurance requirements of the CC standard. Next, the patterns are enhanced by
application notes to make them consistent with the Site Certification procedures.
This way the methodology comprises the set of means helping developers to build
development environments which can be certified later.

In the work we describe the structure of the most important pattern for site
security specification called the Site Security Target (SST) and the pattern for
configuration management within the site. We show how the patterns can be used
for preparing the final documentation for an exemplary development environment.
We also answer the question whether it is worth to build and certify development
environments according to the Site Certification approach.

Pattern Based Support for Site Certification 181

2 State of the Art

Researches on the Site Certification approach began in 2006 and they were coor-
dinated by BSI. BSI cooperated with such companies as ATSEC, TNO, Philips,
IBM and T-Systems. The review of works was based on materials which are
accessible on the website of the CC standard [9]; documents issued by BSI with
the Common Criteria Development Board (CCDB); guidelines and mandatory
documents which support the CC standard. Among these documents there are
templates for the single evaluation report and the Site Security Target (SST). We
also examined a few SSTs for already evaluated and certified sites which devel-
oped such types of products as smart cards and integrated circuits. The assessment
of achievements gained in the Site Certification domain was also possible by re-
viewing the results of several latest International Common Criteria Conferences
(ICCC).

2.1 Origin and Evolution of Site Certification Idea

The main source of the site certificate idea was a conviction that certification of a
development site can be a significant benefit for developers who develop multiple
products at one or more sites, particularly under the same procedures.

The results of researches made on the Site Certification approach were shown
for the first time at the 7th ICCC (Spain, 2006) [10]. BSI presented the main pro-
cedures of the Site Certification process and first results of the trial usage of this
process in real sites. BSI also described the structure of the SST document and
gave the basic guidelines for developers how to develop the SST. Additionally, a
definition of a site and its scope, basic procedures of certificates integration and
splicing of different sites were shown at the conference. The set of minimum and
optional security assurance requirements (SARs) from the ALC class was also
presented.

The first trial usage of the Site Certification was done in two types of develop-
ment environments: hardware and software [11]. The trial was conducted by BSI
which was supported by the following companies: IBM and ATSEC in the hard-
ware trial; Philips and T-Systems in the software trial. The trials results showed
the following benefits of the Site Certification process:

• avoiding duplication of ALC-related work between different evaluations;
• reducing evaluation and certification costs;
• separating and maintaining a certificate for a site from a product certificate;
• reusing site certificates among different evaluation laboratories and national

certification bodies.

The trials also proved that the Site Certification process was easily applicable and
worked well in both environments. That is why we can assume that the process
will be flexible enough to be applied in all kinds of development environments.
After a few similar trials leaded by the ISCI (Information Security Certificate

182 D. Rogowski and P. Nowak

Initiative) working group, the idea was transformed into a concrete Site
Certification supporting document guidance [8] which was elaborated by BSI.

2.2 First Certificate, Guidelines and Templates

In a short time the first trial site evaluation and certification process was per-
formed which was based on the CC supporting document guidance mentioned
above [8]. The process was sponsored by Eurosmart which is an international non-
profit association founded in 1995 and located in Brussels. Eurosmart represents
24 companies of the smart security industry for multi-sectors applications and in-
cludes: manufacturers of smart cards, semiconductors, terminals, equipment for
smart cards system integrators, application developers and issuers. In the process
there were involved parties connected with [12]:

• sites and developers – passport inlay manufacturer HID Global Erfurt; Infineon

and NXP – manufacturers of security integrated circuits;
• evaluator – T-Systems GEI GmbH – a BSI-accredited laboratory;
• certifier and sponsor for some templates and guidelines – BSI.

The main goals to achieve were performing a site evaluation and certification and
deriving a Site Security Target template. The SST template is to be a generic doc-
ument including application notes which would serve as the basis for further
SSTs. The trial paves the way for further Site Certifications by providing guidance
documentation for developers and templates for evaluators. The Site Certification
process was successfully completed in the first project and the following results
were accomplished:

• first certificate for the site HID Global GmbH in Erfurt, the site is a part of the

production flow for security integrated circuits; the SST document for the site
(only sanitized version available [13]);

• supplement [14] to the Site Certification process document [8] – it comprises:
hints for developers for proper documentation preparation; work units for eva-
luators (for aspects not covered in the Site Certification process manual); how
to deal with shortcomings (interpretation, corrections);

• Site Security Target template (its details are given in the next chapters of the
work) provided by Eurosmart and based on the Security IC Platform Protection
Profile [15];

• Evaluation Technical Report (ETR) for Site Certification guidance [16] – this
document describes how to write an ETR as part of the Site Certification
process;

• template for the single evaluation report of the assurance class AST (Site
Security Target evaluation) [17]. The AST class includes requirements used
to evaluation of the SST document and it is described in details in the Site
Certification process guide [8];

• template for the single evaluation report of the assurance class ALC for site
evaluations [18].

Pattern Based Support for Site Certification 183

In conclusion, the first usage of the Site Certification process in a real develop-
ment environment was successful. The trial worked out a set of templates docu-
ments for developers and evaluators. The cost and time reduction was reached on
both developers’ and evaluators’ side. The Site Certification was accepted by
CCRA (Common Criteria Recognition Arrangement) members [12] as a part of a
product evaluation according to the CC standard. Further, the process was con-
ducted in many other sites. However, the very first sites which used the process
were: a site of HID Global Ireland that assembles inlays and contactless smart
cards; a site of SMARTRAC that manufactures ePassports and eID cards. The cor-
responding SSTs [19], [20] were developed and unfolded on the BSI website [21].

In general, the SST template is intended to be used within different sites. How-
ever, this one forces the sites to be relevant to the life cycle described in the Secu-
rity IC Platform Protection Profile [15] on which the template is based. That is
why the usage of the template is dedicated mostly to smart cards development en-
vironments. That can be a bit of limitation for developers who want to use the
template in other development environments which manufacture different types of
IT products. That constraint is eliminated in an enhanced SST design pattern
which was worked out in the CCMODE project. The new patterns is not limited to
a specific development environment. It is more general and it comprises some fa-
cilitating features in a form of hints and data fields. Additionally, we developed a
set of patterns for evidences concerning requirements of the ALC class. The sub-
set of these requirements has to be declared as minimal site requirements in the
SST according to the Site Certification process. In the following chapters of this
work we show a structure of the patterns, the main features which help the devel-
opers to fill in the pattern in proper way. We also present selected parts of the final
documents which were prepared during the validation of the patterns. The valida-
tion was done within a development environment of gas sensors used in coal
mines. The site was established in a laboratory called SecLab EMAG [4].

3 Benefits of the Site Certification

As mentioned above, the source of motivation for developing the Site Certification
process was the necessity to significantly reduce time, money and effort during
products evaluation. As a result, the process enables to reuse the evidences materi-
al in an efficient manner. The evidences are based on the CC set of requirements
called ALC class. The ALC class (Life-cycle support) is an aspect of establishing
control in the TOE development process. This control helps to avoid vulnerabili-
ties in the TOE implementation. In this work the ALC class will be described later
with more details. Most of the development and manufacturing operations are ra-
ther independent of the products themselves. So the site evaluation results can be
reused many times in CC evaluation processes. These processes consider different
IT products that are developed by this site.

The Common Criteria requires that every time when a new product is devel-
oped it must be assessed during a two-steps evaluation process: the TOE evalua-
tion and the audit of the site. What is more, even though the new product is made
in the same site, this very site must be evaluated once again. The Site Certification

184 D. Rogowski and P. Nowak

approach allows to perform a single evaluation for the site. Apart from the site
audit, the Site Certification needs to prepare some documents (SST and ALC
evidences). So the question is “How much does it cost?”.

The results of the first trial usage of the Site Certification process confirmed its
benefits. The conclusions were presented at the 10th International Common Crite-
ria Conference (2009) [12] and bring the answer: “The costs for the Site Certifica-
tion process are about 2.5 times higher than the costs for a CC audit process for a
site”. Figures 1 and 2 depict benefits of the Site Certification. The unit of measure
on the Y axis is the cost for a standard CC audit process for one site. Figure 1
shows, that the Site Certification approach is more advantageous if three or more
products are developed in the same site.

Fig. 1 Initial costs of the Site Certification and Common Criteria processes [9]

However, every two years every product must be recertified, similarly to the site.
The re-audit of the site in the standard CC process costs as much as the re-audit of the
site in the Site Certification process. Figure 2 depicts the following re-certifications
which take place after each two-years period. For instance, after two years, two prod-
ucts developed in one site lead to the total number of four CC site audit processes. In
that case the Site Certification process is by 0.5 unit measure cheaper.

Fig. 2 Comparing the costs of the Site Certification and CC audit [9]

Pattern Based Support for Site Certification 185

The benefits of the Site Certification are rising in subsequent years. Reducing
the certification costs is important, but even more important is the fact that the cer-
tificate can be used many times during the evaluation of different products, and
this significantly speeds up the product certification process.

Figure 3 depicts that the number of the Site Certification processes has been
growing since 2009. At the same time the usage of issued certificates in standard
product evaluation and certification is more and more frequent [21]. This demon-
strates that the Site Certification process is so flexible and cost effective that it is
very often used by developers and evaluators.

Fig. 3 Number of issued site certificates and their usage in standard CC product evaluations

The CCMODE team members took into account the Site Certification approach
and they used its assumptions and requirements in the worked out methodology.
We reviewed the results of BSI research, available literature and chose the best so-
lutions to implement. The methodology comprises a set of patterns to be used by
developers during the preparation of evidences for the site evaluation. The next
chapter shows the results gained by BSI and co-workers and the main issues to be
solved.

4 CCMODE Project in the Site Certification Context

The main goal of the CCMODE project is to work out a methodology and tools
which can be used to build and manage development environments. In these envi-
ronments developers can design secure IT products according to the CC require-
ments. The core of the methodology is a set of design patterns. The patterns are
the basic tool to prepare evidence documentation needed in the evaluation

186 D. Rogowski and P. Nowak

processes of products security functionality. There are also many vulnerabilities in
development sites which can impact the final IT product. Thus it is also important
to implement security measures in development environments. These measures
can mitigate the risk of tampering the product security functionality during its de-
velopment phase. The measures also assure that procedures, processes and actions
used in the development environment are protected enough. That is why the de-
sign patterns for evidences documentation of the development environment were
additionally worked out. More about the results can be found on the CCMODE
website [22].

The most important evidence document is the Site Security Target for which
a pattern was worked out. The SST defines the scope of the certified site and de-
scribes how the site meets the SARs from the ALC class. Next we prepared the
patterns based on the ALC class in the way which considers assumptions and
requirements of the Site Certification approach. According to the CC, the ALC
class consists of seven families for which the following patterns were worked
out [3]:

• ALC_CMC (Configuration management capabilities) – these requirements en-

sure: that the TOE is correct and complete before it is sent to the consumer; that
no configuration items are missed during evaluation; that no unauthorized mod-
ification, addition, or deletion of TOE configuration items was done;

• ALC_CMS (Configuration management scope) – these requirements ensure
that all items to be included as configuration items were identified;

• ALC_DEL (Delivery) – the concern of this family is the secure transfer of
the finished TOE from the development environment into the responsibility of
the user;

• ALC_DVS (Development security) – these requirements ensure that physical,
procedural, personnel, and other security measures were implemented in the
development environment to protect the TOE and its parts;

• ALC_FLR (Flaw remediation) – requires identified security flaws to be tracked
and corrected by the developer;

• ALC_LCD (Life-cycle definition) – application of the life-cycle model pro-
vides necessary control over the development and maintenance of the TOE and
minimizes the danger of the TOE not meeting its security requirements;

• ALC_TAT (Tools and techniques) – the family includes requirements to pre-
vent ill-defined, inconsistent or incorrect development tools from being used to
develop the TOE.

The design patterns comprise application notes taken from the Site Certifica-
tion guide [8]. These notes describe some adaptations that have to be done to
the CC basic ALC class requirements. The adaptations allow to use the pat-
terns in a correct and consistent manner according to the Site Certification
procedures.

Pattern Based Support for Site Certification 187

5 Usage of the Design Patterns

In order to evaluate a site, first a Site Security Target (SST) must be written. The
SST defines the scope of the certified site and describes how the site meets the
SARs from the ALC class, in particular the aspects that are of interest when re-
using the site.

Next the evidences documents for ALC requirements must be written. For
every site a minimum set of requirements has to be fulfilled. One is the assump-
tion that at each site the developer uses a configuration management system that
uniquely identifies all configuration items handled by that site. According to the
Site Certification guide [8] the following components from the ALC class must be
fulfilled: ALC_CMC.3 and ALC_CMS.3. Another assumption is that in the de-
velopment environment it is necessary to use security measures to provide confi-
dentiality and integrity of the TOE design and implementation. This requirement
is described in component ALC_DVS.1. The developer must prepare documenta-
tion for all above mentioned requirements to begin the Site Certification process.

In the following chapters we describe the structure of the SST and
ALC_CMC.4 patterns. We chose parts of the final documents as examples of the
patterns validation results.

5.1 SST and ALC Patterns Contents

The Site Security Target pattern is one of the most important design patterns
worked out in the CCMODE project. All design patterns have similar structure.
They contain introductions with instructions how to fill in patterns, data fields that
must be completed and endnotes with tips.

The structure of the SST pattern is based on the requirements of the AST class
which is described in the Site Certification guide [8] (chapter 7 of this document).
The structure of the pattern is also based on the SST template prepared for the
smart security industry [15]. The AST class describes the content of the SST doc-
ument and defines work units for the evaluation of the resulting document. The Site
Security Target pattern consists of the following main sections (shown in Figure 4):

• SST Introduction – shows references of the SST and site, and describes the site

in more detail;
• Conformance claims – describes the version of the CC that is used, and SARs

which are in the scope of this site;
• Security problem definition – describes the threats and OSPs (Organisational

Security Policies) that must be countered and enforced by the site;
• Security objectives for the site – shows how the site will counter the threats and

enforce the OSPs;
• Extended components definition – if new SARs are needed, in this section new

components (not included in CC Part 3 [3]) may be defined;
• Security requirements – provides a translation of the security objectives into a

standardized language in the form of the SARs;
• Site summary specification – summarizes how the site implements the SARs.

188 D. Rogowski and P. Nowak

Fig. 4 The structure of the Site Security Target pattern

The structure of the Site ALC_CMC.4 pattern (Figure 5) is based on the
requirements of the ALC_CMC.4 component from CC Part 3 [3], guidelines
for the developer documentation [23], for evaluation reports [24], and the Site
Certification guide [8].

5.2 Why Are the Patterns Helpful?

The SST pattern, similarly to the rest of the design patterns, contains many facili-
ties for developers. Figure 6 shows an example of using the SST pattern. This is a
part of “Security problem definition” – one of the main chapters. We prepared an
introduction to the chapter, which can be used in any SST. The sections are
consistent with the requirements of the AST_SPD family. There are data fields in
square brackets that should be filled in according to endnotes. The endnote can be
composed of hints, examples and references to appropriate security assurance
requirements from CC part 3 [3] or site guide [8]. These data fields and footnotes
are very helpful for developers but they are also a prelude to developing
computer-aided application in the CCMODE project.

Pattern Based Support for Site Certification 189

Fig. 5 The structure of the ALC_CMC pattern

Fig. 6 Security problem definition section in the SST pattern

190 D. Rogowski and P. Nowak

Figure 7 shows tracing between threats and security objectives. We prepared
sets of threats, assets, subjects, organisational security policies, assumptions, secu-
rity objectives and connections between them. These sets support the developer in
choosing the appropriate security objectives.

Fig. 7 Tracing between threats and security objectives

The Common Criteria portal [9] provides for free an xml file with the CC
standard. This allowed us to prepare a set of security assurance requirements
(SARs). This collection helps to develop the next chapter of the SST “Security
requirements”.

The last chapter “Site summary specification” includes, among others, the evi-
dences summary. Figure 8 depicts a part of the table with the AST requirements
which are linked to other chapters and sections of the SST pattern. The require-
ments are also connected with work units – most granular level of evaluation
work. These links help developers to verify whether the final document comprises
all necessary information.

Fig. 8 Evidences summary chapter

Pattern Based Support for Site Certification 191

Summary

The work presents the results of researches concerning the Site Certification ap-
proach. The approach was worked out by BSI and cooperating companies mainly
coming from the smart cards industry. The developers of smart cards, integrated
circuits and similar types of products demanded solutions to diminish evaluation
and certification effort of their products. The evaluation costs and time are rising
due to the complex life-cycle of these products and development environments
made up of many sites located in different physical locations. This approach
enables to reuse once evaluated requirements many times in the products evalua-
tion process according to the Common Criteria standard.

In the CCMODE project, the methodology of the implementation and manage-
ment of development environments concerning the Site Certification approach
was developed [25]. The methodology is based on design patterns dedicated to
evidences documentation. The work presents how to prepare necessary documen-
tation for the development environment. The selected documents for the trial
laboratory SecLab EMAG were shown as examples. It is worth to notice that all
security measures and requirements described in the patterns should be first
implemented in the site. Below there are main steps of the methodology to follow:

• audit of the site – gives necessary information about security needs and condi-

tions of the site implementation;
• development of the Site Security Target which defines the logical and physical

scope of the site. It presents the security problem definition (SPD) to be solved
within the site. It determines minimal and optional security assurance require-
ments taken from the ALC class. Finally, the summary specification chapter
shows how to meet the SARs in the site;

• development of the evidences documentation for ALC requirements as they are
claimed in the SST;

• self evaluation of the prepared final evidences based on evidences summary
chapters, hints from the patterns and guidelines of the Common Evaluation
Methodology (CEM) [26];

• making decision to start the site evaluation and certification process;
• starting to use the certified site.

The work describes common properties of all patterns, their structure and hints
which concern the CC requirements supplemented by application notes of the Site
Certification process. The Security problem definition chapter of the SST pattern
was described. An example of tracing security objectives back to threats was also
presented. The tracing is a solution of a defined security problem within a site.
Next the structure of ALC_CMC.4 pattern was described. It concerns the usage of
configuration management system in the site.

We paid attention on evidences summary chapter introduced in all patterns.
This chapter enables simple verification of the content of the final document ac-
cording to the CC and Site Certification requirements. The usage of the design
patterns facilitates and speeds up development of the evidences. They have data

192 D. Rogowski and P. Nowak

fields which are the preparation for their future use within computer aided tools.
Thanks to built-in hints and guidelines, the patterns are also a kind of knowledge
base about the CC standard and Site Certification accessible in one place. The trial
usage of the patterns proved they are consistent with the CC standard and unders-
tandable for developers.

Eventually the documentation of the site can be passed to an independent eval-
uation and certification body. Then the site certificate can be reused many times
during the IT product evaluation process. This possibility leads to the main advan-
tage of the approach that reduces time and money needed in those evaluations.

References

[1] ISO/IEC 15408-1, v3.1, Information technology – Security techniques – Introduction
and general model (Common Criteria Part 1) (2009)

[2] ISO/IEC 15408-2, v3.1, Information technology – Security techniques – Security
functional requirements (Common Criteria Part 2) (2009)

[3] ISO/IEC 15408-3, v3.1, Information technology – Security techniques – Security as-
surance requirements (Common Criteria Part 3) (2009)

[4] Białas, A. (pod redakcją): Zastosowanie wzorców projektowych w konstruowaniu
zabezpieczeń informatycznych zgodnych ze standardem Common Criteria. Wydaw-
nictwo Instytutu Technik Innowacyjnych EMAG, sfinansowano ze środków UE
POIG 1.3.1, Katowice (English title: Application of design patterns in the develop-
ment of IT security compliant with Common Criteria) (2011)

[5] Białas, A.: Patterns Improving the Common Criteria Compliant IT Security Devel-
opment Process. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Wal-
kowiak, T. (eds.) Dependable Computer Systems. AISC, vol. 97, pp. 1–16. Springer,
Heidelberg (2011)

[6] Bialas, A.: Patterns-based development of IT security evaluation evidences. In: The
11th International Common Criteria Conference, Antalya (2010),
http://www.11iccc.org.tr/presentations.asp

[7] Białas, A.: Security-related design patterns for intelligent sensors requiring measura-
ble assurance. Electrical Review (Przegląd Elektrotechniczny) 85(R.85)(7), 92–99
(2009) ISSN 0033-2097

[8] CCDB, Supporting Document Guidance, Site Certification. Version 1.0 Revision 1,
CCDB-2007-11-001 (2007)

[9] The Common Criteria portal, http://www.commoncriteriaportal.org
(accessed January 2012)

[10] Sonnenberg, F.: Site Certification Process. In: 7th ICCC, Lanzarote, Spain (2006)
[11] Borch, T.: First Trial-Use-Results of the Site Certification Process. In: 7th ICCC,

Lanzarote, Spain (2006)
[12] Albertsen, H., Noller, J.: Good News & Guidelines. In: 10th ICCC, Tromso, Norway

(2009)
[13] BSI, Site Security Target Lite for the Inlay Production of HID Global GmbH in Er-

furt. Certification ID: BSI-DSZ-CC-S-0001, version 1.1 (2009)
[14] BSI, Guidance for Site Certification. Version 1.0 (2010)
[15] BSI, Security IC Platform Protection Profile. Version 1.0, BSI-PP-0035 (2007)

Pattern Based Support for Site Certification 193

[16] BSI, Details for the structure and content of the ETR for Site Certification, ver. 1.0
(2010)

[17] BSI, Single Evaluation Report of the Assurance Class AST (Site Security Target
evaluation). Version 1.0, 16th, BSI – Template_ETR-Part_AST_v1_0.doc (2010)

[18] BSI, Single Evaluation Report of the Assurance Class ALC (Life-Cycle Support).
Version 1.0, 16th, BSI – Template_ETR-Part_ALC_v1_0.doc (2010)

[19] Site Security Target Lite of HID Global Ireland Teoranta in Galway Ireland. Certifi-
cation ID: BSI-DSZ-CC-S-0004

[20] Site Security Target for SMT1 Smartrack Technology Ltd., Certification ID: BSI-
DSZ-CC-S-0002, version 1.51 lite, September 30 (2009)

[21] BSI website, http://www.bsi-fuer-buerger.de/EN/Topics/
Certification/CertificationReports/certificationreports_
node.html (accessed on January 2012)

[22] The CCMODE project portal, http://commoncriteria.pl (accessed on Janu-
ary 2012)

[23] BSI, Guidelines for Developer Documentation according to Common Criteria Version
3.1, Bundesamt für Sicherheit in der Informationstechnik (2007)

[24] BSI, Guidelines for Evaluation Reports according to Common Criteria Version 3.1,
Bundesamt für Sicherheit in der Informationstechnik ,Version 2.00 for CCv3.1 rev. 3
(2010)

[25] Nowak, P., Rogowski, D., Styczeń, I.: Certyfikacja lokalnego środowiska rozwojo-
wego (Site Certification) jako innowacyjne podejście do oceny produktów według
standardu Common Criteria. MIAG, Katowice (English title: Site Certification as in-
novative approach to products evaluation according Common Criteria standard)
(2011)

[26] CCMB, Common Methodology for Information Technology Security Evaluation
(CEM), Evaluation methodology. Version 3.1, Revision 3, CCMB-2009-07-004
(2009)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 195–208.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Integrating the Best 2-Opt Method to Enhance
the Genetic Algorithm Execution Time
in Solving the Traveler Salesman Problem

Sara Sabba and Salim Chikhi

Abstract. The traveling salesman problem (TSP) is one of the classic combina-
torial optimization problem NP-complete that requires much time to find the good
solution. Indeed, the genetic algorithm is a stochastic optimization algorithm; it is
to find an approximate solution of a hard problem. However, genetic algorithm
has a great tendency to converge to a local minimum and stay stuck in adverse so-
lutions. To solve this problem, we study in this paper the impact of the integration
of a new local optimization heuristic Best 2-opt with the genetic operators on the
quality of solution and the runtime of the GA. The hybridization proposed was
tested on instances from 29 to 246 cities. The obtained results are very satisfied
regarding to the solution qualities and the execution time.

1 Introduction

The combinatorial optimization takes an important place in operations research,
discrete mathematics and computer science. Indeed, it is to find the optimal
solution of a combinatorial optimization problem characterized by the exponential
number of combinations to explore. Moreover, the main objective of solving com-
binatorial problems methods is to find the optimal solution in a reasonable time in
relation with the complexity of the problem.

The traveling salesman problem TSP is one of the classic combinatorial optimi-
zation problems belonging to the class “NP-complete”; it is widely studied for a
long time by a considerable number of scientists and mathematicians because of

Sara Sabba
Mentouri University- Constantine
Computer Science Department, MISC Laboratory
sara.sabba@yahoo.fr

Salim Chikhi
Mentouri University- Constantine
Computer Science Department, MISC Laboratory
chikhi@umc.edu.dz

196 S. Sabba and S. Chikhi

its importance in many fields of applications: problems of logistics, transport
(commodities / people), and more generally all kinds of scheduling problems.
Moreover, the problem is to find the shortest Hamiltonian path in a graph com-
pletely connected (N, A) [1] where N is the number of cities and while A
represents the paths between these cities. It seems to be a simple problem but ac-
tually it is very difficult to be solved because the number of possibilities to find
the right solution is very large: (N-1)! possible circuits.

Indeed, the genetic algorithm GA is a stochastic optimization algorithm [10],
this algorithm is the very useful to solve a wide range of complex problems
[14][15]. However, GA is often trapped in local minimum which means that the
reproductive process of the genetic algorithm is stuck in negative solutions. To
overcome this weakness, it is clear that the integration of a local search method
with genetic operators is required In order to improve the quality of final solutions
and diminish the execution time of the algorithm.

Consequently, several methods have been proposed in the literature to improve
the performance of the genetic algorithm for solving the traveling salesman prob-
lem. These methods deal generally with crossover operators such as, Partially
mapped crossover PMX [2], cycle crossover CX [3], order crossover OX [4], dis-
tance Preserving crossover DPX[5] and 2-exchange crossover heuristic ECH [11]
or mutation operators such as, inversion, different swapping strategies, greedy op-
timization, k - opt steps (2-opt, 3-opt)[7][8].

In this paper we study the new heuristic local optimization Best 2-opt as a
mutation operator able to guide the genetic algorithm to make better local
search and to find best solutions in a reasonable time. For this purpose, we
present at first the optimization strategy of this method, then, we demonstrate
the impact of the integration of the Best 2-opt heuristic on the quality of solu-
tion and the runtime of the GA. Finally, we compare our results with already
existed ones.

2 Genetic Algorithm

The genetic algorithm is a stochastic optimization algorithm based on the mechan-
isms of natural selection and genetics [10][17], it was designed by J. Holland by
simulating evolution of the species, the theory developed by Charles Darwin.
Therefore, the genetic algorithm is simple to be developed and it does not require
detailed knowledge of the problem to be solved. GA Simply represents the solu-
tions of the problem as vectors of integer, real or alphabet "individuals", all of
these individuals "or population" represents a part of the search space, then it uses
the genetic operators (selection, crossover, mutation) to produce other solutions
which may be optimal.

Integrating the Best 2-Opt Method to Enhance the GA Execution Time 197

Algorithm 1. Genetic algorithm

1. Initialize population randomly P

2. Evaluate initial population

3. WHILE stopping criterion is not satisfied do

3.1. Evaluate each individual’s fitness

3.2. Select M% of population P

3.3. Produce a new population P ' by reproduction operators

3.3.1. Apply crossover operator

3.3.2. Apply Mutation operator

3.4. Replace a few individuals by the new population P '

3.5. End While

 4Write the best solution

Fig. 1 The pseudo code of the Genetic Algorithm

2.1 Encoding

The traveling salesman problem is a scheduling problem; a classical representation
as chains of binary is inadequate. Therefore, the solutions are better represented by
permutations of the elements to be visited (each city is represented by an integer).

Fig. 2 Representation of a solution of 9 cities

2.2 Selection Operator

The selection consists to choose individuals who will be able to survive and
reproduce to pass their characteristics to the next generation.

2.3 Crossover Operator

The crossover operator aims to create new solutions by combining information
from two selected parents. However, several crossover operators have been
created specifically to solve the TSP problem [2][3][4][5][11], because the
classical crossing methods are not effective.

Fig. 3 Order Crossover OX

198 S. Sabba and S. Chikhi

2.4 Mutation Operator

It is a very important operator; it allows making a modification of some produced
individuals in the aim is to introduce diversity and to explore new regions of solu-
tion space. The mutation can be performed before or after crossing on the parents
or on the new individuals.

Fig. 4 Reverse Mutation

The traditional genetic algorithm will often have a great tendency to converge
to local minima and thus stuck in the wrong direction of the search space (adverse
solutions).

Fig. 5 GA is blocked in the bad space of solutions

Fig. 6 A local search method helps GA to get out of local minimum

However, to avoid this problem, adding a method of local search (mutation)
will change the research direction of the algorithm and ensure that it will be taken
in several regions of space and so it is more likely to find optimal solutions.

Integrating the Best 2-Opt Method to Enhance the GA Execution Time 199

3 2-Opt Local Research

Several local search methods can be applied as improvements heuristic to optim-
ize the solutions found by the genetic operators, such as simulated annealing and
tabu search ... etc. In fact, 2-opt , 3-opt[7], and Lin-Kernighan[8] are well-known
improvement heuristics for solving TSP problem, they are iterative algorithms
based on the exchange of 2,3 or a variable number of edges until the it reaches
an improved solution comparing with the initial solution. The computational
complexity of these methods is respectively O (n ²), O (n3), O(nk).

C1 C2 C3 C4 C5 C6 C7 C8 C1

C1 C2 C6 C5 C4 C3 C7 C8 C1

Fig. 7 2-opt swapping

The 2-opt heuristic is based on the conditional permutation of cities. In other
words, select two segments in the current tour for example c2c3 and c6c7 then
swap them (Fig. 7.c) if the equation (1) is satisfied:

(a) The current tour

(b) The tour proposed by 2-opt

(c) The array structure

200 S. Sabba and S. Chikhi

Distance(c2,c3)+Distance(c6,c7) > Distance(c2,c6)+ Distance(c3,c7) (1)

Where Distance (a, b) represents the Euclidean distance between city A and B.

Distance (a,b)= sqrt((Ax-Bx)
2+(Ay-By)

2) (2)

Thus, if the formula (1) is satisfied, remove the two segments c2c3 and c6c7 and
replace them with two c2c6 and c3c7, otherwise select two segments and repeat
the test of the formula (1). This process can be repeated k times until the tour is
optimized.

4 Best 2-Opt Local Research

In this paper we propose the local optimization heuristic Best 2-opt, as an effective
method to improve the local search of the genetic algorithm. Indeed, the Best
2-opt method consists to select a position i in the current tour, then use the
same formula (1) of the 2-opt heuristic to test whether the permutation of cities is
authorized between the two segments « Ci Ci+1 » and « Cn Cn+1», this verification
will be performed with all segments which follow the segment « Ci Ci+1 »,
n=n+2…L, where L is the Length of tour-2.

If the test of the formula (1) is satisfied, only the second city of the first seg-
ment and the first city of the second segment can be swapped, while the interme-
diate cities keep the same position.

Fig. 8 Test phase

Each time when a test is verified the permutation is performed as follows:

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 C2 C3 C7 C5 C6 C4 C8 C9

Fig. 9 The permutation of cities by the Best 2-opt method

C1 C2 C3 C4 C5 C6 C7 C8 C9

test1

test2

test n

Select i=2

test

Integrating the Best 2-Opt Method to Enhance the GA Execution Time 201

Finally, when this process is complete, select the next position j = i +1 and re-
peat the same steps outlined for the position i. The Best 2-opt method can be re-
peated k times (in this paper we have fixed k = 5), to ensure that the tour is well
optimized.

Algorithm 2. Best 2-opt local search.

1. Initial Tour : T

2. Improved Tour T’

3. k=0

4. Repeat

4.1. For i=0 to length(T)-2 do

4.1.1. For j=i+2 to length(T)-2 do

4.1.1.1. If (1)=true then

4. 1.1.2. T’= apply Best 2-opt permutation

4. 1.1.3. endif

4.1.2. endfor

4.2. if (T < T’) then

4.2.1. T’= T ;

4.2.2. Else

42.3. T= T’;

4.3. Endif

4.4. Endfor

4.5. k=k+1;

5.Until k>5

 6.Write the best tour T’

Fig. 10 The pseudo code of the Best 2-opt local search

5 The Hybridization of Genetic Algorithm with Best 2-Opt

Genetic local search was first introduced by Moscato [16] as “Mimetic Algo-
rithms”; the aim of this is to produce hopefully better individuals from existing
ones. Indeed, in the last years several hybridizations of GA have been designed to
solve the traveling salesman problem and the most local search methods proposed
are generally integrated before or after the reproduction of new solutions. In this
purpose, our tested algorithm is structured as follows:

202 S. Sabba and S. Chikhi

• Every tour is coded as a vector of integers where each value represents a
city.

• The initial population is randomly generated and only the best individuals
are selected to produce the new population.

• The selected individuals (50% of the initial population) are crossed by the
crossover operator PMX or OX, and the mutation operator is completely
replaced by the Best 2-opt heuristic.

• The bad individuals are replaced by the individuals of the new
population.

• The algorithm is repeated according to a fixed number of generations and
in each generation the probability of applying crossover and mutation
operator is 100%.

6 Experimental Results and Performance Comparisons

Based on the above discussion, this section is devoted to the representation of dif-
ferent hybridization results of the genetic algorithm with the optimization method
Best 2-opt (solution quality and run time). The experimental study was tested on
instances of symmetric TSP from 29to 264 cities.

6.1 Step 1

The aim of the first step is to show the strength of the Best 2-opt method over
other local search methods. For this purpose, we applied the Best 2-opt method
to the bad tours chosen randomly from different instances of the STSP problem
(berlin52, eil51, st70, eil76, pr76, kroA100), to follow how this method improves
bad solutions at each iteration k.

Each row in the table represents the result of permutation in the iteration k, ex-
cluding the last row that represents the difference between the length of the initial
tour and the length of the tour improved.

Table 1 The results of optimization of the Best 2-opt method at each iteration k (test 1).

Instance Berlin52 Eil51 St70 Eil76 Pr76 Kroa100

Initial tour

k=1

k=2

k=3

k=4

k=5

Initial Tour -
Best Tour

9209

9150

8920

8652

8620

8552

657

598

574

535

520

517

445

153

916

998

893

832

772

770

146

740

834

681

666

657

636

140

146129

130376

125846

122495

120771

117534

28595

33831

30598

28552

27527

27570

26075

7756

Integrating the Best 2-Opt Method to Enhance the GA Execution Time 203

Table 2 The results of optimization of the Best 2-opt method at each iteration k (test 2).

Instance Berlin52 Eil51 St70 Eil76 Pr76 Kroa100

Initial tour

k=1

k=2

k=3

k=4

k=5

Initial Tour -
Best Tour

9284

9888

9510

8753

8591

8324

860

556

593

543

518

503

496

60

922

934

894

848

793

765

157

734

811

732

670

664

664

70

143288

149914

140355

138623

130785

129726

13562

29981

33103

29300

27277

25251

26607

3374

Table 3 The results of optimization of the Best 2-opt method at each iteration k (test 3).

Instance Berlin52 Eil51 St70 Eil76 Pr76 Kroa100

 Initial tour

k=1

k=2

k=3

k=4

k=5

Initial Tour -
Best Tour

9546

8710

8634

8137

7958

7958

1588

556

593

543

518

503

496

60

922

934

894

848

793

765

157

997

765

635

600

589

581

416

143288

149914

140355

138623

130785

129726

20188

28594

24801

23955

22044

21360

21360

7234

According to the values displayed in the three tables, we noticed that the tour

length can be increased in the first iteration, these results are entirely normal be-
cause in the first permutation the order of cities will completely change which in-
creases the length of the tour, while in the other iterations that order will get better
step by step (the length of the turn improves iteration after iteration) until the
obtaining of a well improved solution. Finally, we also noticed that the gain of
optimization obtained by the method Best-2-opt is very high, which proves that
this method is able to optimize the bad solutions in minimal time and that is what
we will show in the second step.

Basing on the observations and previous results, we decided to eliminate the
testing phase of the lap’s length after each permutation (lines 4.2 - 4.3 of
Algorithm 2). In fact the running time of the method and algorithm will be further
reduced.

204 S. Sabba and S. Chikhi

6.2 Step 2

After the elimination of the test phase of the Best 2-opt method, the second step is
devoted to compare the error rate and the total running time of two hybridizations
GA + standard 2-opt and GA + Best 2-Opt. (noted that the both algorithms are
executed in the same machine).

The results are represented in Table 4: The first column shows the different
instances of TSP used in the tests; the second column shows the results obtained
by the GA + standard 2-opt algorithm and the third column shows the results
obtained by the GA + Best 2-opt algorithm. The error rate is measured by the per-
centage to get the wrong solution and the run time required to obtain the optimal
solution is measured by seconds.

Table 4 Comparison of the results obtained by GA+Best 2-opt and GA+ standard 2-opt
algorithm.

