


Computational Intelligence in Image Processing



Amitava Chatterjee • Patrick Siarry
Editors

Computational Intelligence
in Image Processing

123



Editors
Amitava Chatterjee
Electrical Engineering Department
Jadavpur University
Kolkata
West Bengal
India

Patrick Siarry
Laboratory LiSSi
University of Paris-Est Créteil
Créteil
France

ISBN 978-3-642-30620-4 ISBN 978-3-642-30621-1 (eBook)
DOI 10.1007/978-3-642-30621-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012942025
ACM Code: I.4, I.2, J.2

� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Computational intelligence-based techniques have firmly established themselves
as viable, alternate, mathematical tools for more than a decade now. These tech-
niques have been extensively employed in many systems and application domains,
e.g., signal processing, automatic control, industrial and consumer electronics,
robotics, finance, manufacturing systems, electric power systems, power elec-
tronics and drives, etc. Image processing is also an extremely potent area which
has attracted the attention of many researchers interested in the development of
new computational intelligence-based techniques and their suitable applications, in
both research problems and in real-world problems. Initially, most of the attention
and, hence, research efforts, were focused on developing conventional fuzzy
systems, neural networks, and genetic algorithm-based solutions. But, as time
elapsed, more sophisticated and complicated variations of these systems and newer
branches of stochastic optimization algorithms have been proposed for providing
solutions for a wide variety of image processing algorithms. As image processing
essentially deals with multidimensional nonlinear mathematical problems, these
computational intelligence-based techniques lend themselves perfectly to provide
a solution platform for these problems. The interest in this area among researchers
and developers is increasing day by day and this is visible in the form of huge
volumes of research works that get published in leading international journals and
in international conference proceedings.

When the idea of this book was first conceived, the goal was to mainly expose
the readers to the cutting-edge research and applications that are going on across
the domain of image processing where contemporary computational intelligence
techniques can be and have been successfully employed. The result of the spirit
behind this original idea and its fruitful implementation in terms of contributions
from leading researchers across the globe, in varied related fields, is in front of
you: a book containing 15 such chapters. A wide cross-section of image processing
problems is covered within the purview of this book. They include problems in the
domains of image enhancement, image segmentation, image analysis, image
compression, image retrieval, image classification and clustering, image registra-
tion, etc.
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The book focuses on the solution of these problems using state-of-the-art fuzzy
systems, neuro-fuzzy systems, fractals, and stochastic optimization techniques.
Among fuzzy systems and neuro-fuzzy systems, several chapters demonstrate how
type-2 neuro-fuzzy systems, fuzzy transforms, fuzzy vector quantization, the
concept of fuzzy entropy, etc., can be suitably utilized for solving these problems.
Several chapters are also dedicated to the solution of image processing problems
using contemporary stochastic optimization techniques. These include several
modern bio- and nature-inspired global optimization algorithms like bacterial
foraging optimization, biogeography-based optimization, genetic programming
(GP), along with other popular stochastic optimization strategies, namely, multi-
objective particle swarm optimization techniques and differential evolution algo-
rithms. It is our sincere belief that this book will serve as a unified destination
where interested readers will get detailed descriptions of many of these modern
computational intelligence techniques and they will also obtain fairly good
exposure to the modern image processing problem domains where such techniques
can be successfully applied.

This book has been divided into four parts. Part I concentrates on discussion of
several image preprocessing algorithms. Part II broadly covers image compression
algorithms. Part III demonstrates how computational intelligence-based techniques
can be effectively utilized for image analysis purposes, and Part IV elucidates how
pattern recognition, classification, and clustering-based techniques can be devel-
oped for the purpose of image inferencing.

Part I: Image Preprocessing Algorithms

This section of the book presents representative samples of how state-of-the-art
computational intelligence-based techniques can be utilized for image prepro-
cessing purposes, e.g., for image enhancement, image filtering, and image
segmentation.

Chapter 1 by Yüksel and Baştürk shows how type-2 neuro-fuzzy systems can be
utilized for developing image enhancement operators. Type-2 fuzzy systems are
considered as improvements over the conventional type-1 fuzzy systems, where
type-2 fuzzy systems utilize ‘fuzzy-fuzzy sets’, as opposed to the conventional
‘fuzzy sets’ utilized by the type-1 fuzzy systems. Type-2 fuzzy systems have
specifically come into existence to handle data uncertainties in a better manner.
This chapter shows how such general-purpose operators can be developed for a
variety of image enhancement purposes. The chapter also specifically concentrates
on the development of suitable new noise filters and noise detectors based on the
above-mentioned methodology.

Chapter 2 by Kwok, Ha, Fang, Wang, and Chen focuses on the problem of
contrast enhancement by employing a local intensity equalization strategy. The
method shows how an image can be subdivided into sectors and each such sector
can be independently equalized. The method employs a particle swarm
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optimization algorithm-based technique that determines a suitable Gaussian
weighting factor-based methodology for reduction of discontinuities along sector
boundaries.

Chapter 3 by Boussaïd, Chatterjee, Siarry, and Ahmed-Nacer shows how
intelligent hybridization of biogeography-based optimization with differential
evolution can be utilized to solve multilevel thresholding problems for image
segmentation purposes, utilizing the concept of fuzzy entropy. The objective here
is to incorporate diversity in the biogeography-based optimization (BBO) algo-
rithm to solve three-level thresholding problems in a more efficient manner and to
provide better uniformity for the segmented image. The utility of the proposed
schemes is demonstrated for a series of benchmark images, widely utilized by the
researchers within this community.

Chapter 4 by Perlin and Lopes demonstrates how GP approaches can be utilized
for the development of image segmentation algorithms. This chapter shows how the
image segmentation problem can be viewed as a classification problem and how GP
can use a set of terminals and non-terminals to arrive at the final segmented image.
The method demonstrates how suitable fitness functions can be defined and how a
penalty term can be utilized to obtain a fair division of an original image into its
reasonable, constituent parts, in an automated manner. The performance of the
algorithm has been extensively evaluated on the basis of a set of images.

Part II: Image Compression Algorithms

Image compression techniques are becoming more and more important in recent
times because the race for transmission of huge volumes of image data in real time
for a wide variety of applications like Internet-based transmission, mobile com-
munication, live transmission of television events, medical imaging, etc., is well
and truly on. The main objective is to simultaneously achieve two competing
requirements, i.e., to achieve very high rates of compression ratio and yet there
should not be any perceptible degradation in the reconstructed image at the viewer
end. This section of the book presents a collection of such modern techniques
which primarily aim to solve this problem as efficiently as possible.

Chapter 5 by Tsekouras and Tsolakis describes how fuzzy clustering-based
vector quantization techniques can be utilized to solve these problems. This
chapter first presents a systematic overview of existing fuzzy clustering-based
vector quantization techniques and then it presents a new effective fuzzy clus-
tering-based image compression algorithm that tackles two contentious issues: (i)
achieving performance independent of initialization and (ii) reducing the com-
putational cost. The method demonstrates how hybrid clusters can be formed
containing crisp and fuzzy areas.

Chapter 6 by Di Martino and Sessa demonstrates how recently proposed fuzzy
transforms (F-transforms) can be utilized for layer image compression and
reconstruction and then proposes a new modification. The chapter discusses how

Preface vii

http://dx.doi.org/10.1007/978-3-642-30621-1_3
http://dx.doi.org/10.1007/978-3-642-30621-1_4
http://dx.doi.org/10.1007/978-3-642-30621-1_5
http://dx.doi.org/10.1007/978-3-642-30621-1_6


an image can be viewed as a fuzzy matrix, comprising several square submatrices,
and how direct F-transforms can be suitably applied on each such image block for
the compression purpose. The chapter also demonstrates how inverse F-transforms
can be utilized for image reconstruction purposes at the viewer end.

Chapter 7 by Sanyal, Chatterjee, and Munshi introduces how the modified
bacterial foraging optimization (BFO) algorithm can be suitably used to solve
vector quantization-based image compression algorithms. This chapter shows how
a nearly optimal codebook can be designed for this purpose with a high peak
signal-to-noise ratio (PSNR) in the reconstructed image. The chapter also dem-
onstrates how improvements in the chemotaxis procedure of the BFO algorithm
can be useful in achieving high PSNR at the output. The utility of this algorithm is
demonstrated by employing it for a variety of benchmark images.

Part III: Image Analysis Algorithms

An important research domain within the broader category of image processing is
to analyze an image, captured by a suitable sensor system, for a variety of
applications. Such image analysis algorithms may be solely guided by the
requirement of the output of the system. In this section of the book, five chapters
are included to expose the readers to five different problem domains where dif-
ferent aspects of image analyses are required.

Chapter 8 by Mandal, Halder, Konar, and Nagar discusses how template
matching problems in a dynamic image sequence can be solved by fuzzy condi-
tion-sensitive algorithms. This chapter shows how a decision-tree-based approach
can be utilized to determine the matching(s) of a given template in an entire image.
A new hierarchical algorithm has been developed for this purpose and the con-
ditions are induced with fuzzy measurements of the features. The utility of this
method has been aptly demonstrated by implementing this algorithm for template
matching of human eyes in facial images, under different emotional conditions.

Chapter 9 by Di Martino and Sessa presents another important application
which will show how watermarking for tamper detection can be carried out for
images compressed by fuzzy relation equations. This method makes use of the
well-known encrypting alphabetic text Vigenère algorithm. They have used a
novel, interesting method of embedding a varying binary watermark matrix in
every fuzzy relation.

Chapter 10 by Bhattacharya and Das makes a detailed, systematic study on how
evolutionary algorithms can be utilized for human brain registration processes, that
can be useful for the purpose of brain mapping, treatment planning, image guided
therapies of nervous system, etc. A new system has been developed for MR and
CT image registration of human brain sections, utilizing similarity measures, for
both intensity- and gradient-based images. A fuzzy c-means clustering technique
has been utilized for extraction of the region of interest in each image. Any
degeneracy or abnormality in human brains can be detected by utilizing this
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similarity metric, utilized to test the alignment between two images. These simi-
larity metric-based objective functions are nonconvex in nature and do not lend
themselves naturally for solution by conventional optimization algorithms. Hence
this problem has been solved using a genetic algorithm.

Chapter 11 by Broilo and De Natale discusses how stochastic optimization
algorithms can be utilized for another important image processing-based appli-
cation domain, i.e., image retrieval problems. The chapter first presents an over-
view of the motivations behind utilizing these methods for image retrieval and
several interesting methods that have so far evolved in this domain. Detailed
discussions on the setting and tuning of free parameters in traditional retrieval tools
as well as direct classification of images in a dataset, based on these competing
stochastic algorithms, are presented. A systematic analysis on the relative merits
and demerits of these methods has been presented in the context of several
application examples.

Chapter 12 by Battiato, Farinella, Guarnera, Messina, and Ravì discusses an
important present-day research topic in image processing, removal of red-eye
artifacts in images, caused by the flash light reflected from a human retina. While
the conventional preflash approaches suffer from unacceptable power consumption
problems, the software-based post-acquisition correction procedures may require
substantial user interaction. Many contemporary research efforts in this problem
area focus on the development of suitable red eye removal techniques with as
minimum visual error as possible. This chapter discusses how boosting algorithm
aided classifiers can be designed for red eye recognition utilizing the concept of
gray codes feature space.

Part IV: Image Inferencing Algorithms

The last section of the book presents several chapters on how modern pattern
recognition-based techniques, especially those directed toward classification and
clustering objectives, can be utilized for the purpose of image inferencing.

Chapter 13 by Huang, Lee, and Lin presents how fractal analysis can be useful
for the purpose of pathological prostate image classification. Very recently, the use
of fractal geometry for effective analysis of pathological architecture and growth of
tumors has gained prominence. This chapter demonstrates how fractal dimension
can be suitably utilized along with other multicategories for feature extraction
from texture features, e.g., multiwavelets, Gabor filters, gray-level co-occurrence
matrix, etc. These feature extraction methodologies have been coupled with sev-
eral candidate classifiers, e.g., k-NN and SVM classifiers, to evaluate their relative
effectiveness in classifying such prostate images. The chapter demonstrates that, in
different types of classifiers developed, each time the best correct classification
rates are obtained only when the feature sets include fractal dimensions. Hence the
authors have justified the importance and utility of including fractal dimension-
based features in prostate image classification.
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Chapter 14 by Melgani and Pasolli discusses the development of multiobjective
PSO algorithms for hyperspectral image clustering problems. Hyperspectral
remote sensing images are quite rich in information content and they can simul-
taneously capture a large number of contiguous spectra from a wide range of the
electromagnetic spectrum. Development of hyperspectral image classification
schemes to achieve accurate data class in an unsupervised context is widely known
as a challenging research problem. This chapter demonstrates how such an
unsupervised clustering problem can be solved by formulating it as a multiob-
jective optimization problem and how a multiobjective PSO can be suitably uti-
lized for this purpose. The authors have implemented three different statistical
criteria for this purpose, i.e., the log-likelihood function, the Bhattacharyya dis-
tance, and the minimum description length. Several experimentations clearly
validate the utility of the particle swarm optimizers for automated, unsupervised
analysis of hyperspectral remote sensing images.

Chapter 15 by Halder, Shaw, Orea, Bhowmik, Chakraborty, and Konar details a
new computational intelligence-based approach for emotion recognition from the
outer lip-contour of a subject. This approach shows how the lip region of a face
image can be segmented and subsequently utilized for determining the emotion.
This method demonstrates how a lip-contour model can be suitably utilized for this
problem and an effective hybridization of differential evolution-based optimization
and support vector machine-based classification techniques have been carried out
to draw the final inference. Experimental studies on a large database of human
subjects have been carried out to establish the utility of the approach.

Last but not least, we would like to take this opportunity to acknowledge the
contribution made by Ilhem Boussaïd, who is a faculty member in the University
of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria, in
preparing this book in its final form. Ilhem is pursuing her own Ph.D. at the
moment, performs her regular duties in her University, is the lead author of
Chap. 3 of this book, and, in addition to all these, performed all LaTeX-related
activities in integrating this book. We have no words left to express our gratitude
to her in this matter.

Finally, the book is in its published form in front of all the readers, worldwide.
We do hope that you will find this volume interesting and thought provoking.
Enjoy!

Kolkata, India, August 2011 Amitava Chatterjee
Paris, France, August 2011 Patrick Siarry
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2 Locally-Equalized Image Contrast Enhancement Using
PSO-Tuned Sectorized Equalization . . . . . . . . . . . . . . . . . . . . . . 21
N. M. Kwok, D. Wang, Q. P. Ha, G. Fang and S. Y. Chen

3 Hybrid BBO-DE Algorithms for Fuzzy Entropy-Based
Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Ilhem Boussaïd, Amitava Chatterjee, Patrick Siarry
and Mohamed Ahmed-Nacer

4 A Genetic Programming Approach for Image Segmentation . . . . 71
Hugo Alberto Perlin and Heitor Silvério Lopes

Part II Image Compression Algorithms

5 Fuzzy Clustering-Based Vector Quantization
for Image Compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
George E. Tsekouras and Dimitrios M. Tsolakis

6 Layers Image Compression and Reconstruction
by Fuzzy Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Ferdinando Di Martino and Salvatore Sessa

xi

http://dx.doi.org/10.1007/978-3-642-30621-1_1
http://dx.doi.org/10.1007/978-3-642-30621-1_1
http://dx.doi.org/10.1007/978-3-642-30621-1_2
http://dx.doi.org/10.1007/978-3-642-30621-1_2
http://dx.doi.org/10.1007/978-3-642-30621-1_3
http://dx.doi.org/10.1007/978-3-642-30621-1_3
http://dx.doi.org/10.1007/978-3-642-30621-1_4
http://dx.doi.org/10.1007/978-3-642-30621-1_5
http://dx.doi.org/10.1007/978-3-642-30621-1_5
http://dx.doi.org/10.1007/978-3-642-30621-1_6
http://dx.doi.org/10.1007/978-3-642-30621-1_6


7 Modified Bacterial Foraging Optimization Technique for Vector
Quantization-Based Image Compression . . . . . . . . . . . . . . . . . . . 131
Nandita Sanyal, Amitava Chatterjee and Sugata Munshi

Part III Image Analysis Algorithms

8 A Fuzzy Condition-Sensitive Hierarchical Algorithm
for Approximate Template Matching in Dynamic
Image Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Rajshree Mandal, Anisha Halder, Amit Konar and Atulya K Nagar

9 Digital Watermarking Strings with Images Compressed
by Fuzzy Relation Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Ferdinando Di Martino and Salvatore Sessa

10 Study on Human Brain Registration Process Using
Mutual Information and Evolutionary Algorithms . . . . . . . . . . . . 187
Mahua Bhattacharya and Arpita Das

11 Use of Stochastic Optimization Algorithms in Image
Retrieval Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Mattia Broilo and Francesco G. B. De Natale

12 A Cluster-Based Boosting Strategy for Red Eye Removal . . . . . . 217
Sebastiano Battiato, Giovanni Maria Farinella, Daniele Ravì,
Mirko Guarnera and Giuseppe Messina

Part IV Image Inferencing Algorithms

13 Classifying Pathological Prostate Images by Fractal Analysis . . . . 253
Po-Whei Huang, Cheng-Hsiung Lee and Phen-Lan Lin

14 Multiobjective PSO for Hyperspectral Image Clustering . . . . . . . 265
Farid Melgani and Edoardo Pasolli

15 A Computational Intelligence Approach to Emotion Recognition
from the Lip-Contour of a Subject . . . . . . . . . . . . . . . . . . . . . . . 281
Anisha Halder, Srishti Shaw, Kanika Orea, Pavel Bhowmik,
Aruna Chakraborty and Amit Konar

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

xii Contents

http://dx.doi.org/10.1007/978-3-642-30621-1_7
http://dx.doi.org/10.1007/978-3-642-30621-1_7
http://dx.doi.org/10.1007/978-3-642-30621-1_8
http://dx.doi.org/10.1007/978-3-642-30621-1_8
http://dx.doi.org/10.1007/978-3-642-30621-1_8
http://dx.doi.org/10.1007/978-3-642-30621-1_9
http://dx.doi.org/10.1007/978-3-642-30621-1_9
http://dx.doi.org/10.1007/978-3-642-30621-1_10
http://dx.doi.org/10.1007/978-3-642-30621-1_10
http://dx.doi.org/10.1007/978-3-642-30621-1_11
http://dx.doi.org/10.1007/978-3-642-30621-1_11
http://dx.doi.org/10.1007/978-3-642-30621-1_12
http://dx.doi.org/10.1007/978-3-642-30621-1_13
http://dx.doi.org/10.1007/978-3-642-30621-1_14
http://dx.doi.org/10.1007/978-3-642-30621-1_15
http://dx.doi.org/10.1007/978-3-642-30621-1_15


Part I
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Chapter 1
Improved Digital Image Enhancement Filters
Based on Type-2 Neuro-Fuzzy Techniques

Mehmet Emin Yüksel and Alper Baştürk

Abstract A general purpose image enhancement operator based on type-2 neuro-
fuzzy networks is presented in this chapter. The operator can be used for a number
of different image enhancement tasks depending on its training. Specifically, two
different applications of the presented operator are considered here: (1) noise filter
and (2) noise detector. Comparative evaluation of the performance of the presented
operator is demonstrated by performing carefully designed filtering experiments.
Some other areas of the possible application are also discussed.

1.1 Introduction

Digital image enhancement is one of the most active research areas in image restora-
tion since images are inevitably corrupted by noise during image acquisition and/or
transmission. As a consequence, a large number of methods have been developed and
successfully employed for detecting and removing noise from digital images in the
past few decades. Among these methods, the operators based on neuro-fuzzy tech-
niques have been shown to exhibit superior performance over most of the competing
operators.

In recent years, type-2 neuro-fuzzy systems and their applications have attracted
a growing interest. Contrary to the scalar membership functions of conventional
(type-1) fuzzy systems, the membership functions in type-2 systems are also
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4 M. E. Yüksel and A. Baştürk

themselves fuzzy and it is this extra degree of fuzziness that provides the designer
a more efficient handling of uncertainty, which is inevitably encountered in noisy
environments. Based on this observation, image enhancement operators based on
type-2 neuro-fuzzy systems may be expected to exhibit much better performance
than many other existing operators, provided that appropriate network structures and
processing strategies are used.

In this chapter, we begin by presenting a review of the conventional as well
as state-of-the-art image restoration operators available in the literature. Following
this, we propose a general-purpose image enhancement operator based on type-2
neuro-fuzzy networks. Specifically, we consider two different applications of the
presented operator: noise filter and noise detector. For both applications, we perform
carefully designed filtering experiments and provide comparative evaluation of the
performances of the presented operator and a number of competing operators selected
from the literature. We complete the chapter by giving some other areas of the possible
application.

1.2 Literature Review

A large number of methods for suppressing impulse noise from digital images have
been proposed in the past few decades. The majority of these methods utilize order
statistics filtering, which exploits the rank order information of the pixels contained
in a given filtering window. The standard median filter [1, 2] is probably the simplest
operator to remove impulse noise and operates by changing the center pixel of the
filtering window with the median of the pixels within the window. Despite its simplic-
ity, this approach provides reasonable noise removal performance but removes thin
lines and blurs image details even at low noise densities. The weighted median filter
and the center-weighted median filter [3–5] attempt to avoid the inherent drawbacks
of the standard median filter by giving more weight to certain pixels in the filtering
window and usually demonstrate better performance in preserving image details than
the standard median filter at the expense of reduced noise removal performance.

A number of methods [6–24] are based on a combination of a noise filter with an
impulse detector, which aims to classify the center pixel of a given filtering window
as corrupted or not. If the impulse detector identifies the center pixel as a corrupted
pixel, its restored value is obtained by processing the pixels in the filtering window by
the noise filter. Otherwise, it is passed to the output unfiltered. Although this approach
considerably reduces the distortion effects of the noise filter and enhances its output,
its performance inherently depends on the performance of the impulse detector. As
a result, many different sorts of impulse detectors exploiting median filters [6–8],
center-weighted median filters [9–12], boolean filters [13], edge-detection kernels
[14], homogeneity-level information [15], statistical tests [16, 17], classifier-based
methods [18], rule-based methods [19], level-detection methods [20], pixel-counting
methods [21] and soft computing methods [22–24] have been developed.
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In addition to the median-based filters mentioned above, various types of mean
filters are successfully utilized for impulse noise removal from digital images
[25–33]. Finally, there are also a number of filters based on soft computing method-
ologies [34–43] as well as several other nonlinear filters [44–54] that combine the
desired properties of the above mentioned filters. These filters are usually more
complicated, but they generally provide much better noise suppression and detail-
preservation performance.

Applications of type-2 fuzzy logic systems [55–65] in digital image processing
have shown a steady increase in the last decade. Type-2 fuzzy logic-based image
processing operators are usually more complicated than conventional and type-1
based operators. However, they usually yield better performance. Successful appli-
cations include gray-scale image thresholding [66], edge detection [67–70], noise-
filtering [71–74], corner and edge detection in color images [75], deinterlacing of
video signals [76] and image enhancement [77].

1.3 The Type-2 NF Operator

1.3.1 The Structure of the Operator

Figure 1.1a shows the general structure of the neuro-fuzzy image enhancement
operator. The operator is constructed by combining a desired number of type-2 neuro-
fuzzy (NF) blocks, defuzzifiers and a postprocessor. The operator processes the pixels
contained in its filtering window (Fig. 1.1b) and generates an output based on type-2
fuzzy inference. Each NF block in the structure processes a different neighborhood
relationship between the center pixel of the filtering window and two neighboring
pixels. Possible neighborhood topologies are shown in Fig. 1.1c.

All NF blocks employed in the structure of the operator are identical to each
other and function as suboperators. However, it should be observed that the values
of the internal parameters of each of the NF blocks are different from those in the
other NF blocks, even though all NF blocks have the same internal structure and
the same number of internal parameters. This is because each NF block is trained
for its particular neighborhood individually and independently of the others during
training, which is discussed in detail later.

Each NF block accepts the center pixel and two of its appropriate neighboring
pixels as input and produces an output, which is a type-1 interval fuzzy set represent-
ing the uncertainty interval (i.e., lower and upper bounds) for the restored value of
the center pixel. The output fuzzy sets coming from the NF blocks are then fed to
the corresponding defuzzifier blocks. The defuzzifier defuzzifies the input fuzzy set
and converts it into a single scalar value. These scalar values are finally evaluated by
the postprocessor and converted into a single output value, which is also the output
value of the overall system.
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Fig. 1.1 a Structure of the
general purpose type-2 neuro-
fuzzy image enhancement
operator, b filtering window
of the operator, c possible
pixel neighborhood topologies
(Reproduced from [73] with
permission from the IEEE. ©
2008 IEEE.)

(a)

(b)

(c)

1.3.2 Type-2 NF Blocks

Each NF block employed in the structure of the presented image enhancement oper-
ator is a Sugeno-type first-order type-2 interval fuzzy inference system with three
inputs and one output. The internal structures of the NF blocks are identical to each
other. The input-output relationship of any of the NF blocks is as follows:

Let Xk
1, Xk

2, Xk
3 denote the inputs of the kth NF block and Yk denote its output.

Each combination of inputs and their associated membership functions is represented
by a rule in the rule-base of the kth NF block. The rule-base contains a desired number
of fuzzy rules, which are as follows:
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Fig. 1.2 A type-2 interval
Gaussian membership func-
tion with uncertain mean.
The shaded area is the foot-
print of uncertainty (FOU)
(Reproduced from [73] with
permission from the IEEE. ©
2008 IEEE.)

0

1

1. if (Xk
1 ∈ Mk

11) & (Xk
2 ∈ Mk

12) & (Xk
3 ∈ Mk

13), then Rk
1 = ck

11 Xk
1 + ck

12 Xk
2 +

ck
13 Xk

3 + ck
14

2. if (Xk
1 ∈ Mk

21) & (Xk
2 ∈ Mk

22) & (Xk
3 ∈ Mk

23), then Rk
2 = ck

21 Xk
1 + ck

22 Xk
2 +

ck
23 Xk

3 + ck
24

3. if (Xk
1 ∈ Mk

31) & (Xk
2 ∈ Mk

32) & (Xk
3 ∈ Mk

33), then Rk
3 = ck

31 Xk
1 + ck

32 Xk
2 +

ck
33 Xk

3 + ck
34

...
...

i. if (Xk
1 ∈ Mk

i1) & (Xk
2 ∈ Mk

i2) & (Xk
3 ∈ Mk

i3), then Rk
i = ck

i1 Xk
1 + ck

i2 Xk
2 +

ck
i3 Xk

3 + ck
i4

...
...

N. if (Xk
1 ∈ Mk

N1) & (Xk
2 ∈ Mk

N2) & (Xk
3 ∈ Mk

N3), then Rk
N = ck

N1 Xk
1 + ck

N2 Xk
2 +

ck
N3 Xk

3 + ck
N4

where N is the number of fuzzy rules in the rule-base, Mk
i j denotes the i th membership

function of the j th input and Rk
i denotes the output of the i th rule.

The antecedent membership functions are type-2 interval Gaussian membership
functions with uncertain mean:

Mk
i j (u) = exp

⎡
⎣−1

2

(
u − mk

i j

σ k
i j

)2
⎤
⎦ mk

i j ∈ [mk
i j , mk

i j ] (1.1)

with i = 1, 2, · · · , N ; j = 1, 2, 3 and k = 1, 2, · · · , K . Here, the parameters mk
i j

and σ k
i j are the mean and the standard deviation of the type-2 interval Gaussian mem-

bership function Mk
i j , respectively, and the interval [mk

i j , mk
i j ] denotes the lower and

the upper bounds of the uncertainty in the mean. A sample type-2 interval Gaussian
membership function and its associated footprint of uncertainty (FOU) are illustrated
in Fig. 1.2.

Since the membership functions Mk
i j are interval membership functions, the

boundaries of their FOU are characterized by their lower and upper membership
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functions, which are defined as

Mk
i j (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp

⎡
⎣−1

2

(
u − mk

i j

σ k
i j

)2
⎤
⎦ u >

mk
i j +mk

i j
2

exp

⎡
⎣−1

2

(
u − mk

i j

σ k
i j

)2
⎤
⎦ u ≤ mk

i j +mk
i j

2

(1.2)

and

M
k
i j (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎡
⎣−1

2

(
u − mk

i j

σ k
i j

)2
⎤
⎦ u < mk

i j

1 mk
i j ≤ u ≤ mk

i j

exp

⎡
⎣−1

2

(
u − mk

i j

σ k
i j

)2
⎤
⎦ u > mk

i j

(1.3)

where Mk
i j and M

k
i j are the lower and the upper membership functions of the type-2

interval membership function Mk
i j , respectively.

The output of the kth NF block is the weighted average of the individual rule
outputs:

Yk =

N∑
i=1

wk
i Rk

i

N∑
i=1

wk
i

(1.4)

The weighting factor, wk
i , of the i th rule is calculated by evaluating the membership

expressions in the antecedent of the rule. This is accomplished by first converting
the input values to fuzzy membership values by utilizing the antecedent membership
functions Mk

i j and then applying the and operator to these membership values. The
and operator corresponds to the multiplication of the antecedent membership values:

wk
i = Mk

i1(Xk
1) . Mk

i2(Xk
2) . Mk

i3(Xk
3) (1.5)

Since the membership functions Mk
i j in the antecedent of the i th rule are type-2

interval membership functions, the weighting factor wk
i is a type-1 interval set, i.e.,

wk
i = [wk

i , wk
i ], whose lower and upper boundaries are determined by using the lower

and the upper membership functions defined before:

wk
i = Mk

i1(Xk
1) . Mk

i2(Xk
2) . Mk

i3(Xk
3) (1.6)

wk
i = M

k
i1(Xk

1) . M
k
i2(Xk

2) . M
k
i3(Xk

3)
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where wk
i and wk

i (i = 1, 2, · · · , N ) are the lower and upper boundaries of the interval
weighting factor wk

i of the i th rule, respectively.
After the weighting factors are obtained, the output Yk of the kth NF filter can

be found by calculating the weighted average of the individual rule outputs by using
Eq. (1.4). The output Yk is also a type-1 interval set, i.e., Yk = [Y k, Y k], since the
wk

i s in the above Eq. are type-1 interval sets and the Rk
i s are scalars. The lower and

the upper boundaries of Yk are determined by using the iterative procedure proposed
by Karnik and Mendel [78].

1.3.3 The Defuzzifier

The defuzzifier block takes the type-1 interval fuzzy set obtained at the output of the
corresponding NF block as input and converts it into a scalar value by performing
centroid defuzzification. Since the input set is a type-1 interval fuzzy set, i.e., Yk =
[Y k, Y k], its centroid is equal to the center of the interval:

Dk = Y k + Y k

2
(1.7)

1.3.4 The Postprocessor

The postprocessor generates the final output of the proposed operator. It processes
the scalar values obtained at the outputs of the defuzzifiers and produces a single
scalar output, which represents the output of the operator.

The postprocessor actually calculates the average value of the defuzzifier outputs
and then suitably truncates this value to an 8-bit integer number. The input-output
relationship of the postprocessor may be explained as follows:

Let D1, D2, · · · , DK denote the outputs of the defuzzifiers in the structure of the
proposed operator (Fig. 1.1a). The output of the postprocessor is calculated in two
steps. In the first step, the average value of the individual type-2 NF block outputs is
calculated:

DAV = 1

K

K∑
k=1

Dk (1.8)

In the second step, this value is suitably truncated to an 8-bit integer value so that the
luminance value obtained at the output of the postprocessor ranges between 0 and
255:

y =
⎧⎨
⎩

0 if DAV < 0
255 if DAV > 255
round(DAV ) otherwise

(1.9)
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Fig. 1.3 General setup
for training the type-2 NF
blocks in the structure of the
image enhancement opera-
tor (Adapted from [73] with
permission from the IEEE. ©
2008 IEEE.)

where y is the output of the postprocessor, which is also the output of the type-2 NF
image enhancement operator.

1.3.5 Training the NF Blocks

The internal parameters of the proposed operator are optimized by training. Train-
ing of the proposed operator is accomplished by training the individual type-2 NF
blocks in its structure. Each NF block in the structure is trained individually and
independently of the others. The training setup is shown in Fig. 1.3.

The parameters of the NF block under training are iteratively adjusted in such a
manner that its output converges to the output of the ideal block. The ideal block is
conceptual only and does not necessarily exist in reality. It is only the output of the
ideal block that is necessary for training and this is represented by a suitably chosen
target training image, which varies depending on the application.

The parameters of the NF block under training are tuned by using the Levenberg
Marquardt optimization algorithm [79–81] so as to minimize the learning error. Once
the training of the NF blocks is completed, the internal parameters of the blocks are
fixed, and the blocks are combined with the same number of defuzzifiers and a
postprocessor to construct the NF operator (Fig. 1.1a).

1.3.6 Processing the Input Image

The overall procedure for processing the input image may be summarized as follows:

1. A 3 × 3 pixel filtering window is slid over the image one pixel at a time. The
window is started from the upper-left corner of the image and moved sideways
and progressively downwards in a raster scanning fashion.

2. For each filtering window position, the appropriate pixels of the filtering win-
dow representing the possible neighborhoods of the center pixel are fed to the
corresponding NF blocks in the structure. Each NF block individually generates
a type-1 interval fuzzy set as its output.
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Fig. 1.4 Setup for train-
ing the type-2 NF filters in
the structure of the image
enhancement operator for
the noise filter application
(Reproduced from [73] with
permission from the IEEE. ©
2008 IEEE.)

3. The outputs of the NF blocks are fed to their corresponding defuzzifiers. The
defuzzifiers process the input type-1 interval fuzzy sets coming from the NF
blocks and output the centroid of their input sets.

4. The outputs of the defuzzifiers are fed to the postprocessor, which processes the
scalar values obtained at the outputs of the defuzzifiers and produces a single
scalar output. The value obtained at the output of the postprocessor is also the
output value of the operator.

5. This procedure is repeated for all pixels of the noisy input image.

1.4 Applications

In this section, we demonstrate two different applications of the type-2 NF image
enhancement operator presented in the previous section: noise filtering and noise
detection. In both of these applications, the same general purpose type-2 NF operator
shown in Fig. 1.1 are used. However, a different pair of training images is used in
the training to customize the operator for each of these two applications.

1.4.1 The Type-2 NF Operator as a Noise Filter

In the first application, we demonstrate the use of the type-2 NF image enhancement
operator as a noise filter. The training arrangement to customize an individual NF
block in the structure of the operator as a noise filter is illustrated in Fig. 1.3. Here,
the parameters of the NF block under training are iteratively tuned to minimize the
difference between its output and the output of the ideal noise filter. The ideal noise
filter is a conceptual filter that is capable of completely removing the noise from the
image and does not necessarily exist in reality. What is necessary for training is only
the output of the ideal noise filter, which is represented by the target training image.

Figure 1.4 shows the training setup for the noise filter application and Fig. 1.5
shows the images used for training. The training image shown in Fig. 1.5a is a
computer-generated 40 × 40 pixel artificial image. Each square box in this image
has a size of 4 × 4 pixels and the 16 pixels contained within each box have the same
luminance value, which is an 8-bit integer number uniformly distributed between
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Fig. 1.5 Training images:
a Original training image,
s b Noisy training image
(Reproduced from [73] with
permission from the IEEE. ©
2008 IEEE.)

(a) (b)

Fig. 1.6 Test images: a
Baboon, b Boats, c Bridge,
d Pentagon (Reproduced from
[73] with permission from the
IEEE. © 2008 IEEE.)

(a) (b)

(c) (d)

0 and 255. The image in Fig. 1.5b is obtained by corrupting the image in Fig. 1.5a
by impulse noise of 30 % noise density. The images in Fig. 1.5a and b are employed
as the target (desired) and the input images during training, respectively.

Several filtering experiments are performed to evaluate the filtering performance
of the presented type-2 NF operator functioning as a noise filter. The experiments
are especially designed to reveal the performance of the operator for different image
properties and noise conditions.

Figure 1.6 shows the test images used in the experiments. Noisy experimental
images are obtained by contaminating the original test images by impulse noise with
an appropriate noise density depending on the experiment. For comparison, the cor-
rupted experimental images are also restored by using a number of conventional as
well as state-of-the-art impulse noise removal operators from the literature, includ-
ing the standard median filter (MF) [1, 2], the switching median filter (SMF) [6],
the tristate median filter (TSMF) [9], the signal-dependent rank-ordered mean filter
(SDROMF) [26], the fuzzy filter (FF) [36], the progressive switching median filter
(PSMF) [7], the multistate median filter (MSMF) [11], the edge-detecting median fil-
ter (EDMF) [14], the adaptive fuzzy switching filter (AFSF) [51], the alpha-trimmed
mean-based filter (ATMBF) [33] and the adaptive median filter with difference-type
noise detector (DNDAM) [19].

The performance of all operators is evaluated by using the mean-squared error
(MSE) criterion, which is defined as
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Table 1.1 Average MSE values of operators for 25, 50 and 75 % noise densities (Reproduced from
[73] with permission from the IEEE. © 2008 IEEE.)

Filter 25 % 50 % 75 % Average

MF 505 2367 8460 3777
SMF 421 2324 8454 3733
TSMF 632 3742 10996 5123
SDROMF 328 802 4067 1732
FF 265 734 3061 1353
PSMF 301 576 2640 1172
MSMF 612 3640 10317 4856
EDMF 298 1007 4955 2086
AFSF 271 547 1759 859
ATMBF 431 2333 8459 3741
DNDAM 371 800 2640 1270
Type-2 NF 145 382 980 502

MSE = 1

RC

R∑
r=1

C∑
c=1

(s[r, c] − y[r, c])2 (1.10)

where s[r, c] and y[r, c] represent the luminance values of the pixels at location (r, c)
of the original and the restored versions of a corrupted test image, respectively.

Table 1.1 shows the average MSE values of all operators included in the noise-
filtering experiments. Here the average MSE value of a given operator for a given
noise density is found by averaging the four MSE values of that operator obtained
for four test images. It is seen from this Table that the proposed operator offers the
best performance of all operators.

1.4.2 The Type-2 NF Operator as a Noise Detector

All image restoration filters more or less damage the uncorrupted pixels of their
input image while repairing the corrupted (noisy) pixels, thus introducing undesir-
able blurring effects into the repaired output image. This problem can be avoided by
using a special operator, called an impulse detector, that is capable of distinguish-
ing the corrupted pixels of the input image from the uncorrupted ones. Hence, an
impulse detector is used to guide a noise filter during its processing of the noisy input
image and improve its performance. If the input pixel under concern is classified as
uncorrupted, then it is passed to the output image without filtering. If it is classified
as corrupted, its restored version produced by the noise filter is passed to the output
image. Various different types of impulse detectors [6–24] have been shown in the



14 M. E. Yüksel and A. Baştürk

Fig. 1.7 Setup for training the
type-2 NF filters in the struc-
ture of the image enhancement
operator for the noise detector
application. (Adapted from
[73] with permission from the
IEEE. © 2008 IEEE.)

Fig. 1.8 Training images:
a Original training image,
b Noisy training image,
c Noise-detection image
(Reproduced and adapted
from [73] with permission
from the IEEE. © 2008 IEEE.)

(a) (b) (c)

last decade to significantly improve the performance and reduce the blurring effects
of image noise removal operators.

In this section, we demonstrate the use of the presented type-2 NF operator as
a noise detector. We first demonstrate how to customize the general-purpose type-2
NF image enhancement operator as a noise detector, and then we demonstrate how
to use it together with a noise filter to improve the performance of that filter.

The arrangement used for training an individual type-2 NF block in the structure
of the NF operator as a noise detector is illustrated in Fig. 1.7. Here, the internal
parameters of the NF block under training are iteratively adjusted so that its output
converges to the output of the ideal noise detector. The ideal noise detector is again
a conceptual operator, and its output is represented by the noise-detection image
shown in Fig. 1.8c.

Figure 1.8 shows the three training images used for the noise-detection applica-
tion: the original training image, the noisy training image and the noise-detection
image from left to right. The first two images, the original and the noisy training
images, are the same as the ones used in the noise-filtering application. The third
image, the noise-detection image, deserves a little explanation. It is obtained from
the difference between the original training image and the noisy training image.
Locations of the white pixels in this image indicate the locations of the noisy pixels.
Hence, it is not difficult to see that the images in Fig. 1.8c and b are used as the target
(desired) and the input images for noise detection training process, respectively.

The enhanced filtering process of a given noisy input image comprises three stages.
In the first stage, the noisy input image is fed to the noise filter, which generates a
repaired image at its output. In the second stage, the noisy input image is fed to the
type-2 NF impulse detector, which generates a noise-detection image at its output.
The noise-detection image is a black-and-white image that is similar to the target
training image (Fig. 1.8c). In the third stage, the pixels of the noisy input image and
the repaired output image are appropriately mixed to obtain the enhanced output
image. For this purpose, those pixels of the enhanced output image that correspond
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Table 1.2 MSE values for the noise-detection application

Filter MSE without detector MSE with detector

MF 497 195
EDMF 301 193
MMEMF 258 110

to the white pixels of the noise-detection image are copied from the repaired output
image of the noise filter, while the others are copied directly from the original input
image.

The validity of the method discussed above is demonstrated by using it with three
different noise filters. These are the MF [1, 2], the EDMF [14] and the minimum
maximum exclusive mean filter (MMEMF) [30].

Table 1.2 shows the average MSE values for the three filters for the uses “without”
and “with” the detector for the baboon image corrupted by impulse noise with 25 %
noise density. As can easily be seen from the Table, the detector significantly reduces
the average MSE values of the filters. For a visual evaluation of the enhancement
obtained by using the type-2 NF detector, the output images of the three noise filters
for the uses “without” and “with” the detector for the baboon image corrupted by
impulse noise with 25 % noise density are given in Fig. 1.9. For each vertical image
pair in this figure, the upper image shows the direct output image of the corresponding
noise filter while the lower image shows the image enhanced by using the noise filter
with the type-2 NF noise detector. The undesirable blurring effects and the restoration
of these distortions by means of the type-2 NF noise detector can clearly be observed
by carefully examining the small details and texture in the images, such as the hair
around the baboon’s mouth.

1.5 Conclusions and Remarks

In this chapter, we presented an improved image enhancement operator based on
type-2 NF networks. The presented operator is a general purpose operator that can
be customized for a number of different tasks in image processing. We presented
two specific applications here: noise filter and noise detector.

It should be pointed out, however, that other potential application areas of the
general-purpose NF operator structure discussed here are not limited to the two
applications presented in this chapter The presented NF operator may be used for a
number of other applications in image processing provided that appropriate network
topologies and training strategies are employed. In this way, it is straightforward to
obtain the type-2 versions of the type-1 applications presented in [82, 83] by simply
replacing the type-1 operator in the training setup by a type-2 one and appropriately
choosing the training images. Other potential applications are left to the reader.
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MF EDMF MMEMF(a) (b) (c)

Fig. 1.9 Output images of three noise filters for the noise-detection application, comparing the
noise filters with (lower) and without (upper) the type-2 NF noise detector: a MF, b EDMF, c
MMEMF
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Chapter 2
Locally-Equalized Image Contrast Enhancement
Using PSO-Tuned Sectorized Equalization

N. M. Kwok, D. Wang, Q. P. Ha, G. Fang and S. Y. Chen

Abstract Contrast enhancement is a fundamental procedure in applications requir-
ing image processing. Indeed, image enhancement contributes critically to the
success of subsequent operations such as feature detection, pattern recognition and
other higher-level processing tasks. Of interest among methods available for contrast
enhancement is the intensity modification approach, which is based on the statistics
of pixels in a given image. However, due to variations in the imaging condition and
the nature of the scene being captured, it turns out that global manipulation of an
image may be vulnerable to a noticeable quality degradation from distortion and
noise. This chapter is devoted to the development of a local intensity equalization
strategy together with mechanisms to remedy artifacts produced by the enhance-
ment while ensuring a better image for viewing. To this end, the original image is
subdivided randomly into sectors, which are equalized independently. A Gaussian
weighting factor is further used to remove discontinuities along sector boundaries. To
achieve simultaneously the multiple objectives of contrast enhancement and viewing
distortion reduction, a suitable optimization algorithm is required to determine sector
locations and the associated weighting factor. For this, a particle-swarm optimization
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algorithm is adopted in the proposed image enhancement method. This algorithm
helps optimize the Gaussian weighting parameters for discontinuity removal and
determine the local region where enhancement is applied. Following comprehen-
sive descriptions on the methodology, this chapter presents some real-life images for
illustration and verification of the effectiveness of the proposed approach.

2.1 Introduction

The use of image processing technology can be found in a large number of appli-
cations including computer vision, optical classification, augmented reality, feature
detection, medical and morphological signal processing. For example, in manufac-
turing [3], three-dimensional model construction could be facilitated by the use of
properly structured illumination. In industrial automation where reliable perception
of the workspace is required, a vision system can be used to detect surface defects on
civil structures, enabling a maintenance [13]. Image processing techniques have been
applied to restore valuable ancient paintings [16], which is an important step towards
their preservation. Images from cephalic radiography could be enhanced for better
diagnosis of illnesses [6]. The quality of remote sensing data could be improved
using image processing techniques [14]. Numerous interesting applications can be
found in the literature. One fundamental operation in image processing technique is
the contrast enhancement, which critically determines the quality of its subsequent
operations.

In the context of contrast enhancement, there are also a number of possible
approaches. In [17], a morphological filter was used for image sharpening. The
contrast could also be improved by making use of the curvelet transform [20]. In
the field of soft computing [7], the image contrast could be increased by a fuzzy
intensification process. In [8], image enhancement was tackled from the point of
view of noise-filtering and edge boosting, where the method was applied in color
images. Color image processing and enhancement is a more complicated process
than its counterpart for black-and-white images [12] due to the involvement of mul-
tiple color channels and the need to preserve the color information content [15] while
enhancing the contrast. Novel techniques that address these problems are in great
demand. For instance, in [1] it was proposed to enhance the image quality by making
use of local contrast information and fusing the morphologically enhanced image
with the original.

There are other attempts to enhance an image, e.g. by color rendition [18], where a
neural network is used to model the color relation from a natural scene. An approach
to intensify an image using a fuzzy system was also presented in [7] where the
intensity gradients of neighboring pixels are adjusted according to a rule base. Alter-
natively, the genetic algorithm, an evolutionary computation technique, was applied
to enhance image contrast [19]. Althoughsatisfactory results could be obtained with
these specific approaches, the use of histogram equalization is still a popular, effec-
tively proven method due to its simplicity [4] and satisfactory performance. In this
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class of methodology, statistics of pixel intensities collected in a histogram are con-
structed, and pixel intensities are modified accordingly for contrast enhancement.

Image enhancement approaches adopting histogram equalization can be broadly
categorized into classes of global and local equalization implementation. The for-
mer method conducts equalization over all image pixels concurrently. In a canonical
implementation, the resultant image has a histogram resembling a linear transfor-
mation or stretching from its original image histogram. In [10], spatial relationships
between neighboring pixels were taken into consideration.

On the other hand, local equalization tackles image enhancement by dividing the
image into multiple sectors and equalizing them independently, see [11]. In the work
by Stark [21], the generation of a desired target histogram is made dependent on the
characteristics of local windows. For this, a predetermined scheme can be applied
to divide the image into subblocks, where each block is equalized independently. In
this context, a local histogram equalization scheme was proposed in [25]. In [24],
the input images were subdivided, independently equalized, and finally fused to
produce a contrast-enhanced image. This approach was further developed in Kim et
al. [9], where the original image is divided into overlapping subblocks and equalized
according to the pixel characteristics within the block. In [21], the image histogram
is matched to a distribution determined from a windowed and filtered version of the
original histogram. Manipulations on the histograms were also frequently suggested
by researchers. These include specific considerations in minimizing the mean bright-
ness error between the input and output images [2]. In [22], the maximum entropy
or information content criterion was invoked in contrast enhancement.

A computational intelligence optimization-based method is presented in this
chapter as an alternative approach to the contrast enhancement problem for color
images. The image is first randomly divided into sectors, and their contrast is
increased by individual histogram equalization. The enhanced sectors are then mod-
ulated by a Gaussian mask to mitigate abrupt changes at the sector boundaries. This
process is repeated, where new sectors are generated and the final output is derived
from a weighted summation of the intermediate images with the weights determined
via information-based weighted sum average. The performance of the approach is
evaluated by using a collection of color images taken under diverse conditions. More-
over, it should be nontrivia to obtain an optimal selection of sectors, including their
numbers, the boundaries and the smoothing needed to remove discontinuities along
the boundaries. Here, the particle-swarm optimization (PSO) algorithm is adopted as
an optimization procedure to obtain the above-mentioned settings such that the resul-
tant image can provide the information to the viewer and for the success of subsequent
processing. The PSO algorithm [5] is a multiagent-based search method mimicking
the flights of bird flocks. For example, PSO is adopted to find optimal parameters
for multiple-robot motion planning [23] or, more relevantly, for enhancement of an
image while preserving its brightness, as reported in [12].

The Chapter is organized as follows. Section 2.2 describes the global histogram
equalization process for image enhancement and its limitations. The proposed local
sector-based enhancement method is developed in Sect. 2.3. Experiments conducted
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using a variety of color images are described in Sect. 2.4, followed by some discus-
sion. A conclusion is drawn in Sect. 2.5.

2.2 Global Histogram Equalization

Histogram equalization is a technique used to enhance the contrast of an image. The
statistics of the image are collected and represented in a graphical representation
showing the distribution of image data. Color images are frequently delivered from
cameras in red green blue (RGB) signals or spaces. It is also a common strategy
to enhance a color image by first converting the image to its intensity-related space,
where enhancement operations are applied. The intermediate results are then con-
verted to eventually give an enhanced color image.

Let the input or original color image be represented by

I = {Iuv}, Iuv = [
RuvGuv Buv

]T
, (2.1)

where u, v are pixel coordinates in the width and height dimensions, respectively.
Since the RGB space contains three color-related signals, it is intuitive to operate on
the three signal spaces simultaneously for image enhancement. Furthermore, since
the human visual system is sensitive to intensity variation when accessing image
contrast, the image is converted before applying enhancement. For example, the
image is commonly converted to the hue saturation value (HSV) format:

⎡
⎣

H
S
V

⎤
⎦

uv

= T

⎛
⎝

⎡
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G
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⎦

uv

⎞
⎠ =

⎡
⎣

arctan(
√

3(G − B)/(2R − G − B))

1 − 3 × min(R, G, B)/(R + G + B)

max(R, G, B)

⎤
⎦ , (2.2)

where the H component represents the color tone, S denotes saturation and V corre-
sponds to the image intensity. The restoration from HSV to RGB space is conducted
using T−1(), the inverse transform of T().

A histogram is obtained from intensities Vuv, giving

H = {hi },
L∑

i=1

hi = N , (2.3)

where hi is the number of pixels having the i th intensity level and N is the total
number of pixels. The number of levels is taken as L = 256, corresponding to 8-bit
(28 = 256) electronic display.

In principle, image contrast will be enhanced as long as one can make use of the
whole available intensity range. A uniform histogram is therefore used, where the
numbers of pixels that fall inside each intensity level are equal. That is, the desired
histogram is
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H d = {hd
j }, hd

j = N L−1, j = 1, . . . , L . (2.4)

To perform enhancement, two cumulative histograms are constructed from the
input and desired histograms, respectively. We have

C = {ci }, ci =
i∑

k=1

hk; and C d = {cd
j }, cd

j =
j∑

k=1

hd
k . (2.5)

For a pixel with original intensity i in the cumulative histogram C at the ci th
position, its equalized intensity value is obtained by referring to the cd

j th element in

the cumulative desired histogram C d and overriding. That is,

j = {i : ci = cd
j }. (2.6)

The aforementioned process is referred to as global histogram equalization
because all pixels in the image are used in constructing the histograms. This method
is easy to implement but there are also limitations in its performance, particularly in
viewing. To illustrate this remark, an image is taken for an indoor scene where the
camera is being saturated from the background high-level illumination magnitude
(Fig. 2.1a). The result from global histogram equalization is given in Fig. 2.1b. It is
observed that some degree of enhancement is obtained for the people sighted at the
bottom-right corner. Further comparison can be made with results from a canonical
implementation of a local equalization scheme as well as the proposed approach,
discussed in what follows, for which the results are shown respectively in Figs. 2.1c
and d. It is noted that further contrast enhancements can be obtained, also illustrated
by the bottom-right corner portion of the image, via the sectorized approach, while
a better result is obtained from the proposed method. Histograms of the intensities
of these images are plotted in Fig. 2.1e For the global equalization process, the his-
togram shown in cyan illustrates that there are occasions where some of the intensity
ranges, with zero counts of pixel intensity, have not been utilized for conveying scene
information. On the other hand, intensity ranges are more utilized in the two other
sector-based equalization methods, as can be seen in Figs. 2.1c and d

2.3 Local Histogram Equalization

In order to enhance the contrast of a color image and to extract details not deliver-
able by global histogram equalization, a local equalization method is developed and
reported in the remainder of this chapter. In brief, the proposed method consists of
three major steps: (i) to independently equalize image sectors or blocks, (ii) to reduce
intensity discontinuity along sector boundaries, and (iii) to aggregate an enhanced
image using a weighted-sum scheme.
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Fig. 2.1 Performance of global against local/sectorized histogram equalization: a original image,
b globally equalized image by a uniform target distribution, c canonical sectorized equalization
result, d proposed sectorized equalization result, e resulting histograms, blue: original a; cyan:
globally equalized image b; magenta: canonical sectorized equalization c; red: proposed sectorized
equalization d, to be discussed in Sect. 2.3

2.3.1 Sectorized Equalization

Given an image to be enhanced, the process starts first with its conversion from the
RGB space to the HSV space, where the intensity component is denoted as Vuv.
Four sectors are then generated. The center point (p, q) of dividing the sectors is
determined by randomly drawing a sample in the image. That is,
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Fig. 2.2 An intermediate
image showing independently
equalized sectors. Note inten-
sity differences along the
sector boundaries

p ∼ U (1, umax ), q ∼ U (1, vmax ), (2.7)

where umax , vmax are the width and height of the given image in pixels, respectively;
U is a uniform distribution; and ∼ stands for the sampling operation. The choice of
the center point is constrained so as not to produce a too-small or too-narrow sector.
In this work, the center is not allowed to lie within 10 % from the image edges. That
is,

0.1umax ≤ p ≤ 0.9umax , 0.1vmax ≤ q ≤ 0.9vmax . (2.8)

Four sectors that are formed using the point (p, q) as the center, indexed by
superscript s = 1, . . . , 4, are given by

S s
pq =

⎧⎪⎪⎨
⎪⎪⎩

I1:p,1:q
Ip+1:umax ,1:q
I1:p,q+1:vmax

Ip+1:umax ,q+1:vmax

. (2.9)

Each sector S s
pq is then equalized to the desired uniform distribution using the

procedure described in Sect. 2.2, giving equalized sectors as

E sd
pq = {S s

pq : S s
pq(ci ) = E sd

pq (c j )}. (2.10)

The result is depicted in Fig. 2.2, where it can be seen that for each individual
sector, the contrast is increased. However, it is also observed that along the sector
boundaries, intensity differences or discontinuities are noticeable and need to be
mitigated.

2.3.2 Mitigation of Sector Discontinuities

In order to reduce the difference of intensities along sector boundaries, an arithmetic
mean aggregation approach is adopted in order to combine the locally equalized
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Fig. 2.3 The Gaussian
weighting kernel to remove
boundary discontinuities cor-
responding to the sectors
shown in Fig. 2.2

sectors. In addition, enhancements in each sector should be retained as much as pos-
sible. Here, these requirements are satisfied by weighting the sectors with a Gaussian
kernel and then integrating with the original image.

Let a normalized one-dimensional Gaussian for each boundary be given by

Gb(δ, σ ) = exp

(
−δb2

2σ b2

)
, (2.11)

where superscript b ∈ {u, v} denotes if the Gaussian is for the height (v) or width (u)

for the image dimension, δ is the distance from the boundary along the associated
dimension, and σ is the Gaussian standard deviation. The overall Gaussian used to
remove the boundary discontinuities is obtained from an element-wise maximization
operation, that is,

Guv = max{Gu(δ, σ ), Gv(δ, σ )}. (2.12)

The resultant Gaussian weighting kernel is shown in Fig. 2.3.
The original image I and the complete image E , formed by aggregating the

independently equalized sectors E s
pq , are then fused to obtain a smoothed image

Ssm . For this, the Gaussian weights and an element-wise operator � defined by

Ssm = G � I + (I − G) � E , (2.13)

are used, where I is a matrix having dimension u × v for all elements equal to unity.
The smoothed image is depicted in Fig. 2.4.
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Fig. 2.4 The boundary
smoothed image is obtained by
fusing the equalized and orig-
inal images via the Gaussian
weighting kernel

2.3.3 Iterated Enhancement

The smoothed image in Fig. 2.4 is obtained from a randomly selected center point
(p, q). A further improvement can therefore be expected from deliberate determi-
nation of a proper center point. For the purpose of ensuring enhancement across all
possible cases of scene variations, a number of center points and sectors have to be
generated and their enhancement conducted iteratively using histogram equalization.
To this end, a collection of smoothed images is created. Moreover, in order to pro-
duce an enhanced image from the smoothed images, a strategy for their combination
using an information-based weighted-sum technique is adopted.

