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Abstract. Magnetic Resonance guided High Intensity Focused Ultrasound
(MRgHIFU) is an emerging non-invasive technology for the treatment of patho-
logical tissue. The possibility of depositing sharply localised energy deep within
the body without affecting the surrounding tissue requires the exact knowledge
of the target’s position. The cyclic respiratory organ motion renders targeting
challenging, as the treatment focus has to be continuously adapted according to
the current target’s displacement in 3D space. In this paper, a combination of a
patient-specific dynamic breath model and a population-based statistical motion
model is used to compensate for the respiratory induced organ motion. The ap-
plication of a population based statistical motion model replaces the acquisition
of a patient-specific 3D motion model, nevertheless allowing for precise motion
compensation.

1 Introduction

Focused Ultrasound deposits sharply localised energy in the tissue causing thermal ab-
lation. Precise targeting demands for exact knowledge of the target’s position. The com-
pensation of the fitful respiratory organ motion is a challenging task in the treatment of
pathological tissue in abdominal organs. If breathing motion is not compensated, the
exposure of healthy tissue increases and the thermal dose delivered to the tumour is
reduced. Continuous target displacement tracking in 3D space requires accurate spatial
and rapid temporal beam refocusing in the range of millimetres and milliseconds, re-
spectively. Any realisation of a real-time target tracking-based dose delivery must thus
be able to predict the target’s position at some future time in order to compensate for
the finite time delay between the acquisition of the current target’s position and the
mechanical response of the system to change treatment focus.

During sonication the Magnetic Resonance (MR) scan-time is mainly required for
the temperature feedback control of the High Intensity Focused Ultrasound (HIFU) sys-
tem, quantifying the thermal dose given to the tissue in order to guarantee complete co-
agulation of the tumour. Therefore, not enough MR scan-time is left to track the tumour
in 3D. To determine the thermal dose, temperature maps in regular distances around
the tumour are acquired. Similarly as proposed in [1], the navigator (pencil beam) feed-
back information is used to reposition the temperature mapping slice to resolve organ
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displacements. In this work, we propose to use this 1-dimensional navigator feedback
information not only to track the current respiratory state, but also to predict the organ’s
future displacement, e.g. the position of the tumour.

Several approaches have been proposed to track and predict the motion of abdominal
organs. Ries et al. [1] proposed a real-time tracking method that observes the target
on a 2D image plane combined with a perpendicular acquired pencil beam navigator,
providing quasi-3D information of the target trajectories. The future 3D target position
is then estimated by a Kalman filter. Underlying a regular and stable breathing pattern,
the method was tested in phantom experiments and in vivo on ventilated pigs. The
accuracy of the approach is not evaluated on ground truth motion data, but by indirectly
comparing the temperature maps obtained after 60 seconds of HIFU sonication with and
without motion compensation, resulting in higher maximal temperatures in the target
area with enabled motion compensation. However, the experiments have neither been
evaluated on ground truth data nor under free breathing conditions.

Ruan and Keall [2] proposed a predictor based on Kernel Density Estimation to ac-
count for system latencies caused by software and hardware processing. They use 3D
motion trajectories of implanted markers to train the predictor in a lower dimensional
feature space using Principal Component Analysis (PCA). The prediction is performed
in this subspace and mapped back into the original space for the evaluation. The draw-
back of the method is that only the position of directly observed internal fiducials can
be predicted and not of the entire organ.

Only recently, a combination of a pattern matching approach using a static subject-
specific model and a population-based statistical drift model for motion-compensated
MRgHIFU treatment was described and evaluated on realistic 4DMRI data [3]. While
the results are convincing, the acquisition of a patient-specific 3D motion atlas takes
several minutes and the processing time is in the range of hours and thus is not accept-
able for clinical use. In particular, the multiple volume-to-volume registrations take up
to several hours, in which the patient is asked not to move in order to stay aligned with
the acquired model.

Preiswerk et al. [4] showed, that the displacement of the entire liver can be spa-
tially predicted by tracking three well distributed markers (implanted fiducials) within
the liver using a population-based statistical motion model. Based on an exhalation
breath-hold scan, accurate prediction is achieved. Dispensing with the need of exten-
sive pretreatment volume imaging and its time consuming 3D non-rigid registration, no
attention is payed to a potential system lag, which is essential for real-time tracking.
Also this method is based on full 3D motion information of implanted markers.