TSP

Instance

GA+Best 2-OPT GA+ STANDARD
2-OPT

Best Results

TSPLIB

Time (s) Error Time (s) Error

Berlin52

Bier127

Eil101

Eil51

Eil76

KroA100

Lin105

Pr107

Pr144

Pr264

Pr76

Rat99

St70

U159

Wi29

0.1

15.41

2.88

2.02

3.86

3.04

3.6

4.12

7.06

17.53

2.73

6.94

1.10

18.57

0.01

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

2.52

115.78

33.65

4.37

17.51

8.46

11.55

17.83

52.63

75.39

9.10

31.2

7.28

90

0.17

0%

10%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

20%

0%

7542

118282

629

426

538

21282

14379

44303

58537

49135

108159

1211

675

42080

27604

The experimental results show that the hybridization of the genetic algorithm

with the optimizations methods Best-2-opt help it to get out from the local minima
and find always the best solutions in the minimal time. Based on the previous
analysis of step 1, this difference is very logical according to the optimization
strategy used by this method.

Integrating the Best 2-Opt Method to Enhance the GA Execution Time 205

6.3 Step 3

Indeed, to prove the performance and efficiency of the Best 2-opt method as a
mutation operator we combined it with two different crossover operators OX and
PMX and compared the obtained results with the results of the ECOGA algorithm
[11] (which uses the ECH crossover operator and Improved 2-opt as a mutation
operator) also with the results published in the TSPLIB library.

Table 5 Comparison of the results obtained by GAOX+ Best 2-opt, GAPMX+ Best 2-opt,
ECOGA algorithms and the results published in the library TSPLIB.

Instances TSP GAOX+
Best 2-opt

GAPMX+
Best 2-opt

ECOGA TSPLIB

Eil51

Eil76

Rd100

KroA100

KroC100

KroD100

Pr107

Eil101

Ch130

Pr144

Ch150

U159

kroA200

Tsp225

Pr264

426

538

7905

21282

20749

219294

44301

629

6105

58537

6526

42080

29369

3855

49135

426

538

7905

21282

20749

219294

44303

629

6105

58537

6526

42080

29369

3876

49135

426

538

7910

21282

20749

219294

44301

629

6110

58535

/

42075

29369

3858

49135

426

538

7910

21282

20749

219294

44303

629

6110

58537

6528

42080

29369

3916

49135

The results shown in Table 5 by GAOX + Best 2-opt and GAPMX + Best 2-opt

algorithms are obtained with an error rate of 0%. However, this results show the
effectiveness of the Best 2-opt method as an operator of optimization, we obtained
optimal solutions for most instances and for some others RD100, CH130, CH150
and tsp225. We have found better results than those found by the algorithm ECOG
[11] and published in the TSPLIB library.

206 S. Sabba and S. Chikhi

Fig. 11 The best tour of ch150.tsp

Fig. 12 The best tour of ch130.tsp

Finally, Compared with the others local search method the Best 2-opt method
shows that it may be the best local optimization heuristic over other methods be-
cause it is able to avoid blocking on the local optima it find always the best solu-
tions in a reasonable time, and it can ensure the performance of the final results
and even find other optimal. The integration of this method to optimize the tours
produced by the genetic algorithm is the right solution to ensure the performance
of the results not only the quality but also the speed of execution.

Integrating the Best 2-Opt Method to Enhance the GA Execution Time 207

7 Conclusion

In this paper we presented the genetic algorithm as a method of solving TSP prob-
lem, however GA has a high probability of being trapped in local minima and thus
the evolution of the algorithm is stuck in poor solutions. To solve this problem, we
proposed a new method for local optimization Best 2-opt. In fact, we studied the
impact of integrating of this method with the genetic operators (selection, crossov-
er), then we compared the results found by others existing.

At the end, through the obtained results, we proved that the integration of the
improvement method Best 2-opt with the genetic operators for solving the TSP
problem is the best solution to assure the quality of the solutions and the speed of
execution.

References

[1] Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion 1, 53–66 (1997)

[2] Goldberg, D.E., Lingle, R.J.: Alleles, Loci and the TSP. In: Proceedings of the First
International Conference on Genetic Algorithms and Their Applications, pp. 154–159
(1985)

[3] Oliver, I.M., Smith, D.J., Holland, J.R.C.: A Study of Permutation Crossovers on the
TS. In: Genetic Algorithm and Their Applications on Proceedings of the Second In-
ternational Conference, pp. 224–230 (1987)

[4] Davis, L.: Applying Adaptive Algorithms to Epistatic Domains. In: Proceedings of
the International Joint Conference on Artificial Intelligence, pp. 162–164 (1985)

[5] Freisleben, B., Merz, P.: New Genetic Local Search Operators for the Traveling Sa-
lesman Problem. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.)
PPSN 1996. LNCS, vol. 1141, pp. 890–899. Springer, Heidelberg (1996)

[6] Lin, S.: Computer solutions of the traveling salesman problem. Bell Systems Jour-
nal 44, 2245–2269 (1965)

[7] Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman
problem. Operations Research 21, 498–516 (1973)

[8] Milan, D., Milan, T., Bojan, D.: Impact Of Graffing A 2-Opt Algorithm Based Local
Searcher into the Genetic Algorithm. In: International Conference on Applied Infor-
matics and Communications (AIC 2009), pp. 485–490 (2009) ISBN: 978-960-474-
107-6

[9] Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michi-
gan Press, Ann Arbor (1975)

[10] Li, L., Zhang, Y.: An Improved Genetic Algorithm for The Traveling Salesman Prob-
lem. In: ICIC 2007. CCIS, vol. 2, pp. 208–216. Springer (2007)

[11] Hansen, P., Mladenovié, N.: First Vs Best Improvement: An Empirical Stud. Science
Direct. Discrete Applied Mathematics 154, 802–817 (2006)

[12] http://compt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
[13] Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the

0/1 knapsack problem - a comparative experiment. Research report, Institute of Com-
puting Science, Poznan University of Technology. RA-002 (2000)

208 S. Sabba and S. Chikhi

[14] Wu, Y., Liu, M., Wu, C.: A Genetic Algorithm for Solving Flow Shop Scheduling
Problems with Parallel Machine and Special Procedure Constraint. In: International
Conference on Machine Learning and Cybernetics, Xi’an, China, vol. 3, pp. 1774–
1779 (2003)

[15] Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program
(report 826) (1989)

[16] Koza, J.R.: Genetic Programming. Bradford /MIT Press (1992)

Representation of Objects in Agent-Based
Lighting Design Problem

Adam Sȩdziwy

Abstract. Applying agent systems for solving large-scale design problems in par-
ticular in smart grid solutions, requires using proper representations at all levels
of system description and specification. In the paper we introduce formally the hi-
erarchical hypergraph representation of an urban space including both maps and
physical objects like buildings. Such representation enables further decomposition
of system model and performing parallel computations on it.

1 Introduction

Graph structures provide a flexible and widely used modeling framework for solving
various types of problems in such areas as system specification, software generation,
task allocation control [18, 8] or simulating a behavior and interactions in complex
multiagent agent systems [17]. Moreover, graph transformations which properties
were described in numerous works [6, 5, 4, 1] may be used to model dynamics
of systems. The limitation for their applicability is time complexity of parsing or
membership problems. That difficulty may be overcome however either by using
distributed parallel computations paradigm [15] or by decreasing expressive power
of a graph grammar if possible.

The example of the first method is GRADIS multiagent environment [9, 14] ca-
pable of performing such distributed graph transformations, representing both algo-
rithmic and algebraic approaches [10, 11].

Multiagent systems are an effective way of solving various types of CAD related
problems in such areas as the automotive industry [3], a support in constructional
tasks [20], collaborative CAD systems [16] or an adaptive design [12]. A Large-
scale intelligent lighting (shortly: LaSIL) is yet another example of such a problem.

Adam Sȩdziwy
AGH University of Science and Technology, Department of Automatics, al. Mickiewicza 30,
30-059 Kraków, Poland
e-mail: sedziwy@agh.edu.pl

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 209–223.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

sedziwy@agh.edu.pl

210 A. Sȩdziwy

The essence of a large-scale intelligent lighting problem in its basic form, is find-
ing a distribution of lighting points (lamps) in an urban area and controlling their
performances. This distribution has to satisfy given criteria [19] that include cov-
ering a considered area with a suitable luminosity and, on the other side, exploita-
tion costs that are generated mainly by the power consumption. Note that criteria
are local i.e. assigned to particular points, subareas or buildings. In the extended
approach LaSIL includes also an intelligent, adaptive lighting control, supported
by distributed sensors, providing information about an environment state. Since a
LaSIL deliverable is reducing power consumption it may be seen as the important
component of smart grid solutions.

The main difficulty related to a LaSIL is its high computational complexity. The
following two examples illustrate the complexity issues. In the first one a city area
composed of 1000 square blocks is given. Assuming that there are 5 lamps on each
side of a block we obtain 20,000 lighting points to be distributed across a consid-
ered urban space. One has to add to this number the cooperating sensors and take
into account a communication among lamps and a control center(s). The second
example concerns a performance control complexity. Let us assume that we have
10 LED lamps, each working at 11 levels of luminosity (0,10%,... 100%). Thus we
obtain 1110 possible states of a set of lamps. As a matter of fact the number of lu-
minosity levels for a single LED luminary may be of order of 100. In summary,
the first, static phase (i.e. while setting up an optimal distribution of lamps) of a
LaSIL consists of multiple optimization subproblems in 3D space. In the second,
dynamic phase (lighting control), optimizations following environment changes are
performed. Note that the second phase is permanent i.e. optimizations triggered by
environment’s changes are made during all the lifetime of a system.

As the computations may be broken into separable tasks the first step to be done is
finding an appropriate representation of a LaSIL enabling a problem decomposition.
It should be remarked that using an unstructured description (e.g. pixel maps) for
finding a LaSIL solution is ineffective and poorly convenient from the practical point
of view. The sample structuring may be found in approaches applied to the similar
problem, namely computer simulation of an adaptive illumination facility, where an
environment descriptions are based on cellular structures (Situated Cellular Agents
and Dissipative Multilayered Automata Network) [2].

The graph formalism seems to be the most convenient one for solving a LaSIL
due to its correspondence with the problem structure and mentioned capability of
modeling system architecture and dynamics (e.g. environment changes) that can
be described by means of the graph grammar transformations. Using a graph de-
scription enables introducing hierarchical structures and thereby improving a tasks
allocation. Note that all individual lamps and all sensors (some of them may be the
mobile ones) may exchange messages. For that reason preparing a reliable com-
munication layer gets the crucial design objective. The suitable graph-based model
supports an architecture design and controlling an allocation of resources in this
layer of an intelligent lighting control system. In the presented paper we introduce
the hypergraph-based formalism used for modeling an urban area environment in a
LaSIL. The proposed approach includes both street and building levels.

Representation of Objects in Agent-Based Lighting Design Problem 211

It is assumed that analytic (numeric) representations of city maps and buildings
are given. In the case of maps it may have form of GIS (Geographic Information
System) descriptions like GML (Geography Markup Language) or be expressed in
any other geospatial numeric data format. For a building a list of vertices belong-
ing to a bounding surface and analytic descriptions of curved edges/surfaces are
sufficient.

The paper is organized as follows. In the Section 2 the hierarchical representation
of a model is presented. In Sections 3 and 4 the hypergraph structures underlying a
model (namely, a cartographic hypergraph and a face adjacency hypergraph) and a
linkage between them are defined. The principles of a multi-agent system deploy-
ment in a graph environment and the future works are sketched in the Section 5. The
paper conclusions are presented in the Section 6.

2 Hierarchy in LaSIL

The general idea of the multiagent graph-based approach to solving a LaSIL prob-
lem is its decomposition into a number of small subproblems expressed in a graph
formalism, to process them in parallel by deploying and running multiagent system
on such a distributed graph environment.

Any approach to solving a LaSIL has to reflect a hierarchical structure of a system
(see Fig.1). In our problem we use a hierarchical, hypergraph description based on
the two level hierarchy of hypergraphs. At the level 1 a city map is subdivided into
an atlas of maps that cover the entire considered area. Both a whole city map and
particular maps of an atlas are represented by cartographic hypergraphs defined in
the Section 3. At the lower, second level we have architectonic objects which are
specified by hypergraphs of another type, so called face adjacency hypergraphs. In
the Section 4 the formal background of such specification based on the formalism
presented in [7], will be introduced.

At a higher level (Level 1 in Fig.1) we use coarse-grained description, transform-
ing a considered area into a set of graph-based maps (an atlas). At a lower level

Atlas of a city

Map 1

Obj 1 . . . Obj M1

Map 2 . . . Map n

Obj 1 . . . Obj Mn

Level 1

Level 2

Fig. 1 Hierarchical description of an urban area: streets belong to the level 1, buildings to the
level 2.

212 A. Sȩdziwy

(Level 2) architectural details are introduced. Those data provide a detailed specifi-
cation of buildings and other objects present in an urban area.

The linkage between hypergraphs of a first and a second level is dependent on a
considered model. The detailed description of such an association lies beyond the
scope of this paper.

2.1 Hypergraphs

The commonly used notion of a graph G = (V,E) refers to a set of vertices V and a
set of edges E (either directed or undirected) which may describe relations between
vertices. It should be noted that expressive power of such a description is not suf-
ficient in the case of k-ary relations (for k > 2) i.e. relations among more than two
elements. An example is the relation R of having a common intersection, among
subsets of S:

(S1,S2, . . .Sk) ∈ R ⇔
k⋂

i=1

Si �= /0, where Si ⊆ S.

The structure of a normal graph may be enriched by introducing hyperedges which
may be added either as a replacement of normal edges represented by E set (see
Definition 2) or as a next element of a tuple defining G (see Definition 3) where the
set of edges is divided explicitly into (hyper)edges connecting one or two vertices
and all others. As a basis for our further considerations we formulate following
definition.

Definition 1. A hypergraph is a pair H = (V,E) where V is nonempty set of vertices
and E = {e : e ⊂V} is a set of hyperedges.

Thanks to the ability of modeling the various types of spatial relations among objects
the hypergraphs are an useful representation in an interior architecture design tasks.
The example is a multi-agent system for a distributed design [13]. The underlying
hypergraph structure possesses two kinds of hyperedges corresponding respectively
to an object parts and relations.

3 Cartographic Hypergraph

In most cases an intuitive graph representation of maps is used: graph nodes cor-
respond to junction points and edges model ways. In the LaSIL problem we deal
with a composite 3D structures consisting of streets and buildings. To preserve the
uniformity of a description at both levels we use the hypergraph map representation
rather than the “intuitive” one (note that both approaches are equivalent). Thanks to
this, a part of a given scene may be switched between an aggregated and a detailed
description, dependently on an actual agent’s need.

In a hypergraph-based map model approach, computations (e.g. street-level light-
ing optimizations) are enclosed within individual nodes.

In this section the formal hypergraph representation of maps is introduced.

Representation of Objects in Agent-Based Lighting Design Problem 213

Definition 2. A cartographic hypergraph is a tuple of the form

G = (N,H,attN ,attH , labN , labH),

where N is a set of nodes, H ⊂ ⋃
i>1 Pi(N) is a set of hyperedges, attN : N −→ AN

and attH : H −→ AH are node and hyperedge attributing functions respectively,
labN : N −→LN and labH : H −→LH are node and hyperedge labeling functions.
AN and AH denote sets of node and hyperedge attributes, LN and LH are sets
of node and hyperedge labels. The family of cartographic hypergraphs is denoted
as HCart .

Elements of the node set N correspond to such physical objects as streets, paths,
squares and so on. Elements of H correspond to physical junction points of streets,
paths and so on.

As it was mentioned above, representing a map as a hypergraph enables to en-
close all actions related to finding an optimal lamp distribution for a single street
or square, in an individual vertex of G ∈ HCart . Thereby such a structure is well
prepared for a hypergraph decomposition prior to computations parallelization.

Example 1.

In Figure 2 the sample map and the corresponding hypergraph are shown. The part
of map consists of streets sections s1, . . . ,s5, and the square p which are represented
by the cartographic hypergraph vertices. Their junction points marked with bolded
points correspond to its hyperedges.

(a)

s2

s4

p

s5

s3 s1

(b)

Fig. 2 (a) The sample map (b) Hypergraph representing the map

214 A. Sȩdziwy

Example 2.

To demonstrate an order of magnitude of generated hypergraphs we transformed the
rectangular areas (a square of the size 4 km2) of the OSM city maps of four cities
(Barcelona, Chicago, Rome, Tokyo). Fig. 3 presents selected areas.

The hypergraph associated with the map represents all streets, paths and so on. As
the main features characterizing a hypergraphs we selected following descriptors:

• d1 – number of nodes,
• d2 – number of hyperedges,
• d3 – number of high hyperedges i.e. hyperedges connecting at least three vertices,
• d4 – average number of vertices incident with a high hyperedge.

The descriptor d3 was calculated as an absolute value and as a percentage of all
hyperedges in a given hypergraph. Table 1 demonstrates values obtained for areas
shown in Figure 3

(a) (b)

(c) (d)

Fig. 3 The part of city map of (a) Barcelona, (b) Chicago, (c) Rome and (d) Tokyo (source:
www.openstreetmap.org)

Representation of Objects in Agent-Based Lighting Design Problem 215

Table 1 Hypergraphs descriptors values

City d1 d2 d3 d4

Barcelona 2918 2205 897 (40.7%) 3.71
Chicago 1989 1552 631 (40.7%) 3.49
Rome 2888 2361 790 (33.5%) 3.45
Tokyo 3259 2779 861 (31.0%) 3.33

Attributing functions.

Definition 2 restricted to nodes and hyperedges only gives a qualitative (topologi-
cal) description of maps. The presence of two attributing functions, attN : N −→AN

and attH : H −→ AH , enables including quantitative data like physical coordinates
of junction points or information concerning adjacent buildings, necessary to model
accurately given area. One can specify precisely structures of sets AN and AH re-
lying on an actual problem specification. We assume that attN(v ∈ N) contains in-
formation concerning physical objects (buildings) adjacent to a given v. Note that
attN(v) ∈ AN structure holding HFAHs/FAHs (defined below) of related buildings
comprises a link between two levels of an urban area description.

4 Face Adjacency Hypergraph

The formal background for the level 2 description, related to physical objects
(solids) like buildings is presented below. It consists of two notions. The first (FAH)
corresponds to simple objects e.g. single buildings, the second one (HFAH) allows
for both, modeling complex entities composed of a number of coupled solids and
aggregating individual, adjacent objects into a complex one.

Let S be an object (solid) and ES,VS be sets of its edges and vertices respectively,
that define two relations over the set FS of S faces:

• faces f1, f2 ∈ FS are edge adjacent iff there exists an edge in ES common for f1

and f2,
• faces f1, f2 ∈ FS are vertex adjacent iff there exists a vertex in VS belonging to

f1 and f2.

Those relations underlay the graph representation of a solid named FAH (face adja-
cency hypergraph).

Definition 3 (FAH). A face adjacency hypergraph (FAH) of an object S is a labeled
hypergraph

G = (N,A,H, labN , labA, labH ,attN ,attA,attH),

where N is a nonempty set of nodes, A ⊂ P2(N) is a nonempty set of edges,
H ⊂ ⋃

i>2 Pi(N) is a nonempty set of hyperarcs, labμ : μ → Lμ for μ = N,A,H
is a labeling function for vertices, arcs and hyperarcs respectively with correspond-
ing set of labels Lμ ; attμ : μ → Aμ for μ = N,A,H is an attributing function for

216 A. Sȩdziwy

vertices, arcs and hyperarcs respectively with corresponding set of attributes Aμ .
Moreover following conditions are fulfilled:

1. For each face f ∈ FS, there exists a unique node in N corresponding to f and
labeled f .

2. For every edge e ∈ ES common for some faces f1, f2 ∈ FS, there exists a unique
arc in A joining nodes labeled by f1 and f2 corresponding to faces f1 and f2,
which is labeled by e.

3. Let Fv ⊂ FS be the set of faces of S incident to the vertex v ∈VS, and Nv ⊂ N be
the subset of nodes of G corresponding to the faces of Fv. Then for every v ∈V S
there exists a unique hyperarc in H labeled by v and connecting the nodes of Nv.

4. Arcs in A incident to some node f of G are ordered according to the order of the
edges of face f (note that edges of f in S form a loop).

5. Hyperarcs in H incident to some node f of G are ordered according to the order
of vertices belonging to the face f of S.

6. Nodes of any hyperarc v in G are ordered according to the order of the corre-
sponding faces incident to v in S.

The family of FAHs will be denoted as HFA.

Attributing functions.

Similarly as in the Definition 2, the FAH object gets applicable for practical use if
attributing functions attN ,attA,attH carry the complete information related to geo-
metric features of a solid. That assumption, influencing a structure of AN ,AA and
AH , is imposed.

Example.

Let us consider the cuboid S presented in Figure 4a with faces denoted by f1, . . . f6.
For that solid we have following hypergraph representation (see Fig.4b) H =
(N,A,H, labN , labA, labH ,attN ,attA,attH), where

• N = { f1, . . . f6},
• A = {{ f1, f3}, { f1, f4}, { f1, f5}, { f1, f6}, { f2, f3}, { f2, f4}, { f2, f5}, { f2, f6},

{ f3, f5}, { f3, f6}, { f4, f5}, { f4, f6}},
• H = {{ f1, f3, f5}, { f1, f3, f6}, { f2, f3, f5}, { f2, f3, f6}, { f1, f4, f5}, { f1, f4, f6},

{ f2, f4, f5}, { f2, f4, f6}},
• Attributing functions are defined using stub expressions:

– attN : N � p → Attributes of node p,
– attA: A � {p,q}→ Attributes of the edge between p and q,
– attH : H � {p1, p2, . . . pk} → Attributes of the hyperedge connecting p1,

p2, . . . pk.

No limitations are imposed on labeling functions labN , labA, labH in the considered
example.

Representation of Objects in Agent-Based Lighting Design Problem 217

v1

v2

v3

v4

v5

v6

v7

v8

f1 f2

f3

f4

f5

f6

(a)

f4

f5 f1

f3

f2

f6

(b)

Fig. 4 (a) Cuboid – the sample solid (b) Hypergraph representation of cuboid shown in Fig.4a

It should be noted that each of these hyperedges corresponds to one vertex of the
solid S according to the Definition 3. For the image clarity only hypergraph vertices
are labeled in Figure 4b. Edges are drawn with a solid line and hyperedges with a
dashed one.

Obtaining hypergraph representation of a solid

Before introducing the transformation of the analytic representation of a solid to the
hypergraph one let us describe the solid specification being the input data format.

We assume that for a considered solid S a set of its vertices VS (and thus their
coordinates) is known. Also the analytic form of all curved edges is given. Moreover
the bounding surface of S is decomposable into a set of faces FS = { f1, f2, . . . fn}.
On the other side a face fi is described by an ordered set of bounding vertices

V Si = (vi1 ,vi2 , . . .vik),VS =
n⋃

i=1

V Si.

A set VSi induces an ordered set of bounding edges ESi = (ei1 ,ei2 , . . .eik) where
ei j = (vi j ,vi j+1) and vik+1 ≡ vi1 (see Figure 5).

Note that geometric features of an edge are not explicitly determined in a graph
model. The edge ei j may be parametrized by

v(t) = (x0 + δx(t),y0 + δy(t),z0 + δz(t))

for t ∈ [t1, t2], where δk(t)(k = x,y,z) are either linear or nonlinear transformations
with respect to t and v(t1) = vi j ,v(t2) = vi j+1 . A detailed (geometric) characteristic

218 A. Sȩdziwy

v0

v1

v2

v3

v4

e0

e1

e2

e3

e4

f

Fig. 5 The solid face

of ei j may be included in an attribute value returned by function attA. Similar remark
can be applied to a shapes of faces and node attributing function: attN(v ∈ N) may
contain analytic surface specification of a face f represented by v.

For a cylindrical or ellipsoidal object that has no vertices and/or edges dummy
nodes may be provided to stay in compliance with description used in the following
algorithm.

Algorithm 1 produces hypergraph representation of given solid. It uses the queue
Q of faces that are to be processed. Additionally we assume that each edge and ver-
tex has a boolean flag named processed that is set initially to false; each face of
S has the flag named visited that is initially set to false too. The algorithm ob-
jective is to find hypergraph representation of a solid S whose analytic description
was discussed above. The procedure shown in Algorithm 1 produces also attribut-
ing functions (see lines 23,17,11) basing on coordinates and analytic description of
objects (e.g. parametric characteristics of curves).

Time complexity of Algorithm 1 equals O(2NM). The while loop in line 6 is
executed at most N times, where N is a number of faces in S; foreach loops in
lines 12 and 19 are executed at most M times, where M denotes a maximal number
of vertices of a face in S. Thus we obtain complexity O(2NM).

Definition 3 provides a description of 3D objects being the primitives from the
perspective of an entire urban area. More complex systems being the sets of neigh-
boring solids, may be described using the notion of hierarchical face adjacency hy-
pergraph (HFAH).

Definition 4 (HFAH). A hierarchical face adjacency hypergraph (HFAH) is a pair
g∗ = (G ,T) where T = (G ,E,attE) is a tree representing a hierarchical structure
of a solid, G ⊂ HFA is a set of FAHs, called components of g∗, which correspond
to particular nodes of T , E denotes a set of edges of T and attE : E −→ AE is
an edge attributing function such that attE(e ∈ E) specifies the way of coupling of
solids represented by nodes incident to e. G0 ∈ G corresponding to the root of T is
referred to as root component of g∗.

Representation of Objects in Agent-Based Lighting Design Problem 219

Algorithm 1. GenerateHypergraph(S)
input : S – a solid for which the hypergraph is to be generated
output: G = (N,A,H, labN , labA, labH ,attN ,attA,attH) – a hypergraph representation

of S
1 begin
2 N ← /0,A ← /0,H ← /0;
3 Mark all faces of S as unvisited;
4 Mark all vertices and edges of S as unprocessed;
5 Q � any face of S ; /* Enqueue any face of S */
6 while Q is nonempty do
7 f � Q ; /* Dequeue f from Q */
8 if f is unvisited then
9 Mark f as visited;

10 N ← N ∪{ f };
11 Generate labN(f),attN(f);
12 foreach bounding vertex v of face f do
13 if v is not processed then
14 Mark v as processed;
15 Fv ← set of vertex adjacent faces with respect to v, excluding f ;
16 H ← H ∪{Fv};
17 Generate labH (Fv),attH(Fv);
18 Q � Fv; /* Enqueue all faces from Fv */

19 foreach bounding edge e of face f do
20 if e is not processed then
21 Mark e as processed;
22 A ← A∪{e};
23 Generate labA(e),attA(e);

24 return G = (N,A,H, labN , labA, labH ,attN ,attA,attH)

Component Gi is the parent of G j if the node of T associated with Gi is the parent
of the node of T associated with G j. The family of all HFAHs will be denoted
as HT .

Example.

In Fig.6a the example of a composite solid, named S, is shown. One can distinguish
three component of S with corresponding FAHs denotes as G0,G1,G2. The HFAH
describing S has the form g∗ = ({G0,G1,G2},T) where the tree T is presented in
Fig.6b. The cube associated with G0 is the root component of T while child nodes
G1 and G2 represent small cubes of S adjacent to the large one. Attributes a1,a2

specify the relationships between corresponding hypergraphs’ nodes (i.e. faces of
solids).

220 A. Sȩdziwy

G1 G0 G2

(a)

G0

G1

a1

G2

a2

(b)

Fig. 6 (a) Complex object – S (b) HFAH tree of S

Although the above example presents the composite solid consisting of three
adjacent primitives, a relation given by the edges of T =(G ,E,attE) can be extended
over the pairs of objects which don’t contact and their relationship may be described
as is located in the neighborhood parametrized by.... A parametrization of such a
weak neighborhood will be also stored in values of attE function. Thanks to this we
can use HFAHs as a representation of arbitrary sets of neighboring buildings.

4.1 Linkage between Hierarchy Levels

Since we defined the notion of a hierarchical face adjacency hypergraph we can
model composite systems consisting of numerous objects (buildings). In particular
an urban neighborhood of a street or a place may be expressed in terms of multiple
HFAHs.

Let G = (N,H,attN ,attH , labN , labH) ∈ HCart and v ∈ N. Then (g∗1,g
∗
2, . . .g

∗
k) ∈

attN(v) represent sets of objects (buildings) in a neighborhood of the street v, where
g∗1,g

∗
2, . . .g

∗
k ∈HT . Additional attributes in attN(v) provide data concerning location

details for {g∗i } HFAHs.

5 Multi-Agent System Deployment

As it was mentioned previously a main hypergraph (cartographic hypergraph) rep-
resenting an entire system is decomposed into a set of sub-hypergraphs so called
partial hypergraphs. A multiagent system performing computations on partial hy-
pergraphs contains at least one type of agents denoted as CA (computational agent).
Each partial hypergraph has a single CA ascribed to it. Each CA solves locally an
optimization problem related either to static or to dynamic phase of LaSIL.

Initially, MAS deployed on a centralized hypergraph G0 consists of a sin-
gle, initiating CA, say A0 ascribed to G0. Next A0 splits G0 according to the

Representation of Objects in Agent-Based Lighting Design Problem 221

Fig. 7 Hypergraph decomposition performed by agents

decomposition rule D : G0
D→ {G′

0,G1}. A new agent, A1 is created and ascribed
to G1 by A0. G′

0 remains maintained by A0. At an arbitrary level of a decomposition

we have: Gi
D→ {G′

i,Gk} and a new agent Ak is created by an agent Ai. The rule D
specifies a stop criterion for the decomposition process performed by an agent Ai.
Entire process runs recursively (Fig.7).

5.1 Future Works

Two following questions arise around a deployment process. The first problem to be
investigated is identifying criteria and the methods of an optimal decomposition of
a centralized hypergraph into a set of partial hypergraphs. That operation, prior to
solving the static phase of LaSIL, influences the performance of further agent-based
computations. In other words, a decomposition rule D has to be specified. Usually
it depends on a Gi size: splitting process continues until a number of vertices hits a
given range [N−ε,N+ε]. On the other side there also exist other factors which may
be taken into account e.g. a number of connections with other partial hypergraphs.
Since an initial decomposition doesn’t produce an optimal set of hypergraphs a fine
tuning of such a set has to be performed. For the normal graphs the problem was
solved successfully [14]. For the hypergraphs the question is open.

The second issue concerns the specification of an interface type between partial
hypergraphs. Interface specification is necessary to enable reassembling a central-
ized hypergraph from partial ones. For normal graphs border nodes play the role of
such interfaces (see [14]). This step impacts communication among CAs and thus
reassembling process complexity, but that problem is beyond the scope of that paper.

Both questions described above will be the subject of the further research.

222 A. Sȩdziwy

6 Conclusions

In the paper we introduced the formal background of the hierarchical, hypergraph
representation of an urban area. Proposed representation covers both, the level of
streets and the level of individual buildings. Such description enables solving the
design problem (LaSIL) but it can be also applied in other problems like planning
escape routes, investigating acoustic conditions and so on. Using the hierarchical,
graph based representation of a system creates a possibility of distributing compu-
tations at both levels of system description. It can be achieved by decomposition of
a given hypergraph into a set of subgraphs and deploying multiagent system across
that set [14]. The principles of a MAS deployment was sketched together with re-
lated problems.

Acknowledgements. The paper is supported from the resources of Alive & KIC-ing project
and NCBiR grant no O ROB 002101/ID 21/2.

References

1. Baland, P., Corradini, A., Montanari, U., Rossi, F.: Concurrent sematics of algebraic
graph transformations, pp. 107–187 (1999)

2. Bandini, S., Bonomi, A., Vizzari, G., Acconci, V.: Self-organization models for adaptive
environments: Envisioning and evaluation of alternative approaches. Simulation Model-
ing Practice and Theory 18(10), 1483–1492 (2010)

3. Baumgart, S., Toledo, B., Spors, K., Schimmler, M.: PLUG: An Agent Based Prototype
Validation of CAD-Constructions. In: The 2006 International Conference on Information
and Knowledge Engineering (2006)

4. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic ap-
proaches to graph transformation - part i: Basic concepts and double pushout approach.
In: Handbook of Graph Grammars and Computing by Graph Transformations, Founda-
tions, vol. 1, pp. 163–246. World Scientific (1997)

5. Ehrig, H., Heckel, R., Lowe, M., Ribeiro, L., Wagner, A.: Algebraic Approaches to
Graph Transformation. In: Part II: Single Pushout and Comparison with Double Pushout
Approach, pp. 247–312

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-
formation. Monographs in Theoretical Computer Science. An EATCS Series. Springer-
Verlag New York, Inc., Secaucus (2006)

7. De Floriani, L., Falcidieno, B.: A hierarchical boundary model for solid object represen-
tation. ACM Trans. Graph. 7(1), 42–60 (1988)

8. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Grammars
and Computing By Graph Transformation: Applications, Languages, and Tools, vol. II.
World Scientific Publishing Co., River Edge (1999)

9. Kotulski, L.: GRADIS – Multiagent Environment Supporting Distributed Graph Trans-
formations. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS
2008, Part III. LNCS, vol. 5103, pp. 644–653. Springer, Heidelberg (2008)

10. Kotulski, L., Sędziwy, A.: On Complexity of Coordination of Parallel Graph Transfor-
mations in GRADIS Framework, DepCoS-Relcomex. In: 2009 Fourth International Con-
ference on Dependability of Computer Systems, pp. 279–289 (2009)

Representation of Objects in Agent-Based Lighting Design Problem 223

11. Kotulski, L., Sędziwy, A.: Parallel Graph Transformations with Double Pushout Gram-
mars. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2010. LNCS, vol. 6114, pp. 280–288. Springer, Heidelberg (2010)

12. Kotulski, L., Strug, B.: Distributed Adaptive Design with Hierarchical Autonomous
Graph Transformation Systems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS 2007. LNCS, vol. 4488, pp. 880–887. Springer, Heidelberg (2007)

13. Kotulski, L., Strug, B.: Multi-agent System for Distributed Adaptive Design. Key Engi-
neering Materials 486, 217–220 (2011)

14. Kotulski, L., Sędziwy, A.: GRADIS - the multiagent environment supported by graph
transformations. Simulation Modeling Practice and Theory 18(10), 1515–1525 (2010)

15. Kreowski, H.J., Kluske, S.: Graph multiset transformation as a framework for massive
parallel computation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 351–365. Springer, Heidelberg (2008)

16. Ligong, X., Zude, Z., Quan, L.: Multi-agent Architecture for Collaborative CAD System.
In: 2008 International Conference on Computer Science and Information Technology,
pp. 7–11 (2008)

17. Peng, W., Krueger, W., Grushin, A., Carlos, P., Manikonda, V., Santos, M.: Graph-based
methods for the analysis of large-scale multiagent systems. In: Proceedings of The 8th In-
ternational Conference on Autonomous Agents and Multiagent Systems 2009, pp. 545–
552 (2009)

18. Rozenberg, G.: Handbook of Graph Grammars and Computing By Graph Transforma-
tion: Foundations, vol. I. World Scientific Publishing Co., River Edge (1997)

19. Sędziwy, A., Kotulski, L.: Solving Large-Scale Multipoint Lighting Design Problem
Using Multi-agent Environment. In: Key Engineering Materials, Advanced Design and
Manufacture IV, vol. 486, pp. 179–182 (2011)

20. Yabuki, N., Kotani, J., Shitani, T.: A Cooperative Design Environment Using Multi-
Agents and Virtual Reality. In: Luo, Y. (ed.) CDVE 2004. LNCS, vol. 3190, pp. 96–103.
Springer, Heidelberg (2004)

Formal Methods Supporting Agent Aided Smart
Lighting Design

Adam Sȩdziwy, Leszek Kotulski, and Marcin Szpyrka

Abstract. In the paper we present the formal description of the agent-based light
sensors (LSA - Light Sensors Agents) serving as data suppliers for a multiagent sys-
tem controlling the distribution and work parameters of lighting points distributed
across a given urban area. The cooperation and behavior of sensor agents are mod-
eled and verified using Alvis modeling language.

1 Introduction

Multiagent systems support design process in various areas such as automotive in-
dustry [1] , support in constructional tasks [2, 3], collaborative CAD systems [4]
or adaptive design [5]. The main benefit of their usage is possibility of computing
parallelization in problems characterized by a high computational complexity. The
problem being a background of the article concerns both finding an optimal distri-
bution of light points in an urban area [6] and controlling their work parameters to
minimize power consumption. Additionally the problem solution is constrained by
local luminosity conditions which have to be fulfilled.

Designing a large scale system for planning distribution of luminaries in an urban
environment is a complex task. First, one has to formalize description of an envi-
ronment. Since it consists of streets, buildings and numerous infrastructure details,
suitable structures matched to particular levels of a description are required. The
graph representation seems to be the most relevant one for those purposes. On the
other side, such a representation creates an environment of a deployment of an agent
system. The graph structure data become a part of an agent’s knowledge.

To achieve an optimal, adaptive lighting control we require gathering suitable
physical data describing environment conditions like luminosity, traffic intensity and

Adam Sȩdziwy · Leszek Kotulski · Marcin Szpyrka
AGH University of Science and Technology, Department of Automatics, al. Mickiewicza 30,
30-059 Krakow, Poland
e-mail: {sedziwy,kotulski,mszpyrka}@agh.edu.pl

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 225–239.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

226 A. Sȩdziwy, L. Kotulski, and M. Szpyrka

so on. We assume that this information may be captured automatically by means of
auxiliary robot agents. There is no limitation for possible types of those entities thus
they can model mobile robots responsible for probing luminosity levels, stationary
induction loops or other, problem dependent devices.

To summarize the problem, we deal with a lighting system being designed for an
urban area modeled by a distributed graph representation. Lighting system perfor-
mance optimizations are made by multiagent system deployed on a distributed graph,
on the basis of sensor data. In the article we focus on light sensors agents which will
be described and analyzed in terms of the Alvis modeling language. The multiagent
structure of a system will be sketched only to provide the problem context.