The quality of the smoothed intermediate image Ssm is taken as information
entropy. That is,

Ht = −
L∑

i=0

log(pi )pi , (2.14)

where subscript t stands for the iteration count, L = 255 is the maximum intensity,
pi is the probability of pixel that takes on the i th intensity. The values of pi are
obtained as normalized histogram elements hi .

In local and sectorized equalization, through the selection of a certain center point
to sector the original image as well as repeated calculation of the quality metric for,
say, τ iterations, the final output can be obtained by first normalizing the information
contents as

H̄t = Ht∑τ
t=1 Ht

, (2.15)

and then by combining this with a weighted-sum average of the intermediate resultant
images, yielding

Ī =
τ∑

t=1

H̄tSsm,t . (2.16)

The result is depicted in Fig. 2.5. It can be seen that intensity discontinues are
removed and contrast is increased in local sectors. This image then replaces the
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Fig. 2.5 Resultant image
obtained from fusion of
sectorized equalization and
smoothing

V-component in the HSV domain and is finally converted back to the RGB space as
a color image.

2.3.4 PSO-Based Parameter Optimization

In the above development and illustration, it is observed that effective results are
obtained by incorporating an iterative smoothing operation into the sectorized local
equalization approach. A nontrivial question can then be raised as to what should
be the proper sector that divides the image and how should smoothing weighting
be assigned. To this end, we solve these unknowns by the use of a multiobjective
optimization algorithm for which the computational effectiveness remains a require-
ment. For this, particle-swarm optimization (PSO) [5] is used as described in the
following.

The PSO algorithm can be viewed as a stochastic search method for solving
nondeterministic optimization problems. For example, in the problem at hand, the
sector center point (p, q) and the standard deviation σ of the smoothing Gaussian
are coded as particles:

x = [p1, q1, σ1, . . . , pτ , qτ , στ ]T , (2.17)

where each set of parameters or part of the particles {p, q, σ } gives one smoothed
image from the sectorized histogram equalization approach.

At the start of the algorithm, the particle positions are generated to cover the
solution space. These positions may be deterministically or randomly distributed
and the number of particles is predefined. In general, a small number reduces the
computational load but at the expense of extended iterations required to obtain the
optimum (but the optimal solution is not known a priori). The velocities vi

0 can also
be set randomly or simply assigned as zeros. A problem-dependent fitness function is
evaluated, and a fitness value is assigned to each particle. Here, the fitness function is
taken from the entropy of the image given in Eq. (2.14). For the set of fitness values,
the one with the highest value is taken as the global best gbest (for a maximization
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problem). This set of initial fitness values is denoted as the particle-best pi
best . The

velocity is then calculated using the random gain coefficients. The particle positions
are updated, and the whole procedure repeats. Finally, as the satisfaction of some
termination criteria , the global-best particle is reported as the optimal solution to
the problem.

The essence of the algorithm can be described by the following expression,

vi
k+1 = wvi

k + c1 ⊗ (gbest,k − xi
k) + c2 ⊗ (pi

best,k − xi
k)

xi
k+1 = xi

k + vk+1, (2.18)

where x is the particle position in the solution space, v is the velocity of the particle
motion assuming a unity time step, w is the velocity control coefficient, c1, c2 are
the gain control coefficients, gbest is the global-best position, pbest is the position of
a particular particle where the best fitness is obtained so far, operator ⊗ denotes the
external multiplication of scalars with velocities, subscript k is the iteration index,
and superscript i is the particle index.

For the local equalization in the contrast enhancement problem tackled in this
work, the optimization process is proposed in Algorithm 2.1 as follows:

Algorithm 2.1 PSO-tuned sector equalization
1: Input: Image I of size v, u
2: Define PSO parameters: generations nG, particles n P , iterations nS
3: Initialize: particles P , velocities V , inertia weight w
4: Initialize: group best Gbest , personal best Pbest
5: for generations g = 1 : nG do
6: for particles p = 1 : n P do
7: for iterations s = 1 : nS do
8: Get the sector center point from particle s
9: Partition input image into four sectors
10: Conduct uniform histogram equalization
11: Get the smoothing Gaussian standard deviation σ

12: Smooth sector boundaries to give smoothed image S
13: Calculate entropy H for smoothed image
14: end for
15: Normalize entropies from each smoothed image
16: Aggregate enhanced image Ep for particle p
17: Calculate entropy for each aggregated image
18: end for
19: Determine Gbest and Pbest from all particles
20: Update particle position in solution space
21: end for
22: Output: overall contrast enhanced image E
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Fig. 2.6 Test results 1: a original image, b result from global equalization, c result from CLAHE,
d result from proposed method, e plot of histograms, blue: original; cyan: globally equalized image;
magenta: CLAHE; red: proposed method

2.4 Experiments and Discussion

Experiments were conducted to verify the proposed local equalization approach. A
collection of 30 test images was taken under a variety of environment conditions
including indoor, outdoor and cases of insufficient illuminations. The objective of
enhancement includes recovering details in dark sectors that cannot be seen in the
original images. In addition to objective viewing, a further assessment metric is also
examined via the normalized entropy in Eq. (2.15). Here, the Shannon’s entropy is
adopted and calculated for all test images.
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Fig. 2.7 Test results 2: a original image, b result from global equalization, c result from CLAHE,
d result from proposed method, e plot of histograms, blue: original; cyan: globally equalized image;
magenta: CLAHE; red: proposed method

Each image is captured in the RGB color space and of size 320 × 240 in width
height dimensions. The PSO algorithm parameters are chosen as: ten PSO iterations,
ten particles, and ten sectors encoded in each particle.

A sample of test images and their enhanced results is shown below. In the tests,
the proposed method is compared to the canonical global histogram equalization
method. Furthermore, results from the contrast-limited adaptive histogram equaliza-
tion (CLAHE) method [26] in the Matlab implementation are also included.

As can be seen in Fig. 2.6, the performance of the CLAHE and the proposed
methods both exhibit better performance than the globally equalized image in terms
of contrast viewing. On the other hand, the performance of the CLAHE and the
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Fig. 2.8 Box plots of
image entropies, original
and enhanced. First column
original image, second column
global histogram equalization,
third column clipped adaptive
histogram equalization, fourth
to 13th columns: traces of
entropy over the iterations
using the proposed method
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local equalization method are comparable. Moreover, it is also observed subjectively
that the CLAHE result contains some degree of over-equalization, particularly in
the texture on the bottom-left corner of the image (Fig. 2.6c), where the CLAHE
method produces a darker appearance. A careful inspection of the relevant histograms
indicates that the one obtained from the proposed method is more uniform and thus
contains a higher information content according to the Shannon’s entropy measure.

Results from another test image are depicted in Fig. 2.7. Similar observations are
also obtained for this test case. In the region around the mid-bottom of the image
shown in Fig. 2.7c, the CLAHE approach also gives an over-equalization artefact
that does not appear in the locally equalized image. The advantage of the proposed
method over the CLAHE method is attributed to its randomly chosen sectorization
and optimal tuning from the PSO algorithm.

The overall results from testing the total 30 images in separate runs are summarized
in a box plot of information contents (entropies) shown in Fig. 2.8. Meritorious
performance of the proposed method in comparison with others is illustrated using
descriptive statistical quantities such as the median, quartiles and indications of
outliers. The first column in the left represents the entropy of the original image. The
second column denotes results from global histogram equalizations. It is seen that
the information content with these methods generally drops down in value because
part of the intensity range has not been fully utilized. This is indicated by the zero
entries in the histogram as shown in Figs. 2.6e and 2.7e. The third column is obtained
from results using the CLAHE approach where improvements in the information are
noticeable. From column 4 to column 13, the entropies are shown with respect to the
iterations performed during the proposed contrast enhancement process. It is evident
that the proposed method has made an overall improvement over other methods
implemented in the test. Furthermore, it is observed that the information content
increases along with the iterations. This further verifies the effectiveness of the local
equalization scheme proposed.
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2.5 Conclusion

An image contrast enhancement method based on the concept of local histogram
equalization is reported in this chapter. This method is useful for images with dark
and low clarity regions due to severe limitations in the illumination condition when
first captured. In this work, equalization is performed on a sectorized basis where
the image is divided by a chosen division point. Each image sector is enhanced by
matching to a uniformly-distributed target histogram. To reduce abrupt changes at
the sector boundaries, a Gaussian mask is used with a weighted sum being obtained
from information contents. The choice of the sector center and the mitigation of
boundary discontinuities are determined optimally by adopting a PSO algorithm.
The algorithm introduces iterative contrast enhancement, applicable to a vast variety
of real-life scenes. The optimized procedure has been verified in a set of test results
from real-world images by a comprehensive comparison with a number of contrast-
enhancement approaches available in the literature.
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Chapter 3
Hybrid BBO-DE Algorithms for Fuzzy
Entropy-Based Thresholding

Ilhem Boussaïd, Amitava Chatterjee, Patrick Siarry
and Mohamed Ahmed-Nacer

Abstract This chapter shows how a recently proposed stochastic optimization
algorithm, called biogeography-based optimization (BBO), can be efficiently
employed for development of three-level thresholding-based image segmentation.
This technique is utilized to determine suitable thresholds utilizing a fuzzy entropy-
based fitness function, which the optimization procedure attempts to maximize. The
chapter demonstrates how improved BBO-based strategies, employing hybridiza-
tions with differential evolution (DE) algorithms, can be employed to incorpo-
rate diversity in the basic BBO algorithm that can help the optimization algorithm
avoid getting trapped at local optima and seek the global optimum in a more effi-
cient manner. Several such hybrid BBO-DE algorithms have been utilized for this
optimum thresholding-based image segmentation procedure. A detailed implemen-
tation analysis for a popular set of well-known benchmark images has been carried
out to qualitatively and quantitatively demonstrate the utility of the proposed hybrid
BBO-DE optimization algorithm.
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3.1 Introduction

Image segmentation is the process of decomposing an image into a set of regions
which are visually distinct and uniform with respect to some feature. This distinguish-
ing feature may be colour or gray-level information that is used to create histograms,
or information about the pixels that indicate edges or boundaries or texture informa-
tion [10]. There is a wide range of image segmentation techniques available in the
literature [20, 24]. Among them, one approach of particular interest is the threshold-
ing approach, because of its efficiency in performance and its theoretical simplicity.
A comprehensive survey of image thresholding techniques is found in [26].

Thresholding techniques can be classified as bilevel and multilevel thresholding,
depending on number of image segments into which an original image is decom-
posed. In bilevel thresholding, each image pixel is assigned to one of two brightness
regions, object and background, according to whether its intensity (gray level or
colour) is greater than a specified threshold T or not. In multilevel thresholding, pixels
can be classified into many classes, not just foreground and background. Therefore,
more than one threshold should be determined to segment the image into certain
brightness regions which may correspond to one background and several objects.

Among the multitude of image thresholding techniques, entropy-based approaches
have drawn a lot of attention in recent times. The principle of entropy, a well-known
concept from information theory introduced by Shannon [6], is to use uncertainty as
a measure to describe the information contained in a source. The maximum infor-
mation is achieved when no a priori knowledge is available, in which case, it results
in maximum uncertainty.

Basically, entropy thresholding considers an image histogram as a probability
distribution, and determines an optimal threshold value that yields the maximum
entropy. More specifically, the best entropy thresholded image is the one that pre-
serves as much information as possible that is contained in the original unthresholded
image in terms of Shannon’s entropy [4].

The popular criterion for image thresholding based on maximum entropy principle
was first applied by Pun [22, 23] and then improved upon in [12]. The concept was
later generalized to evolve to Renyi’s entropy [25] and Tsallis’s entropy [33].

However, due to the possible multivalued levels of brightness in a gray-tone image,
or inherent vagueness and imprecision embedded in images, the result of image
thresholding is not always satisfactory. This uncertainty can be adequately analyzed
through the use of fuzzy set theory [1]. This theory, proposed by Zadeh [35], is a
mathematical tool to analyze vagueness and uncertainty inherent in making decisions.
It has proved its efficiency and usefulness in many applications, including image
processing problems. In fact, some fuzzy logic-based thresholding techniques have
been proposed in the literature, where fuzzy theory is employed to select an optimal
threshold by maximizing the fuzzy entropy [30, 32, 36].

Cheng et al. [5] introduced the concept of fuzzy c-partition into the maximum
entropy principle to select the threshold values for gray-level images. This method
was first applied for bilevel thresholding and then extended to multilevel thresholding.
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Tobias and Serra [32] proposed an approach for histogram thresholding which was not
based on the minimization of a threshold-dependent criterion function. The histogram
threshold was determined according to the similarity between gray levels, assessed
through implementation of a fuzzy measure.

In [36], Zhao et al. proposed a new technique for three-level thresholding by
exploiting the relationship between the fuzzy c-partition and the probability partition.
In their proposed technique, the maximum entropy principle was used to measure the
compatibility between fuzzy partition and probability partition. Zhao et al. used the
simplest function, which is monotonic in nature, to approximate the memberships of
the bright, dark and medium fuzzy sets (defined according to pixel intensity levels)
and derived a necessary condition of the entropy function arriving at a maximum.
Based on the idea of Zhao et al., Tao et al. [31] designed a new three-level thresh-
olding method for image segmentation. The authors defined a new concept of fuzzy
entropy through probability analysis, fuzzy partition and entropy theory. The image
is first partitioned into three parts, namely dark, gray and white, whose member func-
tions of fuzzy region are described by a Z-function, a Π -function and a S-function,
respectively. Later, Tao et al. [30] developed another system which examined the
performance of their previous approach for the segmentation of infrared objects.
This approach entailed the use of the ant colony optimization (ACO) method to
effectively obtain the optimal combination of the free parameters of the fuzzy sets.
The experimental results showed that the implementation of the proposed fuzzy
entropy principle by ACO had more highly effective search performance than the
genetic algorithm (GA) used in [31].

The present work aims at developing a new three-level thresholding algorithm,
called DBBO-Fuzzy, based on the hybridization of biogeography-based optimization
(BBO), a very recently proposed population based optimization technique, and the
differential evolution (DE) algorithm, a very powerful stochastic optimizer. The
approach presented in [31] is adopted as the basic support for this work.

A hybrid DE with BBO, namely DE/BBO, has been proposed in [11] where
a hybrid migration operator is defined. Another combination of BBO and DE is
proposed in [3], where the population is updated by applying, alternately from an
iteration of the algorithm to the next, the BBO and DE updating methods. The
proposed DBBO-Fuzzy algorithm incorporates the mutation procedure inherited
from DE algorithm to replace the existing mutation procedure in BBO. A selection
operator is also introduced in order to favor a given number of individuals for the next
generation. In addition, the algorithm incorporates the features of elitism in order to
prevent the best solutions from getting corrupted. The proposed algorithm is tested
on a popular set of well-known benchmark images, and experimental results show
that the proposed approach is reliable and efficient.

First of all, it is necessary to present some basic definitions. Section 3.2 provides
the preliminaries of the fuzzy set theory and fuzzy entropy formulation, where the
terminology used in [35] has been followed. The three-level thresholding problem is
then formulated and the assumptions made in this paper are introduced in Sect. 3.3.
Section 3.4 briefly describes the conventional BBO algorithm. The proposed algo-
rithm is presented in Sect. 3.4, and the effectiveness of the proposed algorithm,
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along with a comparison with BBO and DE-based algorithms, is demonstrated for a
set of benchmark images in Sect. 3.6. Finally, Sect. 3.7 presents our conclusions.

3.2 Fuzzy Set Theory

Fuzzy set theory is a generalization of classical set theory, designed to express uncer-
tainty and imprecision in available knowledge. The theory dates back to 1965, when
Lotfi Zadeh, a professor at Berkeley, published his seminal paper on the theory of
fuzzy sets and the associated logic, namely fuzzy logic [35].

Essentially, the fuzziness, a feature of imperfect information, results from the lack
of crisp distinction between the elements belonging and not belonging to a set.

Definition 3.1 Let X be a universe of discourse with a generic element denoted by
xi : X = {x1, x2, . . . , xn}.

A fuzzy set A in a space X is formally defined as:

A = {(xi , μA (xi )) |x ∈ X} (3.1)

in which μA : X → [0, 1] is the membership function or characteristic function. This
function assigns to each element xi in the set a membership grade μA (xi ) ∈ [0, 1]. As
opposed to classical sets, where each element must have either 0 as the membership
grade if the element is completely outside the set or 1 if the element is completely
in the set, the theory of fuzzy sets is based on the idea that one is uncertain about
whether the element is in or out of the set. Thus, the nearer the value of μA(xi ) to
unity, the higher the grade of membership of xi in A. The fuzzier case and the more
difficult one is when μA(xi ) = 0.5 [15].

The fuzzy set theory approach has found interesting applications in automatic
control, decision making, pattern recognition, psychology, economics, medical diag-
nosis, image processing and other fields. A number of aspects of digital image
processing have been treated by this theory, such as image quality assessment, edge
detection, image segmentation, etc.

3.2.1 Fuzzy Entropy

A very frequent measure of fuzziness is referred to as the fuzzy entropy inspired by
the Shannon entropy of random variables [27] and introduced for the first time by De
Luca and Termini [8]. The authors established the following four axioms for fuzzy
entropy:

Definition 3.2 Let E be a set-to-point map E : F(X) → [0, 1]. Hence E is a fuzzy
set defined on fuzzy sets and F(X) is the family of all fuzzy sets in X . E is an entropy
measure if it satisfies the four De Luca and Termini axioms:
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1. E (A) = 0 iff A ∈ X (A nonfuzzy).
2. E (A) = 1 (the maximum value) iff μA (x) = 0.5, ∀x ∈ X .
3. E (A) ≤ E (B) if A is less fuzzy than B, i.e., if μA (x) ≤ μB (x) when μB (x) ≤

0.5, and μA (x) ≥ μB (x) when μB (x) ≥ 0.5.
4. E (A) = E (Ac), where Ac is the complementary set of A.

A number of studies related to the measures of fuzzy entropy and their applications
have been conducted by Kaufmann [13], Bhandari and Pal [2], Kaufmann [14], Pal
and Pal [19], and Fan and Xie [9].

3.3 Problem Formulation

3.3.1 Model of an Image

A digital gray-tone image refers to a two-dimensional light intensity function defined
over a spatial coordinate system. Let G = {0, 1, . . . , L − 1} be the set of intensity
values, and D = {(x, y) : 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1} be the spatial coor-
dinates of the pixels for an MxN image. The digital image defines a mapping
I : D −→ G, where 0 ≤ I (x, y) ≤ L − 1 gives the intensity (brightness) of
the image at the spatial coordinates (x, y) ∈ D with L = 256 gray levels for an 8-bit
image [30, 31].

Let Dk = {(x, y)|I (x, y) = k, (x, y) ∈ D}, k ∈ G. The histogram of an image,
defined as H = {h0, h1, . . . , hL−1}, presents the frequency of occurrence of each
gray level in the image and is obtained directly from the observation of the considered
image. In view of this consideration, the kth gray level in the image is defined as
follows:

hk = nk

N ∗ M
, k = 0, 1, . . . , L − 1 (3.2)

where nk denotes the total number of pixels in Dk , and N ∗ M denotes the total
number of pixels in the image. It is clear that

0 ≤ hk ≤ 1 and
L−1∑
k=0

hk = 1 (3.3)

A probability partition (PP) of the image domain D is defined as

ΠL = {D0, D1, . . . , DL−1}

which is characterized by a probabilistic distribution [30, 31]:

pk ≡ P (Dk) = hk, k = 0, 1, . . . , L − 1, (3.4)
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Fig. 3.1 Membership function graph

Equation (3.4) presents the relationship between the histogram H and the prob-
ability partition Π , where pk is the probability measure of the occurrence of gray
level k.

3.3.2 Three-Level Thresholding

The segmentation problem is to determine the sets Dk ⊂ D (k = 0, . . . , L − 1)

whose union is the entire image D. Thus, the sets that constitute the segmentation
must satisfy:

L−1⋃
k=0

Dk = D and Di ∩ D j = φ (i �= j) (3.5)

where φ denotes an empty set. Ideally, a segmentation method finds those sets that
correspond to distinct anatomical structures or regions of interest in the image.

In the case of three-level thresholding of an image, the aim is to separate its
domain D into three parts, Ed , Em and Eb, where Ed is composed of ‘dark’ pixels
corresponding to the smaller gray levels, Eb is composed of those ‘bright’ pixels
corresponding to the larger gray levels, and Em is composed of pixels with medium
gray levels.

The problem is to find the unknown probabilistic fuzzy 3-partition of D, Π3 =
{Ed , Em, Eb}, which is characterized by the probability distributions [30, 31]:

pd = P(Ed), pm = P(Em), pb = P(Eb) (3.6)

The three fuzzy partitions Ed , Em and Eb are characterized by three membership
functions μd , μm and μb, respectively. The membership function μd of dark pixels
corresponds to a Z -function, the membership function μm of medium pixels is a
Π -function, and the membership function μb of bright pixels of the image is a
S-function [31] (see Fig. 3.1). Six free parameters {a1, b1, c1, a2, b2, c2} control the
shapes of the three membership functions and satisfy the conditions 0 < a1 ≤ b1 ≤
c1 ≤ a2 ≤ b2 ≤ c2 < 255 for an image with 256 gray levels.
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The three-level thresholding involves a determination of the optimal thresholds
T1 and T2 such that the classification of a pixel I (x, y) is achieved as follows:

Dkd = {(x, y) : I (x, y) ≤ T1, (x, y) ∈ Dk}
Dkm = {(x, y) : T1 < I (x, y) ≤ T2, (x, y) ∈ Dk}
Dkb = {(x, y) : I (x, y) > T2, (x, y) ∈ Dk} (3.7)

Once the parameters a1, b1, c1, a2, b2 and c2 are selected then Πk =
{Dkd , Dkm, Dkb} is the PP of Dk with the probabilistic distribution:

pkd = P (Dkd) = pk .pd|k
pkm = P (Dkm) = pk .pm|k
pkb = P (Dkb) = pk .pb|k (3.8)

In Eq. (3.8), pd|k is the conditional probability of a pixel that is classified into the
class “d” (dark) under the condition that the pixel belongs to Dk . Similarly, pm|k and
pb|k are the conditional probabilities of a pixel belonging to classes “m” (medium)
and “b” (bright), respectively.

Based on the complete probability formula, we therefore have:

pd =
255∑
k=0

pk .pd|k =
255∑
k=0

pk .μd (k)

pm =
255∑
k=0

pk .pm|k =
255∑
k=0

pk .μm (k)

pb =
255∑
k=0

= pk .pb|k =
255∑
k=0

pk .μb (k) (3.9)

Based on Eq. (3.9), it is clear that the three-level thresholding problem is reduced
to finding suitable membership functions μd (k), μm (k) and μb (k) of a pixel with
an arbitrary intensity level k. These membership functions represent the conditional
probability that a pixel is classified into the dark, medium and bright regions, respec-
tively, with respect to the variable k ∈ G (i.e., pd|k = μd (k), pm|k = μm (k) and
pb|k = μb (k)). It is obvious that μd (k) + μm (k) + μb (k) = 1, k = 0, 1, . . . , 255.
The three membership functions are shown in Eqs. (3.10)–(3.12):

μd(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 k ≤ a1

1 − (k−a1)
2

(c1−a1)∗(b1−a1)
a1 < k ≤ b1

(k−c1)
2

(c1−a1)∗(c1−b1)
b1 < k ≤ c1

0 k > c1

(3.10)
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μm(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 k ≤ a1
(k−a1)

2

(c1−a1)∗(b1−a1)
a1 < k ≤ b1

1 − (k−c1)
2

(c1−a1)∗(c1−b1)
b1 < k ≤ c1

1 c1 < k ≤ a2

1 − (k−a2)
2

(c2−a2)∗(b2−a2)
a2 < k ≤ b2

(k−c2)
2

(c2−a2)∗(c2−b2)
b2 < k ≤ c2

0 k > c2

(3.11)

μb(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 k ≤ a2
(k−a2)

2

(c2−a2)∗(b2−a2)
a2 < k ≤ b2

1 − (k−c2)
2

(c2−a2)∗(c2−b2)
b2 < k ≤ c2

1 k > c2

(3.12)

The free parameters of the three membership functions can be determined by
maximizing the fuzzy partition entropy [30, 31]. The total fuzzy entropy function of
partition Π3 is defined as:

H (a1, b1, c1, a2, b2, c2) = Hd + Hm + Hb (3.13)

where,

Hd = −
255∑
k=0

pk ∗ μd (k)

pd
∗ ln

(
pk ∗ μd (k)

pd

)

Hm = −
255∑
k=0

pk ∗ μm (k)

pm
∗ ln

(
pk ∗ μm (k)

pm

)

Hb = −
255∑
k=0

pk ∗ μb (k)

pb
∗ ln

(
pk ∗ μb (k)

pb

)
(3.14)

The best-selected set of {a1, b1, c1, a2, b2, c2} is the one that corresponds to max-
imum entropy H .

The optimal thresholds T1 and T2 that segment the image into three gray levels
are obtained as the intersections of the membership function curves, i.e.,

μd (T1) = μm (T1) = 0.5 (3.15)

μm (T2) = μb (T2) = 0.5 (3.16)

Based on Eqs. (3.10)–(3.12), it can be written [31]:
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T1 =
{

a1 + √
(c1 − a1) ∗ (b1 − a1) /2 if (a1 + c1) /2 ≤ b1 ≤ c1

c1 − √
(c1 − a1) ∗ (c1 − b1) /2 if a1 ≤ b1 < (a1 + c1) /2

(3.17)

T2 =
{

a2 + √
(c2 − a2) ∗ (b2 − a2) /2 if (a2 + c2) /2 ≤ b2 ≤ c2

c2 − √
(c2 − a2) ∗ (c2 − b2) /2 if a2 ≤ b2 < (a2 + c2) /2

(3.18)

As mentioned before, to find the optimal combination of all the fuzzy parameters,
we propose to use a new optimization technique based on the hybridization of BBO
and DE algorithms.

3.4 Biogeography-Based Optimization Algorithm (BBO)

The theory of biogeography grew out of the works of Wallace [34] and Darwin [7] in
the past and the works of McArthur and Wilson [17] more recently. Some of the key
questions that this branch of biology attempts to answer are: How do organisms reach
their current habitats? Do they always occupy their current distribution patterns?
Why does an ecosystem have a particular number of species? The patterns of the
distribution of the species across geographical areas can usually be explained through
a combination of historical factors, such as speciation, extinction and migration.

The biogeography-based optimization (BBO) algorithm, developed by Dan Simon
[28], is strongly influenced by the equilibrium theory of island biogeography [17].
The basic premise of this theory is that the rate of change in the number of species on
an island depends critically on the balance between the immigration of new species
onto the island and the emigration of species from the island.

The BBO algorithm operates upon a population of individuals called islands (or
habitats). Each habitat represents a possible solution for the problem at hand. The
fitness of each habitat is determined by its habitat suitability index (HSI), a metric
which determines the goodness of a candidate solution, and each habitat feature is
called a suitability index variable (SIV ). Good solutions may have large number of
species, which represent habitats with a lower HSI than the poor solutions.

As was mentioned before, the migration pattern is determined by the immigration
rate (λ) at which new species immigrate to the habitat, and the emigration rate (μ) at
which populations of established species emigrate. These parameters are functions
of the number of species in a habitat.

But how might immigration and emigration work on a habitat? We make two sets
of assumptions regarding these processes:

Immigration: The rate of immigration (λ) declines with the number of species
(S) present on the habitat. Maximum immigration rate (I ) occurs
when the habitat is empty and decreases as more species are added.
Once all the potential colonists are on the habitat, then one can write
S = Smax (the maximum number of species the habitat can support),
and the immigration rate must be equal to zero. Generally speaking,
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Fig. 3.2 The relationship
between the fitness of habitats
(number of species), emigra-
tion rate μ and immigration
rate λ

the immigration rate when there are S species in the habitat is given
by:

λS = I

(
1 − S

Smax

)
(3.19)

Emigration: The rate of emigration (μ) for a habitat increases with the number of
species (S). Maximum emigration rate (E) occurs when all possible
species are present on the habitat (i.e., when S = Smax ), and must be
zero when no species are present. Generally speaking, the emigration
rate when there are S species in the habitat is given by:

μS = E

(
S

Smax

)
(3.20)

Figure 3.2 graphically represents the relationships between the number of species,
emigration rate μ and immigration rate λ. Over a period of time, the counteracting
forces of emigration and immigration result in an equilibrium level of species rich-
ness. The equilibrium value S∗ is the point at which the rate of arrival of species λ is
exactly matched by the rate of emigration μ. We have assumed here that μ and λ vary
following linear relationships, but different mathematical models of biogeography
that include more complex variations have also been proposed [17].

We now consider the probability Ps that the habitat contains exactly S species.
The number of species changes from time t to time (t + Δt) as follows [28]:

Ps(t + Δt) = Ps(t)(1 − λsΔt − μsΔt) + Ps−1λs−1Δt + Ps+1μs+1Δt (3.21)
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This states that the number of species on the habitat in one time step is based
on the total number of current species on the habitat, the new immigrants and the
number of species that leave the habitat during this time period. We assume here
that Δt is small enough so that the probability of more than one immigration or
emigration can be ignored. In order to have S species at time (t + Δt), one of the
following conditions must hold:

• There were S species at time t , and no immigration or emigration occurred between
t and (t + Δt);

• One species immigrated onto a habitat already occupied by S − 1 species at time
t .

• One species emigrated from a habitat occupied by S + 1 species at
time t .

The limit of Eq. (3.21) as Δt → 0 is given by Eq. (3.22).

Ṗs =
⎧⎨
⎩

−(λs + μs)PS + μs+1 Ps+1 if S = 0
−(λs + μs)PS + λs−1 Ps−1 + μs+1 Ps+1 if 1 ≤ S ≤ Smax − 1
−(λs + μs)PS + λs−1 Ps−1 if S = Smax

(3.22)

Equation (3.22) can be arranged into a single matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎣

Ṗ0

Ṗ1
...
...

Ṗn

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− (λ0 + μ0) μ1 0 . . . 0

λ0 − (λ1 + μ1) μ2 . . .
...

...
. . .

. . .
. . .

...
...

. . . λn−2 − (λn−1 + μn−1) μn

0 . . . 0 λn−1 − (λn + μn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

P0
P1
...
...

Pn

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.23)

For notational brevity, we simply write n = Smax .
The BBO algorithm can be described overall by Algorithm 3.1. The two basic

operators which govern the working of BBO are the migration, described in
Algorithm 3.2, and the mutation, described in Algorithm 3.3, where rand(0, 1) is
a uniformly distributed random number in the interval [0, 1]; Xi j is the j th SIV of
the solution Xi .

The likelihood that a given solution S is expected a priori to exist as a solution for
the given problem is indicated by the species count probability Ps . In this context
it should be remarked that very high HSI solutions and very low HSI solutions are
both equally improbable. Medium HSI solutions are relatively probable. If a given
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solution has a low probability, then it is likely to mutate to some other solution.
Conversely, a solution with high probability is less likely to mutate. The mutation
rate m(S) is inversely proportional to the solution probability:

m(S) = mmax

(
1 − PS

Pmax

)
(3.24)

where mmax is a user-defined parameter, and Pmax = max
S

PS , S = 1, …, Smax .

Migration is used to modify existing habitats by mixing features within the
population. Mutation is used to enhance diversity of the population, thereby pre-
venting the search from stagnating. If a habitat S is selected to execute the mutation
operation, then a chosen variable (SI V ) is randomly modified based on its associated
probability PS . At the same time, the concept of elitism (i.e., copying some of the
fittest individuals for the next generation) is also applied.

Algorithm 3.1 Biogeography-based optimization (BBO)
1: Initialize the BBO parameters: Smax , E , I , mmax , Maxgen , neli t , …
2: Initialize the generation counter : g = 0
3: Create a random initial population Xi , i = 1, . . . , NP
4: Evaluate f (Xi ), i = 1, . . . , NP
5: for g = 1 to Maxgen do
6: Sort the population from best fit to least fit
7: for i = 1 to NP do
8: Map the HSI to the number of species
9: Calculate the immigration rate λi and the emigration rate μi
10: Modify the nonelite members of the population probabilistically with the migration

operator according to Algorithm 3.2
11: end for
12: for i = 1 to NP do
13: Mutate the non-elite members of the population with the mutation operator according

to Algorithm 3.3
14: end for
15: for i = 1 to NP do
16: Evaluate the new habitats in the population
17: Replace the habitats with their new versions
18: Apply elitism to preserve neli t best habitats
19: end for
20: end for

3.5 Description of the Proposed DBBO-Fuzzy Algorithm

Motivated by the exploration capabilities of the differential evolution (DE) algorithm
[18], a hybrid method combining the exploitation of BBO with the exploration of
DE is proposed in this paper. The purpose of this hybridization is to benefit from the
advantages of each algorithm and to compensate for each algorithm’s weaknesses.
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Algorithm 3.2 Migration
1: for i = 1 to NP do
2: Use λi to probabilistically decide whether to immigrate to Xi .
3: if rand(0, 1) < λi then
4: for j = 1 to N P do
5: Select the emigrating habitat X j with probability ∝ μ j
6: if rand(0, 1) < μ j then
7: Replace a randomly selected decision variable (SIV) of Xi with its corresponding

variable in X j
8: end if
9: end for
10: end if
11: end for

Algorithm 3.3 Mutation
1: for i = 1 to NP do
2: Compute the probability Pi using λi and μi
3: Use the probability Pi to compute the mutation rate mi
4: for j = 1 to D do
5: Select a variable (SIV) Xi j with probability ∝ Pi
6: if rand(0, 1) < mi then
7: Replace Xi j with a randomly generated variable from its range
8: end if
9: end for
10: end for

In order to find the global solution in a better manner than the BBO algorithm, the
proposed algorithm, named the DBBO-Fuzzy algorithm, replaces the BBO-based
mutation by a DE mutation. In addition, a selection operation is introduced in order
to favor a given number of individuals for the next generation.

The proposed algorithm can be summarized as follows:

1. Initialization The algorithm starts with an initial population of NP search variable
vectors (or habitats), where the problem dimension D is the number of fuzzy parame-
ters. For the three-level thresholding problem, six parameters {a1, b1, c1, a2, b2, c2}
are used (i.e., D = 6). Since the habitats are likely to get modified over different
generations, the following notation may be adopted for representing the i th habitat
of the population at the current generation g as:

Xi,g = (Xi,1,g, Xi,2,g, Xi, j,g, . . . , Xi,D,g) (3.25)

where i = 1, . . . , N P , j = 1, . . . , D and Xi, j is the j th SIV of the habitat Xi .
Each decision variable, Xi, j,g , is randomly initialized within its corresponding lower
bound (L j ) and upper bound (U j ), and it is intended to cover the entire search space
uniformly in the form:

Xi, j,0 = L j + rand(0, 1) × (U j − L j ) (3.26)
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2. Evaluation of the objective function: The objective function values of the habitats
are evaluated using the fuzzy entropy function given by Eq. (3.13). The objective
function has six parameters (SIV) a1, b1, c1, a2, b2, c2, which satisfy the conditions
0 < a1 ≤ b1 ≤ c1 ≤ a2 ≤ b2 ≤ c2 < 255.

3. Migration: The migration operator reproduces a new population vector Mi,g as
follows:

Mi, j,g =
{

Xk, j,g if rand(0, 1) < λi

Xi, j,g otherwise
(3.27)

where i = 1, 2, . . . , N P , j = 1, . . . , D and Xk, j,g is the j th decision variable of a
randomly selected habitat Xk,g . Xk,g is selected with a probability based on μk .

4. DE Mutation: The DBBO-Fuzzy incorporates the mutation procedure inherited
from DE algorithm [21, 29] to replace the existing mutation procedure in BBO.
The mutation is performed by calculating weighted vector differences between other
randomly selected habitats of the same population. A differentiation constant F is
used to control the amplification of the differential variation.
Next, five different mutation schemes are outlined, inspired by the suggestions of
Price et al. [21]. The general convention used to name the different DE schemes is
DE/x/y. Here DE stands for differential evolution, x represents a string denoting
the type of the vector to be perturbed (whether it is randomly selected or it is the
best vector in the population with respect to fitness value) and y is the number of
difference vectors considered for perturbation of x .
The mutation operation constructs, for each habitat Mi,g , a mutant habitat Vi,g

according to one of the following mutation schemes:

• DE/rand/1: This mutation scheme uses a randomly selected habitat Mr1,g , and
only one weighted difference vector F.(Mr2,g − Mr3,g) is used to perturb it.

Vi,g = Mr1,g + F.(Mr2,g − Mr3,g) (3.28)

• DE/current to best/1: Here the mutant habitat is created using any two ran-
domly selected habitats of the population as well as the best habitat in the current
generation.

Vi,g = Mi,g + F.(Mbest,g − Mi,g) + F.(Mr1,g − Mr2,g) (3.29)

• DE/best/1: Here the habitat to be perturbed is the best habitat of the current pop-
ulation and the perturbation is caused by using a single difference vector.

Vi,g = Mbest,g + F.(Mr1,g − Mr2,g) (3.30)
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• DE/rand/2: to create Vi,g for each i th habitat, a total of five other distinct habitats
(say the r1, r2, r3, r4, and r5th habitats) are chosen in a random manner from the
current population.

Vi,g = Mr1,g + F.(Mr2,g − Mr3,g) + F.(Mr4,g − Mr5,g) (3.31)

• DE/best/2: in this mutation scheme, the mutant habitat is formed by using two
difference vectors, as shown below:

Vi,g = Mbest,g + F.(Mr1,g − Mr2,g) + F.(Mr3,g − Mr4,g) (3.32)

where the indices r1, r2, r3, r4, r5 are randomly chosen over the interval [1, N P] and
should be mutually different from the running index i . F is a real constant scaling
factor within the range [0, 2], usually chosen to be less than 1. Mbest,g is the habitat
with best fitness value in the population in generation g.

5. Selection: The values of the objective function are calculated for the updated
habitats. The selection operation selects either a habitat Xi,g or its newly updated
habitat Vi,g to survive as a member for the next generation, according to the fitness
value. For the following generation g+1, new habitats Xi,g+1 are selected according
to the following selection rule:

Xi,g+1 =
{

Vi,g if f (Vi,g) < f (Xi,g)

Xi,g if f (Vi,g) > f (Xi,g)
(3.33)

The best new habitat replaces the worst corresponding one in the current population
only if Vi,g is better than Xi,g . This concept is similar to what happens in nature
for longer-living species, where the offspring and parents are alive concurrently and
have to compete.

6. Boundary constraints: If the variable value Xi, j,g violates the boundary con-
straints, the corresponding violating variable value is randomly generated within the
boundary constraints as follows:

Xi, j,g = L j + rand(0, 1) × (U j − L j )

7. Stopping criteria: If the stopping criteria are met, the vector represented by
the best habitat contains the optimal combination of fuzzy parameter values that
maximize the total fuzzy entropy function of partition Π3. Otherwise, the procedure
is repeated from step 3.
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Table 3.1 DBBO-fuzzy parameters

Parameters Notation Value

Population size (number of habitats) N P 20
Elitism parameter neli t 2
Maximum immigration rate I 1
Maximum emigration rate E 1
Number of generations Maxgen 20
Search domain for each parameter vector (SIV) G [0, 255]
Number of decision variables (fuzzy parameters) D 6
Constant of differentiation F 0.5
DE mutation scheme DE/rand/1

3.6 Experimental Settings and Results

3.6.1 Test Images

The performance of the proposed DBBO-Fuzzy algorithm is compared with those
of the basic BBO algorithm [28], named here as BBO-Fuzzy, and the performance
of DE-Fuzzy algorithm, which proceeds exactly as the original algorithm presented
in [21].

The performance of these competing three-level thresholding algorithms are tested
with a set of 12 benchmark images, each with 256 gray levels. These are commonly
known as Lena, Peppers, Cameraman, Airplane, Lake, Walking bridge, Mandrill,
Barbara, Boat, Elaine, GoldHill and Fingerprint. All the images are of size 512×512
pixels. The original images considered are shown in Fig. 3.3.

3.6.2 Test Design

In all experiments, the same parameter values are used for each of the three afore-
mentioned algorithms to make a fair comparison. A population of 20 individuals is
used; these are evolved during 20 generations. For each test image, ten independent
runs are carried out.

For the DE-Fuzzy algorithm, F = 0.5 and C R = 0.9 are chosen, as recommended
in [29]. For fair performance comparison, the same mutation scheme, DE/rand/1, is
adopted for both the DE-Fuzzy and the DBBO-Fuzzy algorithms. For the BBO-
Fuzzy algorithm, the same parameter settings as in [28] are used. In Table 3.1, the
parameter setup used in the experiments conducted is summarized.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(j) (k) (l)

(i)

Fig. 3.3 Original test images: a Lena, b Peppers, c Cameraman, d Airplane, e Lake, f Walking
bridge, g Mandrill, h Barbara, i Boat, j Elaine, k GoldHill, l Fingerprint
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3.6.3 Results and Discussions

The three-level thresholding algorithms are employed to determine the optimal
thresholds T1 and T2 that segment a given image into three gray levels while pre-
serving the original information as much as possible after creation of this partition.

The objective is to maximize the total fuzzy entropy H (b1, c1, a2, b2, c2), given
in Eq. (3.13), and then to find the “optimal” combination of all the fuzzy parameters
(a1, b1, c1, a2, b2, c2) that produce the maximization of fuzzy entropy. The higher
value of objective function results in better segmentation.

The results are also compared based on the uniformity factor, the most commonly
used measure to quantitatively judge the segmentation quality. This uniformity mea-
sure is defined as [16]:

u = 1 − 2 ∗ c ∗
∑c

j=0
∑

j∈R j

(
fi − μ j

)2

N ∗ ( fmax − fmin)2 (3.34)

where, c number of thresholds, R j j th segmented region, fi gray level of the pixel
i , μ j mean gray level of pixels in j th region, N total number of thresholds in the
given image, fmax maximum gray level of pixels in the given image, fminminimum
gray level of pixels in the given image

The value of this uniformity measure should be a value within the interval [0, 1].
The higher the value of u, better the quality of the thresholded image.

Table 3.2 shows the average objective values (i.e., total fuzzy entropy) achieved by
each algorithm for each image under test. The values in boldface describe the best-
performing algorithm among competing algorithms. It is observed from the obtained
results that the proposed DBBO-Fuzzy method obtains higher fuzzy entropy values
than both BBO-Fuzzy and DE-Fuzzy in all test images.

In order to determine whether the differences between the DBBO-Fuzzy algorithm
and the BBO-Fuzzy and DE-Fuzzy algorithms are statistically significant, a two-
tailed t-test was conducted with d f = 10 + 10 − 2 = 18 degrees of freedom at
α = 0.05 level of significance (i.e., at 95 % confidence level). The average objective
values and the standard deviations obtained by each algorithm over ten independent
runs were used to calculate the t-values. The absolute value of the computed t is
found to be larger than the critical value in all test images. This suggests that, with
95 % confidence, the difference between DBBO-Fuzzy algorithm and the other two
competing algorithms is statistically significant. Therefore, it is evident that the
hybridization of the BBO algorithm with DE has noticeable effect on the performance
of both algorithms. In these tests, 1 versus 2 means DBBO-Fuzzy algorithm versus
BBO-Fuzzy algorithm, and 1 versus 3 means DBBO-Fuzzy algorithm versus DE-
Fuzzy algorithm.

Table 3.3 shows the optimal thresholds obtained and the uniformity factor values
attained using DBBO-Fuzzy, BBO-Fuzzy and DE-Fuzzy methods. One can observe
from the results reported in Table 3.3 that the solution quality of DBBO-Fuzzy is
superior to BBO-Fuzzy and DE-Fuzzy in 11 out of 12 images. The only exception
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Table 3.3 Optimal threshold and uniformity factor values obtained by DBBO-fuzzy, BBO-fuzzy
and DE-fuzzy, where boldface indicates the best performing algorithm

Test images Optimal thresholds Uniformity measures
DBBO-fuzzy BBO-fuzzy DE-fuzzy DBBO-fuzzy BBO-fuzzy DE-fuzzy

Lena 98, 175 98, 169 83, 161 9.8391E−01 9.8246E−01 9.7213E−01
Peppers 85, 162 71, 205 63, 188 9.7720E−01 9.6821E−01 9.6464E−01
Cameraman 127, 207 132, 211 97, 198 9.6557E−01 9.5745E−01 9.6767E−01
Airplane 41, 166 46, 178 30, 153 9.8719E−01 9.8666E−01 9.8618E−01
Lake 96, 171 95, 165 64, 161 9.8451E−01 9.8420E−01 9.7778E−01
Walk Bridge 79, 154 35, 211 48, 180 9.7816E−01 9.6507E−01 9.6149E−01
Mandrill 74, 150 33, 143 51,167 9.6755E−01 9.6617E−01 9.6448E−01
Barbara 93, 170 93, 172 90, 170 9.8233E−01 9.7595E−01 9.7342E−01
Boat 107, 185 111, 220 75, 217 9.8327E−01 9.7904E−01 9.7566E−01
Elaine 98, 175 37, 208 44, 196 9.7517E−01 9.6634E−01 9.6595E−01
GoldHill 77, 152 52, 156 67, 181 9.8172E−01 9.7873E−01 9.7072E−01
Fingerprint 94, 172 41, 152 42, 179 9.7856E−01 9.6897E−01 9.5562E−01

Table 3.4 Representative optimal parameter sets (a1, b1, c1, a2, b2, c2)

Test images Optimal parameters
DBBO-fuzzy BBO-fuzzy DE-fuzzy

Lena 1, 137, 140, 140, 142, 256 5, 136, 138, 141, 144, 232 1, 115, 118, 119, 124, 256
Peppers 1, 119, 122, 122, 124, 256 5, 98, 99, 104, 246, 248 1, 83, 95, 107, 194, 256
Cameraman 1, 177, 180, 180, 194, 256 28, 174, 175, 179, 215, 235 82, 94, 116, 119, 211, 256
Airplane 1, 1, 136, 138, 138, 233 5, 7, 141, 147, 149, 250 1, 1, 100, 101, 132, 240
Lake 1, 135, 136, 136, 136, 256 7, 131, 131, 132, 138, 239 20, 77, 87, 95, 143, 256
Walk bridge 1, 111, 111, 111, 112, 256 1, 3, 116, 118, 245, 254 1, 26, 131, 141, 156, 256
Mandrill 1, 103, 105, 105, 106, 256 1 18 90 94 102 250 1, 40, 120, 128, 131, 256
Barbara 1, 131, 132, 133, 137, 256 2, 124, 137, 140, 146, 242 23, 115, 120, 134, 134, 256
Boat 1, 151, 151, 151, 161, 256 24, 143, 150, 151, 245, 253 1, 100, 113, 124, 256, 256
Elaine 1, 136, 140, 141, 143, 256 2, 5, 117, 118, 244, 246 1, 1, 149, 152, 187, 256
Goldhill 1, 108, 108, 109, 110, 256 20, 27, 119, 120, 121, 241 1, 89, 100, 121, 173, 256
Fingerprint 1, 132, 132, 135, 138, 256 4, 25, 105, 106, 114, 252 1, 1, 142, 145, 149, 256

is the Cameraman image, where DBBO-Fuzzy produces a slightly worse uniformity
factor than DE-Fuzzy. From this point of view also, the DBBO-Fuzzy algorithm
stands out as the clear winner.

Table 3.4 presents representative optimal parameter sets {a1, b1, c1, a2, b2, c2}
obtained by employing DBBO-Fuzzy, BBO-Fuzzy and DE-Fuzzy algorithms.

For a visual interpretation of the three level thresholding results, the thresholded
images obtained by applying DBBO-Fuzzy algorithm are presented in Fig. 3.4. After
determination of the thresholds for each image, the gray levels of all pixels in a given
region are changed to the average gray level of all the pixels belonging to that region.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3.4 The three-level thresholded images using DBBO-Fuzzy: a Lena, b Peppers, c Cameraman,
d Airplane, e Lake, f Walking bridge, g Mandrill, h Barbara, i Boat, j Elaine, k GoldHill, l Fingerprint
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(a) (b)

(c) (d)

Fig. 3.5 The three-level thresholded images of peppers: a original image; b thresholded image
using DBBO-Fuzzy; c thresholded image using BBO-Fuzzy; d thresholded image using DE-Fuzzy

Figures 3.5, 3.6 and 3.7 show some sample images under consideration and the
resultant segmented images obtained after employing the DBBO-Fuzzy, BBO-Fuzzy
and DE-Fuzzy algorithms. From the pictorial representations of the segmented
images, it is clear that DBBO-Fuzzy algorithm emerges as the best performer.

3.6.3.1 Effect of the Mutation Strategy

To make a detailed, in-depth study of the DBBO-Fuzzy algorithm, it was tested
employing different mutation schemes, described in Sect. 3.5, in order to investigate
the effects of the mutation strategy on its performance. The results are reported
in Table 3.5. To visualize the best performing scheme, the best values are given in
boldface.
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(a) (b)

(c) (d)

Fig. 3.6 The three-level thresholded images of boat: a original image; b thresholded image using
DBBO-fuzzy; c thresholded image using BBO-fuzzy; d thresholded image using DE-fuzzy

A closer look at Table 3.5 reveals that out of the 12 test images, the DBBO-Fuzzy
algorithm with DE/best/1 mutation strategy emerged as the best candidate algorithm,
since it could achieve the highest values of the fuzzy entropy in eight cases (i.e.,
Lena, Peppers, Cameraman, Airplane, Lake, Mandrill, Elaine and Fingerprint). The
DBBO-Fuzzy algorithm with DE/rand/2 proved to be the winner in only two cases
(i.e., Walking bridge and Boat). The DBBO-Fuzzy algorithm with DE/rand/1 and
DE/current-to-best/1 mutation schemes perform best in only one case each (i.e.,
GoldHill and Barbara, respectively).

In terms of the best uniformity measure value, DBBO-Fuzzy with DE/rand/1
produced the highest values in 6 test images out of 12 images (i.e., Lena, Cameraman,
Walking bridge, Mandrill, Boat and Fingerprint). For the remaining six images (i.e.,
Peppers, Airplane, Lake, Barbara, Elaine and GoldHill), the DBBO-Fuzzy algorithm
with DE/current-to-best/1 mutation scheme achieved the highest uniformity measure
values.
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(a) (b)

(c) (d)

Fig. 3.7 The three-level thresholded images of goldhill: a original image; b thresholded image
using DBBO-fuzzy; c thresholded image using BBO-fuzzy; d thresholded image using DE-fuzzy

All the variations of the DBBO-Fuzzy algorithm were compared to a default
DBBO-Fuzzy algorithm with DE/rand/1, and differences were reported as significant
if a two-tailed t-test produced a t-value larger than the critical value. The significance
level α is set at 0.05.

Significant differences exist when comparing DBBO-Fuzzy with DE/rand/1
mutation strategy with the variant using DE/current-to-best/1 scheme for two test
images (Airplane and Lake). The improvement in the mean objective function value
obtained when using DE/best/1 mutation strategy is more significant in the case of
Airplane image. For DBBO-Fuzzy with DE/rand/2 mutation, the test has provided a
statistically significant difference for the Lake image. In eight out of 12 cases, DBBO-
Fuzzy with DE/best/2 mutation proves to be significantly different compared to the
variant using DE/rand/1 mutation.

However, in general, it can be noted that the results using different mutation
schemes do not significantly affect the performance of the proposed algorithm.
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Fig. 3.8 Effect of varying the population size on the performance of DBBO-fuzzy: a Lena, b
Peppers, c Cameraman, d Airplane, e Lake, f Walking bridge

3.6.3.2 Effect of the Population Size

Simulations have also been carried out for different values of population size N P ,
and the performance of the DBBO-Fuzzy algorithm are shown for different variations
in N P in Fig. 3.8.

In general, it can be inferred that the DBBO-Fuzzy algorithm with a population
size N P = 20 outperforms the other variants, since it could achieve the highest
value of fuzzy entropy in 11 cases out of 12. Only in one case was DBBO-Fuzzy
with N P = 30 reveals to be the best in terms of fuzzy entropy value. With N P = 20,
the DBBO-Fuzzy variant could achieve the highest value of uniformity factor in eight
cases. On the other hand, with N P = 10, the DBBO-Fuzzy algorithm could achieve
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Fig. 3.8 (Cont) Effect of varying the population size on the performance of DBBO-fuzzy: g Man-
drill, h Barbara, i Boat, j Elaine, k GoldHill, l Fingerprint

the highest value of uniformity factor in two cases (Airplane and GoldHill) and in
one case each with N P = 50 (Cameraman) and N P = 30 (Elaine).

These results suggest that blindly increasing the population size may not have a
relevant positive effect on the performance of the DBBO-Fuzzy algorithm.

3.6.3.3 Effect of the Elitism Parameter

The performance of the proposed algorithm is also evaluated in detail by varying the
elitism parameter neli t . In general, one can observe from Fig. 3.9 that the average
objective function values tend to increase with the number of elites, although the
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Fig. 3.9 Effect of varying the elitism parameter on the performance of DBBO-fuzzy: a Lena, b
Peppers, c Cameraman, d Airplane, e Lake, f Walking bridge

uniformity measure does not follow the same trend in all test images. In nine cases
out of 12, DBBO-Fuzzy with neli t = 8 produced highest values of the fuzzy entropy.
Only in two cases, the DBBO-Fuzzy variant with neli t = 6 and in one case the
DBBO-Fuzzy variant with neli t = 4 achieved the highest values of fuzzy entropy.
On the other hand, DBBO-Fuzzy without elitism (neli t = 0) could never achieve the
highest value for fuzzy entropy but produced good uniformity factor values in three
cases out of 12 (i.e., Airplane, Mandrill and Boat).

Finally, an important general remark should be made here that if there is a con-
flicting choice between a higher fuzzy entropy value and a higher uniformity factor
value, higher priority should be given to the solution having higher uniformity factor,
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Fig. 3.9 (Cont) Effect of varying the elitism parameter on the performance of DBBO-fuzzy: g
Mandrill, h Barbara, i Boat, j Elaine, k GoldHill, l Fingerprint

as it quantitatively reflects the direct impact of the quality of the output segmented
image.

3.7 Conclusion

Image segmentation is a process of partitioning an image space into several
homogeneous regions. Thresholding is one of the most widely used techniques in
image segmentation because of its fast and easy application. However, it has been
proven that thresholding often fails to produce satisfactory segmentation results due
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to grayness and spatial ambiguity in images. The use of fuzzy set theory could be
recognized as an adequate mathematical tool that can be used to model the inherent
image vagueness. A new three-level thresholding algorithm based on the hybridiza-
tion of BBO and the DE algorithms, called the DBBO-Fuzzy algorithm, has been
described in this chapter. The DBBO-Fuzzy uses the DE mutation strategy to improve
the global search capability and escape from local optima. The experimental results
manifest that the proposed algorithm outperforms both BBO and DE algorithms and
achieves a high quality of the thresholded images.

The future work will mainly focus on employing a multiobjective approach
for such image segmentation problems. Instead of considering a single objective
function, a biobjective model could be adopted for the three-level thresholding
problem, in which one seeks to optimize simultaneously the total fuzzy entropy
and the uniformity factor.
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Chapter 4
A Genetic Programming Approach for Image
Segmentation

Hugo Alberto Perlin and Heitor Silvério Lopes

Abstract This work presents a methodology for using genetic programming (GP)
for image segmentation. The image segmentation process is seen as a classification
problem where some regions of an image are labeled as foreground (object of interest)
or background. GP uses a set of terminals and nonterminals, composed by algebraic
operations and convolution filters. A function fitness is defined as the difference
between the desired segmented image and that obtained by the application of the
mask evolved by GP. A penalty term is used to decrease the number of nodes of
the tree, minimally affecting the quality of solutions. The proposed approach was
applied to five sets of images, each one with different features and objects of interest.
Results show that GP was able to evolve solutions of high quality for the problem.
Thanks to the penalty term of the fitness function, the solutions found are simple
enough to be used and understood by a human user.

4.1 Introduction

The automatic recognition of objects in images is the extraction of visual information
directly from the environment they are in. Such a computation is an important task
in computer vision as well as in automatic decision-making.

