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Abstract This chapter shows how a recently proposed stochastic optimization
algorithm, called biogeography-based optimization (BBO), can be efficiently
employed for development of three-level thresholding-based image segmentation.
This technique is utilized to determine suitable thresholds utilizing a fuzzy entropy-
based fitness function, which the optimization procedure attempts to maximize. The
chapter demonstrates how improved BBO-based strategies, employing hybridiza-
tions with differential evolution (DE) algorithms, can be employed to incorpo-
rate diversity in the basic BBO algorithm that can help the optimization algorithm
avoid getting trapped at local optima and seek the global optimum in a more effi-
cient manner. Several such hybrid BBO-DE algorithms have been utilized for this
optimum thresholding-based image segmentation procedure. A detailed implemen-
tation analysis for a popular set of well-known benchmark images has been carried
out to qualitatively and quantitatively demonstrate the utility of the proposed hybrid
BBO-DE optimization algorithm.
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3.1 Introduction

Image segmentation is the process of decomposing an image into a set of regions
which are visually distinct and uniform with respect to some feature. This distinguish-
ing feature may be colour or gray-level information that is used to create histograms,
or information about the pixels that indicate edges or boundaries or texture informa-
tion [10]. There is a wide range of image segmentation techniques available in the
literature [20, 24]. Among them, one approach of particular interest is the threshold-
ing approach, because of its efficiency in performance and its theoretical simplicity.
A comprehensive survey of image thresholding techniques is found in [26].

Thresholding techniques can be classified as bilevel and multilevel thresholding,
depending on number of image segments into which an original image is decom-
posed. In bilevel thresholding, each image pixel is assigned to one of two brightness
regions, object and background, according to whether its intensity (gray level or
colour) is greater than a specified threshold T or not. In multilevel thresholding, pixels
can be classified into many classes, not just foreground and background. Therefore,
more than one threshold should be determined to segment the image into certain
brightness regions which may correspond to one background and several objects.

Among the multitude of image thresholding techniques, entropy-based approaches
have drawn a lot of attention in recent times. The principle of entropy, a well-known
concept from information theory introduced by Shannon [6], is to use uncertainty as
a measure to describe the information contained in a source. The maximum infor-
mation is achieved when no a priori knowledge is available, in which case, it results
in maximum uncertainty.

Basically, entropy thresholding considers an image histogram as a probability
distribution, and determines an optimal threshold value that yields the maximum
entropy. More specifically, the best entropy thresholded image is the one that pre-
serves as much information as possible that is contained in the original unthresholded
image in terms of Shannon’s entropy [4].

The popular criterion for image thresholding based on maximum entropy principle
was first applied by Pun [22, 23] and then improved upon in [12]. The concept was
later generalized to evolve to Renyi’s entropy [25] and Tsallis’s entropy [33].

However, due to the possible multivalued levels of brightness in a gray-tone image,
or inherent vagueness and imprecision embedded in images, the result of image
thresholding is not always satisfactory. This uncertainty can be adequately analyzed
through the use of fuzzy set theory [1]. This theory, proposed by Zadeh [35], is a
mathematical tool to analyze vagueness and uncertainty inherent in making decisions.
It has proved its efficiency and usefulness in many applications, including image
processing problems. In fact, some fuzzy logic-based thresholding techniques have
been proposed in the literature, where fuzzy theory is employed to select an optimal
threshold by maximizing the fuzzy entropy [30, 32, 36].

Cheng et al. [5] introduced the concept of fuzzy c-partition into the maximum
entropy principle to select the threshold values for gray-level images. This method
was first applied for bilevel thresholding and then extended to multilevel thresholding.
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Tobias and Serra [32] proposed an approach for histogram thresholding which was not
based on the minimization of a threshold-dependent criterion function. The histogram
threshold was determined according to the similarity between gray levels, assessed
through implementation of a fuzzy measure.

In [36], Zhao et al. proposed a new technique for three-level thresholding by
exploiting the relationship between the fuzzy c-partition and the probability partition.
In their proposed technique, the maximum entropy principle was used to measure the
compatibility between fuzzy partition and probability partition. Zhao et al. used the
simplest function, which is monotonic in nature, to approximate the memberships of
the bright, dark and medium fuzzy sets (defined according to pixel intensity levels)
and derived a necessary condition of the entropy function arriving at a maximum.
Based on the idea of Zhao et al., Tao et al. [31] designed a new three-level thresh-
olding method for image segmentation. The authors defined a new concept of fuzzy
entropy through probability analysis, fuzzy partition and entropy theory. The image
is first partitioned into three parts, namely dark, gray and white, whose member func-
tions of fuzzy region are described by a Z-function, a Π -function and a S-function,
respectively. Later, Tao et al. [30] developed another system which examined the
performance of their previous approach for the segmentation of infrared objects.
This approach entailed the use of the ant colony optimization (ACO) method to
effectively obtain the optimal combination of the free parameters of the fuzzy sets.
The experimental results showed that the implementation of the proposed fuzzy
entropy principle by ACO had more highly effective search performance than the
genetic algorithm (GA) used in [31].

The present work aims at developing a new three-level thresholding algorithm,
called DBBO-Fuzzy, based on the hybridization of biogeography-based optimization
(BBO), a very recently proposed population based optimization technique, and the
differential evolution (DE) algorithm, a very powerful stochastic optimizer. The
approach presented in [31] is adopted as the basic support for this work.

A hybrid DE with BBO, namely DE/BBO, has been proposed in [11] where
a hybrid migration operator is defined. Another combination of BBO and DE is
proposed in [3], where the population is updated by applying, alternately from an
iteration of the algorithm to the next, the BBO and DE updating methods. The
proposed DBBO-Fuzzy algorithm incorporates the mutation procedure inherited
from DE algorithm to replace the existing mutation procedure in BBO. A selection
operator is also introduced in order to favor a given number of individuals for the next
generation. In addition, the algorithm incorporates the features of elitism in order to
prevent the best solutions from getting corrupted. The proposed algorithm is tested
on a popular set of well-known benchmark images, and experimental results show
that the proposed approach is reliable and efficient.