The process of designing an embedded system controlling a light sensor agent
will be presented in the paper. We use Alvis toolkit here because it allows for paral-
lel generation of an embedded system code and a corresponding labeled transition
system (abbrev. LTS) description which enables formal verification of a system.

The structure of the paper is following. In the next section we present the related
works. The basics of the Alvis modeling language are introduced in the Section 3.
In the Section 4 the architecture of the considered system is presented. The structure
of a mentioned robot agent and an embedded system design process are described in
the Section 5. Formal verification of a model is presented in Section 6. Last section
contains conclusions of the article.

2 Realated Works

Component models (CM) are widely used in the design and the development of
the embedded software. An example is Koala model used in the software design
for television products [7]. Using this model allows for independent development
of configuration and components. Another sample of a component-based approach
is SOFA model used in the communications middleware, component management,
component design, electronic commerce, and security [8]. Component models may
be used in a production of various types of software. Fractal CM for instance, may
be used in the software design and development in such distant fields like operating
systems and graphical user interfaces [9].

The important feature of a CM, absent in models presented above, is possibility
of a formal verification of a designed system, in particular the absence of deadlocks.
Such a verification may be made within ProCom model [10].

The Alvis formalism was selected for modeling embedded systems in the smart
lighting problems due to the additional feature enriching the capability of the system
formal verification. It offers the ability of an automated verification of composite
embedded systems. Such a verification is performed on the basis of specifications
of cooperating components forming entire system (see [11]). Thus a system may be
easily verified at any phase of the design process, in particular after adding a new
component to it. Besides the mentioned feature Alvis enables extensible system
design. A new component may be added to the system or an existing one may be
grained into several sub-components without the need of a model rebuilding.

Formal Methods Supporting Agent Aided Smart Lighting Design 227

3 Alvis Description

3.1 Model Layers

To prepare a system specification we define two layers of its Alvis model descrip-
tion: graphical and code ones. According to the Alvis convention a graphical layer is
referred to as a communication diagram. It contains active agents drawn as rounded
boxes and passive agents drawn as rectangles. Ports used for a communication are
drawn as circles placed at edges of rounded boxes or rectangles. Alvis agents can
communicate directly with each other using communication channels. A communi-
cation channel between two agents is defined explicitly and connects two ports. It
is drawn as a line (or a broken line). An arrowhead points out an input port for a
particular connection. Communication channels without arrowheads represent pairs
of connections directed in opposite directions.

Table 1 Alvis statements in alphabetical order

Statement Description
cli Turns off the interrupts handlers.
critical {...} Define a set of statements that must be executed as a single one.
delay ms Delays an agent execution for a given number of miliseconds.
exec x = e Evaluates the expression and assign the result to the parameter;

the exec keyword can be omitted.
exit Terminates the agent that performs the statement.
if (g1) {...} Conditional statement.
elseif (g2) {...}
...
else {...}
in p Collects a signal via the port p.
in p x Collects a value via the port p and assigns it to the parameter x.
jump label Transfers the control to the line of code identified with the

label.
jump far A Transfers the control to the agent A.
loop (g) {...} Repeats execution of the contents while the guard if satisfied..
loop (every ms) {...} Repeats execution every ms miliseconds.
loop {...} Infinite loop.
null Empty statement.
out p Sends a signal via the port p.
out p x Sends a value of the parameter x via the port p; a literal value

can be used instead of a parameter.
proc (g) p {...} Defines the procedure for the port p of a passive agent. The

guard is optional.
select { Selects one of the alternative choices.
alt (g1) {...}
alt (g2) {...}
... }

start A Starts the agent A if it is in the Init state, otherwise do nothing.
sti Turns on the interrupts handlers.

228 A. Sȩdziwy, L. Kotulski, and M. Szpyrka

The code layer is used to define data types used in a considered model, functions
for data manipulation and a behavior of particular agents. The layer uses the Haskell
functional language (e.g. theHaskell type system) and native Alvis statements. Theset
of Alvis statements is given in Table 1. To simplify the syntax, the following symbols
have been used. A stands for an agent name, p stands for a port name, x stands for a
parameter,g,g1,g2,... stand for guards (Boolean conditions),e stands for an expres-
sion and ms denotes milliseconds. Each agent1 placed in a communication diagram
must be defined in the code layer and vice-versa. For more details see [12] or [13].

3.2 Communication

Before discussing the communication between agents in the lighting control system
environment let us recall some facts about the communication among agents in the
Alvis model. This communication is the synchronous one i.e. sending a message
by an agent blocks him until a message is received by a receiver agent. Alvis uses
only two statements for a communication. The in statement for receiving data and
out for sending. Each of those operations takes a port name as its first argument
and, optionally, a parameter name as the second one. A communication between
two active agents can be initialized by any of them. An initiating agent may perform
either the out statement to provide some information and wait until a second agent
receives it, or the in statement to express its readiness to receive some information
and wait until a second agent provides it.

To describe a current state of an agent, we need a record consisting of four pieces
of information:

• agent mode (am);
• program counter (pc);
• context information list (ci);
• parameters values tuple (pv).

The mode (am) is used to indicate whether an agent is running or waiting for an
event. The program counter (pc) points out the current or the next step to be ex-
ecuted. The context information list (ci) contains additional information about the
current agent’s state e.g. a name of a port used in current communication. The pa-
rameters values (pv) tuple contains values of agent’s parameters. For more details
see [12].

3.3 Communication with Environment

Alvis agent may contain ports which are not used in any connection and spec-
ified inside the environment statement [14]. Such ports are called border ports
and are used for a communication with the considered system environment (see
Section 5). Border ports can be used for both collecting or sending some

1 Precisely, non-hierarchical agent, specifically light sensor agent (LSA) introduced in the
Section 4. Hierarchical agents that are also modeled by Alvis, are not considered here.

Formal Methods Supporting Agent Aided Smart Lighting Design 229

information to an external environment. Properties of border ports are specified in
a code layer preamble with the use of the environment statement. Each border
port used as an input one corresponds to at least one in clause. Similarly, each bor-
der port used as an output one is described by at least one out clause. Each clause
inside the environment statement contains the following pieces of information:

• in or out keyword,
• the border port name,
• a type name or a list of permissible values to be sent through the port,
• a list of time points, when the port is accessible,
• optionally some modifiers: durable, queue, signal.

4 System Architecture

The graph formalism used in conjunction with distributed, parallel computations
performed by multi-agent system is the approach allowing solving various types of
problems which common property is high computational complexity. One of them
is the large scale intelligent lighting (LaSIL) problem consisting of both an opti-
mal distribution of luminaries and, in the sequel, the lighting control. The proposed
approach is applied to the LaSIL in following phases: (i) transforming an initial
problem to a centralized graph representation, (ii) decomposing this graph into a set
of subgraphs according to given criteria [15, 16] and thereby dividing an initial task
into a set of subtasks that may be solved in parallel (or almost in parallel), (iii) run-
ning designer agents deployed previously to particular subtasks. The primary goal
of designer agents is optimizing a distribution of lamps in particular subareas. After
this task is completed their objective is controlling lighting parameters to supply a
proper lumonosity, basing on the environment’s conditions.

In the LaSIL we enrich this generic schema by introducing two additional types
of agents: the light sensor agent and the broker agent. Thus the architecture of the
considered multi-agent system consists of three types of agents:

• Designer agent (DA) - which is the basic agent type, responsible for an allocation
of lighting points for a given area and adjusting their work parameters according
to given objective functions (including such parameters as luminosity levels or
a power consumption). In some circumstances a designer agent may cooperate
with other DAs, e.g. in border regions.

• Light sensor agent (LSA) - whose goal is to check luminosity levels in points
specified in received requests. Thus LSA is assumed to control its physical move-
ment and obtain data from sensors.

• Broker agent (BA) - which intermediates in communication between a designer
agent and light sensor agents.

It should be remarked that for other kinds of sensors corresponding agents may be
introduced to the system in a similar manner.

Figure 1 illustrates the architecture of relations among agents listed above. It is
assumed that a light sensor agent is composed of two subsystems, denoted as S

230 A. Sȩdziwy, L. Kotulski, and M. Szpyrka

Fig. 1 Architecture of multiagent environment

(serving) and M (motion). S subsystem plays a key role in an LSA. It processes re-
quests received from a broker agent and cooperates with M if needed. Additionally
S may request data from light sensor device L (actual luminosity level) and location
provider P (actual coordinates). If a current position cannot be determined then P
returns an error message to S. M subsystem is responsible for a physical movement
(performed by a driving unit D) of a light sensor agent. Note that dotted lines on
Figure 1 denote logical borders of particular components of an LSA and its
cooperating elements.

The LaSIL problem solution schema may be described as follows. Initially a map
of an urban area is maintained by an initiating designer agent, say A. After trans-
forming that map into a graph G, A begins a process of decomposition of G. Thus
new designer agents are created and attached to newly obtained subgraphs (one
designer agent is ascribed to one subgraph). When decomposition stops designer
agents perform a distribution of lighting points on their subareas (subgraphs). When
this phase is completed they enter the permanent phase of adjusting the work pa-
rameters of lamps, according to a given objective function. At the beginning of
this phase a designer agent deploys light sensor agents to obtain luminosity levels
in selected checkpoints. Those data are required to optimize an objective function.
Described phase is performed iteratively.

Communication between a designer agent and its LSAs is accomplished with an
intermediation of a BA. Thanks to that a workload related to communication with
sensors is removed from a designer agent.

The requests sent by a designer agent may be of two types: in the first one (READ)
a DA queries an LSA for an actual light level value in its current location. In a re-
quest of the second type (MOVE) it demands from an LSA changing its position
(by sending a list of coordinates on a requested route, a list of subsequent transi-
tions, or simply, a target coordinates). For READ request some additional parame-
ters may be provided (e.g. a timestamp). For MOVE, new coordinates are specified.

Formal Methods Supporting Agent Aided Smart Lighting Design 231

Requests of both types are delivered to embedded subsystems of an LSA via a broker
agent.

5 LSA Structure

In this section we present the process of defining the considered system, beginning
from its preliminary specification. Alvis modeling language enables an incremental
development of a system: having given system specification we may extend it by
introducing additional embedded subsystems.

Before discussing the structure of an LSA we introduce the convention concern-
ing port names. A name of a port has the form A.p, where the prefix A is an agent
name and p is a local name of a port.

Initially we assume that an LSA consists of the single embedded system S only
(see Figure 2). S contains seven border ports:

• the input port, S.l_in, collecting luminosity data consisting of a list of eight
parameters (captured by eight analog light sensors), which is assumed to work in
durable mode;

• the pair of ports, input and output ones, denoted as S.b_in (assumed to work
in signal mode) and S.b_out respectively, for receiving/sending messages
from/to a broker agent;

• the pair of ports, input and output ones, denoted as S.p_in (working in
signal mode) and S.p_out respectively, for sending/receiving messages
to/from a location provider;

• the pair of ports, S.m_in (working in signal mode)) and S.m_out to com-
municate with a device responsible for a physical movement of an LSA.

As it was mentioned above Alvis enables an extensible design, i.e. additional sub-
components of a system may be added at any level of design process. Exploiting this
property of Alvis we introduce a subsystem M intermediating between S and a driv-
ing device, and supporting the logic of movement operations. Thus a light sensor
agent consists of two embedded subsystems, denoted as S and M. After providing
M subsystem to the system description, two border ports, S.m_in and S.m_out,
get regular ones in the subsystem S. They are bound to corresponding ports of M,
M.m_out and M.m_in respectively, by two communication channels. Besides that,

Fig. 2 Initial form of the LSA

232 A. Sȩdziwy, L. Kotulski, and M. Szpyrka

environment {
in l_in [1..10] (map (100*) [1..]) durable;
in b_in [1..100] (map (100*) [1..]) signal;
in d_in [1..100] (map (100*) [1..]) signal;
out b_out [1..10] [];
out d_out [1..10] [];

}

Fig. 3 Communication diagram for LSA subsystems and border ports specification

M exposes two border ports M.d_in (working in signal mode) and M.d_out
to communicate with a driving unit. Additionally we introduce explicitly a location
provider bound to S.p_in S.p_out ports. Servicing MOVE request requires co-
operation with a location provider which supplies actual coordinates necessary to
compute a route to a destination point. Next, M subsystem processes it and controls
a driving unit accordingly on a basis of data received from a location provider. If
any unexpected situation occurs (e.g. an obstacle in a path) a driving unit returns an
appropriate error message which is forwarded to a designer agent via S subsystem
and a corresponding BA. The communication diagram of an LSA and the code layer
specifications of border ports are presented in Figure 3. Note that the incremental
design presented above shifts a system logical boundaries.

6 Formal Verification

The next step following defining system components is a formal verification of a
model and an analysis of its behavior (interactions between subsystems) by means
of LTS graphs. The objective of the operation is discovering occurrences of un-
desired states in subsystems cooperation e.g. deadlocks. The verification phase
consists of four steps:

Formal Methods Supporting Agent Aided Smart Lighting Design 233

data Task = READ | MOVE;

agent S {
x :: Task = READ:
resp :: Int = 0;
dst :: Int = 0;

loop { -- 1
in b_in x; -- 2
if(x == READ) { -- 3

in l_in y; -- 4
out b_out y; } -- 5

else { -- x == MOVE
out p_out; -- 6 query location provider
in p_in resp; -- 7 get location

if(resp /= ErrMsg) { -- 8
dst = getShift x resp -- 9
out m_out dst -- 10
in m_in y; } -- 11

else { -- current location is n/a
y = ErrMsg; } -- 12

out b_out y; -- 13
}

}

Listing 1 Code layer of agent S

agent M {
errType :: Int = 0;
req :: Int = 0;
command :: Int = 0;

loop { -- 1
in m_in req; -- 2
command = decode req; -- 3
out d_out command; -- 4
in d_in resp; -- 5

-- set errType. 0->no error
errType = decode resp; -- 6
out m_out errType; -- 7

}
}

Listing 2 Code layer of agent M

234 A. Sȩdziwy, L. Kotulski, and M. Szpyrka

agent P {
resp :: Int = 0;

loop { -- 1
in p_in; -- 2
resp = getLocation; -- 3
out p_out resp; -- 4

}
}

Listing 3 Code layer of agent P

1. Defining a code layer for agents S, M, P.
2. Generating transition diagrams LTSS, LTSM, LTSP for respectively S, M, P.
3. Merging all LTS diagrams into a single composite LTS (abbrev. CLTS), starting

from selected initial points of LTSS, LTSM, LTSP (see [17])
4. Analyzing obtained CLTS against occurrences of deadlocks or other undesired

properties.

Remark. We introduce the following indexing convention. A CLTS state obtained
from LTS states numbered by i, j,k will be indexed by a triple (i, j,k).

Alvis codes of agents S, M and P are shown in Listings 1, 2 and 3; corresponding
LTS graphs are presented in Figures 4, 5 and 6. To model a cooperation between M
and S subsystems we merge both LTS graphs in the point where S, M and subsys-
tems start to communicate with each other, namely in states 8 (for S), 1 (for M) and
1 (for P). The resultant diagram is shown in Figure 7.

The quantitative characteristics of the generated CLTS is presented in Table 2.
The number of vertices in an LTS corresponds to a number of states of a given
system/subsystem, the number of edges refers to a number of transitions between the
states. It should be emphasized that a formal verification of more complex systems,
i.e. consisting of more components described by graphs of higher orders, is hardly
possible to accomplish without an automated method of generating composite LTS
diagrams.

Table 2 Size characteristics of individual and composite LTS graphs

Graph Number of vertices Number of edges

LTSS 21 30
LTSM 11 15
LTSP 6 18
CLTS 73 146

Formal Methods Supporting Agent Aided Smart Lighting Design 235

12 :
S:(ru,8,[],[x,resp])

13 :
S:(ru,9,[],[x,resp])

LOC

20 :
S:(ru,12,[],[])

LOC_NA

6 :
S:(ru,5,[],[lightLevel])

0 :
S:(ru,1,[],[])

IN(B)

7 :
S:(wa,5,[OUT(S.B_out)],[lightLevel])

OUT(S)

15 :
S:(wa,10,[OUT(S.M_out)],[dst])

16 :
S:(ru,11,[],[])

IN(M)

2 :
S:(wa,2,[IN(S.B_in)],[])

3 :
S:(ru,3,[],[x])

OUT(B)

1 :
S:(ru,2,[],[])

LOOP(S)

18 :
S:(ru,13,[],[y])

19 :
S:(wa,13,[OUT(S.B_out)],[y])

OUT(S)

IN(S)

OUT(B)

5 :
S:(wa,4,[IN(S.L_in)],[])

OUT(L)

8 :
S:(ru,6,[],[x])

MOVE

4 :
S:(ru,4,[],[])

CAPTURE

9 :
S:(wa,6,[OUT(S.P_out)],[x])

OUT(S)

10 :
S:(ru,7,[],[x])

IN(P)

IN(P)

OUT(M)
17 :

S:(wa,11,[IN(S.M_in)],[])

IN(S)

IN(B)

14 :
S:(ru,10,[],[dst])

NULL

NULL

OUT(S)

IN(M)

OUT(M)

OUT(P)

11 :
S:(wa,7,[IN(S.P_in)],[x])

IN(S)

IN(B)

OUT(L)

IN(S)

OUT(P)

Fig. 4 LTS graph of the agent S

236 A. Sȩdziwy, L. Kotulski, and M. Szpyrka

6 :
M:(ru,5,[],[])

7 :
M:(wa,5,[IN(M.D_in)],[])

IN(M)

8 :
M:(ru,6,[],[resp])

OUT(D)

OUT(D)

0 :
M:(ru,1,[],[])

1 :
M:(ru,2,[],[])

LOOP(M)

10 :
M:(wa,7,[OUT(M.M_out)],[errType])

IN(S)

5 :
M:(wa,4,[OUT(M.D_out)],[command])

IN(D)

9 :
M:(ru,7,[],[errType])

IN(S)

OUT(M)

NULL

4 :
M:(ru,4,[],[command])

IN(D)

OUT(M)

2 :
M:(wa,2,[IN(M.M_in)],[])

3 :
M:(ru,3,[],[req])

OUT(S)

IN(M)

OUT(S)

NULL

Fig. 5 LTS graph of the agent M

As it was stated previously we assume that a communication with the driving
unit D is performed via M.d_in and M.d_out border ports of M. It implies that
a signal from of a driving D unit is required to quit the state (17,5,2). Analogously,
reading a message by a border agent B makes a system unsuspend from (19,2,2)
(see the Table 3).

Formal Methods Supporting Agent Aided Smart Lighting Design 237

3 :
P:(ru,3,[],[])

4 :
P:(ru,4,[],[resp])

NULL

5 :
P:(wa,4,[OUT(P.P_out)],[resp])

0 :
P:(ru,1,[],[])

IN(S)

1 :
P:(ru,2,[],[])

LOOP(P)

OUT(P)

IN(S) OUT(S)

2 :
P:(wa,2,[IN(P.P_in)],[])

IN(P)

OUT(S)

Fig. 6 LTS graph for the agent P

(18,2,0):
S

:(ru,13,[],[y])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,1,[],[])

(19,2,0):
S

:(w
a,13,[O

U
T(S

.B
_out)],[y])

M
:(w

a,2,[IN
(M

.M
_in)],[])

P
:(ru,1,[],[])

O
U

T(S
)

(18,2,1):
S

:(ru,13,[],[y])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,2,[],[])

LO
O

P
(P

)

(10,1,4):
S

:(ru,7,[],[x])
M

:(ru,2,[],[])
P

:(ru,4,[],[resp])

(10,1,5):
S

:(ru,7,[],[x])
M

:(ru,2,[],[])
P

:(w
a,4,[O

U
T(P

.P
_out)],[resp])

O
U

T(P
)

(10,2,4):
S

:(ru,7,[],[x])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,4,[],[resp]) IN
(M

)

(11,1,4):
S

:(w
a,7,[IN

(S
.P

_in)],[x])
M

:(ru,2,[],[])
P

:(ru,4,[],[resp])

IN
(S

)

(20,1,2):
S

:(ru,12,[],[])
M

:(ru,2,[],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

(18,1,2):
S

:(ru,13,[],[y])
M

:(ru,2,[],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

N
U

LL

(20,2,2):
S

:(ru,12,[],[])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

IN
(M

)

(16,3,0):
S

:(ru,11,[],[])
M

:(ru,3,[],[req])
P

:(ru,1,[],[])

(16,3,1):
S

:(ru,11,[],[])
M

:(ru,3,[],[req])
P

:(ru,2,[],[])

LO
O

P
(P

)

(16,4,0):
S

:(ru,11,[],[])
M

:(ru,4,[],[com
m

and])
P

:(ru,1,[],[])

N
U

LL

(17,3,0):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(ru,3,[],[req])
P

:(ru,1,[],[])

IN
(S

)

(8,1,0):
S

:(ru,6,[],[x])
M

:(ru,2,[],[])
P

:(ru,1,[],[])

(8,1,1):
S

:(ru,6,[],[x])
M

:(ru,2,[],[])
P

:(ru,2,[],[])

LO
O

P
(P

)

(8,2,0):
S

:(ru,6,[],[x])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,1,[],[])

IN
(M

)

(9,1,0):
S

:(w
a,6,[O

U
T(S

.P
_out)],[x])

M
:(ru,2,[],[])

P
:(ru,1,[],[])

O
U

T(S
)

(13,2,1):
S

:(ru,9,[],[x,resp])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,2,[],[])

(13,2,2):
S

:(ru,9,[],[x,resp])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

IN
(P

)

(14,2,1):
S

:(ru,10,[],[dst])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,2,[],[])

N
U

LL

(18,2,2):
S

:(ru,13,[],[y])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

(19,2,2):
S

:(w
a,13,[O

U
T(S

.B
_out)],[y])

M
:(w

a,2,[IN
(M

.M
_in)],[])

P
:(w

a,2,[IN
(P

.P
_in)],[])

O
U

T(S
)

(12,2,1):
S

:(ru,8,[],[x,resp])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,2,[],[])

LO
C

(20,2,1):
S

:(ru,12,[],[])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,2,[],[])

LO
C

_N
A

(12,2,2):
S

:(ru,8,[],[x,resp])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

IN
(P

)

(19,2,1):
S

:(w
a,13,[O

U
T(S

.B
_out)],[y])

M
:(w

a,2,[IN
(M

.M
_in)],[])

P
:(ru,2,[],[])

LO
O

P
(P

)

(15,1,2):
S

:(w
a,10,[O

U
T(S

.M
_out)],[dst])

M
:(ru,2,[],[])

P
:(w

a,2,[IN
(P

.P
_in)],[])

(16,3,2):
S

:(ru,11,[],[])
M

:(ru,3,[],[req])
P

:(w
a,2,[IN

(P
.P

_in)],[])

O
U

T(S
)

(16,5,2):
S

:(ru,11,[],[])
M

:(w
a,4,[O

U
T(M

.D
_out)],[com

m
and])

P
:(w

a,2,[IN
(P

.P
_in)],[])

(17,5,2):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(w
a,4,[O

U
T(M

.D
_out)],[com

m
and])

P
:(w

a,2,[IN
(P

.P
_in)],[])

IN
(S

)

(16,4,2):
S

:(ru,11,[],[])
M

:(ru,4,[],[com
m

and])
P

:(w
a,2,[IN

(P
.P

_in)],[])

O
U

T(M
)

(17,4,2):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(ru,4,[],[com
m

and])
P

:(w
a,2,[IN

(P
.P

_in)],[])

IN
(S

)

(9,1,1):
S

:(w
a,6,[O

U
T(S

.P
_out)],[x])

M
:(ru,2,[],[])

P
:(ru,2,[],[])

(10,1,3):
S

:(ru,7,[],[x])
M

:(ru,2,[],[])
P

:(ru,3,[],[])

O
U

T(S
)

(9,2,1):
S

:(w
a,6,[O

U
T(S

.P
_out)],[x])

M
:(w

a,2,[IN
(M

.M
_in)],[])

P
:(ru,2,[],[])

IN
(M

)

(14,2,0):
S

:(ru,10,[],[dst])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,1,[],[])

IN
(M

)
LO

O
P

(P
)

(17,4,0):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(ru,4,[],[com
m

and])
P

:(ru,1,[],[])

(17,4,1):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(ru,4,[],[com
m

and])
P

:(ru,2,[],[])

LO
O

P
(P

)

(17,5,0):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(w
a,4,[O

U
T(M

.D
_out)],[com

m
and])

P
:(ru,1,[],[])

O
U

T(M
)

(12,2,0):
S

:(ru,8,[],[x,resp])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,1,[],[])

LO
O

P
(P

)

(20,2,0):
S

:(ru,12,[],[])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,1,[],[])

LO
C

_N
A

(13,2,0):
S

:(ru,9,[],[x,resp])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,1,[],[])

LO
C

IN
(P

)
O

U
T(S

)

(17,3,2):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(ru,3,[],[req])
P

:(w
a,2,[IN

(P
.P

_in)],[])

N
U

LL

N
U

LL
LO

O
P

(P
)

(16,4,1):
S

:(ru,11,[],[])
M

:(ru,4,[],[com
m

and])
P

:(ru,2,[],[])

N
U

LL

(17,3,1):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(ru,3,[],[req])
P

:(ru,2,[],[])

IN
(S

)
IN

(P
)

(12,1,0):
S

:(ru,8,[],[x,resp])
M

:(ru,2,[],[])
P

:(ru,1,[],[])

O
U

T(P
)

(10,2,5):
S

:(ru,7,[],[x])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(w
a,4,[O

U
T(P

.P
_out)],[resp])

IN
(M

)

(14,1,2):
S

:(ru,10,[],[dst])
M

:(ru,2,[],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

O
U

T(S
)

(14,2,2):
S

:(ru,10,[],[dst])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

IN
(M

)

(8,2,2):
S

:(ru,6,[],[x])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

(10,2,3):
S

:(ru,7,[],[x])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,3,[],[])

IN
(P

)

(16,5,0):
S

:(ru,11,[],[])
M

:(w
a,4,[O

U
T(M

.D
_out)],[com

m
and])

P
:(ru,1,[],[])

(16,5,1):
S

:(ru,11,[],[])
M

:(w
a,4,[O

U
T(M

.D
_out)],[com

m
and])

P
:(ru,2,[],[])

LO
O

P
(P

)
IN

(S
)

IN
(M

)

(19,1,2):
S

:(w
a,13,[O

U
T(S

.B
_out)],[y])

M
:(ru,2,[],[])

P
:(w

a,2,[IN
(P

.P
_in)],[])

O
U

T(S
)

(11,2,4):
S

:(w
a,7,[IN

(S
.P

_in)],[x])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,4,[],[resp])

IN
(S

)
O

U
T(P

)

IN
(P

)
O

U
T(M

)
IN

(S
)

IN
(P

)

(17,5,1):
S

:(w
a,11,[IN

(S
.M

_in)],[])
M

:(w
a,4,[O

U
T(M

.D
_out)],[com

m
and])

P
:(ru,2,[],[])

IN
(S

)

(13,1,0):
S

:(ru,9,[],[x,resp])
M

:(ru,2,[],[])
P

:(ru,1,[],[])IN
(M

)

(13,1,1):
S

:(ru,9,[],[x,resp])
M

:(ru,2,[],[])
P

:(ru,2,[],[])

LO
O

P
(P

)

(14,1,0):
S

:(ru,10,[],[dst])
M

:(ru,2,[],[])
P

:(ru,1,[],[])

N
U

LL

(18,1,1):
S

:(ru,13,[],[y])
M

:(ru,2,[],[])
P

:(ru,2,[],[])IN
(M

)
IN

(P
)

(19,1,1):
S

:(w
a,13,[O

U
T(S

.B
_out)],[y])

M
:(ru,2,[],[])

P
:(ru,2,[],[]) O

U
T(S

)

(15,1,0):
S

:(w
a,10,[O

U
T(S

.M
_out)],[dst])

M
:(ru,2,[],[])

P
:(ru,1,[],[])

O
U

T(S
)

(15,1,1):
S

:(w
a,10,[O

U
T(S

.M
_out)],[dst])

M
:(ru,2,[],[])

P
:(ru,2,[],[]) LO

O
P

(P
)

(20,1,1):
S

:(ru,12,[],[])
M

:(ru,2,[],[])
P

:(ru,2,[],[])

IN
(P

)
N

U
LL

IN
(M

)

O
U

T(M
)

IN
(P

)

N
U

LL
IN

(P
)

LO
O

P
(P

)
N

U
LL

IN
(M

)
LO

C

(12,1,1):
S

:(ru,8,[],[x,resp])
M

:(ru,2,[],[])
P

:(ru,2,[],[])

LO
O

P
(P

)

(20,1,0):
S

:(ru,12,[],[])
M

:(ru,2,[],[])
P

:(ru,1,[],[])

LO
C

_N
A

N
U

LL
IN

(M
)

(11,1,3):
S

:(w
a,7,[IN

(S
.P

_in)],[x])
M

:(ru,2,[],[])
P

:(ru,3,[],[])

IN
(S

)

LO
C

LO
C

_N
A

(18,1,0):
S

:(ru,13,[],[y])
M

:(ru,2,[],[])
P

:(ru,1,[],[])

IN
(M

)
LO

O
P

(P
)

(19,1,0):
S

:(w
a,13,[O

U
T(S

.B
_out)],[y])

M
:(ru,2,[],[])

P
:(ru,1,[],[])

O
U

T(S
)

O
U

T(S
)

(8,1,2):
S

:(ru,6,[],[x])
M

:(ru,2,[],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

IN
(P

)

(8,2,1):
S

:(ru,6,[],[x])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,2,[],[])

IN
(M

)

(14,1,1):
S

:(ru,10,[],[dst])
M

:(ru,2,[],[])
P

:(ru,2,[],[])

IN
(P

)
IN

(M
)

O
U

T(S
)

IN
(S

)
IN

(M
)

(9,2,0):
S

:(w
a,6,[O

U
T(S

.P
_out)],[x])

M
:(w

a,2,[IN
(M

.M
_in)],[])

P
:(ru,1,[],[])

O
U

T(S
)

LO
O

P
(P

)

LO
O

P
(P

)

IN
(P

)
IN

(S
)

O
U

T(M
)

LO
O

P
(P

)

(11,2,3):
S

:(w
a,7,[IN

(S
.P

_in)],[x])
M

:(w
a,2,[IN

(M
.M

_in)],[])
P

:(ru,3,[],[])

N
U

LL

IN
(P

)
N

U
LL

LO
O

P
(P

)
IN

(M
)

IN
(M

)
IN

(P
)

IN
(P

)

IN
(M

)
LO

C
_N

A

(12,1,2):
S

:(ru,8,[],[x,resp])
M

:(ru,2,[],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

IN
(P

)
LO

C

IN
(S

)

N
U

LL

IN
(M

)
N

U
LL

LO
O

P
(P

)

IN
(M

)
LO

O
P

(P
)

N
U

LL

IN
(M

)
IN

(P
)

N
U

LL
IN

(S
)

LO
C

_N
A

IN
(M

)

(13,1,2):
S

:(ru,9,[],[x,resp])
M

:(ru,2,[],[])
P

:(w
a,2,[IN

(P
.P

_in)],[])

LO
C

IN
(M

)
N

U
LL

IN
(P

)

IN
(M

)

IN
(M

)
IN

(P
)

O
U

T(P
)

IN
(P

)
O

U
T(S

)

N
U

LL
IN

(M
)

IN
(M

)
LO

O
P

(P
)

IN
(M

)
O

U
T(S

)
LO

O
P

(P
)

LO
O

P
(P

)

O
U

T(S
)

N
U

LL

N
U

LL
IN

(S
)

N
U

LL
IN

(M
)

O
U

T(M
)

IN
(P

)
O

U
T(S

)

Fig. 7 Composite LTS graph for S, M and P. A state label is a triple consisting of ordinal
numbers of states of S, M and P in their individual LTS graphs

238 A. Sȩdziwy, L. Kotulski, and M. Szpyrka

Table 3 Details of "suspended" states of the CLTS

CLTS
state

(17,5,2) (19,2,2)

S state (wa,11,[in(S.m_in)],[]) (wa,13,[out(S.b_out)],[y])
M state (wa,4,[out(M.d_out)],[command])(wa,2,[in(M.m_in)],[])
P state (wa,2,[in(P.p_in)],[]) (wa,2,[in(P.p_in)],[])

7 Conclusions

Alvis language is the tool enabling flexible modeling of multiple cooperating
embedded systems. It allows for creating a complete formal specification of such
systems, containing a communication diagram, a code layer and individual and com-
posite state diagrams (i.e. obtained by merging individual LTSs). Another important
feature of Alvis is the possibility of extending a system description at any level of
a design process. Thus we are able to operate on border (stub) ports and next re-
place them with given embedded systems. For these reasons Alvis was chosen for
describing the cooperation between a multiagent system solving a large scale design
problem and other devices (agents) playing auxiliary roles in a system. In the paper
the light sensor agent example was discussed but similar schema is applicable to
other entities mentioned in Section 1.

Acknowledgements. The paper is supported from the resources of Alive & KIC-ing project
and NCBiR grant no O ROB 002101/ID 21/2.

References

1. Baumgart, S., Toledo, B., Spors, K., Schimmler, M.: PLUG: An Agent Based Prototype
Validation of CAD-Constructions. In: IKE, pp. 183–190 (2006)

2. Yabuki, N., Kotani, J., Shitani, T.: A Cooperative Design Environment Using Multi-
Agents and Virtual Reality. In: Luo, Y. (ed.) CDVE 2004. LNCS, vol. 3190, pp. 96–103.
Springer, Heidelberg (2004)

3. Shitani, T., Yabuki, N.: A concrete bridge design system using multi-agents. In: Abra-
ham, A., Dote, Y., Furuhashi, T., Köppen, M., Ohuchi, A., Ohsawa, Y. (eds.) Soft
Computing as Transdisciplinary Science and Technology. Advances in Soft Computing,
vol. 29, pp. 695–704. Springer, Heidelberg (2005)

4. Ligong, X., Zude, Z., Quan, L.: Multi-agent architecture for collaborative cad system. In:
Proceedings of the 2008 International Conference on Computer Science and Information
Technology. ICCSIT 2008, pp. 7–11. IEEE Computer Society, Washington, DC (2008)

5. Kotulski, L., Strug, B.: Distributed Adaptive Design with Hierarchical Autonomous
Graph Transformation Systems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS 2007. LNCS, vol. 4488, pp. 880–887. Springer, Heidelberg (2007)

6. Sędziwy, A., Kotulski, L.: Solving large-scale multipoint lighting design problem using
multi-agent environment. Key Engineering Materials 486, 182–197 (2011)

Formal Methods Supporting Agent Aided Smart Lighting Design 239

7. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The koala component
model for consumer electronics software. Computer (33), 78–85 (2000)

8. Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing advanced features in a hierarchical
component model. In: Proceedings of the Fourth International Conference on Software
Engineering Research, Management and Applications, pp. 40–48. IEEE Computer Soci-
ety, Washington, DC (2006)

9. OW2_Consortium: The fractal project, http://fractal.ow2.org
10. Borde, E., Carlson, J.: Towards verified synthesis of procom, a component model for real-

time embedded systems. In: Proceedings of the 14th International ACM Sigsoft Sympo-
sium on Component Based Software Engineering, CBSE 2011, pp. 129–138. ACM, New
York (2011)

11. Szpyrka, M., Matyasik, P., Mrówka, R., Kotulski, L.: Formal modeling and verification
of concurrent system with alvis. International Journal of Applied Mathematics and Com-
puter Science (to appear, 2012)

12. Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis – Modelling Language for Concurrent
Systems. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds.) Intelligent Decision
Systems in Large-Scale Distributed Environments. SCI, vol. 362, pp. 315–341. Springer,
Heidelberg (2011)

13. Szpyrka, M.: Alvis on-line manual (2011),
http://fm.ia.agh.edu.pl/alvis:manual

14. Szpyrka, M., Matyasik, P., Mrówka, R., Kotulski, L.: Communication with environment
in Alvis models. International Journal of Electronics and Telecommunications (to appear,
2012)

15. Kotulski, L., Sędziwy, A.: Gradis - the multiagent environment supported by graph
transformations. Simulation Modelling Practice and Theory 18(10), 1515–1525 (2010);
Simulation-based Design and Evaluation of Multi-Agent Systems

16. Kotulski, L., Sędziwy, A.: On the Effective Distribution of Knowledge Represented by
Complementary Graphs. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C.
(eds.) KES-AMSTA 2010. LNCS, vol. 6070, pp. 381–390. Springer, Heidelberg (2010)

17. Kotulski, L., Szpyrka, M., Sędziwy, A.: Labelled Transition System Generation from
Alvis Language. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J.,
Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 180–189. Springer, Heidelberg
(2011)

http://fractal.ow2.org
http://fm.ia.agh.edu.pl/alvis:manual

Computational Support for Optimizing Street
Lighting Design

Adam Sȩdziwy and Magdalena Kozień-Woźniak

Abstract. The design of an urban area lighting has to preserve compliance with
existing standards and regulations but also satisfy non-formalized rules related to
the functionality, reliability or energy efficiency. The next important step following
the design process is ensuring the optimal performance of a lighting system. It may
be accomplished by a suitable system control. Such a formulation of a problem
implies the high computational complexity of the design tasks. For that reason it’s
necessary to develop an approach allowing to overcome the complexity problem.
This article presents main factors determining the street lighting design and on the
other side the formal methods providing an effective support in a design process.