A methodology for object recognition can contain several steps, including pre-
processing of the raw image, many different image processing algorithms and

H. A. Perlin (B)

Federal Institute of Education, Science and Technology of Paraná,
Campus Paranaguá, Paranaguá, Brazil
e-mail: hugo.perlin@ifpr.edu.br

H. S. Lopes
Federal University of Technology Paraná,
Campus Curitiba, Curitiba, Brazil
e-mail: hslopes@utfpr.edu.br

A. Chatterjee and P. Siarry (eds.), Computational Intelligence in Image Processing, 71
DOI: 10.1007/978-3-642-30621-1_4, © Springer-Verlag Berlin Heidelberg 2013



72 H. A. Perlin and H. S. Lopes

extraction of characteristic vectors. One of these steps can be the image segmen-
tation; that is, the process by which a digital image is partitioned into multiple sets
of pixels (also known as segments). Each segment is labeled in such a way as to have
a meaning to the user, for example, boundaries, curves, textures or objects [14].

Specifically for the recognition of objects in images, the image segmentation
process can have a very important role, for instance, segmenting the image into two
disjoint sets of pixels, labeled as background and object. This can be obtained by a
segmentation method trained to perform a classification of pixels into two classes, as
mentioned. From this point of view, the segmentation process can be interpreted as
a classification procedure. In other words, the segmentation process accepts as input
a digital image, and gives as output the pixels of this image classified as object and
background.

Genetic programming (GP) [8] is an evolutionary computation method that
searches for solutions for a problem in the form of tree-structured programs. Such
programs are built by using a set of terminals and a set of functions, and GP searches
the space of all possible combinations of terminals and functions to find those most
suitable for solving the problem at hand. GP has been applied to a wide range of
problems, including classification problems [2].

Since image segmentation can be viewed as a classification process, and GP can
provide interesting solutions for this type of problems, in this work we investigate
the use of GP for the segmentation of digital images, in such a way to detect a given
object of interest from the background.

This work is structured as follows. Section 4.2 presents the basic aspects of image
segmentation. GP is presented in Sect. 4.3. The methodology developed in this work
is shown in Sect. 4.4. The computational experiments and results are presented in
Sect. 4.5. Finally, Sect. 4.6 presents the conclusions and discusses future work.

4.2 Image Segmentation

There are many general-purpose algorithms for image segmentation, such as thresh-
olding, clustering, histogram-based, model-based, compression-based and neural
networks [14, 17]. The simplest method for image segmentation is the binary thresh-
old. It consists in classifying the pixels of an image into two classes: foreground
and background. This is accomplished by comparing the gray level of a pixel with
a threshold value (or several values, when the classification is multilevel). If the
gray level of a given pixel is above the threshold, it is classified as foreground, and
otherwise it is classified as background. After the segmentation, the resulting image
becomes binary with white pixels as foreground and black pixels as background [5].

The key issue of this simple segmentation method is how to select an appropriate
threshold level. For this purpose, there are several methods, such as the Otsu method
[12, 16] and the Kwon method [9]. The objective of these methods is to find a good
threshold level for a given purpose or class of images. Examples of the binarization
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(a) (b) (c) (d)

Fig. 4.1 a Original image, from [15] ; b Binary segmentation with threshold = 92 ; c Binary
segmentation with threshold = 127 ; d Binary segmentation with threshold = 201

Fig. 4.2 Example of a mask
operation: a is the original
image, b is the mask, and c is
the resulting segmented image

(a)

(b)

(c)

procedure with different thresholds are shown in Fig. 4.1, where one can observe the
influence of the threshold level on the final result.

Another way to accomplish binarization of an image is by means of a mask where
white pixels represent the object of interest and black pixels represent the background.
Such mask is created by means of supervised learning. Once the mask is obtained,
a logical operation is done between the mask and the original image (usually a
logical AND). The result of this operation is an image with white background and a
highlighted object. See an example of a mask operation in Fig. 4.2.

Image processing provides a large range of algebraic operations and convolution
filters that can be applied to modify images [7]. A segmentation mask can be defined
by the sequential application of these operations and filters. Therefore, the segmen-
tation process, by using a mask, can be viewed as the application of a program. Such
a program accepts an image as input, applies filters and operations in a predefined
sequence, and yields another image as output.

Not only are the elements of the mask important (operations and filters), but also
their internal parameters and the order of application are important for the final result.
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Depending on the set of filters and operations, and the order of their application, the
number of different possibilities grows exponentially. Consequently, it is necessary to
use an efficient method to search the space of possible masks for a given segmentation
problem.

4.3 Genetic Programming

GP is a method for the automatic evolution of programs, which, in turn are candidate
solutions for a given problem [8]. GP evolved from genetic algorithms (GAs) [6] and
share with them the same Darwinian principles. The key idea is the principle of natural
selection, where individuals that are better adapted to the environment have a larger
probability of surviving and generating descendants. In this case, individuals are the
candidate solutions for a problem, adaptability is a measure of quality of solutions,
and the environment is the problem instances to which solutions are tested.

Possible solutions for a problem are represented as programs in the form of trees.
The internal nodes of trees are functions (operators), and the leaf nodes are terminals
(inputs to the functions). Therefore, the evolving set of structures includes functions
and terminals, to be defined by the user.

The quality of solutions is evaluated by means of a fitness function. Since GP
employs supervised learning to train programs, this function is computed over a set
of instances of the problem. Each instance is composed by inputs and a desired output.
The inputs are applied to the program that, when executed, generates an output. This
output is compared with the desired output, and a error value is computed. The
summation of all errors over all training instances is a good measure of quality. It
tends to zero when the program is able to reproduce, as expected, the outputs for all
the given inputs.

During the evolutionary process, GP applies genetic operators over the population
of solutions so as to create new generations of solutions. The natural selection princi-
ple is present in the selection procedure, by which individuals with good fitness have
larger probability to be selected to be submitted to the reproduction and/or crossover
operators. The reproduction operator simply copies an individual from the current
to the next generation. The crossover operator cuts randomly selected branches into
two individuals and recombines these parts.

To apply GP to a real-world problem, five definitions are necessary, as follows:

1. the terminals set;
2. the nonterminals (functions) set;
3. a measure of fitness;
4. the value of the control parameters;
5. a stop criterion.

The terminals set includes the operands that will be used as input data to the func-
tions of the nonterminals sets. Both terminals and nonterminals must be carefully
chosen, since the final solution of the problem will be composed of those elements.
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If these sets do not contain all the necessary elements, GP will not be able to produce
good solutions. On the other hand, if those sets include a large number of unneces-
sary elements, GP will face a difficult challenge in selecting the most appropriate
ones. Therefore, the user has an important role in the definition of the terminals and
nonterminals set, usually based on his/her knowledge of the problem.

The definition of the terminals and nonterminals sets must satisfy two criteria:
closure and sufficiency. The first states that each function has to accept as input any
value or kind of data that can be generated by any combination of terminals of outputs
of functions. The latter states that the superset of terminals and nonterminals must
have all the elements needed for a satisfactory solution to the problem.

In the same way as all evolutionary computation methods, GP also has a number
of control parameters that the user is in charge of setting at each run. Amongst all
those parameters, two have the strongest impact on the final results: the population
size and the number of generations. Reaching a predefined number of generations is
the most usual stopping criterion, although a quality criterion is also used. A more
detailed description of GP is found in [8].

4.4 Methodology

In [1], GP was applied as a solution to the problem of object recognition. The method-
ology of this paper is similar, but here some different strategies were used to control
the GP tree solution. In that paper, the authors restricted the training phase to carefully
selected regions in the images, thereby introducing more difficulty in the process of
creating filters. In this work, any kind of restriction was used, i.e, the entire image is
used in the process of GP training.

For the image segmentation problem discussed in this work, the terminals set is
formed by the input image and 15 other images, all of them obtained directly from
the application of convolution filters on the original input image. Table 4.1 shows
the 16 terminals, their symbols and respective definitions.

The nonterminals set is composed of 27 algebraic operations and convolution
filters, all of them named here as operators. Attention should be paid to the fact that
these operators are not the same as the genetic operators. These nonterminals take as
arguments one or two images and produce another image. The set of nonterminals
is presented in Table 4.2.

By inspection, both terminals and nonterminals sets satisfy the required closure
criterion. Regarding the sufficiency criterion, the experiments later reported will
show their adequacy.

The measure of quality of a solution is given by Eq. (4.1), where M is the image
generated by GP, P is the standard mask that it attempts to find. To limit the interval
of the function to the range [0..1], a normalization is done, dividing by the largest
possible value that the function can achieve, in this case, Max = 255∗width∗height,
where width and height are the size of the images, and 255 is the number of gray
levels.
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Table 4.1 Terminals set used by the proposed GP

# Symbol Description

0 IM_0 Original image
1 IM_1 3 × 3 mean filter
2 IM_2 5 × 5 mean filter
3 IM_3 7 × 7 mean filter
4 IM_4 3 × 3 standard-deviation filter
5 IM_5 5 × 5 standard-deviation filter
6 IM_6 7 × 7 standard-deviation filter
7 IM_7 3 × 3 maximum filter
8 IM_8 5 × 5 maximum filter
9 IM_9 7 × 7 maximum filter
10 IM_10 3 × 3 minimum filter
11 IM_11 5 × 5 minimum filter
12 IM_12 7 × 7 minimum filter
13 IM_13 3 × 3 median filter
14 IM_14 5 × 5 median filter
15 IM_15 7 × 7 median filter

Di fx =
∑L

i=1
∑A

j=1 |Mi, j − Pi, j |
Max

. (4.1)

During the evolution of solutions by the GP, trees tend to grow in size (total num-
ber of nodes and/or depth). Consequently, an increasing complexity of solutions is
observed as generations increase. The increase in the complexity of trees is not neces-
sarily accompanied by an increase in the quality of solutions due to the proliferation
of introns. Introns are elements present in the trees (combinations of terminals and
nonterminals) that do not affect (or have an insignificant effect on) the quality of the
solution represented by the tree. However, since the final solution will be interpreted
by a human, it is desirable that a good solution be as simple as possible. This can
only be accomplished by enforcing the trees to be as small as possible, but, at the
same time, to be as good as possible. An efficient strategy that can do this job was
proposed by [2]. Equation (4.2) shows a penalty measure:

Penx = max Nodes − 0.5 ∗ nodesx − 0.5

max Nodes − 1
(4.2)

where maxNodes is the maximum number of nodes of a given solution (in our work
an empirical limit of 65 was used), and nodes is the number of nodes of the current
solution. This function gives values in the range [0.5..1.0]. The lower bound is
reached when the worst possible case occurs: number of nodes is 65. On the other
hand, the upper bound will be reached when the solution is as simple as a single node.

Therefore, the actual fitness function for a given individual x takes into account
both the quality of solution and the penalty due to the number of nodes. Equation (4.3)
shows the fitness function used in this work:
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Table 4.2 Function set (nonterminals) used by the proposed GP

# Operator Description

1 ADD(A,B) Add images A and B
2 SUB(A,B) Subtract image B from A
3 MUL(A,B) Multiply image A by B
4 DIV(A,B) Divide image A by B
5 MAX2(A,B) Maximum, pixel-by-pixel, of images A and B
6 MIN2(A,B) Minimum, pixel-by-pixel, of images A and B
7 ADDC(A) ADD a constant C to all pixels of image A
8 SUBC(A) Subtract a constant C from all pixels of image A
9 MULC(A) Multiply all pixels of image A by a constant C
10 DIVC(A) Divide all pixels of image A by a constant C
11 SQRT(A) Square root of image A
12 LOG(A) Natural logarithm of image A
13 MAX_3 × 3(A) 3 × 3 maximum filter of image A
14 MAX_5 × 5(A) 5 × 5 maximum filter of image A
15 MAX_7 × 7(A) 7 × 7 maximum filter of image A
16 MIN_3 × 3(A) 3 × 3 minimum filter of image A
17 MIN_5 × 5(A) 5 × 5 minimum filter of image A
18 MIN_7 × 7(A) 7 × 7 minimum filter of image A
19 MEDN_3 × 3(A) 3 × 3 median filter of image A
20 MEDN_5 × 5(A) 5 × 5 median filter of image A
21 MEDN_7 × 7(A) 7 × 7 median filter of image A
22 MED_3 × 3(A) 3 × 3 mean filter of image A
23 MED_5 × 5(A) 5 × 5 mean filter of image A
24 MED_7 × 7(A) 7 × 7 mean filter of image A
25 STDV_3 × 3(A) 3 × 3 standard-deviation filter of image A
26 STDV_5 × 5(A) 5 × 5 standard-deviation filter of image A
27 STDV_7 × 7(A) 7 × 7 standard-deviation filter of image A

f i tnessx = Di fx ∗ Penx (4.3)

The development of this work was based on public-domain software. For the GP
we used a modified version of Lilgp [13], version 1.1. For the image processing
algorithms, we used the Opencv library, version 2.0 [3].

4.4.1 Test Set

To evaluate GP as a tool for mask generation for image segmentation problems, five
sets of different images were used. Each set of images is composed of a number of
similar images. However, there are significant differences between the sets.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.3 Test set 1 (TS1) composed of four infrared images of people walking in a beach

Fig. 4.4 Test set 2 (TS2) composed of three synthetic images

The first test set (TS1) is composed of four infrared images formerly published
in [4]. The size of these images was 144 × 96 pixels. For this test set the intended
binary masks were created by using an image editor software, and the objective is
to segment images separating people from the background. Figure 4.3 shows the
images of this test set (images [a], [c], [e] and [g]) together with the corresponding
masks (images [b], [d], [f] and [h]).

The second test set (TS2) is composed of synthetic images created by the authors
specifically for this work. It is composed of three images of 128 × 128 pixels, as
shown in Fig. 4.4. As before, the corresponding mask for each image is presented
beside the image.

The third test set (TS3) is formed by three aerial images of a river, extracted
from Google maps.1 The river is the object of interest, and it is surrounded by
different types of terrain. The approximate location is at coordinates [−25.581156,
−48.49494]. Images of this test set were 128 × 128 pixels, and the desired masks
were constructed using image editor software. The objective is to highlight the river
from the background. Figure 4.5 shows the test set and the corresponding masks.

The fourth test set (TS4) is composed by three images of cars circulating on a
highway. These images had 128×96 pixels and were used by [11]. Figure 4.6 shows

1 http://maps.google.com/

http://maps.google.com/
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Fig. 4.5 Test set 3 (TS3) composed of three aerial images of a river

(a) (b) (c) (d) (g) (h)

Fig. 4.6 Test set 4 (TS4) composed of images of cars in a highway

Fig. 4.7 Test set 5 (TS5) composed of images of walking cows

the images and corresponding masks, where it is possible to observe that the objective
is to detect the cars from the background.

Finally, the last test set (TS5), shown in Fig. 4.7, is formed by four images of
the benchmark provided by [10]. These images show a cow walking in different
positions. These images have 150 × 100 pixels, and the objective of segmentation is
to detect the cow in each image.

4.5 Computational Experiments and Results

Several experiments were done to evaluate the performance of the proposed GP
method to find an appropriate sequence of filters capable of segmenting the images
of the test sets according to the expected masks. The test sets previously presented
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Table 4.3 Control
parameters of GP

Parameter Value

Population size 500
Number of generations 50
Initialization method Ramped half and half
Initial depth of trees [2..6]
Maximum depth of trees 10
Crossover probability 0.9
Reproduction probability 0.1

Table 4.4 Results of training for all test sets

Nodes Depth Fitness
avg. ± std.dev. avg. ± std.dev. avg. ± std.dev.

TS1 27.4333 ± 22.6619 7.5000 ± 2.9682 0.0368 ± 0.0169
TS2 24.9333 ± 10.5991 9.3000 ± 1.5120 0.0425 ± 0.0098
TS3 23.4666 ± 16.3596 8.7000 ± 2.1995 0.1407 ± 0.0411
TS4 26.4667 ± 18.8766 9.3333 ± 1.5829 0.1324 ± 0.0095
TS5 28.4333 ± 17.0368 9.1333 ± 2.0466 0.2607 ± 0.0254

were first used in a training section so as to obtain the desired mask. Later, other
images, different from those used for training, were used for testing the robustness
and generality of the solution found.

Since GP is a stochastic method, for all experiments a number of independent
runs were done with the same inputs but with different initial random seeds, and the
average results are presented. Experiments were run in a cluster of networked PCs
with quad-core processors.

The control parameters of GP used in all experiments are shown in Table 4.3. These
parameters, except those related to the size of the trees, are the default parameters
for GP defined by [8]. No effort was done to fine-tune these parameters.

To select individuals for the crossover operator, we used the stochastic tournament
selection method with 10 % of the population. For the reproduction operator, selection
was done by the roulette-wheel method.

4.5.1 Training

Training was done using the images shown before. For each test set all but one images
were used for training. The remaining image was used for testing (see next section).
For each image of each test set, 30 independent runs were done with different initial
random seeds. The results shown in Table 4.4 consider the average over all images of
each test set, over all runs. Specifically for this experiment, the penalty term of Eq.
(4.3) was set to 1, meaning that the size of the tree had no influence on the fitness of
the solution. Later, this issue will be revisited. Since the fitness value is a function of
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Fig. 4.8 Tree of best solution for TS1

the difference between the solution obtained by GP and that obtained by a handmade
mask, it is possible to verify that the proposed method achieved solutions of good
quality.

In Figs. 4.8, 4.9, 4.10, 4.11, 4.12 the best solutions found (amongst the 30 runs)
are shown for each test set.

4.5.2 Testing

By using the image filters evolved by the GP approach, one image of each test set
was used for testing. The image used for testing was not used for training. Results are
shown in Fig. 4.13, including the original image, the expected segmentation (using
the hand-made mask), and the actual image segmented by the application of the filter
evolved by GP.
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Fig. 4.9 Tree of best solution for TS2

4.5.3 Tree Size Control

The number of nodes of a tree evolved by GP has a direct relationship to the number
of filters and operations necessary to accomplish the segmentation of an image. It is
well-known that GP does not necessarily generate simple solutions [8]. It is possible
that some of the terminals and nonterminals of the tree are useless for the final
result. Such elements are known as introns. Although they may not affect the final
segmentation, they represent a waste of processing time. Also, it is desirable that the
evolved filter be understood by a human and, of course, understandability is inversely
proportional to the number of nodes.

In order to reduce the number of nodes of the trees evolved by GP, the penalty
measure shown in Eq. (4.2) was effectively used as part of the fitness function
[Eq. (4.3)].



4 A Genetic Programming Approach for Image Segmentation 83

Fig. 4.10 Tree of best solu-
tion for TS3
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In Table 4.5, results for the five test sets are shown. Values correspond to the
average and standard deviation of the number of nodes, tree depth and fitness value,
all referred to the best tree found by GP in 30 independent runs.

The average number of nodes of the solutions when using the fitness function
with the penalty term was significantly lower than when ignoring the size of the
trees. Although this method is very efficient for restricting the number of nodes of
evolved trees, when comparing the corresponding values of Tables 4.4 and 4.5 it is
possible to observe a decrement of quality between 5–20 %. Although the values of
fitness are still high in the second table, restricting the size of the trees led to solutions
of lower quality.

To facilitate the comparison of solutions with and without the penalty (restricting
the number of nodes), we used a Pareto plot, as shown in Fig. 4.14. In this plot, the
x axis is the complexity (number of nodes of the trees), and the y axis is the quality
(fitness value). Recall that the fitness value is the difference between the expected
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Fig. 4.11 Tree of best solution for TS4

segmentation and the one actually obtained, and therefore this is a minimization
problem. As a result, the theoretical best possible value would be fitness = 0 and the
number of nodes as close as possible to zero. In the Pareto plot the best solutions
are found close to the origin of the coordinate system. It can be observed in the plot
that the solutions found using the penalty term (restricting the number of nodes)
dominate the other solutions without restriction.

To show the efficiency of the penalty term for pruning the evolved trees, Figs.
4.15, 4.16, 4.17, 4.18, 4.19 show the best solutions found for each of the five test
sets, among 30 runs.

A direct comparison between Figs. 4.15, 4.16, 4.17, 4.18, 4.19 and Figs. 4.8, 4.9,
4.10, 4.11, 4.12 shows a large reduction in the complexity of the filters created by
GP, but still keeping about the same quality of solutions.

4.5.4 Frequency of Use of Nonterminals

A relatively large set of nonterminals were used for the experiments here described.
Such nonterminals were selected without any previous knowledge about their utility
for the problem. As a matter of fact, the search space has a direct relationship with
the size of the nonterminals set. Here we find a dilemma: if a large nonterminals set
is used, the search space increases and the efficiency of GP may not be satisfactory.
On the other hand, if a small set is used, the sufficiency criterion may not be satisfied.
As shown before, the use of the penalty term decreases the number of nodes of the
trees, at the expense of a small decrease in the quality of solutions. We investigated
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Fig. 4.12 Tree of best solu-
tion for TS5
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the frequency of nonterminals (functions) in the solutions evolved by GP, so as to
evaluate how parsimonious one can be regarding the nonterminals set.

The number of each nonterminal was counted during the whole evolution of the
solutions (all individuals in all generations). The average over 30 runs was computed
(25,000 fitness evaluations), and a frequency plot was constructed for all test sets.
Figure 4.20 shows the results for the experiments without the penalty term, and Fig.
4.21 shows the results for the experiments using the penalty term.

It is possible to observe in the frequency plots that the use of the penalty term
leads to a significant decrease in the frequency of use of nonterminals. Without the
use of the penalty term, the average number of nonterminals used during the whole
evolution (considering all test sets, all runs and all generations) was 36,788. On
the other hand, when we used the penalty term, the average number significantly
decreased to 11,053. If we analyze this fact together with the small decrease in
quality mentioned before, it is possible to infer that some nonterminals do not make
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Fig. 4.13 Test of the filters evolved by GP
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Table 4.5 Results obtained running GP with a penalty for increasing number of nodes

Nodes Depth Fitness
avg. ± std.dev. avg. ± std.dev. avg. ± std.dev.

TS1 3.9333 ± 1.0807 2.4667 ± 1.1666 0.0930 ± 0.0150
TS2 5.8000 ± 1.1567 3.5667 ± 0.9353 0.1005 ± 0.0193
TS3 6.0333 ± 1.3515 4.3667 ± 1.3515 0.1835 ± 0.0629
TS4 4.4667 ± 1.0743 2.4000 ± 1.0699 0.1865 ± 0.0120
TS5 7.1000 ± 2.1711 4.7667 ± 1.7749 0.3472 ± 0.0377

Fig. 4.14 Pareto plot for evaluating quality and complexity of solutions

important contributions to the quality of solutions and, possibly, they could be deleted
from the nonterminals set.

In fact, without the penalty term, there is no clear pattern of use of nonterminals.
However, using the penalty term, it is possible to observe a clear preference in using
some of the nonterminals over others, thus supporting the assertion of the previous
paragraph.

Fig. 4.15 Tree of the best
solution using the penalty
method, for TS1
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IM_8 IM_11
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Fig. 4.16 Tree of the best
solution using the penalty
method, for TS2
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Fig. 4.20 Frequency histogram of the nonterminals for runs not using the penalty term

Fig. 4.21 Frequency histogram of the nonterminals for runs using the penalty term

4.6 Conclusions

Image segmentation is a very important procedure in image processing and computer
vision. Although there are specialized methods for this purpose, that is, methods for
specific classes of objects of interest, it is important to investigate general-purpose
methods, such as GP, for this task. In particular, when the final objective is object
recognition in images, this is still an open problem.

The results of the experiments described in this work strongly suggest the utility
of GP for the image segmentation problem. After a training procedure, filters evolved
with GP were satisfactorily applied to segment similar images, giving results of good
quality.

We also verified that solutions found by GP tend to be complex, including many
terminals and nonterminals. From the point of view of image segmentation, this fact
may be interesting, since a human could hardly imagine the combined use of those
elements for a given segmentation. However, on the other hand, complex trees are
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quite difficult for a human to understand, and the corresponding filters, although
efficient, can be computationally expensive.

In this work we proposed the use of a penalty term in the fitness function that was
able to decrease significantly the complexity of the evolved trees, at the expense of a
small reduction in quality. This study suggests that the original set of nonterminals
could be significantly decreased, leading to better understanding of the evolved so-
lutions and improvement in processing time. Overall results were very promising for
all test sets, and future work will include the investigation of other sets of terminals
and nonterminals, as well as the application of this methodology to other classes of
images and problems, such as multilevel segmentation.
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Image Compression Algorithms



Chapter 5
Fuzzy Clustering-Based Vector Quantization
for Image Compression

George E. Tsekouras and Dimitrios M. Tsolakis

Abstract The implementation of fuzzy clustering-based vector quantization (VQ)
algorithms in image compression is related to three difficulties: (a) the dependence
on initialization, (b) the reduction of the computational cost, and (c) the quality of the
reconstructed image. In this paper, first we briefly review the existing fuzzy clustering
techniques used in VQ. Second, we present a novel algorithm that utilizes two stages
to deal with the aforementioned problems. In the first stage, we develop a specialized
objective function that incorporates the c-means and the fuzzy c-means in a uniform
fashion. This strategy provides a tradeoff between the speed and the efficiency of the
algorithm. The joint effect is the creation of hybrid clusters that possess crisp and
fuzzy areas. In the second stage, we use a utility measure to quantify the contributions
of the resulting clusters. Clusters with small utilities are relocated (i.e., migrated) to
fuzzy areas of large clusters so that they can increase their utility and obtain a better
local minimum. The algorithm is implemented in gray-scale image compression,
where its efficiency is tested and verified.

5.1 Introduction

Image compression deals with the reduction of the number of bits required to store
and transmit digital images. The methods developed so far to perform image com-
pression can be classified in two categories: lossless and lossy compression. Lossless
compression is an error-free procedure according to which, the pixel intensities of the
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original image are fully recovered in the compressed image representation. Although
the quality of the resulting image is excellent, this approach is computationally com-
plex and yields low compression rates. By contrast, lossy compression attempts to
compromise the quality of the recovered image in exchange for higher compression
rates. Thus, although the original image cannot be perfectly recovered, the compu-
tational demands are significantly reduced.

Lossy compression is based on the decomposition of the image into a number
of rectangular blocks that form a set of multidimensional training vectors X =
{x1, x2, ..., xN }, where N is the total number of training vectors and xk ∈ �p (1 ≤
k ≤ N ). A common procedure to perform image compression is vector quantization
(VQ). The basic undertaking of VQ is to set up a partition of X into a number of
disjoint classes (clusters). Each cluster is represented by its center element called
codeword. The set of codewords is referred to as the codebook and is symbolized as
V = {v1, v2, ..., vc}, where vi ∈ �p is the ith codeword. To obtain a partition of X,
VQ minimizes the following distortion measure:

D = 1

N

N∑
k=1

min
1≤i≤c

{
‖xk − vi‖2

}
(5.1)

The image is reconstructed by replacing each training vector by its closest code-
word.

A wide spectrum of methods has been developed to implement VQ in image
compression. Many of these approaches are based on adaptive VQ [14, 15], fast VQ
[8, 13, 18], reinforced learning [3] or special transformations [1, 10]. VQ methods
can be classified into two categories, namely crisp and fuzzy. Crisp VQ is based on
hard decision making processes and appears to be sensitive in codebook initialization.
The most representative algorithm of this category is the c-means. To improve the
behavior of c-means, Linde et al. [11] introduced the LBG algorithm, which begins
with the smallest codebook size and gradually increases it using a splitting procedure.
Later publications further improved the performance of LBG by embedding in the
learning process special functions called utility measures [2, 12]. The basic idea was
to detect codewords with small utilities and relocate them close to codewords with
large utilities.

On the other hand, fuzzy VQ (FVQ) is carried out in terms of fuzzy cluster analysis.
The most representative algorithm of this category is the fuzzy c-means [4, 5]. The
fuzzy c-means assumes that each training vector belongs to multiple clusters with
different participation degrees (i.e., membership degrees).Therefore, the learning is
a soft decision making process.

In this paper we develop a new FVQ algorithm that deals with certain problems
related to the implementation of fuzzy clustering in image compression such as
the speed, the effect of initialization and the quality of the reconstructed image.
The central idea is to combine the c-means and the fuzzy c-means in a uniform
fashion. In addition, to significantly reduce the dependence on initialization, we
equip the algorithm with a specialized codeword migration approach according to



5 Fuzzy Clustering-Based Vector Quantization for Image Compression 95

which, small clusters are migrated to locations close to large clusters so that their
individual contributions to the final partition increase.

The paper is organized as follows. Section 5.2 presents a brief review of the exist-
ing FVQ approaches. In Sect. 5.3 we analytically describe the proposed algorithm.
The simulation experiments are illustrated in Sect. 5.4. Finally, we present our con-
clusions in Sect. 5.5.

5.2 Fuzzy Clustering-Based Vector Quantization

The theoretical background of VQ assumes that each training vector is assigned to
one and only one codeword (i.e., clusters are disjoint sets). This is the main reason
for using VQ quantization in image compression, because it keeps the transmitted
information minimal. However, fuzzy c-means obtains a partition where each training
vector belongs to more than one cluster. Therefore, we are required to assign each
training vector to the codeword that has the maximum membership degree. Such a
crisp interpretation of the fuzzy c-means imposes serious problems in the quality of
the codebook and, eventually, in the quality of the reconstructed image [6].

A solution to this problem is to equip the learning process with a transition strategy
from fuzzy conditions, where each training vector is assigned to multiple codewords,
to crisp (or near-to-crisp) conditions, where each training vector is clearly assigned
to only one codeword. In [16] Tsao et al. introduced the fuzzy learning vector quan-
tization (FLVQ) algorithm, which gives a near-to-crisp partition by manipulating the
fuzziness parameter from large (fuzzy conditions) to small (crisp conditions) val-
ues. However, FLVQ is computationally demanding. In [5] Karayiannis and Bezdek
proved that FLVQ and fuzzy c-means can be integrated in a unique algorithmic plat-
form. In [7], Kong et al. proposed the concept of resolution in order to produce a class
of clustering algorithms that were generalizations of the c-means and fuzzy c-means.
But this method also resulted in high computational cost. In [6], Karayiannis and
Pai presented three improved versions of fuzzy c-means that were able to avoid the
crisp interpretation of the fuzzy c-means and reduce the computational cost as well.
Specifically, they developed special mechanisms to reduce the number of distance
calculations and to fully transfer all training vectors in crisp conditions. However, this
transition strategy is based on experimental observations, and it lacks mathematical
preciseness. In [17] the transition from fuzzy to crisp conditions was guided by ana-
lytical conditions that were extracted by the optimization of a specialized objective
function. The basic idea was to utilize the c-means and the fuzzy c-means under the
assumption that both of them contribute equally to the training process. However,
this strategy provides a restricted behaviour, since the number of degrees of freedom
is limited.

In [18, 19] the above objective function was generalized so that the weight of
significance between c-means and fuzzy c-means varies. This procedure provides the
ability to quantitatively measure the tradeoff between the speed and the efficiency of
the algorithm.
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5.3 The Proposed Algorithm

In this section, we develop an algorithmic scheme that starts with fuzzy conditions and
gradually is transferred in crisp conditions. The basic assumption is that codewords
far away from a specific training vector should not be affected by that vector. This
claim provides a reasonable conclusion according to which, if we are in the position
to control the number of codewords affected by a training vector, then we can reduce
this number and eventually reduce the number of distance calculations, meaning that
the computational cost is reduced, also. To achieve this target, we define the set Qk

as the collection of the codewords affected by xk . Using the concept of membership
degree, Qk is,

Qk = { vi ∈ V : uik > 0} (5.2)

where uik ∈ [0, 1] is the fuzzy membership degree of the kth training vector to
the ith cluster. Notice that the definition of Qk in Eq. (5.2) implies that a codeword
is affected by xk if and only if the corresponding membership degree is positive,
which is a natural and obvious hypothesis. When the vector xk is in fuzzy mode then
ℵ (Qk) > 1; otherwise it is in crisp mode and ℵ (Qk) = 1, where ℵ(·) stands for the
set cardinality.

Figure 5.1 depicts the transition from fuzzy to crisp mode for a specific training
vector.

As soon as the vector xk has been transferred in crisp mode we calculate its
membership degrees as

uik =
{

1, i f ||xk − vi ||2 = min
1≤ j≤c

{ ||xk − v j ||2
}

0, otherwise
(5.3)

In order to estimate the membership degrees, in the case where xk is in fuzzy
mode, we have to provide a mechanism according to which the codewords located
in distant points from xk must be removed from Qk . To deal with this problem, we
combine the c-means and the fuzzy c-means so that we are able to switch from fuzzy
to crisp conditions as follows,

J = θ

N∑
k=1

∑
i : vi ∈Qk

uik ‖xk − vi‖2 + (1 − θ)

N∑
k=1

∑
i : vi ∈Qk

(uik)
2 ‖xk − vi‖2 (5.4)

Thus, in each iteration, we minimize the function J under the next constraint,

∑
i : vi ∈Qk

uik = 1, ∀k (5.5)

The parameter θ determines the relative influence of c-means and fuzzy c-means.
If θ takes a small value then fuzzy conditions govern the VQ design, while large
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xk

(a) (b) (c)

Codeword Training vector

Fig. 5.1 Transition from fuzzy to crisp mode for the training vector xk : a ℵ (Qk) = 5, b ℵ (Qk) = 2,
and c ℵ (Qk) = 1

values of θ force many training vectors to be transferred in crisp mode. In this paper
we select θ ∈ [0.3, 0.7]. Notice that throughout the VQ design the parameter θ

remains constant. Taking the Lagrange multipliers, the membership degrees that
solve the above optimization problem are calculated as

uik = 2 + (ℵ(Qk) − 2) θ

2(1 − θ)

1
∑

j : v j ∈ Qk

( ‖xk−vi ‖‖xk−v j‖
)2 − θ

2(1 − θ)
(5.6)

while if vi /∈ Qk then uik = 0. In view of Eq. (5.6), uik can be negative or zero.
Setting uik ≤ 0 we obtain

‖xk − vi‖2 ≥ 2 + (ℵ(Qk) − 2)θ

θ

1
∑

j : v j ∈Qk

(
1‖xk−v j‖

)2 (5.7)

where vi ∈ Qk . It thus appears that whenever the condition (5.7) holds, xk appears
negative or zero membership degree with respect to the codeword vi . In this case we
set uik = 0 and remove the vi from Qk . Therefore, in the tth iteration, the set Qk is
updated as,

Q(t)
k =

{
vi ∈ Q(t−1)

k : uik > 0
}

(5.8)

However, if we set all negative membership degrees equal to zero then the condi-
tion in Eq. (5.5) is not satisfied. To solve this problem we normalize the membership
degrees as indicated next,

ũik = uik∑
j : v j ∈Qk

u jk
,∀ vi ∈ Qk (5.9)

The codewords that minimize J are estimated by setting the partial derivatives of
J equal to zero and solving for the codeword vi ,
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vi =
∑

k: vi ∈Qk

[
θ ũik + (1 − θ) (ũik)

2
]

xk∑
k: vi ∈Qk

[
θ ũik + (1 − θ) (ũik)2

] (5.10)

According to the analysis so far, a specific cluster includes crisp and fuzzy areas.
Initially, the cluster’s area is fuzzy and as the learning process proceeds the crisp
area gradually expands from inside to outside. To quantitatively describe these two
potentially different cases we define the crisp area of the ith cluster as

C Ai = {xk ∈ X : vi ∈ Qk and ℵ (Qk) = 1} (5.11)

and the respective fuzzy area as

F Ai = {xk ∈ X : vi ∈ Qk and ℵ (Qk) > 1} (5.12)

Although the utilization of the fuzzy c-means ensures to some degree that the
algorithm is not too sensitive to initialization, our intention is to enhance the learning
performance with a codeword migration process. Small clusters contribute less, while
large clusters contribute most. To quantify these contributions we use the fuzzy partial
distortion for each cluster,

Di =
N∑

k=1

ũik ‖xk − vi‖2 (5.13)

Notice that in Eq. (5.13) we account for all training vectors, since those that are
assigned zero membership degrees with respect to vi do not influence the final result.
Then, we employ the concept of utility measure developed by Patane and Russo
in [12],

Ui = Di∑c
j=1 D j

(5.14)

As stated in [12], an optimal partition corresponds to the situation where all
utilities are close to unity. Our scope is to detect clusters with low utilities and then
migrate the respective codewords to positions close to clusters with large utilities.
The criterion to select a small cluster is: Ui ≤ γ , where γ ∈ (0, 1). We have
experimentally found that a trustworthy choice is γ = 0.5. In each iteration, we
migrate all codewords that satisfy the above inequality. Relationally, the criterion to
detect a big cluster is: Ui > 1. Then, in each iteration, we randomly select a big
cluster that satisfies the previous condition. We denote the small cluster as Cs and
its codeword as vs . The large cluster at the neighborhood of which the vs will be
relocated is symbolized as Cl and its codeword as vl .

The training vectors assigned to Cs before the migration must change their sta-
tus after the migration. We distinguish two cases: (a) the Cs does not contain any
crisp area, and (b) the Cs does contain a crisp area. Considering the first case, every
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training vector that belongs to Cs also belongs to at least one of the neighboring
clusters, which implies that its quantization procedure will be normally continued
after the migration. Therefore, we just remove the vs from the sets Qk for all xk ∈ Cs

by setting Qk = Qk − {vs}. As far as the neighboring codewords are concerned,
we leave their status unchanged. In the second case, we note that for the training
samples in the set F As we simply perform the previously stated procedure. Con-
trary to the first case, the training samples that belong to C As are assigned only
to vs and we have to ensure that their quantization is established after the migra-
tion. To deal with this task, we detect the training vector xs0 that satisfies the next
condition,

∥∥xs0 − vs
∥∥2 = arg min

{
‖xk − vs‖2 : xk ∈ F As

}
(5.15)

We then change the status for all vectors xk ∈ C As as follows:

Qk = {
vi : vi ∈ Qs0

, ∀ xk ∈ C As
}

(5.16)

We turn our discussion to study the steps needed to relocate the codeword vs in
the new position. To minimize the influence of this movement, the crisp areas of the
neighboring clusters to Cl must not change, while the respective fuzzy areas must
be affected as little as possible. In addition, the new position of vs must be located
to some distant point (not too far and not too close) from vl , so that they will not
block each other. Upon the assumption that a big cluster has a considerable crisp area
(a fact that is implied by the learning process), we migrate the vs to the position of a
random training vector that belongs to F Al . We then change the status of all samples
that belong to Cl as Qk = Qk

⋃ { vs} ∀ xk ∈ Cl . Notice that we do not affect
the crisp areas of the neighboring clusters. Therefore, in the worst case scenario, the
neighboring clusters are forced to compete with vs and vl for the samples that they
have in common.

The question that has to be answered is when the migration shall be confirmed.
Based on the analysis so far, the clusters that belong to the old neighborhood of the
small cluster can only increase their size, and eventually they do not play any role
in confirmation decisions. The clusters close to Cl are not significantly influenced,
because the migration focuses on samples that belong to the Cl only. Therefore,
taking into account the need for a fast scheme, we decide to confirm the migration
when both the updated utilities Ul and Us are greater than γ . To accomplish this, we
run the algorithm just once using all xk ∈ Cl as the training set and the set {vs, vl}
as the codebook. A major constraint is that a small cluster can be migrated only
one time throughout the implementation of algorithm, while a big cluster can be
taken into account only once within a specific iteration. Finally, the implementation
of the migration process is based on relocating in parallel all the small clusters. To
summarize, the proposed algorithm is described next.



100 G. E. Tsekouras and D. M. Tsolakis

The Proposed Algorithm

Step 1. Randomly initialize the codebook V = {v1, v2, ..., vc} and select values
for θ and γ . Set Qk = {v1, v2, ..., vc} ∀ k

Step 2. Calculate the membership degrees using Eq. (5.6) if the training vector is
in fuzzy mode; otherwise use Eq. (5.3).

Step 3. Update the codewords as indicated in Eq. (5.10).
Step 4. Apply the migration process for all small clusters.
Step 5. If the distortion in Eq. (5.1) does not change significantly go to step 6; else

go to step 2.
Step 6. Put all training vectors in crisp mode and run the algorithm using Eq. (5.3) to

determine the membership degrees and Eq. (5.10) to update the codewords
until the distortion is stabilized.

Notice that in step 6 we run the algorithm in crisp conditions for all training
vectors. It was experimentally found that this choice guides the learning process to
avoid undesirable local minima.

5.4 Experimental Study

To test the efficiency of the proposed method we compared it with four different
algorithms, namely the LBG, the fuzzy learning vector quantization (FLVQ) [16], the
fuzzy vector quantization (FVQ) developed in [6], and the improved fuzzy learning
vector quantization (IFLVQ) [19].

The experimental data consisted of the well-known Lena and Airplane gray-scale
images of size 512 × 512 pixels, which are shown in Fig. 5.2.

For each simulation we run all algorithms using the same initial conditions for
each codebook size and for each image. We used ten different initializations for each
codebook size and for each image. To carry out the experiments, each image was
divided in 4 × 4 blocks, resulting in 16384 training vectors in the 16-dimensional
feature space. The performances of the algorithms were evaluated in terms of the
distortion measure given in Eq. (5.1) and the peak signal-to-noise ratio (PSNR),

PSNR = 10 log10

⎛
⎝(

5122 2552
) /

512∑
i=1

512∑
j=1

(Ii j − Ĩi j )
2

⎞
⎠ (5.17)

where 255 is the peak gray-scale signal value, Ii j denotes the pixels of the original
image and Ĩi j the pixels of the reconstructed image. To assess the impact of parameter
θ , we ran all experimental cases for θ = 0.3, θ = 0.5, and θ = 0.7.

The first experiment concerns the resulting distortion measure.
Table 5.1 depicts the mean values of the distortion measures for the two images

and various codebook sizes. Notice that the distortion mean values achieved by
different values of θ are all very close to each other in every experimental case. This
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Fig. 5.2 Test images, Lena and Airplane

Table 5.1 Distortion mean values for different codebook sizes

Method Airplane Lena
c=128 c=256 c=512 c=128 c=256 c=512

LBG 1563.04 1381..85 1273.27 1162.49 1014.63 943.49
FLVQ 1212.51 1286.90 796.92 1093.41 959.24 878.79
FVQ 1200.98 1040.57 894.52 758.47 642.31 562.82
IFLVQ 1231.56 947.06 724.75 809.27 622.23 483.11
Proposed (θ=0.3) 1159.30 922.06 712.26 733.53 578.49 463.48
Proposed (θ=0.5) 1155.39 924.00 712.79 732.15 579.93 464.08
Proposed (θ=0.7) 1157.16 923.88 715.95 732.28 577.38 465.12

Table 5.2 PSNR mean values (in dB) using various codebook sizes

Method Airplane Lena
c=128 c=256 c=512 c=128 c=256 c=512

LBG 28.2362 28.7655 29.1215 29.5300 30.1113 30.4241
FLVQ 28.3537 29.0724 29.4241 29.7794 30.3485 30.7276
FVQ 29.3721 29.9941 30.6498 31.3654 32.0859 32.6581
IFLVQ 29.2632 30.4022 31.5619 31.0843 32.2231 33.3195
Proposed (θ=0.3) 29.5249 30.5182 31.6364 31.5099 32.5391 33.4992
Proposed (θ=0.5) 29.5399 30.5091 31.6341 31.5181 32.5284 33.4937
Proposed (θ=0.7) 29.5331 30.5097 31.6142 31.5174 32.5475 33.4842

observation directly implies a nonsensitive behavior of the algorithm as far as the
selection of the parameter θ is concerned. In addition, in all cases, our algorithm
obtains the smallest distortion value.

The second experiment compares the five algorithms in terms of the PSNR values.
We generated codebooks of sizes c = 2qb (qb = 7, 8, 9). Since each feature vector
represents a block of 16 pixels, the resulting compression rate was equal to qb/16
bits per pixel (bpp). Table 5.2 summarizes the mean PSNR values obtained in this
experiment. The results reported in this table are highly convincing, since in all cases
the proposed method outperformed the others.
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Fig. 5.3 Computational time
in seconds per iteration as a
function of the codebook size
for the Lena image
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In the third experiment, we quantified the computational demands. We used the
Lena image to generate codebooks of sizes c = 2qb(qb = 5, 6, ..., 11) and mea-
sured the time needed by the CPU in seconds per iteration. We ran all algorithms
using a computer with a dual-core CPU at 2.13 GHz and Matlab software.

The results are illustrated in Fig. 5.3. Notice that the FLVQ exhibits an exponential
growth of the computational time, while, as expected, the LBG obtains the fastest
performance. On the other hand the FVQ, the IFLVQ and the proposed algorithm
maintain similar computational time.

The fourth experiment analyzes the cluster utility measures obtained by the FLVQ,
the FVQ, the IFLVQ and the proposed algorithm. We ran the experiment for the Lena
image and for a codebook of size c=256.

Figure 5.4 displays the utility distributions obtained by the FLVQ, the FVQ, the
IFLVQ and the proposed method (θ = 0.5). This figure clearly indicates the su-
periority of our method, since a large percentage of clusters maintain their utilities
close to unity. Notice that the distribution obtained by the FLVQ shows the largest
variance, allowing clusters with utilities greater than 3, while the largest amount of
clusters are assigned utilities much less than unity (close to zero). Although IFLVQ
and the FVQ managed to reduce this variance, they created a large number of clusters
that are assigned very small utilities, something that is not desirable.

Finally, Table 5.3 shows a comparison between our algorithm and other methods
existing in the literature. To perform the comparison, we used the Lena image because
it is the most-used testing image. As far as this table indicates, the proposed algorithm
obtains the best results in all cases.
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Fig. 5.4 Utility measure distributions obtained by the FLVQ, IFLVQ, FVQ and the proposed
algorithm

Table 5.3 Literature comparison results

Method c=256 c=512

Modified c-Means [9] 31.920 33.090
Enhanced LBG [12] 31.940 33.140
Adaptive Incremental LBG [14] 32.013 33.222
Proposed (θ = 0.5) 32.528 33.494

5.5 Conclusions

We have developed a FVQ algorithm that attempts to resolve certain problems related
to the implementation of fuzzy clustering in image compression. These problems are
summarized as: (a) the computational complexity, (b) the quality of the reconstructed
image, and (c) the dependence on initialization. To deal with the first two problems,
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we propose to minimize an objective function that combines the merits of c-means
and fuzzy c-means as well. The minimization of this function is controlled by spe-
cial mechanisms that reduce the number of codewords affected by a specific training
vector. The result is the creation of clusters that include crisp and fuzzy areas. To this
end, the algorithm manages to reduce the computational demands and to avoid the
crisp interpretation of the fuzzy c-means. The later has a straightforward influence
on the quality of the reconstructed image. The third problem is resolved by utilizing
a codeword migration strategy that is based on a cluster utility measure. Specifically,
we detect clusters with small utilities and relocate the corresponding codewords to
the fuzzy areas of big clusters. This strategy enhances the competition between clus-
ters yielding better local minima. Finally, the efficiency of the algorithm is verified
through a number of simulation experiments.
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Chapter 6
Layers Image Compression and Reconstruction
by Fuzzy Transforms

Ferdinando Di Martino and Salvatore Sessa

Abstract Recently we proved that fuzzy transforms (F-transforms) are useful
in coding/decoding images, showing that the resulting peak-signal-to-noise-ratio
(PSNR) is better than the one obtained using fuzzy relation equations and compara-
ble with that obtained using the JPEG method. Recently some authors have explored
a new image compression/reconstruction technique: the range interval [0,1] is par-
titioned in a finite number of subintervals of equal width in such a way that each
subinterval corresponds to a image-layer of pixels. Each image-layer is coded using
the direct F-transform, and afterwards all the inverse F-transforms are put together
to reconstruct the whole initial image. We modify slightly this process: the pixels of
the original image are normalized [15] with respect to the length of the gray scale,
and thus are seen as a fuzzy matrix R, which we divide into (possibly square) sub-
matrices RB , called blocks. Hence we divide [0,1] into subintervals by adopting the
quantile method, so that each subinterval contains the same number of normalized
pixels of every block RB , then we apply the F-transforms to each block-layer. In
terms of quality of the reconstructed image, our method is better than that one based
on the standard F-transforms.

6.1 Introduction

A direct fuzzy transform (F-transform) [20, 23, 24, 32] is an operator which trans-
forms a continuous function into a n-dimensional vector. An inverse F-transform
converts an n-dimensional vector into a continuous function which approximates the
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original function up to a small arbitrary quantity ε. The F-transforms have been used
in literature, especially in data analysis [8, 10, 22, 25–27, 33] and image analysis
[5–7, 9, 11, 22, 24, 28–31]. The F-transforms are also useful for coding/decoding
images; indeed, we have obtained the best results with respect to fuzzy relation
equations [1, 2, 4, 12–14, 16–21] and JPEG compression method [34].

In [30], the authors investigate properties like the monotonicity and Lipschitz
conditions of functions, which are invariant with respect to the F-transforms, and
moreover, they propose a new technique of coding/decoding images. The authors
find a partition of an image R of sizes N × M in image-layers having the same
sizes. That is the interval [0,1], seen as range of the normalized pixel values of R, is
partitioned in L closed subintervals with the same width 1/L , and every image-layer
has its pixel values belonging to the corresponding subinterval. Each image-layer
is compressed using the direct F-transform; the reconstructed image is obtained
combining the inverse F-transforms, resulting in the decoding process of all image-
layers. We propose a slight modification of the method of [30], and we show that
our method, called Layers Fuzzy Transforms (abbreviated as L F-transforms), gives
better results than those obtained with the standard F-transforms in terms of PSNR of
the reconstructed image. We point out that in this comparison the total compression
rate is given from the sum of the compression rates of all image-layers; indeed, if the
original image is partitioned in L layers and ρ is the compression rate of each layer,
then L · ρ is the total compression rate. Thus the comparison of the reconstructed
images by using the standard F-transforms and L F-transforms is made by using
several compression rates. As we already discussed in our previous papers [1–11],
any original image is seen as a fuzzy matrix R and is divided into submatrices called
blocks RB of sizes N (B)×M(B). Moreover, in our method every block is partitioned
in layers, called block-layers. We partition the interval [0,1] with the quantile method,
so the same number of normalized pixel values of RB belongs to each subinterval.
Indeed, in the equal interval method (which is used in [30]), we could have blocks in
which all the normalized pixel values belong to only one image-layer. For example,
we consider the following image of sizes 4 × 4 (any pixel assumes values between
0 and 255):

⎛
⎜⎜⎝

165 165 165 166
165 165 165 166
165 165 165 166
165 165 163 162

⎞
⎟⎟⎠

which is normalized in [0,1], and we get the following fuzzy relation (for simplicity,
assume that it is already a block):

RB =

⎛
⎜⎜⎝

0.647059 0.647059 0.647059 0.650980
0.647059 0.647059 0.647059 0.650980
0.647059 0.647059 0.647059 0.650980
0.647059 0.647059 0.639216 0.635294

⎞
⎟⎟⎠
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Then we divide [0,1] into two subintervals [0,0.5] and [0.5,1], thus we decompose
the normalized image RB in the following two block-layers:

R1
B =

⎛
⎜⎜⎝

0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000

⎞
⎟⎟⎠

and R1
B = RB . Then the contribution of R1

B in the compression process is null. Thus,
if we compress the two block-layers with a compression rate greater than that used
over R2

B , we obtain a bad quality reconstructed image with respect to one obtained
coding/decoding the block RB using the F-transforms. For this reason, we prefer to
determine the domain of the block-layers partitioning [0,1] with the quantile method,
so that [0,1] is divided into � subintervals such that the same number of pixels belongs
to each subinterval. The pixel values are disposed in increasing order; then the first
(N (B) × M(B))/� pixels are associated with the first block-layer. The upper bound
of each subinterval is given from the value of the greatest pixel, and this value is the
lower bound of the successive interval. In our example [0,1] is partitioned in the two
intervals [0, 0.647059] and [0.647059,1]. Each interval contains eight pixels, and the
two block-layers are the following:

R1
B =

⎛
⎜⎜⎝

0.647059 0.647059 0.647059 0.000000
0.647059 0.647059 0.647059 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.639216 0.635294

⎞
⎟⎟⎠

R2
B =

⎛
⎜⎜⎝

0.647059 0.647059 0.647059 0.650980
0.647059 0.647059 0.647059 0.650980
0.647059 0.647059 0.647059 0.650980
0.647059 0.647059 0.647059 0.647059

⎞
⎟⎟⎠

In our experiments we compare the results obtained with the standard
F-transforms and the L F-transforms for many compression rates by using a par-
tition of the blocks into two block-layers. This paper is organized as follows: in
Sect. 6.2 we give the essential concepts and an approximation theorem concerning
the F-transforms of a discrete function in two variables. We also show how the
F-transforms work in the coding/decoding processes of gray images. In Sect. 6.3 we
recall the main results from [30], and we present our method. In Sect. 6.4 we compare
our results with those obtained using the standard F-transforms. Section 6.5 presents
our conclusions.
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Fig. 6.1 Processes of coding/decoding images with L F-transforms

6.2 Discrete F-Transforms in Two Variables

Following the definitions and notations of [24], let n ≥ 2 and x1, x2, . . . , xn be points
of [a, b], called nodes, such that x1 = a < x2 < · · · < xn = b. We say that the fuzzy
sets A1, . . . , An : [a, b] → [0, 1] form a fuzzy partition of [a, b] if the following
holds:

1. Ai (xi ) = 1 for every i = 1, 2, . . . , n;
2. Ai (x) = 0 if x /∈ (xi−1, xi+1) for i = 2, . . . , n − 1;
3. Ai (x) is a continuous function on [a, b];
4. Ai (x) strictly increases on [xi−1, xi ] for i = 2, . . . , n and strictly decreases on

[xi , xi+1] for i = 1, . . . , n − 1;
5.

∑n
i=1 Ai (x) = 1 for every x ∈ [a, b].

A1, . . . , An are called basic functions and they form “uniform fuzzy partition”
if n ≥ 3 and xi = a +h · (i −1), where h = (b −a)/(n −1) and i = 1, 2, . . . , n
(that is, the nodes are equidistant);

6. Ai (xi − x) = Ai (xi + x) for every x ∈ [0, h] and i = 2, . . . , n − 1;
7. Ai+1(x) = Ai (x − h) for every x ∈ [xi , xi + 1] and i = 1, 2, . . . , n − 1.

Let [a, b] × [c, d] and n, m ≥ 2, x1, x2, . . . , xn ∈ [a, b] and y1, y2, . . . , ym ∈
[c, d] be n + m nodes such that x1 = a < x2 < . . . < xn = b and y1 =
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c < . . . < ym = d. Furthermore, let A1, . . . , An : [a, b] → [0, 1] and
B1, . . . , Bm : [c, d] → [0, 1] be fuzzy partitions of [a, b] and [c, d], respectively,
f : P × Q → reals be an assigned function, P × Q ⊆ [a, b] × [c, d] where
P = {p1, . . . , pN } and Q = {q1, . . . , qM } are “sufficiently dense” sets with respect
to the chosen partitions. That is, for each i = 1, . . . , N (resp., j = 1, . . . , M) there
exists an index k ∈ {1, . . . , n} (resp., l ∈ {1, . . . , m}) such that Ak(pi ) > 0 (resp.
Bl(q j ) > 0). Then the matrix [Fkl ] is the (discrete) direct F-transform of f with
respect to {A1, . . . , An} and {B1, . . . , Bm} if we have for each k = 1, . . . , n and
l = 1, . . . , m:

Fkl =
∑M

j=1
∑N

i=1 f (pi , q j )Ak(pi )Bl(q j )∑M
j=1

∑N
i=1 Ak(pi )Bl(q j )

(6.1)

We define the (discrete) inverse F-transform of f with respect to {A1, A2, . . . , An}
and {B1, . . . , Bm} to be the following function f F

nm(pi , qi ) : P × Q → reals defined
as

f F
nm(pi , q j ) =

n∑
k=1

m∑
l=1

Fkl Ak(pi )Bl(q j ) (6.2)

The following approximation theorem holds [32]:

Theorem 6.1 Let f : P × Q → reals be an assigned function, P × Q ⊆ [a, b] ×
[c, d], being P = {p1, . . . , pN } and Q = {q1, . . . , qM }. Then for every ε > 0,
there exist two integers n(ε), m(ε) and related fuzzy partitions {A1, A2, . . . , An(ε)}
of [a, b] and {B1, B2, . . . , Bm(ε)} of [c, d] such that the sets of points P and Q are
sufficiently dense with respect to such partitions and the inequality | f (pi , q j ) −
f F
n(ε)m(ε)(pi , q j )| < ε holds for every i ∈ {1, . . . , N } and j ∈ {1, . . . , M}.