First of all, it is necessary to present some basic definitions. Section 3.2 provides
the preliminaries of the fuzzy set theory and fuzzy entropy formulation, where the
terminology used in [35] has been followed. The three-level thresholding problem is
then formulated and the assumptions made in this paper are introduced in Sect. 3.3.
Section 3.4 briefly describes the conventional BBO algorithm. The proposed algo-
rithm is presented in Sect. 3.4, and the effectiveness of the proposed algorithm,
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along with a comparison with BBO and DE-based algorithms, is demonstrated for a
set of benchmark images in Sect. 3.6. Finally, Sect. 3.7 presents our conclusions.

3.2 Fuzzy Set Theory

Fuzzy set theory is a generalization of classical set theory, designed to express uncer-
tainty and imprecision in available knowledge. The theory dates back to 1965, when
Lotfi Zadeh, a professor at Berkeley, published his seminal paper on the theory of
fuzzy sets and the associated logic, namely fuzzy logic [35].

Essentially, the fuzziness, a feature of imperfect information, results from the lack
of crisp distinction between the elements belonging and not belonging to a set.

Definition 3.1 Let X be a universe of discourse with a generic element denoted by
xi : X = {x1, x2, . . . , xn}.

A fuzzy set A in a space X is formally defined as:

A = {(xi , μA (xi )) |x ∈ X} (3.1)

in which μA : X → [0, 1] is the membership function or characteristic function. This
function assigns to each element xi in the set a membership grade μA (xi ) ∈ [0, 1]. As
opposed to classical sets, where each element must have either 0 as the membership
grade if the element is completely outside the set or 1 if the element is completely
in the set, the theory of fuzzy sets is based on the idea that one is uncertain about
whether the element is in or out of the set. Thus, the nearer the value of μA(xi ) to
unity, the higher the grade of membership of xi in A. The fuzzier case and the more
difficult one is when μA(xi ) = 0.5 [15].

The fuzzy set theory approach has found interesting applications in automatic
control, decision making, pattern recognition, psychology, economics, medical diag-
nosis, image processing and other fields. A number of aspects of digital image
processing have been treated by this theory, such as image quality assessment, edge
detection, image segmentation, etc.

3.2.1 Fuzzy Entropy

A very frequent measure of fuzziness is referred to as the fuzzy entropy inspired by
the Shannon entropy of random variables [27] and introduced for the first time by De
Luca and Termini [8]. The authors established the following four axioms for fuzzy
entropy:

Definition 3.2 Let E be a set-to-point map E : F(X) → [0, 1]. Hence E is a fuzzy
set defined on fuzzy sets and F(X) is the family of all fuzzy sets in X . E is an entropy
measure if it satisfies the four De Luca and Termini axioms:
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1. E (A) = 0 iff A ∈ X (A nonfuzzy).
2. E (A) = 1 (the maximum value) iff μA (x) = 0.5, ∀x ∈ X .
3. E (A) ≤ E (B) if A is less fuzzy than B, i.e., if μA (x) ≤ μB (x) when μB (x) ≤

0.5, and μA (x) ≥ μB (x) when μB (x) ≥ 0.5.
4. E (A) = E (Ac), where Ac is the complementary set of A.

A number of studies related to the measures of fuzzy entropy and their applications
have been conducted by Kaufmann [13], Bhandari and Pal [2], Kaufmann [14], Pal
and Pal [19], and Fan and Xie [9].

3.3 Problem Formulation

3.3.1 Model of an Image

A digital gray-tone image refers to a two-dimensional light intensity function defined
over a spatial coordinate system. Let G = {0, 1, . . . , L − 1} be the set of intensity
values, and D = {(x, y) : 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1} be the spatial coor-
dinates of the pixels for an MxN image. The digital image defines a mapping
I : D −→ G, where 0 ≤ I (x, y) ≤ L − 1 gives the intensity (brightness) of
the image at the spatial coordinates (x, y) ∈ D with L = 256 gray levels for an 8-bit
image [30, 31].

Let Dk = {(x, y)|I (x, y) = k, (x, y) ∈ D}, k ∈ G. The histogram of an image,
defined as H = {h0, h1, . . . , hL−1}, presents the frequency of occurrence of each
gray level in the image and is obtained directly from the observation of the considered
image. In view of this consideration, the kth gray level in the image is defined as
follows:

hk = nk

N ∗ M
, k = 0, 1, . . . , L − 1 (3.2)

where nk denotes the total number of pixels in Dk , and N ∗ M denotes the total
number of pixels in the image. It is clear that

0 ≤ hk ≤ 1 and
L−1∑

k=0

hk = 1 (3.3)

A probability partition (PP) of the image domain D is defined as

ΠL = {D0, D1, . . . , DL−1}

which is characterized by a probabilistic distribution [30, 31]:

pk ≡ P (Dk) = hk, k = 0, 1, . . . , L − 1, (3.4)
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Fig. 3.1 Membership function graph

Equation (3.4) presents the relationship between the histogram H and the prob-
ability partition Π , where pk is the probability measure of the occurrence of gray
level k.

3.3.2 Three-Level Thresholding

The segmentation problem is to determine the sets Dk ⊂ D (k = 0, . . . , L − 1)

whose union is the entire image D. Thus, the sets that constitute the segmentation
must satisfy:

L−1⋃

k=0

Dk = D and Di ∩ D j = φ (i �= j) (3.5)

where φ denotes an empty set. Ideally, a segmentation method finds those sets that
correspond to distinct anatomical structures or regions of interest in the image.

In the case of three-level thresholding of an image, the aim is to separate its
domain D into three parts, Ed , Em and Eb, where Ed is composed of ‘dark’ pixels
corresponding to the smaller gray levels, Eb is composed of those ‘bright’ pixels
corresponding to the larger gray levels, and Em is composed of pixels with medium
gray levels.