1 Introduction

Intelligent street lighting systems make the important contribution to smart grid so-
lutions. Thanks to them we are able to fit the actual end users demands and thereby
minimize related energy consumption. Optimization of lighting performance may
be made in two aspects. The first one is designing a distribution of lighting points,
oriented for esthetic objectives and guaranteeing a suitable luminosity levels with
minimal power supply. The second aspect concerns an intelligent control of a light-
ing system. Such a control is supported by the infrastructure layer (e.g. light sensors)
but also computational methods capable of huge data processing, environment state
predicting, decision making and so on.

Adam Sȩdziwy
AGH University of Science and Technology, Department of Automatics, al. Mickiewicza 30,
30-059 Kraków, Poland
e-mail: sedziwy@agh.edu.pl

Magdalena Kozień-Woźniak
Cracow University of Technology, Faculty of Architecture, ul.Warszawska 24, gmach WA,
31-155 Kraków, Poland
e-mail: magdalena.kozien@kozien.pl

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 241–255.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

242 A. Sȩdziwy and M. Kozień-Woźniak

It should be emphasized that designing a distribution of luminaries in an urban
area can’t be perceived as an optimization problem only. It’s constrained by lighting
design standards and good practices.

A typical process of the lighting design is aided by various tools (AutoCAD, 3ds
Max, SketchUp, Dialux etc.) which are used dependently on the actual task such
as design, visualization, making quantitative photometric characteristics of an area.
The difficulty arises when an architect has to verify multiple variants of a design,
corresponding for example to configuration of lamps or their parameters.

The idea of the support for creating lighting solutions may be found in [1]. It is
the computer simulation environment of an adaptive illumination facility, where the
considered area description is based on cellular structures, namely Situated Cellular
Agents and Dissipative Multilayered Automata Network. Its functionality enables a
simulation of an end product and some limited control capabilities rather than the
support in the design phase.

The goal of this paper is twofold: 1) to present major issues related to a light-
ing design in the context of intelligent street lighting solutions 2) to define the
formalism necessary for developing computational methods supporting a design
process.

The article is organized as follows. In the next section we characterize main as-
pects of the lighting design taking into account a diversity of possible design so-
lutions. In the Section 3 the comprehensive system model is provided. It contains
the schema of computations and definitions of the underlying graph structures. The
linkage between a designer and a supporting computational system is described in
the Section 4. The final remarks are contained in the Section 5.

2 Architectural Background of Design Problem

Designing illumination in the city may be considered with reference to intelligent
systems in two aspects: intelligent systems as designing tools and intelligent systems
as the subject of a design.

2.1 The Supported Design of Illumination

The design of an illumination supported by intelligent information systems gives a
chance of introducing solutions for problems of a high level of complexity or groups
of variant solutions. Support can be related to an analysis of harmony between ru-
minations and the designing rules and assumptions, their effectiveness, economy,
energy-saving.

Intelligent systems support a designers work and may serve:

• computer-aided design based upon the collection of initial data,
• verification of solutions,
• optimization of solutions,

Computational Support for Optimizing Street Lighting Design 243

• visualization and presentation of a design,
• simulation of the performance of an illumination.

Intelligent systems can be also introduced in activities including the choice of lamps
and luminaries, their power, color, distribution angle etc. as well as the design of
a layout of lamps and the distances between them, their composition, rhythm or
control. Designing the illumination of roads, pavements and squares, based on the
binding rules and individual needs, includes the distribution of luminous points, the
delimitation of the height of street lamps and the spaces between them, the choice
of the intensity and quality of lamps. Street luminaries, park luminaries on tall posts
and short posts, wall lights, luminaries for earth constructions, luminaries for under-
water installations etc. are designed.

Design aims at securing the illumination of public spaces in the city at night as
well as preserving the energy efficiency and economy of solutions so that staying
and moving in these spaces could be safe and comfortable. The basic assignments
for artificial illumination in the city is to guarantee its safe usage and to support
orientation in an urban space.

Securing the safety of moving in streets, squares and pedestrian crossings is re-
lated to two areas: the safety of movement and personal safety. The threshold param-
eters of illumination are strictly regulated [3, 12]. The kind and number of applied
luminaries mostly depends on the adopted class of illumination. It is defined on the
basis of an analysis of a lighting situation related to the kind and number of its
users. The following elementary classes are distinguished: for traffic with medium
and high speeds (ME), for traffic in conflict areas, such as intersections or round-
abouts (CE), for pedestrian and bicycle sequences (S, A). Other classes of subordi-
nate character are distinguished when it is necessary to identify people and objects,
when there is a risk of violating the rules, in order to decrease the feeling of uncer-
tainty (ES) or the need for seeing vertical surfaces (EU). Tables 01 and 02 present
the list of ME and CE classes. The required parameters are defined depending on
the class of illumination. These are the basic parameters:

• road surface luminance (for ME classes - see Tab.1),
• illuminance on a road area (for CE, S classes - see Tab.2),
• semi-cylindrical illuminance for the height of 1.5 m (for A, ES classes),
• vertical plane illuminance (for EU classes).

Classes of brightness and the illumination rate are also defined to reduce distract-
ing illumination. The level of luminance depends on: the power of an installed
lamp, the characteristics of light distribution, the location of luminaire. The more
a lamp protrudes above a road area, the higher its luminance is; the lower a lamp
is set, the higher its luminance gets. However, this causes more brightness and less
evenness the design of illumination means a search for an optimal solution with
the least possible costs of installation and maintenance as well as higher effective-
ness of luminaries. Luminance changes depending on the atmospheric conditions.
Computer-aided design in the field of controlling parameters required by the rules
makes it possible to use some complex calculative methods without introducing any
simplifications.

244 A. Sȩdziwy and M. Kozień-Woźniak

Table 1 ME lighting classes according to DIN EN 13201-2

Class Road luminance in case of dry road surface Threshold
value

Ambient
illumi-
nance
ratio

Lw cd/m2 Uo UI T/w %a SR2
b

[maintenance
value]

[minimum
value]

[minimum
value]

[maximum
value]

[minimum
value]

ME1 2.0 0.4 0.7 10 0.5
ME2 1.5 0.4 0.7 10 0.5
ME3a 1.0 0.4 0.7 15 0.5
ME3b 1.0 0.4 0.6 15 0.5
ME3c 1.0 0.4 0.5 15 0.5
ME4a 0.75 0.4 0.6 15 0.5
ME4b 0.75 0.4 0.5 15 0.5
ME5 0.5 0.35 0.4 15 0.5
ME6 0.3 0.35 0.4 15 -

a 5% higher admissible for lamps with low luminance

b This criterion is only to be used if no traffic surfaces with own photometric requirements are next to the road

Table 2 Table 02 CE lighting classes according to DIN EN 13201-2

Class Horizontal illuminance

Ew lx Uo
[maintenance
value]

[minimum
value]

CE0 50 0.4
CE1 30 0.4
CE2 20 0.4
CE3 15 0.4
CE4 10 0.4
CE5 7.5 0.4

This survey ascribes the source of the complexity of the problem of design to
the multitude of parameters taken into account: classes of the illumination of spaces
under consideration (Tab. 1, 2), kinds of luminaire (e.g. Trilux proposes 13 kinds of
street luminaries which may be configured in 6-74 ways depending on the manner of
installing lamps; Fig. 1 shows the photometric data of a sample luminaire), the man-
ners of installation, work characteristics etc. Optimizing algorithms which act on the
basis of some settled criteria, concerning both the technological and economic as-
pect (accordance with the norms, the costs of maintenance) and the esthetical and
functional aspect, should make significant support in this process. Artificial light
facilitates effective functioning after dusk. The perception of a public space in a city
after dusk uses it as the main medium. Orientation in an urban space is related to

Computational Support for Optimizing Street Lighting Design 245

various categories of spatial references, namely: transport sequences, variously
shaped closed forms districts, outskirts, nodes, single architectural landmarks. Light
is a medium which shapes a space it shows spaces and objects as well as creates their
emotional climate. There is a tendency to reduce diffused light called night protec-
tion and preserve the impression of nighttime.

Apart from objective, quantitative and qualitative functional respects, illumina-
tion should also satisfy requirements concerning environmental, social and eco-
nomic aspects. At the same time, illumination plays the following roles: strength-
ening the individuality and identity of places in the city, supporting its promotion
by shaping moods, arousing esthetic sensations and the feeling of pleasure. They
are related to a suitable choice of these and other parameters (e.g. light color, the
appearance of luminaire) depending on the individual features of a place (related
to restoration etc.). Light is an architectural material. The manner of perceiving a
space changes together with the angle, intensity and color of light. Through the
kind of applied light, its color, the degree of rendering colors, the manner and type
of adopted luminaire, an urban interior assumes some unique features influencing a
recipients mood and arousing the sensation of pleasure or comfort. The possibilities
of acquiring the unique character of a given place is broadened by a combination
of street illumination with object illumination which uses the decorative values of
buildings and the richness of botanical motifs in parks.

Various lamps are used: bulbs, halogen lamps, tubular fluorescent lamps, mer-
cury vapour lamps, metal halide lamps, sodium vapour lamps, optical fibres, light-
emitting diodes (LEDs). They render different shades and levels of colors. They
can be used in layouts with motion detectors (bulbs, halogen lamps, LEDs); they
save energy (tubular fluorescent lamps, metal halide lamps, sodium vapour lamps,

Fig. 1 Outdoor luminaire
series Lumega by Trilux -
selected data tables

246 A. Sȩdziwy and M. Kozień-Woźniak

LEDs). Control is applied to facilitate a dynamic change in the color of diodes
(LEDs); lighting stages (LEDs) (see [17]) that change in time are used in RGB
or AWB colors. The impact of the objective circumstances on a spectators subjec-
tive impressions (the proportions of a space, the basic dimensions of a space, the
character of bodies and planes shaping a space, the participation of greenery in this
impact, the character of perception cursory, contemplative) is taken into considera-
tion, too. Computer renderings make it possible to verify and present the intended
effects.

A designer ought to aim at minimizing electric energy consumption and preserv-
ing parameters required by the rules as well as optimizing solutions which real-
ize other guidelines. Intelligent systems of design may serve to calculate predicted
electric energy consumption, the possibility of savings, introducing interchangeable
solutions, the costs of installation and maintenance.

2.2 The Assignment of Optimal Control

The issue of designing illumination in the city can be considered with reference to
intelligent systems as the subject of a design. In this case, intelligent systems are
introduced in a designing solution in order to manage illumination. These systems
give a chance of introducing some advanced technical solutions, using dynamic
illumination, optimizing the costs of maintenance, increasing energy efficiency and
limiting an unfavourable impact on the environment (reduced CO2 emission).

In illumination management, the work of an entire layout, some of its parts or
each lamp can be controlled. It is possible to control the functioning of each lamp
through smooth regulation of its luminous flux depending on road users needs, es-
pecially with reference to LED lamps which practically offer a smooth scale of
illuminance. On the other hand, changes of this illuminance take place immediately
without any additional energy loss as it happens in the case of CFL lamps. Illumi-
nance changes with the weather conditions, the intensity of traffic, time modes based
on information received from meteorological stations or illuminative cameras. Con-
nections with alarm systems, supporting a layout in changeable and complex condi-
tions, are introduced. Optimal illumination management aims at reducing the costs
of maintenance and installation as well as satisfying the inhabitants and users needs
in their various aspects. Such solutions include interactive darkening which mini-
mizes the costs without deteriorating safety. Control can comprise the brightness of
a lamp (darkening), turning on/off, changing luminous layouts or sequences. The
range of control may concern one lamp (inbuilt luminaire control), a group of lamps
(e.g. street illumination in a given class), complex layouts of lighting groups with
various parameters and requirements. The broader the range of a controlling system
is, the more possibilities of changes appear:

• control of diverse illumination of interconnected streets (on account of sight
adaptation)

• control of diverse classes of illumination between neighboring areas (the differ-
ence cannot exceed two classes),

Computational Support for Optimizing Street Lighting Design 247

Factors able to change the required and expected parameters of illumination (e.g. its
intensity) are as follows:

• changes of traffic intensity considering the time of the day and night (motion
detectors, time switches),

• changes of the weather (illuminative cameras),
• time limits for illumination depending on the season (drivers with an inbuilt as-

tronomical calendar, light detectors),
• changes in the manner of maintenance related to some events in the city (e.g. an

urban square/a car park, a road/a pedestrian sequence).

One should note that the number of working modes for a single lamp (LED) gen-
erates a large space for potential designing solutions. For instance, we receive 105

possible modes for a street which includes a group of five lamps in ten modes. This
example neglects dynamics related to traffic, changeable weather conditions, the
time of the day etc.

3 Formal Model of Computations

In this section we introduce the formal model of an urban space components being
under consideration. It includes street layout (i.e. streets, squares, pavement etc.)
and adjacent buildings. As the most convenient formalism to be laid under the de-
veloped model the graph formalism was selected. Such the choice is implied by
computational features of such structures. Their properties enable using graphs in
parallel, distributed computing ([6, 7, 8]) which is the key issue of the approach.

The general idea of a lighting design support is dividing a problem into a set of
subproblems that may be solved independently or almost independently (if some
border areas overlap). Next, an agent system is deployed across the obtained set.
Particular subtasks are performed by assigned agents. The idea of employment of
agent systems to solving CAD related problems was already investigated e.g. in
constructional tasks [18], the automotive industry [2], collaborative CAD systems
[9] or the adaptive design [11].

The detailed schema of the approach is following. A city map M is transformed
into the graph G(M) which is decomposed (reversibly) into the set of subgraphs

{G(M)
i }i=1,...N . Each subgraph G(M)

i has an agent Ai ascribed which is referred to as
a designer agent. Ai may create additional, auxiliary agents {Ak

i }k=1,...M performing
computations at the level of particular objects (buildings). Figure 2 illustrates the
deployment schema. Dotted lines represent borders between particular subgraphs at
the map level. Black figures denote designer agents ({Ai}i=1,...N), dark gray ones
auxiliary agents ({Ak

i }k=1,...M) ascribed to particular subsets of buildings.
Particular designer and/or auxiliary agents are capable of solving optimization

tasks implied by an actual design problem (see the Section 2), taking into account all
imposed constraints (e.g. those included in Tables 1 and 2) . They may provide some
suggestions concerning the distribution of luminaries, an optimal configuration of
system components etc.

248 A. Sȩdziwy and M. Kozień-Woźniak

This approach introduces the parallelism and thereby allows to overcome prob-
lems related to computational complexity.

To enable a problem decomposition we need to have a suitable formal represen-
tation of a system. The most convenient one is a graph one.

A structure of an urban space area has two levels. At the first level we have a street
layout, at the second one particular buildings and other objects. Since the decom-
position of computations is made at the both levels we need to ensure a formalism
which ensure good performance of an agent system, especially with respect to the
inter-agent communication. For the street layout we use slashed form of graph rep-
resentation (see Def. 2) At the building level the hierarchical hypergraph representa-
tion for modeling the objects is used (see Subsection 3.2). The detailed description
of both graph models is presented below.

3.1 Street Layout Representation

The concept of the slashed form of a centralized graph aims reducing coupling
among subgraphs (generated by border nodes) in a distributed representation and
thereby simplify operations performed by maintaining agents in a distributed envi-
ronment. The basic idea of that approach is splitting edges rather than the multiple
replication of existing nodes of a centralized graph as it was made in RCG environ-
ment [10].

Definition 1 (Σ v,Σ e,A)-graph is a triple G = (V,E,ϕ) where V is nonempty set of
nodes, E ⊆ V × (Σ e ×A)×V is a set of directed edges, ϕ : V −→ Σ v is a labeling
function, Σ v and Σ e denote sets of node and edge labels respectively and A is a set
of edge attributes. We denote the family of (Σ v,Σ e,A)-graphs as G .

Definition 1 modifies the (Σ v,Σ e)-graph notion (see [10]). The edge structure is
changed from V ×Σ e ×V to V × (Σ e ×A)×V to enable encapsulating all required
data in edge attributes. These data include slashing details (e.g. geometric coordi-
nates) but also problem specific information (e.g. architectural details of adjacent
buildings). (Σ v,Σ e)-graph definition can be also extended e.g. by introducing an
attributing function for nodes, but such extensions will not be considered here.

Fig. 2 Agent system de-
ployment

Computational Support for Optimizing Street Lighting Design 249

Definition 2 (Slashed form of G) Let G = (V,E,ϕ) ∈ G . A set {Gi} of graphs is
defined as follows.

• Gi = (Vi,Ei,ϕi)∈ G and Vi =Ci∪Di,Ci∩Di = /0, where Ci is a set of core nodes,
Di denotes a set of dummy nodes and ϕi ≡ ϕ |Vi ,

• ⋃
iCi =V where Ci,Cj are mutually disjoint for i �= j,

• ∀v ∈ Di∃ !v′ ∈ D j(i �= j) such that v′ is the replica of v; ∀v ∈ Di deg(v) = 1,
• ∀e ∈ Ei : e is incident to at last one dummy node.

An edge incident to a dummy node is called a border edge. The set of all border
edges in Gi is denoted as Eb

i . A set Ec
i = Ei −Eb

i is referred to as a set of core edges
of Gi.

Let M = Σ e×A, then a set {Gi} as defined above is referred to as a slashed form
of G, and denoted �G, iff following conditions are satisfied:

1. ∀Gc
i = (Ci,Ec

i ,ϕi|Ci), ∃Hi ⊂ G : Hi
α� Gc

i (α denotes an isomorphic mapping be-
tween graphs) and Hi,Hj are disjoint for i �= j.

2. ∃ f : M2 → M – a bijective mapping ∀(e,e′) ∈ Eb
i ×Eb

j (i �= j) such that (i) e =
(xc,m,v) ∈ Ci ×M ×Di, e′ = (v′,m′,yc) ∈ D j ×M ×Cj, (ii) v′ is a replica of
v : ∃ !ei j = (x,me,y) ∈ E such that xc = α(x),yc = α(y) and f (m,m′) = me. ei j

is called a slashed edge associated with replicated dummy nodes v,v′.
3. ∀e= (x,m,y) ∈ E : (i)∃ !ec ∈ Ec

i for some i, such that ec =α(e) or (ii) ∃ !(v,v′)∈
Di ×D j for some i, j, such that e is a slashed edge associated with v and v′.

Gi ∈ �G is called a slashed component of G.

f mapping recovers labeling/attributing data of a slashed edge basing on a label-
ing/attributing of given border edges.

In Figure 3 the centralized and the slashed form of the given graph G are shown.
To preserve the clarity of images we neglect the attributing/labeling of graph edges.
Core nodes are marked as circles and dummy ones as squares. The following index-
ing convention is used for slashed components (see Fig. 3b). A core node index has
the form (i,k) where i is an unique, within �G, identifier of a slashed component Gi

and k is an unique, within Gi, index of this node. A dummy node index has the form
(−1,k)r where k is a globally unique identifier of a node. Additionally, a subscript
r denotes a reference to a slashed component (or its maintaining agent) hosting a
replica of a given dummy node. Using such a subscript allows for immediate local-
ization of a replica. To simplify the notation subscripts will be neglected within the
text, unless needed. Note that a dummy vertex and its replica share a common index
and differ in reference subscripts only: (−1,k)r1 ,(−1,k)r2 .

Example

The following example depicts a decomposition of the graph G representing street
layout of the square area selected from the Tokyo OpenStreetMap (OSM) map
[13] (see Fig.4a). The selection size is 4km2. For the clarity of the Figure 4b we
zoomed only the fragment of the graph G. This graph represents layer consisting
of highway-tagged objects only. The number of vertices of G is |V | = 2779, the

250 A. Sȩdziwy and M. Kozień-Woźniak

6

7

3

5

2
1

4

(a)

(2,5)

(1,1)

(2,3)

(2,2)

(−1,3)2

(−1,1)2 (−1,1)1

(1,2)

(−1,2)1(−1,2)2

(2,4)(−1,3)1

(2,1)

(b)

Fig. 3 (a) Graph G (b) �G representation

(a) (b)

Fig. 4 (a) Selection from Tokyo city plan (source: www.osm.org) (b) Distributed graph rep-
resentation of the street layer of the map 4a

number of edges |E|= 3252. After obtaining the graph from the OSM map we made
the rough decomposition (based on BFS algorithm) of G into 137 slashed compo-
nents having at most 50 vertices. The total number of interconnections between the
slashed components was 460 i.e. approximately 3.4 per a slashed component.

3.2 Representation of Objects

The formal background for the level 2 description, related to physical objects
(solids) like buildings consists of two notions: the face adjacency hypergraph (FAH)
and the hierarchical face adjacency hypergraph (HFAH) [4]. Formal definitions of
both structures were introduced in [16]. Here only the short outline will be given.

Hypergraphs belonging to the FAH family denoted as HFA, model simple objects
like single buildings. A face adjacency hypergraph is a tuple of the form

Computational Support for Optimizing Street Lighting Design 251

G = (N,A,H, labN , labA, labH ,attN ,attA,attH) ∈ HFA,

where N is a nonempty set of nodes (solid faces), A ⊂ P2(N) is a nonempty set of
edges (solid edges), H ⊂⋃

i>2 Pi(N) is a nonempty set of hyperarcs (solid vertices),
labμ : μ →Lμ for μ =N,A,H is a labeling function for vertices, arcs and hyperarcs
respectively with corresponding set of labels Lμ ; attμ : μ → Aμ for μ = N,A,H is
an attributing function for vertices, arcs and hyperarcs respectively with correspond-
ing set of attributes Aμ . Attributing functions attN ,attA,attH contain complete data
related to geometric features of a solid. This assumption, influencing structures of
AN ,AA and AH , is imposed.

Example

Let us consider the cuboid S presented in Figure 5a with faces denoted by u1, . . .u6.
For that solid we have following hypergraph representation (see Fig.5b) H =
(N,A,H, labN , labA, labH ,attN ,attA,attH), where:

• N = {u1, . . .u6},
• the set A consists of pairs of nodes which correspond to faces which form par-

ticular edges of S: A = {{u1,u3}, {u1,u4}, {u1,u5},{u1,u6}, {u2,u3}, {u2,u4},
{u2,u5}, {u2,u6}, {u3,u5}, {u3,u6}, {u4,u5}, {u4,u6}},

• the set H consists of tuples of nodes which correspond to faces meeting in
a given vertex of S: H = {{u1,u3,u5}, {u1,u3,u6}, {u2,u3,u5}, {u2,u3,u6},
{{u1,u4,u5}, {u1,u4,u6}, {u2,u4,u5}, {u2,u4,u6}},

• attributing functions carry geometric characteristics of entities:

– attN : N � p → Coordinates of vertices of the face represented by p,
– attA : A � {p,q}→ Coordinates of endpoints of the physical edge common

for p and q,

v1

v2

v3

v4

v5

v6

v7

v8

u1 u2

u3

u4

u5

u6

(a)

u4

u5 u1

u3

u2

u6

(b)

Fig. 5 (a) Cuboid – the sample solid (b) Hypergraph representation of cuboid shown in Fig.5a

252 A. Sȩdziwy and M. Kozień-Woźniak

– attH : H � {p1, p2, . . . pk}→ Coordinates of the physical vertex common
for p1, p2, . . . pk.

For the clarity only hypergraph vertices are labeled in Figure 5b. Edges are drawn
with the solid line and hyperedges with the dotted one.

To extend the applicability of the hypergraph notation to complex objects we
use the notion of a HFAH which allows for modeling complex objects consisting
of multiple coupled solids. The kind of coupling is not strictly determined: simple
objects may either physically contact or remain in some distance.

A graph g∗ = (H ,T) belonging to the family of HFAHs denoted as HT , is a
tree T which vertices are from the set H ⊂ HFA. Additionally we introduce the
edge attributing function attE such that attE(e ∈ E(T)) gives a full specification of
coupling between solids represented by nodes incident to e.

Example

In Fig.6a the example of a composite solid, named S, is shown. One can distinguish
three component of S with corresponding FAHs denotes as G0,G1,G2. The HFAH
describing S has the form g∗ = ({G0,G1,G2},T) where the tree T is presented in
Fig.6b. The cuboid associated with G0 is the root component of T while child nodes
G1 and G2 represent small cubes of S adjacent to the large one. Attributes a1,a2

specify the relationships between corresponding hypergraphs’ nodes (i.e. faces of
solids).

Let g∗ = (H ,T) ∈ HT , where T = (H ,E,attE). Removing any edge e ∈ E
form T causes that it splits into two disjoint subtrees, say T1 and T2, such that g∗i =
(H ,Ti)∈HT for i= 1,2. The process may be continued recursively until we obtain
a set of individual nodes representing particular FAHs.

Subtrees of a tree representing a composite solid, determine natural borders for
the problem decomposition being prior to an agent system deployment. For example
in the Figure 6b the dotted lines suggest the decomposition for three subproblems
related to respectively G0, G1 and G2.

G1

G0

G2

(a)

G0

G1 G2

a1 a2

(b)

Fig. 6 (a) Complex object – S (b) HFAH tree of S

Computational Support for Optimizing Street Lighting Design 253

3.3 Linkage between Model Levels

The graph and hypergraph representations introduced for streets and buildings in
previous sections should be linked formally to obtain the comprehensive system
model. Let G = (V,E,ϕ) ∈ G be the (Σ v,Σ e,A)-graph. The key issue is defining the
structure of the set of attributes A. We assume that

A � a
de f
= (C(a),{(c(a)i ,g∗(a)i)}i=1,...,Na),

where C(a) is the set of coordinates which describe completely geometric features

of a relevant edge (the structure of C(a) may be neglected now) and (c(a)i ,g∗(a)i) is

a pair consisting of the HFAH g∗(a)i representing a subset of buildings adjacent to

a relevant street and the parameter c(a)i specifying the physical location of a root

component of g∗(a)i .

4 Moving Formal Model to Application Level

From the designer’s perspective our model is intended to play two roles. First is
exploring a space of solutions. As it was explained before its out of the human reach
to find and investigate all acceptable scenarios in a reasonable time. The second
role is providing some architectural suggestions especially in the initial phase of a
design process. Note that such suggestions may be generated on the basis of prior
(archival) solutions. Using artificial intelligence methods enables preparing such the
samples-based suggestions, profiled for a given problem context.

Since a human makes an ultimate decision which variant of a suggested solution
to choose (or how to combine or modify them), we can say about the Human Aided
Design (HAD).

To enable transforming expectations and demands of professionals into computer
(algorithmic) actions one has to structure the domain of a problem. As it was re-
marked in the Section 3, the graph model was selected for this purpose. Besides
the mentioned advantages it provides the scalability. Also the specification of ar-
chitect’s requirements imposes defining the language which allows to express those
requirements in terms applicable in used algorithms.

The generic schema (Fig. 7) of HAD illustrates interaction between an ar-
chitect creating a lighting design and the system supporting the design process,
presented in the paper (note that Fig. 7 doesn’t contain neither in-process it-
erative interactions nor the scenario of suggesting a start point solution for a
design).

The basic role of a human in this schema is preparing an architectural model
of a considered area (e.g. in AutoCAD) and define objectives for a design. Those
objectives are determined by at least tree factors: lighting standards (see Tables 1,
2 or [12]) – luminosity levels have to satisfy norms, energy saving constraints –
minimizing power consumption and other non normative requirements, in partic-
ular esthetical ones. Basing on a CAD model the relevant graph representation is

254 A. Sȩdziwy and M. Kozień-Woźniak

Fig. 7 The role of support-
ing system in the design
process

generated and decomposed. On the other side design objectives are supplied to an
agent system which is deployed on distributed graph to find an optimal solution.
Finally, such a solution is returned to an architect.

5 Conclusions

In the paper we outlined main factors determining the design of lighting solutions
in urban spaces. It is constrained by normative requirements but also functional
and esthetic demands. The additional question related to the economic aspect of
a solution is designing the optimal system control. In this case one has take into
account except existing lighting standards but also the energy saving performance.
For supporting a process of selecting an optimal solution from a numerous set of
variants we propose distributed, agent-based computations and the formal model
of underlying structures describing an urban area. The schema of such a supported
design task was discussed.

Acknowledgements. The paper is supported from the resources of Alive & KIC-ing project
and NCBiR grant no O ROB 002101/ID 21/2.

References

1. Bandini, S., Bonomi, A., Vizzari, G., Acconci, V.: Self-organization models for adaptive
environments: Envisioning and evaluation of alternative approaches. Simulation Model-
ing Practice and Theory 18(10), 1483–1492 (2010)

Computational Support for Optimizing Street Lighting Design 255

2. Baumgart, S., Toledo, B., Spors, K., Schimmler, M.: PLUG: An Agent Based Prototype
Validation of CAD-Constructions. In: The 2006 International Conference on Information
and Knowledge Engineering (2006)

3. Czyżewski, D., Żagan, W.: Kompleksowe ujcie problematyki owietlenia miast. In: Kon-
ferencja Naukowo-Techniczna z cyklu “Energooszczędność w oświetleniu DIODY LED,
Pozna (2011)

4. De Floriani, L., Falcidieno, B.: A hierarchical boundary model for solid object represen-
tation. ACM Trans. Graph. 7(1), 42–60 (1988)

5. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Grammars
and Computing By Graph Transformation: Applications, Languages, and Tools, vol. II.
World Scientific Publishing Co., River Edge (1999)

6. Kotulski, L.: GRADIS – Multiagent Environment Supporting Distributed Graph Trans-
formations. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS
2008, Part III. LNCS, vol. 5103, pp. 644–653. Springer, Heidelberg (2008)

7. Kotulski, L., Sędziwy, A.: On Complexity of Coordination of Parallel Graph Transfor-
mations in GRADIS Framework, DepCoS-Relcomex. In: 2009 Fourth International Con-
ference on Dependability of Computer Systems, pp. 279–289 (2009)

8. Kotulski, L., Sędziwy, A.: Parallel Graph Transformations with Double Pushout Gram-
mars. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2010. LNCS, vol. 6114, pp. 280–288. Springer, Heidelberg (2010)

9. Ligong, X., Zude, Z., Quan, L.: Multi-agent Architecture for Collaborative CAD System.
In: 2008 International Conference on Computer Science and Information Technology,
pp. 7–11 (2008)

10. Kotulski, L.: On the control complementary graph replication. In: Mazurkiewicz, J., et
al. (eds.) Models and Methodology of System Dependability, Monographs of System
Dependability, vol. 1, pp. 83–95. Oficyna Wydawnicza PW, Wrocław (2010)

11. Kotulski, L., Strug, B.: Distributed Adaptive Design with Hierarchical Autonomous
Graph Transformation Systems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS 2007. LNCS, vol. 4488, pp. 880–887. Springer, Heidelberg (2007)

12. Polska Norma PN-EN 13201 Oświetlenie dróg (Polish lighting standards – in Polish).
PKN, Warszawa (2005)

13. OpenStreetMap, http://www.osm.org
14. Rozenberg, G.: Handbook of Graph Grammars and Computing By Graph Transforma-

tion: Foundations, vol. I. World Scientific Publishing Co., River Edge (1997)
15. Sędziwy, A., Kotulski, L.: Solving Large-Scale Multipoint Lighting Design Problem

Using Multi-agent Environment. In: Key Engineering Materials. Advanced Design and
Manufacture IV, vol. 486, pp. 179–182 (2011)

16. Sędziwy, A.: Representation of Objects in Agent-based Lighting Design Problem, Sub-
mitted to DepCoS-RELCOMEX 2012 Conference (2012)

17. Wiórek, A.: Światło dla miasta. In: Zawód-Architekt, 05/2010, pp. 72–74 (2010) (in
Polish), http://www.zawod-architekt.pl/download/ZA_2010_05.pdf

18. Yabuki, N., Kotani, J., Shitani, T.: A Cooperative Design Environment Using Multi-
Agents and Virtual Reality. In: Luo, Y. (ed.) CDVE 2004. LNCS, vol. 3190, pp. 96–103.
Springer, Heidelberg (2004)

http://www.osm.org
http://www.zawod-architekt.pl/download/ZA_2010_05.pdf

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 257–271.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Monitoring Event Logs within a Cluster System

Janusz Sosnowski, Marcin Kubacki, and Henryk Krawczyk

Abstract. Resolving complex problems on cluster systems we have to take into
account threats related to system dependability. We faced this problem in relev-
ance to the developed project of the KASKADA platform targeted at managing
heavy multimedia processing in a supercomputer environment (Galera cluster in
Intel technology). Having analyzed the experience of other authors in the area of
cluster dependability analysis and anomaly predictions we have found the need of
developing appropriate strategy of monitoring the KASKADA platform within the
Galera cluster. In the chapter we deal with the problem of exploring the event logs
generated within the nodes of the platform. The main goal was to study the
specificity of the platform operational image in the event space, explore the
morphology and informative contents of logs and develop methods of anomaly
detection. For this purpose special tools have been used.

1 Introduction

Recently large cluster systems are used to resolve complex problems. Hence
dependability of such systems is of great importance. This issue is mainly the
domain of the cluster owners and administrators. In the literature there are many
papers devoted to this issue [1,13,16,21]. A special attention is paid to various
monitoring techniques targeted at detection of errors or anomalies as well as pre-
diction of possible problems [2,4,10,14,15]. The published results usually relate to
large systems monitored for long time periods. Hence they provide quite interest-
ing reliability data and prove the practical usefulness of the monitoring techniques
to predict problems or optimize system usage, etc. Such research needs a full ac-
cess to the monitored system. In many cases we use a cluster system with a limited

Janusz Sosnowski · Marcin Kubacki
Institute of Computer Science, Warsaw University of Technology, ul. Nowowiejska 15/19,
Warsaw 00-665, Poland
e-mail: jss@ii.pw.edu.pl, M.Kubacki@ii.pw.edu.pl

Henryk Krawczyk
Faculty of Electronics, Telecommunications and Informatics, ul. Gabriela Narutowicza
11/12, Gdańsk-Wrzeszcz 80-233, Poland
e-mail: hkrawk@eti.pg.gda.pl

258 J. Sosnowski, M. Kubacki, and H. Krawczyk

access to its resources (e.g. contracted nodes, disc area, interconnection ports,
etc.). The system provider assures some level of dependability. Nevertheless it is
reasonable to check dependability and related issues by the users. We faced this
problem within a project of the KASKADA platform developed in Technical Uni-
versity of Gdansk on the base of a large cluster system Galera [7] with 1300 Intel
Xeon 4-core processors. This platform is used for developing and running data
stream processing applications.

In order to evaluate dependability of the developed KASKADA platform and
related applications several monitoring mechanisms have been integrated with this
platform. They are targeted at 3 aspects (application level, platform task manage-
ment, resource utilization) and provide appropriated data logs. Application level
logs are specified by designers and relate practically to application quality issues.
Task monitoring gives some coarse grained view of the platform operation,
start/termination times of tasks, task errors, etc. Fine grained (low level) image of
the platform operation is created by system event logs within nodes and perform-
ance logs related to preprogramed variables. This work concentrates on this low
level monitoring in particular strategies of monitoring and analysing event logs.
The main contribution was to find normal operational profiles, morphology of
logged events and their significance. We have also outlined possible correlations
with higher level monitoring. To deal with these problems we have adapted previ-
ously developed tool QLogAnalyser [9].

Section 2 is a survey of research on monitoring cluster systems. It shows the
benefits of monitoring and proves some uniqueness of cluster systems. Section 3
describes the specificity of the KASKADA platform and the assumed strategy of
monitoring using appropriate tools. Section 4 presents some practical results
of our approach to monitoring. Final conclusions and further research are
summarized in section 5.

2 Monitoring Cluster Systems

Due to hardware, software and interconnection (network) complexity in cluster
systems it is considered that they are susceptible to various faults (in particular
transient faults, software failures, etc. In [20] the authors report high percentage
(about 75%) of hardware faults (CPU- 79%, disc – 6%, memory 4%). Software
faults contributed 10-15%, environmental, human and network errors contributed
a few percent, similarly undetermined errors. In [16] the distribution of hardware,
program, environment and network faults was: 60%, 20%, 1%, and 18%, respec-
tively (averaged over 22 systems). However depending upon the system these
figures fluctuated e.g. 27-70% and 5-25% for hardware and program faults. These
statistics confirm dependability problems in cluster systems, hence arises the need
of monitoring and reporting such cases. Failures can be reported automatically by
the system as well as by the administrators and users. We must be conscious that
not all failures are detected automatically (moreover they can be mitigated or tol-
erated by the system). Moreover it is reasonable to observe the system operation
and predict the possible appearance of a failure; this may even result in failure
avoidance. This concept attracted many researchers and the proposed solutions

Monitoring Event Logs within a Cluster System 259

based on system monitoring. Most publications concentrate on event and perform-
ance logs collected and analysed for specific cluster systems e.g. [5,6,13,21] and
references therein.

Event logs hold various information which can help identifying problems or
confirm normal operation [17,18]. Typically event log specifies sequential number
of the recorded event, event type (e.g. mechanism generating the event), time-
stamp (e.g.: date, hour, minute, second), identifier of the job which activated the
event, localization (cluster node, device), event description, service or module
touched by the event, severity level, etc. The formats of event records may differ
upon the system so some fields can be easily recognized others may create some
problems, especially event descriptions. Quite often a single problem may result in
generation of many events. Hence it is reasonable to introduce time and spatial fil-
tering of event logs. Typically time filtering combines events related to the same
localization and the same job ID if their timestamps are within a specified time
window (e.g. 10 s). Spatial filtering may combine events related to the same job
ID, they are within the specified window time, but may differ in localization. In
event log analysis we must be conscious of some format fluctuations (especially in
Unix and Linux systems) and interpretation ambiguities. Special filtering and data
exploration techniques have to be developed (compare section 3) to derive system
operation features and peculiarities.