Now we show how the F-transforms work for coding and decoding gray images.
Let R be a gray image divided in N × M pixels interpreted as a fuzzy relation
R : (i, j) ∈ {1, . . . , N } × {1, . . . , M} → [0, 1], R(i, j) being the normalized value
of the pixel P(i, j), that is, R(i, j) = P(i, j)/255 if the length of the gray scale, for
instance, has 256 levels. In [6] the image R is compressed by using an F-transform
in two variables [Fkl ] defined for each k = 1, . . . , n and l = 1, . . . , m, as

Fkl =
∑M

j=1
∑N

i=1 R(i, j)Ak(i)Bl( j)
∑M

j=1
∑N

i=1 Ak(i)Bl( j)
(6.3)

where we assume pi = i , q j = j , a = c = 1, b = N , d = M and A1, . . . , An

(resp., B1, . . . , Bm) with n � N (resp., m � M), form a fuzzy partition of [1, N ]
(resp., [1, M]). By decoding with the inverse F-transform, we have the following
fuzzy relation defined as

RF
nm(i, j) =

n∑
k=1

m∑
l=1

Fkl Ak(i)Bl( j) (6.4)
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Table 6.1 Various compression rates (L = 2)

F-transforms L F-transforms Compression rates
Rows Columns Coded Coded Rows Columns Coded Coded ρ Lρ Lρtot

rows columns rows columns

4 4 3 3 4 4 2 2 0.562 0.250 0.500
12 12 6 6 8 8 3 3 0.250 0.140 0.281
6 6 2 2 8 8 2 2 0.111 0.062 0.125
8 8 2 2 12 12 2 2 0.062 0.028 0.056
16 16 3 3 16 16 2 2 0.035 0.015 0.031

for every (i, j) ∈ {1, . . . , N } × {1, . . . , M}. We have subdivided the image R of
N × M pixels in submatrices RB of sizes N (B) × M(B), called blocks (cf., e.g., [1,
2]), each compressed to a block FB of sizes n(B) × m(B)(3 ≤ n(B) < N (B), 3 ≤
m(B) < M(B)) via the direct F-transform [F B

kl ] defined for each k = 1, . . . , n(B)

and l = 1, . . . , m(B) as

F B
kl =

∑M(B)
j=1

∑N (B)
i=1 RB(i, j)Ak(i)Bl( j)

∑M(B)
j=1

∑N (B)
i=1 Ak(i)Bl( j)

(6.5)

The following basic functions A1, . . . , An(B) (resp., B1, . . . , Bm(B)) form a uni-
form fuzzy partition of [1, N (B)] (resp., [1, M(B)]):

A1(x) =
{

0.5(1 + cos π
h (x − x1)) if x ∈ [x1, x2]

0 otherwise

Al(x) =
{

0.5(1 + cos π
h (x − xk)) if x ∈ [xk−1, xk+1]

0 otherwise

An(x) =
{

0.5(1 + cos π
h (x − xn)) if x ∈ [xn−1, xn]

0 otherwise

(6.6)

where n = n(B), k = 2, . . . , n, h = (N (B) − 1)/(n − 1), xk = 1 + h · (k − 1) and

B1(y) =
{

0.5(1 + cos π
s (y − y1)) if y ∈ [y1, y2]

0 otherwise

Bt (y) =
{

0.5(1 + cos π
s (y − yt )) if y ∈ [yt−1, yt+1]

0 otherwise

Bm(y) =
{

0.5(1 + cos π
s (y − ym)) if y ∈ [ym−1, ym]

0 otherwise

(6.7)

where m = m(B), t = 2, . . . , m, s = (M(B) − 1)/(m − 1), yk = 1 + s · (t − 1).
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Fig. 6.2 “Bird”

Fig. 6.3 “Bridge”

RF
n(B)m(B)(i, j) =

n(B)∑
k=1

m(B)∑
l=1

F B
kl Ak(i)Bl( j) (6.8)

which approximates RB up to an arbitrary quantity ε in the sense of Theorem 6.1.
Unfortunately, this theorem does not give a method for finding two integers n(B) and
m(B) such that |RB(pi , q j ) − RF

n(B)m(B)(pi , q j )| < ε, therefore we are obliged to
prove several values of n(B) = n(B, ε) and m(B) = m(B, ε) (with n(B) < N (B)

and m(B) < M(B)) and hence to have various compression rates ρ(B) = (n(B) ·
m(B))/(N (B) · M(B)). For every compression rate, we evaluate the quality of the
reconstructed image via the peak-signal-to-noise-ratio (PSNR) given by:

PSNR = 20 log10
255

RMSE
(6.9)

where RMSE stands for Root Mean Square Error, and it is defined as:

PSNR =
√∑N

i=1
∑M

j= j RF
N M (i, j)2

N × M
(6.10)

Here RF
N M is the reconstructed image obtained by recomposing the Rn(B)m(B)s.
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Fig. 6.4 “Camera”

Fig. 6.5 “Couple”

Fig. 6.6 “House”

Fig. 6.7 “Lena”

6.3 L F-Transform in Two Variables

In [30], the authors prefer to partition [0,1], seen as range of the normalized pixel
values of R, in a set of L intervals of equal width, so that each interval includes the
pixel of a layer. Each image-layer is coded with the direct F-transform and is decoded
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Table 6.2 PSNR obtained in different compression rates for the image “Bird”

ρ ρ in Total ρ PSNR LPSNR % Gain
F-transforms in F-transforms

0.562 0.250 0.500 38.318 39.295 2.550
0.250 0.140 0.281 34.436 35.309 2.535
0.111 0.062 0.125 30.582 31.311 2.382
0.062 0.028 0.056 27.891 28.650 2.721
0.035 0.015 0.031 26.499 27.301 3.027

Fig. 6.8 Trend of the PSNR with the two methods for the image “Bird”

by using the inverse F-transforms. All the inverse F-transforms are combined to form
the final reconstructed image. Below we report the steps of the method used in [30],
based on the two layers [0,0.5], and [0.5,1].

1. [0, 1] is divided into two intervals, [0,0.5] and [0.5,1].
2. The fuzzy relation R is divided into two layers Rl , l = 1, 2, defined as

Rl(i, j) =
{

R(i, j) if 1 − 0.5l ≤ R(i, j) ≤ 1 − 0.5(l − 1)

1 − 0.5l otherwise

3. Each layer Rl , l = 1, 2 is coded/decoded using the F-transforms.
4. The inverse F-transforms R1F

nm and R2F
nm are combined together into the function

RF
nm , which represents the reconstructed image of R.

In [30], the authors show with an example that the quality of the images recon-
structed using the previous process is better than that obtained coding/decoding the
original image with the standard F-transforms under the same compression rate. In
terms of compression rate, we must consider that dividing the image in l layers, we
store l compressed image-layers (in our case, l = 2).
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Fig. 6.9 F-transforms,
ρ = 0.562

Fig. 6.10 L F-transforms,
ρ = 0.500

Fig. 6.11 F-transforms,
ρ = 0.035

Indeed, we suppose to use a compression rate ρ = 0.25 and an original image of
sizes 256 × 256 with 256 gray levels (hence 216 pixels). Applying the F-transforms
on the original image, then we obtain a compressed image of size 128 × 128 (214

pixels), using the previous method with two layers, but we have stored 215 pixels
coming from two compressed layers of sizes 128×128. In other words we have used
a final compression rate ρ = 0.5. Then a correct comparison is necessary between
the classical F-transforms and the method of [30], in such a way that the spatial
dimension of all the compressed layers is fully considered as well.
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Fig. 6.12 L F-transforms,
ρ = 0.031

Here we slightly modify the method of [30] comparing the quality of the images
reconstructed with the standard F-transforms (resp. L F-transforms) under a specific
(resp., similar total) compression rate ρ. The original image is divided into blocks;
and each block is partitioned in 2 layers. We don’t use the equal interval method
to divide the [0,1] interval, but instead the quantile method so that each block-layer
contains the same number of pixels. All the steps of our method are reported in what
follows:

1. The pixels of the image of sizes N × M are normalized, and the resulting fuzzy
relation is divided into square blocks of sizes N (B) × M(B).

2. For each block we create L layers by partitioning the set [0,1] with the quantile
method. The pixels of each block are ordered in increasing sense; the lower
Inf l

B and upper Supl
B bound of each interval are determined, so that each layer

contains the same number N (B) × M(B)/ l of pixels. In the entry M(i, j) of a
matrix LC of sizes N × M is stored the index of the layer to which the pixel
R(i, j) belongs.

3. Each block-layer is coded using (6.5).
4. All the coded block-layers are stored.
5. Each block-layer is decoded using (6.8).
6. Each block is reconstructed using the formula:

RF
n(B)m(B)(i, j) =

L∑
l=1

R∗F,l
n(B)m(B)(i, j) (6.11)

where

R∗F,l
n(B)m(B)(i, j) =

{
RF,l

n(B)m(B)(i, j) if M(i, j) = l

RF,l
n(B)m(B)(i, j) − Inf l

B otherwise

7. Afterwards all blocks are recomposed and denormalized to give the reconstructed
image.
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Table 6.3 PSNR in different compression rates for the image “Bridge”

ρ ρ in Total ρ PSNR LPSNR % Gain
F-transforms in F-transforms

0.562 0.250 0.500 28.220 29.110 3.057
0.250 0.140 0.281 25.201 26.197 3.802
0.111 0.062 0.125 23.092 23.992 3.751
0.062 0.028 0.056 21.789 22.891 4.814
0.035 0.015 0.031 20.722 22.164 6.506

Fig. 6.13 Trend of the PSNR in the two methods for the image “Bridge”

The coding and decoding processes are schematized in Fig. 6.1.
For simplicity, we assume M = N , M(B) = N (B), m(B) = n(B) for every

block B.
In Table 6.1 we report examples of compression parameters used comparing the

two methods; the first (resp., second) four columns of Table 6.1 represent the sizes
in rows and columns of the original block and the sizes of the compressed block by
applying the standard F-transforms (resp., L F-transforms). In the last three columns
of Table 6.1 we report the compression rate ρ used in the classical F-transforms, the
compression rate Lρ used on the single layer and the total compression rate Lρtot in
L F-transforms.

In our experiments we have considered the image dataset extracted from the Image
Database of the University of Southern California (http://sipi.usc.edu/database/) with
M = N = 256 and 256 gray levels. For all the experiments we assume L = 2.

http://sipi.usc.edu/database/
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Fig. 6.14 F-transforms,
ρ = 0.562

Fig. 6.15 L F-transforms,
ρ = 0.500

6.4 Simulation Results

Here we present our results for six gray-level images “Bird” (Fig. 6.2), “Bridge”
(Fig. 6.3), “Camera” (Fig. 6.4) “Couple” (Fig. 6.5), “House” (Fig. 6.6) and “Lena”
(Fig. 6.7).

In Table 6.2 we report the PSNR obtained in the classical F-transforms and the
PSNR related to the L F-transforms denoted with the acronym LPSNR for the image
“Bird”. Furthermore we indicate the percent of gain (denoted with the symbol “%
Gain”) parameter defined as

(%Gain LPSNR over PSNR) = (LPSNR − PSNR) · 100/PSNR

Figure 6.8 shows that LPSNR is always better than PSNR obtained using the
classical F-transforms with a percent of gain between 0.25 and 0.3.

In Figs. 6.9, 6.10, 6.11 and 6.12 we show the reconstructed images with the F-
transforms (resp., L F-transforms) with ρ = 0.562 (resp., 0.5) and ρ = 0.035 (resp.,
0.031).

In Table 6.3 we report the results obtained with the source image “Bridge”.
Figure 6.13 shows that LPSNR is always better than PSNR obtained using the

classical F-transforms with a percent of gain between 0.33 and 0.65.
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Fig. 6.16 F-transforms,
ρ = 0.035

Fig. 6.17 L F-transforms,
ρ = 0.031

Table 6.4 PSNR in different compression rates for the image “Camera”

ρ ρ in Total ρ PSNR LPSNR % Gain
F-transforms in F-transforms

0.035 0.015 0.031 20.627 22.466 8.919
0.062 0.028 0.056 21.848 22.911 4.865
0.111 0.062 0.125 23.080 24.006 4.009
0.250 0.140 0.281 25.427 26.429 3.940
0.562 0.250 0.050 28.488 29.498 3.543

In Figs. 6.14, 6.15, 6.16 and 6.17 we show the reconstructed images with the
F-transforms (resp., L F-transforms) with ρ = 0.562 (resp., 0.5) and ρ = 0.035
(resp., 0.031).

In Table 6.4 we report the results obtained with the source image “Camera”.
Figure 6.18 shows that LPSNR is always better than PSNR obtained using the

classical F-transforms with a percent of gain between 0.35 and 0.89.
In Figs. 6.19, 6.20, 6.21 and 6.22 we show the reconstructed images with the

F-transforms (resp., L F-transforms) with ρ = 0.562 (resp., 0.5) and ρ = 0.035
(resp., 0.031).

In Table 6.5 we report the results obtained with the source image “Couple”.
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Fig. 6.18 Trend of the PSNR in the two methods for the image “Camera”

Fig. 6.19 F-transforms,
ρ = 0.562

Fig. 6.20 L F-transforms,
ρ = 0.500

Figure 6.23 shows that LPSNR is always better than PSNR obtained using the
classical F-transforms with a percent of gain between 0.35 and 0.89.
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Fig. 6.21 F-transforms,
ρ = 0.035

Fig. 6.22 L F-transforms,
ρ = 0.031

Table 6.5 PSNR in different compression rates for the image “Couple”

ρ ρ in Total ρ PSNR LPSNR % Gain
F-transforms in F-transforms

0.035 0.015 0.031 20.562 21.678 5.426
0.062 0.028 0.056 21.614 22.711 5.075
0.111 0.062 0.125 22.914 23.981 4.654
0.250 0.140 0.281 25.096 26.110 4.042
0.562 0.250 0.050 27.918 29.638 2.576

In Figs. 6.24, 6.25, 6.26 and 6.27 we show the reconstructed images with the
F-transforms (resp., L F-transforms) with ρ = 0.562 (resp., 0.5) and ρ = 0.035
(resp., 0.031).

In Table 6.6 we report the results obtained with the source image “House”.
Figure 6.28 shows that LPSNR is always better than PSNR obtained using the

classical F-transforms with a percent of gain between 0.26 and 0.49.
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Fig. 6.23 Trend of the PSNR in the two methods for the image “Couple”

Fig. 6.24 F-transforms,
ρ = 0.562

Fig. 6.25 L F-transforms,
ρ = 0.500

In Figs. 6.29, 6.30, 6.31 and 6.32 we show the reconstructed images with the
F-transforms (resp., L F-transforms) with ρ = 0.562 (resp., 0.5) and ρ = 0.035
(resp., 0.031).

In Table 6.7 we report the results obtained with the source image “Lena”.



124 F. Di Martino and S. Sessa

Fig. 6.26 F-transforms,
ρ = 0.035

Fig. 6.27 L F-transforms,
ρ = 0.031

Table 6.6 PSNR in different compression rates for the image “House”

ρ ρ in Total ρ PSNR LPSNR % Gain
F-transforms in F-transforms

0.035 0.015 0.031 20.562 21.578 4.940
0.062 0.028 0.056 21.363 22.271 4.250
0.111 0.062 0.125 22.914 23.781 3.781
0.250 0.140 0.281 25.094 26.010 3.649
0.562 0.250 0.050 27.918 28.648 2.576

Figure 6.33 shows that LPSNR is always better than PSNR obtained using the
classical F-transforms with a percent of gain between 0.26 and 0.49.

In Figs. 6.34, 6.35, 6.36 and 6.37 we show the reconstructed images with the
F-transforms (resp., L F-transforms) with ρ = 0.562 (resp., 0.5) and ρ = 0.035
(resp., 0.031).

All the results show that the percent of gain obtained with the L F-transforms
with respect to the F-transforms is always greater than 0.015; this value increases
by diminishing the compression rate. For strong compressions (ρ = 0.03), the
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Fig. 6.28 Trend of the PSNR in the two methods for the image “House”

Fig. 6.29 F-transforms,
ρ = 0.562

Fig. 6.30 L F-transforms,
ρ = 0.500

reconstructed images obtained using the L F-transforms are not blurred, even if they
contain spot pixels on the boundary of the blocks.
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Fig. 6.31 F-transforms,
ρ = 0.035

Fig. 6.32 L F-transforms,
ρ = 0.031

Table 6.7 PSNR in different compression rates for the image “Lena”

ρ ρ in Total ρ PSNR LPSNR % Gain
F-transforms in F-transforms

0.035 0.015 0.031 22.790 23.616 3.623
0.062 0.028 0.056 23.891 24.686 3.335
0.111 0.062 0.125 25.477 26.261 3.082
0.250 0.140 0.281 28.103 28.784 2.424
0.562 0.250 0.500 31.142 31.692 1.766

Figure 6.38 shows the trend of the mean percent of gain with respect to the com-
pression rate obtained for all images of the sample.
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Fig. 6.33 Trend of the PSNR in the two methods for the image “Lena”

Fig. 6.34 F-transform,
ρ = 0.562

Fig. 6.35 L F-transforms,
ρ = 0.500
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Fig. 6.36 F-transforms,
ρ = 0.035

Fig. 6.37 L F-transforms,
ρ = 0.031

Fig. 6.38 Trend of the mean % gain with respect to ρ obtained for all the images
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6.5 Conclusion

The results of our tests on the image dataset show that the images reconstructed
by the L F-transforms are better than those ones obtained with the standard F-
transforms, and moreover they are not blurred for low compression rates. This fact
allows one to use L F-transforms in processes in which it is necessary to code im-
ages and videos with strong compression (e.g., WEB and video conferences, video-
surveillance applications), without losing precious information present in the images.
In other processes, like image segmentation [9] and image video compression [11,
17], the users need strongly coded images for their application; in these cases the
L F-transforms can also be used since a further reduction of the storage space is
possible.
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Chapter 7
Modified Bacterial Foraging Optimization
Technique for Vector Quantization-Based
Image Compression

Nandita Sanyal, Amitava Chatterjee and Sugata Munshi

Abstract Vector quantization (VQ) techniques are well-known methodologies that
have attracted the attention of research communities all over the world to provide
solutions for image compression problems. Generation of a near optimal codebook
that can simultaneously achieve a very high compression ratio and yet maintain
required quality in the reconstructed image (by achieving a high peak-signal-to-
noise-ratio (PSNR)), to provide high fidelity, poses a real research challenge. This
chapter demonstrates how such efficient VQ schemes can be developed where the
near optimal codebooks can be designed by employing a contemporary stochastic
optimization technique, namely bacterial foraging optimization (BFO), that mimics
the foraging behavior of a common type of bacteria, Escherichia coli, popularly
known as E. coli. An improved methodology is proposed here, over the basic BFO
scheme, to perform the chemotaxis procedure within the BFO algorithm in a more
efficient manner, which is utilized to solve this image compression problem. The
codebook design procedure has been implemented using a fuzzy membership-based
method, and the optimization procedure attempts to determine suitable free parame-
ters of these fuzzy sets. The usefulness of the proposed adaptive BFO algorithm,
along with the basic BFO algorithm, has been demonstrated by implementing them
for a number of benchmark images, and their performances have been compared
with other contemporary methods, used to solve similar problems.
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7.1 Introduction

With the advent of the Internet, teleconferencing, multimedia, high-definition tele-
vision technology, etc., the amount of data (information) handled by a computer is
getting increased enormously day by day. Storage and transmission of digital images
has become one of the most challenging problems for the researchers working in
this domain. Image compression is an efficient way by which an image can be trans-
mitted and stored in a compact manner [1, 2]. It basically reduces the amount of
data handled in an image. During transmission, a reduced volume of information is
transmitted that represents a large volume of information pertaining to the original
image. After transmission, the compressed image is reconstructed to represent the
original [1]. Broadly speaking, there are two types of image compression schemes:
lossless compression and lossy compression. In medical imaging, lossless compres-
sion scheme is mostly necessary, but in multimedia applications, the lossy image
compression scheme is usually preferred. For lossless compression, the compression
ratio achievable is less than that in lossy image compression. Along with the objec-
tive of obtaining the highest compression rate, as far as possible, an efficient image
compression skill is also desired to ensure a better quality of compressed image. This
means that the reconstructed image should possess higher fidelity [1, 3].

Nowadays, vector quantization (VQ) finds popular application in image process-
ing [4, 5]. For the past few years, VQ techniques have been widely used as powerful
data compression algorithms. A vector quantizer essentially generates a codebook to
represent an image, and this codebook is generated using training data sets. Hence
the generation of this codebook plays a very significant role in vector quantization. A
VQ scheme performs two specific tasks, essentially known as encoding and decod-
ing. Usually, an image to be encoded is first sectionalized into a set of image blocks
or vectors, which are nonoverlapping in nature [5]. Each image vector, thus formed,
is then compared with each codebook vector, which is also called a codeword, to
find out that image vector-codebook vector combination for which distortion is min-
imum. During transmission, the codebook is transmitted along with a series of index
numbers, where each index number represents the index of the codebook vector that
should represent an image vector in the reconstructed image at the receiving end.
This series of index numbers, along with the codebook, received by the receiver,
is then decoded to form the image blocks, and the image is thus reconstructed.
Normally the codebook size is much smaller than the size of the original image data
set. The traditional codebook vector quantizer is generated by Linde–Buzo–Gray
(LBG) algorithm, where one codebook contains M number of randomly initialized
vectors that undergo modification using an iterative procedure [6, 7]. It is very sim-
ple to implement, but its performance primarily depends on the initialization of the
codebook. Traditional LBG algorithms use Euclidean norm-based formulation of
the objective function and, in the quest to determine the optimal codebook, there
is a chance that the solution may get trapped in local minima of the average dis-
tortion measure. The LBG algorithm suffers from the deficiency that it is a hard
decision-making scheme and ignores the possibility of a training vector belonging
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to more than one codebook vector. In the LBG scheme, it is also well known that the
computation volume is much higher. Since the advent of fuzzy inferencing system, a
soft methodology has been developed to determine the similarity between two data
sets [8]. This concept of fuzzy inferencing is also used for designing VQ algorithms
[9] in many image processing applications. Fuzzy clustering techniques have been
efficiently used in vector quantization [10–12]. This method has been proven to be
successful in modeling the uncertainty involved in training datasets and also reducing
the constraint of proper initialization [13]. The fuzzy method of VQ is a soft decision-
making scheme where each training vector can belong to multiple clusters. Here the
aim of the researchers is always focused on two aspects: first, to design a codebook
that gives a globally optimal solution and second, to reduce the computational com-
plexity involved [14]. In most cases, to obtain an optimum codebook, there is a need
for a fuzzy to crisp mode transition. Many efficient techniques for smooth transition
strategies from fuzzy modes to crisp modes have been already studied. Fuzzy vector
quantization (FVQ) [11], Fuzzy learning vector quantization (FLVQ) [15], Fuzzy
particle swarm optimized vector quantization (FPSOVQ) [9], improved batch fuzzy
learning vector quantization [16] are several such special strategies developed so far,
where the fuzziness parameter is reduced to small values and each training vector is
assigned, finally, to a definite codebook vector. A Gaussian-type fuzzy membership
function has been mostly successfully used as a soft estimator for determining the
similarity between the codebook vectors and the image patterns [9] to obtain the
maximum fidelity. The design of such codebook vectors, utilizing a fuzzy-based soft
scheme, can be developed using a stochastic optimization-based scheme, where an
optimal codebook can be generated as a global solution based on minimum average
distortion measure. Such derivative-free optimization methods are usually based on
a population of candidate solutions that undergo modification in an iterative man-
ner, and the final solution is expected to reach the global optimum, thus avoiding
the possibility of getting stuck in local optima. Among the stochastic optimization
techniques, simulated annealing (SA) was one of the first strategies employed for
optimum codebook design in image compression problems [14]. However, the per-
formance of SA largely depended on the selection of its parameters. Later, genetic
algorithm (GA) and particle swarm optimization (PSO) based methods were also
proposed for optimal codebook design problems [9, 17, 18].

The present work proposes the development of a new fuzzy VQ scheme employ-
ing a bacterial foraging-based stochastic optimization strategy. The bacterial forag-
ing optimization algorithm (BFOA), which was proposed in the last decade [19],
appeared as a major breakthrough in the area of stochastic optimization. Researchers
have so far successfully used it in many global stochastic optimization problems,
e.g. in harmonic estimation [20], transmission loss reduction [21], active power fil-
ter design for load compensation [22], etc. In the light of the foraging behavior of
E. coli bacteria present in the human gut, a bacterial foraging algorithm was for-
mulated where energy intake by a group of bacteria per unit time is maximized
[19, 23]. Due to the poor convergence behavior of BFOA observed in some complex
engineering problems, self-adaptation schemes were proposed to improve the con-
vergence behavior of classical BFOA [24–26]. These self-adaptive BFOA schemes
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employed several strategies to adapt the concerned parameter that controls the move-
ment of each bacterium. The present work proposes a new variant of adaptive BFOA
that controls the run length unit of the BFOA, but in a different manner. This self-
adaptive BFOA and the classical BFOA have been employed for fuzzy VQ algorithms
in image compression for a number of benchmark images. Their performance has
been compared to several other competing algorithms, and it has been satisfactorily
demonstrated that the BFOAs show overall superior performance and self-adaptive
BFOA can further improve the performance of classical BFOA. In the subsequent
sections, first fuzzy-based VQ scheme is detailed. Then classical bacterial forag-
ing algorithm is described in Sect. 7.3. In Sect. 7.4, the adaptive bacterial foraging
algorithm (ABFOA) proposed in this work is formulated. Section 7.5 presents the
simulation results, and the chapter is concluded in Sect. 7.6.

7.2 Fuzzy Vector Quantization for Image Compression

In the whole image processing domain, VQ possibly finds its application mostly in
image compression problems [13, 15, 27–29]. One of the main reasons for that is the
implementation speed of the VQ schemes, which is quite fast. Here, first an image
is decomposed into a number of rectangular blocks, where each block constitutes a
training vector in the p-dimensional space where

p = nr ∗ nc (7.1)

where nr = number of pixels along a row of the image block, and nc = number of
pixels along a column of the image block. Hence, one can write

X = {x1, x2, . . . , xn} ⊂ �p (7.2)

where X gives the set of all training vectors in which the image is divided, and xi is
the ith such training vector. In VQ, this set is represented by a smaller set of vectors
denoted as

V = {v1, v2, . . . , vc} ⊂ �p (7.3)

where every v j (1 ≤ j ≤ c) is called a codebook vector or codeword, and the set V
is known as the codebook [16]. A vector quantizer is designed by assigning each
training vector to a suitable codebook vector by minimizing some measure of dis-
crepancy between training vectors and codebook vectors. The discrepancy that is
to be minimized in image compression problems is the average distortion measure
given as [16]:

D = 1

n

n∑
k=1

min
1 ≤ j ≤ c

{∥∥xk − v j
∥∥2} (7.4)
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Fig. 7.1 Fuzzy sets or mem-
bership functions chosen

This method is a crisp decision-making scheme and does not take into account
the possibility that one training vector may have resemblance with two or more
codebook vectors. Fuzzy set theory can easily address the issue of the degree of
such resemblance [8, 30]. As mentioned before, the LBG algorithm based vector
quantization method is a popular iterative method by which an optimal codebook is
designed. This uses a similar Euclidean norm-type measure and minimizes average
distortion. However, in fuzzy inference analysis, a soft and flexible decision measure
is considered. As mentioned earlier, each image is divided into a number of training
vectors and a codebook V of size c is designed. A Gaussian-type fuzzy membership
function is considered to process the fuzzy inferencing system [9]. Each training
vector xi and each codebook vector v j is of dimension p. Hence the codebook vector
v j can be given as:

v j = (v j1, v j2 , . . . , v jp ); j ∈ {1, 2, . . . , c} (7.5)

A Gaussian membership function (MF) is created for each fuzzy set associated
with the ith dimension of the jth codebook vector, i.e., v ji . Then the degree of
resemblance for representing the training data vector xk in terms of codebook vector
j is given by the activation of a fuzzy IF –THEN rule given as [9, 28] :

Rule j : IF (xk1 is FVj1) and (xk2 is FVj2) and …and (xkp is FVjp ) THEN xk

belongs to v j with

MV = MV( j1, j2,..., j p) j ∈ {1, 2, . . . c} (7.6)

Hence there is a total of c rules. Each training vector is given as xk = (xk1, xk2,
. . ., xkp), k ∈ {1, 2, . . . , n}. FVji represents the fuzzy set associated with the ith
dimension of the jth codebook vector v j . MV( j1, j2,..., j p) determines the activation
strength or membership value of the fuzzy rule j. The higher this activation strength,
the greater the confidence that can be placed on the codebook vector v j , representing
the training vector xk . The fuzzy sets FVji associated with each v j are shown in
Fig. 7.1.

The membership function of the fuzzy set FVji for the jth fuzzy rule is given as
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FVji = exp

[
−

(
xki − v ji

γ

)2
]

(7.7)

where

γ =
√√√√ 1

Nt

Nt∑
i=1

‖xi − x̄‖2 and x = 1

Nt

Nt∑
i=1

xi (7.8)

Here Nt is the number of training vectors, and γ is the spread of each Gaussian
MF. The maximum value of MV is obtained when the training image pattern xk is
closest to v j in p-dimensions. When a particular training image pattern xt

k is chosen,
where xt

k = (xt
k1

, xt
k2

, . . . , xt
kp

), it is used as an input to each fuzzy rule j, and the

degree of resemblance (DR) of xt
k with different v j s is determined. This is given in

terms of the activation strength MV( j1, j2,..., j p), which is calculated as:

DRt
j = μt

j = FVj1(xt
k1) ∗ FVj2(xt

k2) ∗ . . . ∗ FVjp(xt
kp) (7.9)

Hence for each xt
k , DRt

j j = (1, 2, . . . , c) is calculated. Then the training pattern
xt

k is assigned to that codebook vector q for which rule q produced the highest MV
or DRt

j . This can be represented as:

DRt
q = max(DRt

1, DRt
2, . . . , DRt

c) (7.10)

In this way all the training image patterns are mapped by suitable codebook
vectors, one by one. Then the performance of the coding operation is evaluated with
the help of the fitness function:

Nt∑
i=1

c∑
j=1

Si j
∥∥xi − v j

∥∥ 2 (7.11)

where

Si j =
⎧⎨
⎩

1

0

DRi
j = max(DRi

1, DRi
2, . . . , DRi

c)

otherwise
(7.12)

When the fitness function becomes smaller and smaller in value, it means that
the actual error between the image patterns and the corresponding codebook vectors
is getting lower and lower, i.e., the average distortion is becoming less and less in
value. The physical interpretation of this mathematical operation is that, for the same
compression ratio achieved, the reconstructed image represents the original image
more and more faithfully. Therefore the design of a globally optimum codebook is
thus reduced to a problem of minimization of average distortion measure. In this
present work, the proposed fuzzy BFOA-based VQ (FBFOVQ) learning scheme is
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Fig. 7.2 Fuzzy bacterial foraging optimization vector quantization designed for image compression

utilized to determine the suitable codebook to represent the original training image
dataset. Figure 7.2 shows the overall method in schematic form.

7.3 Bacterial Foraging Optimization Algorithm

In present-day research activities on stochastic optimization techniques, development
of evolutionary principles based on real-life functioning of living organisms is a
major emphasis. Amongst these techniques, the foraging behavior by which a living
organism locates, handles and ingests food is found to be well understood. The
foraging animal always behaves in such a way that energy intake E

T per unit time is
maximized. The animals with better foraging strategies always enjoy reproductive
success, while animals with poor foraging behavior are always eliminated after many
generations or are shaped into good ones. All these behaviors are carefully observed
and a new stochastic optimization technique is formulated which is known as the
bacterial foraging optimization algorithm (BFOA) [19, 23]. BFOA when formulated
on the basis of biomimicing E. coli bacteria present in the human gut has the following
steps: chemotaxis, swarming, reproduction and elimination-dispersal. Algorithm 7.1
shows the classical BFOA whose different steps are detailed now.

Chemotaxis. The E. coli bacteria move in two different ways: swim or run and
tumble, with the help of flagella - actuators. In its whole life time, each bacterium
alternates between swim and tumble. E. coli bacteria have an inherent decision-
making system which always enables the bacteria to be able to search food and
avoid noxious substances. This is known as chemotaxis. The bacteria are always in
search of more neutral regions and try to move toward greater nutrient concentration.
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Let us consider θ as the position of the bacteria in p-dimensional space, i.e.,θ ∈ �p

and J (θ) be the cost function. Then J (θ) ≤ 0 represents a nutrient-rich environment,
J (θ) = 0 represents neutral, and J (θ) > 0 represents a noxious environment. The
principal aim of the bacterium is to minimize the cost function. For the ith bacterium,
the position after jth chemotactic step is given by:

θ i ( j + 1, k, l) = θ i ( j, k, l) + C(i)φ( j) (7.13)

where φ ( j) is a unit vector in a random direction to describe tumble. θ i ( j, k, l)
represents ith bacterium at jth chemotactic, kth reproductive and lth elimination
dispersal step. C(i) is the size of the step taken in the random direction termed as run
length unit. If J

(
θ i ( j + 1, k, l)

)
assumes a value lower than J

(
θ i ( j, k, l)

)
, then the

bacterium will take further steps in this same particular direction, up to a maximum
number of permissible steps, called Ns .

Swarming. In presence of a semisolid medium with a single nutrient chemo-
effecter (sensor), E. coli and other bacteria try to move out from the center in definite
traveling rings of cells, by moving up the nutrient gradient created by consumption
of the nutrient by the group of bacteria. The cells release an attractant aspertate when
stimulated by high levels of succinate, signal other nearby cells to group with it and
move in same pattern [19]. There may be some repelling action among cells, which
is signaled by consuming nearby nutrients. The combined cell-to-cell interaction is
given by:

Jcc(θ, θ i ( j, k, l)) = ∑s
i=1

[
−dattract exp

(
−wattract

∑p
m=1

(
θm − θ i

m

)2
)]

+∑s
i=1

[
hrepellant exp

(
−wrepellant

∑p
m=1

(
θm − θ i

m

)2
)]

(7.14)
where p is the dimension of search space, Jcc

(
θ, θ i ( j, k, l)

)
is the cost function

that is to be added to the original cost function, and dattract , wattract , hrepellant ,
wrepellant are the coefficients which determine the depth and width of the attractant
and the height and width of the repellant. These four parameters should be selected
judiciously for a given problem. The total number of bacteria is S, θ i

m is the mth
dimension of the position of the ith bacterium, θ i . During the whole lifetime, each
bacterium takes lots of such chemotactic steps, limited by Nc number of steps in
each iteration.

Reproduction. After completing the chemotaxis step, the bacteria enter the repro-
duction state. Here the least healthy Sr bacteria die and are replaced by copies of
Sr healthiest bacteria (those having sufficient nutrients and yielding lower values of
fitness function). This means that each such healthy bacterium splits into two bacteria
without mutation and are placed in the same location. Thus the total number of bac-
teria in a group remains same. If Nre number of specified reproduction steps has not
been completed, then the next generation of bacteria will again undergo chemotaxis
steps. Usually Sr is chosen as 50 % of the total number of bacteria.
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Sr = S

2
(7.15)

Elimination and dispersal . During the lifetime of a swarm of bacteria with gradual
consumption of food or nutrients, it may happen that all the bacteria die or disperse
into some new environment with probability ped for some unknown reason. This
dispersal destroys all the previous chemotactic processes. However, it may also have
a positive impact because the bacteria may disperse into a nutrient-rich region, and
the result of chemotaxis may improve in the next generation. Elimination-dispersal is
part of the long-distance motile behavior in population levels. Hence this procedure
may be employed when the optimization algorithm is not showing any satisfactory
improvement in performance, perhaps due to a problem of stagnation.

7.4 Bacterial Foraging with Self-Adaptation

Though BFOA is applied to solve many engineering application problems, some
complication arises with the increase in dimension of search space in more com-
plex problems. The performance of BFOA largely depends on the run length unit
parameter C(i, j, k). Bacteria with smaller run length units have a tendency to get
trapped in local optima in the search domain, whereas a comparatively larger run
length unit potentially can equip the bacteria to perform global searches better [31].
Therefore, if we can adaptively change the run length unit parameter, depending on
some preset condition, the performance of the bacteria can be improved [24–26]. In
the proposed adaptive BFOA (termed as ABFOA), shown in Algorithm 7.2, the entire
chemotaxis step can be divided into two states: exploration and exploitation. With
larger run length unit parameters, bacteria will be in the exploration state and can
find out prospective new search domains. Whereas, in the exploitation state, bacteria
can search in nearby regions slowly, with smaller run length unit. Bacteria should
always try and maintain a balance between exploration and exploitation strategies
by observing two basic factors: fitness improvement, and no fitness improvement. If
the bacterium registered a fitness improvement beyond a specified precision from the
last chemotactic generation to the current, one can conclude that it has found a new
promising region. Hence the bacterium should perform more extensive exploitation
and the adapted run length unit for this bacterium should be smaller, compared to the
previous chemotactic generation. Hence, following this, the bacteria will self-adapt
into an exploitation state [26]. If no fitness improvement occurs for a predefined
number of consecutive chemotactic generations, the augmentation of run length unit
becomes a demand and this bacterium enters an exploration state to extend its search
from an unproductive region to potentially relatively promising regions. Finally, as
the ABFOA evolves, each bacterium alternates between two distinct search states
and run length unit for the ith bacterium will be modified as required. In the ABFOA
proposed in [26], the reproduction step and the elimination and dispersal step are
included within each chemotactic step. However, in our proposed ABFOA, this part
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Algorithm 7.1 The algorithm representation of classical BFOA [19, 32, 33]
1: Begin
2: Initialize all the free parameters of classical BFOA, C(i), i = 1, 2, . . . , S
3: Set all the counters to zero.
4: repeat
5: for Elimination-dispersal: ell= 1 to Ned do
6: for Reproduction: k = 1 to Nre do
7: for Chemotaxis: j = 1 to Nc do
8: for each bacterium: i = 1 to S do
9: Compute fitness function, J (i, j, k, ell)
10: J (i, j, k, ell) = J (i, j, k, ell) + Jcc

(
θ, θ i ( j, k, ell)

)
11: Jlast = J (i, j, k, ell)
12: Tumble: Generate a random vector �(i) ∈ �p

13: Move: θ i ( j + 1, k, ell) = θ i ( j, k, ell) + C (i) �(i)√
�T (i)�(i)

14: Compute fitness function, J (i, j + 1, k, ell)
15: J (i, j + 1, k, ell) = J (i, j + 1, k, ell) + Jcc

(
θ, θ i ( j + 1, k, ell)

)
16: m = 0
17: Swim:
18: while m < Ns do
19: m = m + 1
20: if J (i, j + 1, k, ell) < Jlast then
21: Jlast = J (i, j + 1, k, ell)
22: Move: θ i ( j + 1, k, ell) = θ i ( j + 1, k, ell) + C (i) �(i)√

�T (i)�(i)
23: Compute fitness function, J (i, j + 1, k, ell) using the nutrient con-

centration at the current location of each bacterium and cell-to-cell
interaction

24: else
25: m = Ns
26: end if
27: end while
28: end for
29: end for
30: for i = 1 to S do
31: J health(i) = ∑Nc+1

j=1 J (i, j, k, ell)
32: end for
33: Sort bacteria in order of cost values of Jhealth [19, 23]
34: The least healthy Sr bacteria will die
35: Remaining Sr healthy bacteria each split
36: Each such pair resides in the original position of the parent
37: end for
38: for i = 1 to S do
39: Eliminate and disperse the ith bacterium, with probability ped , in such a way that, at

the end, the number of bacteria in the population remains constant
40: end for
41: end for
42: until termination criterion satisfied
43: End
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Algorithm 7.2 The algorithm representation of the proposed adaptive BFOA
1: Begin
2: Initialize all the free parameters of classical BFOA along with Cinitial , εini tial , α, β, Ku
3: repeat
4: for Elimination-dispersal: ell = 1 to Ned do
5: for Reproduction: k = 1 to Nre do
6: for Chemotaxis: j = 1 to Nc do
7: for each bacterium: i = 1 to S do
8: Compute fitness function, J (i, j, k, ell)
9: J (i, j, k, ell) = J (i, j, k, ell) + Jcc

(
θ, θ i ( j, k, ell)

)
10: Jlast = J (i, j, k, ell)
11: Tumble: Generate a random vector �(i) ∈ �pwith each element a random number in [-1,1]
12: Move: θ i ( j + 1, k, ell) = θ i ( j, k, ell) + C (i, j, k)

�(i)√
�T (i)�(i)

13: Compute fitness function,J (i, j + 1, k, ell)
14: J (i, j + 1, k, ell) = J (i, j + 1, k, ell) + Jcc

(
θ, θ i ( j + 1, k, ell)

)
15: m = 0
16: Swim:
17: while m < Ns do
18: m = m + 1
19: if J (i, j + 1, k, ell) < Jlast then
20: Jlast = J (i, j + 1, k, ell)
21: Move: θ i ( j + 1, k, ell) = θ i ( j + 1, k, ell) + C (i, j, k)

�(i)√
�T (i)�(i)

22: Compute fitness function, J (i, j + 1, k, ell) using the nutrient concentration at the
current location of each bacterium and cell-to-cell interaction

23: flag(i) = 0
24: else
25: flag(i) = flag(i) + 1
26: if f lag(i) < Ku then

27: C(i, j + 1, k) = C(i, j, k)

ε(i, j + 1, k) = ε(i, j, k)
[26]

28: else

29: C(i, j + 1, k) = Cinitial
ε(i, j + 1, k) = εini tial

30: end if
31: m = Ns
32: end if
33: end while
34: if J (i, j + 1, k, ell) < ε(i, j, k) then

35:
C(i, j + 1, k) = sin

(
J (i, j+1,k,ell)

α

)

ε(i, j + 1, k) = ε(i, j,k)
β

36: else

37: C(i, j + 1, k) = C(i, j, k)

ε(i, j + 1, k) = ε(i, j, k)

38: end if
39: end for
40: end for
41: for i = 1 to S do
42: Jhealth(i) = ∑Nc+1

j=1 J (i, j, k, ell)
43: end for
44: Sort bacteria in order of cost values of Jhealth [19, 23]
45: The least healthy Sr bacteria will die
46: Remaining Sr healthy bacteria each split
47: Each such pair resides in the original position of the parent
48: end for
49: for i = 1 to S do
50: Eliminate and disperse the ith bacterium, with probability ped , in such a way that, at the end, number

of bacteria in the population remains constant
51: end for
52: end for
53: End
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follows the classical BFOA. That is, once the chemotactic steps are completed in one
generation, a reproduction step is activated and, after the specified reproduction steps
are completed, then one elimination-dispersal step is activated. flag(i) is the indica-
tive measure of the number of generations the ith bacterium has not improved its
own fitness, ε (i, j, k) is the required precision of fitness improvement in the present
chemotactic generation of the ith bacterium, α and β are user-defined constants,
Cinitial is initial run length and εini tial is the initial precision goal, respectively. All
the other identifiers in this algorithm carry the identical meaning as in the classical
BFOA.

7.5 Simulation Results

Here we have considered three benchmark images, namely Lena, Pepper and Boat
images, of size 512 × 512 pixels, each image having 256 gray levels. Each image is
first divided into 2×2 blocks, resulting in 65,536 numbers of 4×1 dimensional vec-
tors. These vectors are used as training image pattern vectors. The optimal codebook
is generated by minimizing the average distortion measure D, given as:

D = 1

n

n∑
k=1

min
1 ≤ j ≤ c

{∥∥xk − v j
∥∥2} (7.16)

Once the optimal codebook is obtained, using a candidate stochastic optimiza-
tion algorithm, the efficiency of the scheme is evaluated by computing the peak-
signal-to-noise-ratio (PSNR), in dB. The higher the PSNR value in dB, the better the
reconstructed image.

P SN R = 10 log10
2552

1
N∗N

∑N−1
i=0

∑N−1
j=0

(
f (i, j) − ∧

f (i, j)

)2 d B (7.17)

where N × N is the size of the original image and f (i, j) and
∧
f (i, j) are the gray-

level pixel values of the original image and the reconstructed image, at position (i,j),
respectively [9, 16].

Simulation is carried out in an ordered manner. In the first stage, the suitable
combination of the free parameters of the BFOA is determined. This experimenta-
tion is carried out varying one free parameter at a time, keeping all other parameters
constant and hence determining the most suitable value of this parameter varied.
This process is carried out for each free parameter sequentially. In these experimen-
tations, the classical BFOA is initialized each time using a fuzzy learning vector
quantization (FLVQ) algorithm. To make a robust choice of each such parameter,
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Table 7.2 Impact of variation of run length unit in BFOA (Boat and Lena: size 512 × 512 divided
into 2 × 2 blocks)

Codebook size (c) Run length unit C(i) Average distortion measure (D) PSNR (in dB)
Boat Lena Boat Lena

32 0.6 248.8429 153.1082 30.1922 32.3014
0.2 238.7726 148.8455 30.3716 32.4240

64 0.6 178.3276 108.5133 31.6392 33.7966
0.2 175.5888 108.4443 31.7064 33.7993

128 0.6 124.4358 78.9621 33.2020 35.1772
0.2 121.4000 77.4772 33.3092 35.2597

Table 7.3 Impact of variation of number of bacteria in BFOA (Pepper and Lena: 256 × 256 size
divided into 2 × 2 blocks)

Codebook size (c) No. of bacteria (S) Average distortion measure (D) PSNR (in dB)
Pepper Lena Pepper Lena

32 60 316.4495 289.7696 29.1484 29.5309
40 317.2997 287.1783 29.1380 29.5699
20 304.4842 283.7988 29.3160 29.6213
10 305.3132 286.1672 29.3045 29.5853

64 60 199.7119 194.5630 31.1474 31.2608
40 200.1956 192.4327 31.1369 31.3086
20 190.8185 197.9498 31.3452 31.1859
10 197.0793 193.0866 31.2058 31.2939

128 60 129.8249 133.1768 33.0446 32.9088
40 132.3453 132.4453 32.9343 32.9310
20 136.3333 133.2083 32.8054 32.9061
10 129.8156 133.1554 33.0181 32.9078

the experimentation is carried out for three images (Lena, Pepper and Boat) and for
three different codebook sizes (c = 32, 64, 128). At first, we vary run length unit
C(i) keeping S = 10, Nc = 4 and Ns = 2 as constants. Tables 7.1 and 7.2 show the
image compression performances in terms of average distortion measure and PSNR.

After observing the results in Tables 7.1 and 7.2, the run length unit parameter
C(i) is chosen as 0.2, as at this setting most of the simulation results produced the
lowest average distortion measure and the highest PSNR in dB value. Then keeping
C(i) = 0.2 as constant, size of the population of bacteria colony (S) is varied in steps
of 10, 20, 40 and 60. The common notion is that as the number of bacteria is increased,
the optimization algorithm should yield better results, because it is expected that at
least one bacterium will move closer to the optimum point [19].

However Table 7.3 shows that with an increase in the value of S often the per-
formance deteriorated. The best results are obtained mostly with either S = 10 or
S = 20. We chose S = 10, as an increase in the number of bacteria results in an
increase in computational complexity as well as the computation time.
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Table 7.4 Impact of variation of chemotaxis steps in BFOA (Pepper and Lena: 256 × 256 size
divided into 2 × 2 blocks)

Codebook size (c) Combination of (Nc − Ns) Average distortion measure (D) PSNR (in dB)
Pepper Lena Pepper Lena

32 16 − 8 318.2147 300.5532 29.1243 29.3726
8 − 4 317.3322 299.5829 29.1363 29.3862
4 − 2 305.3132 286.1672 29.3045 29.5853

64 16 − 8 195.8200 207.6058 31.2329 30.9790
8 − 4 197.7820 202.6545 31.1895 31.0838
4 − 2 197.0793 193.0866 31.2058 31.2939

128 16 − 8 134.5591 141.4428 32.8623 32.6457
8 − 4 133.8687 153.0440 32.8846 32.3032
4 − 2 129.8156 133.1554 33.0181 32.9078

Table 7.5 Free parameters
for classical BFOA

Parameter Value

S 10
Nc 4
Ns 2
C(i) 0.2
Nre 1
Ned 1
ped 0.4

Table 7.6 Free parameters
specifically chosen for
adaptive BFOA (ABFOA)

Parameters of ABFOA Value

α 3*π

β 2
εini tial 2,000
Cinitial 0.6
Ku 5

Once S is fixed, we varied the Nc − Ns combination. Though the computational
complexity increases with the increase in number of chemotactic steps, the possibility
of arriving at the optimum solution also increases [27]. By observing Table 7.4 we
can conclude that the Nc = 4 and Ns = 2 combination gives considerably good
results for both the Lena and Pepper images.

Thus the final parameter set obtained from classical BFOA is shown in Table 7.5.
Once the suitable free parameters of the classical BFOA are determined, the next

step was to determine the additional free parameters α, β, εini tial , Ku introduced
in the adaptive BFOA (ABFOA). As our proposed algorithm attempts to adapt the
run length unit in each processing step, the suitable nomenclature adopted for it is
C(i, j, k), i.e., the run length unit for ith bacterium, in the jth chemotactic step and
the kth reproduction step. We propose to utilize a sine function for the adaptive run
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Table 7.7 Comparative study of PSNR for the Lena,Pepperand Boat images for different codebook
sizes

Algorithms PSNR (in dB)
c=8 c=16 c=32 c=64 c=128

Lena
FABFOAVQ1 28.8580 30.7428 32.3438 33.8746 35.3879
FABFOAVQ2 28.8576 30.7213 32.3423 33.8723 35.3732
FABFOAVQ3 28.8031 30.7157 32.3366 33.8091 35.3594
FBFOAVQ1 28.8442 30.7194 32.3703 33.8078 35.2807
FBFOAVQ2 28.8405 30.7121 32.3301 33.7900 35.2730
FBFOAVQ3 28.8400 30.6938 32.3089 33.7454 35.2602
Pepper
FABFOAVQ1 27.3026 29.0870 31.3356 32.8237 34.2747
FABFOAVQ2 27.3319 29.0668 31.3250 32.7483 34.2119
FABFOAVQ3 27.3193 29.0676 31.2721 32.7394 34.3226
FBFOAVQ1 27.3097 29.0447 31.3675 32.7319 34.1442
FBFOAVQ2 27.3195 29.0262 31.2150 32.8045 34.1926
FBFOAVQ3 27.2823 29.0664 31.2457 32.6344 34.1838
Boat
FABFOAVQ1 26.7552 28.7165 30.3018 31.8293 33.3748
FABFOAVQ2 26.7520 28.6127 30.2853 31.8107 33.3580
FABFOAVQ3 26.7363 28.6087 30.2853 31.7036 33.2515
FBFOAVQ1 26.7377 28.6903 30.3716 31.7064 33.3092
FBFOAVQ2 26.7430 28.6422 30.2530 31.7018 33.2760
FBFOAVQ3 26.7301 28.5345 30.0124 31.6155 33.2020

Table 7.8 Comparative
study of PSNR in dB for
competing algorithms for the
Lena image (size: 512 × 512
pixels divided into 4 × 4
image blocks)

Codebook size (c)
64 128

c-Means [16, 27] 28.638 29.257
LBG [6, 16] 28.451 28.656
ELBG [16, 34] 29.412 30.234
MD [14, 16] 27.998 28.904
ISM [16, 35] 27.876 29.121
FVQ [3, 16] 29.994 31.080
FLVQ [15, 16] m0 = 1.5 29.903 30.908
Improved Batch FLVQ θ0 = 0.2 [16] 29.860 31.304
FBFOAVQ (proposed) 29.678 30.734
FABFOAVQ (proposed) 29.704 30.862

length unit, such that if J (i, j, k, ell) decreases, C(i, j, k) also decreases. Hence,

C(i, j, k) = sin

(
J (i, j, k, ell)

α

)
(7.18)
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Table 7.9 Comparative
study of PSNR in dB for
competing algorithms for the
Boat image (size: 512 × 512
pixels divided into 4 × 4
image blocks)

Codebook size (c)
64 128

c-Means [16, 27] 26.504 27.456
LBG [6, 16] 26.671 27.812
ELBG [16, 34] 27.552 27.897
MD [14, 16] 27.269 26.567
ISM [16, 35] 27.122 26.452
FVQ [3, 16] 27.213 28.234
FLVQ [15, 16] m0 = 1.5 27.191 28.147
Improved Batch FLVQ θ0 = 0.2 [16] 27.294 28.268
FBFOAVQ (proposed) 27.321 28.308
FABFOAVQ (proposed) 27.334 28.400

Fig. 7.3 a Original Lena image [36, 37]. b Histogram of the image in (a)

Precision goal εini tial is varied from 1,000 to 4,000 and is finally fixed at 2,000.
In the literature, the suggested value of Ku is 20 [26]. However, we reduced it to 5
to ensure that the decision making is much quicker regarding whether the bacterium
should be in the exploitation state or in the exploration state. Once the population
of bacteria finishes chemotaxis it enters into reproduction and elimination-dispersal
loop, same as classical BFOA. α and β are chosen as 3π and 2, respectively, after
several trial and error-based test runs. The specific parameter settings for ABFOA
are summarized in Table 7.6.

In the next stage of simulation analysis, we carried out a comparative study of
the performance of classical BFOA with the performance of ABFOA. Here three
benchmark images Lena, Pepper and Boat, each of size 512 × 512 pixels, were
chosen. These images were first divided into small blocks of size 2 × 2 pixels, and
training image vectors were accordingly generated. Then, for different codebook
sizes, classical BFOA and ABFOA each underwent five independent runs. For each
codebook size, the three best performances in terms of PSNR in dB are recorded
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Fig. 7.4 a Original Pepper image [36, 37]. b Histogram of the image in (a)

Fig. 7.5 a Original Boat image [36, 37]. b Histogram of the image in (a)

in Table 7.7. The three best versions of classical BFOA-based VQ are named as
FBFOAVQ1, FBFOAVQ2 and FBFOAVQ3, and the three best versions of the adap-
tive BFOA-based VQ are named as FABFOAVQ1, FABFOAVQ2 and FABFOAVQ3,
respectively. This table demonstrates that the performance of ABFOA, in most sit-
uations, dominates over the performance of classical BFOA. With bigger codebook
sizes, this dominance gets more pronounced.

In the next stage of simulation, each image of size 512 × 512 pixels is divided
into 4 × 4 blocks so that 16,384 numbers of 16 × 1 vectors are generated as training
image pattern vectors. Then the optimal codebook is generated with the help of
BFOA and ABFOA, and the compression quality is evaluated in terms of PSNR.
Tables 7.8 and 7.9 present these results. One can see that FABFOAVQ has improved
the performance of FBFOAVQ in each case. For the Boat image, FABFOAVQ and
FBFOAVQ emerged as the two overall best performing algorithms. For the Lena
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Fig. 7.6 a Zoomed reconstructed image of Lena with codebook size 64. b Histogram of the recon-
structed image of Lena with codebook size 64

Fig. 7.7 a Zoomed reconstructed image of Pepper with codebook size 32. b Histogram of the
reconstructed image of Pepper with codebook size 32

image, however, FVQ, FLVQ and improved batch FLVQ produced better results
than FABFOAVQ and FBFOAVQ.

Figures 7.3, 7.4 and 7.5 show three benchmark images considered, along with the
histograms constructed for pixel intensities for each of these images. Figures 7.6a,
7.7a and 7.8a show zoomed views of a subportion of each of these images, recon-
structed using codebook vectors created employing FABFOAVQ scheme for image
compression. These reconstructions are carried out for different sample codebook
sizes or values of c. One can infer from these zoomed views that the reconstructed
images are quite smooth in nature, and the compression carried out does not degrade
the visual quality of the reconstructed images and, as such, no significant artifacts are
visible. This is also justified by the corresponding histograms of these reconstructed
images shown in Figs. 7.6b, 7.7b and 7.8b respectively. These histograms show that
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Fig. 7.8 a Zoomed reconstructed image of Boat with codebook size 128. b Histogram of the
reconstructed image of Boat with codebook size 128

the distributions of pixel intensities are quite uniform throughout the entire universe
of discourse of the gray levels and they are not cluttered in a small zone (or zones),
even after undergoing the process of compression. Hence these figures provide a
visual or qualitative justification for the efficiency of the compression algorithm
proposed in this work.