The problem is to find the unknown probabilistic fuzzy 3-partition of D, Π3 =
{Ed , Em, Eb}, which is characterized by the probability distributions [30, 31]:

pd = P(Ed), pm = P(Em), pb = P(Eb) (3.6)

The three fuzzy partitions Ed , Em and Eb are characterized by three membership
functions μd , μm and μb, respectively. The membership function μd of dark pixels
corresponds to a Z -function, the membership function μm of medium pixels is a
Π -function, and the membership function μb of bright pixels of the image is a
S-function [31] (see Fig. 3.1). Six free parameters {a1, b1, c1, a2, b2, c2} control the
shapes of the three membership functions and satisfy the conditions 0 < a1 ≤ b1 ≤
c1 ≤ a2 ≤ b2 ≤ c2 < 255 for an image with 256 gray levels.
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The three-level thresholding involves a determination of the optimal thresholds
T1 and T2 such that the classification of a pixel I (x, y) is achieved as follows:

Dkd = {(x, y) : I (x, y) ≤ T1, (x, y) ∈ Dk}
Dkm = {(x, y) : T1 < I (x, y) ≤ T2, (x, y) ∈ Dk}
Dkb = {(x, y) : I (x, y) > T2, (x, y) ∈ Dk} (3.7)

Once the parameters a1, b1, c1, a2, b2 and c2 are selected then Πk =
{Dkd , Dkm, Dkb} is the PP of Dk with the probabilistic distribution:

pkd = P (Dkd) = pk .pd|k
pkm = P (Dkm) = pk .pm|k
pkb = P (Dkb) = pk .pb|k (3.8)

In Eq. (3.8), pd|k is the conditional probability of a pixel that is classified into the
class “d” (dark) under the condition that the pixel belongs to Dk . Similarly, pm|k and
pb|k are the conditional probabilities of a pixel belonging to classes “m” (medium)
and “b” (bright), respectively.

Based on the complete probability formula, we therefore have:

pd =
255∑

k=0

pk .pd|k =
255∑

k=0

pk .μd (k)

pm =
255∑

k=0

pk .pm|k =
255∑

k=0

pk .μm (k)

pb =
255∑

k=0

= pk .pb|k =
255∑

k=0

pk .μb (k) (3.9)

Based on Eq. (3.9), it is clear that the three-level thresholding problem is reduced
to finding suitable membership functions μd (k), μm (k) and μb (k) of a pixel with
an arbitrary intensity level k. These membership functions represent the conditional
probability that a pixel is classified into the dark, medium and bright regions, respec-
tively, with respect to the variable k ∈ G (i.e., pd|k = μd (k), pm|k = μm (k) and
pb|k = μb (k)). It is obvious that μd (k) + μm (k) + μb (k) = 1, k = 0, 1, . . . , 255.
The three membership functions are shown in Eqs. (3.10)–(3.12):

μd(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 k ≤ a1

1 − (k−a1)
2

(c1−a1)∗(b1−a1)
a1 < k ≤ b1

(k−c1)
2

(c1−a1)∗(c1−b1)
b1 < k ≤ c1

0 k > c1

(3.10)
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μm(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 k ≤ a1
(k−a1)

2

(c1−a1)∗(b1−a1)
a1 < k ≤ b1

1 − (k−c1)
2

(c1−a1)∗(c1−b1)
b1 < k ≤ c1

1 c1 < k ≤ a2

1 − (k−a2)
2

(c2−a2)∗(b2−a2)
a2 < k ≤ b2

(k−c2)
2

(c2−a2)∗(c2−b2)
b2 < k ≤ c2

0 k > c2

(3.11)

μb(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 k ≤ a2
(k−a2)

2

(c2−a2)∗(b2−a2)
a2 < k ≤ b2

1 − (k−c2)
2

(c2−a2)∗(c2−b2)
b2 < k ≤ c2

1 k > c2

(3.12)

The free parameters of the three membership functions can be determined by
maximizing the fuzzy partition entropy [30, 31]. The total fuzzy entropy function of
partition Π3 is defined as:

H (a1, b1, c1, a2, b2, c2) = Hd + Hm + Hb (3.13)

where,

Hd = −
255∑

k=0

pk ∗ μd (k)

pd
∗ ln

(
pk ∗ μd (k)

pd

)

Hm = −
255∑

k=0

pk ∗ μm (k)

pm
∗ ln

(
pk ∗ μm (k)

pm

)

Hb = −
255∑

k=0

pk ∗ μb (k)

pb
∗ ln

(
pk ∗ μb (k)

pb

)
(3.14)

The best-selected set of {a1, b1, c1, a2, b2, c2} is the one that corresponds to max-
imum entropy H .

The optimal thresholds T1 and T2 that segment the image into three gray levels
are obtained as the intersections of the membership function curves, i.e.,

μd (T1) = μm (T1) = 0.5 (3.15)

μm (T2) = μb (T2) = 0.5 (3.16)

Based on Eqs. (3.10)–(3.12), it can be written [31]:
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T1 =
{

a1 + √
(c1 − a1) ∗ (b1 − a1) /2 if (a1 + c1) /2 ≤ b1 ≤ c1

c1 − √
(c1 − a1) ∗ (c1 − b1) /2 if a1 ≤ b1 < (a1 + c1) /2

(3.17)

T2 =
{

a2 + √
(c2 − a2) ∗ (b2 − a2) /2 if (a2 + c2) /2 ≤ b2 ≤ c2

c2 − √
(c2 − a2) ∗ (c2 − b2) /2 if a2 ≤ b2 < (a2 + c2) /2

(3.18)

As mentioned before, to find the optimal combination of all the fuzzy parameters,
we propose to use a new optimization technique based on the hybridization of BBO
and DE algorithms.

3.4 Biogeography-Based Optimization Algorithm (BBO)

The theory of biogeography grew out of the works of Wallace [34] and Darwin [7] in
the past and the works of McArthur and Wilson [17] more recently. Some of the key
questions that this branch of biology attempts to answer are: How do organisms reach
their current habitats? Do they always occupy their current distribution patterns?
Why does an ecosystem have a particular number of species? The patterns of the
distribution of the species across geographical areas can usually be explained through
a combination of historical factors, such as speciation, extinction and migration.