In tab. 1 we give some event log statistics related to 5 cluster systems [13]
(from the Top500 ranking list of 2006): S1 – Blue/GeneL (P – 131072, M - 32768
GB), S2 – Thunderbird (P – 9024, M – 27072GB), S3 - Red Storm (P – 10880, M
– 32640GB), S4 - Spirit (ICC2) (P – 1028, M – 1024GB), S5 - Liberty (P – 512,
M – 944GB). In the brackets we specify the number of processors (P) and memory
capacity (M).

Table 1 Log statistics for cluster systems S1-S5

The collected logs covered different time periods (100-500 days) and their ca-

pacity is different. Normalizing this capacity to 100 days we still get relatively
high dispersion 0.56 – 28.8 [GB]. Scaling this per a single processor (proc) we get
4.27 KB/proc for S1; 2.65 MB/proc for S3; 14.1 MB/proc for S5. Such big disper-
sion range results from different operational profiles and monitoring schemes. It
has also a direct impact on the number of generated message bytes [B/s] and mes-
sages [M/s] per second. Average message length is in the range 100-250 bytes
(depending upon the system). It is worth noting that event logs can be efficiently
compressed – gzip provides 0.1; 0.21; 0.04; 0.06 and 0.03 compression ratio for
S1-S5 systems, respectively. In our Galera system this was 0.05.

System
Period
[days]

Capacity
[B]

Message
length [B]

Byte rate
[B/s]

Message
rate [M/s]

Alarms
[%] (x)

S1
S2
S3
S4
S5

215
244
104
558
315

1.2
27.4
30.0
30.3
22.8

254.6
129.9
136.9
111.0
86.1

65.0
1298.1
3337.6
628.3
835.8

0.26
9.99
24.34
5.64
9.71

7.3 (0.34)
1.5 (0.006)
0.7 (0.086)
63.5 (0.003)
0.001 (0.428)

260 J. Sosnowski, M. Kubacki, and H. Krawczyk

Alarm messages contribute 0.001% - 63.5% of log entries. Systems S4 and S5
significantly differ from the remaining ones. These alarms were attributed to
hardware (98.04%), software (0.08%) and other (1.88%) problems (in total 170
million of alarm messages in 5 systems). Many alarms may relate to the same
problem. Hence using appropriate filters we can reduce the presented percentage
by the factor (x) given in the bracket in the last column of tab. 1. Taking into ac-
count filtered alarms we get different distribution (averaged over all systems):
18.78%, 64.01% and 17.21% of hardware, software and other problems. It is
worth noting that this distribution is different for different systems: S1 (3.7%,
43.3%, 53.0%), S2 (43%, 36.5%, 20.5%), S4 (2.8%, 97.2, 9.0%), S5 (1.9%,
98.1%, 0%). The system administrators introduced various alarm categories: S1 –
41, S2 – 10, S3 – 12, S4 – 8, S5 – 6, attributed to specific software (e.g. kernel) or
hardware (e.g. SCSI, memory ECC circuitry, LAN transmission) modules.

Alarm qualification needs more comments. Standard system log qualifications
introduce different message severity levels. System administrators may have dif-
ferent opinion on this qualification. For BL/G cluster [13] the automatic qualifica-
tion produced the following distribution: 18.02%, 0.03%, 0.41%, 2.37%, 0.49%
and 78.68% related to the message categories fatal, failure, severe, error,
warning, info. This shows dominating information messages. The categorization
defined by the system administrators resulted in 99.8% fatal and 0.02% failure
messages. In the case of Red Storm system (S3) automatic original qualification
resulted in the following distribution 0%, 0%, 6.09%, 7.95%, 8.45%, 14.74%,
61.63% and 1.14% within message categories emerg, alert, crit, err, warning,
notice, info, debug. The administrators categorization produced the following
distribution 98.69%, 0.75%, 0.02% and 0.54% for crit, err, warning and info cate-
gories. This confirms the need of individual approach to log qualification. In prac-
tice this process should be correlated with operational profiles and administrator
activities. For example many log reports of high severity during some mainten-
ance or system upgrade actions are not critical. On the other hand some problems
have no impact in the event logs, so other symptoms has to be found (we faced
this problem in practice).

The presented statistics we can confront with those provided in [10] they relate
to two configurations of the system Blue Gene L: SDSC – 3072 computer nodes
with two-core CPUs and 384 I/O nodes, 1.5 TB RAM memory; ANL – 1024
computer nodes, 32 I/O nodes, 500 GB RAM memory. The number of collected
events in logs was: ANL - 5 887 771 and SDSC - 517 247. This corresponds to
2.27GB and 463MB of data collected within 112 and 132 weeks, respectively. The
average message length was for ANL – 391B, for SDSC – 895B, so this is much
higher than in systems from tab. 1 (86-250B). The number of registered events is
not correlated with the number of CPUs. Moreover the system with the weaker
configuration (ANL) produced more logs – this resulted from an intensive system
tests performed during one week (they generated 1.5 million of events), these tests
sensitised hardware errors not visible during normal workload. Similarly as in
[13] the collected raw events were filtered in time and spatially (to eliminate some
redundancy). Moreover some non-important attributes have been skipped;
some others not precised were corrected. The time stamp of events was with the

Monitoring Event Logs within a Cluster System 261

granularity of seconds. The event filtering process resulted in significant reduction
coefficients of event logs: for ANL – (0.0098, 0.0046, 0.0040), for SDSC –
(0.099, 0.0084, 0.0079) where subsequent coefficients in the brackets relate to
time window of 10, 300 and 400s, respectively. Higher reduction in the case of
ANL system resulted from a large number of events (in fact redundant) generated
during the erroneous situation. Here arises the problem of selecting appropriate
time window (trade-off between high reduction coefficient and a danger of losing
some important information).

An important issue is event categorization. In [13] this has been done by the au-
thors and system administrators. They assumed two-level hierarchical model. In the
higher level they defined 10 categories (hardware, kernel, application, etc.). Within
each of these categories (lower level) they specified 2 – 46 detailed subcategories
(the biggest number for the kernel category). Hence in total they received 219 sub-
categories. System Blue Gene in an automatic way attributes event severity levels
e.g. fatal, failure, warning, etc. Unfortunately many events specified as fatal or
failure were not critical as well as some without this specification in fact were criti-
cal. Hence event categorization has been refined using the collected experience and
system administrators’ knowledge (they defined 69 types of fatal events).

The presented statistics prove the need of individual approach to each consi-
dered systems, collecting events for a long time and exploring the log morphology
(syntax and semantics), accumulating users or administrators’ remarks, etc. We
have initiated such program for the KASKADA platform.

3 Monitoring Strategy of the KASKADA Platform

Developing the monitoring schemes for the KASKADA platform we had to take
into account its specificity and available logs (section 3.1). In this research we
concentrate on system event logs. The most important issue was the analysis of
log morphology and appropriate processing procedures (section 3.2).

3.1 Outline of the KASKADA Platform

Computer centres provide a proper hardware core for multimedia processing which
includes: well developed and high bandwidth network infrastructure, high perform-
ance supercomputers (especially computational clusters with hundreds of computa-
tional nodes), a huge and efficient data storages. However, a typical supercomputer
environment is usually focused on the execution of computational tasks, collected
as batches within long queue systems. This solution is well suited for scientific
computations, usually performed offline without user interactions. On the other
hand, the processing of surveillance data, for currently observed activities, usually
needs to be performed online with nearly real-time performance and close user co-
operation, so that critical situations can be immediately recognized and handled.

KASKADA (Context Analysis of Camera Data Streams for Alert Defining
Applications platform) is a special middleware supporting developing multimedia
applications and their efficient executions. It is one of the layers of a parallel

262 J. Sosnowski, M. Kubacki, and H. Krawczyk

environment for processing multimedia data streams coming from cameras located
in various geographic areas: houses, streets, stadiums, railway stations, airports.
The architecture of the environment is shown in Fig. 1. It facilitates heavy multi-
media processing in a supercomputer environment (Galera cluster in Intel technol-
ogy). The main goal of the KASKADA platform is to join multimedia data
streams with tasks representing suitable functionality of the user application. Then
such pairs (data, task) are located on cluster nodes in order to minimalize execu-
tion time of the whole applications. Different allocation strategies are considered
and chosen according to type of processing tasks. The platform offers a set of ser-
vices (in the sense of the SOA standard) to facilitate developing different applica-
tions. These services can be directly taken into account in construction of service
oriented scenarios applications. In such cases the platform is able to map a service
into sequence of suitable tasks, and execute them in parallel taking into account
current state of cluster node loads.

Fig. 1 Parallel processing environment for data stream analysis

We distinguish three areas of platform management related to multimedia
streams, services, and events (summarized in tab. 2). “Multimedia stream” delivers
data flowing continuously from their producers (e.g. video cameras) to the consum-
ers – analysis tasks on the platform. A part of the platform functionality provided to
the tasks (implemented algorithms) or directly to the external applications or users
is called a “service”. An “event” is a detection of a specific situation (state of the
platform) or object properties occurring in computations performed by the task im-
plementing specific detection algorithms, for example an indication of a shape sus-
pected to be a gun in the video incoming from a monitoring camera. Here arises the
need of processing multimedia data streams coming from cameras located in vari-
ous geographic areas: houses, streets, stadiums, railway stations, airport, etc. It is
worth noting that classical well known management strategies (e.g. MPI platform)
usually require implementation of management mechanisms in each application
which is quite expensive solution, this problem is avoided in KASKADA [7].

Depending upon the complexity of the implemented application an appropriate
number of computation nodes is allocated to KASKADA. The operation of the
platform as well as the application can be monitored at different levels: system
level (Linux event and performance logs), platform management level (e.g. ser-
vice/task execution times, delays, errors), and application specific logs (introduced
by the developers). The KASKADA monitor controls and manages tasks/services
and in particular it assures:

User application level
Development, testing, execution
KASKADA platform level
task and resource management, managing service repositories, monitoring mechanisms
Hardware level
Super computer Galera with application servers, data stream archives
Network infrastructure
Provides source data (e.g. from cameras) by optical fibber connections

Monitoring Event Logs within a Cluster System 263

Table 2 Management strategies in KASKADA

Management strategy Functionality
Stream level
maintain massive load of multimedia data

play, stop, archive, replay,
distribute, load balance, multiply

Service level
process the user/application requests

invoke, finish, monitor, kill,
assign tasks

Event level
provide means to communicate the
processing state to the user/application

generate, store,
distribute, filter, relay

− Managing task and services (initialization, termination, cancelling, period-

ical checking of states and correctness of execution)
− Monitoring allocated and used processor, memory and network resources
− Reporting detected errors
− Creating and archiving trace logs
− Monitoring correct operation of processing nodes

This is some kind of coarse grained monitoring. In the subsequent section we con-
centrate on fine grained monitoring related to system event logs. Unix systems
provide various standard logs holding information on the system operation. Typi-
cally in event logs the system registers the start and end of appearing events, ac-
tions within software, detected errors, abnormal states, etc. In the case of clusters
we have separate logs for each computing node. The structure and the information
contents of system logs may be more or less regular with some specified data
fields (e.g. date timestamp, source of information, severity level). However the
stored messages are usually in a loosely textual form.

3.2 Event Log Processing

Depending upon the goal of the log analysis (e.g. error detection and diagnosis, find-
ing operational profiles or trends, identifying anomalies) we are looking for different
events or their sequences. In many cases this is reduced to a search of a specific
event category e.g. reboots, errors, warnings. We must be conscious that beyond
these well-known events there are many other interesting events worth tracing. They
can be selected manually, however in the case of very large logs this must be sup-
ported with some automatization (e.g. based on data exploration or data mining). In
this process it is important to identify static and variable (parameter) fields within
log lines. This identification is called log file abstraction [6,12]. Having found
abstracted log files we can perform log analysis more efficiently. In fact log abstract-
ing results in finding log classes specified with the use of regular expressions [9].

In the literature event abstracting problem has been outlined at some general
level and is based on checking the frequency and position of words in the event
records. Unfortunately details of algorithms are not shown; moreover results do
not refer to real event logs. Dealing with this problem in the considered cluster
subsystem we have started with getting some knowledge on event morphology
performing some searches (with various keywords, or specified regular

264 J. Sosnowski, M. Kubacki, and H. Krawczyk

expressions). Following this preliminary analysis we have developed multilevel
abstracting scheme which combines regular expressions with searching constant
and variable word phrases.

Looking for the representative event classes we have started with log prepro-
cessing. In particular we skip the time stamp field and replace it with the type of
log e.g. syslog), node and PID fields are replaced with symbol (*). For example a
raw syslog entry:

Jul 1 12:01:44 g108 ntpd[2659]: synchronized to 192.168.19.201, stratum 2
is subsequently transformed with identified fields placed in square brackets (node
name g108, process name ntpd, its PID and the message field):

<Syslog>[g108][ntpd][2659][synchronized to 192.168.19.201, stratum 2]
<Syslog>(*)[ntpd](*)[synchronized to 192.168.19.201, stratum 2]

All entries of this type can be represented by the following log class:
<Syslog>(*)[ntpd](*)[synchronized to (...), stratum 2]

where symbol "(...)" replaces the variable field (IPs of different clock synchroniza-
tion servers).

To identify log classes we have developed the following algorithm:

Log transformation algorithm (variant A//B)

1. for every line (record) in the log entry LE do
{create a list L of subsequent words in LE
for every word W on position P in L do

{count[W][P] := count[W][P] + 1}
 }

2. for every line (record) in the log LE do
{create a list L of subsequent words in LE
create a list (LC) of the number of word occurrences in LE line; ele-
ments of list LC are defined by appropriate counters: count[W][P] -
taking into account the word and its position
sort LC in an ascending way
median = middle element of LC; related to the position defined by
length(LC)/2 rounded to lower value
for every word W on position P in L do

 {if count[W][P] >= median // or ‘> median"
 then W is a fixed element in the line
 else W is parameter (variable)
 if the previous word was not parameter then replace W with (…)

 add W to R (result record)}
}

This algorithm can be implemented in version A or B (small difference noted in
bold after //). Having transformed log entries we initiate a procedure to combine
them into equivalent classes. Implementing the algorithm we use QMap list (taken

Monitoring Event Logs within a Cluster System 265

from Qt library - http://doc.qt.nokia.com/qq/qq19-containers.html) for handling
the count[W][P] structure. This list stores pairs (key, value) ordered by key. It is
organized as skip-list where each node has several forward pointers (to speed up
searching – O(log n)) and one backward pointer. The key is the concatenated W
and P.

For an illustration we present some results of using A or B algorithm targeted at
the message field. The syslog file related to the period 1.06.11-30.09.11 resulted
in total in 248368 events (excluding cron events). Abstracting the timestamp and
PID (replaced by wildcard (*)) we have got 117294 different events. Applying to
this reduced set algorithm A we have got 12624 event classes, abstracting nodes
we have reduced this set to 5197 classes. For algorithm B these figures are 5589
and 383, respectively. The analysed log used 2502073 words (separated by
spaces), within this set we have detected 116213 unique words, among them 981
words which do not include digit characters. The number of word positions in the
message field was up to 25. This statistics confirms the need of automatic log
abstracting.

Most events were generated by kernel, excluding these events we have got 31
event classes. Within this reduced set we have identified an interesting event class
(the wildcards (*) replace node and PID numbers, respectively):

<Syslog>(*)[udevd-event](*)[unlink_secure:
chmod(/dev/bus/usb/004/027, 0000) failed: No such file or directory]

It is related to nonstandard disconnection of USB device (e.g. pen drive) – the file
of such device disappears so a failure situation is reported. Finding such event in a
small set is simple, but it would be difficult to find it within hundreds of thousands
raw events.

Having selected warning events algorithm A generated 3 classes:

<Syslog>(*)[postfix/qmgr](*)[warning: (...) clock]
<Syslog>(*)[postfix/qmgr](*)[warning: (...) to (...)]
<Syslog>(*)[postfix/sendmail](*)[warning: (...)]

The result of algorithm B was a little bit different (more detailed):

<Syslog>(*)[postfix/qmgr](*)[warning: backward time jump (...) -- (...) clock]
<Syslog>(*)[postfix/qmgr](*)[warning: backward time jump (...) -- (...) to (...)]
<Syslog>(*)[postfix/sendmail](*)[warning: fork: Resource temporarily unavail-
able]

These classes correspond to 34, 17, and 24736 raw events, respectively. The first
two classes relate to clock synchronization problems, the third one signals (with
sendmail) various system limitations encountered during process execution (e.g.
due to too many processes).

Having selected events with errors in syslog file (including kernel events)
algorithm A reduced it to 66 classes, most of them related to LustreError

266 J. Sosnowski, M. Kubacki, and H. Krawczyk

(distributed file system generated errors caused by temporary disc array prob-
lems), moreover 5 classes related to segfaults (memory protection problems with
specified localizations and error types):

<Syslog>(*)[kernel](*)[(...) segfault at (...) rip (...) rsp (...) error 14]
<Syslog>(*)[kernel](*)[(...) segfault at (...) rip (...) rsp (...) error 15]
<Syslog>(*)[kernel](*)[(...) segfault at (...) rip (...) rsp (...) error 4]
<Syslog>(*)[kernel](*)[(...) segfault at (...) rip (...) rsp (...) error 6]

<Syslog>(*)[kernel](*)[(...) segfault at 0000000000000000 rip (...) rsp (...) error 4]

Distribution of events in these classes was 4, 3, 1, 5 and 1, respectively (14
events in total). Algorithm B generated only two classes (with distribution 9
and 5):

<Syslog>(*)[kernel](*)[(...) segfault at (...) rip (...) rsp (...) error (...)]
<Syslog>(*)[kernel](*)[(...) error 6]

Having selected events generated by NTP demon (handling clock synchronization
in a node) algorithm A generated 15 classes, among them the following are the
most interesting (with distribution 2, 9, 53, 361, 81232, and 22), comments added
in italic:

<Syslog>(*)[ntpd](*)[frequency error (...) PPM exceeds tolerance 500
PPM] - problem with the system clock
<Syslog>(*)[ntpd](*)[no servers reachable] - unavailable servers NTP
(switched off)
<Syslog>(*)[ntpd](*)[ntpd exiting on signal 15] - proces killing with
SIGTERM (comand kill, or restart)
<Syslog>(*)[ntpd](*)[synchronized to (...) stratum (...)]
<Syslog>(*)[ntpd](*)[synchronized to (...) stratum 2] - synchronization
problems
<Syslog>(*)[ntpd](*)[unable to bind to wildcard socket address 0.0.0.0 -
another process may be running - EXITING] – NTP erroneously connected
2 times

In syslog there are a lot of events generated by DHCP client. DHCP is a protocol
to dynamically assign IP configuration for workstations - in our case this configu-
ration was assigned to the cluster nodes. On each node there is a client daemon
that requests periodically an IP configuration. Generally after operating system
boot DHCP client tries to discover DHCP servers by sending broadcast messages
(DHCPDISCOVER). If an offer is send from any of DHCP servers that detected
DHCPDISCOVER packet, client requests a configuration via DHCPREQUEST
packet. IP configuration is assigned for a specified amount of time, called "lease
time". After its expiration, client needs to renew configuration with another

Monitoring Event Logs within a Cluster System 267

DHCPREQUEST packet (DHCPDISCOVER is not needed, because client already
knows the IP of the DHCP server). These periodic renewals are logged to the sys-
tem log. In general lease time should be constant. Sometimes problems appeared
with repeated requests due to the lack of responses; another anomaly was lack of
requests for a longer time.

Algorithm A identified 3 classes of events related to DHCP (with distribution
of 6030, 5865, 5865 events, respectively):

<Syslog>(*)[dhclient](*)[(...) on eth0 to (...) port (...)]
<Syslog>(*)[dhclient](*)[bound to (...) -- renewal in (...) seconds]
 <Syslog>(*)[dhclient](*)[DHCPACK from 192.168.19.201]

The first class corresponds to DHCP request events (generated via eth0 network
card to various DHCP servers IPs and ports). The second class relates to IP and
lease time (renewal) assignments by DHCP servers. The third class corresponds to
confirmations from DHCP server (with specified IP).

The cron file for the first two weeks of September contained 236071 events,
applying algorithm A we have got 234 event classes, which has been further re-
duced to 22 classes by abstracting nodes. Similarly algorithm B produced 189 and
15 classes, respectively. Within these classes we have found one with ”popenfail”
related to 100-264 erroneous situation in one node during 4 days (exhaustion of
the process number limit).

It is difficult to trace logs manually. On one hand we have different types of
events, sometimes with some parameters of more or less important value, on the
other hand it is important to know the source of event, its location in time and
space (e.g. node number). So in the analysis we are interested in various statistics
global or filtered (according to various attributes), raw or aggregated events, ab-
stracted (classified) events, etc. Moreover it is reasonable to identify frequent
(dominating events), critical events, event profiles, etc. The scope of possible
questions is large and open. So it is reasonable to create appropriate data base (in
fact data warehouse) with some analytical, data exploration and visualization in-
struments. For this purpose we have adapted two tools developed in Institute of
Computer science WUT: QLogAnalyzer and QperfAnalyser. They were primarily
dedicated for collecting and analyzing event and performance logs in servers and
workstations via LAN. They cooperate with special agents installed in the moni-
tored system which fill in the associated data base. Hence we have the possibility
of monitoring and analyzing many computers. Adapting this approach to the con-
sidered cluster we load cluster logs into the data base using a special program
(adapted to the log formats and their sources). Moreover we have extended the
statistical and visualization capabilities with a special attention to cluster node
multiplicity (node correlations).

268 J. Sosnowski, M. Kubacki, and H. Krawczyk

4 Visualization of Event Distributions

Having analysed the morphology of event logs (including event classification -
abstraction) we can perform more detailed studies to identify critical, anomalous
states or to find the characteristics of the operational profile. This process can be
supported with appropriate visualization tools. In the developed QLogAnalyser
we have the possibility of visualizing events in various time perspectives, filtered
(e.g. based on regular expressions) or aggregated. For example hour, daily or
monthly perspectives show event distribution over subsequent hours, days or
months (events are summarized over hours, days or months). Aggregated hour
views show distribution of events within 24 hours, for each hour we sum all
events of this hour for each day of the considered period. Similarly we can gener-
ate aggregated daily distribution over all week days (summarized events for each
week day over the considered period). Aggregated distributions usually relate to
system activity during day and night hours or week days (e.g. low activity on
weekends).

The generated distributions can be limited to specified event classes (e.g. er-
rors, warnings) or unique events. Moreover they can be presented for individual
nodes (on a single or independent plots) or summarized over selected group of
nodes, etc. In fig. 2-6 we give some plots from KASKADA with comments. The
time scale in fig. 2-4 covers 4 months with single day resolution. Explanation of
some anomalies needed cooperation with the administrators. This also showed the
need of storing administrator or users reports for future log analysis.

Fig. 2 Daily distribution of error events (the maximal number of errors per day 2324): all events
summarized over all nodes (excluding cron popenfail) – about 89% related to LustreError
(section 3), most caused by two disc array failures (two high pulses within the first month)

Fig. 3 Daily distribution of DHCP requests (section 3) summarized over nodes (maximal
value 214 events): the positive peak relates to the network problem in two nodes, moreover
two negative pulses relate to other problems caused by the file system

Monitoring Event Logs within a Cluster System 269

Fig. 4 Daily distribution of NTP synchronized events (section 3) summarized over all nodes
(maximal value 1739 events): fluctuations relate to some synchronization problems, low ac-
tivity periods related to switched off NTP server

Fig. 5 Aggregated weekly distribution of errors (summarized over all nodes): descending
trend relates to lower users activity during weekends

Fig. 6 Aggregated hour distribution of errors (without cron) for 22 nodes (maximal value
113 errors, time axis markers correspond to subsequent hours starting from 0 to 23): domi-
nating errors in node g019, fluctuations result from daily workload profile composed of
service development hours and its testing hours (typical cycles of 1-1.5 hours)

Tracing shapes of the plots we can identify some anomalies (e.g. spikes,
drop-outs) and refer them to logged events. Deeper analysis may involve
correlating them with other log records (e.g. application or task logs) as well as
with performance logs.

270 J. Sosnowski, M. Kubacki, and H. Krawczyk

5 Conclusion

The presented results confirm that event logs are useful in finding system profiles
and anomalies, however this process has to be supported with some tools. The raw
files of event logs hold enormous amount of event reports most of them of low
importance, so tracing the most interesting events is a cumbersome process to be
done manually. Hence we have decided to adapt QLogAnalyser for this purpose
by extending the capability of log abstracting. This process can be done iteratively
(hierarchically) by selecting some well-defined event subsets (e.g. based on simple
regular expressions [9]) and applying the proposed algorithms. Another issue is
the problem of visualizing the selected events to find other correlations or identify
anomalous spikes, trends etc. This has been also assured in QLogAnalyser.

The usefulness of the proposed approach has been illustrated in relevance to
real logs collected in a cluster subsystem (KASKADA). The future research is tar-
geted at collecting results from many applications running on KASKADA (within
the upgraded GALERA PLUS cluster- rank number 163 on the Top500 list) for a
longer time. Moreover we plan to refine event classes and correlate them with
performance parameters as well as with application or task management logs.
Log visualization function will be extended to show various correlations
(compare [11]). Here we will also base on our experience with workstation and
server monitoring [8,18].

Acknowledgement. This work has been realized within the project MAYDAY EURO
2012, Operational Innovative Economy Program 2007-2013, Priority 2, “Infrastructure area
B + R”.

References

[1] Brandt, J.M., et al.: Meaningful automated statistical analysis of large computational
clusters. IEEE International Cluster Computing, 1–2 (2005)

[2] Brandt, J.M., et al.: Quantifying effectiveness of failure prediction and response in
HPC systems: methodology and example. In: Proc. of Int. Conference on Dependable
Systems and Networks Workshops, pp. 2–7 (2009)

[3] Cinque, M., et al.: A logging approach for effective dependability evaluation of com-
puter systems. In: Proc. of 2nd IEEE Int. Conf. on Dependability, pp. 105–110 (2009)

[4] Gmach, D., et al.: Workload analysis and demand prediction of enterprise data center
applications. In: 10th IEEE Int. Symposium on Workload Characterization, pp. 171–
180 (2007)

[5] Hassan, A.E., et al.: An industrial case study of customizing operational profiles using
log compression. In: Proc. of ACM ICSE, pp. 713–721 (2008)

[6] Huang, L., et al.: Symptom based problem determination using log data abstraction.
In: Proceeding of ACM CASCON 2010 Conference of the Center for Advanced Stu-
dies on Collaborative Research, pp. 313–326 (2010)

[7] Krawczyk, H., Proficz, J.: KASKADA – multimedia processing platform architecture.
In: Proc. of the International Conference on Signal Processing and Multimedia Appli-
cations. SIGMAP 2010, pp. 26–31 (2010)

Monitoring Event Logs within a Cluster System 271

[8] Król, M., Sosnowski, J.: Multidimensional monitoring of computer systems. In: Proc.
of IEEE Symp. and Workshops on Ubiquitous, Autonomic and Trusted Computing,
pp. 68–74 (2009)

[9] Kubacki, M., Sosnowski, J.: Analysing event log profiles in Linux systems. In: Bor-
zemski, L., et al. (eds.) Information system Architecture and Technology, Web In-
formation Systems Engineering, Ofic. Wyd. Polit. Wroc., pp. 136–144 (2011) ISBN
978-83-7493-630-9

[10] Lan, Z., et al.: A study of dynamic meta-learning for failure prediction in large scale
systems. J. Parllel Distribiuted Systems 70, 630–643 (2010)

[11] Makanju, A., et al.: Log View: Visulaizing event log clusters. In: 6th IEEE Conf. on
Privacy, Security and Trust, pp. 99–108 (2008)

[12] Naggapan, M., Vouk, M.A.: Abstracting Log Lines to Log Event Types for Mining
Software System Logs. In: Proceedings of Mining Software Repositories (co-located
with ICSE 2010), pp. 114–117 (2010)

[13] Oliner, A.J., Stearley, J.: What Supercomputers Say: A Study of Five System Logs.
In: Proc. of the IEEE/IFIP Int. Conference on Dependable Systems and Networks, pp.
576–584 (2007)

[14] Oliner, A.J., Aiken, B.: Online detection of multi component interactions in produc-
tion systems. In: Int. Conf. on Dependable Systems and Networks, DSN 2011, pp.
49–60 (2011)

[15] Salfiner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Survey 42, 10:1–10:42 (2010)

[16] Shroeder, B., Gibson, G.A.: A large scale study of failures in high performance com-
puting systems. IEEE Trans. on Dependable and Secure Computing 7(4), 337–350
(2010)

[17] Sosnowski, J., Poleszak, M.: On-line monitoring of computer systems. In: Proc. of
IEEE DELTA Workshop, pp. 327–331 (2006)

[18] Sosnowski, J., Król, M., Machnicki, J.: Techniques and goals of monitoring computer
systems. In: Górski, A. (ed.) Information Systems Architecture and Technology, Ad-
vances in Web-Age Information Systems, pp. 235–246. Oficyna Wydawnicza Poli-
techniki Wro-cławskiej (2009) ISBN 978-83-7493-479-4

[19] Sosnowski, J., Król, M.: Dependability evaluation based on system monitoring. In:
Ali, A.-D. (ed.) Computational Intelligence and Modern Heuristics, pp. 331–348. In-
tech (2010) ISBN 978-953-7619-28-2

[20] Xue, Z., et al.: A survey of failure prediction of large scale server cluster. In: 8th
ACIS Int. Conference on Sofr\t. Eng., Artificial Intelligence, Networking and Paral-
lel/distributed Computing, pp. 733–738 (2007)

[21] Li, Y., Zheng, Z., Lan, L.: Practical online failure prediction for Blue Gene/P: Period-
based vs. Event-driven. In: Proceedings of the IEEE/IFIP International Conference on
De-pendable Systems and Networks Workshops, PFARM Workshop, pp. 259–264
(2011)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 273–287.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Implementing AES and Serpent Ciphers in New
Generation of Low-Cost FPGA Devices

Jarosław Sugier

Abstract. New generations of FPGA devices that are being continuously devel-
oped provide the designers with extended capabilities and create new options for
implementation of contemporary ciphers. This work presents implementations of
the two best algorithms of the AES contest – Rijndael and Serpent – in Spartan-6
devices from Xilinx and compares them with equivalent effects that were obtained
in architectures of the previous generation. The included results allow for evalua-
tion of implementation cost vs. efficiency in contemporary FPGA chips for these
two cryptographic algorithms and also provide some conclusions about how the
situation changes with development of new, more powerful programmable
architectures.

1 Introduction

Dependable operation of numerous contemporary computer systems rely on data
protection and this is assured with appropriate encryption methods. Among sym-
metric ciphers with secret key the AES algorithm is used as a standard solution
in most of the applications with Serpent cipher being the main comparable
alternative.

In this work we investigate various options for low-cost hardware implementa-
tions of the two ciphers and especially look at the changes that were caused in this
area by new generation of Spartan-6 family of FPGA devices from Xilinx. The
text is organized as follows: after presenting the two algorithms in chapter 2, the
various hardware organizations of the cipher unit are introduced in chapter 3.
Finally, chapter 4 discusses size and performance parameters that were obtained
after implementation of all the variants in Spartan-6 and, for comparison, in
Spartan-3 chips.

Jarosław Sugier
Wrocław University of Technology
Institute of Computer Engineering, Control and Robotics
ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
e-mail: jaroslaw.sugier@pwr.wroc.pl

274 J. Sugier

2 The AES Contest: Rijndael vs. Serpent

The first widely used encryption algorithm, the Data Encryption Standard (DES),
was developed by IBM and standardized by US National Institute of Standards
and Technology (NIST) in 1977. In mid-90s its strength was seriously questioned
by successful attacks ([13]) and in January 1997 NIST issued a first call for a suc-
cessor algorithm, to be called an Advanced Encryption Standard or AES. In re-
sponse 15 new cipher proposals were submitted from several countries. After two
conferences organized to promote public examination of the methods (AES1,
August 1998, and AES2, March 1999) the five finalists were announced in August
1999. Their scores in a voting which was organized during the AES2 conference
were as follows:

– Rijndael: 86 positive votes, 10 negative;
– Serpent: 59 positive, 7 negative;
– Twofish: 31 positive, 21 negative;
– RC6: 23 positive, 37 negative;
– MARS: 13 positive, 83 negative.

After the last AES3 conference in April 2000, the final decision was announced
which was consistent with the AES2 poll: the Rijndael was chosen as the winner.
Under the new name of AES it was announced the U.S. Federal Information
Processing Standard 197 (FIPS 197) in November 2001 ([10]).

Serpent and Rijndael belong to the same class of round-based cipher algorithms
and bear significant resemblance. Both algorithms are symmetric block ciphers
that are examples of substitution-permutation networks (SPN). Their processing
consists in a set of rounds, with every round being a specific set of elementary op-
erations executed repeatedly over a given block of data. Independently from ci-
pher (data) path there is a separate processing path whose task is to provide every
round with its individual key, generated form user-supplied secret external key.

To summarize the distinction between the two ciphers shortly, it is often said
that Rijndael is faster (having fewer rounds) but Serpent is more secure. After the
NIST final decision most of the attention concentrated on Rijndael for obvious
reasons, but second-to-the-winner Serpent still deserves some consideration be-
cause of its advantages that won significant appreciation during the AES contest.
It is worth noting that in the AES2 ballot it was the Serpent that received the least
number of negative votes.

2.1 The AES (Rijndael) Algorithm

The Rijndael cipher ([10]) was initially developed by two Belgian cryptographers,
Joan Daemen and Vincent Rijmen, and the finally approved AES standard, strictly
speaking, is its subset with fixed block size of 128b[it] and allowed key sizes of
128, 192 or 256b. To focus the discussion in this paper we consider exclusively
the AES-128 version, i.e. we assume size of the key to be 128b.

Implementing AES and Serpent Ciphers in New Generation 275

w4i

w4i+2

w4i+3

w4i+1

Ki

Si
16×SBox8b

Mix Col.

R
ou

nd
 R

i

w4i–1
w4i–2
w4i–3
w4i–4

R
i –

 1

32b 128b

 Key expansion Cipher path

Si+1

4×
SB

ox
8b

Shift Rows

AES

w4i

w4i+2

w4i+3

w4i+1 Ki

32
×S

B
ox

4b

Bi

32×SBox4b

Linear Tr.

R
ou

nd
 R

i

w4i–1

w4i–2

w4i–3

w4i–4

w4i–5

w4i–6

w4i–7

w4i–8

R
i –

 1

R
i –

 2

32b 128b

 Key schedule Cipher path

Bi+1

Serpent

Fig. 1 Data flow in a single round of the AES (left) and Serpent (right) ciphers

Since AES allows only one block size of 128b, it always operates on 16B[yte]
chunks of data that form a 4×4B array, termed the State. For 128b key, processing
of the State during the encryption is divided into exactly 10 rounds plus one auxil-
iary executed at the beginning of the process.

Let P be a 128b plaintext, Si – a state block that enters the i-th round Ri, K – ex-
ternal (user) key, Ki – round key, C – encoded ciphertext. The complete data path
of the AES can be expressed with the following equations:

 S1 := P ⊕ K
 Si+1 := MC(SR(SBox (Si))) ⊕ Ki i = 1 … 9
 C := SR(SBox (S10)) ⊕ K10

That is, the initial round (numbered as 0) consists only of addition of the external
(user) key while every regular round number 1 to 9 contains four elementary state
transformations executed in specific order: byte substitution SBox, row shifting SR,
column mixing MC and addition (XOR) of the round key. The last round (number
10) does not include column mixing but the other three operations remain un-
changed. Additionally, rounds 1÷10 use extended keys that need to be generated
from the user key by a separate key expansion routine. Execution of a regular
round (1÷9), along with generation of its key, is shown in the left part of Fig. 1.

The key expansion routine, in turn, operates on 32b words wi, i = 0..43, which,
after computation, are directly copied to the round keys Ki. The first four words
are initialized with bits from the user key:

{w0, w1, w2, w3} := K

and then every group of four words that creates one round key is computed as fol-
lows for i = 1..10:

276 J. Sugier

 w4i := SBox(w4i-1 <<< 8) ⊕ Rcon[i] ⊕ w4i-4
 w4i+1 := w4i ⊕ w4i-3
 w4i+2 := w4i+1 ⊕ w4i-2
 w4i+3 := w4i+2 ⊕ w4i-1

 Ki := {w4i, w4i+1, w4i+2, w4i+3 }

where <<< denotes left rotation (always by 8 bits, in this case), the SBox() trans-
formation uses exactly the same substitution boxes as the cipher path, and the
Rcon is a static vector of ten 32b constants defined in the standard.

2.2 The Serpent Algorithm

Serpent ([1] – [3]) was developed by Ross Anderson (University of Cambridge
Computer Laboratory), Eli Biham (Technion Israeli Institute of Technology), and
Lars Knudsen (University of Bergen, Norway). In the version that was submitted
for the contest the method operates on 128b blocks of data with 256b external key.
If the user supplied key is shorter (call for the standard allowed also key lengths of
128 and 192b) simple expansion procedure is applied which ensures that the
method always starts with the full 256b key. The transformation flow is divided
into 32 almost identical rounds with every round using its own 128-bit round key
generated by the key schedule; since the last round needs two keys, total of 33 dif-
ferent round keys are required.