7.6 Conclusion

In this work we have presented the development and evaluation of a classical bacterial
foraging optimization algorithm and proposed a new adaptive bacterial foraging
algorithm for VQ-based image compression. It has been shown that these BFOA
and ABFOA algorithms can produce improvements in compression qualities for
several images, in terms of average distortion measure and peak-signal-to-noise-ratio.
Although FLVQ-based algorithms still produced better performance than classical
BFOA and ABFOA-based VQ algorithms in some cases, it should be remembered
that the performance of such FLVQ schemes depend largely on initial choices of free
parameter(s). On the other hand, the BFO-based VQ algorithms showed relatively
high robustness in their performance, and ABFOA exhibited less dependence on the
initial choice of free parameters. The efficiency of the proposed algorithm is also
demonstrated in terms of high fidelity of the reconstructed images.
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Chapter 8
A Fuzzy Condition-Sensitive Hierarchical
Algorithm for Approximate Template
Matching in Dynamic Image Sequence

Rajshree Mandal, Anisha Halder, Amit Konar and Atulya K Nagar

Abstract Given a template of m × n and an image of M × N pixels, the latter
being partitioned into blocks of m × n pixels with interleaving, template matching
aims at determining the best matched target block in the image with respect to the
template. This chapter develops a hierarchical algorithm of template matching using
decision trees. Nodes in the tree, here, represent the features used for matching,
while the arcs denote the conditions on the features to separate relatively better
candidate solutions from the rest. The proposed hierarchical matching scheme tests
the feasibility of each block by checking the satisfiability of the conditions labeled
along the arcs. The block that satisfies the condition at one level is transferred to
the next level, and discarded from the system otherwise. Thus blocks that traverse
the largest depth are better candidate solutions. Among these solutions, the one with
the smallest Euclidean distance with the template is declared as the winner. The
work differs with respect to classical hierarchical template matching by two counts.
First, the conditions here are induced with fuzzy measurements of the features. Fuzzy
encoding eliminates small changes in imaging features due to variations in lighting
conditions and head movement. Second, information gain is used to determine the
order of the features to be examined by the tree for decision making. The time-

R. Mandal (B) · A. Halder · A. Konar
Department of Electronics and Tele-Communication Engineering,
Jadavpur University, Kolkata-32, Kolkata, India
e-mail: rajshree.mandal@gmail.com

A. Halder
e-mail: halder.anisha@gmail.com

A. Konar
e-mail: konaramit@yahoo.co.in

A. K. Nagar
Department of Math and Computer Science,
Liverpool Hope University,
Liverpool, UK
e-mail: nagara@hope.ac.uk

A. Chatterjee and P. Siarry (eds.), Computational Intelligence in Image Processing, 155
DOI: 10.1007/978-3-642-30621-1_8, © Springer-Verlag Berlin Heidelberg 2013



156 R. Mandal et al.

complexity of the proposed algorithm is of the order of M N/mn. The algorithm has
successfully been implemented for template matching of human eyes in facial images
carrying different emotions, and the classification accuracy is as high as 94 %.

8.1 Introduction

Template matching is a well-known problem in image understanding and interpreta-
tion. It has extensive applications in geographical/geological explorations, medical
study, and the like. But its application in emotionally expressive facial region recog-
nition is a novel problem. The classical template matching schemes presume static
frames with distortions in the imagery. But when facial expression and in particular
emotional expression is concerned, matching becomes a difficult problem. This is
because of the fact that the detection of the nearest matched module/block in the
image with respect to a static template sometimes gives rise to false indication, and
occasionally misses the necessary target. The problem of image matching in dynamic
image frames thus is a challenging problem.

There exists extensive works on image matching using correlation [1, 2], feature
extraction [5], boosting process [3], distance transforms [4], subblock coding [6],
moment descriptor [20] and other some other techniques [7–10, 12–15, 17]. Hierar-
chical image matching is also addressed in recent works [4]. However, we are afraid
that there is almost no trace of research in the arena of template matching using
hierarchical techniques. Studies of hierarchical template matching on emotionally
excited faces are few and far between. The aim of this chapter is thus novel, and the
method employed is also unique with respect to the reported works in this domain.

With the existing techniques of pattern recognition and image processing, hun-
dreds or even more approaches to handle this problem can be addressed. But the
objective here is to design a very robust algorithm, capable of matching in a finite
time, where the time taken should be as small as possible. If such an algorithm can
be designed, we would be able to use it for real-time matching in movie frames or
even with minor modifications on real-time video. Designing a fast algorithm calls
for minimum computations, without losing the target blocks. One approach to solve
this problem is to consider matching template features with block features of a parti-
tioned image in a time-staggered manner, so that important features that eliminate the
possibility of matching can be used first to reduce the search space. In this chapter,
we consider a hierarchical matching that explores the search space in such a time-
staggered manner with multiple features, taken one at a time. One question that may
be raised is how to detect the order of matching of the features. Here, we employ
an entropy measure policy like the one considered in decision tree-based learning
algorithms, to determine the order of features based on which the matching has to
be accomplished.

In this chapter, simple statistical features like mean, standard deviation and kurto-
sis are considered to compare the template with the partitioned blocks in the image.
Further, instead of directly matching the image attributes, the features are first mapped
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on the fuzzy plane and then the comparison is carried out. The fuzzy measure re-
duces the scope of creeping up of noise in the matching process, and thus improves
the robustness of the technique. The chapter has been divided into eight sections.
Section 8.2 gives a small introduction on the principle of template matching.
Section 8.3 gives the fuzzy conditions for approximate matching employed in our
algorithm. The basis of hierarchical search and the decision tree learning approach
is given in Sect. 8.4. The algorithm is given in Sect. 8.5. The experimental results are
given in Sect. 8.6. Section 8.7 gives the performance analysis and the conclusions are
listed in Sect. 8.8.

8.2 Principle of Template Matching

In template matching, we need to search a template of m × n pixels in an image
of M × N pixels. A pixelwise matching of the template over the image definitely
gives the best result, but is computationally very expensive and time consuming.
The pixelwise matching scheme thus is prohibited for real-time applications, where
time is an important factor. This calls for designing an intelligent search algorithm
that alleviates the fundamental premise of pixelwise template matching. One way
of formulating the template matching problem in the present context is to design a
feature-based search strategy over a partitioned image of equal block size similar to
that of a given template. The exploration should continue until the desired block can
be identified. During the exploration phase, the template needs to be matched with
the partitioned blocks with respect to the selected features. Selection of features for
a general image without any knowledge of the background or context is not always
easy. Here, we consider simple statistical features to be determined for each block
in the image. A distance metric is defined to match the template features with those
of individual image blocks. The simplest distance metric is the Euclidean distance.
However, other distance metrics can also be used, depending on their suitability in
applications. In this chapter, we select mean, standard deviation and kurtosis as three
basic image attributes. To perform template matching in color images, here, the above
features are evaluated in the r-,g- and b-planes separately.

We now formally define these parameters with respect to an α plane where α ∈
r, g, b

Let
xα

i be the intensity of the i th pixel on the α plane,
meanα be the mean value of pixel intensities in a block on the α plane,
σα be the standard deviation of pixel intensities in a block on the α plane,
kα be the kurtosis of pixel intensities in a block on the α plane,
n gives the total number of pixel intensities in the block.

Definition 8.1 For a particular block, mean gives the arithmetic average of all the
pixel intensities in r-, g-, and b-planes, respectively, and is formally given by
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meanα = 1

n

n∑
i=1

xα
i (8.1)

Definition 8.2 The standard deviation indicates a measure of deviation of the pixel
intensities xi from their mean. The standard deviation of a block of pixel intensity is
given as

σα = (
1

n

n∑
i=1

(xα
i − meanα)2)

1
2 (8.2)

Definition 8.3 The kurtosis of a block of pixels on the α plane is given by,

kα = E(xα
i − meanα)4

σ 4
α

(8.3)

where E(X) is the expectation of the random variable X defined on a probability
space.

The template matching algorithm can be realized by matching the template over
equally sized partitioned blocks in the image. If the search is performed on non-
overlapped regions in the image, the chances of identifying the target block becomes
rare. To avoid this problem, we allow overlapped search with an interleaving of
few pixels over the previously selected blocks. The more the overlap, the better the
localization of the target region, at the cost of extra search time.

8.3 Fuzzy Conditions for Approximate Matching

Feature-based matching of template with partitioned blocks usually determines the
distance between the measured features of the template with the respective features
of a partitioned block. In many cases, it is observed that the template may not be
present in the image in its exact form. This raises a fundamental problem, which is
addressed here using a transformation of the measurements into fuzzy memberships.
It is apparent that the logic of fuzzy sets has their inherent capability to handle
approximate matching. We would explore this particular characteristic of fuzzy sets
to perform approximate matching of a given block in an image with a fixed template.
The definitions of fuzzy set and membership are introduced below for convenience
of the readers.
Definition 4: Let X be a universe of measurements. For x ∈ X , we call A to be a
fuzzy set under the universe X , where

A = {x, μA(x)} (8.4)

μA(x) is called the membership of x in A, where 0 ≤ μA(x) ≤ 1.
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Fig. 8.1 A Gaussian mem-
bership distribution μA(x)

versus parameter x

In this chapter, we consider Gaussian-type membership function, given by

μA(x) = e− (x−m)2

2σ2 (8.5)

where x is a linguistic variable in set A, and m and σ are the mean and standard
deviation of x in set A. Figure 8.1 provides a Gaussian membership distribution
curve. The significance of selecting Gaussian distribution is briefly outlined below.

The features of the template, here, have been modeled as fuzzy linguistic variables.
Usually, for similar templates, the probability in deviation of a feature ±δ(x) from
its mean value x̄ is presumed to be equal for large samples. This motivated us to use
a Gaussian distribution as the membership distribution μA(x) for the feature x. Such
membership distribution has a peak at the center of the span of the linguistic variable
x , and can easily capture the membership of x in A, where A=EQUAL_TO_x̄ . In
other words, the Gaussian membership distribution indicates the membership of x to
be close to x̄ . Consequently, when x=x̄ , the membership is 1, and as x moves away
from x̄ , the membership falls off.

Because of the inherent nonlinearity in the Gaussian membership functions, nu-
merically close linguistic variables are mapped closer in the fuzzy space. Thus a
search of the template on a uniformly noisy image with no background informa-
tion about the noise characteristics can be performed efficiently using the proposed
approach.

The feature-based fuzzy matching scheme to be proposed attempts to match the
features of the template with those of a block, respectively, in the membership scale.
For example, let (x̄ + δ) be the measurement of a feature in a given block, where x̄
is the mean value of the feature obtained from several similar templates. Now, we
say that the feature x̄ of the template will be close enough to the feature (x̄ + δ) of
the block, if

|μA(x̄) − μA(x̄ + δ)| ≤ ε,



160 R. Mandal et al.

Table 8.1 Matching
accuracy in percentage by
varying threshold

Emotion
Threshold Happy Sad Fear Anger

0.9 100 100 80 80
0.8 80 100 60 65
0.7 80 100 60 50
0.6 70 95 50 45

Table 8.2 Position of the
peak of the Gaussian
distribution

Features r-plane g-plane b-plane

Mean 179 121 93
Std. dev 10 8 7
Kurtosis 4 3 3

where ε is a very small preassigned positive quantity. The choice of ε is subjective
to specific feature under consideration.

Usually, more than one feature is required to perform the template matching
operation. Let, f1, f2, . . . , fn be a set of n features used for template matching.
Then, we say that the template will be close enough to a given block with respect to
the above features if,

|μA1( f̄1) − μA1( f̄1 + δ1)| ≤ ε1

|μA2( f̄2) − μA2( f̄2 + δ2)| ≤ ε2

...

and |μAn ( f̄n) − μAn ( f̄n + δn)| ≤ εn

where
fi is the i th feature in fuzzy set Ai ,
f̄i is the mean value of the i th feature in the template,
δi is the offset in measurement of the feature fi in a given block,

and εi is the allowed tolerance level in membership matching of a feature between
the template and a given block.

In our experiment, we consider three features: f1 for mean, f2 for standard devi-
ation and f3 for kurtosis of a given block and template. We experimented by varying
εi for i=1 to 4 in [0.6, 0.9]. Table 8.1 shows the matching accuracy in percentage by
varying εi from 0.6 to 0.9. The results given in the table are intuitively supported, as
with increasing threshold the classification accuracy increases.

The above measurements of features are carried out in the r-,g- and b-planes
separately, and the mean, standard deviation and kurtosis in three planes obtained
from a set of thirty templates of left/right eye of a subject are evaluated. Table 8.2
gives the position of the peak value of the Gaussian curve.

One illustrative membership curve for the feature mean in the r-plane is given in
Fig. 8.2 for convenience.
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Fig. 8.2 Membership curve
of mean of block r-component
with m = 179

8.4 Template Matching by Hierarchical Search

An exhaustive feature-based matching of the template with individual partitioned
blocks in the image definitely yields good results but at the cost of excessive compu-
tational complexity. This excessive complexity can, however, be reduced significantly
by hierarchically matching the features of the partitioned blocks in the image with
that of the template. This calls for ordering of the features in a manner so that the fail-
ures in matching can be identified earlier in the search process and final localization
of the target block can be undertaken by matching other relevant features.

The hierarchical feature matching introduced here consists of both coarse and fine
search. The coarse search first identifies the approximate location of the target block
in a given image. The fine search is required to identify the exact location of the
target block in and around the selected location of the block obtained in the coarse
search.

The coarse search is accomplished using a decision-tree learning algorithm [19].
In a decision tree , the features(attributes) of a set of exemplar observation are used
to classify all the data points of n features into two distinct classes. The nodes in a
decision tree denote the features, and the arcs emanating from a node denote possible
values of feature. For example, if ‘wind velocity’ is a feature to predict atmospheric
storm, then the ‘wind velocity’ will be node, and the arcs emanating from that node
are ‘strong’ and ‘weak’. The most important issue in a decision-tree construction is
to order the attributes in the tree in a hierarchical manner in order of their importance,
starting at the root node and going downstream all the nodes excluding the leaf nodes.
The leaf nodes in the decision tree are the boolean variables ‘yes’ and ‘no’.

To determine the mapping of the features at different levels of the nodes, usually
an entropy analysis is performed. This analysis helps in determining the sequential
order of the attributes to be used at different levels of the hierarchy in the tree, starting
at the root node.
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The entropy calculation requires the determination of positive and negative pro-
portions of the given instances favoring and denying the goal decision.

Let
‘pos’ denotes the proportion of positive instances in S
‘neg’ denotes the proportion of negative instances in S
We now define Information gain(S,A) where, S is number of samples of positive

and negative instances for a goal/target decision, and A is a given attribute.

Gain(S, A) = Entropy(S) −
∑

v∈V alues(A)

|Sv|
|S| × (Sv) (8.6)

where,
Entropy(S) = −pos log2(pos) − neg log2(neg) (8.7)

The decision tree to be developed includes five levels of hierarchy, where the last
level is the boolean variable ‘yes’/‘no’ and the last-but-one level is the pixelwise
difference in intensity between the template and the given block. We intentionally
want to keep the pixel difference at the last-but-one level so that the overall search
complexity of the algorithm is less. The features for which Information gain are
to be determined so as to rank them for mapping in the decision tree according to
their relative importance are mean, standard deviation and kurtosis at the r-,g- and
b-planes together. To measure the possible values of the above three features, we use
the following variables, A, B, C and P, as given below.

A = μE Q−T O−179(mean) ∧ μE Q−T O−121(mean) ∧ μE Q−T O−93(mean) (8.8)

B = μE Q−T O−10(std.dev) ∧ μE Q−T O−8(std.dev) ∧ μE Q−T O−7(std.dev)

(8.9)

C = μE Q−T O−4(kurtosis) ∧ μE Q−T O−121(kurtosis) ∧ μE Q−T O−93(kurtosis)

(8.10)

Zi j = |1 − μE Q−T O−179(mean)| + |1 − μE Q−T O−121(mean)| (8.11)

+ |1 − μE Q−T O−93(mean)| + |1 − μE Q−T O−10(std.dev)|
+ |1 − μE Q−T O−8(std.dev)| + |1 − μE Q−T O−7(std.dev)|
+ |1 − μE Q−T O−4(kurtosis)| + |1 − μE Q−T O−121(kurtosis)|
+ |1 − μE Q−T O−93(kurtosis)|

P = the f irst n elements o f the sorted Zi j in ascending order. (8.12)

Table 8.3 provides result of analysis of entropy and Information gain for mean,
standard deviation and kurtosis. It is apparent from this table that the Information gain
is the largest for mean, followed by that of standard deviation and that of kurtosis.
Thus, mean, standard deviation and kurtosis are organized at successive levels of the
decision tree, starting at the root. In Table 8.3, E stands for entropy.



8 A Fuzzy Condition Sensitive Hierarchical Algorithm 163

Table 8.3 Entropy and Information Gain Calculation

No of blocks E>(std. dev 0.9) E>(mean 0.9) E>(kurtosis 0.9) Info Gain Info Gain Info Gain
(mean) (std. dev) (kurtosis)

p n p n p n

609 1 149 1 105 1 452 0.0041 0.0033 0.00069
−0.0175 −0.0175 −0.0175

599 1 112 1 128 1 420 0.0036 0.0040 0.00084
−0.0178 −0.0178 −0.0178

606 1 160 1 151 1 390 0.0032 0.0031 0.00108
−0.0176 −0.0176 −0.0176

710 1 161 1 146 1 499 0.0031 0.0029 0.00095
−0.0153 −0.0153 −0.0153

610 1 145 1 110 1 445 0.0045 0.0032 0.00077
−0.0172 −0.0172 −0.0175

603 1 115 1 134 1 415 0.0038 0.0039 0.00088
−0.018 −0.018 −0.018

702 1 158 1 135 1 376 0.0028 0.0025 0.00089
−0.0148 −0.0148 −0.0148

714 1 165 1 148 1 502 0.0033 0.0031 0.00096
−0.0151 −0.0151 −0.151

653 1 148 1 115 1 462 0.0053 0.0045 0.00086
−0.0186 −0.0186 −0.0186

592 1 111 1 128 1 410 0.0035 0.0033 0.00086
−0.0157 −0.0157 −0.0157

Besides the above, pixelwise difference is included at the lowest decision level of
the tree, as given in Fig. 8.3. In this figure, we consider matching of a block when the
parameters A, B, C exceed 0.9 and n is less than 10. Any time one of the conditions
listed in the left-most leading edge of the tree violates the prescribed conditions, the
block on which the matching was undertaken is discarded from the list. In case there
exists more than one block of an image that satisfies the matching criteria in the first
three steps, i.e., A > 0.9, B > 0.9 and C > 0.9, then we need to identify the target
block by pixelwise matching between the template and the blocks so far selected by
the first three steps. When number of such selected blocks is high, we then select
the best ten among selected blocks based on their measure Zi j . A block with smaller
Zi j is given preference to other blocks having relatively larger Zi j . Thus pixelwise
matching of the template with ten blocks reduces the computational overhead of the
algorithm.

8.5 The Proposed Algorithm

The algorithm includes a coarse search followed by a fine search. The coarse search
starts with evaluating A for all blocks of m × n pixels in a given image of M × N
pixels with an interleaving of m/4 pixels for row-blocks and n/4 pixels for column
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Fig. 8.3 Entropy-based de-
cision tree for ordering the
features

blocks. So, A is evaluated for ( M
m/4 − 1)( N

n/4 − 1) = ( 4M
m − 1)( 4N

n − 1) blocks. The
blocks satisfying A > 0.9 are passed on to the next stage, and B is evaluated for these
blocks. Those blocks satisfying B > 0.9 are selected and passed on to the next stage.
Now, C is evaluated for these blocks, and those satisfying C > 0.9 are considered
as the nearest matched blocks with the template. Finally, the coarse search evaluates
Zi j for the block Bi j that satisfied C > 0.9. The Zi j∀i, j are sorted in ascending
order, and the indices (i , j) for the best ten blocks are saved in a set P . The fine
search evaluates Euclidean distance between the template and all blocks with indices
sorted in P and their neighborhood. The coarse search and the fine search algorithm
are formally given next.
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Input: A given template of m × n pixels to be searched on an image of
M × N pixels.

Output: The block with minimum pixelwise unsigned difference with the template.

Coarse Search
Begin
Determine mean, std. deviation and kurtosis for the template;
(S := φ) // a set for holding values of Zi j

For i:=1 to ( 4M
m − 1) with an interleaving of m

4 pixels do Begin
For j:=1 to ( 4N

n − 1) with an interleaving of n
4 pixels do Begin

find μ(mean) for the block for r-,g-,b- plane
If A > 0.9 do Begin
find μ(stddev) for the block for r-,g-,b- plane
If B > 0.9 do Begin
find μ(kurtosis) for the block for r-,g-,b- plane
If C > 0.9 do Begin
find Zi j

S := S
⋃

Zi j )

End If
End If

End If
End For

End For
Sort S in ascending order of Zi j

Save the indices (i,j) for the first 10 elements of S in set P

Fine Search
For p ∈ P do Begin

For blockp in the neighborhood Np of p.
Find pixelwise Euclidean distance di j between the selected block and

the template
Save the smallest distance di j in set D

End For
End For
Find the smallest element in D and print the block index(i,j)
End

Complexity: Given an image of M × N pixels, and a template of m ×n pixels, the
template is rolled over the image with an interleave of m/4 along the row and n/4
along the column. So, the total number of matching of the template with the image
is ( M

m/4 − 1)( N
n/4 − 1) ≈ 16( M N

mn ). The coarse search is performed in three steps at

different levels of the tree. At the root level, the complexity is 16( M N
mn ). However,

only a few blocks of the image are passed on to the next level, when the fuzzy
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membership of the respective statistical variable (here mean), is within 10 % fall-off
from the peak of the curve. Let the range of variable x for which the membership is
within this 10 % fall-off from the peak be 2α. We know that the total x-span which
approximately covers 99 % of the range of x is 6σ , where σ is the standard deviation
of the variable x . So, the expected number of blocks to be passed on to the next
level in the tree is given by 2α

6σ
16( M N

mn ) of the Gaussian curve. It can be shown that
again the expected number of blocks to be passed on to the next descendent level is
( 2α

6σ
)216( M N

mn ). So, the expected complexity of the coarse search is given by

TC O ARSE = 16(
M N

mn
)[1 + (

2α

6σ
) + (

2α

6σ
)2]

= O(
M N

mn
) (8.13)

To determine the complexity of the fine search, we first determine a zone around
the selected block identified by the previous coarse search procedure. In this chapter,
for a given template size of m × n, the neighborhood around the centroid of the
selected block is (m + m

2 , n + n
2 ), and the template is searched in this region with an

interleaving of m
16 along the row, and n

16 along the column. The complexity to match

the template with the above interleaving is found to be [ 3m/2
m/16 −1]×[ 3n/2

n/16 −1] = 529
(fixed). In our experiment, we select ten such blocks for finer matching. Thus com-
plexity of fine search procedure is O(5290).

TF I N E = O(5290) (8.14)

The total complexity is given by (TC O ARSE + TF I N E ), which is O( M N
mn ) +

O(5290). As a specific example, when M = 640, N = 480, m = 40, n = 30,
the total complexity is obtained as O(162) + O(5290), which means the fine search
has much more complexity than the coarse counterpart. It can be verified that the
overall complexity of the algorithm is approximately 21×( M N

mn ) for the given settings
of M , N , m and n. Thus the expected time-complexity of the hierarchical search is
O(21 M N

mn ) ≈ O( M N
mn ).

8.6 Experiments and Computer Simulation

The work was undertaken in the Artificial Intelligence Laboratory of Jadavpur Uni-
versity. The experiment was conducted with ten subjects whose facial expressions
conveying different emotions such as happiness, anger, fear and sadness were cap-
tured. Before template matching was carried out, the skin region is first detected.
This is done in order to localize the search space for template matching. Skin region
detection is carried out on the HSV color model. Two parameters, namely x and y,
are chosen using the relations:
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Fig. 8.4 Eye template (b) is
extracted from image (a)

Table 8.4 Detection of skin region and right eye using template in Fig. 8.4b under different emo-
tional states (H: Happy, S: Sad, F: Fear, A: Anger)

Emotion Input Image Skin Region Right Eye Identified

H

S

F

A

x = (0.148 × H) − (0.291 × S) + (0.439 × V ) + 128 (8.15)

y = (0.439 × H) − (0.368 × S) − (0.071 × V ) + 128 (8.16)
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Fig. 8.5 Right eye template
matching of a subject for
different emotions

Fig. 8.6 Left eye template
matching of a subject for
different emotion

Table 8.5 Matching score of
right eyes conveying different
emotions with the eye in the
relaxed state

Happy Sad Fear Anger

0.7084 0.8062 0.8053 0.5675
0.656 0.7772 0.7298 0.6079
0.75 0.69 0.7129 0.612
0.702 0.6918 0.723 0.605
0.705 0.612 0.758 0.592

Table 8.6 Matching score of
left eyes conveying different
emotions with the eye in the
relaxed state

Happy Sad Fear Anger

0.81 0.759 0.586 0.554
0.712 0.728 0.608 0.563
0.725 0.796 0.593 0.607
0.695 0.726 0.612 0.593
0.673 0.805 0.72 0.584
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For each and every pixel, the parameters x , y and H are determined, and if they
lie in the range given below, it is considered as skin pixel.

140 ≤ y ≤ 165

140 ≤ x ≤ 195

0.01 ≤ hue ≤ 0.1

After the skin region is extracted, our next task is to identify the block with
maxm resemblance with the given template. In our experiment, we have taken an
eye-template of the subject when he/she is emotionally relaxed. With this template,
the eye region of the subject conveying different emotional expressions is identified
with the help of the hierarchical template-matching algorithm as mentioned in the
previous section. This was repeated for ten individuals and we observed that in most
of the cases the eye region matches successfully. The success rate of this experiment
is found to be 94 %.

Figure 8.4a is an illustrative facial expression of a person in a relaxed state. The cor-
responding eye template that was manually extracted is given in Fig. 8.4b. Template
matching is then performed on the facial expression of the same person, conveying
different emotions. It is observed that the right eye in the third column of Table 8.4
is correctly identified for the given emotional expressions.

The right and left eyes of a subject in a relaxed state are now identified, and tem-
plate matching is performed on their facial expressions conveying different emotions
(Figs. 8.5 and 8.6). The matching score of the right and left eyes with respect to the
eye block in the relaxed state are given in Tables 8.5 and 8.6, respectively.

The experiment is now repeated to identify the target block in group photographs
of three people. In Fig. 8.7, the eye template of a subject is manually extracted
from her facial expression under relaxed state. The eye template is then searched in
group photographs of left column in Table 8.7 under different emotional expressions.
We obtained the same emotional expression of all the three people by audio-visual
stimulus developed in our previous experiment on emotional research [18]. Interest-
ingly, in all four emotional settings, the target blocks are correctly identified. The
detected blocks are shown in Fig. 8.8. Experiments reveal that for group photographs,
the accuracy is 82 %.

8.7 Performance Analysis

The experiment was performed on 76 images. Out of them, the eye region was
detected correctly for 72 images. The accuracy of our proposed algorithm is measured
to be 94 %. Table 8.8 shows the complexity comparison of our proposed algorithm
with other existing methods. It is apparent from the table that the complexity obtained
from our proposed algorithm is less compared to other existing methods.
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Fig. 8.7 Eye template (b) is
extracted from image (a)

Table 8.7 Matching of template for experiment done on a group

Emotion Input Image Skin region identified and
then right eye marked

H

S

F

A

Fig. 8.8 Detected eye blocks
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Table 8.8 Performance analysis by complexity measure of other techniques

Technique Imaging Parameters Complexity

Two-dimensional template
matching based on
polynomial approximation
[11]

Input image is M × N pixels, d
is the degree of polynomial
and L is the number of
partial images

O(M Nd2 + Ld4)

Image matching algorithm
based on subblock coding
[6]

Template size is N × N pixels,
Image size is M × M pixels

O(M2)

Sum of squared differences
method

–do– (N − M + 1)2

QFT phase-only correlation
template match[16]

Input image is M × N pixels
template is m × n pixels

O((log(M N ))2)

Fast Fourier transform [16] –do– O(M Nlog(M N ))

Pattern matching for rotation
and scaling space [3]

Template is m × m pixels and
Input image n × n pixels. s
and r are the dimensions of
the scaling and rotation
space

O(m2n2sr)

Hierarchical algorithm for
approximate template
matching

Size of input image is M × N
and size of template is
m × n

O(M N/mn)

8.8 Conclusions

The chapter introduced a hierarchical approach to template matching. The proposed
algorithm for template matching is capable of detecting both noisy and distorted
partitioned image blocks similar to that of the template. Because of its hierarchical
structure, the algorithm is highly time efficient, and outperforms most of the popular
techniques for template matching. Experimental results confirm percentage matching
accuracy is as high as around 94 % for single images and 82 % for group images.

Because of its high matching accuracy and low computational overhead, the pro-
posed algorithm is a good choice for real-time image matching. Also, it is capable of
approximate matching of a template with a given image. To support the above state-
ment, we consider matching of emotional facial expressions with a relaxed template
in our above-mentioned experiment and observed that it could correctly match the
eye template with these emotional expressions. Further, due to its inherent capability
of approximate matching, the algorithm can be employed for matching of salient
facial attributes, such as eye or lip with those of partitioned image blocks, where the
emotional content of the template need not match with that of the partitioned blocks
containing the desired facial attribute.
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Chapter 9
Digital Watermarking Strings with Images
Compressed by Fuzzy Relation Equations

Ferdinando Di Martino and Salvatore Sessa

Abstract A gray image is seen as a fuzzy relation R if its pixels are normalized
with respect to the length of the used scale. This relation R is divided in submatrices
defined as blocks, and each block RB is coded to a fuzzy relation G B , which in turn is
decoded to a fuzzy relation DB (unsigned) whose values are greater than those of RB .
Both G B and DB are obtained via fuzzy relation equations with continuous triangular
norms (in particular, here we use the Lukasiewicz t-norm) and the involved fuzzy
sets (coders) are Gaussian membership functions. Let D be the image obtained from
the recomposition of the D′

Bs. In this work we use a watermarking method based
on the well-known encrypting alphabetic text Vigenère algorithm. Indeed we embed
such watermark in every G B with the Least Significant Bit Modification (LSBM)
algorithm obtaining a new matrix G B , decompressed to a matrix DB (signed). Both
G B and DB are deduced with the same fuzzy relation equations used for obtaining
G B and DB . The recomposition of the D′

Bs gives the image D (signed). The quality
of the reconstructed images with respect to the original images is measured from the
Peak Signal-to-Noise Ratio (PSNR), and we show that D is very similar to D for
low values of the compression rate. The binary watermark matrix embedded in every
G B is variable, thus this method is more secure than another our previous method,
where the binary watermark matrix in every G B is constant.
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9.1 Introduction

Digital watermarking (see also the optimum bibliography [13]) can be based on dif-
ferent technologies like fuzzy C-means [3], fuzzy relation equations [7, 15], genetic
algorithms [2, 4], wavelets [1], etc. but here we improved our method [7] by using
the well-known encrypting alphabetic text Vigenère algorithm.

Let t : x , y ∈ [0, 1]2 → xty = t (x, y) ∈ [0, 1] be a continuous tri-
angular norm (t-norm, for short) and “→t ” be its residuum operator defined as
(x →t y) = sup{z ∈ [0, 1] : xtz ≥ y} for all x, y ∈ [0, 1]. The most used
t-norms [10] are the classical minimum, arithmetical product and the Lukasiewicz
t-norm L , given as x Ly = max{0, x + y − 1} and (x →L y) = min{1, 1 − x + y}
for all x, y ∈ [0, 1]. These t-norms are used in the structure of fuzzy relation equa-
tions [8] for coding/decoding image processes [5, 6, 11, 12, 14].

Indeed, let Is = {1, . . . , s} with s natural number. A gray image R of sizes m × n
is seen as a fuzzy relation R : (i, j) ∈ Im × In → [0, 1], Ri j = R(i, j) being
the normalized value of the pixel Pi j = P(i, j). That is Ri j = Pi j/Lt if Lt is the
length of the gray scale (here, for simplicity, Lt = 255). R is compressed to a matrix
G : (p, q) ∈ Ik × Ih → G pq = G(p, q) ∈ [0, 1], of sizes k × h, k ≥ m and h ≥ n,
by using a system of fuzzy relation equations of max −t type, and successively G is
decompressed to a matrix D : (i, j) ∈ Im × In → Di j = D(i, j) ∈ [0, 1] of sizes
m × n via a system of fuzzy relation equations of min − →t type.

The quality of D with respect to the original image R is measured by means of
the Peak Signal-to-Noise Ratio (PSNR), given by:

PSNR = log10
255

RMSE
(9.1)

where the Root Mean Square Error (RMSE) is defined by:

RMSE =

√√√√√
m∑

i=1

n∑
j=1

(
Ri j − Di j

)2

m × n
(9.2)

Our method consists in the embedding of a watermark with the encrypting alpha-
betic text Vigenère algorithm in the matrix G, by obtaining the matrix G of sizes k×h.
This matrix G is decompressed to a signed matrix D of size m ×n with the same sys-
tem of fuzzy relation equations of max −t type used for decompressing the unsigned
matrix G. In order to guarantee the solvability of all the equations, we take coders
which are normal fuzzy sets. Indeed, let Ap : i ∈ Im → Ap(i) = Api ∈ [0, 1] and
Bq : j ∈ In → Bq( j) = Bq j ∈ [0, 1] for all p ∈ Ik , i ∈ Im , q ∈ Ih , j ∈ In . Strictly
speaking, as in [7], we consider coders with Gaussian membership function, that is
Ap : x ∈ [0,+∞) → Ap(x) ∈ [0, 1] and Bq : x ∈ [0,+∞) → Bq(x) ∈ [0, 1],
and we put for any (p, q) ∈ Ik × Ih :
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Ap(x) = exp

[
−α

(
p

m

k
− x

)2
]

Bq(x) = exp

[
−α

(
q

n

h
− x

)2
]

(9.3)

where α ∈ {0.1, 0.2, . . . , 1.0} is a parameter optimized in such a way that the RMSE
is minimum. Of course Ap and Bq assume values for x = i ∈ Im and x = j ∈ In ,
respectively, and also are normal fuzzy sets such that Ap(pm/k) = Bq(qn/h) = 1.
Motivated from our previous papers [5, 6], we adopt the t-norm L and various com-
pression rates using always the PSNR between the reconstructed image D (unsigned)
and D (signed) as the performance index.

9.2 Preliminary Results

With the same notation as Sect. 9.1, let R : (i, j) ∈ Im × In → [0, 1], be an assigned
matrix with entries Ri j = R(i, j), A1, . . . , Ak : Im → [0, 1] and B1, . . . , Bh :
In → [0, 1] be assigned fuzzy sets and G : (p, q) ∈ Ik × Ih → [0, 1] be a matrix,
with entries G pq = G(p, q) for all (p, q) ∈ Ik × Ih , defined by

G pq =
m∨

i=1

n∨
j=1

[(
Api t Bq j

)
t Ri j

]
(9.4)

If the system (9.4) has solutions R, then the following result holds [8]:

Theorem 9.1 Let Ap, Bq , G pq be given for all (p, q) ∈ Ik × Ih and the system
(9.4) be solvable in the unknown R. Then the fuzzy relation D : (i, j) ∈ Im × In →
D(i, j) = Di j ∈ [0, 1] defined as

Di j =
k∧

p−1

h∧
q−1

[(
Api t Bq j

) →t G pq
]

(9.5)

is the greatest solution of (9.4); that is Di j ≥ Ri j for all (i, j) ∈ Im × In for any R.

The solvability degree ξpq [8, 9] of every fuzzy Eq. (9.5) is defined for all (p, q) ∈
Ik × Ih as

ξpq = G pq →t

⎡
⎣

m∨
i=1

n∨
j=1

(
Api t Bq j

)
⎤
⎦ (9.6)

and we know that [9]:

Theorem 9.2 Every Eq. (9.5) has the fuzzy relation Rpq : (i, j) ∈ Im × In →
Rpq(i, j) = (Api t Bq j ) →t G pq ∈ [0, 1] as the greatest solution iff ξpq = 1.
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G (resp. D) is the compression (resp. decompression) of R by means of the
coders {A1, . . . , Ak} and {B1, . . . , Bh}. As already proposed in some previous papers
[5, 6, 11, 12], we divide R of sizes m ×n in fuzzy submatrices RB of sizes m B ×nB ,
called blocks. Every RB is coded to a fuzzy matrix G B of sizes kB × hB(kB ≤ m B

and hB ≤ nB) with the following fuzzy equation of max −t type:

G B(p, q) =
m B∨
i=1

nB∨
j=1

[(
Api t Bq j

)
RB(i, j)

]
(9.7)

for p = 1, . . . , kB and q = 1, . . . , hB . Every G B is decoded to a fuzzy matrix DB

of sizes m B × nB with the following fuzzy equation of min −t type:

DB(i, j) =
kB∧

p−1

h B∧
q=1

[(
Api t Bq j

) →t G B(p, q)
]

(9.8)

for i = 1, . . . , m B and j = 1, . . . , nB . We recompose the D′
Bs for deducing the

fuzzy relation D of sizes m × n. The coders of the Eqs. (9.7) and (9.8) are given from
Eq. (9.3) by setting m = m B, n = nB, k = kB, h = hB , and α is optimized in such
a way that the following RMSE

(RMSE)B =

√√√√√
m B∑
i=1

nB∑
j=1

[RB(i, j) − DB(i, j)]2

m B × nB,
(9.9)

assumes minimum value. Next a binary watermark matrix WB , based on the encrypt-
ing alphabetic text Vigenère algorithm, is embedded in each unsigned G B , and let
G B this new fuzzy relation, decoded via Eq. (9.8) with the same coders, to a fuzzy
relation DB defined, for i = 1, . . . , m B and j = 1, . . . , nB , as

DB(i, j) =
kB∧

p=1

h B∧
q=1

[(
Api t Bqi

) →t G B(p, q)
]

(9.10)

Thus DB(i, j) is the greatest solution of the following equation:

G B(p, q) =
m B∨
i=1

nB∨
j=1

[(
Api t Bq j

)
t RB(i, j)

]
(9.11)

for p = 1, . . . , kB and q = 1, . . . , hB . Since we use the normal Gaussian coders
(9.3), we have that

m B∨
i=1

nB∨
j=1

[(
Api t Bq j

)] = 1 (9.12)
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and hence ξpq = (G pq →t 1) = 1 for p = 1, . . . , kB , q = 1, . . . , hB . Thus every
Eq. (9.11) has solutions by Theorem 9.2. Each DB has sizes m B × nB , and their
recomposition gives the fuzzy relation D of sizes m × n which we compare with the
unsigned image D. Without loss of generality, we consider m B = nB and kB = hB

in all the experiments.

9.3 Usage of Watermarking Strings

In [7] the authors proposed a digital image watermarking method applied on blocks
coded as above and realized on a set of images of sizes 256 × 256. The watermarking
code applied over every compressed block is composed by a constant binary matrix
with the same dimensions of the block, having values equal to 1 in the first entry and 0
otherwise. In this work we experiment with the use of a variable binary watermarking
matrix applied to each unsigned compressed block; this matrix is derived starting
with an initial string called decoding “key string” and used as password to obtain the
unsigned image. Indeed, a binary matrix representing a watermark can be interpreted
as a binary code of an ASCII character.

For example, in the ASCII code the sequence of nine bits 001010111 corresponds
to the character W , which can be considered as the following 3×3 binary matrix:

WB =
⎡
⎣

0 0 1
0 1 0
1 1 1

⎤
⎦ (9.13)

If we have images with 256 gray levels and we normalize this image with respect
to Lt = 255, we obtain the fuzzy relation:

WB N =
⎡
⎣

0 0 0.00392156
0 0.00392156 0

0.00392156 0.00392156 0.00392156

⎤
⎦ (9.14)

In our tests we consider a character string and apply the well-known encrypting
alphabetic text Vigenère algorithm to each block of the compressed matrix corre-
sponding to a character string. This algorithm is a simple form of poly-alphabetic
substitution. Indeed it uses a key string (password) of arbitrary length and a character
string: the i th character of the text to be ciphered is compared with the i th character
of the key string repeated until it covers the number of the characters of the text. The
character to be ciphered is determined by using the following rule:

- If i1 is the occurrence of the i th character in the text and i2 is the character of
the correspondent key string, the i th character assigned to the ciphered text will
be corresponding to the occurrence i3 = i1 + i2 − 1. If i3 is greater than the
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Table 9.1 Example of ciphered text Vigenère algorithm

Text char Key char i1 i2 i3 Cipher text char

c c 3 3 5 e
a i 1 9 9 i
c a 3 1 3 c
h c 8 3 1 a
e i 5 9 4 d

Table 9.2 Sequences shifted one position

1 2 3 4 5 6 7 8 9

1 a b c d e f g h i
2 b c d e f g h i a
3 c d e f g h i a b
4 d e f g h i a b c
5 e f g h i a b c d
6 f g h i a b c d e
7 g h i a b c d e f
8 h i a b c d e f g
9 i a b c d e f g h

dimension of the alphabet, then the counting is iterated by starting from the first
character of the alphabet.

We can determine the ciphered text using a table in which each row represents
a sequence of characters of the alphabet, every time shifted by one position. For
example, we can consider the alphabet of letters {a, b, c, d, e, f, g, h, i} and the key
string “cia”. Let us consider that we wish to cipher the text char formed by the word
“cache”, which is compared with the key string repeated till to the length of the text
obtaining the key char “ciaci”. Table 9.1 shows the results of this method.

The word “cache” will be encripted in “eicad”, which can be determined also using
Table 9.2 in which the sequence of characters of each row is formed by performing
a shifting by one position of the sequence of characters in the previous row.

The i th character in the encrypted text is identified in Table 9.2 considering the row
starting with the character of the text to cipher and the column of the corresponding
character in the repeated key string. For example, the first character of the encrypted
word “eicad” is obtained in the cell corresponding to the row 3 (corresponding to the
third symbol of the alphabet, the character c of the word “cache”) and the column 3
(corresponding to the third symbol of the alphabet, the character c of the password
“cia”). By using a decomposition of the image in blocks, we apply the above algorithm
to a compressed block of sizes h ×k by using a matrix of size h ×k which represents
the binary code of a watermarking key string. We set a text string and a password
for obtaining the encrypted string with the Vigenère algorithm. The i th block of the
compressed unmarked image will be applied to the matrix corresponding to the i th
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character of the encrypted string. This character is converted into the binary form,
adding, if necessary, some zeros as more significant bits with the Least Significant
Bit Modification (LSBM) algorithm, so that the length of the character is equal to
the size of the block. If the i th occurrence of the block is greater than the length of
the encrypted string, the counting is iterated by starting from the first character of
the encrypted string. The binary code of the character is performed by the choice of
an alphabet of symbols. The compressed block G B is calculated accordingly via the
following formula based on the Lukasiewicz t-norm:

G B(p, q) = min (1, G B(p, q) + WB N (p, q)) (9.15)

where WBN(p, q) is the binary matrix normalized corresponding to the binary code
of the i th character of the watermarking string. Our process comprises the following
steps:

1. We consider an alphabet of symbols, for example, an alphabet formed from the
256 ASCII characters. We set the password and a text forming the string to
encrypt.

2. We apply the Vigenère algorithm to our string, thus obtaining an encrypted
string. Each character of the encrypted string is converted in binary mode and
is transformed in a binary matrix of the dimension of the compressed block,
adding a “0” as more significant bit by the LSBM algorithm. This binary matrix
is normalized by dividing the cell value per number of gray levels of the image
−1 (for example, 255 if we use images with 256 gray levels).

3. The first compressed block of the image is modified using Eq. (9.15), where
WBN is the matrix corresponding to the first character of the encrypted string.

4. Return to step 3 to apply the watermark to the successive blocks of the com-
pressed unmarked image. If the number of the blocks is greater than the length
of the text string, we consider the first character of the encrypted string.

5. The process ends when all unmarked blocks in the compressed image are taken
into consideration.

The following example effectively illustrates the above procedure for a generic
block. Let us consider an original image which is divided in blocks of sizes 4×4,
and let B (say) a block be given by

B =

⎛
⎜⎜⎝

155 142 142 161
149 138 135 156
129 135 142 166
132 133 128 170

⎞
⎟⎟⎠ (9.16)
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Table 9.3 Values of coders

Ap = Bq i = j = 1 i = j = 2 i = j = 3 i = j = 4

Ap = Bq i = j = 1 i = j = 2 i = j = 3 i = j = 4
A1 = B1 0.978023 0.914947 0.573753 0.241177
A2 = B2 0.573753 0.914947 0.978023 0.700784
A3 = B3 0.165299 0.449329 0.818731 1.000000

which is normalized to the following fuzzy relation:

RB =

⎛
⎜⎜⎝

0.607843 0.556863 0.556863 0.631373
0.584314 0.584314 0.529412 0.611765
0.505882 0.529412 0.556863 0.650980
0.527647 0.521569 0.501961 0.666667

⎞
⎟⎟⎠ (9.17)

The coders (9.3) with kB = hB = 3, m B = nB = 4 and α = 0.1 assume the
values given in Table 9.3.

Then we get the compressed fuzzy relation G B of sizes 3×3 (Eq. (9.7)) given by

G B =
⎛
⎝

0.585744 0.534764 0.620323
0.529793 0.534764 0.639931
0.506597 0.503795 0.666667

⎞
⎠ (9.18)

which is decompressed via Eq. (9.8), and we obtain the fuzzy relation of sizes 4×4
given by

DB =

⎛
⎜⎜⎝

0.607843 0.588235 0.556863 0.631373
0.584314 0.615686 0.588235 0.662745
0.549020 0.584314 0.556863 0.650980
0.527647 0.545098 0.513725 0.666667

⎞
⎟⎟⎠ (9.19)

Denormalizing this matrix, we obtain that

C =

⎛
⎜⎜⎝

155 150 142 161
149 157 150 169
140 149 142 166
132 139 131 170

⎞
⎟⎟⎠ (9.20)

We mark the compressed unmarked block G B using the process described above.
For example, we assume to use the ASCII alphabet formed by the 256 symbols.
We assume that the occurrence of the block (9.18) corresponds the character W ,
that is transformed into the matrix (9.13) and normalized into the matrix (9.14).
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Fig. 9.1 Lena

We apply the operator (9.15) on the matrices (9.14) and (9.18), obtaining the follow-
ing watermarked matrix:

G B =
⎛
⎝

0.585744 0.534764 0.624245
0.529793 534764 0.639931
0.510519 0.507717 0.670589

⎞
⎠ (9.21)

By utilizing the same coders of Table 9.3 and Eq. (9.10), we deduce that

DB =

⎛
⎜⎜⎝

0.607843 0.588235 0.556863 0.647059
0.584314 0.615686 0.588235 0.682353
0.549020 0.584314 0.600000 0.650980
0.568627 0.60000 0.572549 0.725490

⎞
⎟⎟⎠ (9.22)

to which corresponds the following denormalized matrix (signed image):

C =

⎛
⎜⎜⎝

155 150 142 165
149 157 150 174
140 149 153 166
145 153 146 185

⎞
⎟⎟⎠ (9.23)

In Sect. 9.4 we show the results of our tests.

9.4 Results of Tests

We considered a sample of 1000 images of sizes 256×256 extracted from the well-
known Corel Galery (Arizona directory) database. We take into consideration only
two images, “Lena” (Fig. 9.1) and “House” (Fig. 9.2).
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Fig. 9.2 House

Fig. 9.3 Lena unsigned,
ρB = 0.5625

Fig. 9.4 Lena signed,
ρB = 0.5625

In our tests we take the key string “Watermark”, the string to be encrypted “To be
or not to be” and an alphabet formed from the 256 ASCII characters. We consider
several compression rates and the related PSNR for the unsigned and signed images.
Initially the image R of Lena was divided in 4096 (= 64×64) blocks RB .

We consider m B = nB = 4 and kB = hB = 3, hence each RB (having sizes
4×4) is compressed to a block G B of sizes 3×3 (ρB = 9/1 = 0.5625), and in turn
decoded to a block DB of sizes 4×4. The related recomposition gives the unsigned
image D of Fig. 9.3. For the first unsigned compressed block we use the normalized
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Fig. 9.5 Lena unsigned,
ρB = 0.3906

Fig. 9.6 Lena signed,
ρB = 0.3906

matrix (9.14). The processing order is k N + 1, with k being an integer and N the
length of the key string.

Generally speaking, the matrix W is applied to the block with processing order
k N + i . Each W is embedded in each block G B with the LSBM algorithm, and we
deduce a signed block GB of sizes 3×3, which is decoded to a block DB of sizes
4×4. These blocks D,

Bs are recomposed forming the signed image D of Fig. 9.4.
We apply the same procedure with m B = nB = 8 and kB = hB = 5(ρB =

25/64 = 0.3906) by getting the unsigned (resp., signed) image of Fig. 9.5 (resp.,
Fig. 9.6). In Table 9.4 we give the PSNR values for other compression rates. A detailed
examination of the PSNR for “Lena” shows clearly the fact that the PSNR of the
unsigned images is very close to the PSNR of the signed images for low ρB values.

This difference is more evident if ρB tends to 1 as the plot of Fig. 9.7 shows clearly.
For sake of completeness, we show the analogous plot of the image “Lena” from [7]
in Fig. 9.8, where we use a watermarking binary constant matrix.

Hence the use of watermarking variable matrices applied to compressed blocks
does not essentially change the trend of the PSNR with respect to the compression
rate. Similar results are also obtained for the image “House” given in the unsigned
Fig. 9.9 (resp., Fig. 9.10) and the signed Fig. 9.11 (resp., Fig. 9.12) for ρB = 0.5625
(resp. ρB = 0.3906), by always using the same technique. We obtain similar results
for other images from Corel Gallery, but they are not given here because of the brevity
of presentation.
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Table 9.4 Values of the PSNR of “Lena” for some values of ρB

m B × nB kB × hB ρB = PSNR of PSNR of
kB × hB/m B × nB unsigned image signed image

4 × 4 3 × 3 0.5625 29.7000 26.6317
6 × 6 4 × 4 0.4444 22.8900 20.5729
8 × 8 5 × 5 0.3906 21.7441 20.1971
5 × 5 3 × 3 0.3600 20.8900 19.6104
7 × 7 4 × 4 0.3265 20.2128 19.0113
8 × 8 4 × 4 0.2500 17.8455 16.8902

Fig. 9.7 Values of the PSNR
at several values of ρB for
“Lena”

Fig. 9.8 Values of the PSNR
at several values of ρB for
“Lena” from [7]

Fig. 9.9 House unsigned,
ρB = 0.5625
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Fig. 9.10 House signed,
ρB = 0.5625

Fig. 9.11 House unsigned,
ρB = 0.3906

Fig. 9.12 House signed,
ρB = 0.3906

9.5 Concluding Comments

In contrast with the work performed in [7], where the authors used a constant binary
watermarking matrix for each compressed block, in this work this matrix is variable
and is settled to the binary value corresponding to an ASCII character. This character
is determined using the well-known encrypting alphabetic text Vigenère algorithm
starting with an initial string. We showed that the signed image D is very similar to
the unsigned image D for low values of the compression rate. This means that this
method does not affect the quality of the signed decoded image, but it clearly gives
a significant security with respect to the method of [7].
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Chapter 10
Study on Human Brain Registration Process
Using Mutual Information and Evolutionary
Algorithms

Mahua Bhattacharya and Arpita Das

Abstract The registration of brain images is required to facilitate the study of brain
mapping, treatment planning, and image-guided therapies of nervous system. In the
present work a similarity measure has been implemented for affine multimodality
(MR and CT) image registration of sections of the human brain. In addition, a similar-
ity measure is built on both intensity and gradient-based images. In the present work,
the region of interest (ROI), the ventricular region, is segmented using the fuzzy
c-means clustering technique. The deformation or change of shape of the ventricular
region captures the process of degeneracy and other abnormality in tissue regions
of the human brain. The similarity metric should be maximal when two images are
perfectly aligned. The genetic algorithm-based search strategy has been utilized to
optimize the registration process.

10.1 Introduction

The process of registration [2–6, 8–10, 12–14, 16] has great importance for mul-
timodal medical image processing for clinical interest. The registration is based on
the transformation of one image with respect to another.Image registration should
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address the differences in acquisition parameters among different sets of images.
These parameters are different due to the size of the images, the position of the cam-
era, different viewing angles, etc. The images to be registered may be of the same
modality but taken at different times or of different modalities. During this process,
one image is fixed (the reference image) and the other (the floating image) is trans-
formed so that it becomes similar to the reference image [6, 12, 13]. Registration is
used to describe the geometric transformations such that the generated image should
be registered or aligned with some standard or reference image.

Medical imaging provides insights into the size, shape and spatial relationships
among anatomical structures. In radiotherapy planning, dose calculation is based
on the computed tomography (CT) data, while tumor outlining is often better per-
formed in the corresponding magnetic resonance imaging (MRI). Functional imaging
like single-photon computed tomography (SPECT) and Positron emission tomog-
raphy (PET) is becoming increasingly important in medical research. PET and
SPECT imaging provide information on blood flow, glucose intake and different
other metabolic processes. When patients are to undergo brain surgery, both CT and
MR images of the brain are used to help the surgeon. Registration of preoperative and
postoperative images in surgical interventions and treatment monitoring is another
developing application field.

The registration of brain images is required to facilitate the study of brain mapping,
treatment planning and image guided therapies of nervous system. We have already
done experiments on registration using MR (T1 and T2 weight) and CT imaging
modalities of the ventricular region of the brain as the region of interest (ROI) for
patients having Alzheimer’s disease using a shape-theoretic approach [2]. The control
points on the concavities present in the contours are chosen to reproject ROI from
the respective modalities in a reference frame.

In our present work, a similarity measure has been computed for affine multi-
modality (MR and CT) image registration of section of human brain. In addition, the
similarity measure is built on intensity and gradient-based images. In this chapter,
the region of interest (ROI), which is the ventricular region, is segmented by using
fuzzy c-means clustering technique. The deformation or change of shape of the ven-
tricular region captures the process of degeneracy and other tissue abnormalities in
region of the human brain. In our earlier work [2] the landmark-based registration of
multimodality brain images was accomplished and which is semiautomatic in nature.
In present work, the registration process proposed is automatic and is based on the
measure of the similarity metric [11, 15, 16]. This should be maximal when two
images are perfectly aligned. Since, similarity metric is a non convex function and
contains many local optima, the choice of search strategy to optimize it is important in
the registration problem. Presently we have implemented a genetic algorithm-based
optimization scheme. Results are presented for registration of 2D clinical images.
The robustness of the proposed method is presented by choosing a realistic, practical
transformation technique and the metaheuristic search strategies.
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10.2 Proposed Method for Medical Image Registration

A prior step for the process of information fusion for multimodality imaging is image
registration. After the process of registration, the fusion is required in order to display
the integrated images. When the region of interest (ROI) of any diseased part of a
human body is captured by different imaging sensors (like CT, MR, PET, SPECT,
USG) it is desirable to establish the point-to-point correspondences and finally to
match the relevant multimodal images of the ROI. Our present approach for 2D
registration of different modality medical images is based on similarity measure of
both intensity and gradient-based information. Incorporation of edge information
along with gray-level intensities improves the evaluation parameter. The correlation
metric [11, 15, 16] and mutual information [1, 3, 6, 17] should be maximal when
the two different images are perfectly aligned or registered. Present approach for
registration exploits the natural phenomena based genetic optimization algorithm
[6, 7, 17].

In the present approach we discuss intensity-based 2D/2D registration of same-
modality (MR) brain images and gradient-based registration of different modali-
ties (MR and CT) brain images. The fuzzy c-means clustering technique was used
to segment the ROI (ventricular region), and, gradient is obtained using the Sobel
mask. Figure 10.1 demonstrates an overview of the present work. Our present work
incorporates the gradient information along with intensity distributions to improve
the registration accuracy. Since margins/edges of the image carry vital information,
enhancement of gradient produces significant improvement in the evaluation para-
meter. During the registration procedure, one image plays the role of reference image,
and the second one, is called the floating image. Floating image tries to geometri-
cally align itself with the reference image. Mutual information (MI) and correla-
tion functions (CT) measure the similarity between reference and aligned floating
images. To maximize this non convex similarity metric function, a genetic optimiza-
tion algorithm is utilized. Initial population of the genetic algorithm (GA) starts with
randomly chosen affine transformation of floating images. It maximizes the non
convex similarity function by its selection, crossover and mutation operators. Both
mutual information and a correlation-based similarity measuring function provide
better matching parameters for the image registration process using gradient-based
methodology.

The deformation or change of shape of the ventricular region captures the process
of degeneracy on the human brain. The transformation applied to register the images
can be categorized according to the degree of freedom. In present work, we define a
non rigid affine transformation. It extends the degrees of freedom of rigid transfor-
mation with a scaling factor in each dimension and additionally a shearing in each
dimension.

The registration function is generally not a smooth function, and contains many
local maxima. The local maxima are due to the interpolation techniques required to
estimate the gray values when transforming the points from one image to another.
The presence of local maxima hampers the optimization process. Because of this,
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Fig. 10.1 Brief overview of the proposed work

the choice of optimization routine has a large influence on the results of the reg-
istration method, particularly on the robustness of the method with respect to the
initial transformation. A popular method of optimization used in image registration
is genetic algorithms (GAs), which are based on the survival-of-the-fittest principle
and selecting the best of the new generation.

10.2.1 Fuzzy C-means Clustering for Segmentation of ROI

In present work we have implemented Fuzzy C-means clustering algorithm for
intensity-based segmentation of regions of interest (ROI) as a prior step for reg-
istration of different modality imaging of sections of the human brain using CT and
MR modalities. In the Fuzzy C-means clustering algorithm used for intensity based
segmentation, the total number of fuzzy cluster centers chosen are shown in Fig. 10.2.
Cluster center A represents the normal brain tissue. Second cluster B represents the
shadows of the ventricular region, and C represents the actual ventricular region.