The biogeography-based optimization (BBO) algorithm, developed by Dan Simon
[28], is strongly influenced by the equilibrium theory of island biogeography [17].
The basic premise of this theory is that the rate of change in the number of species on
an island depends critically on the balance between the immigration of new species
onto the island and the emigration of species from the island.

The BBO algorithm operates upon a population of individuals called islands (or
habitats). Each habitat represents a possible solution for the problem at hand. The
fitness of each habitat is determined by its habitat suitability index (HSI), a metric
which determines the goodness of a candidate solution, and each habitat feature is
called a suitability index variable (SIV ). Good solutions may have large number of
species, which represent habitats with a lower HSI than the poor solutions.

As was mentioned before, the migration pattern is determined by the immigration
rate (λ) at which new species immigrate to the habitat, and the emigration rate (μ) at
which populations of established species emigrate. These parameters are functions
of the number of species in a habitat.

But how might immigration and emigration work on a habitat? We make two sets
of assumptions regarding these processes:

Immigration: The rate of immigration (λ) declines with the number of species
(S) present on the habitat. Maximum immigration rate (I ) occurs
when the habitat is empty and decreases as more species are added.
Once all the potential colonists are on the habitat, then one can write
S = Smax (the maximum number of species the habitat can support),
and the immigration rate must be equal to zero. Generally speaking,
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Fig. 3.2 The relationship
between the fitness of habitats
(number of species), emigra-
tion rate μ and immigration
rate λ

the immigration rate when there are S species in the habitat is given
by:

λS = I

(
1 − S

Smax

)
(3.19)

Emigration: The rate of emigration (μ) for a habitat increases with the number of
species (S). Maximum emigration rate (E) occurs when all possible
species are present on the habitat (i.e., when S = Smax ), and must be
zero when no species are present. Generally speaking, the emigration
rate when there are S species in the habitat is given by:

μS = E

(
S

Smax

)
(3.20)

Figure 3.2 graphically represents the relationships between the number of species,
emigration rate μ and immigration rate λ. Over a period of time, the counteracting
forces of emigration and immigration result in an equilibrium level of species rich-
ness. The equilibrium value S∗ is the point at which the rate of arrival of species λ is
exactly matched by the rate of emigration μ. We have assumed here that μ and λ vary
following linear relationships, but different mathematical models of biogeography
that include more complex variations have also been proposed [17].

We now consider the probability Ps that the habitat contains exactly S species.
The number of species changes from time t to time (t + Δt) as follows [28]:

Ps(t + Δt) = Ps(t)(1 − λsΔt − μsΔt) + Ps−1λs−1Δt + Ps+1μs+1Δt (3.21)
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This states that the number of species on the habitat in one time step is based
on the total number of current species on the habitat, the new immigrants and the
number of species that leave the habitat during this time period. We assume here
that Δt is small enough so that the probability of more than one immigration or
emigration can be ignored. In order to have S species at time (t + Δt), one of the
following conditions must hold:

• There were S species at time t , and no immigration or emigration occurred between
t and (t + Δt);

• One species immigrated onto a habitat already occupied by S − 1 species at time
t .

• One species emigrated from a habitat occupied by S + 1 species at
time t .

The limit of Eq. (3.21) as Δt → 0 is given by Eq. (3.22).

Ṗs =
⎧
⎨

⎩

−(λs + μs)PS + μs+1 Ps+1 if S = 0
−(λs + μs)PS + λs−1 Ps−1 + μs+1 Ps+1 if 1 ≤ S ≤ Smax − 1
−(λs + μs)PS + λs−1 Ps−1 if S = Smax

(3.22)

Equation (3.22) can be arranged into a single matrix form:

⎡

⎢⎢⎢⎢⎢⎢⎣

Ṗ0

Ṗ1
...
...

Ṗn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

− (λ0 + μ0) μ1 0 . . . 0

λ0 − (λ1 + μ1) μ2 . . .
...

...
. . .

. . .
. . .

...
...

. . . λn−2 − (λn−1 + μn−1) μn

0 . . . 0 λn−1 − (λn + μn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

P0
P1
...
...

Pn

⎤

⎥⎥⎥⎥⎥⎥⎦
(3.23)

For notational brevity, we simply write n = Smax .
The BBO algorithm can be described overall by Algorithm 3.1. The two basic

operators which govern the working of BBO are the migration, described in
Algorithm 3.2, and the mutation, described in Algorithm 3.3, where rand(0, 1) is
a uniformly distributed random number in the interval [0, 1]; Xi j is the j th SIV of
the solution Xi .

The likelihood that a given solution S is expected a priori to exist as a solution for
the given problem is indicated by the species count probability Ps . In this context
it should be remarked that very high HSI solutions and very low HSI solutions are
both equally improbable. Medium HSI solutions are relatively probable. If a given
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solution has a low probability, then it is likely to mutate to some other solution.
Conversely, a solution with high probability is less likely to mutate. The mutation
rate m(S) is inversely proportional to the solution probability:

m(S) = mmax

(
1 − PS

Pmax

)
(3.24)

where mmax is a user-defined parameter, and Pmax = max
S

PS , S = 1, …, Smax .

Migration is used to modify existing habitats by mixing features within the
population. Mutation is used to enhance diversity of the population, thereby pre-
venting the search from stagnating. If a habitat S is selected to execute the mutation
operation, then a chosen variable (SI V ) is randomly modified based on its associated
probability PS . At the same time, the concept of elitism (i.e., copying some of the
fittest individuals for the next generation) is also applied.