The main contribution of the presented work is the combination of a patient-specific
fast and lightweight respiratory breathing model and a population-based motion model
to a novel, completely non-invasive and clinically feasible 3D motion compensation
method for MRgHIFU treatments. The proposed method addresses certain weaknesses
of the state-of-the-art methods in terms of real-time usage and validation. On the one
hand, the completely MR-based respiratory signal is continuously acquired and used to
predict the organs future respiratory state in order to bridge the system’s time
delay between the tracking and treatment of the target. On the other hand, the



56 P. Arnold et al.

population-based motion model is applied to estimate the motion of the unobserved
liver, without the need of acquiring a subject-specific 3D motion model.

2 Materials and Methods

For the evaluation of our approach, a realistic MRgHIFU scenario was assumed.
During HIFU sonication, the measured information of the pencil beam navigator, i.e. the
inferior-superior displacement (1D) of the diaphragm, is used as the breathing signal.
Based on this breathing signal a patient-specific respiratory model is created, whereby
a temporal prediction of the diaphragm’s future position is estimated (Sec. 2.2). Hav-
ing an estimate of this displacement, the population-based statistical model is used to
compute the most likely 3D displacement of the entire liver, further referred as to re-
construction (Sec. 2.3).

2.1 Data and Ground Truth

The ground truth data was acquired by 4DMRI, a dynamic 2D MR imaging method
capturing the respiratory motion during free breathing [5]. Thanks to the sagittal slice
orientation and the interleaved acquisition of data slices and a dedicated so-called nav-
igator slice at a fixed position, vascular structures used for the 3D reconstruction of
the volumes are visible during complete breathing cycles and can be tracked with min-
imal out-of-plane motion. 4DMRI sequences of 20 healthy volunteers (mixed sexes,
age range: 17-75) were captured. During acquisition sessions of roughly two hours,
20-45 minutes of time-resolved organ motion data was measured. MR volumes con-
sisting of 25-30 slices (120×192 pixel) covering the right liver lobe with a voxel size
of 1.4 × 1.4 × 4 mm3 and with a temporal resolution of 300-400 ms were obtained.
The retrospectively reconstructed 3D stacks cover the entire range of observed breath-
ing depths. By means of B-spline-based 3D non-rigid registration [6], dense spatio-
temporal vector fields describing the motion between the different respiratory states of
the liver are extracted. The first manually segmented liver exhalation stack is taken as
reference volume upon which the subsequent 3D stacks are incrementally registered
from time-step to time-step. The vector field from the previous step is taken as an
initial estimation, significantly speeding up the registration time and making the reg-
istration more robust by reducing the chance of getting trapped in a local minima. The
resulting vector fields, describing the liver’s displacements relative to the reference vol-
ume, serve as the basic data for the motion model and its evaluation in cross-validation
experiments.

In order to build a statistical model from this data, inter-subject correspondence had
to be established. For each subject mechanical corresponding points were manually
selected on the reference volume surfaces in order to align the 20 datasets. These points
mark the delineations between the superior surface in contact with lung, the anterior
and the posterior areas, which slide along the abdominal wall, and the inferior surface.
An isotropic grid with 10 mm resolution was placed in the resulting average liver and
then transformed to the shape of each of the subjects. This finally gave a set of 20
topologically equivalent 3D liver volumes as well as vector fields describing the motion
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Fig. 1. Schematic illustration of combined respiratory model and motion model-based prediction.
Based on the respiratory signal ( | ) captured at the marked diaphragm region, the displacement
sp of the diaphragm is predicted and from that the full liver displacement v is reconstructed.

for each of the N = 1261 inter-subject corresponding grid points. For more detailed
information we refer the reader to the article of Preiswerk et al. [4].

In this work, the described breathing signal is generated by simulating a pencil beam
navigator placed on the acquired navigator slices. A manually defined region placed
anywhere at the diaphragm was persistently tracked by template matching ( Normalised
Cross Correlation) throughout the acquisition sequence providing one respiratory posi-
tion and displacement per acquired navigator slice, respectively. The inferior-superior
component of the templates motion is interpreted as the breathing signal as obtained by
a common pencil beam navigator, see Figures 1 and 2(a). The spatial resolution is thus
given by the image’s pixel size of roughly 1.4× 1.4mm2.