In addition to the symbols defined above, now let the data block that enters the
i-th round is denoted as Bi. Before the plaintext block enters the procedure a
special bit reordering – so called Initial Permutation IP – is performed (this reor-
dering has no cryptographic significance and was introduced only for bit-sliced
implementations). The plaintext P after permutation gives block B0, which is the
input to the first round number 0. The output of the last round, R31, after applica-
tion of the Final Permutation FP (which is an inverse of IP) gives the ciphertext C.

The complete data path from the plaintext P to the ciphertext C can be formally
represented by a sequence of the following equations:

 B0 := IP(P)
 Bi+1 := LT(SBoxi mod 8(Bi ⊕ Ki)), i = 0 … 30
 B32 := SBox7 (B31 ⊕ K31) ⊕ K32

 C := FP(B32)

Operation of a single round, together with generation of its key, is shown in the
right part of Fig. 1. As the first transformation, the block Bi is XOR-ed with the
round key Ki that is supplied by the key schedule, and then the resulting vector is
passed through substitution boxes. The specification defines 8 different S-Boxes
numbered 0 … 7 with each round Ri using S-Box number i mod 8. The vector cre-
ated by S-Boxes finally undergoes linear transformation LT, giving block Bi+1 that
is the input to the next round. In the last round R31 the linear transformation is

Implementing AES and Serpent Ciphers in New Generation 277

replaced with XOR operation with the extra last key K32 and therefore two keys
are required in this round, to the total of 33 keys in the whole process.

The key generation in Serpent is no less involved. The schedule generates first
a set of 32-bit prekeys wi which are later used for computation of round keys. The
starting 8 prekeys numbered from –1 to –8 are filled with bits of the external
(user) key K (after its expansion to 256b, if necessary):

{w–1, w–2, … w–8} := K

and then 132 prekeys w0…w131 are generated by the following affine recurrence:

wi := (wi–1 ⊕ wi–3 ⊕ wi–5 ⊕ wi–8 ⊕ φ ⊕ i) <<< 11

where φ is the fractional part of the golden ratio () 215 + represented as 32-bit

vector (0x9E3779B9 in hexadecimal notation).
The final round keys are calculated from the prekeys using the same set of 8

substitution boxes that are defined for the cipher path. The general rule is that the
key Ki is computed from a group of four prekeys w4i, w4i+1, w4i+2 and w4i+3 that un-
dergoes bit substitution and reordering:

 K0:= IP(SBox3(w0, w1, w2, w3))
 K1:= IP(SBox2(w4, w5, w6, w7))
 …
 K31:= IP(SBox4(w124, w125, w126, w127)
 K32:= IP(SBox3(w128, w129, w130, w131)

To avoid repetitive use of the same substitution as later in the round, during com-
putation of Ki the schedule uses S-boxes number (3 – i) mod 8.

3 Implemented Architectures

Apart from relative simplicity of elementary operations at the binary level, ease of
hardware implementation of the AES and Serpent algorithms comes from the fact
that their processing flow is composed of (almost) identical rounds that are repeat-
edly executed over a given block of data. This leads to many potential processing
schemes that blend different flavours of combinational, pipelined and iterative
architectures ([4] – [9], [11] – [12], [14] – [16]).

In this study efficiency of hardware implementation of both ciphers will be
tested using four essential types of processing: combinational, half (cipher-only)
pipelined, fully (both cipher and key) pipelined, and iterative. For brevity, every
implementation will be given a name starting with a letter A (for AES) or S (for
Serpent) with indication of its type that follows: C (combinational), HP (half, i.e.
cipher-only pipelined), FP (fully, i.e. both cipher & key, pipelined) and I (itera-
tive). Since the AES pipelined architectures (AHP and AFP) can be optionally im-
plemented with or without utilization of block-RAM resources in the FPGA chip,
this leads to the total of 10 different implementations which will be investigated.

278 J. Sugier

3.1 Combinational Dataflow

In this organization hardware structure closely follows flow of the data that is be-
ing encoded. All rounds of the cipher (11 for AES and 32 for Serpent) are imple-
mented as separate hardware modules that create a continuous combinational path
from the input registers (plain text P) to the output registers (cipher text C). In-
between, the module operates as a combinational function that maps 128 + 128 =
256 input bits (data + key) into 128 output bits (cipher). The only registers used in
this design are located in the P and C ports. The K input is not registered thus
only the P → C path is taken into account by the implementation tool during
optimization of the propagation speed.

In both cases (AC and SC) the design was specified by porting the specification
to the VHDL language using strict RTL style: there were no instances of library
elements, no sequential (procedural) descriptions were inserted and the code was
free from references to any specific hardware attributes. After definition of all in-
ternal signals as std_logic_vector type, particular elementary operations
were defined as separate entities with exception of key mixing, which was imple-
mented simply with built-in xor operator at the place of their occurrence. Substi-
tution boxes, both 8b (AES) and 4b (Serpent), were defined according to general
templates recommended for ROM specification. AES row shifting and rotations
required in key expansion or key schedule were treated as simple bit reordering in
std_logic_vector signals and expressed with concurrent signal assignments
(in hardware implementations, as opposed to software realizations, these trans-
formations are done exclusively in routing and actually do not require any logic).
The other operations: column mixing MC and linear transformation LT at the bi-
nary level end up as pure XOR networks and were represented with due number of
concurrent assignments. The cascade of the modules that implement individual ci-
pher rounds was easily constructed with a single for…generate statement
which improved greatly conciseness and clarity of description.

A diagram describing structure of these architectures would mostly reproduce
Fig. 1 hardly introducing any new information and, for brevity of this work, it is
not included.

3.2 Cipher-Only Pipelining

The general idea of pipelining is to introduce evenly spaced registers along the
combinational path so that in its synchronized operation several blocks of data can
be processed at the same time during every clock cycle. In the combinational ar-
chitectures of both ciphers the natural points of placing the pipeline registers are
the signals Si / Bi that cross boundaries of cipher rounds; this transforms each
round into one pipeline stage. In technical terms such organization can be inter-
preted as a complete outer loop pipelining ([5]) and yields 11 pipeline stages for
AES vs. 32 for Serpent. This means that valid output appears 11 or 32 clock cy-
cles after input and although it does not improves the latency (which is actually
worse than in the case of combinational propagation due to non-zero flip-flop
switching time and non-ideal pipelining) the throughput (amount of data processed

Implementing AES and Serpent Ciphers in New Generation 279

in unit time) rises enormously thanks to the parallel processing of multiple data in
pipeline stages.

In this version of the architecture the key generation path remains combina-
tional and this fact slows down changes of the external key during operation of the
unit: loading a new key input invalidates the pipeline contents for 11 or 32 clock
ticks until new data fill all the cipher stages. This may exclude this architecture
from environments with frequent key changes but if the key can remain constant
most of the time it is the optimal organization in terms of both speed and size.

Adding large amount of registers (128b × number of pipeline stages) may seem
to be a substantial increase in resource usage but in case of FPGA architectures
this increase is easily absorbed by the array. In these devices a flip-flop is included
in every logic cell right at the output of combinational configurable element
(Look-Up Table, LUT) so the only actual difference is that now some of them are
used for registering the LUT signal while in combinational organization they were
left unused. This usually does not affect the total number of occupied logic cells
but just increases their utilization.

3.3 Full Pipelinaing

The drawback of the half-pipelined architecture – incompatibility with applica-
tions that require frequent changes of the key – can be a significant weakness in
many applications. In general it is not recommended to encode large amounts of
data with the same key because the attacker could get some information about it
without breaking the cipher, namely by statistical analysis of the encoded stream.

To prepare the encryption unit for loading a new key with every block of data
the key generation path should be pipelined in an equivalent way as the cipher
path. More precisely, the pipelined key generator should provide the cipher stage
with relevant key together with data which leads to conclusion that the key must
be computed one clock cycle before the data is processed.

w4i

R
ou

nd
 R

i

w4i–1

w4i–2

w4i–3

w4i–4

w’4i–5

w’4i–6

w’4i–7

w’4i–8

R
i

–
1

R
i –

 2

 Key schedule Cipher path

Bi

Bi+1

w’4i

w4i+1 w’4i+1

w4i+2 w’4i+2

w4i+3 w’4i+3

Ki

32
×S

B
ox

4b

32×SBox4b

Linear Tr.

Fig. 2. Single round in fully pipelined implementation of the Serpent algorithm (SFP)

280 J. Sugier

There is no problem with such organisation of the AES cipher: since in the
first pipeline stage the round 0 uses external (user) key, its special preparation
is not required. Instead, during the first clock cycle when the S1 vector is com-
puted, simultaneously the K1 key can be prepared form K so that it is ready
for round R1 in the next cycle. The consecutive rounds work in the same way:
Ri (i.e. Si+1) is computed in parallel, simultaneously with preparation of
the Ki+1.

Looking at the diagram in Fig. 1, the registers would be added right in the
places of signals wi and Si. Thus, in case of the AES, the workflow of cipher and
key paths was mapped in a natural way onto operation of the two pipelines in
hardware.

In Serpent, in turn, situation at first looks similar: since computation of the
round keys depends on prekeys wi, these signals must be stored in pipeline
registers. But the first problem is that, due to more complex key data depend-
ency, computation of Ki in stage i depends on prekeys from not only stage
i – 1 but also i – 2, so additional registers – denoted as w’ – are required for
storing previous values of w and feeding them two stages down the pipeline.
This factor alone doubles the number of the key schedule registers. Moreover,
w’ registers are not located at LUT outputs – they are loaded with data from
another registers – which is not an advantageous configuration for FPGA
implementation.

Secondly, the last cipher round – R31 – needs two keys, so it must be split into
two stages: the first one contains key mixing with bit substitution and the second
one performs only final key mixing. An alternative solution – computation of
two keys K31 and K32 in one clock cycle – is not a good option: the key schedule
is relatively complex and a combinational path generating two keys would in-
troduce unacceptable long delay holding back performance of the whole unit.
Splitting the last round into two stages increases the total latency to 33 clock cy-
cles but, compared to solution with 32 stages but with computation of K31 and
K32 in one clock cycle, the shorter clock period compensates this more than
adequately.

Another problem is that the first Serpent’s round does not use unmodified
external key; instead, K0 must be computed in a regular way as any other key and
during that the data in cipher path must idle going through a dummy (empty) stage
added right at the beginning of the pipeline. This adds extra 128 flip-flops (which
is a negligible increase compared to the total resource consumption) but also
extends pipeline length to 34.

Detailed descriptions of different options for pipelining Serpent unit can be
found in [14] along with evaluation of their performance vs. size trade-offs. It was
shown that the final optimum solution is reached after adding registers not only
for wi but also for Ki signals. The resulting architecture is shown in Fig. 2 where
pipeline registers are marked as rectangles. In this organization new computed
values of prekeys w are not only stored in the flip-flops, but in the same cycle they
go through the SBoxes evaluating new Ki value which is latched in the extra

Implementing AES and Serpent Ciphers in New Generation 281

registers. As a result the longest combinational path (which decides about maxi-
mum frequency of operation of the whole unit) now runs from registers Ki to Bi+1
and does not contain any elements belonging to key computation. Within the key
schedule, on the other hand, there are two paths, both originating from w/w’
flip-flops: the first one computes next values of w and the second one extends
additionally through S-boxes to the registers Ki. Such a distribution of the ele-
ments in the combinational paths turned out to be the most balanced configuration
for optimal (highest) performance.

The increase in speed that results from this amendment is accomplished at the
cost of 33×128 = 4224 flip-flops but it was shown that this did not incurred any
increase in total number of occupied logic cells – all the new registers were lo-
cated at the outputs of the LUT elements used for implementation of the SBoxes
and were absorbed in cells already occupied ([10]).

3.4 Iterative Loop

The two iterative architectures proposed in this study – AI and SI – are based on
the structure of one round taken from the fully pipelined architectures (AFP and
SFP). Such a single round was supplemented with necessary multiplexing logic
(loading the data in – looping back – loading the data out) and a simple controller
responsible for counting the repetitions of the loop (round numbers) and super-
vising the multiplexers. The controller, in its minimal form, comprises a single
“idle/busy” register and a round counter. In both architectures number of clock
cycles required for encoding one block of data was identical to the number of
pipeline stages in AFP / SFP implementations. Every clock cycle completes
processing which corresponds to one stage of the pipeline (usually equivalent to
one cipher round, apart from the above discussed exceptions for the Serpent
case).

One issue needs to be pointed out here, though. While in the AES there is just
one SBox transformation used in all rounds in both data and key processing, the
Serpent defines 8 different SBoxes, each one being applied in exactly four rounds
in the cipher path and in another four rounds in the key path. In iterative organi-
zation where just one “universal” round is realized in hardware this means that
the “universal” SBox must be created which includes the contents of all 8 regular
substitution tables and additionally provides extra 3b input for selection signal.
Such a solution is not elegant because, effectively, the SBox becomes a 7-input
function (4b data + 3b selection) in place of a 4-input one, which makes its im-
plementation with FPGA resources notably more complicated. For this reason
one-round iterative implementation is usually not recommended for Serpent; in-
stead it is proposed to implement 8 rounds in hardware with the data block
looped back 4 times during the encoding (8 × 4 instead of 32 × 1). Nevertheless,
such organization was not implemented in this study for consistency of examined
solutions.

282 J. Sugier

4 Implementation Results

All the 4 above architectures were implemented in Spartan-6 and, for comparison, in
the previous family of Spartan-3 devices from Xilinx. There was 8 designs in total (4
for each cipher) and the same code was implemented twice in Xilinx ISE Design
Suite version 13.4, for the two different target devices selected. Implementation was
fully automatic, without any hand-made fine tuning neither in placement nor in lay-
out. Since it turned out that AES pipelined architectures (AHP and AFP) can be op-
tionally implemented with or without utilization of block RAM resources available
in the FPGA chip, this gave the total of 10 different cases. The AHP and AFP
architectures implemented with block RAM are marked with “_B’ suffix.

From Spartan-6 family a middle-sized chip XC6SLX75 was selected as a repre-
sentative test platform and it served this role very well but selection of Spartan-3
device was more difficult. The initial plan was to use Spartan-3E sub family in-
tended for general, logic-optimized projects. As it soon turned out, even the larg-
est 3E chip – XC3S1600E – was too small for combinational and pipelined AES
designs. In other contemporary Spartan-3 families: I/O optimized Spartan-3A,
flash-memory based Spartan-3AN and DSP oriented Spartan-3A DSP, only the
largest Spartan-3A DSP chips were large enough but this family is optimized for
different type of processing. Therefore it was decided to revert to, nowadays
somewhat obsolete, initial Spartan-3 family, and to select the XC3S2000 device.

The results are presented in Tables 1 and 2. In general, different types of archi-
tectures behave as expected: the combinational organizations give the shortest la-
tency, pipelining is the only way to maximize throughput, and the iterative units

Table 1 Implementation results for the Spartan-6 device (XC6SLX75-3)

A
va

ila
bl

e

A
C

A
H

P

A
H

P_
B

A
FP

A
FP

_B

A
I

SC

SH
P

SF
P

SI

Slice registers 93296 256 1536 256 2944 1664 817 256 4224 16768 806

Slice LUTs 46648 8997 9087 3946 8884 3376 1367 16888 15523 22029 1566

Slices 11662 2680 2529 1324 2352 1216 493 5243 4590 6629 536

RAMB8s 344 80 86

Fmax[MHz] 24.4 195 154 215 168 160 7.95 196 169 180

Latency [Tclk] 1 11 11 11 11 11 1 32 34 34

Latency [ns] 41.0 56.4 71.2 51.2 65.6 68.9 126 163 202 189

Throughput
[Gbps]

3.05 24.4 19.3 26.8 20.9 1.81 0.99 24.5 21.1 0.66

Mbps / Slice 1.17 9.87 14.9 11.7 17.6 3.77 0.19 5.46 3.26 1.26

Max path:
logic/routing

[%]

21
79

28
72

38
62

30
70

38
62

21
79

15
85

25
75

18
82

32
68

Implementing AES and Serpent Ciphers in New Generation 283

Table 2 Implementation results for the Spartan-3 device (XC3S2000-5)

A
va

ila
bl

e

A
C

A
H

P

A
H

P_
B

A
FP

A
FP

_B

A
I

SC

SH
P

SF
P

SI

Slice registers 40960 271 5061 2771 3913 3913 781 256 4224 16768 783

Slice LUTs 40960 34566 30426 25328 29976 24583 7986 18939 22708 26876 3995

Slices 20480 17428 18799 14274 16103 13220 5948 9900 11793 18377 2145

RAMB16s 40 20 20

Fmax[MHz] 11.8 83.5 77.0 106 101 77.0 6.35 143 125 96.2

Latency [Tclk] 1 11 11 11 11 11 1 32 34 34

Latency [ns] 84.8 132 143 104 109 143 158 224 272 353

Throughput
[Gbps]

1.47 10.4 9.62 13.2 12.6 0.88 0.79 17.9 15.6 0.35

Mbps / Slice 0.09 0.57 0.69 0.84 0.98 0.15 0.08 1.55 0.87 0.17

Max path:
logic/routing

[%]

27
73

24
76

30
70

19
81

34
66

28
72

30
70

33
67

28
73

31
69

are unsurpassed if smallest possible resource utilization, at the cost of low per-
formance, is needed. It is worth noting, however, that from all the 4 architectures
applied to the two ciphers only the two pipelined AES organizations were imple-
mented with the use of block RAM resources in both Spartan-6 and Spartan-3
chips. In Spartan-6 this resulted in remarkable savings in other resources (slices,
registers and LUTs) which utilization dropped roughly by half, but the perform-
ance was also affected although not so evidently (approx. 20% drop in the
throughput). On Spartan-3 platform, on the other hand, the difference was not so
apparent. In cases of other architecture / cipher combinations the implementation
tool did not choose to use block RAM units, although the VHDL code did include
templates of ROM definitions (for SBox specification) and they were properly de-
tected in reports of the synthesis tool.

Looking at Figs. 3 and 4 we can better evaluate the results and see some re-
markable relations. Comparing the effectiveness of AES and Serpent implementa-
tions in Spartan-6 it is seen that the AES is able to achieve notable better perform-
ance with significantly lower resource utilization: in combinational organization
the AES reaches 307% of the Serpent’s throughput with 51% of its slice size,
while for the fully pipelined and iterative architectures these numbers are, respec-
tively, 127% - 35%, and 275% - 92%. In Spartan-3 family, on the other hand, the
relation is different: although generally the AES is able to reach higher levels of
throughput (with one exception of the fully pipelined designs), its size is also big-
ger (again with exception of the xFP units). For combinational, fully pipelined and

284 J. Sugier

Fig. 3 Size and performance of AES and Serpent implementations in a Spartan-6 device

Fig. 4 Size and performance of AES and Serpent implementations in a Spartan-3 device

Implementing AES and Serpent Ciphers in New Generation 285

iterative architectures throughput and slice size ratios are, respectively, 186% -
176%, 84% - 88%, and 247% - 277%. This lead to conclusion that the new
architecture of Spartan-6 family is better suited for implementation of the AES
operations than the previous one.

This observation is confirmed by Fig. 5. In this graph we visualize size and per-
formance not across different architectures implemented on the same platform but
between the two platforms. What is instantly seen from the bars in the last row
(slice ratio) is that while for AES the size ratios are in the range from 6.5 to 12
(meaning that the slice size is bigger by this factor in Spartan-3 than in Spartan-6),
for Serpent these ratios are from 1.9 to 6 – so switching form Spartan-3 to Spar-
tan-6 is much more beneficial for the AES implementations. Also the throughput
ratio is in the range of 0.4 ÷ 0.6 for AES and 0.5 ÷ 08 for Serpent, indicating that
the new family brings more progress for the Rijndael cipher.

Fig. 5 Spartan-3 vs. Spartan-6 – ratio of performance and size parameters

This difference between the two methods can be explained looking at the most
resource-hungry elementary operation in FPGA: the substitution function. In Spar-
tan-3 every output bit of the AES SBox, being an 8-input function, requires 256 /
16 = 16 4-input LUTs for storing the substitution table plus some additional LUTs
for multiplexing their outputs (in terms of ROM organization: for address decod-
ing). Even not counting the extra multiplexing logic this needs 128 x 16 = 2048
LUTs in each round and 20480 LUTs in the entire 10-round cipher (vs., for
example, total of 40960 LUTs in the whole mighty XC3S2000 chip). On the other
hand, LUT elements in Spartan-6 are truly 6-input tables (but can also be config-
ured as two 5-input LUTs what provide some amount of flexibility) so every SBox
output is generated by 256 / 64 = 4 LUTs with much simpler multiplexing (which
can be done in dedicated fast multiplexers and not in LUTs) and the whole ciphers
needs 4 x 128b x 10 rounds = 5120 LUTs. In Serpent, in contrast, the SBoxes are
4-input functions so they perfectly fit already in Spartan-3 LUTs and moving to
Spartan-6 does not bring any improvements in this aspect – in fact, Spartan-6
LUTs generating Serpent SBox functions are utilized not to their full potential.

286 J. Sugier

5 Conclusions

We take for granted that new generations of FPGA chips bring larger sizes and
faster operation but new architectural developments can sometimes change more
than mere design performance and utilization parameters. In case of AES and Ser-
pent ciphers new organization of array resources that was introduced with Spar-
tan-6 family, especially larger Look-Up Tables used for generation of combina-
tional functions in the design, substantially changed feasibility of various
implementation options of the ciphers.

In the old Spartan-3 devices combinational and pipelined organizations of the
AES units were unacceptable resource hungry and Serpent, despite much higher
number of rounds, was a better option for these kinds of processing. The new
Spartan-6 chips changed this situation and, effectively, advantage of the Serpent
algorithm is again mainly in its better cryptographic strength.

References

[1] Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced Encryp-
tion Standard. In: The First Advanced Encryption Standard (AES) Candidate Confe-
rence, Ventura, California, August 20–22 (1998), http://www.cl.cam.ac.
uk/~rja14/serpent.html (accessed March 2012)

[2] Anderson, R., Biham, E., Knudsen, L.: Serpent and Smartcards. In: Quisquater, J.-J.,
Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 246–253. Springer, Heidel-
berg (2000)

[3] Anderson, R., Biham, E., Knudsen, L.: The Case for Serpent. In: Third AES Candi-
date Conference (AES3), New York, USA, April 13–14 (2000),
http://csrc.nist.gov/archive/aes/index.html (accessed March
2012)

[4] Chu, P.P.: RTL Hardware Design Using VHDL. John Wiley & Sons, New Jersey
(2006)

[5] Gaj, K., Chodowiec, P.: Comparison of the hardware performance of the AES candi-
dates using reconfigurable hardware. In: Third AES Candidate Conference (AES3),
New York, USA, April 13–14 (2000), http://csrc.nist.gov/archive/
aes/index.html (accessed March 2012)

[6] Krukowski, Ł., Sugier, J.: Designing AES cryptographic unit for automatic
implementation in low-cost FPGA devices. Int. J. Critical Computer Based
Systems 3(1/2/3), 104–116 (2010)

[7] Lázaro, J., Astarloa, A., Arias, J.R., Bidarte, U., Cuadrado, C.: High Throughput
Serpent Encryption Implementation. In: Becker, J., Platzner, M., Vernalde, S. (eds.)
FPL 2004. LNCS, vol. 3203, pp. 996–1000. Springer, Heidelberg (2004)

[8] Liberatori, M., Otero, F., Bonadero, J.C., Castineira, J.: AES-128 Cipher. High Speed,
Low Cost FPGA Implementation. In: Proc. Third Southern Conference on Program-
mable Logic, Mar del Plata. IEEE Comp. Soc. Press, Argentina (2007)

[9] Mroczkowski, P.: Implementation of the block cipher Rijndael using Altera FPGA.
Military University of Technology, Warsaw (2000)

Implementing AES and Serpent Ciphers in New Generation 287

[10] National Institute of Standards and Technology, Specification for the Advanced
Encryption Standard (AES). Federal Information Processing Standards Publication
197 (2001), http://csrc.nist.gov/publications/PubsFIPS.html
(accessed March 2012)

[11] Osvik, D.A.: Speeding up Serpent. In: Third AES Candidate Conference (AES3),
New York, USA, April 13–14 (2000), http://csrc.nist.gov/
archive/aes/index.html (accessed March 2012)

[12] Piwko, K.: Hardware implementation of cryptographic algorithms in programmable
logic devices. Dissertation for M.Sc. degree, Wrocław University of Technology,
Faculty of Electronics (2010)

[13] RSA Laboratories, DES Challenges (1997-1999), http://www.rsa.com
[14] Sugier, J.: Low-cost hardware implementation of Serpent cipher in programmable

devices. In: Monographs of System Dependability Technical Approach to Dependa-
bility, vol. 3, pp. 159–172. Publishing House of Wrocław University of Technology
(2010)

[15] Sugier, J.: Implementing Serpent cipher in field programmable gate arrays. In: The
5th International Conference on Information Technology, ICIT 2011, Amman,
Jordan, May 11-13, pp. 91–96 (2011)

[16] Wójcik, M.: Effective implementation of Serpent algorithm. Dissertation for M.Sc.
degree, Faculty of Electronics and Information Technology, Warsaw University of
Technology (2007)

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 289–304.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Dependable Strategies for Job-Flows
Dispatching and Scheduling in Virtual
Organizations of Distributed Computing
Environments

Victor Toporkov, Alexey Tselishchev, Dmitry Yemelyanov,
and Alexander Bobchenkov

Abstract. This work presents dispatching strategies based on methods of job-flow
and application-level scheduling in virtual organizations of distributed computa-
tional environments with non-dedicated resources. Dependable job-flow manage-
ment is implemented with the set of specific rules for resource usage. Strategies
are based on economic scheduling models and diverse administration policies in-
side resource domains. Job management structures and economic mechanisms for
load balancing in distributed environments are considered. Scheduling methods
composing priority algorithms for parallel applications and job batch scheduling in
distributed computing with non-dedicated resources are proposed.

1 Introduction

Distributed computational environments such as Grid have been known for signif-
icant efficiency increase in shared computational resource usage and provision of
scientific and enterprise communities with solutions for complex computational
tasks. However, those who are responsible for setting up Grid infrastructure and
economy encounter difficulties while defining policies and strategies for efficient
resource management and job scheduling. The problem of establishing an optimal
or at least good strategy based on current environment condition remains actual
and prominent at the moment in the domain of distributed computing.

Victor Toporkov · Dmitry Yemelyanov · Alexander Bobchenkov
National Research University “MPEI”, ul. Krasnokazarmennaya 14, Moscow,
111250 Russia
e-mail: ToporkovVV@mpei.ru,

{groddenator,yemelyanov.dmitry}@gmail.com

Alexey Tselishchev
CERN (European Organization for Nuclear Research),
CERN CH-1211 Genève 23 Switzerland
e-mail: Alexey.Tselishchev@cern.ch

290 V. Toporkov et al.

Heterogeneity, changing composition, different owners of different nodes
whose computing time is partially shared by users turn the organization of a dis-
tributed computational environment into an especially difficult task. Utility grid
[1], multi-agent systems [2] and cloud computing [3] are types of distributed envi-
ronments where usage of economic mechanisms is seen as promising. Those eco-
nomic mechanisms are designed to solve tasks like resource management and
scheduling of user jobs in a transparent and efficient way. Within the context of
any used economic model the interests of different participants of a distributed
computing environment (such as end-users or node owners) are often contradicto-
ry. Since the resources of distributed environment such as Grid are non-dedicated,
it is assumed that node owners may have local job flows (their own tasks) and
global job flow (which is formed by external user jobs) competing for limited
computational resources of the node. Elaboration of pricing rules which are used
to calculate a fee for node computing time usage and take into account user-
required quality of service (QoS) is also a very serious problem [1-3]. An over-
view of various approaches to this problem is given in [4]. Heuristic algorithms
for resource selection based on user-given utility function are described in [5].
Some resource management models offer simple search and selection of resources
required by a user [6] and do not support any optimization. Others do not take into
account features related to global and local job competition, the competition
among users and other characteristics of distributed environments with non-
dedicated computational resources [7]. A resource broker model [1-5] dynamically
employs various economic policies which perform resource management which is
decentralized and application-specific and have two parties: node owners and
brokers representing users. Another common trend is related to virtual organiza-
tions [7-9] with central schedulers providing job-flow level scheduling and
optimization. While former type of resource management is well-scalable, the
simultaneous satisfaction of various application optimization criteria submitted by
independent users is unreachable in essence and also can deteriorate such integral
quality of service rates as total execution time of a sequence of jobs or overall
resource utilization. The latter type, virtual organizations naturally restrict the
scalability. However, scheduling based on uniform and controlled rules for alloca-
tion and consumption of resources makes it possible to improve the efficiency
of resource usage and find a tradeoff between contradictory interests of different
participants.

In this work, we propose two-level model of resource management system
which is functioning within a virtual organization (VO). Resource management is
implemented with a hierarchical structure consisting of a metascheduler and
subordinate job schedulers that are controlled by the metascheduler and in turn
interact with resource managers (e.g., with batch job processing systems). The
application-level optimization begins when job-flow level optimization is finished.
Such a flexible structure coupled with complex metascheduling approach enables
multiaspect resource management and makes possible to control dynamic priority
of job execution, resource selection and provide multicriterial optimization both
on the job-flow scale and for specific job, according to its submitter requirements
and optimization criteria. Hence, we may speak not only of a scheduling algorithm
but rather of a scheduling strategy that is a combination of various methods of

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 291

external and local scheduling. Such a mechanism allows finer control and higher
overall resource management efficiency in a distributed computing environment.
Resource is defined as an abstract computational entity, which can be used for ex-
ecution of one and only one task. The complex set of connected interrelated tasks
form a job. In some applications jobs require co-scheduling and resource co- allo-
cation on several resources [10-13]. In this case resource allocation has a number
of substantial specific features caused by autonomy, heterogeneity, dynamic con-
tent changes, and node failures [6-9]. In our model jobs are submitted to the sys-
tem by end-users. The proposing approach is more or less the same as used in
gLite Workload Management System, where Condor is used as a scheduling mod-
ule [14]. But the significant difference between the approach proposed in this
work and well-known scheduling solutions for distributed environments such as
the Grid [1, 3-7] is the fact that the execution strategy is formed on a basis of for-
malized efficiency criteria, which efficiently allows to reflect economic principles
of resource allocation by using relevant cost functions and solving a load balance
problem for heterogeneous processor nodes. At the same time the inner structure
of the job is taken into account when the resulting schedule is formed. Thus, two
approaches are uniquely combined in a proposed two-tier model.

This work is organized as follows. Section 2 overviews model components and
metascheduling workflow. In section 3 a strategy search is formalized. Section 4
contains simulation results. Section 5 summarizes the work and describes further
research topics.

2 Basic Notions and Informal Model Components Description

Let us define basic model components presented in this work.

• VO, that defines resource co-allocation dispatching strategies, pricing policies

and resource load-balancing mechanisms.
• Heterogeneous hierarchical computational environment that contains

computational resources (Grid nodes, CPUs or others) with different
performance indices. Each resource is considered as non-dedicated (i.e. it can
have its own internal schedule and these schedules are sent to application-level
schedulers upon request).

• Metascheduler, which implements resource management strategies and policies
of the virtual organization.

• Application-level schedulers that analyze internal job structure and schedule
single tasks.

The VO in our model of distributed computational environment includes three in-
dependent parties with their own interests.

• End-users of services provided within the VO such as computation services.

End-users take steps to make resource requests to the environment, according
to resource performance, time and budget estimations needed for running cus-
tom user jobs.

292 V. Toporkov et al.

• VO administrators that set up resource usage policies to optimize scheduling
and improve load balance. The administrators control metascheduler process
running in the environment which is in fact the part of VO infrastructure soft-
ware. Thus they are directly responsible for managing the parameters of higher
level resource management.

• Owners of computational nodes that comprise the environment network and
hardware base of the distributed computing environment. The owners offer part
of their nodes computing time to VO for a fee. Computational nodes provide
the only type of distributed resources used in our model.

Each computational node of the heterogeneous environment is mapped to a com-
putational resource line in the metascheduler resource management routine. Sev-
eral resource lines are combined into a virtual resource domain. Each resource line
has two static attributes which are its performance P and its base price tag F for

a computing time unit. The performance is an inherent parameter of a node and
the base price tag is assigned by its owner. The dynamic characteristic of a node is
represented with its local schedule which is a list of slots available for reservation.
This list is sent to metascheduler by request. A slot is a continuous interval of time
and is described with three parameters: its start time, its length and its fee [10-12].
The fee is calculated when the metascheduler applies its pricing policies taking in
account resource type, slot length etc.

A resource request is a set of a few constraints determined by a user which cor-
respond to the properties of the respective user job. They include:

a) minimal performance requirement for computational nodes, minP ;

b) maximal price tag for a single timeslot, maxF ;

c) number n of simultaneously reserved timeslots;
d) minimal slot length;
e) the internal structure of a job as a directed acyclic graph (DAG), where

vertices represent single tasks and edges represent data dependencies [13];
f) deadline for the job execution.

A job may require more than one timeslot if it includes several segments that can
be executed in parallel way, for instance. Then the user specifies the number of re-
served timeslots and minimal performance requirement that applies for them all.
The whole job budget is determined by the timeslot number and the maximum
price per timeslot. The minimal timeslot length requires an additional explanation.
This is the minimal time estimated by the user which is required to complete job
execution given the performance of the nodes meet the minimal requirement

minP . Hence, the metascheduler and the user share the responsibility since the

probability of being run successfully for a job equally depends on primary user es-
timates and overall scheduling quality.

The hierarchical model of the computational environment implies two-tier
scheduling (Fig. 1). On the job-flow level the set of independent jobs is distributed
between resource domains according to dispatching strategies and economic

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 293

criteria. Schedule on this level is defined by the metascheduler as a slot set for
each job, which is optimal in terms of a whole job set. Application-level schedu-
lers receive the list of resources which were meant to execute the job on and a
strategy, which defines the rule used to execute tasks of a concrete job. On this
level an optimal slot and specific resource are defined for each single task in a job,
thus, making it possible to take internal job structure into account. On the job-flow
level all end-user jobs are initially submitted into the global queue. The metasche-
duler can manage one or more job-flows which become sub-queues of the global
queue. The mechanism of distribution of jobs between job-flows can be random or
based on current load and actual efficiency of scheduling in certain job-flows.
Scheduling process in each job-flow is performed by identical scheduling in-
stance. We consider a single job-flow case.

The metascheduler works in cycles which are quanta of its process. For each
cycle it has following information.

1. Information about distributed computing environment as a set of resource

lines.
2. The global job queue.

What it needs then is a batch of jobs which is a ranked job list and a subset of
available slots for a specific virtual resource domain and a certain timeframe
which is called a scheduling interval. The length of the batch and the scheduling
interval are parameterized by VO administrators.

Jobs are fetched into the batch accordingly to several variables, such as the
maximum price tag, deadline, and the number of failed scheduling attempts for a
job. These variables being weighted and added up determine job rank according to
which it takes a position closer to head or tail of a batch.

The preparation phase ends and the actual scheduling process is executed as
follows (see Fig. 1).

1. The metascheduler analyzes available slots and finds an optimal slot
combination to accommodate every job in a batch using economic criteria. The
budget and the deadline defined by the end-user are considered during this step.
The algorithms for this step were detailed in [10-12].

2. After the domain is determined metascheduler defines the strategy for
each job. For example as shown on Fig. 1, the user, who has sent the job i has the
higher budget than the one who has sent the job k. The strategy for i may be
expressed as “execute as soon as possible” while the strategy for k may be
expressed as “execute as late as possible within the defined deadline”. These jobs
are later sent to application-level schedulers and the application-level scheduling
begins.

3. Application-level schedulers query internal schedules for all the resources
which were selected during step 2 for each job, analyze the job DAG and form a
resulting schedule for every task according to the strategy from step 2. These
schedules must support interruptions and delays and should be optimal in terms of
the defined criteria (i.e. cost or resource load). The criterion for the job i would

294 V. Toporkov et al.

be to minimize execution cost within the defined budget, criterion for the job k
would be to maximize average resource load while meeting the defined deadline.
As shown on Fig. 1, jobs i and k are scheduled to be executed on the same set
of resources at once.

4. Application-level schedulers are guaranteeing that there are no collisions
between the tasks which were scheduled during step 3 and local tasks, which may
have priority over the job-flow from step 1.

Fig. 1 Model components

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 295

3 Formalization of Scheduling

Let us note a global resource set { }, 1,.., ,g pR r p M= = , which includes all re-

sources. A global job-flow is a set of jobs received by the metascheduler in time:
{ },I,..i,G,T,c,lFL iiiig ,1== where the job i is represented as il – the amount of

resource slots required, ic - the maximal budget end-user is ready to allocate for

execution of the job, iT – deadline, iG – the job DAG. Metascheduler at any time

moment may query each resource, receive its local schedule and build a set of
slots gtS – idle time intervals.

Let us introduce a set of strategies },..,1,{ LlstST l == , which are based on

economic criteria and are defined by Grid-managers and developers. Let SL be a
set of K slots suitable to execute a subset of jobs gp FlFL ⊆ . A slot set is consi-

dered as suitable for the job i if the execution is possible in terms of the resource
number, the budget ic and the deadline iT . It is assumed that for every job there

is at least one suitable slot set },..,1{,, KkkslSLsl ii ∈=∈ .