Algorithm 3.1 Biogeography-based optimization (BBO)
1: Initialize the BBO parameters: Smax , E , I , mmax , Maxgen , neli t , …
2: Initialize the generation counter : g = 0
3: Create a random initial population Xi , i = 1, . . . , NP
4: Evaluate f (Xi ), i = 1, . . . , NP
5: for g = 1 to Maxgen do
6: Sort the population from best fit to least fit
7: for i = 1 to NP do
8: Map the HSI to the number of species
9: Calculate the immigration rate λi and the emigration rate μi
10: Modify the nonelite members of the population probabilistically with the migration

operator according to Algorithm 3.2
11: end for
12: for i = 1 to NP do
13: Mutate the non-elite members of the population with the mutation operator according

to Algorithm 3.3
14: end for
15: for i = 1 to NP do
16: Evaluate the new habitats in the population
17: Replace the habitats with their new versions
18: Apply elitism to preserve neli t best habitats
19: end for
20: end for

3.5 Description of the Proposed DBBO-Fuzzy Algorithm

Motivated by the exploration capabilities of the differential evolution (DE) algorithm
[18], a hybrid method combining the exploitation of BBO with the exploration of
DE is proposed in this paper. The purpose of this hybridization is to benefit from the
advantages of each algorithm and to compensate for each algorithm’s weaknesses.
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Algorithm 3.2 Migration
1: for i = 1 to NP do
2: Use λi to probabilistically decide whether to immigrate to Xi .
3: if rand(0, 1) < λi then
4: for j = 1 to N P do
5: Select the emigrating habitat X j with probability ∝ μ j
6: if rand(0, 1) < μ j then
7: Replace a randomly selected decision variable (SIV) of Xi with its corresponding

variable in X j
8: end if
9: end for
10: end if
11: end for

Algorithm 3.3 Mutation
1: for i = 1 to NP do
2: Compute the probability Pi using λi and μi
3: Use the probability Pi to compute the mutation rate mi
4: for j = 1 to D do
5: Select a variable (SIV) Xi j with probability ∝ Pi
6: if rand(0, 1) < mi then
7: Replace Xi j with a randomly generated variable from its range
8: end if
9: end for
10: end for

In order to find the global solution in a better manner than the BBO algorithm, the
proposed algorithm, named the DBBO-Fuzzy algorithm, replaces the BBO-based
mutation by a DE mutation. In addition, a selection operation is introduced in order
to favor a given number of individuals for the next generation.

The proposed algorithm can be summarized as follows:

1. Initialization The algorithm starts with an initial population of NP search variable
vectors (or habitats), where the problem dimension D is the number of fuzzy parame-
ters. For the three-level thresholding problem, six parameters {a1, b1, c1, a2, b2, c2}
are used (i.e., D = 6). Since the habitats are likely to get modified over different
generations, the following notation may be adopted for representing the i th habitat
of the population at the current generation g as:

Xi,g = (Xi,1,g, Xi,2,g, Xi, j,g, . . . , Xi,D,g) (3.25)

where i = 1, . . . , N P , j = 1, . . . , D and Xi, j is the j th SIV of the habitat Xi .
Each decision variable, Xi, j,g , is randomly initialized within its corresponding lower
bound (L j ) and upper bound (U j ), and it is intended to cover the entire search space
uniformly in the form:

Xi, j,0 = L j + rand(0, 1) × (U j − L j ) (3.26)
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2. Evaluation of the objective function: The objective function values of the habitats
are evaluated using the fuzzy entropy function given by Eq. (3.13). The objective
function has six parameters (SIV) a1, b1, c1, a2, b2, c2, which satisfy the conditions
0 < a1 ≤ b1 ≤ c1 ≤ a2 ≤ b2 ≤ c2 < 255.

3. Migration: The migration operator reproduces a new population vector Mi,g as
follows:

Mi, j,g =
{

Xk, j,g if rand(0, 1) < λi

Xi, j,g otherwise
(3.27)

where i = 1, 2, . . . , N P , j = 1, . . . , D and Xk, j,g is the j th decision variable of a
randomly selected habitat Xk,g . Xk,g is selected with a probability based on μk .

4. DE Mutation: The DBBO-Fuzzy incorporates the mutation procedure inherited
from DE algorithm [21, 29] to replace the existing mutation procedure in BBO.
The mutation is performed by calculating weighted vector differences between other
randomly selected habitats of the same population. A differentiation constant F is
used to control the amplification of the differential variation.
Next, five different mutation schemes are outlined, inspired by the suggestions of
Price et al. [21]. The general convention used to name the different DE schemes is
DE/x/y. Here DE stands for differential evolution, x represents a string denoting
the type of the vector to be perturbed (whether it is randomly selected or it is the
best vector in the population with respect to fitness value) and y is the number of
difference vectors considered for perturbation of x .
The mutation operation constructs, for each habitat Mi,g , a mutant habitat Vi,g

according to one of the following mutation schemes:

• DE/rand/1: This mutation scheme uses a randomly selected habitat Mr1,g , and
only one weighted difference vector F.(Mr2,g − Mr3,g) is used to perturb it.

Vi,g = Mr1,g + F.(Mr2,g − Mr3,g) (3.28)

• DE/current to best/1: Here the mutant habitat is created using any two ran-
domly selected habitats of the population as well as the best habitat in the current
generation.

Vi,g = Mi,g + F.(Mbest,g − Mi,g) + F.(Mr1,g − Mr2,g) (3.29)

• DE/best/1: Here the habitat to be perturbed is the best habitat of the current pop-
ulation and the perturbation is caused by using a single difference vector.

Vi,g = Mbest,g + F.(Mr1,g − Mr2,g) (3.30)
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• DE/rand/2: to create Vi,g for each i th habitat, a total of five other distinct habitats
(say the r1, r2, r3, r4, and r5th habitats) are chosen in a random manner from the
current population.

Vi,g = Mr1,g + F.(Mr2,g − Mr3,g) + F.(Mr4,g − Mr5,g) (3.31)

• DE/best/2: in this mutation scheme, the mutant habitat is formed by using two
difference vectors, as shown below:

Vi,g = Mbest,g + F.(Mr1,g − Mr2,g) + F.(Mr3,g − Mr4,g) (3.32)

where the indices r1, r2, r3, r4, r5 are randomly chosen over the interval [1, N P] and
should be mutually different from the running index i . F is a real constant scaling
factor within the range [0, 2], usually chosen to be less than 1. Mbest,g is the habitat
with best fitness value in the population in generation g.