Since the 3D volumes are reconstructed at the time point between two navigator
slices (see Figure 1, left) we linearly interpolate the breathing signal in order to obtain
the respiratory positions and the 3D volumes at the same time points for the evaluation.
In the following we deal with a linearly interpolated breathing signal with a sample rate
of 6-8 Hz.

2.2 Temporal Prediction

Figure 1 schematically illustrates the prediction scene for the combined patient-specific
and population-based model. As described above, the breathing signal is extracted by
tracking a defined region on all the navigator slices followed by linear interpolation
obtaining the intermediate respiratory states, where the ground truth 3D data is available
for the validation.

The temporal prediction of the breathing signal is necessary in order to compensate
for the system lag, caused by the pencil beam acquisition time, the processing of the
data and the time for refocusing the HIFU beam to the newly calculated target. Any
breathing-controlled tracking method must thus be able to estimate the target’s posi-
tion at some future time. The prediction of the future curve of the breathing signal is
a key part of the prediction pipeline. Faulty predictions lead to wrong assumptions on
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the diaphragm’s displacement and thus to wrong spatial reconstructions of the whole
liver displacement. Since the breathing pattern of a free breathing patient is very irreg-
ular over time, e.g. the amplitude and phase are changing nearly unpredictably, we use
a prediction algorithm which can quickly adapt to the new input data. In the proposed
method, however, the tracking of the respiratory state during sonication is based on pen-
cil beams, therefore, one can expect a much lower sampling rate, as for example given
by an optical tracking system. In our simulation we deal with a sampling rate of 6-8 Hz.
Due to the low sampling rate, the learning based algorithms would lead to considerable
prediction errors at each ex- and inhalation position before adapting. Therefore we use
a similar technique as proposed in [3], where a one-dimensional breathing model based
on the measured pencil beam navigators is created. In contrast to the latter approach
where the model is acquired in a training phase and then stays fixed, our respiratory
model steadily grows even during increasing treatment time T . Each newly measured
data point (pencil beam position) is added to the model, thus getting more and more
stable over time. As the prediction algorithm prefers the most recent measurements in
the model, the model can be kept small to avoid a system slowdown caused by the in-
creasing model size. All the data stored in the model is observed for the patient-specific
operational setup, therefore only realistic displacements of the liver are predicted. For
anomalous breathing patterns with a deviation from the breath model above a certain
threshold, i.e. no matching pattern is found (e.g. coughing, new pattern), the HIFU beam
can be switched off to ensure patient safety.

The model is best represented by a matrix A, wherein the breathing signal is piece-
wise stored:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 s2 . . . sh sh+Δ

s2 s3 . . . sh+1 sh+1+Δ

...
...

...
...

si−h si−h+1 . . . si si+Δ

...
...

...
...

sT−h sT−h+1 . . . sT sT+Δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

The temporal prediction is based on the last h values of the current breathing signal
given by the vector aj = (sj−h, . . . , sj), where the index j denotes the actual time
point. The prediction provides an estimate sp = s′j+Δ describing the future signal
curve for a later time point, Δ time steps ahead. The best matching pattern of the current
breathing signal vector aj and the column vectors ai of A, is found with:

imin = argmin
i
{|ai − aj | , |j − T |} . (2)

The future curve of aimin with minimum aberration from the actual signal’s history aj
is considered as best estimate of the organ’s future respiratory state:

sp = simin+Δ . (3)

The resulting prediction error ε1 is then given by:

ε1 = |sj+Δ − sp| . (4)
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The value sp is the predicted shift in inferior-superior direction of the next diaphragm
position. This displacement serves as the input to the motion model that then predicts
the position of the entire liver. As the algorithm is continuously adjusting to new input
data and updated with the new measured signal input, it can quickly adapt to the irregu-
larity of the periods and amplitudes of the respiratory signal of a free breathing person.
Figure 2(b) shows 60 seconds of robust 170 ms ahead prediction performance of an ir-
regular breathing pattern measured by template matching (blue) and the model-based
prediction (green) of subject 4.

(a) (b)

Fig. 2. (a) Typical pencil-beam navigator for MR thermometry real-time slice correction acquired
at 10 Hz. (b) Example of 170 ms ahead prediction of a irregular breathing pattern of subject 4.
Blue: tracked breathing signal; Green: robust respiratory model-based prediction.