The ultimate Fuzzy partition membership functions are shown in Fig. 10.2, which
shows that there is an overlap between the membership functions A, B and C.
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Fig. 10.2 Final fuzzy parti-
tion membership functions

In this section we have described how the decision has been made. If the possi-
bility for a region that belongs to the ventricular region is greater than 50 % (i.e., the
membership value of curve C > 0.5), the decision is that the region belongs to the
actual ventricular region. Thus according to our decision rule, the shaded region of
Fig. 10.2 is under the ventricular region or ROI in the present context.

Algorithm:
Let X = {x1, x2, . . . , xn} be a set of given data. A fuzzy c-partition of X is a

family of fuzzy subsets of X, denoted by P = {A1, A2, . . . , Ac}, which satisfies

c∑
i=1

Ai (xk) = 1

for all k ∈ Nn and

0 <

n∑
k=1

Ai (xk) < n

for all i ∈ Nc, where c is a positive integer.
Given a set of data X = {x1, x2, . . . , xn}, where xk , in general, is a vector for

all k ∈ Nn , the problem of fuzzy clustering is to find a fuzzy pseudopartition and
the associated cluster centers by which the structure of the data is represented as
well as possible. To solve the problem of fuzzy clustering, we need to formulate a
performance index. Usually, the performance index is based upon cluster centers,
v1, v2, . . . , vc, associated with the partition, calculated by the formula given below

vi =
∑n

k=1[Ai (xk)]m xk∑n
k=1[Ai (xk)]m

(10.1)

for all i ∈ Nc, where m > 1 is a real number that governs the influence of membership
grades. Observe that the vector vi calculated by Eq. 10.1 is viewed as the cluster
center of the fuzzy class Ai and is actually the weighted average of data in Ai .
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The performance index of a fuzzy pseudopartition P, Jm(P), is defined in terms of
the cluster centers by the formula

Jm(P) =
n∑

k=1

c∑
i=1

[Ai (xk)]m‖xk − vi‖2 (10.2)

where ‖xk − vi‖2 represents the distance between xk and vi . Clearly, the smaller the
value of Jm(P), the better the fuzzy pseudopartition P. Thus, the goal of the fuzzy
c-means clustering method is to find a fuzzy pseudopartition P that minimizes the
performance index Jm(P).

10.2.2 Affine Transformation

An affine transformation with six degrees of freedom is used to correct calibration
errors in the pixel dimensions. It is the most general linear transformation on an
image:

x ′ = f x + gy + h (10.3)

y′ = qx + r y + s (10.4)

in transposed matrix notation:

[x ′y′] = [xy1]T (10.5)

where T is a 3W 2 matrix of coefficients:

T = [ f q; gr; hs] (10.6)

An affine transformation takes any coordinate system in a plane into another
coordinate system that can be found of translation, rotation, scaling and shearing.

10.2.3 Computation of Objective Function

Mutual Information
In medical imaging the difficulty arises since images are taken from several different
devices, e.g., CT, MR imaging, or ultrasound scanners. Thus, their intensities cannot
be taken directly to measure the image similarity. Recent studies show that, for suc-
cessful image registration in a multimodal situation the mutual information of the
images will be optimum. Mutual information (MI) is a basic concept from informa-
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tion theory which measures the statistical dependence between two variables or the
amount of information that one variable contains about the other. It has been shown
that mutual information is a robust similarity measure for multimodal registration
and does not depend on the specific dynamic range or intensity scaling of the images.
The mutual information of two images is a combination of the entropy values of the
images, both separately and jointly. The entropy of an image can be computed by esti-
mating the probability distribution of the image intensities, The maximum entropy
value is reached for a uniform distribution of intensities of two images. In present
work, we use the Shannon measure of entropy. The joint probability distribution
of two images is estimated by computing a normalized joint histogram of the gray
values. The definition of the mutual information of two images A and B combines
the marginal entropies, pA(a) and pB(b), and joint entropy pAB(a, b) of the images
in the following manner:

I (A, B) =
∑
a,b

pAB(a, b) log
pAB(a, b)

pA(a)pB(b)
(10.7)

MI is related to entropy by the equation

I (A, B) = H(A) + H(B) − H(A, B) (10.8)

with H(A) and H(B) being the marginal entropies of A and B, respectively, and
H(A, B) their joint entropy.

H(A) = −
∑

a

pA(a) log pA(a) (10.9)

H(A, B) = −
∑
a,b

pAB(a, b) log pAB(a, b) (10.10)

As the optimization technique in registration procedure is used to maximize the
similarity metric, MI or Correlation value plays the role of objective function, and
its maximum value is achieved for correctly registered images.

Correlation Function
The proposed correlation-based registration method is described below: the cor-

relation of two images f1(x, y), and f2(x, y), of size M × N is defined as

f1(x, y), of2(x, y) = (M−1)(N−1)

(
1

M N

)
×

∑
m=0

∑
n=0

f ∗
1 (m, n)× f2(x+m, y+n)

(10.11)
where f ∗

1 denotes the complex conjugate of f1. Here we deal with real images, in
which case f ∗

1 = f1.
The principle use of correlation is for similarity measurement. In image registra-

tion, f1(x, y) is denoted as the reference object and f2(x, y) is the affine-transformed
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version of f1(x, y). Then, if there is a match between f (x, y) and h(x, y), the cor-
relation of the two images will be maximum.

10.2.4 Genetic Algorithm-Based Optimization

To maximize the non convex similarity metric function a genetic optimization algo-
rithm is utilized. Initial population of genetic algorithm (GA) starts with the randomly
chosen affine transformation of floating images. GAs are search algorithms based
on the mechanics of natural selection and natural genetics. A possible solution is
represented as a chromosome in a string structure with each element representing
one parameter in the solution. A collection of possible chromosomes forms a pop-
ulation, which produces another generation through a search process. The search
process adopts “the fittest survives” rule after a structured yet randomized informa-
tion exchange within the existing generation to yield a new generation. GAs are not
just simple random walks; they efficiently exploit the information to speculate on
new search points with expected improved performance. This method is allowed to
escape from local optima, and the chromosomes will approach the global optimum.
To apply GA in our registration problem, we encode the transformation matrix and
optimize these six parameters to achieve the best possible result.

In the registration problem let us consider that the multimodality images to be
registered are Image A and Image B. SayImage A is the reference image, and Image B
is the image transformed by an affine transformation technique such that it will be
correctly registered with Image A. Now for 2D affine transformation, six parameters
are required to transform an image as,

T =
[

f gh
qrs

]

These parameters are optimized by GA, so that the image formed with optimized
parameters is perfectly registered with the reference image (Image A).

Optimization Algorithm:

1. Generate ten (between 0 to 1) random numbers for each parameter f, g, h, q, r, s.
With these new sets of values of f, g, h, q, r, s each, transform the Image B using
affine transformation and achieve ten new transformed images.

2. Calculate the similarity metric (SM) between the reference image (Image A) and
above-obtained ten new transformed images (denoted as Image B(T1)). These
ten values of SM act as the fitness/objective function for further implementation
of GA. Find the maximum SM value and denote it as max SM1.

3. Now encode the values of f, g, h, q, r, s by simple binary numbers to form the
population of chromosomes in GA.

4. Perform three genetic operations: reproduction, crossover and mutation for each
encoded parameters.
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Table 10.1 Similarity measure for intensity and gradient based registration of human brain images

Pair of images Mode of registration CF measure MI measure

MR T2 versus CT Intensity based registration 0.3687 1.5065
Intensity +gradient based registration 0.3733 1.5076

CT versus MR T2 Intensity based registration 0.2675 1.3188
Intensity +gradient based registration 0.2734 1.3231

CT versus MR T1 Intensity based registration 0.2251 1.3575
Intensity +gradient based registration 0.2257 1.3597

MR T1 versus CT Intensity based registration 0.5677 1.4080
Intensity +gradient based registration 0.5680 1.4128

5. After mutation, a new generation of chromosomes is formed. These chromo-
somes are now decoded to obtain the new values of f, g, h, q, r, s.

6. Transform Image B using affine transformation with the new set of values of f,
g, h, q, r, s found from the new generation of GA (let us denote these images as
Image B(T2)).

7. Calculate ten new values of SM between the reference image (Image A) and the
transformed image B(T2). Among these ten SM values find the maximum SM
value and denote it as max SM2.

8. If the difference between max SM1 and max SM2 is less than a predefined thresh-
old value (T), stop iteration; otherwise replace the value of max SM1 by max
SM2 and go to step 4.

10.3 Experimental Results

In the present research, the optimal transformation parameters of matrix T are
searched for by using GAs. The chromosomes are formed by concatenating six
binary coded parameters of matrix T . The number of bits should be chosen as small
as possible to minimize the time of convergence of the GA. In the present problem,
the parameters are assigned ±7 units each. Therefore four bits are assigned for each
parameter. We start with GA population of 30 initially, and after the 3rd generation,
the optimal solution is achieved.

Presently we have registered the ventricular region as the ROI of the brain images
from CT and MR modalities. The present approach of registration has been imple-
mented on same modality (MR) brain images (Fig. 10.3) and on different modalities
(MR and CT) brain images (Fig. 10.4). The process evaluates correlation matching
combined with the GA optimization technique and also measures the efficiency and
robustness of the process.

Table 10.1 demonstrates the results of similarity measure on the intensity and
intensity-gradient registration process using mutual information and correlation mea-
sure.
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Fig. 10.3 Intensity-based registration of same-modality MR images

10.4 Conclusion

In this chapter, we presented an efficient similarity-based image registration method
combining a GA search technique for non-rigid affine transformation using both
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Fig. 10.4 FCM Gradient based registration of MR and CT images of section of human brain
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intensity and gradient-based techniques. To overcome the influence of the exis-
tence of local maxima, we have adopted the mutation probability of 0.10, which
improves the convergence ability of GAs. Experiments have shown that our algo-
rithm can yield good results. Moreover, our experimental results have shown accuracy
for both intensity-based matching and FCM gradient-based matching of ventricular
regions. Future research will consider using other efficient optimization techniques.
The process of GA-based optimization is time consuming and our future challenges
lie in how to accelerate the process substantially without loss of accuracy.
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Chapter 11
Use of Stochastic Optimization Algorithms
in Image Retrieval Problems

Mattia Broilo and Francesco G. B. De Natale

Abstract In this chapter, the use of stochastic and evolutionary optimization tech-
niques for image retrieval is addressed. We provide background and motivations of
such approaches, as well as an overview of some of the most interesting ideas pro-
posed in the recent literature in the field. The relevant methodologies refer to different
applications of the optimization process, as a way of either improving the parameter
setting in traditional retrieval tools, or directly classifying images within a dataset.
Also, the use of stochastic optimization approaches based on social behaviors is
discussed, showing how these approaches can be used to capture the semantics of a
query through the interaction with the user. Strengths and weaknesses of different
solutions are discussed, taking into account also implementation issues, complexity,
and open directions of the research.

11.1 Introduction

Content-based image retrieval (CBIR) refers to any technology that in principle helps
to organize digital picture archives by their visual content [1]. The year 1992 is consid-
ered the starting point of research and development on image retrieval by content [2].
The last two decades have witnessed great interest in research on CBIR. This has
paved the way for a large number of new techniques and systems, and a growing
interest in associated fields to support such systems. CBIR is a field of research which
presents many facets and involves numerous unresolved issues. Despite the effort
made in these years of research, there is not yet a universally accepted algorithmic
way of characterizing the human perception of the relevant content of an image
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or, even more difficult, interpreting it. The main technical problems encompassed
by CBIR are: how to mathematically describe an image (visual signature), how to
assess the similarity between two descriptions (similarity metric), how to retrieve
the desired content (search paradigm), how and what to learn from content or users
(learning and classification). All these issues can be referred to as the semantic gap,
that is, the gap between the subjective semantic meaning of a visual query and the
numerical parameters extracted and analyzed by a computer [3]. Beyond the tech-
niques adopted, the two key aspects of a content-based system are the purpose and
the domain of the application. It is possible to simplify the content-based application
types according to two main tasks: search, which covers retrieval by association, tar-
get, or category search; and annotation, which includes face and object detection and
recognition, and all the different levels in concept detection (from lower to higher
semantic abstraction). Understanding the nature and scope of image data plays a
key role in the complexity of image search system design. Along this dimension, it
is possible to classify content-based application domains into two main categories:
consumer (e.g., personal photo collections and social media), and professional (e.g.,
content coming from specific domains such as biomedical, satellite, or arts image
databases).

Many researchers agree that CBIR remains well behind content-based text
retrieval [4–6] which is mainly due to three unresolved problems:

Understanding the semantics of media. The semantic interpretation of an image
is still out of reach of current technologies. Significant efforts have been spent
on using low-level image properties such as the statistics of the pixel values
to detect concepts [7]. Nevertheless, from simpler methods, such as color and
texture histograms, to more sophisticated ones, such as global transforms or
SIFT [8], no ultimate approach has been found to reliably discover the user’s
perceived meaning of an image.
Scalability. The variety of visual concepts and their possible interpretations are
enormous, thus calling for richer descriptions. Nevertheless, pattern classifica-
tion studies demonstrate that increasing the number of features can be detrimen-
tal in a classification problem [9]. This problem is also known as the curse of
dimensionality. Ideally, images in a given semantic category should be projected
in nearby points in the feature space. If the number of samples is small compared
to the dimension of the space, then it becomes possible to find rules to associate
the feature sets of “similar” images. But when new samples or new categories
are added, it is unlikely that such an association will be confirmed [10], thus
bringing generalization and scalability lacks in classifiers [11].
Context and personalization. Each user is unique and his interaction with a
system involves a number of human factors related to psychological affects,
contextualization, personal experience, etc. Consequently, if the same photo is
given to different people and they are asked to assign tags to represent that
photo, there may be as many different tags as the number of people assigning
them. Also, if the same photo is given to the same person at different times
and in different contexts and situations, then the assigned tags could change.
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The knowledge of the context and of the user profile, if available, would then be
important to improve the capabilities of retrieval systems, although there is not
yet a clear idea on how to represent and use such information [12].

As it can be seen, image retrieval deals with very complex problems, requiring
sophisticated models that usually involve high-dimensional feature spaces and non
linear objective functions (according to some similarity metrics). According to these
models, the solution of a retrieval problem can be recast into an optimization problem,
where the similarity of query and target can be associated to a fitness function, to be
maximized within a given feature space. Such formalization makes very attractive the
use of stochastic optimization algorithms, for their capability to find near-optimum
solutions where linear programming and dynamic programming techniques usually
fail or remain stuck in local minima [13]. Among other stochastic optimization tech-
niques, evolutionary algorithms (EAs) represent a very interesting family of search
methods based on the metaphor of the natural biological evolution and/or the social
behavior of species. A comprehensive comparison of these stochastic algorithms
could be found in [14]. In general, EAs share a common approach: First, the prob-
lem should be suitably modeled to fit the desired optimizer; then, the evolutionary
search algorithm is applied to get a near-optimum solution. A number of no free
lunch theorems are presented in [15], where it is established that if a given approach
provides a high performance over a class of problems, it will be much less effective
over another class. These theorems are associated with the fact that each optimization
algorithm can be given a geometric interpretation, which typically matches a spe-
cific class of problems. When modeling a specific problem it is therefore important
to identify the most suitable algorithm.

When dealing with content-based retrieval, evolutionary approaches based on
social behaviors appear to be particularly interesting, as they are implicitly targeted
to follow multiple or clustered sets of solutions in complex feature spaces. The
general idea is, in fact, to mimic the behavior of individuals and groups, which can
span over the solution space and reach different targets. Examples include how ants
find the shortest route to a source of food [16], and how bees find their destination
during flights. The behavior of such species is guided by learning, adaptation, and
evolution [17]. To mimic the efficient behavior of these species, various researchers
have developed computational systems that seek fast and robust solutions to complex
optimization problems.

In the following, the use of stochastic and evolutionary optimization techniques
for image retrieval problems is addressed, making special reference to such classes
of methods, and in particular to particle swarm optimization (PSO) [18]. We will
describe the different ways this algorithm can be used to solve typical problems
in content-based image retrieval. Nowadays, the application of PSOs in CBIR can
be roughly classified into three different approaches: optimization of the parameters
(or weights), optimization of the classification, and optimization of the image search.
After a brief introduction on the general principles of PSO, we provide a detailed
description of these three approaches, and how the stochastic optimization can help
in finding better solutions as compared to other techniques.
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A short overview of possible alternative methodologies making use of different
stochastic approaches such as Ant Colony [16] and Genetic Algorithms [19] within
the same application domain is also provided in Sect. 11.6.

11.2 Particle-Swarm Optimization Principles

Particle-swarm optimization (PSO) was originally developed by Kennedy and
Eberhart in 1995, and is inspired by the social behavior of swarms of bees [18].
PSO has been applied to a large number of domains for solving different optimiza-
tion problems [20]. In PSO, the bees in a swarm are represented as particles. These
particles are considered to be “flying” through a multidimensional feature space,
looking for the optimal solution [21]. The location of a particle p

n
is a point in the

multidimensional space that models the problem under investigation, and represents
a possible solution for that problem. PSO is an iterative algorithm that monitors at
every iteration k the position of the particles in order to push the “bees” towards
the optimal solution. In order to achieve this goal, the solution of each particle p

n

is evaluated by a fitness function �
(

p
n

)
, which provides a quantitative value of

the solution goodness. This fitness function is tuned and ad hoc designed by the
engineers, according to the specific problem. The velocity vk

n and direction of each
particle moving along each dimension of the problem space are modified at each gen-
eration. The movement of particles is influenced by two factors. The first is called
global best gk and represents the social behavior in which the particle gets attracted

towards the centroid of the group; the second is the so-called personal best lk
n and

represents the cognitive factor of each individual particle, i.e., the particle best solu-
tion. The stochastic nature of PSO comes from two random component r1 and r2,
which influence the speed and the direction of the particles, respectively. A general
equation for the speed of particles is the following:

vk
n = ϕ · vk−1

n + C1r1

{
lk
n − pk−1

n

}
+ C2r2

{
gk − pk−1

n

}
(11.1)

where ϕ is the inertial factor, which defines how much the speed is influenced by
the past. This parameter could be set as a constant or may decrease across iterations in
order to slow down the swarm when approaching the best solution [22]. The cognitive
and the social factors are influenced by two different constants, C1 and C2, called
acceleration coefficients, which are two tunable weights used to modify the behavior
of the particles. The higher the value of C1, the more the particles will move towards
their personal best solution; the higher the factor C2, the more the particles tend to
approach the best solution found by the whole swarm. An in-depth analysis of the
relation between acceleration coefficients and optimization process could be found
in [23]. At every iteration k, the position of a particle p

n
is updated as follows:

pk
n

= pk−1
n

+ vk
n (11.2)
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The point p
n

is a new possible solution of the problem, and is again evaluated

using the fitness function �
(

p
n

)
. The iterative process terminates when a predefined

number of iterations is reached or the best possible solution p
n

is found.
Even though PSO has been used for more than ten years, there is not a unique or

standardized setting of the parameters able to guarantee control efficiency, stability,
and, more in general, the performance of the algorithm. The number of particles,
the inertial weight, and the cognitive and social factors are parameters strictly con-
nected to each other, which have to be carefully tuned according to the considered
optimization problem. A useful insight about the behavior of the algorithm with
different parameter settings can be found in [24].

11.3 PSO for Optimal Tuning of Parameters

The first attempt to introduce PSO in content-based image retrieval concerned the
adaptive setting of parameters into CBIR tools.

In [25], the optimization is applied to a query-by-example tool based on a sim-
ilarity measure calculated on the sublevels of the wavelet transform. In this work,
the authors calculate the similarity between two images D as a weighted sum of the
histograms coming from the wavelet transform of the image entropy, namely:

D =
r−1∑
i=0

i−1∑
j=0

wi j · δ
[
� i

j (s
i
j ),�

i
j (s

′i
j )

]
(11.3)

where � is the Haar wavelet transform of an entropy subhistogram si
j of the

image. In this equation, i represents the number of bit-planes of the image. The PSO
is used to find the best parameter wi j (weight of the subhistogram j at level i) and
the number of decomposition levels i , in order to obtain the best similarity. r is fixed
to 16 so that the multidimensional feature space has a maximum of 128 dimensions.

Zhiwei Ye et al. used the PSO in a similar way [26]. In this case, the authors
wanted to find the best set of weights in order to stress the spatial importance of the
color histogram. The main difference from [25] lies in the fact here that the weights
are discrete binary values, instead of continuous values in the range [-2, 2].

Kameyama et al. used the PSO to optimize the similarity parameters [27–29]. In
this case, a relaxation matching [30] is adopted to establish the similarity between
images. This method requires the setting of eight independent parameters, and PSO
is proved to achieve an effective solution to this purpose. In all these works the PSO
fitness function involves the precision and the recall calculated on a small set of test
images. This means on one hand that there is an assessable optimal setting, but on the
other hand that some over-fitting problem can happen. For this reason, the number
of images used in the optimization process is of key importance.



206 M. Broilo and F. G. B. De Natale

Fig. 11.1 General schema of parameters optimization related to visual image similarity. Each
particle p

n
represents a possible combination of parameters. The fitness function represents the

ability of this combination to improve the image ranking according to the adopted similarity metric

A general schema depicting how the PSO algorithm works in this context is
presented in Fig. 11.1.

11.4 PSO in Image Classification

A second possible way of introducing an optimization tool into an image retrieval
system consists in stating the classification problem as an optimization process.
Again, the optimization process allows finding an optimal set of parameters, but in
this case such parameters describe the hyper-planes or the rules needed to segment
the multi-dimensional feature space into a set of partitions, corresponding to a set
of image classes. In [32–34] the authors propose to apply a PSO to find the optimal
set-up for a self organizing map (SOM) classifier [31]. The idea is to associate to each
image a neuron of the SOM, with dimension equal to the feature vector. The weights
of the neurons are then iteratively updated by the PSO algorithm, until a predefined
number of iterations is reached or the distance between input feature vector and
global best reaches a fixed threshold. At the end of the optimization, the resulting set
of weights minimizes the classification error of the training set.

PSO has been also used to optimize K-means classifiers [35, 36]. Although
K-means remains one of the most widely used clustering algorithms for unsuper-
vised classification problems, it gets typically trapped into local minima. In order
to overcome this problem, the authors propose to use a PSO algorithm to search for
the best K-means solution. To achieve this goal, the authors propose to initialize m
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Fig. 11.2 General schema of classifier optimization. Each particle p
n

represents a possible set-
up of the classifier. At every iteration the classification accuracy on a training set of images is
evaluated as a fitness function. The process terminates when either the target accuracy is obtained
or a predefined number of iterations is reached. The set-up corresponding to the best accuracy is
kept as the optimal one

sets of K random cluster centers to be used by m particles. Each particle is then a
point in a multidimensional space and is used as a seed for the clustering. At the end
of the optimization process, the particles highlight the best cluster centers, with the
goal of maximizing the classification accuracy. This kind of approach turns out to be
very useful in image segmentation tasks, where a predefined number k of selections
is given.

A classification scheme largely used in image retrieval as well as other applica-
tions is the support vector machine (SVM)[37]. SVMs employ the structural risk
minimization principle, which provides them with good generalization properties.
In order to solve the problem of parameter selection in support vector machines, the
use of PSO has been proposed [38].

Finally, it has to be mentioned that the use of PSO for data classification not only
refers to natural images, but also to other data sources, such as ultrasound images
[39], hyperspectral remote sensing images [40, 41], SAR images [42], or medical
images [43]. In all those cases, PSO provide significant gains in terms of efficiency
against empirical parameter tuning.

A general schema depicting how PSO algorithm works in this type of problems
is presented in Fig. 11.2.
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11.5 PSO and Relevance Feedback

A completely different use of PSO refers to the solution of the retrieval problem
when the user is involved in the search process. This is the typical case of relevance
feedback (RF) approaches, where the user interacts with the system to improve the
retrieval performance.

The retrieval process usually relies on presenting a visual query (natural or syn-
thetic) to the system, which extracts the most similar images from a database. Such
mechanism, referred to as query-by-example, is typically deterministic, thus produc-
ing always the same result according to the query. The choice of the query is then
fundamental for the quality of the final result. RF introduces several mechanisms
to improve this process, making it possible to change the retrieval result by itera-
tively modifying either the query or the feature space according to the user feedback.
Nevertheless, the process is again deterministic (provided that the user feedback is
consistent) and the initial query has still a great impact on the final result.

By introducing some degree of randomness in the search, it is possible to explore
in a completely different way the solution space, thus allowing the convergence to
a better solution and/or a lower dependency on the solution from the starting point.
Stochastic optimization methods provide a viable approach to achieve this goal.

In [44], PSO is, for the first time, directly used to find the requested image cluster
inside a database, i.e., to find the images that minimize a given cost function. The
swarm particles fly through the database, and their location in the multidimensional
feature space represents a possible solution. The underlying idea is to steer the swarm
particles through the solution space (the multidimensional feature space and the
image database projected thereby) and to run the swarm migration process in order
to identify the set of images that best fit the user’s request. In this way, the image
retrieval problem can be seen as an optimization problem of a parametric fitness
function that expresses the quality of the retrieved solution: the lower the fitness
value, the better the solution. Using the swarm intelligence it is possible to substitute
a generic query shifting with a completely different process, where each particle of
the swarm can be seen as a single query, moving towards relevant samples and far
from irrelevant ones (thanks to the personal best bias), but also taking into account
the social behavior (according to the global best term). A further added value of the
proposed algorithm with respect to other proposed CBIR methods is the fact that it
introduces a random component to the process, thus allowing to explore the solution
space in different ways, converging to a good solution independent of the starting
point and of the path followed. A general schema depicting how PSO algorithm
works jointly with RF is presented in Fig. 11.3.

An important improvement of the idea presented in [44] consists in understanding
that also the diversity could be exploited in order to better satisfy the user. Sometimes
it could happen that images that are relevant to the user or belong to the same semantic
concept, could be very diverse in terms of visual appearance. Because of this, also
stochastic methods could suffer from stagnation problems, being unable to follow
manifold clusters. For this reason, the concept of swarm evolution is introduced in
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Fig. 11.3 General schema of relevance feedback and particle-swarm optimization retrieval system.
Each particle p

n
represents a visual feature set. At every iteration the distance of each particle from

the relevant examples tagged by the user is evaluated. The particles that minimize the distance from
relevant points and maximize the distance from irrelevant ones are presented to the user as possible
new relevant images. The process terminates when the user is satisfied with the retrieved images

the stochastic retrieval optimization process [45]. The key idea is to split the swarm
according to the number of the tagged relevant images. Accordingly, each subswarm
performs an independent optimization process, searching in the surrounding solution
space. The evolutionary splitting consists in forcing the personal best of all the
subswarm particles to the same relevant point. This process does not provide major
advantages when the relevant images are consistently clustered in the solution space,
while significantly improving the performance when relevant pictures are scattered
in the feature space [46] (see Fig. 11.4).

Another degree of freedom when using PSO in CBIR lies in the definition of the
fitness function. When the optimization is used to find a set of parameters, the fitness
is typically calculated based on the classification accuracy over a well-defined set
of data. Consequently, if a minimum is present, the slope of the function for all the
particles should be monotonically decreasing. This happens because the bounding
conditions of the problem remain constant during the optimization process. This is
not the case when PSO is adopted with the user feedback. In this case the fitness
is evaluated in terms of distances among relevant and irrelevant examples [47, 48].
These pictures change at every iteration and, in many cases, the feature space changes
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Fig. 11.4 Example of evolutionary PSO. At every iteration the personal best lk
n is set according to

the nearest relevant image, in order to search the surroundings of each relevant point, thus avoiding
early stagnation of the swarm

as well due to reweighting [44]. In this context, the PSO algorithm loses the meaning
of optimization, since there is no unique optimal solution, but just a best guess of the
new images to be presented to the user. In [46] the fitness function is defined in such
a way to represent the effectiveness of the solution reached by the swarm particles.
The authors take into account the relevant and irrelevant image sets, and define

Eq. 11.4 as a weighed cost function �k
(

p
n

)
that expresses the fitness associated to

the solution found by the generic particle p
n
:
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In this equation, xk
r ; r = 1, . . . , N k

rel and xk
i ; i = 1, . . . , N k

irr are the images in the
relevant and irrelevant subsets, respectively, and D represents a generic similarity
metric between the visual signatures of the selected images. It is to be observed

that the function �k
(

p
n

)
produces lower values when the particle is close to the

relevant set and far from the irrelevant one. Therefore, the lower the fitness, the
better the position of the particle. According to the fitness value, it is possible to
reorder the particle-swarm obtaining a new ranking. It is also worth noting that
both the weights and the fitness function change across iterations, because of the
dynamic nature of χk

RE L and χk
I R R subsets. Accordingly, features that were relevant

to discriminate some images can lose importance during the process, and particles
that were considered very close to the global best can become far from the relevant
zone of the solution space. In most cases, the number of irrelevant images collected
across iterations is greater than the number of relevant ones. This aspect has been
taken into consideration during the formulation of the fitness function making it
dependent on the inverse of the distance from irrelevant images. In this way, the
more the average distance of the particle from irrelevant images grows, the more the
fitness depends only from relevant images.
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The idea presented in [44] has been adopted by other authors in different works;
X. Xu et al. first reimplemented the same retrieval system in [49], then adopted PSO
as an online optimization of the weights in the evaluation of the similarity between
features vectors [50]. The translation of the retrieval process into an optimization one
is also adopted by K. Wei et al. in [51] and in [52], where there is no user feedback,
but the PSO iteratively presents to the user a set of images related to an initial query,
till reaching satisfaction.

Recently a CBIR application involving RF and PSO has been presented in [53].
Based on Fourier descriptors, the method decomposes the contour of an object into a
series of concentric ellipses. An ellipse can be represented with only three parameters:
semimajor axis, semiminor axis, and orientation angle. Since the difference among
such ellipses is remarkable, the weights associated to the relevant parameters in
similarity computation are fine tuned by a PSO. Finally, relevance feedback has been
used also by Chandramouli and Izquierdo, who modified the fixed off-line training
of the SOM [32] to generate an on-line training system, by introducing a user input
[54–56].

11.6 Ant Colony and Genetic Algorithms

The optimization issues presented in the above sections could also be addressed
using different optimization approaches. In the field of stochastic algorithms, ant
colony [16] and genetic algorithms [57] deserve a special mention. Ants present
a very good natural metaphor for evolutionary computation. With their small size
and small number of neurons, they are not capable of dealing with complex tasks
individually. An important and interesting behavior of ant colonies is, in particular,
how ants can find the shortest paths between food sources and their nest. For this
reason, this algorithm has been widely exploited in network-related problems [58],
although some proposals have been presented also in the field of image retrieval [59]
and in general for classification purposes [60].

Also genetic algorithms (GA) are considered effective stochastic optimization
tools and are applied in a number of research fields, including image retrieval prob-
lems. One of the first applications can be found in [61]. Here, the optimization starts
with an initial population formed of randomly generated individuals. In the begin-
ning, the fitness value of each individual is evaluated to determine how appropriate it
is for the given problem. Two individuals of relatively high fitness are then selected
from the population, and they are regarded as the parents. New individuals called
children are created by recombining the chromosomes of parents. Here, crossover
and mutation operators are used to induce variations in the population.

GAs have been exploited both to optimize the parameter selection [62] and to
exploit user interaction [63]. While in the first case it is easy to compare the perfor-
mance of different optimizers, since there is a measurable objective, this does not
apply to the second case. In fact, when users are involved in the loop, it is possible
to observe that each user has his own idea of relevance, and the images selected
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by a user could be very dissimilar in terms of visual features [46]. For this reason,
the principle of evolution of a GA looses effectiveness. In order to avoid this prob-
lem, multiobjective GAs have been proposed, which multiply the number of parents
according to the relevant images found [64], mimicking what is done in swarm-based
approaches.

11.7 Conclusions

In this chapter, the use of stochastic and evolutionary optimization techniques for
image retrieval problems has been presented, making special reference to social
approaches, and in particular to particle swarm optimizers (PSO). The different
ways how these tools can be usefully exploited were analyzed in detail, in order to
explain how statistical optimization can improve the performance of content-based
image retrieval techniques. It was shown that state-of-the-art stochastic optimization
approaches make it possible to achieve nearly optimal parameter setting in multi-
dimensional continuous or discrete spaces, while providing time- and computation-
effective solutions. It was also illustrated how the social behavior and the active
learning capability of such approaches can be exploited directly in the retrieval
process, letting the user interact with the optimization process. PSO is character-
ized by a set of good properties in terms of generalization, scalability and diversity,
which are all important features in solving a retrieval problem. The translation of
the retrieval process into an optimization problem has opened different research
directions in the human-machine interaction field.
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Chapter 12
A Cluster-Based Boosting Strategy for Red Eye
Removal

Sebastiano Battiato, Giovanni Maria Farinella, Daniele Ravì, Mirko Guarnera
and Giuseppe Messina

Abstract Red eye artifact is caused by the flash light reflected off a person’s retina.
This effect often occurs when the flash light is very close to the camera lens, as
in most compact imaging devices. To reduce these artifacts, most cameras have a
red eye flash mode which fires a series of preflashes prior to picture capture. The
major disadvantage of the preflash approach is power consumption (e.g., flash is
the most power-consuming device on the camera). Alternatively, red eyes can be
detected after photo acquisition. Some photo-editing softwares make use of red eye
removal tools that require considerable user interaction. To overcome this problem,
different techniques have been proposed in literature. Due to the growing interest of
industry, many automatic algorithms, embedded on commercial software, have been
patented in the last decade. The huge variety of approaches has permitted research
to explore different aspects and problems of red eyes identification and correction.
The big challenge now is to obtain the best results with the minimal number of
visual errors. This chapter critically reviews some of the state-of-the-art approaches
for red eye removal. We also discuss a recent technique whose strength is due to
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(a)

(b)

Fig. 12.1 Red eye is caused by the reflection of the flash off the blood vessels of the retina. The
camera records this red hue if the angle β is not greater than α (a), otherwise the red eye is not
recorded (b)

a multimodal classifier which is obtained by combining clustering and boosting in
order to recognize red eyes represented in the gray codes feature space.

12.1 Introduction

Red eye artifacts are a well-known problem in digital photography. They are caused
by direct reflection of light from the blood vessels of the retina through the pupil to
the camera objective. When taking flash-lighted pictures of people, light reflected
from the retina forms a cone, whose angle α depends on the opening of the pupil. Let
β be the angle between the flash and the camera lens (centered on the retina). The red
eye artifact is formed if the red light cone hits the lens, that is, if α is greater than or
equal to β (Fig. 12.1). Small compact devices and point-and-click usage, typical of
non-professional photography, greatly increase the likelihood for red eyes to appear
in acquired images.

High-end cameras can be equipped with separate flashes with an extensible and
steerable bracket, which allows for more distance between the flash and the lens,
thus reducing the probability for red eyes to appear. One preventive measure suitable
to both high-end and low-end devices is to make additional flashes before actually
taking the photograph (preflash). This method, first proposed by Kodak [1], gives
pupils time to shrink in order to reduce the reflectance surface, thus making red eyes
less likely. It is important that enough time elapses between flashes to account for
the response time of the pupils (Fig. 12.2). This approach is effective, but it has the
disadvantage of greatly increasing power consumption, which may be problematic for
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Fig. 12.2 Timeline explaining the preflash approach. Before the actual acquisition, a flash is fired.
After a short time, the shutter opens and light enters the sensor. At the end of the exposure time the
“true” flash is fired. Time between flashes is such that the pupils have time to react and shrink

Fig. 12.3 Examples of the variability of the red eye phenomenon. Golden eyes are also visible

power-constrained mobile devices [2]. Also, the additional flashing may sometimes
be uncomfortable for people.

Red eye prevention methods reduce the probability of the phenomenon but do
not remove it entirely. Most of the time, then, the picture must be corrected during
postprocessing. Red eye removal is a very challenging task: Red eyes may vary
in shape and color, and may also differ in position and size relative to the whole
eye. Sometimes light is reflected on a part of the retina not covered with blood
vessels, yielding a yellow or white reflection (golden eyes). Some examples of the
phenomenon are showed in Fig. 12.3. Designing a system which can effectively
address all the possible cases is very difficult.

For red eyes to be removed, they must be first reliably detected and then properly
corrected. Detection methods are divided into semiautomatic methods, which ask the
user to manually localize and point to the red eyes, and automatic methods, which
detect the red eyes themselves. In the first case the eyes are manually selected using
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a visual interface (e.g., Adobe Photoshop [3], Corel Paint Shop Pro [4], ACDSee
[5], etc.). This is feasible because eyes are easy to localize for humans, but requiring
manual intervention for every picture is unsuitable expecially for non-professional
usage. Moreover, it may be difficult to have and use such an interface on a mobile
device. Automatic methods attempt to find red eyes on their own. Since they do not
require user intervention, they are easier to use and more appealing, and thus are
suitable for embedded devices. However, automatic detection of red eyes is a very
challenging task, due to the variability of the phenomenon and the general difficulty
in discriminating eyes from other details.

Red eye correction techniques, on the other hand, can be more or less invasive.
Generally speaking, “easier” cases may be addressed with a softer correction, while
sometimes a stronger intervention is needed. Since the aim is to provide a corrected
image which looks as natural as possible, a less invasive correction is preferred when
the natural aspect of the eye is reconstructible from the acquired image.

This chapter aims to provide an overview of well-known automatic red eye
detection and correction techniques, pointing out working principles, strengths and
weaknesses of the various solutions. For further information about red eye removal,
see recent surveys on academic papers [6, 7] and patents [8]. Moreover, the chapter
discusses a recent technique whose strength is due to a multimodal classifier which
is obtained by combining clustering and boosting in order to recognize red eyes
represented in the gray codes feature space [9–11].

The chapter is organized as follows. Section 12.2 explores red eye detection.
Section 12.3 describes methods for red eye correction, whereas Sect. 12.4 gives an
insight into the problem of unwanted and improper corrections, showing their side
effects. Lastly, Sect. 12.5 provides criteria to evaluate the quality of the results.
Finally, Sect. 12.6 introduces an advanced technique based on boosting and gray
codes representation. Conclusion are given in Sect. 12.7.

12.2 Eye Detection

The main difficulty in detection of red eyes is their great degree of variability. In the
easier cases, the pupil has a “normal” shape and size and differs from a regular one
only by its color. However, it is not uncommon for the red reflection to spread over
the iris generating an unnatural luminance distribution. Usually a small white glint
is also present, representing the direct reflection of the flash on the surface of the eye
and giving the eye a much more natural appearance.

Typical red eye detection approaches involve extraction of red zones com-
bined with skin extraction, shape template matching, and/or face detection. Some
approaches also make use of ad hoc classifiers to further refine their results.
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(a) (b)

Fig. 12.4 Picture a shows two very different red eyes; picture b shows one red eye along with a
regular one

12.2.1 Color-Based Approaches

Color-based approaches are based on detecting red zones, which may correspond to
red eye artifacts. As a typical constraint for the position of the red eyes, they also
detect the human skin, considering also some criteria about the relative position of
the red eyes and the skin (usually, the eyes must be almost completely surrounded
by nearby skin). Some color-based approaches also detect the sclera (the white part
of the eye), distinguishing it from the skin. Possible constraints may be imposed
about the geometry of the red zones, such as discarding candidates that are too much
elongated to represent a red pupil. This kind of approaches is quite simple, but does
not take into account more complex features like, e.g., the presence of the various
parts of the eye or the detection of the face.

One of the biggest problems of color-based techniques is the characterization of
the colors to look for. Usually, interesting portions of the color space (corresponding
to red, skin color, etc.) are delimited by hard thresholds, but they may also be delimited
by soft margins, yielding a fuzzy probability for the color to belong to the region.
However, finding proper boundaries for the regions is a challenging task. The color of
red eyes is heavily influenced by the type of flash used, the sensor and the processing
pipeline. While this is not a big issue, since the thresholds may be fine-tuned to adapt
to the acquisition system, there are external factors which may influence the color
of the eyes, including (but not limited to) the age of the person, the opening of the
pupils, the distance from the camera, and the angle between the eyes and the flash.
The variability is so high that even the same subject in one picture may have two
different colored red eye artifacts, or a red eye and a regular one (see Fig. 12.4).
Moreover, if the flash is not very strong (as is often the case with mobile devices),
the external illuminant may produce a noticeable color cast on the picture, which
adds another degree of variability to the colors. Similar considerations apply to the
color of the skin and of the sclera.

The red color region may be defined in different color spaces. In the RGB space,
a possible definition is [12]:
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⎧⎪⎪⎨
⎪⎪⎩

R > 50
R/(R + G + B) > 0.40
G/(R + G + B) < 0.31
B/(R + G + B) < 0.36

(12.1)

Often, instead of hard thresholds, a Redness function is provided. This function
is an estimate of how well the color of each pixel resembles a red eye artifact, and is
used as a way to define soft margins for the red color region. Some possible redness
functions are [13–16]:

Redness = (R − min {G, B}) (12.2)

Redness = R2
(
G2 + B2 + 14

) (12.3)

Redness = max {0, (R − max {G, B})}2

R
(12.4)

Redness = max

{
0,

2R − (G + B)

R

}2

(12.5)

As an alternative to select an interesting portion of the color space, it is possible
to compare a redness function with a luminance function, discarding pixels whose
luminance is more noticeable than the redness [17]:

Redness = R − (G + B) /2 (12.6)

Luminance = 0.25R + 0.6G + 0.15B (12.7)

Red Lum = max {0, 2 × Redness − Luminance} (12.8)

Search for red regions may also be performed in color spaces different from RGB,
such as YCC [18] or HSL [9, 19].

Given a particular choice for the red color region, it is possible to convert each
image to a representation which shows whether each pixel belongs to the region.
Such representations are called redness maps. According to the employed definition
for the red color region (hard-thresholded or soft-delimited), the redness map is a
black-and-white or full-grayscale image (in the latter case, the redness function is
adjusted to the possible maximums and minimums of the redness function, or to the
maximums and minimums over each particular image). Figures 12.5 and 12.6 show
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(a) (b) (c)

(d) (e) (f)

Fig. 12.5 Examples of redness maps: a original image; b–f redness maps obtained with Eqs. (12.1)–
(12.5), respectively

(a) (b)

Fig. 12.6 a Redness map obtained from Eq. (12.6); b redness versus luminance map computed
according to (12.8)

redness maps computed using the above formulae. Skin extraction may be performed
in a similar way as red color extraction.

Other color-based information useful to detect red eyes may be gained by search-
ing for the sclera [20] and selecting the zones where the flash has noticeably affected
the image (discarding, e.g., a distant background) [21]. Using thresholding and
morphological operators to combine different masks, it is possible to effectively
extract red pupils.
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12.2.2 Shape-Based Approaches

Shape-based approaches attempt to find eyes by exploiting simple information about
their shape. They typically use templates which are matched at different positions
and resolutions, in order to search the image for shapes which may correspond to
eye features. The region of interest is then restricted to zones where the response
of the templates is stronger. Using simple circular or square templates it is possible
to recognize, e.g., the difference in intensity between the inner pupil and the outer
skin and sclera. Slightly more complex templates may be useful in locating the other
parts of the eye, which helps to effectively assess the presence or the absence of a
red eye [22].

Edge detection filters may also be useful to extract information about shape. It
is possible to use them in conjunction with color tables to make advantage of both
spatial and chromatic information [23].

12.2.3 Pairing Verification

One of the constraints which can be used to filter out false detections is eye pairing
verification [24]. It is based on the assumption that every eye found must be paired
with the other one on the same subject’s face. The two eyes must have similar size,
and they must be in a certain range of distances (possibly proportional to the size, in
order to account for the distance of the subject from the camera) from each other, in
a horizontal or almost horizontal direction. If an eye cannot be paired because it has
no suitable match, it is discarded, since it is most probably a false detection.

This approach is effective, since it is very unlikely for two false positives to satisfy
the pairing criteria, but it presents a major drawback: If a face is partially occluded, so
that only one eye is visible in the picture, and that eye is red, it will not be corrected,
since it cannot be matched to the other one. The same problem will occur when both
eyes are visible but only one is red, or when both are red but only one is detected,
possibly due to a difference in color (Fig. 12.7).

12.2.4 Face Detection

Restricting the search region to the zones where faces are detected, it is possible
to discard a great number of false positives [14]. In detail, a face detection system
determines the locations and sizes of human faces in arbitrary digital images by
making use, in some cases, of ad hoc facial features. The localization is done by con-
sidering a bounding box that encloses the region of interest. The detection problem
is often achieved as a binary pattern classification task. The content of a given part
of an image is transformed into features used to train a classifier on example faces
so that it able to decide whether that particular region of the image is a face, or not.
For practical situations it is very common to employ a sliding-window technique
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(a) (b) (c)

Fig. 12.7 In picture a, only one of the eyes is visible; the red eyes in picture b are very different,
and in most cases only one of them will be properly detected; in picture c only one of the eyes is
affected by the red eye phenomenon. In all these cases, the pairing verification will fail

just using the classifier on small portions of an image (usually squared or rectan-
gular), at all locations and scales, as either faces or non-faces. In the more general
case, face localization is achieved regardless of position, scale, in-plane rotation and
orientation, pose (out-of-plane rotation), and illumination. Further sources of prob-
lems are the presence or absence of structural components (e.g., beards, mustaches
and glasses), facial expressions that have a great impact over the face appearance
and the occlusions that occur when faces may be partially occluded by other objects.

To implement a robust face detector it is fundamental to fix some points relative to
the specific application. In particular it is important to decide the facial representation,
the involved preprocessing, the particular “cues” (e.g., colors, shape, etc.) and the
classifier design.

In literature a lot of approaches have been published with different capabilities,
advantages and limitations. Of course, the implementation of a face detector system
inside an embedded device requires ad hoc peculiarities due the limited available
resources. The constrained domain forces us to consider methods that are able to
guarantee a reasonable trade-off between robustness and computational issues. It is
out of the scope of this chapter to provide a detailed review of all related technologies.
See [25–29] for more specific details.

In this case the quality of red eye detection greatly depends on the quality of the
face detector. Sometimes it is limited to frontal upright faces, while red eye artifacts
may be located in profile or three-quarter views of subjects (especially when taking
snapshots). Therefore, face detectors with such limitations are not suitable for red
eye detection. Another important degree of variability is the age of the subject:
Children are difficult to detect, since their faces have different shapes and different
features than those of adults. Nonetheless, they have a higher chance to present red
eye artifacts, since their pupils are usually more open. Thus, it is important for face
detection to be robust both to the angle of view and to the age of the subject.

Another important issue related to face detection is that it does not help discard
false detections of the face, which are usually critical. An additional constraint which
may be imposed is to only accept eyes located in the upper half of the detected face.
This helps filter out some false detections (e.g., lips or tongue) but it keeps the ones
near the eyes (e.g., details of glasses or pimples on the forehead).
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12.2.5 Combining Preprocessing and Classification

Different algorithms based on a two-stage approach have been proposed in literature.
In the first stage red eye candidates are detected through preprocessing (e.g., through
color-based methods). In the second step the detection is refined making use of a
classifier. Zhang et al. presented a two-stage algorithm in [12]. At the first stage,
red pixels are grouped and a cascade of heuristic algorithms to deal with color, size
and highlight are used to decide whether the grouped region is red eye or not. At
the second stage, candidate red eye regions are checked by using adaptive boosting
(Adaboost) classifier. Luo and Tretter [22] proposed an algorithm that first uses square
concentric templates to assess the candidate red eye regions, and then employs an
Adaboost classifier coupled with a set of ad hoc selected Haar-like features for final
detection. Multiscale templates are used to deal with the scale of red eye patches. For
each scale, a thresholding process has been used to determine which pixels are likely
to be red eye pixels. A wide class of techniques makes use of geometric constraints to
restrict possible red eye regions in combination with reliable supervised classifiers for
decision making. Corcoran et al. [30] proposed an algorithm for real-time detection
of flash eye defects in the firmware of a digital camera. The detection algorithm
comprises different substeps on CIELAB color space to segment artifact regions
that are finally analyzed with geometric constraints. Safonov et al. [31] suggested a
supervised approach taking into account color information via 3D tables and edge
information via directional edge detection filters. In the classification stage a cascade
of supervised classifiers including Gentleboost has been used. In [9] an effective two-
stage algorithm for red eyes detection was introduced. In the first stage candidate
red eyes are extracted from the input image through an image-filtering pipeline. This
process is mainly based on red color segmentation in the HSL color space coupled
with geometric constraints related to the size and the roundness of the red eye regions.
In the second stage a multimodally classifier, obtained by using clustering and linear
discriminant analysis (LDA), is used to distinguish between true red eyes patches
versus other patches.One of the main contributions of the approach proposed in [9] is
to demonstrate that better results are achieved if the multimodally nature of candidate
red eyes is taken into account during classification task.

12.3 Red Eye Correction

The goal of red eye correction is to modify the image in such a way that it looks
as natural as possible, given the assumption that there are red eye artifacts in the
detected zones (according to the eye detector). The correction algorithm may need
to adjust the hue, brightness, luminance distribution, and/or even the shape and size
of the pupil. Since naturalness of the image is the goal, it is best to use a minimally
invasive technique to correct each case. This also means that a way to evaluate the
degree of correction of each artifact (either in the detection phase or at the very
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Fig. 12.8 In the simplest
cases, pupil desaturation
produces good results

(a) Before correction

(b) After correction

beginning of the correction phase) is to be preferred, in order to be able to adapt the
correction method by taking into account the case under consideration [32].

12.3.1 Desaturation

In the simplest cases, the eye has a regular shape, and the artifact only consists in the
wrong color of the pupil. In these cases, the solution is equally simple: The red eye is
desaturated; its chrominance is (totally or partially) suppressed, while its luminance
is left intact or only slightly lowered (Fig. 12.8).

One simple way of desaturating red pupils is to replace each pixel with a gray
shade at 80 % of original pixel luminance [18]. An adaptive desaturation may be
performed in the CIELAB color space by stretching the lightness values of the pupil
so that its darkest point becomes black [33]:

L∗
corrected = max L∗

(max L∗−min L∗) (L∗ − min L∗)
a∗

corrected = 0
b∗

corrected = 0
(12.9)

Desaturation may suffer from a boundary effect: The transition between the cor-
rected and uncorrected area may be noticeable and unpleasant. Moreover, some pixels
outside the pupil may be incorrectly considered to be part of the red eye artifact and
desaturated. To overcome these problems, a smoothing (usually Gaussian) mask may
be used to modulate the strength of the correction. For each pixel (i, j) in the red
eye artifact area, let be coriginal(i, j) its color in the uncorrected image, ctarget (i, j)
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Fig. 12.9 When reflected
light spreads over the iris,
simple desaturation gives
unnatural results

(a) Before correction

(b) After correction

the target color of the correction and m(i, j) the value of the smoothing mask. The
final corrected color ccorrected(i, j) is then:

ccorrected(i, j) = ctarget (i, j) × m(i, j) + coriginal(i, j) × (1 − m(i, j)) (12.10)

12.3.2 Inpainting

In the hardest cases, a more invasive correction is needed. Often, the distribution
of reflected light is influenced by the direction of the flash with respect to the face.
Sometimes eyes present a “washed out” effect, where the reflected light spreads off
the pupil onto the iris. In these cases a simple desaturation may yield incorrect and
unnatural results (Fig. 12.9).

It is then necessary to use a more complex method to reconstruct a realistic image
of the eye. Inpainting may vary from an adaptive recoloring of red pixels to a complete
redrawing of iris and pupil [34]. The results, however, tend to be unrealistic, up to
the point that they sometimes resemble glass eyes (Fig. 12.101).

1 Corel Paint Shop Pro red eye removal tool.
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Fig. 12.10 Correction of washed-out red eyes with an inpainting technique

12.3.3 Flash/No Flash

Another way of obtaining simultaneous detection and correction of red eye artifacts
is the “flash/no flash” technique [35, 36], which aims to combine the advantages of
taking a nonflashed picture and a flashed one. The main idea is to take a high-quality
flashed picture and a low-quality nonflashed one, which is used to detect the red eyes
and recover the natural colors of the affected zones (Fig. 12.112).

The method works as follows: Two pictures are taken in quick succession. The
first one is shot without flash with high sensitivity, large lens aperture and with a
short (for a nonflashed picture in low light conditions) exposure time. This yields a
dark and noisy picture with small depth of focus, but still suitable to help recover
the unaltered colors of the eyes. The second one is a regular flashed picture, which
represents the “real” picture to correct. It is important that the two pictures are taken
with the same focal length and that very little time elapses in between, in order
to prevent misalignment. Search for red eye artifacts is performed in a luminance-
chrominance color space, usually CIELAB. The a∗ channel is used as a measure of
redness. Pixels whose a∗ component exceeds a certain threshold are considered red.
Among such pixels, those whose difference between the a∗ channel in the flashed
image and the same channel in the nonflashed image is larger than another threshold
are marked as possible red eye pixels. Morphological operators are used to cluster
them into blobs, discarding isolated pixels or very narrow regions as noisy results.

2 Picture taken from Petschnigg et al. [36].
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(a) (b)

Fig. 12.11 Flash/no flash technique. a Dark nonflashed picture used to recover the correct color
of the eyes; b high-quality picture affected by red eye artifacts; c corrected picture

To correct red eyes using information from the nonflashed picture, it is important
to first compensate differences in color cast between the two images. To this end,
for each of the chroma channels a∗ and b∗, the difference between the two images
is averaged over all non-red eye pixels, thus obtaining a color compensation term.
Correction of red eye artifacts is then performed by substituting the chrominance
of affected pixels in the flashed image with the chrominance of the corresponding
pixels in the nonflashed image, then adding the color compensation term.

The approach is quite simple and theoretically effective, but it presents a number
of drawbacks. First of all, the memory and processing requirements double, since
there are two pictures being taken in place of one. Moreover, the images may suffer
from registration problems, or they may simply be misaligned due to movement of the
hand or of the subjects. This makes this method especially unsuitable for snapshots,
where people may be caught while moving. Another important issue of this approach
is uneven illumination, which is recorded by the nonflashed image but not by the
flashed one: A dark shadow on a red detail (such as the shadow of the nose projected
on the lips) may trigger a false detection, which in turn causes image degradation
(especially if the chrominance of the shaded part is not correctly perceived due to
insufficient illumination).
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(a) (b) (c)

(f)(e)(d)

Fig. 12.12 Examples of corrections of false positives. Some are barely noticeable, while others are
totally unacceptable

12.4 Correction Side Effects

12.4.1 False Positive

One of the biggest issues in red eye removal is false positives in the detection phase.
Correcting a red detail falsely detected as a red eye artifact may have a much more
displeasing effect than leaving an artifact uncorrected. For this reason, getting as
few false positives as possible is more important than catching as many red eyes as
possible. Examples of image degradation resulting as correction of false positives
are shown in Fig. 12.12.

False positives can be classified according to the severity of the associated degra-
dation risk, as discussed in Sect. 12.5.
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Fig. 12.13 Partial red eye
correction, where the brighter
area was not considered to
belong to the red pupil

(a) Before correction (b) After correction

Fig. 12.14 Correction of the
red pupil extends over the iris,
due to red pixels caused by
image noise

(a) Before correction (b) After correction

12.4.2 Partial Detection/Correction

Sometimes eyes are properly detected, but wrongly corrected. In such cases unnatural
corrections appear in the final image. Unnatural corrections, like false positives, are
very undesirable, since they are often more evident and displeasing than untouched
red eyes. One type of unnatural correction is partial correction, caused by an incorrect
segmentation of the red eye zone (possibly due to a difference in hue or luminance
between the detected and the undetected parts) as shown in Fig. 12.13.

12.4.2.1 Noisy Correction

Noisy correction is another kind of unnatural correction. Noisy corrections appear
when, in presence of heavy image noise, red pixels are present around the pupil. In this
case, the detector may assume that such pixels belong to the red eye, and correction
may spread over the iris, giving a strange and unnatural look to the corrected eye as
shown in Fig. 12.14.

It is worthwhile to note that a strong lossy image compression (e.g., low-bitrate
JPEG) may cause the same phenomenon; however, in the context of automatic algo-
rithms which act just after the picture is taken, it is reasonable to assume that red eye
removal is performed before image compression (to improve red eye detection and
to avoid compressing twice).
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(c) Before correction (d) After correction(a) Before correction (b) After correction

Fig. 12.15 In some cases, an unnatural luminance distribution is visible in the corrected image (b).
Sometimes, instead, the eye has a “dead” look, due to the absence of the glint (d)

12.4.2.2 Dead Eye

Sometimes red eyes are properly detected, but the corrected image just does not look
natural. This may happen when a wrong luminance distribution, caused by reflected
light, is kept through the correction and is evident in the resulting image. This may
also happen when the color of the corrected pupils is not quite natural, possibly
because the correction is not strong enough. Finally, the absence of the glint, which
may be due to inpainting or excessive correction, may cause the eye to look “dead”,
as shown in Fig. 12.15.