5. Selection: The values of the objective function are calculated for the updated
habitats. The selection operation selects either a habitat Xi,g or its newly updated
habitat Vi,g to survive as a member for the next generation, according to the fitness
value. For the following generation g+1, new habitats Xi,g+1 are selected according
to the following selection rule:

Xi,g+1 =
{

Vi,g if f (Vi,g) < f (Xi,g)

Xi,g if f (Vi,g) > f (Xi,g)
(3.33)

The best new habitat replaces the worst corresponding one in the current population
only if Vi,g is better than Xi,g . This concept is similar to what happens in nature
for longer-living species, where the offspring and parents are alive concurrently and
have to compete.

6. Boundary constraints: If the variable value Xi, j,g violates the boundary con-
straints, the corresponding violating variable value is randomly generated within the
boundary constraints as follows:

Xi, j,g = L j + rand(0, 1) × (U j − L j )

7. Stopping criteria: If the stopping criteria are met, the vector represented by
the best habitat contains the optimal combination of fuzzy parameter values that
maximize the total fuzzy entropy function of partition Π3. Otherwise, the procedure
is repeated from step 3.
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Table 3.1 DBBO-fuzzy parameters

Parameters Notation Value

Population size (number of habitats) N P 20
Elitism parameter neli t 2
Maximum immigration rate I 1
Maximum emigration rate E 1
Number of generations Maxgen 20
Search domain for each parameter vector (SIV) G [0, 255]
Number of decision variables (fuzzy parameters) D 6
Constant of differentiation F 0.5
DE mutation scheme DE/rand/1

3.6 Experimental Settings and Results

3.6.1 Test Images

The performance of the proposed DBBO-Fuzzy algorithm is compared with those
of the basic BBO algorithm [28], named here as BBO-Fuzzy, and the performance
of DE-Fuzzy algorithm, which proceeds exactly as the original algorithm presented
in [21].

The performance of these competing three-level thresholding algorithms are tested
with a set of 12 benchmark images, each with 256 gray levels. These are commonly
known as Lena, Peppers, Cameraman, Airplane, Lake, Walking bridge, Mandrill,
Barbara, Boat, Elaine, GoldHill and Fingerprint. All the images are of size 512×512
pixels. The original images considered are shown in Fig. 3.3.

3.6.2 Test Design

In all experiments, the same parameter values are used for each of the three afore-
mentioned algorithms to make a fair comparison. A population of 20 individuals is
used; these are evolved during 20 generations. For each test image, ten independent
runs are carried out.

For the DE-Fuzzy algorithm, F = 0.5 and C R = 0.9 are chosen, as recommended
in [29]. For fair performance comparison, the same mutation scheme, DE/rand/1, is
adopted for both the DE-Fuzzy and the DBBO-Fuzzy algorithms. For the BBO-
Fuzzy algorithm, the same parameter settings as in [28] are used. In Table 3.1, the
parameter setup used in the experiments conducted is summarized.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(j) (k) (l)

(i)

Fig. 3.3 Original test images: a Lena, b Peppers, c Cameraman, d Airplane, e Lake, f Walking
bridge, g Mandrill, h Barbara, i Boat, j Elaine, k GoldHill, l Fingerprint
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3.6.3 Results and Discussions

The three-level thresholding algorithms are employed to determine the optimal
thresholds T1 and T2 that segment a given image into three gray levels while pre-
serving the original information as much as possible after creation of this partition.

The objective is to maximize the total fuzzy entropy H (b1, c1, a2, b2, c2), given
in Eq. (3.13), and then to find the “optimal” combination of all the fuzzy parameters
(a1, b1, c1, a2, b2, c2) that produce the maximization of fuzzy entropy. The higher
value of objective function results in better segmentation.

The results are also compared based on the uniformity factor, the most commonly
used measure to quantitatively judge the segmentation quality. This uniformity mea-
sure is defined as [16]:

u = 1 − 2 ∗ c ∗
∑c

j=0
∑

j∈R j

(
fi − μ j

)2

N ∗ ( fmax − fmin)2 (3.34)

where, c number of thresholds, R j j th segmented region, fi gray level of the pixel
i , μ j mean gray level of pixels in j th region, N total number of thresholds in the
given image, fmax maximum gray level of pixels in the given image, fminminimum
gray level of pixels in the given image

The value of this uniformity measure should be a value within the interval [0, 1].
The higher the value of u, better the quality of the thresholded image.

Table 3.2 shows the average objective values (i.e., total fuzzy entropy) achieved by
each algorithm for each image under test. The values in boldface describe the best-
performing algorithm among competing algorithms. It is observed from the obtained
results that the proposed DBBO-Fuzzy method obtains higher fuzzy entropy values
than both BBO-Fuzzy and DE-Fuzzy in all test images.

In order to determine whether the differences between the DBBO-Fuzzy algorithm
and the BBO-Fuzzy and DE-Fuzzy algorithms are statistically significant, a two-
tailed t-test was conducted with d f = 10 + 10 − 2 = 18 degrees of freedom at
α = 0.05 level of significance (i.e., at 95 % confidence level). The average objective
values and the standard deviations obtained by each algorithm over ten independent
runs were used to calculate the t-values. The absolute value of the computed t is
found to be larger than the critical value in all test images. This suggests that, with
95 % confidence, the difference between DBBO-Fuzzy algorithm and the other two
competing algorithms is statistically significant. Therefore, it is evident that the
hybridization of the BBO algorithm with DE has noticeable effect on the performance
of both algorithms. In these tests, 1 versus 2 means DBBO-Fuzzy algorithm versus
BBO-Fuzzy algorithm, and 1 versus 3 means DBBO-Fuzzy algorithm versus DE-
Fuzzy algorithm.