2.3 Statistical Modelling

So far, the displacement of only one single point at the diaphragm is known from the
prediction. The observed region, the centre of the pencil beam navigator template lo-
cated on the navigator slice, respectively, has to be adopted to the closest grid-point
of the subject’s liver. The predicted shift sp is then rigidly assigned to the correspond-
ing model grid-point and the population-based statistical model is used for the recon-
struction of the entire non-rigid liver displacement. From each of the 20 subjects, the
vector fields of the first 15 breathing cycles are taken to build the model. The liver
displacements are represented by a 3N -dimensional vector v = (Δu1, Δv1, Δw1, ...
, ΔuN , ΔvN , ΔwN )′. Note, that the difference vector v contains no shape informa-
tion, but only the relative displacements with respect to the reference volume. The
vector fields are mean-free concatenated in a data matrix X = (x1,x2, . . . ,xm) ∈
R

3N×m with xk = vk − v̄ and sample mean v̄ = 1
m

∑m
k=1 vk . Applying PCA to

the data, the vectors x are defined by the coefficients ck and the Eigenvectors sk of
S = (s1, s2, . . . ) of the covariance matrix of the data:

x =

m−1∑
k=1

ckσksk = S · diag(σk) c . (5)

Hereby, σk are the standard deviations within the data along each eigenvector sk . As
elaborated in [7], the model coefficient c for the full vector x can be found by an
incomplete estimate sp ∈ R

l, l < N that minimises

E(c) = ||Qc− sp||+ η · ||c||2 , (6)
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with Q = LS · diag(σk), where L represents a subspace mapping L : RN �→ R
l. In

the case of a noisy or incorrect assumption sp, tuning the regularisation factor η allows
for reconstructions closer to the average quantified by the Mahalanobis distance ||c||2.
Solving Eq. 6 for c with the singular value decomposition of Q = VWVT , yields:

c = V diag(
wk

w2
k + η

)V
T
sp . (7)

Using Eq. 7 the most probable organ displacement under the constraint of the known
one-dimensional point-shift prediction sp is then given by:

v = S · diag(σk) c+ v̄ . (8)

The elaborated framework allows to associate the rigid 1D shift of 1 point placed at
the diaphragm with the non-rigid 3D motion of the entire liver based on population
statistics.

3 Experiments and Results

To evaluate the prediction performance of the algorithm for clinical relevant motion
compensation, experiments on 20 volunteer subjects were performed. On average, dis-
placements of the diaphragm from 5.5 mm to 15.2 mm in inferior-superior direction
depending on the subject were observed. For simplicity of generating population statis-
tics, the same amount of data from each subject was included for the experiments. For
each experiment 1500 time steps, corresponding to 7-11 minutes, have been predicted.

In a first step, the prediction performance of the respiratory model is tested and eval-
uated on each of the subjects. In a second step, the respiratory model and the motion
model prediction are evaluated in combination with cross-validation experiments. The
predictive scene was evaluated every 300-400 ms, at the time points where the ground
truth 3D data is available. All experiments were performed with a lookahead length of
Δ = 1, i.e. 150-200 ms and based on a signal history length of h = 4, corresponding to
roughly 0.7 s.

3.1 Breath Prediction

Theoretically, the algorithm is able to predict after the first h = 4 time steps (≈ 0.7 s).
But as more breathing cycles are collected in the respiratory model the more robust the
method is predicting. Therefore, we observed the behavior of predictive performance
as a function of time, i.e. with an increasing model size. Figure 3(a) shows the average
error cumulated up to the given time on the axis and error bars showing the standard
deviation. The error in prediction is retrospectively computed according to Eq.(4).

In Figure 3(b) the overall results of breath prediction for all 20 subject are visualised
by error bars, marking the average and standard deviations. The experiments are evalu-
ated after a model acquisition time of 60 seconds. The average error over all subjects is
0.6 mm with an observed average breathing depth of 8.4 mm.
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Fig. 3. (a) Average and standard deviations of the cumulated breath prediction error averaged over
all subjects. The performance stabilises after a few minutes and is acceptable after 60 seconds.
(b) Prediction performance of the respiratory model evaluated for 20 subjects averaged over a
prediction length of 7-11 minutes, whereby the first 60 seconds are used to acquire a minimal
model. The results are presented by error bars, marking the average and standard deviations for
lookahead time of Δt ≈ 180 ms and signal history length of ht ≈ 0.7 s with an overall error of
0.6 mm.