12.5 Quality Criteria

The formulation of a quality metric allows us to choose the best solution and to
adjust parameters of the algorithm in the best way. To achieve quality control on a red
eye removal algorithm is a challenging issue. Usually the quality of the algorithm is
estimated considering the ratio between corrected eyes and false positives. Obviously
this is strictly related to the nature of the database and the quantity of images. Safonov
[23] introduced an interesting quality metric that allows users to remove correlation
between quantity and quality.

First of all, the author enumerated all possible cases; further he prioritized them
using an analytic hierarchy process (AHP) [37]. Obviously a representative set of
photos affected by red eye defects should be used for calculation of these unwanted
cases. Furthermore good solutions must have low false negatives (FN) and false
positives (FP); ideally FN and FP are equal to zero. However the severity of the FPs
differs significantly. Almost indistinguishable small FP on foreground is undesirable
but sometimes allowable. Visible FP on the foreground, especially on human faces
and bodies, is absolutely not allowable; such FP artifacts damage a photo more than
red eyes. Therefore he divided FPs in two classes: F Pc is the number of critical FP
and F Pn is the number non-critical FP.

A similar situation is described for the FNs. Several red eye regions are relatively
large and well distinguishable; other regions are small and have low local contrast.
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Table 12.1 Analytic hierarchy process table, where the coefficients ai , that refer to the assigned
importance values in each row, are used to estimate the Geometric Mean

Req. quality F Nm F Nd F Pc F Pn Np Ci Cn
7
√∏7

i=1 ai Weight %

F Nm 1.00 5.00 0.20 5.00 1.00 0.20 5.00 1.26 13.13
F Nd 0.20 1.00 0.33 5.00 0.20 0.20 5.00 0.68 7.08
F Pc 5.00 3.00 1.00 3.00 5.00 5.00 5.00 3.43 35.73
F Pn 0.20 0.20 0.33 1.00 0.20 0.20 1.00 0.34 3.54
Np 1.00 5.00 0.20 5.00 1.00 1.00 5.00 1.58 16.46
Ci 5.00 5.00 0.20 5.00 1.00 1.00 5.00 1.99 20.72
Cn 0.20 0.20 0.20 1.00 0.20 0.20 1.00 0.32 3.33

The weight is estimated in percentage from the sum of the Geometric Means (=9.60)

Detection of the first red eyes is defined as mandatory by Safonov, whereas detection
of the second regions is desirable. In accordance with such hypotheses he divided all
FN in two groups: F Nm is defined as the number of regions which are mandatory
for detection; F Nd is the number of regions which are desirable for detection.

One more unwanted situation is the correction of only one eye from a pair. For
semiautomatic approaches it is not so crucial because users have the possibility
to correct the second eye manually, but for embedded implementations it is quite
unpleasant. NP is then defined as the number of faces with one corrected eye from
pair of red eyes.

The retouching quality is important too. Regarding correction, Safonov distin-
guished two cases: If the corrected eye looks worse than the original red eye, for
example, only part of the red region is corrected, it is an irritating case; it is notice-
able that eye has been corrected but it does not irritate strongly. Accordingly CI is
the number of irritating cases, and Cn is the number of situations when retouching
is noticeable.

As described above, Safonov used prioritization of the factors through AHP table
(Table 12.1) according to observer’s opinions. The simplest way of filling the table
is: If left item is more important than top, then cell is assigned to 5; if the severities
of the two items are the same then cell is set to 1; if top item is more important than
left then cell is set to 1/5. Taking into account weights from AHP table, and taking
into consideration a global weight of 10 for all the features, Safonov proposed the
following quality criterion:

Qc = 1 − 1

Nt
(1.3 × F Nm + 0.7 × F Nd) (12.11)

− 1

Nt

(
3.6 × F Pc + 0.4 × F Pn + 1.6 × Np

)

− 1

Nt
(2.1 × Ci + 0.3 × Cn)

where Nt is total number of red eyes.
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12.6 Red Eye Detection and Correction Through Cluster-Based
Boosting on Gray Codes

The red eyes removal pipeline detailed in the following subsection uses three main
steps to identify and remove red eyes artifacts. First, candidate red eyes patches are
extracted, then classified to distinguish between eyes and non-eye patches. Finally,
correction is performed on detected red eyes.

12.6.1 Red Patch Extraction

To extract the red eye candidates, we first built a color model from the training set
to detect pixels belonging to possible red eye artifacts. We constructed red eye pixel
and non red eye pixel histogram models using a set of pixels of the training images.
Specifically, for each image of the training set, the pixels belonging to red eyes
artifacts have been labeled as red-eye-pixels (REP), whereas the surrounding pixels
within a window of fixed size have been labeled as non-red-eye-pixels (NREP).
The labeled pixels (in both RGB and HSV spaces) have been mapped in a three-
dimensional space C1 ×C2 ×C3 obtained taking into account the first three principal
components of the projection through principal component analysis [38]. By using
the principal component analysis, the original six-dimensional space of each pixel
considered in both RGB and HSV color domains, is transformed into a reduced three-
dimensional space maintaining as much of the variability in the data as possible. This
is useful to reduce the computational complexity related to the space dimensionality.
We used a 3D histogram with 64 × 64 × 64 bins in the C1 × C2 × C3 space. Since
most of the sample pixels of the training set lie within three standard deviations of
the mean, each component Ci has been uniformly quantized in 64 values taking into
account the range [−3λi , +3λi ], where λi is standard deviation of the i th principal
component (i.e., the i th eigenvalue). The probability that a given pixel belongs to the
classes REP and NREP is computed as follows:

P(C1, C2, C3|RE P) = h RE P [C1, C2, C3]
TRE P

(12.12)

P(C1, C2, C3|N RE P) = hN RE P [C1, C2, C3]
TN RE P

(12.13)

where h RE P [C1, C2, C3] is the REP count contained in bin C1 × C2 × C3 of the 3D
histogram, hN RE P [C1, C2, C3] is the equivalent count for NREP, TRE P and TN RE P

are the total counts of red eye pixels and non red eye pixels respectively. We derive
a REP classifier through the standard likelihood ratio approach. A pixel is labeled
REP if
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P(C1, C2, C3|RE P) > αP(C1, C2, C3|N RE P) (12.14)

where α is a threshold which is adjusted to maximize correct detection and minimize
false positives. Note that a pixel is assigned to the NREP class when both probabilities
are equal to zero.

Employing such filtering, a binary map with the red zones is derived. To remove
isolated red pixels, a morphology operation of closing is applied to this map. In our
approach we have used the following 3 × 3 structuring element:

m =
⎡
⎣

0 1 0
1 1 1
0 1 0

⎤
⎦ (12.15)

Once the closing operation has been accomplished, a search of the connected compo-
nents is achieved using a simple scanline approach. Each group of connected pixels is
analyzed making use of simple geometric constraints. As in [20], the detected regions
of connected pixels are classified as possible red eye candidates if the geometrical
constraints of size and roundness are satisfied. Specifically, a region of connected
red pixels is classified as a possible red eye candidate if the following constraints are
satisfied:

• The size Si of the connected region i is within the range [Mins , Maxs], which
defines the allowable size for eyes.

• The binary roundness constraint Ri , of the connected region i is verified:

Ri =
⎧⎨
⎩

T rue ρi ∈ [Minρ, Maxρ]; ηi ≤ Maxη; ξi � 0

False otherwise
(12.16)

where

– ρi = 4π×Ai
Pi

2 is the ratio between the estimated area Ai and the perimeter Pi

of the connected region; the closer this value to 1, the more the shape will be
similar to a circle.

– ηi = max
(

	xi
	yi

,
	yi
	xi

)
is the distortion of the connected region along the axes.

– ξi = Ai
	xi 	yi

is the filling factor; the closer this parameter to 1, the more the area

is filled.

The parameters involved in the aforementioned filtering pipeline have been set
through a learning procedure as discussed in Sect. 12.6.5.

In Fig. 12.16 all the involved steps in filtering pipeline are shown. The regions
of connected pixels which satisfy the geometrical constraints are used to extract the
red eye patches candidates from the original input image (Fig. 12.17). The derived
patches are reasembled to a fixed size (i.e., 30 × 30 pixels) and converted into gray
code [39] for further classification purpose (Fig. 12.18). Gray code representation



12 A Cluster-Based Boosting Strategy for Red Eye Removal 237

(a) Input image (b) Red map

(c) Closing operation (d) Final candidates

Fig. 12.16 Filtering pipeline on an input image. a Input image, b red map, c closing operation and
d final candidates

Fig. 12.17 Examples of possible candidates after red patches extraction

allows us to have a natural way (e.g., no strong transaction between adjacent values)
to pickup the underlying spatial structures of a typical eye.

The gray levels of an m-bit gray-scale image (i.e., a color channel in our case) is
represented in the form of the base 2-polynomial:

am−12m−1 + am−22m−2 + · · · + a121 + a020 (12.17)

Based on this property, a simple method of decomposing the image into a collection
of binary images is to separate the m coefficients of the polynomial into m bit planes.
The m-bit Gray Code (gm−1 . . . g2, g1, g0) related to the polynomial in Eq. (12.17)
can be computed as follows:

gi =
⎧⎨
⎩

ai
⊕

ai+1 0 ≤ i ≤ m − 2

am−1 i = m − 1
(12.18)
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Fig. 12.18 Example of gray code planes on the three RGB channels of a red eye patch

where
⊕

denotes the exclusive OR operation. This code has the unique property
that successive code words differ only by one bit position. Thus, small changes in
gray level are less likely to affect all m bit planes.

12.6.2 Red Patch Classification

The main aim of the classification stage is the elimination of false positive red eyes
in the set of patches obtained performing the filtering pipeline described in previous
section. At this stage we deal with a binary classification problem. Specifically, we
want to discriminate between eye and non-eye patches. To this aim we employ an
automatic learning technique to make accurate predictions based on past observa-
tions. The approach we use can be summarized as follows: Start by gathering as many
examples as possible of both eye and non-eye patches. Next, feed these examples,
together with labels indicating if they are eyes or not, to a machine-learning algo-
rithm which will automatically produce a classification rule. Given a new unlabeled
patch, such a rule attempts to predict if it is eye or not.

Building a rule that makes highly accurate predictions on new test examples is
a challenging task. However, it is not hard to come up with rough weak classifiers
that are only moderately accurate. An example of such a rule for the problem under
consideration is something like the following: “If the pixel p located in the sclera
region of the patch under consideration is not white, then predict it is non-eye”. In
this case such a rule is related to the knowledge that the white region corresponding
to the sclera should be present in an eye patch. On the other hand, such a rule will
cover all possible non-eye cases; for instance, it is correct to say nothing about what
to predict if the pixel p is white. Of course, this rule will make predictions that
are significantly better than random guessing. The key idea is to find many weak
classifiers and combine them in a proper way to derive a single strong classifier.

Among others, Boosting [40–42] is one of the most popular procedure for com-
bining the performance of weak classifiers in order to achieve a better classi-
fier. We use a boosting procedure on patches represented as gray codes to build
a strong classifier that is useful to distinguish between eye and non-eye patches.
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Specifically, boosting is used to select the positions {p1, . . . , pn} corresponding to n
gray code bits that best discriminate between the classes eye versus non-eye, together
with n associated weak classifiers of the form:

hi (g) =
{

ai gpi = 1
bi gpi = 0

(12.19)

where g = [g1, g2, . . . , gD] is the gray code vector (gi ∈ {0, 1}) of size D =
30 × 30 × 3 × 8 corresponding to a 30 × 30 patch extracted as described in previous
section. The parameters ai and bi are automatically learned by Gentleboost procedure
[40], as explained in Sect. 12.6.3. The classification is obtained considering the sign
of the learned additive model:

H(g) =
n∑

i=1

hi (g) (12.20)

where n � D indicates the number of weak classifiers involved in the strong
classifiers H .

The rationale behind the use of gray code representation is the following. In the
gray code space just a subset of all possible bit combinations are related to the eyes
patches. We wish to select those bits that usually differ in terms of binary value
between eye and non-eye patches. Moreover, by using gray code representation
rather than classic bit planes decomposition we reduce the impact of small changes
in intensity of patches that could produce significant variations in the corresponding
binary code [39].

In Fig. 12.19 an example of n = 1000 gray code bits selected with a Gentleboost
procedure is reported. Selected bits are shown as black or white points on the different
gray code planes. This map indicates that a red eye patch should have 1 in the positions
coloured in white and 0 in the positions coloured in black. Once gray code bits and the
corresponding weak classifiers parameters are learned, a new patch can be classified
by using the sign of Eq. (12.20).

The approach described above does not take into account spatial relationship
between selected gray code bits. Spatial information is useful to strengthen the clas-
sification task (e.g., pupil is surrounded by sclera). To overcome this problem we
coupled the gray code bits selected at the first learning stage to obtain a new set of
binary features.

Due to the multi-modal nature of the patches involved in our problem (i.e., colours,
orientation, shape, etc.), a single discriminative classifier could fail during classifica-
tion task. To get through this weakness we propose to perform first a clustering of the
input space and then to apply the two-stage boosting approach described above on
each cluster. More specifically, during the learning phase, the patches are clustered
by using K-means [38] in their original color space producing the subsets of the
input patches with the relative prototypes; hence the two-stage of boosting described
above are performed on each cluster. During the classification stage, a new patch
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Fig. 12.19 Selected gray code bits

is first assigned to a cluster according to the closest prototype and then classified
taking into account the two additive models properly learned for the cluster under
consideration. Experimental results reported in Sect. 12.6.5 confirm the effectiveness
of the proposed strategy.

12.6.3 Boosting for Binary Classification Exploiting Gray Codes

Boosting provides a way to sequentially fit additive models of the form in Eq. (12.20)
optimizing the following cost function [40]:

J = E[e−y H(g)], (12.21)

where y ∈ {−1, 1} is the class label associated to the feature vector g. In this work
y = 1 is associated to the eye class, whereas y = −1 is the label associated to the
non-eye class. The cost function in the Eq. (12.21) can be thought as a differentiable
upper bound of the misclassification rate [41].

There are many ways to optimize this function. A simple and numerically robust
way to optimize this function is called Gentleboost [40]. This version of a boosting
procedure outperforms other boosting variants for computer vision tasks (e.g., face
detection) [43]. In Gentleboost the optimization of Eq. (12.21) is performed mini-
mizing a weighted squared error at each iteration [44]. Specifically, at each iteration
i the strong classifier H is updated as H(g) := H(g) + hbest (g), where the weak
classifier hbest is selected in order to minimize the second-order approximation of
the cost function in the Eq. (12.21):

hbest = arg min
hd

J (H(g) + hd(g)) � arg min
hd

E[e−y H(g)(y − hd(g))2] (12.22)

Defining as w j = e−y j H(g j ) the weight for the training sample j and replacing
the expectation with an empirical average over the training data, the optimization
reduces to minimizing the weighted squared error:
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Jwse(hd) =
M∑

j=1

w j (y j − hd(g j ))
2, (12.23)

where M is the number of samples in the training set.
The minimization of Jwse depends on the specific form of the weak classifiers hd .

Taking into account the binary representation of samples (i.e., the gray code of each
patch), in the present proposal we define the weak classifiers as follows:

hd(g) =
{

ad i f gd = 1
bd i f gd = 0

(12.24)

In each iteration the optimal ad and bd for each possible hd can be obtained
through weighted least squares as follows:

ad =
∑M

j=1 w j y jδ(gd = 1)
∑M

j=1 w jδ(gd = 1)
(12.25)

bd =
∑M

j=1 w j y jδ(gd = 0)
∑M

j=1 w jδ(gd = 0)
(12.26)

The best weak classifier hbest is hence selected in each iteration of the boosting
procedure such that the cost of Eq. (12.23) is the lowest:

hbest = arg min
hd

Jwse(hd) (12.27)

Finally, before a new iteration, the boosting procedure makes the following mul-
tiplicative update to the weights corresponding to each training sample:

w j := w j e
−y j hbest (g j ) (12.28)

This update increases the weight of samples which are misclassified (i.e., for which
y j H(g j ) < 0), and decreases the weight of samples which are correctly classified.

The procedures employed for learning and classification in the proposed represen-
tation are summarized in Algorithms 12.1 and 12.2. In the learning stage we initialize
the weights corresponding to the elements of the training set such that the number
of the samples within each class is taken into account. This is done to overcome the
problems that can occur due to the unbalanced number of training samples within
the considered classes.
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Algorithm 12.1 Learning
1: Input: A set of gray code vectors G = {g1, . . . , gM }, and corresponding labels Y =

{y1, . . . , yM }
2: Input: A strong classifier H(g) = ∑n

i=1 hi (g)

3: Begin
4: C+ := { j |y j = 1}
5: C− := { j |y j = −1}
6: w j∈C+ := 1

2|C+|
7: w j∈C− := 1

2|C−|
8: for i = 1, 2, . . . , n do
9: for d = 1, 2, . . . , D do

10: a∗
d :=

∑M
j=1 w j y j δ(gd =1)∑M

j=1 w j δ(gd =1)

11: b∗
d :=

∑M
j=1 w j y j δ(gd =0)∑M

j=1 w j δ(gd =0)

12: h∗
d (g) :=

{
a∗

d i f gd = 1
b∗

d i f gd = 0

13: Jwse(h∗
d ) := ∑M

j=1 w j (y j − h∗
d (g j ))

2

14: end for
15: pi := arg mind Jwse(h∗

d )

16: ai := a∗
pi

17: bi := b∗
pi

18: hi (g) :=
{

ai i f gpi = 1
bi i f gpi = 0

19: w j := w j e
−y j hi (g j )

20: end for
21: H(g) := ∑n

i=1 hi (g)

Algorithm 12.2 Classification
1: Input: The strong classifier H , and a new gray code sample g to be classified
2: Input: The inferred class y ∈ {−1, 1}
3: Begin
4: y := sign(H(g))

12.6.4 Correction of Detected Red Eyes

Once the red eyes have been detected the correction step is performed. Usually the
red eye artifact consists of a red pupil with a white glint. This area absorbs light and
thus should be dark. To transform the red pupil to a dark region, a desaturation and
a brightness reduction is accomplished [6, 7]. The region of connected red pixels is
used to fix the area that must be desaturated. To prevent an unpleasant transition from
the iris to the pupil, the red eye artifact is replaced by a mask with equal dimensions,
where each value is used as weighted brightness/desaturation reduction factor. The
correction mask M is based on a 32 × 32 fixed point LUT with Gaussian shape
(Fig. 12.20). The mask is resized through a bilinear resampling to fit the dimension
of the region of connected red pixels under consideration.
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Fig. 12.20 Brightness satura-
tion mask

Let I r
c be the channel c ∈ {R, G, B} of a region of interest r within the image

I. For each channel c ∈ {R, G, B} the pixels (x, y) belonging to the region I r are
corrected as follows:

I r
c (x, y) =

⎧⎪⎨
⎪⎩

I r
c (x, y) [I r

R(x, y), I r
G(x, y), I r

B(x, y)] ∈ W

I r
G (x,y)

M(x,y)
otherwise

(12.29)

where W is a surrounding of the “white” color, which can slightly vary in terms of
lightness, hue and saturation. This means that to prevent the glint from disappearing,
only red pixels are desaturated (the whitish pixels are excluded from the brightness
processing).

12.6.5 Experimental Settings and Results

The proposed red eye removal pipeline was tested on a dataset of 390 images
in which 1,049 red eyes were manually labeled. The dataset was collected from
various sources, including digital single-lens reflex (DSLR) cameras, compact cam-
eras, personal collections and Internet photos. Single red eyes, as well as high vari-
ability of red eye colors, poses and shapes have been considered in building the
dataset. In order to accurately assess the proposed approach, the size of the eyes to
be detected in the collected images must be small enough to ensure that even the
smallest red eyes can be detected and corrected. The basic requirement considered in
our experimental phase is that the red eyes must be accurately detected and corrected
up to three meters distance from the camera. Table 12.2 presents the estimated eye
sizes, in pixels, for XGA image size (1024 × 768), with the assumption that the
average eye is directed to the camera. In this paper the collected images were con-
sidered with a XGA image resolution, and the minimum and maximum estimated
pupil diameter (Table 12.2) were taken into account in building the dataset for testing
purposes.
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Fig. 12.21 Example of clusters prototypes obtained in a LOOCV run

Table 12.2 Estimated eye sizes taking into account the distance from the camera

Distance (m) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

Diameter (pixels) 52 26 17 13 10 9 7 7 6 5 5 4 4 4 3

For each image of the dataset, the pixels belonging to red eye artifacts have
been manually labeled as REPs. The parameters Minh , Maxh , ts , Mins , Maxs ,
Minρ , Maxρ , and Maxη involved in the first stage of the proposed approach (see
Sect. 12.6.1) have been learned, taking into account the true and false red eyes pixels
within the labeled dataset. To this aim, a full search procedure on a grid of equispaced
points in the eight-dimensional parameters’ space was employed. For each point of
the grid, the correct detection and false positives rates of the true REPs within the
dataset were obtained. The tuple of parameters with the best trade-off between correct
detection and the false positives was used to perform the final filtering pipeline. A
similar procedure was employed to determine the subspace W of the RGB space
involved in the correction step to identify pixels belonging to the glint area.

In order to evaluate the classification performance of the proposed method, the
leave-one-out cross-validation procedure (LOOCV) was employed. Each run of
LOOCV involved a single image as test, and the remaining images as training data.
This is repeated to guarantee that each input image is used once as test image. At each
run of LOOCV the parameters of the filtering pipeline were set to maximize correct
detection and minimize false positives. At each run of LOOCV the training images
were clustered and then the two-stage boosting approach described in Sect. 12.6.2
was performed on each cluster. Seven clusters (shown in Fig. 12.21) and 800 binary
features for the additive classifiers corresponding to the clusters were used on each
LOOCV run. The maximum number of iterations used by the boosting procedure
to obtain the 800 binary features was 1400. The final results have been obtained by
averaging the results of the overall LOOCV runs.

Taking into account both the filtering and the classification stages, the hit-rate
of the proposed red eye detector is 83.41 %. This means that 875 red eyes were
correctly detected with respect to the 1049 red eyes of the 390 input images, whereas
only 34 false positives were introduced. In Fig. 12.22 the training ability increasing
the number of bits is shown in terms of hit rates (Fig. 12.22a) and false positives
(Fig. 12.22b).

In Fig.12.23 two examples of misclassified patches are reported. In Fig. 12.23a a
“golden” eye is depicted (another possible artifact due to similar acquisition prob-
lems). The underlying structure in Fig. 12.23b is probably the main reason of mis-
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(a) (b)

Fig. 12.22 Performances with increasing number of bits

Fig. 12.23 Examples of
misclassified patches

(a) False negative (b) False positive

Table 12.3 Comparison of different configurations

Configuration Hit rate (%) False positives

Gray codes 75.98 47
Gray codes + clustering 77.51 44
Gray codes + spatial relationship 79.31 36
Gray codes + clustering + spatial relationship 83.41 34

classification. Results reported in Table 12.3 confirm the effectiveness of the rationale
behind the proposed method.

To properly evaluate the overall red eyes removal pipeline, the qualitative criterion
(see Sect. 12.5) was adopted to compare the proposed solution with respect to existing
automatic solutions. The proposed pipeline has been compared with respect to the
following automatic (mainly commercial) solutions: Volken [20], NikonView V6.2.7,
KodakEasyShare V6.4.0, StopRedEye! V1.0, HP RedBot, Arcsoft PhotoPrinter V5,
Cyberlink MediaShow. Experiments were done using effective commercial software
and the implementation of [20] provided by the authors. The NikonView approach
is mainly based on [30].

As reported in Table 12.4, the proposed approach has obtained the best per-
formances in terms of both hit rate and quality criterion. Moreover, the proposed
approach outperforms the method we presented in [9] also in terms of computational
complexity.



246 S. Battiato et al.

Table 12.4 Quality score of different red eye removal approaches

Method FNm FNd FPc FPn Np Ci Cn Qc Hit rate (%)

Cyberlink MediaShow 270 86 40 19 39 122 61 0.1423 66.06
Volken et al. [20] 179 117 150 1540 83 17 79 −0.5851 71.78
KodakEasyShare V6.4.0 194 99 5 20 5 104 100 0.4243 72.07
HP RedBot 174 109 26 45 85 99 150 0.2345 73.02
NikonView V6.2.7 143 116 6 29 88 124 129 0.2944 75.31
StopRedEye! V1.0 124 125 8 12 83 81 91 0.4161 76.26
Arcsoft PhotoPrinter V5 132 103 10 78 80 89 82 0.3800 77.60
Battiato et al. [9] 122 85 2 2 60 20 64 0.6346 80.26
Proposed Pipeline 114 60 9 25 46 34 79 0.6174 83.41

12.6.5.1 Computational Complexity

To evaluate the complexity, a deep analysis has been performed by running the pro-
posed pipeline on an ARM926EJ-S processor instruction set simulator. We have
chosen this specific processor because it is widely used in embedded mobile plat-
forms. The CPU is run at 300 MHz, and both data and instruction caches have been
fixed to 32 KB. The bus clock has been set to 150 MHz, and the memory read/write
access time is 9 ns. The algorithm has been implemented using bitwise operators
to work on colour maps and fixed-point operations. Due to the dependence of the
operations on the number of red clusters found in the image, we have analyzed a mid
case, that is, an image containing around 40 potential red eye zones, but only two of
them are real eyes to be corrected.

Table 12.5 contains a report of the performance of the main steps of the proposed
pipeline, assuming to work on a XGA version (scaled) of the image: the redness
detection (Color Map), the processing on the generated maps (Morphological Oper-
ations), the candidate extraction, the classification step and finally the correction of
the identified eyes. The performance information reported in Table 12.5 is related to
the following computational resources:

Instructions: Counts the executed ARM instructions;
Core cycles: Core clock ticks needed to make the Instructions;

Data (D$): Read/write Hits and Misses, cache memory hits and misses;
Seq and Non Seq: Sequential and nonsequential memory accesses;

Idle: Represents bus cycles when the instruction bus and the data bus
are idle, that is, when the processor is running;

Busy: Counts busy bus cycles, that is when the data are transferred
from the memory into the cache;

Wait States: The number of bus cycles introduced when waiting to access
the RAM (is an indicator of the impact of memory latencies);

Total: Is the total number of cycles required by the specific function,
expressed in terms of bus cycles;
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Table 12.5 Performances of the main steps of the proposed pipeline

Color map Morph. oper. Candidate extr. Classification Correction

Instructions 19.845.568 22.990.051 9.418.650 4.446.349 1.698.946
Core cycles 28.753.276 30.489.180 16.407.293 5.668.496 2.390.279
D$ R hits 4.722.760 2.903.178 2.504.092 945.959 205.188
D$ W hits 97.636 261.213 428.924 135.634 94.727
D$ R misses 75.495 6.293 5.666 3.450 244
D$ W misses 2 193.891 3.290 24.069 1.133
SEQ 538.136 17.486.089 48.539 40.177 4.100
NON-SEQ 77.321 122.234 9.841 22.366 1.533
IDLE 16.282.401 7.325.256 10.345.379 3.203.188 1.372.407
Wait states 615.457 253.103 58.380 62.543 5.633
Total 17.513.316 16.208.789 10.462.139 3.328.274 1.383.673
Milliseconds 117 108 70 22 9

Milliseconds: Time required by the specific function expressed in
milliseconds.

The overall time achieved on this mid-case is 326 ms. The table highlights the
efficiency of the classifier, because it is mainly based on bit comparisons. Considering
patches scaled at 32 × 32 before the classification stage, the classifier is essentially
a comparison of 32 × 32 bit words for each channel with complexity in the range of
one operation per pixel. For this reason it is very fast and light. Also the correction
is very light because, as explained in Sect. 12.6.4, it is based on the resampling of a
precomputed Gaussian function. The impact on memory is valuable only on the map
processing, where data are processed several times, whereas in the remaining steps
of the pipeline the weight of the instructions determines the main part of process
timing.

We cannot compare the performances and complexity of our methodology with
other methods because the other proposed methods are commercial ones, hence the
related codes are not available for the analysis.

12.7 Summary and Conclusion

Since the extensive introduction of mobile devices with embedded cameras and
flashgun, automatic detection and correction of red eyes have become important
tasks. In this chapter we have reviewed different techniques for red eyes detection
and correction. Moreover, an advanced pipeline which makes use of a two-stage
approach has been discussed. Future work in this field should be devoted to deal
with detection and correction of other artifacts (eg., “golden eye” or ‘silver eye”).
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Chapter 13
Classifying Pathological Prostate Images
by Fractal Analysis

Po-Whei Huang, Cheng-Hsiung Lee and Phen-Lan Lin

Abstract This study presents an automated system for grading pathological prostate
images based on texture features of multicategories including multiwavelets, Gabor-
filters, gray-level co-occurrence matrix (GLCM) and fractal dimensions. Images are
classified into appropriate grades by using k-nearest neighbor (k-NN) and support
vector machine (SVM) classifiers. Experimental results show that a correct classifi-
cation rate (CCR) of 93.7 % (or 92.7 %) can be achieved by fractal dimension (FD)
feature set by using k-NN (or SVM) classifier without feature selection. If the FD
feature set is optimized, the CCR of 94.2 % (or 94.1 %) can be achieved by using
k-NN (or SVM) classifier. The CCR is promoted to 94.6 % (or 95.6 %) by k-NN (or
SVM) classifier if features of multicategories are applied. On the other hand, the
CCR drops if the FD-based features are removed from the combined feature set of
multicategories. Such a result suggests that features of FD category are not negli-
gible and should be included for consideration for classifying pathological prostate
images.
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Fig. 13.1 The Gleason grad-
ing diagram

13.1 Introduction

Prostate cancer is the most frequently diagnosed cancer and ranks second among
cancer deaths in the US [1]. Biopsy of the prostate, usually stained by hematoxylin
and eosin (H&E) technique, is a key step for confirming the diagnosis of malignancy
and guiding treatment [2]. By viewing the microscopic images of biopsy specimens,
pathologists can determine the histological cancer grades according to the Gleason
grading system. The Gleason grading system [3] is the most widespread method for
histological grading of prostate carcinoma.

Although pathologists can determine the histological grades by viewing the micro-
scopic images of biopsy specimens, the process of human visual grading is time-
consuming and very subjective due to inter and intraobserver variations. Therefore,
how to develop a more objective computer-aided technique for automatically and
correctly grading prostatic carcinoma is the goal of this research study.

A classic Gleason grading diagram containing the five basic tissue patterns asso-
ciated with the five tumor grades is shown in Fig. 13.1. As reported in [4], the use of
texture analysis for prostatic lesions is very essential to the identification of tissue
composition in prostatic neoplasia. Figure 13.2 shows four pathological images of
prostatic carcinoma from well differentiated (grade 2) to very poorly differentiated
(grade 5) in our image set. From Figs. 13.1 and 13.2, we can also see that the texture
of prostate tissue plays an important role in Gleason grading for prostate cancer.

There are several well-known techniques for texture analysis such as extracting
texture features from gray-level co-occurrence matrix (GLCM), Gabor filters, and
multiwavelet transforms. The concept of fractal dimension (FD) is applied in this
study for analyzing the texture of prostate tissue. The growth of cancer shows the
features of fractal in physical phenomena. The fractal theory can provide clinically
useful information for discriminating pathological tissue from healthy tissue [5].

The fractal dimension (FD) based features can be extracted through the differen-
tial box-counting (DBC) method [6] and entropy-based fractal dimension estimation
(EBFDE) method [13] to analyze pathological images of prostatic carcinoma. We
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Fig. 13.2 Prostate images of different cancer grades: a Gleason grade 2. b Gleason grade 3. c
Gleason grade 4. d Gleason grade 5

combine the FD-based features with those extracted from multiwavelets, Gabor fil-
ters, and GLCM to form a set of 144 texture features of multicategories for classifica-
tion. To evaluate the effectiveness of classification results based on these features, we
used a k-fold cross-validation procedure [7] (with k = 5) to a set of 205 pathological
prostate images and tested against these samples using k-nearest neighbor (k-NN)
and support vector machine (SVM) classifiers to estimate the correct classification
rates (CCR), respectively. For selecting an optimal set of features, this study applies
the sequential floating forward selection (SFFS) feature selection method [8].

Our system performs very well on classifying pathological prostate images in
terms of CCR. Experimental results show that the FD feature set can achieve 93.7 %
for k = 1 and 92.7 % of CCR without feature selection, and 94.2 % for k = 1 and
94.1 % of CCR with feature selection by k-NN and SVM classifiers, respectively. If
features of multicategories are considered and optimized, the CCR can be improved
to 94.6 and 95.6 % by k-NN and SVM classifiers, respectively. In addition, the CCRs
will decrease if FD-based features are removed from the texture feature set, no matter
which classifier is used. Such a result suggests that features of the FD category are
not negligible and should be included for consideration if features are selected from
multicategories.

13.2 Feature Extraction

In this section, we present various well-known texture feature sets derived from mul-
tiwavelets, Gabor filters, GLCM, and FD-based methods for classifying histological
prostate images.

Jafari-Khouzani et al. [4] proposed a method for grading the pathological images
of prostate biopsy samples by using energy and entropy features calculated from
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multiwavelet coefficients of an image. Ten sets of multiwavelet features were cap-
tured from different multiwavelet methods. Among them, multiwavelet-SA4 method
has the best performance. The details of defining multiwavelet-SA4 can be found in
[9]. In the multiwavelet method, a two-level multiwavelet transform of an image is
performed to generate 28 sub-band images. Since two features, energy and entropy,
are extracted from each sub-band image for classification, there will be a total num-
ber of 56 features in a feature set extracted from multiwavelet-SA4 method. We call
this type of features the Multiwavelet category.

A Gabor filter can be viewed as a sinusoidal plane of particular frequency and
orientation modulated by a Gaussian envelope. It is a promising method for texture
feature extraction in existing multichannel filtering approaches [10, 11]. An image
is filtered with a set of Gabor filters of different preferred orientations and spatial
frequencies to generate filtered images from which texture features can be extracted.
In our experimental system, we implemented a bank of Gabor filters using five radial
frequencies

√
2/26,

√
2/25,

√
2/24,

√
2/23,

√
2/22, and four orientations: 0◦, 45◦,

90◦, and 135◦. How to choose appropriate radial frequencies for a bank of Gabor
filters can be found in [10]. In our case, a set of 20 filtered images will be generated by
the Gabor filter method. We extract three features, energy, entropy, and magnitude,
from each of the 20 filtered images. As a consequence, three sets of features called
Gabor energy, Gabor entropy, and Gabor magnitude are formed with each containing
20 features. We can combine these three sets of features to form a feature set of
dimension 60 and call this type of features the Gabor category.

Five statistical texture feature sets (energy, entropy, contrast, correlation, and
homogeneity) are extracted from co-occurrence matrices based on a particular scalar
distance and four orientations, 0◦, 45◦, 90◦, and 135◦. To determine an appropriate
scalar distance to better capture a specific feature, we estimate the CCR of that feature
using ten distances (from 1 to 10 pixels) and choose the distance which generates
the highest CCR. In our experiment, the best distance is 3 pixels to capture energy
feature, 4 pixels to capture the entropy and contrast features, 1 pixel to capture the
correlation feature, and 8 pixels to capture the homogeneity feature. Once we obtain
the best distance which achieves the highest CCR for a specific feature, we use that
distance to generate four co-occurrence matrices with each matrix corresponding to
an orientation. Therefore, five feature sets are generated with each one containing
four features. Like the Gabor filter method, we combine the above five feature sets
together to form a feature set of dimension 20 and call this type of features the GLCM
category.

The concept of self-similarity can be used to estimate the fractal dimension as
follows. Given a bounded set S in Euclidean n-space, S is self-similar if it is the
union of Nr distinct (nonoverlapping) copies of itself scaled down by a ratio r. The
fractal dimension FD of S is given by the relation 1 = Nrr D and is calculated by
the following equation [12]:

F D = log(Nr )

log(1/r)
. (13.1)
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The fractal dimension texture features can be generated from a pathological image
using differential box-counting (DBC) and entropy-based fractal dimension estima-
tion (EBFDE) methods [13]. They can provide very useful information for classifying
pathological prostate images into four classes in the Gleason grading system. In our
system, fractal dimension is estimated according to different ranges of scales for cap-
turing the various self-similarity properties in a prostatic carcinoma image. Before
applying the DBC method, color pathological images of prostatic tissues are trans-
formed to gray-level images by getting the R channel from the RGB color space to
enhance the contrast between malignant cells and background tissues. In the above
preprocessing step, the malignant cells will become darker because they are stained
blue. Other pathological objects such as stroma and lumens are stained red or do not
get stained in H&E-stained pathological images.

The DBC method is briefly described as follows. Consider an image of size M×M
pixels that has been scaled down to a size s × s, where 1 < s ≤ M/2 and s is an
integer. Then, we can get the scale ratio r = s/M . Consider the image as a 3D space
such that (x, y) represents a 2D position, and the third coordinate (z) represents the
gray level of an image at position (x, y). The (x, y) space is divided into grids of size
s ×s. Thus, there will be a column of boxes of size s ×s ×h on each grid, where � G

h �
= � M

s � and G is the total number of gray levels in an image. Let the maximum and
minimum gray levels of an image in the (i, j)th grid fall in boxes k and l, respectively.
The contribution of Nr in the (i, j)th grid is expressed as follows:

nr (i, j) = k − l + 1. (13.2)

The contribution from all grids is

Nr =
∑
i, j

nr (i, j). (13.3)

Nr is counted for different scale ratio r. Then, the fractal dimension D can be
estimated from the slope of line approximated by least-squares linear fitting for
log(Nr ) versus log(1/r) in Eq. (13.1).

The DBC method only captures the information about intensity difference which
is necessary but not sufficient enough to differentiate all patterns of different Gleason
grades. The entropy-based fractal dimension estimation (EBFDE) method can further
capture the information about randomness of pixels. The EBFDE method is described
as follows. First, a 2D image is partitioned into several grids of size s×s. Then, we
compute the entropy for the (i, j)th grid using the following equation:

er (i, j) = −
G−1∑
k=0

pk log2(pk), (13.4)

where the index k is taken over all gray scales in the (i, j)th grid of an image, pk is
the probability of gray-level k occurring in the (i, j)th grid of an image, and G is the



258 P.-W. Huang et al.

total number of gray levels. The contribution from the (i, j)th grid is er (i, j)2. So the
total contribution from all grids is

Er (i, j) =
∑
i, j

er (i, j)2. (13.5)

Again, by applying Eq. (13.1), the fractal dimension D of an image can be estimated
using least-squares linear fitting for log(Er ) versus log(1/r).

In this study, we assume that various self-similarity properties in a prostatic carci-
noma (PCa) image may be reflected in different individual ranges of scales. Remem-
ber that the scaled down ratio is r = s/M , where s2 is the grid size and M2 is the
image size. Since M = 384 for prostate images, we choose s = 2, 4, 8, 16, 32, 64,
and 128 to include all feasible grid sizes, from 2 × 2 (the smallest one) to 128 × 128
(one-ninth of the whole image). Therefore, the range of scales (r) is {1/192, 1/96,
1/48, 1/24, 1/12, 1/6, 1/3}, which is subsequently divided into three subranges: the
subrange of small scales {1/192, 1/96, 1/48}, the subrange of medium scales {1/48,
1/24, 1/12}, and the subrange of large scales {1/12, 1/6, 1/3}. Here, we allow a small
portion of overlapping between two neighboring subranges because there is no clear
distinction between two subranges reflecting different self-similarity properties. We
choose three scales in each subrange because this is the minimum requirement for
using the technique of least-square linear fit. Since we do not exclude the possibility
that the same self-similarity property is reflected in all scales, we also use all of the
seven scales to estimate the fractal dimension of an image. As a result, four fractal
dimension texture features can be obtained by DBC method and another four fractal
dimension texture features can be obtained by our EBFDE method. Then, we com-
bine these eight features to obtain a feature set { fD1, fD2, fD3, fD4, fE1, fE2, fE3,
fE4} as follows:

• fD1 is the FD calculated from grids of size s2(s = 2, 4, 8) using the DBC method.
• fD2 is the FD calculated from grids of size s2(s = 8, 16, 32) using DBC method.
• fD3 is the FD calculated from grids of size s2(s = 32, 64, 128) using the DBC

method.
• fD4 is the FD calculated from grids of size s2(s = 2, 4, 8, 16, 32, 64, 128) using

the DBC method.
• fE1 is the FD calculated from grids of size s2(s = 2, 4, 8) using the EBFDE

method.
• fE2 is the FD calculated from grids of size s2(s = 8, 16, 32) using the EBFDE

method.
• fE3 is the FD calculated from grids of size s2(s = 32, 64, 128) using the EBFDE

method.
• fE4 is the FD calculated from grids of size s2(s = 2, 4, 8, 16, 32, 64, 128) using

the EBFDE method.

Then, we can combine these eight features to form a feature set denoted by fD+fE .
We call this type of features the FD category. Details of extracting FD-based features
from prostate images can be found in [13]. Finally, we combine the FD-based features
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with those extracted from multiwavelets, Gabor filters, and GLCM to form a set
containing 144 texture features of multicategories for classification.

13.3 Classification and Feature Selection

We used two different classifiers, the k-NN and SVM, to cooperate with texture
features of multicategories as described in the previous section. This study normalizes
each feature to have a mean of zero and a standard deviation of one for the entire
data set avoid the system performance influencing by the characteristic of a single
feature. If one of the features has a very wide range of possible values compared with
the other features, it will have a large effect on the dissimilarity, and the decisions
will be based primarily upon this single feature [4].

The k-nearest-neighbor decision rule classifies an observation by assigning it the
label which is most frequently represented among the nearest neighbors. A decision
is made by examining all the labels on the nearest neighbors and taking a vote. The
operation of a k-NN classifier can be summarized by the following basic steps [14]:

1. Compute the distances between the new sample and all previous samples already
classified into clusters.

2. Sort the distances in increasing order and select samples with the smallest dis-
tance values.

3. Apply the voting principle: a new sample is added (classified) to the largest
cluster out of selected samples.

Another classification technique used in this study for classifying carcinoma
prostate images is the SVM method. Compared with traditional classification meth-
ods which minimize the empirical training error, the goal of SVM is to minimize the
upper bound of the generalization error by finding the largest margin between the
separating hyperplane and the data. In this study, we use the one-against-one multi-
class classification method based on a library for support vector machines (LIBSVM)
[15, 16] with the radial basis function (RBF) kernel by combining all pair-wise com-
parisons of binary SVM classifiers.

In order to estimate classification performance for different classifiers, the correct
classification rate (CCR) [17] is defined as

CC R =
C∑

i=1

P(ci )
ni

Ni
, (13.6)

where ni is the number of samples correctly classified to the ith class via the k-
NN or SVM classifiers, C is the total number of classes, Ni is the total number of
samples in the ith class, and P(ci ) is the prior probability that an observed data falls
in class ci .
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In the k-fold cross-validation method, the entire sample set is randomly partitioned
into k disjoint subsets of equal size, where n is the total number of samples in the
entire set. Then, k −1 subsets are used to train the classifier and the remaining subset
is used to test for accuracy estimation. This process is repeated for all distinct choices
of k subsets, and the average of correct classification rates is calculated.

To obtain an optimal set of texture features of multicategories, we apply the
sequential floating forward selection (SFFS) feature selection method. The SFFS
feature selection method is very effective in selecting an optimal subset of features
[8]. In this study, we first use the five-fold cross-validation procedure to estimate the
CCR for the candidate feature subsets selected by the SFFS method at each stage for
each of the k-NN and SVM classifiers. Then, we apply the five-fold cross-validation
procedure to evaluate the performance of the selected feature set using each of the
above two classifiers. Notice that, in applying the 5-fold cross-validation procedure,
the five groups of data used in feature selection are different from the five groups of
data used in training and testing by random reassignment.

13.4 Experimental Results

We used 205 pathological images with 512×384 pixels of resolution for our experi-
ment. To avoid inter and intraobserver variations that may cause possible ambiguities
in classification: (1) images were commonly analyzed by a group of experienced
pathologists in Taichung Veterans General Hospital of Taiwan and classified into
four classes in advance as “gold standard” for later comparison; (2) the pattern of the
cancer observed in each sample must be greater than 60 % of the total pattern seen
in order to assign a primary Gleason grade to that sample. Since Grade1 patterns are
very rare, Grade1 and Grade 2 patterns are regarded as the same class. As a result, our
image set was divided into four classes: 50 images in class1 (Grade1 and Grade 2),
72 images in class 2 (Grade 3), 31 images in class 3 (Grade 4), and 52 images in
class 4 (Grade 5).

In our experiment, the classification results in terms of CCR of three feature
sets multicategory1, multicategory2, and fD + fE feature set are compared and ana-
lyzed. Multicategory1 denotes the set of 144 features whose extraction methods was
described in Sect. 13.2. Multicategory2 is a set of 136 features formed by removing
the 8 FD-based features from multicategory1. The fD + fE feature set contains 8
FD-based features purely extracted from DBC and EBFDE methods [13].

Table 13.1 shows the classification results of multicategory feature sets using
k-NN and SVM classifiers, respectively, without SFFS feature selection. In k-NN
classifier, the CCR of multicategory1 for k = 3 is 92.7 %, CCR of multicategory2
for k = 3 is 93.2 %, and CCR of fD + fE for k = 1 is 93.7 %. Furthermore, the CCRs
of multicategory1 and multicategory2 are both 92.2 % while the CCR of fD + fE is
92.7 % in SVM classifier. It seems that feature set fD +fE has the same discriminating
capability that multicategory1 and multicategory2 have. However, the dimensional-
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Table 13.1 Comparisons of three feature sets in terms of CCR using k-NN and SVM classifiers
evaluated using five-fold cross-validation procedure without SFFS feature selection

Feature sets k-NN(k = 1) (%) k-NN(k = 3) (%) k-NN(k = 5) (%) SVM

Multicategory1(144) 91.7 92.7 90.7 92.2
Multicategory2(136) 91.7 93.2 90.7 92.2
fD + fE (8) 93.7 92.7 93.2 92.7

ities of the multicategory1 and multicategory2 are 144 and 136, respectively, while
the dimensionality of fD + fE is only 8.

Table 13.2 shows the classification results of multicategory feature sets using k-
NN and SVM classifiers, respectively, with SFFS feature selection. When the SFFS
feature selection method is applied to optimize the above three feature sets, the
dimension of optimized multicategory1 is reduced to 13, the dimension of optimized
multicategory2 is reduced to 10, and the dimension of optimized fD + fE is reduced
to 3 in k-NN classifier. The dimension of optimized multicategory1 is reduced to
10, the dimension of optimized multicategory2 is reduced to 8, and the dimension
of optimized fD + fE is reduced to 5 in SVM classifier.

More specifically, in k-NN classifier, optimized multicategory1 contains one FD-
based feature, one Gabor entropy feature, three Gabor energy features, one Gabor
magnitude feature, one GLCM correlation feature, and six Multiwavelet-SA4 fea-
tures. Optimized multicategory2 contains one Gabor entropy feature, one GLCM
contrast feature, and eight Multiwavelet-SA4 features. The optimized fD + fE fea-
ture set contains two FD-based features extracted by DBC method and another
one FD-based feature extracted by EBFDE method. In SVM classifier, optimized
multicategory1 contains one FD-based feature, three Gabor entropy features, three
Gabor energy features, and three Multiwavelet-SA4 features. Optimized multicat-
egory2 contains two Gabor entropy features, one Gabor magnitude feature, and
five Multiwavelet-SA4 features. The optimized fD + fE feature set contains three
FD-based features extracted by DBC method and another two FD-based features
extracted by EBFDE method.

As we can see from Table 13.2, the CCRs of multicategory1, multicategory2, and
fD + fE using k-NN classifier are 94.6, 92.2, and 94.2 % for k = 1, respectively; the
CCRs of multicategory1, multicategory2, and fD + fE using SVM classifier are 95.6,
92.7, and 94.1 %, respectively. Notice that the CCR of optimized fD + fE feature set
is pretty close to the performance of optimized multicategory1 and outperforms the
CCR of optimized multicategory2, no matter which classifier is used. This implies
that the FD-based features are important in classifying pathological prostate images.
If texture features from multicategories are considered, FD-based features must be
included. Otherwise, the classification performance will be degraded.
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Table 13.2 Comparisons of three feature sets in terms of CCR using k-NN and SVM classifiers
evaluated using five-fold cross-validation procedure with SFFS feature selection

Feature sets k-NN
(k = 1) (%)

k-NN
(k = 3) (%)

k-NN
(k = 5) (%)

No. of
features

SVM
(%)

No. of
features

Multicategory1 94.6 94.6 92.7 (13) 95.6 (10)
Multicategory2 92.2 91.7 89.8 (10) 92.7 (8)
fD + fE 94.2 93.7 93.2 (3) 94.1 (5)

13.5 Conclusions

This study presents an automated system for grading pathological images of prosta-
tic carcinoma based on a set of texture features extracted from multicategories of
methods, including multiwavelets, Gabor filters, GLCM, and fractal dimension. Our
system has shown very good performance in classifying pathological prostate images
in terms of correct classification rate. Experimental results show that the FD-based
feature set can provide very useful information for classifying pathological prostate
images. Without feature selection, the CCRs of 93.7 % for k = 1 and 92.7 % can be
achieved by a set of 8 FD-based texture features using k-NN and SVM classifiers,
respectively. When SFFS method was applied for feature selection and optimization,
the CCRs can be improved to 94.2 % for k = 1 and 94.1 % by optimized sets of 3
FD-based and 5 FD-based features using k-NN and SVM classifiers, respectively. If
multicategories of features are considered and optimized, the CCRs can be promoted
to 94.6 % for k = 1 and 95.6 % by k-NN and SVM classifiers, respectively. Notice
that the CCRs decreased no matter which classifier is used if FD-based features are
not included in the feature set. Thus, FD-based features play an important role in
prostate image classification.
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Chapter 14
Multiobjective PSO for Hyperspectral Image
Clustering

Farid Melgani and Edoardo Pasolli

Abstract In this chapter, a multiobjective particle-swarm optimization approach
is presented as an answer to the problem of hyperspectral remote sensing image
clustering. It aims at simultaneously solving the following three different issues:
(1) clustering the hyperspectral cube under analysis; (2) detecting the most discrim-
inative bands of the hypercube; (3) avoiding the user to set a priori the number
of data classes. The search process is guided by three different statistical criteria,
which are the log-likelihood function, the Bhattacharyya distance, and the mini-
mum description length. Experimental results clearly underline the effectiveness of
particle-swarm optimizers for a completely automatic and unsupervised analysis of
hyperspectral remote sensing images.

14.1 Introduction

In the field of stochastic optimization methods, particle-swarm optimization (PSO)
represents an interesting approach to solve complex optimization problems [8]. Intro-
duced recently by Kennedy and Eberhart [12], it is inspired by social behavior of bird
flocking and fish schooling. Similar to other evolutionary computation algorithms
such as genetic algorithms, PSO is a population-based search method that exploits
the concept of social sharing of information. This means that each individual (called
particle) of a given population (called swarm) can profit from the previous experi-
ences of all other individuals from the same population. During the search process
in the solution space, each particle (i.e., candidate solution) will adjust its flying
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velocity and position according to its own flying experience as well as the experi-
ences of the other companion particles of the swarm. PSO has been shown to be
promising for solving problems in different fields, such as automatic control [14],
antenna design [21], inverse problems [29], multimedia [7], biomedical signal clas-
sification [24], and remote sensing [3].

In the literature, an important research field is represented by classification meth-
ods. From a methodological viewpoint, a classification process consists of associ-
ating a pattern (sample) to a class label opportunely chosen from a predefined set
of class labels. Two main approaches to the classification problem have been pro-
posed: (1) the supervised approach and (2) the unsupervised approach. Supervised
techniques require the availability of a training set for learning the classifier. Unsu-
pervised methods, known also as clustering methods, perform classification just by
exploiting information conveyed by the data, without requiring any training sample
set. The supervised methods offer a higher classification accuracy compared to the
unsupervised ones, but in some applications, it is necessary to resort to unsupervised
techniques because training information is not available.

Depending on the application, clustering methods may or may not be useful. In
this chapter, we focus on works specifically developed for remote sensing applica-
tions. Remote sensing is a vital technology for monitoring man-made and natural
resources at large scale with low costs. Regarding clustering methods in remote
sensing, an early method is the one presented in [33], which exploits the notions of
scale and cluster independence to classify multispectral and polarimetric synthetic
aperture radar (SAR) images. In [25], the authors introduced the concept of global
classification of remote sensing images in large archives, e.g., covering the whole
globe. The classification is realized through a two-step procedure: (1) unsupervised
clustering and (2) supervised hierarchical classification. Features, derived from dif-
ferent and noncommensurable models, are combined using an extended k-means
clustering algorithm and supervised hierarchical Bayesian networks incorporating
any available prior information. In [2], a fuzzy clustering method for multispectral
images was presented. It groups data samples, even when the number of clusters is
not known or when noise is present, by replacing the probabilistic constraint that
memberships across clusters must sum to one with a composite constraint. In [15],
the hybrid supervised-unsupervised approach to image classification was improved
by introducing the concept of cluster-space classification for hyperspectral data.
The cluster-space representation is used for associating spectral clusters with corre-
sponding information classes automatically, thus overcoming the manual assignment
of clusters and classes carried out in the hybrid approach. This method is further
enhanced for efficient data transmission and classification in [16]. In [28], a method
of hyperspectral band reduction based on rough sets and fuzzy C-means clustering
was proposed. It consists of two steps. First, the fuzzy C-means clustering algo-
rithm is used to classify the original bands into equivalent band groups. Then, data
dimensionality is reduced by selecting only the band with maximum grade of fuzzy
membership from each of the groups. In [13], limitations of k-means algorithm imple-
mentation were discussed. In order to accelerate the k-means clustering, a hardware
implementation was proposed. In [18], the authors presented a two-stage hierarchical



14 Multiobjective PSO for Hyperspectral Image Clustering 267

clustering technique for classifying hyperspectral data. First, a “local” segmentator
performs region-growing segmentation by merging spatially adjacent clusters. Then,
a “global” segmentator clusters the segments resulting from the previous stage using
an agglomerative hierarchical clustering scheme based on a context-free similarity
measure. In [17], five clustering techniques were compared for classifying polari-
metric SAR images. Two techniques are fuzzy clustering algorithms based on the
standard l1 and l2 metrics. Two others combine a robust fuzzy C-means clustering
technique with a distance measure based on the Wishart distribution. The fifth tech-
nique is an application of the expectation-maximization (EM) algorithm, assuming
that data follow a Wishart distribution. In [22], the authors proposed an agglomera-
tive hierarchical clustering method for multispectral images, which uses both spectral
and spatial information for the aggregation decision. In [30], Markov-random field
(MRF) clustering, exploiting both spectral and spatial interpixel dependency infor-
mation, for polarimetric SAR images was presented. Because of its strong sensitivity
to initial conditions, an initialization scheme was suggested. It aims at deriving initial
cluster parameters from a set of homogenous regions, and estimating the number of
clusters with the pseudo-likelihood information criterion. In [35], a two-step unsu-
pervised artificial immune classifier for multi/hyperspectral images was proposed.
In [1], unsupervised land cover classification is performed by clustering pixels in
the spectral domain into several fuzzy partitions. A multiobjective (MO) optimiza-
tion algorithm is utilized to tackle the fuzzy partitioning problem by means of a
simultaneous optimization of different fuzzy cluster validity indexes. The resulting
near-Pareto-optimal front contains a set of nondominated solutions, from which the
user can pick the most promising one according to the problem requirements. In [20],
a weighted fuzzy C-means clustering algorithm was proposed to carry out the fuzzy
or the hard classification of multispectral images. In [34], the authors presented a
rapid clustering method for SAR images by embedding an MRF model in the clus-
tering space and using graph cuts to search for data clusters optimal in the sense
of the maximum a posteriori (MAP) criterion. In [31], a multistage unsupervised
classification technique for multispectral images was presented. It is composed of a
context-sensitive initialization and an iterative procedure aiming at estimating the sta-
tistical parameters of classes to be used in a Bayesian decision rule. The initial steps
exploit a graph cut segmentation algorithm followed by a fuzzy C-means clustering,
while the iterative procedure is based on the EM algorithm. In [6], unsupervised
classification of hyperspectral images was performed by applying fuzzy C-means
clustering as well as its extended version, i.e., Gustafson-Kessel clustering, which is
based on an adaptive distance norm. An opportune phase-correlation-based similar-
ity measure was used to improve the fuzzy clustering by taking spatial relations into
account for pixels with similar spectral characteristics.