Table 3.3 shows the optimal thresholds obtained and the uniformity factor values
attained using DBBO-Fuzzy, BBO-Fuzzy and DE-Fuzzy methods. One can observe
from the results reported in Table 3.3 that the solution quality of DBBO-Fuzzy is
superior to BBO-Fuzzy and DE-Fuzzy in 11 out of 12 images. The only exception
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Table 3.3 Optimal threshold and uniformity factor values obtained by DBBO-fuzzy, BBO-fuzzy
and DE-fuzzy, where boldface indicates the best performing algorithm

Test images Optimal thresholds Uniformity measures
DBBO-fuzzy BBO-fuzzy DE-fuzzy DBBO-fuzzy BBO-fuzzy DE-fuzzy

Lena 98, 175 98, 169 83, 161 9.8391E−01 9.8246E−01 9.7213E−01
Peppers 85, 162 71, 205 63, 188 9.7720E−01 9.6821E−01 9.6464E−01
Cameraman 127, 207 132, 211 97, 198 9.6557E−01 9.5745E−01 9.6767E−01
Airplane 41, 166 46, 178 30, 153 9.8719E−01 9.8666E−01 9.8618E−01
Lake 96, 171 95, 165 64, 161 9.8451E−01 9.8420E−01 9.7778E−01
Walk Bridge 79, 154 35, 211 48, 180 9.7816E−01 9.6507E−01 9.6149E−01
Mandrill 74, 150 33, 143 51,167 9.6755E−01 9.6617E−01 9.6448E−01
Barbara 93, 170 93, 172 90, 170 9.8233E−01 9.7595E−01 9.7342E−01
Boat 107, 185 111, 220 75, 217 9.8327E−01 9.7904E−01 9.7566E−01
Elaine 98, 175 37, 208 44, 196 9.7517E−01 9.6634E−01 9.6595E−01
GoldHill 77, 152 52, 156 67, 181 9.8172E−01 9.7873E−01 9.7072E−01
Fingerprint 94, 172 41, 152 42, 179 9.7856E−01 9.6897E−01 9.5562E−01

Table 3.4 Representative optimal parameter sets (a1, b1, c1, a2, b2, c2)

Test images Optimal parameters
DBBO-fuzzy BBO-fuzzy DE-fuzzy

Lena 1, 137, 140, 140, 142, 256 5, 136, 138, 141, 144, 232 1, 115, 118, 119, 124, 256
Peppers 1, 119, 122, 122, 124, 256 5, 98, 99, 104, 246, 248 1, 83, 95, 107, 194, 256
Cameraman 1, 177, 180, 180, 194, 256 28, 174, 175, 179, 215, 235 82, 94, 116, 119, 211, 256
Airplane 1, 1, 136, 138, 138, 233 5, 7, 141, 147, 149, 250 1, 1, 100, 101, 132, 240
Lake 1, 135, 136, 136, 136, 256 7, 131, 131, 132, 138, 239 20, 77, 87, 95, 143, 256
Walk bridge 1, 111, 111, 111, 112, 256 1, 3, 116, 118, 245, 254 1, 26, 131, 141, 156, 256
Mandrill 1, 103, 105, 105, 106, 256 1 18 90 94 102 250 1, 40, 120, 128, 131, 256
Barbara 1, 131, 132, 133, 137, 256 2, 124, 137, 140, 146, 242 23, 115, 120, 134, 134, 256
Boat 1, 151, 151, 151, 161, 256 24, 143, 150, 151, 245, 253 1, 100, 113, 124, 256, 256
Elaine 1, 136, 140, 141, 143, 256 2, 5, 117, 118, 244, 246 1, 1, 149, 152, 187, 256
Goldhill 1, 108, 108, 109, 110, 256 20, 27, 119, 120, 121, 241 1, 89, 100, 121, 173, 256
Fingerprint 1, 132, 132, 135, 138, 256 4, 25, 105, 106, 114, 252 1, 1, 142, 145, 149, 256

is the Cameraman image, where DBBO-Fuzzy produces a slightly worse uniformity
factor than DE-Fuzzy. From this point of view also, the DBBO-Fuzzy algorithm
stands out as the clear winner.

Table 3.4 presents representative optimal parameter sets {a1, b1, c1, a2, b2, c2}
obtained by employing DBBO-Fuzzy, BBO-Fuzzy and DE-Fuzzy algorithms.

For a visual interpretation of the three level thresholding results, the thresholded
images obtained by applying DBBO-Fuzzy algorithm are presented in Fig. 3.4. After
determination of the thresholds for each image, the gray levels of all pixels in a given
region are changed to the average gray level of all the pixels belonging to that region.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3.4 The three-level thresholded images using DBBO-Fuzzy: a Lena, b Peppers, c Cameraman,
d Airplane, e Lake, f Walking bridge, g Mandrill, h Barbara, i Boat, j Elaine, k GoldHill, l Fingerprint
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(a) (b)

(c) (d)

Fig. 3.5 The three-level thresholded images of peppers: a original image; b thresholded image
using DBBO-Fuzzy; c thresholded image using BBO-Fuzzy; d thresholded image using DE-Fuzzy

Figures 3.5, 3.6 and 3.7 show some sample images under consideration and the
resultant segmented images obtained after employing the DBBO-Fuzzy, BBO-Fuzzy
and DE-Fuzzy algorithms. From the pictorial representations of the segmented
images, it is clear that DBBO-Fuzzy algorithm emerges as the best performer.

3.6.3.1 Effect of the Mutation Strategy

To make a detailed, in-depth study of the DBBO-Fuzzy algorithm, it was tested
employing different mutation schemes, described in Sect. 3.5, in order to investigate
the effects of the mutation strategy on its performance. The results are reported
in Table 3.5. To visualize the best performing scheme, the best values are given in
boldface.
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(a) (b)

(c) (d)

Fig. 3.6 The three-level thresholded images of boat: a original image; b thresholded image using
DBBO-fuzzy; c thresholded image using BBO-fuzzy; d thresholded image using DE-fuzzy

A closer look at Table 3.5 reveals that out of the 12 test images, the DBBO-Fuzzy
algorithm with DE/best/1 mutation strategy emerged as the best candidate algorithm,
since it could achieve the highest values of the fuzzy entropy in eight cases (i.e.,
Lena, Peppers, Cameraman, Airplane, Lake, Mandrill, Elaine and Fingerprint). The
DBBO-Fuzzy algorithm with DE/rand/2 proved to be the winner in only two cases
(i.e., Walking bridge and Boat). The DBBO-Fuzzy algorithm with DE/rand/1 and
DE/current-to-best/1 mutation schemes perform best in only one case each (i.e.,
GoldHill and Barbara, respectively).