3.2 Motion Model Prediction

The minimum size of population data to create a reliable model is still a unsolved
problem as the exact distribution of the data for the entire population is unknown. The
suitability of statistical models can, however, be shown empirically in cross-validation
experiments. For the evaluation of our motion prediction technique leave-one-out sta-
tistical models of all the 20 subjects were computed. From the left-out data a respiratory
signal was generated and used as test signal. As explained in Section 2.2 and 2.3, the
respiratory motion of the full liver is predicted from one single point at the diaphragm
only. For the reconstruction we took the 9 first principal components ending up with a
model covering 98% of the variance of the original motion data. For each subject the
manual segmentation of a reference volume and establishing correspondence (Sec. 2.1)
is necessary.

As the predicted shift sp can not fully be accounted for, the regularisation factor of
Eq. (7) was set to η = 5.5 in order to get more plausible reconstructions. The error
of prediction is determined by the point-wise Euclidean distance from the predicted
liver motion to the ground truth motion of the left-out liver. To give an overview of
the error distribution the results are visualised in Figure 4(a) by the median and error
bars marking the 25th and 75th percentiles. The dashed line is set to 2 mm, marking an
acceptable accuracy limit for HIFU treatments [8]. The average error over all subjects
is 1.7 mm, in contrast to the average error without any motion compensation of 3.8 mm.
In the case of no motion compensation, the error equals to the mean of the Euclidean
distances to the reference volume over time. The spatial distribution of the averaged
error over all subjects and time steps is shown in Figure 4(b). The root cause of the
error are false predictions in inferior-superior and anterior-posterior direction with a
maximal error of 2 mm, 1.1 mm and a minor error in left-right direction of 0.4 mm,
respectively.
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Fig. 4. (a) Resulting deviations between predicted and ground truth liver motions for 20 different
subject over a time interval of 7-11 minutes. Error bars around the median show the 25th and
75th percentile deviation and mean error without any motion compensation (♦). (b) Averaged
liver surface from 20 subjects of the right liver lobe at exhalation in anterior view. The colors
represent the motion prediction error (in mm) averaged over 20 subjects at the liver’s surface.

4 Conclusion

We presented a completely non-invasive and purely MR-based tracking method to pre-
dict the liver’s 3D motion in real-time under free breathing. The method is a combina-
tion of a pattern matching approach to predict the patient-specific breathing pattern and
a population-based statistical motion model based on PCA to reconstruct the respira-
tory induced organ motion. In the presented work, we demonstrate a safe and efficient
technique for MRgHIFU treatment of pathological tissue in moving organs. Although
the prediction technique is evaluated on real 4DMRI motion data of the liver, the pro-
posed generic framework is applicable to any abdominal organ, e.g. the kidney. The
method is evaluated on 4DMRI datasets of 20 healthy volunteers achieving an overall
prediction error of 1.7 mm, where the predictive method is clinically applicable after
60 seconds.

Although the overall prediction error of our novel method is slightly higher than the
state-of-the-art methods, the proposed technique addresses important issues for the non-
invasive real-time application of MRgHIFU treatment in moving abdominal organs.
Preiswerk et al. [4] achieve a prediction error of 1.2 mm by accurately knowing the 3D
displacements of three well distributed points within the liver ( e.g. implanted surrogate
markers). In [3] a prediction error of 1.1 mm is achieved by acquiring 3D information
of the patient specific liver motion.

In this work, however, a non-invasive MR-based tracking method is used, allowing
to measure the 1-dimensional displacement of a single point on the diaphragm only.
We are fully aware of that the second order organ deformation occurring over large
time scales, the so called drifts, are not detectable by measuring a single point at the
diaphragm only. But, since we are predicting over a short period of time, the different
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respiratory states of the liver can reliable be tracked, as has been shown in [9]. Besides
a 3D exhalation breath-hold scan, no patient-specific 3D motion data has to be acquired
and processed in a pretreatment phase.

In future work we will investigate the possibility of better adapting the population-
based motion model to a specific subject. Using a fast MR acquisition sequence, we
plan on better restricting the population-based statistical motion model to a specific
patient.
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