In this chapter, we focus on hyperspectral image clustering. Compared with con-
ventional multispectral data, hyperspectral data are characterized by a higher spectral
resolution, thus giving the opportunity to further enhance the information extraction
capability. However, hyperspectral imagery involves a greater quantity of data to
memorize and to process. Moreover, given a specific classification problem, hyper-
spectral data often exhibit redundant information, thus calling for opportune band
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(feature) selection algorithms. While feature selection has been widely studied in the
supervised classification context, little has been done in the image clustering context
due to the lack of training samples. Another intrinsic problem in image clustering in
general and in hyperspectral image clustering in particular is how to set a priori the
number of data classes because of the absence of prior information.

In this chapter, we present a methodology for hyperspectral images capable of
solving simultaneously the above problems, i.e., clustering, feature detection (i.e.,
selection of the features without requiring the desired number of most discriminative
features a priori from the user), and class number estimation. Clustering and feature
detection are dealt with within an MO optimization process based on PSO to estimate
the cluster statistical parameters and to detect the most discriminative features. Class
number estimation is performed using a strategy based on the minimum description
length (MDL) criterion. To illustrate the performance of the presented methodology,
we conducted an experimental study based on a real hyperspectral remote sensing
image acquired by the Reflective Optics System Imaging Spectrometer (ROSIS)
sensor. In general, the obtained experimental results show that interesting perfor-
mances can be achieved though the processing context is completely unsupervised.
The remaining part of this work is organized as follows. The problem formulation
is described in Sect. 14.2. The presented clustering methodology is described in
Sect. 14.3. The experimental results are reported in Sect. 14.4. Finally, conclusions
are drawn in Sect. 14.5.

14.2 Hyperspectral Clustering Problem Formulation

Let us consider a hyperspectral image composed of d bands and n pixels. Each pixel
is represented by a vector xi ∈ �d = [

xi,1, xi,2, . . . , xi,d
]
, i = 1, 2, . . . , n. Let

us assume that no prior knowledge is available for this image in terms of training
samples. Moreover, let us suppose that the number C of data classes present in the
image is not known. In optical imagery, the assumption that the distribution of images
can be approximated as a mixture of normally distributed samples is generally well
accepted [4, 11]. Accordingly, the probability distribution function (pdf) of the image
can be written as

p (x) =
C∑

j=1

P
(
ω j

) · p
(
x|ω j

)
(14.1)

where P
(
ω j

)
and p

(
x|ω j

) = N
(
μ j ,Σ j

)
are the prior probability and the condi-

tional pdf associated with the jth data class (Gaussian mode) of the image, respec-
tively. μ j and Σ j stand for the mean vector and the covariance matrix of the jth data
class. Let us suppose that the features (bands) are independent and, hence, Σ j is a
diagonal matrix. Although the assumption of independence between adjacent bands
is typically not satisfied, it is important to render our clustering problem computa-
tionally tractable.
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The objective is to classify the image in an unsupervised way. Given its hyper-
spectral nature, it is preferable to perform beforehand a feature detection operation.
Indeed, this last step is useful to reduce data redundancy and to remove the bands that
are characterized by a strong noise component. Note that by feature detection, we
intend that the selection of the features be carried out without requiring the desired
number of most discriminative features a priori from the user. A further goal is to esti-
mate automatically the number of data classes characterizing the image. We desire
to meet all these requirements simultaneously, without any prior knowledge about
the investigated study area.

In this chapter, we formulate this complex problem within a multiobjective
particle-swarm optimization (MOPSO) framework so that to simultaneously esti-
mate the cluster statistical parameters, detect the most discriminative features, and
estimate the class number. The MO approach to the problem is motivated by the
different nature of the desired tasks. In particular, the first PSO fitness function will
have the purpose of estimating the cluster parameters, while the second one will
guide the detection of the best features and, thus, the removal of redundant and/or
noisy bands. The class number estimation will be carried out by repeating the PSO
process over a predefined range of values of class number for optimizing the MDL
criterion.

14.3 MOPSO Clustering Approach

14.3.1 PSO Setup

In an optimization problem that is formulated within a PSO framework, the solution
space is explored by means of a swarm of particles whose positions point to candidate
solutions. The first task to perform consists of defining the ingredients of the PSO
algorithm, namely, the particle position p and the fitness functions f (p).

Since our clustering problem consists of finding the best estimate of the cluster
statistical parameters and the best discriminative features, the position p of each
particle will simply be a vector that encodes all these variables. A representation
of the particle position is provided in Fig. 14.1. Given C data classes, the cluster
parameters are defined by a number of real variables equal to 2Cd since for each
class ω j ( j = 1, 2, . . . , C), the mean vector μμμ j ∈ �d = [

μ1 j , μ2 j , . . . , μd j
]

and

the variance vector σσσ 2
j ∈ �d =

[
σ 2

1 j , σ
2
2 j , . . . , σ

2
d j

]
have to be estimated. Moreover,

the feature detection task requires the setting of d coordinates expressed in terms
of Boolean values. The feature variable fi , i = 1, 2, . . . , d is equal to one if the
correspondent feature is selected; otherwise, it is equal to zero.

Another important aspect in the setup of a PSO process is the choice of the fitness
functions f (p), which will be used to evaluate the performance of each position p.
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Fig. 14.1 PSO particle structure

For this purpose, we optimize jointly two different criteria to deal with both the class
statistical parameter estimation and the feature detection issues.

The first fitness function is the log-likelihood function. It aims at determining the
distribution parameter values that best approximate the data distribution. Supposing
that samples are independent and identically distributed, the log-likelihood function
is given by

L (x|p, PC ) =
n∑

i=1

ln p (xi |p, PC ). (14.2)

where PC = [P (ω1) , P (ω2) , . . . , P (ωC )] is the prior probability vector.
Since the samples originate from a multivariate Gaussian distribution, the log-

likelihood function can be rewritten as

L (x|p, PC ) =
n∑

i=1

ln
C∑

j=1

P
(
ω j

)

(2π)d̃(p)/2 ·
∣∣∣Σ̃ j (p)

∣∣∣1/2

× exp

{
−1

2

(
x̃i (p) − μ̃μμ j (p)

)T
Σ̃ j (p)−1 (

x̃i (p) − μ̃μμ j (p)
)}

(14.3)

where d̃ (p) is the number of features detected by p, x̃i (p) is the ith sample defined
in the subspace formed by the detected features, and μ̃μμ j (p) and Σ̃ j (p) are the
mean vector and the diagonal covariance matrix associated with the jth class in that
subspace respectively.

The second fitness function has the purpose of evaluating the statistical distance
between classes in the subspace of detected features defined by p. For such purpose,
we adopt the Bhattacharyya distance [5], which, for a couple of classes that are
normally distributed (e.g., the ith and jth classes), is expressed as follows:

Bi, j (p) = 1

8

(
μ̃̃μ̃μi (p) − μ̃̃μ̃μ j (p)

)T

{
Σ̃i (p) + Σ̃ j (p)

2

}−1

× (
μ̃μμi (p) − μ̃μμ j (p)

) + 1

2
ln

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣
Σ̃i (p)+Σ̃ j (p)

2

∣∣∣∣
∣∣∣Σ̃i (p)

∣∣∣
1
2
∣∣∣Σ̃ j (p)

∣∣∣
1
2

⎫⎪⎪⎬
⎪⎪⎭

. (14.4)
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At this point, the multiclass distance can be determined using different strategies.
We calculate it according to the following simple rule:

B (p) = min
i={1,...,C}, j={1,...,C},i �= j

{
Bi, j (p)

}
. (14.5)

Since the particles of the swarm can define feature subspaces of different dimen-
sionalities, in order to remove (reduce) the impact of the dimensionality on the fitness
function values, the previously defined fitness functions are normalized with respect
to the number of features. Therefore, the fitness functions become

Lnor (x|p, PC ) = L (x|p, PC )

d (p)
(14.6)

Bnor (p) = B (p)

d (p)
. (14.7)

Moreover, because the two fitness functions above need to be maximized for best
clustering performance, they will be rewritten in such a way that the maximization
problem is converted into a minimization one, i.e.,

f1 (p, PC ) = |Lnor (x|p, PC )| (14.8)

f2 (p) = 1

Bnor (p)
. (14.9)

The last issue to be addressed is the estimation of the number Ĉ of data classes
representing the observed data since it is not known a priori. We have to resort to a
technique that deals with this important issue, which is typical of mixture modeling
problems. Indeed, the selection of the number of components in a mixture raises
a tricky trade-off, since on one hand, the higher the number of components is, the
higher the risk of data overfitting becomes, while on the other, the smaller the number
of components is, the lower the model flexibility will be. In the literature, the most
popular methods for automatically estimating the number of data classes are based
on approximate Bayesian criteria or on information theory concepts [23]. We will
use the MDL criterion, which takes origin from the information theory and is defined
for a given number of classes, e.g., C classes, as [27]

M DL (C) = −Lnor (C) + γ · K (C) · log (n) (14.10)

where Lnor (C) represents the normalized log-likelihood function value found at
convergence of the PSO algorithm, K (C) is the number of estimated statistical
parameters, and γ is a constant. For the setting of γ , different values are proposed in
the literature. According to [19], γ = 5/2 seems the most appropriate choice. The
optimal number of data classes Ĉ is estimated by minimizing the MDL criterion,
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i.e.,
Ĉ = arg min

C=Cmin ,...,Cmax
{M DL (C)} (14.11)

where Cmin and Cmax are predefined minimal and maximal numbers of data classes.

14.3.2 Priors Estimation Procedure

Another issue to solve is how to estimate the prior probability of each class since poor
estimation of these probabilities can strongly affect the performance of the clustering
process. A first strategy consists of including the probabilities as variables in the PSO
particle as it is done for the mean and variance parameters. Since the sum of all prior
probabilities must equal one, a constrained PSO search implementation would be
needed. As an alternative, we will adopt another simpler and faster strategy, which
is based on the idea of optimization by perturbing the priors outside but parallel
with the PSO process. First, we start by clustering the n samples using the simple
k-means algorithm [32] for getting an initial estimate of the priors. At each iteration
of the PSO process, for each particle, a single prior probability P

(
ω j

)
is selected

at random. Then, its value is updated by adding a quantity Δ chosen randomly
in the interval

[−P
(
ω j

)
, 1 − P

(
ω j

)]
. For the other classes, the prior probability

values are updated by subtracting the amount Δ/ (C − 1). This way, the constraint
requirement is fulfilled, and all the particles remain in the feasible region of the
optimization space.

14.3.3 Algorithm Description

In Fig. 14.2 we show the flow chart of the presented MOPSO clustering methodol-
ogy, which can be subdivided in six main steps. In the following, we describe the
algorithm.

1. Parameter Setting:

i. Choose the range of variation of the number of classes [Cmin, Cmax ].
ii. Set C to Cmin .

2. PSO Initialization:

i. Initialize each particle position pi , i = 1, 2, . . . , S, as follows:
a. Run the k-means algorithm on the samples with a class number equal

to C by considering only the randomly selected features encoded by pi .
b. Initialize the mean and variance values coordinates of the particle using

those given by the k-means algorithm.
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Fig. 14.2 Flow chart of the presented MOPSO clustering methodology
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c. Initialize the prior probabilities of each class by counting the sample
number associated by the k-means algorithm with that class.

ii. Set the best position of each particle with its initial position.
iii. Set the velocity vectors vi , i = 1, 2, . . . , S, that are associated with the S

particles to 0.
iv. Compute for each candidate particle pi , i = 1, 2, . . . , S, its fitness functions

f1 (pi , PC ) and f2 (pi ).
v. Identify the nondominated solutions by applying the nondominated sorting

algorithm described in [9] and store them in a list N L .

3. Search Process:

i. Update the speed of each particle. To perform the update, the best global
position pg is selected from the list N L according to a tournament-based
selection [9].

ii. Update the position of each particle.
iii. Update the prior probabilities of each class by means of the perturbation

process described in Sect. 14.3.2.
iv. Compute the fitness functions f1 (pi , PC ) and f2 (pi ) for each candidate

particle pi , i = 1, 2, . . . , S.
v. Update the content of N L by inserting the current nondominated solutions.

Clean N L from previous nondominated solutions, which now become dom-
inated.

vi. Update the best position pbi of each particle if it is dominated by its current
position pi , i = 1, 2, . . . , S.

4. Convergence Check:

i. Return to Phase 3 if the convergence condition on the fitness functions or/and
the maximal number of PSO iterations are not yet reached.

ii. Increment the class number C by one, and return to Phase 2 if C is less than
or equal to the maximum class number Cmax .

5. Class Number Estimation:

i. For each class number C ∈ [Cmin, Cmax ], select one of the nondominated
solutions p∗

i from the list N L . In particular, the closest solution to the origin
of the performance space is selected.

ii. Estimate the optimal number Ĉ of data classes by minimizing the MDL
criterion.

6. Classification Map Generation: Generate a classification map by applying the
MAP decision criterion [10] for each image pixel.
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14.4 Experiments

14.4.1 Experimental Design

The experimental phase was performed on a real hyperspectral remote sensing image
acquired in July 2002 by the ROSIS sensor over the city of Pavia, northern Italy. The
image was composed of 102 spectral bands. A 400 × 400 pixel crop of the original
image was used in the experiments. Some of the 102 bands are noisy and some
are clean, as shown in Fig. 14.3a, b. A false color composite representation of the
image is illustrated in Fig. 14.3c. Since the ground-truth is not available, we relied
on the very high spatial resolution (1.2 m) of the image to assess qualitatively the
classification results.

In order to evaluate the performance of the presented MOPSO clustering method-
ology, two sets of experiments were performed. In the first set, we assessed its capabil-
ity in terms of cluster parameter estimation. For this purpose, the proposed methodol-
ogy was run by minimizing only the first fitness function f1 (p, PC ). Accordingly, the
feature detection process was inhibited. Moreover, we assumed that the class number
C was known and thus the MDL criterion was not used. In particular, we fixed the
desired class number to ten. The method performance was evaluated through visual
inspection of the clustering results.

In the second set of experiments, we intended to evaluate the performance of the
entire MOPSO clustering methodology. This time, the MOPSO method was run by
using both fitness functions f1 (p, PC ) and f2 (p) as well as the MDL criterion to
estimate the number of data classes. In addition to the visual inspection of the maps,
capabilities of the methodology in terms of detection of noisy features were also
analyzed.

Concerning the PSO settings, in all experiments, we considered the following
standard parameters: swarm size S = 100, inertia weight w = 0.4, acceleration
constants c1 and c2 equal to unity, maximum number of iterations fixed to 100.

14.4.2 Experimental Results

In the first part of the experiments, we evaluated the behavior of the fitness function
f1 by varying the number of iterations of the optimization process. The graph of
Fig. 14.4a shows a stable decreasing behavior, in which the faster decrease is verified
in the first iterations. This behavior was somewhat expected, because the initial
estimation of the cluster parameters done through the k-means algorithm is poor. In
the second part of the plot the decrease is smoother suggesting that the fitness function
is close to convergence. At convergence, we applied the MAP criterion in order to
obtain the classification map shown in Fig. 14.4e. The same hyperspectral image was
classified with the traditional k-means algorithm. The corresponding classification
map is shown in Fig. 14.4g. From a visual inspection, the proposed strategy based
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Fig. 14.3 Hyperspectral image acquired by the ROSIS sensor used in the experiments. Examples
of a clean band (#30), b noisy band (#2), and c false color composite image (R: #100, G: #50,
B: #10)

on PSO gives a map that is more coherent and thus more accurate with respect to the
one provided by the k-means algorithm.

In the second part of the experiments, the entire MOPSO methodology was exe-
cuted. The plot shown in Fig. 14.4b provides the values of the MDL criterion for a
range of class numbers varied from three to 13 classes. Note that the minimum MDL
value is obtained for a class number of ten. Considering the run associated with the
ten class case, at convergence the Pareto front was composed of twelve solutions,
which are depicted in Fig. 14.4c in logarithmic scale for a better visualization. Note
how the different solutions are well spread along the front. From all these solutions,
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(a)

(b) (c)

(d)

Fig. 14.4 Results obtained on the hyperspectral image acquired by the ROSIS sensor. a Fitness
funcion value by varying the number of iterations. b Behavior of the MDL criterion. c Front of
nondominated solutions. d Result of the feature detection process. Classification maps given by e
the PSO- f1, f the MOPSO, g the k-means, h the PCA + k-means

the closest one to the origin of the performance space is selected in order to have a
tradeoff between the two different fitness functions. Considering the selected solu-
tion, the results in terms of feature detection are illustrated in Fig. 14.4d. The clean
features of the hyperspectral image are represented in green, while the noisy fea-
tures are depicted in red. The MOPSO detected 16 features (among 102), which are
marked by arrows. From a visual inspection, all the selected features are really asso-
ciated with clean bands. Thus the implemented feature detector allowed us to obtain
a probability of detection of 100 % and of false alarm of 0 %. Note a good reduction
ratio of around 15 % was achieved. Finally, the classification map generated using
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Fig. 14.4 Continued

the MAP criterion is given in Fig. 14.4f. We also implemented the clustering with
the k-means method after applying a feature reduction step based on the first ten
principal components produced by the well-known principal component analysis
technique [26]. The resulting classification map is illustrated in Fig. 14.4h. From a
visual inspection, the proposed MOPSO strategy confirms to attain the best accuracy
with respect to the other methods.
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14.5 Conclusion

In this chapter, we have presented a methodology for the unsupervised classification
of hyperspectral images. It allows us to solve simultaneously problems of cluster-
ing, feature detection, and class number estimation in a completely automatic and
unsupervised way. The proposed MOPSO solution provides an effective answer to
this complex challenge, as shown by the experimental results. Indeed, it provides
a very satisfactory classification accuracy while reducing drastically the number of
bands used for the classification task. It yields a good estimation of the number of
data classes characterizing the considered image. Such a guess, however, refers to
data classes and not to thematic classes, which do not necessarily match. It could be
refined in a second step by the user if it is in possession of some prior knowledge
about the scene. Finally, this chapter has shown a successful application of PSO in
remote sensing image analysis. Because of their capability to effectively handle com-
plex optimization problems, it can be expected that PSO will continue to open the
way to the design of attractive alternatives for many other remote sensing problems.
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Chapter 15
A Computational Intelligence Approach to
Emotion Recognition from the Lip-Contour
of a Subject
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Abstract This chapter provides an alternative approach to emotion recognition from
the outer lip-contour of the subjects. Subjects exhibit their emotions through their
facial expressions, and the lip region is segmented from their facial images. A lip-
contour model has been developed to represent the boundary of the lip, and the
parameters of the model are adapted using differential evolution algorithm to match
it with the boundary contour of the lip. A support vector machine (SVM) classifier
is then employed to classify the emotion of the subject from the parameter set of the
subjects’ lip-contour. The experiment was performed on 50 subjects in an age group
from 18 to 25, and the average case accuracy in emotion classification is found to be
86 %.
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15.1 Introduction

Emotion recognition is part and parcel of the next generation of human computer
interactive (HCI) systems. To aid HCI systems, researchers are keen to determine
emotion of the subjects from their facial expression, hand gesture and voice. For
instance, Ekman and Friesen [3] proposed a scheme for recognition of facial expres-
sion from the movements of cheek, chin and wrinkles. Kobayashi and Hara [7–9]
developed a scheme for recognition of human facial expression using the well known
back-propagation neural network algorithm. Their scheme is capable of classify-
ing facial expression depicting happiness, sadness, fear, anger, surprise and disgust.
Yamada presented a new scheme of recognizing human emotions through classi-
fication of visual information. Frenandez-Dols et al. [31] designed a scheme for
decoding emotion from both facial expression and content. Busso and Narayanan
[11] compared the scope of facial expression, speech and multimodal expression
in emotion recognition. Cohen et al. [19, 20] considered recognition of emotions
from live video using hidden Markov Model. Gao et al.[14] proposed a technique for
facial expression recognition from a single facial image using line-based caricatures.
Lanitis et al. [12] proposed a novel technique for automatic interpretation and coding
of facial images using flexible models. Some of the other well known works of emo-
tion recognition from facial expressions include [1, 2, 10, 13, 15, 21–25, 30, 31].

Most of the existing works on emotion recognition employ one or more of the
facial attributes for recognition and interpretation about the emotional state of the
subject. However, we are afraid that there exists hardly any significant work on
emotion recognition by a single facial feature. This chapter takes a serious attempt to
recognize human emotion by considering the lip-contour [18, 26–29] of the subject.
Although the possibility of emotion recognition from the lip-contour has already
been explored in [4], we put forward our results for the following reason. In [4], the
authors used a basic elliptical pattern and offered a method to tune the parameters of
the ellipse to match it with the outer contour of a lip. It is apparent that the elliptical
lip-contour cannot correctly capture the lip boundaries for all emotional instances.

This work overcomes this problem by judiciously selecting a six-segment lip-
contour model, whose individual segments can be tuned to all typical non-overlapped
lip-contours by controlling model parameters. An evolutionary algorithm is used to
match the model lip-contour with the segmented lip boundary of a subject. Experi-
ments with 50 volunteers reveal that there exists a correlation between the lip-contour
pattern of the individual, and a specific emotion experienced by the subject. This
observation motivates us to design a classifier to map the extracted parameters of
the lip-contour model on to the emotional space. Several classifier algorithms can be
utilized to study their relative performance to map the lip parameters to emotions.
In this chapter we selected a support vector machine (SVM) classifier for its wide
spread popularity and our own experience about its merit in emotion classification
problem.

The rest of the chapter is divided into seven sections. Section 15.2 offers the
modeling issues of the human lip-contour. In Sect. 15.3, segmentation methods of
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Fig. 15.1 The standard kiss
curve

the lip-contour are discussed. We introduce differential evolution and demonstrate
its scope in determining the best tuned parameter set of the lip-contour model in
Sect. 15.4. Section 15.5 presents a scheme for classification of emotion of a subject
from the exact parameters of her lip-contour. Section 15.6 deals with the experiments
and results. Performance analysis is given in Sect. 15.7. The conclusion of the chapter
is outlined in Sect. 15.8.

15.2 The Proposed Lip-Contour Model

At present, there is no universally accepted model of lip-contour. In this work, we
start with the elementary kiss curve (Fig. 15.1), and modify it at different segments,
as indicated in Fig. 15.2, to obtain an ideal model of the curve, capable of capturing
most of the nonoverlapped lip-contours in different emotional states.

The basic equation of the kiss curve (Fig. 15.1) is given by

y2 = (1 − x2)3,−1 ≤ x ≤ 1. (15.1)

The curve returns both positive/negative values of y for each value of x . We, however,
use the entire positive half of the curve, and a portion of the negative half. The
remaining negative half is replaced by a parabola for better matching with lip profiles
of the subjects. When the domain −1 ≤ x ≤ +1 is replaced by [−l,+l] , Eq. (15.1)
is written as

y =
(

1 −
( x

l

)2
) 3

2

(15.2)

To determine all except the segment GA in Fig. 15.2, we scaled the right-hand
side of Eq. (15.2) and added one or more extra terms, as needed, and determine the
parameters of the new curve by setting suitable boundary conditions corresponding to
the corner points and axis crossings as listed in Table 15.1. The resulting parameters
are also given in the table.
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Fig. 15.2 The proposed
model of the lip outer profile

Table 15.1 Proposed lip segments with boundary conditions

15.3 Segmentation of the Lip-Contour

Several algorithms for the lip segmentation are available in the literature [1, 5]. In
this chapter we, however, employ a fuzzy c-means clustering algorithm to segment
the lip region from the rest of the facial expression. Any pixel xk here is considered
to fall either in the lip or the nonlip region. Let L(xk) and N L(xk) be the membership
of pixel xk to fall in the lip and the nonlip regions, respectively.

A pixel in this work is denoted by five attributes: three attributes of color informa-
tion (L × a × b), and two attributes of position information (x, y). The objective of
the clustering algorithm is to classify the set of five-dimensional data points into two
classes/partitions – the lip region and the nonlip region. Initial membership values
are assigned to each five-dimensional pixel, such that the sum of the memberships
in the two regions is equal to one. That is, for the kth pixel xk ,
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L(xk) + N L(xk) = 1 (15.3)

Given the initial membership values of L(xk) and N L(xk) for k = 1 to n2

(assuming that the image is of size n × n) [32], we use the FCM algorithm to
determine the cluster centers, VL and VN L , of the lip and the nonlip regions:

VL =
∑n2

k=1[L(xk)]m xk∑n2

k=1[L(xk)]m
(15.4)

VN L =
∑n2

k=1[N L(xk)]m xk∑n2

k=1[N L(xk)]m
(15.5)

Expressions (15.4) and (15.5) provide centroidal measures of the lip and non-lip
clusters [33], evaluated over all data points xk for k = 1 to n2. The parameter m(> 1)

is any real number that affects the membership grade. The membership values of pixel
xk in the image for the lip and the non-lip regions are obtained from the following
formulae:

L(xk) =
⎛
⎝

2∑
j=1

(‖xk − vL‖2

‖xk − v j‖2

) 1
M−1

⎞
⎠

−1

(15.6)

N L(xk) =
⎛
⎝

2∑
j=1

(‖xk − vN L‖2

‖xk − v j‖2

) 1
M−1

⎞
⎠

−1

(15.7)

where v j denotes the j th cluster center for j ∈ L , N L .
Determination of the cluster centers (by 15.4 and 15.5) and membership evaluation

(by Eqs. 15.6 and 15.7) are repeated several times following the FCM algorithm until
the positions of the cluster centers do not change significantly.

Figure 15.3a presents a section of a facial image with a large mouth opening.
This image is passed through a median filter and the resulting image is shown in
Fig. 15.3b. Application of the FCM algorithm to the image in Fig. 15.3b yields the
image in Fig. 15.4. The dark part in Fig. 15.4 represents the lip region, and the skin
and teeth regions are represented by white color.

15.4 Parameter Extraction of a Given Lip-Contour Using
Differential Evolution Algorithm

Evolutionary algorithms have frequently been used over the last three decades for
handling unconstrained/constrained optimization problems. Given the lip-contour of
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Fig. 15.3 a The original face,
b the median filtered (a)

Fig. 15.4 The segmented
mouth region obtained from
15.3b by FCM algorithm

a subject, determining the parameters of the mathematical model representing the
generalized lip-contour that matches best with the actual lip-contour is the problem
of concern in the present context. We consider a set of marked points of interest
in a given lip outer contour, as shown in Fig. 15.2. We construct vectors of nine
components, representing trial solutions for the present problem. The components of
a vector here represent the control parameters of the lip-contour model, including b,
c, l, p, v, n, a, h and s. Differential Evolution (DE) proposed by Storn and Price [16]
is one derivative-free optimization algorithm, which offers promising solution to a
global optimization problem. In this chapter, we employ differential evolution as the
optimization algorithm to determine the lip parameters of a given subject carrying a
definite emotion.

15.4.1 The Classical Differential Evolution Algorithm

The DE algorithm initializes a set of trial solutions, called parameter vector. The
parameter vectors are evolved through a process of mutation and recombination,
and a selection scheme is used to identify the better candidate between the evolved
and the trial solution (parameter vector). A brief overview of the DE algorithm is
available in any standard text. We here provide a simple pseudocode to the classical
DE algorithm. In this problem we used a variant of DE named as DE/rand/1/bin.

An iteration of the classical DE algorithm consists of the four basic steps: initial-
ization of a population of vectors, mutation, crossover or recombination and, finally
selection. The main steps of classical DE are given below.
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1. Set the generation number t = 0 and randomly initialize a population of NP indi-
viduals Pt = {X1(t), X2(t), . . . , X N P (t)} with Xi (t) = {xi,1(t), xi,2(t), . . . ,
xi,D(t)} and each individual uniformly distributed in the range [Xmin, Xmax ],
where

Xmin = {xmin,1, xmin,2, . . . , xmin,D} and
Xmax = {xmax,1, xmax,2, . . . , xmax,D} with i = [1, 2, . . . , N P],

and D denotes the dimension of an individual data point.

2. while stopping criterion is not reached, do
for i = 1 to N P

a. Mutation:
Generate a donor vector
V (t) = {vi,1(t), vi,2(t), . . . , vi,D(t)} corresponding to the i th target vector
Xi (t) by the following scheme

V1(t) = Xr1(t) + F × (Xr2(t) − Xr3(t))

where r1, r2 and r3 are mutually exclusive random integers in the range
[1, N P], and F is a scale factor in [0, 2].

b. Crossover:
Generate trial vector

Ui (t) = {ui,1(t), ui,2(t), . . . , ui,D(t)} for the i th target vector Xi (t) by
binomial crossover as

ui, j (t) = vi, j (t) i f (rand(0, 1)) < Cr

= xi, j otherwise,

where Cr is a predefined real number in [0, 1], called the crossover rate.
c. Selection: Evaluate the trial vector Ui (t)

if f (Ui (t)) ≤ f (Xi (t)), then Xi (t + 1) = Ui (t)

f (Xi (t + 1)) = f (Ui (t)

where f (.) is the fitness function
end if

end for

d. Increase the counter value t = t + 1
end while
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Table 15.2 Parametric equations for the proposed lip segments

Curve Presumed Boundary Parameter
segment equation condition obtained by

setting the
boundary
conditions

AB y = a1

(
1 −

(
x
l

)2
) 3

2 + a2 −l ≤ x ≤ −c
0 ≤ y ≤ h

a1 = h(
1−

( c
l

)2
) 3

2

a2 = 0

BC y = a3

(
1 −

(
x
l

)2
) 3

2 + a4x −c ≤ x ≤ 0
h ≤ y ≤ a

a3 = a

a4 =
a
(

1−
( c

l

)2
) 3

2 −h

c

CD y = a5

(
1 −

(
x
p

)2
) 3

2 + a6x 0 ≤ x ≤ b
a ≤ y ≤ x

a5 = a

a6 =
s−a

(
1−

(
b
p

)2
) 3

2

b

DEF y = a7

(
1 −

(
x
p

)2
) 3

2 + a82 b ≤ x ≤ p
s ≤ y ≤ −v

a7 = s+v(
1−

(
b
p

)2
)

a7 = 0
a8 = −v

FG y = a9x2 + a10x + a11 p ≤ x ≤ 0
−v ≤ y ≤ −n

a9 = n−v
p2

a10 = 0
a11 = −n

GA y = ± (
1 − x2

) 3
2 0 ≤ x ≤ −l

−n ≤ y ≤ 0
y = −n

(
1 −

(
x
l

)2
) 3

2

The parameters used in the algorithm namely scaling factor F and crossover rate
Cr should be initialized before calling the while loop. The terminate condition can
be defined in many ways, a few of which include:

(i) fixing the number of iterations N .
(ii) when the best fitness of population does not change appreciably over successive

iterations.
(iii) Either of (i) and (ii), whichever occurs earlier.

15.4.2 System Identification Approach to Lip-Contour Detection by
Differential Evolution

Given a finite set of selected points on the lip boundary of a segmented mouth region
and a model lip curve, we need to match the response of the model curve with
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the selected data points by varying the parameters of the model curve. The set of
parameters for which the best matching takes place between the model generated data
points and the selected lip boundary points are the results of a system identification
procedure adopted here. The model curve is adapted by changing its parameters
using a differential evolution algorithm.

Let, y = f (x) be the model curve. Then for all (x, y) lying on the curve, we
obtain G(x, y) = 1, and for all points y �= f (x), G(x, y) = 0. Let, L(x, y) = 1 for
all valid data points on the outer boundary of a segmented lip. We use a performance
evaluation metric J, where

J =
∑
∀x

∑
∀y,y= f (x)

|G(x, y) − L(x, y)|

In DE algorithm, we used J as the fitness function, where we wanted to minimize J
for all valid (x, y) on the lip boundary. The DE considers nine-parameter population
vectors, adapts the trial population by mutation and recombination, and selects the
best of the target vector and the original parameter vector to determine the parameter
vector in the next iteration. This is done in parallel for NP number of parameter
vectors, where NP is the population size. The algorithm is terminated when the error
limit [16], defined by the difference of J ’s between the best of the previous and the
current iteration is below a prescribed threshold. The best fit parameter vector is the
parameter set of the best model lip-contour matched with a given lip boundary data
points.

15.5 Emotion Classification from Measured Parameters of the
Lip-Contour Model

It is noted from a large number of lip-contour instances that there exist at least two
parameters of the lip model that are clearly distinctive of individual emotions. So
any typical machine learning/statistical classifier can be employed to classify the
different emotional status from the parameter of lip-contour. In this chapter we use a
support vector machine (SVM) [2, 17] classifier for emotion classification from the
lip data.

A Support Vector Machine (SVM) has successfully been used for both linear and
nonlinear classification. However, as nonlinear operation yields results with lesser
accuracy, in this chapter, we focus on the linear operation only. To understand the
basic operation of SVM, let, X be the input vector and y be the desired scalar output
that can take +1 or −1 values, indicating linear separation of the pattern vector X .

The function f (X, W, b) can be represented as follows:

f (X, W, b) = sign(W X + b) (15.8)
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Fig. 15.5 Defining support
vector for a linear SVM system

where W = [w1 w2...wn] is the weight vector,
X = [x1 x2...xn]T represents the input vector, b is the bias.

The function f classifies the input vector X into two classes denoted by +1 or −1.
The straight line that segregates the two pattern classes is usually called a hyperplane.
Further, the data points that are situated at the margins of the two boundaries of the
linear classifier are called support vectors. Figure 15.5 describes a support vector for
a linear SVM.

Let us now select two points X+ and X− as two support vectors. Thus by defin-
ition

W X+ + b = +1 (15.9)

W X− + b = −1 (15.10)

which jointly yields
W (X+ − X−) = 2 (15.11)

Now, the separation between the two support vectors lying in the class +1 and
class −1, called marginal width, is given by

M = {(W X+ + b) − (W X− + b)}
‖W‖ = 2

‖W‖ (15.12)

The main objective in a linear SVM is to maximize M , i.e., to minimize ‖W‖,
which is same as minimizing 1

2 W T W . Thus, the linear SVM can be mathematically
described by:
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Fig. 15.6 Emotion classification by support vector machines

Minimize φ(W ) = 1

2
W T W (15.13)

subject to yi (W Xi + b) ≥ 1 for all i , where yi is either 1 or −1 depending on the
class which Xi belongs to.

Here, the objective is to solve W and b to satisfy the above equation. In this paper,
we are not presenting the solution to the optimization problem, referred to above.
This is available in standard texts on neural networks [11]. One important aspect of
SVM is the kernel function selection. For linear SVM, the kernel K for two data
points Xi and X j is defined by

K (Xi , X j ) = X T
i X j (15.14)

In our basic scheme, we employed five SVM networks, one each for joy, anger,
sadness, fear and relaxation. The i th SVM network is trained with all of the training
instances of the i th class with positive levels, and all other training instances with
negative levels. The decision logic box driven by the five SVM networks ultimately
recognizes the emotion corresponding to the supplied feature vector X . Figure 15.6
provides this SVM-based emotion recognition scheme.

The decision logic works in the following manner. If only one input of the decision
logic is +1, it infers the corresponding class number at the output. For example, if
the SVM-disgust only in Fig. 15.6 generates a +1, the output of the decision logic
will be the class number for the emotion class: disgust.

When more than one input of the decision logic is +1, the decision is taken
in two steps. First, we count the number of positive instances falling in the small
neighborhood of the given pattern for each emotion class with its corresponding
SVM-output +1. Next, the emotion class with the highest count is declared as the
winner. The decision logic thus takes decision based on the principle of “majority
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voting”, which is realized here by the count of positive instances in the neighborhood
of the given test pattern. The “neighborhood” here is defined as a nine-dimensional
sphere function around a given test pattern, considering it as the center of the sphere.

The radius of the sphere is determined from the measurements of standard devi-
ation in the individual features. The largest among the standard deviations for all
the features is considered as the radius of the “neighborhood” in the data points,
representing positive instances in a given emotion class. The radius of different emo-
tion classes here is thus different. This, however, makes sense as the data density
(per unit volume in nine-dimensional hyperspace) for different emotion classes is
non-uniform.

To study the performance of classification using linear SVM we employed leave-
one-out cross-validation . Leave-one-out classification involves using a single obser-
vation from the original sample as the classified data, and the remaining observations
as the training data. This is repeated such that each observation in the sample is used
once as the classified data. This is the same as a K -fold classification with K being
equal to the number of observations in the original sample.

15.6 Experiments and Results

The experiment has two phases. In the first phase, we determine weight vectors of
five SVM classifiers, each one for one emotion class, including anger, disgust, fear,
happiness and sadness. We had 50 subjects, and for each subject we obtained ten
facial expressions for ten different instances of each emotion. Thus, for five emotions,
we had 50 facial expressions for individual subjects. Three out of ten instances of
emotional expression are given in Tables 15.3 and 15.5 for two subjects.

Now, for each facial expression given in Tables 15.3 and 15.5, we segmented the
mouth region by a fuzzy c-means clustering algorithm, and determined the optimal
lip-parameters: b, c, l, p, v, n, a, h and s by adapting the model lip-contour with the
outer boundary of individual segmented lips to have an optimal matching between the
two. This matching was performed by classical DE algorithm. Tables 15.4 and 15.6
are the results of lip-parameters obtained from Tables 15.3 and 15.5, respectively. The
weight vectors for the SVM classifiers for individual emotions of a subject are then
identified. This is done by first preparing a table with ten positive and 40 negative
instances for each emotion class of a subject. The weight vector for the given SVM-
classifier for the emotion class is determined in a manner so that all the positive and
negative instances are separated with a margin of 2

‖W‖ . This is done for all individual
subjects separately.

The second phase of the experiment starts with an unknown facial expression of a
known subject. We first obtain mouth region from the image by FCM clustering, and
determine lip-parameter by DE using the model lip. Now, we feed the lip-parameters
to all the five SVM classifiers for the person concerned. The output of one or more
SVM-classifiers may be +1. The decision logic then determines the emotion class of
the unknown pattern.
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Table 15.3 Facial expression for subject 1 for different emotions

Emotion

Instances Anger Disgust Fear Happiness Sadness

1.

2.

3.

Table 15.4 Lip parameters for subject 1 for different emotions

Emotion Instance b c l p v n a h s

HAPPY 1 55 63 226 228 55 194 25 14 0
2 46 80 221 249 36 241 44 52 44
3 45 69 221 228 49 156 49 54 49

SAD 1 39 38 170 149 38 64 64 81 75
2 37 45 171 152 38 45 45 66 53
3 38 40 164 159 17 67 67 79 74

FEAR 1 48 49 148 142 18 116 46 60 52
2 45 54 151 167 26 141 38 61 54
3 44 47 143 151 29 126 36 54 44

DISGUST 1 41 40 190 168 26 96 10 24 19
2 35 36 187 159 22 92 12 27 23
3 39 48 176 165 30 98 12 29 18

ANGER 1 36 48 147 143 33 133 31 49 40
2 32 48 161 168 25 134 26 45 35
3 33 39 140 144 25 127 42 53 49
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Table 15.5 Facial expression for subject 2 for different emotions

Emotion
Anger Disgust Fear Happiness SadnessInstances

1.

2.

3.

Table 15.6 Lip parameters for subject 2 for different emotions

Emotion Instance b c l p v n a h s

HAPPY 1 28 36 225 197 33 139 66 76 73
2 36 46 231 223 27 179 14 25 16
3 37 36 221 211 0 155 58 52 65

SAD 1 38 45 149 148 17 90 61 68 64
2 35 47 145 149 14 78 59 68 65
3 35 40 158 146 23 74 61 75 70

FEAR 1 40 50 145 145 14 115 68 73 110
2 28 45 136 152 19 80 23 35 28
3 40 187 138 139 10 120 73 63 74

DISGUST 1 38 54 171 145 30 82 30 41 33
2 37 73 173 132 37 84 24 35 28
3 44 65 179 159 36 86 18 28 21

ANGER 1 48 40 186 185 19 149 71 81 81
2 43 34 169 154 8 150 76 83 84
3 45 42 158 172 19 148 54 65 63
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Table 15.7 Comparative study of original emotion and classified emotion for subject 1
Original emotion

Anger Disgust Fear Happiness Sadness

Classified emotion Anger 60 10 10 0 0
Disgust 10 90 0 0 10
Fear 30 0 90 0 0
Happy 0 0 0 100 0
Sad 0 0 0 0 90

Table 15.8 Accuracy of emotion classification after omitting parameters one-by-one for subject-1

Parameter b c l p v n a h s

Accuracy (%) 78 88 88 90 90 70 90 86 86

15.7 Performance Analysis

The experiment presented in the last section is now repeated for 30 unknown instances
of emotion taken from the first experimental subject. Table 15.7 provides the results
of classification accuracy of unknown emotional instances taken for subject 1. It is
clear from the table that happiness here is correctly identified in 100 % of the cases.
Sadness is confused with disgust in 10 % of the cases. Disgust is confused with
anger in 10 % of the cases. Anger seems to be very complex emotion. It is correctly
classified in 60 % of the cases. It is sometimes mis-interpreted as disgust and fear.
Disgust is correctly classified in 90 % of the cases, but in 10 % of the cases it is
misinterpreted as anger.

Table 15.9 provides the results for emotion classification for subject two. Here
too we considered 30 unknown instances of emotion taken for subject two, and
classified the emotion into five classes. The results given in Table 15.9 indicate that
here anger, disgust and happiness are classified correctly in 100 % of the cases. There
are, however, confusions in sadness and fear.

One interesting experiment was to determine the significance of individual lip-
parameters. We dropped one parameter at a time and designed the weight vector for
SVM-classifier for different emotions. Now, we feed the lip-parameters of unknown
emotional instance of the same subject and determine the classification accuracy in
absence of one parameter each.

The results of classification accuracy while omitting one parameter are given in
Tables 15.8 and 15.10, respectively, for subjects one and two. The most important
parameter would be the one where classification falls off by a bigger margin.

From Tables 15.8 and 15.10, it is clear that parameter b has an important role in
emotion classification, since in the absence of this, classification falls off by a large
margin.
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Table 15.9 Comparative study of original emotion and classified emotion for subject 2
Original emotion

Anger Disgust Fear Happiness Sadness

Classified emotion Anger 100 0 0 0 0
Disgust 0 100 20 0 10
Fear 0 0 80 0 0
Happy 0 0 0 100 0
Sad 0 0 0 0 90

Table 15.10 Accuracy of emotion classification after omitting parameters one-by-one for
subject 2

Parameter b c l p v n a h s

Accuracy (%) 86 94 96 94 90 96 90 92 88

In general, facial expression based emotion recognition usually has an average
classification accuracy of (80–90) % [2, 3, 8, 10]. To obtain the above classification
accuracy, we require a large number of facial features. The present experiment,
however, attempts to use a single facial attribute –the lip. The experiments undertaken
here provide us with an average classification accuracy of 86 %, which is better
than the classification accuracies reported for the existing lip-contour based emotion
classification schemes [6].

15.8 Conclusion

This chapter proposed a new approach to emotion classification from the lip-contour
of the subjects experiencing a specific emotion. It employed lip segmentation, lip
parameter evaluation and classification by SVM to determine the emotion class of
the subject.

The lip-contour used here is unique and unknown to the machine intelligence
community. Experiments with a large number of subjects confirm that the proposed
model can capture most of the experimental lip-contours for a specific emotive expe-
rience of the subject. The DE algorithm used here is very fast and robust and thus
can easily determine the parameters of the lip-contour within first 50 iterations of
the execution of DE program. The SVM classifier, which is already an established
tool for pattern classification with high accuracy, has been utilized here for classify-
ing lip parameters into emotions. Experiments here too confirm that the percentage
accuracy in classification of emotion on an average is 86 %, as obtained from the
data set of 50 subjects, each having 10 frames per emotion.



15 Emotion Recognition from the Lip Profile of a Subject 297

References

1. Chakraborty, A., Konar, A., Chakraborty, U.K., Chatterjee, A.: Emotion Recognition From
Facial Expressions and Its Control Using Fuzzy Logic. IEEE Trans. Syst. Man Cybern. Part A
39(4), 726–743 (2009)

2. Konar, A., Chakraborty, A.: Emotional Intelligence: a cybernetic approach. Springer,
Heidelberg (2009)

3. Ekman, P., Friesen, W.V.: Unmasking the Face: A Guide to Recognizing Emotions From Facial
Clues. Prentice-Hall, Englewood Cliffs (1975)

4. Rizon, M., Karthigayan, M., Yaacob, S., Nagarajan, R.: Japanese face emotions classification
using lip features. In: IEEE Computer Society Geometric Modelling and Imaging (GMAI’07),
School of Mechatronics Engineering, Universiti Malaysia Perlis, Jejawi, Perlis, Malaysia
(2007)

5. Bouvier, C., Coulon, P.-Y., Maldague, X.: Unsupervised lips segmentation based on ROI opti-
misation and parametric model. In: IEEE GIPSA_lab, INPG, CNRS, UJF, U.Stendhal 46 av.
F. Viallet, France and LVSN, University Laval, Sainte-Foy, mQuebec, Canada (2007)

6. Yaling, L., Minghui, D.: Lip contour extraction based on manifold. In: IEEE Proceedings of
the 2008 International Conference on MultiMedia and Information Technology, pp. 229–232,
Washington, DC, USA (2008)

7. Kobayashi, H., Hara, F.: The recognition of basic facial expressions by neural network. Trans.
Soc. Instrum. Contr. Eng. 29(1), 112–118 (1993)

8. Kobayashi, H., Hara, F.: Measurement of the strength of six basic facial expressions by neural
network. Trans. Jpn. Soc. Mech. Eng. (C) 59(567), 177–183 (1993)

9. Kobayashi, H., Hara, F.: Recognition of mixed facial expressions by neural network. Trans.
Jpn. Soc. Mech. Eng. (C) 59 (1993)

10. Bashyal, S., Venayagamoorthy, G.K.: Recognition of facial expressions using Gabor wavelets
and learning vector quantization. Int. J. Eng. Appl. Artif. Intell. 21, 1056–1064 (2008)

11. Busso, C., Narayanan, S.: Interaction between speech and facial gestures in emotional utter-
ances: A single subject study. IEEE Trans. Audio Speech Lang. Process. 15(8), 2331–2347
(2007)

12. Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic interpretation and coding of face images using
flexible models. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 743–756 (1997)

13. Zeng, Z., Fu, Y., Roisman, G.I., Wen, Z., Hu, Y., Huang, T.S.: Spontaneous emotional facial
expression detection. Int. J. Multimedia 1(5), 1–8 (2006)

14. Gao, V., Leung, M. K. H., Hui, S. C., Tananda, M.W.: Facial expression recognition from
line-based caricatures. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(3), 407–412
(2003)

15. Panti, M., Patras, I.: Dynamics of facial expression: recognition of facial actions and their
temporal segments from face profile image sequences. IEEE Trans. Syst. Man Cybern. B
Cybern. (2006)

16. Price, K. V., Storn, R. M., Lampinen, J. A.: Differential Evolution: a practical approach to
global optimization. Springer, Berlin (2005)

17. Wang, L.: Support Vector Machines: theory and applications studies in fuzziness and soft
computing, Springer, Berlin (2010)

18. Yang, Y., Wang, X., Qiarr, Y., Lin, S.: Accurate and real-time lip contour extraction based on
constrained contour growing. In: Conferences on Pervasive Computing (JCPC), pp. 589–594
(2009)

19. Cohen, I.: Facial expression recognition from video sequences. M.S. thesis, University of
Illinois at Urbana-Champaign, Department of Electric Engineering, Urbana (2000)

20. Cohen, I., Sebe, N., Garg, A., Chen, L.S., Huang, T.S.: Facial expression recognition from
video sequences: Temporal and static modeling. Comput. Vis. Image Underst. 91(1/2), 160–
187 (2003)



298 A. Halder et al.

21. Karthigayan, M., Rizon, M., Yaacob, S., Nagarajan, R., Sugisaka, M., Rozailan Mamat, M.,
Desai, H.: Fuzzy clustering for genetic algorithm based optimized ellipse data in classify-
ing face emotion. In: International Conference on Control, Automation and Systems 2007
ICCAS 07, pp. 1–5 (2007)

22. Goleman, D.: Emotional Intelligence. Bantam, New York (1995)
23. Das, S., Halder, A., Bhowmik, P., Chakraborty, A., Konar, A., Nagar, A.K.: A support vector

machine classifier of emotion from voice and facial expression data. IEEE World Congr. Nat.
Biol. Inspired Comput. NaBIC 2009, 1010–1015 (2009)

24. Das, S., Halder, A., Bhowmik, P., Chakraborty, A., Konar, A., Nagar, A. K.: Voice and facial
expression based classification of emotion using linear support vector machine. In: Proceed-
ings of the 2009 Second International Conference on Developments in eSystems Engineering
(DESE ’09), pp. 377–384 (2009)

25. Ghosh, M., Chakraborty, A., Acharya, A., Konar, A., Panigrahi, B. K.: A recurrent neural
model for parameter estimation of mixed emotions from facial expressions of the subjects. In:
Proceedings of the 2009 international joint conference on Neural Networks, pp. 3421–3428
(2009)

26. Hisagi, M., Saitoh, T., Konishi, R., Analysis of efficient feature for Japanese vowel recognition.
In: IEEE sponsored International Symposium on Intelligent Signal Processing and Communi-
cations (ISPACS ’06) (2006)

27. Gocke, R., Asthana, A.: A Comparative Study of 2D and 3D Lip Tracking Methods for AV
ASR, Auditory-Visual Speech processing (AVSP). Moreton Island, Australia, pp. 235–240
(2008)

28. Revret, L., Benoot, C.: A new 3D lip model for analysis and synthesis of lip motion in speech
production. In: Auditory-visual Speech Processing Workshop. Terrigal, Australia. pp. 207–212
(1998)

29. Kuratate, T., Hsu, K., Riley, M.: Creating speaker specific 3D lip models using 3D range data.
Inform. Process. Soc. Jpn. 2004(16), 19–24 (2004)

30. Yamada, H.: Visual information for categorizing facial expression of emotion. Appl. Cogn.
Psychol. 7, 252–270 (1993)

31. Fernandez-Dols, J.M., Wallbott, H., Sanchez, F.: Emotion category accessibility and the decod-
ing of emotion from facial expression and context. J. Nonverbal Behav. 15(2), 107–123 (1991)

32. Konar, A.: Computational Intelligence: principles techniques and applications. Springer, Hei-
delberg (2005)

33. Zimmermann, H.J: Fuzzy Set Theory and its Applications. Springer, Netherlands (2001)



Index

A
Adaptive fuzzy switching filter, 12
Adaptive median filter, 12
Affine multimodality, 187, 188
Affine transformation, 189, 192, 194, 196
Alpha-trimmed mean-based filter, 12
Ant colony, 211
Average distortion, 132–136, 142–145, 150

B
Bacterial foraging

optimization, 131, 133, 137, 139
Biogeography-based

optimization (BBO), 45
Bitrate, 232
Box plot, 34

C
C-means, 94
Center-weighted median filter, 4
Chemotaxis, 137, 138
CIELAB, 227, 229
Classifier, 259
Cluster, 94
Cluster center, 285
Clustering, 268
Color cast, 221
Computed tomography, 188
Computer vision, 71, 89
Content-based image retrieval, 201
Contrast enhancement, 21
Contrast limited adaptive histogram

equalization (CLAHE), 33
Correlation, 189, 193, 195
Crisp membership degree, 96

Crisp VQ, 94
Criterion, 98
Crossover, 287
Cumulative histograms, 25

D
Data density, 292
Decision tree, 161, 162
Depth of field, 229
Desaturation, 227, 228
Differential

evolution (DE), 286
Discontinuities, 27
Dispersal, 139
Distance metric, 157
Distortion, 94
Diversity, 208

E
Edge detecting

median filter, 12, 15
Edge detection, 224
Element-wise

maximization, 28
Elimination, 139
Emotion recognition, 282
Entropy, 29, 38, 161
Evolutionary, 203
Experiments

compute on demand, 102
distortion comparison, 100
literature comparison, 102
PSNR comparison, 101
utility analysis, 102

Exposure time, 229

A. Chatterjee and P. Siarry (eds.), Computational Intelligence in Image Processing,
DOI: 10.1007/978-3-642-30621-1, � Springer-Verlag Berlin Heidelberg 2013

299



F
False positive, 231
Feature selection, 269
Figures

computational time, 102
testing Images, 100
transition from fuzzy to crisp mode, 97
utility measures distributions, 102

Fitness, 30, 203
Fitness function, 287, 289
Flash, 218, 223, 229
Flash/no flash, 229
FLVQ, 95
Fractal dimension, 256
Fuzzy, 131, 133, 134, 136
Fuzzy c-means, 94, 95, 98, 174, 187, 188, 190,

192, 284
Fuzzy entropy, 37–40, 54
Fuzzy filter, 12
Fuzzy membership degree, 96
Fuzzy relation, 108, 111, 115, 117
Fuzzy relation equation, 174
Fuzzy set, 38, 40, 131, 135, 158
Fuzzy transform, 107–109, 111, 115,

117–120, 122–124, 129
Fuzzy VQ (FVQ), 94, 95

G
Gaussian, 228
Gaussian membership distribution, 159
Genetic algorithm, 187–190, 195, 211
Genetic programming, 71, 72
Gleason grading system, 254
Global histogram equalization, 25
Golden eyes, 219

H
Hierarchical feature matching, 161
Hierarchical template matching, 156
Histogram equalization, 24
HSL, 222
HSV color mode
HSV color model, 166
Hue-saturation-value (HSV), 24
Human brain, 187–190
Hyperplane, 290

I
Illuminant, 221
Image compression, 93, 131, 132, 134,

149, 232

Image segmentation, 37, 38, 40, 42, 71, 72, 75,
77, 89

Image-layer, 108, 114
Impulse detector, 4, 13
Information gain, 162
Inpainting, 228, 233

J
JPEG, 232

K
K-means, 206
Kernel function, 291
Kiss curve, 283
Kurtosis, 158

L
LBG, 94
Learning process, 98
Leave-one-out cross validation, 292
Lens aperture, 229
Levenberg-Marquardt algorithm, 10
Likelihood function, 270
Linear classifier, 290
Lip-contour, 282, 283
Lipschitz condition, 108
Lossless compression, 93
Lossy compression, 93, 84
Lukasiewicz t-norm, 174, 179

M
Mean, 157
Mean filters, 5

alpha trimmed, 12
minimum-maximum exclusive, 15
signal-dependent rank-ordered, 12

Mean squared error criterion, 12
Median filters

adaptive, 12
center-weighted, 4
edge detecting, 12, 15
multistate, 12
progressive switching, 12
standard, 4, 12, 15
switching, 12
tri-state, 12
weighted, 4

Membership, 158
Membership degrees, 97
Membership function, 133, 135

300 Index



Migration, 98–100
Minimum-maximum exclusive mean

filter, 15
Morphological operators, 223, 229
Multistate median filter, 12
Mutation, 287
Mutual information, 189, 192, 195

N
Noise, 229, 232

O
Object recognition, 71, 75, 89
Objective function, 93, 96

P
Pairing verification, 224
Particle-swarm optimization

(PSO), 30, 204
Performance evaluation metric, 289
Postprocessing, 219
Preflash, 218
Progressive switching median filter, 12
Prostate carcinoma, 254
PSNR, 100, 108, 113, 119–122, 124, 131,

142–148, 174, 175, 182, 183

Q
Query-by-example, 208

R
Red eyes, 218
Redness map, 222
Region of interest, 187–190, 224
Registration, 187, 189, 190, 194
Relevance feedback, 208
Remote sensing, 265
Resolution, 224
RGB, 221

S
Sector-based equalization, 25
Segmentation, 190, 232
Selection, 287
Self organizing map, 206
Semantic gap, 202

Signal-dependent rank-ordered
mean filter, 12

Similarity metric, 187–189, 193, 194
Skin detection, 221, 223
Standard deviation, 158
Standard median filter, 4, 12, 15
Statistical separability measures, 270
Support vector machine (SVM), 207, 289
Support vectors, 290
Swarming, 138
Switching median filter, 12

T
Tables

distortion mean values, 100
literature comparison results, 102
PSNR mean values, 101

Template, 157, 224
Template matching, 156
Termination criteria, 31
Texture feature, 255
Theta, 97
Thresholding, 38, 42
Tristate median filter, 12
Type-2 fuzzy logic systems

applications in image processing, 5
as a noise detector, 13
as a noise filter, 11
definition, 3
sugeno type, 6

U
Uniform histogram, 24
Utility, 93, 94, 98

V
Vector quantization (VQ), 93–95,

131–134, 142
Vigenère algorithm, 174, 177–179, 185

W
Watermarking, 174, 177–179, 183, 185
Weighted median filter, 4
Weighted-sum scheme, 25

Y
YCC, 222

Index 301


	Computational Intelligencein Image Processing
	Preface
	Contents
	Part I Image Preprocessing Algorithms
	Part II Image Compression Algorithms
	Part III Image Analysis Algorithms
	Part IV Image Inferencing Algorithms
	Index