In terms of the best uniformity measure value, DBBO-Fuzzy with DE/rand/1
produced the highest values in 6 test images out of 12 images (i.e., Lena, Cameraman,
Walking bridge, Mandrill, Boat and Fingerprint). For the remaining six images (i.e.,
Peppers, Airplane, Lake, Barbara, Elaine and GoldHill), the DBBO-Fuzzy algorithm
with DE/current-to-best/1 mutation scheme achieved the highest uniformity measure
values.
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(a) (b)

(c) (d)

Fig. 3.7 The three-level thresholded images of goldhill: a original image; b thresholded image
using DBBO-fuzzy; c thresholded image using BBO-fuzzy; d thresholded image using DE-fuzzy

All the variations of the DBBO-Fuzzy algorithm were compared to a default
DBBO-Fuzzy algorithm with DE/rand/1, and differences were reported as significant
if a two-tailed t-test produced a t-value larger than the critical value. The significance
level α is set at 0.05.

Significant differences exist when comparing DBBO-Fuzzy with DE/rand/1
mutation strategy with the variant using DE/current-to-best/1 scheme for two test
images (Airplane and Lake). The improvement in the mean objective function value
obtained when using DE/best/1 mutation strategy is more significant in the case of
Airplane image. For DBBO-Fuzzy with DE/rand/2 mutation, the test has provided a
statistically significant difference for the Lake image. In eight out of 12 cases, DBBO-
Fuzzy with DE/best/2 mutation proves to be significantly different compared to the
variant using DE/rand/1 mutation.

However, in general, it can be noted that the results using different mutation
schemes do not significantly affect the performance of the proposed algorithm.
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Fig. 3.8 Effect of varying the population size on the performance of DBBO-fuzzy: a Lena, b
Peppers, c Cameraman, d Airplane, e Lake, f Walking bridge

3.6.3.2 Effect of the Population Size

Simulations have also been carried out for different values of population size N P ,
and the performance of the DBBO-Fuzzy algorithm are shown for different variations
in N P in Fig. 3.8.

In general, it can be inferred that the DBBO-Fuzzy algorithm with a population
size N P = 20 outperforms the other variants, since it could achieve the highest
value of fuzzy entropy in 11 cases out of 12. Only in one case was DBBO-Fuzzy
with N P = 30 reveals to be the best in terms of fuzzy entropy value. With N P = 20,
the DBBO-Fuzzy variant could achieve the highest value of uniformity factor in eight
cases. On the other hand, with N P = 10, the DBBO-Fuzzy algorithm could achieve
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Fig. 3.8 (Cont) Effect of varying the population size on the performance of DBBO-fuzzy: g Man-
drill, h Barbara, i Boat, j Elaine, k GoldHill, l Fingerprint

the highest value of uniformity factor in two cases (Airplane and GoldHill) and in
one case each with N P = 50 (Cameraman) and N P = 30 (Elaine).

These results suggest that blindly increasing the population size may not have a
relevant positive effect on the performance of the DBBO-Fuzzy algorithm.

3.6.3.3 Effect of the Elitism Parameter

The performance of the proposed algorithm is also evaluated in detail by varying the
elitism parameter neli t . In general, one can observe from Fig. 3.9 that the average
objective function values tend to increase with the number of elites, although the
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Fig. 3.9 Effect of varying the elitism parameter on the performance of DBBO-fuzzy: a Lena, b
Peppers, c Cameraman, d Airplane, e Lake, f Walking bridge

uniformity measure does not follow the same trend in all test images. In nine cases
out of 12, DBBO-Fuzzy with neli t = 8 produced highest values of the fuzzy entropy.
Only in two cases, the DBBO-Fuzzy variant with neli t = 6 and in one case the
DBBO-Fuzzy variant with neli t = 4 achieved the highest values of fuzzy entropy.
On the other hand, DBBO-Fuzzy without elitism (neli t = 0) could never achieve the
highest value for fuzzy entropy but produced good uniformity factor values in three
cases out of 12 (i.e., Airplane, Mandrill and Boat).

Finally, an important general remark should be made here that if there is a con-
flicting choice between a higher fuzzy entropy value and a higher uniformity factor
value, higher priority should be given to the solution having higher uniformity factor,
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Fig. 3.9 (Cont) Effect of varying the elitism parameter on the performance of DBBO-fuzzy: g
Mandrill, h Barbara, i Boat, j Elaine, k GoldHill, l Fingerprint

as it quantitatively reflects the direct impact of the quality of the output segmented
image.

3.7 Conclusion

Image segmentation is a process of partitioning an image space into several
homogeneous regions. Thresholding is one of the most widely used techniques in
image segmentation because of its fast and easy application. However, it has been
proven that thresholding often fails to produce satisfactory segmentation results due
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to grayness and spatial ambiguity in images. The use of fuzzy set theory could be
recognized as an adequate mathematical tool that can be used to model the inherent
image vagueness. A new three-level thresholding algorithm based on the hybridiza-
tion of BBO and the DE algorithms, called the DBBO-Fuzzy algorithm, has been
described in this chapter. The DBBO-Fuzzy uses the DE mutation strategy to improve
the global search capability and escape from local optima. The experimental results
manifest that the proposed algorithm outperforms both BBO and DE algorithms and
achieves a high quality of the thresholded images.

The future work will mainly focus on employing a multiobjective approach
for such image segmentation problems. Instead of considering a single objective
function, a biobjective model could be adopted for the three-level thresholding
problem, in which one seeks to optimize simultaneously the total fuzzy entropy
and the uniformity factor.
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