On a job-flow level for each job the metascheduler aims at finding a slot set isl

and a strategy ist for which the value of the function)(ii slg , that defines wheth-

er the slot set is being effective for the job i , would be optimal [11]. The internal
job structure iG is not taken into account at this time. The mechanism to define

)(ii slg which was developed in the previous works [10-12] is now improved.

According to the resource request it is required to find a “window” with the fol-
lowing description: n concurrent time-slots providing resource performance rate
at least P and maximal resource price not higher than maxF should be reserved

for a time span iT (the resource request type was described in more detail above).

The length of each slot in the window is determined by the performance rate of the
node on which it is allocated. Thus as a result we have a window with a “rough
right edge” (Fig. 2). In addition, the criterion of selecting the most suitable set of
slots could be specified. This could be the minimum cost, the minimum runtime
or, for example, the minimum power consumption criterion. The window search is
performed on the list of all available system slots sorted by their start time in as-
cending order (this condition is necessary to examine every slot in the list and for
operation of search algorithms of linear complexity [10-12]).

The scheme of a search for a window that meets the requirements and effective
by the given criterion can be represented as follows.

1°. From the list of available system slots the next suitable slot ks is extracted

and examined. Slot ks suits, if following conditions are met:

a) resource performance rate () PsP k ≥ for slot ks ;

b) slot length (time span) is enough (depending on the actual performance of
the slot's resource) () () PsPTsL kik /∗≥ .

296 V. Toporkov et al.

If conditions a) and b) are met, the slot ks is successfully added to the window

list.
2°. A current window start time is a set equal to the start time of the last added

slot.
3°. Slots whose length has expired considering new window start time lastT are

removed from the list. The expiration means that remaining slot length ()ksL′ ,

calculated like shown in step 1°b, is not enough assuming the k -th slot start is
equal to the last added slot start: () ()()() () PsPsTTTsL kkik /last −+<′ , where

()ksT is the slot's start time. Any combination of the remaining slots can form a

window of necessary length.
4°. If the number of slots m in the current window is greater or equal to n , it is

required to select n slots, effective on the specified criteria and at the same time
satisfying the total cost and deadline restrictions. Suppose the window W of size
n with a target criterion value equal to crW was selected. The problem of select-
ing efficient window consisting of n slots in the case of nm > will be described
below.

5°. The target criterion value crW of window W is compared with the 'cr –
the current best target criterion value for all previously found windows. If

rccrW ′< (in case of a minimization problem) the window W announced as a
new window-candidate and crW becomes the new best criteria value: crWrc =′ .
Go to step 1°.

6°.The algorithm ends after the last available slot is processed. The result of the
algorithm is the window-candidate with the best target criteria value.

Fig. 2 Window with a “rough right edge”

The described algorithm can be compared to the algorithm of maxi-
mum/minimum value search in an array of flat values. The expanded window of
size m “moves” through the ordered list of available system slots. At each step any
combination of n slots inside it (in case when mn ≤) can form a window that
meets all the requirements to run the job. The effective on the specified criteria
window of size n is selected from this m slots and compared with the results in

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 297

the previous steps. By the end of the slot list the only solution with the best criteria
value will be selected. Consider the problem of selecting a window of size n with
a total cost no more than S from the list of nm > slots (in case when nm = the
selection is trivial). The maximal budget is counted as nFtS s= , where st is a

time span to reserve and n is the necessary number of slots. The current extended
window consists of m slots msss ,...,, 21 . The cost of using each of the slots ac-

cording to their required length is: mccc ,...,, 21 . Each slot has a numeric characte-

ristic iz the total value of which should be minimized in the resulting window.

Then the problem could be formulated as follows:

min...2211 →+++ mm zazaza , Sca...caca mm ≤+++ 2211 ,

na...aa m =+++ 21 , { } mrar ,...,1,,10 =∈ .

Additional restrictions can be added, for example, considering the specified value
of deadline. Finding the coefficients maaa ,...,, 21 each of which takes integer

values 0 or 1 (and the total number of ‘1’ values is equal to n), determine the
window with the specified criteria extreme value. Job-flow level scheduling ends
here.

Application-level schedulers receive following input data.

• The optimal slot set sl and the description of all corresponding resources:

gj RJjrR ⊆== },..,1,{ .

• The directed acyclic information graph { }E,VG = , where }n,..i,v{V i 1== is

a set of vertices that correspond to job tasks, for each of those execution time

estimates 0
ijτ on each of resources in R are provided, E – is a set of edges

that define data dependencies between tasks and data transfer time intervals.
• The dispatching strategy st , which defines the criterion for a schedule

expected
• The deadline iT or the maximal budget ic for the job (depends on a dispatching

strategy and)(ii slg .

The schedule which is being defined on an application level is presented as fol-

lows: []{ }, , , 1,..,i i iSh s f i nα= = , where],[ii fs is a time frame for a task i of a

job and iα - defines the selected resource. Sh is selected in the way that the crite-

rion function)(ShfC = achieves an optimum value. The critical jobs method

[13] which is used to find the optimal schedule and to define f consists of three

main steps.

298 V. Toporkov et al.

• Forming and ranging a set of critical jobs (longest sets of connected tasks) in
the DAG.

• Consecutive planning of each critical job using dynamic programming
methods.

• Resolution of possible collisions.
Detailed algorithm description is presented in [13].

4 Simulation Results

The two-tier model described in the sections 2 and 3 was implemented in a simu-
lation environment on two different and separated levels: on the job-flow level,
where job-flows are optimally distributed between resource domains and on the
application level, where jobs are decomposed and each task is executed in an
optimal way on a selected resource.

4.1 Job-Flow Level Scheduling Simulation Results

Job-flow level metascheduling was simulated in a specially implemented and
configured software that was written to test the features of the two-tier resource
management.

An experiment was designed to compare the performance of our job-flow level
metascheduling method with other approaches such as FCFS and backfilling. Let
us remind that our scheduling method detailed in works [10] and [11] involves
two stages that backfilling does not have at all, namely, slot set alternative genera-
tion and further elaboration of specific slots combination to optimize either time or
cost characteristic for an entire job batch. Backfilling simply assigns “slot set”
found to execute a job without an additional optimization phase. This behavior
was simulated within our domain with random selection from an alternative slot,
each job having one or more of them. So two modes were tested: with optimiza-
tion (“OPT”) and without optimization (“NO OPT”).

The experiment was conducted as follows. Each mode was simulated in 5000
independent scheduling cycles. A job batch and environment condition was rege-
nerated in every cycle in order to minimize other factor influence. A job batch
contained 30 jobs. Slot selection was consistent throughout the experiment. If a
job resource request could not be satisfied with actual resources available in the
environment, then it was simply discarded.

For optimization mode as well as for no-optimization mode four optimization
criteria or problems were used:

1. Maximize total budget, limit slot usage.
2. Minimize slot usage, limit total budget.
3. Minimize total budget, limit slot usage.
4. Maximize slot usage, limit slot budget.

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 299

Results presented in Table 1 apply for the problem 1. As one can see optimization
mode, which is using additional optimization phase after slot set generation wins
against random slot selection with about 13% gain in the problem 1 whose con-
cern is about maximizing total slot budget thus raising total economical output per
cycle and owners' profits.

Table 1 Experimental results for the problem 1: Total budget maximization with limited
slot usage

Mode

Average jobs
being processed

per cycle
(max 30)

Average total
slot cost per
cycle, cost

units

Average
total slot
usage per

cycle, time
units

Average slot usage
limit per cycle,

time units

OPT 20.0 11945.98 421.22 471.14

NO OPT 20.0 10588.53 459.36 471.85

Comparable results were obtained for other problems which are summarized in

Table 2. Optimized values are outlined in light grey.

Table 2 Experimental results for the problems 2-4

Mode Average jobs be-
ing processed per
cycle (max 30)

Average total
budget (slot

cost) per cycle,
cost units

Average to-
tal slot usage

per cycle,
time units

GAIN, %

Problem 1: Maximize total budget, limit slot usage

OPT 20.0 11945.9 421.2
+12.8

NO OPT 20.0 10588.5 459.4
Problem 2: Minimize slot usage, limit total budget

OPT 12.4 7980.4 300.9
+10.6

NO OPT 12.4 7830.9 332.8
Problem 3: Minimize total budget, limit slot usage
OPT 15.1 9242.4 410.057

+6.2
NO OPT 15.3 9813.9 406.612
Problem 4: Maximize slot usage, limit total budget
OPT 15.28 9870.8 416.835

+3.0

NO OPT 15.4 9718.1 404.8

These results are showing the advantage of the metascheduling on the job-flow

level. The next section describes the experiments on the application level.

300 V. Toporkov et al.

4.2 Application Level Scheduling Simulation Results

The experiment results presented in Table 3 shows the advantage of the critical
jobs method usage in a two-tier scheduling model compared to consecutive appli-
cation-level scheduling. Here k=0.75 means that each job is sent to be scheduled
after 75% of the time allocated for the previous one: while the scheduling cost for
a job is more or less the same, 1000 jobs are planned 25% faster.

Consider another experiment: while changing the length of the scheduling in-
terval, we will estimate the proportion of successfully distributed jobs. The length
of the scheduling interval is equal to ,6.2,..,0.1,* == hhlL with step 2.0 , where
l is the length of the longest critical path of tasks in the job and h is a distribu-
tion interval magnification factor. There were carried 200 experiments for each h
(bold points on Fig. 3). Analysis of the Fig. 3 shows that increasing the scheduling
interval (relatively to the execution time of the longest critical path on the nodes
with the highest performance) is accompanied by a significant increase in the
number of successfully distributed jobs. The detailed study of this dependence can
give a priori estimates of an individual job successful distribution probability.

Table 3 Two-tier model vs consecutive application-level scheduling

Parameter Application-level scheduling Two-tier model (k=0.75)
Jobs number 1000 1000
Execution time 531089 time units 399465 time units
Optimal schedules 687 703
Mean collision count 3.85 4.41
Mean load (forecast) 0.1843 0.1836
Mean load (fact) 0.1841 0.1830
Mean job cost 14.51 units 14.47 units

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

1 1,5 2 2,5

Scheduling interval factor, h

Su
cc

es
sf

ul
 J

ob
 d

is
tr

ib
ut

io
ns

 p
ro

po
rt

io
n

Fig. 3 Dependence of the proportion of the successful job distributions on the length of the
distribution interval

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 301

In the next experiment we will consider the dependence of successful distribu-
tions number and the number of collisions per experiment on the level of resource
instances availability. The experiments were performed in conditions of limited
resources using the specific instances of the resources. The number of resources
J in each experiment was determined as NjJ *= , where j – factor (x-axis)

and N – number of tiers in the graph. Fig. 4 shows results of the experiments
with different j values and 7,5,3=N .

The obtained dependencies (Fig. 4) suggest that the collisions number depends
on the resources availability. The lower the number of resource instances and the
greater the number of tiers in the graph – the more collisions occurred during the

0,4

2,4

4,4

6,4

8,4

10,4

12,4

1,8 2,8 3,8 4,8 5,8

Available resource instances factor, j

A
ve

ra
ge

 n
um

be
r

of
 c

ol
li

si
on

s

 p
er

 J
ob N=3

N=5

N=7

(a)

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

1,8 2,8 3,8 4,8 5,8

Available resource instances factor, j

Su
cc

es
sf

ul
 J

ob
 d

is
tr

ib
ut

io
ns

pr

op
or

ti
on

N=3

N=5

N=7

(b)

Fig. 4 Simulation results: resource dependencies of collisions number (a) and successful job
distribution proportion (b)

302 V. Toporkov et al.

scheduling. At the same time the number of resource instances affects the success-
ful distribution probability. With a value of 4>j (that is, when the number of

available resource instances is more than 4 times greater than the number of tiers
in the graph) all cases provide the maximum value of successful distribution
probability. These results are subject of future research of refined strategies on a
job-flow level.

(a)

(b)

(c)

(d)

Fig. 5 Resource utilization level balancing: utilization maximization with 66.1=h (a) and

2.1=h (b), utilization minimization and distribution cost maximization (c), distribution cost
minimization (d)

Dependable Strategies for Job-Flows Dispatching and Scheduling in VO 303

The next series of experiments aimed at identifying the priorities of selecting

certain resource instances with different optimization criteria and various restric-
tions. Figures 5 (a-d) show resource utilization levels in the following problems: re-
source load balancing, distribution cost minimization and maximization. The sche-
duling interval is defined as 66.1,* == hhlL and 2.1 , where 1 is execution time
of the longest critical path and h is a scheduling interval factor. Processors with
greater number have relatively lower cost and performance level. To maximize av-
erage resource utilization the priority is given to processors with relatively low per-
formance (Fig. 5 (a)). In case of a shorter scheduling interval (2.1=h) there is
need to use resources with higher performance (Fig 5 (b)). During the resource uti-
lization minimization and distribution cost maximization the priority is given to the
nodes with higher performance and usage cost (Fig. 5 (c)). During the distribution
cost minimization the priority is given to processor with low performance level and
correspondingly low cost. These experiments show how strategies defined on a job-
flow level are implemented on an application level, how flexible the strategies can
be and how can resource load be controlled by the metascheduler.

5 Conclusions and Future Work

In this work, we address the problem of independent job-flow scheduling in hete-
rogeneous environment with non-dedicated resources.

Each job consists of a number of interrelated tasks with data dependencies. Us-
ing the combination of existing methods with a number of original algorithms the
resulting schedules are computed. These schedules meet the defined deadlines and
budget expectations, provide optimal load-balance for all the resources and fol-
lows virtual organization’s strategies, thus, allowing to achieve unprecedented
quality of service and economic competitiveness for distributed systems such as
Grid. The experiments which were conducted are showing the efficiency of me-
thods developed for both job-flow and application level scheduling. The model
proposed is showing the way these methods and advantages can be converged in
one place making it possible to achieve the main goal.

Future research will include the simulation of connected job-flow and applica-
tion levels and experiments on real Grid-jobs in order to get finer view on advan-
tages of the approach proposed.

Acknowledgements. This work was partially supported by the Council on Grants of the
President of the Russian Federation for State Support of Leading Scientific Schools
(SS-316.2012.9), the Russian Foundation for Basic Research (grant no. 12-07-00042), and
by the Federal Target Program “Research and scientific-pedagogical cadres of innovative
Russia” (State contracts 16.740.11.0038 and 16.740.11.0516).

References

[1] Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling parallel applications on utility Grids:
time and cost trade-off management. In: Proc. of ACSC 2009, Wellington, New
Zealand, pp. 151–159 (2009)

304 V. Toporkov et al.

[2] Tesauro, G., Bredin, J.L.: Strategic sequential bidding in auctions using dynamic
programming. In: Proc of the First International Joint Conference on Autonomous
Agents and Multiagent Systems: part 2, pp. 591–598. ACM, New York (2002)

[3] Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious schedul-
ing of HPC applications on distributed cloud-oriented data centers. J. of Parallel and
Distributed Computing 71(6), 732–749 (2011)

[4] Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management and
scheduling in Grid computing. J. of Concurrency and Computation: Practice and
Experience 14(5), 1507–1542 (2002)

[5] Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid
Computing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002.
LNCS, vol. 2537, pp. 128–152. Springer, Heidelberg (2002)

[6] Voevodin, V.: The Solution of Large Problems in Distributed Computational Media.
Automation and Remote Control. Pleiades Publishing, Inc. 68(5), 773–786 (2007)

[7] Kurowski, K., Nabrzyski, J., Oleksiak, A., et al.: Multicriteria aspects of Grid
resource management. In: Nabr-zyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid
Resource Management. State of the Art and Future Trends, pp. 271–293. Kluwer
Acad. Publ. (2003)

[8] Toporkov, V.: Application-Level and Job-Flow Scheduling: An Approach for
Achieving Quality of Service in Distributed Computing. In: Malyshkin, V. (ed.) PaCT
2009. LNCS, vol. 5698, pp. 350–359. Springer, Heidelberg (2009)

[9] Toporkov, V.V.: Job and application-level scheduling in distributed computing.
Ubiquitous Comput. Commun. J. 4, 559–570 (2009)

[10] Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource selection
al-gorithms for economic scheduling in distributed systems. Procedia Computer
Science 4, 2267–2276 (2011)

[11] Toporkov, V., Yemelyanov, D., Toporkova, A., Bobchenkov, A.: Resource
Co-allocation Algorithms for Job Batch Scheduling in Dependable Distributed
Computing. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak,
T. (eds.) Dependable Computer Systems. AISC, vol. 97, pp. 243–256. Springer,
Heidelberg (2011)

[12] Toporkov, V., Bobchenkov, A., Toporkova, A., Tselishchev, A., Yemelyanov, D.:
Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing.
In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 368–383. Springer,
Heidelberg (2011)

[13] Toporkov, V.V., Tselishchev, A.S.: Safety scheduling strategies in distributed
computing. Intern. J. of Critical Computer-Based Systems 1(1/2/3), 41–58 (2010)

[14] Cecchi, M., Capannini, F., Dorigo, A., et al.: The gLite Workload Management
System. Journal of Physics: Conference Series 219(6), 062039 (2010)

Controlling Complex Lighting Systems

Igor Wojnicki and Leszek Kotulski

Abstract. Designing and controlling lighting systems become more and more com-
plex. Focusing on the control problem a rule-based control system is proposed. The
system allows to control such lighting systems with high level control logic consti-
tuting so-called profiles. The profiles express lighting system behavior under certain
conditions defined with rules. The light point and sensor distribution in the grid are
given as graph structures. Control command sequences are inferred based on current
system state, profiles, light points topology and sensor input. System’s architecture
and a case study are also presented.

1 Motivation

Contemporary lighting systems become more and more complex. The complexity
is a direct result of available capabilities of emerging new technologies such as
LED. Light points based on LED can be more and more spatially distributed. The
distribution includes not only location but also direction and light cone angle. Fur-
thermore, each of the points can be very precisely controlled having multiple power
states which correspond both to power consumption and light intensity. These pro-
vide more fine-grained control over lighting conditions. With an availability of such
control of lighting conditions there are certain issues which need to be addressed.
These are: design, and control.

Designing a lighting system which should provide certain lighting conditions
become more and more complex. Different spatial distributions for a similar or the
same effect can be chosen. Some CAD support seems to be necessary. At the design
stage certain optimizations can be carried out. There could be many optimization

Igor Wojnicki · Leszek Kotulski
AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics,
Computer Science and Electronics, Department of Automatics, al. Mickiewicza 30, 30-059
Kraków, Poland
e-mail: wojnicki@agh.edu.pl, kotulski@agh.edu.pl

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 305–317.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

306 I. Wojnicki and L. Kotulski

criteria such as: cost (number of light points reduction), robustness (adaptability to
lighting conditions not covered by the original design), durability (providing similar
or the same lighting conditions in case of some points failing) etc. So the design
process involves multi-criteria optimization which also should be supported by a
CAD software (there is an ongoing research at AGH-UST targeting this area: a
Large-scale Intelligent Lighting – LaSIL [13]).

Controlling such a complex system also poses a challenge. First of all there
are many independent light points. To obtain particular lighting conditions some
of them should be activated. Furthermore, a light point is not just a simple on-
off device. Upon activation the power level is to be specified. The main task
of a control system would be fulfilling requirements for lighting conditions by
activating certain points. The activation pattern (which indicates points, at what
power levels, in what sequence) is also subject to optimization according to some
criteria. These can be: power consumption, light point utilization, aesthetic etc.
Switching from one lighting condition to another presents yet another challenge:
how the light points should be switched not causing unpleasant effects (blinking,
strobe, etc.).

Furthermore the successful control should be based on a feedback from sensors.
It allows the control system to verify if the lighting conditions are met. It would also
allow to asses if there is a need to provide other conditions (i.e. illuminating or dim-
ming certain areas). Depending on particular application there should be different
sensors considered such as: time, light, presence, movement etc.

This paper focuses on the control issue. The light points topology and their ca-
pabilities as well as the lighting conditions and sensor output need to be defined in
a formal way. To provide a successful control a pattern matching between the sen-
sor output and the lighting conditions is to be provided. Upon successful match a
sequence of control commands is generated. The commands are directed to proper
light points based on the topology. Generating such sequences requires planning
and optimization. Alternative control sequences, regarding particular optimization
criteria, should also be considered.

To provide pattern matching, planning, plan optimization and to cope with the
complexity, applying certain Artificial Intelligence methods is proposed. In particu-
lar, using rules and implementing a Rule-based System capable of inferring appro-
priate control is further discussed.

2 Related Research

Rule based systems are fully capable of providing means for control applications.
Gensym G2 and Tiger systems should be mentioned here. Gensym G2 is a general
expert system which can be applied to variety of problems ranging from Business
Rules to Real-Time Control [8]. Among other applications it has been successfully
applied to control Unmanned Aerial Vehicles (UAV) or Power Systems manage-
ment. Tiger (created by Intelligent Applications Ltd, presently Turbine Services

Controlling Complex Lighting Systems 307

Ltd) is a real-time rule-based system designed to diagnose gas turbines [16]. It is
estimated that the system alone has brought huge savings thanks to early detection
of possible failures. The project initially was researched at LAAS in France [2].
There are also languages and run-time environments dedicated to handling rules,
such as CLIPS, Jess or Prolog.

3 Expressing Topology and States

Both designing and controlling a lighting system in the open spaces need consider-
ing very large number of states. Furthermore each of these states depends on signif-
icant number of parameters. These parameters either can dynamically change their
values (i.e. current value of sensor data) or they are permanent and depend on the
formal government regulations (i.e.[4]). Moreover, such the selection of parameters
to consider can also dynamically change if a detected situation changes. For exam-
ple the parameters applied for assurance of the personal safety should be changed
to the parameters applied for assurance of the safe movement, if such a movement
is detected (see [15] for details). The illumination also changes in dependence on
the atmospheric conditions, thus some additional intermediate states should be com-
puted. Complexity of the problem causes that we have to introduce a formal notation
that enables a formal description of the lighting problem in a way that will by com-
putable and scalable. Graph structures seams to be a good choice in this case. In
[13] the hypergraph representation for building, streets, squares and its elements
has been introduced in the following way.

Definition 1. A cartographic hypergraph is a tuple of the form

G = (N,H,attN ,attH , labN , labH),

where N is a set of nodes, H ⊂ ⋃
i>1 Pi(N) is a set of hyperedges, attN : N −→ AN

and attH : H −→ AH are node and hyperedge attributing functions respectively,
labN : N −→LN and labH : H −→LH are node and hyperedge labeling functions.
AN and AH denote sets of node and hyperedge attributes, LN and LH are sets of
node and hyperedge labels. The family of cartographic hypergraphs is denoted as
HCart .

Elements of the node set N correspond to such physical objects as streets, paths,
squares and so on. Elements of H correspond to physical junction points of streets,
paths and so on.

In [14] the idea of introduction to this notation elements representing sensors
and agents that gather some knowledge while moving via the ”virtual streets” is
presented.

We will consider the permanent part of graph i.e. representation of the build-
ings, street, squares (that will not move and their parameters will not change)
and temporary part of graph that represent the fragment of description of the

308 I. Wojnicki and L. Kotulski

specific illumination behavior (called profile). The representation of the set of pro-
files is input for the proposed Intelligent Control System.

In Figure 1 the sample map and the corresponding hypergraph for the permanent
representation are shown. The part of map consists of streets sections s1, . . . ,s5, and
the square p which are represented by the cartographic hypergraph vertices. Their
junction points marked with bolded points correspond to its hyperedges.

(a)

s2

s4

p

s5

s3 s1

(b)

Fig. 1 (a) The sample map (b) Hypergraph representing the map

s2

s4

p

s5

s3 s1

S

Mp

(a)

s2

s4

p

s5

s3 s1

Ep

(b)

Fig. 2 (a) Movement and (b) Standby profiles represented with hypergraphs

With the square p we can join the temporary part of graph such as economic light-
ing scheme, see Figure 2 (for simplicity represented here as a single node labeled
by E p – in a normal situation, so called Standby profile, it is a complex subgraph
representing lamps and their attributes) and illumination while some movement is
detected, so called Movement profile, labeled by Mp.

Controlling Complex Lighting Systems 309

Both situations are presented in Figure 2 where a) represents the Movement pro-
file and b) the Standby profile. Let us note that Mp profile can be added to the graph
only if some sensor (labeled by S), that is associated with the square p, has detected
a movement. In the graph this means that p is connected with S by some hyperedge,
and p is also connected with the graph representing the profile (here E p).

4 Complex Control Requirements

The following section discusses requirements for handling complex lighting
systems. It introduces a concept of profile, proposes an architecture and outlines
system behavior.

4.1 Profiles

A lighting grid forms a complex system of light points. The points are spatially
distributed, possibly non uniformly. Each point has certain parameters, in addition
to its location, such as available output power levels, energy consumption, direction
etc. Each point can be managed, controlled separately to make optimization of the
entire grid according to chosen criteria possible.

Lighting control should be subject to profiles. A profile defines a mode of oper-
ation for a lighting grid for particular purpose. It provides behavioral model under
certain circumstances, precisely defining lighting conditions. Choosing a profile can
depend on such factors as natural lighting, weather (snow, rain, fog), time (time of
day, working days), social events, energy shortage, traffic etc.

Since some profiles might depend or subsume each other, they can form a hier-
archy. In general, this hierarchy can be expressed as a tree, graph or a hypergraph.
An example set of profiles for public access areas are presented in Figure 3. There
are two major profiles Normal and Emergency defining lighting conditions for reg-
ular and emergency operations. Within regular operations there are Tracking and
Standby profiles defined. The Standby describes a profile which provides minimum
lighting, while Tracking illuminates regions in which some activity can be detected
i.e. people presence.

Tracking

Normal

Standby

Emergency

Fig. 3 Environment Profiles

310 I. Wojnicki and L. Kotulski

4.2 Massive Input Processing

General architecture of proposed control system is given in Figure 4. Input for such
lighting control system is threefold. First, there is static input. It is topology related
information, regarding spatial distribution of light points in the grid, their param-
eters such as: direction, yield, power consumption characteristic etc., and sensors,
including: type, location, etc. It rarely changes during operation, unless some light
points become uncontrollable or inoperational. Second, there is profile definitions
being also static. Third, there is dynamic input. It includes all information coming
from sensors and it is subject to change often. All above inputs are represented by
graph structures thus they are called input graphs.

To control in such a case is to detect certain patters defined by profiles matched
against light points and sensor input. From a formal point of view it is detecting
patterns in input graphs or subgraphs derived from them.

4.3 Reactive and Deductive Behavior

A successful control system should be able to process incoming data, and gener-
ate appropriate response sending control commands to light points. It constitutes
stimuli-response reactive behavior.

Furthermore the control system should be capable of more complex actions.
Based on incoming data, it should be able to anticipate where and what to

lo
ca

tio
n,

pa
ra

m
et

er
s

be
ha

vi
or

Profiles Topology

Control

Sensors

Light points

dynamicstatic

in
pu

t
ou

tp
ut

commands

m
ea

su
re

m
en

ts

Fig. 4 General Architecure, DFD

Controlling Complex Lighting Systems 311

control, predicting which light points should be enabled, when and with what in-
tensity. Such a behavior allows for more sparse sensor grid, reducing number of
sensors deployed, decreasing cost of entire system. It would also make the system
work in case of communication problems, covering for missing data, or in case of
missing, destroyed, or disconnected sensors (i.e. in case of natural disasters or riots).

Anticipation requires planning. Having different control plans identified, it is
possible to evaluate them according to chosen criteria and pick the optimal plan.
Different criteria are possible, including safety maximization, power consumption
reduction, or human comfort maximization. The criteria themselves can be part of
the profile data.

5 Proposed Solution: A Rule-Based System

A straightforward way of defining profiles is to use rules. A set of rules defines both
conditions and actions which should be met and carried out, respectively, within
the profile. Using rules simplifies profile design process employing knowledge en-
gineering approach and tools. Furthermore formal analysis is possible including
checking for subsumption and completeness.

To have a working control system the rules need to be interpreted. The inter-
pretation is provided by an inference engine. This approach constitutes a rule-
based system (RBS). Such a system consists of a knowledge base and an inference
engine[5, 3, 12]. The knowledge base is the actual control logic. It is a dynamic
aspect of the system, being subject to change. A change happens if the requirements
for the behavior of the system change, in other words when the system needs to be
reprogrammed, or if new facts become known or available, i.e. new sensor data. The
inference engine provides general means for interpreting it. It works according to
established inference algorithm which remains fixed.

In order to store knowledge, RBS use various knowledge representation methods
tailored to particular needs such as: expert systems, decision support, or control and
monitoring systems. Quite often logical representations are used i.e. propositional
logic or predicates.

In the presented case the knowledge base consists of rules describing the profiles,
and facts identifying topology, sensor data, control commands and system state (see
Figure 5). The Profiles and Topology, provided by designer, implement system be-
havior and define spatial distribution and properties of the light points and sensors.
The State identifies what state the system is in, including information about active
profiles and which light points are activated. It is given as a graph. The Control and
Input are facts representing control sequences and input data, from sensors, respec-
tively. The run-time system consists of the Inference Engine, input/output subsys-
tem (I/O System) and the Explanatory Facility. The I/O System provides a separate
software module handling input/output operations[19]. It feeds data from Sensors
into the Knowledge Base and makes sure that the control sequences are delivered
to Actuators. The Explanatory Facility is optional. It provides feedback to the user

312 I. Wojnicki and L. Kotulski

I/O System

Inference Engine

Explanatory Facility

control seq

measurement

Sensors

Actuators

Run−time

InputControl

State

Knowledge Base

TopologyProfiles

designbehavior explanation

UserDesigner

Fig. 5 Lighting Control Rule-based System

regarding system decisions. It explains why certain control sequences are chosen. It
plays both diagnostic and informational roles.

5.1 Backward and Forward Chaining

Since both deductive and reactive behavior for the control system is requested, the
rule-based system must be capable of handling both features. There are two ap-
proaches to the inference process that can be used here, these are forward and back-
ward chainings.

The forward chaining is suitable for modeling reactive systems. The inference
process takes into account available data (facts) and generates new data based on
rules. This process continues until a goal is reached, which is an appropriate con-
trol command sequence. In the particular case presented here, the available data
is defined by input graphs. The ever changing dynamic input keeps delivering
facts, while the inference engine, taking into account the static input, keeps sending
control commands.

To cover the deductive characteristics, mentioned before, a backward chaining
strategy can be used. It starts with hypothesis and works toward facts, looking for
these which support it. The backward chaining is suitable for synthesizing plans, as
well as finding alternative solutions. Looking for optimal solutions can be applied
throughout the process, at each inference step employing the given criteria. Alterna-
tively, having alternative solutions synthesized, at the end of the inference process,
they can be easily evaluated and the optimal one can be selected then.

Controlling Complex Lighting Systems 313

5.2 Contexts

Implementing the profiles is provided straightforwardly by gathering rules in subsets
– one for each profile. The inference engine acts, interpreting the facts based on the
rules, only if a profile is activated. It applies rules from a given subset corresponding
to the active profile only.

Assuming that some dependencies or subsumption of profiles can take place more
advanced implementation and execution schema is considered. Handling multiple,
hierarchical profiles is provided by the Context Based Reasoning (CxBR) [1]. The
profiles would correspond to the contexts. The contexts gather rules. They form a
hierarchy which can be described by a hypergraph. Furthermore applying CxBR
concept the control system is capable of switching among profiles (contexts) easily.
It is accomplished by introducing additional context switching rules present in each
of the contexts.

5.3 Design and Redesign

Using rules for describing the profiles has also some impact on the design
process. The process of synthesizing rules, while being natural, has a strong back-
ground which comes from the Knowledge Engineering field. There are several de-
sign methodologies and patterns that can be used here [6]. Especially structured
rule-bases which were introduced to support control systems [7, 11]. Rule design
methodologies such as ARD+ and DPD, can be also applied here. They were devel-
oped at AGH-UST [10] with full support of CASE tools [9].

Rules can be easily structured and visualized in different ways, exposing dif-
ferent aspects using: decision tables, trees, and recently developed contextual net-
worked decision tables (CoNDeT) [17]. For control system purposes particularly
the CoNDeT approach is suitable. An ongoing research indicates that it can handle
a wide range of applications from control systems to general purpose software [18].
It makes the rule-base more readable, easier to construct or alter, simplifying the
redesign process if needed.

5.4 Formal Analysis

Rules are formally defined. They are often represented with propositional or pred-
icate, usually first order, logic. It allows for their formal analysis. In the proposed
solution rules are used.

From the control system point of view the most important property of such rule-
based system is completeness. It is essential that the system reacts properly for any
possible input. Completeness detection can be applied not only during run-time but
also in the design stage. It allows for early detection of missing rules, typos, wrong
values etc.

Furthermore, considering knowledge representation of the distribution of light
points or sensors, their formal analysis and transformation is also available.

314 I. Wojnicki and L. Kotulski

Applying graph transformations allows to verify certain properties or identify flows
and compensate for them.

6 A Case Study

A case study presented here regards a lighting control system for a gas station. The
station is equipped with several light points, motion sensors and smoke detectors.
The profile definitions, from the RBS point of view, are provided in Figure 6. There
are four profiles forming a hypergraph. Two major profiles: Normal and Emergency,
and two minor ones: Standby and Tracking.

A profile consists of rules and, optionally, other profiles. To consider the control
system active at least one profile has to be active. The default active profile (Nor-
mal) is indicated by an incoming arrow. A rule within a profile can trigger actions,
generating control sequences, or switch to another profile. A single rule consists
of conditions and conclusions separated with an arrow symbol (->). Conditions
involve reading data from sensor regarding current time (h), motion sensors (m)
and smoke detectors (s). They may also involve using logical operators and graph
matching functions. In general case rule conditions involve graph transformations
on graph structures representing current state, topology and sensor inputs.

The Normal profile defines two rules:

1. if there is smoke detected switch to the Emergency profile,
2. if there is no smoke detected activate the Standby profile.

Fig. 6 Gas Station, Profiles

Controlling Complex Lighting Systems 315

Activating a minor profile (subprofile) causes both minor and major profiles to be
active. A minor profile is not allowed to be active if its major profile is not active.
The Standby profile defines the following rules:

1. if any motion is detected (m) switch to the Tracking profile,
2. if current hour is between 20:00 and 6:00 set all lighting at 10%,
3. if current hour is between 6:00 and 20:00 set all lighting at 0%.

The Tracking profile rules can be read as:

1. if there is no motion detected switch to the Standby profile,
2. if current hour is between 20:00 and 6:00 and there is motion detected set lighting

at 70% within 3 meter radius from the motion source, 30% within 5 meter radius,
10% within 7 meter radius,

3. if current hour is between 6:00 and 20:00 set lighting at 0% regardless of the
detected motion.

The Emergency profile is switched to if smoke is detected. There are the following
rules:

1. switch to the Normal profile if there is no smoke present,
2. unconditionally set lighting to pulse changing luminosity from 80% to 100% at

0.5 second interval.

In this example rule conditions regard data from simple, single sensors (smoke de-
tector, motion sensor) or real-time clock. However in general case this data can
come from complex sensor grids. In such a case it would be expressed with graphs.
Rule conditions will regard results of graph transformations providing certain pat-
tern matching: identification of subgraphs, graph properties etc. Similarly rule de-
cisions involve graph structures – activating certain light points within the grid, and
simultaneously changing system state, which is also given as a graph. An example
of such a decision, which affects a grid of light points, is given in the second rule
of Tracking profile ((h:20-6,m -> 70% 3m, 30% 5m, 10% 7m), see Fig-
ure 6). In general case a decision can use far more complex graph-related patterns
as well.

It needs to be pointed out that transitions upon switching lighting conditions
should be aesthetic and smooth. Blinking, strobe effects, sudden darkness should be
avoided as causing disorientation. For example, firing the second rule in the Track-
ing profile (h:20-6,m -> 70% 3m, 30% 5m, 10% 7m) results in a certain
lighting condition change. However the change is not abrupt. It is gradual from
whatever state the lighting system is in to the one defined by the rule. Such a smooth
transition is also computed by the proposed control system. The computation is
based on gradual graph transformations, from the current state to the one switched
to by the rule. I means that if AI rule decides that the system should move from
the state described by graph Gi to the state described by the state Gi+1 (which ad-
ditionally might involve changing current profile as well), the graph transformation
subsystem parses the graph state and designates sequence of elementary produc-
tions that transform the Gi to Gi+1. Applying the elementary productions generates
a sequence of control commands to be delivered to actuators.

316 I. Wojnicki and L. Kotulski

7 Summary

This paper tackles the problem of controlling complex lighting systems. The prob-
lem is approached with Artificial Intelligence techniques, particularly the rule-based
paradigm.

Spatial distribution (topology) of light points is expressed as a graph. The main
goal of the control system is to activate certain light points in given situations. The
particular situations are defined with so-called profiles.

Profile activation is triggered by rules. There could exist complex relationships
among profiles, thus they are expressed with graphs as well. Within each pro-
file there is a set of rules precisely defining lighting conditions. This delivers a
high abstract control layer which can successfully cover defining complex profiles.
Simultaneously it provides a very intuitive and straightforward programming model.

Profile activation and rule firing, thus sending control sequences powering up
light points, is provided by a rule-based system. The system uses a structured
knowledge-base for storing data regarding the spatial distribution of light points,
profiles, sensor measurements and control commands and current state. The infer-
ence engine is based on the context-based reasoning to cover the profiles and provide
a tool for proper profile activation.

Further research focuses on graph transformations, extending deductive capabili-
ties of the proposed rule base system and fine tuning the light transitions. The graph
transformations will provide more operators to be used both in the rule condition and
decision parts. Research regarding the deductive capabilities will provide automatic
optimization methods for different criteria mentioned earlier. Finally fine-tuning the
automatic transitions among lighting conditions will provide more aesthetic visual
effects.

References

1. Gonzalez, A.J., Stensrud, B.S., Barrett, G.C.: Formalizing context-based reasoning: A
modeling paradigm for representing tactical human behavior. Int. J. Intell. Syst. 23(7),
822–847 (2008)

2. Gouyon, J.P.: Kheops users’s guide. Report of Laboratoire d’Automatique et d’Analyse
des Systemes (92503) (1994)

3. Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison–Wesley (1999) ISBN 0-
201-87686-8

4. Kotulski, L., Strug, B.: Distributed Adaptive Design with Hierarchical Autonomous
Graph Transformation Systems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS 2007, Part II. LNCS, vol. 4488, pp. 880–887. Springer, Heidelberg (2007)

5. Liebowitz, J. (ed.): The Handbook of Applied Expert Systems. CRC Press, Boca Raton
(1998)

6. Ligęza, A. (ed.): Logical Foundations for Rule-Based Systems. Springer, Heidelberg
(2006)

7. Ligęza, A., Wojnicki, I., Nalepa, G.J.: Tab-Trees: A CASE Tool for the Design of Ex-
tended Tabular Systems. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.)
DEXA 2001. LNCS, vol. 2113, pp. 422–431. Springer, Heidelberg (2001)

Controlling Complex Lighting Systems 317

8. Moore, R., Lindenfilzer, P., Hawkinson, L., Matthews, B.: Process control with
the g2 real-time expert system. In: Proceedings of the 1st International Con-
ference on Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, IEA/AIE 1988, pp. 492–497. ACM, New York (1988), doi:
http://doi.acm.org/10.1145/51909.51965

9. Nalepa, G.J., Wojnicki, I.: VARDA Rule Design and Visualization Tool-Chain. In: Den-
gel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008.
LNCS (LNAI), vol. 5243, pp. 395–396. Springer, Heidelberg (2008)

10. Nalepa, G.J., Wojnicki, I.: Ard+ a prototyping method for decision rules. method
overview, tools, and the thermostat case study. Tech. Rep. CSLTR 01/2009, AGH Uni-
versity of Science and Technology (2009)

11. Nalepa, G.J., Wojnicki, I.: Visual Generalized Rule Programming Model for Prolog with
Hybrid Operators. In: Seipel, D., Hanus, M., Wolf, A. (eds.) INAP 2007. LNCS (LNAI),
vol. 5437, pp. 178–194. Springer, Heidelberg (2009)

12. Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow (2002) ISBN 0-201-71159-1

13. Sędziwy, A.: Representation of objects in agent-based lighting design problem. In: Dep-
CoS: Dependability and Complex Systems. DepCoS-RELCOMEX (2012)

14. Sędziwy, A., Kotulski, L.: Solving large-scale multipoint lighting design problem using
multi-agent environment. In: Su, D., Xue, K., Zhu, S. (eds.) Key Engineering Materials.
Advanced Design and Manufacture IV (2011)

15. Sędziwy, A., Kozień-Woźniak, M.: Computational methods supporting street lighting de-
sign. In: DepCoS: Dependability and Complex Systems. DepCos-RELCOMEX (2012)

16. Travé-Massuyès, L., Milne, R.: Gas-turbine condition monitoring using qualitative
model-based diagnosis. IEEE Expert: Intelligent Systems and Their Applications 12,
22–31 (1997), doi: http://dx.doi.org/10.1109/64.590070

17. Wojnicki, I.: From tabular trees to networked decision tables: an evolution of modular-
ized knowledge-base representations. Pomiary Automatyka Kontrola 12 (2011)

18. Wojnicki, I.: Implementing general purpose applications with the rule-based approach.
In: RuleML 2011: Proceedings of the 5th International Conference on Rule-based Rea-
soning, Programming, and Applications, pp. 360–367. Springer, Heidelberg (2011)

19. Wojnicki, I.: Separating i/o from application logic for rule-based control systems. Deci-
sion Making in Manufacturing and Services (2011)

http://doi.acm.org/10.1145/51909.51965
http://dx.doi.org/10.1109/64.590070

Service Renaming in Component Composition

Wlodek M. Zuberek

Abstract. In component-based systems, the behavior of components is usually de-
scribed at component interfaces and the components are characterized as requester
(active) and provider (reactive) components. Two interacting components are con-
sidered compatible if all possible sequences of services requested by one component
can be provided by the other component. This concept of component compatibility
can be extended to sets of interacting components, however, in the case of several
requester components interacting with one or more provider components, as is typ-
ically the case of cleint–server applications, the requests from different components
can be interleaved and then verifying component compatibility must take into ac-
count all possible interleavings of requests. Such interleaving of requests can lead
to unexpected behavior of the composed system, e.g. a deadlock can occur. Service
renaming is proposed as a method of systematic eliminating of such unexpected
effects and streamlining component compositions.

1 Introduction

In component-based systems, components represent high-level software abstraction
which must be generic enough to work in a variety of contexts and in cooperation with
other components, but which also must be specific enough to provide easy reuse [9].

Primary reasons for using components are [8]: separability of components from
their contexts; independent component development, testing and later reuse; up-
grade and replacement in running systems. Component composability is often
taken for granted, while it actually is influenced by a number of factors such as
operating platforms, programming languages or the specific middleware technol-
ogy in which the components are based. Ideally, the development, quality control,
and deployment of software components should be automated similarly to other

Wlodek M. Zuberek
Department of Computer Science, Memorial University, St.John’s, NL, Canada A1B 3X5

and

Department of Applied Informatics, University of Life Sciences, 02-787 Warszawa, Poland
e-mail: wlodek@mun.ca

W. Zamojski et al. (Eds.): Complex Systems and Dependability, AISC 170, pp. 319–330.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

wlodek@mun.ca

320 W.M. Zuberek

engineering domains, which deal with the construction of large systems composed
of well-understood elements with predictable properties and under acceptable bud-
get and timing constraints [14]. For this to happen, automated component-based
software engineering must resolve a number of issues, including efficient verifica-
tion of component compatibility.

The behavior of components is usually described at component interfaces [16]
and the components are characterized as requester (active) and provider (reactive)
components. Although several approaches to checking component composability
have been proposed [1] [4] [10] [12], further research is needed to make these ideas
practical [8]. Usually two interacting components are considered compatible if all
sequences of services requested by one component can be provides by the other
component. In the case of several components interacting with a single provider,
as is typically the case of internet applications (e.g., client-server systems), the re-
quests from different components can be interleaved and then verifying component
compatibility must check all possible interleavings of requests from all interacting
components for possible conflicts. Such interleaving of service requests can lead to
unexpected behavior of the composed system; e.g., a deadlock can occur. Service
renaming is proposed as a systematic method of eliminating request conflicts and
streamlining component composition.

The idea of service renaming for the elimination of conflicting requests can be
illustrated by the following simple example. Let the languages of two requester com-
ponents be specified by regular expressions “(abc)*” and “(bac)*” (“a”, “b”
and “c” are services requested by the components), and let the language of the cor-
responding provider component be “((ab + ba)c)*”. It can be easily checked
that both requester components are compatible with the provider [20], however,
one of possible interleavings of the requests is ”(ab(bc + ac))*”, which - if
allowed - results in a deadlock. Service renaming which eliminates this deadlock
replaces, for example, ”a” by ”A” in the sequence “bac” and “b” by “B” in the
sequence “abc”, and then any interleaving of “(aBc)*” with “(bAc)” is com-
patible with the provider “((aB + bA)c)*”.

The paper is continuation of previous work on component compatibility and sub-
stitutability [7] [19] [20] [21]. Using the same formal specification of component
behavior in the form of component languages, the paper proposes an approach to
identify component conflicts in component composition and systematic renaming
of services as a conflict removal method.

Since component languages are usually infinite, their compact finite specification
is needed for effective verification, comparisons and other operations. Labeled Petri
nets are used as such specification.

Petrinets [13] [15]are formalmodelsof systemswhich exhibit concurrentactivities
with constraints on frequency or orderings of these activities. In labeled Petri nets, la-
bels, which represent services, are associated with elements of nets in order to identify
interacting components. Well-developed mathematical theory of Petri nets provides
a convenient formal foundation for analysis of systems modeled by Petri nets.

Section 2 recalls the concept of component languages as a characterization
of component’s behavior. Component languages are used in Section 3 to define

Service Renaming in Component Composition 321

component compatibility. Service renaming is described in Section 4 while Section
5 concludes the chapter.

2 Modeling Component Behavior

The behavior of a component, at its interface, can be represented by a cyclic labeled
Petri net [6] [20]:

Mi = (Pi,Ti,Ai,Si,mi, �i,Fi),

where Pi and Ti are disjoint sets of places and transitions, respectively, Ai is the set of
directed arcs, Ai ⊆ Pi ×Ti ∪Ti ×Pi, Si is an alphabet representing the set of services
that are associated with transitions by the labeling function �i : Ti → Si ∪{ε} (ε is
the “empty” service; it labels transitions which do not represent services), mi is the
initial marking function mi : Pi →{0,1, ...}, and Fi is the set of final markings (which
are used to capture the cyclic nature of sequences of firings).

Sometimes it is convenient to separate net structure N = (P,T,A) from the initial
marking function m.

In order to represent component interactions, the interfaces are divided into
provider interfaces (or p-interfaces) and requester interfaces (or r-interfaces). In the
context of a provider interface, a labeled transition can be thought of as a service
provided by that component; in the context of a requester interface, a labeled transi-
tion is a request for a corresponding service. For example, the label can represent a
conventional procedure or method invocation. It is assumed that if the p-interface re-
quires parameters from the r-interface, then the appropriate number and types of pa-
rameters are delivered by the r-interface. Similarly, it is assumed that the p-interface
provides an appropriate return value, if such a value is required. The equality of
symbols representing component services (provided and requested) implies that all
such requirements are satisfied.

For unambiguous interactions of requester and provider interfaces, it is required
that in each p-interface there is exactly one labeled transition for each provided
service:

∀ti, t j ∈ T : �(ti) = �(t j) �= ε ⇒ ti = t j.

Moreover, to express the reactive nature of provider components, all provider mod-
els are required to be ε–conflict–free, i.e.:

∀t ∈ T ∀p ∈ Inp(t) : Out(p) �= {t}⇒ �(t) �= ε

where Out(p) = {t ∈ T | (p, t) ∈ A}; the condition for ε–conflict–freeness could
be used in a more relaxed form but this is not discussed here for simplicity of
presentation.

322 W.M. Zuberek

Component behavior is determined by the set of all possible sequences of ser-
vices (required or provided by a component) at a particular interface. Such a set of
sequences is called the interface language.

Let F (M) denote the set of firing sequences in M such that the marking created
by each firing sequence belongs to the set of final markings F of M . The interface
language L (M), of a component represented by a labeled Petri net M , is the set
of all labeled firing sequences of M :

L (M) = {�(σ) | σ ∈ F (M)},

where �(ti1ti2 ...tik) = �(ti1)�(ti2)...�(tik).
By using the concept of final markings, interface languages reflect the cyclic

behavior of (requester as well as provider) components.
Interface languages defined by Petri nets include regular languages, some context–

free and even context–sensitive languages [11]. Therefore, they are significantly
more general than languages defined by finite automata [5], but their compatibility
verification is also more difficult than in the case of regular languages.

3 Component Compatibility

Interface languages of interacting components can be used to define the compat-
ibility of components; a requester component Mr is compatible with a provider
component Mp if and only if all sequences of services requested by Mr can be
provided by Mp, i.e., if and only if:

L (Mr)⊆ L (Mp).

Checking the inclusion relation between the requester and provider languages de-
fined by Petri nets Mr and Mp can be performed by systematic checking if the
services requested by one of the interacting nets can be provided by the other net at
each stage of the interaction.

3.1 Bounded Case

In the case of bounded nets, checking compatibility of a single requester with a
single provider components performs a breadth–first traversal of the reachability
graph G (Mr) verifying that for each transition in G (Mr) there is a corresponding
transition in G (Mp), which is described in detail in [20]. For the case of several
requester components Mi, i = 1, ...,k, interacting with a single provider component
Mp, first the compatibility of each requester with the provider is checked in [20].
Then the interleaving of requests are checked for progress, and is a deadlock is
discovered, the set of interacting components cannot be compatible. For simplicity,
the family of requester components is represented by a vector Nr with individual

Service Renaming in Component Composition 323

components Nr[1], Nr[2], ... Nr[k]. Similarly, the markings for Nr are denoted be a
vector mr with individual marking functions mr[1], mr[2], ... mr[k].

The following logical function CheckProgressB is used when all requester and
provider languages are defined by bounded marked Petri nets (Ni,mi), i = 1, ...,k,
and (Np,mp), respectively. The function performs exhaustive analysis of possible
interleavings of requests, checking the progress of the composed model; if there is
no progress (which means, a deadlock has been created), FALSE is returned. In the
pseudocode below, New is a sequence (a queue) of markings to be checked, head
and tail are operations on sequences that return the first element and remaining part
of the sequence, respectively, append(s,a) appends an element a to a sequence s,
Analyzed is the set of markings that have been analyzed, Enabled(N ,m) returns
the set of labels of transitions enabled in the net N by the marking m (including ε if
the enabled transitions include transitions without labels), and next(N ,m,a) returns
the marking obtained in the net N from the marking m by firing the transition
labeled by x):

proc CheckProgressB(Nr,mr,Np,mp);
begin

New := (mr,mp);
Analyzed := {};
while New �= {} do

(m,n) := head(New);
New := tail(New);
if (m,n) /∈ Analyzed then

Analyzed := Analyzed ∪{(m,n)};
noprogress := true;
for i := 1 to k do

Symbols1 := Enabled(Nr[i],SkipE ps(Nr[i],m[i]));
Symbols2 := Enabled(Np,SkipE ps(Np,n));
if Symbols1∩Symbols2 �= {} then

noprogress := f alse;
m′ := m;
for each x in Symbols1∩Symbols2 do

m′[i] := next(Nr[i],m[i],x)
append(New,(m′,next(Np,n,x))

od
fi

od;
if noprogress return FALSE fi

fi
od;
return TRUE

end;

The function SkipEps(m) advances the marking function m through all transitions
labeled by ε:

324 W.M. Zuberek

proc SkipE ps(N ,m);
begin

while ε ∈ Enabled(N ,m) do m := next(N ,m,ε) od;
return m

end;

where the ε parameter of the function next refers to any transition enabled by m that
is labeled by ε .

Example. Fig.1 shows a simple configuration of two (cyclic) requester compo-
nents and a single provider of three services named a, b and c.

In this case, the languages of the requesters are described by regular expressions
“(abc)*” and “(bac)*” and the language of the provider by “((ab+ba)c)*”.
It can be easily checked that both requesters are compatible with the provider; the
languages “(abc)*” and “(bac)*” are subsets of the language “((ab+ba)c)*”.

As indicated in the introduction, the combined requests from both requester com-
ponents are not compatible with the provider shown in Fig.1. For example, if the first
request from requester-1 (i.e., “a”) is followed by the first request from requester-2
(i.e., “b”), the composed system becomes deadlocked because further requests are
“b” (from requester-1) and “a” (from requester-2) while the only provided service
at this stage is “c”.

The steps performed by the function CheckProgressB for the nets shown in Fig.1
are illustrated in a table, in which the first column, “conf”, identifies the config-
uration of the model, while the last column, “�”, indicates the next configuration,
reached in effect of the requested/provided service shown in column “x”; columns m
and n show the markings of the requester and provider nets, respectively; i indicates

1

2 3

4

a

b

b

a

c

PROVIDER

1

2 3

a b c

REQUESTER−1

ab

2

1

3

c

REQUESTER−2

Fig. 1 Two requesters and a single provider.

Service Renaming in Component Composition 325

the requester component (used for interleaving), as in function CheckProgressB,
similarly to the remaining columns of the table:

con f m n i Symbols1 Symbols2 x next(Nr[i],m[i],x) next(Np,n,x) �
0 [(1,0,0),(1,0,0)] (1,0,0,0) 1 {a} {a,b} a (0,1,0) (0,1,0,0) 1

2 {b} {a,b} b (0,1,0) (0,0,1,0) 2
1 [(0,1,0),(1,0,0)] (0,1,0,0) 1 {b} {b} b (0,0,1) (0,0,0,1) 3

2 {b} {b} b (0,1,0) (0,0,0,1) 4
2 [(1,0,0),(0,1,0)] (0,0,1,0) 1 {a} {a} a (0,1,0) (0,0,0,1) 4

2 {a} {a} a (0,0,1) (0,0,0,1) 5
3 [(0,0,1),(1,0,0)] (0,0,0,1) 1 {c} {c} c (1,0,0) (1,0,0,0) 0

2 {b} {c} –
4 [(0,1,0),(0,1,0)] (0,0,0,1) 1 {b} {c} –

2 {a} {c} –
5 [(1,0,0),(0,0,1)] (0,0,0,1) 1 {a} {c} –

2 {c} {c} c (1,0,0) (1,0,0,0) 0

No component can progress in configuration 4, so this is a deadlock configura-
tion. Consequently the components shown in Fig.1 cannot be compatible. It can be
observed that this deadlock configuration can be reached from configuration 0 by
requesting service “a” (by requester-1) and then in configuration 1, requesting ser-
vice “b” (by requester-2). Configuration 4 can also be reached from configuration 0
by first requesting service “b” (by requester-2) and then, in configuration 2, service
“a” (by requester-2).

It should also be noted that in configurations 3 and 5, only one of the requester
components does not progress, so these configurations are not deadlocks.

3.2 Unbounded Case

For the unbounded case, compatibility checking must include checking the un-
boundedness condition (a marked net (N ,m0) is unbounded if there exist mark-
ings m′ and m′′ reachable from m0 such that m′′ is reachable from m′ and m′′ is
componentwise greater or equal to m′). This condition is checked for the requesters
as well as for the provider nets by combining the markings together. More specifi-
cally, for each analyzed pair of markings (m,n), an additional check is performed
if the set Analyzed contains a pair of markings, which is componentwise smaller
than (m,n) and from which (m,n) is reachable; if the set Analyzed contains such a
pair, analysis of (m,n) is discontinued. This additional check is performed by a log-
ical function Reachable((m,n),Analyzed), in which the first argument is a vector
of marking functions (which - in this particular case - can be considered as a single
marking function obtained by concatenation of all consecutive elements of m). As
in the bounded case, Nr is a vector of requester nets [N1,N2, ...,Nk], also denoted
Nr[i], i = 1, ...,k, and mr is a vector of marking functions for nets Nr[i], i = 1, ...,k:

326 W.M. Zuberek

proc CheckProgressU(Nr,mr,Np,mp);
begin

New := (mr,mp);
Analyzed := {};
while New �= {} do

(m,n) := head(New);
New := tail(New);
if (m,n) /∈ Analyzed then

Analyzed := Analyzed ∪{(m,n)};
noprogress := true;
if not Reachable((m,n),Analyzed) then

for i := 1 to k do
Symbols1 := Enabled(Nr[i],SkipE ps(Nr[i],m[i]));
Symbols2 := Enabled(Np,SkipE ps(Np,n));
if Symbols1∩Symbols2 �= {} then

noprogress := f alse;
m′ := m;
for each x in Symbols1S †����∫∈ do

m′[i] := next(Nr[i],m[i],x)
append(New,(next(m′,next(Np,n,x))

do
fi

od;
if noprogress return FALSE fi

fi
fi

od;
return TRUE

end;

As in the bounded case, the function CheckProgressU returns FALSE if there is a
sequence of service requests which cannot be satisfied by the provider component.

Example. Fig.2 shows another model composed of two requester components
with languages “(abc)*” and “(ab*c)*” and an unbounded provider which ac-
cepts any sequence of requests of services “a”, “b” and “c” such that any prefix of
this sequence (including the whole sequence) contains not less requests for service
“a” than for service “c”; the language of this provider is nonregular.

Both requester components are compatible with the provider as their languages
are subsets of the provider’s language.

The steps used by the function CheckProgressU for the components shown in
Fig.2 are illustrated in the following table:

It can be easily checked that both requester components shown in Fig.2 are com-
patible with the provider. The steps used by CheckProgressU for the components
shown in Fig.2 are illustrated by the following table:

Service Renaming in Component Composition 327

1

2 3

a b c

REQUESTER−1

a

b

c

1

2

REQUESTER−2

b

a
c

PROVIDER

1

2

Fig. 2 Two requesters with an unbounded provider.

con f m n i Symbols1 Symbols2 x next(Nr[i],m[i],x) next(Np,n,x) �
0 [(1,0,0),(1,0)] (1,0) 1 {a} {a,b} a (0,1,0) (1,1) 1

2 {a} {a,b} a (0,1) (1,1) 2
1 [(0,1,0),(1,0)] (1,1) 1 {b} {a,b,c} b (0,0,1) (1,1) 3

2 {a} {a,b,c} a (0,1) (1,2) 4
2 [(1,0,0),(0,1)] (1,1) 1 {a} {a,b,c} b (0,1,0) (1,2) 4

2 {b,c} {a,b,c} b (0,1) (1,1) 2
c (1,0) (1,0) 0

3 [(0,0,1),(1,0)] (1,1) 1 {c} {a,b,c} c (1,0,0) (1,0) 3
2 {a} {a,b,c} a (0,1) (1,2) 4

4 [(0,0,1),(0,1)] (1,2) 1 {c} {a,b,c} c (1,0,0) (1,1) 2
2 {b,c} {a,b,c} b (0,1) (1,2) 4

c (1,0) (1,1) 3

Since there is no deadlock configuration, the components shown in Fig.2 are
compatible.

4 Service Renaming

The progress of interactions for the model shown in Fig.1 can be illustrated by a
“request graph” shown in Fig.3, in which the nodes are configurations of the model
(from the column “conf” of the table following Fig.1 and the edges are labeled by
the services requested/provided by the interacting components in the form “x/i”
where “x” is the service and “i” is the index of the requester component. It should
be observed that Fig.3 is a graphical representation of the table following Fig.1 with
node 4 representing the deadlock.

328 W.M. Zuberek

c/1 c/2

a/1

b/1 b/2

b/2

a/2a/1

0

1 2

3 4 5

Fig. 3 Request graph for Fig.1.

There are two paths leading (from the initial node 0) to the deadlock node; one
is “(a/1,b/2)” and the second is “b/2,a/1)”, as discussed in the example in
Section 3.1. Moreover, the cycles including nodes 0–1–3–0 and 0–2–5–0 represent
the compatibility of single requester components with the provider.

For the renamed services, the steps performed by the function CheckProgressB
are illustrated in the following table:

con f m n i Symbols1 Symbols2 x next(Nr[i],m[i],x) next(Np,n,x) �
0 [(1,0,0),(1,0,0)] (1,0,0,0) 1 {a} {a,b} a (0,1,0) (0,1,0,0) 1

2 {b} {a,b} b (0,1,0) (0,0,1,0) 2
1 [(0,1,0),(1,0,0)] (0,1,0,0) 1 {B} {B} B (0,0,1) (0,0,0,1) 3

2 {b} {B} –
2 [(1,0,0),(0,1,0)] (0,0,1,0) 1 {a} {A} –

2 {A} {A} A (0,0,1) (0,0,0,1) 4
3 [(0,0,1),(1,0,0)] (0,0,0,1) 1 {c} {c} c (1,0,0) (1,0,0,0) 0

2 {b} {c} –
4 [(1,0,0),(0,0,1)] (0,0,0,1) 1 {a} {c} –

2 {c} {c} c (1,0,0) (1,0,0,0) 0

The deadlock node from Fig.3 has been eliminated, so the components – af-
ter service renaming – are compatible and can be composed into a deadlock–free
system.

It can be observed that there are several other service renamings which result in
the same behavior of composed system, for example “(Abc)*”, “(Bac)*” and
“(Ab+Ba)c)*” as well as “(ABc)*”, “(bac)*” and “(AB+ba)c)*”, so some
other criteria can be taken into account in using service renaming for eliminating
conflicting requests.

5 Concluding Remarks

In component–based systems, when several requester components are interacting
with one or more provider components, the requests from different components
can be interleaved and then the properties of the composed system can differ

Service Renaming in Component Composition 329

significantly from the properties of components. As shown in Section 3.1, the com-
patibilities of pairs of interacting components are not sufficient – in general case –
for the compatibility of composed system. Consequently, the compatibility of each
composition must be verified independently of the compatibility of interacting pairs
of components. Straightforward algorithms for such verifications are outlined in
Section 3.

In the case of incompatibilities (represented by deadlocks in the composed sys-
tem), service renaming has been proposed as a systematic approach to eliminating
conflicting requests.

Practical service renaming can be performed by connectors [2] or component
adaptors [3] [17].

The discussion (in Section 3) was restricted to systems of several requester com-
ponents interacting with a single provider component because it can be shown that
systems with several provider components can be decomposed into several systems,
each with one provider component, and analyzed one after another.

It can be observed that the proposed service renaming can be used for restricting
request interleaving that may be required for incremental composition [20].

Acknowledgements. The Natural Sciences and Engineering Research Council of Canada
partially supported this research through grant RGPIN-8222.

References

1. Attiogbé, J.C., André, P., Ardourel, G.: Checking Component Composability. In: Löwe,
W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 18–33. Springer, Heidelberg
(2006)

2. Baier, C., Klein, J., Klüppelholz, S.: Modeling and Verification of Components and Con-
nectors. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 114–147.
Springer, Heidelberg (2011)

3. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptations. The
Journal of Systems and Software 74(1), 45–54 (2005)

4. Broy, M.: A theory of system interaction: components, interfaces, and services. In: Inter-
active Computations: The New Paradigm, pp. 41–96. Springer, Heidelberg (2006)

5. Chaki, S., Clarke, S.M., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. IEEE Trans. on Software Engineering 30(6), 388–402 (2004)

6. Craig, D.C., Zuberek, W.M.: Compatibility of software components – modeling and ver-
ification. In: Proc. Int. Conf. on Dependability of Computer Systems, Szklarska Poreba,
Poland, pp. 11–18 (2006)

7. Craig, D.C., Zuberek, W.M.: Petri nets in modeling component behavior and verifying
component compatibility. In: Proc. Int. Workshop on Petri Nets and Software Engineer-
ing, Siedlce, Poland, pp. 160–174 (2007)

8. Crnkovic, I., Schmidt, H.W., Stafford, J., Wallnau, K.: Automated component-based soft-
ware engineering. The Journal of Systems and Software 74(1), 1–3 (2005)

9. Garlan, D.: Formal Modeling and Analysis of Software Architecture: Components, Con-
nectors, and Events. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804,
pp. 1–24. Springer, Heidelberg (2003)

330 W.M. Zuberek

10. Henrio, L., Kammüller, F., Khan, M.U.: A Framework for Reasoning on Component
Composition. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 1–20. Springer, Heidelberg (2010)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages,
and computations, 2nd edn. Addison-Wesley (2001)

12. Leicher, A., Busse, S., Süß, J.G.: Analysis of Compositional Conflicts in Component-
Based Systems. In: Gschwind, T., Aßmann, U., Wang, J. (eds.) SC 2005. LNCS,
vol. 3628, pp. 67–82. Springer, Heidelberg (2005)

13. Murata, T.: Petri nets: properties, analysis, and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

14. Nierstrasz, O., Meijler, T.: Research directions on software composition. ACM Comput-
ing Surveys 27(2), 262–264 (1995)

15. Reisig, W.: Petri nets – an introduction. EATCS Monographs on Theoretical Computer
Science, vol. 4. Springer (1985)

16. Szyperski, C.: Component software: beyond object-oriented programming, 2nd edn.
Addison–Wesley Professional (2002)

17. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Trans.
on Programming Languages and Systems 19(2), 292–333 (1997)

18. Zaremski, A.M., Wang, J.M.: Specification matching of software components. ACM
Trans. on Software Engineering and Methodology 6(4), 333–369 (1997)

19. Zuberek, W.M.: Checking compatibility and substitutability of software components.
In: Models and Methodology of System Dependability, ch. 14, pp. 175–186. Oficyna
Wydawnicza Politechniki Wroclawskiej, Wroclaw (2010)

20. Zuberek, W.M.: Incremental Composition of Software Components. In: Zamojski, W.,
Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak, T. (eds.) Dependable Computer
Systems. AISC, vol. 97, pp. 301–311. Springer, Heidelberg (2011)

21. Zuberek, W.M., Bluemke, I., Craig, D.C.: Modeling and performance analysis of
component-based systems. Int. Journal of Critical Computer-Based Systems 1(1-3), 191–
207 (2010)

Author Index

Andrashov, Anton 149

Baginski, Jacek 1
Balashov, Vasily 19
Baranov, Alexander 19
Białas, Andrzej 1, 37
Blokus, Adam 55
Bluemke, Ilona 69
Bobchenkov, Alexander 289
Brzeski, Adam 55

Caban, Dariusz 87
Chikhi, Salim 195
Chistolinov, Maxim 19
Coolen, Frank P.A. 103, 115
Coolen-Maturi, Tahani 115
Cychnerski, Jan 55

Dziubich, Tomasz 55

Frolov, Alexander 131

Gribov, Dmitry 19

Jędrzejewski, Mateusz 55

Kharchenko, Vyacheslav 149
Kotulski, Leszek 225, 305
Kovalenko, Andriy 149
Kozień-Woźniak, Magdalena 241

Krawczyk, Henryk 257
Kubacki, Marcin 257

Mazurkiewicz, Jacek 165

Nowak, Katarzyna 165
Nowak, Przemysław 179

Rogowski, Dariusz 179

Sabba, Sara 195
Sȩdziwy, Adam 209, 225, 241
Siora, Olexandr 149
Sklyar, Vladimir 149
Smeliansky, Ruslan 19
Sosnowski, Janusz 257
Sugier, Jarosław 273
Szpyrka, Marcin 225

Tarka, Marcin 69
Toporkov, Victor 289
Tselishchev, Alexey 289

Walkowiak, Tomasz 87
Wojnicki, Igor 305

Yemelyanov, Dmitry 289

Zuberek, Wlodek M. 319

	Title

	Preface
	Contents
	Validation of the Software Supporting
Information Security and Business Continuity Management Processes
	Introduction
	Computer-Supported Integrated Management System OSCAD
	Risk Management Methodology of the OSCAD System
	Business Impact Analysis
	Detailed Risk Analysis

	Validation Plan of the OSCAD System
	Validation of the Risk Management Processes
	Gathering Information about Business Processes
	Validation of BIA Method
	Validation of Detailed Risk Analysis

	Conclusions
	References

	A Functional Testing Toolset and Its
Application to Development of Dependable Avionics Software
	Introduction
	Cases for Target-Based Avionics Software Testing
	Applicability of General Purpose Functional Testing Toolsets to Target-Based Avionics Software Testing
	Functional Testing Toolset Utilized by Sukhoi
	Toolset Overview
	Test Description Language Features
	Toolset Software Structure

	Architecture of a Testbench Based on the Presented Toolset
	Industrial Case Study
	Testing Dependability Features of Avionics Systems
	Conclusion
	References

	Specification Means Definition for the Common
Criteria Compliant Development Process – An Ontological Approach
	Introduction
	IT Security Development Process
	Elaboration of the IT Security Development Ontology
	The Domain and Scope of the Ontology
	Possible Reuse of Existing Ontologies
	Identifying Important Terms in the Ontology
	The Classes (Concepts) and the Class Hierarchy
	The Class Properties and Their Restrictions
	Creating Individuals (Instances)
	Test and Validation of the Developed Ontology

	Conclusions
	References

	Real-Time Gastrointestinal Tract Video
Analysis on a Cluster Supercomputer
	Introduction
	The Sequential Algorithm
	Primary Execution Environment
	Parallelization Options
	The Testing Procedure
	Videos Database
	Performance Measures
	Stream Processing
	The Measurements

	Test Results
	Conclusions
	References

	Detection of Anomalies in a SOA System
by Learning Algorithms
	Introduction
	Related Work
	Research Model and Environment
	Architecture of VTV System
	Main Process
	Environment of Experiment

	Experiment
	Quality Evaluation of Algorithms
	Plan for Experiment
	Results of Experiments

	Conclusions
	References

	Service Availability Model to Support

Reconfiguration
	Introduction
	System Model
	Service Model
	Network Infrastructure
	System Configuration

	System Reconfiguration
	System Faults
	Service Availability
	System Reconfiguration Strategy

	Network Simulation Techniques
	Modeling Client – Server Interaction
	Client Model Used in Server Benchmarking
	Client Models Reflecting Human Reactions
	Client Models Derived from Choreography Description
	Resource Consumption Model – Server Response Prediction

	Dependability Analysis
	References

	On Some Statistical Aspects
of Software Testing and Reliability
	Introduction
	Statistics, Software Testing and Reliability
	Some Topics That Require Attention
	The Way Ahead
	References

	Generalizing the Signature to Systems
with Multiple Types of Components
	Introduction
	The Survival Signature
	Systems with Multiple Types of Component
	Discussion
	References

	Effective Oblivious Transfer Using
a Probabilistic Encryption
	Introduction
	Effective 1-Out-of-2 OT- and NIOT Protocols

	Effective 1-Out-of-n and n-1 of n Protocols

	Effective m-Out-of-n Protocols

	The Effective GOT Protocols
	The Elliptic Curve EOT and NIEOT Protocols
	Conclusion Remarks
	References

	Gap-and-IMECA-Based Assessment of I&C
Systems Cyber Security
	Introduction
	Motivation
	Work Related Analysis

	General Gap-and-IMECA-Based Approach to Assessment of Safety-Critical I&C Systems
	Conception of Gap-and-IMECA-Based Approach
	Example of Proposed Approach Application

	Assessment of FPGA-Based I&C Systems Cyber Security
	Life Cycle Model of FPGA-Based I&C System
	Gap-and-IMECA-Based Assessment of FPGA-Based I&C System

	Conclusion
	References

	Approach to Methods of Network Services
Exploitation
	Introduction
	Transportation Systems
	Traffic Modeling
	Microscopic Analysis
	Commodity Movement
	Real System Description
	Formal Model

	Complex Information Systems
	Abstract Approach for Network Services
	Dependability Analysis for Network Services
	Conclusions
	References

	Pattern Based Support for Site Certification

	Introduction
	State of the Art
	Origin and Evolution of Site Certification Idea
	First Certificate, Guidelines and Templates

	Benefits of the Site Certification
	CCMODE Project in the Site Certification Context
	Usage of the Design Patterns
	SST and ALC Patterns Contents
	Why Are the Patterns Helpful?

	Summary
	References

	Integrating the Best 2-Opt Method to Enhance
the Genetic Algorithm Execution Time in Solving the Traveler Salesman Problem
	Introduction
	Genetic Algorithm
	Encoding
	Selection Operator
	Crossover Operator
	Mutation Operator

	2-Opt Local Research
	Best 2-Opt Local Research
	The Hybridization of Genetic Algorithm with Best 2-Opt
	Experimental Results and Performance Comparisons
	Step 1
	Step 2
	Step 3

	Conclusion
	References

	Representation of Objects in Agent-Based
Lighting Design Problem
	Introduction
	Hierarchy in LaSIL
	Hypergraphs

	Cartographic Hypergraph
	Face Adjacency Hypergraph
	Linkage between Hierarchy Levels

	Multi-Agent System Deployment
	Future Works

	Conclusions
	References

	Formal Methods Supporting Agent Aided Smart
Lighting Design
	Introduction
	RealatedWorks
	Alvis Description
	Model Layers
	Communication
	Communication with Environment

	System Architecture
	LSA Structure
	Formal Verification
	Conclusions
	References

	Computational Support for Optimizing Street
Lighting Design
	Introduction
	Architectural Background of Design Problem
	The Supported Design of Illumination
	The Assignment of Optimal Control

	Formal Model of Computations
	Street Layout Representation
	Representation of Objects
	Linkage between Model Levels

	Moving Formal Model to Application Level
	Conclusions
	References

	Monitoring Event Logs within a Cluster System

	Introduction
	Monitoring Cluster Systems
	Monitoring Strategy of the KASKADA Platform
	Outline of the KASKADA Platform
	Event Log Processing

	Visualization of Event Distributions
	Conclusion
	References

	Implementing AES and Serpent Ciphers in New
Generation of Low-Cost FPGA Devices
	Introduction
	The AES Contest: Rijndael vs. Serpent
	The AES (Rijndael) Algorithm
	The Serpent Algorithm

	Implemented Architectures
	Combinational Dataflow
	Cipher-Only Pipelining
	Full Pipelinaing
	Iterative Loop

	Implementation Results
	Conclusions
	References

	Dependable Strategies for Job-Flows Dispatching and Scheduling in Virtual Organizations of Distributed Computing
Environments
	Introduction
	Basic Notions and Informal Model Components Description
	Formalization of Scheduling
	Simulation Results
	Job-Flow Level Scheduling Simulation Results
	Application Level Scheduling Simulation Results

	Conclusions and Future Work
	References

	Controlling Complex Lighting Systems

	Motivation
	Related Research
	Expressing Topology and States
	Complex Control Requirements
	Profiles
	Massive Input Processing
	Reactive and Deductive Behavior

	Proposed Solution: A Rule-Based System
	Backward and Forward Chaining
	Contexts
	Design and Redesign
	Formal Analysis

	A Case Study
	Summary
	References

	Service Renaming in Component Composition

	Introduction
	Modeling Component Behavior
	Component Compatibility
	Bounded Case
	Unbounded Case

	Service Renaming
	Concluding Remarks
	References

	Author Index

